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ABSTRACT 

 Conformal antennas, used extensively on mobile communications systems, gener-

ally have complex configurations and are often times mounted on or used within large 

structures. Hence, the modeling of such antennas is a challenging problem. The most fre-

quently used numerical techniques either require excessive computational resources or 

cannot effectively model such structures. Thus, hybrid techniques have recently been 

employed to take advantage of each method’s strengths, while minimizing weaknesses. 

 To enhance computational efficiency, a new methodology is introduced in this 

thesis, based on a combination of the Finite Difference Time Domain (FDTD) and the 

Method of Moments (MoM) numerical techniques in conjunction with the Surface 

Equivalence and Reciprocity Theorems. Several antenna configurations are considered to 

illustrate the new methodology: 1) radiating slots on conducting cylinders, 2) microstrip 

patch antennas mounted on large conducting structures, and 3) reflector antennas with 

partial circular symmetry. 

 In the transmit mode, the region containing the radiation source is first analyzed 

using either the MoM or FDTD technique to determine “equivalent currents” at the radi-

ating aperture. The Surface Equivalence Principle is then applied, allowing the material 

in the radiating region to be theoretically modified to match its surroundings. This creates 

a homogeneous structure for the first two antenna types, and a circularly symmetric struc-

ture for the last type. 
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 The operation of the antenna system is then reversed to the receive mode, and the 

fields produced at the radiating aperture are determined. By analyzing this mode of op-

eration, difficult integrals and asymmetric sources are avoided for antenna types 1 and 2, 

and 3, respectively. For antenna types 1 and 2, the MoM technique is used to compute the 

surface fields, which reduces computational resource requirements since the surface of 

the structure – as opposed to its volume – is modeled. For antenna type 3, the effective 

removal of asymmetric sources allows a 2-D FDTD simulation of the antenna structure, 

instead of a full 3-D model. 

 Finally, utilizing the Reciprocity Theorem, the surface fields determined for the 

receive mode case are combined with the “equivalent currents” calculated in the transmit 

mode in order to compute far-zone fields. Through use of the technique, computational 

savings on the order of 95% are realized. 

 
 



TABLE OF CONTENTS 

 

LIST OF FIGURES......................................................................................................viii 

ACKNOWLEDGMENTS............................................................................................xii 

Chapter 1 INTRODUCTION .......................................................................................1 

1.1 Research Objective and General Technique ...................................................2 
1.2 Thesis Outline .................................................................................................4 

Chapter 2 GENERAL ANALYSIS METHODS..........................................................7 

2.1 FDTD Fundamentals .......................................................................................7 
2.1.1 Difference Equations.............................................................................8 
2.1.2 Yee Cell ................................................................................................12 
2.1.3 Absorbing Boundary Conditions (ABC)...............................................14 
2.1.4 Geometries Best Suited for FDTD Simulations....................................16 
2.1.5 Improved Conformal FDTD Algorithm................................................17 

2.2 MoM Fundamentals ........................................................................................20 
2.2.1 The Electric Field Integral Equation (EFIE) .........................................21 
2.2.2 Moment Method....................................................................................23 
2.2.3 Rao-Wilton-Glisson Basis Functions....................................................25 
2.2.4 Geometries Best Suited for MoM Simulations.....................................29 
2.2.5 Example MoM Surface Current Distribution .......................................30 

2.3 Surface Equivalence Principle ........................................................................33 
2.4 Reciprocity Theorem.......................................................................................36 
2.5 Hybrid Techniques ..........................................................................................37 

2.5.1 Previously Used Hybrid Techniques.....................................................37 
2.5.2 Proposed Method ..................................................................................41 

Chapter 3 RADIATION PATTERNS FROM SLOTS MOUNTED ON 
CYLINDRICAL STRUCTURES .........................................................................44 

3.1 Problem Geometry ..........................................................................................45 
3.2 Reciprocity Method for Pattern Computation.................................................46 
3.3 Infinite-Length Cylinder..................................................................................49 

3.3.1 Azimuthal Slot ......................................................................................49 
3.3.2 Axial Slot ..............................................................................................53 



vi 

 

3.4 Finite-Length Cylinder ....................................................................................57 
3.4.1 Azimuthal Slot ......................................................................................58 
3.4.2 Axial Slot ..............................................................................................63 

3.5 Summary .........................................................................................................67 

Chapter 4 ANALYSIS OF CONFORMAL ANTENNAS MOUNTED ON 
LARGE STRUCTURES.......................................................................................68 

4.1 Problem Geometry ..........................................................................................69 
4.2 Reciprocity Approach to Pattern Computation ...............................................71 
4.3 Conformal FDTD Simulated Aperture Fields.................................................75 
4.4 Reciprocity Based Pattern Computations........................................................80 

4.4.1 Co-Polarization Patterns .......................................................................80 
4.4.2 Cross-Polarization Patterns...................................................................82 

4.5 Summary .........................................................................................................84 

Chapter 5 ANALYSIS OF A LARGE REFLECTOR ANTENNA SYSTEM 
WITH AN ASYMMETRIC FEED .......................................................................87 

5.1 Problem Geometry ..........................................................................................89 
5.2 Application of the Equivalence and Reciprocity Theorems............................91 
5.3 Azimuthal Harmonics .....................................................................................93 
5.4 Fields Located at the Z-Axis ...........................................................................98 
5.5 Conformal Method for Modeling Perfect Conductors ....................................100 
5.6 Modeling of Curved Dielectric Surfaces.........................................................103 
5.7 Tapered Excitation Source and Non-Uniform Mesh.......................................104 
5.8 Numerical Results ...........................................................................................104 
5.9 Summary .........................................................................................................111 

Chapter 6 ANALYSIS OF A LARGE REFLECTOR ANTENNA SYSTEM - 
TILTED RADOME CONFIGURATION.............................................................113 

6.1 Problem Geometry ..........................................................................................113 
6.2 Method ............................................................................................................114 

6.2.1 Aperture Field Construction .................................................................115 
6.2.2 3-D FDTD Simulation ..........................................................................120 

6.3 Numerical Results ...........................................................................................120 
6.4 Summary .........................................................................................................127 

Chapter 7 CONCLUSIONS .........................................................................................128 

7.1 Efficiency Enhancement..................................................................................129 
7.2 Accuracy of the Method..................................................................................130 
7.3 Suggestions for Further Research ...................................................................132 
BIBLIOGRAPHY .................................................................................................133 



vii 

 

Appendix A Aperture Surface Integral: Integrand H*M Equivalence to E*J ..............139 

Appendix B Derivation of Tilted Radome Parameters ................................................142 

 

 

 

 
 



LIST OF FIGURES 

 

Figure 2–1: 3-D Yee Cell.............................................................................................13 

Figure 2–2: 2-D FDTD Cell Partially Located within PEC.........................................18 

Figure 2–3: Staircased vs. Conformal Approximation to a Circular Disk...................18 

Figure 2–4: Source and Observation Coordinates .......................................................22 

Figure 2–5: +
nT  and −

nT  Triangular Patch Definitions, nth edge ..................................27 

Figure 2–6: Surface Current Calculation at Point P Inside Patch m ............................27 

Figure 2–7: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave.......................31 

Figure 2–8: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave, x & y Cuts ...32 

Figure 2–9: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave, x & y Cuts 
(IE3D)....................................................................................................................32 

Figure 2–10: Currents at Field Discontinuities............................................................34 

Figure 2–11: Surface Equivalence Principle................................................................34 

Figure 3–1: Narrow Azimuthal and Axial Radiating Slots on.....................................45 

Figure 3–2: Reciprocity Approach for Radiating Slot Pattern Computation...............46 

Figure 3–3: Jz vs. φ Produced by Ez Plane Wave on r = 0.2λo Infinite Length 
Cylinder.................................................................................................................50 

Figure 3–4: Eθ vs. φ Pattern for Azimuthal Slot (Reciprocity Method).......................51 

Figure 3–5: Eθ vs. φ Pattern for Azimuthal Slot (Direct Method) ...............................53 

Figure 3–6: Jφ vs. φ Produced by Eφ Plane Wave on Cylinder with.............................54 

Figure 3–7: Eφ vs. φ Pattern for Axial Slot (Reciprocity Method)...............................55 



ix 

 

Figure 3–8: Eφ vs. φ Pattern for Axial Slot (Direct Method) .......................................57 

Figure 3–9: Jz Produced by Ez Plane Wave Incident on 5λ Long PEC Cylinder.........58 

Figure 3–10: Jz vs. φ @ z-midpoint plane on 5λ PEC Cylinder ..................................59 

Figure 3–11: Jz Produced by Ez Plane Wave Incident on 6λ Long PEC Cylinder.......59 

Figure 3–12: Jz vs. φ @ z-midpoint plane on 6λ PEC Cylinder ..................................60 

Figure 3–13: Eθ From 24.8o Azimuthal Slot on Odd Wavelength Long PEC 
Cylinder {0.5λ to Infinite Length}........................................................................60 

Figure 3–14: Eθ From 24.8o Azimuthal Slot on Odd Wavelength Long PEC 
Cylinder{3λ to Infinite Length}............................................................................61 

Figure 3–15: Eθ From 24.8o Azimuthal Slot on Even Wavelength Long PEC 
Cylinder {0.5λ to Infinite Length}........................................................................62 

Figure 3–16: Eθ From 24.8o Azimuthal Slot on Even Wavelength Long PEC 
Cylinder {4λ to Infinite Length}...........................................................................62 

Figure 3–17: Jφ Produced by Eφ Plane Wave Incident on ............................................64 

Figure 3–18: Jφ vs. φ @ z-midpoint plane on 1λ Long, 0.2λ radius PEC Cylinder .....64 

Figure 3–19: Jφ Produced by Eφ Plane Wave Incident on ............................................65 

Figure 3–20: Jφ vs. φ @ z-midpoint plane on 2λ Long, 0.2λ radius PEC Cylinder .....65 

Figure 3–21: Eφ From Axial Slot on ............................................................................66 

Figure 4–1: Elliptical Patch Antenna Mounted on Infinite Length Conducting 
Cylinder.................................................................................................................69 

Figure 4–2: Microstrip Patch Antenna Geometry........................................................70 

Figure 4–3: Modified Microstrip Patch Antenna Geometry........................................72 

Figure 4–4: E*J Pattern Computation..........................................................................73 

Figure 4–5: FDTD Mesh Discretization of Microstrip Patch Antenna........................75 

Figure 4–6: Aperture Distributions, |Ex| and |Ey|..........................................................76 

Figure 4–7: Aperture Distributions, Phase of Ex and Ey..............................................77 



x 

 

Figure 4–8: Superstrate Field Distributions, |Ex| and |Ey| (IE3D).................................78 

Figure 4–9: Superstrate Field Distributions, Phase of Ex and Ey (IE3D).....................78 

Figure 4–10: Eθ H*M Patterns: Cavity vs. No-Cavity.................................................79 

Figure 4–11: Eθ: H*M vs. E*J Patterns .......................................................................80 

Figure 4–12: Eθ: H*M Original & Widened Aperture vs. E*J Patterns ......................81 

Figure 4–13: Eφ: H*M (CFDTD) vs. H*M (IE3D) & E*J (IE3D) Patterns.................82 

Figure 4–14: |Jz| and |Jφ| (dBA/m) vs. φ for r = 0.631λo, ..............................................83 

Figure 5–1: Reflector Antenna System........................................................................88 

Figure 5–2: Microstrip Patch Antenna Geometry........................................................89 

Figure 5–3: Monopulse Radar Operation ....................................................................90 

Figure 5–4: Application of Equivalence and Reciprocity Theorems to Original 
System ...................................................................................................................91 

Figure 5–5: Incident Eθ Plane Wave............................................................................96 

Figure 5–6: 2-D BOR Cell Structure ...........................................................................99 

Figure 5–7: Conformal Method for Perfect Conductors..............................................101 

Figure 5–8: |Jx| Current Distribution, Azimuthal Difference Patterns .........................105 

Figure 5–9: |Jy| Current Distribution, Azimuthal Difference Pattern...........................106 

Figure 5–10: |Jx| Current Distribution, Elevation Difference Pattern ..........................106 

Figure 5–11: |Jy| Current Distribution, Elevation Difference Pattern ..........................107 

Figure 5–12: |Jx| Current Distribution, Sum Pattern ....................................................107 

Figure 5–13: |Jy| Current Distribution, Sum Pattern ....................................................108 

Figure 5–14: Eρ vs. ρ & z cells, Reflector Antenna System ........................................109 

Figure 5–15: Comparison Between Simulated and Measured Data ............................110 

Figure 6–1: Tilted Radome Configuration...................................................................114 



xi 

 

Figure 6–2: Tilted Radome and Projected Field Distribution......................................115 

Figure 6–3: Tilted Radome and Projected Field Distribution, with Parameter 
Definitions.............................................................................................................116 

Figure 6–4: Tilted Radome: θ − α = -90o ....................................................................118 

Figure 6–5: Tilted Radome: θ = -90o ...........................................................................119 

Figure 6–6: Projection of distribution onto Radiating Aperture..................................119 

Figure 6–7: Aperture Field through Higher Permittivity Material (εr = 8.5) ...............121 

Figure 6–8: Aperture Field through Lower Permittivity Material (εr = 4.2)................122 

Figure 6–9: Elliptical Radome Pattern Projection onto Radiating Aperture ...............122 

Figure 6–10: Resultant Aperture Field Pattern ............................................................123 

Figure 6–11: Patches on Feed Dielectric Surface ........................................................124 

Figure 6–12: Sum Pattern (peak at boresight) vs. yz-plane Tilt Angle........................125 

Figure 6–13: Azimuthal Difference Pattern (null along y-axis) vs. yz-plane Tilt 
Angle .....................................................................................................................125 

Figure 6–14: Elevation Difference Pattern (null along x-axis) vs. yz-plane Tilt 
Angle .....................................................................................................................126 

Figure B–1: Tilted Radome and Projected Field Distribution, with Parameter 
Definitions.............................................................................................................142 

Figure B–2: Radome Projection onto Main Reflector .................................................143 

Figure B–3: Tilted Radome: θ = -90o...........................................................................145 
 

 

 

 
 



ACKNOWLEDGMENTS 

 I am dedicating this thesis to my wife, Lisa, for her patience and constant support 

throughout my graduate studies. Without her encouragement over the years, the comple-

tion of this thesis would not have been possible. I would also like to thank my Dad, Mr. 

James Arakaki, for encouraging me to study electrical engineering and for his constant 

support of my educational endeavors. 

 I am grateful to my co-advisors, Drs. Raj Mittra and Douglas Werner for their pa-

tience, guidance, and support throughout the course of this research. I also thank my 

committee members for reviewing my thesis and administering the Comprehensive and 

Final Oral Examinations. 

 I appreciate the support and advice from members of the Electromagnetic Com-

munications Research Laboratory at Penn State, especially Dr. Wenhua Yu, Mr. Sourav 

Chakravarty, Dr. Vladimir Veremey, and Mr. Yi Yang. I have benefited from our many 

discussions and the development of new ideas. I would also like to thank Dr. Karthikeyan 

Mahadevan for his help with the edge to surface current calculation program that we de-

veloped. I am also grateful for the support I received from Mr. Jeff Nucciarone in the use 

of the IBM RS/6000 SP computer at Penn State. 

 Finally, I would like to thank Mr. Jerry Chang, staff engineer at Hughes Aircraft 

Company, whom I worked with for four years. His skill in modeling electronic circuit 

phenomena served as an inspiration to me, and instilled in me a desire to improve my 

knowledge through graduate studies in electrical engineering. 



Chapter 1  
 

INTRODUCTION 

 Low profile conformal antennas used on mobile communications systems are re-

ceiving widespread attention due to the advantages of minimized aerodynamic friction 

and radar cross-section, reduced risk of antenna structural damage, and simplified con-

struction requirements over conventional antennas. Conformal microstrip antennas were 

first proposed in 1953 by Deschamps [1] and patented in France in 1955 by Gutton and 

Baissinot [2]. Conformal antennas were shown to have useful practical applications on 

systems such as aircraft and rockets [3]; thereby initiating substantial interest and re-

search into the understanding and design of conformal antennas. Analysis on basic rec-

tangular and circular microstrip patch antennas was conducted in 1975 by Howell [4]. 

 Since conformal antennas generally have complex configurations and are usually 

mounted on large structures, the modeling of such antennas continues to be a challenge. 

Simulation methods that excel at modeling complex structures require excessive compu-

tational resources when the problem geometry is large with respect to the wavelength. 

Alternatively, simulation techniques that are well-suited for the modeling of large arbi-

trarily-shaped structures are limited to structures composed of a low number of materials 

arranged in simple configurations. By using a combination of techniques, one can take 

advantage of the strengths of each method and simultaneously minimize the effects of 

any weaknesses. One of the chief concerns in using these hybrid methods is the design of 
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the interface between the techniques. It must unite the various methods used with mini-

mal effect on the accuracy and run-time efficiency of the computation. 

 This thesis describes a new hybrid method that uses a combination of the Finite 

Difference Time Domain technique (FDTD) [5] and the Method of Moments (MoM) [6]. 

In the first problem geometry – a conformal antenna mounted on a large conducting 

structure – the FDTD method is used in the region containing the conformal antenna, 

while the MoM technique is used to model the structure the antenna is mounted on. In the 

second geometry – a reflector antenna system – the MoM method is used to model the 

conformal microstrip feed antenna, while the FDTD technique is used to simulate the re-

mainder of the reflector system. The interface between these two methods, in both cases, 

is provided by the Surface Equivalence and Reciprocity Theorems. The objective of this 

thesis and an overview of the proposed technique will now be presented. 

1.1 Research Objective and General Technique 

 The objective of this thesis is to develop an efficient method for pattern computa-

tion. The geometries of interest are conformal antennas mounted on arbitrarily-shaped 

conducting bodies or used within large antenna systems. 

 The proposed hybrid technique is first verified on known canonical problems de-

scribed in [7], followed by applications to geometries solvable by numerical methods 

only. For these cases, convergence to the canonical geometries is demonstrated. 

 For the first problem geometry, the proposed method is to be used within a design 

optimization loop for the attainment of a specified radiation pattern. This loop alters the 
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patch shape and placement on the mounting structure as it optimizes. The computational 

efficiency is enhanced by utilizing the synergy of the hybrid method, which exploits the 

strengths of both the FDTD and the MoM numerical techniques. The FDTD method is 

initially used to determine the equivalent currents at the radiating aperture of the confor-

mal antenna, followed by the application of the Surface Equivalence Principle, which al-

lows closure of the aperture with perfectly conducting material. This results in a large 

conducting body of arbitrary shape, which is readily modeled by the MoM approach. 

