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Abstract

The Web has connected millions of users by various communication tools for
social purposes. Daily, huge amount of social data are being created through finger-
tips, driven by various of social actions that involve a wide range of user-produced
content (e.g. emails or collaborative documentations). Often being a part of many
contemporary Web applications, user social networks are gaining increasing atten-
tion from both industry and academia as they seem to have become a promising
vehicle for delivering better user experience. Accordingly, computational social
network analysis has become an important topic in user data mining.

Despite a long history of structural social network analysis and recent interests
in user behavior analysis, little research has addressed social contents in social
networks and heterogeneous networks in user behavior. In fact, social content and
heterogeneity are two key elements in contemporary online social networks that
offer great benefits: social contents provide more semantic information; meanwhile
heterogeneous social networks allow diversified perception of users. Motivated by
these considerations, this dissertation seeks to improve traditional computational
social network analysis by covering analysis of not only (1) social networks of
users; but also (2) social content composed by users, and (3) social actions among
users. A series of new methods are presented for knowledge discovery in social
documents and social networks, with a special focus on modeling social content
and machine learning of heterogeneous networks. In particular, this study first
proposes new probabilistic content models for user generated social documents
and annotations and investigates the connection between social content and social
actions. A set of new techniques for computational analysis of heterogeneous
social networks constructed by various social actions constitutes the conclusion.
The methods proposed in this dissertation have been applied to a wide range of
applications including ranking, community discovery, information retrieval, and
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document recommendations. For large scale real world data sets, this research
shows significant experimental improvements over currently applied methods.
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Chapter 1
Introduction

Social network analysis (SNA) is the study of mapping and measuring relation-

ships among a set of social actors in social networks, in which each node denotes

a social actor and each edge represents a certain relationship between two social

actors. The fundamental questions in SNA are: Why are social actors connected?

How they are connected in networks? And, what inference can be derived from their

connections? Traditional social network analysis has had wide application in so-

cial and behavior sciences, as well as in economics and industrial engineering [76].

Much of the interest in SNA arises from its appealing focus on social relations

and the patterns and implications of these relations. SNA has had application for

many domains including viral marketing [60], customer value evaluation [15], and

measurement of social influences of actors in a network [78] for customer relations

management.

SNA, while an established field in sociology [76], has recently gained popularity

in the computer science community with the emerging pervasiveness of the Web.

The new challenges for this traditional field are mainly driven by the increasing

availability of various kinds of social content, such as emails [64], blogs [25], mes-
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sage boards [46], and heterogeneous types of social behavior of users, such as social

annotations [22], collaborations [37], and citations [20]. As a result, recent SNA

has a stronger computational emphasis and seeks to leverage diversified informa-

tion resources and heterogeneous user behavior. In most related literature, the

definition of a social network is:

Definition 1. A Social Network (SN) is a homogeneous graph, in which each node

denotes an individual, also known as a Social Actor (SA), and each edge represents

a certain relationship between two SA’s, also known as a Social Tie (ST).

Typical social network instances encountered everyday, include the SNs of au-

thors, Web bloggers or email users. The social ties between two SA’s are recog-

nizable in a variety of ways depending on the application’s settings. For example,

social actions such as the collaboration between authors can be seen as one social

tie between those individuals. However, a single type of relationship in SNs is not

enough to capture a real world association. Very often, a variety of existing social

ties, which correspond to different types of social actions among SA’s, gives rise to

multiple semantics associated with each social tie. Furthermore, social actions usu-

ally involve heterogeneous objects that were missing in the traditional definition

of an SN. Accordingly, where the notion of heterogeneous social networks comes

into focus, this dissertation generalizes the definition of SNs to:

Definition 2. A heterogeneous social network is a heterogeneous graph which the

nodes denote different types of objects consisting of social actors and others; the

edges denote different types of relations among social actors or between social actors

and other objects.

In practice, a heterogeneous social network can be constructed by defining

various relationships. One of the most natural ways to define a relationship among
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social actors (or between social actors and other objects), the concern of this

dissertation, is by social actions. For example, collaboration among authors can

be a social action among social actors; a comment by a user on a blog is, perhaps, a

social action involving the blog document. Formally, the definition of social actions

is:

Definition 3. Social actions refer to any action that takes into account the actions

and reactions of social actors in a social network.

Notably, a social action can be between social actors or between social actors

and other objects. Different types of social actions offer different semantics on

the edges of a social network; different kinds of objects involved in a social action

represent the heterogeneous nodes in a social network.

Probably the most common types of objects involved in social actions, espe-

cially on the Web, are documents. Many social actions, for the purpose of infor-

mation exchange, are usually associated with text documents, including emails,

academic papers, or annotations, all of which, for the purposes of this study, are

social documents:

Definition 4. A social document is a text file involving a set of social actors in a

social network for the purpose of exchanging information or soliciting future social

ties.

