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Abstract

A terminal event can stop a series of recurrent events, which commonly occurs in
biomedical and clinical studies. In this situation, the non-informative censoring
assumption could fail because of potential dependency between these two event
processes, leading to invalid inference if we analyze recurrent events alone. The
joint frailty model is one of the widely used approaches to jointly model these two
processes by sharing the same frailty term.

One important assumption is that recurrent and terminal event processes are
conditionally independent given the subject-level frailty; however, this could be
violated when two processes also depends on time-varying covariates across recur-
rences. For example, time to death and time to stroke might both depend on the
age of the patients. And when we do not include age in the survival models, the
subject-level frailty cannot capture the change of the age across recurrences and
lead to the violation of the conditional independence assumption. Furthermore,
marginal correlation between two event processes based on traditional frailty mod-
eling has no closed form solution for estimation. In order to fill these gaps, we pro-
pose a novel joint frailty-copula approach to model recurrent events and a terminal
event with modest assumptions under Bayesian framework. Metropolis-Hastings
within the Gibbs Sampler algorithm is used for parameter estimation. Extensive
simulation studies are conducted to evaluate the efficiency, robustness and pre-
dictive performance of our proposal. The simulation results show that compared
with the joint frailty model, the bias and mean squared error(MSE) of the propose
approach is smaller when the conditional independence assumption is violated. We
applied our method into a real example extracted from the MarketScan database to
identify potential risk factors and study the association between recurrent strokes
and all-cause mortality.

Another important assumption under the joint frailty model is that the corre-
lation between the terminal event and the recurrent events is constant over time.
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This is an unrealistic assumption. For example, when we study myocardial infarc-
tions, time to death might be more correlated with the last myocardial infarction
compared with the earlier myocardial infarction. We propose a time-varying joint
frailty-copula model to further relax this assumption. Under this model, the dy-
namic correlation between the terminal event and the recurrent event is modeled
by a latent Gaussian AR(1) process. The simulation results show that compared
with the joint frailty model and the joint frailty-copula model, the bias, SD, MSE
and AB of the time-varying frailty copula model are the smallest. Then, we ap-
plied our method to analyze the CHS data to identify potential risk factors to
myocardial infarction and stroke.

In summary, we propose two methods to jointly model recurrent events and
a terminal event. Both methods outperform the traditional joint frailty model
when the conditional independence assumption is violated. The time-varying joint
frailty-copula model is more flexible, which allows the correlation between the
recurrent event process and the terminal event process to change over time. One
future topic is to jointly modeling biomarker, recurrent events and death time by
the frailty-copula models. Other topics include extending the current model to a
cure rate model and modeling multiple types of recurrent events.
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Chapter 1
Introduction

1.1 Background

Time-to-event outcomes are always of primary research interest in clinical trials

and biomedical studies, and the Cox proportional hazards (PH) regression model is

widely used to investigate the effects of potential risk factors on the time-to-event

process.

When the event of interest is recurrent (Jansen et al., 2018; Ridker et al.,

2000), such as successive hospitalized myocardial infarction or heart attack, Cox

PH models cannot be directly applied due to the failure to account for the corre-

lation among recurrent events, and as a result, the estimates of covariate effects

might be biased. Another challenge is that the recurrent events might be stopped

by a terminal event. Under this context, the censoring mechanism is informative

because of highly likely dependency between the recurrent event process and the

terminal event process, leading to the violation of the non-informative censoring

assumption. Thus, in order to have valid inference, we need to adjust for both the

correlation among recurrent events and also the informative censoring mechanism

due to the competing risk of the terminal event.

In this dissertation, we include two data examples. One is the MarketScan data

set. In this data set, patients with recurrent stroke events are of the main interest.

However, death, as a terminal event, will be a semi-competing event which stops

the recurrences of stroke events. And some baseline covariates such as gender,

age, hypertension, and diabetes may influence both risks of death and stroke. Our
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objective is to develop a method which can quantify the association between stroke

and death. And also, another goal is to dynamically predict the risk of death based

on the observed patient history and covariates.

Another example is a large study for cardiovascular diseases (CHS). In this

example, we are interested in two types of recurrent events, myocardial infarction

and stroke. But the problem is more complex in that the correlation between the

terminal event and the recurrent events possibly changing over time. So in order

to have a valid result, we also need to account for the time-varying correlation.

1.2 Literature Review

1.2.1 Non-recurrent Events

When the primary interested event is not recurrent, two survival models are widely

used, the Cox proportional hazard (PH) model (Cox, 1992) and the accelerated

failure time (AFT) model (Buckley and James, 1979). The interpretation is dif-

ferent for these two models.

Let Ti and Ci respectively denote the event time and the censoring time of the

ith subject. Yi = min{Ti, Ci} is the follow-up time and Di = I(Ti < Ci) is the

failing indicator.

The Cox PH model is a semiparametric model, which is specified via the hazard

function

λ(t) = λ0(t) exp(β′x)

where x is the associated covariate vector and λ0(t) is the baseline hazard. We do

not need to specify the detailed form of λ0(t). Under this model the log hazard is

linear. And the hazard functions between different groups are proportional over

time (the proportional hazard assumption).

The estimation of the parameters in the model is based on maximum semi-

parametric likelihood. Let Ri = {j : Yj ≥ ti}, which is the risk set of individuals

who have not experienced the event prior to time ti. The semiparametric partial
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likelihood function is

L(β) =
n∏
i=1

{
exp(β′xi)∑
j∈Ri exp(β′xi)

}di

, (1.1)

where n represents the number of distinct time points during which an event occur.

The baseline cumulative hazard function is estimated by a Breslow estimator,

Λ̂0T (t) =
n∑
i=1

I(Yi ≤ ti)Di∑
j∈Ri exp(β′xj)

.

Recent articles related to extensions of the Cox PH model are available (Lunn and

McNeil, 1995; Sy and Taylor, 2000; Bellera et al., 2010).

The AFT model is in a more direct form to model the event time Ti. It assumes

that

log(Ti) = µ+ β′Axi + σWi, (1.2)

where σ is the scale parameter and Wi is the residual with density function fW (·).
There are several choices for fW (·). For example, when Wi follows standard ex-

treme value distribution with density function fW (w) = exp(w − ew), Ti follows a

Weibull distribution. Under this special case, we could also prove that β′A = −β′.
The hazard function under this model generally is different than the Cox PH model

and can be expressed by

h(t) = exp(−β′Axi)h0 {(−β′Axi)t} . (1.3)

In this model, exp(β′Axi) can be interpreted as an acceleration factor associated

with the covariate vector xi. The likelihood under this model is

L(β) =
n∏
i=1

h(yi)
δiS(yi). (1.4)

β̂A is solved by the Newton-Raphson algorithm to maximize the likelihood. Recent

works on the AFT model include Wei (1992), Lin and Ying (1995), Kuo and Mallick

(1997).
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1.2.2 Recurrent Events

Recurrent event times are typically analyzed in two scales, calendar event time or

gap time. The calendar event time is calculated from the study onset to the time

when recurrent event happens. Suppose the ith patient experienced a total of ni

recurrent events. Let Tij denote the jth calendar recurrent event time. Then, the

jth gap time, Rij, is defined by Tij − Ti,j−1.
When we study Tij, we assume Tij follows a Poisson process and it is appropriate

when the recurrent event is caused by external factors. And especially for incidental

events, Poisson processes and other counts-based models are useful. Whereas,

when we study Rij, Rij is assumed to follow a renewal process. It is assumed that

a subject is renewed after each recurrent event occurs. And Rij, j = 1, . . . , ni + 1

are mutually independent. Renewal processes are more suitable for events caused

by internal physical cycles. More details can be found in (Cook and Lawless, 2007).

There exists substantial work on recurrent event analysis in the literature to

analyze calendar event time and gap event time. Much of the work we refer here can

be used to analyze both types of time scales but under calendar event time scale,

we are modeling an intensity function and under the recurrent event time scale,

we are modeling a hazard function. We first introduce some method to analyze

recurrent events. For instance, Lawless (1987) proposed a shared frailty model for

times to recurrent events, where a random effect called “frailty” was introduced to

account for the within-subject correlation. Conditional on the frailty, the times to

recurrent events from the same subject were assumed to be mutually independent.

Yue and Chan (1997) proposed a dynamic frailty model, generalizing the joint

frailty model by relaxing the constant frailty assumption. In particular, for each

subject and each recurrent event, a time-dependent frailty is associated with the

corresponding intensity function of the recurrent event. Among others, relevant

research topics on the most recent developments or comprehensive review can be

found in the literature (Lin et al., 1999, 2000; Kelly and Lim, 2000; Cook and

Lawless, 2007).

Considering nonparametric methods, most of the methods are based on the

counting process and unbiased estimating equations. Some important articles in-

clude Andersen and Gill (1982), Aalen and Husebye (1991) and Dabrowska et al.

(1994). More recently, Lawless and Nadeau (1995) developed robust methods for
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estimating rate function and mean function. Martinussen and Scheike (2002) pro-

posed an additive multiplicative hazard model. Andersen et al. (2012) provides

detailed reviews of the counting process for survival models.

1.2.3 Recurrent Events with Dependent Censoring

In order to account for the informative censoring due to a terminal event, there are

two major categories of joint analysis depending on the research interest, namely,

a marginal model approach (Cook and Lawless, 1997; Zeng et al., 2009; Zeng and

Lin, 2009) and a frailty model approach (Huang and Wang, 2004; Huang and Liu,

2007; Rondeau et al., 2007).

Huang and Wang (2004) proposed jointly modeling the recurrent event process

and the terminal event process by sharing a subject-level frailty in the hazard

functions of the recurrent event and the terminal event. Rondeau et al. (2007)

further extended the model to analyze the recurrent events in terms of the calendar

time. They also proposed to estimate the baseline intensity function by splines

instead of the traditional Breslow estimator. A penalized likelihood approach is

used to estimate the parameters in the model. Recently, Rondeau et al. (2013)

proposed a cure frailty model. Yu et al. (2014) proposed a model with time-varying

coefficient. Che and Angus (2016) proposed to use an additive hazard function for

the terminal event process. Other references related to this topic can be found

in the articles by Ghosh and Lin (2002); Mazroui et al. (2012); Kalbfleisch et al.

(2013).

Cook and Lawless (1997) proposed a marginal approach to study recurrent

events and the terminal event process. The main interest of their work is to es-

timate a marginal rate function and a marginal mean function of the recurrent

event process based on methods-of-moment estimator. The correlation between

the terminal event time and the recurrent event time is not estimable. Ghosh and

Lin (2002) proposed to estimate the rate function of the recurrent event, incor-

porating the survival probability of the terminal event. Ye et al. (2007) proposed

an estimating equation approach to estimate the correlation between the terminal

event and the recurrent event under a gamma frailty model. Zeng and Lin (2009)

proposed a semiparametric method to estimate the additive hazard for recurrent
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events under dependent censoring. Other works can be found in the literature

(Zhu et al., 2010; Zeng et al., 2014; Chen et al., 2015).

All the above methods do not consider (1) the violation of the conditional in-

dependence assumption and (2) the time-varying correlation between the terminal

event and the recurrent event process. In this dissertation, we mainly focus on

jointly modeling a recurrent event process and a terminal event model by frailty

type models. In Chapter 2, we will give more details about the methods of model

fitting for frailty models, including the MCEM algorithm and the penalized like-

lihood approach. In Chapter 3, we propose a joint frailty-copula model and a

dynamically prediction method with application on the MarketScan data set. In

Chapter 4, we further extend the joint frailty-copula model by allowing the cor-

relation varying across time-to-event recurrences. We applied this model to solve

the problem of the CHS data set. In Chapter 5, we summarize the results and

discuss some future topics to study.



Chapter 2
Basic Models and Inference

Approach

2.1 Introduction

In this chapter, we mainly introduce some basic models under Cox PH framework

to analyze the recurrent events. We first introduce the models proposed by Vaupel

et al. (1979) and McGilchrist and Aisbett (1991), which assume non-informative

censoring. Then, considering the dependent censoring, we introduce the models

proposed by Huang and Wang (2004); Rondeau et al. (2007); Mazroui et al. (2012);

Yu et al. (2014); Che and Angus (2016). Copulas, as an alternative way to model

survival outcomes, are also introduced. After that, we discuss the MCEM algo-

rithm (Liu et al., 2004) and the penalized likelihood approach (Rondeau et al.,

2007) to estimate the parameters in joint frailty models.

2.2 Shared Frailty Models

The first model we introduce here is the gamma shared frailty model. It was first

proposed by Vaupel et al. (1979) to account for population heterogeneity. This

model is extended to analyze the recurrent events framework in Kelly and Lim

(2000). Let F denote the maximum follow-up time of the study. And let Ci be the

censoring time of the patient. Then Yi = min{F , Ci}. Let Tij be the calendar event
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time for the jth recurrent event of the ith patient. And the censoring time for Tij is

Cij, which is defined as Yi−Ti,j−1. Let Yij = min{Rij, Cij} and ∆ij = I(Tij < Cij)

for the jth recurrent event.

Under this model, the hazard function for the recurrent events is,

hR(r|ui) = uih0R(r) exp(β′Rxi,R),

where h0R(·) is the baseline hazard function. The form of h0R is pre-specified (i.e.,

exponential baseline hazard or Weilbull baseline hazard) and it is associated with

a parameter vector β0R. βR is the coefficient vector associated with the covariate

vector xi,R. ui is a frailty, following a gamma distribution, denoted by G(k, λ).

This model could be applied to analyze both the recurrent events in calendar

time scale or gap times. The parameter estimates can be obtained by maximizing

the semiparametric likelihood.

The marginal density function of recurrent events can be derived by

fR(r) =

∫ ∞
0

uih0R(r) exp(β′Rxi,R) exp {−uiH0R(r) exp(β′Rxi,R)} fu(ui)dui

= h0R(r) exp(β′Rxi,R)

×
∫ ∞
0

λk

Γ(k)
uki exp {−ui(λ+H0R(r) exp(β′Rxi,R))} dui

= h0R(r) exp(β′Rxi,R)kλk/(λ+H0R(r) exp(β′Rxi,R))k

Let β = {β0R,βR}. Suppose we observe Dn = {yij, δij, i = 1, . . . , n, j = 1, . . . , ni +

1}. Then the likelihood of the observed data is

L(β) =
n∏
i=1

ni+1∏
j=1

hR(yij)
δijSR(yij).

The MLE is solved by a Newton-Raphson algorithm, iteratively updating βnew as

βnew = βold − V (β)S(βold),

where S(β) = ∂`(β)/∂β and V (β) = (∂2`/∂β∂β′)−1.

McGilchrist and Aisbett (1991) proposed a lognormal frailty model as an al-
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ternative for the gamma frailty model,

hR(r|ui) = h0R(r) exp(β′Rxi,R + ωi),

where the frailty ωi follows N (0, σ2
ω).

There is no closed form either for the survival function or the density function

under this model. McGilchrist and Aisbett (1991) proposed to estimate βR by a

restricted likelihood approach (REML).

We treat ω as the unobserved data. Let `(β|ω,Dn) denote the log likelihood

of the complete data set, which can be expressed by,

`(β|ω,Dn) =
n∑
i=1

ni+1∑
j=1

log hR(yij)
δij logSR(yij) +

n∑
i=1

log fω(ωi)

=
n∑
i=1

ni+1∑
j=1

δij {log h0R(yij) + βRxi,T + ωi}

− exp(βRxi,T + ωi)
n∑
i=1

ni+1∑
j=1

∫ yij

0

h0R(r)dr

+
n∑
i=1

{
− ω2

i

2σ2
ω

− log
√

2πσ2
ω

}
.