 Simulation of the region containing the conformal antenna by a volume cell ap-

proach (FDTD), followed by a simulation of the mounting structure by a surface discreti-

zation method (MoM), results in computational resource savings of greater than 95%, 

when compared to an FDTD-gridded computational model of the entire geometry. Radia-

tion pattern accuracy is maintained to within 1 to 2 dB when compared to patterns gener-

ated by alternate means [8]. In addition, when the proposed method is used within the 

patch antenna shape and location optimization loop mentioned above, further computa-

tional resource savings are realized, as only a portion of the entire model requires resimu-

lation. 

 In the case of the reflector antenna system, the MoM method is used to compute 

equivalent currents at the radiating feed antenna. This is followed by another application 

of the Surface Equivalence Principle, which allows the asymmetric radiating conducting 

elements to be replaced with the equivalent currents, yielding a symmetric structure. The 

remainder of the now-symmetric geometry is analyzed by a body-of-revolution (BOR) 

FDTD algorithm [9]. Computational resource savings of greater than 97% are realized 
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when compared to a full 3D volume discretization of the entire geometry. The resultant 

radiation pattern compares closely with actual test data. 

 The proposed method is also used to model the same reflector antenna system, but 

with an asymmetrical radome covering the main reflector system [10], [11]. The method 

is used to compute radiation patterns as a function of the tilt angle between the radome 

and the main reflector antenna system. 

 Improvements to the standard FDTD algorithm have been made to enhance mod-

eling accuracy for patch antennas with curved edges [12], and codes have been developed 

to compute radiation patterns for the various geometries mentioned earlier [8]-[10]. 

1.2 Thesis Outline 

 Chapter 2 provides a background on the simulation techniques used in the pro-

posed method, namely the FDTD and MoM techniques, along with a description of the 

geometries best suited for analysis by each method. Hybrid techniques previously used 

on structures similar to those described in this thesis are also discussed, including their 

advantages and disadvantages. Finally, the Surface Equivalence and Reciprocity Theo-

rems are described, as they form the interface between the two numerical techniques in 

the proposed hybrid method. 

 Validation of the proposed method is illustrated in Chapter 3 by modeling narrow 

radiating slots mounted on an infinite-length conducting cylinder. A description of the 

proposed method – a Reciprocity Approach – to pattern computation is presented fol-

lowed by radiation patterns for slots oriented in both the axial and azimuthal directions. 
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These plots are compared to patterns computed by analytical means and are shown to be 

in exact agreement. Finally, pattern computations for the same slots but mounted on fi-

nite-length conducting cylinders are shown, and convergence to the infinite-length case is 

demonstrated as the cylinders are increased in length. 

 Chapter 4 presents the analysis of an elliptical microstrip patch antenna contained 

within a dielectric cavity and mounted on an infinite-length conducting cylinder. The in-

finite length was chosen to allow comparison of the pattern to an alternate method. A de-

scription of the problem geometry is first presented, followed by a description of the 

Reciprocity Approach applied to this specific geometry. Electric field distributions pro-

duced by the patch antenna and plane wave-generated current distributions on the surface 

of the conducting cylinder are presented, as determined by the improved conformal 

FDTD algorithm and analytical formulas, respectively. Finally, the radiation pattern de-

rived from the electric fields and surface currents is presented and compared to a pattern 

computed by an alternate method. They are shown to be in close agreement. A descrip-

tion of the alternate method is also included in this chapter. 

 Chapter 5 describes the analysis of a large reflector antenna system, which is cir-

cularly symmetric about the reflector’s axis of rotation except for the microstrip feed. The 

problem geometry is first defined, followed by a description of the application of the Sur-

face Equivalence and Reciprocity Theorems to efficiently compute the radiation pattern. 

Next, the analysis of the microstrip patch feed antenna is presented, which includes the 

application of the Surface Equivalence Principle. This renders the original geometry cir-

cularly symmetric. The Body of Revolution (BOR) FDTD algorithm is then described, 
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which exploits the symmetry created by the equivalence principle. A description of the 

Reciprocity approach to pattern computation for this specific case is then outlined, fol-

lowed by the procedure used to compute both co-polarization and cross-polarization gain 

from the left-hand circularly polarized (LCP) reflector antenna system. Finally, the resul-

tant pattern is compared to actual test data, and the two patterns are shown to be in good 

agreement. 

 Chapter 6 describes the analysis of the same reflector antenna system, except with 

an inhomogeneous radome covering the entire system. An “equivalent aperture” ap-

proach is developed to compute radiation patterns with respect to the tilt angle between 

the radome and the remainder of the reflector antenna system. A description of the aper-

ture field construction procedure is presented followed by plots of aperture field distribu-

tions used in the analysis. Finally, radiation patterns as a function of the tilt angle 

between the radome and reflector antenna system are presented. 

 Chapter 7 presents a summary of the thesis research and suggestions for further 

improvements. 

 

 

 
 



Chapter 2  
 

GENERAL ANALYSIS METHODS 

 This chapter describes the general numerical methods used to model the problem 

geometries outlined in Chapter 1. The application of techniques specific to particular 

problem geometries is described in later chapters concerned with these geometries. The 

Finite Difference Time Domain (FDTD) and Method of Moments (MoM) techniques are 

described, followed by the Surface Equivalence and Reciprocity Theorems, which are all 

employed in the proposed method. The geometries best suited to each method are also 

discussed. Next, a survey of hybrid techniques previously used, which usually involve a 

combination of two simulation methods, is presented. Finally, the proposed method is 

described and a justification for the selection of the particular combination of techniques 

is provided. 

2.1 FDTD Fundamentals 

 The Finite Difference Time Domain (FDTD) technique is one of the most popular 

means of analyzing transient and frequency-domain electromagnetic problems. Due to its 

formulation, it can be used to model combinations of several materials configured in arbi-

trary structures. In addition, because the results are in the time domain, they can be Fou-

rier-transformed to the frequency domain, yielding information over a wide range of 

frequencies. Another advantage of this method is the absence of matrices, which are typi-
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cally found in other techniques, thereby eliminating the need for extensive matrix inver-

sion techniques. 

 The finite difference method was first suggested by Yee in 1966 [16], but was 

dismissed as an accurate but impractical numerical method due to the state of computa-

tional systems at that time. With the explosive growth of computational power, the 

method was reconsidered in the early 1990s, and has now become the most popular nu-

merical technique for electromagnetic simulations. 

  Background information on the FDTD method, sufficient for an understanding of 

the proposed hybrid technique, is presented in this section. For additional information, 

references [5] and [17] can be consulted. 

2.1.1 Difference Equations 

 The FDTD technique is based on Maxwell’s curl equations (2.1), which describe 

the behavior of fields at all coordinates and at all times. 

t

t

∂
∂−=×∇

∂
∂+=×∇

B
E

D
JH

 ( 2.1 ) 

 
where D = εE and B = µH. The terms D and B are the electric and magnetic flux densi-

ties, and E and H are the electric and magnetic fields, respectively. Material properties 

(permittivity and permeability denoted as ε and µ, respectively) in the above relations can 

be expressed as second-order tensors to accommodate the general case of anisotropic ma-

terials and can also be time-varying. However, for the time-varying case, a time convolu-
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tion technique is required [20] within the conventional FDTD algorithm. The permittivity 

of a material can be expressed as 

( )
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Likewise, the permeability µ of a material can be expressed in the same manner. For 

some materials, the off-diagonal components of (2.2) are zero (i.e., εij = 0 for i ≠ j). For 

anisotropic materials in which this condition holds, the remaining nonzero diagonal ele-

ments are distinct, while for isotropic materials, all three elements are identical and the 

tensor can be expressed as a scalar. Only isotropic materials are considered in this thesis. 

 In the FDTD method, these relations are transformed into equivalent difference 

equations. The curl of the magnetic field H in Cartesian coordinates is expressed as fol-

lows: 
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Derviatives in (2.3) are converted to difference equations as follows: 
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The right hand side of (2.1) is expressed in difference equation form, in which the mate-

rial is assumed isotropic, as follows: 
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The spatial derivatives contained in the curl of the magnetic field shown in equation (2.3) 

are approximated as in (2.4) for each component, while equation (2.5) shows the time 

derivatives in difference equation form. The curl of the electric field E in the second rela-

tion of (2.1) is also expanded in the manner shown for the H field in (2.3). 

 The difference equations shown in (2.5) are in the form known as central differ-

ences, as both the time and spatial derivatives are centered about the coordinates of inter-

est (i.e., the time and spatial derivatives are centered about time t and coordinates (x, y, z), 

respectively). This numerical approximation of the derivative results in second order ac-

curacy: a decrease in the discretization size ∆ (time or space) by a factor k improves the 

accuracy of the calculation by the factor k2 [18], [19]. The FDTD update equations for 

electric fields located within isotropic materials appear in (2.6)-(2.8). 
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in which the subscripts and superscripts represent the polarization direction and time in-

dex, respectively. The term ( )kji ,,~ε  represents the permittivity averaged over the four 

cells surrounding the electric field of interest since E fields are defined on cell edges, 

while isotropic material properties are defined within cell volumes (see Figure 2–1). 
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The update equations for magnetic fields located within isotropic materials are presented 

in (2.9)-(2.11). 

2.1.2 Yee Cell 

 In the conversion from differential to difference equations, both time and space 

are transformed from a continuum of infinitesimal point coordinates into discrete cells 

with finite dimensions. The convention adopted by FDTD researchers to define these dis-

crete field locations and polarizations is known as the Yee cell (see Figure 2–1), named 

in honor of the researcher who devised this numerical technique [16]. Arrows with a cir-

cle at the base denote H fields, while all others represent E fields. Only a few representa-

tive fields have been labeled for the sake of clarity. The coordinate indexing scheme 

denotes cells in the x, y, and z directions as integer indices i, j, and k, respectively. 
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The cell dimensions are ∆x by ∆y by ∆z, which can vary as a function of x, y, and z to 

more closely conform to objects with curved edges or surfaces. For accurate simulations, 

cells with edges of length λm/10 or less is required with λm/20 as the recommended 

maximum size (λm is the wavelength of an isotropic material contained within the cell of 

interest). This discretization allows a sufficient number of field samples as a function of 

spatial distance, to yield an accurate representation of the actual field. 

 In addition, the time increment used for the simulation must be set below a maxi-

mum value to ensure numerical stability. The relation that must be satisfied is known as 

the Courant stability condition [21], [22], and is expressed as  

 
 
 

Figure 2–1: 3-D Yee Cell 
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in which v is the minimum propagation velocity for all cells contained within the simula-

tion volume. Thus, all materials in the model must be accounted for when determining 

the maximum time increment. 

2.1.3 Absorbing Boundary Conditions (ABC) 

 For open boundary radiation problems in which a system is located within an in-

finite free-space (or dielectric) volume, the simulation model must include all effects on 

the fields due to the system, but exclude all fields produced by reflections from simula-

tion domain boundaries. Due to limited computational resources, the simulation domain 

requires truncation, which may introduce spurious fields from the boundaries unless ap-

propriate measures are taken. Recently, this issue has been the subject of extensive re-

search efforts. 

 The first most widely used ABC was devised by Mur in 1981 [23]. This boundary 

condition is derived from a one-way wave equation, which allows only outgoing waves 

as possible solutions. However, the attenuation of waves incident on the Mur ABC de-

grades as the incident angle (away from the normal) increases until at the grazing angle, 

the boundary becomes perfectly reflecting. 

 In 1994, Berenger [24] derived a new boundary condition referred to as a Per-

fectly Matched Layer (PML) which reduces reflections several orders of magnitude be-
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low other techniques. It uses a modified set of Maxwell’s equations in which fields at the 

ABC-simulation space interface are split into two components and an artificial anisot-

ropic material is introduced within the ABC. The result is a PML wave impedance per-

fectly matched to the simulation space and independent of incident angle. Incident waves 

are attenuated in the direction normal to the layers as they propagate through the artificial 

medium. Reflection coefficients as low as –80 dB have been demonstrated [25] for both 

2-D and 3-D FDTD simulations. These reflection coefficient figures represent a 40 dB 

improvement over the Mur and Liao [26] ABCs. 

 Although the PML technique provides an excellent boundary condition, its split 

field formulation requires a two-fold increase in computational memory and run-time in 

the regions containing the PML material relative to the conventional FDTD algorithm. To 

avoid this additional burden, a PML boundary condition based on a Maxwellian formula-

tion has been derived [27] and shown to be equivalent in effectiveness to the Berenger 

PML ABC. This alternate algorithm has the advantages of enhanced computational effi-

ciency within the PML regions and elimination of the need for FDTD update equations 

modified for the split field formulation. The FDTD simulations presented in this thesis 

are based on this new PML algorithm. The code uses six PML layers with a fourth order 

spatial variation (normal to the layers) of the conductivity, as suggested in [27]. 

 To conduct a simulation, the problem geometry is first defined by assigning ap-

propriate material values (as in equation 2.2) to all cells in the simulation domain. Next, 

all cell fields in the simulation domain are initialized to appropriate values: cells in re-

gions containing sources are set to the excitation source values, while all others are set to 



16 

 

a desired initial value (usually zero). The fields at subsequent time increments in all cells 

not containing sources are computed from the difference equations presented in (2.6)-

(2.11). Thus, all fields in the simulation domain are updated at each time step by these 

difference equations, which include a source definition for cells located at source coordi-

nates. Note that the time increment must also be selected below the maximum value de-

fined in equation (2.12) to maintain numerical stability. Absorbing boundary conditions, 

preferably the PML technique, should be used at the truncation boundaries to obtain ac-

curate results for open radiation problems. 

2.1.4 Geometries Best Suited for FDTD Simulations 

 Due to the FDTD formulation (2.6)-(2.11), and the discrete Yee cells (Figure 2–

1) used in the method, complicated structures composed of several materials configured 

in arbitrary patterns can be accurately modeled provided the cells are chosen to be suffi-

ciently small. In addition, since field values at all points in the simulation domain are 

computed for all time steps, frequency domain information can be obtained through a 

discrete Fourier transform. This is an advantage over frequency-domain techniques, 

which require separate simulations for each frequency of interest. 

 Although geometries with complex material structures can be modeled by the 

FDTD method, the size of the simulation domain cannot be exceedingly large. Limited 

computational resources, in terms of both memory and run-time, impose this constraint. 

Objects with sharp edges or corners further limit the size of the simulation domain, as 

they require an increased number of cells. Thus, research efforts have been focused at 
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either reducing the number of dimensions in the simulation [10] or developing methods 

to avoid the use of small cells in regions of curved edges or shapes [12]. These tech-

niques have been utilized in this thesis for enhanced modeling efficiency, and will be dis-

cussed in Chapter 6 and the next section. 

 Due to its inherent strengths in modeling inhomogeneous geometries, the FDTD 

method is used to model the conformal antenna region of the problem geometry of Chap-

ter 4 and the large reflector antenna system of Chapters 5 and 6. 

2.1.5 Improved Conformal FDTD Algorithm 

 In the FDTD update equations for the magnetic field (2.9)-(2.11), the formulas 

require the electric fields at coordinates surrounding the position of the magnetic field of 

interest. This is in accordance with Ampere’s Law (with Maxwell’s correction) in inte-

gral form, which relates the magnetic field to the closed line integral of the electric field. 

However, if part of a given cell lies within a perfect electrically conducting (PEC) mate-

rial, that portion of the electric field line integral does not contribute to the magnetic 

field, as the electric field vanishes at those coordinates. This situation is illustrated in 

Figure 2–2. For a 2-D FDTD grid, this figure displays the cell numbered (n, m) partially 

located within a PEC region (darker shaded area). The curved line defines the PEC-free 

space boundary, while the straight line joining the two intersection points between the 

cell and this curved line approximates the interface. 
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Physically, the tangential electric field along the curved line vanishes. However, to sim-

plify the simulation, the field is assumed to be zero along the straight line. 

 An example of how well a set of these straight intersection lines approximates a 

curved surface is shown in Figure 2–3. 

 

This figure shows a circular disk approximated by both the straight-line (conformal) ap-

proximation (right) and the traditional staircasing (left) methods. It is clear from this fig-

ure that the disk edge is approximated much more closely by the conformal method 

 

 
 

Figure 2–2: 2-D FDTD Cell Partially Located within PEC 

 
 
 

Figure 2–3: Staircased vs. Conformal Approximation to a Circular Disk 
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compared to the staircase method. This significantly improves the accuracy of the model, 

especially when edge effects are dominant. 

 For the staircasing procedure, the sharp corners introduced by this method pro-

duce high frequency artifacts, which further degrade the accuracy of the model. If the 

grid is made finer, the staircasing procedure conforms more closely to the curved edge, 

but at the cost of increased computational memory and run-time. In addition, high fre-

quency errors are not reduced. 

 Previous algorithms based on the conformal technique described above have used 

the deformed area A(n, m) (Figure 2–2) in updating the magnetic field [28]; it appears 

that the magnetic field lines are restricted to this region. This causes stability problems as 

the area parameter appears in the denominator of the magnetic field update equation. In 

addition, for numerical stability according to the Courant condition [21], the time incre-

ment must also be adjusted. Since the cell size is decreased in the method described in 

[28], the corresponding time increment must also be reduced, thereby requiring an in-

creased number of time steps to obtain solutions for the same time period. 

 These stability problems have recently been eliminated through the use of a new 

algorithm, which takes into account that static magnetic field lines are not restricted be-

tween PEC regions [12]-[15]. This new method uses the entire cell area, or volume in the 

3-D case, in the updating of magnetic fields. The accuracy of the new technique has been 

verified against asymptotic methods whose results depend on the accurate modeling of 

curved edges, which contribute diffracted fields in shadow regions. 
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2.2 MoM Fundamentals 

 The Method of Moments (MoM) technique has been used since the 1960s as it is 

a more computationally efficient method compared to the FDTD algorithm for homoge-

neous objects. This is because the MoM method used in this thesis discretizes only the 

surface of objects as opposed to a volumetric cell discretization of the entire simulation 

domain as in the FDTD method. For this thesis, surface currents generated on arbitrarily-

shaped conducting bodies by incident plane waves are needed for the pattern computa-

tion. In the MoM technique [29], the Electric Field Integral Equation (EFIE) is typically 

used to mathematically define the problem and is solved for the surface currents gener-

ated on the objects of interest. These currents can then be used in radiation integrals to 

calculate the fields scattered by the objects. 

