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Abstract

This dissertation contains three essays.
The first part studies the continuous-time dynamics of VIX with stochastic

volatility and jumps in VIX and volatility. Built on the general parametric affine
model with stochastic volatility and jumps in the logarithm of VIX, we derive a
linear relationship between the stochastic volatility factor and the VVIX index. We
detect the existence of a co-jump of VIX and VVIX and put forward a double-jump
stochastic volatility model for VIX through its joint property with VVIX. Using
the VVIX index as a proxy for stochastic volatility, we use the MCMC method to
estimate the dynamics of VIX. Comparing nested models of VIX, we show that
the jump in VIX and the volatility factor are statistically significant. The jump
intensity is also stochastic. We analyze the impact of the jump factor on VIX
dynamics.

The second part establishes a forecast framework for the bond excess return based
on macroeconomics fundamentals. Empirical evidence has suggested that excess
bond returns are forecastable with macroeconomics fundamentals. In our study, we
build new links to tie the forecastable variation in excess bond returns to underlying
macroeconomic series. Based on two types of models, the linear model and additive
model, and utilizing different combinations of screening methods, nonlinearization
techniques and regularization techniques, we extract different factor combinations
from 131 macroeconomic series, including employment, housing, financial, and
inflation factors. This approach results in stronger forecast power for the excess
bond returns compared with existing macro-based return predictors. The nonlinear
effect of the macroeconomic predictors on the excess bond returns is recovered if
we incorporate nonlinearized macro data in the analysis. A horse race comparing
different variable selection approaches allows us to propose a robust model that
generates highly accurate predictions of bond risk premia. Finally, we perform a
comprehensive analysis of risk premia with an ETF dataset.

The third part of this dissertation is a summary of traditional asset allocation
methods performance on Chinese market. Since traditional asset allocation methods
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are well analyzed in US capital market, similarly, we want to conduct a comprehen-
sive analysis of asset allocation techniques on Chinese market. Based on a horserace
comparison among the trading performance by different asset allocation approaches
with investment universe of Chinese capital market indices and the associated
ETFs, we achieve a clear understanding on the relative ranking of different methods,
finding the link between trading performance with different parameter estimation
time windows and different investment universe as well. To explain the difference
in the trading performance of several methods, we perform a simulation study and
attribute bad performance as the inaccuracy of return estimation.
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Chapter 1 |
Introduction

The main discussion of finance can be summarized as the research on the relation
between risk and return. Some concern on how to model the risks, and others
discuss on the predictions of returns or excess returns In this dissertation we will
try to delve into the two financial aspects.

1.1 VIX Volatility Modelling
Investors on stock make decisions based on their opinions of whether the stock price
goes up or down, bond investors make trading decisions based on their opinions
on the interest rate. Similarly, if investors have some sense on the prediction of
the volatility of some asset class, they can also profit from some trading activity.
A kind of classical trading strategy is to trade some asset as well as the option
on this underlying with the method of delta hedging. Unfortunately, there are
two drawbacks: firstly, the risk not only comes from the direction of the volatility
changing, but also from the price change of the underlying; secondly, delta hedging
is based on the assumption of Black-Scholes model, where it assumes that there
is no friction on the market, absolute liquidity, continuous trading and constant
volatility, which can not be satisfied in the practical market.

Although the strategy above is not perfect, fortunately, the market provides us
some more financial products to trade volatility, that is the volatility swap. Let’s
introduce the concepts of realized variance and realized volatility. For a probability
space which satisfies the usual conditions, {Ω,F , (Ft)t≥0,P}, where there is a
semimartingale S defined to describe the process of asset prices. Assume within
the interval [t, t+ τ ], there are n+ 1 trading days, t = t0 < t1 < · · · , < tn = t+ τ ,
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then the realized annualized variance defined within the interval [t, t+ τ ] is

RVt,t+τ = 252
n

n∑
i=1

(log Sti
Sti−1

)2 (1.1)

realized annualized volatility is just the square root of the realized annualized
variance. The volatility swap on a stock is just a forward contract with the
underlying of its realized annualized volatility, the payment when it is matured is

(σR −Kvol) ∗N

where σR is the realized annualized volatility calculated with equation 1.1, Kvol is
the strike price determined in advance, N is the nominal price associated with 1
point of the annualized volatility. When the contract matures, the investor who
purchases the contract will receive N dollars for every point where the realized
annualized volatility σR exceeds the strike price Kvol. Namely, the investor actually
is trying to exchange the future realized volatility σR with a fixed volatility level
Kvol. In reality, much earlier than volatility swap, a usual contract is variance swap.
Similar to the payment of volatility swap, variance swap has the payment

(σ2
R −Kvar) ∗N

similarly, σ2
R is the realized annualized variance within the contract life, Kvar is

the strike price for the annualized variance. Let vt and Jt be the instantaneous
volatility and jump size of the asset return, if let n → ∞ in (1.1), for a general
semimartingale S, that will converge to the quadratic variance of log prices in
probability, that is

252
n

n∑
i=1

(log Sti
Sti−1

)2 → 1
τ

∫ t+τ

t
vsds+ 1

τ

∑
t≤s≤t+τ

J2
s = QVt,t+τ (1.2)

Under risk neutral measure Q, let V St,t+τ be the price of the variance swap
within the time interval [t, t+ τ ], then

V St,t+τ = EQ
t [QVt,t+τ ]

if we fix t and make τ change, we will get a term structure of the variance swap at
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time t. After 2005, more derivatives of volatility are provided, including the option
on realized variance, corridor variance swap, gamma swap, timer option and others.

The prosperity of volatility market made Chicago Board Options Exchange
(CBOE) provide the first volatility index in 1993. which is well known as VIX index.
As a measure of the market expectations for the 30-day implied volatility of the
S&P500 index, VIX provides rich information for the prediction of future market
trends. VIX can be seen as a compression of the information involved in S&P500
options. Usually, VIX and the S&P500 index are negatively correlated, the larger
the VIX index, the volatile the market is and the more fearful the investors are,
meaning that the VIX index is often referred to as the fear index or the fear gauge.
When VIX comes to market at first, VIX calculation is the weighted average of
some short call and put options on S&P100 index, in 2003, to describe the expect
on the future volatility of the market accurately, CBOE changed its calculation on
VIX index with the incorporation of options on S&P500. Under the new definition,
VIX index at time t is defined as

V IX2(t, T ) = 2
T − t

∑
i

∆Ki

k2
i

exp rt(T − t)Oi(Ki, T )− 1
T − t

[ Ft
K0
− 1]2

where T is the common maturity of all the options used, Ft is the forward price of
S&P500 index, Ki is the strike price of the ith out of money option, Oi(ki, T ) is
the mid price of ith option, K0 is the first strike price below Ft, rt is the risk free
rate with the time interval from t to T, ∆ is the difference between to close strike
prices, define ∆Ki = (Ki+1 −Ki)/2. Since then, the futures and options with the
underlying of VIX come to the market, and the trading is more and more active.
Similar to the calculation of VIX index, CBOE also calculate another index VVIX
with the options on VIX, to describe the implied volatility of VIX, which is called
"volatility of volatility" in academy. The volatility derivatives enrich the market,
and also stimulate research work in academy.

There is a wide research on the volatility derivatives, this section will mainly
summarize the research on variance swap, VIX index and derivatives on VIX.
[Gatheral 2011] is an important paper on volatility models, [Carr and Lee 2009]
conducts an extensive effort to describe the development and evolvement history of
volatility derivatives market, by summarizing part of the literatures before 2009,
the author clarifies some basic mathematical theory which serves as the basis of

3



this research area.
[Demeterfi et al. 1999] describes the basic mathematical properties of variance

swap and volatility swap, and explains how to replicate and hedge the variance
swap theoretically. [Carr and D. Madan 1998] shows three methods on realized
volatility (replication and hedging).

There is also an extensive research result on the statistical properties on realized
variance and realized volatility, including [McAleer and Medeiros 2008; Andersen,
Bollerslev, et al. 2003; Barndorff-Nielsen and Shephard 2002b; Barndorff-Nielsen
and Shephard 2002a; Bollerslev, Gibson, and Zhou 2011; L. Zhang, Mykland, and
Aït-Sahalia 2011; Christoffersen, Jacobs, and Mimouni 2010] and [Andersen and
Teräsvirta 2009].

For the pricing of variance swap term structure, some literatures give the results
based on some specific assumptions. [Egloff, Leippold, Wu, et al. 2010] and [Ait-
Sahalia, Karaman, and Mancini 2014] assume vt follows an affine process in [1.1].
[Filipović, Gourier, and Mancini 2016] assumes V St,t+τ = 1

τ
G(τ,Xt), where Xt

satisfies a second order linear multi-factor model, G is a second order functional.
[Amengual and Xiu 2014] assumes vt follows a nonaffine model. [Swishchuk 2004]
provides some new analytical methods to price variance swap and volatility swap.

Many other papers are trying to talk about the problem of pricing and hedging
for variance swap and derivatives with the underlying of realized volatility and
realized variance, of course, under different model assumptions. [Broadie and Jain
2008a] assumes the volatility of asset prices follows Heston stochastic volatility
model. [Broadie and Jain 2008b] shows the impact of asset price jumps on the
pricing of variance and volatility swaps, and gives a comprehensive comparison on
different nested models. [Elliott, Kuen Siu, and Chan 2007] talks about the pricing
and hedging under the model of Heston stochastic volatility model and regime
switching model. [Bernard and Cui 2014] considers the discretely hedging and its
asymptotic property under the set up of general time homogeneous model. [Jordan
and Tier 2009] considers the variance swap pricing problem under the assumption
that asset prices follow a constant elasticity of variance model. [S.-P. Zhu and
Lian 2011] exploits PDE techniques to price the discretely sampled variance swap
under Henson model set up. [Carr, Lee, and Wu 2012] assumes the asset prices
follow a Levy process with a time transformation, and comes to the conclusion that
the variance swap price can be determined by the product of log contract and a
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multiplier, the multiplier is only determined by the property of the Levy process,
and having nothing to do with the time transformation. [Hobson and Klimmek
2012] considers a super-replicate strategy with a general asset prices model. [Jarrow
et al. 2013] gives some theoretical requirement for the hold of equation (1.1).

Some other papers talked about the pricing problem on the options with
underlying of realized variance and realized volatility, including [Carr, Hélyette
Geman, et al. 2005; Carr and Lee 2007; G. G. Drimus 2012; Carr, Helyette Geman,
et al. 2011; Itkin and Carr 2010; Crosby and Davis 2012; Di Graziano and Torricelli
2012; Kallsen, Muhle-Karbe, and Voß 2011] and [Sepp 2008a]. [Carr and Lee 2008]
utilizes the technique of integral transform, generalizes the pricing and hedging on
variance swap to a product with the payment of a function of realized variance.
[Friz and Gatheral 2005] gives some more detailed analysis for the contents in [Carr
and Lee 2008], and shows two call option examples on volatility swap and realized
variance. [Hörfelt et al. 2012] talks about covariance swap and [Schoutens 2005]
discusses on moment swap.

Besides the white paper for VIX index by CBOE, [Carr and Wu 2005] gives an
extensive description of the history and basic properties of VIX index. Based on
the white paper and [Carr and Wu 2005], [Whaley 2008] clarifies the role of VIX in
the capital market. [Jiang and Tian 2007] talks about how to construct VIX index
more accurately. [Gonzalez-Perez 2015] shows the impact of VIX index in financial
literature, summarizes the benefits and drawbacks of VIX in some important fields.
In building a parameterized stochastic model for VIX, there are two typical starting
points. The first starting point is to model a multi-factor stochastic volatility
process for the S&P500 index and then to derive a calculation formula for the VIX
index under these circumstances. For more on multi-factor model setup, see, for
example, [Duffie, Pan, and K. Singleton 2000; Gatheral 2008a; Egloff, Leippold,
Wu, et al. 2010; Cont and Kokholm 2013] and [Papanicolaou and Sircar 2014].
Based on this model’s assumption, the final VIX may be a combination of one or
more factors (see e.g. [Ait-Sahalia, Karaman, and Mancini 2014; Song and Xiu
2012; Lin and Chang 2009] and [Luo and J. E. Zhang 2012]. The second starting
point is to directly model the VIX index, the models are different, but often have
a mean-reverting property. For example, [Mencía and Sentana 2013; Kaeck and
Alexander 2013] and [Goard and Mazur 2013]. Others talk about the significance
and statistical properties on the jump of volatility, like [Todorov and Tauchen 2011;
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Khagleeva 2012] and [Du and Kapadia 2012].
Similar to the term structure of variance swap, [Luo and J. E. Zhang 2012] and

[Johnson 2017] talk about the term structure of VIX index. As for VIX option and
future modeling, under different model assumption, there are a lot of works. [Lin
and Chang 2009] gives the option pricing model firstly, [Dupoyet, Robert T Daigler,
and Chen 2011; J. E. Zhang and Y. Zhu 2006; S.-P. Zhu and Lian 2012; Lin 2007; Y.
Zhu and J. E. Zhang 2007] consider the pricing model for VIX futures. [Huskaj and
Nossman 2013] and [Z. Lu and Y. Zhu 2010] try to work on VIX term structures.
[Shu and J. E. Zhang 2012] shows the price transform in VIX futures. [Asensio
2013] shows some puzzles in practical VIX future market. [Marabel Romo 2017]
clarifies a double stochastic volatility model. [Z. Wang and Robert T Daigler 2011]
examines the performance of several available option pricing models. [Psychoyios,
Dotsis, and Markellos 2010] raises a jump diffusion model to price VIX option
and futures. [Sepp 2008a] and [Sepp 2008b] give a pricing approach by PDE and
generalized Fourier Transform. [Lian and S.-P. Zhu 2013] generates a analytic
solution for option pricing by integral transform and asymptotic method. [Cheng
et al. 2012] shows the bias of pricing formula in [Lin and Chang 2009] and [Lin and
Chang 2010]. [Lin 2013] simplifies the VIX option pricing with the information of
VIX term structure and VIX futures. [Völkert 2015] extracts the VIX risk neutral
distribution from VIX option prices and analyzes its impact on the whole economy.
[Lo et al. 2013] tries to incorporate jumps and other factors to improve the model
for volatility.

Since the fact that VIX index is calculated from the weighted average of a series
of S&P500 option prices, between VIX index associated with its derivatives, and
S&P500 index associated with its derivatives, i.e., between VIX market and S&P500
market, there must be some intrinsic relationship. How to model the relation is
a main consern in academy as well. [Branger and Voelkert 2013; Gatheral 2011;
Gatheral 2008b] and [Gatheral 2007] try to model VIX and S&P500 adjointly from
the basis of multi-factor model. [Song and Xiu 2012] considers the characteristics
of two markets from the point of state price density. [Papanicolaou and Sircar
2014] conducts analysis adjoint model in the framework of regime-switch. [D. B.
Madan and Yor 2011] assumes log of S&P500 follows a Sato process, its changing
velocity is proportional to VIX index. [Carr and D. B. Madan 2014] utilizes double-
side gamma model to describe VIX, and assumes log of stock prices follows a
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variance gamma process. [Lin and Chang 2010] suggests to model stock price and
its volatility with double-jump models. [Amengual and Xiu 2012] examines and
compares many different models performance on S&P500 indix and its volatility
data. [Bardgett, Gourier, and Leippold 2013] and [Chung et al. 2011] compares
some common information and individual information owned by the two markets.

Similar to VIX, which is extracted from a weighted average of S&P500 index
options, and describes the implied volatility of S&P500 market, if we utilize the
same method to VIX options, and extract a series of values which represent the
implied volatility of VIX index, that is, the volatility of volatility, the well known
VVIX index. [D. Huang and Shaliastovich 2014] tries to describe the volatility level
by the realized volatiltiy of VIX, shows it has a significant neagtive risk premia.
[Barndorff-Nielsen and Veraart 2013] suggests a probability model of the volatility
of volatility, gives a variance risk premia as well. Empirical analysis on the volatility
of volatility can also refer [Park 2013] and [Z. Wang and Robert T. Daigler 2012].

As for modeling of volatility of volatility, [Mencía and Sentana 2013] and [Kaeck
and Alexander 2013] are two main literature. They both model VIX directly, and
try to suggest a reasonable model from the point of empirical analysis. To better
fit the real data, directly modelling the logarithm of VIX is better substantiated
empirically than modelling on VIX level directly. They both suggest the logarithm
of VIX satisfy a stochastic volatility model, and try to prove the benefit on
description of data characteristics by incorporating the stochastic volatility to the
models, where [Kaeck and Alexander 2013] tries to model the volatility of VIX
with a square root diffusion model, [Mencía and Sentana 2013] uses a pure jump
Ornstein-Uhlenbeck(OU) process to model volatility. [Curato et al. 2012] gives
a nonparametric estimator of covariance of asset prices and volatility series. [R.
Wang, Kirby, and S. P. Clark 2013] discusses about the relationship among the risk
premia of stocks, variance and volatility of volatility. [G. Drimus and Farkas 2013]
conducts the modelling of VIX with a mean-revision volatility of volatility. [Song
2012] analyzes volatility jumps as well as the risk premia.

In our study of Chapter 2, we will make an extensive empirical analysis of the
dynamics of VIX, concentrating particularly on modeling its stochastic volatility
under the physical measure via additional information provided by the VVIX index.
Our contribution consists of three aspects. First, we find evidence of the co-jumps
between the VIX and VVIX index through statistical test of the historical data
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of both indices. Second, we show that the VVIX index and the volatility of VIX
satisfy the criteria of a linear relationship under the general affine assumption
on the dynamics of the logarithm of the VIX index and its stochastic volatility.
Thus the modeling of VIX and its volatility could be transformed into the joint
modeling of the VIX and VVIX index. Empirically, both of VIX and VVIX are
mean-reverting and have co-jumps. Based on these facts we propose a double-jump
stochastic volatility model for the VIX and its volatility. Third, we provide a
Markov-Chain-Monte-Carlo (MCMC) method to estimate the double-jump model
and its nested models using historical data regarding VIX and VVIX. We obtain
both a unified set of model parameters and a series of outcomes of latent variables
such as stochastic volatility, jump intensity and jump sizes. The results can be
exploited to understand the economics of the market further. We compare the
model performance through several criterion such as residual analysis, p-value and
deviance information criterion (DIC) method. We show that the jumps in volatility
of VIX is statistically significant and the jump intensity is not deterministic which
may imply a more complex structure of it.

1.2 Bond Risk Premia Prediction
Evidence from recent empirical research in financial economics has supported and
verified the forecastability in the excess returns of the U.S. Treasury bonds based
on some financial and macroeconomic variables. Previous literature mainly focus
on constructing forecast factors from combination of forward rates, spreads, yield
curve principal components and macro-series principal components, or just use
cointegration theory to identity cycle factors. For instance, [Fama and Bliss 1987]
state the forecastability of excess bond returns by the spread between the n-year
forward rate and one-year yield. Campbell and Shiller (1991) Campbell and Shiller
1991 recover that Treasury yield spreads can be utilized to predict excess bond
returns. [Cochrane and Piazzesi 2005] construct a tent-shaped linear combination
of five forward spreads, which explains 30 to 35 percent of the variation of one-year
excess returns on Treasury bonds maturing from two to five years. Following
[Cochrane and Piazzesi 2005], [Ludvigson and Ng 2009a] shed new links between
excess bond returns and macroeconomic variables, through dynamic factor analysis,
they construct a macro factor by extracting variables form a monthly panel of 132
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macroeconomic series, the macro factor explains 21-26 percent of the one year ahead
variation in their excess returns. More recently, by incorporating a new model
selection method- the supervised adaptive group lasso procedure, [J.-z. Huang and
Shi 2011] extract a new macro factor from a monthly panel of 131 macroeconomic
variables, which results in a stronger predictive power for future excess bond returns,
with in sample R2 up to 43 percent, findings in [J.-z. Huang and Shi 2011] provide
new evidence on potential links between bond risk premia and macroeconomic
fundamentals and provide further support for the notion of dynamic term structure
models with hidden/unspanned factors as well. All the studies mentioned above
spawn an extensive literature on the determinants of bond risk premia and serve
as the pioneers of our study. Nonetheless, despite the theoretical insights, the fast
development of statistical methodology extends more and more potential to uncover
the deeper link between bond risk premia and macroeconomic fundamentals. For
example, as stated in [Ludvigson and Ng 2009a], models before them are imperfect
descriptions of reality and only restrict attention to a small set of variables and
fail to span the information sets of financial market participants. To overcome
the difficulty, [Ludvigson and Ng 2009a] apply the methodology of dynamic factor
analysis to large macroeconomic datasets, and eliminate the arbitrary reliance on
a small number of imperfectly measured indicators, by summarizing information
from a large number of macroeconomic series into a few estimated factors(principal
components), they make it feasible to incorporate all the information from a vast
set of economic variables. However, as criticized in [J.-z. Huang and Shi 2011],
factor analysis approach neglects the association between dependent variable and
independent variables, standard principal components(linear combination of all the
variables considered) contain all the information with respect to the data matrix
of independent variables, some of which may even not be correlated with the
dependent variable to be forecasted. Moreover, since the incorporating of all the
information in principal components, not any specific important variables from the
large dataset are selected, it arises difficulty to achieve a better interpretation. With
all these considerations, [J.-z. Huang and Shi 2011] apply the SAGLasso procedure
for variable selection and achieve a better forecast performance for excess bond
returns and realize a better understanding on the underlying economic determinants
of bond risk premia. Under the prosperity of related disciplines, like statistics, a
vast of well performed variable selection techniques have been developed, which
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enable us to facilitate the research on excess bond returns forecast. With more
tools in hand today, we can confront more challenges. For instance, for a stronger
predictive power(in-sample and out-of-sample) on excess bond returns and for a
better understanding of the determinants of bond risk premia, can we achieve
a better performance on variable selection from high dimensional dataset, like
macroeconomic series with lags used in [J.-z. Huang and Shi 2011]? Besides the
linear structure between excess bond returns and macroeconomic fundamentals, can
we recover some nonlinear relationship which may benefit the prediction purpose?
Can we propose a robust procedure of macro variables selection for predicting bond
risk premia? In our study of Chapter 3, we will give a comprehensive discussion on
these questions.

1.3 Markov Chain Monte Carlo(MCMC)
Empirical analysis of dynamic asset pricing models always try to tackle the problem
of extracting information about latent state variables, structural parameters and
market prices from the observed prices, and the Bayesian inference problem is
trying to figure out the distribution of the parameters, Θ, and state variables, X,
conditional on observed prices, Y . The posterior distribution, p(θ,X|Y ), combines
the information of the model as wll as the observed prices. The main target of
Markov Chain Monte Carlo(MCMC) is trying to sample from these high-dimensional,
complex distributions by generating a Markov Chain over (Θ, X), {Θ(g), X(g)}Gg=1,
whose equilibrium distribution is p(Θ, X|Y ). After which, the Monte Carlo method
will use these samples for numerical integration for parameter estimation, state
estimation or model comparison. As is known to all, that characterizing p(Θ, X|Y )
in continuous-time asset pricing models is a tough job, because prices are observed
discretely while the theoretical models specify that prices and state variables evolve
continuously in time, second, in many cases, the state variables are the so called
latent variables from our perspective, third, due to the high dimension of p(Θ, X|Y )
, we can not use standard sampling methods, fourth, the continuous-time models
of interest always generate transition distributions for prices and state variables
which are usually non-normal and non-standard, complicating standard estimation
methods such as MLE or GMM, finally, parameters enter nonlinearly or even
in a non-analytic form as the implicit solution to ordinary or partial differential
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equations in term structure and option pricing models. MCMC methods are proved
to be particularly well-suited for continuous-time finance applications and will tackle
all of these issues for the following reasons. 1. Continuous-time asset models specify
that prices and state variables solve parameterized stochastic differential equations
(SDEs) which are built from Brownian motions, Poisson processes and other i.i.d.
shocks whose distributions are easy to characterize. When discretized at any finite
time-interval, the models take the form of familiar time series models with normal,
discrete mixtures of normals or scale mixtures of normals error distributions. This
implies that the standard tools of Bayesian inference directly apply to these models.
2. MCMC is a unified estimation procedure, simultaneously estimating both
parameters and latent variables. MCMC directly computes the distribution of the
latent variables and parameters given the observed data. This is a stark alternative
the usual approach in the literature of applying approximate filters or noisy latent
variable proxies. This allows the researcher, for example, to separate out the
effects of jumps and stochastic volatility in models of interest rates or equity prices
using discretely observed data 3. MCMC methods allow the researcher to quantify
estimation and model risk. Estimation risk is the inherent uncertainty present in
estimating parameters or state variables, while model risk is the uncertainty over
model specification. Increasingly in practical problems, estimation risk is a serious
issue whose impact must be quantified. In the case of option pricing and optimal
portfolio problems, [Merton 1980] argues that the âĂĲmost important direction is
to develop accurate variance estimation models which take into account of the errors
in variance estimatesâĂİ (p. 355). 4. MCMC is based on conditional simulation,
therefore avoiding any optimization or unconditional simulation. From a practical
perspective, MCMC estimation is typically extremely fast in terms of computing
time. This has many advantages, one of which is that it allows the researcher
to perform simulation studies to study the algorithms accuracy for estimating
parameters or state variables, a feature not shared by many other methods.

Next we want to describe the foundations and mechanics of MCMC algorithms,
including the Clifford-Hammersley theorem, the Gibbs sampler, the Metropolis-
Hastings algorithm, and theoretical convergence properties of MCMC algorithms
as well.
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1.3.1 Overview of MCMC and Bayesian Inference

In asset pricing models, we are trying to use MCMC to generate random samples
from the distribution of parameters and state variables given the observed prices,
p(Θ, X|Y ). One way to motivate the construction of MCMC algorithms is based on
a result called Clifford-Hammersley theorem, which states that a joint distribution
can be described by its complete conditional distributions. Namely, the theorem
states that p(X|Θ, Y ) and p(Θ|X, Y ) as the complete conditional distributions, will
completely characterize the joint distribution of p(Θ, X|Y ). MCMC will provide
the recipe for combining the information in these distributions to generate samples
from p(Θ, X|Y ). For example, suppose we are given two initial values, Θ(0) and
X(0), draw X(1) ∼ p(X|Θ(0), Y )and then Θ(1) ∼ p(Θ|X(0), Y ), Repeat this process
again and again, we will finally generate a series of random variables,{X(g),Θ(g)}Gg=1.
This sequence is not i.i.d., but instead it will form a Markov Chain, under a number
of metrics and mild conditions, the distribution of the Markov Chain will converge
to p(Θ, X|Y ), the target distribution. The key benefit of MCMC is that it is
typically easier to sample from the complete conditional distributions, p(Θ|X, Y )
and p(X|Θ, Y ), than to analyze the higher-dimensional joint distribution, p(Θ, X|Y )
directly.

MCMC algorithms generically consist of two types of sampling. Case 1: if
the complete conditional distribution is known in closed form or can be sampled
directly, the step in the MCMC algorithm is called a âĂĲGibbsâĂİ step. Case 2:
if one or more of the conditionals don’t have a closed form or too complicated to be
sampled directly, a âĂĲMetropolis-Hastings algorithmsâĂİ will apply, unlike Gibbs
type, these algorithms sample a candidate from a proposal density first and then
decide to accept or reject the candidate based on some acceptance criterion. We
will discuss this later in detail. No matter for which case, the algorithms will always
generate random samples with the appropriate equilibrium distribution. Generally,
an algorithm can include only Gibbs steps, only Metropolis-Hastings steps or any
combination of the two. This latter case, usually encountered in practice, generates
a hybrid MCMC algorithm. The samples {X(g),Θ(g)}Gg=1 from the joint posterior
can be used for parameter and state variable estimation using the Monte Carlo
method.

As for Bayesian inference, there are three important building concepts,
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• The posterior distribution
In asset pricing models, the posterior distribution summarizes the information
embedded in prices regarding latent state variables and parameters. Bayes
rule factors the posterior distribution into is constituent components:

p(Θ, X|Y ) ∝ p(Y |X,Θ)p(X|Θ)p(Θ) (1.3)

where X = Xt
T
t=1 are the unobserved state variables, Y = Yt

T
t=1 are the

observed prices, Θ are the parameters, p(Y |X,Θ) is the likelihood function,
p(X|Θ) is the distribution of the state variables, and p(Θ) is the distribution
of the parameters, commonly called the prior. The parametric asset pricing
model generates p(Y |X,Θ) and p(X|Θ) and p(Θ) summarizes any non-sample
information about the parameters.