We can decompose the log likelihood into two parts,

`(β|Dn,ω) = `1(β,ω) + `2(ω),

where

`1(β,ω) =
n∑
i=1

ni+1∑
j=1

log hR(yij)
δij logSR(yij) +

n∑
i=1

log fω(ωi)

=
n∑
i=1

ni+1∑
j=1

δij {log h0R(yij) + βRxi,T + ωi}

− exp(βRxi,T + ωi)
n∑
i=1

ni+1∑
j=1

∫ yij

0

h0R(r)dr
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and

`2(ω) =
n∑
i=1

(
− ω2

i

2σ2
ω

− log
√

2πσ2
ω

)
The best linear unbiased predictor (BLUP), which maximize ` conditional on

σ2
ω by the Newton-Raphson algorithm is[

βnew

ωnew

]
=

[
βold

ωold

]
− V −1

[
0

ωold

]
+ V −1

[
∂`1/∂β

∂`1/∂ω

]
β=βold,ω=ωold

where

V =

[
∂2`1/∂β∂β

′ ∂2`1/∂β∂ω
′

∂2`1/∂ω∂β
′ ∂2`1/∂ω∂ω

′ + σ−2ω I

]
=

[
V11 V12

V21 V22

]
.

Suppose

V −1 =

[
A11 A12

A21 A22

]
,

where the dimensions of Aij are the same as Vij. In each iteration, σ2
ω is updated

by a consistent estimator ω′ω/n. The REML estimation of σ2
ω is ω′ω/(n − r),

where r = σ2old
ω tr (A22) .

The advantage of the gamma frailty model is that the likelihood has closed

form and the estimation is comparatively easy. However, the lognormal model

is more flexible for extensions such as for jointly modeling recurrent events and

longitudinal biomarker data. Another extension is the dynamic frailty model. It

is easy to specify the joint distribution and the variance covariance matrix of the

frailties.

2.3 Joint Frailty Models

The joint frailty model was proposed by (Liu et al., 2004), which is still widely used

nowadays. Suppose that Ti is the terminal event time for the ith subject and Ci is

the censoring indicator for the terminal event time. Let Di = I(Ti < Ci) denote

the censoring indicator for the terminal event. Under the joint frailty model, the
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hazard functions for Ti and Tij are,

hT (ti|ui) = uih0T (ti) exp(β′Txi,T )

hR(tij|ui) = uψi h0R(tij) exp(β′Rxi,R),
(2.1)

where ui is a frailty, following a gamma distribution G(ϑ, 1/ϑ). The mean of the

gamma distribution is restricted to be 1 to avoid identifiability problems. ψ is the

correlation parameter between the terminal event Ti and the recurrent event time

Tij. If ψ > 0, Ti and Tij are positively correlated and otherwise, Ti and Tij are

negatively correlated.

Suppose there are n subjects in the study and suppose each subject experienced

a total of ni recurrent events. Let Θ denote the parameter vector which contains

all the parameters in the model. The likelihood is

L(Θ) =
n∏
i=1

∫ ∞
0

hdiT (yi|ui)ST (yi|ui)

{
ni+1∏
i=1

h
δij
R (yij|ui)SR(yij|ui)

}
fu(ui)dui,

where fu(·), ST (·) and SR(·) are respectively the density function of u, the condi-

tional survival function of the terminal event time and conditional survival function

of the recurrent event time.

Rondeau et al. (2007) extended this model by 1)allowing the recurrent event

times to be gap times, and 2)proposing a piecewise spline function for the baseline

hazard. Under this model, they induced the recurrent event gap times Rij =

Tij − Ti,j−1. The baseline hazard functions h0T (t) and h0R(r) are estimated by a

cubic M-splines (Ramsay, 1988). Suppose there are a total of K knots for the

baseline hazard functions h0T (·) and h0R(·), denoted by t̃ = {t̃1, . . . , t̃K} and r̃ =

{r̃1, . . . , r̃K}. The hazard functions are respectively,

h0T (t) =
K∑
k=1

β0T,kMk(tk|a, t̃)

h0R(r) =
K∑
k=1

β0R,kMk(tk|a, r̃),

where Mk(tk|a, t) is the a-order cubic M-spline basis function, defined by
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Mk(x|1, t) =

1/(tk−1 − tk), tk ≤ x < tk+1

0, otherwise

and

Mk(x|a, t) =
a {(x− tk)Mk(x|a− 1, t) + (tk+a − x)Mk+1(x|a− 1, t)}

(k − 1)(tk+a − tk)
.

Mazroui et al. (2012) proposed a general frailty model to identify the correlation

between the recurrent events and the correlation between the terminal event and

the recurrent events.

hT (ti|ui) = uih0T (ti) exp(β′Txi,T )

hR(tij|ui, vi) = uivih0R(tij) exp(β′Rxi,R),
(2.2)

where ui accounts for the correlation between the recurrent events and the terminal

event. vi accounts for the correlation between the recurrent events. Yu et al. (2014)

include the time-varying coefficients into the model by

hT (ti|ui) = h0T (ti) exp(Ziα(t) + β′Txi,T + ωi)

hR(tij|ui) = h0R(tij) exp(Ziβ(t) + β′Rxi,R + ωi),
(2.3)

where α(t) and β(t) are time-dependent coefficients and ωi follows a normal dis-

tribution, N (0, σ2
ω). Che and Angus (2016) proposed a additive hazard functions

for the terminal events,

hT (t|ui) = h0(t) + β′Txi,T + ψui,

which further relaxed the hazard model assumption.

2.4 Copulas

Copulas are widely used in finance and medical research to model the joint distri-

bution of two random variables (Nelsen, 1999). In terms of survival analysis, we are

interested in the joint survival probability of two distinct events Pr(T ≥ t, R ≥ r)
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(Georges et al., 2001). Let ST (·) and SR(·) denote the marginal survival functions

for T and R, respectively. A copula function C(·, ·) connects survival functions

ST (·) and SR(·), such that Pr(T ≥ t, R ≥ r) = C(ST (t), SR(r)) is a survival copula

(Nelsen, 1999).

One important class of copulas called the Archimedean copulas is widely used

and includes copulas of the form,

C(u, v; θ) = ϕ−1 (ϕ(u; θ) + ϕ(v; θ)) ,

where ϕ(·) is a continuous, strictly decreasing convex function with the parameter

θ. There are several well-known copulas belonging to this family, for example,

1. Clayton copula:

C(u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ (0,∞)

2. Frank copula:

C(u, v) = −1

θ
log

[
1 +

(exp(−θu)− 1)(exp(−θv)− 1)

exp (−θ)− 1

]
, θ 6= 0

where θ is a parameter that quantifies the association between U and V. The

measures of the correlation such as Kendall’s τ can be obtained from the copula

function with τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. For instance, τ = θ

2+θ
for the

Clayton copula.

In the survival framework, copulas are often used to study a bivariate time-to-

event process, (Shih and Louis, 1995; Fu et al., 2013; Cook et al., 2010). When

the relevant events are non-competitive, Shih and Louis (1995) proposed to use

a two-stage approach to estimate the parameters in the model. We first estimate

marginal survival functions and after that, we plug in the estimated parameters

in the model to estimate θ. When two events are competitive or semi-competitive,

we need to estimate all the parameters (including θ) in the model by a maximum

likelihood approach.
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2.5 Parameter Estimation

2.5.1 Monto Carlo EM(MCEM) Algorithm

In order to estimate the parameters in the model, one of the estimation approach

is the MCEM algorithm, proposed by Liu et al. (2004). We treat the frailty as the

unobserved data. The complete log likelihood can be expressed by

`(Θ|u,Dn) =
n∑
i=1

{
log hdiT (yi|ui)ST (yi|ui) + log fu(ui)

+

ni∑
j=1

[
log h

δij
R (yij|ui)SR(yij|ui)

]}

=
n∑
i=1

di {βTxi,T + log h0T (yi) + ψui} −
n∑
i=1

H0T (yi|ui)

+
n∑
i=1

ni∑
j=1

{δij [βRxi,R + log h0R(yij) + ui]−H0R(yij|ui)}

In the E step, we calculate Q(Θ,Θold) = Eu {` (Θ|u,Dn)} with respect to the

posterior distribution of u|Θold,Dn, which can be expressed by

Q(Θ,Θold) =
n∑
i=1

di {βTxi,T + log h0T (yi) + ψEu(ui)} −
n∑
i=1

Eu {HT (yi|ui)}

+
n∑
i=1

ni∑
j=1

{δij [βRxi,R + log h0R(yij) + Eu(ui)]− Eu(HR(yij|ui))}

The challenge here is how to calculate the expectation, Eu(ui), Eu{HR(yij|ui)}
and Eu{HT (yi|ui)}. The Metropolis-Hastings algorithm (Hastings, 1970) is used

to sample u from the posterior distribution of u|Θold,Dn, with

Pr(u|Θold,Dn) ∝ Pr(Dn|Θold,u) Pr(u)

∝ L(Θold|Dn,u)

In the M step, we update Θ by maximizing Q(Θ,Θold), which can be completed
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by a Newton-Raphson algorithm,

Θnew = Θold − V (Θ)∂Q(Θ,Θold)/∂Θ|Θ=Θold .

V (Θold) is the inverse of ∂2Q(Θ,Θold)/∂Θ∂Θ′|Θ=Θold .

We iteratively update Θ between the E step and M step until the algorithm

converges, ‖Θnew −Θold‖ < 0.001, where ‖ · ‖ is the Euclidean distance.

Under this method, the observed information matrix of the estimated Θ̂ is

derived by Louis’s formula (Louis, 1982),

I(Θ̂) = −Êu
{
∂2`(Θ|Dn,u)

∂Θ∂Θ′

}
Θ=Θ̂

− Êu
{
∂`(Θ|Dn,u)

∂Θ

∂`(Θ|Dn,u)

∂Θ′

}
Θ=Θ̂

+ Êu

{
∂`(Θ|Dn,u)

∂Θ

}
Θ=Θ̂

Êu

{
∂`(Θ|Dn,u)

∂Θ′

}
Θ=Θ̂

.

2.5.2 Penalized Likelihood Approach

Although the MCEM algorithm can be applied to estimate Θ, the computation

burden is high, especially when n is large because in every E step, we need to

sample posterior distribution of u and calculate the posterior mean. Another

approach is to directly maximize the marginal log likelihood. The marginal log

likelihood, denoted by `(Θ) is

`(Θ) = log

[
n∏
i=1

∫ ∞
0

hdiT (yi|ui)ST (yi|ui)

{
ni+1∏
i=1

h
δij
R (yij|ui)SR(yij|ui)

}
fu(ui)dui

]
.

Since there is no closed form for the integration, Lapace approximation (Laplace,

1986) and Gaussian quadrature (Anderson, 1965) could be used to approximate

`(Θ).

Rondeau et al. (2007) proposed a penalized likelihood approach to estimate Θ.

The penalized likelihood under this approach can be expressed by,

˜̀(Θ) = `(Θ) + κ1

∫ ∞
0

h′′0T (t)2dt+ κ2

∫ ∞
0

h′′0R(r)2dt,

where h′′0T (t) and h′′0R(r) are the second derivative of the piece-wise baseline hazard

functions;κ1 ≥ 0 and κ2 ≥ 0 are the smoothing parameters, chosen to minimize
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the cross validation error. We could use an improved Newton-Raphson algorithm,

proposed by Marquardt (1963), to optimize ˜̀(Θ).

Compared with the MCEM algorithm, the computing burden of the penalized

likelihood approach is smaller. However, how to choose appropriate knots for

splines is still a problem. If the number of knots is high, the algorithm might not

converge or take a long time for convergence.



Chapter 3
A Joint Frailty-copula Model for

Recurrent Events and a Terminal

Event

3.1 Introduction

In clinical trials and epidemiology studies, the primary events we are interested

in might be recurrent events (Jansen et al., 2018; Ridker et al., 2000). Under

the survival framework, the challenge of analyzing this kind of recurrent events is

not only to account for the within-subject correlation as we do in a longitudinal

study, but also to consider the potential dependent censoring mechanism because

of a terminal event. The terminal event such as death, stops the recurrent event

process and often is correlated with the recurrent events, leading to the violation

of a non-informative censoring assumption. Moreover, the correlation between the

terminal event and recurrent events might change over time, which renders it even

more difficult when we attempt to recurrent events data.

In terms of joint modeling recurrent events and a terminal event, Huang and

Wang (2004) proposed a joint frailty model. They assumed that conditional on a

subject-level frailty, the terminal event process and the recurrent event process are

independent. Huang and Liu (2007) proposed to extend the joint frailty model to

the gap time scale. Rondeau et al. (2007) proposed to use a penalized likelihood
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approach to estimate the joint frailty model. More recently, Yu et al. (2014)

considered time-varying coefficients in the hazard functions, which make the model

even more flexible. Che and Angus (2016), on the other hand, proposed the joint

frailty model under an additive hazard function for the terminal event. Other

important work can be found in the references (Zeng and Lin, 2009; Cook and

Lawless, 1997; Zheng and Klein, 1995).

All the aforementioned articles assumed constant frailty or the latent health

status over time for each subject and conditional independence between the termi-

nal event process and the recurrent event process given the frailty; however, their

dependency may depend on time-varying covariates such as recurrence-specific

ones which are not captured by this subject-level frailty. Thus, the conditional

independence assumption could be violated.

Another concern of the current joint frailty model is that although it can ad-

just for the dependency between multiple time-to-event processes, the correlation

between two event processes is still unclear in terms of the estimation and inter-

pretation. In particular, the majority of the existing research works 1) treat the

correlation estimate as a nuisance parameter, or 2) have a vague interpretation of

the dependence with only the association direction but without estimating their

correlation in a straightforward manner. In some situations, researchers may be

interested in the correlation between different event outcomes, for example, the

association of two types of AIDS events (Shih and Louis, 1995) or the first and

second recurrence times to kidney infection after insertion of the catheter on kid-

ney patients (McGilchrist and Aisbett, 1991). The copula plays an important and

popular role in such research studies. Clayton (1978) first proposed to use the

copula to analyze bivariate time-to-event processes. Zheng and Klein (1995) pro-

posed to model competing risks by a copula approach. Wang and Wells (1997)

considered non-parametric estimators for the bivariate survival functions in the

copula modeling. Rivest and Wells (2001) incorporated a martingale approach

under the copula framework. Joe (2005) proved the asymptotic efficiency of the

two-stage estimation procedure for a copula. Cheng and Fine (2012) used a copula

model for competing risk data from paired patients. Fu et al. (2013) designed a

phase II trial and jointly modeled the progression-free survival (PFS) and overall

survival (OS) by a copula, and then, conducted power analysis for a phase III trial
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based on the estimated model. Most recently, Emura et al. (2015) proposed a joint

frailty-copula model in particular for meta-analysis; however, limited work using

a copula approach exists for the joint analysis of recurrent events and a terminal

event and substantial interest is drawn from both perspectives of clinical needs

and advanced methods development.

The main purpose of this chapter is to develop a novel joint modeling strategy

for recurrent gap times and a terminal event under some mild regulations in a

full Bayesian framework. This strategy not only accounts for the dependence of

recurrent events by a subject-level random frailty, but also for the correlation

between recurrent events and a terminal event by applying a copula technique.