 This section develops the EFIE and describes the MoM technique used to solve it 

in determining the surface currents generated on an arbitrarily-shaped conducting body 

by an incident plane wave. The Rao-Wilton-Glisson basis functions [30] are described, as 

these basis functions are utilized in the MoM code – developed by Michielssen [31] – 

used in this thesis. A code was written to convert edge currents, computed by the Mi-

chielssen code, to equivalent surface currents. The development of this code also required 

knowledge about the Rao-Wilton-Glisson basis functions. Finally, the surface current dis-

tribution produced on a square perfectly conducting plate is presented to illustrate an 

application of the method. 
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2.2.1 The Electric Field Integral Equation (EFIE) 

 The Electric Field Integral Equation (EFIE) is derived from the zero total tangen-

tial electric field condition on the surface of a perfectly conducting body S. Since the total 

electric field is composed of the incident and scattered fields (Einc and Escat), the incident 

electric field on the conducting body surface can be expressed as 

ss rr

scat

rr

inc

==
−= EE  ( 2.13 ) 

 

where Srs ∈ . The scattered electric field can be found by combining Faraday’s Law (the 

first relation of 2.1 with J=0) and the following definition of the magnetic vector poten-

tial A: 

AH ×∇=
µ
1

 ( 2.14 ) 

 

After solving for the electric field in the first relation of (2.1) with J=0 and using the vec-

tor identity 

( ) AAA 2∇−⋅∇∇=×∇×∇  ( 2.15 ) 
 

the scattered electric field can be expressed as 

( ) ( )[ ]AAE 21 ∇−⋅∇∇=
ωµεj

rscat  ( 2.16 ) 

 

By combining equations (2.1a), (2.14), and (2.15), and using the Lorentz gauge as shown 

in [32], the vector wave equation for the magnetic vector potential A can be derived as 

JAA µ−=+∇ 22 k  ( 2.17 ) 
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whose solution is 

( ) ( )∫ ′′=
−

S

jkR

Vd
R

e
rr

π
µ

4
JA  ( 2.18 ) 

 

For surface currents, JS, the solution to (2.17) is: 

( ) ( )∫ ′′=
−

S

jkR

S d
R

e
rr SJA

π
µ

4
 ( 2.19 ) 

 

where R=|r-r’|. Also, r and r’ represent the vectors from the origin to the observation 

point (x, y, z) and from the source coordinates (x’, y’, z’) to the observation point (x, y, z), 

respectively (see Figure 2–4). 

 

In addition, S is the surface of the conducting object and Js is the current density on the 

surface S. Setting J=0 in equation (2.17), (2.16) can be rewritten as 

 

 
 

Figure 2–4: Source and Observation Coordinates 
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( ) ( )[ ]AAE 211
k

jk
rscat +⋅∇∇=

µ
 ( 2.20 ) 

 

Defining the free-space Green’s function as 

( )
rr

e
rr

rrjk
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π4
,G  ( 2.21 ) 

 

substituting (2.19) into (2.20) and using (2.13), in which the observation point is re-

stricted to the surface of the conducting object (r=rs), yields 

( ) ( ) ( ) ( ) ( )
s

s

rrS S

SSrr

inc drrrdrrrk
k

jr
=

= 







′′′⋅∇ ′∇+′′′= ∫ ∫ SGJSGJE ,,2η

 ( 2.22 ) 

 

where ∇  and ∇ ’⋅ are the gradient with respect to the observation (x, y, z) coordinates and 

divergence with respect to the source (x’, y’, z’) coordinates, respectively. Equation 

(2.22) is referred to as the Electric Field Integral Equation (EFIE) as the integral on the 

right hand side is expressed in terms of the known incident electric field. In order to de-

termine the unknown surface current density Js, a technique known as the moment 

method will be applied. This is described in the next section. 

2.2.2 Moment Method 

 Equation (2.22) can be expressed in operator form as [33] 

( )[ ] ( )rgrfL ′=′  ( 2.23 ) 
 

where L is the linear integrodifferential operator appearing in equation (2.22): 



24 

 

( ) ( )
srrS S

rrdrrdk
k

jL
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
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
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where η  and k are the intrinsic impedance and wave number of the medium, respectively. 

The function f(r’) represents the unknown function {JS(r’) in equation (2.22)} and g(r’) 

represents the known excitation vector (incident electric field), all in terms of the obser-

vation point on the surface of the object, r’. Solving this problem directly by taking the 

inverse of the operator (L-1) is usually difficult, if not impossible. Instead, the solution 

may be found numerically by using the linearity of the L operator. This is done by first 

expanding f(r’) in N terms of a selected basis function fn(r’), 

( ) ( )rgrfaL
N

n
nn ′=



 ′∑

=1

 ( 2.25 ) 

 

Since L is a linear operator, it can be brought inside the summation as follows: 

( )[ ] ( )rgrfLa
N

n
nn ′=′∑

=1

 ( 2.26 ) 

 

In equation (2.26), the unknown to be determined is the set of expansion coefficients, an. 

In order to find them, an inner product is first defined as follows: 

( ) ( ) ( ) ( )∫=
S

dSrfrfrfrf 2121 ,  ( 2.27 ) 

 

in which S is the surface of the geometry under analysis, and a set of N weighting func-

tions are selected. Taking the inner product of these weighting functions with both sides 

of equation (2.26) yields, 
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In the MoM code used for this thesis, the Galerkin method was used in which the weight-

ing functions are chosen to be the same as the basis functions. Thus, (2.28) becomes, 
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Equation (2.29) can be expressed in matrices as in, 
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which can be expressed concisely in matrix form as: 

[ ][ ] [ ]mnmn gaL =  ( 2.31 ) 
 

where [Lmn], [an], and [gm] are N×N, N×1, and N×1 matrices (or vectors), respectively. 

The unknown vector [an] can then be found by solving equation (2.31). 

2.2.3 Rao-Wilton-Glisson Basis Functions 

 To solve the above relation, the vector basis functions defined by Rao, Wilton, 

and Glisson in [30] are used. The surface current density JS appearing in equation (2.22) 

is expanded along these basis functions as follows 
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The expansion coefficients In of (2.32), referred to as edge currents, are defined for each 

nonboundary edge of the discretized surface (i.e., triangular patch edges that lie on the 

surface of interest). These edge currents can be interpreted to be the normal component of 

the current flowing through the nth edge. This will be described in more detail below. For 

boundary edges, the edge currents are zero. 

 The Rao-Wilton-Glisson vector basis functions are defined for a pair of triangular 

patches about an edge as shown below 
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in which ( )rn
±  and ±

nA  for edge ln are defined for two different points (r1 and r2) within 

triangles +
nT  and −

nT  in Figure 2–5, in which the ( )rn
+  and ( )rn

−  vectors point away and 

toward the free vertex, and +
nA  and −

nA  represent the areas of triangles +
nT  and −

nT , 

respectively. The ±
nT  triangles are usually defined by a mesh generator program. 

  Properties of the vector basis functions include current flow only along boundary 

edges (no perpendicular component), continuous normal current component across all 

nonboundary edges, and constant charge density within each triangular patch. The first 

property can be described by referring to Figure 2–6. 
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The diagram in Figure 2–6 shows an example vector configuration for the surface current 

at a point P within patch m with a particular ±
nT  configuration (denoted by the “+” and “–

“ signs around each edge). Note that the adjacent triangular patches have been omitted. 

The patch being considered is assumed to be completely interior (no boundary edges) to 

 
 
 

Figure 2–5: +
nT  and −

nT  Triangular Patch Definitions, nth edge 

 
 
 

Figure 2–6: Surface Current Calculation at Point P Inside Patch m 
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the discretized surface. The surface current at the point P is the sum of the three edge cur-

rent In - basis function ( )rRWG
nf  products for the three edges (ln, ln+1, and ln+2) surrounding 

this patch. Note that the ( )rn
±  vectors, along with the length to area ratio in equation 

(2.33), define the direction of the current. To show how these basis functions allow only 

current flow along boundary edges, suppose edge ln+1 is now a boundary edge (thus, In+1 

= 0) and the point P is located on edge ln+1. Because In+1 is zero, ( )rn
+

+1  has no effect on 

the resultant current. Thus, current can only flow along edge ln+1 as the vectors ( )rn
−  and 

( )rn
+

+2  are directed along the edge. The resultant direction depends on the relative 

magnitudes of In and In+2 and the length of the two edges ln and ln+2. 

 Continuity of the normal component of the current across nonboundary edges is 

enforced by the vector basis functions through the factor appearing before ( )rn
±  in 

equation (2.33). At a point on edge ln of Figure 2–5, the normal component of either 

( )rn
+  or ( )rn

−  is the height ±
nh  of triangle +

nT  or −
nT , respectively. Noting that the areas 

±
nA  of triangles ±

nT  are 0.5 ±
nh ln, the heights and therefore the normal components of the 

vectors ( )rn
±  are 

n

n

l

A±2
. Multiplied by the factors appearing in equation (2.33), this com-

ponent of the current becomes equal to the nth edge current In in (2.32). Therefore, the 

normal component of the current through all nonboundary edges is continuous. Also, as 

stated above, edge currents In are equivalent to the normal component of the current flow-

ing through the nth edge. Note that there exists a current component along edge ln for all 

( )rn
±  which are not perpendicular to the edge. 
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 Constant charge density in all triangular patches is maintained by the divergence 

of the vector basis functions being constant within all triangular patches [34]. The diver-

gence is proportional to the surface charge density through the continuity equation 

SS jωρ−=⋅∇ J  ( 2.34 ) 
 

Taking the divergence of equation (2.32) is equivalent to taking the divergence of the ba-

sis functions on all triangular patches defined on the discretized surface. Considering one 

patch and assuming that the free vertex is the origin, the divergence for the patch is taken 

in the cylindrical coordinate system. Thus, for each edge ln, 
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 ( 2.35 ) 

 

where ±
n  is the length of vector ±

n . Therefore, the surface charge density is constant 

within each patch and, in addition, the total charge in each triangle pair is zero, as the 

charge within each triangle of each pair is equal and opposite in polarity. 

2.2.4 Geometries Best Suited for MoM Simulations 

 Because the MoM technique used for this thesis discretizes the surface of a given 

object by triangular elements, it is well suited to the analysis of arbitrarily-shaped struc-

tures. The surface discretization represents substantial savings in memory requirements 

over the volume cells used in the FDTD method. In addition, triangular elements conform 

more closely to irregular surfaces than rectangular prisms do to irregularly shaped ob-

jects. However, the arrangement of the material regions comprising the object of interest 
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is limited to relatively simple structures as the Green’s function (in equation 2.22) for 

complicated arrangements of material regions is difficult to derive. Also, for large ob-

jects, enhanced matrix inversion techniques must be applied in order to achieve reason-

able computer run-times. 

 To address the material region arrangement issue, an MoM code developed by 

Michielssen [31] was used to simulate arbitrarily-shaped objects composed entirely of 

perfectly conducting material. Since it is also desired to analyze relatively large struc-

tures, the MoM code was modified to include optimized matrix inversion subroutines on 

the IBM RS/6000 machine used to perform the simulations [35], [36]. The latter set of 

subroutines (ESSL) [36] reduced the computer run-time on a problem with 7,774 un-

knowns from 70.0 hours to 1.8 hours. 

 Due to its inherent strengths in modeling large homogeneous – composed of one 

type of material – objects and enhanced computational capabilities afforded by the ESSL 

subroutines, the MoM technique was used to model the mounting structure of the prob-

lem geometry of Chapter 4 and the microstrip feed antenna of Chapters 5 and 6. 

2.2.5 Example MoM Surface Current Distribution 

 The MoM code developed by Michielssen [31], enhanced by ESSL subroutines 

[36], and the edge to surface current conversion code were used to compute surface cur-

rents generated on a 1 wavelength square perfect electrically conducting (PEC) plate in 

the xy-plane illuminated by a normally incident, x-polarized plane wave. The surface was 

divided into 20 by 20 squares each containing two triangular MoM elements. The obser-
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vation grid – used by the current conversion code – was chosen to be finer (101 by 101 

points) in order to display the MoM element structure. 

 

Figure 2–7 shows a 3D mesh and 2D contour plot of the current distribution on the plate, 

while Figure 2–8 shows x and y cuts through the center of the plate. Since the incident 

plane wave is x-polarized, Jx at x=0 and x=L must be zero, as current cannot flow per-

pendicular to the edge. However, since the y=0 and y=L edges are parallel to the polari-

zation direction, currents can flow along these edges. These two conditions can be 

observed in Figure 2–7 at the y = 0 and y = 1λ coordinates for all x. Also, the continuous 

normal current component property of the vector basis functions described in Sec. 2.2.3 

can be observed in both the mesh and contour plots of Figure 2–7 in that no contour lines 

appear in the y direction. Only diagonal and horizontal contour lines (triangular element 

edges) are present as they are not perpendicular to the direction of current flow (x). 
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Figure 2–7: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave 
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The general shape of the current distribution agrees with the results presented in [34] and 

also compares closely with simulation results from the commercial code IE3D [37], 

shown in Figure 2–9. 
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Figure 2–8: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave, x & y Cuts 
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Figure 2–9: 1λ x 1λ Square PEC Plate Illuminated by Ex Plane Wave, x & y Cuts (IE3D) 
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2.3 Surface Equivalence Principle 

 The Surface Equivalence Principle allows the replacement of sources inside a 

closed volume with equivalent currents flowing on the surface of the closed volume. It is 

based on Huygens’ principle which states that “each point on a primary wavefront can be 

considered to be a new source of a secondary spherical wave” [33], [38]. The more rigor-

ous formulation of this principle was defined by Schelkunoff in 1936 [39]. This principle 

is based on the existence of currents at field discontinuities, which can be derived from 

the application of Stokes’ theorem to Maxwell’s curl equations, 

t

t

∂
∂−−=×∇

∂
∂+=×∇

B
ME

D
JH

 ( 2.36 ) 

 

which yields, 
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in which J and M are the volume electric and magnetic current densities, respectively. 

Applying equation (2.37) at an interface between two materials and taking the limit as 

∆→0 yields (see Figure 2–10), 
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S  ( 2.38 ) 

 

in which JS and MS are the surface electric and magnetic current densities, respectively. 
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To derive the Surface Equivalence Principle, consider Figure 2–11: 

 

In the left hand diagram of Figure 2–11, two sources J and M contained in a volume V 

(artificial boundary) are radiating in a free space environment. Since the fields are con-

tinuous at the interface (E2 and H2 exist both inside and outside the volume) defined by 

V, equation (2.38) requires the currents on the surface of V to be zero as denoted in the 

figure. However, if the fields inside volume V are chosen to be different functions of spa-

tial coordinates (E1 and H1) as shown in the right hand side of Figure 2–11, a discontinu-

 
 
 

Figure 2–10: Currents at Field Discontinuities 
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ity in the fields is created at the interface defined by V. Thus, equivalent surface magnetic 

and/or electric currents must flow on the surface of V to account for discontinuities in the 

electric and/or magnetic fields, respectively. 

 The fields internal to volume V (E1 and H1) can be set to any arbitrary value since 

the equivalent currents account for any discontinuity. If they are set to zero, the equiva-

lent currents become 

( )
( ) 2012

2012

ˆˆ

ˆˆ

1

1

EEEM

HHHJ

E

H

×−=−×−=

×=−×=

=

=

nn

nn

S

S
 ( 2.39 ) 

 

This is known as Love’s Equivalence Principle [40]. The relations in (2.39) state that the 

equivalent surface current densities are found from the fields radiated by the sources in 

free space at the surface of volume V. Setting the fields within volume V to zero allows 

the introduction of any material within the volume; zero-valued fields cannot be altered 

by the presence of any material. 

 For the geometry of Chapter 4, a perfect electrical conductor is selected for the 

material placed inside the volume. This shorts out any JS created on the surface, resulting 

in the existence of only MS. For the configurations of Chapters 5 and 6, the Surface 

Equivalence Principle is used to replace the microstrip patch antennas by the electric cur-

rents flowing on them, as the discontinuity in the fields required by equation (2.39) is 

created by the fields resulting from the solution of (2.19), (2.14), and the bottom relation 

of (2.1). 
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2.4 Reciprocity Theorem 

 The Reciprocity Theorem relates the currents and fields of two systems. It is de-

rived from Maxwell’s curl equations written for two systems, 

222
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 ( 2.40 ) 

 

Note that the subscripts in (2.40) represent the system number (1 or 2) and not inside or 

outside the volume V as shown in Figure 2–11. Through mathematical manipulations, the 

application of a vector identity, and the Divergence Theorem, as shown in [32], the fol-

lowing relation results, 

( ) ( )∫∫ ⋅−⋅=⋅−⋅
12

12122121

VV

dVdV MHJEMHJE  ( 2.41 ) 

 

in which V1 and V2 represent the volumes containing sources J1/M1 and J2/M2, respec-

tively The above relation is applied in two ways to the problem geometries presented in 

later chapters. In all cases, the integral on the left side of (2.41) will simplify to a simple 

vector product between the desired far-zone electric field E1 and an assumed point dipole 

source J2 since the point source exists at only one point in space It is assumed that the 

source is composed of only electric current; thus, M2 is zero. 

 The right hand side of (2.41) will depend on the geometry being analyzed, but the 

volume integral will always simplify to one taken over the surface of the radiating aper-

ture. For the geometry of Chapter 3, the aperture is a slot, while for Chapter 4, it is the 
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superstrate located above the radiating patch antenna cavity. For both Chapters 5 and 6, 

the aperture is the feed antenna for the reflector antenna system. Specific applications of 

the Reciprocity Theorem are described in subsequent chapters. 

2.5 Hybrid Techniques 

 Two or more modeling techniques can be combined to take advantage of the 

strengths of each method, while at the same time overcoming each technique’s weak-

nesses. The overall hybrid method thus becomes more effective than the use of the indi-

vidual techniques applied separately. This section will describe hybrid methods previous-

ly used by researchers, followed by a justification for the selection of techniques used in 

the proposed hybrid method.  

2.5.1 Previously Used Hybrid Techniques 

 Researchers have used a combination of the Finite Element Method (FEM) and 

MoM techniques to analyze cavity-backed patch antennas [41] and an interior region 

composed of an inhomogeneous medium with an arbitrarily-shaped dielectric in the exte-

rior region [42]. This hybrid technique employs the MoM method in regions where the 

Green’s function is known (outside of the cavity containing the patch antenna) and the 

FEM technique to the cavity region, which is inhomogeneously filled and not amenable 

to an application of the hybrid approach. The overall approach was verified in [41] 

through FDTD simulations in two dimensions [42], the volume integral/moment method 
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solution [43], and the unimoment solution [44], [45]. The last aforementioned method 

incorporates the radiation condition (that the fields tend to zero as the distance from the 

scatterer tends to infinity) into either the finite difference or finite element method with 

less computer storage and run time requirements. 

 The FEM/MoM hybrid technique has also been applied to inhomogeneous bodies 

of revolution [46]. The use of both the Electric Field Integral Equation (EFIE) and the 

Magnetic Field Integral Equation (MFIE) to enforce the Sommerfeld radiation condition, 

yields a symmetric system matrix. This allows the use of more computationally efficient 

matrix solvers. 

