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Abstract

The distributed parameter system (DPS) is of significant importance in many
chemical and material industry processes. This kind of systems shows spatial
variation because of the existence of diffusion, convection and reaction. Due to the
motivation to improve product quality and increase economic profit, controlling
these processes is significantly important. Examples include plasma enhanced
chemical vapor deposition, plasma etching reactors and reaction in porous catalyst
particles.

A standard way to control these processes is to construct reduced order models
(ROMs) via the Galerkin method and then design observers and controllers based
on the ROMs, given the fact that the behavior of most of the above chemical and
material industry processes can be captured by finite dimensional systems. To
improve the accuracy of the ROM and reduce the computational cost, many research
studies have been done. The proposed work will relax the assumptions of existing
methods. The contribution of this work can be summarized to: (1) proposing an
advanced POD method that combines the standard POD method and the analytical
approach; (2) combining Adaptive Proper Orthogonal Decomposition (APOD) and
Discrete Empirical Interpolation Method (DEIM) to reduce the computational
cost of ROMs; (3) proposing Discrete Adaptive Proper Orthogonal Decomposition
(DAPOD) to relax the assumptions of APOD and improved its performance; (4)
improving the accuracy of ROM for systems with strong convection using DAPOD;
(5) proposing an equation-free control method that can control PDE based on
model reduction when the governing equation of the system is not available.
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Chapter 1 |
Introduction

1.1 Modeling and Control of Distributed Parameter
System
In recent years, control of distributed parameter systems (DPS) has been an
important issue in many chemical industry process due to spatial variation as a
result of diffusion, convection and chemical reaction. Some of the examples include
plasma enhanced chemical vapor decomposition [2], polymerization [3], plasma
etching reactors [4] and reaction in porous catalyst particles [5].

One of the important application is the plasma etching in semiconductor manu-
facturing. To reduce the variance of the product, the uniformity in the reactor is
desired; while maintaining the uniformity becomes more difficult as the diameter of
wafers is larger than 200 nm [6].

The controller design for DPS is nontrivial since the state varies in both time
and space, which makes the theoretical problem infinite dimensional. The infinite
dimension issue can be partially addressed by finite volume method (FV) or finite
difference method (FD) discretization. However, the resulting system is usually
high dimensional, making controller design complex and computationally intensive.

Another approach is to construct a reduced order model (ROM) using the
method of weighted residuals (MWR) [7–9] that takes advantage of the property
of dissipative PDEs that their behavior can be approximated by low dimensional
systems [10, 11]. It approximates the state variable by superposition of basis
functions multiplied by time dependent coefficients. Basis functions are analytically
derived by solving the eigenproblem of the system’s spatial operator. MWR
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can create ROMs with lower dimension than FV and FD. However, solving the
eigenproblem analytically is uncertain for systems with complex geometry and
nonlinear operators.

One way to circumvent the above issue is to use proper orthogonal decomposition
(POD) [12]. This method constructs basis functions numerically using an ensemble
of data of state profile (snapshot) collected from experiment or simulation. Basis
functions are determined by maximizing the inner product of the snapshots and
the basis functions so that the dimension of the ROM can be reduced. As one of
the primary methods to construct ROM, POD method is widely applied in many
dynamic research areas, such as fluid flow [13–20], structural dynamics [21–23],
internal combustion engine [24], aeroelasticity [25] and four-dimensional variational
data assimilation [26]. POD method is also known as principal component analysis
(PCA), Karhunen-Loève expansion and singular value decomposition (SVD).

Despite the advances of POD, a large ensemble of PDE solution profile or
snapshots is required to generate basis functions that capture dominant behavior
of the system. Even when a large ensemble of data is available, initial condition
and input in experiment or simulation, sampling method, discretization method all
have impact on the basis functions. Currently, there is no rigorous guarantees on
whether the snapshots ensemble is properly collected or not [27]. Another drawback
is when the process visit another region in state space, basis function might not
capture the new trend.

To circumvent the limitations and robustify POD, some new methods and
modifications to POD have been proposed, including balanced POD [20], trust
region POD [16], dynamic mode decomposition [28], global POD [29], incremental
SVD/POD [30] and Adaptive POD (APOD) [31].

1.2 Mathematical Formulation
We consider processes described by the following semi-linear PDE:

∂x

∂t
= L(z)x+ g(x) + b(z)u = f(x) + b(z)u, (1.1)
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where f(x) = L(z)x+ g(x), subject to the boundary condition

h(x, ∂x
∂z

) = 0 on Γ (1.2)

and the initial condition
x(z, 0) = x0(z) (1.3)

where x ∈ R is the state variable, t refers to time and z ∈ Ωz ⊂ R3 represents
the spatial coordinate; L(z) is a linear spatial operator and g(x) is a nonlinear
function. u ∈ Rs×1 denotes manipulated variables, where s denotes the number of
manipulated inputs. b(z) ∈ R1×s describes how the manipulated variables u control
the system spatially and is known. h is a function of x and its spatial derivative. Γ
is the process boundary.

1.3 Research Objective
We propose to improve the accuracy, reduce the computational cost and relax
the assumptions of existing method for dissipative PDE systems based on model
reduction. To achieve this objective, the individual goals include:

• Develop an algorithm that combines the analytical way to determine basis
functions and the statistical approach (POD) so that the new algorithm has
the advantages of both methods.

• Relax some of the assumptions of APOD and further reduce the computational
cost

• Improve the accuracy of ROM in system with strong convective phenomena.

• Develop a control framework based on model reduction when the governing
equation of the system is not available

To evaluate the developed methods, controller and observer will be designed based
on the proposed methods and implemented in examples via simulation.
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1.4 Dissertation Structure
Chapter 2 explains the algorithm of MWR/Galerkin method and how they are used
to construct ROM form PDE. The algorithm of POD and APOD is also introduced
for completeness.

Chapter 3 is a version of M. Yang and A. Armaou, “Feedback control of
semi-linear distributed parameter systems using advanced POD method,” 2015
54th IEEE Conference on Decision and Control (CDC), Osaka, 2015, pp. 4680-
4687, which focuses on the control of dissipative distributed parameter systems
employing passthrou proper orthogonal decomposition (Passthrou POD) method.
The objective of the approach is to develop a model order reduction and control
method that is robust to model uncertainty and disturbances and relaxes some of
the requirements of standard POD. The proposed method is successfully applied to
regulate a representative diffusion-reaction process. To assess the performance of
passthrou POD, both passthrou POD and standard POD are used to construct
low dimensional reduced order models (ROMs). Linear feedback controllers and
nonlinear dynamic observers are subsequently designed based on the obtained
ROMs. Simulation results illustrate that passthrou POD method is more efficient
and robust to model uncertainty, disturbances and ensemble construction.

Chapter 4 is a version of Manda Yang and Antonios Armaou, 2018, “Dissipative
distributed parameter systems on-line reduction and control using DEIM/APOD
combination”, Proceedings of the American Control Conference, accepted. The
output feedback control of distributed parameter systems based on adaptive model
reduction is explored in this paper. A significant computational hurdle when using
model reduction for control (MRC) is the numerical computation of integrals that
appear in the reduced order model limiting MRC’s applicability when dealing with
nonlinearities. The objective of this paper is to further reduce the computational
cost in APOD. It is addressed by using DEIM in the observer and controller
to reduce the computational cost associated with the nonlinear functions. The
proposed method is successfully illustrated on a diffusion reaction process and a
fluid flow system described by the Kuramoto-Sivashinsky equation.

Chapter 5 is a version of Manda Yang and Antonios Armaou, 2017, “Revisiting
APOD accuracy for nonlinear control of transport reaction processes: a spatially
discrete approach”, Chemical Engineering Science. This article addresses the
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problem of output feedback control of dissipative distributed parameter systems.
The reduced order model used for controller and observer synthesis is recursively
updated using a revised version of adaptive proper orthogonal decomposition
(APOD), based on decomposing spatially discrete solution profiles. This approach
eliminates the basis size oscillation resulting from the inaccuracy of estimation of
energy in APOD when the sampling speed is too slow. The performance of this
method is illustrated by applying it to regulate a diffusion-reaction process and a
fluid flow system described by the Kuramoto-Sivashinsky equation.

Chapter 6 is a version of Manda Yang and Antonios Armaou, 2016, “Control
of dissipative PDE systems with strong convective phenomena based on model
reduction”, Proceedings of the 22nd International Symposium on Mathematical
Theory of Networks and Systemsl. This article focuses on controlling dissipative
distributed parameter systems with strong convective phenomena based on model
reduction. The accuracy of the derived reduced order model (ROM) and the ROM-
based observer may decrease as a system behavior switches from diffusion-dominant
to convection-dominant. To mitigate the issue, we propose to use adaptive proper
orthogonal decomposition (APOD) to capture the new behavior of the system.
Reduced order model based Lyapunov-based control is applied to control the system
in presence of disturbance and strong convective phenomena. Galerkin method is
used to construct the reduced order model. The basis functions needed in Galerkin
method are updated using APOD. A case study of regulating a tubular reactor
at an open-loop unstable steady state is presented, where the performance of the
ROM-based observer is evaluated. It is also demonstrated that APOD can improve
the accuracy of the observer when an unexpected disturbance occurs.

Chapter 7 is a version of Manda Yang and Antonios Armaou, 2017, “On the
design of equation-free controllers for dissipative PDEs via DEIM”, Proceedings of
the American Control Conference, which proposes an equation-free control method
to control dissipative distributed parameter systems, in which the dynamics of the
system are unknown while the effect of the control action is. A static observer
is used to estimate the state using proper orthogonal decomposition (POD) so
that a complete profile of the system can be estimated when a limited number
of point sensors are available. Sensor locations are determined by interpolation
indices in discrete empirical interpolation method (DEIM). By using both velocity
and state sensors an explicit form of the complete equation become superfluous,
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needing to only have a description of the actuator effect. The proposed method is
successfully employed in a diffusion-reaction process with Dirichlet and Neumann
boundary conditions. Feedback linearization is combined with the proposed method
to regulate the system. Computational results demonstrate that this method can
regulate a dissipative distributed parameter system without explicitly requiring a
model of it and is robust to disturbances.

Chapter 8 is a version of Manda Yang and Antonios Armaou, 2017, “Synthesis of
equation-free control structures for dissipative distributed parameter systems using
proper orthogonal decomposition and discrete empirical interpolation methods”, Ind.
Eng. Chem. Res, in which we describe an equation-free control framework for the
regulation of dissipative distributed parameter systems, with emphasis on improving
the accuracy of the estimation by using a correction term. This control method is
capable of regulating systems that have unknown dynamics but known effect of the
control action. The system state and the dynamics are estimated by using the offline
observations (snapshots ensemble) and the online continuous measurement of a
restricted number of point sensors. First, we construct a reduced order model (ROM)
with unknown terms using Galerkin/proper orthogonal decomposition (POD). Then
the state of the ROM is estimated by a static observer with the information from
the state sensors; and the mapping between the dynamics of the system and velocity
sensors are generated using a similar approach. Discrete empirical interpolation
method (DEIM) is employed to determine the sensor locations. To improve the
accuracy of the estimation, a correction term is updated consistently. The proposed
equation free control framework is illustrated through a diffusion-reaction process
and the performance of the proposed method is evaluated by simulation.
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Chapter 2 |
Reduced Order Model

2.1 Method of Weighted Residuals
Method of Weighted Residuals (MWR) makes an assumption that the solution of
an ordinary differential equation (ODE) or partial differential equation (PDE) can
be approximated by a superposition of basis function multiplied by coefficients. For
an ODE

LO(x(z)) = 0, (2.1)

the coefficients ci are constants; basis functions φi(z) depend on all the independent
variables.

x(z) =
n∑
i=1

ciφi(z) (2.2)

In PDE case,
LP (x(z, t)) = 0 (2.3)

the coefficients ci are time dependent; basis functions φi(z) depend on all the
independent variables except time.

x(z, t) =
n∑
i=1

ci(t)φi(z) (2.4)

Since the solution is an approximation, the equation LO or LP is not 0. Take
LP for example,

LP (x) = r (2.5)

MWR determines the coefficients c by minimizing residual r in the sense that the

7



weighted averages of residual are 0∫
Ωz
LP (c, φ(z))wi(z)dz = 0

i = 1, 2, · · · , n
(2.6)

where wi represents to a set of weight functions. The idea is if the projections of
residual in all the subspaces are zero, residual itself will be zero.

In this algorithm, basis functions φi and weight functions wi are predetermined.
Coefficients ci are solved by projecting original equation into subspaces spanned by
weight functions. Based on how basis functions and weight functions are chosen,
MWR describes several different methods, including subdomain method, point
matching method, collocation method, least-squares method [32] and Galerkin
method.

2.2 Galerkin Method
In Galerkin method, weight functions are chosen to be the same with basis functions
and basis functions must satisfy all the boundary conditions. Therefore, it only
applies to homogeneous problems. Using Galerkin methd, the order reduction
problem is transformed to determination of basis functions. One way to determine
the basis functions is to solve the eigenfunction problem analytically.

Aφ = λφ (2.7)

where A is the spatial operator in governing equation and φ is the basis function.
For the easy of exposition, we consider a linear PDE:

∂x

∂t
= ∂2x

∂z2 − 2x (2.8)

with the boundary condition

x(0, t) = x(1, t) = 0 (2.9)
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Basis functions are determined by solving

∂2φ

∂z2 = λφ

φ(0) = φ(1) = 0∫ 1

0
φiφjdz = δij

(2.10)

where δij denotes Kronecker delta. We can obtain

φi(z) =
√

2sin(iπz) (2.11)

λi = −(iπ)2 (2.12)

With above basis functions, Eq. 2.8 is converted to a set of ODEs:

dc1

dt = (λ1 − 2)c1

dc2

dt = (λ2 − 2)c2

· · ·
dcn
dt = (λn − 2)cn

(2.13)

It is clear that ODEs that contain small eigenvalues λ can be truncated since they
decay to zero very fast.

2.3 Galerkin Method in Distributed Parameter Sys-
tem
To approximate the PDE with a set of ODEs, we substitute Eq. 2.4 into the
governing equation (Eq. 1.1).

n∑
i=1

ċiφi =
n∑
i=1

ciL(φi) + g(
n∑
i=1

ciφi) + b(z)u (2.14)
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Multiply both sides by φj(j = 1, 2, · · · , n) and integrate over the domain of z Ωz:

∑N
i=1

∫
Ωz ċiφiφjdz = ∑n

i=1
∫
Ωz ciL(φi)φjdz +

∫
Ωz g(∑n

i=1 ciφi)φjdz +
∫

Ωz b(z)uφjdz,
j = 1, 2, · · · , n

(2.15)
When basis functions are orthonormal, Eq. 2.15 is simplified to

ċj = ∑n
i=1

∫
Ωz ciL(φi)φjdz +

∫
Ωz g(∑n

i=1 ciφi)φjdz +
∫

Ωz b(z)uφjdz,
j = 1, 2, · · · , n

(2.16)

Eq. 2.16 can be written in the matrix form:

ċ = Loc+G(c) +B(c)u (2.17)

This method is based on the assumption that the dominant behavior of the
system can be captured by finite number of modes, which is always satisfied in
highly dissipative PDE systems [33].

2.4 Proper Orthogonal Decomposition
The POD algorithm [12, 34] constructs a set of basis functions that capture the
dominant behavior of the system better than other basis functions of the same
dimension. First a set of state profiles of the system a(z, t) are collected experi-
mentally or via numerical simulation. Each profile a(z, tn) = an(z) is defined as
a snapshot. The POD basis functions are determined by solving the following
optimization problem:

max 〈(ai, φ)2〉Ni=1
‖φ‖2 (2.18)

where 〈·〉 denotes average, (·, ·) represents L2-inner product: (p, q) =
∫

Ωz pqdz and
‖p‖ =

√
(p, p). To solve the optimization problem the following Lagrange function

is considered:
L = 〈(ai, φ)2〉Ni=1 − ι(‖φ‖2) (2.19)

where ι is the Lagrange multiplier. Take the derivative with respect to φ, it returns:

2
∫
〈ai(z′)ai(z)〉φ(z′)dz′ − 2ιφ(z) = 0 (2.20)
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If the snapshots are discretized in space using M spatial grid points, the above
problem is replaced by a eigen decomposition problem of M ×M matrix

AATφ = ιφ (2.21)

where A = [a1(z), a2(z), . . . , aM(z)] ∈ RM×N . Usually M is large making solving
this problem computationally intensive. To reduce the computational cost, both
sizes are multiplied by AT and ATφ is solved first. It returns

ATAATφ = ιATφ (2.22)

ATφ is the eigenvector of ATA ∈ RN×N . Since in most cases N �M , solving the
eigenvalue problem of ATA is computationally cheaper than AAT . After v = ATφ

is solved from 2.22, it is substituted into 2.21 to solve φ. Since AAT is symmetric,
the generated φ is orthogonal to each other (φiφTj = 0 for any i 6= j). We multiply
φ by proper coefficients to make it orthonormal. It returns

Φ = AV ι−
1
2 (2.23)

where ι = diag(ι1, · · · , ιN), V = [v1, v2, · · · , vN ] ∈ RN×N and Φ = [φ1, φ2, · · · , φN ]
Basis functions corresponding to small eigenvalues are truncated since they

represent basis functions that do not capture the major trend in the data ensemble
and they are usually contaminated with significant round-off error, be it from noise
in the snapshots or due to numerical calculations [35]. Therefore, the number of
basis function is decreased to n.

Φl = AVlι
− 1

2
l (2.24)

where ιl = diag(ι1, · · · , ιn), Vl = [v1, v2, · · · , vn] ∈ RN×n. It should be mentioned
that given a set of snapshots, the basis functions can also be solved using singular
value decomposition, which has the advantage being numerically more stable than
POD.
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2.5 Batch POD & incremental POD
In finite dimensional context, SVD and POD are mathematically equivalent [36].
Most research about POD method focuses on batch POD [37], which constructs
basis functions based on given historic observations without updating ROM by
incorporating new snapshots. The resulting ROM might be inaccurate if the historic
observations are not properly collected. Compared with batch POD, incremental
POD methods circumvents this issue by successively updating basis function and
enabling dimension increase when new observation becomes available. Since solving
eigen decomposition problem of covariance matrix recursively is computationally
intensive, a significant amount of research has focused on designing incremental
POD methods with less computational cost.

In the work of M. Singer and W. Green, adaptive POD (aPOD) was intro-
duced to solve reaction-diffusion equation [38]. Several set of basis functions are
predetermined. Selection of basis functions is based on the state of the system.

In the work of Chao Xu [39], recursive POD was proposed using perturbation
theory. In this algorithm, approximation error norm of snapshots is used to
determine whether basis functions are updated or not. The distinction in covariance
matrix induced by new snapshots is considered to be perturbation. Basis functions
are updated using perturbation in covariance matrix. However, an assumption
that perturbed eigenvectors of covariance matrix are linear combinations of original
eigenvectors was made without proof.