The efficiency in parameter estimation and statistical inference is gained (i.e.,

smaller standard deviation estimates) due to potential informative priors from

previous studies, reduction of computational load, and easy implementation in

statistical software. Importantly, the robustness of our proposal is comprehensively

investigated through numerical studies, and also compared to the traditional joint

frailty modeling for further evaluation. Also, we conduct dynamic prediction of

survival risk based on the history of observed recurrent events for new subjects to

further evaluate our proposal’s predictive performance.

In the ensuing sections of the chapter, we first provide the basic background of

survival copula, and present the proposed Bayesian joint frailty-copula approach

in section 2. In section 3, we perform extensive simulation studies to evaluate

the efficiency and robustness of our proposal. Our simulation results show that

the proposed method has lower bias and mean squared error compared with the

joint frailty model when the conditional independence assumption is violated, and

otherwise, comparable performance still holds. In section 4, we apply our approach

into a real data example to analyze the association between recurrent strokes and

death. Finally, we discuss the advantages, limitations of our method and the topics

for future study in section 5.
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3.2 Methods

3.2.1 Notation

Let Ti and Ci respectively denote the time to the terminal event and the censoring

time for the ith subject, i = 1, . . . , n. Define di = I(Ti < Ci) to be the failure

status for the terminal event, Yi = min {Ti, Ci} to be the observed follow-up time,

and ξ is the failure rate. Let Rij represent the gap time between the (j − 1)th

event and the jth event. Tij =
∑j

j′=1Rij′ is the calendar time from the study

begin to the jth recurrent event. Suppose the ith subject experiences a total of

ni recurrent events. When j = ni + 1, Ri,ni+1 = Yi −
∑ni

j=1Rij, which can be

interpreted as the gap time between the nthi event and the end of the follow up

time. Let Cij = max {Yi − Ti,j−1, 0} denote the censoring time for Rij. δij = 1 if

Rij < Cij; otherwise, δij = 0.

For the original joint frailty model, the hazard functions for the terminal event

time Ti and the recurrent event time Rij of the ith subject are expressed by

λT (t|xi,T , ωi) = λ0T (t) exp
{
βTTxi,T + ωi

}
(3.1)

λR(r|xi,R, ωi) = λ0R(r) exp
{
βTRxi,R + ωi

}
(3.2)

where xi,T and xi,R are time-invariant or time-dependent covariate vectors. ωi is

the subject-level frailty accounting for the correlation among within-subject re-

currences and also captures the dependency between two time-to-event processes.

For simplicity, we omit xi,T and xi,R in all the functions from now on, and haz-

ard functions denoted respectively by, λT (t|ωi) and λR(r|ωi). The frailty term

is assumed that ωi ∼ N(0, σ2
w), but the other parametric distributions such as

gamma can still be applicable. The parameters βT and βR quantify the effect of

the covariates xi,T on Ti and the effects of xi,R on Rij respectively. Denote the

observation Yi = {yi, di, δij, rij,xi,T ,xi,R, j = 1, . . . , ni + 1} for the ith subject, and

let Dn denote the observed data from n subjects, Dn = {Y1, . . . ,Yn} .
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3.2.2 Joint Frailty-copula Model (JFCM)

The regular joint frailty model (JFM) assumes that Ti, Ri1, . . . , Ri,ni+1 are mutually

independent conditional on the subject-level frailty ωi (Huang and Liu, 2007).

However, this conditional independence assumption might be violated when some

important time dependent covariates are not included in the hazard functions. We

relax the assumption of conditional independence of ωi by inducing a copula to

account for the within-subject correlation.

Emura et al. (2015) proposed a joint frailty-copula model. Under this model,

the joint survival function of the jth recurrent event time and the terminal event

time of the ith patient,

Pr(Ti ≥ tij, Rij ≥ rij|ωi, Ti ≥ ti,j−1) = Cθ(ST (rij|wi), SR(rij|ωi)), i = 1, . . . , n,

This model implicitly implies ST (tij|ti,j−1) = ST (rij) and the terminal event process

is a renewal process. Out methods will relax this renewal assumption.

Following the context of Huang and Liu (2007), we first assume a sufficient large

constant integer J for every subject independent of data. J can be interpreted as

the maximum number of recurrent events a subject will experience. This leads to

a maximum of J + 1 gap times for every subject. However, due to the terminal

event or subject drop-out, we cannot observe all recurrent events. Assume that

the subject experiences a total of ni recurrent events during the follow-up time.

Then, for subject i, we can observe Rij = rij for j = 1, . . . , ni and Rij ≥ cij for

j = ni + 1, . . . , J + 1. Assume that the residual dependence is homogeneous across

all subjects and unchanged along the time line.

Conditional on ωi, the joint probability of Ti ≥ ti and Rij ≥ rij is

Pr(Ti ≥ ti, Rij ≥ rij|ωi) = C (ST (ti|ωi), SR(rij|ωi)) ,

for any i, i = 1, . . . , n and any j, j = 1, . . . , J + 1.
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Based on the survival copula, we have,

Pr(Ti ≥ ti, Rij ≥ rij|ωi) = C(ST (ti|ωi), SR(rij|ωi))

Pr(Ti ≥ ti, Rij = rij|ωi) = C∗(01)(ST (ti|ωi), SR(rij|ωi))fR(rij|ωi)

Pr(Ti = ti, Rij = rij|ωi) = C∗(11)(ST (ti|ωi), SR(rij|ωi))fT (ti|ωi)fR(rij|ωi)

Pr(Ti = ti, Rij ≥ rij|ωi) = C∗(10)(ST (ti|ωi), SR(rij|ωi))fT (ti|ωi)

(3.3)

where C(01)(u, v) = ∂C(u, v)/∂v, and C(10)(u, v) = ∂C(u, v)/∂u, C(11)(u, v) =

∂2C(u, v)/(∂u∂v). For example, if C(·, ·) is a Clayton copula, then we have

C(01)(u, v) = v−θ−1(u−θ + v−θ − 1)−
θ+1
θ

C(10)(u, v) = u−θ−1(u−θ + v−θ − 1)−
θ+1
θ

C(11)(u, v) = (θ + 1)(uv)−(θ+1)(u−θ + v−θ − 1)−
2θ+1
θ

(3.4)

Note that for a subject with di = 0, Cij is max(Ci − Ti,j−1, 0), and Cij is

independent of Rij. Given the assumption that Rij . . . , Ri,J+1 are mutually in-

dependent, conditional on ωi and Ti ≥ ti, the probability of the ith subject who

survives through ti and experiences ni events given ωi is,

Pr(Ti ≥ ti, Ri1 = ri1, ..., Ri,ni = ri,ni , Ri,ni+1 ≥ ci,ni+1, . . . , Ri,J+1 ≥ ci,J+1|ωi)

= Pr(Ri1 = ri1, ..., Ri,ni = ri,ni , Ri,ni+1 ≥ ci,ni+1, . . . , Ri,J+1 ≥ ci,J+1|Ti ≥ ti, ωi)

× Pr(Ti ≥ ti|ωi)

= Pr(Ti ≥ ti|ωi)
ni∏
j=1

Pr(Rij = rij|Ti ≥ ti, ωi)
J∏

j=ni+1

Pr(Rij ≥ cij|Ti ≥ ti, ωi)

(3.5)

By Bayes’ rule,

Pr(Rij = rij|Ti ≥ ti, ωi) =
C∗(01)(ST (ti|ωi), SR(rij|ωi))fR(rij|ωi)

ST (ti|ωi)

Pr(Ri,ni+1 ≥ ci,ni+1|Ti ≥ ti, ωi) =
C(ST (ti|ωi), SR(ci,ni+1|ωi))

ST (ti|ωi)
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For j = ni + 2, . . . , J + 1, Cij is 0. Then, we have,

Pr(Rij ≥ cij|Ti ≥ ti, ωi) = Pr(Rij ≥ 0|Ti ≥ ti, ωi) = 1.

Then,

Pr(Ti ≥ ti, Ri1 = ri1, ..., Ri,ni+1 ≥ ci,ni+1, . . . , Ri,J+1 ≥ ci,J+1|ωi)

=ST (ti|ωi)
C (ST (ti|ωi), SR(ci,ni+1|ωi))

ST (ti|ωi)

ni∏
j=1

C∗(01) (ST (ti|ωi), SR(rij|ωi)) fR(rij|ωi)
ST (ti|ωi)

=C (ST (ti|ωi) , SR (ci,ni+1|ωi))
ni∏
j=1

C∗(01) (ST (ti|ωi) , SR (rij|ωi)) fR(rij|ωi)

ST (ti|ωi)

(3.6)

The likelihood conditional on the frailty w can be expressed below, and the

detailed derivation is provided in Appendix A of the Supplementary Materials.

L(Dn|w) =
n∏
i=1

[fT (yi|ωi)C∗10(ST (yi|ωi), SR(ri,ni+1|ωi))]di

×
[
S−niT (yi|ωi)C(ST (yi|ωi), SR(ri,ni+1|ωi))

]1−di
×

ni∏
j=1

[
C(01)(ST (yi|ωi), SR(rij|ωi))

]1−di
×
[
C(11)(ST (yi|ωi), SR(rij|ωi))

]di fR(rij|ωi)

(3.7)

3.2.3 Metropolis-Hastings within the Gibbs Sampler Algo-

rithm

We utilize the Bayesian approach for parameter estimation and inference. For

simplicity, constant baseline intensity functions λ0T (t) = exp(β0T ) and λ0R(t) =

exp(β0R) are considered; however, this can be extended in a straightforward man-

ner to the setting with non-constant baseline hazards. Let Θ denote the param-

eter vector, {β0R, β0T ,βT ,βR, σ−2w ,w, θ} with the dimensionality of M . First, we

present the derivation of the posterior distribution of Θ. A Metropolis-Hastings

within Gibbs sampler algorithm is used to sample the posterior distribution of

Pr(Θ|Dn) (Gilks et al., 1995). A general form of the full conditional distribution
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of Θ[m] is

Pr(Θ[m]|Dn,Θ[<m],Θ[>m]) ∝ L(Θ) Pr(Θ[m]),

where Θ[<m] is the first (m−1) elements of Θ and Θ[>m], the last (M−m) elements

of Θ.

Suppose we want to generate B samples of Θ from Pr(Θ|Dn). The algorithm

to get the posterior samples is as follows:

• From ` = 1,

– From m = 1, sample Θ
(`)
[m] from

Pr(Θ
(`)
[m]|Dn,Θ

(`)
[<m],Θ

(`−1)
[>m] ) ∝ L(Θ

(`)
[<m],Θ

(`)
[m],Θ

(`−1)
[>m] ) Pr(Θ

(`)
[m])

– until m = M , set ` = `+ 1.

• until ` = B, end.

In order to sample Θ
(`)
[m] from Pr(Θ

(`)
[m]|Dn,Θ

(`)
[<m],Θ

(`−1)
[>m] ), the Metropolis-Hastings

algorithm is applied and the procedures are shown below:

1. Generate U from Unif(0, 1)

2. Generate ΘN
[m] by Θ

(`−1)
[m] + sN(0, 1), step size s

3. Calculate

LR =
L(Dn|Θ(`)

[<m],Θ
N
[m],Θ

(`−1)
[>m] ) Pr(ΘN

[m])

L(Dn|Θ(`)
[<m],Θ

(`−1)
[m] ,Θ

(`−1)
[>m] ) Pr(Θ

(`)
[m])

4. If LR > u, Θ
(`)
[m] = ΘN

[m], else Θ
(`)
[m] = Θ

(`−1)
[m]

The step size s is chosen so that the acceptance rate is around 0.44. The details

of the Metropolis-Hastings within Gibbs algorithm can be found in Appendix B of

the Supplementary Materials.

3.2.4 Prediction for the Time to the Terminal Event of a

New Subject

After the study completion, we can analyze the data based on the posterior distri-

bution Θ|Dn from the joint frailty-copula model. We are interested in predicting
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the time to the terminal event considering the history of recurrent events history.

We present here subject-level prediction for a new subject N with observed recur-

rent events history,

HN(t′) = {rN,1, . . . , rN,j, s.t.
j∑

j′=1

rN,j′ < t′ and

j+1∑
j′=1

rN,j′ > t′}.

Let wN denote the frailty of the new subject N . Subject-level prediction for a

new subject is denoted by

π(t|t′,HN(t′),Θ, wN) = Pr(TN > t|TN > t′,HN(t′),Dn,Θ, wN).

We can estimate π(t|t′,HN(t′),Θ, wN) by plugging in the posterior estimates of Θ̂

and ŵN . The subject-level survival prediction for the new subject can be expressed

as,

π̂(t|t′,HN(t′),Dn,Θ, wN) = Pr(TN > t|TN > t′,HN(t′), ŵN , Θ̂,Dn),

where Θ̂ is the posterior mean of the posterior distribution Pr(Θ|Dn) and ŵN is the

posterior mean of distribution Pr(wN |TN > t′,HN(t′),Dn,Θ,Dn). We can sample

Pr(wN |TN > t′,HN(t′),Θ,Dn) ∝ Pr(TN > t′,HN(t′)|Dn,Θ, wN) Pr(Θ|Dn) Pr(wN)

by Metropolis Hastings within Gibbs Sampler algorithm. When t′ increases, the

probability, π̂(t|t′,HN(t′),Dn, Θ̂, ŵN) can be updated dynamically by re-sampling

wN from Pr(wN |TN > t′,HN(t′), Θ̂,Dn).

Suppose we need to predict the terminal event time for a total of Nt′ new

subjects. The Brier score (BS) is used to evaluate the bias between the predicted

risks and true risks (Graf et al., 1999), which is defined as

E

{[
D(t|t′,HN(t′), Θ̂)− π̂(t|t′,HN(t′), Θ̂)

]2}
,

where D(t|t′,HN(t′), Θ̂) is the observed terminal event status which equals 1 if the

subject experiences the terminal event in the time interval (t′, t); otherwise, it is

0. It can be estimated by

B̂S(t′, t) =
1

Nt′

Nt′∑
i=1

Ĝ(t′, t)

{[
D(t|t′,HN(t′), Θ̂)− π̂(t|t′,HN(t′), Θ̂)

]2}
,
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where Ĝ(t′, t) = I(ti > t)/{Ŝ0(t)/Ŝ0(t
′)} + I(t > ti > t′)δi/{Ŝ0(ti)/Ŝ0(t

′)}, ac-

counting for censoring with Ŝ0, which is estimated based on the Kaplan-Meier

curve.

3.3 Simulation Study

3.3.1 Simulation Set-up

We evaluate our proposal in terms of efficiency, robustness and predictive accuracy

under different scenarios. Here, we assume that the terminal event Ti follows

an exponential distribution with the density function fT (t) = λi,T exp(−λi,T t),
and recurrent gap time Rij follows an exponential distribution with the density

function fR(r) = λij,R exp(−λij,Rr). The hazard functions λi,T and λij,R are given

respectively,

λi,T = exp (β0T + ωi + βT,1x1,i + βT,2x2,i)

λij,R = exp (β0R + ωi + βR,1x1,i + βR,2x2,i) ,
(3.8)

where x1,i is a continuous variable generated from N(0, 1) and x2,i is a binary

variable generated from a Bernoulli distribution, Bern(0.5). (βT,1, βT,2, βR,1, βR,2)
T

is set to be (1, 1, 2, 2)T . (β0T , β0R)T is set to be (0.5, 1)T .