 The Edge-Element Method / MoM (EEM/MoM) hybrid technique has been ap-

plied to dielectric bodies of arbitrary shape in two dimensions (i.e., cylinders of arbitrary 

shape), but of constant shape in the third (z) dimension [47]. In the EEM technique, Max-

well’s equations are discretized using an edge element expansion. The edge element 

technique has the advantages of eliminating spurious modes often introduced by the FEM 

method [47] and transforming Maxwell’s equations into an equivalent circuit, which cre-

ates a frequency independent formulation. The latter advantage enhances computational 

efficiency when analyses are required at several frequencies. 

 The FEM technique has also been combined with the Boundary Integral method 

for the simulation of cavity-backed patch antennas [49]-[51]. In this hybrid (FE-BI) 

method, the elements of the FEM matrix are defined by boundary integrals which de-

scribe the geometry of the system. The FEM matrix is used to compute the amplitudes of 

the electric field expansion coefficients that are combined with selected basis functions to 
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yield the electric field. The boundary integrals describe such structures as conducting 

patches, impedance loads, and coaxial feeds. This set of papers also uses the BiConjugate 

Gradient (BiCG) method to avoid generating and storing the FEM matrix, thereby en-

hancing computational efficiency. In [49], only rectangular patches are modeled. 

 Arbitrarily shaped cavity-backed patch antennas were modeled also using the FE-

BI method [50]. In this paper, the cavity is discretized into tetrahedral volume elements, 

which can conform to any patch shape. The BiCG method, along with the Fast Fourier 

Transform (FFT), is used to reduce matrix generation and storage requirements. 

 Cavity-backed patch antennas mounted on a cylinder were also modeled using the 

FE-BI hybrid method [51]. The introduction of a cylinder creates a Green’s function that 

is an infinite series, which requires excessive computational resources. The paper thus 

uses an asymptotic formula for large-radii cylinders to yield a more reasonably dimen-

sioned Green’s function. The BiCG method is again used in conjunction with the FFT to 

solve for the scattered fields. 

 Another set of hybrid techniques includes the combination of FEM with the high-

frequency methods of the Uniform Theory of Diffraction (UTD), Physical Optics (PO), 

and Shooting and Bouncing Rays (SBR) [52]. These methods were used to predict radia-

tion patterns for antennas mounted on aircraft structures. The FEM code was used to first 

compute the antenna’s radiation pattern in the absence of the aircraft. The high-frequency 

methods then used the resultant pattern (converted into equivalent currents) as sources to 

radiate the propagating fields in the presence of the aircraft to produce the overall pattern. 
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The codes using UTD matched measured data more closely than did the codes using PO 

and SBR, especially in the shadow regions of the antenna. 

 Hybrid techniques combining the MoM technique with high-frequency techniques 

such as the Geometrical Theory of Diffraction (GTD) have also been used to predict scat-

tering properties [53]. The hybrid MoM-GTD method extends the capabilities of MoM 

and has been used to model small details on larger structures. 

 Another hybrid approach used to reduce computational resource requirements is 

the hybrid Physical Optics (PO) and MoM technique [54]. This approach allows the 

modeling of objects at higher frequencies where the MoM method alone would require 

excessive computer storage and run-time. A reduction in the size of the MoM matrix is 

accomplished by using PO basis functions in conjunction with the MoM basis functions. 

These two sets of basis functions overlap, which allows for a continuous current flow 

over the surface of the scattering object. 

 The FDTD technique has also been combined with high-frequency techniques 

such as Physical Optics (PO) [55], to model cavities with complex terminations, such as 

that found in jet aircraft engines. In this approach, the FDTD method is used to model the 

complex termination region (jet engine fan blades), while the high-frequency approach is 

used to model the cavity that includes the region up to the termination (jet engine inlet 

region). Verification is done by examination of the individual methods for accuracy prior 

to hybrid simulations. The fan blades were approximated in the FDTD analysis by the 

staircased meshing method. Improvements to this procedure could be obtained by using 

the conformal method described in [12]. 
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 The FDTD technique has been combined with a time-domain version of MoM to 

effectively model simple antennas radiating in the presence of complex inhomogeneous 

dielectric bodies [56]. The time-domain MoM technique is referred to as “marching on in 

time.” The MoM method is used to compute the radiating fields from the antenna at the 

position of a closed surface. The surface equivalence theorem is used to transform these 

fields into equivalent currents. Subsequently, the FDTD method is used to propagate 

these equivalent currents onto and into the complex dielectric object. 

2.5.2 Proposed Method 

 The FDTD and MoM techniques combined through both the Surface Equivalence 

and Reciprocity Theorems have been applied to all of the problem geometries analyzed in 

this thesis. For the cavity-backed patch antenna and reflector antenna problem geometries 

analyzed in Chapters 4 through 6, the FDTD method has been selected over alternate 

techniques such as FEM or MoM due to greater computational efficiency and suitability 

to the problem geometry. With respect to the FEM technique, FDTD does not require ma-

trix inversion to calculate the fields at various points in space, nor does it require a re-

meshing of the problem geometry for different frequencies. Since the FDTD method 

computes time-domain information, this information can be Fourier-transformed to the 

frequency domain at any frequency within the bandwidth of the excitation signal. In addi-

tion, more effective absorbing boundary conditions [24], [27] are presently available for 

the FDTD method as compared to those available for the FEM. 
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 With respect to the MoM technique, the FDTD method is better suited for solving 

problem geometries that contain inhomogeneous bodies, as it does not require knowledge 

of the Green’s function for the computation of currents or fields. Therefore, the FDTD 

method appears to be an optimal choice for the simulation of these particular geometries. 

 For the mounting structure used in the conformal antenna geometry of Chapters 3 

and 4, the MoM technique has been used. For this structure, the Surface Equivalence 

Principle (Sec. 2.3) is applied – PEC is substituted into the volume – reducing the com-

plexity of the material structure arrangement to one composed entirely of perfectly con-

ducting material. This structure is well-suited for analysis by the MoM technique used in 

this thesis as only the object’s surface is discretized – as opposed to the volume discreti-

zation procedure used for FDTD simulations – and only the free-space Green’s function 

is required. The advantages of a decreased number of required elements and the closer 

approximation of the surface by 2D triangular – as compared to 3D rectangular - ele-

ments are realized by applying the MoM technique. 

 For the feed antenna of Chapters 5 and 6, a commercial MoM code – Ensemble 

[57] – was used to determine the currents flowing on the radiating patches of the antenna. 

The code analyzes conducting patches mounted on a stratified structure: stacked infinite 

planes of dielectric and conducting material. Since the feed antenna is finite in extent, this 

model represents an approximation to the actual configuration. The accuracy of the over-

all method has been verified against actual test data [9], which suggests that the approxi-

mation introduces negligible errors into the calculation. Thus, the MoM procedure 

appears to be the best choice for analysis of this particular geometry. 
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 The Reciprocity Approach offers improved efficiency over asymptotic methods 

by using stored surface fields determined by the FDTD method and the impedance matrix 

describing the problem geometry for the MoM portion of the overall code. The stored 

fields and matrix elements are used in conjunction with an excitation vector (input into 

the MoM algorithm), which varies the incidence angle to produce the radiation pattern. 

This is significantly more efficient than computing ray-tracings for each coordinate in the 

radiation pattern as is required for the asymptotic methods. The Reciprocity Approach 

requires a re-simulation of a small portion – modifications to the excitation vector – of 

the overall procedure as opposed to the complete re-simulation required in the asymptotic 

method for each radiation pattern coordinate. 

 The Reciprocity Approach also offers greater computational efficiency compared 

to using FDTD alone, which would require an excessive number of simulation cells to 

accurately compute the fields. The proposed approach is also better suited to the problem 

geometry when compared to the MoM technique used alone. The problem geometry con-

tains inhomogeneous bodies, which cannot be easily solved by MoM due to the unavail-

ability of Green’s functions at many locations within the problem geometry. Therefore, 

the proposed hybrid approach is ideal for analysis of the aforementioned problem geome-

tries. 

 



Chapter 3  
 

RADIATION PATTERNS FROM SLOTS MOUNTED ON CYLINDRICAL 
STRUCTURES 

 This chapter validates the Reciprocity Approach described earlier in this thesis as 

an accurate method for pattern computation. The canonical problem of a radiating slot 

mounted on an infinite length perfectly conducting cylinder is used for this purpose. The 

chapter begins with a description of the problem geometry and the Reciprocity Approach 

to pattern computation. Next, slots oriented in two directions: axial (along the cylinder 

axis) and azimuthal (along the circumference of the cylinder) are analyzed and the resul-

tant patterns are compared to analytical calculations. Finally, the same slots mounted on 

finite length conducting cylinders are analyzed and the resulting patterns are also com-

pared to analytical results. 

 The Reciprocity Approach allows the modeling of finite length cylinders, in addi-

tion to ideal infinite cylinders, which is an important tool for the simulation of actual sys-

tems. It is shown that cylinder length has a strong effect on radiation patterns, especially 

for lengths that are an odd versus an even number of wavelengths. Also, convergence of 

the finite length cylinder patterns as a function of increasing length to the infinite-length 

case is demonstrated. 
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3.1 Problem Geometry 

 Radiation patterns produced by narrow radiating slots oriented in both the axial 

and azimuthal directions have been computed. These slots are mounted on infinite-length 

conducting cylinders of radius 0.2λo. This particular radius was selected based on mem-

ory constraints for the analysis of finite-length cylinders considered later in this chapter. 

However, it is noted that the proposed technique is applicable to structures of any size. A 

diagram of the slot configurations appears in Figure 3–1: 

 

 

Since it is assumed that the aperture field along the width of both slots is uniform, a small 

slot width is required (<0.1λo). The angle subtended in the φ direction by the azimuthal 

slot, was chosen to be 24.8o to match the example analyzed in [7]. The length of the axial 

slot can be short; the field distribution along the z direction can be either cosinusoidal or 
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Figure 3–1: Narrow Azimuthal and Axial Radiating Slots on 

Infinite Length Conducting Cylinders 
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uniform. It can also span the entire length of the cylinder. The radiation pattern, as a 

function of φ (θ = 90o), for this orientation is taken at the center of the slot. 

 For both orientations, the narrow slots are assumed to be excited by a rectangular 

waveguide operating in the dominant TE mode – the electric fields vary cosinusoidally 

along the length of the slot (half-period) and are uniform across the width. The polariza-

tion is directed across the width of the slot. 

3.2 Reciprocity Method for Pattern Computation 

 To compute the pattern produced by a slot mounted on a conducting cylinder, the 

Surface Equivalence and Reciprocity Theorems are applied. The fields in the slot – re-

ferred to as the aperture fields – are first converted to magnetic currents by the Surface 

Equivalence Principle described in Sec. 2.3. The slot is then replaced with conducting 

material, yielding a homogeneous cylinder with magnetic currents flowing at the position 

of the slot. To compute the radiation pattern, the problem is analyzed in two modes of 

operation: transmitting and receiving. 
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Figure 3–2: Reciprocity Approach for Radiating Slot Pattern Computation  
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In the transmitting mode, the surface magnetic currents MS1 radiate from the slot coordi-

nates on the conducting cylinder to a far-zone coordinate. It is desired to compute the 

electric field E1 at the far-zone coordinate. The cylindrical waves emitted by the slot be-

come plane waves in the far-zone as shown in Figure 3–2. 

 Instead of computing the far-zone field directly, the operation of the antenna is 

reversed to the receiving mode. In this mode, an infinitesimal dipole source J2, oriented 

in the direction of the desired polarization, is placed at the exact location where the far-

zone field is desired. Note that the spherical waves emitted by the dipole source also be-

come plane waves due to the location of the source in the far-zone of the cylinder. The 

source is specified as an electric current source; thus, M2 in equation (2.34) and (3.1) be-

low is zero. The Reciprocity relation is repeated here for convenience. 

( ) ( )dVdV
VV
∫∫ ⋅−⋅=⋅−⋅

12

12122121 MHJEMHJE  ( 3.1 ) 

 

where V1 and V2 are the volumes containing the source currents J1/M1 and J2/M2, respec-

tively. The electric fields tangential to the surface of the conducting cylinder, including 

the location where the slot has been replaced by a perfect conductor – via the Surface 

Equivalence Principle – are zero. Therefore, E2 in the above equation also vanishes. The 

only remaining undefined term is H2. This can be derived from the electric currents gen-

erated on the cylinder by the incident plane waves produced by the far-zone dipole source 

J2. Through the simplifications stated above, the Reciprocity relation for this particular 

configuration becomes 

dVdV
VV
∫∫ ⋅−=⋅

12

1221 MHJE  ( 3.2 ) 
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The dipole source can be expressed as 

( )urIl o ˆ3
2 δ=J  ( 3.3 ) 

 

where I, l, and û  represent the amplitude, length, and unit vector in the direction of the 

dipole source, respectively. The term ( )or
3δ  represents the 3-D Dirac delta function. The 

coordinate ro is the position of the desired far-zone electric field. Since the dipole source 

exists at only one point in space – at the exact position of the desired far-zone field – the 

left side of (3.2) simplifies to a vector product of E1 and û . In the receive mode, the 

equivalent magnetic fields exist at all points on the cylinder; however, the equivalent sur-

face magnetic current density exists only at the position of the slot. Therefore, the right 

side of (3.2) simplifies to an integral taken over the surface area of the slot. The far-zone 

field E1 is thus proportional to this quantity. 

 To compute the radiation pattern, it is noted that the right side of (3.2) can be ex-

pressed as 

( ) ( )∫

∫∫
⋅−=

⋅−=⋅−

S
cylSslot

S

S

V

dS

dSdV

21

1212

JE

MHMH

 ( 3.4 ) 

 

where S is the surface area containing the slot, and E1(slot) and JS2(cyl) are the slot aperture 

fields and surface currents generated on the cylinder by a plane wave of appropriate po-

larization, respectively. This identity is proven in Appendix A. Therefore, conversion to 

equivalent currents is not necessary for the pattern computation: 

( ) ( )∫ ⋅=⋅
S

cylSslot dS
Il

u
211

1
ˆ JEE  ( 3.5 ) 
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If the polarization of the desired electric field E1 and the source dipole are parallel, the 

above relation becomes 

dS
Il S

cylSslot∫ ⋅=
)(2)(11

1
JEE  ( 3.6 ) 

 

3.3 Infinite-Length Cylinder 

 Slots mounted on infinite-length perfectly conducting cylinders are analyzed in 

this section. Both axially and azimuthally oriented slots are considered. Each case is de-

scribed in the following subsections, which include the assumed aperture fields, analyti-

cally derived currents generated by normally incident plane waves polarized in the 

appropriate direction, and a comparison of the patterns produced by the Reciprocity Ap-

proach versus those computed by the analytical relations shown in [7]. 

 The aperture fields in the slot, which are converted to MS1, are assumed to be 

cosinusoidal along the length and uniform across the narrow width. 

3.3.1 Azimuthal Slot 

 The azimuthal slot considered subtends an angle of 24.8o in the φ-direction. Due 

to the orientation of the slot (see Figure 3–1) the Eθ vs. φ pattern is computed for θ = 90o. 

This requires knowledge of the currents generated by a z-polarized plane wave normally 

incident on the infinite length cylinder [7]: 
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( ) ( )∑
∞

−∞=

−=
n n

jnn
o

z kaH

ej

a

E
J

2

2 φ

ωµπ
 ( 3.7 ) 

 

where ( )2
nH  is the cylindrical Hankel function of the second kind of order n, Eo is the am-

plitude of the incident plane wave, and a is the radius of the cylinder. Equation (3.7) de-

fines the surface current density generated on the cylinder by a z-polarized plane wave 

traveling in the –x direction. For the selected radius of 0.2λo, the current distribution as a 

function of φ for all z is shown in Figure 3–3. 

 

The aperture field [7] is assumed cosinusoidal as described by the following equation 









<<−

<<−





=

22

22cos αφαα
πφ

W
z

W

W

V
Ez  ( 3.8 ) 
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Figure 3–3: Jz vs. φ Produced by Ez Plane Wave on r = 0.2λo Infinite Length Cylinder 
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where α, W, and V are the angle subtended (radians) by and width of the slot (meters), 

and the amplitude of the applied field (Volts), respectively. 

 To compute the φ = 0o point in the pattern, the dot product between each sample 

point in the cosinusoidally distributed aperture field in the slot and the current distribu-

tion between the angular coordinates –12.4o and +12.4o is taken and summed together. 

Other φ-points in the pattern are found by centering the angular range about the φ-point 

of interest. In effect, the above current distribution is sequentially rotated to produce the 

pattern. The resultant pattern is then normalized to its maximum value. The relatively 

high values (10% of the peak value) at the shadow side of the cylinder (φ = 0o) contrib-

utes to a back lobe, as shown in Figure 3–4: 

 

This pattern may also be computed analytically, as the mounting cylinder is infinite in 

length. For the Eθ pattern, the far-zone value is [7] 
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Figure 3–4: Eθ vs. φ Pattern for Azimuthal Slot (Reciprocity Method) 
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where the function fn is given by 

( ) ( )
( ) ( ) ( )22222

,

ξξ
ξωεξ

−−
=

kaHk

nEj
f

n

z
n  ( 3.10 ) 

 

in which a is the radius of the cylinder, ( )2
nH  is the cylindrical Hankel function of the 

second kind of order n and zE  is defined by a spatial Fourier transform of the aperture 

field Ez: 

( ) ( )∫ ∫
∞

∞−

−−=
π

ξφ φφ
π

ξ
2

0

,,
2

1
, ddzeezaEnE zjjn

zz  ( 3.11 ) 

 

Substituting Ez as defined in equation (3.8) into (3.11) above results in: 

( )
( )

2

2
sin

2
cos,

22 W

W

n

n

V
nEz ξ

ξ
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απ
αξ















−
=  ( 3.12 ) 

 

Substituting equation (3.12) into (3.10) and the resulting relation into (3.9) yields the ra-

diation pattern shown in Figure 3–5. The two methods of pattern computation for the 

azimuthal slot produce identical results. This serves to validate the Reciprocity Approach 

as an accurate means for pattern computation for this slot configuration. The axially ori-

ented slot will now be investigated. 
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3.3.2 Axial Slot 

 The axial slot is assumed to have a cosinusoidally varying aperture field along its 

length (z direction of cylinder) and a uniform field along its width (φ direction). The po-

larization is across the width, which corresponds to the φ direction for the cylinder. Thus, 

the currents generated on an infinite length cylinder by a normally incident φ-polarized 

plane wave are needed for the Reciprocity calculation. These are given by [7] 

( ) ( )
∑
∞

−∞=

−

′=
n

n

jnn
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kaH

ej

ka

H
jJ

2

2 φ

φ π
 ( 3.13 ) 

 

where Ho is the amplitude of the incident magnetic field plane wave and is related to the 

electric field amplitude by ηoo EH = . The prime in the above relation denotes the de-
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Figure 3–5: Eθ vs. φ Pattern for Azimuthal Slot (Direct Method) 
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rivative taken with respect to the entire argument. The surface current density distribution 

as a function of φ for all z at the selected radius of 0.2 λo is shown in Figure 3–6 below: 

 

The aperture field is assumed to be cosinusoidal along the length of the slot as defined in 

the following equation 


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where L and V are the length of the slot (meters) and amplitude (Volts) of the aperture 

electric field, respectively. In this case, the slot length is sufficiently long to allow for the 

cosinusoidal distribution of the field, but in general can be as long as the length of the 

cylinder. The pattern is computed for all φ at θ = 90o: the xy-plane (z = 0) is defined at the 

center of the slot. 
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Figure 3–6: Jφ vs. φ Produced by Eφ Plane Wave on Cylinder with 

r = 0.2λo and Infinite Length  
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 For this slot orientation, the only φ-dependent term on the right side of equation 

(3.5) is the current Jφ (the Eφ aperture field is uniform in the φ direction). It is not neces-

sary to evaluate the integral since the pattern is normalized to the maximum field value. 

