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Abstract  

Increasing oil recovery and decreasing production costs in unconventional reservoirs is in great 

demand due to current low oil prices. The oil price drop affected unconventional oil production to a 

greater degree than conventional oil production because of its low production rates and high 

production costs. The objective of increasing oil recovery and decreasing production costs of the 

unconventional oil reservoirs leads to an introduction of new technology and techniques. Many 

studies have been conducted to identify new techniques with high capabilities of increasing oil 

production from unconventional resources. Unconventional oil reservoirs are the reservoirs that 

cannot feasibly produce oil using conventional production techniques. These reserves include 

tight oil, oil shale, and bitumen. 

The first objective of this work is to introduce a new production technique that is capable of 

increasing oil recovery, decreasing production costs for unconventional oil reservoirs, and 

decreases the greenhouse gas emissions. The second objective is to build an Artificial Neural 

Network (ANN) based toolbox to evaluate and optimize the implementation of the proposed 

technique. The proposed ANN toolbox provides the necessary knowledge to understand the 

performance of the CO2 injection technique in low permeability reservoirs when utilizing 

fishbone well designs. A better understanding of how the implementation of the fishbone well 

design and CO2-WAG injection affects the production from low permeability reservoirs, will help 

to increase oil recovery, decrease production costs, and decrease environmental impacts. A 

better understanding of how the implementation of the fishbone well design and CO2-WAG 

injection affects the production from low permeability reservoirs, will help to increase oil 

recovery, decrease production costs, and decrease environmental impacts.  

The proposed production technique combines two successfully applied techniques in the 

unconventional reservoir production. The first technique is the Water Alternate Gas (WAG) 

injection technique implementation with carbon dioxide. The second technique is the fishbone 

multilateral well designs. The proposed techniques have successfully proven their capability of 

increasing oil production from unconventional reservoirs, but there are no previous studies that 

combined both techniques in the same project. 

 

 

https://www.studentenergy.org/topics/drilling
https://www.studentenergy.org/topics/tight-oil
https://www.studentenergy.org/topics/oil-shale
https://www.studentenergy.org/topics/oil-sands
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Water alternate gas is a known term that describes an enhanced oil recovery process whereby 

water injection and gas injection are carried out alternately for periods of time to provide 

better sweep efficiency and reduce gas channeling from injector to producer. Carbon dioxide 

(CO2) is the most commonly used gas for this process because it improves hydrocarbon contact 

time and sweep efficiency while decreases the greenhouse gas emissions.  

The fishbone well design is a multi-lateral well technique which has been successfully used to 

improve production from low permeability reservoirs. The fishbone well design is a series 

of multilateral well segments that trunk off a main horizontal well. The appearance of the 

fishbone well closely resembling the ribs of a fish skeleton deviated from the main backbone. 

Fishbone well design increases the production by increasing the contact area with the reservoir. 

The utilization of the multi-lateral well technique increases the cumulative fluid recovery, 

decreases the environmental footprint and decreases the drilling and completion costs.  

An Artificial Neuron Network (ANN) is a computational model based on the structure and 

functions of biological neural networks. Information that flows through the network affects the 

structure of the ANN due to the adaptions it makes to provide the desired output. ANNs are 

considered nonlinear statistical data modeling tools where the complex relationships between 

inputs and outputs are modeled. 

ANN toolbox has been developed to evaluate and optimize the implementation of CO2-WAG 

injection in low permeability reservoirs using fishbone well design. The developed toolbox 

provides the needed information to develop a successful production plan for the reservoir under 

consideration. The designed toolbox has four primary functions. The first function is to predict 

the fluid flow rate profiles for the reservoir under consideration, with fishbone well and WAG 

injection implementation. The second function is to provide a reliable WAG injection design for a 

project with known reservoir properties while also creating a functional fishbone well after the 

field goes through a period of primary production. This will achieve the desired level of recovery 

for the project. The third function is to provide a reliable project design for the reservoir under 

consideration. The project design consists of a fishbone well design and a WAG injection design 

to achieve a desired level of recovery. The fourth function is to understand the reservoir 

properties using the production data. The toolbox can compare thousands of WAG designs and 

multilateral fishbone well design combinations in a more rapid manner when compared to 

commercial simulators. 

 

http://www.glossary.oilfield.slb.com/en/Terms/r/recovery.aspx
http://www.glossary.oilfield.slb.com/en/Terms/g/gas_injection.aspx
http://www.glossary.oilfield.slb.com/en/Terms/s/sweep_efficiency.aspx
http://www.glossary.oilfield.slb.com/en/Terms/c/channeling.aspx
http://www.glossary.oilfield.slb.com/en/Terms/m/multilateral.aspx
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Chapter 1 

Literature Review 

1. Unconventional Oil Reservoirs 

Unconventional reservoirs are the reservoirs that have low permeability and porosity that 

petroleum cannot be produced by conventional techniques. Unconventional reservoirs term is 

used also for any reservoir that will not economically produce with the conventional techniques. 

On the other hand, the conventional techniques are redefined after the huge innovation in the oil 

and gas technologies. This huge innovation in technology made it possible to produce from the 

source rocks, ultra-thin reservoirs, tight oil reservoirs and bitumen. Figure (1) shows the 

conventional and unconventional production techniques. 