For each subject i, we first generate Ui from Unif(0, 1). Ti is generated by

− log(Ui)/λi,T . Assuming independent censoring for Ti, we generate Ci respectively

from a uniform distribution Unif(0, 1), Unif(0, 0.6), and Unif(0, 0.4), correspond-

ing to a high failure rate (ξ = 60%), a medium failure rate (ξ = 50%) and a low

failure rate (ξ = 40%). The observed follow-up time Yi = min {Ti, Ci} . Then,

considering the jth recurrent event, suppose SR(rij|ωi) = Vij. Assume that the

joint distribution of Ui and Vij is a Clayton copula, C(u, v) = (u−θ + v−θ − 1)−1/θ,

where θ is varied by 1 or 2 in different scenarios, respectively corresponding to

a low correlation (i.e., τ = 0.3) and a high correlation (i.e., τ = 0.5) between

the terminal event process and the recurrent event process. We also simulated a

scenario under which the terminal event and the recurrent events are generated

independently (τ = 0). Suppose sufficiently large maximum number J = 1000

of events occur for each subject. When Ti ≤ Ci, the conditional distribution of
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Vij is FV (v|Ui = ui) = u
−(θ+1)
i (u−θi + v−θ − 1)−1/θ. Since FV (v|Ui = ui) follows a

uniform distribution Unif(0, 1), we can first generate a W̃ij ∼ Unif(0, 1) and let

W̃ij = FV (v|Ui = ui). Vij can be generated by

Vij =

(
(W̃

− θ
θ+1

ij − 1)u−θi + 1

)−1/θ
.

When Ti > Ci, Vij is generated from FV (v|Ui < exp(−λiCi)) based on the Monte

Carlo method. After we have Vij, we can generate the gap time Rij simply by

− log(Vij)/λij,R. We repeated this procedure until Tij is greater than Yi or j = J.

For each scenario, we generate 250 Monte Carlo datasets with the sample size

n = 100, 200.

To evaluate the efficiency of our proposal, we consider the regular joint frailty

model approach for comparison. Also, in order to evaluate the prediction per-

formance of our proposal, we randomly generate a data set of 200 subjects as a

training set to estimate Θ and an independent data set of 200 subjects as a testing

set. The training set is generated under a Clayton copula model with θ = 2. Other

settings are the same as the setting when we compare the joint frailty model and

the joint frailty-copula model. Thus, we predict π(t|t′,HN(t′)), where t′ is set as

0.03, 0.06 or 0.09 such that the percentage of subjects still at risk is respectively

80%, 70% or 60%, and t takes the values between t′ and 0.1 with the increment

of 0.01. The BS are thereafter estimated to show the predictive accuracy across

various set-ups.

In addition, we evaluate the robustness of our method considering the mis-

specification of copula models. The set up is the same as that we used when we

compare the joint frailty model and the joint frailty-copula model. In these settings,

the data is generated from a Frank copula, but we consider a mis-specified copula

(i.e., Clayton) for model fitting to show if our method still performs satisfactory.

For all scenarios, non-informative priors are considered, β0T ∝ 1, β0R ∝ 1,βT ∝
1,βR ∝ 1. Also, σ−2w are assumed to follow a prior gamma(α, 1/α) with α = 0.001

so that the prior is flat enough. It takes 500 iterations for burn-in period and

extra 500 iterations for Markov chain Monte Carlo (MCMC) to converge. In

order to lower down the dependence of the MCMC sample, the posterior sample

is thinned for every 10 iterations. The results are summarized by the average of
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posterior mean estimates denoted by EST, standard deviation (SD) of posterior

mean estimates, mean squared error (MSE) and the average of absolute bias (AB)

of posterior mean estimates.

3.3.2 Simulation Results

According to the above methods, the recurrent events are generated for each sub-

ject with a minimum of zero events and a maximum of 28 events across all scenarios.

In Table 3.1, we compare our method with the regular joint frailty model under

the scenarios with a high failure rate (ξ = 60%) and Kendall’s τ , 0, 0.3 or 0.5.

The true copula is a Clayton copula, which is considered for model fitting. We

find out that our method always performs the best in terms of smallest AB and

MSE when τ is 0.3 or 0.5. With regards to the regular joint frailty approach, there

is no strong bias on the average of posterior mean estimates of βT,1 and βT,2, but

AB still shows relatively higher bias, and also the estimates of βR,1 and βR,2 tend

out to be substantially biased. When τ = 0.5 and n = 200, the average of β̂R,1

and β̂R,2 are respectively 1.997 and 1.996 under the joint frailty-copula approach.

By contrast, the mean of β̂R,1 and β̂R,2 are respectively 2.132 and 2.147 under the

regular joint frailty approach. We also observe a trend that the bias of the frailty

model increases when the true association between Ti and Rij increases (i.e., τ

increases). Comparatively, there is no trend for our approach that the bias will

increase when the association increases. On the other hand, when true τ = 0, the

performance of our method is still identical in terms of the bias, SD, MSE and

AB, compared with the joint frailty model. For example, the average of β̂T,1 from

250 replicates is 0.981 under our method with SD and MSE respectively 0.234 and

0.055. By contrast, the average β̂T,1 under joint frailty model is 0.989 with SD and

MSE respectively 0.223 and 0.050.

In Table 3.2, we evaluate our method under the scenarios with different failure

rates. Given the set-ups with medium failure rate and low failure rate, the biases

are still small, but they seem greater compared with those under the high failure

rate. When n = 200 and θ = 2, the average of β̂R,2 is 1.996 under high failure

rate, 1.995 under medium failure rate and 1.990 under low failure rate. The bias

increases when the censoring rate increases. The MSE and SD still decrease when
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the sample size increases similar as above. Analogously, when n = 100 and θ = 2,

the MSE of β̂R,2 is 0.015 under medium failure rate. If n increases to 200, the MSE

is 0.008, nearly half shrinkage.

In Figure 3.1, the BS increases when t increases. When t = 0.031 which is close

to t′ = 0.03, the BS is 0.006. Also, when t increases to 0.1, the BS increases to

0.14. The prediction error decreases when |t − t′| increases. In other words, the

prediction is less accurate if we want to predict the terminal event in the farther

away from the the time point t′, which agrees with our expectation. It is not doubt

that the predictive accuracy will be substantially improved with more information

accumulated for prediction.

In Table 3.3, we evaluate our method when the copula model is mis-specified.

The copula for data generation is a Frank copula, while we use a Clayton copula

to fit the data. the estimates of βT,1, βT,2, βR,1 and βR,2, the parameters associated

with ST (t|ωi) and SR(r|ωi) still perform satisfactory without strong bias. For the

estimates of θ, we observe a strong bias because of model mis-specification. When

θ = 1 under a Frank copula, Kendal’s τ is 0.11. However, the mean of the estimates

of τ under a Clayton copula is 0.083, where the bias is about 0.028. Compared with

the results of Table 3.1 with the results of Table 3.3, the biases of β̂T,1, β̂T,2, β̂R,1,

β̂R,2 in Table 3.3 are almost identical. When the copula model is mis-specified, the

bias of the covariate effects estimates are still negligible if the copula margins can

be correctly specified.

3.4 Real Data Application

We apply the proposed method to a real data application on recurrent acute is-

chemic strokes. Our real data example is obtained from the MarketScan database

between January, 2011 and December 2014, including the subjects who are aged

45-54 with surgical and medical admission for inpatient acute care hospitalization.

The episodes of acute ischemic stroke are diagnosed by the ICD9-CM codes with

434.x and 436.x. A recurrent stroke is defined as any recurrent stroke occurring

more than 28 days after the incident stroke (Coull and Rothwell, 2004). The base-

line characteristics for enrolled subjects were tracked, for instance, gender, baseline

stroke status, in-hospitalized mortality and pre-existing co-morbidity conditions in-
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cluding diabetes mellitus, cardiovascular disease and heart attack during the past

twelve-month. Recently, considerable attention has been given to the association

of baseline stroke and co-morbidities with the recurrence of acute ischemic stroke,

and substantial literature have shown the higher likelihood of mortality in hos-

pitalized stroke patients (Arabadzhieva et al., 2015; Feng et al., 2010). The goal

of this study is to utilize our proposal for rigorous investigation of the effects of

baseline factors on the risk of stroke occurrence or death, and also evaluation of

the correlation between two event processes of recurrent strokes and death.

A sample of 2122 patients are identified and among them, 597 (28.13%) patients

experience at least one stroke event and the death rate is 6.55%. Note that the

low mortality rate is a limitation for our study because only hospitalized deaths

are recorded for analysis. The average of the number of recurrent stroke events

is 4 with SD= 4.42, and 37.7% of the patients experience only one stroke among

those who have stroke recurrence. Preliminary analysis on Kaplan-Meier Curves

show the evidence of higher risk of stroke for the patients with heart disease or

hypertension (HD/HTN) or baseline stroke compared to those without HD/HTN

or baseline stroke, which can be referred to Figure 3.2. We fit our proposed model

with Clayton copula and compare with the traditional joint frailty model. The

results are presented in Table 3.4, including the estimates of log hazard ratios

(HR) and 95% credible limits (CL).

Based on our proposal, there is a strong evidence that patients with HD/HTN

are at increased risk for death (HR=2.858, 95% CL:2.190-3.677) and stroke events

(HR=1.46, 95% CI:1.165-1.613). Baseline stroke status and gender also has a

significant association with both death and stroke. The hazards of death and

stroke are respectively increased by 2.52 and 4.19 times if a patient have stroke

at baseline. Also, females are detected to have significantly less risk of death and

stroke compared to males, where the hazard for death is decreased by about 45%

and that for stroke by 30%. Diabetes has an effect with trend towards significance

on death and stroke; however, compared with baseline stroke and HD/HTN, the

effect is not strong with the hazards for death and stroke increased by 19% and

16% respectively.

We observe mild correlation (Kendall’s τ = 0.32) between death and recur-

rent stroke events, indicating the necessity to adjust for the residual dependence
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by including potential time-dependent covariates in the model due to the results

differences between two models with regards to diabetes and gender effects. In

particular, larger gender disparities on risk of death and stroke are identified, and

for diabetes, the effects tend to be smaller. More importantly, all have narrower

credible limits indicating improved efficiency after adjusting for the correlation

between death and stroke.

3.5 Discussion

We propose a joint frailty-copula method under the Bayesian framework to jointly

model recurrent events and a terminal event. This method can be utilized when

the conditional independence assumption is violated for the terminal and recurrent

event processes, and also can provide direct estimate of their association. The

algorithm for Bayesian inference is easy to be implemented in statistical software

which is accessible upon request, and also informative priors can be incorporated

for efficiency improvement if available. Based on numerical studies via simulation

and real data application, our proposal achieves satisfactory performances in terms

of smaller MSE and AB compared with regular joint frailty models, even though

under the scenarios of independence between two event processes, our method still

has comparable performance with identical bias, SD and MSE.

In addition, our approach is not sensitive to the magnitude of the dependence

between the terminal and recurrent event processes and also the terminal event fail-

ure rate. Also, with regards to the copula mis-specification problem, the bias of the

covariate effect estimation is still small when the copula margins are correctly spec-

ified. Therefore, in order to overcome the model mis-specification problem, more

flexible copula margins are preferred (i.e., spline). After we choose the flexible

margins, we could conduct copula model selection based on deviance information

criteria. Another method to solve this problem could be the Bayesian model av-

eraging technique, where we can update the weight of the candidate model based

on the data, and the covariate effect estimation could be a weighted average from

different candidate models.

Currently, we assume the number of the potential recurrent events is sufficiently

large enough. However, this will not always be appropriate in practice. Some
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subjects might never have recurrent events because their hazards are extremely

low. A cure model or a pattern mixture model can be considered in joint modeling

to solve this problem, which is worthwhile for further study. On the other hand,

we assume constant dependency, however, in some occasions, their dependence

could vary over time. For instance, stronger correlation may be detected when

death occur immediately after one subsequent event compared to the prior event.

In such situation, dynamic relationship between recurrent events and death using

a time-varying copula can be incorporated into the model by replacing θ by θ(t),

which could be another direction for future study.
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Table 3.1. Summary statistics on joint modeling of recurrent events and a terminal
event by a Clayton Copula under the scenario with high failure Rate (ξ = 60%).

JFCM JFM
n τ Param EST SD MSE AB EST SD MSE AB

100 0.0 βT,1 = 1 1.010 0.312 0.097 0.252 1.020 0.294 0.086 0.234
βT,2 = 1 0.988 0.145 0.021 0.118 0.997 0.138 0.019 0.111
βR,1 = 2 1.980 0.209 0.044 0.163 1.994 0.197 0.039 0.158
βR,2 = 2 1.990 0.116 0.013 0.088 1.995 0.113 0.013 0.089

τ 0.023 0.031 0.002 0.036 - - -
0.3 βT,1 = 1 0.999 0.264 0.070 0.207 1.113 0.291 0.097 0.249

βT,2 = 1 0.994 0.133 0.018 0.106 1.083 0.143 0.027 0.135
βR,1 = 2 1.991 0.222 0.049 0.170 2.093 0.224 0.059 0.194
βR,2 = 2 1.994 0.118 0.014 0.090 2.088 0.121 0.022 0.122

τ 0.329 0.036 0.001 0.029 - - - -
0.5 βT,1 = 1 0.994 0.224 0.050 0.181 1.152 0.299 0.112 0.269

βT,2 = 1 0.982 0.120 0.015 0.097 1.116 0.148 0.035 0.154
βR,1 = 2 1.984 0.213 0.045 0.167 2.143 0.242 0.079 0.226
βR,2 = 2 1.982 0.116 0.014 0.092 2.140 0.136 0.038 0.158

τ 0.497 0.023 0.001 0.019 - - - -

200 0.0 βT,1 = 1 0.981 0.234 0.055 0.190 0.989 0.223 0.050 0.181
βT,2 = 1 1.000 0.114 0.013 0.088 1.008 0.110 0.012 0.087
βR,1 = 2 1.987 0.148 0.022 0.118 1.987 0.146 0.021 0.117
βR,2 = 2 2.007 0.084 0.007 0.065 2.002 0.071 0.005 0.056

τ 0.015 0.020 0.001 0.037 - - - -
0.3 βT,1 = 1 0.992 0.190 0.036 0.154 1.079 0.227 0.057 0.192

βT,2 = 1 1.004 0.104 0.011 0.083 1.095 0.112 0.021 0.119
βR,1 = 2 1.991 0.152 0.023 0.121 2.079 0.163 0.033 0.141
βR,2 = 2 2.006 0.089 0.008 0.072 2.092 0.088 0.016 0.104

τ 0.329 0.029 0.001 0.023 - - - -
0.5 βT,1 = 1 1.002 0.160 0.026 0.127 1.119 0.232 0.068 0.212

βT,2 = 1 0.998 0.088 0.008 0.069 1.133 0.115 0.031 0.147
βR,1 = 2 1.997 0.149 0.022 0.119 2.132 0.180 0.050 0.183
βR,2 = 2 1.996 0.085 0.007 0.068 2.147 0.098 0.031 0.154

τ 0.500 0.023 0.001 0.019 - - - -

EST, average of posterior mean estimates from Monte Carlo datasets. SD, standard deviation
of posterior mean estimates from Monte Carlo datasets. MSE, means squared error of posterior
mean estimates. AB, average of absolute bias of posterior mean estimates from Monte Carlo
datasets. Take βT,1 as an example where nsim = 250, EST= 1

nsim

∑
β̂1,i,

SD=
√

1
nsim−1

∑
(β̂1,i − ¯̂

β1)2, MSE= 1
nsim

∑
(β̂1,i − βT,1)2, AB= 1

nsim

∑
|β̂1,i − βT,1|, where nsim

is the number of the replicates and β̂1,i is the posterior mean estimate of the ith replicate.
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Table 3.2. Summary statistics on joint modeling of recurrent events and a terminal
event by a Clayton Copula under the scenarios with medium failure Rate (ξ = 50%) and
low failure rate (ξ = 40%)

