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Abstract

Every shift in the way our devices are connected or powered brings with it a poten-
tial for revolution in the usage and capabilities of the systems built around them. Just
as the transition from wired to wireless telephones led to unprecedented changes in
our communications and the shift from wall-power to battery-power transformed our
expectations for computational systems, the shift from battery-powered systems to self-
powered systems promises to fuel the next revolution in the Internet of Things (IoT).
The ability to utilize ambient, scavenged energy, such as solar energy, radio-frequency
(RF) radiation, piezoelectric effect, thermal gradients, etc., can liberate IoT devices from
the lifetime, deployment, and service limitations of a fixed battery. However, the power
supplied by energy harvesting sources is highly unreliable and dependent upon ambient
environment factors. Hence, it is necessary to develop specialized IoT architectures and
systems that are tolerant to this power variation, and also capable of making forward
progress on their computation tasks.

This dissertation provides a holistic exploration in applying nonvolatility into the
processor and system design in energy harvesting application scenarios. Various tech-
niques are proposed for optimization in nodes level and system level. To begin with,
architectural design space is explored in a nonvolatile processor, in which nonvolatility
feature is designed within a processor to overcome the unstable power supply through
distributed energy and time efficient backup and recovery operations. This disserta-
tion focuses on design space of different architectures, different input power sources,
and policies for maximizing forward progress. It is presented that different complexity
levels of nonvolatile microarchitectures provide best fit for different power sources and
even different trails within same power source. To further overcome this challenge of ar-
chitectural dependency on application scenario, various techniques are proposed in this
dissertation, including frequency scaling and resource allocation to dynamically adjust
the microarchitecture to achieve the maximum forward progress. Furthermore, notic-
ing that such nodes usually perform similar operations across each new input record,

iii



I observe optimization opportunities for mining the potential information in buffered
historical data, at the potentially lower effort, while processing new data rather than
abandoning old inputs due to limited computational energy. This approach is proposed
as incidental computing, and synergies between this approach and approximation tech-
niques are explored. After a progress of nonvolatilizing pieces within an energy har-
vesting node, IoT fog computing in Wireless Sensor Networks (WSN) is re-optimized
in this dissertation as one application example to perform system-level optimization. I
discuss how nonvolatility features including nonvolatile processors and nonvolatile RF
can benefit the system, and how other optimizations like load balance under unstable
power, as well as increasing nodes density for the quality of service can be applied to
the fog computing system.

This dissertation provides a holistic exploration in designing a battery-less energy
harvesting system, from individual parts within a node to an applicable energy har-
vesting wireless sensor network system optimization. With the increasing demands of
maintains-free IoTs with green energy, this dissertation foresees the the vision of self-
powered IoTs in the near future.
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Chapter 1
Introduction

By 2020, 50 billion Internet of Things (IoTs) devices are expected to be connected to the

Internet [5, 6]. It is predicted that these connected IoTs will generate more than 11000

billion dollars economic value by 2025 [7]. In fact, IoTs have already exhibited tremen-

dous potential to bring new opportunities in some domains, for instance, the wearable

devices [8–10], the smart home [11], and the smart industry [12].

With more application scenarios deployed and more devices connected to the Inter-

net, a vital challenge is observed that can potentially limit the wider application of IoTs

– battery life. To begin with, it is inconvenient to charge the batteries in some scenarios.

Today, most of the wearable devices need to be charged once a day or several days [13].

In addition, renewing batteries for those IoTs in huge amount in smart industry [14]

or in large distributed areas as in the case of environmental and infrastructure monitor-

ing [15–17] can be very costly, and sometimes unrealistic. Furthermore, the existence

of batteries significantly frustrates applications with volume and/or safety concerns, as

in the case of implantable devices [18].

Energy harvesting emerges as one of the promising techniques to solve problems

brought by batteries. By harvesting energy from the ambient environment, including

solar, vibration, RF and thermal energy, the lifetime of IoTs can, in principle, be in-

finite. This can in turn extend the application domain of IoTs to, for example, smart

parking [19, 20], environment monitor [16], smart agriculture [21, 22], implantable de-

vices [18], etc.

On the negative side, energy harvesting can provide only unstable power supply, and

the magnitude of this instability strongly depends on the application features and execu-
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Figure 1.1. Timing squence expansion of a traditional energy harvesting sensor node and
according optimization

tion environment characteristics [23]. Traditional solutions either adopt ”Always-on”

topology in which the lowest power is the only optimization target or ”Wait-compute”

mechanism [24–26] in which a capacitor is employed to accumulate energy for one shot

use. Both solutions result in low energy efficiency.

I propose a ”Frequently-intermittent-on” new fog computing topology which uses

only a small on-chip capacitor and nonvolatile processors (NVPs) [27]. Most of my

Ph.D. work essentially cover architectural level optimizations and exploration of non-
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volatility features applied in energy harvesting IoTs, as shown in Figure 1.1. A very

first work for architectural exploration of NVPs was published in HPCA 2015 [23],

following with some machine learning-based optimizations for dynamic frequency and

resource allocation [28]. To further improve the forward progress, which was defined as

instructions finished with given power traces, incidental techniques was proposed [29].

Observing that nonvolatility is becoming a prominent feature of many architecture /

microarchitecture components, I further proposed novel fog computing infrastructures

built upon wireless sensor networks [27].

But still, there are many unexplored domains in the system level and cross-layer

optimizations for energy harvesting IoT architectures. Research opportunities also lay in

beyond traditional Von Neumann architectures to further reduce the power consumption

in extremely low power energy harvesting scenarios.

1.1 Optimization Againt Traditional Stereotypes

My Ph.D. research represents a significant departure from traditional stereotypes of

state-of-the-art energy harvesting systems. And at each step of my research, fabrica-

tion was followed to prove the architectural exploration findings, and my efforts finally

culminated in novel energy harvesting based fog computing systems.

Traditional stereotype 1: Computation on energy harvesting fog node is unreli-
able.

Proposed approach: Nonvolatile processor (NVP) for reliable and continuous
computing, resulting in 2.2X-5X more efficient than wait-compute volatile proces-
sor (VP).

Architecture exploration of nonvolatile processors was my first project, focusing

primarily on different nonvolatility degrees vs. rollbacks across different complex-

ity micro-processors like non-pipelined, n-stage-pipelined, and out-of-order processors.

Through simulation calibrated on a fabricated first version nonvolatile processor from

our collaborators [30], some unexpected findings are explored: First, optimizing for low

power is not the same as optimizing for maximum forward progress in energy harvesting

scenarios, which means a new paradigm of design methodology and tradeoffs should be

deployed in designing IoT energy harvesting nonvolatile processors. In addition, intu-

itively OoO is not considered for energy harvesting scenarios, but I prove that it can be
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a preferable option in some cases. The best architecture for NVP is essentially related

to power sources and even the power traces in different application scenarios. Realiz-

ing this, I further propose a machine learning-based dynamic architecture to select the

best microarchitecture in a mix-architecture nonvolatile processor [31]. Of all the pro-

posed microarchitectures, ODSB (On-demand-selected-backup) microarchitecture was

adopted in our next version of the nonvolatile processor, and the measured results proved

its success [32].

Traditional stereotype 2: Computation on energy harvesting fog node is expen-
sive.

Proposed approaches: Incidental Computing: 4.3X than precise NVP; Fre-
quency and Resource Allocation: 2.1X than NVP.

Due to the weak density of energy in the ambient environment, the energy that can

be harvested is usually very unstable/weak. Consequently, approximate computing can

be a good fit to still make the system running, rather than letting the energy leaked when

accumulating in energy storage devices. Observing that (i) in many IoT applications,

temporal and interactivity requirements can make the quality of partial results, or even

the existence of any response at all, more important than the fraction of instructions

needed to eventually produce a ”best-quality” result, and (ii) data importance drops

over time, I, as the lead author of the work, first introduced the incidental comput-

ing concept, wherein older computation is carried out in a best-effort fashion during

the execution of newer computations. For the energy-harvesting NVP scenario, this

is done through bitwidth-oriented approximation techniques in the data-path, memory,

and backup-recovery modules to divide power and resources and provide differential

guarantees of output quality between the current and prior computations. I also propose

incidental recomputing, wherein the quality of older computations targeted for inciden-

tal computing can be gradually improved iteratively if picked up over multiple incidental

computing passes. I proposed incidental backup with several retention time matching

models and supporting write circuits that can reduce the energy of backup operations

through matching the retention time to the combination of the duration of power emer-

gencies and the impacts of reduced fidelity to overall approximation quality.

To further improve the efficiency of nonvolatile processors, a machine learning-

based dynamic resource and frequency based microarchitecture for transmitting as much

as harvested energy into instructions finished and running the processor at the best
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energy efficiency with the most proper resources [28]. The proposed frequency scal-

ing [28, 33] was verified in board level for the next generation NVP.

Collectively, the incidental approximation approaches improved forward progress

by 4.28x improvement within tolerable quality loss, and frequency and resource alloca-

tion add on another 2.1X. Around 10X forward progress vastly extend the application

domain of energy harvesting IoTs, making some applications traditionally impossible

due to limited harvested energy but high processor starting threshold, now possible. To

my knowledge, this was the first application of approximate computing ideas to the NVP

and energy harvesting domain.

Traditional stereotype 3: Communication between NVP and peripherals are
critical problems, and RF time and energy dominates in nodes.

Proposed approach: NVRF: 27X faster startup speed, 6.3X packages.
Optimizing forward progress of processors alone cannot solve the system level chal-

lenges in energy harvesting systems. The peripheral recovery, which in many systems

actually dominates the node energy and time consumption [18, 25, 34], resulting in sig-

nificant performance degradation, is another critical problem in energy harvesting sce-

narios that remains unsolved and is an important but last step to bring real energy har-

vesting systems to life [35, 36].

Noting the different optimization directions between dynamic checkpointing within

NVPs and static checkpointing requirements of I/O communication, we (where I super-

vised a Ph.D. student in Tsinghua, and I was the second author) propose an HW/SW

co-optimization solution to achieve reliable and efficient concurrent peripherals’ recov-

eries. By classifying the I/O checkpointing into nonvolatility assisted re-initialization,

data re-transmission, and dynamic program checkpointing, the I/O states can be recov-

ered efficiently and reliably. A verification of NVRF chip is fabricated to verify the

proposed architecture, which shows 27X faster startup speed, 6.3X packages.

Traditional optimiztion target: a single node.
Beyond single node optimization target: system level optimizations in an energy

harvesting wireless sensor network.
After challenging these three stereotypes, I focused on wireless sensor network

system-level optimization. Nonvolatile processors have emerged as one of the promis-

ing solutions for energy harvesting scenarios, among which Wireless Sensor Networks

(WSN) provide some of the most important applications.
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In a typical distributed sensing system, due to differences across locations, energy

harvester angles, power sources, etc., different nodes may have a different amount of en-

ergy ready for use. While prior approaches have examined these challenges, they have

not done so in the context of the features offered by nonvolatile computing approaches,

which disrupt certain foundational assumptions. I proposed a new set of nonvolatility-

exploiting optimizations and embody them in the NEOFog system architecture. I dis-

cuss shifts in the tradeoffs in data and program distribution for nonvolatile processing-

based WSNs, showing how non-volatile processing and non-volatile RF support alter

the benefits of computation and communication-centric approaches. I also proposed a

new algorithm specific to nonvolatile sensing systems for balancing load in computa-

tion. Collectively, the NV-aware optimizations increase the ability to perform in-fog

processing by 4.2X and can increase this to 8X if virtual nodes are 3x multiplexed.

1.2 Preview of the Dissertation

Over the course of this dissertation, I will examine the tradeoffs from architectural level

to the system level, focusing on architectural exploration for overcoming unstable power

supply, energy efficiency of the energy harvesting system, tradeoffs in quality of service

and approximation, and wireless sensor network level optimizations.

Chapter 2 introduces the background including components of a typical energy har-

vesting system, motivation of nonvolatile processors for intermittent computing, and an

energy model for the node system.

Chapter 3 discusses architectural level designs and optimizations for ambient energy

harvesting NVPs and provides the design guidelines mapping from power sources to ar-

chitecture level selection. Aiming at time and energy optimization, I have proposed and

simulated various architecture level solutions for non-pipelined, five-stage-pipeline and

out-of-order processor architectures, and have discussed the trade-offs between them

over the course of this dissertation.

To better optimize the NVP node, bottleneck resource prediction and frequency scal-

ing as explored in Chapter 4, are applied to improve the forward progress. Powering

on some resources to mitigate some bottlenecks can actually significantly increase the

NVP’s parallel density. Through smart DFS, the energy used for forward progress com-

putation increases. I show that the proposed spendthrift solution can achieve 2.08X
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forward progress than best case of OoO NVP with static configuration and static fre-

quency.

Chapter 5 describes the exploration of applying approximate techniques to NVPs for

tradeoffs between forward progress and quality of service. Adopting approximate com-

puting approaches in NVPs not only improves the forward progress that NVP systems

can offer, but it also provides a means for NVPs to optimize for responsiveness as well

as overall efficiency, and synergizes with unique features of NVP execution, namely,

frequent backup and recovery operations. I introduce the concept of ”incidental com-

puting” to address opportunistic responsiveness versus quality tradeoffs under unstable

power income, and implement and evaluate an instantiation of the incidental computing

approach based on memory and datapath approximation within an NVP. For a prototyp-

ical IoT workload, the combination of all of the techniques improves forward progress

by an average of 4.28x over a baseline ”precise” NVP, of which 1.4x is attributable to

NVP-specific backup and restore approximations.

Realizing that the nonvolatile features applied in NVP and NVRF etc. have sig-

nificantly impacted the node level simulation, which makes the traditional assumptions

that edge node level computing is unreliable and expensive in energy not hold. In order

to better utilize the new advantages brought by nonvolatility in edges, I propose NEO-

Fog - a system-level optimization to better take the advantages of reliable and relatively

efficient in fog computing in Chapter 6. Specifically, I optimize the programs from

RF energy dominate to computation intensive, from normally-off system to frequently-

intermittent-on system, to better utilize the new opportunities brought by nonvolatility.

Beyond nodes level, considering the unbalance and time-varying income power and

stored energy level of each node and different the energy requirement for workloads,

I optimize a distributed load balance algorithm specially optimized for unstable power

supply in an intra-chain level to balance the loads and further increase the computation

done by edges. I show that it can boost fog computing from 1.9X to 2.1X compared to

the system running a traditional load balance. I also propose architectural supports for

increasing nodes density for the better quality of service by time-division multiplexing

of NVRF. 2X QoS is observed with 3X density increment in a very low energy income

situation.

Chapter 7 surveys other approaches in energy harvesting IoTs, including nonvolatil-

ity in processors, architectural aspects of energy harvesting, frequency and resource
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scaling, active and passive checkpointing, approximate computing and storage, non-

volatility in RF control and other low-power RF technologies, load balancing on WSN,

and virtualization for the quality of service.

Finally, in Chapter 8 I summarize the dissertation.

This dissertation provides a holistic exploration in applying nonvolatility into the

processor and system design in energy harvesting application scenarios. Various tech-

niques are proposed for optimization in nodes level and system level. To validate the

simulation infrastructure, I compare and calibrate the simulation results against several

fabricated non-volatile processors. The proposed architectures and optimizations, in

turn, provide guidance for SOC chip and system design, which further proves the fea-

sibility of the proposed architectures. This dissertation is a first holistic exploration of

ambient energy harvesting processor and system design.



Chapter 2
Background

Every shift in the way our devices are connected or powered brings with it a potential for

revolution in the usage and capabilities of the systems built around them. Just as the tran-

sition from wired to wireless telephones led to unprecedented changes in our communi-

cations and the shift from wall-power to battery-power transformed our expectations for

computational systems, the shift from battery-powered systems to self-powered systems

promises to fuel the next revolution in the internet of things (IoT). The ability to power

IoTs using ambient scavenged energy liberates them from the lifetime, deployment and

servicing limitations of a fixed battery: Tens of billions of IoT devices are expected to

pervade consumer, industrial and public services by the end of the decade [37]. Some

of such systems have already been successfully deployed, and some are very reachable

in the near futher. The applications that make use of this paradigm are diverse, includ-

ing 1) area monitoring, eg. the position of the enemy; 2) environmental monitoring; 3)

industrial monitoring; 4) medical and healthcare monitoring; 5) traffic control systems;

6) underwater acoustic sensor networks and 7) near-body wearable device networks.

There are, however, several drawbacks in relying on ambient sources of energy for

such computing purposes. Most of these energy sources operate at relatively low con-

version efficiencies, since only a small fraction of the total transmitted power can be

tapped. In addition, they are not reliable energy sources, since external factors could

cause a disruption in supply.

This chapter is organized as follows. First it provides a brief overview of typical

energy harvesting systems, ambient power sources that could potentially be harvested

as well as the factors involved in the designing the processing element. The follow-
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Figure 2.1. Typical power ranges of ambient sources

ing up section examines the various system level background including checkpointing,

wait-compute on a volatile processor, front-end circuits etc. for better energy-efficient

designs.

2.1 Ambient Energy Sources: Weak and Unstable

Typical ambient energy sources that could be harvested to power an embedded system

include solar energy, radio-frequency (RF) radiation, piezoelectric effect and thermal

gradients [38], as shown in Figure 2.1. These sources can be classified according to

three characteristics: signal magnitude, variability in signal strength, and granularity of

variation/intermittency frequency. Research also indicates that implantable biofuel cells

(BFCs) are able to generate electric power from sugars found in the body fluid of an

insect [39]. A comprehensive comparison among these power sources can be found in

reference [40] and reference [41].

Figure 2.2(a) shows the power traces for four typical ambient energy sources. The

RF energy is obtained by measuring the power of the frequency spectrum from a TV

station, the piezo energy is measured through devices fixed on a bike, the thermal energy

is generated from characterizations described inreferences [42–44] and the solar trace is

obtained using data from MIDC [45]. It is observed that there is substantial variation in
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power, even over a few milliseconds for RF in Figure 2.2(a) with the ratio between the

maximum and minimum power over this period around 250× [38, 46, 47]. The piezo

power is more stable than RF with just some short power loss in Figure 2.2(b). The

thermal power, shown in Figure 2.2(c), is even more stable, due to the gradual nature of

temperature variation. Variation in solar power, seen in Figure 2.2(d) is contingent on

the weather conditions and orientation of the solar cell.

Another feature is the intermittency frequency that influences how soon the power

drops below a given threshold as shown in Figure 2.2(a). The intermittency frequency

decides the backup and recovery overheads. Sources with periodic behavior, like Fig-

ure 2.2(b), facilitate prediction of power loss and enable efficient scheduling of tasks.

2.2 Typical Energy-harvesting System Structures

With the development of the Internet of Things (IoT), smart cities, and implantable

and wearable applications, extremely low-power systems powered by ambient energy

sources are gaining popularity. Figure 2.3(a) shows an archetypical system structure

consisting of (a) an energy harvesting and power management block, (b) a digital signal
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processor which is usually implemented using a microcontroller unit (MCU), and (c) the

wired or wireless I/O interface. The capacity and implementation of the energy storage

medium is also critical to the system design because it directly affects the trade-off

between leakage and other overheads and the maximum stored power. In later sections,

this trade-off will be discussed in more detail.

It is also noted that different energy sources require different energy harvesters for

power conversion. For example, the output of a solar cell is a DC signal, while the RF

signal and the output of piezoelectric-based systems are AC signals which require an

extra AC-DC rectifier. When the input power is weak, the output voltage may also be

low and potentially require an extra DC-DC voltage booster [38].

Ambient Energy

RF Signal

Piezoelectric

Solar

Thermalelectric

Energy Harvesting and Management

Voltage Conversion 

(AC-DC, DC-DC)

Sensors

Displays, etc

Charging Management;

Status Detection

Transceivers

Digital Signal Processor With 

Optional Nonvolatile Memory

Sensor/Peripherals

Energy

Storage

On/Off Control

Status Detection

Charging

Conversion Control

Power Status/Policy

(a), Energy harvesting system diagram

(b), Baseline front end circuits 

Charger
DC-DC 

Converter
LDO NVP

Super 

Cap

Local 

Cap

Energy 

Source

Power Control

Figure 2.3. Baseline front end circuits

The baseline energy harvesting block is illustrated in Figure 2.3. Subsequent to

the AC-DC or DC-DC conversion, an MPP tracking (MPPT) interface is employed to

control the charging power for the highest power-conversion efficiency from the energy

harvester.



13

2.3 Why Not Do Wait-compute on A Volatile Processor

with A Large Capacitor?

On account of these limitations, most current energy harvesting platforms tend to restrict

themselves to applications that require relatively simple signal capturing mechanisms in-

volving minimal computation and processing with a large capacitor for energy stroage.

And the system starts only when there are ample energy stored. Such traditional strat-

egy in energy-harvesting systems is to employ a volatile low power MCU or an MCU

with checkpointing capability (e.g., FeRAM MSP430 is used in [48]) that waits before

starting to execute while charging an energy storage device which must be large enough

to store sufficient energy to complete an entire logical work unit, such as an image

frame [48]. Systems operating on this paradigm will alternate between periods where

they accumulate energy in the energy storage devices (ESD), and ones where powering

the system drains the energy. While such a system is able to offer strong guarantees

for execution once execution begins, this conventional solution has several limitations,

including energy conversion efficiency overheads brought by frequently charging and

discharging the capacitor, capacitor leakage [48, 49], minimum charging current(e.g.

20uA for the GZ115 [49]), and slow charging curve [49]). Moreover, if the incoming

unit of work is too large, the incoming power may not be sufficient compared to leakage

in the ESD [48], or there may be long periods of complete power outage that drain the

accumulated charge, and it may take arbitrarily long to reach the threshold for beginning

execution.

An alternative execution paradigm is to utilize only a small on-chip capacitor, i.e.,

one sufficient for backup operations and employ an NVP. This reduces capacitor leak-

age, and can improve front-end conversion efficiencies by mitigating the overheads of

moving charge into and out of a large energy storage device at the cost of additional sys-

tem complexity for the NVP, more complicated guarantees on the granularity of work

accomplished once an execution period begins and the overheads imposed during more

frequent backup and restore events during the execution of each logical unit of work.