 

Figure 1: Conventional and unconventional drilling techniques 

Unconventional reservoirs have large reserves which can overcome the decrease in the 

conventional reserves to cover the market demand. The main challenge to produce from the 

unconventional sources was the production costs. But, with the current oil prices the challenge 

increased. As shown if figure (2), the tight oil reserve in the United States is more than the 

conventional but the majority part of it has to be produced at a wellhead price of up to $60. 
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Figure 2: Oil reserves in the US 

 

It is hard to produce from unconventional reservoirs without applying the enhanced oil recovery 

terminology and the advanced well techniques.  

Oil recovery process can be divided into three phases primary, secondary, and tertiary. The 

primary recovery process is the initial production stage during which production is accomplished 

by utilizing the natural reservoir energy. There are a number of primary mechanisms such as 

liquid and rock expansion, solution gas drive, gas cap drive, water drive and gravity drainage. 

The secondary recovery process takes place when the primary production declines as the 

existing energies are not sufficiently feasible anymore for production. Water flooding, pressure 

maintenance and gas injection are the three most common techniques amongst the secondary 

recovery processes (Green 1998). 

Primary and secondary recovery processes for conventional reservoirs can recover 35% to 50% 

of the original oil in place leaving the remaining oil as isolated, trapped droplets in the pores or 

films around the rock particles (Green 1998) or in low permeability as unfloodable layers. That 

remains about 50% to 60 % of the original oil in place as the target of the enhanced oil recovery 

process (EOR). For unconventional reservoirs primary and secondary production can recover 

only 10%-15% of the original oil in place. That leaves about 85% to 90 % of the original oil in 
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place as the target of the enhanced oil recovery process (EOR). EOR is a known terminology 

for the production processes that target the original oil in place when the primary production is 

not economically feasible. EOR can be applied from the beginning of the production or after 

primary and secondary recovery. Choosing when to apply EOR is a function of economically 

feasible production of the primary and the secondary processes. 

Different EOR techniques have been used to recover the residual oil after the primary and the 

secondary production. Each technique relies on changing one or more of the physical properties 

of the residual oil, by increasing the oil mobility or the rock by changing the wetting affinity of the 

rock. Gas injection is one of the techniques that improves the mobility of the residual oil by 

decreasing the oil viscosity.  

Tertiary recovery process is the third stage of production that takes place when the secondary 

recovery process becomes unfeasible. There are many types of tertiary recovery methods such 

as; miscible injection, immiscible injection, chemical injection, thermal and microbial recovery 

techniques. Each technique changes one of the physical properties of the remaining residual oil 

to increase the oil mobility, or changes one of the physical properties of the rock to change its 

wettability. In some cases, the reservoir is designed to produce under the tertiary process from 

the beginning to accelerate the production. 

2. Water Alternate Gas 

WAG injection is the process where gas and water are alternatively injected in the reservoirs. 

This process displaces the residual oil by the injected fluids. When gas is used as a displacing 

fluid, one of two mechanisms takes place (1) miscible displacement and (2) immiscible 

displacement. The displacement is miscible if the injection process occurs above the minimum 

miscible pressure (MMP) and is immiscible if the injection process occurs below the MMP. The 

minimum miscible pressure is a function of the oil composition, reservoir pressure, and 

temperature.  

Carbon dioxide is preferred as the displacing for three reasons;  

1. High hydrocarbon recovery  

2. CO2 storage to reduce atmospheric emissions of CO2  

3. The availability of CO2 in adequate quantities from both natural and industrial sources 
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3. Carbon Dioxide WAG Injection (CO2-WAG) 

The CO2-WAG process recovers oil that remains in the reservoir by contacting and mobilizing 

stranded oil through improving the volumetric sweep and displacement efficiencies. The injected 

CO2 may become miscible or remain immiscible with oil, depending on reservoir pressure, 

temperature, and oil properties. The miscible CO2-WAG process typically achieves higher 

recoveries than the immiscible process, and therefore, it is a preferred option.    

The pressure at which miscibility occurs is defined as the minimum miscibility pressure (MMP) 

which is defined as the pressure at which more than 80 percent of oil-in-place (OIP) is 

recovered at CO2 breakthrough.  

There are three types of hydrocarbon miscible mechanisms. The first mechanism is the first 

contact miscible process where the solvent mix with reservoir oil in all proportions, and the 

mixture remains in one phase. The second mechanism is the vaporizing gas drive where the 

intermediate-molecular-weight hydrocarbons from the reservoir oil are vaporized into the 

injected gas. The third mechanism is the condensing gas-drive where the solvent transfers 

intermediate-molecular-weight hydrocarbons into the reservoir oil.  

When the reservoir pressure is below the MMP or the reservoir oil composition is not favorable, 

the CO2 and oil will not form a single phase and will not be miscible. However, CO2 will dissolve 

in the oil causing oil swelling and viscosity reduction that both help to improve sweep efficiency 

and will facilitate additional oil recovery (Martin and Taber, 1992).  