Medium Failure (ξ = 50%) Low Failure (ξ = 40%)
n τ Parameter EST SD MSE AB EST SD MSE AB

100 0.3 βT,1 = 1 1.012 0.289 0.084 0.232 1.002 0.311 0.096 0.241
βT,2 = 1 0.996 0.143 0.020 0.115 0.994 0.162 0.026 0.129
βR,1 = 2 1.967 0.228 0.053 0.186 1.975 0.238 0.057 0.182
βR,2 = 2 1.986 0.129 0.017 0.104 1.979 0.148 0.022 0.118

τ 0.328 0.039 0.002 0.032 0.332 0.039 0.002 0.031
0.5 βT,1 = 1 0.999 0.257 0.066 0.203 1.001 0.276 0.076 0.218

βT,2 = 1 0.995 0.128 0.016 0.104 0.985 0.139 0.019 0.114
βR,1 = 2 1.980 0.233 0.054 0.183 1.988 0.234 0.055 0.183
βR,2 = 2 1.991 0.124 0.015 0.100 1.986 0.133 0.018 0.106

τ 0.495 0.026 0.001 0.021 0.499 0.025 0.001 0.020

200 0.3 βT,1 = 1 0.970 0.195 0.039 0.160 0.954 0.226 0.053 0.186
βT,2 = 1 0.995 0.107 0.011 0.084 0.992 0.117 0.014 0.090
βR,1 = 2 1.984 0.162 0.026 0.132 1.968 0.172 0.031 0.139
βR,2 = 2 1.995 0.090 0.008 0.070 1.987 0.094 0.009 0.075

τ 0.331 0.032 0.001 0.025 0.337 0.033 0.001 0.027
0.5 βT,1 = 1 0.992 0.171 0.029 0.135 0.979 0.198 0.039 0.155

βT,2 = 1 0.996 0.092 0.008 0.073 0.990 0.105 0.011 0.084
βR,1 = 2 1.991 0.155 0.024 0.125 1.983 0.163 0.027 0.129
βR,2 = 2 1.995 0.088 0.008 0.071 1.990 0.097 0.009 0.076

τ 0.498 0.023 0.001 0.018 0.501 0.024 0.001 0.020

EST, average of posterior mean estimates from Monte Carlo datasets. SD, standard deviation
of posterior mean estimates from Monte Carlo datasets. MSE, means squared error of posterior
mean estimates. AB, average of absolute bias of posterior mean estimates from Monte Carlo
datasets. Take βT,1 as an example where nsim = 250, EST= 1

nsim

∑
β̂1,i,

SD=
√

1
nsim−1

∑
(β̂1,i − ¯̂

β1)2, MSE= 1
nsim

∑
(β̂1,i − βT,1)2, AB= 1

nsim

∑
|β̂1,i − βT,1|, where nsim

is the number of the replicates and β̂1,i is the posterior mean estimate of the ith replicate.
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Figure 3.1. The Brier score (BS) vs the time point t
The black line is the BS curve when t increases from 0.03 to 0.10 with 0.01 increment,
controlling that t′ = 0.03. The blue line is the BS curve when t increases from 0.06 to 0.10 with
0.01 increment, controlling that t′ = 0.06. The red line is the BS curve when t increases from
0.09 to 0.10 with 0.01 increment, controlling that t′ = 0.09.

Figure 3.2. Preliminary analysis on Kaplan-Meier Curves for stroke
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Table 3.3. Summary statistics on joint modeling of recurrent events and a terminal
event under the scenarios of high failure Rate (ξ = 60%). The true copula is a Frank
copula, and the model fitting utilizes a Clayton copula.

n=100 n=200
τ Parameter EST SD MSE AB EST SD MSE AB

0.11 βT,1 = 1 1.004 0.320 0.102 0.255 0.975 0.239 0.057 0.197
βT,2 = 1 0.979 0.159 0.026 0.126 0.992 0.121 0.015 0.097
βR,1 = 2 1.995 0.227 0.051 0.182 2.010 0.164 0.027 0.132
βR,2 = 2 1.992 0.121 0.015 0.094 2.006 0.088 0.008 0.070

τ 0.083 0.055 0.004 0.052 0.073 0.042 0.003 0.045
0.21 βT,1 = 1 0.971 0.319 0.102 0.253 0.950 0.256 0.068 0.210

βT,2 = 1 0.966 0.169 0.030 0.137 0.973 0.134 0.019 0.108
βR,1 = 2 1.984 0.228 0.052 0.176 1.994 0.155 0.024 0.126
βR,2 = 2 1.988 0.124 0.016 0.098 2.003 0.088 0.008 0.070

τ 0.163 0.057 0.006 0.061 0.154 0.042 0.005 0.061

EST, average of posterior mean estimates from Monte Carlo datasets. SD, standard deviation
of posterior mean estimates from Monte Carlo datasets. MSE, means squared error of posterior
mean estimates. AB, average of absolute bias of posterior mean estimates from Monte Carlo
datasets. Take βT,1 as an example where nsim = 250, EST= 1

nsim

∑
β̂1,i,

SD=
√

1
nsim−1

∑
(β̂1,i − ¯̂

β1)2, MSE= 1
nsim

∑
(β̂1,i − βT,1)2, AB= 1

nsim

∑
|β̂1,i − βT,1|, where nsim

is the number of the replicates and β̂1,i is the posterior mean estimate of the ith replicate.

Table 3.4. Summary of real data analysis on recurrent stroke
JFCM JFM

Covariates EST 2.50% 97.50% EST 2.50% 97.50%

Time to Death HD/HTN 1.050 0.784 1.302 1.092 0.542 1.641
Diabetes 0.175 0.051 0.550 0.236 -0.173 0.646
Female -0.603 -0.852 -0.249 -0.152 -0.547 0.242
Stroke 1.258 0.764 2.175 0.908 0.501 1.314

Time to Stroke HD/HTN 0.390 0.153 0.487 0.536 0.182 0.891
Diabetes 0.154 -0.049 0.260 0.402 0.170 0.634
Female -0.359 -0.619 -0.258 -0.245 -0.470 -0.021
Stroke 1.647 1.462 1.862 2.318 2.065 2.572

Correlation τ 0.320 0.049 0.547



Chapter 4
A Time-varying Joint Frailty-copula

Approach for Recurrent Events and

a Terminal Event

4.1 Introduction

The current joint frailty models assume that the association between the terminal

event time and the recurrent event time is constant. The assumption of a constant

frailty over time under the gamma frailty model yields a closed-form expression for

Kendall’s τ (Oakes, 1989). In reality, the terminal event might be more correlated

with the most recent recurrent event compared with the earlier recurrent event.

For example, the death might be more associated with the previous myocardial

infarction event compared with the first myocardial infarction event.

Copulas often are used to model time-varying correlation in the financial market

(Wang et al., 2011; Almeida and Czado, 2012; Aloui et al., 2013; Li and Zeng, 2018).

In these models, the correlation is modeled via time series, e.g., AR(1) process. In

the survival framework, copulas also have been adopted to study recurrent events

(Cook et al., 2010; Meyer and Romeo, 2015). Typically, a multi-dimensional copula

is used to connect marginal survival functions of the recurrent events. Emura et al.

(2015) proposed a joint frailty-copula model for meta-analysis and further as a

special case, extended it to jointly model recurrent events and the terminal event.
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But it only would be valid when the terminal event process is a renewal process

and the correlation is still a constant.

In this chapter, we propose a time-varying joint frailty-copula model, which

1) relaxes the conditional independence assumption under the joint frailty model,

2) relaxes the assumption that the terminal event should be a renewal process,

3) allows the correlation between the terminal event and the recurrent events to

change over time, and 4) models the correlation on subject level instead of the

marginal level. We perform extensive simulation studies, comparing our method

with the joint frailty model and the joint frailty-copula model in terms of the bias,

standard deviation, mean squared error, and absolute bias. Also, we evaluate our

model when the copula model is misspecified.

In the remainder of this chapter, we introduce the details of the time-varying

joint frailty-copula models in section 4.2. In section 4.3, we apply the simulation

plan and results. In section 4.4, we applied our method to a real data set (CHS

data set) to analyze recurrent stroke, recurrent MI and death.

4.2 Methods

4.2.1 Notation

Let i denote the ith subject and let j denote the jth patient. Suppose that each

subject experiences a maximum of J recurrent events without the terminal event.

The terminal event will stop the recurrent event. Let Ti denote the terminal event

time of the ith subject and let Rij denote the recurrent event gap time between

the jth and (j − 1)th recurrent event. Let Ci denote the censoring time for Ti and

Yi = min{Ti, Ci} be the follow up time for the ith subject. Di = I(Ti < Ci) is the

failing indicator of the subject i. We assume Ti and Ci are independent. Further,

suppose Tij is the calendar recurrent event time calculate from the beginning of

the study. Then, Cij = max{Yi − Ti,j−1, 0} naturally is the censoring time for

Rij. Let ∆ij = min{Rij, Cij}. Cij contains the information about Ti, and in many

cases Ti is correlated with Rij. Because the non-informative censoring mechanism

is violated, we should not model the Rij’s alone. We need to jointly model Ti and

Rij.
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4.2.2 Time-varying Joint Frailty-copula Model

Next, we consider relaxing the assumption of constant correlation via a time-

varying joint frailty-copula model.

Suppose the hazard functions for the terminal event time Ti and the recurrent

event time Rij are

log hT (ti) = log h0T (ti) + β′Txi,T + ωi

log hR(rij) = log h0R(rij) + β′Rxi,R + ωi,
(4.1)

where ωi ∼ N (0, σ2
w). h0T (·) and h0R(·) are baseline hazard functions and can be

modeled by piecewise splines with parameter β0T and β0R. The survival functions

of Ti and Rij are respectively, ST (ti|ωi) = exp
{
−
∫ ti
0
hT (t|ωi)dt

}
and SR (rij|ωi) =

exp
{
−
∫ rij
0
hR(r|ωi)dr

}
.

For the jth recurrent event time and the terminal event time of the ith patient

we assume the correlation parameter in the copula function is θij. So the joint

survival function is

Pr(Ti ≥ ti, Rij ≥ rij|ωi) = Cθij(ST (ti|wi), SR(rij|ωi)), i = 1, . . . , n, j = 1, . . . , J,

where Cθij(·, ·) is a survival Archimedean copula function, θij is the parameter in

the copula function to quantify the association between the terminal event and the

jth recurrent event time. We relax the assumption in the previous joint frailty-

copula model, which assumes θ11 = · · · = θnJ = θ. Also, compared with the tradi-

tional time-varying copulas, the correlation parameter is modeled on subject level,

which means that the correlation between the terminal event and the recurrent

event could be different for each subject and each time point.

We assume that the overall correlation (marginal level) between Ti and Rij

across time is quantified by θµ. And θij = g(θµ, γij). γij is a latent effect which

leads to the change of θij and g(·, ·) is a function chosen to transform θµ, γij to θij.

We assume that γi1 ∼ N (0, σ2
ε/(1− ρ2)) and

γij = ργi,j−1 + εij, j ≥ 2
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where |ρ| < 1 and εi1, . . . , εiJ ∼i.i.d N (0, σ2
ε ). So, marginally, we have

γi1, . . . , γiJ ∼ N (0, σ2
ε/(1− ρ2)).

Suppose a subject experienced ni recurrent events prior to death or study with-

drawal, and let γi = {γi1, . . . , γi,ni+1}. γi ∼ N (0,Σi) where

Σi =
σ2
ε

1− ρ2


1 ρ . . . ρni

ρ 1 . . . ρni−1

...
...

. . .
...

ρni ρni−1 . . . 1

 .

The overall model structure is plotted in Figure 4.2.2.

Let γ = {γ1, . . . ,γn}, and let Dn = {yi, rij, di, δij, i = 1, . . . , n, j = 1, . . . , ni}
denote the observed data from n subjects. Suppose Θ denotes the vector of all

parameters in the model, Θ = {β0T ,β0R,βT ,βR, σ
2
ε , σ

2
ω, θµ}. Let C01,θij(u, v) =

∂Cθij(u, v)/∂v, C10,θij(u, v) = ∂Cθij(u, v)/∂u, and C11,θij(u, v) = ∂2Cθij(u, v)/∂u∂v.

The likelihood of the observed data given ω and γ is,

L(Θ|ω,γ) ∝
n∏
i=1

hdiT (yi|ωi)ST (yi|ωi)

×
ni+1∏
j=1

{
C01,θij(ST (yi|ωi), SR(rij|wi))fR(rij|ωi)

ST (yi|ωi)

}(1−di)δij

×
{
C11,θij(ST (yi|ωi), SR(rij|wi))fR(rij|ωi)

}diδij
×
{
C10,θij(ST (yi|ωi), SR(rij|wi))

}di(1−δij)
×
{
Cθij(ST (yi|ωi), SR(rij|wi))

ST (yi|ωi)

}(1−di)(1−δij)

,

4.2.3 A Clayton Time-varying Joint Frailty-copula Model

The Clayton copula (Oakes, 1989) is often used to joint model survival functions.

We use it as an example to present our method. A time-varying joint frailty-copula
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model can be expressed as

Cθij(ST (ti|ωi), ωi)) = (ST (ti|ωi)−θij + SR(rij|ωi)−θij − 1)−1/θij , θij ∈ (0,∞),

where the correlation between the ith event and the jth recurrent event is Kendall’s

τij = θij/(θij +2). So the correlation is changing after each recurrent event because

of the health status change. Under the Clayton copula, we have

C∗01,θij(ST (ti|ωi), SR(rij|ωi)) =ST (ti|ωi)−θij−1(ST (ti|ωi)−θij

+ SR(rij|ωi)−θij − 1)
−
θij+1

θij

C∗10,θij(ST (ti|ωi), SR(rij|ωi)) =ST (ti|ωi)−θij−1(ST (ti|ωi)−θij

+ SR(rij|ωi)−θij − 1)
−
θij+1

θij

C∗11,θij(ST (ti|ωi), SR(rij|ωi)) =(θij + 1) {ST (ti|ωi)SR(rij|ωi)}−(θij+1) (ST (ti|ωi)−θij

+ SR(rij|ωi)−θij − 1)
−

2θij+1

θij

(4.2)

Because θij > 0, we choose g(·, ·) such that θij = θµ exp(γij), where θµ can be

interpreted as the overall correlation between the terminal event and the recurrent

events in the study.

4.2.4 Bayesian Inference

We choose non-informative priors for the parameters in the model. Let G−1(·)
denote the inverse gamma distribution and U(·) denote the uniform distribution.

We have,

Pr(β0T ) ∝ 1,Pr(βT ) ∝ 1,Pr(β0R) ∝ 1,Pr(βR) ∝ 1,

θµ ∼ G(α, β), σ2
ω ∼ G−1(α, β), σ2

ε ∼ G−1(α, β), ρ ∼ U(−1, 1),

where α and β are chosen such that the density curve is flat enough, typically

α = 0.001 and β = 1000.

We treat ω and γ as unobserved quantities. We apply the Bayesian data

augmentation (BA) algorithm (Tanner and Wong, 1987) to handle the missing

data problem. If we want to generate a total of M samples of Θ from its posterior
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distribution, then in the `th iteration,

1. (I Step) draw missing value γ(`),ω(`) from the posterior predictive distribu-

tion, γ|Θ(`−1),Dn,ω and ω|Θ(`−1),Dn,ω(`)

2. (P Step) draw Θ(`) from the posterior distribution Θ|Dn,ω(`),γ(`).