In 2013, the same group proposed another variant of POD, called incremental
POD (iPOD) [40]. In this algorithm, new basis functions are assumed to be linear
combinations of old basis functions and approximation error of new snapshot. Based
on this assumption eigenvalue problem of a smaller matrix is solved to estimation
new basis functions.

In the work of T. Braconnier [30], incremental SVD/POD method is proposed
to construct ROM for aeronautic design. This algorithm employs rank-1 SVD
update [30] to relax computational burden in updating basis function step. It also
has the advantage that less memory storage is requested since historic snapshots
are not stored.

In 2009, Adaptive POD (APOD) [31] was proposed. This method partition the
eigenspace covariance matrix into 2 subspaces so that the eigenvalues of covariance
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matrix can be estimated with less computational cost than solving eigenvalue
problem of covariance matrix directly. In 2013, modified APOD [1] was proposed,
which eliminates least important snapshot instead of oldest snapshot. Compared
with original APOD, it has the advantage that important trend can be retained.

2.6 Adaptive Proper Orthogonal Decomposition
As a variant of POD, APOD updates basis functions when new snapshots become
available. The flow chart of APOD is displayed in Fig. 2.1. This algorithm consists
of 2 steps: off-line initial basis function construction and on-line basis function
refinement. In the first step, standard POD [12] (in section 2.4) is exploited to
construct initial basis function. A set of N snapshots A = [a1(z), a2(z), . . . , aN(z)]
are collected from experiment or numerical simulation. Covariance matrix Ck ∈
RN×N is defined as follows:

Ck =
∫
ATAdz (2.25)

We solve the eigen decomposition problem of covariance matrix and obtain a
set of orthonormal eigenvectors V = [v1, v2, . . . , Vl] ∈ RN×N of Ck

CkV = V Λ (2.26)

n eigenvectors Vl = [v1, v2, . . . , Vl] ∈ RN×n corresponding to n largest eigenvalues
are used to construct initial basis functions such that the n eigenvalues µi satisfy:∑n

i=1 µi∑N
i=1 µi

> 1− ε (2.27)

The initial basis functions are

Φ = [φ1, φ2, . . . , φn] = AVlΛ
− 1

2
n (2.28)

where Λn = diag([µ1, µ2, . . . , µn]). These n basis functions capture (1− ε) energy
in the snapshot ensemble.

In on-line step, basis functions are updated when new snapshots become available.
First, the snapshot ensemble and covariance matrix are updated by eliminating
old snapshots. There are two approaches to select this old snapshot: the newest

13



Figure 2.1: Flow chart of adaptive proper orthogonal decomposition [1]

snapshots approach [31] and the most important snapshots approach [1]. In the
newest snapshots approach, the oldest snapshot is replaced by newest snapshot in
each iteration. In the most important snapshots approach, the contribution of each
snapshot in dominant eigenvectors of covariance matrix is compared. The snapshot
corresponding to least contribution is replaced by newest snapshot. APOD taking
the newest snapshots approach is called "original APOD" and the other one called
"modified APOD".

After covariance matrix is updated, the size of basis functions used to capture
the new trend may increase, decrease or remain unchanged. This is determined
by the eigenvalues of covariance matrix. First, the ratio of energy captured by
(n + 1)th basis function need to be determined. The size of basis functions will
increase or not accordingly. APOD assumes at most one basis function needs to be
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added or deducted at each iteration. Since solving eigenvalue problem of covariance
matrix can be computationally expensive, eigenvalues corresponding to n dominant
basis function are estimated by eigenvalues of H:

H = V T
l CkVl (2.29)

and eigenvalue of (n+ 1)th basis function is estimated by the largest eigenvalue of
Cq:

Cq = QCkQ (2.30)

where
Q = I − VlV T

l (2.31)

I denotes an identity matrix of proper size. If energy captured by (n+ 1)th basis
function is less than ε, the basis size may decrease or remain the same. To determine
whether there is any unnecessary basis function, the condition number of H is
evaluated, based on which basis size decreases or is retained. If basis size neither
increases nor decreases, accuracy of the eigenvectors is checked. Only when basis
size is unchanged and eigenvectors are accurate, are the basis functions retained.
In other cases, basis function need to be updated using economy singular value
decomposition to maintain the accuracy of eigenvectors.

Vl = orth(CkVl) (2.32)

Φ = AVl (2.33)

Then basis functions are scaled by proper scalar to make them orthonormal. It
should be mentioned that since the new eigenvectors in Vl are only an estimation
of eigenvectors of the covariance matrix, as a result, the basis functions generated
by this algorithm are not strictly orthogonal.
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Chapter 3 |
Feedback Control of Semi-linear
Distributed Parameter Systems
Using Advanced POD Method

In this chapter, we propose a new method called passthrou POD method to
circumvent the issue that solving the eigenfunction problem of linear spatial operator
analytically can be very complex in most systems. In this method standard POD
and linear spatial operator analysis are combined. Then we take advantage of the
concept of singular perturbations [41] to decompose a system into slow subsystem
and fast complement with the slow part capturing the dominant phenomena of
the system. Compared with snapshot POD method whose basis functions and
order of importance are affected by the quality of ensemble of snapshots, passthrou
POD circumvents this limitation by attaching more importance to the system. In
other words, passthrou POD solves the modes excitation and number of snapshots
problems in the standard POD method to properly order the basis functions.
Simulation results show that controller and observer based on passthrou POD are
also more robust than those based on standard POD. In particular, the quality of
snapshots has much less impact on passthrou POD than standard POD.

3.1 Passthrou POD
The analytical approach (section 2.2) has the advantage that the full order system
can be decomposed into slow subsystem and fast complement, but might be
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difficult to compute; POD is easier to compute, but does not guarantee the fast-
slow separation. Motivated by the advantage and disadvantage of the analytical
approach and POD, we proposed passthrou POD that combines the two methods
and has the advantages of both methods.

In passthrou POD, we first use standard POD (section 2.4) to construct POD
basis functions φ. Then we construct matrix G ∈ Rng×ng using φ.

Gij =
∫

Ωz
φ(z)i(Aφ(z)j)dz (3.1)

Where A is the linear operator with respect to space in the governing equation of
linearized system at desired point x0.

A = L+ ∂g

∂x

∣∣∣∣∣
(x=x0)

(3.2)

Then the diagonal eigenvalues matrix Λ and the column eigenvectors matrix V of G
are identified.

GV = VΛ (3.3)

Passthrou POD basis functions are computed as follows:

W(z) = ΦgV (3.4)

where Φg contains basis functions corresponding to the ng largest eigenvalues.
W = [w1; · · · ; wng ], and wi denotes ith passthrou basis function.

To decrease the dimension of the reduced order model, eigenvectors with largest
n eigenvalues are used to construct reduced order system. V becomes Vl, where
Vl = [v1, · · · , vn], n is the number of passthrou POD basis functions we will use.
Eq. (3.4) becomes:

Wl = ΦgVl (3.5)

To justify this truncation of V, we will use singular perturbation method [11], [41]
to illustrate how this method decomposes a system into slow subsystem and a
fast complement one (that can be neglected when compared with slow subsystem),
which allows us to truncate the basis functions corresponding to small eigenvalues
of matrix G, and thus obtain Wl. For presentation simplicity, we use linearized
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system here.
∂x

∂t
= A(x) + b(z)u (3.6)

First, we substitute passthrou basis functions in Eq.(3.4) into the linearized system

x = WC (3.7)

where C = [c1, c2, · · · , cng ]T ∈ Rng×1. We obtain:

ng∑
i=1

ċiwi =
ng∑
i=1

ciA(wi) + b(z)u (3.8)

Multiply both sides by wj(j = 1, 2, · · · , ng) and integrate over Ωz

ng∑
i=1

∫
Ωz
ċiwiwjdz =

ng∑
i=1

∫
Ωz
ciA(wi)wjdz +

∫
Ωz

wjb(z)udz,

j = 1, · · · , ng
(3.9)

It can be expressed in matrix form:
∫

Ωz
WTWĊdz =

∫
Ωz

WTA(W)Cdz +
( ∫

Ωz
WT bdz

)
u (3.10)

∫
Ωz

VTΦT
g ΦgVĊdz =

∫
Ωz

VTΦT
gA(Φg)VCdz +

( ∫
Ωz

WT bdz
)
u (3.11)

Since standard POD basis functions are orthonormal,
∫

Ωz
ΦT
g Φgdz = I (3.12)

where I denotes the identity matrix, we obtain,

VTVĊ = VTGVC +
( ∫

Ωz
WT bdz

)
u

= VTVΛC +
( ∫

Ωz
WT bdz

)
u

(3.13)

Ċ = ΛC + (VTV)−1
( ∫

Ωz
WT bdz

)
u

= ΛC + Bu
(3.14)
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The eigenvalues in Λ are λ1, · · · , λn, λn+1, · · · , λng . C can be decomposed as

C = [Cs;Cf ] (3.15)

Using this decomposition, Eq. (3.14) can be written in the form:

Ċs = ΛsCs + Bsu

Ċf = ΛfCf + Bfu
(3.16)

where Λs = diag {λ1, λ2, · · · , λn}, which are the eigenvalues corresponding to
eigenvectors in Vl. Λf = diag {λn+1, λn+2, · · ·λng}. Reλ1 ≥ Reλ2 ≥ · · · ≥ Reλn,
and 0 ≥Reλn+1 ≥ Reλn+2 ≥ · · · ≥ Reλng

Defining ε = |Reλ1|/|Reλn+1| � 1 and using ε, Eq.(3.16) can be written in the
form:

Ċs = ΛsCs + Bsu

εĊf = ΛfεCf + εBfu
(3.17)

where Λfε = εΛf . Note that the equation of Cf is multiplied by ε at both sides, the
eigenspectra of Λs and Λfε are of same order.

To investigate the fast dynamic behavior, we introduce a fast time-scale τ :

ε
dC

dt
= dC

dτ
(3.18)

and then set ε = 0, eq.(3.17) becomes

dCf
dτ

= ΛfεCf (3.19)

Based on the fact that 0 ≥Reλn+1 ≥ · · · ≥ Reλng and the new time variable τ
is stretched, we have that Cf decays to zero exponentially with a rate faster than
the process of Cs. Therefore, using Tikhonov’s theorem, the system state c ≈ cs

and the system dynamics can be approximated by

Ċs = ΛsCs + Bsu (3.20)

which is identical to the one obtained by passthrou POD method with only n basis
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functions kept.

3.2 Observer and Controller
We assume that point measurements of the system state are continuously available
using a finite number of sensors. To decrease the requirement on the number of
sensors, a dynamic observer is designed. Observer gain matrix is obtained based
on the linearized system so that the linearized system is stable. The structure of
observer is as follows:

N∑
i=1

∫
Ωz

˙̃ciφiφjdz =
N∑
i=1

∫
Ωz
c̃iL(φi)φjdz +

∫
Ωz
g(

N∑
i=1

c̃iφi)φjdz +
∫

Ωz
b(z)uφjdz

+Kg(y −Wlmc̃),

j = 1, 2, · · · , n
(3.21)

where Kg is the observer gain matrix,Wlm ∈ Rny×n andWlmc̃ denotes the estimated
y by the ROM, ny is the number of measured output.

With the dynamic observer estimating all the states of the system, a linear
state feedback regulator is then designed. The controller gain matrix is determined
using LQR theory [42] with performance criterion

V =
∫ t

0
[CT (τ)QC(τ) + uT (τ)Ru(τ)]dτ (3.22)

The gain matrices of both controller and observer are calculated based on the
linearized system. In passthrou POD method, this linearized system is obtained
from the slow subsystem of Eq. (3.20). Combining the linear regulator with the
nonlinear observer and assuming the separation principle holds, a nonlinear output
feedback controller is derived.

3.3 Diffusion-reaction process
To compare the performance of passthrou POD method and standard POD method,
we employ both methods to design a controller and observer pair to stabilize a
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system. By assessing how efficient and robust the controller and observer are, we
can compare the performance of these two methods.

In this example, an elementary exothermic reaction takes place along the surface
of a catalytic rod. The temperature at both ends is maintained at T0. Cooling is
used to control the temperature of the rod, which affects the interval [0.3π, 0.7π]
uniformly. There is one sensor to measure the temperature of the rod at point
z = π/6. The governing equation is as follows:

ρC
∂T

∂t̃
= k1

∂2T

∂z2 − Ak2(z)e− E
RT c0∆H + k3ls

∆A(Tc(z)− T ) (3.23)

where concentration c0 and parameters ρ, C, ∆A, E, R, A, k1, k3, ls are all
constants. The objective is to force the temperature to a uniform unstable steady
state T = T0. To regulate the temperature, cooling (or heating), Tc is employed.
Tc contains 2 components:

Tc = Tc0 + T ′c (3.24)

where Tc0 is a cooling system determined during process design, chosen so that
T = T0 is a viable (albeit unstable) open-loop steady state and T ′c is the manipulated
input.

New variables are defined to simplify Eq. 7.15. We obtain:

∂x

∂t
= ∂2x

∂z2 + βT (z)(e−γ/(1+x) − e−γ) + βu(b(z)u− x) (3.25)

ym =
∫

Ωz
δ(π6 )x(z)dz (3.26)

subject to the following boundary conditions

x(0, t) = 0, x(π, t) = 0 (3.27)

and initial condition
x(z, 0) = 0.5 (3.28)

where
b(z) = H(z − 0.3π)−H(z − 0.7π) (3.29)
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We assume a spatial distribution on the activity of the catalyst.

βT (z) = 16[cos(z) + 1] (3.30)

x denotes dimensionless temperature.

x = T − T0

T0
(3.31)

H(·) denotes Heaviside step function; βT is dimensionless heat of reaction. βu

denotes the dimensionless heat transfer coefficient; γ is dimensionless activity energy.
The values of parameters are βu = 2, γ = 2. The initial condition is x(z, 0) = 0.5.
Without controller, the system evolves to a spatially varying steady state, which is
depicted in Fig. 3.1. As a result, we can conclude that the uniform steady state
x = 0 is unstable. Thus, the objective of the controller becomes to force the system
state to the spatially uniform steady state x(z, t) = 0.

3.3.1 Standard POD and Passthrou POD Basis Functions

To compare passthrou POD method and standard POD method, controller and
observers are designed based on passthrou POD basis functions and standard ones.
First, we construct standard POD basis functions and passthrou POD ones. 30 snap-
shots are generated from open loop system simulation with initial condition being
x(z, 0) = 0.5. Each snapshot is discretized in space at 60 equally spaced locations.
Matrix A is formed using these snapshots (Aij =

∫
Ωz ai(z)aj(z)dz). Eigenvalues

of A are [5042.8, 5.3, 1.3, 0.1, 0.0, · · · ]. Since eigenfunctions corresponding to small
eigenvalues are contaminated with significant round-off error [43], 4 standard POD
basis functions are used to construct passthrou POD basis functions. In passthrou
POD method, eigenvalues of G are [2.584,−2.076,−7.531,−42.588], because the
4th eigenvalue is negative and one order larger than the other 3 eigenvalues, we
keep 3 basis functions in passthrou POD algorithm. To compare the performce of
controller and observer based on passthrou POD and standard POD, ROMs will be
constructed using these 3 passthrou basis functions and first 3 dominant standard
POD basis functions, respectively. These 2 sets of basis functions are compared in
Fig. 3.2a-3.2c
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Figure 3.1: open-loop temperature profile of the system.
The system converges to a nonuniform steady state in
open-loop ssytem.

3.3.2 Linearization

To design the controller and observer pair, we use Galerkin method to approximate
this infinite dimensional system by finite number of modes.

x = φC (3.32)

n∑
i=1

ċiφi =
n∑
i=1

ci
d2φi
dz2 + βT (e−γ/(1+(

∑n

i=1 ciφi)) − e−γ) + βu
(
bu−

n∑
i=1

ciφi
)

(3.33)

In standard POD and passthrou POD method, φ denotes vector of standard POD
basis functions and passthrou POD basis functions, respectively.

Multiply both sides by φj(j = 1, 2, · · · , n) and integrate over Ωz, which is (0, π)
in this case.

n∑
i=1

∫ π

0
ċiφiφjdz =

n∑
i=1

∫ π

0
ci

d2φi
dz2 φjdz +

∫ π

0
βT (e

− γ
1 + (∑n

i=1 ciφi) − e−γ)φjdz

+
( ∫ π

0
βubφjdz

)
u− βucj

j = 1, 2, · · · , n

(3.34)
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Figure 3.2: Comparison of spatial profiles of (a) 1st; (b) 2nd; (c)3rd basis function
of standard POD method and passthrou POD method.

The ODEs of (3.34) can be expressed in matrix form:

ψĊ = F (C, u) (3.35)

where
ψij =

∫ π

0
φiφjdz (3.36)

and F (C, u) represents the right hand side of Eq.(3.34)
To design the observer and controller gains, the system is linearized at x = 0;

in the above ODEs, the corresponding point is cj = 0(j = 1, 2, · · · , n)

n∑
i=1

∫ π

0
ċiφiφjdz =

n∑
i=1

∫ π

0
ci

d2φi
dz2 φjdz +

n∑
i=1

∫ π

0
βT e

−γγφiφjc
idz − βucj

+
( ∫ π

0
βubφjdz

)
u

(3.37)
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This set of equations can be compactly expressed as

ψĊ = AsC + Bu (3.38)

Ċ = ψ−1AsC + ψ−1Bu (3.39)

The gain matrices of controller and observer are determined based on the linearized
system.

In standard POD method, the basis functions are orthonormal, so ψ is identity
matrix.

In this case, the passthrou POD basis functions are also orthonormal.

3.3.3 Observer and Controller

To reduce the number of sensors required to estimate the states of the system,
a dynamic observer is constructed using Luenberger’s method [42]. To take full
advantage of the nonlinear term in the governing equation, the observer gain matrix
is constructed using the linearized system of (3.39) and the nonlinear system of
(3.35) is used to constitute observer.

˙̃cj =
n∑
i=1

∫ π

0
c̃i

d2φi
dz2 φjdz +

∫ π

0
βT (e−γ/(1+(

∑n

i=1 c̃iφi)) − e−γ)φjdz

+
∫ π

0
βubuφjdz − βuc̃j +Kg(y −Wlmc̃)

(3.40)

where Kg is the gain matrix designed based on the linearized system using LQR
theory. In both systems based on passthrou POD and standard POD, the weighting
matrices Q and R are identity matrix I and 2I, respectively. The controller gain
matrix was designed using the same method and same weighting matrices.

u = −G0c̃ (3.41)

The closed loop simulation results are as follows:
In Fig. 3.3a and 3.3b, two sets of controller and observer are constructed based

on standard POD method and passthrou POD method respectively. Using standard
POD method, the system has more oscillation. The temperature estimated by
observer based on passthrou and standard POD are depicted in Fig. 3.4a and 3.4b.
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(a) (b)

Figure 3.3: Closed-loop temperature profile of the system with controller and
observer based on (a) passthrou POD method; (b) standard POD method. System
with controller and observer based on standard POD oscillates

(a) (b)

Figure 3.4: temperature estimated by observer based on (a) passthrou POD method;
(b) standard POD method. The initial guess of temperature by the observer is
x(z) = 0.