Hence, the relative pattern can be plotted directly from Jφ. The resulting pattern is shown 

below: 

 

As for the azimuthal slot, the pattern for the axial slot can be computed by analytical 

methods. This is done through the equation 
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where the function gn is defined as 
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Figure 3–7: Eφ vs. φ Pattern for Axial Slot (Reciprocity Method) 
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in which φE  is defined in the same manner as zE  is in (3.11) 

( ) ( )∫ ∫
∞

∞−

−−=
π

ξφ
φφ φφ

π
ξ

2

0

,,
2

1
, ddzeezaEnE zjjn  ( 3.17 ) 

 

Since the slot aperture field Eφ (defined from –α/2 to +α/2) is constant in the φ-direction, 

the φ integration in (3.17) produces a sinc function. However, this term is independent of 

φ and thus has no effect on the pattern. In addition, the pattern of interest is in the azi-

muthal plane; thus, θ = 90o. This renders all terms in (3.16) constant except the complex 

exponential ejnφ and the derivative of the cylindrical Hankel function ( )′2
nH , which carries 

an n-dependence. Therefore, the far-zone Eφ field is computed from 
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where the constant A represents the combination of all terms which are constant with re-

spect to φ for this slot orientation and radiation pattern specifications. Using (3.18), the Eφ 

pattern is computed and shown in Figure 3–8. The plot is identical to the pattern com-

puted by the Reciprocity Method shown in Figure 3–7. Therefore, the Reciprocity Ap-

proach for pattern computation has been validated for slots oriented in both directions. 

The next section will explore patterns produced by these same slots, but mounted on fi-

nite length conducting cylinders. 
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3.4 Finite-Length Cylinder 

 This section describes patterns produced by the same slots as discussed in the 

previous section, but mounted on finite-length conducting cylinders. The same slot aper-

ture fields are used in these calculations; however, to compute the currents generated on 

finite length cylinders, a numerical technique is required. An MoM code [31] in conjunc-

tion with an edge to surface current conversion program is used to obtain the required 

surface currents. The following subsections present the generated surface currents, the 

resultant radiation patterns, and a comparison to the infinite-length cylinder patterns. 
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Figure 3–8: Eφ vs. φ Pattern for Axial Slot (Direct Method) 
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3.4.1 Azimuthal Slot 

 The azimuthal slot analyzed in this subsection has the same angular displacement 

and aperture field distribution as the slot described in Sec. 3.3.1 above. The plane wave 

generated surface currents, however, are computed using a numerical technique (MoM), 

as the length of the mounting cylinder is now finite. For the azimuthal slot orientation, 

the surface currents generated by a θ = 90o (normal) incident z-polarized plane wave are 

required. An example distribution, for a 5λ long open-ended cylinder composed of per-

fect electrically conducting (PEC) material, is shown in Figure 3–9: 

 

The left and right sides of Figure 3–9 are 3D mesh and 2D contour plots, respectively, of 

the Jz current distribution as a function of φ and z. Due to the truncation of the cylinder 

and the polarization of the incident plane wave being in the same direction (z), standing 

waves are formed with five magnitude peaks along the length of the cylinder. In con-

structing the patterns for the azimuthal slots, the location of the slots was chosen to be at 
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Figure 3–9: Jz Produced by Ez Plane Wave Incident on 5λ Long PEC Cylinder 
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the z-midpoint of the cylinder. This has a significant effect on the pattern as a function of 

the length of the cylinder. 

 

For an odd number of wavelengths (see Figure 3–9 above), the slot intersects the current 

distribution at a peak on the lit side (φ = 0o) and a valley on the shadow side (φ = 180o). 
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Figure 3–10: Jz vs. φ @ z-midpoint plane on 5λ PEC Cylinder 
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Figure 3–11: Jz Produced by Ez Plane Wave Incident on 6λ Long PEC Cylinder 
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This can be seen more clearly in the φ-cut plot at the z-midpoint plane of the cylinder, 

shown in Figure 3–10. For an even number of wavelengths, see Figure 3–11.  
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Figure 3–12: Jz vs. φ @ z-midpoint plane on 6λ PEC Cylinder 
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Figure 3–13: Eθ From 24.8o Azimuthal Slot on Odd Wavelength Long PEC Cylinder 
{0.5λ to Infinite Length} 
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 The slot intersects a “pass” – a lower magnitude peak between two higher peaks – 

of the current distribution on the lit side (φ = 0o), while on the shadow side, it passes 

through a smaller peak. A φ-cut of the surface current at the z-midpoint plane of the cyl-

inder, is shown in Figure 3–12. The small z-midpoint peak at φ = +180o creates a larger 

back lobe when the cylinder length is an even number of wavelengths as compared to the 

odd case. 

 Resultant patterns for the odd wavelength case are shown in two parts. Figure 3–

13 presents the patterns for the 0.5λ, 1λ, and infinite length cases, while Figure 3–14 

shows the 3λ, 5λ, and infinite length cases. The trend of the patterns is toward the infinite 

length case. All patterns, except the 0.5λ case, have a significantly lower magnitude on 

the shadow side due to the valley in the current distribution (see Figure 3–9). 
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Figure 3–14: Eθ From 24.8o Azimuthal Slot on Odd Wavelength Long PEC Cylinder{3λ 

to Infinite Length} 
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Figure 3–15: Eθ From 24.8o Azimuthal Slot on Even Wavelength Long PEC Cylinder 
{0.5λ to Infinite Length} 
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Figure 3–16: Eθ From 24.8o Azimuthal Slot on Even Wavelength Long PEC Cylinder 
{4λ to Infinite Length} 
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For the shorter 0.5λ case, the cylinder length is insufficient to sustain standing waves; 

thus, the current tends toward a uniform distribution in the z direction. 

 The patterns produced by azimuthal slots mounted on cylinders with a length 

equal to an even number of wavelengths are presented, again in two parts. Figure 3–15 

presents patterns for slots mounted on cylinders of length 0.5λ, 2λ, and infinite. Patterns 

from slots mounted on cylinders of length 4λ, 6λ, and infinite are presented in Figure 3–

16. Due to the small peak on the shadow side (φ = 180o) of the current distribution, a rela-

tively large back lobe appears in the even-wavelength case. However, the trend is still 

toward the infinite-length case. 

 All patterns shown above demonstrate a trend from the finite-length patterns to-

ward the infinite-length case as the length is increased. In addition, they emphasize the 

dependence of the pattern on cylinder length: in particular, whether the length is an odd 

or even number of wavelengths. 

3.4.2 Axial Slot 

 An axial slot mounted on a finite-length conducting cylinder will now be ad-

dressed. The aperture field in the slot is as defined in Sec. 3.3.2. Since the polarization is 

in the φ direction, the surface electric currents on the conducting cylinder produced by a 

φ-polarized plane wave are needed for the Reciprocity Approach pattern computation. As 

the cylinder is finite in length, a numerical solution is necessary. An MoM code [31] 

along with an edge to surface current conversion code was used to compute the required 
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currents. The distribution for a 1λ long, 0.2λ radius cylinder is given in Figure 3–17. The 

distribution is analogous to that produced by a plane wave incident on a flat conducting 

plate (see Figure 2-7). 
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Figure 3–17: Jφ Produced by Eφ Plane Wave Incident on 

1λ Long, 0.2λ radius PEC Cylinder 
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Figure 3–18: Jφ vs. φ @ z-midpoint plane on 1λ Long, 0.2λ radius PEC Cylinder 
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The current peaks occur on the edges parallel to the polarization direction (φ) on the lit 

side (φ = 0o). However, in contrast to the plate, the current along the cylinder edge varies 

due to curvature. A φ-cut of the current at the z-midpoint plane of the cylinder is shown 

in Figure 3–18. 
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Figure 3–19: Jφ Produced by Eφ Plane Wave Incident on 

2λ Long, 0.2λ radius PEC Cylinder 
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Figure 3–20: Jφ vs. φ @ z-midpoint plane on 2λ Long, 0.2λ radius PEC Cylinder 
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 The current distribution on a 2λ long perfectly conducting cylinder is shown in 

Figure 3–19 for comparison to the 1λ case. The distribution along the z-midpoint plane 

of the cylinder is shown in Figure 3–20. This plot shows a lower relative shadow side 

peak as compared to Figure 3–18. 

 

This causes the pattern for the 2λ case to converge closely to the infinite-length case, as 

can be observed in the pattern plots in Figure 3–21. Since the polarization of the aperture 

field (φ) is not interrupted by the truncation of the cylinder in the z direction, the patterns 

for this configuration converge to the infinite-length case more quickly as compared to 

the azimuthal slot. For the axial slot, a mounting cylinder length of 2λ is sufficient to ap-

proximate the behavior of an infinite-length cylinder. 
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Figure 3–21: Eφ From Axial Slot on 

1λ, 2λ, and Infinite Length, 0.2λ radius PEC Cylinder 
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3.5 Summary 

 This chapter validated the Reciprocity Approach as an accurate means for the 

computation of radiation patterns produced by conformal antennas. Narrow slots, ori-

ented in both the axial and azimuthal directions, mounted on infinite-length conducting 

cylinders have been used for the validation. Due to the infinite length, direct analytical 

formulas exist for pattern computation. These patterns were compared to those produced 

by the Reciprocity Approach and were found to be in exact agreement. 

 The chapter then proceeded to an analysis of the same slots, but mounted on fi-

nite-length conducting cylinders. The Reciprocity Approach allows efficient modeling of 

such realistic structures, as opposed to infinite-length objects, which is important for the 

simulation of actual systems. A trend toward the infinite-length case as the cylinder 

length is increased is demonstrated and the effect of cylinder length on the radiation pat-

tern is noted. Specifically, significant differences in the pattern occur for the azimuthal 

slot when the cylinder length is an even as opposed to an odd number of wavelengths. 

This was caused by the spatial characteristics of the surface current generated on the cyl-

inder by an incident TMz plane wave. The truncation of the finite cylinder in the z-

direction creates standing waves, which in turn cause variations in the pattern with re-

spect to changes in cylinder length. For the axial slot, the patterns converge much more 

quickly as the cylinder truncation is perpendicular to the polarization of the incident TEz 

plane wave. A 2λ length is sufficient to approximate the pattern for the infinite-length 

cylinder. 

 



Chapter 4  
 

ANALYSIS OF CONFORMAL ANTENNAS MOUNTED ON LARGE 
STRUCTURES 

 This chapter describes the modeling of a cavity-backed microstrip patch antenna 

mounted on a cylindrical conducting object. The antenna is also coated with a surface 

dielectric for protection from the elements, which is customary in the manufacture of 

conformal microstrip antennas. The patch antenna was chosen to be elliptical in shape to 

illustrate the utility and generality of the conformal FDTD technique used in the proposed 

method: a shape with a curved edge can be modeled more efficiently and accurately using 

this method compared to the conventional FDTD algorithm. The problem geometry is 

first introduced, followed by a description of the Reciprocity Approach for computation 

of the radiation pattern for this particular geometry and a closely related one. Next, fields 

produced by the conformal antenna on the dielectric superstrate are presented, along with 

a description of the surface electric currents produced by incident plane waves, which are 

required components in the pattern calculation. Finally, the resultant radiation patterns 

are presented and compared to patterns generated by alternate methods on the associated 

geometry. 
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4.1 Problem Geometry 

 The microstrip patch antenna modeled in this chapter is elliptical in shape and is 

mounted in a rectangular dielectric cavity. This cavity is mounted on an infinite length 

conducting cylinder to allow comparison of the resulting pattern to other methods. A dia-

gram of the antenna, along with the coordinate systems used in the remainder of this 

chapter, is presented in Figure 4–1: 

 

The radius of the infinite-length conducting cylinder is 0.631λo (0.5λo + 0.2λd), where λo 

and λd are the wavelengths in free-space and the dielectric cavity, respectively. The rela-

tive permittivity of the dielectric cavity is 2.33 (Duroid), while its dimensions are 1λd (x’-

direction) by 0.8λd (y’-direction), with a thickness of 0.2λd (0.131λo). The microstrip 

patch is an ellipse with major and minor axes of length 0.25λd and 0.20λd, respectively. 

The major axis is aligned with the axis of the cylinder. The patch is probe fed at the op-
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Figure 4–1: Elliptical Patch Antenna Mounted on Infinite Length Conducting Cylinder 
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timized coordinate computed by a commercial code (IE3D) for best impedance matching: 

on the x’ axis halfway between the left edge and the center of the ellipse. A diagram of 

the microstrip patch antenna configuration, indicating all dimensions, is shown in Figure 

4–2: 

 

Thus, the radiated field – for θ = 90o – is linearly polarized in the θ (x’ direction on the 

patch) direction. This is defined as the co-polarization direction, while the φ (y’ direction 

on the patch) direction is denoted as the cross-polarization direction. Radiation patterns 
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Figure 4–2: Microstrip Patch Antenna Geometry 
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are computed for both polarizations. The Reciprocity Approach to the pattern computa-

tion applied to this specific geometry will be described in the next section. 

4.2 Reciprocity Approach to Pattern Computation 

 The Reciprocity and Surface Equivalence Principles are used to divide the origi-

nal problem into two parts [58]-[60], as illustrated in Chapter 3, Sec. 3.2. A Reciprocity 

Approach was also applied in [61], but the Finite Element Method (FEM) was used to 

compute the equivalent magnetic currents on the radiating surface S1 (see Figures 4–1 

and 4–2) instead of the FDTD technique. The only difference between the slot radiation 

and the microstrip patch analyses is the computation of the equivalent magnetic surface 

currents M1. For the patch analysis, the FDTD technique is used to compute the electric 

fields E1(apert) on the surface of the superstrate S1, while analytical formulas (3.7) and 

(3.13) are used to compute the surface electric currents J2(cyl) produced by plane waves. 

The Reciprocity relation for this case, using the identity established in Appendix A and 

the relation in (3.6), is therefore 

( ) ( ) dS
Il

dV
Il S

cylSapert

V
∫∫ ⋅−=⋅−=

1

21121

11
JEMHE  ( 4.1 ) 

 

 Two alternate methods, which also utilize the Reciprocity Principle, are employed 

to compute the radiation pattern emitted by the microstrip patch antenna. Both methods 

analyze an associated geometry, which is related to the original one described above. In-

stead of a cavity, the dielectric material in this associated geometry extends to include the 

surface of the entire cylinder, as shown in Figure 4–3: 
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In this figure, the z-axis is directed out of the page and the diagram shows the xy-plane 

cut through the z-midpoint of the microstrip patch antenna (refer to Figure 4–1 for a 3-D 

view). This geometry was selected to provide a means of comparison to the first method 

and to quantify the effects of a cavity on the radiation pattern. 

 In the first of the two alternate methods, a commercial MoM code (IE3D) is used 

to compute the electric fields at the top surface of the dielectric produced by the patch 

antenna. The dielectric material is approximated by a flat dielectric slab of infinite extent 

to allow modeling by the MoM technique. The fields on the surface of the superstrate S1 

(see left side of Figure 4–3) in the original geometry are used to compute the pattern. Al-

though fields exist outside this region (at all points on the surface of the dielectric), they 

are not considered in the calculation. The radiation patterns are computed using the Re-

ciprocity relation applied in the same manner as in the proposed method. This is defined 

in (4.1). The JS2(cyl) and E1(apert) terms in (4.1) are defined by the analytical formulas in 
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Figure 4–3: Modified Microstrip Patch Antenna Geometry 
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(3.7) and (3.13), and the surface electric fields computed by IE3D, respectively. The term 

E1 is the desired far-zone electric field. 

 In the second alternate method, the surface electric currents produced on the patch 

by the probe feed J1, are first determined (by IE3D), using the locally flat dielectric slab 

approximation. Since the patch is assumed to be perfectly conducting, the tangential elec-

tric fields vanish at all points on the patch. Thus, the equivalent magnetic currents, M1 in 

the Reciprocity Theorem of equation (4.2) below, are zero. The general Reciprocity 

Theorem is repeated here from Chapter 3 for convenience: 

( ) ( )dVdV
VV
∫∫ ⋅−⋅=⋅−⋅
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Figure 4–4: E*J Pattern Computation 
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Using the Surface Equivalence Principle, the patch is then replaced with these currents, 

yielding a dielectric-coated infinite-length conducting cylinder. 

 A diagram illustrating the application of both the Surface Equivalence and Recip-

rocity Principles for this specific geometry is shown in Figure 4–4. Instead of solving for 

the far-zone field directly, the antenna is analyzed in the receive mode as described in 

Sec. 3.2. A dipole source J2 is positioned at the exact coordinates where the far-zone 

electric fields are desired. Again, the source is assumed to be an electric current source; 

thus, M2 is zero. The Reciprocity relation for this geometry (denoted as the E*J method) 

is therefore 

dS
Il S

∫ ⋅=
1

121

1
JEE  ( 4.3 ) 

 

The spherical waves emitted by the dipole source become plane waves, which strike the 

dielectric-coated cylinder. The electric fields E2 produced inside the dielectric by a nor-

mally incident plane wave of the appropriate polarization are computed analytically [62]. 

The volume integral on the right side of (4.2) reduces to one over the surface S1 of the 

patch, as J1 is zero everywhere else. The left side reduces to a vector dot product since 

the point coordinates of the desired far-zone electric field E1 and those of the dipole 

source J2 are identical. With the surface electric currents J1 obtained from the MoM code 

and the magnitude of the dipole source J2 being an assumed value, the far-zone electric 

field E1 can be determined using equation (4.3). 
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4.3 Conformal FDTD Simulated Aperture Fields 

 The microstrip patch antenna was simulated using the conformal FDTD method 

[12], which includes a model of the coaxial line used to feed the patch antenna. A plot of 

the mesh generator output for the antenna is shown in Figure 4–5: 

 

This diagram shows the elliptical patch inside a dielectric block fed by a coaxial line. A 

ground plane is placed below the dielectric and the four vertical planes defining the simu-

lation boundary are terminated with a perfect electrical conductor (PEC) in order to 

model the cavity. A free-space layer of five cells is defined above the dielectric block, 

followed by a Perfectly Matched Layer (PML) absorbing boundary located above the 

free-space region. The boundary at the bottom of the simulation domain is also PML, 

 

 
 

Figure 4–5: FDTD Mesh Discretization of Microstrip Patch Antenna 
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which isolates the inner and outer conductors at the base of the coaxial cable that pro-

vides excitation to the patch antenna. 