• The likelihood
Usually there are two types of likelihood functions of interest. The distribu-
tion p(Y |X,Θ) is the full-information (or data-augmented) likelihood and
conditions on the state variables and parameters. This is related to marginal
likelihood function, p(Y |Θ), which integrates the latent variables from the
augmented likelihood:

p(Y |Θ) =
∫
p(Y,X|Θ)dX = p

∫
(Y |X,Θ)p(X|Θ)dX.

In most continuous-time asset pricing models, p(Y |Θ) is not available in
closed form and simulation methods are required to perform likelihood-based
inference. On the other hand, the full-information likelihood is usually known
in closed form which is a key to MCMC estimation.

• The prior distribution
The prior distribution, as an implication of Bayes rule, enters in the posterior
distribution in (1.3). Because p(Θ) cannot be ignored: its presence in the
posterior, like the presence of the likelihood, is merely an implication of
the laws of probability. Additionally, this distribution provides important
economic and statistical roles. The prior allows the researcher to incorporate
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nonsample information in a consistent manner. For example, the prior provides
a consistent mechanism to impose important economic information such as
positivity of certain parameters or beliefs over the degree of mispricing in a
model. Statistically, the prior can impose stationarity, rule out near unit-root
behavior, or separate mixture components, to name a few applications.

With these concepts in hand, we will give the mechanics of MCMC algorithms in
detail, their theoretical underpinnings and convergence properties.

1.3.2 MCMC: Methods and Theory

In this section, we describe the mechanics of MCMC algorithms and their conver-
gence properties.

1.3.2.1 Clifford-Hammersley Theorem

As described in previous section, in many continuous-time asset pricing models,
p(Θ, X|Y ) is usually with a complicated, high-dimensional distribution and it is
quite difficult to directly generate samples from this distribution. On the other
hand, we can break the joint distribution into its complete set of conditionals,
which are of lower dimension and are easier to sample. It is in this manner that
MCMC algorithms attacks the curse of dimensionality that plagues other methods.

The theoretical justification for breaking p(Θ, X|Y ) into its complete conditional
distributions is a remarkable theorem by Clifford and Hammersley. The general ver-
sion of the Clifford-Hammersley theorem [Hammersley and Clifford 1971] and [Besag
1974] provides conditions for when a set of conditional distributions characterizes
a unique joint distribution. In our setting, the theorem indicates that p(Θ|X, Y )
and p(X|Θ, Y ) uniquely determine p (Θ, X|Y ). If it is still not easy to sample
from p(Θ|X, Y ) and p(X|Θ, Y ) directly. We can apply the Clifford-Hammersley
theorem again and break the complete distributions further. For example, consider
p(Θ|X, Y ) and assume that the KâĹŠdimensional vector Θ can be partitioned into
kâĽďK components Θ = (Θ1, · · · ,Θk) where each component could be uni- or
multidimensional. Given the partition, the Clifford- Hammersley theorem implies
that the following set of conditional distributions

Θ1 |Θ2,Θ3, · · · ,Θk, X, Y
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Θ2 |Θ1,Θ3, · · · ,Θk, X, Y

· · ·

Θk |Θ1,Θ2, · · · ,Θk−1, X, Y

uniquely determines p(Θ|X, Y ). For state vector, the joint distribution p(X|Θ, Y )
can be described by its own complete set of conditionals: p(Xt|Θ, X(−t), Y ) for
t = 1, · · · , T where X(âĹŠt) denotes the elements of X excluding Xt. In the extreme
case, the Clifford-Hammersley theorem implies that instead of drawing from a
T + K dimensional posterior, the same information is contained in T + K one
dimensional distributions. A proof of the Clifford-Hammersley theorem based on
the Besag formula [Besag 1974] uses the insight that for any pair (Θ0, X0) of points,
the joint density p(Θ, X|Y ) is determined as

p(Θ, X|Y )
p(Θ0, X0|Y ) = p(Θ|X0, Y )p(X|Θ, Y )

p(Θ0|X0, Y )P (X0|Θ, Y )

as long as a positivity condition is satisfied. Thus, knowledge of p(Θ|X, Y ) and
p(X|Θ, Y ), up to a constant of proportionality, is equivalent to knowledge of the
joint distribution. The positivity condition in our case requires that for each point
in the sample space, p(Θ, X|Y ) and the marginal distributions have positive mass.
Under very mild regularity conditions the positivity condition is always satisfied.

1.3.2.2 Gibbs Sampling

The simplest MCMC algorithm is called the Gibbs sampler. If it is possible and
easy to directly sample from all of the complete conditionals, the Gibbs sampler
applies. For example, the following defines a Gibbs sampler: given Θ(0), X(0)

1. Draw Θ(1) ∼ p(Θ|X(0), Y )

2. Draw X(1) ∼ p(X|Θ(1), Y )

Repeat this process again and again, the Gibbs sampler will generate a sequence of
random variables, {Θ(g), X(g)}Gg=1 , which, as we discuss earlier, will converge to
p(Θ, X|Y ). The Gibbs sampler requires that one can conveniently draw from the
complete set of conditional distributions. In many cases, implementing the Gibbs
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sampler requires drawing random variables from standard continuous distributions
such as Normal, t, Beta or Gamma or discrete distributions such as Binomial,
Multinomial or Dirichlet. The reference books by [Devroye 1986] or [Ripley 2009]
provide algorithms for generating random variables from a wide class of recognizable
distributions.

1.3.2.3 Metropolis-Hastings

In some cases, one or more of the complete conditional distribution cannot be
conveniently sampled, then a very general approach called the Metropolis-Hastings
algorithms will often apply.

Consider the case where one of the parameter posterior conditionals, generically,
π(Θi) = p(Θi|Θ(âĹŠi), X, Y ), can be evaluated (as a function of Θi), (for simplicity,
let’s denote it by π(Θ)), but it is not possible to generate a sample from the
distribution directly. Then we can first specify a recognizable proposal or candidate
density q(Θ(g+1)|Θ(g)), then the Metropolis-Hastings algorithm will first draws a
candidate point that will be accepted or rejected based on the acceptance probability.
The Metropolis-Hastings algorithm replaces a Gibbs sampler step with the following
two stage procedure:

1. Draw Θ(g+1) from the proposal density q(Θ(g+1)|Θ(g))

2. Accept Θ(g+1) with probability α(Θ(g),Θ(g+1))

where
α(Θ(g),Θ(g+1)) = min(π(Θ(g+1))/q(Θ(g+1)|Θ(g))

π(Θ(g))/q(Θ(g)|Θ(g+1)) , 1)

The acceptance criterion can insure that the algorithm has the correct equilibrium
distribution. Continuing in this manner, the algorithm generates samples {Θ(g)}Gg=1

whose limiting distribution is π(Θ). It needs to point out, Gibbs sampling is also a
special case of Metropolis-Hastings, if we choose q(Θ(g+1)|Θ(g)) ∝ π(Θ(g+1)).

There are also another two important special cases of the general Metropolis-
Hastings algorithm which deserve special attention, Independence Metropolis-
Hastings and Random-Walk Metropolis.

If we draw the candidate Θ(g+1) from a distribution independent of the previous
state, q(Θ(g+1)|Θ(g)) = q(Θ(g+1)). This is known as an independence Metropolis-
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Hastings, and the corresponding acceptance criterion is reduced to

α(Θ(g),Θ(g+1)) = min(π(Θ(g+1))q(Θ(g))
π(Θ(g))q(Θ(g+1)) , 1)

When using independence Metropolis, it is common to pick the proposal density to
closely match certain properties of the target distribution.

If we draw candidate Θ(g+1) from a proposal density where q(Θ(g+1)|Θ(g)) =
q(Θ(g)|Θ(g+1)), we come to the Random-Walk Metropolis. The corresponding
acceptance criterion is

α(Θ(g),Θ(g+1)) = min(π(Θ(g+1))
π(Θ(g)) , 1)

In random walk Metropolis-Hastings algorithms, the researcher controls the variance
of the error term and the algorithm must be tuned, by adjusting the variance of
the error term, to obtain an acceptable level of accepted draws, generally in the
range of 20-40%.

1.3.2.4 Convergence Theory

MCMC algorithm generates sequence of draws for parameters, Θ(g), and state
variables, X(g). By construction, this sequence is Markov and the chain is char-
acterized by its starting value, Θ(0) and its conditional distribution or transition
kernel P (Θ(g+1),Θ(g)), without any loss of generality, we abstract from the latent
variables. One of the main advantages of MCMC is the attractive convergence
properties that this sequence of random variables inherits from the general theory
of Markov Chains.

We are interested in verifying that the chain produced by the MCMC algorithm
converges and then identifying the unique equilibrium distribution of the chain
as the correct joint distribution, the posterior. We now briefly review the basic
theory of the convergence of Markov Chains. Where, we have the conclusion that
if an irreducible and aperiodic chain has a proper invariant distribution π, then π
is unique and is also the equilibrium distribution of the chain.

The easiest way to verify and find an invariant distribution is to check time-
reversibility. Recall that for a Metropolis-Hastings algorithm, that the target
distribution, π, is given and is proper being the posterior distribution. The easiest
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way of checking that π is an invariant distribution of the chain is to verify the
detailed balance (time-reversibility) condition: a transition function P satisfies the
detailed balance condition if there exists a function π such that

P (x, y)π(x) = P (y, x)π(y)

for any points x and y in the state space, for the general Metropolis-Hasting
algorithm, the transition function is

P (x, y) = α(x, y)q(x, y)

if x 6= y, then

α(x, y)q(x, y)π(x) = min(π(y)q(y, x)
π(x)q(x, y) , 1)q(x, y)π(x)

= min(π(y)q(y, x), q(x, y)π(x))

= min(π(x)q(x, y)
π(y)q(y, x) , 1)q(y, x)π(y)

= α(y, x)q(y, x)π(y)

for the case where x = y, the proof of time-reversibility is trivial. Then we can
conclude that Metropolis-Hastings algorithms generate Markov Chains that are
time-reversible and have the target distribution as an invariant distribution.

It is straightforward to verify π-irreducibility, see [Roberts and N. G. Polson
1994] for the Gibbs samplers and [Roberts and Smith 1994] and [Christian and
Casella 1999] for Metropolis-Hastings algorithms. One sufficient condition is that
π(y) > 0 implies that q(x, y) > 0 (see, e.g., [Mengersen, Tweedie, et al. 1996]). To
verify aperiodicity, one can appeal to a theorem in [Tierney 1994] which states
that all πâĹŠirreducible Metropolis algorithms are Harris recurrent. Hence, there
exists a unique stationary distribution to which the Markov chain generated by
Metropolis-Hastings algorithms converges and hence the chain is ergodic.

In summary, we have the following two theorems, specifying results on sample
averages of functionals along the chain.

Theorem 1.3.1. (Ergodic Averaging) Suppose Θ(g) is an ergodic chain with sta-
tionary distribution π and suppose f is a real-valued function with

∫
|f |dπ < ∞.
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Then for all Θ(g) for any initial starting value Θ(g),

lim
G→∞

1
G

G∑
g=1

f(Θ(g)) =
∫
f(Θ)π(Θ)dΘ

almost surely.

We can even go further with an ergodic central limit theorem,

Theorem 1.3.2. (Central Limit Theorem) Suppose Θ(g) is an ergodic chain with
stationary distribution π and suppose f is a real-valued function with

∫
|f |dπ <∞.

Then there exists a real number σ(f), such that

√
G( 1
G

G∑
g=1

f(Θ(g))−
∫
f(Θ)π(Θ)dΘ)

converges in distribution to a mean zero normal distribution with variance σ2(f)
for any starting value.

1.4 Stochastic Calculus Preliminery
In this section, we review some preliminery of stochastic differential equations,
including Markov process, diffusion process, backward and forward Kolmogorov
equations, as well as Ito formulas.

1.4.1 Diffusion Process and Kolmogorov Equations

Beginning from Markov process, which is defined as follows,

Definition 1.4.1. Let Xt be a stochastic process defined on a probability space
(Ω,F , µ) with values in Rd, and let FXt be the filtration generated by {Xt, t ∈ R+},
then {Xt, t ∈ R+} is a Markov process if

P(Xt ∈ Γ|FXs ) = P(Xt ∈ Γ|Xs)

for all t, s ∈ [0, T ] with t ≥ s, and Γ ∈ B(Rd), B is a σ−algebra.
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If denote P (Γ, t|x, s) := P(Xt ∈ Γ|FXs ), then we have the Chapman-Kolmogorov
equation:

P (Γ, t|x, s) =
∫
Rd
P (Γ, t|y, u)P (dy, u|x, s)

which is true for all x ∈ Rd, Γ ∈ B(Rd), and s, u, t ∈ R+ with s ≤ u ≤ t.
In the set up for the following content, we assume for our continuous-time markov

process, the conditional probability density exists, i.e. the transition probability
has the following expression,

P(Xt+h ∈ Γ|Xt = x) =
∫

Γ
p(y, t+ h|x, t)dy

For Markov process, it comes naturally that the transition function and the initial
distribution of Xt are sufficient to determine this process uniquely, if we consider
Markov processes whose transition function has a density with respect to the
Lebesgue measure, the Chapman-Kolmogorov equation becomes

∫
Γ
p(y, t|x, s)dy =

∫
Rd

∫
Γ
p(y, t|z, u)p(z, u|x, s)dzdy

since Γ ∈ B(Rd) is arbitrary, we have the Chapman-Kolmogorov equation for the
transition probability density:

p(y, t|x, s) =
∫
Rd
p(y, t|z, u)p(z, u|x, s)dz

Next, we talk about the generator of a Markov process, suppose Xt denotes
a time-homogeneous Markov process, let p(t, x, y) := p(y, t|x, 0) be the transition
function, f ∈ Cb(Rd), the space of continuous bounded functions on Rd, define the
operator

(Ptf)(x) := E(f(Xt)|X0 = x) =
∫
Rd
f(y)p(t, x, dy)

it is easy to prove the operator has the properties of (P◦f)(x) = f(x), (Pt+sf)(x) =
(Pt ◦ (Psf))(x), i.e. P0 = I, Pt+s = Pt ◦ Ps, for all t, s ≥ 0, the operator forms a
semigroup.

If we assume Ptf is also a Cb(Rd) function, and define D(L) the set of all
f ∈ Cb(Rd) such that the strong limit

Lf := lim
t→0

Ptf − f
t
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exists, the operator L : D(L) → Cb(Rd) is called the infinitesimal generator of
the operator semigroup Pt, we will also refer to L as the generator of the Markov
process Xt.

Following the semigroup property and the definition of the generator, we have
the following equation formally,

Pt = etL

If we consider u(x, t) = (Ptf)(x) = E(f(Xt)|X0 = x) and calculate its time
derivative, u satisfies

∂u
∂t

= d
dt

(Ptf) = d
dt

(etLf) = L(etLf) = Lu
u(x, 0) = f(x)

(1.4)

this is called the backward Kolmogorov equation, which governs the evolution
of the expection of an observation f ∈ Cb(Rd), when the Markov process is the
solution of a stochastic differential equation, the generator is a second-order elliptic
differential operator, and the backward Kolmogorov equation will become an initial
value problem for a parabolic partial differential equation, this will be explained in
detail later.

The semigroup Pt is a operator acts on bounded continuous functions, we can
also define teh corresponding adjoint semigroup P∗t , which acts on the probability
measure,

(P∗t µ)(Γ) =
∫
Rd

P(Xt ∈ Γ|X0 = x)dµ(x) =
∫
Rd
p(x, t.Γ)dµ(x)

the image of a probability measure µ under P∗t is again a probability measure. The
operators P∗t and Pt are adjoint in the L2-sense.

∫
Rd

(Ptf)(x)dµ(x) =
∫
Rd
f(x)d(P∗t µ)(x)

we can write P∗t = etL
∗ , L∗ is the L2-adjoint of the generator of the process.

Suppose for Markov process Xt. X0 ∼ µ, define µt := P∗t µ, then we have the
initial problem holds,

∂µt
∂t

= L∗µt, µ(0) = µ

which governs the dynamic of the distribution of Xt.
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Next, let’s review the diffusion process and its forward and backward Kolmogorov
equations. As is known to us, a Markov process consists of three parts, a drift, a
random part and a jump process. A diffusion process is a Markov process that has
continuous sample paths, i.i. a Markov process with no jump.

Definition 1.4.2. A Markov process Xt in R with transition function P (Γ, t|x, s)
is called a diffusion process if the following conditions are satisfied:

• Continuity: For every x and every ε > 0,
∫
|x−y|>ε

P (dy, x|x, s) = o(t− s) (1.5)

uniformly over s < t.

• Definition of drift coefficient: There exists a function b(x, s) such that for
every x and every ε > 0,

∫
|x−y|≤ε

(y − x)P (dy, x|x, s) = b(x, s)(t− s) + o(t− s) (1.6)

uniformly over s < t.

• Definition of diffusion coefficient: There exists a function Σ(x, s) such that
for every x and every ε > 0,

∫
|x−y|≤ε

(y − x)2P (dy, x|x, s) = Σ(x, s)(t− s) + o(t− s) (1.7)

uniformly over s < t.

If we assume the first two moments exist, for the drift and diffusion coefficients,
we will have

lim
t→s

E
(
Xt −Xs

t− s
|Xs = x

)
= b(x, s)

lim
t→s

E
(
|Xt −Xs|2

t− s
|Xs = x

)
= Σ(x, s)

For the diffusion process, we can now try to obtain an explicit formula for the
generator of such a process and to derive a partial differential equation for the
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conditional expectation u(x, s) = E(f(Xt)|Xs = x), as well as for the transition
probability density p(y, t|x, s). These are the so-called backward and forward
Kolmogorov equations.

Theorem 1.4.3. (Kolmogorov) Let f(x) ∈ Cb(R), and let

u(x, s) = E(f(Xt)|Xs = x) =
∫
f(y)P (dy, t|x, s)

with t fixed. Assume furthermore, that the functions b(x, s), Σ(x, s) are smooth in
both x and s. Then u(x, s) solves the final value problem,

−∂u
∂s

= b(x, s)∂u
∂x

+ 1
2Σ(x, s)∂

2u

∂x2

u(t, x) = f(x), for s ∈ [0, t]

This is a final value problem for a partial differential equation of parabolic type,
for the time-homogeneous diffusion processes, where the drift and the diffusion
coefficients are independent of time, b = b(x) and Σ = Σ(x), if let T = t − s,
U(x, T ) = u(x, t− s), we can write the backward Kolmogorov equation as follows:

∂U

∂t
= b(x)∂U

∂x
+ 1

2Σ(x)∂
2U

∂x2

U(x, 0) = f(x)

If we reset the initial time s = 0, let u(x, t) = E(f(Xt)|X0 = x, then we have the
following backward Kolmogorov equation for time-homogeneous equation:

∂u

∂t
= b(x)∂u

∂x
+ 1

2Σ(x)∂
2u

∂x2

u(x, 0) = f(x)

The differential operator on the right-hand side is the generator of the diffusion
process of Xt, i.e. L = b(x) ∂

∂x
+ 1

2Σ(x) ∂2

∂x2 .
Assume the transition function has a density with respect to the Lebesgue

measure that is a smooth function of its arguments, P (dy, t|x, s) = p(y, t|x, s)dy,
we will have the following forward Kolmogorov equation or Fokker-Planck equation.

Theorem 1.4.4. (Kolmogorov) Assume that conditions (1.5), (1.6), (1.7) are
satisfied, and that p(y, t|·, ·), b(y, t) and Σ(y, t) are smooth functions of y, t. Then
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the transition probability density is the solution to the initial value problem

∂p

∂t
= − ∂

∂y
(b(t, y)p) + 1

2
∂2

∂y2 (Σ(t, y)p)

p(y, s|x, s) = δ(x− y)

If we assume the initial distribution of X0 ∼ ρ0(x), then define p(y, t) :=∫
p(y, t|x, 0)ρ0(x)dx, we multilply the forward Kolmogorov equation by ρ0(x) and

integrate with respect to x, we have the following equation,

∂p(y, t)
∂t

= − ∂

∂y
(a(y, t)p(y, t)) + 1

2
∂2

∂y2 (b(y, t)p(y, t))

p(y, 0) = ρ0(y)

which is the Fokker-Planck equation, which provides the probability of the diffusion
process Xt.

For the case of multi-dimensional diffusion process in Rd, define

b(x, s) = lim
t→s

∫
|y−x|<ε

(y − x)P (dy, t|x, s)

Σ(x, s) = lim
t→s

1
t− s

∫
|y−x|<ε

(y − x)⊗ (y − x)P (dy, t|x, s)

where the drift coefficient b(x, s) is a d-dimensional vector field, and the diffusion
coefficient Σ(x, s) is a d-by-d symmetric nonnegative matrix. The generator of a
d-dimensional diffusion process is given as:

L = b(x, s) · ∇+ 1
2Σ(x, s) : ∇∇

=
d∑
j=1

bj(x, s)
∂

∂xj
+ 1

2

d∑
i,j=1

Σij(x, s)
∂2

∂xi∂xj

If we assume the first and second moments of the multi-dimensional diffusion
exist, we can write the formulas for the drift vector and diffusion matrix as

lim
t→s

E
(
Xt −Xs

t− s
|Xs = x

)
= b(x, s)

lim
t→s

E
(

(Xt −Xs)⊗ (Xt −Xs)
t− s

|Xs = x

)
= Σ(x, s)
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the backward and forward Kolmogorov equations are

−∂u
∂s

= b(x, s) · ∇xu+ 1
2Σ(x, s) : ∇x∇xu, u(t, x) = f(x)

∂p

∂t
= ∇y · (−b(t, y)p+ 1

2∇y · (Σ(t, y)p)), p(y, s|x, s) = δ(x− y)

1.4.2 Stochastic Differential Equation

In this section, let’s consider the SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x

where b(·, ·) : [0, T ] × Rd → Rd, and bσ(·, ·) : [0, T ] × Rd → Rd×m are measurable
vector-valued or matrix-valued functions, Wt denotes standard Brownian motion in
Rm. Assume initial condition is a random variable which is independent of Wt, we
define a strong solution as

Definition 1.4.5. A process Xt with continuous paths defined on the probability
space (Ω,F , P ) is called a strong solution if

• Xt is almost surely continuous and adapted to the filtration F .

• b(·, X) ∈ L1((0, T );Rd) and σ(·, X) ∈ L2((0, T );Rd×m) almost surely.

• For every t ≥ 0, teh stochastic integral equation

Xt = x+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, X0 = x

holds almost surely.

If we have the condition that there exists a positive constant C such that for
all x ∈ Rd and t ∈ [0, T ],

|b(t, x)|+ |σ(t, x)|F ≤ C(1 + |x|) (1.8)

and for all x, y ∈ Rd and t ∈ [0, T ]

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)|F ≤ C(|x− y|) (1.9)
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a theorem about existence and uniqueness of strong solution follows,

Theorem 1.4.6. Let b(·, ·) and σ(·, ·) satisfy assumption (1.8) and (1.9), further
more, the initial condition x is a random variable independent of the Brownian
motion Wt, with E(|x|2) <∞, then the SDE has a unique strong solution, Xt, with

E[
∫ t

0
|Xs|2ds] <∞ for all t > 0

The solution satisfies the markov property and has continuous paths, it is a
diffusion process.

As for the application in Chapter 2, we use a SDE with a diffusion term of square
function, which doesn’t satisfy the Lipschitz condition, then following theorem from
[Karatzas and Shreve 2012] can relax the Lipschitz condition on the diffusion term.

Theorem 1.4.7. Suppose the coefficients of the one-dimensional equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

satisfy the conditions

|b(t, x)− b(t, y)| ≤ K|x− y|

|σ(t, x)− σ(t, y)| ≤ h(|x− y|)

for every 0 ≤ t <∞, and x ∈ R, y ∈ R, K is a positive constant and h : [0,∞)→
[0,∞) is a strictly increasing function with h(0) = 0 and

∫
(0,ε)

h−2(u)du =∞, for any ε

then the strong uniqueness holds.

If we choose h(u) =
√
u, that would be the equation used in our case. As for the

strong existence and uniqueness of high dimensional square root diffusion equations,
please refer [Duffie and Kan 1996].

Except the discussion on Xt itself, we can also consider a functional on Xt, and
talk about the rate of change in time , which is the famous Ito’s formula.
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Theorem 1.4.8. (Ito’s formula) Assume that the conditions of Theorem(1.4.6)
hold, let Xt be the solution and let V ∈ C1,2([0, T ]× Rd), tehn the process V (Xt0
satisfies:

V (t,Xt) = V (0, X0)+
∫ t

0

∂V

∂s
(s,Xs)ds+

∫ t

0
LV (s,Xs)ds+

∫ t

0
< ∇V (s,Xs), σ(Xs)dWs >

i.e.

d

dt
V (t,Xt) = ∂V

∂t
(t,Xt)+ < ∇V (t,Xt), Ẋt > +1

2 < Ẋt, D
2V (t,Xt)Ẋt >

More general, if we have the assumption f ∈ C2
0(Rd) and V ∈ C(Rd) bounded

from below, then the function

u(x, t) = E
[
e−
∫ t

0 V (Xs)dsf(Xt)
]

is the solution to the initial value problem

∂u

∂t
= Lu− V u, u(0, x) = f(x)

this is the well known Feynman-Kac formula which establishes a link between
parabolic partial differential equations and stochastic processes, which is very
import in option pricing models.

1.5 Jump-Diffusion Models
To illustrate jump-diffusion models, we need start from the Levy process.

Definition 1.5.1. A stochastic process Xt is a Levy process if

• X0 = 0 almost surely.

• Independent increments: for any choice of n ≥ 1, 0 ≤ t0 < · · · < tn, the
random variables of Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.

• Stationary increments: distribution of Xt+s −Xt does not depend on s.

• Stochastic continuity: for any t ≥ 0, ε > 0, limt→s P(|Xt −Xs| > ε) = 0

27



• Cadlag: there exists a space Ω0,P(Ω0) = 1, for each ω ∈ Ω0, Xt(ω) is
right-continuous in t for t ≥ 0 and has left limits in t for t > 0.

Some typical examples of Levy processes include Poisson process, Compound
Poisson process, Jump-diffusion process, Gamma process, Variance Gamma process,
Inverse Gaussian process, and Normal inverse Gaussian process.

• Poisson process: let {ti}i≥1 be a series of independent exponential random
variables with parameter λ, Tn = ∑n

i=1 ti, the Poisson process is defined by

Nt =
∑
n≥1

It≥Tn

Nt follows Poisson distribution of parameter λt,

P(Nt = k) = e−λt
(λt)k
k!

the corresponding characteristic function of a Poisson process Xt with param-
eter λ is

ΦX(u) = E(eiuXt) = exp{λt(eiu − 1)}

• Compound Poisson process: if we set the jump size free in Poisson process,
more precisely, let {Yi}i≥1 be a sequence of independent random variable with
law f, define the Compound Poisson process as

Xt =
Nt∑
i=0

Yi

the corresponding characteristic function is

E(eiuXt) = exp{λt
∫
R
(eiux − 1)f(dx)}

• Jump-diffusion process: if we combine a Brownian motion drift and a Com-
pound Poisson process as a jump, we get a simplest jump-diffusion process,

Xt = µt+ σWt +
Nt∑
i=0

Yi
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the corresponding characteristic function is given by

E(eiuXt) = exp{t(iµu− σ2u2

2 + λ
∫
R
(eiux − 1)f(dx))}

• Gamma process: a Gamma process is a random process with independent
gamma distributed increments, whose marginal density with parameters λ
and ct is given by

pt(x) = λct

Γ(ct)x
ct−1e−λt

where Γ(x) =
∫+∞

0 e−ttx−1dt, the corresponding characteristic function is

E(eiuXt) = 1
(1− iu/λ)−ct

• Variance Gamma process: if we take a Gamma process as drift and change
the time scale with a Gamma process:

Yt = µXt + σWXt

where Xt is a standard Gamma process with parameters λ and c, the corre-
sponding characteristic function is

E(eiuYt) = 1
(1 + σ2u2

2 − iµcu)ct

• Inverse Gaussian process: Inverse Gaussian process with parameters λ and c is
a Levy process Xt, who follows an inverse Gaussian distribution of parameters
λ and ct;

pt(x) = ct

x1.5 e
− (
√
λx−
√
πct)2

x

whose characteristic function is

E(eiuXt) = exp (−2ct
√
π(
√
λ− iu−

√
λ))

• Normal inverse Gaussian process: if we take a Brownian motion as drift and
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change the time scale with Inverse Gaussian process:

Yt = θXt + σWXt

the corresponding characteristic function is

E(eiuYt) = exp (t1−
√

1 + u2σ2κ− 2iθuκ
κ

)

As for the model of stock prices or some financial asset dynamics, we always
require the positivity and the independence and stationarity of log-returns, this
implies another large class: exponentials of Levy process, St = S0e

Xt , where Xt is
a Levy process. The popular jump models include jump diffusion model, Variance
Gamma model, CGMY model, Normal Inverse Gaussian model, Bates volatility
model and general Affine model.