The initial condition is assumed to be unknown by observer.

3.3.4 Impact of Number of Snapshots and Modes Excitation

Since standard POD does not have a criterion on how many snapshots are needed
to construct basis functions or whether the system is properly excited, low quality
snapshots may lead to inaccurate ROM. To show passthrou POD circumvents these
two barriers and passthrou POD basis functions capture dominant modes better
than standard POD, in this section, we compared the basis functions of standard
POD and passthrou POD when the number of snapshots increases to 50 and 70.
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Meanwhile, snapshots are also obtained from open loop system with 2 different
initial conditions to construct basis functions. Finally, controllers and observers
are redesigned for new ROMs.

From Fig.3.5a to Fig.3.5f, basis functions of standard POD and passthrou POD
based on different snapshot ensembles are compared. In the cases denoted by
‘30’,‘50’, and ‘70’, snapshots are generated by the same open loop profile, with
the number of snapshots varying from 30 to 70; while in ‘2ic’, 60 snapshots are
used to construct basis functions, with 30 snapshots from one initial condition, and
the other 30 snapshots from another initial condition. It can be seen that all the
basis functions of passthrou POD are almost the same, while different snapshots
ensembles have much larger impact on standard POD method. In other words,
although passthrou POD uses standard POD as its first step, under-sampling
and low quality snapshots are less likely to affect passthrou POD basis functions
compared with standard POD.

To illustrate the impact of snapshots quality and quantity on the system, we
compared the temporal profile of error of observer, norm of temperature and control
action. The error of observer is defined as follows:

e(t) =
√

1
Lr

∫ π

0

(
x(z, t)− x̃(z, t)

)2
(3.42)

where Lr denotes the length of rod, which is π in this case; x and x̃ represent
temperature profile and temperature predicted by observer, respectively. Norm is
defined as

n(t) =
√

1
Lr

∫ π

0
x2(z, t) (3.43)

Fig 3.6 to 3.8 display the error of observer, norm of temperature and control
action of systems based on passthrou POD and standard POD with different
snapshots ensembles. Since the passthrou basis functions corresponding to different
snapshots ensemble are almost the same, all systems have nearly the same response
(figures not shown here due to the limit of space). Hence, only one system based on
passthrou is compared with systems based on standard POD. It can be seen in Fig.
3.6 that, observer based on standard POD has larger error and the error decreases
when number of snapshots increases. Collecting snapshots from system with
different initial conditions can also reduce the error. Fig. 3.7 shows temperature of
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system using passthrou POD reaches set point faster than standard POD. This is
due to the oscillation in control action (Fig. 3.8).

Based on above results, we draw the conclusion that enriching snapshots by
increasing number of snapshots or collecting snapshots with different initial condi-
tions can both improve the quality of basis functions of standard POD in capturing
the dominant modes and has little influence on passthrou POD.

3.3.5 Impact of Disturbance

To evaluate how robust these two methods are, a parametric disturbance is applied
to the system. We assume there is disturbance that increases the activity of of
catalyst starting from t = 0 with the coefficient in βT (z) increasing from 16 to 17.

In Fig. 3.9 to 3.11, we compared the error of observer, norm of temperature and
control action of systems based on passthrou POD and standard POD. Passthrou
POD and standard POD without disturbance are denoted by ‘p’ and ‘s’ in the
figures. We observe that the disturbance dramatically increases the error of observer
based on standard POD and has less impact on the observer based on passthrou
POD. Besides, the control action when using passthrou to design the controller
and observer exhibits less oscillations. Fig. 3.10 shows that temperature reaches
set point much slower in presence of disturbance when using standard POD than
passthrou POD.

3.3.6 Open-loop Approximation Error Analysis

In this section we compare the approximation error of passthrou POD and standard
POD in open-loop process to exclude the influence of observer and controller despite
the fact that they are designed using same methods in previous sections. We excite
the system with 2 series of boxcar functions as input signals. The time interval
∆T and amplitude obey uniform distribution U(0, 1) and U(−0.5, 0.5) respectively.
The input signals are displayed in Fig. 3.12 and 3.13. Error of ROM is defined as

e(t) = ‖x(z, t)− x̃(z, t)‖∞ (3.44)

where ‖ · ‖infty denotes L infinity norm. Errors of ROM with these 2 signals are
shown in Fig. 3.14 and Fig. 3.15.
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Figure 3.5: Comparison of basis function generated by passthrou POD and standard
POD using different snapshot ensembles. The basis functions of standard POD
are affected by the snapshot ensembles; the basis functions of passthrou POD are
almost the same when different snapshot ensembles are used.
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Chapter 4 |
Dissipative Distributed Param-
eter Systems On-line Reduction
and Control Using DEIM/APOD
Combination

One of the disadvantages of POD is the quality of the basis functions depends on
the quantity of the snapshots and how the snapshots are collected [27].

One way to address these issues is to update the basis functions when new
information about the system is available. This kind of methods is called incremental
POD. Compared with standard POD, incremental POD can mitigate the impact
of initial snapshots ensemble. Since applying standard POD iteratively poses
computational difficulties, significant research effort about incremental POD has
been devoted to alleviate the computational cost, including [40,44,45].

One of incremental POD methods is adaptive proper orthogonal decomposition
(APOD). Compared with other incremental POD methods, APOD has an advantage
that not only are new snapshots incorporated into the snapshot ensemble, but
also previous snapshots are eliminated. Keeping the ensemble size uniform can
reduce the computational burden resulting from increasing ensemble size. Small
ensemble size can also help in better capturing the system behavior change by using
limited new observations. When the observation is incomplete, gappy APOD can
be employed [46].

One promising approach to mitigate this situation is adaptive proper orthogonal
decomposition (APOD), which updates the basis function when the controller
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and observer are implemented on-line. The basis functions are updated using
new snapshot collected from the process as it evolves. Since applying POD itera-
tively is computational intensive, APOD algorithm updates snapshot ensemble by
eliminating least important snapshots [1] and determines new basis function size
by estimating eigenvalues of new covariance matrix. Compared with the newest
snapshot approach in original APOD [31], the modified APOD that retains the
most important snapshots has the advantage of capturing important profiles over a
wider state-space region.

Another issue with ROMs is that the resulting ordinary differential equations
(ODEs) system may still be computationally expensive to evaluate since nonlineari-
ties in the original partial differential equation(s) have to be numerically integrated
in space in the resulting ROM. This can lead to delays in the computation of
control action. To circumvent this issue, discrete empirical interpolation method
(DEIM) [47] is adopted to reduce computational cost. In this method, the nonlinear
term in the governing equation in the whole domain is estimated by measurement
at k points with k much less than the number of spatial grid points using nonlinear
basis functions. Nonlinear basis functions are constructed off-line and the positions
of those k points are determined based on DEIM algorithm.

In this chapter, we propose a combination of APOD and DEIM to design
nonlinear controllers of reduced computational requirements to force the closed-loop
DPS evolution to a desired operating point. To illustrate the performance of the
proposed control scheme and investigate the stability of it, an open-loop unstable
diffusion reaction process and a fluid flow system described by the Kuramoto-
Sivashinsky equation are investigated.

4.1 Preliminaries

4.1.1 Notation

The L2 inner product of function g1 and g2 is denoted by

(g1, g2) =
∫

Ωz
g1g2dz,
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where z ∈ Ωz is the spatial coordinate. Arithmetic mean is denoted by 〈·〉, and
‖p‖ =

√
(p, p).

4.2 Discrete Empirical Interpolation Method
Discrete empirical interpolation method was proposed by Sorensen in 2010 [47].
The method seeks to reduce the computational cost associated with evaluating
nonlinear terms in POD with Galerkin projection. Since the nonlinear term needs
to be evaluated at each time instant and at each grid point, solving the model
might be computational intensive. DEIM circumvents this issue by approximating
the nonlinear term profile using the values of nonlinear term at k grid points with k
being much smaller than the number of spatial grid pointsM and a set of projection
basis. The projection basis for nonlinear term is called nonlinear basis function
in this manuscript; it is predetermined using POD algorithm with snapshots of
the nonlinear term. The location of those grid points are determined based on the
nonlinear basis functions.

In the semi-linear PDE (Eq. 1.1), evaluating the nonlinear term g(x) at each
spatial grid point is computationally expensive. DEIM approximates g(x) by a
superposition of "basis functions"

g ≈ Ud (4.1)

where U = [φ̃1 φ̃2 . . . φ̃k] ∈ RM×k represents the nonlinear basis functions.
Nonlinear basis functions are generated by applying POD to a set of nonlinear
snapshots {gi}, and d ∈ Rk×1 corresponds to the mode (c) in MWR. Recalling that
k � M , this problem is overdetermined for d. To determine d, k rows from this
problem are selected to solve d. To accomplish this, the equation is multiplied by a
matrix P T at both sides:

P Tg = (P TU)d (4.2)

where P ∈ RM×k. Each column of the P matrix is taken from certain column of
an identity matrix. The locations of those columns in the identity matrix is called
interpolation indices, which is determined based on the nonlinear basis functions
U [47].
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As a result, the nonlinear term g is approximated by:

g ≈ U(P TU)−1P Tg (4.3)

Note that P Tg only requires the value of g at k points to be generated.
In summary, DEIM contains the following steps:

• generate nonlinear snapshots set using g and snapshots set {ai}

• apply POD to nonlinear snapshots to get nonlinear basis function U

• determine interpolation indices by using U

4.3 Observer & Controller design using DEIM/APOD
combination
In this section, we employ DEIM in APOD-based reduced order model to reduce the
computational cost in controller and observer. Many controller design methods, such
as feedback linearization and Lyapunov based control, and dynamic observer design
methods require the evaluation of the nonlinear term. By using DEIM, evaluating
nonlinear term at each grid point can be circumvented and the integration step
can also be predetermined.

We consider a Luenberger-type dynamic observer based on the reduced order
model (Eq. 2.17) in which the basis functions are determined by APOD

dc̃
dt = Loc̃+G(c̃) +B(c̃)u+Kg(y − ỹ) (4.4)

where c̃ refers to the estimated state. The gain matrix Kg is determined using LQR
theory [42].

Since the linear part Loc̃ can be evaluated with lower cost than the nonlinear
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part G(c̃), we apply DEIM (Eq. 4.3) to G(c̃),

G(c̃) =
∫

Ωz
ϕj f̃(

n∑
q=1

cqφq)dz

≈ΦT f̃∆z

≈ΦTU(P TU)−1∆z︸ ︷︷ ︸
D

P T f̃

(4.5)

where Φ denotes discretized basis functions, f is discretized f , f̃ and f̃ indicate that
the value of f and f are estimated. We assume the grid points are evenly spaced
and ∆z denotes the grid interval.

Another complication and source of computational cost relates to the compu-
tation of the effect the manipulated variables have on the systsem dynamics. If
b(x, z) ≡ b(z), B in Eq. 4.4 is computed off-line employing POD. If b(x, z) is a
linear function of x, B(c̃) in Eq. 4.4 can be written as Bc̃, we still apply standard
POD when evaluating B(c̃). If b(x, z) is a nonlinear function of x, we generate
another set of nonlinear basis functions to reduce the cost of evaluating B(c̃) like
Eq. 4.5

B(c̃) =
∫

Ωz
ϕj b̃(

n∑
q=1

cqφq)dz

≈ΦT b̃∆z

≈ΦTUb(P T
b Ub)−1∆z︸ ︷︷ ︸
Db

P T
b b̃

(4.6)

We obtain,

dc̃
dt = Loc̃+DP T f̃(t) +DbP

T
b b̃u+Kg(y − ỹ) (4.7)

where
D = ΦTU(P TU)−1∆z

Db = ΦTUb(P T
b Ub)−1∆z

can be predetermined and updated when the basis functions are updated.
Similarly, we can use this approach in controller design methods, which will be

36



explained in detail in the examples.

4.4 Application

4.4.1 Diffusion-reaction process

To better explain the approach, we consider an illustrative diffusion reaction
process [31]. In this process, an elementary exothermic reaction takes place on the
surface of a catalytic rod. Without control, the system evolves to a spatially varying
steady state. The objective is to regulate the temperature. After normalizing the
energy conservation equation, the governing equation

∂x

∂t
= ∂2x

∂z2 + βT (z)(e−γ/(1+x) − e−γ) + βu(b(z)u− x) (4.8)

is defined in [0, π], where x represents normalized temperature. The values of
parameters are βu = 2, γ = 2.

βT (z) = 16[cos(z) + 1] (4.9)

indicates a spatial distribution on the activity of the catalyst. The initial condition
is x(z, 0) = 0.5 and the objective is x = 0. There is one sensor that measures
the state at 0.33π and one actuator (cooler) that affects the interval [0.3π, 0.7π]
uniformly.

b(z) = H(z − 0.3π)−H(z − 0.7π) (4.10)

where H(·) denotes Heaviside step function.
We use APOD to construct a ROM. Then we use feedback linearization to

regulate the system. In the ROM, the control objective x = 0 becomes c =
[c1, c2, · · · , cn]T = [0, 0, · · · , 0]T . Controller is designed to regulate the unstable
state variable c1

u =
−
(
L1c+D1P

T f̃
)

+ kdc̃1

B1
(4.11)

where L1 denotes the first row of L, D1 = ΦT
1U(P TU)−1∆z and B1 is the first row

of B; kd is a negative scalar.
The estimated state is obtained from a dynamic observer Eq. 4.4.

37



Figure 4.1: closed-loop temperature
profile of the system using APOD.

Figure 4.2: error of the observer in
the system using APOD.

Figure 4.3: closed-loop tempera-
ture profile of the system using
APOD/DEIM combination.

Figure 4.4: error the observer in the
system using APOD/DEIM combina-
tion.

The required initial snapshot ensemble for APOD is collected during the first 1s.
During this time, u = 0. Then controller and observer start regulating the system.
The state in the dynamic observer and the basis functions are updated every 1s.
Fig. 7.3 shows the temperature profile of the system using APOD, and the error of
the observer is depicted in Fig. 7.4. The corresponding result for the system using
APOD/DEIM combination (k = 3) is given in Fig. 4.3 and 4.4. It can be seen
that the controller can regulate the system using both APOD and APOD/DEIM
combination and the estimation of the observer is accurate. The spatial temporal
profile of the nonlinear term and the errror of the approximation by DEIM are
given in Fig. 4.5-4.6. We observe that DEIM can accurately approximate the profile
of the nonlinear term. Note that the amplitude of the nonlinear term is around 15
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Figure 4.5: spatial temporal spatial
profile of the nonlinear term.

Figure 4.6: error of the nonlinear term
approximated by DEIM.

(Fig. 4.5), so the relative error of the approximation of DEIM is small.
To analyze the effect of k on the result, the error of the observer, the error of

the approximation of the nonlinear term, and the norm of the state in systems
using different number of nonlinear basis functions k are compared in Fig. 4.7-4.9,
where the subscript refers to the value of k. The CPU time spent in controller for
the whole period of time is given in table 4.1. DEIM reduces the computational
cost in controller by about 50% and has small influence on the performance of the
controller. As k increases, the result is closer to the system using modified APOD;
when k increases to 10, the "error" introduced by DEIM is negligible since both the
error of the observer and the norm of the state in systems based on APOD and
APOD/DEIM combination are almost identical when k = 10. The dimension of
APOD (basis size) is given in Fig. 4.10.

Table 4.1: comparison of computation cost

k APOD APOD/DEIM combination
3

0.801s
0.430s

5 0.401s
10 0.419s
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Figure 4.7: comparison of the error of
the observer.
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Figure 4.8: comparison of the error
of the approximation of the nonlinear
term by DEIM.
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Figure 4.9: comparison of the norm
of the state.
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Figure 4.10: comparison of the basis
size.

4.4.2 Kuramoto-Sivashinsky equation

To present the capability and robustness of the method, we apply modified APOD
and APOD/DEIM combination to stabilize Kuramoto-Sivashinsky equation (KSE)
[48]. KSE can be used to describe falling liquid film thickness [49] and flame front
propagation [50]. KSE is given by

∂x

∂t
= −ν ∂

4x

∂z4 −
∂2x

∂z2 − x
∂x

∂z
+

l∑
i=1

biui(t), (4.12)
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Figure 4.11: open loop profile of the state

with periodic boundary condition

∂jx

∂zj
(−π, t) = ∂jx

∂zj
(π, t) j = 0, · · · , 3 (4.13)

and the initial condition

x(z, 0) = 3sin(z)− cos(2z)− sin(5z) + 2cos(5z) (4.14)

where z ∈ [−π, π], bi = δ(z − zi), and ν = 0.25. There are 7 actuators at locations

zi = −5π
6 ,−π2 , −

π

4 , −
π

6 ,
π

3 ,
2π
3 ,

7π
8

i = 1, 2, . . . , 7
(4.15)

20 sensors are uniformly distributed in [−π, π] and measure the state continuously.
The objective is to stabilize the system at the origin. The open loop profile of

the system is displayed in Fig. 5.9. Similar to the diffusion reaction process, the
initial snapshots are collected during the first 1 unit of time and basis function are
updated every 1 unit of time. Static observer is applied to estimated the state

c̃ = (ΦT
mΦm)−1ΦT

my (4.16)
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where Φm is obtained from the basis functions Φ so that y = Φmc. We use Lyapunov
based controller [51] to regulate the system.

u = −k(c)(LBV)T (c) (4.17)

where V = cT c, L refers to Lie derivative.

k(c) =
L∗F0V(c) +

√(
L∗F0V(c)

)2
+ ‖(LBV)T (c)‖4

‖(LBV)T (c)‖2 (4.18)

and
L∗F0V(c) = LF0V(c) + ρ0V , (4.19)

ρ0 is a positive number. By applying DEIM, we can obtain

F0 = Lc+ F (c) ≈ Lc+DP Tf (4.20)

The system response and the estimated state using modified APOD and
APOD/DEIM combination (k = 3) are depicted in Fig. 4.12-4.15. The results using
these two methods are almost identical. The comparison of results using different k
is given in Fig. 4.16-4.17. As k increases, the difference between these two methods
becomes smaller. In Fig. 4.16, the error of the observer during t = [12, 13]&[14, 15]
when k = 3 is smaller than other cases is because the basis size is larger. It can
been seen that when k = 3, the error of the observer increases faster after updating
the basis functions using new snapshots. This is expected since the larger the k, the
smaller the error introduced by DEIM. The computational cost spent in controller
during the whole period of time is displayed in table 4.2, using DEIM decreases
the computational cost by about 20%.