The two approaches can be seen as similar if the logical unit of work is at an instruction

or similar granularity, thereby minimizing both charging time and charge lost if a short-

fall occurs during a charging period between backup and recovery. Hybrid approaches

have also been proposed. For example, Sheng et. al. propose a dual channel front-end
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solution to overcome low charging efficiency [50] in which they design another power

channel to bypass the energy storage device and connect directly to the load, and Ma

et. al. extend prior NVP models to maintain the capacitor energy level [33] within a

bounded range for charging efficiency during execution rather than greedily consuming

energy. Thus, the key energy tradeoff between the two approaches is between the en-

ergy wasted on charging and discharging a capacitor with leakage and the backup and

recovery overheads of NVP.

It is observed through simulation and validation that the NVP-based execution ap-

proach can outperform the wait-compute scheme by 2.2X-5X.

2.4 Volatile with Checkpointing or Nonvolatile?

Since wait-compute scheme is low efficiency in front-end circuits, a direct path from

source directly to load is one possible to improve the efficiency. While this brings an-

other challenge: unstable power supply.

Figure 2.4 illustrates the difference in the behavior of a volatile processor with pe-

riodic checkpointing to an external non-volatile memory and a completely nonvolatile

processor when working under variable power source conditions. While both processors

can only run when the input power exceeds a certain threshold, the volatile processor

does not retain the instantaneous state of the system when the power drops below the
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threshold, resulting in a forced rollback from previously checkpointed state. This could

limit the amount of forward progress from being made.

2.5 An Energy Model for Energy Harvesting System

A key challenge in designing battery-less electronics with energy scavenged power

sources is the erratic and unreliable power supply derived from ambient sources. One

solution is to add an energy storage capacitor, such as a super-capacitor to smooth the

power. Figure 2.6 shows an abstracted charging metaphor that highlights the key com-

ponents of the systems considered in this paper and Figure 2.5 illustrates an energy

trace harnessed from an RF power source stored in a capacitor accounting for its leak-

age. Since the capacitor leaks, periods during which the power harnessed is less than

the leakage power causes the overall stored energy to decrease. Conversely, leakage

rates and size/weight restrictions bound the practical scale of capacitor volume, so the

capacitor may saturate and be unable to store additional energy during periods of high

input power.
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Figure 2.5. A comparison of energy input and consumption trails for a TV RF power trace

Three key insights into the dynamics of energy storage in energy-harvesting systems

are that, firstly, over the highly varying input power ranges that these systems must op-
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erate, they will frequently encounter both periods where the energy lost from capacitive

storage is greater than that replaced by energy harvesting and periods where short term

increases in input power provide more energy than a practical capacitor can store. Sec-

ond, the effects of capacitive leakage, finite capacitor storage, charging losses and other

front-end power components are large enough to require co-optimization when consid-

ering processor or other compute-engine optimizations for these platforms. Third, as

Figure 2.5 depicts, policy management of the power demand at the processor, the load

for this front end, provides substantial leverage in mitigating both capacitive underflow

and overflow by changing the slope of energy consumed. Changes in processor poli-

cies, such as DVFS can also affect front-end efficiency: For example, since DC-DC

conversion losses depend on the difference in voltage, actively depleting or restoring the

energy storage capacitor to a particular voltage range will impact the efficiency of the

system in harvesting future power.

2.6 Processing Quality Tradeoffs

In many IoT applications, temporal and interactivity requirements can make the quality

of partial results, or even the existence of any response at all, more important than the

fraction of instructions needed to eventually produce a ”best-quality” result.

Adding a ”quality knob” provides flexibility in an NVP, where the need to make

conservative decisions regarding energy reserves for backup operations can otherwise

impose substantial overheads on execution. In an NVP, if the effort needed to ensure

preservation of data is sufficiently reduced, some power emergencies may be avoided
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altogether, improving response timeliness. Moreover, in addition to natural synergies

with power management, accepting variable quality responses frees a harvesting system

to apportion effort with respect to the continued relevance of the data being processed:

If an NVP has been without power for some substantial time, resuming work on the

input it was processing when power failed may have lower utility, from an application

perspective, than moving on to processing the newest input. Discovering the optimal al-

location/schedule for an NVP would depend not only on application-specific semantics,

but also future knowledge of unpredictable power income.

To capture these notions, the concept of incidental approximate computation is in-

troduced, wherein communicated application tolerance for approximate outputs is used

to maintain timeliness of responses from an NVP while taking advantage of repetitive

behaviors within the NVP’s workload to apply any power surplus, when available, to

improve the quality of abandoned older work.



Chapter 3
Nonvolatile Processor Architecture

Exploration

This chapter is organized as follows. First it provides a brief overview of configura-

tion assumptions involved in the designing the processing element. The following up

sections examine the various architectural considerations that arise when I extrapolate

the existing system to use-case scenarios that require more complex, faster and energy-

efficient designs. Then the simulation infrastructure is described and validated with a

fabricated NVP. The following sections provide the design guideline.

3.1 Architectural Exploration

This section focuses on figuring out which architectural configurations are best suited

to optimally utilize the available power and energy by maximizing the processor per-

formance under different energy constraints. Hence, depending on the energy that is

harvested, I analyze various parameters such as the number of pipeline stages, the data

to be backed up and the frequency of backups.

Some common configuration assumptions for these structures include:

1. ISA MIPS

2. Clock frequency is 8kHz for all configurations. The selection of clock frequency

is driven by the limited strength of the WiFi signal used, rather than the limits of

the microarchitectures.
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3. Instruction Memory and ICache: The instruction memory is assumed to be ROM.

The ICache can be SRAM, hybrid [51], or NVM [51,52]. In this paper, ICache is

designed using NVMs.

4. Data memory and DCache: The Data memory is assumed to be non-volatile. An

SRAM-based DCache employing a write-through strategy does not require any

backing up policy. On the other hand, a write-back strategy necessitates writing

the dirty data back to memory. Our system assumes a non-volatile write-back

DCache which preserves the dirty data even during periods of power down.

3.1.1 Non-Pipelined Configuration (NP)

In the absence of any pipeline stages, the entire state of the processor can be charac-

terized by a single instruction state. Hence it is sufficient to focus on the following

structures for retrieveing architectural state.

1. Program counter (PC): The PC address relates to the instruction being executed

and surely needs to be stored.

2. Register file (RegFile): Due to its frequent usage, the RegFile undergoes a large

number of writes and hence volatile RegFile is more energy efficient than an NVM

based RegFile.

However, all the volatile RegFiles need to be moved to a non-volatile memory on

power failures to save state.

In addition to the architecture, there are also tradeoffs between the energy consumed

in backing up and recovering the data and the overall performance. These tradeoffs are

explored, by choosing which data to save, and when to save it, as demonstrated by the

following policies.

Backup every cycle (BEC):
In spite of the significant energy penalty, this solution employs an NVM register file, or

else both the contents of a volatile Regfile and its counterpart non-volatile location need

to updated every cycle. As shown in Figure 3.5, only the PC and a few registers are

written into the Regfile every cycle. Some instructions such as StoreWord and Jump do
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not require any further Regfile write. Consequently, the power increase due to the use

of a power hungry non-volatile memory is moderate.

On Demand All backup (ODAB):
This differs from the previous solution in that all RegFile entries need to backed up

only in the event of a reduced power state. We develop a control structure shown in

Figure 3.1, in which there is an individual NVM backup block to back up the PC and

RegFiles. If the input power drops below a preset threshold, a power warning signal

is activated. At that instant, the control unit starts to back up the PC and resets the

atomic flag for PC to indicate that the PC has been successfully backed up. A similar

procedure is carried out for the RegFile. When the power is available again, I first need

to accumulate energy in the capacitor to ensure that there is enough energy for the next

backup and recovery operation before continuing execution.

On Demand Selective backup (ODSB):
In order to reduce the backup time and energy penalty, I develop an on demand selec-

tive backup solution, as described below. A synchronous power warning signal is used,

which may delay the power warning signal a little bit, but can guarantee that the current

PC finishes executing and writing back (if necessary). To avoid re-executing the instruc-

tion corresponding to the current PC, PC+4 is stored except in case of jump or branch

instructions. This solution can save one clock cycle. Since the frequency of this system

is very low, even a single clock cycle may be very significant if power down happens

frequently. In the volatile RegFile, I add a change flag to each register to identify if a

register has been written into between two backup operations. If the register has not

been changed during the interval, the control unit will know it from the change flag and

would not need to generate addresses for the unchanged data, as shown in Figure 3.3.

Simulation results and comparison:
Figure 3.2 shows the area of each of the components for the schemes described above.

It is observed that the total area is similar, since the NVM Cache and Backup Blocks

are much larger than the logic components. The critical path delay shown in Figure 3.4

indicates that the BEC has lowest peak frequency due to the frequent backups. However,

there are overheads in the other schemes which also prevent them from running at peak

performance.

These overheads are illustrated in Figure 3.5, which shows the compute, backup,

recovery and off times for each scheme described above. BEC distributes the backup
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energy penalty to every cycle. Thus these penalties are the smallest for this case, as

shown in Figure 3.6 and Figure 3.7. The recovery time is defined as the time from the

activation of the Energy OK signal to the time all backup operations are completed. The

recovery times in are similar across all schemes, but BEC does not need to accumulate

energy for backup. Consequently, this scheme can restore the system the fastest. The

ODAB scheme needs to back up the PC and the entire RegFile, thus the time and energy

penalty is the largest.

ODSB reduces the number of RegFile entries to be copied, by detecting if the Reg-

File has changed during two backup intervals, thus requiring less backup time and en-

ergy than ODAB.

In order to determine the best NP scheme, optimizing power and energy is more im-

portant than timing, on account of the low clock frequency. In BEC, if the interval time

(the time of power on during two power loss )is very short, the energy per instruction is

low because at most only one RegFile entry is backed up, while ODAB needs to backup

all RegFile entries. ODSB backs up only one entry at a time, but it is more complex in

design. As the backup interval time is increased, ODAB and ODSB are more energy ef-

ficient, as observed in Figure 3.7, on account of backing up only in the event of a power

warning.

In order to avoid a large peak power which can result in system instability, I choose

to back up and recover data serially. Although a parallel approach can reduce the back

up and recovery time, it increases the peak power requirement. From this point of view,

the ODSB is better than ODAB.

• ODSB is most energy efficient strategy when the source is relatively stable like solar

energy. Compared to ODAB, ODSB can reduce the backup energy penalty by 69% with

only 0.002% area overhead.

• While BEC is not the most energy efficient with very weak sources like WiFi, it does

not require the time to accumulate energy in the capacitor to ensure sufficient backup

energy is available, as shown in Figure 3.5. Hence it is viable when the power failures

are extremely frequent (less than 1 in 10 cycles), which rarely happens even in WiFi

sources.
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3.1.2 N-Stage-Pipeline

In contrast to the MIPS non-pipelined case, a MIPS N-Stage Pipeline is traditionally

used to improve the clock frequency. Due to the increase in circuit complexity and the

activity factor of the processor, the power threshold of this design in energy harvesting

systems is higher than that of the Non-Pipelined case. In this subsection, we assume a

Five-Stage-Pipeline structure (5SP) and propose two backup schemes.

Shifted PC & volatile flip-flops (SPC/VFF):
The main differences between NP and 5SP configurations are the pipelined data flow

with bypass and forward and the complex control flow to handle hazards. In the SPC

/ VFF scheme, a shifter buffer is designed to remember the PC value in each pipeline

stage, as shown in Figure 3.10. This means the PC no longer needs to pass through all

pipeline stages to be stored. When the power is down, the clocked power warning signal

can guarantee that the PC in the write back stage will be finished. The unfinished PC to

be backed up would then be in the data memory stage. The reason that I use a shifter

instead of simply rolling back the PC is that if some of the instructions in the pipeline are

jump or branch instructions as shown in InstQue2 in Figure 3.10, a different PC would

need to be backed up. If the instruction in MEM stage is SW as shown in InstQue1&2 in
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Figure 3.10, this SW instruction will guaranteed finished by the clocked power warning

signal. We can try to identify if the backed up instruction is SW, if yes, backup the PC

in EX stage in the shifter instead of PC in MEM. Instead of dealing with the increased

design complexity, we can just backup PC in MEM stage. Once the power is on again,

the first instruction will be SW. In this case, we run SW actually twice: the first time is

during the back up operation, another one is the first instruction after recovery in case

the former one is not properly finished.

Program

 Counter

Instruction

 Memory

Register 

File
ALU

Data 

Memory

Write

 Back

IF/ID ID/EX EX/MEM MEM/WB

Control Unit
Start BackupFinish Backup

Start RecoveryFinish Recovery

V
o

la
tile

 F
F

  N
V

 F
F

V
o

la
tile

 F
F

  N
V

 F
F

V
o

la
tile

 F
F

  N
V

 F
F

V
o

la
tile

 F
F

  N
V

 F
F

Bus
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Nonvolatile flip-flops solution (NVFF):
This solution involves the use of NVM flip-flops (Figure 3.8). Here, the PC and the Reg-

File are automatically backed up through NVM flip-flops in the IF/ID pipeline stages.
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Simulation results and comparison:
SPC/VFF requires 11% less time and 57% less energy than NVFF in Figure 3.11.
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However, an extra 4 clock cycles are needed to re-execute the last 4 instructions that

are lost from the latter pipeline stages after recovery.

which we regard this as part of the recovery time penalty.

Counter to intuition, I show that SPC/VFF is more energy efficient than NVFF. Instead

of backing up all the data in the pipeline latches, SPC/VFF only backs up one PC with

a small shifter. Hence, a smaller backup capacitor with lower leakage is sufficient for

SPC/VFF, which will in turn affect the power threshold. In this case, SPC/VFF will also

be able to outperform NVFF after several repeated instructions.

3.1.3 Out-of-Order Processor (OoO)

Compared to the MIPS 5SP configuration, our MIPS out-of-order (OoO) processor con-

figuration, described in Table 3.1, is much more complex. Figure 3.12 indicates the key

blocks we consider in our OoO processor model derived from FabScalar [53]. Concep-

tually, system state, unlike in the previous two examples, is broadly distributed across

several structures such as the PC, ROB, RegFile, Map Table, Issue Queue, Load Store
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Queue as well as the Branch History Table and Branch Target Buffer. Some of these

structures are essential to maintain the integrity of the state of the system, while others

contribute toward optimizing the performance and/or energy of execution in the pres-

ence of frequent backups and recoveries.

Due to the relatively larger power requirements of an OoO processor, there are both

fewer periods where the input power exceeds the minimum threshold, as compared to

the previous cases, and more state to consider saving during power emergencies. Hence

it is imperative to judiciously select the structures to be backed up, in order to ensure a

comparable performance to the no-pipeline and n-stage pipeline designs.

Parameter OoO Parameter OoO
Fetch width 4 Map Table 32
Issue width 4 PRegFile 128
ROB size 32 Ready Table 128
IQ size 32 BHT/BTB 128
LSQ size 32/32 ARegFile 32
ICache/DCache 32kB/32kB Free List 128

Table 3.1. Parameters for OoO processor
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We propose several resource selection strategies for this purpose, as illustrated in

Figure 3.13.
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Minimum State Resource backup solution (MinR):
MinR backs up the minimal number of bits required to preserve functionality across

power interruptions, as shown in Figure 3.13 and Figure 3.15. Fundamentally, this ap-

proach piggybacks on the branch misprediction mechanism to minimize the number of

valid/relevant state bits prior to initiating backup, at the cost of some time and effort

being required to enact the misprediction logic prior to checkpointing.

1. ROB and PC: to minimize state storage, I only back up the first uncommitted

PC at the head of ROB. This means all the other instructions in the ROB will be

abandoned regardless of status.

2. IQ: IQ does not need to be backed up because all the instructions in IQ are un-

committed.

3. ARegFile: We can either choose to backup ARegFile or PRegFile. The ARegFile

is preferred since it is designed to be smaller.

4. Map Table:

It is possible that uncommitted instructions that follow the head of the ROB could

have modified the Map Table. However, since we need to restore the state to the

instruction at the head of the ROB, the Map Table should also be correspond-

ingly restored. In order to achieve this, we trigger an instruction flush identical to

that following a branch misprediction on the ROB head. Since no actual branch

prediction occurs, I term this operation Pseudo-Misprediction.
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Figure 3.14. OoO integrated flexible atomic backup solution

5. PRegFile, Ready Table, Free List, BHT, and BTB can be recovered.

Low-latency backup solution (LLB):
While the MinR policy minimizes bits pushed to nonvolatile storage, it does so at the

expense of requiring additional work before backup can begin. We next consider a

backup solution that aims to minimize the number of bits to store if backup begins

immediately. Rather than back up only the first uncommitted PC, this solution backs

up the entire ROB, IQ, ARegFile, Map Table, and PRegFile. Compared to the MinR

policy, structures such as the Ready Table and Free List (Figure 3.17 and Figure 3.18 )

can be more easily reconstructed, resulting in a penalty of only a few recovery cycles.

While LLB stores more state than MinR, it can sometimes nonetheless be more energy-

efficient, due to the extra work required of MinR on both backup and recovery.

Middle-level backup solution (MLB):
Instead of using extra recovery time and energy to restore the Ready Table and Free

List in the low-level backup solution, MLB backs up Ready Table and Free List as well

(Figure 3.13).

Min-state-lost backup solution (MPL):
In this solution, all the structures are backed up including the BHT and BTB as shown

in Figure 3.13.

Integrated Flexible Atomic Backup Solution (IFA):
All of the previous solutions save and restore a fixed amount of state determined by

the structures in question. However, one key feature of the backup process is that it

must necessarily be triggered conservatively: The backup signal must be issued at a



30

Time
Input 

power

ComputeMPL

on off on

ROB IQ
AReg

File

Map

Table

PReg

File

Ready

Table
Free

List
BHT BTB Off

Filling up the cap

Compute

max recovery High performance

ComputeMLB ROB IQ
AReg

File

Map

Table

PReg

File

Ready

Table
Free

List

Original

Off

Filling up the cap

Compute

Middle-level recovery Low performance

ComputeLLB ROB IQ
AReg

File

Map

Table

PReg

File
Off

Filling up the cap

Compute

Under-middle-level recovery Low performance

Rebuild free list and map table

ComputeMinR PC in

ROB
Pseudo-

misprediction

Restored 

Map Table
Off

Filling up the cap

Compute

Low performance with penalty

Last uncommitted PC

AReg

File

Rebuild PReg, free list and map table Reschedule ROB, IQ etc.

SW in 

LSQ

SW in 

LSQ

SW in 

LSQ

SW in 

LSQ

To finish SW operation in LSQ

Figure 3.15. Out of order structure backup design trade-off

0 1 2 3 4 5 6 7 8 9 10

Q
P

Threshold

A

In
p
u
t
p
o
w
e
r
s
tr
e
n
g
th

Time (s)

Input power strength

B

Figure 3.16. Scenarios in which IFA can be applied

point where the processor can guarantee sufficient energy to complete the backup even
assuming zero additional input power during backup. However, in practice, when

a power emergency occurs in an energy-harvesting system, it is not usually because

input power has dropped to zero, but becaue it has fallen below some threshold for some

period of time. Thus, there may frequently be additional energy available during the

backup period that, while insufficient to continue operation, would allow for optional

state, such as the BHT, to be subject to optimistic attempts at backup.

We propose a flexible backup mechanism that integrates aspects of the 4 previous

solutions together to exploit the conservative nature of the backup trigger. The key idea

of the solution is to regard each backup operation as an atomic operation. A backup

operation has only two states: success or failure. Figure 3.14 shows the systematic

structure of this solution. Figure 3.16 shows how the power may be dropping at different

pace to zero and can execute more or less backup.

Simulation results and comparison: For MinR, the pseudo-misprediction operation
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for the Map Table requires extra backup clock cycles as shown in Figure 3.15. When

recovering, we also need to pay extra clock cycles to restore the PRegFile, Ready Table,

and Free List. Further, since we discard all instructions in the ROB following the head,

we need to re-execute these instruction, resulting in the timing penalty in Figure 3.17 as

well as energy overheads, shown in Figure 3.18.

In the case of LLB, the ROB and PRegFile are relatively large and significantly
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increase the backup time and energy in Figure 3.17 and Figure 3.18. On the other

hand, the recovery energy penalty is smaller than MinR, because all the instructions and

their information in the ROB are backed up, eliminating the need to re-execute these

instructions.

The backup time and energy penalty of MLB are are larger than those of LLB, as

shown in Figure 3.17 and Figure 3.18, but the recovery energy is lower.

The designer should use this MLB strategy when the system is optimizing the time

to resume execution after a power failure.

In MPL, the backup and recovery time penalty and energy penalty are the largest in

among all the solutions, but backing up all the additional structures incurs the minimum

latency to return to peak performance after a power failure.

Results show a 29 cycle gain for MinR, but not backing up the BHT and BTB nega-

tively affects IPC.

On account of OoO being thought to be too complex for energy harvesting systems,

prior work has not considered OoO platforms. Since OoO needs a much higher threshold

than NP and NSP, the percentage of time OoO can run is much smaller than NP and NSP.

However, OoO remains a favored option in several of the test senarios in subsequent

sections because the periods of sufficient power are common enough to sometimes allow

superior performance to pay for lost cycles. In summary, storing the minimum number

of bits, MinR, does not always provide the least energy backup solution, and MLB has

the shortest time to execution after power failure. We also demonstrate that, due to the

conservative nature of backup initiation, there is a sizeable potential for opportunistic

backup of optional, performance enhancing bits with a flexible backup policy.

3.2 Validation

While the primary focus of this paper has been on an simulation-based exploration, we

have explored the non-pipelined on-demand-back up strategy using an actual fabricated

processor. In addition to demonstrating the execution of real workloads on the processor,

this effort enabled us to gain insights to approximations in initial simulation models and

helped refine the simulation model used in this work.
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Figure 3.19. System prototype Figure 3.20. Block diagram

3.2.1 System Overview

The nonvolatile processor is based on a Intel 8051 processor and the ISA choice for

fabrication was driven by availability of a pre-existing design. This processor supports

multi-cycle instructions as compared to the MIPS ISA used in the rest of the paper.