• Jump diffusion model: general jump diffusion model has the following form

dSt = µSt−dt+ σSt−dWt + St−dJt

where Wt is Brownian motion and Jt is a Compound Poisson process with
jump intensity λ, Jt = ∑Nt

i=1 Yi, µ is a parameter chosen to make e−rtSt a
martingale, for different distribution of Yi, we have different model categories:

– Poisson jump model if Yi = d+ with probability p and Yi = d− with
probability 1− p.

– Merton’s jump model if Yi ∼ N(a, b)

– Kou’s model is log(Yi) follows an asymmetric double exponential dis-
tribution with density f(y) = pη1e

−η1yIy≥0 + (1 − p)η2e
η2yIy<0, where

0 ≤ p ≤ 1, and η1 > 1, η2 > 0

• Variance Gamma model: Let Xt be an independent Gamma process with
mean rate unity. Yt is an inver gamma process based on Xt, then the variance
gamma model is defined by:

St = S0 exp (µt+ Yt)
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• CGMY model, based on Variance Gamma model, if

St = S0 exp (µt+ σWt +Xt)

where Xt is a Levy process without drift and diffusion, the corresponding jump
measure is given by KCGMY (x) = C

|x|1+Y (exp (−G|x|) ∗ Ix<0 + exp (−M |x|) ∗
Ix>0).

• Normal Inverse Gaussian model: suppose Xt is a normal inverse Gaussian
process with parameters ν, α, β, δ, the Normal Inverse Gaussian model is
defined by

St = S0 expµt+ σWt +Xt

• Bates volatility model: this is a stochastic volatility model, with dynamics

dSt = (r − δ)St−dt+
√
VtSt−dW

1
t + St−dJt

dVt = κ(θ − Vt) + σt
√
VtdW

2
t

where W 1
t ,W

2
t are Brownian motions such that dW 1

t dW
2
t = ρdt, Jt is a

Compound Poisson process with independent jumps Y , where log(1 + Y )
follows a normal distribution.

• General Affine model: this is a large class of models which has been deeply
analized by Duffee. It follows the form

St = S0e
Xt

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt

where dJt is a Compound Poisson process with intensity λ(Xt), also the
following affine assumption is required:

µ(x) = K0 +K1x,K = (K0, K1) ∈ RN × RN×N

(σ(x)σ(x)T )ij = (H0)ij + (H1)ij · x,H = (H0, H1) ∈ RN×N × RN×N

λ(x) = l0 + l1 · x, l = (l0, l1) ∈ R× RN
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1.6 Stochastic Differential Equation with Jumps
Next is a brief review on SDE with jumps. Let there be given a filtered probability
space (Ω,A,A),P, with A = (At)t≥0, satisfying the usual conditions, and with
a set of marks E = R − {0}. We define on E × [0, T ] an A-adapted Poisson
measure pφ(dv, dt), with intensity measure νφ(dv, dt) = φ(dv)dt, T ∈ [0,∞). Thus,
pφ = {pφ(t) = pφ(E , [0, t]), t ∈ [0, T ]} is a stochastic process that counts the
number of jumps occuring in the time interval [0, T ]. The Poisson random measure
pφ(dv, dt) generates a sequence of pairs {(τi, ξi), i ∈ {1, 2, 3, · · · , pφ(T )}}, where
{τi ∈ [0, T ], i ∈ {1, 2, 3, · · · , pφ(T )}} is a sequence of increasing nonnegative random
variables representing the jump times of a standard Poisson process with intensity
λ, and {ξi ∈ E , i ∈ {1, 2, 3, · · · , pφ(T )}} is a sequence of independent, identically
distributed random variables. Here ξi is distributed according to φ(dv)

λ
= F (dv).

F (·) is the distribution function of the marks. We interpret τi as the time of the
ith event and the mark ξi as its amplitude. We can consider the d-dimensional
SDE with jumps

dXt = a(t,Xt)dt+ b(t,Xt)dWt +
∫
E
c(t,Xt−, v)pφ(dv, dt) (1.10)

for t ∈ [0, T ], with initial value X0 ∈ Rd, an A-adapted m-dimensional Wiener
process W = {Wt = (W 1

t ,W
2
t , · · · ,Wm

t ), t ∈ [0, T ]} and the previously introduced
Poisson random measure pφ. Xt− is the almost sure left-hand limit of X at time t.
A solution of an SDE of the type (1.10) is called a jump diffusion or an Ito process
with jumps.

The coefficients a(t, x) and c(t, x, v) are d-dimensional vectors of Borel mea-
surable real valued functions on [0, T ] × Rd and on [0, T ] × Rd × E , respectively.
Additionally, b(t, x) is a d×m-matrix of Borel measurable real valued functions on
[0, T ]× Rd. The SDE (1.10) is only a short hand notation for its integral form

Xt = X0 +
∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dWs +

pφ(t)∑
i=1

c(τi, Xτi−, ξi) (1.11)

where the pair {(τi, ξi), i ∈ {1, 2, 3, · · · , pφ(T )}} is the above described sequence of
pairs of jumps times and corresponding marks generated by the Poisson random
measure pφ.
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Next, we can continue to define the strong solution and uniqueness of strong
solution.

Definition 1.6.1. Assume that we have given a filtered probability space (Ω,A,A),P.
And we call a triplet (X,W,φ ), consisting of a stochastic process X = {Xt, t ∈
[0, T ]}, an A-adapted standard Wiener process W and an A-adapted Poisson mea-
sure pφ, a strong solution of the Ito integral equation (1.11) if X is A-adapted, the
integrals on the right hand side are well-defined and the equality in (1.11) holds
almost surely.

As for the uniqueness, it is defined as follows,

Definition 1.6.2. If any two strong solutions X and X̃ are indistinguishable on
[0, T ], that is if

Xt = X̃t

almost surely for all t ∈ [0, T ], then we say that the solution of (1.11) on [0, T ] is a
unique strong solution.

Next, we can state a standard theorem on the existence and uniqueness of
strong solution of SDEs with jumps.This ensures that the objects we model are well
defined. We assume the coefficient functions of SDE (1.11) satisfy the Lipschitz
conditions

|a(t, x)− a(t, y)| ≤ C1|x− y| (1.12)

|b(t, x)− b(t, y)| ≤ C2|x− y| (1.13)∫
E
|c(t, x, v)− c(t, y, v)|2φ(dv) ≤ C3|x− y|2 (1.14)

as well as the linear growth conditions

|a(t, x)| ≤ K1(1 + |x|) (1.15)

|b(t, x)| ≤ K2(1 + |x|) (1.16)∫
E
|c(t, x, v)|2φ(dv) ≤ K3(1 + |x|2) (1.17)

for every t ∈ [0, T ] and x, y ∈ Rd, moreover, we assume the initial value X0 is
A0-measurable with E(|X0|2) <∞.

Then we have the following existence and uniqueness theorem for SDE (1.11)
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Theorem 1.6.3. Suppose that the coefficient function a(·), b(·) and c(·) of SDE
(1.11) satisfy the Lipschitz conditions (1.14), the linear growth conditions (1.17)
and the initial condition. Then the SDE (1.11) admits a unique strong solution.
Moreover, the solution Xt of the SDE satisfies the estimate

E

(
sup

0≤s≤t
|Xs|2

)
≤ C(1 + E(|X0|2))

with T <∞, where C is a finite positive constant.

Moreover, we have the moment estimates theorem

Theorem 1.6.4. Suppose that the coefficient function a(·), b(·) and c(·) of SDE
(1.11) satisfy the Lipschitz conditions (1.14), the linear growth conditions (1.17)
and the initial condition. Then the SDE (1.11) admits a unique strong solution.
Additionally, let for n ∈ {1, 2, · · · }

E(|X0|2n) <∞

then the solution Xt satisfies

E

(
sup

0≤s≤t
|Xs|2n

)
≤ C(1 + E(|X0|2n))

for t ∈ [0, T ], with T <∞, where C is a positive constant depending only on T, n
and the linear growth bound.
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Chapter 2 |
Double-Jump Diffusion Model
for VIX: Evidence from VVIX

2.1 Introduction
Modeling the VIX index and its derivatives has become increasingly popular among
researchers. As a measure of the market’s expectations for the 30-day implied
volatility of the S&P500 index, VIX provides rich information for the prediction
of future market trends. VIX can be seen as a compression of the information
involved in S&P500 options. Usually, VIX and the S&P500 index are negatively
correlated, meaning that the VIX index is often referred to as the fear index or the
fear gauge. For more about VIX, see for example [Carr and Wu 2005].

In considering VIX’s importance, researchers have focused significant attention
on directly modelling the dynamics of VIX. Earlier work has sought to use the geo-
metric Brownian motion, square-root diffusion, or log-normal Ornstein-Uhlenbeck
(OU) diffusion to model VIX. Some researchers have also considered jumps in VIX.
Recently, an innovative parameterized stochastic volatility model for VIX was put
forward by [Mencía and Sentana 2013] and [Kaeck and Alexander 2013]. These
authors specified a new process for modeling the volatility of VIX, which may be
correlated with VIX, thus revealing its empirical advantage over other traditional
models. Both sets of authors have also pointed out that stochastic volatility reduces
the impact of the jump on VIX. However, the specifications of this innovative
stochastic volatility model are different depending on the researchers. [Mencía and
Sentana 2013] have adopted a pure-jump OU process stemming from analytical
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treatability, while [Kaeck and Alexander 2013] have characterized volatility as
a square-root diffusion that takes the correlation of the volatility and VIX into
account. How to better specify and estimate this volatility factor and further
interpret the dynamics of VIX remains an unresolved problem.

In 2012, Chicago Board Options Exchange (CBOE) introduced a new volatility
index named VVIX onto the market. VVIX measures the 30-day implied volatility
of the VIX index. [D. Huang and Shaliastovich 2014] have constructed the realized
volatility of the VIX index (i.e. the realized volatility of volatility), showing that the
VIX index itself is not a good predictor of realized volatility. Rather, VVIX serves
as a better candidate for this. We can thus infer from the researchers’ empirical
conclusion that the VVIX index may provide additional information about the
volatility of VIX beyond that provided by VIX itself.

To emphasis the role of VVIX on quantifying the stochastic volatility of VIX,
first we recalibrate the stochastic volatility out of logVIX model in [Kaeck and
Alexander 2013] using the same prior and sampling method specified in [Kaeck and
Alexander 2010]. Here we choose the VIX data from January 2007 to September
2014 on account of the VVIX data starting from January 2007. We then plot
both the estimated stochastic volatility and VVIX time series in Figure 2.1. As
a result, the correlation between the posterior volatility and VVIX index in this
experiment is only 0.4193. Although some of peaks of the estimated volatility
coincide with VVIX, there is more inconsistency. This indicates that when we use
the VIX index as the sole data source for sampling the latent stochastic volatility,
limited information about the dynamics of stochastic volatility is obtained. By the
observation, we suspect the stochastic volatility was not just spanned by the VIX
in some sense. To obtain a more accurate volatility of VIX, we should explore the
relationship between it and the VVIX index.

In this paper we make an extensive empirical analysis of the dynamics of VIX,
concentrating particularly on modeling its stochastic volatility under the physical
measure via additional information provided by the VVIX index. Our contribution
consists of three aspects. First, we find evidence of the co-jumps between the
VIX and VVIX index through statistical test of the historical data of both indices.
Second, we show that the VVIX index and the volatility of VIX satisfy the criteria
of a linear relationship under the general affine assumption on the dynamics of the
logarithm of the VIX index and its stochastic volatility. Thus the modeling of VIX

36



and its volatility could be transformed into the joint modeling of the VIX and VVIX
index. Empirically, both of VIX and VVIX are mean-reverting and have co-jumps.
Based on these facts we propose a double-jump stochastic volatility model for the
VIX and its volatility. Third, we provide a Markov-Chain-Monte-Carlo (MCMC)
method to estimate the double-jump model and its nested models using historical
data regarding VIX and VVIX. We obtain both a unified set of model parameters
and a series of outcomes of latent variables such as stochastic volatility, jump
intensity and jump sizes. The results can be exploited to understand the economics
of the market further. We compare the model performance through several criterion
such as residual analysis, p-value and deviance information criterion (DIC) method.
We show that the jumps in volatility of VIX is statistically significant and the jump
intensity is not deterministic which may imply a more complex structure of it.

Two papers that are mostly relevant to our work are [Mencía and Sentana
2013] and [Kaeck and Alexander 2013]. Both studies conclude that modeling the
logarithm of the VIX index is better than modeling VIX directly and modeling VIX
with stochastic volatility performs better in the sense of fitting historical data of
the VIX market. [Mencía and Sentana 2013] use a pure-jump OU model to describe
the volatility of VIX. They apply maximum and pseudo-maximum likelihood for
estimating parameters and use extended Kalman filter to generate the outcome
of stochastic volatility. The data sources are VIX and its derivatives. [Kaeck and
Alexander 2013] model this volatility with a square-root diffusion and estimate the
model using MCMC method and nearly 20 years data of VIX. Compared to their
work, we obtain an expression of the VVIX index in terms of the affine model of the
stochastic volatility and make more reasonable assumptions of the joint dynamics of
both indices, especially the co-jumps. For empirical analysis, we calibrate our model
using both information of VIX and VVIX. We also justify our model specification
with several statistical tests and make a detailed analysis of the latent variables.

The structure of this paper is as follows: Section 2.2 shows the linear relationship
between the VVIX index and stochastic volatility of the VIX index. Section 2.3
analyzes model specifications and sets up our model. Section 2.4 gives our empirical
method. Section 2.5 describes the VIX and VVIX data that we use in this paper.
Section 2.6 summarizes the estimation results and provides our empirical analysis.
Section 2.7 outlines the conclusions and implications of our study.
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2.2 Linear Relationship between VVIX and Volatility
of VIX
In this part and following of the paper we build a model based on the logarithm of
VIX instead of VIX directly. We show that if the logVIX mean-reverts to a constant
central tendency with stochastic volatility as well as jumps in logVIX itself and
volatility, then there will be a linear relationship between the VVIX index and the
stochastic volatility factor of the logVIX. This relationship can serve as a gauge for
determining whether a particular stochastic volatility model for VIX is reliable. A
similar argument regarding how to find a proxy for some unobservable factor has
been made in [Ait-Sahalia and Kimmel 2007; Duan and Yeh 2010] and [Ait-Sahalia,
Karaman, and Mancini 2014]. In this paper, the VIX index is the underlying factor;
this means its dynamics are observed under the P measure. As VVIX is compiled
from VIX options, which are calculated under the pricing measure Q, all of the
following derivations involving VVIX are likewise computed under the Q measure.

Let Y (t) = log V IX (t) and assume that under Q, Y (t) and ω (t) follow a
general affine jump diffusion model

dY (t) = κV (θ − Y (t)) dt+
√
ω (t)dWQ

Y (t) + JQY dN (t)

dω (t) =
(
αω − κQωω (t)

)
dt+ σω

√
ω (t)dWQ

ω (t) + JQω dN (t) (2.1)

where we assume
〈
dWQ

Y (t) , dWQ
ω (t)

〉
= ρdt. N (t) is a Poisson process with

stochastic jump intensity λ (t) = λ0 + λ1ω (t) at time t for analytical tractability.
The jump magnitudes for logVIX and its volatility factor are characterized by

JQY ∼ N
(
µJy ,

(
σJy
)2
)

JQω ˜ N
(
µJω,

(
σJω
)2
)

Similar to the idea that regarding VIX square as the expectation of quadratic
variation of the logarithm of the S&P500 index under the pricing measure approxi-
mately (see, for example, [Ait-Sahalia, Karaman, and Mancini 2014]), we set the
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theoretical VVIX value to be

V V IX2
t,t+τ = 1

τ

EQ
t

(∫ t+τ

t
ω (s) ds

)
+ EQ

t

∑
s≥0
4Y 2 (s)

 (2.2)

With the simple calculation from (2.1) we obtain

EQ
t

(∫ t+τ

t
ω (s) ds

)
= 1− e−(κQω−λ1µJω)τ

κQω − λ1µJω
ω (t) +

τ − 1− e−(κQω−λ1µJω)τ

κQω − λ1µJω

 αω + λ0µ
J
ω

κQω − λ1µJω

, αQ (τ)ω (t) + βQ (τ) (2.3)

and

EQ
t

∑
s≥0
4Y 2 (s)

 =
((
µJy
)2

+
(
σJy
)2
)
EQ
t

(∫ t+τ

t
(λ0 + λ1ω (s)) ds

)

=
((
µJy
)2

+
(
σJy
)2
)

(λ0τ + λ1βQ (τ) + λ1αQ (τ)ω (t))(2.4)

where αQ (τ) = 1−e−(κ
Q
ω−λ1µ

J
ω)τ

κQω−λ1µJω
and βQ (τ) =

(
τ − 1−e−(κ

Q
ω−λ1µ

J
ω)τ

κQω−λ1µJω

)
αω+λ0µJω
κQω−λ1µJω

.

After combining (2.2), (2.3) and (2.4), we have

V V IX2
t,t+τ = 1

τ

[
αQ (τ)ω (t) + βQ (τ) +

((
µJy
)2

+
(
σJy
)2
)

(λ0τ + λ1βQ (τ) + λ1αQ (τ)ω (t))
]

= 1
τ

(
βQ (τ) +

((
µJy
)2

+
(
σJy
)2
)

(λ0τ + λ1βQ (τ))
)

+1
τ

(
1 + λ1

((
µJy
)2

+
(
σJy
)2
))

αQ (τ)ω (t) (2.5)

, A (τ) +B (τ)ω (t) (2.6)

where
A (τ) = λ0

((
µJy
)2

+
(
σJy
)2
)

+ 1
τ

(
1 + λ1

((
µJy
)2

+
(
σJy
)2
))

βQ (τ)

B (τ) = 1
τ

(
1 + λ1

((
µJy
)2

+
(
σJy
)2
))

αQ (τ)
(2.7)

only depend on time to maturity τ and parameters.
Relationship (2.6) can be seen as a benchmark for the estimated volatility
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factor. The dynamics of VVIX reflect the property of ω (t) more directly than the
VIX option does. It also provides more intuitive empirical evidence for the model
specifications for ω (t), as will be seen in Section 2.3.

2.3 Model Specification and Setup

2.3.1 Model Specification

The log-normal Ornstein-Uhlenbeck model has been proposed by [Detemple and
Osakwe 2000]. Modelling the logarithm of VIX or VIX futures has also been
considered in [Psychoyios, Dotsis, and Markellos 2010] and [Huskaj and Nossman
2013]. [Mencía and Sentana 2013] and [Kaeck and Alexander 2013] have compared
and examined different model specifications for VIX dynamics. Both sets of authors
have concluded that the setup for modelling logVIX as an affine jump process is
superior to the setup for modelling VIX directly. This conclusion is consistent
among all of the model specifications.. In our model, we also study the affine
property of logVIX.

Since there is a linear relationship between VVIX and ω (t), the VVIX index
can be considered a proxy for this unobservable variable. Jointly modelling the
VIX index and its stochastic volatility is thus equivalent to jointly modelling the
VIX index and the VVIX index. In this sense, the model should reflect some of
their joint properties.

Both VIX and VVIX have the mean-reverting property. VIX may mean-revert
to a constant or stochastic central tendency. [Mencía and Sentana 2013] make both
assumptions, examining the model’s performance in this case. As their data is
comprised of VIX, VIX futures, and VIX options, the stochastic central tendency
of VIX model performs better. In fact, the specifications of the central tendency of
VIX are mainly characterized by the information from VIX futures, while the VIX
options play a relatively less influential role. However, based on the derivation in
Section 2.2, we know that the expression of the VVIX index is irrelevant to the
drift part of VIX. In fact, this is consistent with its stochastic volatility role. As
our paper mainly concerns the impact of VVIX data on the estimation, we make a
simple assumption that the VIX mean-reverts to a constant central tendency. Since
VVIX has a similar empirical property, we assume the stochastic volatility of VIX
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also has a constant central tendency.
Based on the historical data regarding VIX and VVIX collected daily from

January 2007 to November 2014, we can observe that there is a co-jump between
the two indices, no matter whether a positive or negative jump occurs. To conduct
a formal test to verify this phenomenon, we adapt the method in [Bollerslev, Law,
and Tauchen 2008] to our lower sampling frequency (see also [Gilder 2009] for
an illustration of using this method with daily data). The testing procedure is
divided into two parts: first, we show that there are jumps in both VIX and VVIX;
secondly, we demonstrate that VIX and VVIX have common jumps.

As for the test on whether there are significant jumps, the general procedure
is: we assume that a process X (to be VIX or VVIX) is observed daily [0, T ] at
times t = 0, 1, . . . , T and denote the time series by Xt, t = 1, 2, . . . , T . The return
process rt = Xt − Xt−1, t = 1, 2, . . . , T is also defined. Define the n-day rolling
sample estimates of realized volatility,

RVt =
∑n

k=0 r
2
t−k (2.8)

and bipower variation
BVt = π

2
∑n−1

k=0 |rt−k| |rt−k−1| (2.9)

The relative contribution measure

RJt = RVt −BVt
RVt

(2.10)

immediately follows from (2.8) and (2.9). The tripower quarticity for daily changes
is defined by

TPt = µ−3
4/3

n2

n− 2
∑n−1

k=0 |rt−k|
4/3 |rt−k−1|4/3 |rt−k−2|4/3 (2.11)

where µ4/3 = 22/3Γ
(

7
6

)
Γ
(

1
2

)
. Finally, the statistic

zt = RJt√[
(π/2)2 + π − 5

]
1
n

max
(
1, TPt

BV 2
t

) (2.12)

is determined using (2.9), (2.10), and (2.11) and tests whether a jump occurs at day
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t. We reject the null hypothesis of no jumps at α% confidence level if |zt| > Φ−1
1−α/2

where Φ is the cumulative normal distribution for a given day t.
To implement the second part of testing co-jump, we denote VIX and VVIX

by X1 and X2. Assume VIX and VVIX are observed daily [0, T ] at times t =
1, 2, . . . , T ; the time series is thus X i

t , t = 1, 2, . . . , T, i = 1, 2, respectively. Given
the return processes rit = X i

t −X i
t−1, t = 1, 2, . . . , T, i = 1, 2, we can calculate the

contemporaneous correlation

cpt =
∑n−1

k=0 r
1
t−kr

2
t−k

and study the studentized statistic

zcp,t = cpt − cp
scp

(2.13)

where
cp = 1

T − (n− 1)
∑T

t=n cpt

and

scp =
[

1
T − (n− 1)

∑T

t=n (cpt − cp)2
]1/2

at time t. We reject the null hypothesis of no common jumps at α% confidence
level if |zcp,t| > Φ−1

1−α/2. For details about the two tests, please refer (120).
We test the jump behavior of VIX and VVIX from March 3, 2007 to November

26, 2014. Given the 5% significance level, 222 days for VIX and 141 days for VVIX
out of 1939 days total indicate a significant jump for the first step. In the second
step, 131 days call for a co-jump. Thus the specification for a co-jump in VIX
and VVIX is justified. This phenomenon provides an important foundation for our
model setup.

2.3.2 Basic Model

Section 2.3.1 demonstrates that in addition to the diffusion part, we should assume
jumps in both Y (t) and ω (t) and moreover, that the jumps are dominated by a
single Poisson process. The jump intensity may be constant or state-dependent
on the affine factor. In this paper, we assume the jump is affected by ω (t). The
assumption of constant or stochastic jump intensity is examined below. As both
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positive and negative jumps occur, we make the normal distribution assumption
regarding the jump size. For logVIX, this may be a sensible assumption. For
square root diffusion plus a jump for ω (t), given that a jump is a rare event for
the historical path, this assumption is also acceptable. For previous work on jumps
in volatility, we refer to [Duffie, Pan, and K. Singleton 2000; Eraker, M. Johannes,
and Nicholas Polson 2003; Eraker 2004; Todorov and Tauchen 2011] and [Amengual
and Xiu 2014].

We thus assume that under measure Q,

dY (t) = κV (θ − Y (t)) dt+
√
ω (t)dWQ

Y (t) + JQY dN (t)

dω (t) =
(
αω − κQωω (t)

)
dt+ σω

√
ω (t)dWQ

ω (t) + JQω dN (t) (2.14)

where
〈
dWQ

Y (t) , dWQ
ω (t)

〉
= ρdt and N (t) is a Poisson process with stochastic

jump intensity λ (t) = λ0 + λ1ω (t) at time t.

JQY ∼ N
(
µJy ,

(
σJy
)2
)

JQω ˜ N
(
µJω,

(
σJω
)2
)

We specify the risks of price between Q and P regarding Brownian motions as

dWQ
Y (t) = dW P

Y (t)− ςV
√
ω (t)dt

dWQ
ω (t) = dW P

ω (t)− ςω
√
ω (t)dt

then under P ,

dY (t) = [κV (θ − Y (t))− ςV ω (t)] dt+
√
ω (t)dW P

Y (t) + JPY dN (t)

dω (t) =
(
αω − κPωω (t)

)
dt+ σω

√
ω (t)dW P

ω (t) + JPω N (t) (2.15)

where
〈
dW P

Y (t) , dW P
ω (t)

〉
= ρdt and N (t) is a Poisson process with stochastic

jump intensity λ (t) = λ0 + λ1ω (t) at time t. κPω = κQω + ςωσω is the speed of mean
reversion under P . The jump sizes are characterized by

JPY ∼ N
(
µJPy ,

(
σJy
)2
)
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JPω ∼ N
(
µJPω ,

(
σJω
)2
)

The parameter set under P is denoted by

ΘP =
{
κV , ςV , θ, κ

P
ω , µ

JP
y , µJPω , σJω , ρ, σω

}
(2.16)

while the parameter set under Q is summarized as

ΘM =
{
αω, κ

Q
ω , λ0, λ1, µ

J
y , µ

J
ω, σ

J
y

}
(2.17)

We also assume that there exists a residual or pricing error between the observed
VVIX which is denoted by V V IXobs

t,t+τ and our theoretical value, i.e.

(
V V IXobs

t,t+τ

)2
= A (τ) +B (τ)ω (t) + εt (2.18)

where the expressions of A (τ) and B (τ) are given by (2.7). As we concern more
about the statistical performance of approximating VVIX with the linear expression
of ω (t), we assume simply here that the pricing error is i.i.d., i.e.