Table 4.2: comparison of computation cost

k APOD APOD/DEIM combination
3

251s
196s

5 201s
10 205s
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Figure 4.12: closed-loop response of
the system using APOD.

Figure 4.13: estimated state by the
observer in the system using APOD.

Figure 4.14: closed-loop response of
the system using APOD/DEIM com-
bination.

Figure 4.15: estimated state by
the observer in the system using
APOD/DEIM combination.
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Figure 4.16: comparision of the error
of the observer.
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Figure 4.17: comparision of the norm
of the state.
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Chapter 5 |
Revisiting APOD accuracy for
nonlinear control of transport
reaction processes: a spatially
discrete approach

There are two versions of APOD: original APOD [31] and modified APOD [1]. In
original APOD, the least recent snapshot is eliminated; while in modified APOD,
the least important snapshot is dropped. Although the modified version has the
advantage of capturing important profiles, it suffers from newest snapshots being
eliminated when new snapshots show significant difference from previous ones.
Another concern is the mode size may oscillates in systems with less aggressive
controllers.

In this chapter, we propose another modified version of APOD to circumvent
the above limitations and also provide better performance in terms of stability and
accuracy. In the rest of this chapter, we call it discrete adaptive proper orthogonal
decomposition (DAPOD). Since the spatial component of the system response over
a period of time is usually more stable than the temporal component, we propose
to use the spatial component instead of the temporal component in basis function
update and eigenvalue estimation. This approach therefore relaxes the assumption
that the system evolves slowly. Compared with modified APOD, it circumvents
the problem that the newest snapshot may keep being eliminated. It also has the
advantage that it can provide a more accurate estimate of energy captured by each
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basis function and the basis functions it generates are closer to those generated by
"iterative" POD. Besides, the updated basis functions are strictly orthogonal, which
will reduce the error when Galerkin projection is employed to build ROMs.

5.1 Problem Formulation
In this manuscript, we consider the output feedback regulation problem of processes
described by the following semi-linear partial differential equation

∂x

∂t
= Lx+ g(x) + b(z)u (5.1)

Assumption 1 g(0) = 0 and g(x) is a Lipschitz nonlinear vector function.

5.2 Discrete Adaptive Proper Orthogonal Decompo-
sition and Controller/Observer Design

5.2.1 Discrete Adaptive Proper Orthogonal Decomposition

Compared with original APOD, modified APOD has the advantage that old
important snapshots will not be eliminated. However, when the process visits a
state space region far away from that of the snapshots ensemble, new snapshots
may keep being eliminated because the contribution of the new snapshot is small
in the updated basis functions according to the importance evaluation algorithm.
Also, in both original APOD and modified APOD, the inaccuracy of the estimation
of the eigenvalues might lead to basis size oscillation or more basis functions
than necessary. The third disadvantage is even though economy singular value
decomposition can increase the accuracy of eigenvectors of covariance matrix, the
unmatched covariance matrix and eigenvectors will result in a set of basis functions
that are not orthogonal. To address the above issues, we propose a method called
discrete adaptive proper orthogonal decomposition (DAPOD).

We develop this method in the context of finite difference or finite volume
discretized systems. Without loss of generality, we assume x ∈ R. Finite difference
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Figure 5.1: Flow chart of discrete adaptive proper orthogonal decomposition

discretization of PDE results in the following ODEs system:

dx̂
dt = L̂x̂+ ĝ(x̂) + b̂u (5.2)

where L̂ corresponds to L and ĝ corresponds to g in Eq. 1.1. x̂ ∈ RM×1 and M is
the dimension of the finite difference discretized system. Basis functions generated
by DAPOD are denoted by Φ̂ = [φ̂1 φ̂1 . . . φ̂m] ∈ Rn×m. Note that usually m� n.
To simplify notation, Φ and φ will still be used.
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5.2.1.1 off-line basis function construction

In the off-line initial basis function construction step, we can use singular value
decomposition (SVD) to construct the basis function Φ:

A = Φ0ΣZT (5.3)

whereA ∈ Rn×M is obtained from discretization of snapshots [a1(z) a2(z) . . . aM (z)]
and Φ0 = [φ1 φ2, . . . φn] ∈ Rn×n. To make sure the new trend can be captured by
updated basis functions, M is usually less than n. The diagonal entries of Σ are
denoted by σ1, σ2, · · · , σM , where σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0. The basis functions Φ
are obtained as

Φ = [φ1 φ2 . . . φm], m�M (5.4)

where m is determined to satisfy
∑m
i=1 σ

2
i∑M

i=1 σ
2
i

> 1− ε (5.5)

5.2.1.2 snapshots update

In the on-line step, the snapshot matrix A is updated when a new snapshot becomes
available. Since the modified APOD may keep eliminating the newest snapshot, we
propose an approach that considers both importance and "freshness" of snapshots.
First we consider mode vectors of snapshots

D = ΦTA (5.6)

Mode vector Dj is normalized as follows:

D̃j = Dj/dj (5.7)

where D̃j and Dj denote the jth row of D̃ and D, respectively and dj indicates the
2-norm of Dj. An importance vector h is defined as :

hj = (PA)jj (5.8)
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where
PA = D̃T D̃ (5.9)

and ()jj denotes the element in the jth row and the jth column. The definition
of the importance vector is analogous to z-scores in principal component analysis.
The difference is z-scores algorithm has an extra step: the data mean is subtracted
at the beginning.

To keep the newest snapshots from being eliminated, we construct the "freshness"
vector g based on the importance vector h at each iteration. g is an arithmetic
sequence with the first and the last elements equal to the smallest and the largest
elements in h, respectively. The total number of elements in the sequence is equal to
the number of snapshots in the snapshot ensemble. The largest number is assigned
to the most recent snapshot. The value of g represent the "freshness" of snapshots.
We define a vector q as:

qj = hj +Kgj (5.10)

where the coefficient K indicates the importance of keeping recent snapshots. The
snapshot corresponding to the lowest value in q will be eliminated. By adding hj

and gj, we keep the snapshots that are both important and represent the current
behavior of the system. When K →∞, this step reverts to the newest snapshots
approach; when K = 0, this step reverts to a variant of the most important
snapshots approach. Note that the definition of the importance vector is different
from that in modified APOD [1]. When K is chosen to be greater than 1, newest
snapshot is guaranteed to be kept when next snapshot becomes available. It is
recommended to choose K in [0.5, 2] since hj has the same range as gj.

5.2.1.3 update basis function size

As new snapshots become available, the number of basis functions needed to
construct the ROM may increase or decease. We change the basis functions size
accordingly based on the energy captured by the basis functions truncated in
previous steps. To facilitate exposition, we will explain how to update the basis
functions size when at most 1 basis function is added or deleted each time when
a new snapshot becomes available. We determine whether the (m + 1)th basis
function will be added and the mth basis function will be eliminated based on the
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energy captured by each basis function

ξm+1 = µm+1∑m+1
i=1 µi

(5.11)

ξm = µm∑m+1
i=1 µi

(5.12)

In the above definition, eigenvalues corresponding to from the (m+ 2)th to the last
basis functions are truncated since they are negligible. If ξm+1 increases to above ε,
basis functions size increases by 1. Calculating these eigenvalues of the covariance
matrix by solving the eigenvalue problem can be computationally expensive. To
decrease the computational cost of this step and provide a more accurate way to
estimate the eigenvalues, we take the following approach:

We project the space spanned by the snapshots into a subspace spanned by
the first m + 1 basis functions. By doing this, the first m + 1 eigenvalues of the
covariance matrix can be estimated by the eigenvalues of Hd

Hd = ΦT
m+1AA

TΦm+1 (5.13)

where Φm+1 = [φ1 φ2 · · · φm+1]. Since at this step the snapshot matrix A has been
updated using the new snapshot, while basis function has not been updated, solving
the eigenvalue problem of Hd only returns an approximation of the eigenvalues of
the new covariance matrix. Compared with the approach in both original APOD
and modified APOD, in which the eigenspace of the covariance matrix instead of
the space spanned by snapshot is partitioned to P and Q, this approach can provide
a more accurate approximation of the eigenvalues of the covariance matrix. The
second advantage is the proposed approach is computationally cheaper than APOD
because Hd ∈ R(m+1)×(m+1) and m+ 1�M , while H ∈ Rm×m and Cq ∈ RM×M .

If ξm+1 is smaller than ε, we check the energy captured by mth basis function
ξm. The basis functions size will decrease by 1 when ξm decreases to below ε. When
ξm+1 < ε and ξm ≥ ε, the basis size is m.

If sampling is not frequent enough to guarantee new snapshots only show small
difference from the existing snapshots ensemble, we can also increase or decrease at
most N(N > 1) basis functions each time snapshots ensemble is updated. In this
situation, the eigenvalue problem of a (m+N)× (m+N) matrix is solved instead.
As long as m + N � M , which is true in most cases, the computational cost of
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this step will be much smaller than APOD.

5.2.1.4 check accuracy of projection

After calculating the energy captured by the basis functions, we check their accuracy.
A residual e is defined as

e = ‖ΦΦTa− a‖ (5.14)

where a denotes the newest snapshot and ‖ · ‖ indicates the 2-norm of a vector. We
consider the relative residual as

ẽ = ‖ΦΦTa− a‖
‖a‖+ εn

(5.15)

where εn is a small constant. It is used to prevent ẽ from exploding when a

approaches 0.
If the error increases to above εa, we reconstruct the basis functions. Compared

with calculating the norm of the matrix E = (I−ZZT )Ck(ZZT ) in previous versions
(original APOD and modified APOD), checking the error has more straightforward
physical meaning and does not need to be adjusted as the size of E changes.

5.2.1.5 update basis function

The basis functions get updated when they are not accurate enough, or their number
changes:

Φ = orth(AATΦ) (5.16)

where "orth" refers to economy singular value decomposition operation. Compared
with the previous algorithms, this modification has 2 advantages: first, it gives
a better approximation of basis functions corresponding to updated snapshots
ensemble. This point will be better explained and illustrated in the next section.
The second advantage is it relaxes the limitation of APOD that new snapshots
do not change abruptly. When it happens, basis functions generated by APOD
lose orthogonality, while DAPOD guarantees the updated basis functions are
orthonormal.
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5.2.2 DAPOD-based model reduction

The reduced order model is constructed using Galerkin method.

x̂ =
n′∑
i=0

φici (5.17)

where ci are called modes, n′ ≤ n. The ODEs system (Eq. 5.2) is transformed to

dcs
dt = Asscs + Asfcf + gs(cs, cf ) + bsu (5.18)

dcf
dt = Affcf + Afscs + gf (cs, cf ) + bfu (5.19)

in which cs = [c1, c2, . . . , cm]T , cf = [cm+1, cm+2, . . . , cn′ ]T , Ass ∈ Rm×m, Asf ∈
Rm×(n′−m),Aff ∈ R(n′−m)×(n′−m), Afs ∈ R(n′−m)×m, bs ∈ Rm×n1 , bf ∈ R(n′−m)×n1 .
Since the dynamics of Eq. 5.19 is fast and stable, cf is negligible. We obtain

x ≈ Φcs(t) (5.20)

dcs
dt = Asscs + gs(cs, 0) + bsu (5.21)

The resulting ROM is
dc
dt = ΦT L̂+ ΦT ĝ + ΦT b̂u (5.22)

where the subscript s is omitted for simplicity. The ROM will be updated as basis
functions Φ are updated when a new snapshot becomes available.

5.2.3 DAPOD-based observer design

In this paper, we use two methods to design the observer, dynamic observer and
static observer.

5.2.3.1 dynamic observer

First, we express Eq. 6.3 in this form

dc
dt = Lo(c) +G(c) +Bu (5.23)
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The Luenberger-type dynamic observer is formulated as

dc̃
dt = Lo(c̃) +G(c̃) +Bu+Gm(ym − ỹ) (5.24)

where c̃ refers to the estimated state. The gain matrix Gm is determined using
LQR theory [42].

Assumption 2 G is a Lipschitz nonlinear vector function.

‖G(cp)−G(cq)‖ ≤ Kl‖cp − cq‖. (5.25)

5.2.3.2 static observer

According to Eq. 5.17, the measured outputs are

ym = Φmc (5.26)

where Φm is the matrix whose jth row is the lthj row of basis functions Φ; lj indicates
the location of jth output. We can obtain

c̃ = (ΦT
mΦm)−1ΦT

mym (5.27)

Note that we assume that continuous measurements are available and there are
more than the number of modes that we employ for the controller design at all
times. We also assume that there is no measurement noise.

5.2.4 DAPOD-based controller design

In this section, we design controllers to regulate the systems. Feedback linearization
and Lyapunov based control are employed.

5.2.4.1 feedback linearization

Since the objective is to regulate the system at x = 0, the corresponding state in
the ROM is c = 0. We assume the relative degree is 1. To reduce the number of
actuators, for a system with m′ unstable states, we only consider the state variables
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in the unstable subsystem. The system can be written in this form

dc′
dt = L′o(c′, cu) +G′(c′, cu) +B′u (5.28)

dcu
dt = Lou(c′, cu) +Gu(c′, cu) +Buu (5.29)

The control action is

u = B′−1
[
−Kf c̃

′ − L′o(c̃) +G′(c̃)
]

(5.30)

where Kf is positive definite. If we ignore the error of the observer based on the
separation principle between observation and control, we can obtain that

dc′
dt = −Kf c̃

′ (5.31)

The stability of the full system is proven in Appendix A.

5.2.4.2 Lyapunov-based control

Another approach to design the controller is to use Lyapunov function. To consider
the input constraint, for a Lyapunov function V , we design the following feedback
regulator [52, 53]. First, we use F to denote Lo(c) +G(c) in Eq. 5.23

ċ = F (c) +Bu (5.32)

The manipulated input is computed as

u = −k(c)(LBV)T (c) (5.33)

where

k(c) =
L∗FV(c) +

√(
L∗FV(c)

)2
+ (umax‖(LBV)T (c)‖)4

‖(LBV)T (c)‖2
[
1 +

√
1 + (umax‖(LBV)T (c)‖)2

] (5.34)

and
L∗FV(c) = LFV(c) + ρ0V (5.35)
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Figure 5.2: snapshots used to construct basis functions off-line.

ρ0 is a positive number and L denotes the standard Lie derivative. When the
initial condition is within the region {c ∈ C : L∗FV(c) ≤ umax‖(LBV)T (c)‖}, input
constraints are satisfied and the time-derivative of Lyapunov function (Eq.5.59) is
negative definite [52].

The proof of stability without involving separation principle is given in A.

5.3 Diffusion Reaction Process
In this section, we compare the performance of DAPOD and APOD by applying
them to regulate a diffusion reaction process, in which an elementary exothermic
reaction takes place along the surface of a catalytic rod [31,54].

ρC
∂T

∂t̃
= k1

∂2T

∂z2 − Ak2(z)e− E
RT c0∆H + k3ls

∆A(Tc − T ) (5.36)

where k2(z) indicates a spatial distribution on the activity of the catalyst, t is time
and z denotes spatial coordinate. The concentration of reactant c0 is assumed to
be constant. The boundary condition is

z = 0 :T = T0

z = π :T = T0
(5.37)

The output is the temperature at z = 0.33π

ỹm = T (0.33π, t) (5.38)
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We define the following variables to simplify Eq. 7.15-5.38

x =T − T0

T0

b(z)u =Tc − T1 − T0

T0

t = t̃k1

ρC

ym = ỹm − T0

T0

βu =Ak2c0∆H
T0ρC

γ = E

RT0

(5.39)

where
T1 = Ak2(z)e−

E
RT0 c0∆H · ∆A

k3ls
(5.40)

to obtain
∂x

∂t
= ∂2x

∂z2 + βT (z)(e−γ/(1+x) − e−γ) + βu(b(z)u− x) (5.41)

where
βT (z) = 16[cos(z) + 1] (5.42)

βu denotes the dimensionless heat transfer coefficient; γ is dimensionless activition
energy. The values of parameters are βu = 2, γ = 2.

Remark 1 T1 is defined so that x = 0 is a steady state when control action u is 0.

The output and boundary conditions are

ym =
∫ π

0
δ(0.33π)x(z)dz (5.43)

x(0, t) = 0, x(π, t) = 0 (5.44)

During open-loop process operation, the system evolves to a spatially varying
steady state, which is displayed in Fig. 5.2, where the initial condition is

x(z, 0) = 0.3 (5.45)

The uniform steady state x = 0 is unstable. Cooling is used to regulate the
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temperature of the rod, which affects the interval [0.3π, 0.7π] uniformly:

b(z) = H(z − 0.3π)−H(z − 0.7π) (5.46)

where H(·) denotes Heaviside step function. The goal is to force the system state
to a spatially uniform steady state x(z, t) = 0.

5.3.1 Updating Step in APOD & DAPOD

Since both APOD and DAPOD try to estimate the basis functions corresponding
to the updated snapshots ensemble and reduce the computational cost, the basis
functions generated by applying POD directly to the updated snapshot ensemble
are considered as the best basis function set we can get. To illustrate that DAPOD
gives a better set of basis functions, we compare the basis functions generated by
APOD, POD, and DAPOD using the same snapshot ensemble. When using POD,
first we collect some snapshots from the open loop process to form "old" snapshot
ensemble, in which the initial condition is

x(z, 0) =

 −0.1 0 ≤ z ≤ π
2

0.4 π
2 < z ≤ π

(5.47)

The snapshots are given in Fig. 5.4. Then we replace one of the snapshots with a
snapshot from the closed loop process to form a "new" snapshot ensemble. The basis
functions corresponding to old and new snapshot ensembles and that estimated by
APOD and DAPOD are compared in Fig. 5.3a and Fig. 5.3b. It can be seen that
both APOD and DAPOD give very accurate estimates of the first basis function,
while estimation of the second basis function by DAPOD is more accurate than
APOD. Note that the discontinuity in the original basis functions results from the
discontinuity in the initial condition in the open loop process which is used to
generate these basis functions. After the "old" snapshot is replaced by a continuous
snapshot, the previous behavior fades in the new basis functions.