 The center conductor of the coaxial feed line is connected to the patch, while the 

outer conductor is connected to the ground plane beneath the dielectric block. The coaxial 

line is excited by voltage sources placed between the center and the outer conductors. 

Eight sources are placed symmetrically about the center conductor to provide excitation 

to the antenna. 

 The electric field distribution produced by the patch antenna on the surface of the 

superstrate is shown in the contour plots of Figure 4–6: 

 

The above distributions are plotted on a grid of x and y cells defined by the mesh genera-

tor. The elliptical patch (outlines shown in Figure 4–6) has x and y coordinates between 

10 and 30, and 8 and 24, respectively. The probe feed is located at x = 15, y = 16. The 

distribution resembles that which would be found at the z’-level of the patch: zero tangen-

tial fields on the patch, and peak intensity fields at the edges of the patch at the x and y 
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Figure 4–6: Aperture Distributions, |Ex| and |Ey| 
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coordinates of the probe. The fields tangential to the surface of the superstrate are not 

zero, as the field lines diverge from the patch and are no longer vertical as required by 

boundary conditions at the patch level. 

 The x-polarized fields show a maximum on the left side at the y’-midpoint of the 

patch because the probe is closer to this side. This is due to the field lines having maxi-

mum alignment with the x’-axis at the y’-midpoint and higher intensity on the side where 

the source is closest to the edge. The maxima for the y-polarized fields occur at the edges 

of the patch at the x’ coordinates of the probe. This is due to the same reasons cited for 

the x’-polarized field lines. However, the two maxima are 180o out of phase as can be 

seen in the right-hand plot of Figure 4–7: 

 

A 180o phase shift can be observed in the above figure for the phase of Ey on opposite 

sides of the y = 16 (y-midpoint) line. This gives rise to the null at boresight in the cross-

polarization (Ey) radiation pattern for the patch antenna (see Figure 4–13). 

 

 
 

Figure 4–7: Aperture Distributions, Phase of Ex and Ey 
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 For comparison purposes, the field distributions on the superstrate surface com-

puted by IE3D are presented below. These distributions (both magnitude and phase) are 

shown in Figures 4–8 and 4–9: 

 

Both distributions computed by IE3D closely resemble those calculated by the conformal 

FDTD algorithm. 
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Figure 4–8: Superstrate Field Distributions, |Ex| and |Ey| (IE3D) 

 

 
 

Figure 4–9: Superstrate Field Distributions, Phase of Ex and Ey (IE3D) 
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It is noted that the IE3D-calculated Ey phase distribution has the same characteristic as 

the FDTD distribution does: phase differences of 180o exist on opposite sides of the y-

midpoint line. These distributions and resultant patterns (Figure 4–10) suggest that the 

radiation characteristics of the microstrip antenna in this case are not affected signifi-

cantly by the presence of the cavity. 

 The other required component in the pattern computation is the surface electric 

currents generated by a normally incident plane wave of first θ then φ polarization. Since 

the mounting cylinder is infinite in length, analytical formulas for these currents have 

been derived. Plots of these currents are shown in Figures 3-3 and 3-6 of Chapter 3 for 

the θ and φ polarized plane waves, respectively. 
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Figure 4–10: Eθ H*M Patterns: Cavity vs. No-Cavity 
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4.4 Reciprocity Based Pattern Computations 

 Radiation patterns for the cavity backed patch antenna mounted on an infinite-

length conducting cylinder and the associated geometry are computed using the proposed 

method and two alternate techniques, respectively. The patterns are compared and the 

effect of the cavity on both aperture polarizations is noted. Both the co- (θ) and cross- (φ) 

polarizations of the radiated field are computed. 

4.4.1 Co-Polarization Patterns 

 The patterns for the co-polarization (Eθ) radiated fields for the proposed method 

(H*M) computation on the original geometry (with cavity) and the H*M calculation on 

the associated geometry (no cavity) are shown in Figure 4–10. 
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Figure 4–11: Eθ: H*M vs. E*J Patterns 
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The H*M notation signifies pattern computation by combination of the source M currents 

and the plane wave generated surface H fields. Even without the cavity, use of the sur-

face electric fields at the position of the cavity (computed by IE3D) yields patterns that 

are identical with the computation for the original geometry (conformal FDTD computed 

fields). 

 

Next, the E*J method defined in equation (4.3) for the associated geometry is compared 

to the H*M generated pattern on the original geometry. The two patterns appear in Fig-

ure 4–11. In this comparison, the cavity backed patch antenna (H*M computation) has a 

significantly lower back lobe level compared to the patch mounted within the dielectric 

coated cylinder (E*J calculation). This can be attributed to the cavity providing directiv-

ity to the radiated field, thereby reducing the amount of backside radiation. To support 

this supposition, the aperture in the conformal FDTD model was widened in the φ direc-
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Figure 4–12: Eθ: H*M Original & Widened Aperture vs. E*J Patterns 
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tion, and the resulting pattern was compared to the E*J pattern in addition to the original 

H*M pattern. This comparison is shown in Figure 4–12. 

 The aperture in the conformal FDTD model was increased from an original φ an-

gle of 46.9o to 77.2o. This caused the back lobe to increase in magnitude. These results 

show that the E*J pattern will be approached if the aperture is widened to the complete 

360o. The aperture could be widened further (beyond 77.2o); however, the flat patch ap-

proximation would then be violated. The results also indicate the sensitivity of the pat-

terns for the co-polarized radiated fields to cavity effects. 

4.4.2 Cross-Polarization Patterns 

 This subsection addresses the cross-polarization radiation patterns (Eφ). For this 

polarization, the patterns computed by all three methods compare well. 
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Figure 4–13: Eφ: H*M (CFDTD) vs. H*M (IE3D) & E*J (IE3D) Patterns 



83 

 

The plots appear in Figure 4–13. The creeping waves launched from the cavity into the 

shadow region are less attenuated as compared to the Eθ case. In addition, the E*J pattern 

contains deeper nulls: these are caused by the higher magnitude creeping waves, which in 

turn create a stronger standing wave effect. The nulls at φ = 0o and 180o are caused by the 

two peaks in the Ey’ aperture distribution (see Figure 4–6) being equal in magnitude, but 

180o out of phase (see Figure 4–7). 

 To determine the effect of the cavity on the two aperture polarizations, patterns 

for slots narrow in the φ-direction are plotted for a conducting cylinder infinite in length 

and with a radius of 0.631λo. 

 

 The above plot depicts surface electric currents Jz and Jφ produced by Eθ and Eφ 

(θ = 90o) polarized, normally incident plane waves, respectively. The plots are normal-
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ized to their respective maximums and plotted in dBA/m. If an azimuthal slot is narrow in 

the φ-direction, its pattern can be plotted directly from the Jz currents, as described in Sec. 

3.3.2 for the axial slot narrow in the φ-direction. Therefore, the plots of |Jz| and |Jφ| in 

Figure 4–14 also represent the radiation patterns for slots narrow in the φ-direction with 

aperture fields polarized in the z and φ directions, respectively. 

 The radiation patterns of Figure 4–14 show that Eφ polarized creeping waves 

launched from an axial slot onto the conducting cylinder surface are attenuated less by 

the slot edges compared to Eθ polarized waves. This explains why the Eφ pattern for the 

cavity-backed elliptical patch antenna compares well with the Eφ patterns for the associ-

ated geometry: the creeping waves originating from the cavity are of the same approxi-

mate magnitude as those propagating on the surface of the dielectric in the associated 

geometry. In contrast, the Eθ creeping waves emitted by the cavity in the original geome-

try are significantly attenuated by the cavity edge compared to those free to propagate 

through and on the dielectric surface in the associated geometry. This can be seen in the 

current plots of Figure 4–14 above, where the difference in current magnitudes at φ = 

180o is approximately 22 dB. 

4.5 Summary 

 This chapter has presented an analysis of an elliptical microstrip patch antenna 

located within a dielectric cavity and mounted on an infinite-length conducting cylinder. 

Aperture field distributions produced by the conformal antenna on the dielectric super-
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strate have been presented and discussed. Patterns computed using the proposed method 

have been compared to those generated by alternate techniques applied to closely related 

geometries. It has been demonstrated that aperture fields polarized normal to the cavity 

edge (in the φ direction) produce a larger amount of back radiation compared to tangen-

tially oriented fields. Slots oriented in both the axial and azimuthal directions and narrow 

in the φ direction are used to illustrate this characteristic. Thus, patterns for the Eφ aper-

ture fields for the cavity- vs. the no-cavity cases compare well, while those for the Eθ po-

larization do not. However, when only the aperture fields for the no-cavity case are used 

in the pattern computation, the resulting response compares well to that produced by the 

proposed method applied to the cavity case. 

 This chapter has shown that the Reciprocity Approach is an accurate means to 

pattern computation. In addition, the conformal FDTD portion of the hybrid method al-

lows the modeling of patch antennas with curved shapes, while the MoM technique en-

ables the simulation of mounting structures defined by the CAD program interfaced to 

the MoM code: PATRAN [63]. Due to its extensive capabilities – entire aircraft and large 

ocean vessels have been drawn in PATRAN – the mounting structure can essentially 

have a general shape. 

 The proposed technique can also be used within an optimization loop to define the 

best patch antenna shape and location on a given mounting structure in the attainment of 

a desired radiation pattern. For most design problems, the mounting structure cannot be 

altered: only the patch antenna shape and location on the structure can be modified to ap-

proximate the desired pattern. Due to this constraint, only the FDTD portion of the simu-
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lation requires re-calculation within the loop. The MoM-computed currents can be used 

repeatedly for all subsequent pattern calculations. This significantly enhances the compu-

tational efficiency of the proposed hybrid technique, as other methods generally require a 

re-execution of the entire code. Thus, the time required for convergence to an optimal 

solution in such optimization schemes as the genetic algorithm, would be reduced sub-

stantially by use of the Reciprocity Approach described in this chapter. 

 

 
 



Chapter 5  
 

ANALYSIS OF A LARGE REFLECTOR ANTENNA SYSTEM WITH AN 
ASYMMETRIC FEED 

 This chapter describes a technique for the analysis of a large reflector antenna 

system, which is circularly symmetric about its axis of rotation, except for the feed sys-

tem. The method effectively reduces the computational domain from three to two dimen-

sions by using both the Surface Equivalence and Reciprocity Theorems. The Surface 

Equivalence Principle is used to transform the original problem into a circularly symmet-

ric geometry, but with an asymmetric source. The resulting system is then analyzed while 

operating in the reverse mode (receiving instead of transmitting). The Reciprocity Theo-

rem is used to combine the results from the two modes of operation (transmitting and re-

ceiving) to construct the radiation pattern, avoiding both the non-symmetric geometry 

and excitation source. 

 A Method of Moments (MoM) code is employed for the non-symmetric geome-

try, while an FDTD algorithm is used to analyze the circularly symmetric 3-D structure. 

The Equivalence Principle is applied to the results of the MoM analysis to allow model-

ing of a symmetric geometry by the FDTD technique. The Reciprocity Theorem is then 

used to combine these results to construct the radiation pattern. The advantage of this 

method is that it achieves significant savings in computer memory and run time by per-

forming an equivalent 2-D as opposed to a full 3-D FDTD simulation. 
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 The chapter begins with a definition of the problem geometry, followed by a dis-

cussion on the application of the Reciprocity and Surface Equivalence Theorems. Since 

the Surface Equivalence Principle renders a circularly symmetric geometry, an effective 

2-D model – which eliminates the azimuthal axis (φ) from the 3-D model – can be ap-

plied. The approach, called the body of revolution (BOR) – azimuthal harmonics tech-

nique, is described next in the chapter. This is followed by a discussion on fields located 

directly on the axis of symmetry (z-axis). The algorithm also features three improvements 

over conventional FDTD methods: (i) a conformal approach for improved accuracy in 

modeling curved dielectric and conductive surfaces; (ii) a tapered excitation source to 

reduce the error introduced by a truncated plane wave source; and, (iii) non-uniform 

meshing techniques to maximize computer run-time efficiency. The accuracy of the 

method is validated via a comparison of simulated and measured results. 
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Figure 5–1: Reflector Antenna System 
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5.1 Problem Geometry 

The reflector antenna system, shown in Figure 5–1, is considered to outline the 

procedure. In this figure, the structures to the left, middle, and right are the main reflector 

(paraboloid), microstrip feed array, and radome structure (composed of two dissimilar 

dielectric materials), respectively. The antenna has an aperture diameter of 160.6 mm 

(24.09λ), a focal length of 90.5 mm (13.58λ), and an operating frequency of 45 GHz. The 

radome has an outer diameter (including the skirt) of 190.32 mm (28.55λ), an inner di-

ameter of 145.16 mm (21.77λ), and a thickness of 7.0 mm (1.05λ). The inner radome and 

outer skirt are composed of low-loss (loss tangent less than 0.001) dielectric materials 

with relative permittivities of 8.5 and 4.2, respectively. The feed antenna dielectric mate-

rial has a relative permittivity of 4.6. The feed antenna structure, when looking from the 

reflector, has the geometry shown in Figure 5–2: 
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Figure 5–2: Microstrip Patch Antenna Geometry 
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 The feed network for the microstrip patch array of Figure 5–2 is designed to pro-

duce a left-hand circularly polarized (LCP) wave. Thus, for this system, the co-

polarization and cross-polarization directions are LCP and RCP (right-hand circularly 

polarized), respectively. In addition, the system is operated as a monopulse radar. 

Through its feed network, the system forms nulls (for the difference patterns) along either 

the elevation or azimuthal plane, or forms a peak at boresight (directly above the center 

of the antenna) for the sum pattern. Figure 5–3 defines the null planes: 

 

 When the reflector antenna – together with its feed system – points at boresight 

(Figure 5–1), the reflector and radome structures are both circularly symmetric with re-

spect to the z-axis, but the feed array perturbs this symmetry. Application of both the 

Equivalence and Reciprocity Theorems is used to overcome this asymmetry and reduce 

the 3-D problem to an effective 2-D one. 
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Figure 5–3: Monopulse Radar Operation 
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5.2 Application of the Equivalence and Reciprocity Theorems 

 To reduce the number of dimensions in the analysis from three to two, the feed 

structure is first analyzed using an MoM code to determine the electric currents flowing 

on the surface of the four microstrip patches. Through application of the Surface Equiva-

lence Principle, the radiating patches in the feed antenna are replaced by the computed 

currents. This yields a circularly symmetric geometry, but with a non-symmetric excita-

tion source. Instead of analyzing the system in the transmitting mode, the mode of opera-

tion is reversed (see Figure 5–4 below). A dipole source J2 is placed where the far-zone 

electric field E1 is desired. The fields produced on the surface of the feed dielectric by J2 

are then computed. 

 

Since the geometry is now circularly symmetric, a 2½-D FDTD algorithm for bodies of 

revolution is employed. The notation 2½-D denotes a 2-D simulation with the availability 
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Figure 5–4: Application of Equivalence and Reciprocity Theorems to Original System 
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of all 3-D fields. The Reciprocity Theorem, which relates the fields and currents of two 

systems, is applied to combine the currents obtained from the MoM code and the fields 

determined by the FDTD code to yield the far-zone electric field. For the system de-

scribed above, the Reciprocity Theorem of equation (2.34) reduces to 

∫∫ ⋅=⋅
12

1221

VV

dVdV JEJE  ( 5.1 ) 

 

in which E1 and J2 are the desired far-zone electric field (transmit mode) and the dipole 

source (receive mode) placed where E1 is desired, respectively. On the right-hand side, 

E2 and J1 are the fields produced on the surface of the circularly symmetric feed dielec-

tric (receive mode) and the electric currents produced on the surface of the microstrip 

patches by the excitation sources (transmit mode), respectively. Note that the left-hand 

side reduces to a simple vector dot-product as the point coordinates of E1 and J2 are iden-

tical, while the right-hand side reduces to a surface integral over the area of the four radi-

ating patches since the electric currents (J1) are zero everywhere else. Also, since the 

value of the far-zone field relative to the maximum is required for the pattern, J2 is arbi-

trarily set to unity. Since the right-hand side of equation (5.1) is known from the results 

of the MoM (J1) and FDTD (E2) computations, the far-zone electric field (E1) can be 

determined. 
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5.3 Azimuthal Harmonics 

 This section describes the method used to model the problem geometry in an 

equivalent 2-D simulation. The Equivalence Principle renders the geometry circularly 

symmetric about the z-axis, thus allowing a 2-D simulation. Due to this circular symme-

try, all fields are required to be cyclical in the φ-direction; thus, they can be expanded as 

follows [17], [64] 
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where Ee and He, and Eo and Ho represent even and odd harmonics of the electric and 

magnetic fields, respectively. Using Faraday’s Law 

t∂
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E µ  ( 5.3 ) 

 

and expanding the curl of the electric field in cylindrical coordinates 
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yields the following relations for the ρ, φ, and z directions, respectively 
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Substituting equation (5.2) into (5.5)-(5.7) above and solving for the coefficients of 

sin(mφ) and cos(mφ) yields 
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in which no φ-derivatives appear, as all expansion terms are independent of φ. These rela-

tions are converted to difference equations as described in Sec. 2.1.1. The time-advanced 

term in each resulting difference equation is determined as a function of all variable val-
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ues at the previous time increment. The time derivatives appear on the right-hand sides of 

equations (5.8)-(5.13). 

 To add the source to the model, Ampere’s Law with Maxwell’s correction is used 

St
JE

E
H ++

∂
∂=×∇ σε  ( 5.14 ) 

 

in which Js is the source electric current. Since the source is located in the far-zone, it be-

comes a plane wave source in the vicinity of the antenna system. Therefore, this source 

will be considered as an electric field plane wave source, omitting the factor 
r

j
π

ωε
4

−  as-

sociated with radiating dipole sources in the far-zone. This factor is common for all inci-

dence angles and will not affect the pattern computation relative to the maximum value. 