εt ∼ N
(
0, σ2

P

)
for all t

The further discussion of the econometric property of the time series of this pricing
error is beyond this paper and may be left for further research. For the model
(2.18), we need to estimate

ΘE = {σP} (2.19)

In the following of the paper, the general model (2.15) was called SVJJ-S model
(stochastic λ). If we let λ1 = 0, the model reduces to the SVJJ-C model (constant
λ) model. If we further let JPω

(
JQω
)

= 0, the model collapses to the SVJ-C model
(constant λ) model. Finally, when there are no jumps, i.e., Jy = Jω = 0, the
model becomes the SV model. We want to give empirical analysis of these models
using the real-market historical data of VIX and VVIX to show that whether the
additional jump parts of VIX and ω (t) can improve the VIX modeling significantly
and whether the jump intensity is constant or stochastic.
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2.4 Model Inference with VIX and VVIX
In this section, we use the data of VIX and VVIX indices from January 3, 2007, to
November 26, 2014, to estimate the models. For the daily VVIX, τ = 1

12 in (2.18),
so we denote by

(
V V IXobs

t

)2
:=

(
V V IXobs

t,t+1/12

)2
for brevity. In total, we draw

from 1,991 daily observations each for VIX and the VVIX index. We adopt the
MCMC method as our estimation method. Compared with the maximum-likelihood
estimation (MLE) method, the generalized method of moments (GMM), and some
additional methods, MCMC has two advantages that are particularly suitable
for our study. First, not only does MCMC estimate the unknown parameters,
it also provides posterior estimated latent variables such as stochastic volatility,
jump times, and jump sizes. These variables are fundamental for subsequent
empirical analysis and model comparison. Secondly, MCMC is very efficient for
implementation. For more details about applications of the MCMC method in
finance, we refer to [M. S. Johannes and Nick Polson 2003; Eraker, M. Johannes,
and Nicholas Polson 2003] and [Amengual and Xiu 2012].

With the parameters set denoted by Θ = (ΘP ,ΘM ,ΘE), the latent variables
by Z, and the observed data by Y = (V IX, V V IX), for some model M we are
interested in the joint posterior of parameters and latent variables given data:

p (Θ,Z|Y,M) ∝ p (Y|Θ,Z,M) · p (Θ,Z|M)

We assume market data are observed daily. Let the time interval ∆ = 1/252
be one day, with the assumption that we have T observations Yi∆, 1 ≤ i ≤ T for
the logarithm of VIX and V V IXobs

i∆ , 1 ≤ i ≤ T for VVIX respectively. A time
discretization of the dynamics (2.15) with time interval ∆ gives

Yi∆ − Y(i−1)∆ =
(
κV θ − κV Y(i−1)∆ − ςV ω(i−1)∆

)
∆ +

√
ω(i−1)∆∆εyi∆ + jyi∆ni∆

ωi∆ − ω(i−1)∆ =
(
αω − κPωω(i−1)∆

)
∆ + σω

√
ω(i−1)∆∆εωi∆ + jωi∆ni∆ (2.20)

where εyi∆ and εωi∆ are correlated Normal variables with correlation ρ, jyi∆ and jωi∆
are normal with different parameters.

Denote by Ỹi∆ = Yi∆ − jyi∆ni∆ for 2 ≤ i ≤ T and ω̃i∆ = ωi∆ − jωi∆ni∆ for
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2 ≤ i ≤ T , then move from (2.20) to the jump-adjusted processes

Ỹi∆ = a0 + a1Y(i−1)∆ + a2ω(i−1)∆ +
√
ω(i−1)∆∆εyi∆

ω̃i∆ = c0 + c1ω(i−1)∆ + σω
√
ω(i−1)∆∆εωi∆ (2.21)

where a0 = κV θ∆, a1 = 1− κV ∆, a2 = −ςV ∆, c0 = αω∆, c1 = 1− κPω∆. A time
discretization of (2.18) gives

(
V V IXobs

i∆

)2
= A (τ) +B (τ)ωi∆ + εi∆

where εi∆ ∼ N (0, σ2
P ). Next, we apply Yi∆ and V V IXobs

i∆ , 1 ≤ i ≤ T to estimate
latent variables

ωi∆, 1 ≤ i ≤ T

ni∆, j
y
i∆ and jωi∆, 2 ≤ i ≤ T

and parameters Θ = (ΘP ,ΘM ,ΘE).
As the joint posterior distribution p (Θ,Z|M) is not known in closed-form, the

MCMC algorithm samples these parameters and latent variables sequentially from
the posterior conditional distributions as follows:

spot volatility : p
(
ω

(g)
i∆ |ω

(g)
<i∆, ω

(g−1)
>i∆ , n(g−1), jy(g−1), jω(g−1),Θ(g−1), Y

)
jump time : p

(
n

(g)
i∆ |ω(g), jy(g−1), jω(g−1),Θ(g−1), Y

)
jump size in VIX : p

(
j
y(g)
i∆ |n(g), ω(g), jω(g−1),Θ(g−1), Y

)
jump size in volatility : p

(
j
ω(g)
i∆ |n(g), ω(g), jy(g),Θ(g−1), Y

)
parameters : p

(
Θ(g)|n(g−1), ω(g), jy(g−1), jω(g−1),Θ(g−1), Y

)
where g represents the g-th iteration with total of M times. In this study, we
sample the data 5000 times (M = 5000) and discard the first 2000 samples.

2.4.1 Estimation Strategy

In this subsection we consider the sampling method for the latent variables and
parameters. For the prior of the parameters, we follow the assumption of several
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previous literature. The prior of jump time and jump size is obtained through
analysis of historical VVIX data by digging out large jumps. The prior of stochastic
volatility ω (t) is set to be the square VVIX. Next we will provide details for the
sampling schemes we discuss the corresponding algorithms for stochastic volatility
ωt, jump times, jump sizes, and parameters set ΘP in (2.16), the Q-parameters ΘM

in (2.17) and the pricing error parameter ΘE in (2.19).

2.4.1.1 Sampling Volatility

Sampling stochastic volatility ωt necessitates taking information from both VIX
and VVIX into consideration. Utilizing the linear relationship in (2.18), we
employ the random-walk Metropolis-Hastings algorithms to sample ωt. When
we have obtained the first (g − 1)-th samples, for the g-th sample, let ω(g−1)

(−i) =(
ω

(g)
1∆, · · · , ω

(g)
(i−1)∆, ω

(g−1)
(i+1)∆, · · · , ω

(g−1)
T∆

)
, g = 1, 2, · · · ,M . We specify the full condi-

tional density as

p
(
ω

(g)
i∆ |ω

(g−1)
(−i) , n

(g−1), jy(g−1), jω(g−1),Θ(g−1), Y
)

∝ 1
ω

(g)
i∆

exp
[
−(C2

i∆ +D2
i∆ − 2ρCi∆Di∆)

2 (1− ρ2)

]
exp

−
(
C2

(i+1)∆ +D2
(i+1)∆ − 2ρC(i+1)∆D(i+1)∆

)
2 (1− ρ2)



· exp

−
((
V V IXobs

i∆

)2
− A (τ)−B (τ)ω(g)

i∆

)2

2σ2
P


where

Ci∆ =
Yi∆ − jy(g−1)

i∆ n
(g−1)
i∆ − a0 − a1Y(i−1)∆ − a2ω

(g)
(i−1)∆√

ω
(g)
(i−1)∆∆

Di∆ =
ω

(g)
i∆ − j

ω(g−1)
i∆ n

(g−1)
i∆ − c0 − c1ω

(g)
(i−1)∆

σω

√
ω

(g)
(i−1)∆∆

and

C(i+1)∆ =
Y(i+1)∆ − jy(g−1)

(i+1)∆n
(g−1)
(i+1)∆ − a0 − a1Yi∆ − a2ω

(g)
i∆√

ω
(g)
i∆ ∆
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D(i+1)∆ =
ω

(g−1)
(i+1)∆ − j

ω(g−1)
(i+1)∆n

(g−1)
(i+1)∆ − c0 − c1ω

(g)
i∆

σω

√
ω

(g)
i∆ ∆

for 2 ≤ i ≤ T − 1. The case for i = 1 and i = T is similar.

p
(
ω

(g)
1∆|ω

(g−1)
(−1) , n

(g−1), jy(g−1), jω(g−1),Θ(g−1), Y
)

∝ 1
ω

(g)
1∆

exp
[
−(C2

1∆ +D2
1∆ − 2ρC1∆D1∆)

2 (1− ρ2)

]
exp

−
((
V V IXobs

1∆

)2
− A (τ)−B (τ)ω(g)

1∆

)2

2σ2
P


and

p
(
ω

(g)
T∆|ω

(g−1)
(−T ) , n

(g−1), jy(g−1), jω(g−1),Θ(g−1), Y
)

∝ 1
ω

(g)
T∆

exp
[
−(C2

T∆ +D2
T∆ − 2ρCT∆DT∆)

2 (1− ρ2)

]
exp

−
((
V V IXobs

T∆

)2
− A (τ)−B (τ)ω(g)

T∆

)2

2σ2
P



2.4.1.2 Sampling Jump Times

Since the model assumes the co-jump condition on VIX index and its volatility, we
just need to sample the co-jump parameter, which will describe the jumps of the two.
Given the information the (g − 1)th sampling, for the case where i = 2, 3, · · · , T ,
the jump time of day i, ni∆, the probability where there is a jump on day i is

p(ni∆ = 1|X,ΘP , Y )

=
p(Yi∆, ωi∆|Y(i−1)∆, ω(i−1)∆, ni∆ = 1, jy(i−1)∆, j

ω
(i−1)∆,ΘP ) ∗ p(ni∆ = 1|ω(i−1)∆, Y(i−1)∆)∑1

s=0 p(Yi∆, ωi∆|Y(i−1)∆, ω(i−1)∆, ni∆ = s, jy(i−1)∆, j
ω
(i−1)∆,ΘP ) ∗ p(ni∆ = s|ω(i−1)∆, Y(i−1)∆)

where {(Yi∆, ωi∆)|Y(i−1)∆, ω(i−1)∆, ni∆ = s, jy(i−1)∆, j
ω
(i−1)∆,ΘP} follows the fol-

lowing bivariate normal distribution, whose mean is a0 + a1Y(i−1)∆ + a2ω(i−1)∆ + sjyi∆
c0 + c1ω(i−1)∆ + sjωi∆


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covariance matrix is

ω(i−1)∆∆
 1 ρσω

ρσω σ2
ω


and p(ni∆ = 1|ω(i−1)∆, Y(i−1)∆) = (λ0 + λ1ω(i−1)∆)∆.

2.4.1.3 Sampling Jump Sizes

If there is a jump on the ith day, we will use a normal distribution N(B
A
, 1
A

) to
sample jωi∆, where

A = 1
σ2
ωω(i−1)∆∆ + 1

(σJω)2

B = ωi∆ − c0 − c1ω(i−1)∆

σ2
ωω(i−1)∆∆ + µJPω

(σJω)2

Then, use the sampled jωi∆, we can use the normal distribution N(B
A
, 1
A

) to
sample jyi∆

A = 1
ω(i−1)∆(1− ρ2)∆ + 1

(σJy )2

B =
Yi∆ − a0 − a1Y(i−1)∆ − a2ω(i−1)∆ − ρ

σω
(ωi∆ − c0 − c1ω(i−1)∆ − jωi∆)

ω(i−1)∆(1− ρ2)∆ +
µJPy

(σJy )2

if there is not a jump, the posterior distribution would be the same as its prior
distribution, because the current VIX and volatility provide no further information
to update jump size, that is:

JPY ∼ N(µJPy , (σJy )2)

JPω ∼ N(µJPω , (σJω)2)

No matter whether there is a jump on day i, we still need to update µJPy , σJy ,
µJPω and σJω .

2.4.1.4 Sampling Parameters under P Measure

The parameter set under P measure is ΘP =
{
κV , ςV , θ, κ

P
ω , µ

JP
y , µJPω , σJω , ρ, σω

}
,

next, we will explain the details of sampling each parameter, here we will ignore
the notation g for sampling count.
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• Sample θ
Suppose the prior distribution of θ is N(µθ, σ2

θ), we will use posterior distri-
bution θ ∼ N(B/A, 1/A) to sample θ, where

A = 1
σ2
θ

+
T∑
i=2

κ2
V ∆

(1− ρ2)ω(i−1)∆

B = µθ
σ2
θ

+ κV
T∑
i=2

Ỹi∆ − Y(i−1)∆ + κV Y(i−1)∆∆ + ςV ω(i−1)∆∆− ρDi∆
√
ω(i−1)∆∆

(1− ρ2)ω(i−1)∆

• Sample κV
Suppose the prior distribution of κV is N(µκV , σ2

κV
), we will use posterior

distribution κV ∼ N(B/A, 1/A) to sample κV , where

A = 1
σ2
κV

+
T∑
i=2

(θ − Y(i−1)∆)2∆
(1− ρ2)ω(i−1)∆

B = µκV
σ2
κV

+
T∑
i=2

(Ỹi∆ − Y(i−1)∆ + ςV ω(i−1)∆∆− ρDi∆
√
ω(i−1)∆∆)(θ − Y(i−1)∆)

(1− ρ2)ω(i−1)∆

• Sample ςV
Suppose the prior distribution of ςV is N(µςV , σ2

ςV
), we will use posterior

distribution ςV ∼ N(B/A, 1/A) to sample ςV , where

A = 1
σ2
ςV

+
T∑
i=2

ω(i−1)∆∆
1− ρ2

B = µςV
σ2
ςV

−
T∑
i=2

Ỹi∆ − Y(i−1)∆ − κV (θ − Y(i−1)∆)∆− ρDi∆
√
ω(i−1)∆∆

1− ρ2

• Sample κPω
Suppose the prior distribution of κPω is N(µκPω , σ

2
κPω

), we will use posterior
distribution κPω ∼ N(B/A, 1/A) to sample κPω , where

A = 1
σ2
κPω

+
T∑
i=2

ω(i−1)∆∆
(1− ρ2)σ2

ω

B =
µκPω
σ2
κPω

−
T∑
i=2

ω̃i∆ − ω(i−1)∆ − αω∆− σωρCi∆
√
ω(i−1)∆∆

(1− ρ2)σ2
ω
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• Sample µJPy , µJPω , (σJω)2

Suppose the prior distributions of these parameters are µJPy ∼ N

(
µµJPy ,σ2

µJPy

)
,

µJPω ∼ N
(
µµJPω ,σ2

µJPω

)
, (σJω)2 ∼ InvGam

(
α∗(σJω)21, α

∗
(σJω)22

)
, we will use the

following posterior distributions to sample the three parameters,

µJPω ∼ N

(σJω)2µµJPω + σ2
µJPω

∑T
i=2 j

ω
i∆

(σJω)2 + Tσ2
µJPω

,

 T

(σJω)2 + 1
σ2
µJPω


µJPy ∼ N

(σJy )2µµJPy + σ2
µJPy

∑T
i=2 j

y
i∆

(σJy )2 + Tσ2
µJPy

,

 T

(σJy )2 + 1
σ2
µJPy


(σJω)2 ∼ InvGam

(
α∗(σJω)21 + T

2 , α
∗
(σJω)22 + 1

2

T∑
i=2

(jωi∆ − µJPω )2
)

Remark: Inverse Gamma distribution random variable X ∼ InvGam(α, β)
has a density function of

f(x;α, β) = βα

Γ(α)x
−α−1 exp (−β

x
), x > 0

where shape parameter α > 0, and scale parameter β > 0, ifX ∼ InvGam(α, β),
we have 1

X
∼ Gamma(α, β)

2.4.1.5 Sampling Parameters under Q Measure

The Q-parameters ΘM =
{
αω, κ

Q
ω , λ0, λ1, µ

J
y , µ

J
ω, σ

J
y

}
in (2.17) are related to the

observed VVIX index model of (2.18). We thus use random-walk Metropolis-
Hastings algorithms to sample these parameters with the target density given
as

1√
2πσP

exp

−
∑T
i=1

((
V V IXobs

i∆

)2
− A (τ)−B (τ)ωi∆

)2

2σ2
P

 (2.22)

Take αω as an example, assume the (g − 1)th sampling is α(g−1)
ω , make α(g)

ω =
α(g−1)
ω + ε, where ε ∼ N(0, σ2), take equation (2.22) as the density function of
αω, denoted by π(αω), then we can accept α(g)

ω as the gth sampling of αω with a
probability of α(α(g−1)

ω , α(g)
ω ), if we don’t accept, we will keep α(g−1)

ω as the sampling
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of α(g)
ω , where

α(α(g−1)
ω , α(g)

ω ) = min
(
π(α(g)

ω )
π(α(g−1)

ω )
, 1
)

we will adjust the variance of ε, that is, the magnitude of σ, to make sure the accept
probability between 20% and 40%. For the other parameters in ΘM , the sampling
method is similar, the only difference is the magnitude of the variance of ε.

2.4.1.6 Sampling Pricing Error Parameter

For the pricing error parameter ΘE = {σP}, conditional on
(
V V IXobs

i∆

)2
and

ωi∆, εi∆ =
(
V V IXobs

i∆

)2
− A (τ) − B (τ)ωi∆ ∼ N (0, σ2

P ). Assume the prior for
σ2
P is πσ2

P
(σ2

P ) ∼ InvGam
(
ασ2

P
, βσ2

P

)
, we then sample σ2

P using inverse gamma
distribution, that is

σ2
P ∼ InvGam

(
α∗σ2

P
, β∗σ2

P

)

with α∗σ2
P

= ασ2
P

+ T−1
2 and β∗σ2

P
= βσ2

P
+
∑T

i=2

(
(V V IXobs

i∆ )2
−A(τ)−B(τ)ωi∆

)2

2 .

2.4.2 Model Diagnostics and Specification Tests

Given the sampled posterior latent variables (spot volatility, jump times and jump
sizes) and parameters, we can construct several statistics to test and assess the
ability of the model to fit the historical data. More specifically, we use detailed
analysis of the residual, p-value method and DIC method.

2.4.2.1 Residual Analysis

Recall the discretization of Y (t) in (2.21), the representation of εyi∆ follows imme-
diately and is given by

εyi∆ = Ỹi∆ − a0 − a1Y(i−1)∆ − a2ω(i−1)∆√
ω(i−1)∆∆

, 2 ≤ i ≤ T + 1 (2.23)

With the estimated variables and parameters at hand, we can calculate these
residuals immediately. We can then compare the Q-Q plot of the residuals of different
models. If a given model’s residuals approximate standard normal distribution,
then the model can be said to perform well for fitting the historical VIX index. If
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there is a substantial discrepancy between the residuals and the standard normal
distribution, the given model has potential for further improvement. With the
expression for ω̃i∆ in (2.21), we can calculate the residual for ω (t) similarly

εωi∆ = ω̃i∆ − c0 − c1ω(i−1)∆

σω
√
ω(i−1)∆∆

, 2 ≤ i ≤ T (2.24)

This residual can be used to compare the various models for ω (t).
The sample of jump times of Y (t) and ω (t) can be used to test whether the

jump intensity is constant or stochastic. If the posterior sampled jump times are
clustered, the constant jump intensity assumption is rejected.

2.4.2.2 p-value Method

We also perform a simulation study using the posterior parameters to test different
specifications. We first specify some statistics that reflect the dynamics of VIX and
calculate these statistics for the logVIX data. Then for each model, we simulate
many trajectories for Y with the same sample size as the VIX data using the
estimated parameters from the MCMC results. With the simulated trajectory, we
calculate the sample statistics and compare them with those obtained from the
original VIX data.

More specifically, we use the following 10 reference statistics: standard deviation,
skewness, kurtosis, maximum, minimum, maxjump (the highest positive changes in
the index), minjump (the highest negative changes in the index), avgmax10 (the
average over the 10 largest positive changes), avgmin10 (the average over the 10
largest negative changes) and various percentiles of daily changes (The percentiles
are denoted by percNUM where NUM indicates the percentage level).

Denote these statistics calculated from the logVIX data by φk, k = 1, 2, · · · , 10.
Then for each given model, simulate N trajectories for Y using the estimated
parameters from the MCMC results. For the n-th simulated trajectory Y , 1 ≤ n ≤
N , calculate the statistics above which are denoted by φ(n)

k , k = 1, 2, · · · , 10. For
every k, 1 ≤ k ≤ 10, calculate

pk =

∑N
n=1 1{

φ
(n)
k
>φk

}
N

(2.25)
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where 1A is the indicator function. A too high or too low pk, 1 ≤ k ≤ 10 indicates
that the given model may be distorted from the genuine form. For more details
about this method, we refer to [Gelman, Meng, and Stern 1996] and [Kaeck and
Alexander 2013].

2.4.2.3 DIC Method

Last but not the least we employ the deviance information criterion (DIC) method.
This strategy is a good replacement of the Bayes factor which imposes heavy
calculation burden under our circumstance. Assume we have observations y =
(y1, y2, · · · , yn), θ is a p-dimensional parameters which need to estimate. (126)
suggests the following empirical statistic to test the posterior distribution of θ,

D(θ) = −2 ln f(y|θ) + 2 ln g(y)

where f(y|θ) is the adjoint distribution of the observations if given the unknown
parameter θ, in our analysis, we set g(y) = 1, that is we don’t have the second
term. (127) gives the definition of DIC based on (126), as a criterion for model
selection. DIC has two components, one is the measure of data fitness, the other is
a penalty of the model complexity, DIC is defined by

DIC = D + pD (2.26)

in equation (2.26), D is a Bayes measure, defined as a posterior expectation, in our
example, it is reduced as

D = Eθ|y[D(θ)] = Eθ|y[−2 ln f(y|θ)]

the larger the value of likelihood function is, the smaller D is, and the better the
data fitness is.

The second term in equation (2.26) pD is a measure of the complexity of the
model, it is defined by

pD = D −D(θ) = Eθ|y[D(θ)]−D(Eθ|y[θ])

= Eθ|y[−2 ln f(y|θ)] + 2 ln f(y|θ)
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the larger pD is, the more complex the model is. In summary, the smaller of the
DIC, the better the model is. In our analysis, we can get the expectation of D from
the MCMC sampling trajectories of the parameters. From the mean of different
parameters, we can get the value of ln f(y|θ), the likelihood function is as follows:

f(Y |Θ) = 1
(2π)T2

exp
[
T∑
i=1

1
2(1− ρ2)(εyi∆ − ρεωi∆)2

]

where εyi∆ = Ỹi∆−a0−a1Y(i−1)∆−a2ω(i−1)∆√
ω(i−1)∆∆

, εωi∆ = ω̃i∆−c0−c1ω(i−1)∆

σω
√
ω(i−1)∆∆

For more details of this method, we recommend [Berg, Meyer, and Yu 2004]
and the reference therein.

2.5 Data
In 1993, CBOE introduced the VIX index, which serves as a benchmark for the
volatility of the market. On September 22, 2003, CBOE revised the calculation
method of VIX to utilize a wider range of S&P500 options. It also back-calculated
the new VIX to 1990. The now well-known generalized formula for calculating VIX
is

V IX2 (t, T ) = 2
T − t

∑
i

4Ki

K2
i

ert(T−t)Q (Ki)−
1

T − t

[
Ft
K0
− 1

]2

This formula utilizes a strip of OTM S&P500 option prices Q (Ki), where Ft is the
forward S&P500 index level derived from S&P500 options.

On March 14, 2012, CBOE released a new volatility of volatility index called
VVIX. VVIX is a measure of volatility of volatility which represents the expected
volatility of the 30-day forward price of the CBOE volatility index. The calculation
method of VVIX is similar to that of VIX, VVIX is calculated from the price of a
strip of at- and out- of the money VIX options, i.e.

V V IX2 (t, T ) = 2
T − t

∑
i

4Ki

K2
i

ert(T−t)O (Ki)−
1

T − t

[
Ft
K0
− 1

]2

where O (Ki) is the midpoint of the bid-ask spread of VIX options with strike Ki

and Ft is the forward VIX index level derived from VIX option prices. K0 is the
first strike below the forward index level Ft. Using this method, CBOE has also
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calculated the VVIX index before the release date up to the start of 2007. We plot
the historical time series of VIX and VVIX from January 2007 to November 2014
in Figure 2.2.

From Figure 2.2 we can see that the level of VVIX is significantly higher overall
than that of VIX. Yet like VIX, VVIX also mean-reverts to its historical mean
value, which is nearly 80. Furthermore, both indices do share some of their peak
values, especially at points during the 2008 financial crisis. Compared with VIX,
VVIX is more volatile. The range of variation of VVIX becomes particularly broad
when VIX is high. The statistics of VIX and VVIX from January 2007 to November
2014 are summarized in Table 2.1.

2.6 Empirical Results
In this section, we discuss the estimation results for VIX dynamics among different
models. The parameter estimations for the four models are summarized in Table
2.2, while the simulation results are shown in Table 2.3. For all of the proposed
models, the estimates of ρ are positive and around 0.52, which is similar to the
findings of [Kaeck and Alexander 2013] (ρ = 0.659 for the SVJ model in their
paper). As the parameter ςV enters into the drift of VIX, the estimation for θ
remains relatively low compared to the mean value of logVIX market data during
the same period. κPω is significantly larger than κV , reflecting the fact that the
volatility of VIX or VVIX is more volatile than VIX itself. We point out that to
determine the sign of µJy which cannot be detected using (2.6), we specify another
expression of VVIX from its definition and perform similar MCMC estimation for
test. The result indicates that µJy is significantly negative.

Figure 2.3 gives the estimated volatility processes of VIX for all four models.
As we use the VVIX index as a proxy for volatility, the four processes are similar.
The correlations between estimated spot volatility and VVIX for all four models
are 0.9781, 0.9782, 0.9822, and 0.9807, respectively. The average posterior volatility
values for the SV and SVJ models are slightly higher than those of the other two
models. This can be explained by the fact that the addition of jumps in volatility
reduces the demand on the volatility process.

Figure 2.4 shows the Q-Q plot of the residuals of VIX calculated by (2.23) for
all four models, and Figure 2.5 plots the time series form. Based on the upper-left
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panel in Figure 2.4, we can see that the SV model is misspecified, as it requires very
large shocks to the Brownian motion. This can also be seen based on the upper-left
panel in Figure 2.5. Compared to the other three models, the range of the residuals
for the SV model is significantly larger, and there are many large innovations.

From the two upper panels in Figure 2.4, we can see that the tail of the residuals
becomes slightly thin so SVJ model improves SV model better. Many of the big
Brownian shocks can be absorbed into the jump part. The estimated jump size in
VIX is reported in the upper-left panel in Figure 2.6.

However, from the simulation results in Table 2.3, we find that for both the
SV and SVJ models, there are one or more statistics whose p-values are out of
the [0.05, 0.95] range. In contrast, [Kaeck and Alexander 2013] also test the SV
and SVJ models (with normal jumps) and demonstrate that all of the p-values are
within the [0.05, 0.95] range. This shows that the addition of VVIX as the proxy
for the volatility of VIX helps detect an area for improvement in the stochastic
volatility of volatility model for VIX. We also show Figure 2.7, created using (2.24)
and which compares the residuals of the volatility processes among all four models.
The residuals of the SV and SVJ models are larger than those of the SVJJ-C and
SVJJ-S models.

Next we come to the SVJJ-C and SVJJ-S models. As mentioned above, the
residuals of the volatility processes for these two models perform better than those
of the SV and SVJ models. This shows the impact of jump on volatility. Figure 2.8
describes the estimated daily jump probability for the SVJ, SVJJ-C, and SVJJ-S
models. With the jump in volatility added, the jump occurs a bit more frequently.
We recall that for the SVJ model in which there is no jump in volatility, the jump
time is determined mainly by the information from the VIX index. For the SVJJ-C
and SVJJ-S models, however, we sample the jump time using either information or
signals from VIX and volatility (VVIX). As we assume that the jumps of VIX and
its volatility factor are determined by the same Poisson process, a large jump in
volatility may increase the jump probability. This means that not only does the
volatility jump, but also that it jumps more intensely than that of VIX. Return to
Figure 2.4, in which the bottom panels for SVJJ-C and SVJJ-S perform better than
the upper ones. This shows that the jump in volatility can also have an impact on
the dynamics of VIX. The channel of influence can be through moments of high
order or extreme values, as shown in Table 2.3.
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Unlike transient Brownian motion shocks, the influence of jump on volatility is
more persistent. After a positive or negative jump, volatility enters a new regime.
As the diffusion part of VIX, volatility continues to experience these effects for a
period of time. A simple empirical method for judging the influence of a jump on
volatility on a particular day is to compare the fluctuations within a period of VIX
data before and after the day of a jump. For example, on February 27, 2007, VIX
jumped from 11.15 to 18.31. Before this day, VIX had been very stable, positioned
around 11. However, after this turning point, VIX became more volatile with large
ups and downs ranging from 12.19 to 19.63 occurring frequently over the next 20
days. In fact, on February 27, the VVIX index jumped from 70.33 to 110.42. If we
calculate the average of the VVIX index for 20 days before and after the day of the
jump, the results are 72.54 and 96.55, respectively. This indicates that the volatility
shifted to a new and higher state and thus made the VIX index more active. This
effect cannot be achieved by a single Brownian shock but is instead caused by a
jump. Thus the SVJ model is also misspecified from empirical observation.