Due to its high mobility, carbon dioxide has a poor macroscopic sweep efficiency that leads to 

low production rates. Carbon dioxide has poor macroscopic sweep efficiency because the CO2 

tend to finger through the oil phase. Water alternate gas technique (WAG), which is a process 

where the water and the gas are injected alternately in time cycles, is used to avoid the gas 

fingering through the oil phase and in extent the contacted period between the oil and the 

displacing fluids. The WAG process combines the advantages of both gas and water flooding 

and results in better microscopic displacement and macroscopic sweep efficiencies. 
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4. ARTIFICIAL NEURAL NETWORKS  

An artificial neural network is a mathematical model which mimics the structure and the 

function of the biological neural networks. In addition, the artificial neural network is a 

nonlinear statistical data modeling system which is used to identify the existing complex 

input/output relationships. The artificial neural network is an adaptive system which consists of 

interconnected artificial neurons. Those neurons connect in different ways to generate the 

best description for the desired relationship. The process to find the best network is called the 

training process where the artificial neurons are weighted mathematically to improve the 

representation of the problem studied by the network.  

An ANN has several advantages but one of the most recognized of these is the fact that it can 

actually learn from observing data sets. In this way, ANN is used as a random function 

approximation tool. These types of tools help estimate the most cost-effective and ideal 

methods for arriving at solutions while defining computing functions or distributions. ANN 

takes data samples rather than entire data sets to arrive at solutions, which saves both time 

and money. ANNs are considered fairly simple mathematical models to enhance existing data 

analysis technologies. 

Artificial neural network is a useful tool for the petroleum engineering applications because of 

its ability to solve complex computational problems that cannot be solved with conventional 

methods (Mohaghegh, 2000). Artificial neural networks are being used in predicting the 

formation characteristics such as permeability, porosity and water saturation (Basbug, 2007), 

(Guler, 1999). In addition, Artificial neural networks are used in a large number of reservoir 

engineering applications such as performance optimization, reservoir characterization, field 

development applications, well stimulation, formation evaluation and pressure transient 

analysis (Srinivasan, 2008).  

There are two different training algorithms for a neural network; supervised algorithms and 

unsupervised algorithms. The supervised training algorithms are the most commonly used in 

the oil and gas industry because of their accuracy in solving many challenging and complex 

problems (Ramgulam, 2007). In this work we will evaluate the efficiency of each of these 

algorithms. 
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Chapter 2 

The Problem Statement 

Oil production rates from low permeability reservoirs are low because of the low oil mobility. 

Many studies have been conducted to improve the recovery from low permeability oil 

reservoirs which include techniques such as utilizing advanced well structures, hydraulic 

fracturing, and gas injection. Previous studies proved the efficiency of the fishbone well 

designs to increase the oil recovery in low permeability reservoirs. However, no existing study 

discussed the effect of applying CO2 based WAG injection implementation to fishbone well 

designs in low permeability reservoirs. The combination of these two techniques will help to 

improve the oil recovery from unconventional oil reservoirs.  

By utilizing advanced well technique, fishbone well design can be implemented in low 

permeability reservoirs to increase the production rates. Fishbone well design provides a 

larger drainage area with the reservoir and reaches the isolated parts of the reservoir. 

Fishbone well design accomplishes higher production rates in low permeability reservoirs 

when compared to vertical and horizontal wells. Economically, fishbone well design costs 1.18 

times more than the cost of a single lateral well, but is preferred over the single lateral well 

due to how efficiently it improves the production and the connection between different sections 

of the reservoir (Stalder et al. 2001). 

A successful CO2-WAG injection design for low permeability reservoirs using fishbone well 

design consists of two parts. The first part is the fishbone well design itself, which includes the 

well location, the length of the main wellbore, the number of laterals, the length of each lateral, 

the separation distance between laterals, and the bottomhole pressure of the well. The 

second part is the CO2 injection design parameters which include the number of injection 

wells, the well locations, the injection rates, the primary production periods and the WAG cycle 

durations.  
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The primary objective of this study is to build a reliable ANN toolbox that provides the 

necessary knowledge to understand the performance of the CO2 injection technique in low 

permeability reservoirs when using fishbone well designs. A better understanding of how the 

implementation of the fishbone well design and CO2-WAG injection effects the production from 

low permeability reservoirs, will help to increase oil recovery, decrease production costs, and 

decrease environmental impacts. 

The proposed toolbox provides sufficient information for three different approaches to satisfy 

the purpose of the study. The first approach is how to predict the fluid flow rate profiles for the 

reservoir under consideration when different production designs are applied. The second 

approach is how to predict the optimal production design that would achieve the desired fluid 

production by the end of the study duration. The third approach is how to understand the 

reservoir properties of an existing project using the fluid flow rate profiles. The ANN toolbox 

will be able to produce meaningful results for a large number of cases much more rapidly than 

commercial reservoir simulators. The proposed ANN tools will provide enough data to help in 

making successful decisions for the implementation of the CO2 based WAG injection 

technique in low permeability reservoirs. 
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Chapter 3 

Previous Work 

In 2001, (Stalder et al.) studied the efficiency of the multi-horizontal wells to increase the 

production rates and decrease the cost in Zuata Field, Faja, Venezuela. This study showed 

that the fishbone well design costs 1.18 times more than the cost of a single lateral well, and 

the Multilateral is preferred over the single lateral well due to how efficiently it improves the 

production and the connection between different sections of the reservoir 

In 2012, (Xing et al) studied the implementation of the fishbone well designs in the ultra-thin 

reservoir. In this study, the fishbone wells proved to have obvious advantages in single well 

recovery improvement and effective production of low permeability reservoir  

In 2015, (Bazitov et al) presented the results of the implementation of the first fishbone well 

design at Vankorskoe field in Russia. This work presented the capability of the fishbone well 

design to double the oil production in the ultra-thin reservoirs. 