5.3.2 Feedback Linearization & Dynamic Observer

In this example, we exploit feedback linearization to regulate the system. After a
ROM is constructed, the objective of this problem becomes regulating the unstable
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state variables in the ROM, which is the first state variable in this case.
First we employ Galerkin method to construct ROM (Eq.2.17). The unstable

subsystem becomes
dc1

dt = Lo1(c) +G1(c) +B1u (5.48)

In this example, Lo corresponds to ∂2x
∂z2−βux andG corresponds to g = βT (z)(e−γ/(1+x)−

e−γ). The controller is computed as:

u =
−
(
Lo1(c) +G1(c)

)
+ kdc1

B1
(5.49)

where kd is a negative scalar.
Since feedback linearization requires full information about the process and only

the temperature at one point is available, a nonlinear dynamic observer is designed
to estimate the states of the process.

dc̃
dt = Lo(c̃) +G(c̃) +Bu+Gm(ym − ỹ) (5.50)

where ỹ represents the temperature at z = 0.4 estimated by the observer. Gm ∈
Rm×1 refers to the observer gain matrix. The gain matrix Gm is determined by
LQR theory [42]. In this algorithm Q and R are 2I and I respectively of proper
dimensions, where I denotes the identity matrix.

5.3.3 Simulation Results

During the first 0.5s, the system evolves with u = 0. During this stage, 30 snapshots
are collected. These snapshots are used to construct the initial basis functions for
both DAPOD and APOD. After that, we assume new snapshots are available every
0.5 units of time during closed loop operation. The energy threshold ε is set to
98%. In this work, coefficient k in Eq. 5.49 is set to −0.1. The spatial-temporal
profile of temperature in the system based on DAPOD and APOD are displayed in
Fig. 5.5a and 5.5b, respectively. It can be seen that the offset in the system based
on APOD is larger than that based on DAPOD.

To quantitatively evaluate the performance of APOD and DAPOD, we define 2
performance indices: the error of an observer and the norm of the state. The error
of an observer represent the average error in space between the real state x and
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the estimation of the observer x̃:

e0 =
√∫

Ωz(x− x̃)2dz
L

(5.51)

where L denotes the length of the rod. Since the set point is the origin, the second
performance index represents the distance from the system state to the set point:

n0 =
√∫

Ωz x
2dz
L

(5.52)

The error of observers based on these 2 methods is compared in Fig. 5.6 and
the norm of the state is given in Fig. 5.7. It can be seen that the observer in the
system based on DAPOD has smaller error and the steady state has smaller offset.

The mode sizes in DAPOD and APOD are provided in Fig. 5.8. In APOD,
the mode size oscillates before stabilizing at 1, while the mode size in DAPOD
drops from 3 to 1 without oscillation. The reason for the difference is APOD
overestimates the energy captured by the (m+1)th basis function and the redundant
basis function is eliminated at next iteration through the condition number step.
This issue only occurs when new snapshot shows large difference from the existing
snapshot ensemble. Therefore, the mode size does not oscillate after the initial
stage. This argument is supported by comparing the estimated eigenvalues of
the new covariance matrix and the real eigenvalues (table 5.1). This oscillation
phenomenon can also be seen in previous result [1]. The result looks better because
an aggressive controller was employed.

The computational cost of APOD and DAPOD spent in updating basis functions
are 0.08s & 0.03s.

Remark 2 The performance of APOD depends on how aggressive the controller is.
When the coefficient k in Eq. 5.49 is set to −1, the results of APOD and DAPOD
are very similar.

Remark 3 When applying both APOD and DAPOD, the energy ratio ε is chosen
to be "small" so that the order of the reduced order model can be low and the
computational cost is reduced. It can be seen that the error of the observer is not
trivial since only 1 basis function is used to model the system. While the ROM is not
accurate, the controller still can regulate the system. This result demonstrates an

58



advantage of APOD/DAPOD: the dominant behavior of the system is well captured,
so that the system can be regulated without accurately modeling the system globally.

5.4 Kuramoto-Sivashinsky Equation
In this section, we apply modified APOD and DAPOD to stabilize Kuramoto-
Sivashinsky equation (KSE) [48]. KSE is used extensively to describe falling liquid
film thickness [49] and flame front propagation [50]. Here the integral form of KSE
is considered.

∂x

∂t
= −ν ∂

4x

∂z4 −
∂2x

∂z2 − x
∂x

∂z
+

l∑
i=1

biui(t) (5.53)

where

bi = δ(z − zi) (5.54)

with the boundary condition

∂jx

∂zj
(−π, t) = ∂jx

∂zj
(π, t) j = 0, · · · , 3 (5.55)

and the initial condition

x(z, 0) = 3sin(z)− cos(2z)− sin(5z) + 2cos(5z) (5.56)

7 actuators are used at locations

zi = −5π
6 ,−π2 , −

π

4 , −
π

6 ,
π

3 ,
2π
3 ,

7π
8

i = 1, 2, . . . , 7
(5.57)

sensors are uniformly distributed in [−π, π] and measure the state continuously.
The objective is to stabilize the system at the origin. When ν < 1, the system

at the origin is locally unstable, and has chaotic behavior for very small ν [55]. To
evaluate the performance of the proposed method under demanding conditions, ν
is set to be 0.09. Note that for this value the onset of new trends is very fast. The
open loop profile of the system is displayed in Fig. 5.9.
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5.4.1 Lyapunov-based Control & Static Observer

In this example, Lyapunov based control is applied (section 6.2.4). We assume
there is control constraint: ui ∈ [−10, 10]. Since the objective corresponds to

c = 0 (5.58)

the following Lyapunov function is considered:

V = cT c (5.59)

Since this system has chaotic behavior, we use a static observer to estimate the
state of the system.

5.4.2 Simulation Results

The complete profile of the system or new snapshot is assumed to be available
every 1 units of time. During the first 1 unites of time, ui = 0, 30 snapshots are
collected to construct the initial basis functions. Since this system has chaotic
behavior, a higher energy threshold is taken ε = 0.999 to improve the accuracy of
the estimation of the observer. We assume the snapshot is available every 1 unit of
time. We use 30 equally distributed point sensors to measure the state.

The profiles of the systems based on DAPOD and modified APOD are displayed
in Fig. 5.10a and 5.10b. Fig. 5.11 gives the corresponding norm of the profile. It
can be seen that both systems reach the set point with negligible offset. But the
system based on DAPOD arrives at the set point earlier than APOD.

The basis sizes in DAPOD and APOD are given in Fig. 5.12. It can also be
observed that the basis size in APOD oscillates. After checking the real eigenvalues
of the updated covariance matrices and the estimated ones, we find that the
oscillation results from the overestimation of the energy captured by the (m+ 1)th

basis function.
Fig. 5.13a and 5.13b compare the first basis function in APOD and DAPOD.

While DAPOD stops updating the basis function after t = 11 because the error of
the observer is very small, APOD has to keep updating the basis functions until
t = 20 since the basis size oscillates.
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The errors of the static observers are depicted in Fig. 5.14. Since the errors are
similar in both observers, we decrease the number of sensors to 20 to evaluate the
performance of the proposed method. The result is given in Fig. 5.15a to 5.18. Fig.
5.15a and 5.15b compare the system response. The distance from the set point
(or norm of the profile) is displayed in Fig. 5.16. Fig. 5.17 shows the error of the
observers. And the basis sizes are depicted in Fig. 5.18. It can been observed that
after deceasing the number of sensors, the system based on DAPOD can still be
regulated (Fig. 5.15a and 5.16) and has similar observer error (Fig. 5.17) and basis
size (Fig. 5.18), while the closed-loop system based on APOD oscillates.

The computational cost of APOD and DAPOD spent in updating basis functions
are 0.10s & 0.08s.
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Figure 5.3a: First basis function of old and new snapshots matrices and
those estimated by APOD and DAPOD.
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Figure 5.3b: Second basis function of old and new snapshots matrices and
those estimated by APOD and DAPOD.
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Figure 5.4: snapshots used to construct basis functions off-line.

Figure 5.5a: closed-loop temperature profile of the system based on DA-
POD.

Figure 5.5b: closed-loop temperature profile of the system based on APOD.
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Figure 5.6: The error of observers in systems based on DAPOD and APOD.
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Figure 5.7: norm of temperature in systems based on DAPOD and APOD.
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Figure 5.8: dimension of ROM in systems based on DAPOD and APOD.
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Figure 5.9: open loop profile of the state

Figure 5.10a: closed-loop profile of the system based on DAPOD
(30 sensors).

Figure 5.10b: closed-loop profile of the system based on APOD
(30 sensors).
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Figure 5.11: norm of the profile of systems based on DAPOD and APOD
(30 sensors).
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Figure 5.12: basis size in systems based on DAPOD and APOD
(30 sensors).
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Figure 5.13a: temporal profile of the first basis function in DAPOD
(30 sensors).

Figure 5.13b: temporal profile of the first basis function in APOD
(30 sensors).
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Figure 5.14: error of the observer for systems based on DAPOD and
APOD

(30 sensors).
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Figure 5.15a: closed-loop profile of the system based on DAPOD
(20 sensors).

Figure 5.15b: closed-loop profile of the system based on APOD
(20 sensors).
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Figure 5.16: norm of the profile of systems based on DAPOD and APOD
(20 sensors).
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Figure 5.17: error of the observer for systems based on DAPOD and
APOD

(20 sensors).
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Figure 5.18: basis size in systems based on DAPOD and APOD
(20 sensors).
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Chapter 6 |
Control of Dissipative PDE Sys-
tems with Strong Convective
Phenomena Based on Model Re-
duction

Actuation in PDEs can be divided into 3 categories: source terms/interior control,
boundary control and coefficients [56]. Most of the studies focus on source terms
and boundary control, while control via coefficients has been rarely discussed. To
improve the process controllability, this work focuses on control by manipulating the
convection coefficient. However, when a system has strong convective phenomenon,
the accuracy of the corresponding reduced order model may suffer.

Conventional controller designs are based on spatial discretization techniques.
Finite difference method (FDM) can be used to construct a system of ordinary differ-
ential equations (ODEs). In the work of Dejan Bošković et al. [57], backstepping is
utilized to control a tubular chemical reactor based on the finite dimensional model
generated by FDM. Despite its wide usage, this approach usually leads to a high
order system. Since the dynamic behavior of systems described by parabolic PDEs
can be approximated by finite dimensional systems [10,11], low order models can
be obtained via method of weighted residuals (MWR) [7,9]. However, as convection
becomes more and more dominant compared with diffusion, the accuracy of the
reduced order model of a certain order decreases since the energy captured by each
mode becomes closer. In the extreme case in which convection is dominant and
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diffusion is negligible, this approach is no longer applicable, since all the modes
have almost the same energy [58,59].

To deal with the ROM accuracy issue, we propose to use adaptive proper
orthogonal decomposition (APOD) [31] to update the ROM when new observation
becomes available. To generate ROM, MWR approximates the state variable by
superposition of basis functions multiplied by time dependent coefficients. Proper
orthogonal decomposition (POD) [12] is a standard method to construct basis
functions numerically by using an ensemble of data of state profile collected from
experiment or simulation. Based on whether basis functions are updated by
incorporating new observations, POD can be divided into two categories: batch
POD [37] and incremental POD. Most research about POD method focuses on
batch POD. Compared with standard POD [12], which process all the data in a
batch, one of the advantages of incremental POD is it can mitigate the impact of
historic observations by successively updating basis function and enabling dimension
increase or decrease when new observation becomes available. Since applying POD
iteratively is computational intensive, a significant amount of research has focused on
designing incremental POD methods with less computational cost, including APOD,
adaptive POD (aPOD) [38], recursive POD [39], incremental POD (iPOD) [40], and
incremental SVD/POD method [30]. To reduce the computational cost, different
assumptions are made in these methods. In our work, we focus on APOD.

In this work, the performance of APOD in systems with strong convective
phenomena is evaluated through a tubular reactor example. First, a ROM of a
system with time-varying velocity is constructed via APOD to demonstrate the
improvement in the accuracy of ROM. Then velocity is used as actuator to control
the system. It is also demonstrated that APOD can improve the accuracy of the
ROM when unexpected disturbance occurs.

6.1 Approach and Techniques
We focus on processes described by the following semi-linear partial differential
equation.

∂x

∂t
= θ1

∂x

∂z
+ θ2

∂2x

∂z2 + f(x) + b(z)u (6.1)

Here θ1 is a convection parameter, θ2 is a diffusion parameter
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6.2 Adaptive Model Reduction

6.2.1 Discrete Adaptive Proper Orthogonal Decomposition

In this section, we briefly review DAPOD. Compared with standard POD that used
a predetermined set of snapshots to construct basis functions, DAPOD updates
basis functions by updating the snapshot ensemble when new snapshots become
available. It can be summarized into the following steps:

• construct basis functions off-line

• incorporate new snapshots

• determine basis function size

• check the accuracy of ROM

• update basis functions

• eliminate old snapshot(s)

In the off-line initial basis function construction step, we can use singular value
decomposition (SVD) to construct the basis function Φ, and initial basis function
size is determined by energy captured by each basis function.

In the on-line step, snapshot matrix A is updated when a new snapshot becomes
available. Both importance and "freshness" of snapshots are considered.

As new snapshots become available, the number of basis functions needed
to construct ROM may increase or decease. We change the basis function size
accordingly based on the energy captured by the basis functions truncated in
previous steps.

After calculating the energy captured by the basis functions, we check the
accuracy of basis functions if the basis function size is unchanged. When basis
functions size changes or current basis functions are not accurate enough, basis
functions are updated.
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6.2.2 DAPOD-based model reduction

We use method of weighted residual (MWR) to approximate the PDE by a set of
ODEs. State variable x is approximated by

x =
m∑
i=1

ci(t)φi(z) (6.2)

where ci are called modes, weight functions are chosen to be the same with basis
functions φi(z). Both of them are determined by DAPOD. By multiplying the both
sides of the PDE and integrating over the spatial domain, we obtain the following
ROM

dC
dt = θ1A1C + θ2A2C + F (C) +Bu (6.3)

where C = [c1, c2, · · · , cm]T ∈ Rm×1, A1, A2 ∈ Rm×m and F = [f1, f2, · · · , fm]T

The ROM will be updated when basis functions Φ are updated by DAPOD to
increase the accuracy of the model.

6.2.3 DAPOD-based observer design

In this paper, we present two dynamic observes to estimate the state of the system.
The dynamic observer is designed based on the ROM (Eq. 6.3)

Assumption 3 F is a Lipschitz nonlinear vector function:

‖F (cp)− F (cq)‖ ≤ Kl‖cp − cq‖ (6.4)

The Luenberger-type dynamic observer is formulated as

dC̃
dt = θ1A1C̃ + θ2A2C̃ + F (C̃) +Bu+Gm(ym − ỹ) (6.5)

where C̃ refers to the estimated state. The gain matrix Gm is determined using
LQR theory [42] to ensure stability of the estimation error.

When the periodical measurement yp is available, estimated state is reset:

C̃i = (yp, φi) (6.6)
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6.2.4 DAPOD-based controller design

In this section, we use Lyapunov-based control to regulate the systems. To improve
the process controllability, control via coefficients is considered: both θ1 and u

are manipulated input in Eq. 6.3. Since Peclet number should be positive, input
constraint is applied.

For a Lyapunov function V , we design the following feedback regulator based
on refs 21, 22. First, we use F0 to denote θ2A2C + F (C) in Eq. 6.3; B̂û refers to
θ1A1C +Bu, û contains both θ1 and u

Ċ = F0(C) + B̂û (6.7)

To reduce chattering, we modify the method for the case ‖(LB̂V )′(C)‖ = 0. The
following bounded control law is employed: û = −k(C)(LB̂V )T (C) ‖(LB̂V )T (C)‖ > 0

˙̂u = 0 ‖(LB̂V )T (C)‖ = 0
(6.8)

where

k(C) =
L∗F0V (C) +

√(
L∗F0V (C)

)2
+ (ûmax‖(LB̂V )T (C)‖)4

‖(LB̂V )T (C)‖2
[
1 +

√
1 + (ûmax‖(LB̂V )T (C)‖)2

] (6.9)

and
L∗F0V (C) = LF0V (C) + ρ0V (6.10)

ρ0 is a positive number. It can be proved the Lyapunov function V (C) is
negative definite when the initial condition satisfies {C ∈ C0 : L∗F0V (C) ≤
ûmax‖(LB̂V )T (C)‖}.

6.3 Application to Tubular Reactor Example
We apply DAPOD to a tubular reactor example [60], in which a first order reaction
takes place. Both temperature and concentration of reactant vary in space.
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6.3.1 ROM for System with Time-varying Velocity

The governing equation is as follows:

∂T

∂t
=− v∂T

∂z
+ k

ρcp

∂2T

∂z2 + −∆H
ρcp

k0e− E
RT CA −

hAs
ρcp

(T − Tc)

∂CA
∂t

=− v∂CA
∂z

+DA
∂2CA
∂z2 − k0e− E

RT CA

(6.11)

The boundary condition of this problem is

z = 0 : T = T0

CA = CA0

z = L : ∂T
∂z

= 0
∂CA
∂z

= 0

(6.12)

After defining new variables, the governing equation 6.11 is simplified to

∂x1

∂t
=u1

∂x1

∂z
+ β12

∂2x1

∂z2 + β13e−
βe

1+x1 (1 + x2) + βT (u2 − x1)

∂x2

∂t
=u1

∂x2

∂z
+ β22

∂2x2

∂z2 + β23e−
βe

1+x1 (1 + x2)
(6.13)

where

x1 = T − T0

T0
, x2 = CA − CA0

CA0
, z̃ = z

L

u1 = − v
L
, u2 = Tc − T0

T0
, β12 = k

ρcpL2 , β13 = −∆Hk0CA0

T0ρcp

β22 = DA

L2 , β23 = DA

L2 , βe = E

RT0
, βT = hAs

ρc

(6.14)
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Figure 6.1: temporal profile of the random manipulated input

The corresponding boundary condition is

z = 0 : x1 = 0

x2 = 0

z = 1 : ∂x1

∂z
= 0

∂x2

∂z
= 0

(6.15)

First, to demonstrate that strong convective phenomena may make the standard
model reduction method fail, we use the same snapshots to construct basis functions,
and then apply the basis functions to systems with different θ1. The systems are
excited by the same random manipulated input (Fig. 6.1). Fig. 6.2 and 6.3 give
the system response in full model when θ1 = 3. The system response calculated
by reduced order model is displayed in Fig. 6.4 and 6.5. The error of the ROM is
defined as follows:

e =

√∫ L
0 (x− x̃)2dz

L
(6.16)

where x̃ represents the system response calculated by ROM and L is the length
of reactor, which is 1 in this case. We compare the error of the ROM when
θ1 = 3, 10, 20 (Fig.6.6-6.7). It can be seen that as θ1 increases or the convective
phenomena become stronger, the error of the ROM increases.

——————–
Then we demonstrate updating basis function using new snapshots can improve
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the accuracy of ROM. We use DAPOD to construct ROM for the process with
unknown time-varying velocity (displayed in Fig.6.8, θ1 = v/L in this example.)
Standard POD is used as a comparison. Since model accuracy depends on model
dimension, the dimension of ROM when using standard POD is the same with
that in DAPOD. Dimension of ROMs or numbers of basis functions are provided
in Fig. 6.9. The basis functions in standard POD are also used as the initial basis
functions in DAPOD. Because the snapshots are collected from a process with
constant velocity, updating basis functions using new online snapshots can better
capture the current behavior of the system.