Consequently, in this implementation, the saved state includes the state machine that

captures the exact cycle in which the instruction was carried out currently. This is the

most relevant difference from the perspective of the non-volatile design space explored

as compared to the MIPS pipeline in our simulation studies. However, our simulation

effort encompassed the 8051 processor as well to gain insight to potential sources of

differences between the simulation and real system.

The non-volatile processor based system is interfaced to a solar power panel and a

UV sensor as shown in the Figure 3.19. The processor is based on a 0.13 µm ROHM

CMOS-ferroelectric hybrid process. The PC and all RegFiles are FeRAM-based Flip-

Flops. The Flip-Flops are realized using an additional backup ferroelectric capacitor

(FeCap) for each D flip-flop (DFF) used in the design. When a power failure is detected,

the NV control logic backs up the DFFs to the FeCaps. When power is resumed, data

is restored from FeCaps to DFFs. All FeCaps are distributed and connected close to

their own DFFs, thus the data backup and recovery can proceed in parallel to reduce the

operation time. Table 3.2 shows the chip specifications. The total power decides the

power threshold, the backup energy decides the energy storage capacitor volume. The

capacitor used in the system is 470nF.

The design process revealed insight to modeling to key aspects in the simulation
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environment. The clocking network is switched to a lower frequency to transition clock

generation from an external oscillator to an internal RC circuit. The external oscillator

could become unstable or may not have sufficient power to operate. Further, a lower

clock frequency increases the reliability of the FeRAM writes and also reduces peak

power consumption. The slower clock impacts the overall back-up time as compared to

using estimates based on faster operational clock. Similarly, the recovery time should

include not only the time required to restore architectural state but the time for the clock

generators and power supply grid to be stable.

3.2.2 Simulator Calibration

Once these insights are incorporated in the simulator, a few kernels were executed on

both the platform and the simulator (See Table 3.3). To model an intermittent power

supply, a 1KHz square waveform power input was fed to the processor and the processor

frequency was limited to 3MHz (the maximum frequency at which it could operate based

on power supply when connected to the solar panel). Each kernel was executed 1000

Parameter Result Parameter Result
Max. clock 25MHz Total power 160µW@1MHz
Process Technology 0.13µm Backup energy 23.1 nJ
VDD for core 0.9V-1.5V Recovery energy 8.1 nJ
Total area 1.015 mm2 Backup time 7µs
Energy/Inst 347pJ Recovery time 3µs

Table 3.2. Measured Parameters

Testbench
Stable/ms Interrupted/ms

error
Measured Measured Model

FIR-11 0.626 1.260 1.209 -1.59%
Sqrt 2.620 5.280 5.190 0.81%
KMP 3.573 7.184 7.059 0.77%
FFT-8 4.207 8.460 8.238 -0.13%
Matrix 5.826 11.740 12.021 2.39%
Bubble sort 27.23 54.705 57.236 4.63%

Table 3.3. Execution Time on simulator and actual platform when using an interrupted power
supply generated as a square waveform.
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Figure 3.21. Execution time with energy scavenged from WiFi home environment

times to obtain overall completion time shown in Table 3.3. For the stable power case,

the simulator and platform mismatch is negligible. For unstable power, the simulator

and the platform measurements differ less than 5%. The differences accrue since the

simulator averages energy consumed by an instruction to estimate remaining energy

for triggers. However, the actual instruction execution exhibit non-uniform activity.

Further, the energy storage capacitance models used in the simulation add and decrease

in discrete portions unlike the actual design. This validation process for the simulator

based on a real design indicates that simulation-based models are fair representation of

actual systems.

3.3 Design Guidelines

The complexity of the non-volatile architecture chosen for a particular application sce-

nario depends on a variety of factors. The input power and the stability of the power

supply are two key factors that impact the choice. In addition,the computational com-

plexity of the application and its performance requirements is also important.

3.3.1 Dependence on Input Power Characteristics

The input signal characteristics play a major role in determining the optimal design, as

is evident from our experiments with Wi-Fi power trails under different environment
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Figure 3.22. Executing time with energy scavenged from WiFi office environment

conditions. Figures 3.21 and 3.22 demonstrate the performance of the various backup

schemes when home and office Wifi sources are used for harvesting energy. For the

home environment, a non-pipelined ODSB architecture is the best performing. On the

other hand, in the office environment, the more complex OoO processor with the min-

imum performance loss scheme is desirable. The reason for this behavior is that, the

home WiFi signal comprises of a single router, while the office environment consists of

several routers of similar signal strengths. A disturbance in the signal would result in

input power going to almost zero in the home environment, hence the simplest design

with the lowest power threshold is preferred. In contrast, in the office environment, the

additional routers continue to supply input power at a relatively similar strength in an

uniterrupted fashion, thus allowing for more complex architectures.

3.3.2 Dependence on Nature of Input Source

Input energy sources differ both in the magnitude of the input power as well as its

variation. Figure 3.23 demonstrates the behavior of the different architectures under

these conditions, by testing multiple power traces for each configuration. In each case,

the best performing backup policy is adopted. Since the power traces have different

ratios between the power on and power off states, the backup/recovery penalties are

also different. Consequently, they have different running times. We observe that, for the

same input power source, the actual execution time of NP and 5SP are roughly the same.
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However, the higher power threshold in the 5SP configuration results in the below-

threshold or off-time being much higher. The OoO configuration is nearly 3× faster

than NP and 5SP when it executes and hence the overall running time is proportionately

smaller. This behavior is consistent across all input sources with the actual execution

time determined by the magnitude of the power source.

3.3.3 Quality of Service

Most of the applications that are expected to run on an energy harvesting platform re-

quire an output to within a fixed time period. Quality-of-Service (QoS) can be standard

to qualify the possiblity to achive that goal. When these systems run on harvesting am-

bient energy, the unreliable nature of the input source may prevent the QoS demands in

some instnaces.

Figure 3.24 shows the percentage of instances that meet the QoS demands specified,

for two different applications, measurement of ECG and an edge detection algorithm

used in vision sensors.

Figure 3.24 provides an indication of meeting the QoS. For example in Figure 3.24a),

the possibility to achieve real-time ECG processing with NP and RF power is 0.92%.

Consequently for RF and Thermal sources, real-time processing is not possible. For

ECG, most of the solar and Piezo sources can support 100% QoS.

The baseline configrations for Figure 3.23 and Figure 3.24 are listed in Table 3.4.

Table 3.4 also indicates several methods to optimize the QoS with efficiency:

• From power input view, there are lots of features that we can improve the input

power. The baseline in the QoS simulations for RF is 10km from TV stations, but

in some places like New York, the average TV station distance is around 3km [54].

And the RF power strength is in negative square realtionship with distance, so we

can 11.1 times larger average power, thus improve the QoS to 100% .

• We can try to improve the efficiency of AC-DC, DC-DC, LDO, reduce the capac-

itor leakage, etc. to improve QoS.

• From output view, try to shink the techonolgy [55] (baseline is 130nm CMOS)

to get lower power consumption, for example, applying 22nm FinFET [56] will

achieve 100% QoS for real-time ECG in Manhattan. In addition, various methods
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could be applied to reduce the power: new devices like Tunnel-FET [38], low

power circuits like sub-threshold circuits, dark silicon [55], gated clock, dynamic-

voltage-frequency-scale (DVFS), Dynamic-Adjusting Threshold-Voltage Scheme

(DATS) [57] etc. are some examples.

Aspect Solution QoS Baseline Efficiency

RF
Antenna gain 6dBi α

Bandwith 539M α

Distance 10km 1/α2

Therm
Area 1cm2 α

∆T 20◦C α2

Piezo Volume 1cm3 α

Solar
Area 4cm2 α

Efficiency 28% α

Circuit IP matching, AC-DC, DC-DC, LDO, Cap

Tech.

Shink Tech. 130nm α2

FinFET, IG-FinFET, TFET, NC-FET CMOS
DVFS, DATS, Fixed frequency
Voltage 0.95V 1/α2

Table 3.4. Baseline and relationship with QoS improvement
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Figure 3.24. QoS for ECG/AR, and QoS optimization



Chapter 4
Dynamic optimization of NVP

With the development of nonvolatile processors (NVPs), energy harvesting is emerging

as an increasingly attractive means for powering the internet of things (IoT) [58, 59]

NVPs can handle unstable input power by backing up the computation state in dis-

tributed nonvolatile flip-flops or integrated memories at very short timescales, allow-

ing systems using these processors to operate without large energy storage devices. In

energy-harvesting systems, the local variance in input power is large: The peak available

power can be many times larger than average power, and there can be sustained periods

where only a minimally active processor can operate at all. Incorporating flexibility into

a processor to adapt to changing conditions is a long-studied area. Techniques such as

Turbo Boost [60,61] and other dynamic voltage and frequency scaling [62–65] as well as

microarchitectural resource adaptation techniques [66, 67] have been proposed by prior

work in the context of energy-efficient computing. Prior work on energy harvesting

NVPs [58, 59, 68–71] has also indicated that no single microarchitecture best translates

input energy into forward progress across varying input power traces. Conceptually, the

ideal NVP design is the one that can operate in input power valleys for more on-duty

time, and also convert input energy plateaus into more progress rather than let them leak

away or overflow.

Both frequency-scaling and microarchitectural adaptation are promising approaches

for consuming energy that cannot be otherwise stored in a batteryless system. However,

which approach is preferable and how the two approaches can synergize have not been

explored in the context of NVPs for the IoT space. In particular, the policy space can be

seen as a combination of predicting a) energy income in the next epoch and b) among



42

!"#$%&

!%"'()$

*$+,-$./0

$+

1$(20,

3456,$

7!89%6(.:

*%(22$%&

;"5<)$

1$(20,+

(.&

=>;

?%$@<$./8

!%$5(/,"%

7!89%6(.:

A".'(2<%6-)$

=>!&

B(C<)6,"%

7D$%('($5&-8&

'6-%(/6,(".:

?"%#6%5&

!%"2%$++E&

-6/F<4&

.<C-$%G

H$+"<%/$+

I))"/6,"%

7!89%6(.:

?$6,<%$+

!%$J,%6(.$5&

1$(20,+

;(/%"6%/0(,$/,<%$

&+$)$/,(".&%$+<),

K.4<,+ L8.6C(/&/".'(2<%6-)$&=>!

?%$@<$./8&!%$5(/,"%

!"#$%&'()*&+,(-')&#-&.(#+/01

23&&4#$#-5+

6#73.(-#7+

1(#%)-&3(

8(#9.#$-:+

!-;4)$<+

1(#%)-&3(

=)8)

,$&#$;+>)&'

,?@A?+#&-B

!#$73(7+>)&'

,C"4)*)#(D+*)4&#(D+

,A?+#&-B

 

y MARCO and DARPA, NSFC Grant 61674094, 

Figure 4.1. Spendthrift architecture and simulation structure.

designs capable of consuming as much of the energy income as possible over the coming

epoch, which will offer the best forward progress per unit energy. The aims of this paper

are to explore the effectiveness of both frequency and resource scaling techniques in the

context of NVPs, and to develop an effective dynamic prediction mechanism to set both

frequency and resource parameters efficiently as shown in Figure 4.1. The work makes

the following contributions:

• Targeting lower energy per instruction (EPI) for NVP, we propose using an in-

frequently executed (5Hz) neural network-based predictor to manage bottleneck

resources in a reconfigurable out-of-order processor.

• Targeting aggressive leveraging of harvested energy for forward progress, we de-

sign a machine learning based dynamic frequency scaling (DFS) module for non-

volatile processors.
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4.1 Spendthrift: Bottleneck Resources Prediction

In this section, I propose the hybrid processor microarchitecture - Spendthrift, which in-

corporates a single-issue In-Order microarchitecture and a multi-issue high performance

OoO microarchitecture. The In-Order microarchitecture can operate with the minimum

resources powered on for the minimum start-up threshold; The OoO microarchitecture

operates with more aggressive power consumption but can achieve the highest through-

put. The mechanism of how to find the best configuration for the maximum forward

progress is also described in this section.
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Figure 4.2. The system diagram of configurable resource allocation architecture.
Configurations: IO/OO: InOrder/Out-of-Order, low for In-Order, high for Out-of-Order; FT: Fetch

Width, low for 1, high for 4; DC/IS: decoder and issue width, low for 1, high for 4; RUU: low for 8, high
for 128; ALU: low for 1, high for 4; MP: memory port, low for 2, high for 8; CL1: Instruction and Data

Cache: low for -cache:il1 il1:256:32:1:l, high for -cache:il1 il1:256:32:4:l; ICL2: low for -cache:dl1
dl1:256:32:1:l, high for -cache:dl1 dl1:256:32:4:l; DCL2: low for -cache:dl2 ul2:64:64:4:l, high for

-cache:dl2 ul2:256:64:4:l; PRE: low for -bpred:bimod 128, high for -bpred:bimod 1024.
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Figure 4.3. Power consumption under different resources, testbench ”susan corners”.
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Figure 4.4. IPC V.S. different resource configurations, testbench ”susan corners”.
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Figure 4.5. System diagram with feature extraction circuits.

4.1.1 Resource Allocation System Structure

Figure 4.2 shows the system diagram. 10 adjustable potential bottleneck resources are

selected to balance EPI and performance. The total number of all possible configuration

entries is 1024, and each entry uses 10 configuration bits. With limited power income

in energy harvesting systems, only bottleneck resources are powered on so as to boost

performance with the minimum power penalty. With more resources powered on, the
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Figure 4.6. Neural network for one resource prediction.

instruction per clock-cycle (IPC) may increase a lot, but the power consumption does

not increase as much, thus EPI reduces, as shown in Figure 4.3 and Figure 4.4. It is

also noted that turning on and off resources results in switching delay and energy for

power-gating control [72]. In addition, in the proposed solution, the need of freeing the

resources before turning them off is also considered.

4.1.2 Feature Extraction and Neural Networks

Rather than building a single, large neural network that predicts 10 resources at a time,

spendthrift uses 10 small neural networks, one network for one resource prediction. The

reason is that multiple small neural networks can significantly reduce the computation

amount. Each neural network has four layers as shown in Figure 4.6: one input layer,

two hidden layers, and one output layer. These are optimized results following a similar

approach considering number of layers and numbers of neurons in each layer, as dis-

cussed in [68]. In the input layer, there are three inputs. One input is for the current

resource usage conditions: ”0” indicates a not fully utilized resource, and ”1” indicates

a fully utilized resource. A condition of ”1” indicates one possible bottleneck resource

as it may need extra resources for further performance improvement. The other two

inputs are the input power and the stored energy. Both are captured through the front-

end circuits shown in Figure 4.5 every 0.2 second by an A/D converter (ADC). A small

resistor Rs is used to sense the power delivered through it with negligible voltage drop.

Considering 32 required sensed levels, a 5-bit resolution is sufficient while consuming

only 1nW power. As for the stored energy sensing, it is equivalent to a measurement

and calculation of the voltage across the energy storage capacitor. The two hidden layers
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each consists of 10 hidden neurons. The output has 1 node for resource selection result.

When the output is higher than 0.5, that resource is treated as a bottleneck resource and

will be enabled. The neural networks are triggered every 0.2s. Offline training is used

with 10k training set, achieving an accuracy above 90% on Mibench ”small inputs” [73]

and these initial trained weights are stored in the NVM.

4.2 Dynamic Frequency Scaling

In this section, NVP frequency scaling policies as another effective approach is investi-

gated. For simplicity without losing generality, I use a fixed number of resources, and

three power profiles, a typical example of which is seen in Figure 13.
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Figure 4.7. NVP performance vs. frequency with minimum resources.

4.2.1 Performance vs. Static Frequency

I scan across frequencies from 32kHz to 1.5MHz with a step of 32kHz. In the sim-

ulations, a 672kHz static frequency results in the best forward progress, as shown in

Figure 4.7. Compared to the forward progress with minimized 32kHz frequency, the

forward progress is accompanied by the penalty of 29X more backup operations. With

too low a frequency, a large portion of harvested energy leaks away or cannot be stored

in the capacitor because of power consumption lower than input power. With too high
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Figure 4.8. Proposed dynamic frequency scaling structure.

a frequency, more power overhead is consumed because of more backup and recovery

penalties. Both lead to reduced forward progress. In subsequent sections, the best static

frequency 672kHz is used as the comparison baseline for dynamic frequency scaling

solution.

4.2.2 Proposed DFS Architecture

Figure 4.8 shows the diagram of the proposed DFS architecture, as a part of the con-

troller integrated in the system clock path. The dynamic frequency machine learning

module generates the frequency configuration signal for frequency tuning module. The

machine learning module consists of a forward propagation network with scaled income

power and stored energy as inputs. The initial weights are trained offline and stored in

NVM. As the processor power consumption varies greatly with the amount of resources

being used, as shown in Figure 4.3, the proposed DFS architecture adapts to the re-

sources allocation policies. Once the stored energy level is less than 25% of full stored

energy while the income power is still able to power a 32kHz processor with minimum

resources, the weights update module is triggered to update the weights with a one-step

lower frequency than the current one.

4.2.3 DFS Neural Networks

This neural network decides the best frequency that the NVP with fixed resources should

run at, based on the input power and the stored energy. The neural network is similar to
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the structure in Figure 4.6. It has 2 entries: power income level and stored energy level.

There are two hidden layers for 32*2 hidden neurons, and 32 outputs as the predicted

possibility to select the frequency. The frequency with the largest possibility will then

be selected (Simplified Softmax layer). The initial neural networks achieve above 98%

accuracy with 10k training set.

4.3 Methodology

4.3.1 Simulation Infrastructure

The simulation infrastructure consists of several parts as shown in Figure 4.1: the in-

puts of power profiles and testbenches; a bottleneck resource predictor implemented

based on Pybrain [74]; a frequency predictor for NVP; dynamic configurable NVP. The

NVP simulator provides features like resource usage, power and energy level, to the

resource allocator. By combining these features and pre-trained weights, the allocator

gives feedbacks to NVP with microarchitecture selection results. The NVP uses these

configurations to reduce energy per instruction and maximize the forward progress. For

each given power profile and testbench, the simulation results are forward progress, etc.

The frequency predictor generates frequency configuration predicted results for maxi-

mum energy used for computation. In order to integrate with the bottleneck resource

predictor, the frequency predictor also has an online weights update module to adapt

itself to the unstable microarchitecture.
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Figure 4.9. Neural networks computation serial architecture.
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4.3.2 Testbenches and Power Profiles

MiBench [73] on ”large inputs” is used as the core evaluation suite. In addition to

Mibench, some neural network algorithms are also used as testbenches: ADALINE:

Adaline network for pattern recognition, classification of digits 0-9 [75]. ART1: Adap-

tive resonance theory network, brain modeling stability-plasticity demonstration [76].

BAM: Bidirectional associative memory, heteroassociative memory association of names

and phone numbers [77]. BOLTZMAN: Boltzmann machine [78]. BPN: Back-propagation,

time-series forecasting [79]. CPN: Counter-propagation network, determination of the

angle of rotation [80]. HOPFIELD: Hopfield model, associative recall of images [81].

SOM: Self-organizing map, reinforcement learning approach [82]. The power profiles

are WiFi home/office profiles, measured in home/office environments.

4.3.3 Overhead Analysis

Making predictions and effecting the changes in resource configurations and frequency

imposes some overheads. I use one neural network prediction module to predict bottle-

neck resources one by one, and then the frequency prediction. I implement the neural

network predictor using dedicated hardware, as the software overhead would be unten-

able. I evaluate the overhead of the predictor by synthesizing the prediction module

using a 32nm library with VDD=0.85V. The neural network serial architecture shown in

Figure 4.9 has only one multiply accumulate (MAC) module, and a state machine is de-

veloped to select the weights, source neurons, and target neurons from the ROM or reg-

ister files. The neural network predictor can run at a maximum of 156MHz, but we run it

at 10MHz, considering the low frequency of the NVP. The power is 3.36uW, and it costs

141 cycles to finish one prediction for one bottleneck resource prediction. The energy

cost of making one resource prediction is 47.36pJ. Similarly, the frequency predictor

costs 711pJ per prediction. These overheads in energy correspond to 5.9% of average

WiFi energy income during 0.2s interval (0.2s*10uW=2uJ). The additional power and

energy sampling circuits also impose overheads, but we consider these negligible due

to only being employed once per 0.2s. The area is 23744um2, 2.3% of a Non-pipelined

processor. A single prediction takes 3.5uS on average to complete. When no prediction

is being made, the circuit is power-gated. These overheads are included in all predictor

results.
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4.4 Evaluation and Dissicussion

In this section, I first examine the efficacy of the bottleneck resource predictor and smart

frequency predictor, each in isolation, and then consider a system employing both tech-

niques.
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Figure 4.10. Testbench ”susan corners” resource allocation.

4.4.1 Bottleneck Resource Prediction Results

In the test, a home WiFi power profile is used as inputs. The testbenches are Mibench

”large inputs”. Figure 4.10 and Figure 4.11 show the resource prediction results for two

different testbenches on the same home WiFi power profile. The processor runs only in

a portion of the total time. With more power available, the controller predicts to power

on more resources to reduce the energy per instruction. When the input power is high,

and the energy storage capacitor is full, the neural network controller predicts to power

all the resources for the maximum forward progress, regardless of lower energy per in-

struction. Different testbenches may require different configurations for best forward

progress. If we compare testbench ”rijndael encoder” in Figure 4.11 to ”susan corners”

in Figure 4.10, the ”PRE” branch prediction is more likely to be the bottleneck resource,

while the ”ICL2” instruction cache level 2 is not. The system provides a relatively high
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Figure 4.11. Testbench ”rijndael encoder” resource allocation.
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Figure 4.12. Bottleneck resource prediction: An average of 61.8% forward progress improve-
ment.
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tolerance for prediction errors. Moreover, it is difficult to define an ”absolute” error. For

example, one good prediction is: utilizing the power income aggressively, then running

with the minimum resources configuration at the next cycle. In the experiments, the

predictor selects one configuration with the minimum resources at first and the rest of

the energy is saved in the capacitor, then the predictor selects one configuration with the

best energy per instruction for the next prediction cycle even if part of the energy has

been leaked. Thus, the energy storage device provides a tolerance for prediction errors.