Figure 2.9 describes the jump in volatility for the SVJJ-C and SVJJ-S models,
respectively. The jump sizes are almost positive, with only a large negative jump in
the SVJJ-S models. Because of the mean-reverting property, volatility reduces to
its mean level through negative Brownian innovations after a large positive jump.
This indicates that the impact of a positive jump can be persistent and significant.

From Figure 2.8, we can observe that the SVJJ-C model’s the jump times are
clustered. This is extremely unlikely under the constant jump intensity assumption.
We can also see from Table 2.2 that the estimation of λ1 in the SVJJ-S model is
significant when it is above zero. These facts indicate that the SVJJ-S model is
superior to the SVJJ-C model, as it depicts the dynamics of VIX more accurately.
When stochastic volatility ω (t) enters into a relatively high state, more jumps
occur and affect the dynamics of VIX.

Table 2.4 reports the DIC value of the four models. We find the SVJJ-C and
SVJJ-S model outperform the SV and SVJ model which justify the role of the
jumps in volatility of VIX. However under this criterion SVJJ-C is better than
SVJJ-S. As pointed above the jump time is indeed stochastic instead of possessing
constant intensity. This suggest that a better specification of jump intensity may
be needed to describe the dynamics of VIX better.
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2.7 Conclusion
This paper discusses the specifications for stochastic volatility models of VIX using
information provided by VVIX. We construct a volatility proxy for VIX using
the VVIX index as the benchmark and study its role in improving the model
assumptions of VIX from empirical observations. Based on the joint behavior of
VIX and VVIX, we propose a double-jump stochastic volatility model for VIX. We
use the MCMC method to estimate and compare different nested models using daily
data on VIX and VVIX. Based on the results, we point out that the jumps in VIX
and volatility are essential and statistically significant, and analyze the impact of
the jumps on VIX dynamics. We show that the jump intensity is behaved stochastic
instead of being constant. However a better process to characterize the jump times
is still needed. The use of VVIX allows for the estimation of some Q-parameters.
Compared with richer dataset composed of VIX futures and options, the accuracy
of these parameters has potential for further improvement. In particular, we suggest
that in future research, the corresponding risk premia should be further specified.
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Table 2.1: Summary Statistics of VIX and VVIX

This table provides summary statistics for VIX and VVIX index from January 3, 2007, to November 26, 2014.

Mean Volatility Skewness Kurtosis Min Max
VIX 21.9101 10.3966 2.1241 5.7181 9.89 80.86

VVIX 85.9204 12.8226 0.8289 1.0079 59.74 145.12

Table 2.2: VIX Parameter Estimates

This table shows the parameter estimation results for the four models using VIX and VVIX index data from

January 3, 2007 to November 26, 2014. Four each parameter, we give the mean and the standard deviation of the

posterior. "SV" denotes diffusion model with no jumps. "SVJ" introduces jumps in VIX in the SV model with

constant jump intensity, "SVJJ-C" adds double jumps in VIX and its volatility in the SV model with constant

jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic in the SVJJ-C model.

SV SVJ-C SVJJ-C SVJJ-S

Mean Stddev Mean Stddev Mean Stddev Mean Stddev
κV 1.6800 0.5733 1.5765 0.5600 1.8611 0.5688 2.1093 0.5866
ςV -1.1869 0.7718 -0.8046 0.7673 -0.2702 0.8305 -0.1538 0.7820
θ 2.3500 0.4404 2.3090 0.4446 2.2704 0.3954 2.3312 0.3120

κPω 4.5162 1.0284 4.4308 0.9973 6.1132 1.0650 6.2849 1.0645
κQω 7.5104 0.4314 7.6866 0.4676 2.5996 0.2584 2.5674 0.1958
αω 3.8549 0.7807 3.7683 0.7540 4.0781 0.7882 3.7938 0.7308
ρ 0.5392 0.0161 0.5596 0.0141 0.5204 0.0169 0.4998 0.0190
σω 0.8560 0.0724 0.8207 0.0117 0.8848 0.0853 0.8461 0.0372
λ0 0.6550 0.0492 2.4295 0.1787 2.7557 0.1332
λ1 1.6086 0.1262

µJPy 0.1593 0.0220 0.1999 0.0279 0.1551 0.0171
µJy -0.0520 0.0037 -0.0556 0.0746 -0.0960 0.0306
σJy 0.1075 0.0172 0.1121 0.0132 0.1231 0.0108
µJPω 0.1872 0.0226 0.1430 0.0239
µJω -2.0084 0.0882 -1.2046 0.0547
σJω 0.1307 0.0165 0.1420 0.0161
σP 0.0599 0.0077 0.0592 0.0071 0.0563 0.0082 0.0612 0.0076
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Table 2.3: Simulation Results on VIX for Different Models

This table reports the p-values calculated by (2.25) for all the statistics of simulation results of VIX for different

models. It describes the average comparisons of the statistics of historical data and the simulation paths from

every given model. Very high or low p-values indicate the model’s inability to capture the VIX dynamics. "SV"

denotes diffusion model with no jumps. "SVJ" introduces jumps in VIX in the SV model with constant jump

intensity, "SVJJ-C" adds double jumps in VIX and its volatility in the SV model with constant jump intensity.

"SVJJ-S" assumes the jump intensity to be stochastic in the SVJJ-C model.

Data SV SVJ-C SVJJ-C SVJJ-S
stadev 0.4493 0.0670 0.3351 0.8593 0.3733
skewness 0.9005 0.1462 0.0359 0.2194 0.7479
kurtosis 0.7806 0.2453 0.0150 0.6250 0.7186

maximum 4.7558 0.0079 0.1383 0.6875 0.4744
minimum 2.3984 0.2418 0.6040 0.0769 0.6896
maxjump 0.2267 0.4897 0.1016 0.2805 0.6358
minjump -0.2422 0.0953 0.9539 0.7698 0.7509
avgmax10 0.1852 0.5697 0.1508 0.4308 0.2614
avgmin10 -0.1671 0.3262 0.9069 0.7996 0.5826
perc0.01 -0.1345 0.4271 0.8488 0.5005 0.6311
perc0.05 -0.0931 0.4504 0.4957 0.5048 0.6277
perc0.95 0.0928 0.5604 0.6182 0.8245 0.4581
perc0.99 0.1370 0.4478 0.0264 0.9379 0.1622

Table 2.4: DIC Model Comparison

This table reports the DIC value for alternative models. DIC consists of D which measures model fit and pD

which penalizes the number of the parameters. The smaller of DIC, the better the model is. "SV" denotes diffusion

model with no jumps. "SVJ" introduces jumps in VIX in the SV model with constant jump intensity, "SVJJ-C"

adds double jumps in VIX and its volatility in the SV model with constant jump intensity. "SVJJ-S" assumes the

jump intensity to be stochastic in the SVJJ-C model.

SV SVJ-C SVJJ-C SVJJ-S
D 6503.797 6273.394 5976.237 6023.068
pD 435.4473 553.4345 469.4931 512.1815

DIC 6939.244 6826.828 6445.73 6535.25
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Figure 2.1: Spot Volatility from VIX Estimation vs VVIX

The spot volatility in this figure is the estimated posterior volatility of logVIX in SVJ model only using the VIX

index itself. It shows a visual comparison of this volatility and the contemporaneous VVIX index
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Figure 2.2: VIX and VVIX Indices

This figure shows the time series of VIX and VVIX index from January 3, 2007 to November 26, 2014. Both of

them are mean-reverting and VVIX is at a significant higher level than VIX in terms of the range of values.
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Figure 2.3: Posterior Volatility of VIX for Each Model

The figures show the estimated paths of posterior volatility ω (t) for four models. All of them are highly correlated

with VVIX index. The level of the volatility in SV and SVJ models is slightly higher than that in SVJJ-C and

SVJJ-S models. "SV" denotes diffusion model with no jumps. "SVJ" introduces jumps in VIX in the SV model

with constant jump intensity, "SVJJ-C" adds double jumps in VIX and its volatility in the SV model with constant

jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic in the SVJJ-C model.
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Figure 2.4: Q-Q Plot of the Residuals

The figures show the Q-Q plot of the residuals calculated from each of the models using (2.23) with the estimated

parameters as input. SVJJ-C and SVJJ-S models perform relatively better than SV and SVJ models."SV" denotes

diffusion model with no jumps. "SVJ" introduces jumps in VIX in the SV model with constant jump intensity,

"SVJJ-C" adds double jumps in VIX and its volatility in the SV model with constant jump intensity. "SVJJ-S"

assumes the jump intensity to be stochastic in the SVJJ-C model.
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Figure 2.5: VIX Residuals

The figures show the time series of standard innovations or residuals of VIX calculated from the estimated

parameters using (2.24). "SV" denotes diffusion model with no jumps. "SVJ" introduces jumps in VIX in the SV

model with constant jump intensity, "SVJJ-C" adds double jumps in VIX and its volatility in the SV model with

constant jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic in the SVJJ-C model.
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Figure 2.6: Posterior Mean of Jumps in VIX

The figures show the time series of average jump sizes in VIX. "SV" denotes diffusion model with no jumps. "SVJ"

introduces jumps in VIX in the SV model with constant jump intensity, "SVJJ-C" adds double jumps in VIX and

its volatility in the SV model with constant jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic

in the SVJJ-C model.
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Figure 2.7: Volatility Residuals

The figures show the time series of standard innovations or residuals of volatility of VIX calculated from the

estimated parameters using . "SV" denotes diffusion model with no jumps. "SVJ" introduces jumps in VIX in the

SV model with constant jump intensity, "SVJJ-C" adds double jumps in VIX and its volatility in the SV model

with constant jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic in the SVJJ-C model.
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Figure 2.8: Estimated Jump Times for SVJ, SVJJ-C and SVJJ-S Models

The figures show the estimated jump probability of SVJ, SVJJ-C and SVJJ-S models. "SVJ" introduces jumps in

VIX with constant jump intensity and models the volatility using square root diffusion model, "SVJJ-C" introduces

double jumps in VIX and its volatility with constant jump intensity. "SVJJ-S" assumes the jump intensity to be

stochastic in the SVJJ-C model.
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Figure 2.9: Posterior Mean of Jumps in Volatility of VIX

The figures show the time series of average jump sizes in the volatility of VIX. "SVJJ-C" introduces double jumps

in VIX and its volatility with constant jump intensity. "SVJJ-S" assumes the jump intensity to be stochastic in

the SVJJ-C model.
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Chapter 3 |
Forecasting Bond Returns Us-
ing High-dimensional Model Se-
lection

3.1 Introduction
Prediction of bond risk premia based on the availability of macroeconomic fun-
damentals is a popular research topic in recent years, like described in Chapter
1, with the fast development of fundamental statistics, a vast of well performed
variable selection techniques have been developed, which enable us to facilitate the
research on excess bond returns forecast. With more tools in hand today, we can
indeed try to overcome the challenges like, trying to achieve a better performance
on variable selection from high dimensional dataset, trying to explore a stronger
predictive power(in-sample and out-of-sample) on excess bond returns and for a
better understanding of the determinants of bond risk premia, trying to recover
some nonlinear relationship which may benefit the prediction purpose besides the
linear structure between excess bond returns and macroeconomic fundamentals,
as well as trying to propose a robust procedure of macro variables selection for
predicting bond risk premia.

In this paper, we will introduce a linear variable selection framework and a
nonlinear variable selection framework for ultrahigh-dimensional dataset, aiming to
select important variables with significant forecast power on bond risk premia, as
well as improving both the prediction accuracy for excess bond returns and model
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interpretability in this high dimensional setting. we will try to construct several
different variable selection approaches based on the linear and nonlinear variable
selection frameworks we proposed. In addition, the same dataset considered in [Lud-
vigson and Ng 2009a], and [J.-z. Huang and Shi 2011], a panel of 131 macroeconomic
variables as well as their lags up to seven will be used in our analysis, it is worth to
mention that, the data analysis in our paper is an initiated comprehensive study
on ultrahigh-dimensional macroeconomic series. Like the analysis in this paper,
high-dimensional data analysis has now become increasingly frequent and necessary
in finance, moreover, one even more important challenge facing both researchers
and practitioners nowadays is the tractability of ultrahigh-dimensional data, where
the number of predictors, p, is usually much larger than the sample size n, (p� n)-
namely, log p = O(nα) for some α > 0. The macroeconomic series associated with
their lags analyzed in our study falls into the ultrahigh-dimensional setting as
introduced. Considering the issues of computational expediency, statistical accu-
racy and algorithmic stability, we will incorporate two newly developed statistical
modeling techniques for dimension reduction and variable selection: Screening
and Regularization. In our variable selection approaches, screening procedure is
performed first to remove as many irrelevant variables as possible in order to reduce
the dimensionality from ultrahigh p to a relatively large-scale d which is less than
n, as such, the screening procedure can dramatically reduce the computational
complexity. A benefit of the screening methods applied in our analysis is that all
of them enjoy a sure screening property, that is all truly important predictors can
be selected with probability approaching one as the sample size goes to the infinity.
After the reduction of the predictors’ dimension to a relative large-scale d, which is
less than n, well-established regularization methods for variable selection will be
used to simultaneously select significant variables and estimate statistical effects of
those selected variables. Regularization techniques can improve both the prediction
accuracy and model interpretability compared to dynamic factor analysis used in
[Ludvigson and Ng 2009a], and like the sure screening property shared by screening
techniques, regularization techniques possess an oracle proper, which states the
variable selection procedure in regularization is performed as if the true underlying
model is given in advance. Compared to [Ludvigson and Ng 2009a], where dynamic
factor analysis is used to achieve dimension reduction, the principal components
constructed are all linear combinations of all the underlying factors, maybe some
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predictors are irrelative to the bond risk premia, as is criticized in [J.-z. Huang
and Shi 2011], our approaches can outperform their work by the improvement
of the forecast accuracy as well as the interpretability of the predicting model
constructed. While in [J.-z. Huang and Shi 2011], for the purpose of dimension
reduction, a specific regularization method, supervised adaptive group lasso, is
performed, where they divide the set of 131 macro series into eight subgroups first,
then perform lasso regularization separately to the macro factors along with their
lags in each individual group, since regularization can not deal with the data when
predictor dimension p is greater than sample size n, finally, group level lasso is
performed on the reduced subgroups and complete the variable selection procedure.
Compared to their work, the advantage of our screening procedure lies in that it
can handle the ultrahigh-dimensional macroeconomic series directly, and with the
guarantee of sure screening property, our approach outshines the proposed method
in [J.-z. Huang and Shi 2011]. On the other hand, as is pointed in many statistics
literature, lasso regularization, as a penalized least square with the application
of L1 penalty, the resulted penalized estimator from lasso approach is biased and
increases the model bias, especially for the large true coefficients. However, in our
analysis, SCAD penalty is utilized, which is short for Smoothly Clipped Absolute
Deviation, satisfies all the important conditions of a good penalty function as
proposed in [Fan and R. Li 2001], namely, unbiasedness, sparsity and continuity.
Based on the appealing properties, this concave penalty can give us an unbiased
estimator with oracle property in the end. To sum, because of the advantages
of our statistics methodology, we can construct some predicting models that can
improve the real-time predictive power on the excess bond returns significantly
then the already existing macro-based return factors.

To be brief in our study, we will perform two kinds of screening procedures,
Sure Independence Screening (SIS) and Feature Screening via Distance Correlation
(DCSIS), the regularization method used here will be the penalized least square
with concave penalty Smoothly Clipped Absolute Deviation (SCAD). In our linear
variable selection framework, an outstanding approach for prediction purpose is
SIS → SCAD, for ease of reference, the single macro factor constructed from this
approach is referred as G1. In the nonlinear variable framework, between screening
and regularization steps, we perform a nonlinearization on the macroeconomic
factors selected from screening procedure, the nonlinearization technique considered
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in our study is B-spline expanding. Similarly, like linear framework, we have some
well-performed approaches, including DCSIS → BSPLINE → SCAD, we refer the
constructed single macro factors from this approach as G2, respectively. Compared
to the factors proposed in [Cochrane and Piazzesi 2005] (CP hereafter), [Ludvigson
and Ng 2009a] (LN hereafter) and [J.-z. Huang and Shi 2011] (SAGLasso hereafter),
which achieve the prediction on 2- to 5-year maturity excess bond returns with in-
sample R2 up to 0.357, 0.253, and 0.43 respectively, the in-sample performance(R2)
of our proposed factors G1, G2 are up to 0.587, 0.664, respectively. Under a careful
analysis when incorporating LN factor, we find all of our proposed factors can
subsume LN, and if augmented by CP, the forecasting in-sample R2 increase to
0.606 and 0.689. In addition to the impressive in-sample performance, both of
G1, G2 exhibit a surprisingly much stronger out-of-sample predictive power than the
earlier macro-based return factors, in the measure of out-of-sample R2 introduced
in [Campbell and Thompson 2008], which range up to 0.403, 0.439, 0.440, 0.444
and 0.482, while out-of-sample R2 of CP, LN and SAGLasso are up to 0.274, 0.189
and 0.278. In general, we can draw the conclusion that, the proposed approaches
in our study can outperform the existing literature in the sense of bond risk premia
forecast, regardless in sample and out of sample.

As a summary, in this paper, we reconsider the link between macroeconomic
series and bond risk premia, compared to existing literature, the important in-
novations of our study lie in the following aspects, (1) We introduce a linear
variable selection framework and a nonlinear variable selection framework for
ultrahigh-dimensional dataset. (2) Under the linear and nonlinear variable selec-
tion frameworks, we propose different variable selection approaches which consist
of different type of combinations among feature screening, nonlinearizaion and
regularization. (3) Corresponding to different approaches, we construct different
single predictive macro factors respectively, not limit to achieving a much better in
sample performance than ever, all of the macro factors we construct can improve
the real-time forecast power on the excess bond returns significantly then the
already existing macro-based factors as well. (4) Based on the nonlinearization
analysis and appealing forecast performance of our new factors, we realize the
nonlinear effect of the macroeconomic predictors on excess bond returns, namely,
prediction superiority of the nonlinear structure between excess bond returns and
macroeconomic fundamentals compared to simple linear structure. (5) Through a
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horse race comparison of different approaches, we propose a robust well-performed
macro-based predictive model on bond risk premia. (6) A comprehensive analysis
on ETF dataset is performed, where in-sample and out-of-sample performance on
ETF returns prediction reemphasizes the robustness of the proposed approach.

The organization of the paper is as follows: The next section is mainly about
methodology description, introduces the basic set up of our problem, model spec-
ification, describes all the advanced statistical techniques used in our analysis,
and gives a detailed discussion on the construction of several variable selection
approaches and how to construct different macro factors to predict bond risk premia.
Section 3 describes the data used in our analysis. In section 4, based on our linear
and nonlinear variable selection frameworks, empirical evidence on in-sample and
out-of-sample forecast performance will be presented. In section 5, a comprehensive
analysis based on our proposed approaches is performed in ETF dataset. Section 6
concludes.

3.2 Empirical Method
In this section, basic set up for the analysis goes first, and then model specification
is shown, where the two kinds of models considered in our analysis, linear model
and additive model are described. Following model specification, we introduce our
linear variable selection framework and nonlinear framework based on the models
we consider. Three important building blocks for our frameworks, screening, non-
linearization and regularization are reviewed for the ease of elaboration . Under the
constructed frameworks, different linear and nonlinear variable selection approaches
are given as well as discussion on how to construct single predictive macro factors
to improve forecast power on excess bond returns.

3.2.1 Basic Setup

Following [Fama and Bliss 1987], continuously compounded annual log returns on
an n-year zero-coupon Treasury bond in excess of the annualized yield on a one-year
zero-coupon Treasury bond is used. With the same notations used in [J.-z. Huang
and Shi 2011], from the period t = 1, . . . , T , the excess return is defined as
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rxnt→t+12 = rnt→t+12 − y
(1)
t = ny

(n)
t − (n− 1)y(n−1)

t+12 − y
(1)
t (3.1)

where rnt→t+12 is the one-year log holding-period return on an n-year bond
purchased at month t and sold as a (n− 1)-year bond at month t+ 12, y(n)

t is the
month-t log yield on the n-year bond.

3.2.2 Model Specification

In our analysis, we will consider two kinds of models, linear model and additive
model, additive model serves as our nonlinear extension beyond linear case.

3.2.2.1 Linear Model

Following [Ludvigson and Ng 2009a] and [J.-z. Huang and Shi 2011], the linear
predictive regression in our analysis is defined as follows:

rxnt→t+12 = β0 + β1F
1
t + · · ·+ βpF

p
t + γ1Z

1
t + · · ·+ γqZ

q
t + et+12 (3.2)

where F 1, . . . , F p are macroeconomic factors, maybe predetermined, such as GDP
growth or CPI, etc. Z1, . . . , Zq are other factors. But in our analysis, we will
never predetermine which macroeconomic factor to be incorporated into our final
predictive model, our proposed approaches are applied to achieve variable selection,
which is an important contribution of this paper.

3.2.2.2 Additive Model

The nonlinear model considered in our study is additive model, additive model (AM)
is a nonparametric regression method suggested by [Friedman and Stuetzle 1981],
as a restricted class of nonparametric regression models built from one-dimensional
smoother, it is less affected by the curse of dimensionality than e.g. a p-dimensional
smoother, in addition, compared to a standard linear model, AM is more flexible,
while being more interpretable than a general regression surface at the cost of
approximation errors. Definition of additive model gives as follows:

rxnt→t+12 = f1(F 1
t ) + · · ·+ fp(F p

t ) + g1(Z1
t ) + · · ·+ gq(Zq

t ) + et+12 (3.3)
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where F and Z are predictors introduced as above, f1, . . . , fp and g1, . . . , gq are
unknown smooth functions fit from the data.

3.2.3 Variable Selection Framework

Hereafter, for ease of explanation, we will denote the excess bond returns rxnt→t+12 as
variable Y , and denote macroeconomic factors F 1, . . . , F p as a predictor matrix X.
Detailed description of our proposed variable selection frameworks are as follows.

3.2.3.1 Linear Variable Selection Framework

Based on the standard linear model, we will divide our linear variable selection
framework from ultrahigh-dimensional dataset into two stages. First, we perform
the well-established screening techniques to dataset X, in the screening procedure,
we remove as many irrelevant variables to Y as possible in order to reduce the
dimensionality from ultrahigh p(dimension of predictor matrix X) to a relatively
large-scale d which is less than n(sample size), as such, the reduced predictor
matrix X∗ is tractable by the methodology applied in the second stage. After
the reduction of the predictor’s dimension in the first stage, the newly developed
regularization techniques for high-dimensional variable selection will be utilized
to simultaneously select significant variables and estimate statistical effects of
those selected variables. It is worth mentioning that regularization technique as a
modern statistical contribution can improve both the prediction accuracy and model
interpretability, which is guaranteed by the oracle property introduced in [Fan and
R. Li 2001]. As a conclusion, the two-stage linear variable selection framework
from from ultrahigh-dimensional dataset has the structure: SCREENING →
REGULARIZATION. In the following subsection of 2.4 to 2.6, we will specify the
screening techniques and regularization techniques used in our analysis.

3.2.3.2 Nonlinear Variable Selection Framework

Similar to the linear variable selection framework, we still have the stages of
screening and regularization, what’s more, under the nonlinear framework, we
need incorporate the stage of nonlinearization on the macroeconomic variables
between screening and regularization. In detail, after the screening stage, natural
spline expanding or B-spline expanding to our selected variable matrix X∗ are
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performed, which results in an augmented predictor space X∗∗, linear combination
of the enlarged predictors in X∗∗ is an estimator of the smooth function components
introduced in the additive model definition, of course, each factor in the augmented
predictor space X∗∗ can be seen as a nonlinear trend of the corresponding macroe-
conomic series in X∗. With the augmented predictor space, regular regularization
techniques are applied, and finish the construction of the final predicting model.
From empirical evidence of existing literature and empirical evidence on our in-
sample and out-of-sample analysis, we will only consider natural spline expanding
and B-spline expanding up to second order. In summary, our nonlinear variable
selection framework from ultrahigh-dimensional dataset possesses the structure:
SCREENING → NONLINEARIZATION → REGULARIZATION. However, for
the purpose of checking whether variables selected under linear framework has
nonlinear effect on excess bond returns, we have another variation of the above
nonlinear framework proposed, SCREENING → REGULARIZATION → NON-
LINEARIZATION → REGULARIZATION. which can be seen as an nonlinear
extension of the linear framework in Section 2.3.1. For ease of understanding,
following gives a brief review on the screening, nonlinearization and regularization
techniques used in our analysis.

3.2.4 Screening

In our analysis, we consider two types of screening methods, Sure Independence
Screening (SIS) and Feature Screening via Distance Correlation Learning (DCSIS),
a brief description of the two screening approaches is as followes:

A. Sure Independence Screening (SIS), proposed by [Fan and Lv 2008], is a
variable screening procedure under ultrahigh-dimensional setting, via Pearson
correlation comparison, SIS reduces the ultrahigh dimension down to a relative
large scale. Consider the linear regression model:

Y = X ∗ β + ε (3.4)

where Y denotes average excess returns in our case, and X are the macroe-
conomic series along with their lags. Under sparsity assumption, we denote
M∗ = {1 ≤ j ≤ p, βj 6= 0} as the true model, and |M∗| denotes the true
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model size. If we denote the standardized columnwise design matrix as Xs,
and define ω = (ω1, ω2, · · · , ωp)T as

ω = XT
s ∗ Y (3.5)

then ωj is the marginal Pearson correlation between predictor Xj and Y ,
scaled by the deviation of Y , moreover, ωj can also be seen as the least
squares estimated coefficient of βj , as a result, it is reasonable to characterize
the marginal relationship between Xj and Y by the magnitude of |ωj|. As
for the practical implement of SIS, calculation of vector ω is conducted first,
and then rank all the predictors according to the magnitude of |ωj|, i.e. we
select all the predictors from the subset:

M̂dn = {1 ≤ j ≤ p : |ωj| is among the first dn largest of all} (3.6)

In practice, we choose dn in the level of O( n
logn), under some regularity

conditions, [Fan and Lv 2008] gives

P (M∗ ⊆ M̂dn)→ 1, as n→∞ (3.7)

As a result, it demonstrates that SIS can reduce the ultrahigh dimensionality
to a relatively large scale dn � n, while the reduced model still contains all
the true predictors with an overwhelming probability, to be specific, the truly
important predictors can be selected to M̂dn with probability approaching
one as sample size tends to infinity, i.e. sure independence property by [Fan
and Lv 2008] holds.

B. Feature Screening via Distance Correlation (DCSIS), proposed by [R. Li,
Zhong, and L. Zhu 2012] is a new strategy which employs the measure of
independence to efficiently detect linearity and nonlinearity between predictors
and constructs feature screening procedure for ultrahigh-dimensional data.