The errors of ROMs are displayed in Fig. 6.10 and 6.11, where red dots indicate
basis functions in DAPOD are updated. This result demonstrates that DAPOD
can improve the accuracy of ROM.

Note that in DAPOD, the estimated state of the ROM in the dynamic observer
is reset every time a new snapshot is available, to eliminate the effect of the resetting
step, the state of the ROM in standard POD is also reset. As a result, the error of
ROM reduces every 1 unit of time.
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Figure 6.10: error of x1 in ROMs based on DAPOD and POD

6.3.2 Lyapunov-based Control

In this section we use both cooling jacket (u2 in Eq. 6.13) and velocity (−u2L in
Eq. 6.13 or −θ1L in Eq. 6.1 where L is a constant) to control the system. The
objective is to maintain the temperature at x1(z) = 0 and the concentration of A
at outlet is x2(1) = −0.1. Snapshots or profilse over the whole domain are assumed
to be available periodically and one sensor is lo located at z = 1 to measure the
temperature continuously. State variables of ROM are estimated by Luenberger
observer [61] and controller is designed based on Lyapunov function [52,53]. The
limits for control actions are set to be: u1 ∈ [−10, 0] and u2 ∈ [−0.5, 0.5]. The
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Figure 6.12: process operation block diagram

process operation block diagram is provided in Fig. 6.12.
The control actions are set to u1 = −7 and u2 = 0 at first 2 units of time.

Then the controller becomes active. At t = 6.6, concentration on the boundary
CA0 increases by 10%; as a result the boundary condition and coefficients that
involves CA0 all change accordingly. This disturbance is not known by controller
or observer and the new trend induced by this disturbance is not captured in the
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Figure 6.13: system response of x1

initial snapshots ensemble. System response based on DAPOD for x1 and x2 are
displayed in Fig. 6.13 and 6.14. It is clear that the controller stabilize the system
at the set point x1(z) = 0 and x2(1) = −0.1. The error of the observer based on
DAPOD and POD is compared in Fig.6.15 and 6.16. The disturbance leads to
large error in dynamic observer which is based on ROM because the new trend of
system behavior is not captured by ROM based on POD, while DAPOD captures
the new behavior using new snapshots and the error of observer decreases gradually.
Since the objectives are x1 = 0 and x2(1) = −0.1, we compared the norm of x1

with set point in Fig. 6.17 and x2(1) is given in Fig. 6.18. It can be seen that both
x1 and x2 have smaller offset in system based on DAPOD. Control action u1 and
u2 are displayed in Fig. 6.19 and 6.20. It is clear that both manipulated variables
are within the limits.
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Figure 6.14: system response of x2
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Chapter 7 |
On the Design of Equation-free
Controllers for Dissipative PDEs
via DEIM

Typical control methods for nonlinear distributed parameter systems include feed-
back linearization, the Lyapunov based method and the back stepping method [57].
A common characteristic of these methods is that they require the availability of
the system state. However, distributed parameter systems are infinite dimensional
in function space, making the online measurement of the complete state infeasible
in practice. Although Luenberger-based observers have been widely used to esti-
mate the state of distributed parameter systems [62,63]. The implementation of a
Luenberger-based observer requires the knowledge of the mathematical model of
the system. Nevertheless, model uncertainty always exist in controlling processes.
As a result, significant efforts have been devoted to control with uncertainty [64]
and data-driven control [65, 66].

In most data-driven control methods, identification is utilized as the basis of
control. System dynamics (local or global), or the input-output mapping is identified
first. Some of the methods include divide-and-conquer techniques [67] (such as
memory based local modeling [68]), subspace identification [69,70], neural network
[71,72] and autoregressive moving average with exogenous inputs (ARMAX) [73,74].
In divide-and-conquer techniques, linearized models at different operating points
are estimated and a controller is constructed accordingly. One of the disadvantages
of this algorithm is each linearized model can only correctly predict the system
response in the vicinity of the corresponding operating point. Therefore, a large
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number of local models are required.
Another important data-driven control method is subspace identification. Sub-

space identification identifies a state space model for artificial state variables by
using input output data from a dynamical system. Popular algorithms include
N4SID [69], canonical variate analysis (CVA) [75] and MOESP. This technique does
not require any knowledge of the model, but suffers from high computational cost.
To reduce the computational burden, modified versions, such as Verdult’s work [76]
and recursive subspace identification [77] have been developed. In addition to
the excessive computation burden, another disadvantage is subspace identification
applies to linear system only. To circumvent this restriction, carleman linearization
is used to construct a bilinear system [78–80], which sets the basis for system
identification. A shortcoming of this approach is the resulting bilinear model may
be computationally expensive to implement online.

Neural network method has also been widely used to identify input-output
mapping in various fields including chemical engineering over many years [81,82]. It
has great promise in control nonlinear system since it can represent any continuous
mapping [83]. To robustify this method in terms of the disturbance in data,
prediction interval-based neural network [84,85] has been proposed. However, how
to determine the structure of the neural network and the demanding requirement
in the availability of training set to tune parameters remain open questions.

ARMAX is also widely used to approximate nonlinear systems. This method
has a given structure for the system it will approximate and the parameters in
polynomials need to be estimated through an identifying process [86].

In this manuscript, we propose another approach to control systems in which
the knowledge of the chemical and physical law that describes the systems is not
available or complete. DEIM, an algorithm which is used to reduce computational
cost, will be modified to estimate the state and the dynamics of the system by using
the continuous measurement of a finite number of point sensors. The estimation will
be employed for controller implementation. The idea is the proposed method and
DEIM share a similar goal: determining the "optimal" locations based on snapshot
profiles so that the complete profile of the interested term can be approximated by
using the values of the term at finite locations.
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7.1 Preliminaries
We consider a dissipative process described by the following PDE:

∂x

∂t
= f(x) + b(z)u (7.1)

yi =
∫

Ωz
δ(z − zi)xdz (i = 1, 2, · · · , k1) (7.2)

yj =
∫

Ωz
δ(z − zj)ẋdz (j = 1, 2, · · · , k2) (7.3)

subject to the boundary condition

gb(x,
∂x

∂z
) = 0 on Γ (7.4)

and the initial condition
x(z, 0) = x0(z) (7.5)

In this system, f(x) is a unknown functional which contains a semi-linear
spatial operator and a nonlinear function. u ∈ Rs×1 denotes manipulated variables,
where s refers to the number of manipulated inputs. b(z) ∈ R1×s describes how
the manipulated variables u control the system spatially and is known. yi and
yj denotes the ith and jth measured output, and δ(·) represents the Dirac delta
function. ẋ refers to the time derivative of x. In this work, we assume only a finite
number of point sensors are available. We have 2 sets of point sensors: the first set
of sensors is called state sensors. They measure the state (such as temperature)
at certain points directly. The other set of sensors is "velocity sensors" since they
estimate or measure directly the time derivative of the state at certain points,
which is used for {f(xi)}. zi denotes the location of ith state sensor and zj denotes
the location of ith velocity sensor. g is a function of x and its spatial derivative.
The control objective is to maintain the state variable at a desired steady state.
Without loss of generality, we assume x(z, t) ∈ R and the desired steady state is
the zero spatially uniform profile.

Assumption 4 We assume a set of snapshots of x and f(x) are available before
the process operation starts.

Remark 4 The snapshots of f(x) can be calculated by using x without the explicit
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knowledge of f(x) (This will be explained more in section 8.1).

7.2 Equation-free Control Based on DEIM
Typical control methods for nonlinear distributed parameter systems include feed-
back linearization. To implement this method, the knowledge of the state and
the time derivative of the state are required. After the ROM is constructed, the
requirements convert to the knowledge of cq and

∫
Ωz ϕjf(∑n

q=1 cqφq)dz.

7.2.1 basis functions construction

We assume a set of snapshots {xi} are sampled from an open-loop process via
experiment. xi = x(z, ti) and {ti} is known. Then we use {xi} and {ti} to generate
the spatial profile of the time derivative of the state ∂x

∂t
(z, ti). Since in the open-loop

process
∂x

∂t
= f(x) (7.6)

each profile of ∂x
∂t

(z, ti) is denoted by f(xi). Please note that the explicit knowledge
of f(x) is not required to generate {f(x)} (which is different from DEIM) since
f(x) is equal to the time derivative of x when the control action is set to zero.
When zero-control-action does not hold, f(x) can be calculated from ẋ− bu as long
as spatial profile of ẋ can be calculated from xi and ti. Then we apply POD to
{xi} and {f(xi)} respectively to generate 2 sets of basis functions: {φq} for {xi}
and {φ̃q} for {f(xi)}.

Remark 5 In DEIM, basis functions are constructed for g(x) only, which is the
nonlinear part in f(x), while in our method, the linear part and nonlinear part
are not differentiated. This modification has an advantage: it does not require the
knowledge of the linear operator L and the nonlinear function g(x), while DEIM
requires the explicit information of the governing equation.

To the best of the authors’ knowledge, DEIM is mainly used in reducing com-
putational cost [87, 88]. This is the first time DEIM is used in equation free
control.

Assumption 5 The nonlinear function g can be represented by basis functions
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Remark 6 In theory, a general nonlinear function in the governing equation
of a dissipative process might be infinite dimensional, and therefore cannot be
approximated by a linear combination of basis functions. This problem may be solved
by applying localized DEIM [88] or adaptive DEIM [89] to improve the accuracy.
Since DEIM has been widely used in reducing computational cost in different systems
with enough accuracy, we can assume for many dissipative processes, the nonlinear
part g can be approximated by Eq.4.1 (assumption 5). In the linear part,

L(z)x ≈ L(z)
n∑
q=1

cq(t)φq(z) =
n∑
q=1

cq(t)
(
L(z)φq(z)

)
(7.7)

Hence, the difference between the dimension of the f and g is at most n for a
certain level of accuracy.

Remark 7 (snapshots) How to select snapshots and how many of them should
be used remain an open question in POD, which is out of the scope of this paper.
Because of the limit of space, we only present the work in which snapshots of x and
f(x) are generated in the same process and the same number of them are used.

7.2.2 determine sensor locations by using DEIM algorithm

After we generate basis functions for {xi} and {f(xi)}, point sensor locations are
determined by linking the sensor locations to the interpolation indices in the DEIM
algorithm.

First we put the basis functions {φq} in order based on the corresponding
eigenvalues of the covariance matrix. Then we calculate those indices inductively.
p1 is the position of the peak of the first nonlinear basis function φ1. We define 2
matrices Φ′ = [φ1] and P ′ = [ep1 ], where ep1 denotes the pth

1 column in an identity
matrix. Starting from the second iteration, we solve

(P ′TU ′)d = P ′Tφq (7.8)

for d to obtain residual r
r = φq − Φ′d (7.9)

the qth interpolation index is the position of the peak of the residual. Then we
update Φ′ to [Φ′, φq] and P ′ to [P ′, epi ]. We repeat this process until we find out
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all the interpolation indices. The locations of first set of sensors correspond to
the interpolation indices for {φq}. Then we repeat the above process for {φ̃q} to
determine the locations of the second set of sensors.

7.2.2.1 Observer & Controller

We design static observer for the system. Based on Eq. 4.3, we have

x ≈ Φ(P TΦ)−1X (7.10)

where X = [x(z1) x(z2) · · · x(zn)]T are continuously measured by the first set of
sensors, and P is determined by the DEIM algorithm described in section 8.1.2.
To obtain the state in the ROM, Φ is multiplied at both sides:

ΦTx ≈ ΦTΦ(P TΦ)−1X (7.11)

We obtain
c ≈ (P TΦ)−1X (7.12)

Similarly, we can estimate f(x) by using the same approach:

f(x) ≈ U ′(P ′TU ′)−1X ′ (7.13)

where U ′ = [φ̃1, · · · , φ̃k], P ′ is obtained based on U ′ and

X ′ = [ẋ(z′1)− b(z′1)u, ẋ(z′2)− b(z′2)u, · · · ẋ(z′n)− b(z′n)u]T (7.14)

where ẋ(z′i) is measured or estimated by the second set of sensors.
The controller will be designed using feedback linearization. With the estimated

state (Eq.8.4 ) and f(x) (Eq. 8.5), these control methods can be implemented
without the explicit information of f(x).

7.3 Diffusion-reaction process
To illustrate how the estimated information is used in controller design and evaluate
the performance of the proposed static observer, we consider a diffusion reaction
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process. In this process, the temperature along the surface of a catalytic rod is
affected by an elementary exothermic reaction and diffusion [31]. The governing
equation is as follows:

ρC
∂T

∂t̃
= k1

∂2T

∂z2 − Ak2(z)e− E
RT c0∆H + k3ls

∆A(Tc(z)− T ) (7.15)

where concentration c0 and parameters ρ, C, ∆A, E, R, A, k1, k3, ls are all
constants. The objective is to force the temperature to a uniform unstable steady
state T = T0. To regulate the temperature, cooling (or heating), Tc is employed.
Tc contains 2 components:

Tc = Tc0 + T ′c (7.16)

where Tc0 is a cooling system determined during process design, chosen so that
T = T0 is a viable (albeit unstable) open-loop steady state and T ′c is the manipulated
input.

New variables are defined to simplify Eq. 7.15. We obtain:

∂x

∂t
= ∂2x

∂z2 + βT (z)(e−γ/(1+x) − e−γ) + βu(b(z)u− x) (7.17)

where
x = T − T0

T0
(7.18)

The values of new parameters are βu = 2, γ = 2. Because of a spatial distribution
on the activity of the catalyst, we have

βT (z) = 16[cos(z) + 1] (7.19)

We consider 2 boundary conditions:
1)

x(0, t) = 0, x(π, t) = 0 (7.20)

2)
x(0, t) = 0, ∂x

∂z
(π, t) = 0 (7.21)

In both cases the initial condition is

x(z, 0) = 0.7 (7.22)
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Without control, the system evolves to a spatially varying steady state for both
boundary conditions.

To facilitate observer and controller design, POD is utilized to construct a ROM
for this process. As a result, the control objective x = 0 becomes c = 0. We use
feedback linearization to regulate the unstable state variables in the ROM, which
is c1 in this case. Hence, only one actuator is required to regulate this process. We
consider an actuator that affects the interval [0.3π, 0.7π] uniformly.

b(z) = H(z − 0.3π)−H(z − 0.7π) (7.23)

where H(·) denotes Heaviside step function. There are 2 sets of point sensors
to continuously measure the temperature of the rod at points zi and the time
derivative of temperature at z′i.

yi =
∫ π

0
δ(z − zi)x(z)dz (7.24)

y′i =
∫ π

0
δ(z − z′i)ẋ(z)dz (7.25)

7.3.1 Snapshots

We assume a set of snapshots is available before the process operation starts. In
this example, 40 snapshots of x are collected from an open-loop process with the
initial condition

x(z, t0) = 0.3sin(4.3z)− 0.11cos(1.38z) + 1 (7.26)

which is displayed in Fig. 7.1. These 40 snapshots are also used to estimate the
spatial profiles of the time derivative of x, which are the snapshots of f(x) since
u = 0.

Remark 8 In POD method, whether the basis functions can capture the major
behavior of a system hinges on the quality and quantity of snapshots. Since this
example is very simple, snapshots from a single process are sufficient to stabilize the
system. For more information about snapshots sampling, please refer to [15,90].
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7.3.2 Observer & Controller

We use the static observer (Eq. 8.4) to estimate the state c. As to the controller,
we design the control action so that

ċ1 + kc1 = 0 (7.27)

where k is a positive constant. Based on the governing equation for c1

ċ1 =
∫

Ωz
φ1f(

n∑
q=1

cqφq)dz +
∫

Ωz
b(z)uφ1dz (7.28)

we obtain the following control action

u =
−kc1 −

∫
Ωz φ1f(∑n

q=1 cqφq)dz∫
Ωz b(z)φ1dz (7.29)

The unknown term
∫

Ωz φ1f(∑n
q=1 cqφq)dz is estimated by Eq. 8.5. The first state

variable c1 is estimated by the observer (Eq. 8.4).

Remark 9 To implement the above controller, the only information we need is the
actuator effect b(z) and the continuous measurement by state and velocity sensors.
The proposed method takes advantage of the information in snapshots to estimate
the complete profile of x and f(x) based on point measurement.

Remark 10 Since the uniform initial condition is arbitrarily chosen and shows
different behavior from the snapshots in open loop, the observer has large error
for a small period of time at the beginning; as a result, the control action is very
aggressive at the beginning and then decays very fast. To eliminate this aggressive
control action, we force the control action to be in the region [−3, 3].

7.3.3 Results

We use linear Galerkin method with analytical eigenfunctions to simulate the plant.
100 eigenfunctions are used to guarantee the accuracy of the simulation.

96



0 1 2 3

z

0.6

1

1.4

x

Figure 7.1: initial condition of the open-loop process.
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Figure 7.2b: basis functions for f(x)
and the corresponding sensor loca-
tions.

7.3.3.1 Dirichlet boundary condition

In the system with Dirichlet boundary condition, we first use 2 sets of 3 point
sensors (in total 6 sensors) to measure the temperature. The basis functions and
the corresponding sensor locations are given in Fig. 7.2a and 7.2b, where the red
and green dots indicate sensor locations. Fig. 7.3 shows the system response of the
closed-loop system and the temperature estimated by the observer is given in Fig.
7.4.

To analyze the impact of the number of sensors, we increase the number of
sensors in each set from 3 to 4, 5, 6 and 7. The errors of observers are compared in
Fig. 7.5. It shows that as the number of sensors increases, the error of observer
decreases. The only exception is the error in the system with 2 sets of 4 sensor
decays slower than that in 3 sensors. The reason is the control action (Fig. 7.6) is
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Figure 7.3: closed-loop temperature
profile of the system.

Figure 7.4: temperature estimated by
the observer.
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Figure 7.5: error of observer.
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Figure 7.6: control action.

less aggressive in the system with 4 sensors.

Remark 11 Since the dynamic behavior of dissipative PDEs can be approximated
by finite dimensional systems [10,11], the estimation of x may require less sensors
than f(x) to achieve the same level of accuracy. We only present the result in which
x and f(x) have the same number of sensors in the example because of the limit of
space.

7.3.3.2 Dirichlet-Neumann boundary condition

To evaluate the effectiveness of the method in a different circumstance, we apply the
same method to the system with Dirichlet-Neumann boundary condition (Eq. 7.21).
Fig. 7.7 shows the system response of the closed-loop system and the temperature
estimated by the observer is given in Fig. 7.8. The error of the observers and
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Figure 7.7: closed-loop temperature
profile of the system.