As long as the forward progress is maximized, the predictor is still a good one. Fig-

ure 4.12 shows the maximum forward progress improvement for different testbenches.

Both Mibench and some neural network programs are tested. This method provides an

average of 61.8% forward progress improvement. Forward progress improves for the

following reasons: To begin with, when the input power is low, the predictor generates

the minimum resources configuration for NVP to guarantee computation and to reduce

the chance of backing up data to save power. Secondly, when the power supply exceeds

a predefined power threshold, only the bottleneck resources are powered on. Thirdly,

when the power is high and the stored energy level is full, all possible resources are

powered on even if the energy per instruction is not the lowest.

4.4.2 Smart DFS Results and Analysis

When smart DFS is applied to the NVP, the system frequency dramatically changes with

the input profile. As shown in Figure 4.13, the frequency almost follows the trends of

the input power profiles. For a low input power and low stored energy, the smart DFS

predictor uses a low frequency to reduce the activation threshold so as to aggressively

use incoming energy, rather than storing it. For high power income scenarios, it bursts

the frequency to a proper level that can just match the income power. The capacitor

does provide some buffering for the energy. Figure 4.13 shows two frequencies for two

different testbenches. They have different energy per instruction when running on OoO

NVP with fixed resources. This difference results in different frequency profiles. In

the time section between 30s and 40s, the frequency for testbench HOPFIELD is higher

than that of SOM. But between 40s and 50s, the frequency of SOM is higher than that of

HOPFIELD. This indicates that current frequency and dissipated energy has influence

on later prediction results through energy stored in capacitor. The capacitor is a cushion
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for improper frequency prediction because some of the energy can be saved to be used

later, although with some leakage penalty.

Figure 4.14 is the forward progress improvement compared a best static frequency

672kHz, showing an average of 43.0% improvement. The variation among different test-

benches is very small because the frequency changes only the energy used for forward

progress computation, the EPI factor is offset during the computation for percentage

improvement.

4.4.3 Resources Reallocation or DFS?

In its simplest form, we can think about forward progress via the following equation:

Forward Progress = Energy used for computation / Energy per Instruction (EPI)

While backups and other overheads affect both terms on the right hand side, there

is a clear intuitive mapping from each of our mechanisms to each of the right hand side

terms: smart DFS primarily influences energy used for computation, and bottleneck

resource prediction targets EPI. However, both approaches compete for the same income

power to affect their benefits, and it is not immediately clear how best to apportion power

between the two mechanisms.

Powering on all resources is rarely the most energy efficient way to use income en-

ergy. However, from the bottleneck resource predictor’s perspective, in the absence of

frequency scaling, aggressively using a large amount of temporary power income when

the energy storage is full or almost full is still a good solution, even if the energy per in-

struction is not maintained at the best efficiency. When frequency scaling is also merged

into the system, this situation changes: Targeting the best EPI point while bursting the

frequency to aggressively use the income energy is the better solution at timescales large

enough to support frequency boosting.

To support combined operation, I add two more modules to the Figure 4.8 dashed

line box. These are needed because the changing resources make frequency predic-

tion more complicated since different consumption levels occur for the same frequency

setting. To avoid increased backups, once the stored energy level is less than 25%,

the training module is triggered to compute the new weights, and update the weight in

NVM, using one step lower frequency.

Figure 4.15 shows the results of the combined approach. One key behavior seen
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in Figure 4.15 is that, if the stored energy level is not full, the bottleneck resources

predictor is unlikely to predict powering on all resources, and will continue at a more

EPI-efficient point. The aggressiveness of the combined solution results in a smaller

percentage of time that the stored energy is full compared to baseline, which helps keep

the resource predictor operating in an EPI-sensitive region.

It is observed that the EPI drops when more power is available due to powering on

bottleneck resources, as shown in Figure 4.15. In contrast, when the input power is

very small, the predictor generates minimum resource configurations with higher EPI to

ensure the NVP continues running but avoids backup operations. The forward progress

of the combined prediction scheme does fall short of what would be expected if the

two techniques were orthogonal (i.e. 2.30X over baseline). This is because the bottle-

neck predictor still can either predict full resources or minimum resources, leading to a

deviated EPI from the most efficient one.

Similar gains are seen across WiFi power traces. Across our benchmark suite,

Spendthrift shows average forward progress improvements of, 2.09X, 1.94X, and 1.99X

for each of 3 power profiles. Minimum and maximum improvements are 2.66X and,

1.76X, 2.16X and 1.84X, and 2.33X and 1.82X, respectively, for each of the three traces.

Thus, the average improvement across all three traces for our suite is 2X with an ob-

served minimum of 1.76X over the best static baseline.

 

Figure 4.13. DFS frequency selection results.
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Figure 4.14. DFS frequency forward progress improvement compared to the best static fre-
quency 672kHz.

 

Figure 4.15. Fine-grained simulation results for merged bottleneck resources predictor and
smart DFS.
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Figure 4.16. Forward progress improvement compared to OoO best static configuration and best
static frequency. Average improvement of 2.08X.



Chapter 5
Incidental computing on NVP

Every shift in the way our devices are connected or powered brings with it a poten-

tial for revolution in the usage and capabilities of the systems built around them. Just

as the transition from wired to wireless telephones led to unprecedented changes in

our communications and the shift from wall-power to battery-power transformed our

expectations for computational systems, the shift from battery-powered systems to self-

powered systems promises to fuel the next revolution in the Internet of Things (IoT).

The ability to power IoT devices using ambient, scavenged energy liberates them from

the lifetime, deployment, and servicing limitations of a fixed battery: Tens of billions of

IoT devices are expected to pervade consumer, industrial and public services by the end

of the decade [37], and, for many of the target applications in these areas, the replace-

ment of batteries or creating infrastructure to provide a wired power supply makes an

IoT-scale approach impractical from a cost perspective.

While ambient energy sources are notoriously fickle, concurrent advances in en-

ergy harvesting, ultra-low power computation, and non-volatile memory have enabled a

new generation of processors, known as non-volatile processors (NVPs), that can with-

stand the significant temporal variations and even short spurts of “no power” that are

common in such power profiles. NVPs tightly integrate non-volatile memory elements

into the logic fabric of the processor, thereby enabling almost instantaneous stopping

and starting of execution via distributed backup and restore functionality for processor

state. Recent device and circuits design exploration in emerging nonvolatile logic and

embedded memory has made NVPs faster and more energy-efficient with lower over-

heads in handling in situ parallel distributed backup and restore operations [83–85]. For
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NVPs with microarchitectural hardware-managed backup, systems can make persistent

progress even if only one instruction successfully completes between power interrup-

tions, and software approaches to manage the semantics of intermittent computation

have emerged [86] that can leverage non-volatile memory elements to provide correct

execution despite power interruptions. Advances in energy harvesting efficiency has en-

abled the powering of NVPs from RF energy [26], motion harvesters [87, 88], ambient

lighting [89] and thermal variations [90], all of which exhibit significant instability.

Prior efforts on hardware-managed NVPs that perform local computation (in con-

trast to sense-and-transmit only IoT models) have focused on enhancing the efficiency

of converting harvested energy into persistently executed instructions [32,91–94]. These

techniques primarily focused on (1) reducing the number and overheads of backups and

restores and (2) adapting the compute architecture to exploit dynamic variations in in-

coming power which would otherwise be wasted due to limited energy storage capabil-

ity. However, the forward progress metric used in these works does not directly capture

higher level application semantics regarding the ”utility” of the work performed: In

many IoT applications, temporal and interactivity requirements can make the quality

of partial results, or even the existence of any response at all, more important than the

fraction of instructions needed to eventually produce a ”best-quality” result.

Adding a ”quality knob” provides flexibility in an NVP, where the need to make

conservative decisions regarding energy reserves for backup operations can otherwise

impose substantial overheads on execution. In an NVP, if the effort needed to ensure

preservation of data is sufficiently reduced, some power emergencies may be avoided,

improving response timeliness. Moreover, in addition to natural synergies with power

management, accepting variable quality responses frees a harvesting system to apportion

effort with respect to the continued relevance of the data being processed: If an NVP has

been without power for some substantial time, resuming work on the input it was pro-

cessing when power failed may have lower utility, from an application perspective, than

moving on to processing the newest input. Discovering the optimal allocation/schedule

for an NVP would depend not only on application-specific semantics, but also future

knowledge of unpredictable power income.

To capture these notions, I introduce the concept of incidental approximate com-
putation, wherein communicated application tolerance for approximate outputs is used

to maintain timeliness of responses from an NVP while taking advantage of repetitive
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Figure 5.1. NVP-based energy-harvesting system.

behaviors within the NVP’s workload to apply any power surplus, when available, to

improve the quality of abandoned older work. The paper makes the following contribu-

tions:

• I introduce incidental computing, wherein older computation is carried out in a

best-effort fashion during the execution of newer computations. For the energy-

harvesting NVP scenario explored in this paper, this is done through bitwidth-

oriented approximation techniques in the datapath, memory, and backup-recovery

modules to divide power and resources and provide differential guarantees of out-

put quality between the current and prior computations. I also propose incidental

recomputing, wherein the quality of older computations targeted for incidental

computing can be gradually improved iteratively if picked up over multiple inci-

dental computing passes.

• I propose incidental backup with several retention time matching models and sup-

porting write circuits that can reduce the energy of backup operations through

matching the retention time to the combination of the duration of power emergen-

cies and the impacts of reduced fidelity to overall approximation quality.

• Collectively, the incidental approximation approaches improve forward progress

by 4.28x improvement within tolerable quality loss.

5.1 System Model

Figure 5.1 provides a block diagram for a general batteryless IoT system powered by

ambient energy-harvesting techniques [25, 48, 95–99]. Such systems consist of a set
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of energy-harvesting, management, and detection components that comprise the power-

provisioning front-end, as well as analog signal capturing and processing, NVP com-

putation, and transmission units that implement the IoT tasks. Note that the front-end

modules may vary depending on the energy sources. For the running example, we con-

sider an NVP IoT platform in a ”wristwatch form factor” using an unbalanced ring to

harvest energy. The system uses an AC-DC rectifier following the rotational energy

harvester. A capacitor is used to capture enough energy to ensure the NVP backup op-

eration and to stabilize cycle-level execution voltages. As a result, the NVP is also in

charge of system-level power policies that start, back up, or recover system state.

5.1.1 System Energy Distribution

I measured several prototype platforms in order to quantify the energy distribution of a

typical wearable NVP system. The NVP system consists of an NVP running at 1MHz,

costing 0.209mW, various sensors, and RF module with data rate 250kbps, costing

89.1mW. The distribution of energy needs between computation and communication

varies significantly by application domain. For simple temperature sensing wireless

sensing networks, NVP computation consumes 2.4% of total energy, for UV exposure

metering, computation consumes 16.8% of energy, and, for more complex data pro-

cessing like pattern matching and image processing, computation can consume 59.5%

to 95% of energy depending on the data processing algorithms. These image signal

processing algorithms are surprisingly common in many sensors, including gas sensing

(spectrum analysis), water quality monitor (spectrum analysis and image processing).

Motivated by this, I focus the evaluation efforts on a collection of image signal pro-

cessing kernels widely used in post-sensing data analysis as testbenches. One feature

I observed is that the input data for these applications are usually buffered frame-by-

frame, with no data dependencies between them. On the other hand, for the power

levels available through an unbalanced ring class of harvester, more than 80% of the

captured data may have to be abandoned in order to meet output deadlines due to weak

data processing capability in the NVP. Processing the historical buffered data with in-

cidental computing is one solution to get at least some low quality results, which can

be enhanced later by ”incidental recomputation”, rather than abandoning these inputs

entirely.
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Figure 5.2. Power profiles of ”watch” in daily life use

5.1.2 Turning Energy to Forward Progress

A wristwatch harvester can generate an average of 10uW to 40uW power in daily activ-

ities [87, 88]. However, these profiles are unstable, varying from 0 to 2000uW at a fine

temporal granularity as shown in Figure 5.2. Assuming a processor operation threshold

of 33uW, the system can experience 1000 to 2000 power emergencies in a 10s time win-

dow. Due to rollbacks and lost work in such an environment, many prior works propose

forward progress (the number of instructions that have persistently committed) as a

key ”execution metric” for comparing the work done by processors.

A traditional strategy in energy-harvesting systems is to employ a volatile low power

MCU or an MCU with checkpointing capability (e.g., FeRAM MSP430 is used in [48])

that waits before starting to execute while charging an energy storage device which must

be large enough to store sufficient energy to complete an entire logical work unit, such

as an image frame [48]. Systems operating on this paradigm will alternate between

periods where they accumulate energy in the energy storage devices (ESD), and ones

where powering the system drains the energy. While such a system is able to offer

strong guarantees for execution once execution begins, this conventional solution has

several limitations, including energy conversion efficiency overheads brought by fre-

quently charging and discharging the capacitor, capacitor leakage [48, 49], minimum

charging current(e.g. 20uA for the GZ115 [49]), and slow charging curve [49]). More-

over, if the incoming unit of work is too large, the incoming power may not be sufficient
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compared to leakage in the ESD [48], or there may be long periods of complete power

outage that drain the accumulated charge, and it may take arbitrarily long to reach the

threshold for beginning execution.

An alternative execution paradigm is to utilize only a small on-chip capacitor, i.e.,

one sufficient for backup operations and employ an NVP. This reduces capacitor leak-

age, and can improve front-end conversion efficiencies by mitigating the overheads of

moving charge into and out of a large energy storage device at the cost of additional sys-

tem complexity for the NVP, more complicated guarantees on the granularity of work

accomplished once an execution period begins and the overheads imposed during more

frequent backup and restore events during the execution of each logical unit of work.

The two approaches can be seen as similar if the logical unit of work is at an instruction

or similar granularity, thereby minimizing both charging time and charge lost if a short-

fall occurs during a charging period between backup and recovery. Hybrid approaches

have also been proposed. For example, Sheng et al. propose a dual channel front-end

solution to overcome low charging efficiency [50] in which they design another power

channel to bypass the energy storage device and connect directly to the load, and Ma

et al. extend prior NVP models to maintain the capacitor energy level [33] within a

bounded range for charging efficiency during execution rather than greedily consuming

energy. Thus, the key energy tradeoff between the two approaches is between the en-

ergy wasted on charging and discharging a capacitor with leakage and the backup and

recovery overheads of NVP.

It is observed that the NVP-based execution approach can outperform the wait-

compute scheme by 2.2X-5X for the power traces shown in Figure 5.2.

5.2 Incidental Computing

There already exist various approximate computing techniques proposed in the literature

(including dynamic bitwidth). In this chapter, in addition to employing several of these

traditional techniques and evaluating them in energy harvesting scenarios, we propose a

new approximation technique tailored for energy-harvesting computing, called inciden-

tal computing, and associated approximate backup/restore polices appropriate for both

incidental computing and an NVP in an energy-harvesting domain.
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5.2.1 Incidental Computing

Roll-forward Instead of Roll-back. I make the following key observations for IoT

applications. In many deployment scenarios, catching up quickly after a power failure

may take priority over the quality of response. Furthermore, such applications often

contain kernels with independent loop iterations that could conceivably be skipped over

in their entirety. However, skipping represents in a sense a maximum quality reduction,

especially considering that each iteration, especially in image / signal processing ker-

nels, performs the same essential computation on different data. Finally, while average

power, even during periods of sufficient power to allow uninterrupted execution, is low

in harvested systems, peak power can be substantially higher than average.

To take advantage of these observations, I propose incidental approximate SIMD

computing for NVPs. Instead of rolling back after power failure, incidental computing

rolls forward to process the most recent and (most of the time) most important new data.

If there is additional power available beyond that needed to process the new data, then

older data will be processed at reduced quality; incomplete executions from before a

power failure are regarded as ”incidental” and their importance drops over time. How-

ever, if the incidental low quality outputs computed indicate greater importance than

expected and higher quality outputs are desired, incidental recomputing can be applied

to enhance output quality.

Below, I discuss the details of incidental approximate SIMD computing. When a

power failure happens, the computation states are backed up with the stored energy, and

the data that are marked as incidental, like variable ”src” in Figure 5.8, are backed up

using the assigned unreliable storage policy in the NVM. When the power recovers, if

a roll-forward is indicated (”incidentalrecover f rom”), instead of recovering from the

backed-up PC, the PC is set to the place marked by ”incidentalrecover f rom”. From

the application’s perspective, the program rolls forward to process newer data from the

buffer (in the example of program in Figure 5.8, it’s a new frame of data). As a result,

the newest captured data are always processed as the first priority.

During processing of the new data, the microarchitecture controller compares the

current computation state to the state backed up using the old data. If there is a match,

an SIMD strategy is applied to the old state and data. Note that, the computation preci-

sion of the newly-added SIMD for old data depends on the income power level under the

control of the ”incidental” pragma’s ”minbits” and ”maxbits”. In this way, a minimum
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quality can be guaranteed by ”minbits”, and the energy beyond the amount necessary

for full precision processing of new data are instead applied to the old data for inci-

dental SIMD computing. If the computation is interrupted again, both the new data

and SIMDed old data become incidental, and a newest data computation begins from

”incidentalrecover f rom”. Note that multiple old data can be SIMDed. In the current

implementation, at most 4-way SIMD can be achieved.

Recompute and Combine (RAC). I assume that, in general, the importance of data

drops over time. If some old data are later found to be ”interesting”, and demand high

precision output to validate ”uncommon results”, an incidental recomputing can be per-

formed. Instead of inserting an interrupt into the current program, incidental recompu-

ting employs incidental SIMD to recompute the old data, and tracks the precision of

sub-component outputs. These two versions of the outputs can then be merged by com-

bining the best precision sub-components from each run. After multiple recomputations

and merges, I expect much better quality outputs as demonstrated in Section 5.7.5. It is

important to emphasize that, in this incidental recompute method, a better quality result

can be achieved without affecting the current data processing loop.

5.2.2 Incidental Backup

For the three power profiles shown in Figure 5.2, power supply unreliability would cause

an NVP to perform as many as 1400 to 1700 backups per minute, costing 20.1% to 33%

of the total income energy (simulated and measured with running testbenches shown in

Figure 5.28). Approximate computing provides an opportunity to substantially mitigate

these overheads by relaxing the reliability (i.e., write energy reduction brings the proba-

bility of flipped data storage beyond expected retention time) of the ”lower order” NVM

bits used to back up data during power emergencies, and using commensurately less

energy for backup and recovery operations. Moreover, if the energy reserves needed for

backup are reduced, fewer power emergencies may occur.

Retention Time Shaping (RTA). Current NVPs [32, 91–94] utilize nonvolatile tech-

nologies with maximum retention times on the order of a decade or more, and parame-

ters tuned to maximize both retention and reliability. However, most power emergencies

in wearable harvesting devices last just a few ms, and are rarely more than a fraction of a

second. Figure 5.3 plots the duration (left) and frequency of power emergencies (right)
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Figure 5.3. Power outage duration (left) and statistics (right)
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in the examined traces.

By matching the retention time to the power interval profile, the write energy can be

significantly reduced. From the perspective of write energy for the backup operation,

Figure 5.4 shows the relation between STT-RAM1 write current and write pulse width

for different retention times. I note that 77% of write energy can be saved, for instance,

by reducing the retention time from 1 day to 10 ms. However, applying a retention

time reduction uniformly is very difficult to implement profitably for two main reasons:

First, future power income is, in general, very difficult to predict, and, second, the cost

of prediction failures can be very high.

Approximate computing eases the practical adoption of such an approach. Higher

1ReRAM is an excellent option for infrequent backups. Here I choose STT-RAM mainly for endurance
concerns for the backup rate associated with this specific energy harvester.
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order bits are retained with longer duration, preventing catastrophic quality loss, while

lower order bits can be unreliably persisted, saving energy. I consider three retention

time reduction functions to shape the retention time in a way that reduces from the most

significant bit to the least significant bit, as shown in Figure 5.5.

Our three retention time reduction policies are: linear (Equation 5.1), log (Equa-

tion 5.2), and parabola (Equation 5.3). B stands for bit index; for this example, it is

from 1 to 8, and the T is the retention time, whose unit is 0.1ms.

Note that different kernels, and even different regions within these kernels, are dif-

ferently sensitive to retention time shaping, which leads to different tradeoffs between

energy savings and quality reduction. The log policy fits applications that have higher

tolerance for approximation, such as neural network inference. The linear policy is

suited for most applications, such as FFT, iFFT, etc. The parabola policy is the most

conservative in maintaining upper bit fidelity. It is designed to match some algorithms

that show significant quality loss when bitwidth is reduced under 4 bits.

I propose these three policies based on observations of the relationship between

bitwidth precision and final result quality, considering both program features as well as

power source profiles [100]. Through a quantitative analysis of the relationship, with

MATLAB as a tool for regression and expression, I provide three retention time policies

to trade off between energy and qualities.

T = 427B−426 (5.1)

T = π
(B−1)+9 (5.2)

T =−61B2 +976B−905 (5.3)

5.3 Architectural Support

In this section, I introduce the architectural support needed to implement the incidental

approximate computing concept outlined in Section 5.2.

Microarchitecture Support for Incidental Computing. The high-level design modi-

fications and microarchitectural support needed for incidental computing are illustrated

in Figure 5.6. A control unit (Figure 5.6, bottom) dynamically controls whether ap-
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proximation should be used and, if so, how. The main task of this unit is to set the

number of precise and approximate bits for SIMD for different hardware components

based on the available power level. One of the outputs of this unit is approximation

control bits, which are used to control approximation in the register files, ALU, pipeline

flip-flops, and data memory. Approximation can also be globally disabled by a running

program via unsetting the ACEN register, overriding the decisions of the control module

and forcing ”full precision” execution.