Unlike other correlation coefficients defined for two random variables, distance
covariance is defined from two random vectors, which are allowed to have
different dimensions. For two random vectors U ∈ Rq1 and V ∈ Rq2 , the
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distance covariance is defined by

dcov2(U, V ) =
∫
Rq1+q2

||φU,V (t, s)− φU(t)φV (s)||2ω(t, s)dtds (3.8)

where φU,V (t, s) is the joint characteristic function between U and V , φU(t)
and φV (s) are corresponding marginal characteristic functions, ω(t, s) =
{cq1cq2||t||1+q1

q1 ||s||
1+q2
q2 }

−1, with cd = π(1+d)/2/Γ{(1 + d)/2}. Thanks to the
contribution of [Szekely et al. 2007], dcov2(U, V ) becomes data tractable.
Where

dcov2(U, V ) = S1 + S2 − 2S3 (3.9)

S1 = E(‖U − Ũ‖‖V − Ṽ ‖) (3.10)

S2 = E(‖U − Ũ‖)E(‖V − Ṽ ‖) (3.11)

S3 = E{E(‖U − Ũ‖|U)E(‖V − Ṽ ‖|V )} (3.12)

the sample counterparts are

d̂cov
2 = Ŝ1 + Ŝ2 − 2Ŝ3 (3.13)

Ŝ1 = 1
n2

n∑
i=1

n∑
j=1
‖Ui − Uj‖‖Vi − Vj‖ (3.14)

Ŝ2 = 1
n2

n∑
i=1

n∑
j=1
‖Ui − Uj‖

1
n2

n∑
i=1

n∑
j=1
‖Vi − Vj‖ (3.15)

Ŝ3 = 1
n3

n∑
i=1

n∑
j=1

n∑
l=1
‖Ui − Ul‖‖Vj − Vl‖ (3.16)

The estimated distance correlation between U and V is

d̂corr(U, V ) = d̂cov(U, V )/
√
d̂cov(U,U)d̂cov(V, V ) (3.17)

[Szekely et al. 2007] theoretically proved that dcorr(U, V ) = 0 if and only
if U and V are independent, in addition, dcorr(U, V ) is a strictly increasing
function of the absolute value of Pearson correlation of U and V . Motivated
by the appealing properties of distance correlation, [R. Li, Zhong, and L. Zhu
2012] proposed DCSIS procedure to rank the importance of predictors by the
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marginal utility:
ω̂j = d̂corr

2
(Xj, Y ) (3.18)

Under some regularity conditions, Li also proves the proposed feature screening
procedure (DCSIS) enjoys the sure screening property, as introduced in SIS
section. In addition, DCSIS is asymptotically equivalent to the SIS when
(U, V ) follows a bivariate normal distribution. Moreover, since the DCSIS can
be used for screening features without specifying a regression model between
the response and the predictors, it can be seen as a model-free extension of
SIS. To summarize, similar to SIRS, model-free is a very appealing feature
in that it may be very difficult to specify an appropriate regression model
for the actual model in ultrahigh-dimensional setting, this virtue makes the
proposed procedure robust to model mis-specification.

3.2.5 Nonlinearization

In our study, we mainly perform one type of nonlinearization techniques, B-spline
expanding.

3.2.5.1 B-Spline Expanding

B-spline, or basis spline, is a spline function that has minimal support with respect
to a given degree, smoothness, and domain partition. Any function of given degree
can be expressed as a linear combination of B-splines of that degree. In B-spline
expanding procedure, the domain is subdivided by knots(some predetermined points
in the domain), and each B-spline basis function is non-zero on a few adjacent
subintervals and, namely, B-spline basis functions are quite "local".

In our analysis, we choose a specific macroeconomic factor X∗j (after screening
stage, and for the consistency with the notation used above) as an example to
clarity the B-spline expanding on X∗j .

In our approach, denote t0 = miniX∗ij, and tk = maxiX∗ij, we choose equidis-
tance partition in the range of X∗j , i.e. our partition sequence is given as T = {t0 <
t1 < · · · < tk}, the value of k is predetermined. The ti’s are called knots, the set T
the knot vector, and the half-open interval [ti, ti+1) is the i-th knot span.

To define B-spline basis functions, we need one more parameter, the degree of
these basis functions, p, in our analysis, second order B-spline functions are applied,
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where p = 2. The i-th B-spline basis function of degree p, written as Ni,p(t), is
defined recursively as follows:

Ni,0(t) = I(ti≤t<ti+1) (3.19)

Ni,p(t) = t− ti
ti+p − ti

Ni,p−1(t) + ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t) (3.20)

Above is usually referred to as the Cox-de Boor recursion formula. Our target is
the calculation of Ni,2(t), after the evaluation of Ni,2(t) on each points in series X∗j ,
we get X∗∗j = Ni,2(Xj), then X∗∗j is a B-spline expanding basis of X∗j , in practice,
we can predetermine the number of basis df for the B-spline expanding, and in
our study, the relation df = k + 1 holds. As a summary, for each macro series X∗j ,
whenever the knots are predetermined, or already relatively fixed by the quantiles
of X∗j , the basis function Ni,p(t) has nothing to do with the specific values in the
series X∗j , by evaluating the df basis functions Ni,p(t), where i = 1, 2, · · · , df , we
can construct df ’s B-spline basis, and each one can be seen as a nonlinear trend
of X∗j . All of the B-spline basis consist the final augmented nonlinear predictor
matrix X∗∗

3.2.6 Regularization

As is introduced in Wikipedia(https : //en.wikipedia.org/wiki/Regularization(mathematics)),
in mathematics, statistics and particularly in the fields of machine learning and
inverse problem, regularization refers to a process of introducing additional infor-
mation in order to solve an ill-posed problem or to prevent overfitting.

In general, a regularization term R(f) is introduced to a general loss function:

min
f

n∑
i=1
V(f(Xi), Yi) + λR(f) (3.21)

where V is a loss function describing the cost of predicting f , such as square loss or
hinge loss. λ controls the importance of the regularization term, R(f) is typically
a penalty on the complexity of f , such as restriction for smoothness or bounds on
the vector space norm. In our setting, we consider a specific form of regularization:
penalized least squares problem, and we focus on the discussion about penalties.

82



Consider the linear regression model,

Y = Xβ + ε (3.22)

where X = (x1, · · · , xn)T , Y = (y1, · · · , yn)T , and ε is an n-dimensional noise vector.
The penalized least squares(PLS) problem considered is given as followed,

min
β∈Rp
{ 1

2n‖Y −Xβ‖
2 +

p∑
j=1

Pλ(|βj|)} (3.23)

where ‖ · ‖ denotes the L2-norm, Pλ(| · |) is the penalty function, λ is the regularity
parameter that controls the size of the penalty. The PLS estimator β̂PLS is obtained
from the optimization problem (31), if there is no penalty, the resulting estimator
is just equal to the ordinary least squares estimate β̂OLS.

In the existing literature, most of the well-known penalty functions fall into
the category of Lq penalties, with the form Pλ(|βj|) = |βj|q, for example, Best
Subset Selection corresponds to L0 penalty, Ridge Regression proposed by [Hoerl
and Kennard 1970] uses L2 penalty, Bridge Regression proposed by [Frank and
Friedman 1993] corresponds to Lq penalty with 0 < p < 1. The famous penalty:
Least Absolute Shrinkage and Selection Operator (LASSO) proposed by [Tibshirani
1996] falls into the category of Lq as well, where L1 penalty is applied. LASSO
performs better than other Lq form penalties, as it can shrink some coefficients to
zero exactly and results in a sparse model, for the predicting accuracy as well as
interpretability, a significant improvement is shown in LASSO approach, this is the
reason that LASSO is chosen in [J.-z. Huang and Shi 2011].

However, there are still some shortcomings for Lq penalty, even for LASSO ap-
proach. For example, best subset selection can be used to conduct variable selection,
but the resulting set of selected predictors is unstable, and computation is often
extensive. Ridge regression doesn’t possess the variable selection feature(shrinking
the coefficient of irrelevant predictor to 0), even though it can shrink the estimated
coefficients and make the model stable. LASSO is better than best subset selection
and ridge regression, which possesses variable selection feature and can shrink the
estimation, but the resulting estimator is biased even for large true coefficients.
Based on the unsatisfactory fact, Fan and Li (2001) gives the three important
properties which should be satisfied in a good penalty functions,
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1. Unbiasedness: The penalized estimator should be nearly unbiased to reduce
model bias, especially for the large true coefficients.

2. Sparsity: The penalized estimator can automatically set small estimated
coefficients to zero to achieve variable selection and reduce model complexity.

3. Continuity: The penalized estimator is continuous in the data in the sense
that it can avoid instability in model prediction.

To construct a penalty satisfying all the conditions mentioned above simulstaneously,
[Fan and R. Li 2001] introduced smoothly clipped (SCAD) penalty, whose derivative
is given by

p
′

λ(t) = λ{I(t ≤ λ) + (aλ− t)+

(a− 1)λ I(t > λ)} (3.24)

where pλ(0) = 0, and a = 3.7 is used(suggested by a Bayesian argument), SCAD
takes off at the origin as the L1 penalty and then gradually levels off.

There are also some good penalties in the sprit of SCAD, like minimax concave
penalty (MCP) proposed by [C.-H. Zhang et al. 2010], which contribute a lot to the
research in regularization, In this paper, for the ease of comparison and analysis,
SCAD is applied and incorporated to our variable selection framework.

3.2.7 Approaches Considered in Our Study

Under linear variable selection framework from ultrahigh-dimensional dataset, we
consider the following two-stage approach:

• SIS → SCAD

And under nonlinear variable selection framework, we mainly consider the following
approach:

• DCSIS → Bspline expanding → SCAD

SIS and DCSIS denote the specific method used in the screening stage, Bspline
expanding means B spline expanding on the predictors selected from screening
stage, SCAD denotes the regularization stage, where we always use SCAD penalty
in our study.
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3.2.8 Construction of Single Predictive Macro Factors from Dif-
ferent Approaches

This subsection is dedicated to clarify the construction procedure of the single
predictive macro factors under different approaches proposed above.

For linear approaches, we take SIS → SCAD as an example to give a detailed
description. Before the implement of our algorithms, we calculate the average excess
return (the bond market return), arxt→t+12 = 1

4
∑5
n=2 rx

n
t→t+12, which serves as the

dependent series. For the independent predictors, the panel of 131 macroeconomic
series matrix, we incorporate their lags up to seven, the enlarged predictor dataset
matrix of n by p is named by X, where n is the sample size, in our data set described
in next section, equals 528, and p is the dimension of predictor space, in our case,
it equals 1048. Dataset X falls into the category of ultrahigh-dimensional setting.
In the first stage, screening stage, we perform SIS (Sure Independence Screening)
to the predictor matrix X, and screen out a large portion of exogenous explanatory
variables (candidate predictors), such that reduce the predictors’ dimension to
a relative large-scale d, which is less than n. Usually, according to [Fan and Lv
2010], d should be in the level of O( n

logn), in our analysis, we set d = c ∗ ( n
logn),

where c takes the values of 1, 1.5, 2, 2.5 and 3. The selected predictors from
screening stage consist the predictor matrix X∗, which is n by d, where d < n,
the reduced predictor matrix X∗ is tractable by the well-established regularization
techniques, in our study, we will perform SCAD penalty to guarantee the unbiased
property. Of course, the application of regularization still takes lots of effort, since a
suitable tuning parameter needs to be chosen, in our study, we apply the parameter
chosen criteria of Bayesian information criterion(BIC) by [Schwartz, 1978]. After
the second stage, we have picked up all the important predictors needed in the
final predicting regression model, we denote it as X̃, if we perform standard linear
regression of rx2

t→t+12, rx3
t→t+12, rx4

t→t+12, rx5
t→t+12 as well as arxt→t+12 on X̃, we

will result in our final predicting model, which correspond to 2- to 5-year maturity
excess bond return predicting regression model. Moreover, the linear regression
estimator on arxt→t+12,

ârxt→t+12 = X̃ ∗ β̃ (3.25)

serves as the single macro predicting factor extract from SIS → SCAD approach.
Other approaches under linear framework are more or less the same, except that
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we perform different types of screening methods in the first stage.
For nonlinear approaches, we take DCSIS → Bspline expanding → SCAD as

an example, similar to linear approaches, we use the same average excess bond
return as dependent variable, and macroeconomic series associated with their lags
up to seven as initial predictors. After the fist stage work, screening, we shrink the
predictor space into the same scale as in linear approaches, which result in a matrix
named by X∗, now, the difference between linear and nonlinear approaches appears,
following screening stage, we perform second order Bspline expanding to each
predictor in matrix X∗, and form an augmented predictor space X∗∗, each series in
X∗∗ is a nonlinear trend of the corresponding series in X∗, the linear combination
of series in X∗∗ serves as an estimator of the additive(nonlinear) model introduced
above. Next stage is the same as that in linear case, we perform regularization
on matrix X∗∗ with SCAD penalty, and complete the final variable selection, each
selected factor is a nonlinear version of the macro series or their lags. As for the
construction of single predicting macro factor, the same procedure as that in linear
approaches applies here.

3.3 Data Description

3.3.1 Macroeconomic Time Series

For the ease of comparison with the existing literature, we use the same macroe-
conomic variables over the time period January 1964 to December 2007 as that
in [J.-z. Huang and Shi 2011; Duffee 2011] and [Ludvigson and Ng 2009a]. The
macro data set we use consists 131 monthly macroeconomic time series, which
have been transformed to induce stationarity initially. Macro data set represent 15
broad categories: real output and income; employment and hours; real retail, man-
ufacturing and trade sales; consumption; housing starts and sales; real inventories;
orders; commercial credit; stock indexes; exchange rates; interest rates and spreads;
money and credit quantity aggregates; inflation indexes; average hourly earnings;
and miscellaneous.
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3.3.2 Zero-coupon Treasury Bond Return

The bond return data are taken from the Fama-Bliss dataset available from the
Center for Research in Securities Prices (CRSP), and contain observations on
one- through five-year zero coupon U.S. Treasury bond prices spanning the period
January 1964 to December 2007. Based on the monthly prices, we construct annual
excess returns, where annual returns are constructed by continuously compounding
monthly return observations, which has been shown more predictability of the
annual excess returns rather than monthly excess returns.

3.3.3 ETF Dataset

In the study of ETF dataset, the iShares Treasury Bond ETF managed by Black-
Rock is analyzed, in specific, prices of the iShares 1-3 Year Treasury Bond ETF
with ticker SHY(1 yr - 3 yr), iShares 7-10 Year Treasury Bond ETF with ticker
IEF(7 yr - 10 yr) and iShares 20+ Year Treasury Bond ETF with ticker TLT(20+
yr) are utilized, where SHY seeks to track the investment results of an index
composed of U.S. Treasury bonds with remaining maturities between one and three
years, IEF tracks the investment results of an index composed of U.S. Treasury
bonds with remaining maturities between seven and ten years and TLT tracks the
investment results of an index composed of U.S. Treasury bonds with remaining
maturities greater than twenty years. After computing the annualized log quarterly
returns, excess returns are computed from these returns by subtracting the CRSP
Riskfree Rates for three-month tenors, respectively, the average of bid and ask yields
provided in the Riskfree Rates file are used. Excess returns and macroeconomic
variables are over the time period August 2002 to April 2014.

3.4 Empirical Analysis
In this section, we extract important macro factors from the 131 monthly macroe-
conomic time series based on the proposed approaches, with the constructed single
macro factors, we examine their predictive power on the excess bond returns. Sec-
tion 4.1 clarifies our procedure of analysis, both the in-sample and out-of-sample
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case, where we give a detailed description of the data analysis. Section 4.2 reports
the performance of our selected factors from the 15 approaches discussed above,
including the case of in-sample and out-of-sample, since we mainly stress on the
real time prediction, we will focus on the comparison of the out-of-sample per-
formance and give a ranking on the out-of-sample forecast ability. In section 4.3,
after choosing the top 5 approaches with the best out-of-sample forecast ability,
we construct the corresponding single macro factors and examine their in-sample
performance, with the incorporation of CP’s and LN’s single factors for the ease
of comparison purposes, we investigate whether our new factors can capture any
information about bond risk premia that is not contained in CP and LN factors.
In Section 4.4 we examine the out-of-sample forecasting performance of our single
factors considered in Section 4.3 and see whether our single macro factor has a
significant incremental predictive power over the existing macro-based factors, from
the out-of-sample results we will explain the nonlinear effects of the macro data
on excess bond returns prediction, and finally we propose a robust approach for
variable selection and forecast. In Section 4.4, we conduct a comprehensive analysis
on ETF dataset, and show the methods proposed in the draft have some forecast
power on quarterly excess bond returns of ETF as well.

3.4.1 Procedure of the Analysis

This subsection describes the procedure of our in-sample analysis and out-of-sample
analysis.

For in-sample analysis stage, we will apply our full sample set (from 1964:1
to 2007:12) to the proposed variable selection approaches in section 2.7, in detail,
corresponding to different approaches, different combinations of screening, nonlin-
earization(if needed, like in nonlinear approaches) and regularization are performed.
Each approach results in a set of macro variables, which serves as the final variable
selection output. Of course for the approaches in the nonlinear framework, we also
extract some nonlinear-formed macro variables. With the selected variables form a
specific approach, we can construct the single macro predicting factor according
to the description in Section 2.8 and check its in-sample performance on the full
sample level, or we can just consider the multivariate regression of the excess bond
returns on the variables selected in this approach. Same in-sample analysis can be
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carried out for different approaches. As a summary, we extract important macro
variables for different approaches, construct single macro predicting factors and
conduct the regression analysis using the full sample of data in our in-sample
analysis stage.

For out-of-sample analysis stage, we divide the full sample into training portion
and testing portion. In detail, for the full sample which spans from 1964:1 to 2007:12,
we treat the period of 18 years from 1964:1 to 1981:12 as the initial estimation
period (dependent variables from 1965:1 to 1981:12, independent variables from
1964:1 to 1980:12), and the rest data serves as the testing portion, examination of
the real time forecast performance (out-of-sample performance) is conducted on
the time period between 1982 and 2007. This procedure involves fully recursive
factor estimation and parameter estimation using data only through time t for
forecasting at time t + 1. For example, in the month t = R, we would like to
forecast the values of {rx(n)

R→R+12, n = 2, · · · , 5}, the available monthly observa-
tion macro series are {Xt, t = 1, 2, · · · , R} and the available excess bond returns
are {rx(n)

t→t+12, n = 2, · · · , 5, t = 1, 2, · · · , R− 12}, for each approach, with the
selected variables from in-sample stage, we can use the important predictors to
forecast one-step ahead yearly excess bond returns. For t = R+1, our available data
set is augmented by incorporating the new observation of month R, and we repeat
the same exercise on the month R+ 1 forecast. In our analysis, we also incorporate
the out-of-sample performance of CP factor(from [Cochrane and Piazzesi 2005])
and LN factor(from [Ludvigson and Ng 2009a]) as a benchmark.

3.4.2 Evidence of the Group Macro Factors from Different Ap-
proaches

In this subsection, we conduct ultrahigh-dimensional variable selection based on
the 15 different approaches discussed above, as well as in sample regression analysis
and out of sample real time forecast examination. But it is worth mentioning
that, in the analysis of this subsection, we don’t perform single macro factors
construction, in the stage of in sample analysis, we perform multivariate regression
of the excess bond returns on the selected variables from each approach, and as
for the real time forecast examination, we also use the set of selected variables
instead of single predictive factor to achieve recursive forecast, that is the reason
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we name this section as evidence of the group macro factors instead of evidence of
the single macro predictive factors. For the ease of explanation, as discussed before,
we divide all the 15 approaches into two different categories, approaches under
linear framework and approaches under nonlinear framework. In our evidence of
the group macro factors, not limit to the in-sample and out-of-sample performance
are reported, according to the comparison among the out-of-sample performance
(out-of-sample R squared) of different approaches, we also present the performance
ranking, over all the approaches considered as well as ranking within each group,
namely, linear approach group and nonlinear approach group. Detailed results are
reported in Table 2.

From Table 2, based on the out-of-sample performance ranking across all the
approaches proposed, the 2nd best approach is SIS-SCAD, which comes from linear
variable selection framework, the 1st best approach is DCSIS-BSPLINE-SCAD.
The top performed approach is from nonlinear variable selection framework. Out-
of-sample R-squared of SIS-SCAD factors range form 0.387 of 5-year excess bond
return to 0.409 of 2-year excess bond return, regardless of the bond maturity, the
performance of the nonlinear approach improves significantly, from 0.421 to 0.441
for DCSIS-BSPLINE-SCAD factors. Compared to the out-of-sample forecast power
of the proposed factors described in [Cochrane and Piazzesi 2005], [Ludvigson and
Ng 2009a] and even [J.-z. Huang and Shi 2011], we have an extremely significant
increment. In addition, it is also worth to mention that, in the sense of out-of-
sample forecast, there seems a class of robust approaches under the nonlinear
framework, that is the form of SCREENING → BSPLINE EXPANDING →
REGULARIZATION, which shows the out-of-sample R-squared ranging from 0.411
for 4-year excess bond return and 0.473 for 2-year excess bond return.

As for the evidence of in-sample analysis, we also achieve extremely appealing
in sample performance than previously constructed predicting factors. For the
approaches discussed above, in sample performance is also satisfying, ranging from
0.550 to 0.566 for SIS-SCAD approach, from 0.623 to 0.638 for DCSIS-BSPLINE-
SCAD. Again, as is seen from the results of the approaches SCREENING →
BSPLINE EXPANDING→ REGULARIZATION, in sample evidence is still robust
and outperforms than previous literature.
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3.4.3 Evidence of the Single Macro Factors from Different Ap-
proach: In-sample Analysis

In that the appealing performance of the 2 approaches discussed in last section,
regardless of the in-sample case and out-of-sample case, further analysis is worth to
be conducted, especially on the analysis on single macro predicting factors from the
2 proposed approaches. For the convenience of explanation, we denote the single
macro factors constructed from SIS-SCAD, DCSIS-BSPLINE-SCAD as Ĝ1 and Ĝ2.

From evidence in Table 3 to Table 4, extensive evidence has indicated that
our proposed factors have unconditional statistically significant and economically
important predictive power compared with those existing macro-based factors,
like CP, LN, SAGLasso, Output Gap factor, Yield-based factor, Cycle factor, and
Realized jump factors. All the comparison evidence among these factors can be
found in [J.-z. Huang and Shi 2011].

Table 3 represents the estimation results of univariate predictive regressions
on Ĝ1. The results show that Ĝ1 is significant regardless of the bond maturity,
the regression R-squared ranges from 0.567 for the 2-year bond to 0.587 for the
3-year bond, this provides evidence that Ĝ1 has substantially higher explanatory
power than existing macro-based factors. In addition, if we augment Ĝ1 by ĈP , the
forecasting power is improved, for example, the regression R-squared increases from
0.585 against Ĝ1 alone to 0.606 against Ĝ1 and ĈP together, for the 4-year bond,
both Ĝ1 and ĈP are significant regardless of bond maturity, which means our Ĝ1

factor doesn’t subsume ĈP . If we augment Ĝ1 by L̂N , the in-sample R-squared
doesn’t increase too much, and L̂N becomes insignificant under either HH or NW
t-statistic, which means L̂N factor can capture the macroeconomic information
about term premia contained in L̂N macro factor, and subsume L̂N as well. Due
to the subsumption of L̂N and the fact that L̂N and L̂N are constructed from the
same macroeconomic series dataset, our proposed approach SIS-SCAD seems enjoy
an appealing information digging potential.

In Table 4, similar analysis is conducted, we find Ĝ2 have higher in-sample
R-squared compared with Ĝ1, in detail, from 0.634 to 0.664 for factor Ĝ2. In
addition, the same fact as that in Table 3, when we augment the single macro
factors by ĈP and L̂N , we can only improve the explanatory power a little bit,
and ĈP is always significant, but L̂N is not, which reemphasize the advantage
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of our new approaches compared with those old forecast methods, in the sense of
information extraction.

For the in-sample analysis of Ĝ2, we also incorporate the factor Ĝ1. The
estimation results in the bottom right of Table 4 shows that augmenting Ĝ2 by Ĝ1,
can substantially improve the forecasting power. And, Ĝ1 is significant when it is
incorporated with Ĝ2.

3.4.4 Evidence of the Single Macro Factors from Different Ap-
proach: Out-of-sample Analysis

In this subsection, we examine the out-of-sample R-squared of our single macro
factors G̃1 and G̃2, as well as C̃P and L̃N .

In table 5, we first examine the out-of-sample R-squared of different factors
combination, where historical excess returns serve as the benchmark. The second
column reports the R-squared of the macro predictors set extracted directly from
the approach of SIS → SCAD, which equals 0.409, 0.400, 0.406 and 0.387 for
2- to 5-year bonds, the third column shows the R-squared of single factor G̃1

against historical average, the results are very close to that in column 2, with
out-of-sample R-squared 0.401, 0.389, 0.403, and 0.398, respectively. Evidence from
the comparison between column 2 and column 3 shows that the construction of
single factor is robust in the sense of real time forecast. When we incorporate C̃P ,
we can see some increment in the forecast power, but when augmented by L̃N
factor, the out-of-sample performance is not improved that much, however, the
combination of three factors G̃1 + C̃P + L̃N gives the most substantial improvement
of out-of-sample predictive power, making the R-squared equal 0.447, 0.437, 0.455
and 0.434 respective to 2-, 3-, 4- and 5-bonds.

Next, in table 6 we consider the MSE and encompassing tests for four different
pairs of unrestricted and restricted specifications and report the results of model
comparisons. Column labeled by MSEu

MSEr
shows the ratio of the MSE of unrestricted

model to that of the restricted one. Column labeled "Test Statistic" reports the ENC-
NEW test statistics of [T. E. Clark and McCracken 2001], whose 95% (asymptotic)
critical value is 1.584. Results reported in panel A of table 6 indicate that by
including our single macro factor G̃1, the unrestricted model clearly improves over
the restricted model that includes only C̃P factor. By augmenting by G̃1, the MSE
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is reduced by about 22-23 percent. Similarly, when we incorporate G̃1 to single
factor L̃N , the MSE is reduced by about 26-30 percent. Results about restricted
model AR(6) is also reported in table 9. In conclusion, the predictor G̃1 is shown
to help significantly improve the forecast power of macro variables, not only in
sample but more importantly also out of sample.

In table 7-8, we conduct similar analysis to G̃2. In detail, for the results in
Table 7, we compare the out-of-sample performance against excess bond return
historical average, all of G̃2 exhibit a better out-of-sample performance compared
to factor G̃1, from 0.401 to 0.439 for G̃2. When we augment the single factors by
C̃P and L̃N , we can also see the forecast power increment to some extent, but
what is more worth to mention lies that, if we incorporate G̃1 to our new factors G̃2,
we can realize a really extreme significant increment in real time forecast power, to
be specific, G̃2 + G̃1 results in the out-of-sample R-squared 0.485, 0.495, 0.510 and
0.503 for different bond maturity. Compared to the macro-based factors introduced
in previous literature, we really find a quite stronger out-of-sample evidence that
our approaches can improve forecasting power than all the factors existed in history,
even for financial factors.

In the panel A of Table 8, we also compare the unrestricted model G̃2 + G̃1 and
restricted model G̃1, results show that we can reduce the MSE significantly, and
also the Test Statistic ENC-NEW shows there is a significant improvement in the
out-of-sample prediction power when we augment the linear factor G̃1 by nonlinear
single factor like G̃2. Similar results when incorporating C̃P and L̃N are reported
in the tables.

To sum, among all the combinations of macro-based single factors we con-
struct in the analysis, there is a robust approach that can result in an extreme
satisfying out-of-sample forecast ability, as well as appealing in sample perfor-
mance, which is single factor constructed by approach of "SCREENING(DCSIS)
→ BSPLINE EXPANDING → REGULARIZATION". Moreover, the approach
"SCREENING(DCSIS) → BSPLINE EXPANDING → REGULARIZATION" com-
bined with "LINEAR SCREENING(SIS) → REGULARIZATION" can also exhibit
a perfect results, both in sample and out of sample.
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3.5 Analysis on ETF Data
In this subsection, we conduct in-sample and out-of-sample analysis on the ETF
quarterly excess returns against the same macroeconomic time series we used in
previous analysis. The ETF data ranges from August 2002 to April 2014, and
following [J.-Z. Huang and Y. Wang 2013], we divide our time series into three
parts, pre-crisis, crisis and post-crisis, pre-crisis denotes the time period August
2002 - June 2007, crisis denotes the period July 2007 - March 2010, and post-crisis
denotes the period April 2010 - April 2014. We conduct the two approaches "SIS
→ SCAD" and "DCSIS → BSPLINE → SCAD" to our ETF excess returns, and
detailed results are listed in table 18 and table 19.

In the quarterly returns table 19, we achieve out-of-sample R-squared ranging
from 0.265 to 0.263 for SHY(1-year - 3-year) in the period crisis&post-crisis, out-of-
sample R-squared of 0.194 to 0.468 for IEF(7-year - 10-year), and 0.347 to 0.548
for TLT(20+ year). Our factors always have additional forecast power against
historical average except for the SHY during period post-crisis. In addition, the
whole time period in-sample R-squared are above 30 percent. If we compare the
out-of-sample R-squared between nonlinear approaches "DCSIS-BSPLINE-SCAD"
against the linear approach"SIS-SCAD", we will find a substantial increment, which
also reemphasizes the nonlinear effect of macroeconomic predictors on ETF excess
returns.