Figure 7.8: temperature estimated by
the observer.
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Figure 7.9: error of observer.
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Figure 7.10: control action

the control actions in systems with a different number of sensors are compared
in Fig. 7.9 and 7.10. The result shows that the controller can also regulate the
system with Dirichlet-Neumann boundary condition and the results corresponding
to different numbers of sensors present the similar trend with those in the Dirichlet
boundary condition. The only difference is the system oscillates when it has 2 sets
of 3 sensors.

7.3.3.3 Closed-loop System Evolution under Disturbances

Here we consider a system with disturbance. We assume that the activity of the
catalyst changes uniformly in space over time. The temporal profile of the ratio
βT (t)
βT (t0) is depicted in Fig. 7.11. We also consider the case in which the activity of
the catalyst decreases. Since the decreasing of the nonlinear term makes the system
easier to control, we only present the former one here.
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Figure 7.11: disturbance in βT .

In the system with Dirichlet boundary condition, the system response of the
closed-loop system with 2 sets of 3 sensors and the temperature estimated by the
observer are given in Fig. 7.12 and 7.13. We can see that the regulator can still
achieve the goal. Fig. 7.14 compares the error of the observers and the control
action is given in Fig. 7.15. They show the similar trend with that in systems
without disturbances.

In the system with Dirichlet-Neumann boundary condition, the method is less
robust than that with Dirichlet boundary condition. When βT increases by 20%,
the controller still works (Fig. 7.16 gives the error of the observers and Fig. 7.17
displays the control action), although the errors of the observers are larger. However,
when βT increases by 30%, the second mode explodes after the system gets close to
the origin; since this controller is designed based on the assumption that only the
first mode is unstable, the controller is not able to regulate the system.
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Figure 7.12: closed-loop temperature
profile of the system when disturbance
exists.

Figure 7.13: temperature estimated
by the observer when disturbance ex-
ists.
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Figure 7.14: error of observer when
disturbance exists. (Dirichlet bound-
ary condition)
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Figure 7.15: control action. (Dirichlet
boundary condition)
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Figure 7.16: error of observer
when disturbance exists. (Dirichlet-
Neumann boundary condition)
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Figure 7.17: control action.
(Dirichlet-Neumann boundary
condition)
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Chapter 8 |
Modified Equation-free Control
Method

In previous work [91], we have described another equation-free method to control
systems when the knowledge of the governing law is not available or complete
and the actuator effect is. This method is motivated by the feature of discrete
empirical interpolation method (DEIM) [47]: the selection of the interpolation
indices can limit the growth of the error of the approximation by DEIM. To take
advantage of this feature, sensor locations in this method are determined by the
interpolation indices. While there have been many contributions about sensor
network designs [92–95], this approach has the advantage that no information
about the governing equation is required. With the continuous measurement of
these sensors, the state in the ROM is estimated by a static observer. In the
dynamics estimation part, the mapping from the outputs onto the projection of the
dynamics is generated using a similar approach as the static observer. By using
this information, the explicit governing law becomes superfluous.

In this chapter, we try to improve the accuracy of the estimation of the dynamics
by using the information of estimated state. A correction term is applied to
compensate the error brought by the "static" part. The difference between the
expected value of the state and the actual value is used to update the correction term.
The modified version is applied to a diffusion reaction process. The assumption of
the availability of the constant regulation term in the previous work is relaxed.
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Figure 8.1: flow chart of equation free control framework.

8.1 Data-driven Control Based on DEIM
In this section, we review how the equation-free control is used to regulate systems.
The flow chart of the proposed method is given in Fig. 8.1.

This method makes the following assumptions:

Assumption 6 A representative set of snapshots of x and a set of snapshots of f ,
{xi} and {fi} respectively, are available before the process operation starts, or {fi}
can be obtained from processing {xi}.

Assumption 7 The effect of the actuators, b(z), on the state is known.

Assumption 8 (state space partition) [61] The infinite dimensional system
of Eq.1.1 can be partitioned into a finite dimensional slow (stable or unstable)
subsystem and an infinite dimensional fast stable subsystem.

Please note that the availability of offline f snapshots does not necessarily
require the knowledge of the governing equation. As long as the sampling time
corresponding to each x or ẋ can be measured directly, f can be calculated by
f = ∂x

∂t
− b(z)u.
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8.1.1 basis functions construction

First, POD or SVD is applied to {xi} and {fi} respectively to generate 2 sets of
basis functions: {φi} for {xi} and {ψi} for {fi}. To take full advantage of the
continuous point measurement, the modal representation dimension for x (i.e. n) is
the same with the number of state sensors ks and the mode size for f is kv.

8.1.2 determine sensor locations by using DEIM algorithm

During system evolution, the continuous measurement from point sensors (both
state sensors and velocity sensors) are used for state and dynamics estimation. The
locations of these sensors are predetermined by applying DEIM algorithm to the
basis functions corresponding to {xi} and {fi}. We choose DEIM to determine
sensor locations because it can improve the observability when the dynamics of the
system is unknwon.

Take the basis functions for {xi} for example: The interpolation indices for
each basis functions are determined inductively using DEIM. Each interpolation
index corresponds to the location of a sensor. The first interpolation index is the
position of the peak of the first basis function. We define 2 matrices Φ′ = [φ1] and
P ′ = [ep1 ], where p1 is the index position of the peak of the first nonlinear basis
function φ1 and ep1 denotes the pth

1 column in an identity matrix. Starting from
the second one q = 2, the interpolation indices are the peaks of "residuals" r0. To
obtain them, first we solve

(P ′TΦ′)d = P ′Tφq (8.1)

for d. The residual r0 is constructed by subtracting the components of previous
basis functions from the current basis function

r0 = φq − Φ′d (8.2)

The qth interpolation index is the position of the peak of the residual. Then we
update Φ′ to [Φ′, φq] and P ′ to [P ′, epi ] and repeat the process for the next q = 3.
This process is repeated until all the interpolation indices are determined and
the final P ′ is obtained. The final P ′ is called Px and Pf in next section; the
subscripts show that the interpolation indices are different for x and f . Note that
the basis functions φi have been sorted so that the corresponding eigenvalues in

104



the covariance matrix (Eq. 2.22) are in descending order. The index position pi is
nonrepeated [47], i.e. all index positions are different.

8.1.3 State and Dynamics Estimation

A static observer is designed for the system. By using the basis functions Φ and
their corresponding interpolation indices, an output to state mapping that is similar
to Eq. 4.3 can be obtained

x ≈ Φ(P T
x Φ)−1X (8.3)

where X = [y1 y2 · · · yks ]T are outputs measured by state sensors, and Px contains
the interpolation indices. The state in the ROM can be obtained by multiplying x
by Φ:

c ≈ c̃ := (P T
x Φ)−1X (8.4)

Similarly, f can be estimated by using the same approach:

f ≈ f̃ := Ψ(P T
f Ψ)−1Y (8.5)

where Pf is obtained based on Ψ and

Y = [y1+ks − b(z1+ks)u y2+ks − b(z2+ks)u · · · yks+kv − b(zks+kv)u]T (8.6)

Remark 12 Although Eq. 8.5 provides an estimate of the nonlinear term of the
governing equation, static observer is used instead of Luenberger-type dynamic ob-
server despite the fact that dynamic observer can dramatically relax the requirement
on the number of sensors. The first reason is the estimate of f may not be accurate
enough to estimate the state since f is unknown. The second reason is the observer
gain is not easy to determine when the governing law is not available.

8.1.4 Controller Based on Feedback Linearization

The controller constitutes of 2 parts: the first part u1 is designed using feedback
linearization and the second part comes from the estimation of the error of the
nonlinearity observer (Eq. 8.5). For a given set point x0, the corresponding set
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point c0 in the ROM is calculated by

c0 = ΦTx0 (8.7)

We define the distance e ∈ Rn from the set point as

e = c− c0 (8.8)

u1 is designed so that
ė+Kde = 0 (8.9)

where Kd ∈ Rna×na is a diagonal matrix with positive entries and na is the number
of actuators.

In discretized context, we express the estimated ROM in the following form:

˙̃c = ΦT f̃ +Bu1 (8.10)

We can obtain u1 from

u1 = B−1
(
−Kd(c− c0)− ΦT f̃

)
(8.11)

With the estimated state (Eq.8.4 ) and f (Eq. 8.5), the implementation of u1

doesn’t require the explicit information of the governing equation.

8.2 Limitations of Equation-free Method
In previous work [91], a predetermined term is assumed to be available so that
a steady state is translated to the operation point when the manipulated input
is 0. This term not only reduces the number of actuators required to regulate
the system, but also relaxes the requirement on the accuracy of the estimation.
Hence, the number of sensors used for estimation can be reduced. However, this
transformation method may not always be feasible, especially when the governing
law of the system is unknown. Motivated by this limitation, we try to regulate
the system without translating the steady state. In this situation, a more accurate
estimation of the term f is required, otherwise the error will lead to off set (which
will be demonstrated in the numerical results). Since the accuracy of the estimation
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hinges on the snapshot ensemble, one way to solve the problem is to enrich the
snapshot ensemble by using various initial conditions and operating conditions.
However, there is no guarantee that the enriched snapshots can improve the accuracy.
Here we propose another approach to reduce the estimation error of f by using the
information of x.

8.3 Modified Equation-free Method
In previous work [91], a predetermined term is assumed to be available so that
a steady state is translated to the operation point when the manipulated input
is 0. This term not only reduces the number of actuators required to regulate
the system, but also relaxes the requirement on the accuracy of the estimation.
Hence, the number of sensors used for estimation can be reduced. However, this
transformation method may not always be feasible, especially when the governing
law of the system is unknown. Motivated by this limitation, we try to regulate
the system without translating the steady state. In this situation, a more accurate
estimation of the term f is required, otherwise the error will lead to off set (which
will be demonstrated in the numerical results). Since the accuracy of the estimation
hinges on the snapshot ensemble, one way to solve the problem is to enrich the
snapshot ensemble by using various initial conditions and operating conditions.
However, there is no guarantee that the enriched snapshots can improve the accuracy.
Here we propose another approach to reduce the estimation error of f by using the
information of x.

8.3.1 Motivation

By properly choosing the sensor locations via DEIM, the state x can be estimated
by using the information of a restricted number of sensors with enough accuracy;
however, the estimation for f usually cannot achieve the same level of accuracy.
This is because f does not necessarily satisfy the state space partition assumption
that x does. This can be demonstrated in a simple example as follows:

We collect 40 snapshots of x and 40 snapshots of f from the same open loop
process (Fig. 8.2) of a diffusion reaction process. We apply POD to each snapshot
ensemble. The energy captured by first n basis functions for x and f are compared
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in Fig. 8.3. It can be seen from this result that more basis functions are required for
f than x to capture a certain amount of energy. Motivated by this observation, we
will use the information of x to correct the estimate of f so that the total number
of sensors can be reduced.

8.3.2 Updating Dynamics Estimation

In the modified equation free method, we use a correction term to improve the
accuracy of the estimation for f . A correction term ∆f ∈ Rna for ΦTf in Eq. 8.10
is defined as

∆f = ΦTf − ΦT f̃ (8.12)

Unfortunately, ∆f cannot be evaluated. We estimate ∆f by ∆̃f that is updated
every ∆t units of time at t = t0, t1, · · · , tv, tv+1, · · · , where tv = v∆t.

The estimated ROM becomes:

˙̃c = ΦT f̃ + ∆̃f +Bu (8.13)

Assuming ∆̃f is constant in the time interval [tv, tv+1] and ∆̃f = ∆̃f v, the
control action in that interval is adjusted accordingly:

u = B−1
(
−Kd(c− c0)− ΦT f̃ − ∆̃fv

)
(8.14)

The state estimated by the observer at t = tv is denoted by c̃v. If the correction
term ∆̃f v is accurate, the state during [tv, tv+1] should obey the rule determined
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by Eq. 8.9. Therefore,

ẽv+1,1 = ẽv,1e−Kd,1∆t

ẽv+1,2 = ẽv,2e−Kd,2∆t

...

(8.15)

where ẽi,j indicates the difference between jth estimated state variable in the ROM
at t = ti and the objective and Kd,i denotes the ith entry on the diagonal of Kd.
The difference between the “actual" estimated distance ẽv+1 and the “theoretical"
distance in Eq. 8.15 indicates the error of the correction term ∆̃f .

At t = t0, ∆̃f is chosen to be 0, at t = tv+1, ∆̃f is updated using the estimated
distance ẽ at t = tv and t = tv+1. Take the first state variable in the ROM as an
example, the dynamics during [tv, tv+1] is

˙̃c1 = φT1 f̃ + ∆̃f v,1 + e∆,1 +B1u (8.16)

With the control action in Eq. 8.14, we can obtain

˙̃e1 = −Kd,1ẽ1 + e∆,1 (8.17)

Assumption 9 We assume the variance of the error e∆ is negligible during each
time interval [tv, tv+1], and e∆ can be approximated by a constant.

Based on assumption 9, it can be derived that

e∆,1 = −e−Kd,1∆tKd,1ẽv,1 +Kd,1ẽv+1,1

1− e−Kd,1∆t (8.18)

The errors for other state variables are calculated using the same approach. Then
∆̃f is updated to

∆̃f v+1 = ∆̃f v + e∆ (8.19)

Remark 13 The information used to correct the estimation of f is from the
sensor network used to estimate x. Hence, no additional sensors are required in
this updating part.

Remark 14 Since the estimation of the system dynamics in this equation-free
method is associated with POD, the accuracy of the estimation hinges on the quality
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Table 8.1: algorithm of equation-free method

offline
1 collect snapshots of x and f
2 generate basis functions for x and f using POD Eq. 2.24

3 determine sensor location by applying DEIM to basis
functions

4 calculate the matrices for output-state mapping and
output-dynamics mapping Eq. 8.4-8.5

5 design controller
6 set ∆̃f 0 = 0

online
6 continuous measurement of state sensors → x Eq. 8.4
7 continuous measurement of velocity sensors → f Eq. 8.5
8 determine control action u Eq. 8.14
9 update correction term ∆̃f for ΦTf using estimated x Eq. 8.18-8.19

of the basis function which depends on how the snapshot ensemble is collected. As a
result, the number of sensors for both x and f can be reduced with a better collected
snapshot ensemble or more snapshots to achieve the same level of accuracy.

The modified equation-free control method is summarized in Table 8.1.

Remark 15 (error bound) In previous work [91], the error bound for f is proved
to be

‖f̃ − f‖2 ≤ (1 +
√

2M)kv−1‖ψ1‖−1
∞ ‖f −ΨΨTf)‖2

where ‖f −ΨΨTf‖ is small based on the assumption 6 that implies the nonlinear
function g can be represented by basis functions Ψ. The updating step in the
proposed method relaxes this assumption.

Remark 16 In this work, we try to regulate a process of which model information
is not available, control objective is known, and offset is inevitable (all the actuators
need be to used to achieve the best regulating performance). Plantwide control [96]
can be used by combining the proposed control method with a system identification
algorithm to gather information about the system and thus achieve better performance
in terms of economic benefit, production efficiency and safety.
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8.3.3 Original Equation-free Method

In this section, we regulate the diffusion reaction process via the original equation-
free method without shifting the steady state. The snapshots used for generating
basis functions are collected from an open-loop process with the following initial
condition:

x(t0) = 0.3sin(4.3z)− 0.11cos(1.38z) + 1 (8.20)

40 snapshots are collected and displayed in Fig. 8.2.
Since x can be accurately estimated with a small number of sensors, we use 5

state sensors (more than 99.99% is captured) to estimate the state and vary the
number of velocity sensors. It is found that at least 23 velocity sensors are required.
The system response in systems with 21, 23, and 30 velocity sensors are displayed
in Fig. 8.4a, 8.4b and 8.4c, respectively. To better compare the results, we define
the distance from the set point as:

d =
√∫

(x− xo)2dz (8.21)

The distance from the set point in Fig. 8.4a, 8.4b and 8.4c are compared in Fig.8.6.
It can be seen that as the number of velocity sensors increase, the system response
approaches to the set point. In this case, as the total number of sensors increases,
the error of the observer (for the state) also decreases (Fig. 8.7). Fig. 8.5a, 8.5b
and 8.5c give the corresponding control actions. While none of them has chattering,
the larger error that results from decreasing the number of sensors leads to actuator
saturation.

8.3.4 Original Equation-free Method with Enriched Snapshots
Ensemble

To show that a better collected set of snapshots can increase the quality of the
estimation, in this section, we use 2 different initial conditions to collect offline
snapshots. The first initial condition is the same with the last section (Eq. 8.20),
the second initial condition is Eq. 8.22.

x(t0) = cos(z) (8.22)
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Figure 8.4a: system response of the
closed-loop process with 5 plus 21 sen-
sors.

Figure 8.4b: system response of the
closed-loop process with 5 plus 23 sen-
sors.

Figure 8.4c: system response of the
closed-loop process with 5 plus 30 sen-
sors.

80 snapshots are collected, 40 from the open-loop process with the first initial
condition and the other 40 from the second one. We still use 5 state sensors; yet
the number of velocity sensors can be decreased from 23 to 12. The conclusion can
be drawn from the system response from the closed-loop systems with 10, 12 and
15 velocity sensors (Fig. 8.8a, 8.8b and 8.8c) and the distance from the set point
(Fig. 8.9).

8.3.5 Modified Equation-free Method

In this section, we use the correction term to improve the quality of the estima-
tion. The value of the correction term is updated every 0.5 units of time. The
same snapshot ensemble as section "Original Equation-free Method" is used. The
simulation results show that the number of velocity sensors can be decreased to 6
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Figure 8.5a: comparison of the control
action of the 1st actuator.
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Figure 8.5b: comparison of the con-
trol action of the 2nd actuator.
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Figure 8.5c: comparison of the control
action of the 3rd actuator.
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tance of the state from the set point.
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Figure 8.8a: system response of the
closed-loop process with 5 plus 10 sen-
sors.

Figure 8.8b: system response of the
closed-loop process with 5 plus 12 sen-
sors.

Figure 8.8c: system response of the
closed-loop process with 5 plus 15 sen-
sors.
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Figure 8.9: temporal profile of the dis-
tance of the state from the set point.
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Figure 8.10a: system response of the
closed-loop process with 5 plus 5 sen-
sors.

Figure 8.10b: system response of the
closed-loop process with 5 plus 6 sen-
sors.

Figure 8.10c: system response of the
closed-loop process with 5 plus 8 sen-
sors.

Figure 8.10d: system response of the
closed-loop process with 5 plus 10 sen-
sors.

in this example. Fig. 8.10a, 8.10b, 8.10c and 8.10d illustrate the system response
in systems with 5, 6, 8, and 10 velocity sensors respectively. The temporal profile
of the distance from the set point is depicted in Fig. 8.11 and the control actions
are given in Fig. 8.12a, 8.12b and 8.12c. The overall performance of the controller
is better than the one without the updating step. Note that when there are not
enough sensors, the error in the correction term may lead to oscillation in the
control actions.