Another important functionality is to manage the control transfers of incidental com-

puting, namely from which point the SIMD execution should begin. This is decided by

comparing the current PC and the values of key loop variables (e.g. induction variables

analyzed by the compiler at compile time, such as variable ”n” in Figure 5.8) against

buffered values. To implement this, an additional circular nonvolatile buffer within the

controller records the PC of the last N (four, in the implementation) resume-points from

which the SIMD operation can begin. Once a power failure happens, the system states

are backed up: the resume-point PC is backed up in a 2Byte*4 size buffer made of

nonvolatile flip-flops in the controller; the register files are stored in multi-version non-

volatile registers. The oldest value is overwritten (discarded in FIFO order). When

incidental SIMD is enabled, the current PC is compared against stored resume-point

PCs. If the current PC matches one of the stored PCs, the controller has the modified

register file generate a bit-vector indicating which register values associated with the

matching resume-point PC have values identical to the current register values. This vec-

tor is then combined with a compiler-generated mask. Once matches in both PC and the

mask-indicated variables are observed, SIMD width is increased and the buffer storing

the SIMDed resume-point PC is cleared.

A few other microarchitectural units also need to be modified to enable incidental

computing:

Configurable approximate ALU: Direct extension to 4 versions. The ALU also

performs approximate computation using the techniques proposed by [101, 102]. Our

ALU can also work on packed SIMD operands.

Power-gated register files: Each register is designed with nonvolatile logic, has

an AC bit, and is extended from 8 bits to 32 bits (4 versions) for incidental computing.

These extensions can be powered off when incidental computing is not employed. Com-

parison circuits are also added to indicate an identical match between the current register
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Figure 5.6. NVP execution approximation scheme. Global AC enable bit ”AC EN” can be
configured via writing to specific register.

value and the values of prior versions. Comparison is governed by the controller, which

both enables the comparison circuits and specifies the version to compare against.

Data memory: The versioned NVM memory (there is no cache in this simple 5-

stage-pipeline NVP) extends each word from 8 bits to 32 bits to support SIMD. An

additional 3 bits for each data (12 bits in total for 4 SIMDs) are put to track the precision

of the data. The memory implements the max, min, and other intra-bundle operations

for merging the recomputed results.

Recomputation is implemented through an instruction marks a pragma-indicated

control point into the nonvolatile PC buffer for comparison. The difference between

incidental recomputation and normal incidental SIMD is that the programmer can set up

the PC to be the one marked with ”incidental recover from” rather than the one before

power fails. After the recomputation finishes, an instruction requests the controller to

use the multi-version memory to combine the new results with previous ones according

to a specified policy conveyed by the programmer. No further execution can occur until

the controller has completed the combination operation, using a state machine to iterate

over the specified memory region one pair of memory values at a time. The combina-

tion options supported by the memory are max-precision (metadata max), max-value,

min-value, and sum.

Hardware Support for Incidental Backup. Considering that the write time and write

current both affect retention time, the NVM write circuits can be redesigned as shown

in Figure 5.7. As shown in the cross bar STT-RAM array part (green background color),

one STT-RAM has three nodes, ”Bit”, ”BitB” and ”Write Enable” signals for one bit
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cell. The write data can be changed through flipping the current direction of ”Bit” and

”BitB”, under the control of the ”Write Enable” transistor. The big idea of implementing

such write operation supporting dynamic retention time is to apply write current control

on one line in either ”Bit” or ”BitB”, and to use the other line to control the write

duration time. Similar retention time tradeoffs can also be observed from ReRAM,

PCRAM [103, 104], and FeRAM [105], and the dynamic retention time control scheme

can be extended to these devices.

The write current for different retention time is generated by a current mirror, shown

in blue background in Figure 5.7. Ire f is a baseline current. Different write currents,

from I1 to I8, can be generated with little overhead by provisioning multiple output cur-

rent mirror circuits with different W/L ratio of PMOS transistors, because the maximum

current variation ratio is less than 3X from 1 day to 10ms, requiring only a small num-

ber of variant W/L ratios. The STT-RAM process variation [106] can be adjusted with

the ”Current Adjustment” signal during test in fabrication. Different currents can be

selected in the MUX array according to different configurations (Log, linear etc). The

write current is connected to either ”Bit” or ”BitB”, depending on ”Write Data”.

The other line of ”Bit” or ”BitB” controls the write time. A high frequency 4-bit

counter (sub ns per cycle) is implemented, and a comparator for each column of cells is

designed to compare the counted time with the pre-set threshold stored in the nonvolatile
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”Write Time Configuration” module. Once the counter time reaches the threshold, the

write operation is terminated by breaking the connection to GND.

The overheads for such a write module include 2-3X larger area for the current

mirror, tens of transistors in MUX array, a 4-bit counter, and 8 comparators. The total

overhead is less than 200 transistors per STT-RAM sub-array. I have implemented a

behavior-level model of this module in RTL.

5.4 Software Support

Semantics - begins with ”#pragma ac” Explanations

incidental (src, minbits, maxbits, policy)
variable ”src” can be [minbits, maxbits] dynamically,
and retention ”policy”

incidental recover from (variable) indicate a fixed recovery restart point
recompute(buf, minbits) used to force minimum bits during recomputation

assemble(buf, assemble mode)
merge buf with previsous ones with
mode (sum, max, min,and higherbits)

Table 5.1. Semantics for supporting incidental computing

Pragma support: In order to support incidental computing, four pragmas are provided,

as listed in Table5.1:

• incidental (src, minbits, maxbits, policy). This pragma indicates the allowed range

of bitwise precision (with which a variable can be approximated) as well as its

storage approximation policy. The first line in Figure 5.8 indicates that variable

”src” can be approximated within a range of [minbits, maxbits] and the retention

time policy is ”linear”.

• incidental recover from (variable). This pragma is used only with induction vari-

ables in looping constructs. The example line 4 in Figure 5.8 means that variable

”frame” is used to indicate a fixed recovery restart point. Instead of recovering

fromthe last instruction, the NVP skips over the remainder of a partially com-

pleted loop iteration to begin a new iteration.

• recompute(buf, minbits). Once some data are found to be ”interesting”, and we

want to perform a recomputation to further improve the output quality with ”min-

bits”. When we obtain the new results, we use the the next pragma to merge the

new results with the previous ones.
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• assemble(buf, assemble mode). This merges the new data with the previous, using

one of the following strategies: sum, max, min, or higherbits. The ”higherbits”

option means that the results computed with higher bits cover the results of the

lower bits.

Programmer’s role: The programmer can use the pragmas to provide the compiler with

three pieces of information: (i) to guarantee a minimum output quality, the programmer

needs to mark the data that can be approximated, and how they can be approximated;

(ii) the programmer also needs to indicate where the program should recover from; and

finally (iii) in cases where some data are deemed ”interesting” (as opposed to ”inciden-

tal”), the programmer needs to indicate how recomputation will be performed and how

the results of this recomputation will be combined with old data to generate results with

higher precision.

Compiler’s role: The compiler uses the parameters provided by these pragmas to set

some of the bits/values in the architecture: (i) the ”AC” bit for variables like ”src”; (ii) a

recovery program counter; (iii) key variables within a loop, like ”n” in the code example

in Figure 5.8, in order to accurately match the break points; (iv) if the target code cannot

be incidentally SIMDized, it is replicated multiple times, each with different inputs; and

(v) we generate an instruction that configures a register to trigger hardware-based data

merging.

Our current implementation does not support incidental SIMD optimizations for pro-

grams with loop-carried dependencies, although individual variable bitwidth approxi-

mations can still be used. If there are library calls in the code, the corresponding library

routines need to be optimized and recompiled or the pragmas will be ignored by the

compiler due to scoping and precise execution will be employed.

Note that, while prior research [107] proposed various directives for approximate

computing, some of the actions taken by the compiler when processing the directives are

entirely different from prior approaches, as we target an NVP based environment. Other

approximation techniques [107–109] target ”active” approximation, while our approach

is ”passive” due to limited energy in energy harvesting scenarios. That is, in our model,

approximation is exogenously induced by insufficient power on a computation that is

precise both in default and preference.
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5.5 Putting Incidental Computing All Together

  #pragma ac incidental (src,2,8,linear);                      -----(a1) 

  #pragma ac incidental (src,6,8,linear);                      -----(a2) 

  unsigned char src[RowSize][ColSize] = {99,105,114,x,x...x}; 

  #pragma ac incidental_recover_from(frame);        ----- (b) 

  for (unsigned int frame=0; frame < 3000; frame ++) 

    for(n=0;n<RowSize;n++) … 

 Figure 5.8. Example program with annotations

I now go over an example program fragment (Figure 5.8) to show how pragmas

are used and how they interact with the underlying hardware. This sample program

implements a portion of the median kernel.

I mainly focus on how to setup the first two types of pragmas and parameters, since

the re-computation pragma is easier to understand. The first line marked with (a1) indi-

cates that the programmer wants variable ”src”, which is a frame of data from an image

sensor, to be incidentally computed between 2 bits and 8 bits, and the unreliable mem-

ory policy is linear. Line 4 marked with (b) indicates that the recovery program counter

should be marked to the instruction that begins the update of the induction variable

”frame”.

The bottom part of Figure 5.9 shows a portion of the detailed power profile of power

profile 2 in Figure 5.2. The grayscale power profile shows that, although there are some

power spikes around 700*100us and 2700*100us, they are not ”dark” (in color) enough

(maintaining high power) to generate ample energy. The baseline 8-bit NVP has lowest

threshold individually, leading to 42% system-on time. And the 4-SIMD has highest

threshold, resulting in 3% system-on time (regarded as 3%*4=12%). Both of them can

not achieve best forward progress. The system start threshold for incidental pragmas

(a1,b) - [2 bits to 8 bits] is lower than that of (a2,b) - [6 bits to 8 bits]. The system

performs recovery, computation or recomputation, and backup as shown in the top and

middle portions of Figure 5.9. Due to different threshold levels, the NVP running prag-

mas (a2,b) has at least 6 bits, to guarantee a minimum output quality. However, the

system is on in 16% of the total time period due to higher threshold. In comparison, the

NVP running pragmas (a1,b) runs more instructions than all other solutions (although

system-on is 38.7%, lower than 8-bit NVP 42%, but FP is 3.7X if incidental results are

also considered, compared to 8-bit NVP), with more backup and recovery operations,

and generates lower quality incidental outputs.
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Figure 5.9. Timing based behavior analysis

The programmer should set the minbits lower if the application is to be run faster,

but with low quality incidental outputs. If, however, the low quality outputs turn out

to be ”interesting”, the programmer may choose to recompute to obtain better quality

outputs. Note that, if we look into the power profiles, we can see that in tiny scales

(Figure 5.9 bottom right), there are still lots of glitches in the power, meaning different

computation bitwidths for different elements in the ”src” array. Note that this is more

aggressive than the always-high-quality (a2,b) configuration.

For ”incidental recover from”, I suggest putting it near a buffer of data (e.g., before

processing a whole frame). The programmer can also put it in inner loop, which can help

to increase the output quality. Optimal placement also depends on the characteristics of

the expected power profiles. More specifically, if the power profile is likely to have very

frequent power interrupts (much shorter than the time required for processing a whole

frame), putting the pragma in inner loop can help to improve the output quality. Note

however that this happens only when the system is powered by WiFi or by a very quick

vibration like 10kHz. For solar and thermal energy sources on the other hand, as long

as the algorithm is not too complex, putting it near per ”frame” is recommended.

For the recomputation, the programmer is in charge of checking whether there are



74

C Program

Compiler

Inst. bin

RTL

(Modelsim)

NVP

Frontend &

System

I/O outputs

Accu, MSE, PSNR

Forward 

Progress

Backup No.

Power

Profile

System

Config.

control

Inst

System Level Simulation 

Framework

Functional 

Simulation 

Framework

Figure 5.10. NVP framework with both functional and system-level simulation.

low-quality outputs indicating that a higher precision might be beneficial (for instance,

to reduce false positives in scenarios with asymmetric recall and precision impact from

bitwidth reduction). If there are, he/she can use the recomputation pragmas to recompute

and merge to improve the output quality.

5.6 Simulation and Validation

The simulation framework consists of two parts as shown in Figure 5.10. The first part

is a functional simulator, the core of which is a modified 8051 RTL [32], which I further

modified with support for incidental computing logic and approximate memory. For

framework compatibility, the inputs are generated as ROM arrays, and the outputs are

generated through GPIO P2 and P3. I compiled the sthece code, and modified it to

embed the ”AC” bits. The RTL running in Modelsim initializes the ROM, RAM, etc.

The quality analysis for image outputs is performed by computing PSNR and MSE in

MATLAB.

The second part of our framework is a system-level simulator. This system level

simulation implemented in Matlab, and Python handles the system-level components

including parameters and features of analog front-end circuits, capacitor etc., which

cannot be implemented in RTL. The inputs to this simulator are the power profiles sam-

pled every 0.1ms and the system configuration parameters such as the system capacitor

size, capacitor leakage, chip leakage, front-end circuit efficiency, system start threshold,
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backup energy threshold, and recovery threshold. This system-level simulator controls

the RTL simulator steps and gets the decoded instructions in order to decide various

polices that dictate energy consumption. The system-level simulator, together with the

functional simulator, generate important output metrics such as the amount of forward

progress and the number of backups.

To test the effectiveness of the approach, I used several image processing and pattern

matching kernels from MiBench [110] for the following reasons: Firstly, as discussed in

Section 5.1.1, the computation in NVP dominates the energy consumption in the whole

system for systems where sensing tasks utilize computationally intensive post-sensing

algorithms, as are common in image processing and pattern matching. Secondly, these

kernel are widely used in many post-sensor processing algorithms including gas sensing

(spectrum analysis), water quality monitor (spectrum analysis and image processing),

and power spectrum analysis of heart-rate variability. Finally, image processing kernels

have also been employed on other successfully prototyped energy harvesting platforms

in the literature [25, 48, 111].

To validate the choice of NVP execution rather than wait-compute for an energy-

harvesting image-processing platform, I simulate frame rates for a volatile wait-compute

platform (33uW power volatile MCU, the same model adapted in the NVP. Sensor

power is not included) powered by the same ”watch” energy harvester. For a 256*256

image size, similar to that used in other prototyped platforms [25, 48], susan.corners,

susan.edges, and jpeg.encode are 1.65s, 4.9s, 12.55s per frame individually. An NVP

solution without approximation [28] can improve this to 0.97s, 2.28s, 5.22s per frame

individually with no quality loss. Incidental techniques can further improve to 0.3s,

0.59s, 1.2s per frame individually with minimum preset tolerable quality loss as shown

in Table 5.2. Based on these observations, I believe that image/signal processing kernels

running direclt on IoT devices can be an important workload in the energy-harvesting

domain.

5.7 Results and Disscussion

In this section, I first evaluate the impact of the individual approximation schemes on

quality of output (adding noise or losing detailed information), and then quantify the

forward progress contributions due to individual techniques employed. Finally, I provide
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results from the holistic evaluation.

5.7.1 Bitwidth vs. Quality

I use two key metrics to quantify the output quality compared against an 8-bit non-

approximate baseline, namely, mean squared error (MSE) and peak signal-to-noise ratio

(PSNR). To establish quality baselines, I first investigate MSE and PSNR for fixed-

known-correct bit approaches, varying the bitwidth. This will allow us to ground the ex-

ploration of approximation in the NVP context from an output quality viability perspec-

tive. The N-bit reduced-quality ALU preserves the upper N bits and produces random

outputs for the lower 8−N bits, whereas the non-preserved bits in the reduced qual-

ity memory are truncated, and the operations using their values are treated as shifted

N-bit operations. The approximate ALU models gradient VDD for different bits in

ALU [101, 102], hence the addition of noisy bits rather than truncation. Figures 5.11

and 5.13 show the image output from three testbenches, namely, sobel, median, and

integral, for ALU and memory bitwidth reductions, respectively.

I first consider ALU bit-quality reduction. As seen in Figure 5.12(a), the MSE for

median and integral increases significantly when using less than 3 bits in the ALU. In

contrast, for sobel, the MSE increases dramatically when there are fewer than 6 bits,

indicating that sobel is not as amenable to fixed-width approximation as median. Fig-

ure 5.12(b) shows PSNR for reduced bit widths; traditionally, above 20-40 dB is consid-

ered a good PSNR response. For median and integral, even operating at a bitwidth of 1

can provide quality above 20 db, and 40 dB is achieved at 4-6 bits whereas sobel cannot

achieve even 20 dB with anything less than full precision.

Bit reduction in memory produces somewhat distinct outputs from ALU precision

reduction. As can be seen in Figure 5.14, the MSE measure of quality drops further than

with ALU bit reduction. PSNR in Figure 5.14 (b) is similar to the approximate ALU

solution. The PSNR metric is more similarly affected by either adding noise or losing

detail compared to MSE, which is more sensitive to loss than noise.

5.7.2 Progress vs. Quality

Two other key evaluation parameters are forward progress (in the NVP sense of persis-

tent forward progress), represented by number of instructions committed with a given
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Figure 5.11. Impact of approximate ALU on image quality. Figure 5.12. AC ALU MSE
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Figure 5.13. Impact of approximate memory on image
quality.

Figure 5.14. Unreliable Memory
MSE PSNR

power profile, and the number of backups. Figure 5.15 shows the forward progress

achievable when the number of reliable bits in both the ALU and memory are reduced

in tandem. By reducing the bits from full precision (8 bits in the 8051 NVP) to 1 bit,

the forward progress doubles. The number of instructions executed increases for two

reasons: not only is the power per operation reduced, but the lower power consumption

and reduced local state to back up combine to trigger fewer power emergencies and to

provide a lower activation threshold, leading to a higher duty cycle. As can be observed

in Figure 5.16, the number of backups reduces by an average of 45% when the number

of bits is reduced from 8 to 1.

5.7.3 Dynamic Bitwidth Approximation

In dynamic bitwidth, the computation of incidental approximation and memory bits

changes along with the power profile. While this approach does not provide a bitwidth

guarantee stronger than the above 1-bit solution, it will, in practice, execute at a much

higher average bitwidth. Figure 5.18, shows the change in precision over time for three
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Figure 5.15. Forward progress on different bitwidths.
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of the power profiles, and summarizes the distribution across bitwidths at the right of

the figure. Figure 5.17 shows the output for the median testbench. Examining the MSE

and PSNR in Figure 5.19 and the forward progress depicted in Figure 5.20 reveals that

the execution quality of the dynamic bitwidth approximation is roughly comparable to

a 2-bit solution, but the dynamic approach achieves an additional 20% forward progress

(a), Median with 

power profile 1

(b), Median with 

power profile 2

(c), Median with 

power profile 3

Figure 5.17. Impact of dynamic bitwidth on median.
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Figure 5.19. QoS of dynamic bitwidth on Median.

over the similar quality fixed-bit approximation approach.

As previously mentioned, some kernels, such as the sobel testbench, are not as

amenable to approximation as others. Rather than allowing dynamic bitwidth to be

entirely determined by power profiles, it may sometimes be necessary to guarantee a

higher minimum quality of results. For median, I find that the 4-bit-minimum-dynamic

approach achieves similar MSE and PSNR results, across three power profiles, (MSE

= 1.46, 1.72, and 1.72. PSNR = 46.5dB, 45.7dB, and 45.8dB) to a 7-bit fixed bitwidth

solution, while achieving 22% more forward progress in Figure 5.21.

5.7.4 Backup and Recovery Approximation

The quality of outputs, both visually, as seen in Figure 5.26 left part, and by PSNR, in

Figure 5.24, is similar for different retention time polices, although both retention time

failures and MSE scores vary more widely. As seen in Figure 5.22, the retention failure

counts for each bit vary significantly across both power profiles and policies, ranging
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Figure 5.21. FP of the ”MinBits=4” for Median.

from 15 to 1200 retention time violations. Surprisingly, the log retention policy has the

best MSE (Figure 5.23), as well as the best PSNR (Figure 5.24), among the three policies

tested. From this, I conclude that either the relatively low total number of bit errors

on higher bits, while higher for the log policy, is still well within the tolerance of the

approximable algorithms and the result reflects random variations in output quality (i.e.

noise in the measurement of noise sensitivity), or some amount of noise is preferable

for the applications examined. While the latter is possible, it seems the less likely of the

two for the majority of the kernels examined in this work.

All the retention reduction policies reduce the backup energy requirements. Since

the energy used to perform backups is reduced, it is available for increased computation,

resulting in an average of 50% forward progress improvement, as shown in Figure 5.25.

The log policy frees the greatest amount of energy and the parabola policy the least,
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with consistent trends in the forward progress benefits from these policies.

(a). Linear Policy (b). Log Policy (c). Parabola Policy
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Figure 5.25. FP improvement.

5.7.5 Recomputation

As previously shown, reducing the bitwidth in an NVP can improve forward progress,

producing an earlier output at the cost of quality. For instance, as seen in Figure 5.15,

an initial, 4-bit result can be produced roughly 1.5x faster than an 8-bit result. For an

application with a real-time deadline, any remaining slack time could be used to improve

image quality, whereas, because of power-uncertainty, always waiting for the 8-bit full

precision result will more frequently miss deadlines. For algorithms whose outputs

are derived from highly independent computations, such as in many image processing

kernels, recomputation can be used to replace output elements that were computed with

low precision with higher precision recomputed outputs.

Below, I present an exploration of the potential benefits of the incidental recomputa-

tion using a model that always performs entire output passes with dynamic precision and

then takes the highest precision output pixel from each and merges them. Figure 5.26

right part shows the outputs of recomputation with varying minimum bitwidths and Fig-

ure 5.27 shows the quality improvement as a function of the additional recomputation
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(a), Linear, Profile 1 (b), Linear, Profile 2 (c), Linear, Profile 3

(d), Log, Profile 1 (e), Log, Profile 2 (f), Log, Profile 3
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Results with different retention time policies. Results with recomputation.

Figure 5.26. Visual results on different retention time policies(left), and recomputation(right).
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passes. Note that there is little value in recomputation beyond four to five passes. How-

ever, the approach employed is able to capitalize on random variation in the input power

profile to perform iterative improvement.