In 2016, (Ghahfarokhi et al) provided an Overview of CO2 Injection and WAG Sensitivity in 

SACROC. In this work, the WAG carbon dioxide injection has been proven to increase the oil 

recovery in low permeability reservoirs by redistributing CO2 and water into low permeability 

zones, which improves the sweep efficiency in more-heterogeneous areas 

In 2008, (Parada and Ertekin) developed an Artificial Neural Network Based Tool-box for 

Screening and Designing Improved Oil Recovery Methods. In 2016, (Hamam and Ertekin) 

developed an Artificial Neural Network Based Tool-box for the Continuous CO2 Injection 

Design in Naturally Fractured Reservoirs Using Neural Network Based Proxy Models. In 2016, 

(Sun and Ertekin) developed an artificial intelligence based decision making tool for cyclic 

steam stimulation processes. In 2017, (Enyioha and Ertekin) developed a performance 

prediction for advanced well structures in unconventional oil and gas reservoirs using artificial 

intelligent expert systems. 

 

 

 



9 
 

Chapter 4 

Methodology 

Building a reliable Artificial Neural Network toolbox that is capable of improving the oil 

production in low permeability reservoirs starts by showing the efficiency of the proposed 

technique. In this study, two combined techniques were introduced to improve the oil 

production from low permeability reservoirs.  

The proposed techniques are the fishbone well design and the Carbon Dioxide based WAG 

injection. The fishbone well design is a series of multilateral well segments that trunk off a 

main horizontal well. The appearance of the fishbone well closely resembles the ribs of a fish 

skeleton trunking off the main backbone.  

The fishbone wells proved to have obvious advantages in single well recovery improvement 

and effective production of low permeable reservoir (Xing et al, 2012). Fishbone wells were 

also applied in different formations. The reported cases of applying the fishbone technique 

have proved the capability of the fishbone design to improve the oil production. In Vankorskoe 

field in Russia, the fishbone well was able to double the oil production in an ultra-thin reservoir 

(Bazitov et al, 2015). 

The WAG carbon dioxide injection has been proven to increase the oil recovery in low 

permeability reservoirs by redistributing CO2 and water into low permeability zones, which 

improves the sweep efficiency in more-heterogeneous areas (Ghahfarokhi et al, 2016).  

The following steps were followed to build the proposed toolbox. Steps 3 through 7 were 

repeated for every single network.  

1. Select the properties under consideration and their responsive ranges 

2. Build a reliable model for the commercial simulator 

3. Train the Network 

4. Test the selected network with untrained data 

5. Analyze the error  

6. Apply the selected network on a real case study  

7. Build a Graphical User Interface 

 

http://www.glossary.oilfield.slb.com/en/Terms/m/multilateral.aspx
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1. Select the properties under consideration and their responsive ranges 

In this study, the desired database consists of two categories which are the input and output 

lists of the simulator. The input of the simulator consists of reservoir properties, oil 

composition, well design parameters, and injection-related parameters. The output of the 

simulator consists of oil, gas, water, CO2 mole fraction in oil, and CO2 mole fraction in gas flow 

rate profiles over a 10 years period. A commercial simulator* has been used to generate the 

flow rate profiles for the cases studied in this research. 

A. Reservoir Properties 

The reservoir characteristics that impact the recovery profile consist of reservoir fluid 

characteristics and reservoir rock characteristics (Gentry & McCray 1987). Table (1) 

represents the selected properties and the study ranges for each property. 

Table 1: The selected properties and their responsive range  

Property Minimum Maximum 

Pattern Area 20 Acres 80 Acres 

Thickness 200 ft 1000 ft 

Depth 2000 ft 8000 ft 

Horizontal permeability  0.1 md 1 md 

Vertical permeability 0.01 md 0.1 md 

Porosity 0.1 0.3 

Rock Compressibility 1 E-8 1 E-6 

Reservoir temperature 100 F 250 F 

Initial Pressure 2000 psi 4500 psi 

Initial Water Saturation 0.1 0.3 

 

 

*CMG Computer Modeling Group Ltd 

CMG, the leader in enhanced oil recovery simulation, delivers software that is easier to use and provides the most accurate results 

for compositional, conventional, unconventional and advanced IOR/EOR processes. CMG software is the industry standard for 

usability, physics, robustness and performance. 
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B. Hydrocarbon composition 

The reservoir fluid composition has a high influence on the implementation of WAG-CO2 

injection because of fluid composition changes that take place throughout the injection 

process. Any change in the hydrocarbon composition would noticeably affect the fluid 

thermodynamic properties which have a high influence on the production rates. 

In previous studies, constant reservoir fluid compositions were used, which limits the 

capability of the generated networks. In this study, the fluid composition is a variable 

parameter to study more possibilities and to build a powerful intelligent toolbox. Table (2) 

represents the chemical components and the range of fraction for each component. Each 

component has its own properties such as molecular weight (MW), specific gravity (SG), 

critical temperature (TC), critical pressure (PC), acentric factor (ɤ), and binary interaction 

coefficients. These properties are important due to their role in building the phase behavior 

model through the Equation of State (EOS). EOS is an analytical representation of any 

system that relates pressure, temperature, and volume of the studied system. The phase 

behavior model is critically important when a gas injection technique is involved because of 

the composition changes. The Peng Robinson (1978) equation of state has been applied to 

throughout the study to build the phase behavior model. 