The following rotation matrix is used to convert Cartesian coordinate source electric 

fields to the cylindrical coordinate system 
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If an i
xE  magnitude (x polarized) incident plane wave is desired, then 

φ
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An incident i
xE  plane wave propagating towards the origin (see Figure 5–5) at a polar 

angle θi away from the z-axis can be written in terms of a θ-polarized electric field Eo as 

in (5.17) [32]: 
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Expanding the ijkxe θsin−  factor in terms of Bessel functions [32] yields 
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where an = 2j-nJn(kρsinθi) for n > 0, ao = J0(kρsinθi). Solving for Eρ and Eφ by combining 

(5.16) and (5.18), and using the following trigonometric identities 
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the following relations for Eρ and Eφ result 
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Figure 5–5: Incident Eθ Plane Wave 
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Equation (5.20) is substituted into (5.14) for the two respective electric field components. 

Due to the n+1 and n-1 indices in (5.20) above, the m index in (5.2) must be set to these 

two values in order to solve for the sin(mφ) and cos(mφ) coefficients. For m = n+1, solv-

ing for the cos(mφ) coefficients yields the following relation 
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Solving for the sin(mφ) coefficients, 
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For m = n-1, the cos(mφ) coefficients are related by 
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Finally, for the sin(mφ) coefficients, the following relation results 
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The update equation for Ez is derived from the source-free relation [coefficients of 

cos(mφ)] 
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Since the total fields in (5.2) can be expressed in terms of either the odd or even expan-

sion coefficients, and (5.21)-(5.24) have specified Eρe and Eφo (due to the coefficient rela-

tions), only these and Eze, Hρo, Hφe, and Hzo are determined. The other six terms from 

(5.2) are set to zero. Hence, only the coefficients of cos(mφ) are considered in (5.25) 

above. Setting the six terms to zero eliminates (5.9), (5.10), and (5.13); therefore, only 

(5.8), (5.11), and (5.12) in addition to (5.21) through (5.25) are used to compute the re-

quired expansion coefficients. This set of equations is converted to difference equations 

as described in Sec. 2.1.1, and the time-advanced term in each relation is determined. 

5.4 Fields Located at the Z-Axis 

 The cell structure used in this Body of Revolution (BOR) simulation is illustrated 

in Figure 5–6. For the field En(i, j), n, i, and j represent the field magnitude, polarization 

direction, and the ρ and z cell numbers, respectively. The fields located on the z-axis in-

clude Eρ, Hφ, and Hz. These quantities must be shown to be finite to successfully model 

the problem geometry. In this model, the first cell in the ρ direction is a half-cell. The Hz 

field can be determined by using Faraday’s Law in integral form, 
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in which the electric field is φ-polarized and the line integral is taken around the z-axis in 

the φ direction. Since 

( )∫ =
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for all m, Hz at the z-axis is zero. Regarding Hφe, (5.25) is converted into finite difference 

form as 
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in which the superscripts represent the time index and ρi represents the ρ-coordinate for 

the ith cell relative to the z-axis. In (5.25), the derivative of the entire product is taken as 

opposed to using the chain rule. For i = 1, ρi-½ = 0 as this ρ coordinate is exactly on the z-
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Figure 5–6: 2-D BOR Cell Structure 
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axis. Therefore, the value for ( )jH n ,0φ  is not needed. The field ( )jE n
z ,11+  is found from 

the off-axis magnetic fields ( )jH n ,1φ  and ( )jH n ,1ρ , in addition to the previous value 

( )jE n
z ,1 . 

 Regarding the last on-axis field, Eρ, we examine the update equation for Hφ con-

verted to finite difference form from (5.11), 
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For i = 1, ( )jE n
z ,0  does not exist (it is beyond the z-axis), and since the value for 

( )jH n ,01+
φ  is not needed, the values for ( )jE n ,1ρ  and ( )1,1 −jE n

ρ  are also unnecessary. 

Therefore, all of the fields located on the z-axis can be set to zero without affecting the 

accuracy of the simulation. 

5.5 Conformal Method for Modeling Perfect Conductors 

 The method used to model the curved conducting surface of the main parabolic 

reflector is described in [28]. However, a 2-D equivalent of the 3-D technique employed 

in [28] is used here. In this method, if a curved conducting surface intersects a cell, it is 

approximated by a straight line connecting the two intersection points (see Figure 5–7). 

Only magnetic field update equations are affected by this technique as electric fields are 

zero within PEC regions and these fields are used in the computation of the magnetic 

fields. 
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Electric fields are computed from these resultant magnetic fields. For Hφ, equation (5.26) 

is converted to the finite difference form 
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where ∆ρ(i, j) and ∆z(i, j) represent the length of the cell edges located outside the PEC 

material in the ρ and z directions, respectively, for the ith and jth cell with respect to the ρ 

and z axes. The ∆s(i, j) term denotes the area of the distorted cell bounded by the straight 

line approximation to the curve and the remaining cell edges. The cell size is chosen to be 

sufficiently small to allow only one intersection between a conducting surface and any 
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Figure 5–7: Conformal Method for Perfect Conductors 
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cell (i.e.: there is only one closed line integral per cell). Using a similar procedure, the 

update equation for Hρ – derived from (5.8) – is expressed as 
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where ∆zo(i, j) is the full cell length in the z direction for cell (i, j). Note that the factor 

∆z(i, j)/∆zo(i, j) has been added since Ez is zero along the part of the cell within the PEC 

material. Converted to finite difference form from (5.12), the update equation for Hz is 

written as 
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where ∆ρo(i, j) is the full cell length in the ρ direction for cell (i, j). As done previously, 

the derivative of the first term of (5.12) has been taken for the entire product rather than 

by the chain rule. As was done for (5.31) above, the factor ∆ρ(i, j)/∆ρo(i, j) has been 

added since Eρ is zero along the part of the cell within the PEC material. The remaining 

fields, Eρ and Eφ, are computed by finite difference relations derived from (5.21) through 

(5.24). 
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5.6 Modeling of Curved Dielectric Surfaces 

 Curved dielectric surfaces in the simulation domain are modeled using a tech-

nique described in [65]. Effective permittivities and conductivities are computed from 

weighted averages as follows 

( ) ( ) ( )∫∆
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So
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jiX

,

1
,  ( 5.33 ) 

 

where Xeff, X(r), and ∆so(i, j) represent the effective and actual (at coordinate r) permittiv-

ity or conductivity, and the area of cell (i, j), respectively. The integral is taken over the 

area of cell (i, j) (S). Using (5.33), the effective permittivity and conductivity can be ex-

pressed as 
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since εr and σ are 1 and 0, respectively, for free space. In the above equations, ∆sd(i, j) 

and ∆sf(i, j) are the area enclosed by the dielectric and free space, respectively, for cell 

(i, j). 
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5.7 Tapered Excitation Source and Non-Uniform Mesh 

 To prevent reflections from the first Mur absorbing boundary [23] used in this 

algorithm, a tapered plane wave excitation source was used. Due to the high reflectivity 

of the Mur boundary condition at the glancing angle, the plane wave source was tapered 

from full intensity at 40 cells from the maximum ρ boundary to zero at the boundary. All 

objects within the simulation domain were contained inside this 40-cell border to obtain 

plane wave effects. 

 To further limit boundary effects and to enhance computational efficiency, a 

coarse grid was used between the maximum ρ boundary and the objects in the simulation 

domain. The grid was made finer in regions where the fields have relatively large rates of 

spatial variation. 

5.8 Numerical Results 

 To compute the far-zone fields for the left-hand circularly polarized antenna sys-

tem, first an x-polarized source is applied, followed by a y-polarized source. These 

sources produce both x and y polarized fields on the surface of the feed dielectric. To 

compute both the co- and cross-polarization x and y directed fields, a combination of 

these resultant surface fields with quadrature phasing, is computed as follows: 
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x jEEEjEEE −=−= ,  ( 5.36 ) 
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in which the general field Enm represents an n-polarized field produced by an m-polarized 

source. To calculate the far-zone fields using the Reciprocity Approach, the following 

relations are used 

( )∫ ⋅+⋅∝−
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y
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x
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where S is the surface of the radiating patches. The gain of the system is calculated from 

the ratio of this field intensity to that produced by an isotropic radiator, for different con-

figurations or excitations. 
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Figure 5–8: |Jx| Current Distribution, Azimuthal Difference Patterns 
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Figure 5–9: |Jy| Current Distribution, Azimuthal Difference Pattern 
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Figure 5–10: |Jx| Current Distribution, Elevation Difference Pattern 
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Figure 5–11: |Jy| Current Distribution, Elevation Difference Pattern 
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Figure 5–12: |Jx| Current Distribution, Sum Pattern 
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 The current distributions on the four microstrip patch antennas, for the different 

monopulse excitations, are shown in Figures 5–8 through 5–13. The x and y coordinates 

in all plots are in mm. The peaks in the |Jx| distributions occur on the minimum and maxi-

mum y-boundaries of each patch, and at the center x-coordinate of each patch for all 

pattern excitations. For the |Jy| distributions, the peaks occur at either the minimum or 

maximum x-coordinates and the center y-coordinate of each patch. The exact location of 

the peaks, however, is a function of the excitation. For the azimuthal difference pattern, 

since the null is in the yz-plane (see Figure 5–3), the peaks occurred at opposite sides of 

this plane. Thus, for the microstrip patches on the left-hand side, the peaks are on the left-

hand side of the patches. The opposite is true for the right-hand side patches. While the 
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Figure 5–13: |Jy| Current Distribution, Sum Pattern 
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magnitude of the peaks is comparable, they are 180o out of phase, creating the null in the 

azimuthal plane. 

 For the elevation plane, in addition to the peaks noted for the azimuthal difference 

case, smaller peaks occurred on the inner edges of the patches. This serves to diminish 

the symmetry of the radiated fields about the yz-plane, thereby eliminating the azimuthal 

null. The phase difference between the x-directed peaks produce the null in the elevation 

plane (xz). 

 

 

 
 

Figure 5–14: Eρ vs. ρ & z cells, Reflector Antenna System 
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 Finally, in the sum pattern current distributions, the current peaks in the y direc-

tion occur on the left-hand side of the upper patches, while they occur on the right-hand 

side of the lower patches. This serves to eliminate symmetry in both planes and still pro-

duce an LCP radiated wave. 

 A plot of the ρ-polarized electric fields being focused by the main reflector of the 

antenna system is shown in Figure 5–14. This plot shows the ρ-polarized field distribu-

tion with a radome surrounding the entire system. Also visible is a dielectric secondary 

reflector installed between the main reflector and the feed. 

 

 
 

Figure 5–15: Comparison Between Simulated and Measured Data 
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The surface of the feed dielectric is located at z-cell 325. The secondary reflector serves 

to focus the fields onto the feed, which is not positioned at the focal point of the main re-

flector; hence, the sharp field peak at the feed position. 

 Finally, the gain of the system – using the above reported data combined through 

equations (5.36) to (5.39) – is computed. The curves in Figure 5–15 are ratios (dB) of the 

far-zone electric fields, for various incidence angles, to the co-polarized far-zone electric 

field at 0o incidence. The figure compares the simulated and measured results and the two 

are seen to be in fairly good agreement. The asymmetry in the measured results can be 

attributed to either measurement error or slight asymmetrical characteristics of the actual 

antenna system. 

5.9 Summary 

 This chapter has presented a technique for the analysis of a large reflector antenna 

system with partial symmetry about its axis of rotation. Through application of the Sur-

face Equivalence Principle, the geometry is made circularly symmetric, but with an 

asymmetric source. Use of the Reciprocity Theorem eliminates the asymmetric source, 

thus creating a completely circularly symmetric problem. This allows the simulation of 

the resulting geometry in an equivalent 2-D model, thereby substantially reducing 

computational resource requirements. Only 0.33% of the total number of cells required in 

the full 3-D model is simulated (see Figure 5–14). 

 The chapter describes the Reciprocity Approach to pattern computation for this 

particular geometry. Plots of the current distribution on the source microstrip patches and 
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the electric field distribution on the dielectric feed of the reflector antenna system in re-

sponse to plane wave excitation are also presented. Finally, radiation patterns generated 

by the proposed method are compared to actual test data and are found to be in good 

agreement. Thus, substantial computational savings are realized without sacrificing cal-

culation accuracy. 

 

 
 
 



Chapter 6  
 

ANALYSIS OF A LARGE REFLECTOR ANTENNA SYSTEM - TILTED RA-
DOME CONFIGURATION 

 This chapter describes an analysis of the same reflector antenna system consid-

ered in Chapter 5, however, for an inhomogeneous radome, which is tilted with respect to 

the remainder of the antenna system. This chapter presents an efficient method to solve 

this large body scattering problem viz., a paraboloid reflector antenna system, with only 

partial circular symmetry. The asymmetry in the system is introduced by two factors, viz., 

the microstrip feed and an inhomogeneous radome. The chapter presents a novel ap-

proach, based on the Equivalence and Reciprocity Principles, and the “equivalent” aper-

ture theory, to overcome the asymmetry problem and still take advantage of the circular 

symmetry of the large paraboloid of revolution. The technique thereby enables substantial 

computational efficiencies by analyzing the majority of the 3-D computational domain in 

an effective 2-D simulation, with the remainder being analyzed using a 3-D algorithm. 

6.1 Problem Geometry 

 As mentioned above, the problem geometry is closely related to that considered in 

Chapter 5. The additional asymmetry considered here is due to the tilt of the radome 

structure relative to the remainder of the antenna system as shown in Figure 6–1: 
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6.2 Method 

 The purpose of the proposed technique is to efficiently compute the radiation pat-

tern of a large antenna system with partial circular symmetry. To avoid a 3-D simulation 

of the entire structure, the chapter presents two techniques which exploit the circular 

symmetry of the problem geometry to reduce the number of dimensions required by the 

simulation from three to two for a majority of the problem space. The Equivalence and 

Reciprocity Principles are used as in [9] and as described in Sec. 5.2 to overcome the first 

asymmetry caused by the feed structure. The second asymmetry, introduced by the inho-

mogeneous radome, is handled by applying the "equivalent aperture" theory to divide the 

problem into 2-D (majority of the simulation domain) and 3-D analyses prior to use of 

the aforementioned principles for the computation of the radiation pattern. The Finite 

Difference Time Domain (FDTD) [16] method is used to both construct the "equivalent 

aperture" (2-D FDTD) and propagate these aperture fields in a 3-D FDTD simulation 

 

ρ

z

 
 

Figure 6–1: Tilted Radome Configuration 
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whose results are then used by the Reciprocity Theorem to construct the pattern (see Sec. 

5.2). 

The 2½-D and 3-D FDTD simulation regions were truncated by a first-order Mür 

[23] and a 6-layer Perfectly Matched Layer (PML) [24] absorbing boundary condition, 

respectively. 

6.2.1 Aperture Field Construction 

 When the radome is tilted at an angle with respect to the axis of the reflector sys-

tem, as in Figure 6–1, an additional asymmetry is introduced into the geometry. To ad-

dress this problem, the hybrid field pattern is first projected onto a plane perpendicular to 

the reflector structure (‘p’ in Figure 6–2). 

 

 

z

p

 
 

Figure 6–2: Tilted Radome and Projected Field Distribution 
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In this diagram, the darker region denotes where the incident fields penetrate the higher 

permittivity material (radome, εr = 8.5), while the lighter region indicates the correspond-

ing region illuminated by the fields that penetrate the lower permittivity material (skirt, εr 

= 4.2). 

 The fields within these regions are obtained by analyzing the "normal" configura-

tion (Figure 5-1 of Chapter 5) using a 2½-D FDTD simulation (since the geometry has 

been made circularly symmetric by the Surface Equivalence Principle, as described in 

Sec. 5.2 above) with the entire radome consisting of first the higher permittivity material 

(εr = 8.5), then the lower permittivity material (εr = 4.2). 

 

These fields are stored in a 2-D map (for both cases) at a z-position just inside the main 

reflector (between the main reflector and the feed, see Figure 6–2), then used to construct 
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Figure 6–3: Tilted Radome and Projected Field Distribution, with Parameter Definitions 
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the "equivalent aperture" for the desired configuration and tilt angle. Note that the aper-

ture fields are taken from those intercepted by the main reflector and focused onto the 

feed, as fields not captured by the main reflector have negligible effect on the fields pro-

duced on the feed structure. 

 Since the radome is circularly symmetric about the z-axis, it is sufficient to ana-

lyze the system with respect to one tilt angle, chosen to be in the elevation (yz) plane. A 

diagram of the system describing the parameters used for the aperture field construction 

is shown in Figure 6–3. 

 A circular region is formed when the reflector system is aligned with the radome 

structure (normal incidence, top drawing), while an elliptical pattern results when the ra-

dome structure is tilted relative to the reflector system (bottom drawing) by an angle θ. 

The center of the ellipse (or circle, in the normal case) relative to the center of the pattern, 

is determined by (see Appendix B for derivation) 

αθ cossinoo ry =  ( 6.1 ) 
 

which is the center point between the top and bottom edges of where the radome material 

begins. The angle α is the angular displacement of the radome material and θ is the tilt 

angle of the radome structure with respect to the reflector system. Since the system is 

tilted in the elevation plane only, the major axis of the ellipse remains fixed at a length of 

r1 (see Figure 6–3). The minor axis is calculated by the formula θcos1rb =  (also derived 

in Appendix B). With all of the parameters known, the equation of the ellipse can then be 

written as 
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in which a = r1. 

 A condition which must be checked to obtain the correct aperture pattern is when 

θ - α < -90o or θ + α > 90o. At these tilt angles, the bottom (top) edge of the ellipse be-

gins to rise above (sink below) the top (bottom) edge of the radome structure. The condi-

tion of θ - α = -90o is illustrated in Figure 6–4: 

 

 To correct the elliptical pattern for angles beyond these special conditions (θ - α 

< -90o or θ + α > 90o), the minor axis has been defined as two separate parameters, a 

lower and an upper length. When the condition is detected or exceeded, the lower (upper) 

minor axis is defined as the difference between ro and the height of the center of the el-

lipse (6.1) for the θ − α < -90o (θ + α > 90o) case. The upper (lower) minor axis remains 

the same ( θcos1rb = ). To illustrate the effect of this correction, a drawing of the pattern 

for θ = -90o is shown in Figure 6–5 in which the upper minor axis is zero. 
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Figure 6–4: Tilted Radome: θ − α = -90o 
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 Once the distribution has been determined in the manner described above, it must 

be projected onto the radiating aperture of the reflector system. An example is shown in 

Figure 6–6: 

 

 The upper left drawing in Figure 6–6 shows the resulting aperture distribution 

projected onto the main reflector. The size of this aperture field distribution must then be 

adjusted (see Figure 6–2) based on the distance separating the aperture and the main re-

flector (full-size if the aperture is located at the main reflector and zero area if located at 
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Figure 6–5: Tilted Radome: θ = -90o 
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Figure 6–6: Projection of distribution onto Radiating Aperture 
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the focal point of the main reflector). The next step is to use this distribution as an input 

source for a 3-D FDTD simulation to propagate the fields onto the surface of the feed di-

electric substrate. These fields are subsequently used to calculate the far-zone fields in 

accordance with the procedure described in Sec. 5.2. 