Note that step 1 (I step) is imputing the missing value of (γ,ω) based on the

current value of Θ and step 2 (P step) is updating the current value of Θ based

on the imputed data set. We iteratively sample between step 1 and step 2, until

the MCMC chain converges and we have a total of M posterior samples of Θ.

The challenge in the BA algorithm is how to sample the parameter and the

missing data from their conditional distribution. In the I step, we sample γij from

Pr(γij|γ−ij,ω,Θ,Dn) ∝ L(Θ|ω,γ) Pr(γij|γ−ij, ρ, σ2
ε )

and ωi from

Pr(ωi|ω−i,γ,Θ,Dn) ∝ L(Θ|ω,γ) Pr(ωi|ω−i, σ2
ω)

by the Metropolis-Hastings (MH) algorithm. Note that γij|γ−ij, ρ, σ2
ε still will still

be normal,

γij|γ−ij, ρ, σ2
ε ∼ N

(
ρ

1 + ρ2
(γi,j+1 + γi,j−1),

σ2
ε

1 + ρ2

)
.

In the P step, similarly we can draw β0T , β0R, βT , βR and θµ by the MH algorithm.

For σ2
ε , σ

2
ω and ρ, there are closed forms for the posterior distribution, where

σ2
ε |γ,ω,Θ−σ2

ε
,Dn ∼

G−1

N + 2α

2
,

{
1

β
+

∑n
i=1

∑ni+1
j=2 (γij − ργi,j−1)2 + (1− ρ2)

∑n
i=1 γ

2
i1

2

}−1 ,

ρ|γ,ω,Θ−ρ,Dn ∼ N(−1,1)

(∑n
i=1

∑ni+1
j=2 γijγi,j−1∑n

i=1

∑ni+1
j=2 γ2i,j−1

,
σ2
ε∑n

i=1

∑ni+1
j=2 γ2i,j−1

)
,
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and

σ2
ω|ω,Dn ∼ G−1

α + n/2,

{
β−1 + 0.5

n∑
j=1

ω2
i

}−1 .

The derivation of the posterior distribution is shown in the Appendix. After we

have the posterior distribution of Θ we can estimate Θ by the posterior mean.

4.3 Simulation

4.3.1 Simulation Set-up

We performed extensive simulation study to evaluate our method. We first com-

pare our method with the joint frailty model and the joint frailty-copula model

when model is correctly specified. And next, we evaluate our model under model

misspecification.

When the copula model is correctly specified, the data is generated by a Clayton

copula and when we fit the time-varying copula model we also chose the Clayton

copula model. Consider the ith patient (i = 1, . . . , n), where the hazard functions

of the recurrent events and the terminal event are respectfully,

log hT (ti) = β0T + xi1βT,1 + xi2βT,2 + ωi

log hR(rij) = β0R + xi1βT,1 + xi2βT,2 + ωi,
(4.3)

where xi1 is generated from standard normal distribution and xi2 is generated by a

Bernoulli distribution, Bern(0.5). (βT,1, βT,2, βR,1, βR,2)
′ is set to be (1, 1, 2, 2)′. The

baseline hazard (β0T , β0R)′ is (0.5, 1). σ2
ω is 0.5. After we have the hazards, we first

generate Ti by inversing the exponential distribution, exp(hT (ti)). When Ti ≤ Ci,

the conditional distribution of Vij is FV (v|Ui = ui) = u
−(θij+1)
i (u−θi +v−θij−1)−1/θij .

Since FV (v|Ui = ui) follows a uniform distribution Unif(0, 1), we can first generate

a W̃ij ∼ Unif(0, 1) and let W̃ij = FV (v|Ui = ui). Vij can be generated by

Vij =

(
(W̃

− θ
θ+1

ij − 1)u−θi + 1

)−1/θ
.

When Ti > Ci, Vij is generated from FV (v|Ui < exp(−λiCi)) based on the Monte
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Carlo method. After we have Vij, we can generate the gap time Rij simply by

− log(Vij)/λij,R. We repeat this procedure until Tij is greater than Yi or j = J.

The sample size n is varied from 100 to 200. The correlation between γij and

γi,j−1, ρ, is varied from 0.1 to 0.3. The overall correlation parameter, θµ, is changed

from 1 to 2. The censoring rate is varied from 80% to 40%. Suppose sufficiently

large maximum number J = 1000 of events occur for each subject. For each

scenario, we generate 250 Monte Carlo datasets with the sample size n = 100, 200.

We summarize the average of the estimates, standard deviation (SD), mean squared

error (MSE) and absolute bias (AB) under these replicates.

When the model is misspecified, we generate the data by a Frank copula and

when we fit the model, we still choose a Clayton copula. Other settings are similar

to the previous settings in terms of n, ni and ρ.

4.3.2 Simulation Results

We first compare our method with the joint frailty model. The result is presented

in Table 4.1 and Table 4.2, which corresponds to θµ = 1 and θµ = 2. The censoring

rate is 40%. For the TVJFCM, we do not observe strong bias both in Table 4.1

and Table 4.2. The AB, MSE, and SD decreases as the sample size n increases.

For example the AB for βT,1 is 0.206 when the sample size is 100. And it drops to

0.111 when the sample size increases to 200.

Comparing TVJFCM and JFM, the bias, MSE and AB of TVJFCM is smaller

than JFM in both Table 4.1 and Table 4.2. Taking the case when n = 100 and

ρ = 0.1, the bias of βT,1 is 0.053 for TVJFCM and 0.138 for JFM. When the

correlation ρ increase from 0.1 to 0.3 or when θµ increases from 1 to 2, the bias

of JFM increases but TVJFCM doesn’t. For example, still considering the sample

size at 100, the bias of βT,1 is 0.138 when ρ = 0.1 and it increases to 0.141 when

ρ = 0.1 for JFM. Whereas, the bias of βT,1 is 0.053 when ρ = 0.1 and it increases

to 0.033 when ρ = 0.3 for TVJFCM.

In Table 4.3, Table 4.4 and Table 4.5, we compared our method with the joint

frailty-copula model. The bias, SD, MSE and AB of the TVJFCM is generally

smaller than the JFCM. Especially, when θµ increases from 1 to 3, the discrepancy

between these two methods further increases. When θµ = 3, the AB of θµ is 0.158
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under TVJFCM and it is 0.176 under JFCM. However, the performance of JFCM

is improved when the sample size increases and as a result, the discrepancy between

TVJFCM and JFCM decreases. Comparing TVJFCM, JFCM and JFM, the bias,

MSE and AB of the TVJFCM is the smallest. JFCM is still better than JFM.

In Table 4.6, we evaluate the TVJFCM, controlling θµ to be 1, and increasing

the censoring rate from 40% to 80%. Compare the result in 4.1, the bias, SD,

MSE and AB is smaller when the censoring rate is low. The bias of βT,1 is 0.161

when the censoring rate is 80% and sample size is 100. By contrary, the bias is

0.053 when the censoring rate is 40%. Increasing sample size from 100 to 200, the

bias, SD and MSE still decreases a lot. In Table 4.7, the model misspecification

problem is considered. The data is generated by a Frank copula, where θµ = 1

but we fit a Clayton copula. The bias, SD, AB and MSE are all greater compared

with the result in Table 4.1. For example, the AB of βT,1 is 0.305 when the model

is misspecified and it is 0.206 when model is correctly specified.

In summary, the bias, MSE, SD and AB of TVJFCM is the smallest compared

with JFCM and JFM. And when the censoring rate increases, although bias of

the TVJFCM increases, they are still small and can be improved by increasing the

sample size. When the copula model is misspecified, the bias of JFCM increases

so model selection is preferred.

4.4 Real Data Application

We applied our model to analyze the data from the Cardiovascular Health Study

(CHS), which is funded by National Heart, Lung and Blood Institute (NHLBI) to

study potential risk factors for cardiovascular disease (CVD). The study started

recruiting patients in 1989 and ended in 1999. At the beginning, 5201 men and

women were enrolled (1990) from Forsyth County, North Carolina; Sacramento

County, California; Washington County, Maryland; and Pittsburgh, Pennsylvania.

687 African Americans were enrolled after the initial baseline study. So, a total of

5888 patients were enrolled. 58% of the patients are women and 42% of the patients

are men. The patients enrolled in this study are all above 65 years old at baseline.

Patients have been followed up for 18 years in our data set. Risk factors includes

blood pressure, lipids and subclinical disease such as echocardiography of the heart,
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carotid ultrasound, and cranial magnetic-resonance imaging (MRI), are measured

during patients visits. The primary outcomes in this study includes coronary heart

disease (CHD), angina, heart failure (HF), stroke, transient ischemic attack (TIA),

claudication, and mortality. The incidence of CVD events, the number of recurrent

events were also recorded during the patient visits. The data set can be requested

online at, http://chs-nhlbi.org. Some baseline characteristics of the patients are

examined in Table 4.8. Race is 1 for the white and Race is 0 for non-white. The

Gender is set equal to 1 for males and otherwise, it is 0.

In this study, we are particular interested in the correlation between recurrent

myocardial infarction (MI) and all-cause death as a terminal event. MI is defined

as part of the myocardium death due to an occlusion of a coronary artery from

causes like embolus, spasm, thrombosis, or the rupture of a plaque. The covariates

we are interested in include the gender, hypertension, race, systolic blood pressure

(SBP) and baseline MI status(MIB). The death rate is 81.78% up to the year 2006.

The number of recurrent events range from 0 to 5. Around 18% of the patients

have at least one MI event. 803 patients have only one MI event. As an exploratory

analysis, we summarize the distribution of baseline characteristics between patients

with MI recurrences and without recurrences in Table 4.8. Chi-squared test is used

to test whether these factors are associated with the recurrence of MI. The p-value

of gender and baseline MI status is very small. We further plot the Kaplan-

Meier curves across different gender groups and MIB group in Figure 4.2. There

is a big difference in survival curves between different groups. Finally, we fit a

joint frailty model and a Clayton time-varying frailty-copula model to analyze

the data. Since hypertension is highly insignificant in the exploratory analysis,

we do not include it into the model. The result is shown in Table 4.10. Under

our model, MIB, gender, SBP and race are all associated with both the hazard of

recurrent MI events and the hazard of death. Comparatively, the effect of MIB and

gender is more strongly associated with the MI and death. For example, compared

with patients with no MI event previously, the death hazard increases by 38%

(HR=1.38, 95%CL=(1.28,1.4)) and the MI hazard increases by 89% (HR=1.89,

95%CL=(1.63,2.20)). Under the joint frailty model, most results are identical the

same except for race. Under the joint frailty model, race is not a risk factor for

death.
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Figure 4.1. Forest plots for joint models

Figure 4.2. Kaplan-Meier Curves of MI Between Different Groups

*Under log rank test, p-values for both graphs are < 0.001
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Another potential interest is the correlation between recurrent stroke and death.

The covariates we are interested in includes the gender, race, SBP and baseline

stroke status(STB). The stroke event is defined as the rapid onset of neurologic

deficit or subarachnoid hemorrhage and 1) Greater than 24 hours unless death;

2) CT/MRI Lesion CT/MRI form; 3) not secondary to brain trauma, tumor or

infection. The exploratory analysis of the survival curves is shown in Table 4.9

and Figure 4.4. As shown in Figure 4.4, the baseline stroke status and gender have

a strong effect on the recurrence of the stroke (log rank test p-value<0.001). The

result in Table 4.11 show that gender, STB, SBP and race are associated with both

death process and recurrent stroke process. Note that if we fit the model by joint

frailty model, SBP is not significant.

In summary, gender, race, SBP, and baseline event history are associated with

MI, stroke and death event times. Patients with events history and male has the

higher of MI and stroke. Our model find two more associated covariates compared

with the joint frailty model. We plot a forest plot to show the effects of the

risk factors (Figure 4.4). Our result is more similar compared with a previous

publication by Yanez et al. (2009), Psaty et al. (2001) and Bansal et al. (2017).

4.5 Discussion

We propose a time-varying joint frailty-copula approach to jointly model recur-

rent event gap times and a terminal event time which 1) relaxes the conditional

independence assumption, 2) captures time dependent correlation between the ter-

minal event process and the recurrent event process and 3) models the correlation

between the terminal event and the recurrent event process on the marginal level.

In the simulation study, we don’t observe strong bias in all scenarios when the

copula model is correctly specified. The absolute bias, standard error and mean

squared error continuously drop when the sample size increases. The proposed

model successfully addressed the problem of the dependent censoring when we

analyze recurrent events data.

Compared with the traditional joint frailty model or the joint frailty-copula

model, our model is more flexible which relaxes the assumption of conditional

independence and constant correlation over time. So in the simulation study, we
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observe smaller absolute bias and smaller MSE compared with the traditional

methods.

We extended the time-varying copula model to analyze recurrent event gap

times. Furthermore, we combined the frailty and the copula to allow extra correla-

tion between the terminal event and the recurrent event given the within-subject

frailty. Last, we apply the Bayesian augmentation algorithm and avoid integrating

the likelihood with respect to the frailty, which is less tractable.

The limitation of our method is that our modeling approach depends on cor-

rectly choosing the copula. This is a common model selection problem. Typically,

we can use information criteria like AIC, BIC, DIC or deviance to overcome it.

Another approach to select the correct model is the cross-validation error. We

could choose a copula model which minimizes the cross-validation error.

Another potential problem is related to the Gibbs sampler algorithm. In the

latent Gaussian process, it will take a long time for the Gibbs sampler algorithm

to converge if the correlation between γij is high (i.e., ρ = 0.9). We could invoke

an ordered relaxation for the Gibbs sampler algorthm to solve the problem (Neal,

1998).

Some future works are considered. The biomarker is important in clinical trial

study or genetic study. And it is typically modeled by a mixed effect model. So

one interesting topic is to jointly model the longitudinal biomarker process, the

recurrent event process and the terminal event process.