Reservoir fluids consist of pure well-defined components such as carbon dioxide, nitrogen, 

C1, C2, C3é, C30+ or heavier components.  Because of the high computational demand 

and time required, when all components are used in the simulator, the heavy components 

(greater than C6) are lumped and presented as (C7+). The properties of the C7+ pseudo 

component can be used to identify the heavier pseudo-components and their properties 

using the Plus Fraction Splitting tool in CMG-Winprop.  

Table 2: Hydrocarbon components and the range of each component composition 

Component Minimum Maximum MWT (g/mol) S.G 

CH4 0.01 0.4 16.043 0.818 

C2H6 0.01 0.3 30.07 0.809 

C3H8 0.01 0.3 44.097 0.3 

NC4 0.01 0.5 58.124 0.356 

NC5 0.01 0.5 58.124 0.507 

NC6 0.1 0.5 72.151 0.563 

C7+ 0.3 0.7 218 .8515 
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C. Pattern and well design 

The selected pattern model for this study is the five-spot well pattern. The five-spot well 

pattern consists of four vertical injection wells at the corners and one producing well in the 

center. The injection wells are perforated at the top layer of the reservoir. The producing well 

is a fishbone well design which consists of a main horizontal lateral and multi sub-branches 

in the same horizontal layer as presented in Figure (3). Table (3) represents the production 

well design parameters and their responsive ranges. The main lateral length and the sub-

branch lengths were linked to the length of the reservoir in the x direction and the branch 

locations were linked to the main lateral length to avoid any unrealistic well designs. 

Table 3: Well design parameters and their responsive ranges 

Property Minimum Maximum 

BHP Producer 20% of the initial pressure 50% of the initial pressure 

Well Main Lateral Length 20% of the length in X direction 70% of the length in X direction 

Sub-branch Length  5% of the length in X direction 30% of the length in X direction 

Sub-branch Location  1% of the Main Lateral Length 70% of the Main Lateral Length 

 

  

Figure 3: Fishbone well design 
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D. Injection parameters 

The production with the implementation of the CO2-WAG injection is a function of various 

parameters. Those parameters are the primary recovery period, the bottom-hole pressure of 

the injection well, and the duration of the injection cycles. The primary recovery period is the 

initial period of production when the well produces by the natural reservoir energy such as 

gas drive, water drive, and gravity drainage. The injection cycle is the duration of injecting 

gas or water into the reservoir throughout the life of the project. The bottom-hole pressure of 

the injection wells is linked to the bottom-hole pressure of the producing well to avoid any 

undesirable injection bottom-hole pressures. Table (4) represents the considered ranges of 

injection well bottom-hole pressure, the injection cycle period and the primary recovery 

period. 

Table 4: Injection parameters and the study range of each parameter 

Property Minimum Maximum 

BHP Injector (3 times BHP Producer) (5 times BHP Producer) 

Primary recovery period 6 Month 12 Month 

Cycle period for injection 6 Month 24 Month 
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2. Build a reliable model for the commercial simulator 

Simulation of petroleum reservoir performance refers to the construction and operation of a 

model whose behavior assumes the appearance of actual reservoir behavior. A model itself is 

either physical (for example, a laboratory sandpack) or mathematical. A mathematical model 

is a set of equations that, subject to certain assumptions, describes the physical processes 

active in the reservoir. Although the model itself obviously lacks the reality of the reservoir, the 

behavior of a valid model assumes the appearance of the actual reservoir. 

The purpose of simulation is to estimate field performance under one or more producing 

schemes. Whereas the field can be produced only once, at considerable expense, a model 

can be produced or run many times at low expense and over a short period of time. 

Observation of model results that represent different producing conditions aids selection of an 

optimal set of producing conditions for the reservoir. 

A good simulator model is needed to generate a reliable neural network toolbox to evaluate 

the implementation of the introduced techniques in low permeability reservoirs. In this study, 

we use a mathematically based simulator to predict the production data for the cases under 

consideration. A good simulator model is the one that properly describes the fluid flow in the 

reservoir and provides production data that is close to the real production data of a similar 

reservoir.  

The first step in building a reservoir model is to select a block size that provides a good 

representation of the fluid flow in the reservoir. This is because the block size has a high 

influence on the numerical approximation of the fluid flow in the reservoir. It is well known that 

in a reservoir simulation model the smaller block size the better fluid flow representation. 

However, when large number of blocks is used, it increases the required computational time 

for the simulator to generate the production data. To select the largest block size that well 

represents the fluid flow of the reservoir under consideration, a block size test was conducted. 

A test case with random reservoir properties combined within the range of the study was 

selected to test the block size sensitivity. The maximum pattern area size, 80 acres, was 

selected for this test. Figure (4) represents the cumulative oil production versus time for 

different block sizes. Figure (5) represents the gas-oil ratio for the studied reservoir with 

different block sizes. By observing figures (4) and (5), the block size of 100 ft. by 100 ft. was 

selected for the study since it provided better representation for the numerical approximation 
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of the fluid flow compared to other block sizes. The variance in results between the selected 

size and the lower sizes can be neglected. 