3.6 Concluion
In our study, we conduct the application of a recently developed methodology
on variable selection for high-dimensional data, i.e. screening and regularization
techniques to large financial dataset. Through a horse race, a comprehensive
comparison of different approaches consisting different combinations of screening
methods, nonlinearization techniques and regularization technique, we get a clear
picture about the relationship between excess bond returns and macroeconomic
predictors. Via the examination of real-time forecast performance of the various
approaches, we construct several new single macro factors which can improve the
real-time forecast power on the excess bond returns significantly than the already
existing macro-based factors. In addition, if we incorporate the nonlinear versions
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(B-spline expanding) of original macro data to our analysis, we can result in factors
with even more forecast power increment, which indicates the nonlinear effect of
the macroeconomic predictors on excess bond returns forecast. Finally, a robust
approach for variable selection in macro dataset and excess bond return forecast
is suggested, which gives a satisfying out-of-sample forecast ability, as well as in
sample performance. Analysis on ETF dataset reemphasizes our main results in
Treasury excess bond returns analysis.
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Table 3.1: Summary Statistics for the Zero-coupon Treasury Bond Ex-
cess Return

This table reports the main Statistics of the zero-coupon Treasury Bond Excess
Returns of different maturities, where the sample spans the period January 1964 to
December 2007

maturity (yr) 2 3 4 5

Min. -5.5950 -10.4300 -13.5500 -17.5500
25% Qu. -0.9073 -1.5830 -2.2660 -3.0430
Median 0.2053 0.4101 0.4364 0.4863
75% Qu. 1.6590 2.9600 3.8820 4.4900
Max. 5.9680 10.2600 14.3800 16.8900
Mean 0.4233 0.7150 0.9124 0.8983
Std. Dev. 1.8662 3.4080 4.7121 5.7684
Kurtosis 3.2376 3.3439 3.3522 3.3762
Skewness 0.1192 0.0654 0.1155 0.1201
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(a) In-Sample Fitting of 2-yr Bond Returns
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(b) Out-of-Sample Forecasts of 2-yr Bond Returns
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Figure 3.1: Time Variations of 2-yr Bond Returns
The first figure plots the actural 2-year excess bond return as well as the fitted curve on the full sample over
January 1964 to December 2007. The second figure plots the actual 2-year excess bond return spanning
the time period of January 1964 to December 2007, the forecast 2-year excess bond return form single
DCSIS-BSPLINE-SCAD factor as the macro predictor, as well as the historical average of excess return
denoted by average return in the graph, both are from January 1982 to December 2007. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.
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(a) In-Sample Fitting of 3-yr Bond Returns
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(b) Out-of-Sample Forecasts of 3-yr Bond Returns
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Figure 3.2: Time Variations of 3-yr Bond Returns
The first figure plots the actural 3-year excess bond return as well as the fitted curve on the full sample over
January 1964 to December 2007. The second figure plots the actual 3-year excess bond return spanning
the time period of January 1964 to December 2007, the forecast 3-year excess bond return form single
DCSIS-BSPLINE-SCAD factor as the macro predictor, as well as the historical average of excess return
denoted by average return in the graph„ both are from January 1982 to December 2007. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.
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(a) In-Sample Fitting of 4-yr Bond Returns
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(b) Out-of-Sample Forecasts of 4-yr Bond Returns
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Figure 3.3: Time Variations of 4-yr Bond Returns
The first figure plots the actural 4-year excess bond return as well as the fitted curve on the full sample over
January 1964 to December 2007. The second figure plots the actual 4-year excess bond return spanning
the time period of January 1964 to December 2007, the forecast 4-year excess bond return form single
DCSIS-BSPLINE-SCAD factor as the macro predictor, as well as the historical average of excess return
denoted by average return in the graph„ both are from January 1982 to December 2007. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.
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(a) In-Sample Fitting of 5-yr Bond Returns
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(b) Out-of-Sample Forecasts of 5-yr Bond Returns
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Figure 3.4: Time Variations of 5-yr Bond Returns
The first figure plots the actural 5-year excess bond return as well as the fitted curve on the full sample over
January 1964 to December 2007. The second figure plots the actual 5-year excess bond return spanning
the time period of January 1964 to December 2007, the forecast 5-year excess bond return form single
DCSIS-BSPLINE-SCAD factor as the macro predictor, as well as the historical average of excess return
denoted by average return in the graph„ both are from January 1982 to December 2007. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.

108



(a) In-Sample Fitting of SHY Quarterly Returns
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(b) Out-of-Sample Forecasts of SHY Quarterly Returns
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Figure 3.5: Time Variations of Quarterly ETF Returns: SHY(1-yr to
3-yr)
The first figure plots the quarterly annualized log excess returns of the iShares 1-3 Year Treasury Bond
ETF(ticker: SHY) managed by BlackRock, as well as the fitted curve on the full sample over November
2002 to April 2014. The second figure plots the actual SHY excess bond return spanning the time period of
November 2002 to April 2014, the forecast SHY excess bond return form DCSIS-BSPLINE-SCAD, spanning
from July 2007 to March 2010(the 2008 financial crisis period) and from April 2010 to April 2014 (the period
after financial crisis), as well as the historical average of excess return denoted by average return in the graph,
from July 2007 to April 2014. 109



(a) In-Sample Fitting of IEF Quarterly Returns
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(b) Out-of-Sample Forecasts of IEF Quarterly Returns
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Figure 3.6: Time Variations of Quarterly ETF Returns: IEF(7-yr to
10-yr)
The first figure plots the quarterly annualized log excess returns of the iShares 7-10 Year Treasury Bond
ETF(ticker: IEF) managed by BlackRock, as well as the fitted curve on the full sample over November
2002 to April 2014. The second figure plots the actual IEF excess bond return spanning the time period of
November 2002 to April 2014, the forecast IEF excess bond return form DCSIS-BSPLINE-SCAD, spanning
from July 2007 to March 2010(the 2008 financial crisis period) and from April 2010 to April 2014 (the period
after financial crisis), as well as the historical average of excess return denoted by average return in the graph,
from July 2007 to April 2014. 110



(a) In-Sample Fitting of TLT Quarterly Returns
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(b) Out-of-Sample Forecasts of TLT Quarterly Returns
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Figure 3.7: Time Variations of Quarterly ETF Returns: TLT(20+ yr)
The first figure plots the quarterly annualized log excess returns of the iShares 20+ Year Treasury Bond
ETF(ticker: TLT) managed by BlackRock, as well as the fitted curve on the full sample over November
2002 to April 2014. The second figure plots the actual TLT excess bond return spanning the time period of
November 2002 to April 2014, the forecast TLT excess bond return form DCSIS-BSPLINE-SCAD, spanning
from July 2007 to March 2010(the 2008 financial crisis period) and from April 2010 to April 2014 (the period
after financial crisis), as well as the historical average of excess return denoted by average return in the graph,
from July 2007 to April 2014.
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Chapter 4 |
Asset Allocation Methods on
Chinese Market

4.1 Introduction
Evidence from empirical research and practical investment have supported and
verified the benefit of diversification. Mean-Variance investing is all about diversifi-
cation. By exploiting the interaction of assets with each other, one asset’s gains
can make up for another asset’s losses. Diversification allows investor’s to increase
expected returns while reducing risks. In practice, mean-variance portfolios that
constrain the mean, volatility and correlation inputs to reduce sampling error have
performed much better than unconstrained portfolios.

Mean-variance investing by far is the most common way to choose optimal
portfolios. The main takeaway is that diversified portfolios should be selected
because investors can reduce risk and increase returns. Many of the popular
approaches today, like risk parity, and minimum variance portfolios, are special
cases of unconstrained mean-variance portfolios, and the advantage of mean-variance
investing is that it allows diversification benefits (and losses) to be measured in a
simple way.

Mean-variance frontiers depict the best set of portfolios that an investor can
obtain, in the measures of means and volatilities. Given some assets holding. The
formal theory behind diversification was developed by Harry Markowitz(1952), who
was awarded the Nobel Prize in 1990. The revolutionary capital asset pricing model
(CAPM) is laid on the capstone of mean-variance investing. The CAPM pushes the
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diversification concept further and derives that an asset’s risk premium is related to
the (lack of) diversification benefits of that asset. This turns out to be the asset’s
beta.

Mathematically, diversification benefits are measured by covariance or correla-
tions. Suppose we have two assets, A and B. We use rA, rB, σA, σB to denote their
returns and volatilities. We use rp to denote the portfoio return, then the volatility
of portfolio is

σp =
√
ω2
Aσ

2
A + ω2

Bσ
2
B + 2ρABωAωBσAσB (4.1)

where ωA and ωB are the portfolio weights held in A and B.
Large diversification benefits correspond to low correlations. Mathematically,

the low correlation reduces the portfolio volatility. Economically, the low correlation
means that A is more likely to pay off when B does poorly, and the insurance value
of A increases. This allows the investor to lower her overall portfolio risk, the more
A doesn’t look like B, the greater the benefits to add A to a portfolio of B holdings.
Mean variance investor love adding investments that act differently from those that
they currently hold, the more dissimilar, or the lower the correlation, the better.

The mathematical statement related to a mean-variance frontier is

minimize
{ωi}

V ar(rp)

subject to E(rp) = µ∗, and
∑
i

ωi = 1.
(4.2)

we want to find the combination of portfolio weights, {ωi}, that minimizes the
portfolio variance subject to two constrains, the First is that the expected return
on the portfolio is equal to a target return µ∗, the second is that the portfolio must
be a valid portfolio, which is the admissibility condition.

From above, we have introduced the unconstrained mean-variance frontiers, but
investors oftern face constraints on what types of portfolios that they can hold, one
constraint faced by many investors is the inability to short, that is ωi ≥ 0, we can
also add this constraint to the optimization problem in equantion (2). And adding
short-sale constraints changes the mean-variance frontier, sometimes dramatically.
The constrained mean-variance frontier is much smaller than the unconstrained
frontier, and it lies inside the unconstrained frontier. The constrained frontier is
also not bullet shaped, which is the unconstrained case like. Generally constraints
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cause an investor to achieve a worse risk-return trade-off. Nevertheless, even with
constraints, the concept of diversification holds: the investor can reduce risk by
holding a portfolio of assets rather than a single asset.

In this paper, I mainly take analysis on two data sets, the indices data set,
including CSI 300 Total Return Index, CSI 500 Total Return Index, SME Prime
Mkt Total Return Index and CSI Aggregate Bond Index; The other is ETF
data set, including the ETFs associated with CSI 300, CSI 500, SME Mkt index,
as well as Treasury bond index. Through the analysis on these data, I track
the performance of various portfolios based on different mean-variance investing.
Including Equal Weights Portfolio, Risk Parity Variance Portfolio, Risk Parity
Volatility Portfolio, Equal Risk Contribution Portfolio, Minimum Variance Portfolio,
Mean-Variance Weights Portfolio, and Kelly-Rule Portfolio. From the horserace
among the portfolios, we can compare the out-of-sample performance of each
portfolio, as well get a sense on how the parameters affect the performance of each
mean-variance method.

As a summary, in this paper, we reconsider the asset allocation methods
performance on Chinese market, compared to existing literature, the important
innovations of our study lie in the following aspects, (1) We perform the analysis
on Chinese equity and bond indices as well as the ETF data set, which gives us
some guidance on the real investment. (2) Through the horserace between different
mean-variance investment approach, we can get a sense on when and why some
specific methods perform better than others. (3) To recheck our explanation on the
performance of each asset allocation method, we even perform a simulation and
give a proof of our views.

The organization of the paper is as follows: The next section describes the data
used in our analysis. Section 3 is mainly about methodology description, introduces
the basic set up of our problem, model specification. In section 4, based on our
selected mean-variance investing methods, empirical evidence on the out-of-sample
trading performance will be presented. In section 5, a comprehensive analysis based
on our proposed a pproaches is performed in ETF dataset. In section 6, I perfrom
a simulation to further explain why the methods perform well or bad. And section
7 concludes.
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4.2 Data Description

4.2.1 Chinese Equity and Bond Indices

Three Chinese equity indices and one Chinese bond index from Wind are incorpo-
rated in the analysis. Chinese equity indices are CSI 300 Total Return Index, CSI
500 Total Return Index, and SME Prime Mkt Total Return Index, the Chinese
bond index I used is CSI Aggregate Bond Index. The corresponding inception date
of each series are 04/03/2016, 01/15/2007, 12/30/2005 and 12/31/2002, the unified
end date in our analysis is 03/23/2017. For detailed descriptions, please refer Table
1. In our analysis on the indices data set, the full data set we use is from January
2007 to December 2016, and our testing out-of-sample paper trading period extends
from January 2010 through December 2016.

4.2.2 Chinese Equity and Bond ETF Dataset

In the study of ETF dataset, the Chinese equity and bond ETFs with source from
WInd are used, in specific, Chinese equity ETFs include Huataiborui Shangzheng
Zhongxiaoban ETF (510200.OF), Huataiborui Hushen 300 ETF (510300.OF), and
Nanfangzhongzheng 500 ETF (510500.OF), the Chinese bond ETF usd in the
analysis is Guotai Shangzheng 5Nianqi Guozhai ETF (511010.OF). Compared to
indices data, the inception dates are near, with 01/26/2011, 05/04/2012, 02/06/2013
and 03/05/2013 accordingly, and we use the data before 09/14/2017. Table 12
gives detailed description of ETF data set. The full data used in this study extends
from May 2013 to August 2017, and data from April 2014 through August 2017
are used as the testing out-of-sample paper trading period.

4.3 Empirical Method
In this section, basic set up for the analysis goes first, and then model specification
is shown, where the eight kinds of models considered in our analysis, Equal Weights,
Risk Parity Variance, Risk Parity Volatility, Equal Risk Contribution, Proportional
to Sharpe Ratio, Minimum Variance, Mean-Variance Weights, and Kelly-Rule are
described.
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4.3.1 Basic Setup

Following traditional asset allocation analysis, we fix our reblancing horizon as
one month. Namely, in the beginning of each month in the testing trading period,
for example, January 2010 of indices data set, and April 2014 of ETFs data. we
will estimate the expected return and expected covariance matrix based on the
historical return series available upon that time, and then calculate the proper
weights invested on each asset based on the proposed asset allocation methods.
After one month, we reblance again, we repeat the reblance action till the end of
our testing trading period, for indices data, December 2016 and August 2017 for
ETFs data. For the step we estimate the expected return and covariance matrix,
we have the flexibility to choose the lengh of training data, we name it as time
window, it ranges from 3 months to 36 months for indices study, and ranges from 1
month to 12 months for ETF study, due to the shorter history compared to indices
data set. As this is a study on Chinese market, we restrict us without short sale
and full investment on all asset classes, which means {ωi ≥ 0,∑i ωi = 0}

4.3.2 Model Specification

In our analysis, we will consider eight kinds of models, Equal Weights, Risk Parity
Variance, Risk Parity Volatility, Equal Risk Contribution, Proportional to Sharpe
Ratio, Minimum Variance, Mean-Variance Weights, and Kelly-Rule. Detailed
description are as follows.

• Equal Weights Portfolio
Equal Weights, or 1/N rule, is a strategy which simply holds 1/N weight in
each asset class, if we consider N asset classes in total. Namely, the asset
weights are {ωi = 1

N
, for i in 1, 2, · · · , N}

• Risk Parity Variance Portfolio
Risk Parity Variance is just a strategy which chooses asset weights proportional
to the inverse of return variance. The corresponding asset weights are {ωi =

1/var(ri)∑N

j=1 1/var(rj)
, for i in 1, 2, · · · , N}

• Risk Parity Volatility Portfolio
Risk Parity Volatility is similar to Risk Parity Variance, but the weights
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are proportional to the inverse of return volatility, which means we will put
more weights on the asset class with smaller risk. The asset weights are
{ωi = 1/std(ri)∑N

j=1 1/std(rj)
, for i in 1, 2, · · · , N}

• Equal Risk Contribution Portfolio
Given the volatility of a portfolio consisting N asset classes,

σp =

√√√√√ N∑
i=1

ω2
i σ

2
i +

∑
i 6=j

2ρijωiωjσiσj (4.3)

we can define the risk contribution of asset i as

σxi = ωi ∗
∂σp
∂ωi

(4.4)

then, the asset weights are defined as the solution to the following equations:

solve
{ωi}

σx1 = σx2 = · · · = σxN

subject to ω ≥ 0, and
∑
i

ωi = 1.
(4.5)

• Proportional to Sharpe Ratio Portfolio
Proportional to Sharpe Ratio is a strategy with weights proportional to histori-
cal sharpe ratio, which holds larger positions in assets that have larger realized
sharpe ratios. The asset weights are {ωi = SR(ri)∑N

j=1 SR(rj)
, for i in 1, 2, · · · , N}

• Minimum Variance Portfolio
Minimum Variance is the portfolio on the left-most tip of the mean-variance
frontier, where the asset weights {ωi} are the solution of the following opti-
mization problem,

minimize
{ωi}

V ar(rp)

subject to ω ≥ 0, and
∑
i

ωi = 1.
(4.6)

• Mean-Variance Weights Portfolio
In Mean-Variance Weights, the asset weights are chosen to maxmize the
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historical portfolio sharpe ratio. Namely, the asset weights are solutions to
the following problem,

minimize
{ωi}

rp − rf
std(rp − rf )

subject to ω ≥ 0, and
∑
i

ωi = 1.
(4.7)

• Kelly-Rule Portfolio
Kelly-Rule is a portfolio strategy that maximizes the expected log return, in
detail, define the expected log return of the portfolio as

E[log(ω1(1 + r1) + ω2(1 + r2) + · · ·+ ωN(1 + rN))]

=E[1 + log(ω1r1 + ω2r2 + · · ·+ ωNrN)]

≈E[
N∑
i=1

ωiri −
1
2(

N∑
i=1

ω2
i r

2
i + 2

∑
i 6=j

ωiωjrirj)]

=(ω1, · · · , ωN) ∗ E[r1, · · · , rN ],

− 1
2(ω1, · · · , ωN) ∗ E[(r1, · · · , rN), ∗ (r1, · · · , rN)] ∗ (ω1, · · · , ωN),

(4.8)

the asset weights are chosen to maximaze the quantity above, of course with
the restirctions ωi ≥ 0 and ∑N

i=1 ωi = 1.

4.4 Empirical Analysis
In this section, we examine out-of-sample paper trading performance of different
asset allocation methods, check the relationship between the methodology behaviors
and their training horizons used for parameters estimation, from the observed
empirical results, we try to explain why and when each asset allocation method
performs better or worse compared to each other. Section 4.1 introduces main
procedures of our analysis. Section 4.2 clarifies the details of the indices data set
we used, which includes the description of average returns, annualized volatility
and sharpe ratio, as well as the correlations between each pair of asset class indices.
Section 4.3 reports the performance of each asset allocation methods from the
8 approaches discussed above, including different cases of incorporating different
asset classes into the universe, since we mainly stress on the real time trading
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performance, we will focus on the comparison of the out-of-sample performance
and give a comparison on the out-of-sample trading behaviors. From section 4.4,
we conduct a comprehensive analysis on ETF dataset. In section 4.4, similar to
section 4.2, we give a extensive description on the statistics of ETFs data. Section
4.5 shows the similar empirical trading analysis on ETFs data. And finally, section
4.6 gives a simulation result to explain unconditional mean-variance weights work
better than risk parity if parameters are estimated accurately.

4.4.1 Procedure of the Analysis

This subsection describes the procedure of our paper trading analysis. For both
the indices and ETF data sets, we extract an out-of-sample trading sample from
the full sample. In detail, indiecs data’s full sample period spans from 2007:1 to
2016:12, we treat the first 3 years as the initial estimation period , which will
be explained later, and rest as the out-of-sample trading period, from 2010:1 to
2016:12. Similarly to indices data, the corresponding full sample and out-of-sample
trading period for ETF data is 2013:5-2017:8 and 2014:4-2017:12.

Suppose in the beginning of month t, we have Vt dollars in our account, we need
to decide how much to invest in each asset class, let’s take mean-variance weights
as an example, before we figure out the weights {ωit, i = 1, 2, · · · , N} on all the
asset classes, we need to estimate the expected returns {rit, i = 1, 2, · · · , N} and
covariance matrix of asset classes returns Σt, where some historical data is needed,
this estimation used sample length(we will name it as time window in our analysis,
denoted by n months) is some parameter we can choose, namely, we will use the
data from month t−n to month t to as the traing sample to estimate the parameters
we need, in our analysis, we take 3, 6, 12, 24 and 36 months for the indices study,
and 1, 2, up to 12 months for ETF study. After calculation, we can decide the
investment weights {ωit} on each asset class, then we hold the proposed positions
for one month, until the beginning of next month, we rebalance our positions, we
will repeat what we do in the previous month, namely, in the beginning of each
trading month till the end of trading month, we will always rebalance one time and
record the total value Vt in our account and the corresponding investment weights
{ωit, t = 1, 2, · · · , T}.

Finally, with the series of account value {Vt}, we can calculate our trading
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performance like annualized return, volarility and sharpe ratio, as well as average
weights on each asset class. For our analysis, we have the flexibility to change
the asset allocation method, parameter estimation time window as well as the
asset class universe, from different combinations, we can give a clear picture of
the horserace between different asset allocation methodology. We will show the
analysis results in the following sections.

4.4.2 Statistics of Indices Data

In this subsection, we give an extensive description on the indices data statistics. In
the indices data set, we have four series in total, CSI 300 Total Return Index, CSI
500 Total Return Index, SME Prime Mkt Total Return Index and CSI Aggregate
Bond Index. The full sample spans from January 2007 to December 2016, and the
out-of-sample trading sample we used spans from January 2010 to December 2016.

Table 2 summarizes the main statistics of sample daily returns. In panel A, for
the full sample case, average annualized return of CSI300, CSI500, SME Mkt are
10.63%, 20.49% and 21.20%, annualized return of the Agg Bond is much smaller,
which is 4.25%, the annualized volatilities are 30.37%, 34.58%, 32.56% and 1.84%,
due to the extremely small volatility of bond, the resulting annualized sharpe ratio
of Agg Bond is 1.0808, while the sharpe ratios of CSI300, CSI500 and SME Mkt are
not that big, only 0.2913, 0.5407, and 0.5916. If we consider only the out-of-sample
trading period sample, the average annualized returns of equities decreased a lot
compared to the full sample case, only 4.49%, 9.64% and 11.68%, which implies
the equity market didn’t perform well from 2007 to 2009. However, The return
of Agg Bond didn’t change too much, around 4.83%, and the volatilities keep in
the same level as the fulls sample, around 25.03%, 28.94%, 28.55% and 1.57% for
the equities and bond. The corresponding sharpe ratios are .1022, 0.2661, 0.3414
and 1.8481 accordingly. Panel B summarizes the correlations among different asset
classes, if we compare the full sample case with the out-of-sample case, we will
find the correlations keep stable, didn’t change to much, the equity indices keep a
extremely high correlation, from 0.813 to 0.979, however, correlation between bond
and equities are around 0 during these years.

Similar statistics for monthly returns are reported in Table 3. We find Agg
Bond still achieves the least volatility and largest sharpe ratio compared to equities,
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as well, equity indices show high correlations, but with a close 0 correlation with
Agg Bond.

4.4.3 Evidence of Indices Study

In this subsection, we conduct the horserace comparison of all the out-of-sample
paper trading based on different asset allocation methodologies. Including the
comparison of their annualized returns, volatilities, sharpe ratios and average
weights on different asset classes, corresponding to different parameter estimation
time windows and investment universe.

For the ease of explanation, as discussed before, we divide the time windows
into five different categories, 3, 6, 12, 24 and 36 months. As for the investment
universe, we consider the first combination of Agg Bond and CSI300 (bond and
large value equity index), the second is the combination of Agg Bond, CSI300 and
SME Mkt (bond, large cap value equity and mid cap value equity), after that, we
take the third combination of Agg Bond, CSI300, SME Mkt and CSI500 (bond,
and all cap value equities), finally, we take only the stocks CSI300, SME Mkt and
CSI500 as the last combination to check the performance of each asset allocation
method on pure equities.

We examine the out-of-sample monthly trading performance of different asset
allocation methods on the investment universe of only CSI300 and Aggregate
Bond. The parameter estimation time windows we use are 3, 6, 12, 24 and 36
months. From Table 4, we find that Risk Parity Volatility, Risk Parity Variance,
Equal Risk Contribution and Minimum Variance are the most best ones in terms
of sharpe ratio, and the performance is stable regardless of time windows. Risk
Parity Volatility has the sharpe ratios ranging from 0.7078 to 0.764, sharpe ratios
of Risk Parity Variance range from 0.786 to 0.7929, sharpe ratios of Equal Risk
Contribution are from 0.6141 to 0.8295, and time window of 6 months achieves the
largest sharpe ratio. Minimum variance has the sharpe ratios between 0.7399 and
0.7896. These methods perform better compared to others is because that they
put a lot of weight on bond. Another reason is that, we all know asset returns are
difficult to estimate, while the covariance matrix between asset classes is easy to
estimate relatively. These four methods only require the estimation of expected
covariance matrix, and get rid of the trouble of estimation error on expected asset
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returns. As for Proportional to Sharpe Ratio, Mean Variance Weights and Kelly
Rule, the performance is not stable with the time windows chosen. In Table 5, we
list the best performance (in terms of sharpe ratio) of each method if we choose the
best time window associated with each method, and we also list the corresponding
average positions on each asset class for each method. We can find Equal Risk
Contribution achieves the best performance with sharpe ratio 0.829471, Equal
Weights has the least sharpe ratio of 0.144253. If we look at Panel B, we find the
best performed methods really have a lot of weights on bond.

In Table 6 and Table 7, we enlarge our investment universe to CSI300, SME
Mkt and Aggregate Bond. If we compare Table 6 with Table 4, we find after we
incorporate one more asset class, Equal Weights performs better tremendously than
before, Risk Parity Volatility, Risk Parity Variance, Equal Risk Contribution and
Minimum Variance don’t change too much in terms of sharpe ratio, are still the best
four. Besides, we find Mean Variance Weights is better than before, and there is the
evidence that Mean Variance Weights will perform better if we consider a longer
time window for parameter estimation. Similar to that in Table 5, Table 7 shows
the performance of different methods and the corresponding average positions, the
best four methods still have a large position in bond.

When we enlarge the investment universe to include CSI500 as well, the detailed
results are shown in Table 8 and 9. Finally, we consider the case when we only have
the equity indices in our universe, as shown in Table 10, if the volatilities of the asset
classes are around in the same level, Risk Parity Volatility, Risk Parity Variance,
Equal Risk Contribution and Minimum Variance can not show a dominant benefit
than others, on the contrary, Mean Variance Weights and Kelly Rule show us a
better performance, and we find the longer time window we use, the higher the
sharpe ratios are. For average holding positions of each method on each asset class,
please check Table 11.

4.4.4 Statistics of ETF Data

Similar to the statistics for indices data, in Table 13, daily returns statistics of ETF
data are reported. For CSI300 ETF, CSI500 ETF, SME Mkt ETF and Treasury
Bond ETF, the full sample annualized returns are 17.08%, 23.55%, 19.53% and
2.44%, the corresponding annualized volatilities are 25.12%, 29.60%, 28.66% and
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2.14%, the resulted the sharpe ratios are 0.596, 0.7245, 0.608, and 0.1569. If we burn
in the first year of the ETF data, only consider the out-of-sample period, the returns
increase significantly, around 25.56%, 24.87%, 23.51% and 3.78%, the volatilities
keep the same level, around 26.15%, 31.15%, 30.35% and 2.00% accordingly, because
the high returns, the sharpe ratios are higher than the full sample case, which are
0.9021, 0.7353, 0.7096 and 0.9045. In panel B of Table 13, equities still possess
high positive correlations, and the correlation between equities and bond is close 0.
Similar results are shown for the monthly ETF returns case, for detail please check
Table 14.