Also, in clinical trials, some of the patients might be cured and will not have

recurrent events after the treatment. If we ignore this part of the patients, the

estimation of the hazard might be biased. So another work is to consider extending

our model to the cure rate time-varying joint frailty-copula model which adjusts

the bias resulted by the cured patients.
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Table 4.1. Comparison between the time-varying joint Clayton frailty-copula model
and the joint frailty model when θµ = 1, censoring rate 40%

TVFCJM JFM
n ρ Param EST SD MSE AB EST SD MSE AB

100 0.1 βT,1 = 1 1.053 0.249 0.064 0.206 1.138 0.292 0.104 0.255
βT,2 = 1 1.004 0.099 0.010 0.078 1.128 0.160 0.042 0.161
βR,1 = 2 2.027 0.165 0.028 0.133 2.060 0.178 0.035 0.150
βR,2 = 2 1.996 0.086 0.007 0.068 2.070 0.108 0.016 0.101
ρ = 0.1 0.098 0.057 0.003 0.046 - - - -
θµ = 1 1.015 0.157 0.025 0.129 - - - -

0.3 βT,1 = 1 1.033 0.216 0.048 0.173 1.141 0.292 0.105 0.256
βT,2 = 1 1.015 0.102 0.011 0.081 1.127 0.161 0.042 0.162
βR,1 = 2 2.018 0.159 0.026 0.126 2.064 0.183 0.037 0.154
βR,2 = 2 2.008 0.086 0.007 0.067 2.072 0.105 0.016 0.103
ρ = 0.3 0.289 0.061 0.004 0.049 - - - -
θµ = 1 0.996 0.146 0.021 0.116 - - - -

200 0.1 βT,1 = 1 1.016 0.138 0.019 0.111 1.140 0.202 0.060 0.195
βT,2 = 1 1.008 0.070 0.005 0.055 1.122 0.107 0.026 0.134
βR,1 = 2 2.010 0.108 0.012 0.088 2.082 0.126 0.023 0.119
βR,2 = 2 2.000 0.059 0.003 0.046 2.067 0.066 0.009 0.078
ρ = 0.1 0.097 0.043 0.002 0.035 - - - -
θµ = 1 1.004 0.126 0.016 0.099 - - - -

0.3 βT,1 = 1 1.002 0.137 0.019 0.108 1.139 0.203 0.060 0.194
βT,2 = 1 1.003 0.071 0.005 0.056 1.121 0.107 0.026 0.133
βR,1 = 2 2.001 0.111 0.012 0.086 2.083 0.136 0.025 0.125
βR,2 = 2 1.998 0.058 0.003 0.046 2.070 0.070 0.010 0.082
ρ = 0.3 0.289 0.042 0.002 0.033 - - - -
θµ = 1 1.006 0.126 0.016 0.099 - - - -
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Table 4.2. Comparison between the time-varying joint Clayton frailty-copula model
and the joint frailty model when θµ = 2, censoring rate 40%

TJFCM JFM
n ρ Param EST SD MSE AB EST SD MSE AB

100 0.1 βT,1 = 1 1.000 0.186 0.034 0.143 1.182 0.301 0.124 0.279
βT,2 = 1 1.012 0.085 0.007 0.067 1.164 0.167 0.054 0.187
βR,1 = 2 1.997 0.156 0.024 0.124 2.135 0.207 0.061 0.196
βR,2 = 2 2.004 0.077 0.006 0.061 2.119 0.116 0.028 0.136
ρ = 0.1 0.094 0.067 0.005 0.052 - - - -
θµ = 2 2.022 0.187 0.035 0.149 - - - -

0.3 βT,1 = 1 1.004 0.169 0.029 0.131 1.181 0.300 0.122 0.277
βT,2 = 1 1.018 0.086 0.008 0.070 1.164 0.166 0.055 0.188
βR,1 = 2 2.002 0.143 0.020 0.116 2.135 0.195 0.056 0.186
βR,2 = 2 2.005 0.078 0.006 0.063 2.122 0.121 0.029 0.140
ρ = 0.3 0.288 0.066 0.005 0.054 - - - -
θµ = 2 2.003 0.177 0.031 0.139 - - - -

200 0.1 βT,1 = 1 1.003 0.115 0.013 0.091 1.176 0.211 0.075 0.219
βT,2 = 1 1.006 0.058 0.003 0.046 1.157 0.110 0.037 0.163
βR,1 = 2 2.007 0.106 0.011 0.084 2.134 0.147 0.040 0.163
βR,2 = 2 2.004 0.052 0.003 0.041 2.126 0.083 0.023 0.129
ρ = 0.1 0.096 0.051 0.003 0.042 - - - -
θµ = 2 1.985 0.174 0.030 0.138 - - - -

0.3 βT,1 = 1 1.017 0.120 0.015 0.096 1.175 0.210 0.075 0.218
βT,2 = 1 1.008 0.054 0.003 0.043 1.157 0.111 0.037 0.164
βR,1 = 2 2.021 0.105 0.011 0.082 2.136 0.142 0.039 0.162
βR,2 = 2 2.007 0.051 0.003 0.041 2.125 0.084 0.023 0.128
ρ = 0.3 0.287 0.043 0.002 0.037 - - - -
θµ = 2 1.987 0.162 0.026 0.130 - - - -
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Table 4.3. Comparison between the time-varying joint Clayton frailty-copula model
and the joint frailty-copula model when θµ = 1, censoring rate 40%

TVJFCM JFCM
n ρ Parameter EST SD MSE AB EST SD MSE AB

100 0.1 βT,1 = 1 1.053 0.249 0.064 0.206 1.031 0.241 0.059 0.195
βT,2 = 1 1.004 0.099 0.010 0.078 1.024 0.115 0.014 0.092
βR,1 = 2 2.027 0.165 0.028 0.133 2.015 0.174 0.030 0.141
βR,2 = 2 1.996 0.086 0.007 0.068 2.014 0.095 0.009 0.073
ρ = 0.1 0.098 0.057 0.003 0.046 - - - -
θµ = 1 1.015 0.157 0.025 0.129 0.974 0.158 0.025 0.125

0.3 βT,1 = 1 1.033 0.216 0.048 0.173 1.036 0.236 0.057 0.190
βT,2 = 1 1.015 0.102 0.011 0.081 1.013 0.105 0.011 0.082
βR,1 = 2 2.018 0.159 0.026 0.126 2.015 0.163 0.027 0.132
βR,2 = 2 2.008 0.086 0.007 0.067 2.005 0.079 0.006 0.062
ρ = 0.3 0.289 0.061 0.004 0.049 - - - -
θµ = 1 0.996 0.146 0.021 0.116 0.992 0.162 0.026 0.131

200 0.1 βT,1 = 1 1.016 0.138 0.019 0.111 1.015 0.139 0.019 0.112
βT,2 = 1 1.008 0.070 0.005 0.055 1.008 0.072 0.005 0.055
βR,1 = 2 2.010 0.108 0.012 0.088 2.011 0.110 0.012 0.092
βR,2 = 2 2.000 0.059 0.003 0.046 2.000 0.058 0.003 0.045
ρ = 0.1 0.097 0.043 0.002 0.035 - - - -
θµ = 1 1.004 0.126 0.016 0.099 1.010 0.120 0.014 0.096

0.3 βT,1 = 1 1.002 0.137 0.019 0.108 1.004 0.152 0.023 0.123
βT,2 = 1 1.003 0.071 0.005 0.056 1.005 0.073 0.005 0.057
βR,1 = 2 2.001 0.111 0.012 0.086 2.002 0.115 0.013 0.091
βR,2 = 2 1.998 0.058 0.003 0.046 1.998 0.055 0.003 0.044
ρ = 0.3 0.289 0.042 0.002 0.033 - - - -
θµ = 1 1.006 0.126 0.016 0.099 1.008 0.112 0.013 0.088
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Table 4.4. Comparison between the time-varying joint Clayton frailty-copula model
and the joint frailty-copula model when θµ = 2, censoring rate 40%

TVJFCM JFCM
n ρ Parameter EST SD MSE AB EST SD MSE AB

100 0.1 βT,1 = 1 1.000 0.186 0.034 0.143 1.007 0.185 0.034 0.141
βT,2 = 1 1.012 0.085 0.007 0.067 1.012 0.093 0.009 0.074
βR,1 = 2 1.997 0.156 0.024 0.124 2.000 0.158 0.025 0.126
βR,2 = 2 2.004 0.077 0.006 0.061 2.005 0.081 0.007 0.065
ρ = 0.1 0.094 0.067 0.005 0.052 - - - -
θµ = 2 2.022 0.187 0.035 0.149 1.974 0.176 0.031 0.136

0.3 βT,1 = 1 1.004 0.169 0.029 0.131 1.014 0.171 0.029 0.133
βT,2 = 1 1.018 0.086 0.008 0.070 1.017 0.095 0.009 0.076
βR,1 = 2 2.002 0.143 0.020 0.116 2.010 0.150 0.023 0.119
βR,2 = 2 2.005 0.078 0.006 0.063 2.005 0.084 0.007 0.066
ρ = 0.3 0.288 0.066 0.005 0.054 - - - -
θµ = 2 2.003 0.177 0.031 0.139 1.983 0.199 0.040 0.156

200 0.1 βT,1 = 1 1.003 0.115 0.013 0.091 1.010 0.121 0.015 0.096
βT,2 = 1 1.006 0.058 0.003 0.046 1.003 0.058 0.003 0.047
βR,1 = 2 2.007 0.106 0.011 0.084 2.014 0.112 0.013 0.089
βR,2 = 2 2.004 0.052 0.003 0.041 2.003 0.053 0.003 0.042
ρ = 0.1 0.096 0.051 0.003 0.042 - - - -
θµ = 2 1.985 0.174 0.030 0.138 1.990 0.165 0.027 0.130

0.3 βT,1 = 1 1.017 0.120 0.015 0.096 1.006 0.126 0.016 0.100
βT,2 = 1 1.008 0.054 0.003 0.043 1.005 0.058 0.003 0.046
βR,1 = 2 2.021 0.105 0.011 0.082 2.010 0.108 0.012 0.088
βR,2 = 2 2.007 0.051 0.003 0.041 2.004 0.053 0.003 0.042
ρ = 0.3 0.287 0.043 0.002 0.037 - - - -
θµ = 2 1.987 0.162 0.026 0.130 1.999 0.171 0.029 0.136
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Table 4.5. Comparison between the time-varying joint Clayton frailty-copula model
and the joint frailty-copula model when θµ = 3, censoring rate 40%

TVJFCM JFCM
n ρ Parameter EST SD MSE AB EST SD MSE AB

100 0.1 βT,1 = 1 1.014 0.153 0.024 0.123 0.999 0.165 0.027 0.129
βT,2 = 1 1.007 0.067 0.004 0.053 0.996 0.075 0.006 0.058
βR,1 = 2 2.007 0.137 0.019 0.107 1.992 0.153 0.023 0.122
βR,2 = 2 2.007 0.065 0.004 0.051 1.996 0.072 0.005 0.056
ρ = 0.1 0.094 0.066 0.004 0.053 - - - -
θµ = 3 2.975 0.180 0.033 0.146 2.961 0.202 0.042 0.163

0.3 βT,1 = 1 1.015 0.156 0.024 0.123 1.007 0.155 0.024 0.122
βT,2 = 1 1.005 0.071 0.005 0.057 0.999 0.080 0.006 0.061
βR,1 = 2 2.011 0.140 0.020 0.107 2.004 0.147 0.021 0.115
βR,2 = 2 2.007 0.067 0.004 0.053 2.001 0.075 0.006 0.058
ρ = 0.3 0.287 0.066 0.004 0.054 - - - -
θµ = 3 3.000 0.198 0.039 0.158 2.968 0.218 0.048 0.176

200 0.1 βT,1 = 1 0.998 0.096 0.009 0.076 0.998 0.108 0.012 0.086
βT,2 = 1 1.002 0.049 0.002 0.038 0.999 0.050 0.002 0.038
βR,1 = 2 1.999 0.083 0.007 0.066 1.998 0.102 0.010 0.081
βR,2 = 2 2.000 0.044 0.002 0.034 1.997 0.046 0.002 0.035
ρ = 0.1 0.096 0.040 0.002 0.033 - - - -
θµ = 3 2.982 0.171 0.030 0.133 2.984 0.184 0.034 0.148

0.3 βT,1 = 1 0.995 0.096 0.009 0.075 0.997 0.111 0.012 0.087
βT,2 = 1 1.000 0.046 0.002 0.036 0.998 0.052 0.003 0.041
βR,1 = 2 1.997 0.091 0.008 0.072 1.999 0.103 0.011 0.083
βR,2 = 2 1.999 0.044 0.002 0.034 1.996 0.048 0.002 0.039

ρ 0.294 0.047 0.002 0.037 - - - -
θµ = 3 2.999 0.180 0.032 0.140 2.987 0.186 0.035 0.148
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Table 4.6. Joint modeling by the time-varying joint Clayton frailty-copula model when
θµ = 1, event rate 20%

n=100 n=200
ρ Parameter EST SD MSE AB EST SD MSE AB

0.1 βT,1 = 1 1.161 0.600 0.385 0.474 1.046 0.362 0.133 0.282
βT,2 = 1 1.074 0.283 0.085 0.22 1.021 0.16 0.026 0.123
βR,1 = 2 2.029 0.296 0.088 0.235 2.005 0.171 0.029 0.135
βR,2 = 2 2.014 0.139 0.019 0.111 2.002 0.082 0.007 0.064
ρ = 0.1 0.096 0.101 0.010 0.079 0.095 0.063 0.004 0.050
θµ = 1 0.982 0.187 0.035 0.143 0.975 0.159 0.026 0.128

0.3 βT,1 = 1 1.144 0.582 0.358 0.453 1.058 0.377 0.145 0.281
βT,2 = 1 1.072 0.277 0.081 0.21 1.028 0.162 0.027 0.123
βR,1 = 2 2.028 0.283 0.081 0.227 2.011 0.182 0.033 0.145
βR,2 = 2 2.016 0.134 0.018 0.105 2.007 0.089 0.008 0.072
ρ = 0.3 0.291 0.095 0.009 0.075 0.293 0.065 0.004 0.053
θµ = 1 0.979 0.182 0.033 0.142 0.978 0.154 0.024 0.125

Table 4.7. Joint modeling by the time-varying joint Clayton frailty-copula model when
θµ = 1, event rate 60% and the copula model is misspecified

n=100 n=200
ρ Parameter EST SD MSE AB EST SD MSE AB

0.1 βT,1 = 1 0.841 0.335 0.137 0.305 0.878 0.218 0.062 0.203
βT,2 = 1 0.865 0.163 0.045 0.171 0.884 0.129 0.030 0.140
βR,1 = 2 2.005 0.172 0.029 0.131 2.009 0.113 0.013 0.089
βR,2 = 2 1.985 0.087 0.008 0.069 2.005 0.062 0.004 0.049
ρ = 0.1 0.099 0.065 0.004 0.053 0.099 0.047 0.002 0.037

τµ = 0.11 0.206 0.060 0.013 0.099 0.158 0.043 0.004 0.054

0.3 βT,1 = 1 0.838 0.339 0.141 0.306 0.878 0.205 0.057 0.196
βT,2 = 1 0.872 0.160 0.042 0.167 0.884 0.131 0.031 0.140
βR,1 = 2 1.986 0.173 0.030 0.136 2.003 0.110 0.012 0.090
βR,2 = 2 1.993 0.087 0.008 0.067 2.006 0.060 0.004 0.046
ρ = 0.3 0.292 0.063 0.004 0.051 0.293 0.045 0.002 0.036

τµ = 0.11 0.204 0.057 0.012 0.096 0.155 0.042 0.004 0.051
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Table 4.8. Baseline Characteristics for Patients with MI Events and No MI Events
No MI MI p-value

Total 2499 3097
Hypertension

No 354(44.58%) 440(55.42%)
Yes 2142(44.63%) 2657(55.37%) 1.000

Gender
Female 1538(47.51%) 1699(52.49%)

Male 961(40.69%) 1401(59.31%) <0.001
Race

White 2077(44.37%) 2604(55.63%)
Black 403(45.74%) 478(54.26%)
Other 19(51.35%) 18(48.65%) 0.547

MIB
No 2387(46.84%) 2709(53.16%)
Yes 112(22.27%) 391(77.73%) <0.001

SBP
Mean(SD) 133.6(11.65) 138.89(11.08) 0.503

Table 4.9. Baseline Characteristics for Patients with Stroke Events and No Stroke
Events

No ST ST p-value
Total 2437 3041
Hypertension

No 352(44.73%) 435(55.27%)
Yes 2082(44.45%) 2602(55.55%) 0.904

Gender
Female 1490(47.53%) 1645(52.47%)

Male 947(40.42%) 1396(59.58%) <0.001
Race

White 2027(44.21%) 2558(55.79%)
Black 389(45.55%) 465(54.45%)
Other 21(53.85%) 18(46.15%) 0.400

STB
No 2379(45.21%) 2883(54.79%)
Yes 58(26.85%) 158(73.15%) <0.001

SBP
Mean(SD) 133.40(11.64) 138.73(11.08) 0.620
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Table 4.10. Joint Modeling MI and Death by TVJFCM
JFM TVJFCM

Covariates EST 2.5% 97.5% EST 2.5% 97.5%
Time to Death MIB=1 0.513 0.435 0.591 0.322 0.246 0.397

Gender=1 0.265 0.214 0.315 0.116 0.068 0.165
SBP 0.006 0.005 0.008 0.003 0.002 0.004
Race=1 -0.001 -0.068 0.067 -0.145 -0.206 -0.083

Time to MI MIB=1 0.635 0.476 0.795 0.636 0.486 0.787
Gender=1 0.775 0.658 0.891 0.745 0.620 0.869
SBP 0.013 0.011 0.016 0.018 0.015 0.020
Race=1 0.491 0.307 0.674 0.498 0.303 0.694

Correlation θ - - - 0.537 0.030 1.044
ρ - - - 0.092 0.059 0.125

Figure 4.3. Kaplan-Meier Curves of Stroke Events Between Different Groups
*Under log rank test, p-values for both graphs are < 0.001
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Table 4.11. Joint Modeling Stroke and Death by TVJFCM and JFM
JFM TVJFCM

Covariates EST 2.5% 97.5% EST 2.5% 97.5%
Time to Death STB=1 0.263 0.120 0.405 0.245 0.108 0.382

Gender=1 0.286 0.230 0.342 0.438 0.381 0.494
SBP 0.000 -0.002 0.001 -0.001 -0.002 0.000
Race=1 -0.410 -0.486 -0.334 -0.357 -0.433 -0.280

Time to Stroke STB=1 0.382 0.057 0.708 0.444 0.194 0.695
Gender=1 0.405 0.274 0.536 0.264 0.142 0.386
SBP 0.019 0.016 0.022 0.015 0.012 0.018
Race=1 0.045 -0.144 0.235 0.271 0.043 0.498

Correlation θ - - - 3.366 2.948 3.784
ρ - - - 0.471 0.420 0.522

Figure 4.4. Forest plots for joint models



Chapter 5
Summary and Future Work

5.1 Summary

Most of the literature current on joint models are built on the work of Liu et al.