5.7.6 Putting It All Together

All these incidental techniques together can provide adjustable tradeoffs between QoS

(quality of service) and forward progress, which provides programmers with a design

space to play with through a debug-test-modify loop until the QoS reaches the mini-

mum requirements (this is akin to experimenting with various parallelization options in
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Figure 5.28. FP gain of incidental computing & backup

Testbench Target QoS /
Achieved ? MinBits Recom-

pute Backup

Integral
PSNR 20dB /
Yes 2 bits No Parabola

Median
PSNR 50dB /
Yes 4 bits 2 times Linear

Sobel
PSNR 8dB /
Yes 4 bits 2 times Linear

JPEG
150% Size /
No: 3% unmet 3 bits No Log

Table 5.2. Targeting at QoS, fine-tuned incidental policies.

OpenMP before picking up the right one). Table 5.2 shows an example of policies that I

have fine-tuned to target QoS. For all testbenches except JPEG, I define the QoS target

in terms of PSNR. For all the power profiles tested, the listed targets are always achieved

except for the JPEG testbench. In the JPEG encoding testbench I apply incidental com-

puting only on motion estimation, wherein approximation-induced error affects only the

size of the compressed output. I define our QoS target for this kernel to be an output

size that is no more than 50% larger than the full-precision compressed output. Across

all power profiles, 97% of the 25000 compressed output frames from JPEG met QoS.

For all kernels, incidental approximation is applied with full precision in the current

iteration and dynamic bitwidth for incidental loop executions.

Based on the observation and experiences, the programmers should first decide the

”minbits” to make the QoS above the QoS threshold, then reduce the ”minbits”, and try

to fine-tune the incidental backup policy and the recompute times to compensate the QoS
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loss. I also suggest to employ linear incidental backup when average power is expected

to be higher (e.g. scenarios akin to profiles 1, 4) and parabola when average power is

low (e.g. profiles 2, 3, 5); preference for the logarithmic policy over linear/parabola is

strongly kernel-specific. If the expected power characteristics are unknown, a lookup

table or machine learning based mapping from the sampled power to configurations can

be applied.

Figure 5.28 plots the gains of an incidental NVP with fine-tuned policies in Table 5.2.

I observe a 4.3X improvement over precise NVPs [32]. Several factors contribute to the

gains of incidental approximation: (1) omitting execution of some instructions, replaced

with incidental computing, (2) dynamic approximation reduces power consumption, and

(3) incidental computing provides the SIMD benefits of reduced instruction fetch energy.

Overall, the gains vary substantially from testbench to testbench, due to, in large part, the

different predefined pragma loop lengths. The variation among different power profiles

is largely due to slight variation of the energy per instruction within these testbenches.

5.8 Summary

Technology trends leading to the proliferation of IoT devices operating on harvested

energy demand a corresponding revolution of the abilities of processors to adapt to un-

stable power supplies. Adopting approximate computing approaches in NVPs not only

improves their forward progress, but it also provides a means to optimize for respon-

siveness and efficiency and synergizes with unique features of NVPs, namely, frequent

backup and recovery operations. We introduce the concept of ”incidental computing” to

address opportunistic responsiveness versus quality tradeoffs under unstable power in-

come, and implement and evaluate an instantiation of the incidental computing approach

based on memory and datapath approximation within an NVP. Overall, the incidental

computing improves forward progress by an average of 4.28x over a baseline ”precise”

NVP, of which 1.4x is attributable to NVP-specific backup and restore approximations.



Chapter 6
Nonvolatility-exploiting Fog

Computing - A System Level

Perspective

As the integration of a new technology percolates through systems of increasing com-

plexity, new optimization opportunities are consistently found in its wake. For ex-

ample, research developments in non-volatile elements, such as ReRAM [112], STT-

RAM [113], and PCRAM [114], have led to use patterns for nonvolatile memories [103]

distinct from their volatile counterparts and enabled nonvolatile logic-compatible ele-

ments such as NV-DFFs [115, 116] and nonvolatile SRAM [117] that can support dis-

tributed on-chip backup and restore operations. These developments, in turn, have led

to the exploration of nonvolatile processor architectures (NVPs) that rely on these in-

tegrated nonvolatile circuits to provide new guarantees for intermittently powered ex-

ecution. As an increasing number of NVPs have been proposed and several have now

been fabricated [32, 92–94, 118] with varying feature sets, new opportunities will arise

as components of existing multi-node systems are replaced by their nonvolatile counter-

parts.

Energy-harvesting wireless sensor networks are a major sub-domain of the Inter-

net of Things (IoT), and many such systems have already been successfully deployed.

The applications that make use of this paradigm are diverse, including area monitor-

ing, e.g., the position of the enemy; environmental monitoring; industrial monitoring;

medical and health-care monitoring; traffic control systems; underwater acoustic sen-
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sor networks; and near-body wearable device networks. Despite their diversity, most

systems operating on energy harvested from ambient power sources share a common

core design pattern in their operation as normally-off systems (NOS). First, each node is

designed with a large super-capacitor or rechargeable battery capable of storing enough

energy to perform at least one complete unit of work. Then, in deployment, the node

waits, harvesting energy, until this energy storage device is sufficiently charged be-

fore starting a simple micro controller (MCU) to oversee the collection of a data sam-

ple from the sensor, and, after very limited processing, transmits the sampled data.

While there is increasing research interest in moving more computation to sensing plat-

forms [24–26, 119–122], these systems have traditionally avoided relying on complex

local computing in energy harvesting nodes based on the following two assumptions: 1)

energy harvesting power is unreliable, so shorter work periods are preferable for relia-

bility and cost/form-factor reductions in necessary energy-storage capacity, and 2) the

net effect of redundancy and recomputation mechanisms for circumventing the unrelia-

bility of energy income is that both computation and communication at the sensor node

are energy expensive, constraining both work done at data collection and the topolo-

gies of the deployed networks. Table 6.1 demonstrates examples of currently deployed

energy-harvesting sensor applications built on this model.

Existing System Energy
Source Sensors Network

Topology
Transmitted
Data

Bridge Health
Monitor [121, 122]

Solar,
Piezoelectric

Accelerometers,
piezo-sensors Zigbee Chain Mesh

Raw sampled
data

Wearable UV
Meter [119, 120] Solar UV sensor Star Raw data

Joint-less Railway
Temp. Monitor [123] Solar

Multiple temp-
erature sensors

Zigbee Chain Mesh,
GPRS

Raw uncom-
pressed data

Machine Health
Monitor [124, 125]

Piezoelectric,
thermal, RF

3-axis accelero-
meter,vibration,
temperature

Star, bus or tree Raw data

RF Powered
Camera [24–26]

RF Source,
WiFi Image sensor

Point-to-point
backscatter

Raw image
pixels

Table 6.1. Functionality and components of current energy harvesting WSN system

However, advances in both hardware [28, 33] and software [24, 86, 126–130] man-

agement of integrated nonvolatile resources to more effectively compute and commu-

nicate [4] in intermittent power environments warrant reconsidering these high-level

assumptions. Computation under unreliable power supply is now relatively reliable on
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Figure 6.1. Optimizing from normally-off system (NOS) to frequently-intermittent-on system
(FIOS)

processors with managed, integrated non-volatile storage (e.g. NVPs). In addition,

NVPs have been shown to make better forward progress than their volatile counterparts

given the same incoming power, i.e., NVPs are not only more reliable, but are also more

efficient than their predecessors (if only in unstable power environments). Recent works

that look beyond the processor to leverage nonvolatility in the communication path of

these platforms have shown that acceleration [4] of the initialization of the RF module

through the introduction of a nonvolatile RF controller (NVRF) can substantially re-

duce the time and energy cost for data transmission. Collectively, these advances have

weakened prevailing assumptions about the cost and reliability of computation and com-

munication at the sensor node level. Thus, it is likely that the traditional optimizations

for collections of such nodes that aim to limit on-node computation as a first-order goal

may no longer be effectively capitalizing on the current opportunities within these dis-

tributed systems, and new algorithmic and system level redesigns should be explored

for the next generation energy harvesting based wireless sensor network systems.

To understand the potential changes stemming from adopting nonvolatile nodes, I

have deployed and measured various real NVP-based systems. To explore how uti-

lizing the node level nonvolatile features affects system tasks, I introduce optimiza-

tions that leverage NVP and NVRF efficiency and reliability to trade increased com-
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putation for reduced transmission, changing the system from a normally-off system

(NOS) to a frequently-intermittently-on system (FIOS), as shown in Figure 6.1. In ad-

dition, I propose an efficient load balancing approach for NV-mote chains under certain

wireless protocols. I then explore new optimizations, driven by realistic user require-

ments [131–133], that leverage the features of the platforms with both NVPs and NVRF

(NV-motes), specifically NVRF state-share among nodes, to allow adding node virtual-

ization to improve quality-of-service (QoS). Analyzing the benefits of the new approa-

ches, I combine these discussed features to propose the NEOFog architecture for the

next generation fog computing.

This chapter demonstrates that, by exploiting node-level nonvolatility, the NEOFog

approach can provide new optimization opportunities and improve system performance

and efficiency due to the following contributions:

• Introducing nonvolatility into nodes improves the computation efficiency and re-

duces the energy for data transmission. Accordingly, I optimize the programs

from RF-energy-dominating to computation-intensive, and from normally-off to

frequently-intermittently-on, so as to better utilize the new opportunities brought

by nonvolatility.

• Considering (i) the imbalance and time-varying income power and stored energy

level of each node and (ii) different energy requirements of different workloads, I

propose a distributed load balancing algorithm specially optimized for ”unstable

power supply” in an intra-chain level to balance the loads and further increase

the computation done in the fog. I show that it can increase the amount of data

processed in-fog by 1.9X to 2.1X compared to a system that employs a traditional

load balancing algorithm.

• I propose architectural support for improving QoS via increasing nodes virtual-

ization and slotted time-division multiplexing enabled by the NVRF in a fashion

not previously viable. A nearly 2X QoS improvement is observed for a 3X multi-

plexing in low energy income situations.
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Figure 6.2. NVP-based energy-harvesting system organization.

6.1 System Model

In this section, I first introduce a typical energy harvesting system. I then explain, step by

step, how nonvolatility changes the processor, buffer, and RF. Lastly, I discuss network

topology and construction.

6.1.1 Traditional Wait-compute Systems

System components. Figure 6.2(a) illustrates a block diagram for a typical NVP-based

WSN node powered by energy harvesting. There are four types of ambient energy that

are widely available and relatively easy for commodity systems to harvest: 1) solar, via

photovoltaic cells; 2) RF via antennas; 3) piezoelectronics, via vibrations of either the

substrate or entity to which the harvester is attached; and 4) thermal energy, via thermal

gradients across a thermoelectric. All these energy sources lack stability, varying with

different locations, angle, etc. of the node’s dynamic environment. Front-end circuit

design is specific to the AC or DC characteristics of the input source. Capacitors are

adopted to temporarily store the harvested energy. The rest of the node consists of data

sensing, ADC, NVP, storage, as well as transceiver.

In our platform, two super-capacitors are employed, one for powering the real-time

clock chip, which is utilized to synchronize the wireless communication, and another

one for powering the rest of the node. The real-time clock super-capacitor has a higher

charging priority because if it loses power entirely, then, when the system recovers,



90

resynchronizing with the logical time slots in the network imposes large overheads com-

pared to normal state restoration.

Wait-compute system timing and energy. Figure 6.1 (upper) shows the typical execu-

tion pattern for a NOS, in which most of the time is spent accumulating energy into the

capacitor. The system starts only when there is sufficient energy stored in the capacitor.

System activation begins with processor initialization for about 300us, followed by sen-

sor sampling under the control of the processor, then activation of the RF parts, whose

initialization penalty is large, and finally raw data are sent out.

One version of the WispCam project [25], powered by RF, is a typical system ex-

ample using this approach. In the described deployment, the system first accumulates

energy for 15 minutes (5m away from the RF source), and then starts the system for

three seconds. Of the three seconds system-on time, only 115ms is spent for data sam-

pling, and the rest is for data transmission under the control of the processor. Due to

long charging time with capacitor leakage, as well as low charging efficiency, more

than half of the energy income is wasted. Sensing consumes around 20% energy, and

data transmission and computation consume 20-40%, even though WispCam uses the

backscatter wireless technology, which is extremely energy efficient. Similar properties

have been observed in our own observations on the systems shown in Table 6.1, wherein

the RF parts, even using Zigbee, dominate the energy consumption. The dominance of

communication motivates our study of leveraging the improved computation efficiency

of an NV-mote to shift the costs from communication domain to computation domain

and adopt a FIOS rather than NOS paradigm.

6.1.2 Nonvolatility in NV-motes

NVP. Nonvolatile processors [32,134–136] have emerged as a promising solution for in-

termittent unstable power under various energy scenarios. Through distributed fast and

efficient nonvolatile logic including NVSRAM, NVFF, etc. [115–117], the computation

state within the processors are backed up with an on-chip capacitor and restored when

power recovers. NVPs can still achieve forward progress under power failure frequen-

cies which are as high as 100kHz [32], belying the notion that an unstable power supply

produces unreliable task completion, even if ensuring timeliness remains challenging.

The FIOS approach can improve system efficiency over NOS by reducing the ineffi-
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ciencies involved with charging and discharging an energy storage device at the cost of

the overheads of supporting backup and recovery in an NVP. Prior research [29] has in-

dicated that replacing a volatile processor operating as a NOS with an NVP and a FIOS

approach can increase forward progress by 2.2X to 5X (depending on the power profile

at hand), making this an appealing set of tradeoffs.

Beyond the basic NVP operations seen in fabricated designs, dynamic policies have

been proposed to further improve the forward progress of NVPs [28, 33]. In this chap-

ter, I assume that the NVP implements the Spendthrift [28] frequency scaling and re-

source allocation architecture to provide efficient conversion of incoming energy into

completed work.

NVBuffer. To ensure consistent data transmission between the sensors and the NVP,

Figure 6.2(b) shows the modification to the nodes to incorporate a nonvolatile buffer

(NVBuffer) to guarantee asynchronous data transmission. NVBuffer, which is usually

implemented as an NV FIFO, also provides a raw data buffer for load balance between

nodes.

NVRF. Traditional nodes operating as NOS require reinitializing the radio frequency

(RF) transceiver before transmission, as all configuration and data in the transceiver are

lost when a power failure occurs. Traditional software-based re-initialization leads to

large overheads due to a long initialization delay between the host processor (whether

VP or NVP) and the RF module, which consists of a high performance baseband core

(about 10mW in ML7266 or ML7396 zigbee chipset) for computing wireless protocols

and logic and analog parts exhibiting high power draw in TX or RX mode (between

30-100mW). Figure 6.3(a) shows the delay path in conventional software RF based ini-

tialization. The data stored in NVM (note that, in a traditional VP, this is a separate flash

module) are taken out through the bus to the processor that, after some processing of the

data, sends the processed initialization data back through the bus to the public SPI in-

terface, and then to the RF transceiver. Measurement shows that the whole initialization

process can take as much as 33ms, during which the RF module dissipates enormous

energy.

Nonvolatile radio frequency controllers (NVRF) [4] represent an attempt to employ

a hardware-controlled nonvolatile IO interface to support fast and efficient initialization

of a specified peripheral. By offloading the RF initialization task to the NVRF controller

to speed up the long delay between processor and peripheral, 27X speedup is observed
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(1.2ms) [4]. In fabricated NVRF, the NVRF controller stores the configuration of RF

chips in a nonvolatile register file and initialize the RF chip under the control of a finite

state machine following special protocols of RF chips; both ML7266 and ML7396 are

supported. Figure 6.3(b) diagrams NVRF initialization. Data from the NV registers

where the configuration information and the latest transmission data are stored are sent

through direct memory access with special designed SPI interface to the RF transceiver.

In addition, NVRFs can self-reinitialize once configured by the processor, which totally

frees the processor from controlling the RF during many tasks. Even during the periods

where the RF is not activated in FIOS, the processor can store the data to be sent and

any associated configuration information into the NV data buffer and control registers.

Once the NVRF is triggered by a timer or through a control signal from the processor,

it sends data out without further intervention.

In summary, the presence of an NVRF controller speeds up initialization by 27X

through quick and processor-independent response in a direct nonvolatile memory ac-

cess (DNVMA) fashion. Reducing the stand-by time of the RF module, whose stand-by

power is enormous, saves substantial energy, and prior measurements [4] indicate that

NVRF achieves a 6.2X throughput advantage over software-based RF control.

6.1.3 Network Topology and Construction

A problem inherent with unstable power supplies is coordinating both sending and re-

ceiving nodes to be active at the same time. To address this, I employ a real-time clock

(RTC) powered by a super-capacitor as shown in Figure 6.2(a). The RTC coordinates a

common notion of time such that the synchronized sets of sending and receiving nodes

can be co-active. The RTC wakes up once in every predefined interval, and as a result,
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once synchronized, all the nodes in the network with sufficient energy would wake up

at the same time to transmit and receive data, and to again synchronize the RTC. For

those nodes without sufficient energy to wake up at the RTC-indicated time, they will

wakeup at a multiple of the RTC-indicated time rather than when they first accumulate

sufficient energy. If, however, a node exhausts all its stored energy, meaning that even

the RTC is desynchronized, the node will wake up whenever it has sufficient power in

order to attempt to re-connect and synchronize with the whole cluster network. Another

possible solution for the root problem would be to use an RF wakeup sensor [137,138],

but this has not been implemented in our work. In this chapter, I focus on load imbal-

ance of energy income among nodes and the computation requirements of the whole

system, which, while in some cases changing how and when the network is used, do not

introduce new network architectures.

With respect to network topologies, there are many prior works discussing various

self-organized cluster networks [139–147]. It has been shown that nodes preferring to

communicate primarily with others in physical proximity can save transmission energy,

and relay transmission can also save energy. I regard this as the MAC layer, which is

transparent to programmers and schedulers. The most often used network topologies

include star, bus, tree and mesh, as can be seen in the systems in Table 6.1. Although

a mesh topology is adopted in the bridge monitoring and joint-less railway temperature

monitoring systems, the network works like a chain mesh [121] due to the physical loca-

tions of the nodes along the railway or bridge. Our proposed intra-chain load balancing

and inter-chain node virtualization algorithms specifically optimize these chain mesh

systems.

6.2 Distributed Fog Computing

In this section, I explore various approaches for supporting and enhancing distributed

fog computing on NVP-based systems powered by energy-harvesting. I group the

approaches into (1) Node level optimizations for increasing compute capability, (2)

Intra-chain level distributed fog computing load balancing schemes, and (3) Inter-chain

level optimizations to enable leveraging slotted time-multiplexing node virtualization

for QoS.
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6.2.1 Node Level - Reoptimizing for an NV-mote

Integrating nonvolatility into nodes or their individual components, and managing hard-

ware resources accordingly, has been introduced in a wide range of prior efforts [148–

155]. In this chapter, I focus on the system-level integration of NV-motes and, at the sin-

gle node level, consider optimizations on the execution of system work sequences to bet-

ter match the FIOS paradigm rather than the previous NOS paradigm – thereby, making

better use of the features offered by an NV-motes nonvolatile components. Specifically,

traditional programing in energy-harvesting WSN deployments tries to limit reliance

on local computation. However, recent advances in handling intermittency make com-

putation functionally reliable [23, 126, 127, 151, 156–164] and more efficient [28, 33],

while NVRF [4] and backscatter [165, 166] techniques significantly reduces the portion

of energy contributed by the RF module. These shifts can be exploited by altering the

work sequences performed during the active periods and by increasing the amount of

local processing performed, such as tasks off-loaded from cloud, data compression and

merging, in order to limit the communication costs. An effective node-level design for

NV-motes should follow the rules of clearly splitting the computation energy source and

policy to improve the efficiency of the computation.

Take an actually deployed ”Bridge Health Monitor” system in Table 6.1 for example,

a naive sensing-computing-transmission bridge cable node samples and transmits raw

acceleration, etc. data of about 300-500MB per day. Then, these data are analyzed

in-cloud, performing noise removal, FFT, etc. to produce strength models in order to

monitor the strength of bridge cable, which can be calculated through harmonic and

vibration. Each step is called a ”task” in the paper, and all bridge cable nodes run

homogeneous tasks in the actual scenario.

To improve the efficiency of the computation, we can shift computation from the

cloud to the fog that includes combination of 3-direction acceleration into one cable-

vertical direction vibration, noise removal, FFT, strength calculation in three different

bridge structure-specialized models, temperature and humidity noise removal, tempera-

ture and humidity compensation of each model’s results, and calculation of the average

strengths and data compression. Because the processed data are only the strength data

with less variation than original acceleration etc. raw data, the compression has a good

compression ratio. So the local-computing can dominate the computing time and energy

rather than compression.



95

Figure 6.4 shows differences in the sequences of tasks performed in a completely

volatile node, a node with a non-volatile processor, and a NEOFog NV-mote. The

volatile node (VP) and nonvolatile node operate as NOS whose supporting front-end

circuits are designed with a single super capacitor for energy storage, as shown in Fig-

ure 6.5(a). The system is active only when there exists sufficient stored energy to per-

form all the tasks in the sequence at the top of Figure 6.4. This includes using the pro-

cessor to initialize the volatile RF using software. In the VP, this takes about 15-100ms

and building the connection requires 30ms-1s before data can be transmitted. Replacing

a VP with NVP can bring 2.2X-5X forward progress benefits [29]. The NOS NVP’s

startup time is much shorter, 32us, compared to VP. Due to the direct restore of the RF

states with the help of NVP, the data transmission time reduces to 33ms. However, the

NVP benefits were not maximized in this wait-compute scheme [29].