 

 
Figure 4: Cumulative oil production for different block sizes 

 
Figure 5: Gas oil ratio for different block sizes 
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3. Reservoir Model 

In enhanced oil recovery schemes such as gas injection, the process may be immiscible or 

miscible depending on the composition of the injected fluid and the reservoir oil, and on the 

reservoir pressure and temperature. CMG-GEM* is the selected commercial simulator to 

handle both the thermodynamic and the fluid flow aspects of the reservoir to predict the 

production data of the studied cases. CMG-GEM is an efficient, multidimensional, equation-of- 

state (EOS) compositional simulator which can simulate all the important mechanisms of a 

miscible gas injection process, i.e. vaporization and swelling of oil, condensation of gas, 

viscosity and interfacial tension reduction, and the formation of a miscible solvent bank 

through multiple contacts. 

a. Equation of State (EOS) 

Peng-Robinson equation of state was selected for this study to predict the phase equilibrium 

compositions and densities of the oil and gas phases, and supports various schemes for 

computing related properties such as oil and gas viscosities. 

b. Relative Permeability Model 

Stones first model (Stone et al, 1973) was used to develop the three-phase relative 

permeability for the studied cases. In this model for water-wet porous media, the three-phase 

water relative permeability depends only on water saturation and is identical to the water 

relative permeability measured in water/oil displacements. Similarly, the three-phase gas 

relative permeability depends only on gas saturation and is identical to gas relative 

permeability measured in gas/oil displacements at irreducible water saturation. 

c. Hysteresis 

The effect of relative permeability hysteresis on reservoir performance can be significant for 

processes with variable directions of saturation change. For example, during water injection, 

the water saturation is increasing and during the gas injection, the water saturation decreases.  

 

 

*CMG-GEM The composition Simulator, Computer Modeling Group Ltd 

CMG, the leader in enhanced oil recovery simulation, delivers software that is easier to use and provides the most accurate results 

for compositional, conventional, unconventional and advanced IOR/EOR processes. CMG software is the industry standard for 

usability, physics, robustness and performance. 
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The cornerstone of the quantitative prediction of multiphase flow in porous media is the 

concept of relative permeability, which accounts for the reduction in flow of a given phase due 

to the mutual interaction of the different flowing phases. In general, the relative permeability of 

a given phase is a function of the saturations as well as many other rock and fluid 

characteristics such as wettability, flow rate, interfacial tension and saturation histories. The 

dependence of the relative permeability on the saturation path or history is referred to as 

hysteresis. 

d. Three-phase hysteresis model implemented in GEM 

The three-phase hysteresis model used in the simulator is based on the work of Larsen and 

Skauge (Larson et al 1998). The gas phase (non-wetting phase) hysteresis model follows the 

theory of Land and Carlson. The water phase (wetting phase) model interpolates between 

two-phase and three-phase relative permeability curves, where the three-phase water relative 

permeability is interpreted as the relative permeability after gas flooding. The final element of 

the model is the reduction of the minimal oil saturation used in Stoneôs first model for three-

phase oil relative permeability. 

For the non-wetting phase (gas) consider a typical drainage process (increasing gas 

saturation) reaching a maximum gas saturation followed by an imbibition process (decreasing 

gas saturation) leading to a trapped gas saturation  

4. Generate database for training purpose 

The required data to build the desired artificial neural network consists of a number of cases 

with each case consists of the simulator input and output. The simulator input of the cases 

consists of reservoir properties, oil composition, fishbone well design parameters, and CO2-

WAG injection related parameters. For each generated case, the value of each property was 

randomly selected from the property study range. In this study, 2000 cases were created to 

cover the range of the study. The generated cases have been divided into three sets, In 

particular 80% for training, 10% for testing and, 10% for validating the network. 

The simulator was used to obtain the oil, gas, water, CO2 mole fraction in oil, and CO2 mole 

fraction in gas flow rate profiles for the generated cases. The inputs and outputs of the 

simulation were combined to create the database used to develop the artificial neural 

networks toolbox. 
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Chapter 5 

Artificial Neural Network Design 

Artificial Neural Networks consist of simple elements operating in parallel. These elements 

were introduced to mimic the biological nervous systems which are the inspiration of the 

artificial neural networks. As in nature, the network function is determined by the connections 

between elements. The artificial neural network can be trained to perform a particular function 

by adjusting the values of the connections between elements. 

Commonly neural networks are trained to introduce a function and adjust the elements of that 

function for particular inputs to generate specific target outputs. An example of this situation is 

shown in Figure (6). Furthermore, the network is adjusted, based on a comparison of the 

output and the target, until the network output provides a good match to the target.  

 

 

 

 

 

 

 

 

 

Figure 6: Artificial Neural Network logic 
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Figure (7) shows a simple example of a neural network with one hidden layer consisting of 

one neuron. As seen in Figure (7), the inputs are then transmitted through a connection that 

multiplies the value of each input by the assigned weight of each neuron. The neuron may 

have a bias element of 1 which will be added to the multiplication of the input and the weight. 

The transfer function (f) converts the neuron output to the layer output as shown in Figure (7). 

Equation (1) explains how the output of the hidden layer is calculated and Equation (2) 

explains how the hidden layer output is calculated.  