(2004). As a result, when the conditional independence assumption or the constant

correlation assumption is violated, the inference would be biased. Yue and Chan

(1997) and McGilchrist and Aisbett (1991) although considered dynamic frailty

models to relax the conditional independence assumption, they do not consider

the terminal event process. Also with more frailties, the integral of the likelihood

is less tractable.

Emura et al. (2015) proposed the joint frailty-copula model for meta-analysis.

In Chapter 3, we extend the frailty-copula model to analyze the recurrent gap

times with dependent censoring. The frailty-copula models do not specify the

distributions of the time-dependent frailties and how the frailties are correlated.

Instead, we use a survival copula to connect the conditional survival function. So

it is more robust compared to the dynamic frailty approach, and the integral of the

likelihood is more tractable. In Chapter 4, we further incorporate a latent AR(1)

process to model the correlation between the terminal event and the recurrent

events, which relaxes the assumption of the constant correlation over time by

proposing a time-varying joint frailty-copula model. In order to avoid the problem

of non-tractable likelihood integration, we propose to use a Bayesian augmentation

algorithm to estimate the parameters in the model. The Bayesian augmentation

algorithm first imputes missing values and then draws posterior samples based on
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imputed data set.

In the simulation study, both models outperform the traditional joint frailty

model when the conditional independence assumption is violated. We also see

when the assumption is not violated that the bias of the proposed model is identi-

cal but the standard error and mean squared error is comparatively greater. This

is expected, but the proposed models still are more appealing because the assump-

tions for the traditional models are too simplistic. When the correlation is not a

constant, the bias, standard error and mean squared error are all improved by the

time-varying frailty copula model.

5.2 Future Work

As mentioned in Chapter 3 and Chapter 4, there still are some interesting topics,

which could be studied based on our model. One interesting topic to consider

is jointly modeling biomarker data, recurrent event gap times, and the terminal

event. Under the new model, the hazard functions are

y(t|ωi) = mi(t) + ε(t) (5.1)

λR(r|ωi) = λ0R(r) exp {β′Rxi,R + αRmi(r)} (5.2)

λT (t|ωi) = λ0T (t) exp {β′Txi,T + αTmi(t)} (5.3)

where mi(t) is the mean expression level of a biomarker at time t and it is modeled

by a mixed-effects model, mi(t) = β0 + β1x+ ωi. ε(tij)s are mutually independent

and following a normal distribution, N (0, σ2
ε ) The likelihood function of this model

needs to further incorporate the biomarker likelihood. The EM algorithm and the

BA algorithm can both be applied to estimate the parameters.

Another potential situation to consider is multiple types of the recurrent events

with dependent censoring. In the CHS study, there are multiple types of the

recurrent event, like stroke or MI. There is a correlation between MI and stroke

and they are both stopped by death. Lin et al. (2017) considered a Bayesian

approach to jointly model these three time-to-event processes,

λR,k(r|ωi) = λ0R,k(r) exp {β′Rxi,R + ωik} (5.4)



61

λT (t|ωi) = λ0T (t) exp

{
β′Txi,T +

K∑
k=1

ψkωik

}
, (5.5)

where λR,k is the hazard function for the kth(k = 1, . . . , K) type of the recurrent

event. ωik is the frailty associated with the ith patient and the kth type of the

recurrent event. The effect of the frailties on the terminal event is denoted by ψk.

This model still assumes conditional independence given ωik. Still, no literature

consider relaxing this assumption. A potential method is to use a multivariate

copula model to connect these conditional survival functions.

In clinical trials, a portion of the patients might be cured after the treatment,

and the hazard may become 0 (Liu et al., 2016). A cure rate model under the joint

frailty-copula model might be possible. The hazard functions under this model

can be specified by

λR(r|ωi) =

λ0R(r) exp (β′Rxi,R + ωi) if not cured

0 if cured
(5.6)

λT (t|ωi) = λ0T (t) exp {β′Txi,T + ωi} , (5.7)

The probability of the ith patient to be cured is pi = exp(β′cxc,)/(1+exp (β′cxc,i)) ,

where xc,i is the covariate vector associated with the cure rate.



Appendix A
Appendix for chapter 3

A.1 Deriavation of the likelihood

For a subject with di = 1, Cij = max{Ti− Ti,j−1, 0}, and Cij is independent of Rij

given Ti = ti and wi. Similarly we can express the probability of the ith subject

who is terminated at ti and experienced ni events given wi,

Pr(Ti = ti, Ri1 = ri1, ..., Ri,ni+1 ≥ ci,ni+1, . . . , Ri,J+1 ≥ ci,J+1|wi)

= C∗(10) (ST (ti|wi) , SR (ci,ni+1|wi))
ni∏
j=1

C∗(11) (ST (ti|wi) , SR (rij|wi)) fR(rij|wi)

Then, the likelihood of observing Dn, given random frailty w is,

L(Dn|w) =
n∏
i=1

(
ST (yi|wi)

ni∏
j=1

C∗(01) (ST (ti|wi) , SR (rij|wi)) fR(rij|wi)
ST (yi|wi)

)1−di

×

(
fT (yi|wi)

ni∏
j=1

C∗(11) (ST (yi|wi) , SR (rij|wi)) fT (yi|wi)fR(rij|wi)
fT (yi|wi)

)di

×

(
C∗(10) (ST (yi|wi) , SR (ci,ni+1|wi)) fT (yi|wi)

fT (yi|wi)

)di

×
(
C∗ (ST (yi|wi) , SR (ci,ni+1|wi))

ST (ti,ni+1|wi)

)1−di
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After simplifying the above equation, we can express the likelihood by

L(Dn|w) =
n∏
i=1

[fT (yi|wi)C∗10(ST (yi|wi), SR(ci,ni+1|wi))]di

×
[
S−niT (yi|wi)C∗(ST (yi|wi), SR(ci,ni+1|wi))

]1−di
×

ni∏
j=1

[
C∗(01)(ST (yi|wi), SR(rij|wi))

]1−di [C∗(11)(ST (yi|wi), SR(rij|wi))
]di

× fR(rij|wi)

A.2 Metropolis-Hastings within the Gibbs sam-

pler algorithm

For l = 1, · · · ,M, in the lth iteration,

1. Sample β
(l)
0T by Pr(β0T |β(l−1)

0R ,β
(l−1)
T ,β

(l−1)
R ,w(l−1), θ(l−1), σ−2w

(l−1)
, Dn)

(a) Generate βN0T = β
(l−1)
0T + sN(0, 1), whre s is the step size of the random

walk

(b) Generate U ∼ Unif(0, 1)

(c) Calculate

LR =
L(βN0T , β

(l−1)
0R ,β

(l−1)
R ,w(l−1), θ(l−1), σ−2w

(l−1)
, Dn)

L(β
(l−1)
0T , β

(l−1)
0R ,β

(l−1)
R ,w(l−1), θ(l−1), σ−2w

(t−1), Dn)
.

(d) If LR > U , β
(l)
0T = βN0T . Otherwise, β

(l)
0T = β

(l−1)
0T .

2. Sample β
(l)
0R by Pr(β0R|β(l)

0T ,β
(l−1)
T ,β

(l−1)
R ,w(l−1), θ(l−1), σ−2w

(l−1)
,Dn), identi-

cally .

3. Sample β
(l)
T by Pr(βT |β(l)

0T ,β
(l)
0R,β

(l−1)
R ,w(l−1), θ(l−1), σ−2w

(l−1)
,Dn), identically.

4. Sample β
(t)
R by Pr(βR|β(l)

0T ,β
(l)
0R,β

(l)
T ,w

(t−1), θ(l−1), σ−2w
(l−1)

,Dn), similarly as

in step 1.

5. For i = 1, · · · , n, sample w
(l)
i from

Pr(w
(l)
i |β

(l)
0T ,β

(l)
0R,β

(l)
T ,β

(l)
R ,w

(l−1)
[−i] , θ

(l−1), σ−2w
(l−1)

,Dn),
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(a) Generate wNi = w
(l−1)
i +sN(0, 1), where s is the step size of the random

walk

(b) Generate U ∼ Unif(0, 1)

(c) Let Li(·) denote the likelihood of the ith subject. Calculate

LR =
Li(β

(l)
0T ,β

(l)
0R,β

(l)
T ,β

(l)
R , w

N
i , θ

(t−1), σ−2w
(l−1)

,Dn) Pr(wNi )

Li(β
(l)
0T ,β

(l)
0R,β

(l)
T ,β

(l)
R , w

(l−1)
i , θ(l−1), σ−2(l−1),Dn) Pr(w

(l−1)
i )

(d) If LR > U , w
(l)
i = wNi . Otherwise, w

(l)
i = w

(l−1)
i

6. Sample θ(l) by Pr(θ|β(l)
0T ,β

(l)
0R,β

(l)
T ,β

(l)
R ,w

(l), σ−2w
(l−1)

,Dn) similarly as in step

1.

7. Sample σ−2w
(l)

by Pr(σ−2w |β
(l)
0T ,β

(l)
0R,β

(l)
T ,β

(l)
R ,w

(l),Dn), which is a gamma dis-

tribution, i.e.,

G(α + n/2, (α +wT (l)
w(l)/2)−1)

The step size in the algorithm is chosen so that the acceptance rate is around

0.44. The algorithm is programmed in C language for efficiency. After we get the

posterior sample, we estimate Θ via the posterior mean to minimize the expected

squared error loss function.



Appendix B
Appendix for chapter 4

We first derive the conditional distribution of γij|γ−ij,ω,Θ. Since ω is independent

of γij, the distribution of γij|γ−ij,ω,Θ is equivalent to γij|γ−ij, ρ, σ2
ε .

For j = 1, it only depends on γi2, ρ and σ2
ε . We have the joint distribution,

(γi1, γi2)|σ2
ε , ρ ∼ N

(
0,

σ2
ε

1− ρ2

[
1 ρ

ρ 1

])
.

So γi1|γ−i1, σ2
ε , ρ ∼ N (ργi2, σ

2
ε ).

Consider j = 2, . . . , ni,

Pr(γij|γ−ij, σ2
ε , ρ) ∝ Pr(γij,γ−ij|σ2

ε , ρ)

= Pr(γi,ni |γi,ni−1, σ2
ε , ρ) . . .Pr(γi2|γi1, σ2

ε , ρ) Pr(γi1|σ2
ε , ρ)

∝ Pr(γi,j+1|γi,j, σ2
ε , ρ) Pr(γij|γi,j−1, σ2

ε , ρ)

∝ exp

{
−(γi,j+1 − ργj)2 + (γj − ργi,j−1)2

2σ2
ε

}
∝ exp

[
−{γij − ρ/(1 + ρ2)(γi,j+1 − γi,j−1)}2

2σ2
ε/(1 + ρ2)

]

So, γij|γ−ij, σ2
ε , ρ ∼ N (ρ/(1 + ρ2)(γi,j+1 + γi,j−1), σ

2
ε/(1 + ρ2)) .

For j = ni + 1, from γi,ni+1 = ργi,ni + εi,ni+1, we have γi,ni+1|γ−i,ni+1, σ
2
ε , ρ ∼

N (ργi,ni , σ
2
ε ) .

Next, we derive the conditional distribution for σ2
ε . The density function of σ2

ε
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is f(σ2
ε ) = σ−2α−2ε exp (−1/βσ2

ε ) . The posterior is,

Pr(σ2
ε |γ,ω,Θ−σ2

ε
,Dn) ∝ Pr(Dn|Θ,ω,γ) Pr(ω,γ|Θ)

∝ Pr(ω|σ2
ω) Pr(γ|ρ, σ2

ε ) Pr(σ2
ε )

∝ Pr(γ|σ2
ε , ρ) Pr(σ2

ε )

∝ σ−2α−2ε exp

(
− 1

βσ2
ε

) n∏
i=1

√
1− ρ2
2πσ2

ε

exp

{
γ2i1(1− ρ2)

2σ2
ε

}

×
n∏
i=1

ni+1∏
j=2

1√
2πσ2

ε

exp

{
−(γij − ργi,j−1)2

2σ2
ε

}

= σ
−2( 2α+N

2
−1)

ε exp

{
−

1
β

+ 0.5
∑n

i=1

∑ni+1
j=2 (γij − ργi,j−1)2

σ2
ε

}

× exp

{
−0.5

∑n
i=1(1− ρ2)γ2i1
σ2
ε

}
,

which is the form of inverse gamma distribution. So,

σ2
ε |γ,ω,Θ−σ2

ε
,Dn ∼

G−1

N + 2α

2
,

{
1

β
+

∑n
i=1

∑ni+1
j=2 (γij − ργi,j−1)2 + (1− ρ2)

∑n
i=1 γ

2
i1

2

}−1 .

Finally, we show that the posterior of ρ is,

Pr(ρ|γ,ω,Θ−ρ,Dn) ∝ Pr(γ|σ2
ε , ρ) Pr(ρ)

∝
n∏
i=1

ni+1∏
j=2

1√
2πσ2

ε

exp

{
−(γij − ργi,j−1)2

2σ2
ε

}

∝ exp

{
−
∑n

i=1

∑ni+1
j=2 (γij − ργi,j−1)2

2σ2
ε

}
,

where we use Pr(γ−i1|γi1, σ2
ε , ρ) to approximate Pr(γi|σ2

ε , ρ). So we have,

ρ|Θ−ρ,γ,ω,Dn ∼ N(−1,1)

(∑n
i=1

∑ni+1
j=2 γijγi,j−1∑n

i=1

∑ni+1
j=2 γ2i,j−1

,
σ2
ε∑n

i=1

∑ni+1
j=2 γ2i,j−1

)
.
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