To support the FIOS operation, the front-end circuits need to be enhanced, as shown

in Figure 6.5(b). More specifically, adding SW1 allows a direct source-to-load unsta-

ble power channel to the NVP. These front-end circuit design concepts were originally

proposed by Wang et al. [167], improving the front-end efficiency to 90%, and further

developed by Sheng et al. [168] taking into account node-level considerations. Fur-

ther investigations along similar directions include optimizations for rectifier [169] and

mix-source design [170]. Our work leverages, but does not substantially advance, the

front-end design literature. However, we do shift task sequencing and power source

dependency to better utilize the direct source-to-load advantages of Figure 6.5(b). To

optimize for the FIOS operation, I propose the sequence shown at the bottom of Fig-

ure 6.4. Application computations off-loaded from the cloud and other complex local

programs are executed in an intermittent fashion (dashed-line boxes), increasing their

effective computation efficiency via a leaner front-end conversion ratio, while the other

system activities (red-line boxes) are still powered from the capacitor. NVBuffers are

designed to sit between the sensors and the NVP, as well as within the NVRF, to guar-

antee reliable asynchronous data transfers. By adopting more computation locally, like

local processing and complex data compression, lower data transmission can be ex-

pected. By this means, the proposed FIOS clearly divides data sample/transmission and

computing, and sufficiently utilizes the high efficiency feature brought by NVP via the

support of direct-dual-channel front-end circuits. To the best of my knowledge, this is

the first work that addresses system-level rearchitecting to benefit from NVP+NVRF.
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6.2.2 Intra-chain Level - Load Balancing in FIOS

At any given time, there can be substantial variation in both energy income and re-

serves among the nodes in the network due to variations in the physical deployment

and environment, as well as history effects. Local efficiency optimizations that perform

frequency and resource scaling in the NVP [28] can further exacerbate these variations.

Similarly, any task or resource heterogeneity at the node level (e.g., differences in node-

level provisioning across generations in a network with nodes of different deployment

ages or data-dependent or position-dependent software execution) would also amplify

variations in energy reserve levels over a given time period. Considering the imbal-

ances stemming from both unbalanced load distribution and varying node-level energy-

constrained computation capabilities, I desire to design a network balance method to
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make the nodes that harvest ample energy do more computation than nodes with limited

energy, and allocate the tasks to the most efficient rather than inefficient nodes.

Efficiency-Oriented Load Balance for FIOS. An unstable power supply presents chal-

lenges for load balancing in an energy harvesting system. Since the nodes may or may

not have sufficient energy to start, traditional top-down load-balancing approaches can

fail to reach regions of the network. Specific to energy harvesting systems, the compu-

tational efficiency varies substantially depending on local energy income, and thus, even

when scheduling uniform tasks to nodes with uniform hardware, the dynamic computa-

tional efficiency of the target nodes must be an optimization goal for energy harvesting

networks (in addition to load balance). Moreover, the capabilities of a given node are

time-varying at fine granularities and may shift after scheduling. Distinct from sim-

ilar scheduling scenarios in data centers, each node generates its own inputs through

distributed sensing of raw data and application code is often small enough to be pre-

distributed to all nodes. Due to these different distributed system level requirements, a
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new scheduling algorithm and supporting architecture is deployed to fit into the specific

needs of FIOS.

Distributed Load Balancing Algorithm. Figure 6.6 demonstrates several approaches

to load balancing. Figure 6.6(a) shows the stored energy thresholds that separate the dif-

ferent classes of potential actions a node could take in the next interaction phase: Yellow

stands for nodes with enough energy to sample and transmit data; Green stands for nodes

with extra energy beyond yellow ones; Red nodes do not have sufficient energy to com-

municate. Nodes with stored energy level lower than ”energy threshold to sample data”

are effectively dead for the current sampling period, so they are not shown in Fig-

ure 6.6(b). Absent load balancing, efficiency is very low, as can be observed in Fig-

ure 6.6(b) – the available energy and energy required are unbalanced. Volatile nodes

with baseline up-down multi-level tree load balance may not fully alleviate energy im-

balances: Figure 6.6(c) shows an up-down binary scheduling that is only partly achieved

(left 12 tasks are all missed) when the assigned node 4 running parts of the load balance

is low on stored energy.

I propose a distributed load balancing algorithm tailored for energy harvesting sce-

narios. Based on available energy at each node, a node determines how much extra

energy it has available for any tasks beyond what it expects processing its own raw data

will require. The available energy as well as NVP configuration (frequency and resource

state for the Spendthrift policy [28]) are shared with other nearby nodes in the local net-

work chain. For example, node 4 can know states of its left node 3 before touching

another energy hungry node 2, and node 5 on the right in the first round. Based on the

energy available to left or right nodes, node 2 estimates the execution time of its tasks

to be distributed, and builds an array 〈a1,a2, . . . ,an〉 and array 〈b1,b2, . . . ,bn〉 to stand

for shortest time running the same tasks on either best efficiency nodes on the left side

or right individually. Then, Algorithm 1 is called to compute an ”assignment result”.

Based on the result, for instance, two tasks from node 4 are assigned to node 3, and an-

other two to node 5. A second call to Algorithm 1 may happen when the assigned tasks

require more energy than one node has already stored or beyond MAXT IME - load bal-

ance call interval. In the example, node 8 is over assigned, a second call distributes 5

tasks to node 10. While, in the worst-case, several distribution rounds may be required

to achieve a balanced load and optimality is not guaranteed, this distributed bottom-up

algorithm is expected, in practice, to produce fewer, and more local, data transmissions.
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Note that if load balance algorithm is interrupted, no load balance will take place at that

region. This failure affects performance, but not functionality of the network, and is

modeled in the simulation framework. After balancing, the data transmission begins,

tasks are computed, and results are transmitted at during the next power-on period.

Node Implementation of Load Balancing.

Let us define OPT (i,k) as the first k tasks that can be finished within time i by the

most efficient node on the left and within time OPT (i,k) on the right. The specific task

indexed as k can be finished by either left or right. If the kth task is finished by left, then

the right’s total time does not change; thus, we have:

OPT (i,k) = OPT (i− le f t[k],k−1) (6.1)

On the other hand, if the kth task is finished by right, then the left’s total time does

not change; thus, we have:

OPT (i,k) = OPT (i,k−1)+ right[k] (6.2)

By combining both the situations, we have:

OPT (i,k) = min(OPT (i− le f t[k],k−1),

OPT (i,k−1)+ right[k])
(6.3)

Algorithm 1 is implemented as an interrupt-driven program in the node software. It

is a dynamic-programing approach with three steps: build the table, find the minimum

time required to finish all the tasks, and generate the assignment. The algorithmic com-

plexity of the approach is O(n ∗MAXT IME), which is task number*load balance call

interval.

6.2.3 Inter-chain Level - Node Virtualization for Enhanced QoS
Naively increasing node count and density will not improve QoS. Figure 6.7 shows one

example of zigbee protocol. When there are only 10 nodes (Node 11, 21, ... , 101)

in the system, the network topology is as the red line. When the node density in the

area increases 4x, naive zigbee protocol opts for locality in transmission distance and
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Algorithm 1: DISTRIBUTED LOAD BALANCING

Input: Time cost if n task running on the nodes on the left 〈a1,a2, . . . ,an〉; Time cost if n task
running on the nodes on the right 〈b1,b2, . . . ,bn〉; MAXT IME: load balance call interval;

Output: Out 〈o1,o2, . . . ,on〉: task assignment to either nodes on the left or right
1 n← Sizeo f (a)
2 p← Zeros(MAXT IME,n)
3 sa← 0
4 #build the table
5 for k = 1→ n do
6 sa+= a[k]
7 for i = 1→ sa do
8 p[i,k] = p[i,k−1]+b[k]
9 if i≥ a[k] then

10 if p[i,k]< p[i−a[k],k−1] then
11 p[i,k] = p[i,k]

12 else
13 p[i,k] = p[i−a[k],k−1]

14 #find the minimum time
15 minTime← ∞

16 for i = 1→ sa do
17 if p[i,k]≥ i then
18 temp = p[i,k]

19 else
20 temp = i

21 if minTime > temp then
22 minTime = temp
23 AtimeFinal = i
24 BtimeFinal = p[i,k]

25 #generate the assignment output
26 i← AtimeFinal
27 for k = n→ 1 do
28 if i≥ a[k] then
29 if p[i,k−1]+b[k]< p[i−a[k],k−1] then
30 Out[k] = ”right”

31 else
32 Out[k] = ”le f t”

33 else
34 Out[k] = ”right”

35 return Out

increases the number of jumps from 9 to 25 when transmitting data from node 11 to 101.

In order to improve the system performance while using the existing RF protocol
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(zigbee in this work), I propose a slotted time-multiplexing node virtualization for QoS

algorithm (NVD4Q), shown in Algorithm 2, that leverages the capabilities of the NVRF

to support new behaviors. When a new node is added to an existing network, it will

first open its NVRF to search for the closest node and then clone that node’s NVRF

state, as shown in Figure 6.3(b). It will then synchronize its timer with the network.

However, rather than waking up every tick of the RTC timer, it will receive an initial

(phase) offset in ticks ( unique among the clones of the same node) and a pre-set tick

count between activations (common among all the clones) which are only updated when

requested by software. Software can thereby manage the effective sampling frequency

of the collection of the cloned nodes in order to match the sampling frequency needed

by the particular application for the single logical node that the cloned nodes implement

via time-multiplexing based on the number of clones for a given node. Membership

to a set of clones is updated at a programmer-defined frequency specific to both the

application and deployment scenario. For instance, a bridge monitor system may have

nearly permanent clone set memberships, while a mountain sliding monitoring system

may update at a low frequency and sensor nodes on moving objects would frequently

request network reconstruction, including re-association of clones.

With this NVD4Q, we expect to achieve the behaviors shown in Figure 6.8. Col-

lectively, these behaviors are expected to increase the number of samples processed by

each logical node. These include: At each wake-up period, only nodes with a common

phase (10 in the example) wake up. Nodes in chain 1 to 5 wake up consecutively, but

chain 6’s nodes are totally different from chains 1 to 5. From the network’s perspective,

the network structure and information does not change during power off period; so, be-

cause of the NVRF, there is no reconstruction penalty required for the network. Note

that each node continuously accumulates energy in its own super capacitor, and as a re-
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Algorithm 2: NODE VIRTUALIZATION FOR QOS ALGORITHM

1 Always open the NVRF
2 Find the closest node through NVRF
3 Copy its states of NVFF in NVRF controller and NVM
4 Synchronize the timer, then turn off NVRF
5 while Timer reaches a pre-set time do
6 Update or not update wake-up interval time
7 Start NVRF to send or receive data
8 if Received special command
9 then

10 Go to line 2

11 Shut down NVRF w/o backup of NVRF control states

Node with Extra EnergyNode with Enough Energy to Sample and Transmit Node can wake, but can do nothing

11 21 31 41 51 61 71 81 91 10
1

Chain 1

12 22 32 42 52 62 72 82 92 10
2

13 23 33 43 53 63 73 83 93 10
3

14 34 44 54 74 84 94

15 35 55 95

Chain 2

Chain 3

Chain 4

Chain 5

Chain 1

Chain 4

Chain 5

Chain 2

Chain 3

Figure 6.8. NVD4Q Node virtualization for QoS expected effects

sult, chances that one node runs out of energy become lower. Each node in a collection

of clones activates less frequently than a baseline node (by a factor equal to the number

of clones), and hence, the energy to be dissipated is smaller.

6.3 Simulation Methodology

I built and measured real WSN prototype platforms to quantify the energy distribution

of energy harvesting and NVP-based WSN systems. Each node consists of an NVP

running at 1MHz, consuming 0.209mW, sensors specific to different applications, and a

Zigbee based RF module with a data rate of 250kbps, consuming an average of 89.1mW

when transmitting. The power varies depending on the configuration of the TX strength,

ranging from 72mW to 102mW. The RF module, when working in the RX mode, typi-
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cally consumes 72mW.

Our simulation framework consists of two parts. The first part is a node-level func-

tional simulator, at the core of which is a modified 8051 RTL [32], which has been

calibrated with physically fabricated nodes [23]. The node-level functional simulator

also includes two parts, one matlab/python part starts the nodes’ simulation, calculating

the input power, energy, stored energy, efficiency etc. and calls the Modelsim Verilog

part (step by cycle) to run function simulation. The node-level simulation is cycle-

accurate, and our modeling of NVRF is calibrated against a fabricated device [4]. Ca-

pacitor size selection and according policy are modeled in work [33]. Power and stored

energy sampling supporting circuits (including ADC’s power) and penalty are also mod-

eled [28] with more features in sensors such as accelerometer LIS331DLH, image sensor

LUPA1399, temperature sensor TMP101, etc. For example, for TMP101, the initializa-

tion costs 566ms, and one time sampling costs 0.283ms. For Zigbee chip with volatile

RF and traditional method, ML7266 initialization costs 531ms (Host MCU@1MHz),

and data transmission of N Bytes costs (255+1.44∗N+0.032∗N)ms, while zigbee chip

ML7266 with NVRF module only costs 28ms as initialization and (1.74(NV RF start)+

0.156+ 0.216 ∗N + 0.032 ∗N)ms as data transmission. The measured node was built

with the FIOS mode, not directly replacing WISP with NVP.

The second part of our framework is a WSN system-level simulator. It starts thou-

sands of node simulators at a time, and provides WSN system-level status. The front-

end circuit efficiencies, stored energy level, etc. at system level are modeled in previous

work [29]. The time running one specific program is simulated in Verilog to determine

clock cycle counts. RF energy is computed as the integration of power over that spe-

cific time period considering active, idle, and OFF modalities (89.1mW at TX and RX,

14.93mW at IDLE).

Various failures are modeled in our simulation framework. First, at a node level, two

kinds of failures are modeled: node failures caused by depletion of energy, and packet

failures caused by wireless transmission affected by weather and channel interference.

Transmission success parameters are from an experiment with constant-light powered

3-mote point-hop-router transmission (A→B→C) mounted on top of a building, with a

distance of 10-15m and 10 days consecutive data collection. Packet loss rate 0.75% was

observed (totally 14400 A→C packets were expected), mainly affected by weather, es-

pecially rain. Packet transmission success rate between two sufficiently powered nodes
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was therefore modeled as 99.25%.

Second, at intra-chain network level, for a 3-mote transmission example (A→B→C),

when B fails to start due to energy shortage, orphan scan function in Zigbee stack is

called in A to broadcast, C sends unicast to A to confirm (”Scan confirm” status is suc-

cess), following with an update of ”AssociatedDevList”. So, A→C. When B recovers,

B broadcasts, A adds B in its ”AssociatedDevList” and removes C, C join B, and finally

A→B→C. At inter-chain level, the ”AssociatedDevList” as well as other info are du-

plicated within virtual nodes to avoid rebuilding the network structure. ”RSSI” which

exists in every data packet, is the signal strength, which is used to find the closest neigh-

bors. All these latencies and energy are measured in real ML7266 NVRF based nodes,

and are then modeled.

To test the effectiveness of the whole simulation framework, the deployed ”bridge

health monitor system” and ”wearable UV meter system” in Table 6.1 are used to vali-

date the baseline NVP simulations. Other systems with different sensors and functions

are also built, whose measured results are presented in Table 6.2.

Due to node count limitations in currently deployed systems using fabricated NVPs

and NVRF chips, as well as the fact that the proposed load balancing and virtualization

for QoS (NVD4Q) policies need some architectural-level support that is not yet present

in the fabricated devices, the load balance and the NVD4Q results are simulated. Our

simulator runs thousands of single-node simulators simultaneously (1000 for intra-chain

simulation, and 1000 to 5000 for inter-chain simulation). Each node has different power

inputs. The communication is mimicked by direct data transmission under a certain

successful transmission possibility through virtual buffers among nodes. Of the simu-

lated thousands of nodes, 10 consecutive nodes’ information is shown as the presented

example in the paper for simplicity.

6.4 Results and Discussion

In this section, I evaluate the impact of the individual schemes on WSN quality and

then quantify the contributions due to individual techniques employed. Further, I com-

bine them together and evaluate under both dependent (time and location correlated)

and independent power trace scenarios. To quantify WSN output quality, I employ the

following metrics: counts of node wakeups, successfully processed samples, and sam-
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ples processed in the fog. For total data processed in the fog, the data compression,

decompression and other post-optimized operations not present in the baseline system

are not included. Only tasks offloaded from the cloud are considered as data processing

(i.e., work that would otherwise have been done at the cloud).

6.4.1 Single Node Energy Distribution

Method Naive sensing-computing-transmission
Sensing-buffering-complex local
computing-compression-transmission

Compa-
rison

App. Inst.
NO.

Compute
energy(nJ)

TX
energy(nJ)

Compu-
te ratio

Compute
energy(mJ)

TX ener-
gy(mJ)

Comp.
ratio

Energy
saved

Bridge Health 545 1366.86 22809.6 5.65% 81.7 6.95 92.2% -55.2%
UV Meter 460 1153.68 5702.4 16.8% 108.3 6.8 94.1% -48.8%
WSN-Temp. 56 140.448 5702.4 2.4% 75 6.99 91.5% -57.1%
WSN-Accel. 477 1196.316 17107.2 6.53% 83.6 6.59 92.7% -54.9%
Pattern
Matching 1670 4188.36 2851.2 59.5% 345.1 5.39 98.5% -24.1%

Table 6.2. Measured energy distribution on different platforms using two different strategies.
Parameters in the table stand for parameters and energy during two-time data transmission inter-
val.

Table 6.2 shows the measured parameters of each system. Five diverse deployments

are examined, including bridge health monitoring, UV meter (data capturing only), tem-

perature, acceleration sensing, and heartbeat signal pattern matching. Two strategies

are deployed: naive sensing-computing-transmission and sensing-buffering-computing-

compression-transmission. In the former strategy, the single node starts itself to sense

the data, which are normally of relatively small size. Since the computation involves

mostly sensing and simple data processing, the instruction counts in Table 6.2 are also

light. After processing the captured data, the node performs the transmission sequence,

including starting the RF module, initialization, and channel setup. The computation

ratio indicates the percentage of NVP energy consumption among all node components.

I observe that, for some applications, computation does not play an essential part in en-

ergy consumption as the transmission energy dominates. For some other applications;

however, especially in the pattern matching, the NVP computation is substantial, con-

suming up to 59.5% of node energy.

The other approach considered employs sensing-buffering-computing-compression-

transmission, except when there is a real-time request from a control node. Instead

of immediately processing and transmitting the captured data, it is buffered in a 64kB

nonvolatile memory buffer designed to support this policy, as shown in Figure 5.1(B).
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Once the buffer is full, it triggers an interrupt of the NVP to process the buffered data.

If the node lacks energy to process or send the buffered data out, the sampled data

are discarded. ”Incidental Computing” techniques [29] have been proposed to mitigate

this. Two observations are noticed. Firstly, I find that, for some applications, more

complex data processing requires data from neighboring samples in time – e.g., the

pattern matching in heartbeat monitoring. Thus, buffering and operating on the local

sequence as a batch reduces data to be transmitted. Secondly, compression (bzip or

jpeg depending on application) before data transmission can reduce the data size to

3%−14.5% of its original. The many repeated patterns in data, especially in that sensed

by WSNs, foster high data compression rates. However, compression is not free; it

requires a large amount of computation energy as shown in Table 6.2. To compute the

total energy savings, I use the following formulas:

Enaive = (Ecomp
naive +Etrans

naive)∗64k (6.4)

Enew = Ecomp
new +Etrans

new (6.5)

Energy saved ratio = (Enew−Enaive)/Enaive (6.6)

Note that the naive method repeatedly samples a single data item and sends it out, while

the new method samples and buffers until 64k data, then processes them together. Al-

though compression costs energy, total energy is saved through less energy spent in

RF initialization and smaller data size to transmit. Through the optimization of the

buffered strategy, we observe that computation energy dominates across applications,

ranging from 91.5% to 98.5%. Compared to the naive strategy, the buffered strategy

can save 24.1%−57.1% total energy. In the actual deployed systems, physical buffers

are present, but both strategies are utilized to balance between energy savings and fast

response times, although the buffered strategy dominates running times.

6.4.2 Performance of Distributed Load Balancing

Figure 6.9 shows the stored energy level of three consecutive nodes in a chain when

powered with a solar panel in the daytime. As can be seen in Figure 6.9(top), the stored

energy level of VP node 1 without load balancing during the 0-50 min period indicates

that the capacitor was frequently full, meaning further energy was rejected by the sys-
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Figure 6.9. Stored energy level of 3 consecutive nodes in a chain
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Figure 6.10. Total data packages captured by the nodes in the network, and total data packages
processed by the fog, when the power traces are ample and independent

tem. Using an NVP node with baseline load balancing reduces the stored energy by

balancing the loads among nodes. Employing the proposed distributed load balance fur-

ther reduces the stored energy level. A similar situation can also be observed for Nodes 2

and 3, indicating that both load balancing approaches succeed in avoiding the capacitor

overflow scenarios seen without load balancing by moving work to neighboring nodes.

Performance with Independent Power Income

Since the load balance is intra-chain, the power income level among nodes plays an

important role for the intra-chain load balance. The more stored energy variation among

the nodes, the more impact from the proposed algorithm. I use solar power traces from

a forest to mimic deployment scenarios. With winds, depending on whether the leaves

are moving, the power variation among nodes is large, and effectively independent.

I consider a forest fire monitoring system. Such a system may have as many as 1k

to 1M nodes, but I present data for only the 10 nodes of one chain. Given uninterrupted

power and no failures, these 10 nodes could ideally deliver 15000 data packages in 5
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Figure 6.11. Total data packages captured by the nodes in the network, and total data packages
processed by the fog, when the power traces are ample and dependent

hours. Each power trace is a synthetic trace generated from data collected by a single

energy-harvesting node in both tree-covered and open environments under different time

and weather conditions. Individual node power incomes are generated by concatenating

sequences from the measured traces in random order. The computation performed when

performing in-fog offload is a reconstruction kernel for a volumetric map based on point

samples.

Figure 6.10 shows the simulated number of wakeups, total processed data packets,

and in-fog processed packets for five different power traces over three different systems.

The VP nodes do not perform fog-offloading, and without load balancing, despite 13656

node wakeups (1344 node failures due to energy depletions), only capture and transmit

2664 packets. With a higher activation threshold, NVP nodes running the baseline load

balance only exhibit 12383 wakeups, but improve the total packets processed to 3236

and increase in-fog processing to 3045. NEOFog wakeups are similar to the baseline

NVP, but substantially improve the total packets processed to 5582, 37% of the ideal of

15000, and increase in-fog processing to 5018 packets.