8.3.6 sensor noise & model mismatch

In this section, we consider the sensor noise and model mismatch. We use the
same 40 snapshots as section "Original Equation-free Method" and "Modified
Equation-free Method". These snapshots are collected from a process in which βT is
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Figure 8.11: temporal profile of the distance of the state
from the set point.

time-invariant (Eq. 3.30). We assume in the real process, βT becomes time-variant.
The spatial temporal profile of βT is given in Fig. 8.13. We also assume 2 state
sensors and 2 velocity sensors have noise, specifically yi = yreal(1 + θi), where θi
is random uniform noise of amplitude 0.3, 0.1, 0.2 and 0.3 for i = 1, 2, 7, 8. The
noise of the first sensor is displayed in Fig. 8.14. We also use 5 state sensors as
previous sections. Because of space limitation, we only present the result for 6 and
10 velocity sensors. Fig. 8.15a and 8.15b depict the system response. Although
the state oscillates because of the time-varying coefficient and sensor noise, the
controller still manages to regulate the system. The distance from the set point
and the observer error are give in Fig. 8.16a, 8.16b, 8.17a and 8.17b. Both the
distance and error are smaller in system with 10 velocity sensors. This is expected
since the signal-to-noise ratio is higher with 10 sensors than 6 sensors.

8.3.7 Discussion

To further increase the quality of the modified equation-free method, there are at
least 3 approaches we can investigate:

1. Enrich the snapshot ensemble
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Figure 8.12a: comparison of the con-
trol action of the 1st actuator.
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Figure 8.12b: comparison of the con-
trol action of the 2nd actuator.
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Figure 8.12c: comparison of the con-
trol action of the 3rd actuator.

Figure 8.13: spatial temporal profile
of βT .
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Figure 8.14: temporal profile of the
sensor noise.
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Figure 8.15a: system response of the
closed-loop process with 5 plus 6 sen-
sors in presence of sensor noise and
model mismatch.

Figure 8.15b: system response of the
closed-loop process with 5 plus 10 sen-
sors in presence of sensor noise and
model mismatch.
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Figure 8.16a: distance of the state
from the set point in system with 5
plus 6 sensors in presence of sensor
noise and model mismatch.

0 10 20 30 40 50

t

0

0.5

1

1.5

d
is

ta
n
c
e
 f
ro

m
 s

e
t 
p
o
in

t

Figure 8.16b: distance of the state
from the set point in system with 5
plus 10 sensors in presence of sensor
noise and model mismatch.
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Figure 8.17a: error of observer in sys-
tem with 5 plus 6 sensors in presence
of sensor noise and model mismatch.
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Figure 8.18: temporal profile of the
distance of the state from the set
point.
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Figure 8.19: error of the observer.

2. Increase the frequency of updating the correction term

3. Change the timing of activating the correction term

8.3.7.1 snapshot ensemble

To show that a better collected set of snapshots can increase the quality of the
estimation, we use 2 different initial conditions to collect off-line snapshots. The two
initial conditions are the same with those in section "Original Equation-free Method
with Enriched Snapshots Ensemble" (Eq. 8.20, Eq. 8.22). In total, 80 snapshots
are collected. Results of systems using different number of velocity sensors and
different snapshot ensembles are compared in Fig. 8.18 and 8.19. They are denoted
by "a; b", in which a refers to the number of velocity sensors and b is the number of
initial conditions. Fig. 8.18 illustrates the temporal profile of the distance from
the set point. We can see that the oscillation in the system response is mitigated (
the amplitudes of the peaks at t=2.5 decrease). The errors of the observers are
compared in Fig. 8.19. The errors in systems with enhanced snapshot ensemble are
significantly smaller. The error of the observer decreases and the system oscillates
less as the number of velocity sensors increases except the case of 8 velocity sensors

Despite the difference between the standard POD and the proposed equation
free method, we are optimistic that the research results on improved snapshot
sampling, such as Smith’s work [15] and Graham’s work [90], might be extended to
this equation free method.
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8.3.7.2 frequency of updating

The second approach is to improve the accuracy of the correction term by varying
the frequency of updating. Here we present the results for updating the correction
term every 0.25 units of time. The results for updating every 0.5 units of time with
5 and 10 velocity sensors are denoted by "lf5" and "lf 10" in Fig. 8.21-8.20c, where
"lf" means lower frequency. The distances from the set point are compared in Fig.
8.21 and Fig. 8.20a-8.20c depict the control actions. Similar to the first approach
(section "snapshot ensemble" ), increasing the updating frequency can also improve
the accuracy of the estimation of the dynamics and mitigate the oscillation of the
control actions. The effect of the frequency of updating is specially obvious with
fewer sensors. However, this approach does not reduce much observer error.

Although the information used in the correction term updating are measured
continuously, the correction term is not updated "continuously" due to the compu-
tational cost. On the other hand, the updating frequency should be high enough to
satisfy assumption 9. A more advanced way to deal with it is to identify criteria
to determine the updating frequency. The research about varying the snapshot
acquisition frequency in adaptive proper orthogonal decomposition [97] might be
useful.

8.3.7.3 activation timing for the correction term

The third approach is to activate the correction term after the transient period.
The idea is the system in the fast stable subspace has not decayed to zero in the
transient period. Hence, the large error in the ROM in the transient period will
enter the correction term and may make the estimation worse before the correction
term converges, which explains the peak in Fig. 8.11. In this section, the correction
term is not activated until t = 0.5. The results in section 8.3.5 with 5 and 10
velocity sensors are denoted by "m5" and "m10" in Fig. 8.22-8.23c. Fig. 8.22 depicts
the distance from the set point and Fig 8.23a-8.23c present the control actions.
It can be observed that the performance of the controller is improved, especially
when the number of velocity sensors is increased to 10, where the peak in Fig.8.22
disappears. The only exception is the control action in the system with 6 velocity
sensors has a larger amplitude of oscillation. The "waiting time" should be long
enough for the fast dynamics to relax, which depends on the ratio of the energy
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Figure 8.20a: comparison of the con-
trol action of the 1st actuator.
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Figure 8.20b: comparison of the con-
trol action of the 2nd actuator.
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Figure 8.20c: comparison of the con-
trol action of the 3rd actuator.

0 5 10
t

0

0.5

1

1.5

d
is

ta
n

c
e

 f
ro

m
 s

e
t 

p
o

in
t

lf5
lf10
5
6
8
10

Figure 8.21: temporal profile of the
distance of the state from the set point
with different frequencies of updating.
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Figure 8.22: temporal profile of the
distance of the state from the set point
with different activation timing.
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Figure 8.23a: comparison of the con-
trol action of the 1st actuator.
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Figure 8.23b: comparison of the con-
trol action of the 2nd actuator.
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Figure 8.23c: comparison of the con-
trol action of the 3rd actuator.

captured by the basis functions in the ROM. On the other hand, this "waiting time"
cannot be too long since the equation free method without the updating step is
not able to stabilize the system with a small number of sensors during this waiting
period.

To better present the improvement of above ideas, the amplitudes of the peak
of the distance from the set point (Fig. 8.18, 8.21 and 8.22) are compared in table
8.2. It can be seen that except changing activation timing when using 6 sensors, all
the 3 approaches either eliminates the oscillation or reduces the amplitude of the
peak.
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Table 8.2: the amplitude of the peak of the distance from the set point

modified further improvement
number of sensors 5 10 5 6 8 10

snapshots ensemble 0.333 0.276 N/A N/A
mehtod frequency of updating 0.760 0.594 0.65 0.648 0.627 0.546

activation timing 0.677 0.815 0.497 N/A
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Chapter 9 |
Conclusions and Future Research

This dissertation focuses on feedback control of distributed parameter system based
on model reduction. Several methods are proposed to relax the assumptions/improve
performance of existing methods. The performance of these methods are evaluated
by simulation.

9.1 Conclusions
Chapter 1 introduces the background of our research and the general form of PDEs
that describes the process we focus on. The objective of the research and the
structure of the dissertation are also given.

In Chapter 2, the algorithm of MWR, Galerkin method, POD and APOD is
introduced. These methods are the basis of our research.

In Chapter 3, we propose a modified POD method called passthrou POD. Using
singular perturbation, we showed passthoru POD can decompose a distributed
parameter system into slow subspace and fast one, which makes controller and
observer designed based on slow part more robust than that using standard POD.
To circumvent the difficulty of analytically solving eigenfunction problem of an
operator, we didn’t use the approach of solving eigenfunction of linearized operator.
Instead, we construct standard POD basis functions first. Although standard
POD basis functions can be affected by the number of snapshots and whether all
modes are properly excited, we showed that snapshots have much less impact on
passthrou POD than standard POD. Therefore, passthrou POD relaxes standard
POD’s requirements on snapshots ensemble. Besides, passthrou captures the
dominant modes better than standard POD, which is demonstrated by the result
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that controller and observer based on passthrou POD is more robust in the presence
of disturbance.

In Chapter 4, we propose to use APOD/DEIM combination to reduce the
computational cost in controlling dissipative distributed parameter system. By
evaluating the performance of the proposed method in a diffusion-reaction process
and Kuramoto-Sivashinsky equation, we conclude that using DEIM can reduce
the computational cost and has negligible impact on the performance of the
controller and observer compared with systems using APOD only. As the number
of interpolation indices k increases, the error introduced by DEIM decreases, but
the computational cost may increase.

In Chapter 5, a refined APOD called discrete adaptive proper orthogonal
decomposition (DAPOD) is proposed. Compared with modified APOD, it provides
a more accurate alternative to estimate the eigenvalues of the covariance matrix
and eliminate the resulting basis size oscillation. The problem that the newest
snapshot may be continually eliminated is also addressed. And the basis functions
are guaranteed to be orthogonal.

In Chapter 6, the control problem in distributed parameter system with strong
convective phenomena is investigated. Strong convective phenomena has a signifi-
cant effect on the accuracy of the ROM. We use DAPOD to update the ROM so
that the accuracy can be improved. The performance of the proposed strategy is
demonstrated in a tubular reactor example.

In Chapter 7, we propose an equation-free control method based on DEIM. The
requirement for knowledge of the governing equation in DEIM is circumvented
so that it can be used for estimation. Only a finite number of point sensors are
required in this method. The location of sensors are determined by linking the
interpolation indices in DEIM to sensor locations. We demonstrate the performance
of the proposed method by applying it to a diffusion-reaction process. The result
shows that the observer can provide an estimation of the system profile with enough
accuracy for controller design and it’s robust in the presence of disturbance.

In Chapter 8, a modified version of equation-free control method is proposed
and successfully applied to a diffusion reaction process. The assumption made
in translating the steady state in the previous work is relaxed. The result illus-
trates that the method is robust in the presence of noise and model mismatch.
Three approaches to further improve the performance of the proposed method are
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discussed.

9.2 Future Research
The research work can be extended in the following directions.

• A major assumption of DAPOD/APOD is the snapshot is available periodi-
cally, which may not be feasible in many cases. If the state of a system can
be scanned, the obtained information is a function of both time and space. A
procedure is needed to incorporate this kind of information in updating of
basis functions and the reduced order model.

• In Equation-free control method, we assume the state in all the locations
in space can be measured and choose the best locations based on DEIM. A
procedure is needed to determine the locations when some area cannot be
measured.
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Appendix A|
Proof of Stability

To prove the stability of Eq. 6.3, first we prove the stability of the slow subsystem
without involving the separation principle since the difference between the full order
model and ROM is of order ε (section 6.2.2). Then we prove the stability of the
hybrid system that results from the updating of ROM. The following Lyapunov
function [46,61] is considered

Vt = Vc̃ + Vo = ζc̃
2 c̃

T c̃+ ζo
2 e

T e (A.1)

where e denotes the error of the observer

e = c− c̃ (A.2)

With the static observer

ym = Φmc→ ΦT
mΦmc = ΦT

mym (A.3)

c̃ = (ΦT
mΦm)−1ΦT

mym (A.4)

So
c̃ = c (A.5)

Therefore
dVt
dt = ζc̃ ˙̃cT c̃ (A.6)
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A.1 feedback linearization
To prove the system under feedback linearization is stable, we use the Lemma 9.1
in [98]. We inject Eq. 5.30 into Eq. A.21 and 5.29, we obtain

dc′
dt = −Kfc

′

dcu
dt = −Kucu + Fu(c′, cu) +BuB

′−1
[
−Kfc

′ − F ′l (c) + F ′n(c)
] (A.7)

where Ku is positive definite. We consider

Gu =
 0
gu

 =
 0
Fu(c′, cu) +BuB

′−1
[
−Kfc

′ − F ′l (c) + F ′n(c)
]. To use the

lemma, we first prove when Gu = 0, for some positve constants s1, s2, s3, s4,
s5

s1‖c‖2 ≤ Vt ≤ s2‖c‖2 (A.8)
∂Vt
∂t

+ ∂Vt
∂x

f0 ≤ −s3‖c‖2 (A.9)

‖∂Vt
∂x
‖ ≤ s4‖c‖ (A.10)

‖Gu‖ ≤ s5‖c‖ (A.11)

where f0 =
−Kfc

′

−Kucu

. It is obvious Eq. A.8 is satisfied. For Eq. A.9,

∂Vt
∂t

+ ∂Vt
∂x

f0 = −ζc̃2
[
c′TKfc

′ + cTuKucu
]
≤ −s3‖c‖2 (A.12)

For Eq. A.10,
‖∂Vt
∂x
‖ = ‖ζc̃2 c‖ ≤ s4‖c‖ (A.13)

For Eq. A.11, based on assumption 1

‖Gu‖ =‖gu‖ ≤ łFu(c′, cu)‖+ ‖BuB
′−1
[
−Kfc

′ − F ′l (c) + F ′n(c)
]
‖

≤p1‖c‖+ p2‖BuB
′−1‖ · ‖c‖ ≤ s5‖c‖

(A.14)

where p1 and p2 are positive constants.
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Assumption 10
s5 <

s3

s4
(A.15)

Based on assumption 10, we can prove the system is stable. Note that if
the unstable subsystem has slow dynamics, assumption 10 will be violated and
the controller design has to consider both the stable subsystem and the unstable
subsystem.

A.2 Lyanpunov based control
Here we prove the stability of the system using Lyanpunov based control

dVt
dt =LFV(c)− ‖(LBV)T (c)‖2

L∗FV(c) +
√(

L∗FV(c)
)2

+
(
umax‖(LBV)T (c)‖

)4

‖(LBV)T (c)‖2
[
1 +

√
1 +

(
umax‖(LBV)T (c)‖

)2
]

=
−ρ0V + LFV

√
1 +

(
umax‖(LBV)T (c)‖

)2
− |L∗FV|

√
1 +

(
umax‖(LBV‖

L∗FV

)2
(umax‖(LBV‖)2

1 +
√

1 + (umax‖(LBV)T (c)‖)2

(A.16)

if LFV < 0, dVt
dt < 0, otherwise, based on the assumption L∗FV(c) ≤ umax‖(LBV)T (c)‖

dVt
dt ≤

−ρ0V − ρ0V
√

1 +
(
umax‖(LBV)T (c)‖

)2

1 +
√

1 + (umax‖(LBV)T (c)‖)2
= −ρ0V ≤ 0 (A.17)

So the time derivative of the Lyapunov function is negative definite. Next we
prove the input satisfies the constraint.

u = − LBV
‖(LBV)T (c)‖2

L∗FV(c) +
√(

L∗FV(c)
)2

+ (umax‖(LBV)T (c)‖)4

1 +
√

1 + (umax‖(LBV)T (c)‖)2
(A.18)
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‖u‖ =
L∗FV(c) +

√(
L∗FV(c)

)2
+ (umax‖(LBV)T (c)‖)4

‖(LBV)T (c)‖
[
1 +

√
1 + (umax‖(LBV)T (c)‖)2

]

=
L∗FV(c) + umax‖(LBV)T (c)‖

√(
L∗FV

umax‖(LBV‖

)2
+ (umax‖(LBV‖)2

‖(LBV)T (c)‖
[
1 +

√
1 + (umax‖(LBV)T (c)‖)2

]

≤
L∗FV(c) + umax‖(LBV)T (c)‖

√
1 + (umax‖(LBV‖)2

‖(LBV)T (c)‖
[
1 +

√
1 + (umax‖(LBV)T (c)‖)2

]

≤umax
L∗FV(c)

umax‖(LBV)T (c)‖ +
√

1 + (umax‖(LBV‖)2

1 +
√

1 + (umax‖(LBV)T (c)‖)2
≤ umax

(A.19)

Next we prove the stability for systems using dynamic observer. It has been
proven in [61] that the time derivative of the following Lyapunov function is negative
definite

Vo = ζo
2 e

TP0e (A.20)

So we only consider the time derivative of Vc̃.
For feedback linearization, the estimated state variables c̃ satisfy

dc̃′
dt =−Kf c̃

′ +G′m(ym − ỹ)
dc̃u
dt =−Kuc̃u + Fu(c̃′, c̃u) +BuB

′−1
[
−Kf c̃

′ − F ′l (c) + F ′n(c̃)
]

+Gum(ym − ỹ)

(A.21)

It is assumed that the Luenberger term Gm(ym − ỹ) =
G′m(ym − ỹ)
Gum(ym − ỹ)

 can be

considered as a perturbation [61].

Gm(ym − ỹ) =
s∑
i=1

wi(c̃′)θi(t) (A.22)

By incorporating Gm(ym − ỹ) into Gu, we can use the same lemma to prove the
stability.
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The assumption can also be used in the proof for Lyapunov based control.
Finally, to prove the stability of switching system, ζo and ζc can be adjusted

each time the hybrid system stability criteria is violated. [99]
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Appendix B|
Error Bound of Equation Free
Control Method

The error bound of the estimate of f can be obtained by using the method provided
in [47]. We denote the estimate of f by f̃

f̃ = U ′(P ′TU ′)−1X ′ (B.1)

When the error of the velocity sensor is negligible,

f̃ = U ′(P ′TU ′)−1P ′T︸ ︷︷ ︸
P

f = Pf (B.2)

The projection of f in the subspace spanned by the basis functions U is considered

f̂ = U ′U ′Tf = U ′(P ′TU ′)−1(P ′T︸ ︷︷ ︸
P

U ′)U ′Tf︸ ︷︷ ︸
f̂

= Pf̂ (B.3)

We can obtain
f̃ − f = Pf − Pf̂ + f̂ − f = (P− I)(f − f̂) (B.4)

The selection of the sensor locations using DEIM can limit the bound of (P− I).
It can be proved that (see [47])

‖P− I‖2 ≤ (1 +
√

2M)k−1‖φ̃1‖−1
∞ (B.5)

and (f − f̂) is negligible when the assumption 5 is satisfied.
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