6.2.2 3-D FDTD Simulation 

 To compute the radiation pattern for the reflector antenna system, the fields on the 

surface of the dielectric substrate are determined. These fields are then used in the Recip-

rocity Theorem, described in Sec. 5.2, to calculate the far-zone fields. Because the aper-

ture distribution, determined from the procedure described in the last section, lacks 

circular symmetry, a 3-D FDTD algorithm is needed to determine the fields produced on 

the surface of the feed dielectric. The 3-D region simulated comprises 140 x 140 x 40 

(784,000) cells, of which an 80 x 80 cell 2-D region, located at the dielectric substrate, is 

Fourier-transformed into the frequency domain. These resultant fields are then used in the 

Reciprocity Approach described in Sec. 5.2 to determine the far-zone radiation pattern for 

the entire reflector antenna system. 

6.3 Numerical Results 

 To illustrate the procedure described in the last section, the field distribution in 

the focal region of a paraboloidal reflector antenna is calculated. The aperture fields for 

the radome are computed in two steps; first for the higher permittivity material (εr = 8.5), 
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and then for the lower one (εr = 4.2). These distributions are shown in Figures 6–7 and 6–

8, respectively. For this analysis, the tilt angle of the radome with respect to the reflector 

system was 30o. The elliptical pattern projected onto the receiving aperture region and the 

resulting aperture pattern for this tilt angle are displayed in Figures 6–9 and 6–10. The 

fields in the upper portion of Figure 6–10 correspond to those of Figure 6–7 (fields 

through the higher permittivity material), while the lower portion corresponds to the 

fields in Figure 6–8 (fields through the lower permittivity material). The regions of the 

combined pattern are defined in the center circle of Figure 6–9, which shows the aperture 

intercepting the incident radiation. 
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Figure 6–7: Aperture Field through Higher Permittivity Material (εr = 8.5) 
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Figure 6–8: Aperture Field through Lower Permittivity Material (εr = 4.2) 
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Figure 6–9: Elliptical Radome Pattern Projection onto Radiating Aperture 
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 As mentioned earlier, these aperture patterns are subsequently used as sources for 

the 3-D FDTD simulation to determine the fields on the surface of the feed dielectric. In 

accordance with the Reciprocity Procedure [equation (5.1)], a dot product of these fields 

and the surface currents on the four patches is evaluated to compute the far-zone electric 

field. Three different cases for the surface currents are considered, along with three dif-

ferent reflector system tilt angles. 

 The three current phasing configurations analyzed are the sum, azimuthal differ-

ence, and elevation difference patterns, which are created by controlling the relative phas-

ing between excitation sources to the patches (as described in Sec. 5.1). The sum pattern 

has a peak in the normal direction (all patches fed in-phase relative to the circularly-
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Figure 6–10: Resultant Aperture Field Pattern 
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polarized transmitted wave), while for the azimuthal and elevation difference patterns, a 

null exists along the y- and x-axes, respectively (see Figure 6–11). 

 

For difference patterns, the system is sensitive to differences across the null plane. The 

tilt angle analyzed was in the yz-plane with respect to the z-axis (out of Figure 6–11). As 

a result, the azimuthal difference pattern should be largely insensitive to the tilt angle, as 

differences in fields incident on patches 1 and 4 vs. those on patches 2 and 3 (along the 

null) should be small. 

 For the elevation difference pattern, a null exists along the x-axis. Therefore, this 

pattern should be sensitive to differences in the fields incident on patches 1 vs. 4 and 2 vs. 

3. Since the tilt angle is in the yz-plane, fields of varying magnitude are intercepted by 

these pairs of patches due to the different radome materials as the tilt angle increases. 

This should lead to a larger change in radiated electric field magnitude. 
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Figure 6–11: Patches on Feed Dielectric Surface 
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 The system was analyzed for tilt angles (θ in the yz-plane) of 30o, 40o and 50o. All 

far-zone field magnitudes were normalized to the sum pattern magnitude at boresight 

(0o). Both the co-polarization (left-hand circular polarization) and cross-polarization 

(right-hand circular polarization) radiation patterns were plotted for the sum, azimuthal 

difference and elevation difference pattern cases. The sum pattern is shown in Figure 6–

12: 
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Figure 6–12: Sum Pattern (peak at boresight) vs. yz-plane Tilt Angle 
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Figure 6–13: Azimuthal Difference Pattern (null along y-axis) vs. yz-plane Tilt Angle 
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 Due to a broad peak appearing at boresight, the radiated field magnitude was in-

sensitive to the tilt angle. This is the expected result as explained above. The field pattern 

for the azimuthal difference excitation is shown in Figure 6–13. 

 This pattern also showed only a slight change in radiated field magnitude due to 

the tilt angle being along the null. The magnitude was lower than that for the sum pattern 

due to the null. A difference of -3dB (70.7%) from the peak magnitude was noted at a tilt 

angle of 50o. 

 For the elevation difference pattern, a significant change in radiated field magni-

tude was noted due to the tilt angle being perpendicular to the null. 

 

This was as expected due to the relative positions of the null and tilt angle. 
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Figure 6–14: Elevation Difference Pattern (null along x-axis) vs. yz-plane Tilt Angle 
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6.4 Summary 

 This chapter has presented an efficient method for determining radiation patterns 

for an electrically large reflector antenna system with a microstrip patch feed and a di-

electric radome/skirt combination that has only partial circular-symmetry. The chapter 

shows how the existing symmetry of a large portion of the structure can be used to reduce 

the CPU time and memory requirements significantly. The Equivalence and Reciprocity 

Principles described in [58] and Sec. 5.2 are combined with the “equivalent” aperture ap-

proach to compute the radiation pattern of the reflector antenna system. Regarding com-

putational requirements, for the above described problem geometry, only 0.65% of the 

total number of cells requires analysis, due to the reduction from three to two dimensions 

for a majority (98.4%) of the computational domain. The former figure (0.65%) is deter-

mined from a ratio of the number of 3-D cells included in both the 2½-D and 3-D FDTD 

simulations vs. the total number of 3-D cells. The latter figure (98.4%) is determined 

from the number of 2-D cells (ρz-plane) simulated in the 2½-D FDTD simulation vs. the 

total number of 2-D cells (ρz-plane). Thus, the application of the proposed method results 

in substantial savings in terms of both memory and run-time requirements. Numerical 

results for various current distributions are presented indicating the sensitivity of the sys-

tem to tilt angles of the reflector antenna system with respect to the radome. 

 

 
 
 



Chapter 7  
 

CONCLUSIONS 

 This thesis has presented a general technique for the efficient analysis of aperture 

and microstrip conformal antennas. The technique exploits the homogeneity or the sym-

metry of the antenna structure to reduce computational resource requirements for calcu-

lating the radiation pattern. In particular, the Surface Equivalence Theorem is used to 

simplify the problem geometry, either by making the geometry completely homogeneous 

or circularly symmetric about an axis. The inhomogeneity or asymmetry is removed by 

replacing the radiating aperture with equivalent surface currents. By means of the Surface 

Equivalence Principle, the volume behind the radiating aperture – and within the mount-

ing structure – may then be replaced by any material. Either perfectly conducting or di-

electric material is chosen to produce a homogeneous or circularly symmetric structure. 

 The equivalent currents are determined by either the assumption or calculation of 

fields or currents that appear at the radiating aperture. Ideal field distributions were as-

sumed for the slot configurations analyzed in Chapter 3, while current distributions were 

computed for the microstrip patch antennas by either the FDTD (Chapter 4) or MoM 

(Chapters 5 and 6) techniques. 

 The Reciprocity Theorem is then used to allow the computation of the radiation 

pattern via solution to a scattering problem. The fields and currents in the receiving and 

transmitting modes of the antenna system are related by the Reciprocity Theorem. In the 

receive mode, a dipole source is placed at the location of the desired far-zone field. This 
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far-zone source thus produces plane waves in the vicinity of the structure under analysis. 

The tangential fields (either electric or magnetic) produced by the plane waves at the lo-

cation of the radiating aperture are computed. The Reciprocity Theorem is then used to 

combine these tangential fields with the equivalent aperture currents determined earlier to 

compute the radiation patterns. 

7.1 Efficiency Enhancement 

 For the microstrip patch antenna mounted on a large conducting structure, the 

proposed procedure takes advantage of the modeling capabilities of the FDTD method for 

the complex inhomogeneous region, which includes the patch antenna. It also exploits the 

efficiency of the MoM method in modeling homogeneous structures, which is created 

through application of the Surface Equivalence Principle. By using the new hybrid 

method, an extensive discretization of the entire geometry required by the FDTD method 

is avoided. Also, it is either very difficult or impossible to model the structure using the 

MoM method due to the complex structure in the region of the patch antenna. The hybrid 

technique used in this thesis avoids both of these difficulties and computes the radiation 

pattern efficiently and accurately. As mentioned in Chapter 1, less than 5% of the entire 

volume is modeled, compared to an FDTD-gridded simulation of the problem geometry. 

 For the reflector antenna system, the application of the hybrid method reduces the 

number of required dimensions from three to two for nearly all of the simulation domain. 

In this case, the MoM technique is used to compute the electric currents generated on mi-

crostrip patch antennas by a feed network. By replacing these patches with the currents 
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(Surface Equivalence Principle), the geometry is made circularly symmetric. However, 

due to the asymmetric currents, a 3-D simulation would still be necessary. By using the 

Reciprocity Theorem and operating the system in the receive mode, the fields produced at 

all points on the feed dielectric can be computed through a 2-D FDTD simulation, as the 

structure has been made circularly symmetric. While the fields are available at all loca-

tions on the dielectric substrate, only the fields at the position of the microstrip patch an-

tennas are required for the pattern computation using the Reciprocity Approach. By 

reducing the number of dimensions from three to two for most of the simulation volume, 

less than 3% of the discretized volume is simulated. This figure is derived from the case 

where the entire simulation domain is discretized into 3-D FDTD cells. 

 The same reflector antenna system is also analyzed for a two-material radome 

tilted with respect to the remainder of the system. An “equivalent aperture” is constructed 

at a location between the main reflector and the feed antenna. The aperture is composed 

of fields at the aperture location, which have penetrated through one of the two materials 

comprising the radome. The projection of the radome structure onto the aperture of the 

main reflector determines which field is used at each location on the equivalent aperture. 

Although a 3-D FDTD simulation is required from this point, computational savings still 

exceed 99% (see Sec. 6.3). 

7.2 Accuracy of the Method 

 The accuracy of the method has been verified for the slot configurations analyzed 

in Chapter 3. For slots mounted on infinite-length conducting cylinders, direct analytical 
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relations exist for the pattern computations. These matched exactly with the Reciprocity-

based patterns, thus validating the approach. For the cavity-backed microstrip patch an-

tenna mounted on a conducting cylinder (Chapter 4), the effects of the cavity edges were 

noted. Radiating aperture fields polarized normal to the cavity edge radiate more energy 

in the shadow region compared to fields tangential to the edge. Patterns computed for this 

case were compared to those computed for a closely related geometry in which the di-

electric cavity is extended throughout the conducting cylinder. In this way, cavity edge 

effects were studied. 

 For the normal case, patterns computed using the two geometries compared well. 

The pattern for the associated geometry had slightly deeper nulls produced by the 

stronger standing wave effects encountered in the cavity-free geometry. For the tangential 

case, the patterns did not compare well. This was due to the greater attenuation of the 

creeping waves emanating from the aperture by the cavity edge. 

 For the reflector antenna system, the accuracy of the hybrid method used in this 

thesis was verified against actual test data. Both the co- and cross-polarization patterns 

were computed and compared. Due to the narrow beamwidth of reflector antennas, the 

pattern computation extended to only 3o in either direction away from boresight. Asym-

metries in the measured pattern were most likely due to slight asymmetries in the struc-

ture of the actual antenna system. Despite these complications, the measured and 

computed patterns compared well. This further validated the accuracy of the Reciprocity 

Approach to pattern computation. 
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 For the tilted radome analysis, simulations for all three feed network phasings had 

the correct response as the tilt angle was increased in the elevation plane. Both the sum 

and azimuthal difference patterns showed negligible changes in far-field magnitude, 

while substantial changes occurred for the elevation difference pattern. While test data 

for comparison purposes does not exist, the trend of the plots in all cases is correct. 

7.3 Suggestions for Further Research 

 To extend the capabilities of the hybrid method used in this thesis, the conformal 

FDTD method could be generalized to allow analysis of either singly or doubly curved 

microstrip patches. This additional feature would allow determination of the radius of 

curvature relative to the patch size where the flat approximation to a curved patch an-

tenna is no longer valid. Also, more generally shaped patch antennas could be modeled. 

 For the reflector antenna analysis, the replacement of the Mur absorbing boundary 

condition with PML would improve the accuracy of the model and eliminate the need for 

a relatively large number of cells between all antenna structures and the limits of the 

simulation domain. Also, a true plane wave could be used, thereby further improving the 

accuracy of the model. 
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Appendix A  
 

Aperture Surface Integral: Integrand H*M Equivalence to E*J 

 In Chapter 3, the surface integral of –H*Ms over the radiating aperture is required 

for the computation of the far-zone electric field. This appendix proves the equivalence of 

this quantity to an integral of E*Js taken over the aperture for a surface of general shape. 

 It is known from Sec. 2.3 that the surface electric current Js can be expressed in 

terms of the magnetic field discontinuity at the surface, 

HJ ×= nS ˆ  ( A.1 ) 
 

where n̂  is the unit vector normal to the surface and H is the magnetic field at the sur-

face, assuming it is zero below the surface (see Figure 2-9). Taking the cross-product of 

equation (A.1) with the surface normal yields 

( ) ( ) ( )HHHJ nnnnnnn S ˆˆˆˆˆˆˆ ⋅−⋅=××=×  ( A.2 ) 
 

which uses the vector identity 

( ) ( ) ( )cbabcacba ⋅−⋅=××  ( A.3 ) 
 

Equation (A.2) then becomes 

HJ −=× normS Hnn ˆˆ  ( A.4 ) 
 

where Hnorm is the component of H normal to the surface. Therefore, the equivalent mag-

netic field is given by 
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normS Hnn ˆˆ +×−= JH  ( A.5 ) 
 

Also proven in Sec. 2.3 is the expression for the equivalent magnetic surface currents in 

terms of an electric field discontinuity 

EM ×−= nS ˆ  ( A.6 ) 
 

where E is the electric field at the surface, assuming that it is zero below the surface. 

Therefore, the dot product H*MS can be written as 

( )
( )
( ) ( )
( ) ( )EJ

EJ

MJ

MJMH

×⋅×=
×−⋅×−=

⋅×−=
⋅+×−=⋅

nn

nn

n

Hnn

S

S

SS

SnormSS

ˆˆ

ˆˆ

ˆ

ˆˆ

 ( A.7 ) 

 

The second line results from the fact that MS is tangential to the surface. Using the vector 

identity 

( ) ( ) cbacba ⋅×=×⋅  ( A.8 ) 
 

the last line of equation (A.7) can be rewritten as 

( ) ( ) ( )[ ]
( )[ ]S

SS

nn

nnnn

JE

EJEJ

××⋅−=
⋅××=×⋅×

ˆˆ

ˆˆˆˆ
 ( A.9 ) 

 

Using equation (A.3) again, the above relation can be simplified to 

( )[ ] ( ) ( )[ ]
S

SSS nnnnnn

JE

JJEJE

⋅=
⋅−⋅⋅−=××⋅− ˆˆˆˆˆˆ

 ( A.10 ) 
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since the surface electric current JS is tangential to the surface. Thus, for an integral taken 

over a surface of general shape, the following identity holds 

∫∫ ⋅=⋅
S

S

S

S dd SJESMH  ( A.11 ) 

 

 
 
 



Appendix B 
 

Derivation of Tilted Radome Parameters 

 The derivation of the various parameters used for the tilted radome analysis of 

Chapter 6 will be presented here. First, the parameters yo and b mentioned in the chapter 

will be derived, followed by a discussion about the special conditions when the bottom 

(top) edge of the radome lift above (below) the upper (lower) edge. 

 To reiterate the problem, Figure 6-3 is reproduced here. 

 

Examining the lower left-hand side of Figure B–1, 
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r1 

α 

r1 
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Figure B–1: Tilted Radome and Projected Field Distribution, with Parameter Definitions 
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From Figure B–2, which defines the direction for positive angular displacement, the 

value for yo can be found by averaging the sum of the y-projections of the radome above 

and below the centerline (dashed) of the above diagram. Thus, 

( ) ( )[ ]αθαθ −++= sinsin
2

1
ooo rry ( B.1 ) 

 

Using the trigonometric identity, 

( ) ( )[ ]βαβαβα −++= sinsin
2

1
cossin ( B.2 ) 

 

equation (B.1) simplifies to 

αθ cossinoo ry = ( B.3 ) 
 

The minor axis of the ellipse formed by the radome in Figure B–1 above is the distance 

from the center of the ellipse to either the top or bottom edge. This can be found by sub-

tracting yo from the upper y-displacement as follows, 
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Figure B–2: Radome Projection onto Main Reflector 
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( )

( ) ( ) ( )[ ]
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αθαθαθ
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−++−+=

−+=

sinsin
2

1

sinsin
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1
sin
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ooo

oo

r

rrr
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( B.4 ) 

 

which through another trigonometric identity, 

( ) ( )[ ]βαβαβα −−+= sinsin
2

1
sincos ( B.5 ) 

 

simplifies to 

αθ sincosorb = ( B.6 ) 
 

But, from Figure B–1, r1 = ro sinα. Therefore, 

θcos1rb = ( B.7 ) 
 

To accommodate the cases when θ - α < -90o or θ + α > 90o, the pattern computation 

code defines two minor axes for the ellipse: upper and lower components (b+ and b-). For 

the former case, 

( )oo yrbb

rb

+=
=

+−

+

,max

cos1 θ
 ( B.8 ) 

 

The lower minor axis takes into account that when θ - α < -90o, the lower edge of the ra-

dome begins to rise above the bottom of the entire circle formed by the skirt/radome 

structure. Note that the upper minor axis b+ becomes zero when θ = 90o as shown in Fig-

ure B–3. 
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For the latter case (θ + α > 90o), the definitions for the upper and lower minor axes are 

transposed 

( )
θcos

,max

1rb

yrbb oo

=
−=

−

−+  ( B.9 ) 

 

A sign change is also necessary since yo > 0 for θ > 0o. The case where θ = +90o is ac-

commodated in the same manner shown in Figure B–3 for θ = -90o. 

 

 
 
 

 

α

θ

 
 

Figure B–3: Tilted Radome: θ = -90o 
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