Performance with Dependent Power Income

To explore situations where the power observed by each node is strongly correlated

with its neighbors, I consider the power observed from daytime solar traces at fixed

locations on bridges in a bridge monitoring system. Each power trace is a synthetic

trace generated from the same 5-hour period from 5 different days of measured bridge



109

data [45]. Individual node power incomes are generated by applying 30% random vari-

ance to the measured data traces. The computation performed when performing in-fog

offload is based on the structural health monitoring algorithms in [171, 172]. Again,

under an ideal power and communication scenario, the maximum number of processed

packets would be 15000.

Figure 6.11 shows the simulated wakeups, processed packets, and in-fog processed

packets for bridge monitoring under a set of highly dependent power traces. In a system

with dependent power profiles, stored energies exhibit lower variance, and thus the load

balance scheme is activated less frequently. The amount of energy required to transmit

data from one node to another decreases, partially compensating for reductions in ac-

tual load-balancing. This is why the dependent values are within 10% of those for the

independent power traces.

For the dependent power traces in the bridge monitoring scenario, similar to the

prior forest scenario, the VP nodes do not perform fog offloading, and without load

balancing, despite still performing 13886 node wakeups, only captures and transmits

2494 packets. With a higher activation threshold, NVP nodes running the baseline load

balance again exhibits reduced wakeup counts of around 12859, but improves the total

packets processed to 3439 and increases in-fog processing to 3126. NEOFog wakeups

remain similar to the baseline NVP, but substantially improve the total packets processed

to 6990, 46.6% of the ideal of 15000, and increases in-fog processing to 6418 packets.

If we compare the NEOFog system with nodes running distributed load balance to

VP nodes without load balance and NVP nodes with baseline load balance, the average

gains of 2.8X and 2.0X gains are seen in the total network output, respectively, for

average gains for a high variance, independent deployment and 2.1X and 1.7X gains are

seen for a dependent power scenario. While this indicates that the proposed load balance

is less effective in dependent power conditions, it still vastly outperforms the baseline

and sans-balancing systems.

6.4.3 NVD4Q - Virtualization for QoS Results

I consider a mountain sliding monitoring system as the running example for NV4DQ,

in which solar-powered nodes are randomly distributed in the area to be monitored via

aerial dispersion. Some of them will have excellent sun exposure, while others may
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Figure 6.12. Increasing node multiplexing in an environment with high power with large
independent variance
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Figure 6.13. Increasing node multiplexing in an environment with very low power and depen-
dent variation

fall into grass or shrubs or be poorly oriented. On a sunny day (which can be regarded

as high power with large variance), the network collects around 12000 samples, and

a traditional VP system without load balancing can process about 5000 data packages

in-fog, as shown in Figure 6.12. The NVP nodes with the proposed load balancing

can process around 9500 data packages, almost double the baseline. Since the in-fog

processing rate is already very high, the NV4DQ approach provides minimal gains.

However, the highest concern for the events the system is designed to monitor, slides,

occurs during heavy rains when solar energy is very limited. I show the results for

operation during inclement weather in Figure 6.13. A traditional VP system without

load balancing can process only 725 data packages in-fog, while the NEOFog system
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with identical node count can process 2800 packages in-fog. Increasing the node count

and multiplexing rate when using NV4DQ substantially improves the in-fog processing

rate, up until 300% multiplexing is reached, by allowing longer times for each node to

accumulate the less-available energy and from less frequent startup overheads for each

node. Benefits saturate at 3X multiplexing for this experiment, because total successful

sampling under the reduced power conditions reduces to 8000.

6.5 Summary

The maturation of NVPs and other integrated nonvolatile elements brings new optimiz-

ing opportunities at system level design as prior assumptions regarding the key tradeoffs

and design principles for energy-harvesting systems are challenged. To address this, in

this chapter, I revisit the core operating paradigm of normally-off systems, and instead,

reoptimize for the frequently-intermittently-on systems enabled by NVPs and NVRFs.

I show that integrating nonvolatility into nodes can improve the amount of computation

offloaded to the fog, rather than performed in the cloud, and that applying NVP-specific

distributed load balancing can further increase fog computing capability. I also provide

a node virtualization technique that exploits NVRF advantages to increase fog comput-

ing QoS in lower power-income conditions. Collectively, these optimizations increase

fog-offload capabilities by 4.2X at baseline deployment node count and up to 8X at 3X

multiplexing.



Chapter 7
Related work

7.1 Nonvolatility in Processors

By designing distributed nonvolatile logic or elements at a microarchitectural level,

computation state can be checkpointed before power outages occur with only on-chip

energy storage and without programmer intervention [97, 98, 173–175]. Various mate-

rials can implement the nonvolatile features, for example, FeRAM based NVPs [92, 93,

118], ReRAM based NVPs [32], and MRAM (magnetoresistive random access mem-

ory) based NVPs [94]. Beyond these, there are other types of NVPs [96, 135, 176],

and NV associative processors [177] as well. NVP efficiency has been improved by

frequency scaling [33] and dynamic resource control [28] for NVPs. Many cross-layer

works leveraging integrated non-volatility to address intermittency have also been ex-

plored, including, OS and high-level synthesis approaches [160,161], programming lan-

guage and compiler approaches [126, 149], HW/SW approaches [155], and software-

based approaches [162–164]. While this dissertation explores a wider domain of NVP

and then relies on the existence of NVPs, it focuses on how to benefit from their use at

system level.

7.2 Architectural Aspects of Energy Harvesting

Computing under unreliable power supply conditions leads to several interesting archi-

tecture and system-level issues, many of which have been dealt with in this disserta-
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tion. B. Lucia et al. [178] have explored the possibility of concurrent programming

under intermittent energy and the various efforts required to maintain program consis-

tency. These issues are addressed by means of atomic instructions allied with an on-chip

capacitance to ensure that the processor has sufficient power to complete the ongoing

instruction. Jayakumar, H et al. [179] use an FeRAM for quickly checkpointing the sys-

tem state in case of power loss in transiently powered computers. My work also explores

in detail various micro-architectures by varying the power-on threshold, thus being able

to optimally run for a whole range of application complexities. In reference [180], the

authors propose a power-management technique for a solar-powered multicore architec-

ture. My dissertation, on the other hand, extends our analysis to different energy sources

with a detailed micro-architectural evaluation.

7.3 Frequency and Resource Scaling

Noting the trade-offs among different NVP microarchitecures, a machine learning based

methodology is proposed by Ma, et al. [68] to dynamically switch between three distinct

design points. To the best of my knowledge, there exist no works that attempt to predict

bottleneck resources and DFS for NVP IoT platforms.

DFS is a traditional technique targeting either boosted performance or reduced en-

ergy [62–65] Distinct from these works, I apply DFS to NVP for energy harvesting

scenarios to adjust to variations in power-income rather than variations in the workload

or thermal headroom. Traditional methods use lookup tables for DFS, while in more

complex energy harvesting scenarios with unstable power, I apply machine learning to

handle it.

Kontorinis, et al. [66] propose table-driven resource allocation in a configurable

datapath to conservatively enforce peak power reductions with minimal performance

degradation. I employ a similar scheme in this work to tune EPI to the current power

income, but are not constrained to conservative solutions and utilize neural networks

rather than tables to predict the bottleneck resources for unstable power incomes.
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7.4 Active Checkpointing

Energy harvesting is attractive for IoT. To support operation under an intermittent power

supply, many works across the computation hierarchy have been explored, including

OS and high-level synthesis approaches [160, 161], programming language and com-

piler approaches [149, 181], HW/ SW approaches [179], and software based approa-

ches [162–164]. I classify these approaches as active checkpointing [182], in which the

programmer needs to identify the essential data and software invokes a backup before

energy runs out.

7.5 Passive Checkpointing

Another alternative is passive checkpointing. By designing distributed or centralized

nonvolatile logic or storage elements managed at a microarchitectural level, computation

state can be checkpointed transparently to software before power outages using stored

energy. This is called a nonvolatile processor [23, 28, 31, 97, 98, 173–175, 183–185].

Various materials and circuits with nonvolatility can be adopted to design different types

of NVPs, e.g., FeRAM-based NVPs [93,118], ReRAM-based NVPs [32], and MRAM-

based NVPs [91, 94].

Many of the active checkpointing works [25,48,149,162–164] are validated on a TI

MSP430 with on-chip FeRAM, which can be considered an embryonic form of NVP,

with software-based methods for active check-pointing. The different approaches for

achieving continuous computation under unstable power supply have differing tradeoffs.

The active method is modest in cost, but it is bounded by the backup speed and energy.

Passive checkpointing can save system initialization time and energy when powered up,

but is difficult to design and can potentially impose operational overheads.

7.6 Approximate Computing

There is a substantial body of work focusing on approximate computing in the gen-

eral purpose computing domain. A statistical guarantee method in controlling quality

has recently been proposed for an approximate accelerator [186]. Quality detection

and error correction by exact recomputing on host processor is proposed by Khudia et
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al. [187]. A pipeline-parallel approach for producing progressively higher quality output

across multi-kernel execution chains via iterative recomputation is described by Miguel

et al. [188]. Tang et al. improve bank-level parallelism for irregular applications [189].

A self-tuning approximation with quality feedback control for graphics engines is pro-

posed by Samadi et al. [190]. Hardware support for approximate operations includes

voltage scaling and speculation [191] and multi-voltage setups [107].

The key point of divergence in this dissertationis for the approach optimizing ap-

proximate computing to a specific application scenario - energy harvesting - with the

help of traditional NVPs to handle the unstable power supply. The application require-

ments of post-processing sensed data in real-time and locally, with limited harvested

energy, challenges traditional NVPs. As a result, approximate computing alone cannot

solve the problem because the newly-sensed data are still urgent to process, while his-

torical buffered data’s value drops over time. Observing this, the proposed approach

focuses on the incidental computing of historical buffered data, and proposes incidental

re-computing to enhance the quality without affecting processing the newest data. Inci-

dental computing offers appealing opportunities in the notion of gradient approximate

backup and recovery, which tries to match the data importance and retention time to

power outages. In combination, NVPs, approximation and incidental computing open

new areas for optimizing energy harvesting IoT systems.

7.7 Approximate Storage

Another form of approximation is approximate storage [192] . Approximation in

DRAM based on data criticality is explored and optimized [193]. Approximate storage

in solid-state memories is employed by Sampson et al. [194] and load-value approx-

imation is developed by Miguel et al. [195]. Approximation is often a system-level

approach, requiring support at multiple layers, cross-layer optimization and co-design.

Recent work [196, 197] continue to examine compiler and programming level support

for approximation, and a pure software based solution [198] targeting GPU approxima-

tion has been explored. An architecture using signal significance to vary approximation

levels in an inter-frame motion estimator is presented [199]. Code acceleration with

limited-precision analog computation is developed [200]. Configurable trade-offs be-

tween precision and energy are explored [201]. A ”Rely” programming model for
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verifying unreliable hardware is developed [202], but random power failures are not

modeled. Approximation in energy-harvesting is explored in software by Sampson et

al. [203], but not targeted on nonvolatile processors.

7.8 Nonvolatility in RF Control and Other Low-power

RF Technologies.

Nonvolatile RF control was first proposed by Wang et al. [4], and it boosts the startup

speed of a commercial Zigbee module by 27X. Other point-to-point techniques like

backscatter [165, 166] are also promising techniques to reduce RF energy in nodes,

and there are many protocol implementations that aim to implement lower-power RF

communication [204–207]. Any of these protocols would reap further benefits from

the NVRF approach. In this dissertation, I emphasize how to develop new network-

level strategies that exploit the ability to clone NVRF states and its superior latency and

throughput for cheap node virtualization via time-multiplexing without changing the

network protocols.

7.9 Load Balancing on WSN

Load balancing on WSNs, aims to match the work to be done with the nodes that have

sufficient energy to perform it. Many prior load balance methods have been proposed,

including weight-based approaches [208, 209], package forwarding [141], pseudo-sink

protocol [142], and dynamic route [143] balancing. Some works use partitioned clusters

for load balance [144–146]. A decentralized routing algorithm, known as a game theo-

retic energy balance routing protocol is proposed by Abd et al. [210]. All these approa-

ches target battery-powered devices rather than energy-harvesting nodes with highly

unstable power supply. The proposed balancing algorithm is specifically designed for

high failure rates, even during the balancing algorithm itself. To this end, it eschews

global communication and optimization, and aims instead to reduce the scope of the

shared information and the associated transmission costs.
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7.10 Virtualization for Quality of Service

Wajgi et al. [147] proposes backup nodes for the cluster head after it triggers a threshold.

Other works also propose inter-cluster level optimizations by optimizing the protocol

and network topology [139,140]. In contrast, the proposed NVD4Q policy shares states

in NV elements in NVRF, and thus, the (virtual) network topology does not change.

Note that NVD4Q is not a load balance at inter-chain level. Rather, it enhances the QoS

via each (physical) node having more time to accumulate energy before communicating,

enhancing the success rate of each virtual node.



Chapter 8
Conclusions and Future Work

8.1 Conclusions

Technology trends leading to the proliferation of IoT devices operating on harvested

energy demand a corresponding revolution of the abilities of processors to adapt to un-

stable power supplies. This dissertation discusses architectural level designs and op-

timizations for ambient energy harvesting NVPs and provides the design guidelines

mapping from power sources to architecture level selection. Aiming at time and en-

ergy optimization, I have proposed and simulated various architecture level solutions

for non-pipelined, five-stage-pipeline and out-of-order processor architectures, and have

discussed the trade-offs between them over the course of this manuscript. To better op-

timize the NVP node, bottleneck resource prediction and frequency scaling can both

be applied to improve the forward progress. Powering on some resources to mitigate

some bottlenecks can actually significantly increase the NVP’s parallel density. Through

smart DFS, the energy used for forward progress computation increases. I show that the

proposed spendthrift solution can achieve 2.08X forward progress than best case of OoO

NVP with static configuration and static frequency. Furthermore, adopting approximate

computing approaches in NVPs not only improves the forward progress that NVP sys-

tems can offer, but it also provides a means for NVPs to optimize for responsiveness

as well as overall efficiency, and synergizes with unique features of NVP execution,

namely, frequent backup and recovery operations. I introduce the concept of ”inciden-

tal computing” to address opportunistic responsiveness versus quality tradeoffs under

unstable power income, and implement and evaluate an instantiation of the incidental
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computing approach based on memory and datapath approximation within an NVP. For

a prototypical IoT workload, the combination of all of the techniques improves for-

ward progress by an average of 4.28x over a baseline ”precise” NVP, of which 1.4x

is attributable to NVP-specific backup and restore approximations. Realizing that the

nonvolatile features applied in NVP and NVRF etc. have significantly impacted the

node level simulation, which makes the traditional assumptions that edge node level

computing is unreliable and expensive in energy not hold. In order to better utilize the

new advantages brought by nonvolatility in edges, I propose NEOFog - a system-level

optimization to better take the advantages of reliable and relatively efficient in fog com-

puting. Specifically, I optimize the programs from RF energy dominate to computation

intensive, from normally-off system to frequently-intermittent-on system, to better uti-

lize the new opportunities brought by nonvolatility. Beyond nodes level, considering

the unbalance and time-varying income power and stored energy level of each node and

different the energy requirement for workloads, I optimize a distributed load balance al-

gorithm specially optimized for unstable power supply in an intra-chain level to balance

the loads and further increase the computation done by edges. I show that it can boost

fog computing from 1.9X to 2.1X compared to the system running a traditional load

balance. I also propose architectural supports for increasing nodes density for the better

quality of service by time-division multiplexing of NVRF. 2X QoS is observed with 3X

density increment in a very low energy income situation.

In conclusion, this dissertation provides a holistic exploration in applying nonvolatil-

ity into the processor and system design in energy harvesting application scenarios.

Various techniques are proposed for optimization in nodes level and system level. To

validate the simulation infrastructure, I compare and calibrate the simulation results

against several fabricated non-volatile processors. The proposed architectures and op-

timizations, in turn, provide guidance for SOC chip and system design, which further

proves the feasibility of the proposed architectures. This dissertation is a first holistic

exploration of ambient energy harvesting processor and system design.

8.2 Future Opportunities and Directions

Cross-layer support for NVPs
With the emergence of the lower-layers device and circuits level innovations, e.g.,
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new nonvolatile devices like FeFET [211], NCFET [212], according circuits, or de-

vices with intrinsic approximate features (e.g. ReRAM), the new architectures and more

achievable application scenarios can be further explored.

In the upper layers, opportunities lay in optimizing the OS and high-level synthesis

support [160, 161], programming language and compiler support [126, 149], HW/SW

co-design support [155], and application/software level support [163, 164] etc. to fur-

ther optimize the NVPs. At this day, the optimization of upper layers for supports of

nonvolatile processors remains only partly explored.

For other system components beyond NVPs, applying nonvolatility into WiFi, Blue-

tooth, 4G LTE, LoRA, sensors, and other peripherals may reduce the energy consump-

tion of the specific modules through mitigating or even elevating the re-initialization of

the peripherals.

Application specific optimizations
In higher application system level, with more nonvolatility integrated into the sys-

tem, the traditional optimizations in system level need to be rethought. As a first step,

I have explored system-level optimization of load balance in energy harvesting wire-

less sensor networks [27]. Beyond this, plenty of opportunities exist, including new

wireless protocols for supporting unstable and unre-transferable networks, block-chain

based decentralized networks, implantable medical systems, etc.

Beyond optimizations for lower power in extremely energy hungry energy harvest-

ing scenarios, nonvolatility are also expected to reduce power consumption in high per-

formance computing elements, for instance, applying nonvolatility into CPUs or GPUs

used in data centers for utilizing the fast and efficient backups and recoveries to more

frequently turn on and off of unused microarchitectures show promising benefits for

reducing total power consumption.

Beyond Von Neumann architectures
During the optimizations of designing energy harvesting IoTs’ architectures, I found

that the data movement including backup recovery energy takes an essential part in the

whole energy consumption. The energy cost by data movement between computation

and storage, which is normal in Von Neumann architectures, limits further optimization

towards lower power. To build extremely power efficient cognitive energy harvesting

systems that can understand and interpret complex visual scenes for applications like

self-powered contact glasses, architecture that can go beyond the conventional Von Neu-



121

mann model, in particular, those that can promise better energy efficiencies, are desired.

Since nonvolatile memories and logic are already utilized in NVPs for backups, they are

also expected for processing in memory with approximate techniques, and/or neuromor-

phic computing. Exploration of the mapping of vision algorithms etc. onto such fabrics

and integrating within sensors is promising as further opportunities.
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T. RĆ1/4CKSTIEĆ, and J. SCHMIDHUBER (2010) “PyBrain,” Journal of Ma-
chine Learning Research, 11(Feb), pp. 743–746.

[75] WIDROW, B. and M. E. HOFF (1960) Adaptive switching circuits, Tech. rep.,
STANFORD UNIV CA STANFORD ELECTRONICS LABS.

[76] CARPENTER, G. A. and S. GROSSBERG (1987) “A massively parallel architec-
ture for a self-organizing neural pattern recognition machine,” Computer vision,
graphics, and image processing, 37(1), pp. 54–115.



130

[77] KOSKO, B. (1988) “Bidirectional associative memories,” IEEE Transactions on
Systems, Man, and Cybernetics, 18(1), pp. 49–60.

[78] ACKLEY, D. H., G. E. HINTON, and T. J. SEJNOWSKI (1985) “A learning algo-
rithm for Boltzmann machines,” Cognitive science, 9(1), pp. 147–169.

[79] RUMELHART, D. E., G. E. HINTON, and R. J. WILLIAMS (1985) Learning
internal representations by error propagation, Tech. rep., DTIC Document.

[80] HECHT-NIELSEN, R. (1987) “Counterpropagation networks,” Applied optics,
26(23), pp. 4979–4984.

[81] HOPFIELD, J. J. (1982) “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy of sci-
ences, 79(8), pp. 2554–2558.

[82] KOHONEN, T. (1982) “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, 43(1), pp. 59–69.

[83] LI, X., J. SAMPSON, A. KHAN, K. MA, S. GEORGE, A. AZIZ, S. K. GUPTA,
S. SALAHUDDIN, M. F. CHANG, S. DATTA, and V. NARAYANAN (2017)
“Enabling Energy-Efficient Nonvolatile Computing With Negative Capacitance
FET,” IEEE Transactions on Electron Devices, 64(8), pp. 3452–3458.

[84] LI, X., S. GEORGE, K. MA, W. Y. TSAI, A. AZIZ, J. SAMPSON, S. K. GUPTA,
M. F. CHANG, Y. LIU, S. DATTA, and V. NARAYANAN (2017) “Advancing
Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-Flops,” IEEE
Transactions on Circuits and Systems I: Regular Papers, PP(99), pp. 1–13.

[85] LI, X., K. MA, S. GEORGE, W. S. KHWA, J. SAMPSON, S. GUPTA, Y. LIU,
M. F. CHANG, S. DATTA, and V. NARAYANAN (2017) “Design of Nonvolatile
SRAM with Ferroelectric FETs for Energy-Efficient Backup and Restore,” IEEE
Transactions on Electron Devices, 64(7), pp. 3037–3040.

[86] LUCIA, B. and B. RANSFORD (2015) “A Simpler, Safer Programming and Ex-
ecution Model for Intermittent Systems,” in Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’15, pp. 575–585.

[87] XUE, T. and S. ROUNDY (2015) “Analysis of Magnetic Plucking Configurations
for Frequency Up-Converting Harvesters,” Journal of Physics Conference Series,
660(1), 012098.

[88] XUE, T., X. MA, C. RAHN, and S. ROUNDY (2014) “Analysis of Upper Bound
Power Output for a Wrist-Worn Rotational Energy Harvester from Real-World
Measured Inputs,” Journal of Physics: Conference Series, 557(1), p. 012090.



131

[89] TAN, Y. K. and S. K. PANDA (2011) “Energy Harvesting From Hybrid In-
door Ambient Light and Thermal Energy Sources for Enhanced Performance of
Wireless Sensor Nodes,” IEEE Transactions on Industrial Electronics, 58(9), pp.
4424–4435.

[90] LEONOV, V., T. TORFS, P. FIORINI, and C. V. HOOF (2007) “Thermoelectric
Converters of Human Warmth for Self-Powered Wireless Sensor Nodes,” IEEE
Sensors Journal, 7(5), pp. 650–657.
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