 

Figure 7: Simple network with one hidden layer and one neuron (Demuth et al, 2009) 

 

ὲ В ὡ ὖz ὦééééééééEquation 1 

ὥ Ὢὲ ééééééééEquation 2 

Where; Wij is the assigned weights by network, Pij is the hidden layer input, 

 a is the hidden layer output, n is the output of neurons, M is the number of neurons in the 

hidden layer, and R is the number of weights which equals the number of the input to the 

hidden layer 
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The first step in training an artificial neural network is to select the network architecture. The 

next step is to create a network object, which requires five inputs; 

1. The data set that includes the input and output of the target problem, which was 

prepared using the simulator. 

2. The number of hidden layers and the neurons of each layer. 

3. The name of each the transfer functions that will be used in each layer.  

4. The name of the training function to be used. The final input is the error calculation 

method. In this study, different combinations of the five requirements for the network 

were used in each network.  

1. Architecture  

The neural network architecture determines the method of connecting the weights in the 

network and defines the learning rules in the network. The multi-layer feed-forward was the 

selected architecture for this study due to having the most success among the complicated 

engineering applications (Demuth et al, 2009). A feed-forward protocol is built to connect 

inputs to outputs in a certain way to help to generate the best nonlinear function fitting 

(Demuth et al, 2009).  

There are a number of networks which support the feed-forward protocol, such as that feed-

forward back-propagation and cascade-forward back-propagation networks. In this study feed-

forward and cascade-forward back-propagation based networks were trained to select the 

best fit for the problem under consideration.  

A. Back-propagation  

Back-propagation is a nonlinear differential transfer function where. Back-propagation was 

selected for this study because of its ability to solve the engineering complicated nonlinear 

engineering problems. Properly trained back-propagation networks tend to give reasonable 

answers when presented with inputs that they have never seen.  
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Figure 8: Simple Back-Propagation feed forward network with two hidden layer (Demuth et al, 2009)  

Figure (8) shows an example of the architecture of the feed-forward back-propagation 

network. It contains three major layers: an input layer, hidden layer, and output layer. Each 

layer consists of a number of elements or neurons. The input layer consists of the selected 

parameters which are used to predict the desired output parameters. The hidden layers 

consist of a number of neurons which can be selected by the trial and error method. 

2. Number of hidden layers and number of neurons in each hidden layer 

The number of hidden layers influences the prediction of the output of any network. The 

incremental strategy described by the methodology in this study is to start by training the 

network with one hidden layer before adding additional hidden layers. This continues until the 

optimal number of hidden layers is achieved. The number of neurons in each hidden layer 

was obtained by trial and error. A random number of neurons was assigned to each hidden 

layer until the best performance was achieved. 

3. Transfer function 

The transfer function transfers the summation of the multiplication of inputs and their 

assigned weights to the output of the hidden layer. In this study, three different transfer 

functions were applied. Figure (9) shows these three transfer functions: the Log-Sigmoid 

Transfer Function, the Tan-Sigmoid Transfer Function, and the Linear Transfer Function. In 

the back-propagation architecture, the transfer function of the network output is linear. In the 

hidden layers we applied different combinations of the transfer functions to achieve the best 

performance. 
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Figure 9: Log-Sigmoid Function       Tan-Sigmoid Function                   Linear Transfer Function 

4. Training algorithm  

During training, the weights and biases of the network are iteratively adjusted to minimize the 

network performance function. The training algorithms use the gradient of the performance 

function to determine how to adjust the weights to minimize performance. Conjugate Gradient 

Training Algorithms were selected for this study because of their ability to produce faster 

convergence with better prediction of the target output. 

 Different Conjugate Gradient Algorithms were tested to find the one that provides best fitting 

for the problem under consideration. 

5. Error Calculation 

Mean absolute error was calculated for each phase flow. The network error is the average 

error of the phase errors. The approved network is the network that provides the lowest error. 

ὓὩὥὲ ὃὦίέὰόὸὩ Ὁὶὶέὶ
В ὈὩίὭὶὩὨ ὺὥὰόὩὖὶὩὨὭὧὸὩὨ ὺὥὰόὩ 

 

ὔόάὦὩὶέὪ ὴὥὶὥάὩὸὩὶί
  ȣ ὉήόὥὸὭέὲ σ 

 

After generating a network that satisfies its objective within an acceptable error range, an 

untrained set of cases were used to test the efficiency of the generated network. The selected 

network is the one that was able to provide the best outputs for the untrained testing set within 

the acceptable margin of error. 
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Chapter 6 

Forward Expert Networks (Training  and Results) 

The forward toolbox designed to generate the production data for the reservoir under 

consideration. It also, compares the production data of different production plans, which 

makes it a reliable guide for CO2-WAG injection in low permeability reservoirs. 

To improve the efficiency and the accuracy of the forward tool, the dataset was divided into 

four categories according to the breakthrough behavior throughout the study duration. The 

first category contains the reservoirs with neither water nor carbon dioxide breakthrough. The 

second category includes the reservoirs that have no carbon dioxide breakthrough. The third 

category contains the reservoirs that have no water breakthrough. The last category includes 

the reservoirs that have both water and carbon dioxide breakthrough. 

The forward toolbox consists of the breakthrough prediction network and four forward 

networks corresponding to the aforementioned categories. Each forward network generates 

the production data of its corresponding category. Figure (10) shows the scheme of the five 

forward expert networks along with the input and output of each network. 