4.4.5 Evidence of ETFs Study

In this subsection, we compare the trading performance of different asset allocation
methods on ETF data. In this ETF study, we still consider four cases of different
investment universe. Case 1: CSI300, Treasury Bond ETF; Case 2: CSI300, SME
Mkt and Treasury Bond ETF; Case 3: CSI300, SME Mkt, CSI500 and Treasury
Bond ETF; Case 4: only CSI300, SME Mkt and CSI500.

For case 1, results as shown in Table 15 and Table 16, we find the largest sharpe
ratio for the single asset is that of CSI300, 0.8249, however, in the performance
shown in Table 15, nearly all the achieved sharpe ratios are larger than that, in this
ETF case, Equal Risk Contribution has the best performance with the sharpe ratio
greater than 1.33 regardless time windows, Risk Parity Volatility ranks second, and
Risk Parity Variance follows with sharpe ratio greater than 0.8. Minimum Variance
doesn’t perform that well as in the indices case, with sharpe ratios ranging from 0.7
to 0.8. Mean Variance Weights and Kelly Rule have a relatively better performance
compared that to indices case. And we can find Mean Variance Weights have the
best performance when we choose a long time window, like 10, 11 and 12 months.
In Table 17, detailed holding positions are reported for different asset allocation
methods.

If we incorporate SME Mkt ETF into the investment universe, as shown in
Table 18, we find the average performance of each method improves, this is due
to the benefit of diversification. The relative ranking of different methods don’t
change. Similar results for case three are shown in Table 20 and 21.

Finally, if we just consider the pure equity portfolios, namely, we just consider
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the equity ETFs, Table 22 shows that Risk Parities, including Risk Parity Volatility,
Risk Parity Variance and Equal Risk Contribution are not the best ones, this
time, Minimum Variance ranks first, and Mean Variance Weights and Kelly Rule
performs relatively better, which is just like the equity indices case.

4.4.6 Evidence of Simulation Study

From the previous sectionsâĂŹ discussion, we find in average, Mean Variance
Weights will perform worse than other asset allocation methods, this is due to
the following reasons: Mean Variance Weights as an unrestricted mean-variance
portfolio, it contains too many parameters to estimate, which results in the insta-
bility of the portfolio performance even for a small error for each of the parameter
estimation. Unlike other asset allocation methods, Minimum Variance, Risk Parity,
and even Equal Weights, are just a special case of the full unconstrained mean-
variance portfolio, for example, Minimum Weights assumes the means of the asset
returns are equal, Risk Parity assumes the returns have the equal means, and
the correlations among asset classes are equal to 0, Equal Weights requires the
means, volatilities and even correlations of asset returns are equal. Just with these
restrictions, we conclude that special case of mean-variance perform better than the
full mean-variance procedure, because fewer things can go wrong with estimations of
the inputs, which results the better performance of these asset allocation methods.
As for the parameters estimation, asset expected returns are far more difficult to
estimate than the volatilities.

In this section, we try to perform a simulation study to compare the performance
of Equal Risk Contribution and Mean Variance Weights, intuitively, we attribute
the bad performance of Mean Variance Weights by the inaccurate estimation of
asset returns, in this simulation study, we will simulate the relationship between
return estimation and trading performance. For the implementation of Equal Risk
Contribution, only expected covariance matrix needs to estimate, we will use the
historical sample covariance matrix to approximate, time window of 1 to 12 months
are included in the study. As for Mean Variance Weights, besides the covariance,
we still need to estimate the asset returns, here, we divide our study into three
cases, case 1: just usd the exact returns µ as the expected returns in the weights
calculation; case 2: generate returns from a normal distribution with mean of the
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exact returns µ and standard deviation of 0.1 ∗ σ, where σ is the real volatility;
case 3: generate returns from a normal distribution with mean of the exact returns
µ and standard deviation of 0.1 ∗ σ. For each case, we perform a 1000 round
simulations, in each round, we generate 500 trading months data, including CSI300,
SME Mkt, CSI500 and Treasury Bond returns, based on their sample average
returns and sample covariance matrix, normal distribution is used in this study,
after the data generation, we will try to perform the paper trading with Equal Risk
Contribution and Mean Variance Weights, finally record the sharpe ratios. After
all the simulation, we take the average sharpe ratio and compare.

From Table 23, if we consider case 1, we will find Equal Risk Contribution
behaves worse than Mean Variance Weights, that means, if we can estimate the
asset returns accurately, Mean Variance Weights in theory can outperform risk
parity, as we extend the time window to estimate the covariance matrix, the sharpe
ratios increase, that means, within 1 year horizon, the more data used, the more
accurate the covariance matrix estimation is. As we consider case 2 and case 3, we
will find, if we add some noise to the return estimation, Equal Risk Contribution
will outperform the Mean Variance Weights, this is just the reason why Mean
Variance Weights performs bad in practice.

4.5 Concluion
In our study, we conduct an analysis of traditional asset allocation methods applied
in Chinese market, through a comprehensive horserace comparison among different
asset allocation methods on two data sets, asset indices and asset ETFs, we get
a clear picture about the relative performance rank of different methods, as well
as how the trading performance changes as we use different parameter estimation
time windows and different investment universe. Finally, we perform a simulation
to study why Mean Variance Weights perform worse than others in practice, and
we attribute the bad performance by the bad estimation of asset returns.

125



T
ab

le
4.
1:

In
de

x
D
at
a
D
es
cr
ip
ti
on

T
hi
s
ta
bl
e
de

sc
ri
be

s
th
e
so
ur
ce
s
an

d
in
ce
pt
io
n
da

te
s
of

th
e
to
ta
l
re
tu
rn

in
di
ce
s
us
ed

in
th
e
pa

pe
r,

th
e
fiv

e
to
ta
l
re
tu
rn

in
di
ce
s
ar
e
tw

o
be

nc
hm

ar
k
as
se
t
cl
as
se
s
–
C
hi
ne

se
E
qu

it
y
an

d
C
hi
ne

se
B
on

d

A
ss
et

cl
as
s

D
es
cr
ip
tio

n
So

ur
ce

In
ce
pt
io
n
da

te
En

d
da

te

C
hi
ne
se

Eq
ui
ty

C
SI

30
0
To

ta
lR

et
ur
n
In
de
x

W
in
d

04
/0
3/
20
06

03
/2
3/
20
17

C
hi
ne
se

Eq
ui
ty

C
SI

50
0
To

ta
lR

et
ur
n
In
de
x

W
in
d

01
/1
5/
20
07

03
/2
3/
20
17

C
hi
ne
se

Eq
ui
ty

SM
E

Pr
im

e
M
kt

To
ta
lR

et
ur
n
In
de
x

W
in
d

12
/3
0/
20
05

03
/2
3/
20
17

C
hi
ne
se

Bo
nd

C
SI

A
gg
re
ga
te

Bo
nd

In
de
x

W
in
d

12
/3
1/
20
02

03
/2
3/
20
17

C
hi
ne
se

Bo
nd

C
SI

Tr
ea
su
ry

Bo
nd

In
de
x

W
in
d

12
/3
1/
20
02

03
/2
3/
20
17

126



Table 4.2: Index Data: Summary Statistics on Daily Returns

This table reports the summary statistics of the five daily data series used in this
paper. See Table 1 for detailed descriptions of each data series

Panel A: Mean, standard deviation and Sharpe ratio, (annualized percentage)

January 2007 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

Mean 10.63 20.49 21.20 4.52 4.25
StdDev 30.37 34.58 32.56 1.84 2.28
Sharpe 29.13 54.07 59.61 148.08 108.08

January 2010 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

Mean 4.49 9.64 11.68 4.83 4.39
StdDev 25.03 28.94 28.55 1.57 2.07
Sharpe 10.22 26.61 34.14 184.81 118.27

Panel B: Correlation matrix

January 2007 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

CSI300 1.000
CSI500 0.892 1.000
SME Mkt 0.849 0.954 1.000
Agg Bond -0.013 -0.022 -0.011 1.000
Treas Bond -0.025 -0.037 -0.031 0.863 1.000

January 2010 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

CSI300 1.000
CSI500 0.860 1.000
SME Mkt 0.813 0.979 1.000
Agg Bond 0.007 -0.002 0.004 1.000
Treas Bond -0.018 -0.032 -0.024 0.842 1.000
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Table 4.3: Index Data: Summary Statistics on Monthly Returns

This table reports the summary statistics of the five monthly data series used in this
paper. See Table 1 for detailed descriptions of each data series

Panel A: Mean, standard deviation and Sharpe ratio, (annualized percentage)

January 2007 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

Mean 11.04 20.23 20.05 4.41 4.17
StdDev 33.22 37.20 35.21 3.15 3.58
Sharpe 26.11 48.02 50.23 64.99 50.45

January 2010 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

Mean 4.29 10.39 12.71 4.68 4.26
StdDev 26.23 29.43 30.84 2.67 3.02
Sharpe 6.47 26.50 32.80 78.44 55.37

Panel B: Correlation matrix

January 2007 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

CSI300 1.000
CSI500 0.869 1.000
SME Mkt 0.795 0.946 1.000
Agg Bond -0.221 -0.191 -0.176 1.000
Treas Bond -0.215 -0.2 -0.199 0.963 1.000

January 2010 – December 2016
CSI300 CSI500 SME Mkt Agg Bond Treas Bond

CSI300 1.000
CSI500 0.820 1.000
SME Mkt 0.704 0.966 1.000
Agg Bond -0.034 -0.058 -0.054 1.000
Treas Bond -0.032 -0.088 -0.097 0.942 1.000
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Table 4.5: Index Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300 and Agg Bond Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
January 2010 through December 2016. See Table 1 for detailed descriptions of each
data series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.044838 0.131400 0.039674 0.144253
Risk Parity Volatility 0.047789 0.028674 0.210310 0.763961
Risk Parity Variance 0.046867 0.026465 0.218228 0.792904
Equal Risk Contribution 0.048536 0.027310 0.228377 0.829471
Proportional to Sharpe Ratio 0.056724 0.105417 0.080558 0.292563
Minimum Variance 0.046833 0.026532 0.217320 0.789612
Mean Variance Weights 0.044098 0.026466 0.189215 0.688215
Kelly Rule 0.107039 0.203922 0.107924 0.397976

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from January
2010 through December 2016. See Table 1 for detailed descriptions of each data
series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.500000 0.500000 0.000000 0.000000
Risk Parity Volatility 0.940639 0.059361 0.000000 0.000000
Risk Parity Variance 0.995417 0.004583 0.000000 0.000000
Equal Risk Contribution 0.973433 0.026567 0.000000 0.000000
Proportional to Sharpe Ratio 0.661496 0.338504 0.000000 0.000000
Minimum Variance 0.994931 0.005069 0.000000 0.000000
Mean Variance Weights 0.990063 0.009937 0.000000 0.000000
Kelly Rule 0.537250 0.462750 0.000000 0.000000
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Table 4.7: Index Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, Agg Bond and SME Mkt Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
January 2010 through December 2016. See Table 1 for detailed descriptions of each
data series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.071610 0.175521 0.071509 0.260525
Risk Parity Volatility 0.051551 0.034607 0.204272 0.741697
Risk Parity Variance 0.047271 0.026368 0.223273 0.811149
Equal Risk Contribution 0.049925 0.030046 0.220353 0.800176
Proportional to Sharpe Ratio 0.076102 0.149387 0.092151 0.336169
Minimum Variance 0.047048 0.026460 0.220164 0.799899
Mean Variance Weights 0.042104 0.026552 0.167757 0.610930
Kelly Rule 0.089334 0.262201 0.066047 0.241996

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from January
2010 through December 2016. See Table 1 for detailed descriptions of each data
series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.333333 0.333333 0.333333 0.000000
Risk Parity Volatility 0.894336 0.056057 0.049607 0.000000
Risk Parity Variance 0.991760 0.004506 0.003734 0.000000
Equal Risk Contribution 0.927237 0.037885 0.034878 0.000000
Proportional to Sharpe Ratio 0.558288 0.199314 0.242398 0.000000
Minimum Variance 0.994748 0.002995 0.002258 0.000000
Mean Variance Weights 0.981173 0.001202 0.017626 0.000000
Kelly Rule 0.334439 0.030702 0.634859 0.000000
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Table 4.9: Index Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, Agg Bond, SME Mkt and CSI500 Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
January 2010 through December 2016. See Table 1 for detailed descriptions of each
data series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.079600 0.203890 0.072140 0.263460
Risk Parity Volatility 0.054792 0.043821 0.181684 0.659714
Risk Parity Variance 0.047608 0.026296 0.227425 0.826167
Equal Risk Contribution 0.052864 0.033192 0.223883 0.812890
Proportional to Sharpe Ratio 0.081947 0.164328 0.093348 0.341173
Minimum Variance 0.047044 0.026455 0.220164 0.799899
Mean Variance Weights 0.042715 0.026666 0.173405 0.631223
Kelly Rule 0.089569 0.246835 0.070412 0.258009

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from January
2010 through December 2016. See Table 1 for detailed descriptions of each data
series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.250000 0.250000 0.250000 0.250000
Risk Parity Volatility 0.853091 0.053148 0.046998 0.046763
Risk Parity Variance 0.988214 0.004488 0.003719 0.003579
Equal Risk Contribution 0.926218 0.027393 0.023494 0.022895
Proportional to Sharpe Ratio 0.515725 0.150014 0.183823 0.150438
Minimum Variance 0.994782 0.002782 0.001781 0.000655
Mean Variance Weights 0.980942 0.000347 0.013399 0.005312
Kelly Rule 0.334439 0.024355 0.437187 0.204018

134



T
ab

le
4.
10
:
In
de

x
D
at
a:

M
on

th
ly

T
ra
di
ng

P
er
fo
rm

an
ce

of
E
ac
h
St
ra
te
gy

on
A
ss
et

C
la
ss
es
:
C
SI
30
0,

SM
E

M
kt

an
d
C
SI
50
0

T
hi
s
ta
bl
e
re
po

rt
s
th
e
an

nu
al
iz
ed

re
tu
rn
,
vo

la
ti
lit
y
an

d
sh
ar
pe

ra
ti
o
of

m
on

th
ly

tr
ad

in
g
by

ea
ch

st
ra
te
gy

w
it
h
di
ffe

re
nt

ti
m
e
w
in
do

w
fo
r
st
ra
ge
gy

tr
ai
ni
ng

.
T
ra
di
ng

pe
ri
od

ex
te
nd

s
fr
om

Ja
nu

ar
y
20

10
th
ro
ug

h
D
ec
em

be
r
20

16
.
Se

e
T
ab

le
1
fo
r

de
ta
ile

d
de

sc
ri
pt
io
ns

of
ea
ch

da
ta

se
ri
es

A
nn

ua
liz

ed
re
tu
rn
/v
ol
at
ili
ty
/s
ha

rp
e
fr
om

di
ffe

re
nt

tim
e
w
in
do

w
(m

)
tr
ai
ni
ng

St
ra
te
gi
es

3
6

12
24

36

Eq
ua

lW
ei
gh

ts
9.
07
/2
7.
22
/2
3.
83

9.
07
/2
7.
22
/2
3.
83

9.
07
/2
7.
22
/2
3.
83

9.
07
/2
7.
22
/2
3.
83

9.
07
/2
7.
22
/2
3.
83

R
isk

Pa
rit

y
Vo

la
til
ity

9.
17
/2
7.
11
/2
4.
26

9.
3/
27
.2
/2
4.
7

9.
25
/2
7.
18
/2
4.
52

9.
03
/2
7.
11
/2
3.
75

9.
03
/2
7.
12
/2
3.
75

R
isk

Pa
rit

y
Va

ria
nc

e
9.
24
/2
7.
02
/2
4.
64

9.
53
/2
7.
18
/2
5.
53

9.
44
/2
7.
15
/2
5.
22

8.
98
/2
7.
01
/2
3.
67

8.
98
/2
7.
03
/2
3.
66

Eq
ua

lR
isk

C
on

tr
ib
ut
io
n

9.
05
/2
7.
04
/2
3.
88

9.
18
/2
7.
11
/2
4.
31

9.
14
/2
7.
1/
24
.1
9

8.
96
/2
7.
03
/2
3.
58

8.
97
/2
7.
05
/2
3.
6

Pr
op

or
tio

na
lt
o
Sh

ar
pe

R
at
io

9.
37
/2
7.
93
/2
4.
29

9.
12
/2
7.
79
/2
3.
49

8.
02
/2
8.
03
/1
9.
38

9.
57
/2
7.
58
/2
5.
31

9.
74
/2
7.
89
/2
5.
66

M
in
im

um
Va

ria
nc

e
8.
5/
26
.0
1/
22
.7
1

9.
19
/2
6.
44
/2
4.
97

9.
21
/2
6.
64
/2
4.
86

7.
29
/2
6.
02
/1
8.
08

8.
0/
26
.4
3/
20
.4
6

M
ea
n
Va

ria
nc

e
W
ei
gh

ts
10
.1
5/
28
.9
3/
26
.1
4

8.
18
/2
8.
46
/1
9.
66

8.
75
/2
7.
43
/2
2.
48

9.
42
/2
8.
42
/2
4.
04

10
.5
3/
29
.2
1/
27
.1
8

K
el
ly

R
ul
e

11
.1
3/
29
.8
4/
28
.6
3

3.
94
/2
7.
48
/4
.9
1

7.
28
/2
7.
38
/1
7.
12

9.
43
/2
8.
64
/2
3.
89

9.
91
/2
9.
18
/2
5.
08

135



Table 4.11: Index Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, SME Mkt and CSI500 Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
January 2010 through December 2016. See Table 1 for detailed descriptions of each
data series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.090736 0.272170 0.065002 0.238283
Risk Parity Volatility 0.093046 0.271964 0.067313 0.246955
Risk Parity Variance 0.095277 0.271799 0.069536 0.255316
Equal Risk Contribution 0.091787 0.271128 0.066284 0.243074
Proportional to Sharpe Ratio 0.097428 0.278851 0.069824 0.256573
Minimum Variance 0.091892 0.264396 0.068078 0.249661
Mean Variance Weights 0.105281 0.292143 0.073749 0.271777
Kelly Rule 0.111314 0.298364 0.077523 0.286330

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from January
2010 through December 2016. See Table 1 for detailed descriptions of each data
series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.000000 0.333333 0.333333 0.333333
Risk Parity Volatility 0.000000 0.363952 0.318982 0.317066
Risk Parity Variance 0.000000 0.396090 0.303756 0.300154
Equal Risk Contribution 0.000000 0.374837 0.316506 0.308657
Proportional to Sharpe Ratio 0.000000 0.197334 0.455082 0.347585
Minimum Variance 0.000000 0.809514 0.169003 0.021483
Mean Variance Weights 0.000000 0.014642 0.820908 0.164450
Kelly Rule 0.000000 0.361087 0.419722 0.219191
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Table 4.13: ETF Data: Summary statistics on daily returns

This table reports the summary statistics of the four daily ETF data series used in
this paper. See Table 17 for detailed descriptions of each data series

Panel A: Mean, standard deviation and Sharpe ratio, (annualized percentage)

May 2013 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

Mean 17.08 23.55 19.53 2.44
StdDev 25.12 29.60 28.66 2.14
Sharpe 59.60 72.45 60.80 15.69

April 2014 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

Mean 25.56 24.87 23.51 3.78
StdDev 26.15 31.15 30.35 2.00
Sharpe 90.21 73.53 70.96 90.45

Panel B: Correlation matrix

May 2013 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

CSI300 1.000
CSI500 0.835 1.000
SME Mkt 0.918 0.970 1.000
Treas Bond 0.039 0.041 0.040 1.000

April 2014 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

CSI300 1.000
CSI500 0.836 1.000
SME Mkt 0.919 0.969 1.000
Treas Bond 0.041 0.036 0.040 1.000
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Table 4.14: ETF Data: Summary statistics on monthly returns

This table reports the summary statistics of the four daily ETF data series used in
this paper. See Table 17 for detailed descriptions of each data series

Panel A: Mean, standard deviation and Sharpe ratio, (annualized percentage)

May 2013 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

Mean 16.50 22.89 18.60 2.44
StdDev 26.49 30.18 28.15 2.71
Sharpe 54.33 68.87 58.59 12.27

April 2014 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

Mean 24.82 23.96 22.27 3.78
StdDev 27.70 31.26 29.29 2.57
Sharpe 82.49 70.37 69.32 70.50

Panel B: Correlation matrix

May 2013 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

CSI300 1.000
CSI500 0.785 1.000
SME Mkt 0.926 0.951 1.000
Treas Bond 0.022 0.098 0.071 1.000

April 2014 – August 2017
CSI300 CSI500 SME Mkt Treas Bond

CSI300 1.000
CSI500 0.773 1.000
SME Mkt 0.923 0.948 1.000
Treas Bond 0.016 0.125 0.109 1.000
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Table 4.16: ETF Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300 and Treas Bond ETFs Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
April 2014 through August 2017. See Table 12 for detailed descriptions of each data
series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.138933 0.137600 0.231545 0.861205
Risk Parity Volatility 0.075638 0.039053 0.389579 1.413608
Risk Parity Variance 0.046318 0.025507 0.282165 1.014896
Equal Risk Contribution 0.074068 0.031631 0.467597 1.695728
Proportional to Sharpe Ratio 0.167582 0.129563 0.301919 1.135739
Minimum Variance 0.040449 0.025193 0.220998 0.794579
Mean Variance Weights 0.096570 0.046511 0.447561 1.636998
Kelly Rule 0.074399 0.043056 0.345591 1.253429

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from October
2013 through August 2017. See Table 17 for detailed descriptions of each data series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.500000 0.500000 0.0 0.0
Risk Parity Volatility 0.902753 0.097247 0.0 0.0
Risk Parity Variance 0.984582 0.015418 0.0 0.0
Equal Risk Contribution 0.922539 0.077461 0.0 0.0
Proportional to Sharpe Ratio 0.544286 0.455714 0.0 0.0
Minimum Variance 0.993221 0.006779 0.0 0.0
Mean Variance Weights 0.700981 0.299019 0.0 0.0
Kelly Rule 0.921302 0.078698 0.0 0.0
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Table 4.18: ETF Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, SME Mkt and Treas Bond ETFs Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
April 2014 through August 2017. See Table 12 for detailed descriptions of each data
series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.167225 0.184767 0.211230 0.794478
Risk Parity Volatility 0.097192 0.053293 0.393698 1.440338
Risk Parity Variance 0.052055 0.026723 0.328631 1.183399
Equal Risk Contribution 0.084283 0.036296 0.483251 1.759182
Proportional to Sharpe Ratio 0.214094 0.143888 0.351381 1.345926
Minimum Variance 0.040354 0.025677 0.215796 0.775879
Mean Variance Weights 0.113224 0.053969 0.467007 1.719353
Kelly Rule 0.069343 0.036127 0.373967 1.353890

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from October
2013 through August 2017. See Table 17 for detailed descriptions of each data series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.333333 0.333333 0.333333 0.0
Risk Parity Volatility 0.832996 0.087934 0.079070 0.0
Risk Parity Variance 0.972689 0.015030 0.012281 0.0
Equal Risk Contribution 0.892693 0.055188 0.052119 0.0
Proportional to Sharpe Ratio 0.473373 0.288004 0.238623 0.0
Minimum Variance 0.992315 0.004334 0.003351 0.0
Mean Variance Weights 0.687618 0.205773 0.106609 0.0
Kelly Rule 0.931942 0.034485 0.033573 0.0
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Table 4.20: ETF Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, SME Mkt, CSI500 and Treas Bond ETFs
Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
April 2014 through August 2017. See Table 12 for detailed descriptions of each data
series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.185761 0.209821 0.207980 0.787954
Risk Parity Volatility 0.109303 0.062642 0.385949 1.418726
Risk Parity Variance 0.054708 0.027133 0.350576 1.263289
Equal Risk Contribution 0.102202 0.041439 0.538317 1.973293
Proportional to Sharpe Ratio 0.211621 0.161157 0.310017 1.186355
Minimum Variance 0.040171 0.025699 0.213631 0.768103
Mean Variance Weights 0.124117 0.059278 0.473045 1.749120
Kelly Rule 0.067685 0.036502 0.357781 1.294542

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from October
2013 through August 2017. See Table 17 for detailed descriptions of each data series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.250000 0.250000 0.250000 0.250000
Risk Parity Volatility 0.780580 0.081290 0.072958 0.065172
Risk Parity Variance 0.963751 0.014758 0.012047 0.009443
Equal Risk Contribution 0.865968 0.052542 0.042571 0.038920
Proportional to Sharpe Ratio 0.419010 0.226696 0.176465 0.177829
Minimum Variance 0.991772 0.004166 0.000397 0.003664
Mean Variance Weights 0.675886 0.196124 0.014344 0.113646
Kelly Rule 0.928782 0.034163 0.021857 0.015198
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Table 4.22: ETF Data: Monthly Trading Performance of Each Strategy
on Asset Classes: CSI300, SME Mkt, and CSI500 ETFs Cont

Panel A: This table reports the summary performance of monthly trading by each
strategy if we choose the best time window parameter. Trading period extends from
April 2014 through August 2017. See Table 12 for detailed descriptions of each data
series

Raw Return Volatility Sharpe(m) Sharpe(y)

Equal Weights 0.239576 0.278889 0.203158 0.785776
Risk Parity Volatility 0.247907 0.278484 0.210525 0.816835
Risk Parity Variance 0.256036 0.278074 0.217704 0.847275
Equal Risk Contribution 0.248242 0.278358 0.210904 0.818409
Proportional to Sharpe Ratio 0.259122 0.281686 0.217476 0.847367
Minimum Variance 0.322190 0.274167 0.276005 1.100637
Mean Variance Weights 0.268195 0.286779 0.220982 0.863952
Kelly Rule 0.308389 0.273231 0.265608 1.053897

Panel B: This table reports the average weights of each strategy on each asset, when
we choose the best time window parameter. Trading period extends from October
2013 through August 2017. See Table 17 for detailed descriptions of each data series

Agg Bond CSI300 SME Mkt CSI500

Equal Weights 0.00000 0.333333 0.333333 0.333333
Risk Parity Volatility 0.00000 0.368494 0.329304 0.302201
Risk Parity Variance 0.00000 0.404926 0.321729 0.273345
Equal Risk Contribution 0.00000 0.376972 0.318943 0.304085
Proportional to Sharpe Ratio 0.00000 0.337467 0.251329 0.411204
Minimum Variance 0.00000 0.813264 0.072885 0.113851
Mean Variance Weights 0.00000 0.363522 0.191358 0.445120
Kelly Rule 0.00000 0.779808 0.122699 0.097493
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Chapter 5 |
Future Research Directions

In Chapter 1, we used Markov Chain Monte Carlo (MCMC) to conduct parameter
simulation, and compare the nested models under several criteria. Further more,
we have derection which deserve further exploration:

1. From our statistic test, we show that in the 1931 trading days, VIX has
significant jumps in 222 days, VVIX has significant jumps in 141 days, and they
have significant co-jumps in 131 days, we can further consider a model where
VIX and VVIX have different jump intensity, that is, we assume a model where
Y (t) = log V IX(t) has a stronger jumper intensity than ω(t).

2. Since we believe that the volatility ω(t) and jump intensity λ(t) are positively
correlated, in our study, we assume they have a linear relationship, we can further
explore some more different specifications, even though we can model the positive
correlated property.

3. In our paper, we estimated the parameters and latent variables on the
joint dynamics of logarithm of VIX and its volatility, we can also incorporate the
estimation on the Greeks of the dynamic.

In Chapter 2, we introduced two high dimensional variable selection frameworks,
and successfully constructed new macro-based predictors to forecast bond premia
and excess ETF returns, which results to achieve a tremendous improvement in
the forecast performance, both in sample and out-of-sample, but we still have some
more directions which can be extended.

4. For the nonlinear approach, in the second step of nonliearization, we can
further incorporate some other types of splines and construct new kinds of nonlinear
trend of the original features.

5. Originally, DCSIS and SIS screening techniques are designed for the variable
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selection of the i.i.d. data, we applied those to the area of excess return prediction,
which has the autocorrelation, a further research direction is trying to develop some
high-dimensional variable screening methods which can directly handle time series
data.
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