 

Figure 10: The forward toolbox scheme 
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1. Carbon Dioxide and Water Breakthrough Prediction Expert Tool (BPExp) 

The breakthrough prediction expert tool predicts whether the reservoir under consideration 

has a carbon dioxide and/or water breakthrough throughout the study duration. The input data 

for this expert network consists of the reservoir properties, oil composition, well design 

parameters, and the injection-related parameters. Figure (11) shows the inputs and the 

outputs of the breakthrough prediction tool. 

 

Figure 11: Carbon Dioxide and Water Breakthrough prediction tool 

Figure (12) shows the chosen network, which achieved an average error of 2%, is a 

backpropagation multilayer feedforward that consists of two hidden layers. The first hidden 

layer has 210 neurons and the second hidden layer has 10 neurons. 

 

Figure 12: The Network structure of the approved prediction tool 
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A. Analysis of the Network Performance 

Analyzing the selected expert network helps understanding the influence each input has on 

the output. The influence of the inputs can be measured by calculating the average 

weighted value for each input in the first hidden layer. Each hidden layer consists of a 

number of neurons, and each of which have a bias number assigned to it. In addition, each 

input has a number of assigned weights equal to the number of neurons. The average input 

weighted value of each input in the trained cases identifies the input impact to the output. 

Equation (4) is used to calculate the average weighted input value for each input in every 

trained case. Equation (5) is used to calculate the average input weighted value among the 

studied cases. 

ὃὺὩὶὥὫὩ Ὅὲὴόὸ ύὩὭὫὬὸὩὨ ὺὥὰόὩ 
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ὔ

ὃὺὩὶὥὫὩ Ὅὲὴόὸ ύὩὭὫὬὸὩὨ ὺὥὰόὩ 
ὔ

Ὦρ

Ȣ                 υ 

Where R is the number of neurons, N is the number of training cases, Wij is the weight 

assigned to the link from input j to neuron i, and Pj is the jth input,  

 

The average input weighted value assigned to each input reflects the influence of each input 

on the output. These values of the weights are used to sort the inputs by their degree of 

influence on the output. Figure (13) shows the average input weighted value assigned to 

each input in the network. From these values, we observe the high influence of the oil 

composition on the occurrence the water and carbon dioxide breakthrough. 
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Figure 13: The average input weighted values for the BPExp 
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2. Forward Network for Reservoirs with Neither CO2 Nor Water Breakthrough 

(FN_NO_W_NO_CO2) 

The forward network for reservoirs with neither CO2 nor water breakthrough is designed to 

predict the oil and gas flow rate profiles. The designed network compares the production 

data of different production plans, which makes it a reliable guide for CO2-WAG injection in 

low permeability reservoirs. Figure (14) shows the inputs and the outputs of the introduced 

network. 

 

Figure 14: Forward network for reservoirs with neither CO2 nor Water Breakthrough 

The dataset was divided into three sets, namely; training set, validation set, and testing set. 

In particular, 80% for training, 10% for validation, and 10% for testing. 

We tested different network structures, transfer functions, learning algorithms, number of 

hidden layers and number of neurons in each hidden layer in order to achieve the best 

performance. The chosen network, shown in Figure (15), is a multilayer backpropagation 

cascade network with one hidden layers which contains 10 neurons and uses tansig transfer 

function. It achieved an average absolute error of 7.52%.  

 

 
Figure 15: FN_NO_W_NO_CO2 Expert Network structure 
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A. Testing the Selected Network  

An untrained dataset, that covers the range of the study, was used to test the selected 

network. Figure (16) shows the margin of error between the flow rate profiles generated by 

the simulator and the ones generated by the selected network. About 75% of the tested 

cases have an error less than 10%. Figure (17) shows the margin of error between 

cumulative production profiles generated by the simulator and the ones generated by the 

network. About 71 % of the tested cases have an error less than 10%.  

 

Figure 16: Margin of flow rate error for the FN_NO_W_NO_CO2 Expert Network 

 

Figure 17: Margin of cumulative production error for the FN_NO_W_NO_CO2 Expert Network 
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a) Tested cases with average errors below 5% 

Figures (18) and (19) show the oil and gas flow rate profiles and the cumulative oil and 

gas production profiles of randomly selected cases with an error less than 5%. 

 

Figure 18: Case with flow rate average error of 3.98% and cumulative production average error of 1.06% 

 

Figure 19: Case with flow rate average error of 4.31% and cumulative production average error of 5.46% 
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b) Tested cases with average errors between  5% and 10% 

Figures (20) and (21) show the oil and gas flow rate profiles and the cumulative oil and 

gas production profiles of randomly selected cases with an error between 5% and 10%. 

 

Figure 20: Case with flow rate average error of 5.4% and cumulative production average error of 2.31% 

 

Figure 21: Case with flow rate average error of 6.58% and cumulative production average error of 3.87% 
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c) Tested cases with average errors between  10% and 15% 

Figures (22) and (23) show the oil and gas flow rate profiles and the cumulative oil and 

gas production profiles of randomly selected cases with an error between 10% and 

15%.

 

Figure 22: Case with flow rate average error of 10.19% and cumulative production average error of 5.12% 

 

Figure 23: Case with flow rate average error of 11.63% and cumulative production average error of 4.63% 
















































































































































