Traditionally, researchers focused on analysis of homogeneous social networks.

However, social networks in practice are heterogeneous and content rich, partially

due to the fact that users can connect using various types of social actions. Most

traditional SNA methods, which are structural and homogeneous approaches, are

not capable of handling such content-rich and heterogeneous SNs, which is the
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primary concern of this dissertation. In fact, the content of social documents and

the semantics of social actions embrace valuable information about development

of user networks and interests. Thus, mining such social documents and heteroge-

neous social networks to interpret and understand real-world social networks is an

important direction for computational SNA.

1.1 Related Work on Content Analysis

This dissertation has two categories of related work: (1) document content

analysis and (2) network analysis. A variety of statistical approaches have been

proposed for document content analysis, among which the most popular methods

include the unigram model [55], latent semantic analysis (e.g. LSI [10], pLSA [30]),

and generative models (e.g. LDA [3]), mentioned earlier. Despite the wide range

of choices for content analysis, few of them consider the social networks to which

these documents belong. This dissertation is one of the first to propose modeling

social documents with social networks.

As an overview for the study an initial introduction includes one or two rep-

resentative examples in each category of document content analysis: (1) The uni-

gram models each document with a multinomial distribution and the words in the

document are independently drawn from the multinomial distribution [55]. This

assumes that each document in the collection has a distinct topic and develops a

mixture of unigrams. The mixture of unigrams constructs models for each docu-

ment by considering the words in a document as generated from the conditional

probability distribution over topics. (2) Latent semantic indexing (LSI) [10] uses a

space to implicitly capture a large portion of the information documents contain.

Text analysis can be performed on the latent semantic space where the document
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similarities are preserved. In order to measure similarity between documents, the

dot products of the corresponding vectors of documents in the latent space can

be used. Similar to the approach of LSI, the probability latent semantic analysis

(pLSA) [30], has each document generated by the activation of multiple topics,

and each topic is modeled as multinomial distributions over words, which relaxes

the mixture of unigram models (the unigram model considers each document to

be generated from only one topic). However, the pLSA model uses a distribu-

tion indexed by training documents, which means the number of parameters being

estimated in a pLSA model must grow linearly with the number of training doc-

uments. This suggests that pLSA could be prone to overfitting in many practical

applications. In addition, pLSA does not support generalization of models to un-

known documents. (3) Another recent advance in document content analysis is

generative models of documents, such as the Latent Dirichlet Allocation (LDA) [3]

model. LDA addresses the overfitting of pLSA by using the Dirichlet distribution

to model the distribution of topics for each document. Each word is considered

sampled from a multinomial distribution over words specific to this topic. As an al-

ternative, the LDA model is a well-defined generative model and generalizes easily

to new documents without overfitting.

The methods this study developed for social content analysis relates closely

to the methods for content analysis through generative models. Three related

representative generative models for documents considered in this research are:

Topic-Word model, Author-Word model and Author-Topic model. The heart of

generative model-based methods is to simulate the generation of a document using

probabilistic models [3, 24, 62, 48, 68]. Several factors arising from producing a

document, either observable (e.g. author [48]) or latent (e.g. topic [24, 3]), are

modeled as variables in the generative Bayesian network and have been shown to
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work well for document content characterization.

With a given set of documents, D, each consisting of a sequence of words, wd,

of size, Nd, the generation of each word, wdi ∈ wd, for a specific document, d,

can be modeled from the perspective of either author or topic, or the combination

of both. Fig. 1.1 illustrates the three possibilities using plate notations. If ω

denotes a specific word observed in document, d, and if A represents the number of

authors and T represents the prescribed number of topics, then ad is the observed

set of authors for d. To clarify, the latent variables are light-colored while the

observed ones are shadowed. Figure 1.1(a) models documents as generated by a

mixture of topics [3]. The prior distributions of topics and words follow Dirichlet,

parameterized respectively by α and β. Each topic is a probabilistic multinomial

distribution over words. If φ denotes the topic’s distributions over words, and θ

denotes the document’s distribution over topics1.

T D

θ

z
φ

α

β ω
Nd

(a) Topic-Word (LDA) (b) Author-Word

T D

A z
φ ω

Nd

θ

β

α x
ad

(c) Author-Topic

Figure 1.1. Three Bayesian network models for document content generation

In the Topic-Word model, a document is as a mixture of topics, with each topic

corresponding to a multinomial distribution over the vocabulary. The existence

of observed word, ω, in document, d, is accepted as being drawn from the word

1 then, usually, the φ is represented using T × V matrix, where T and V are the number of
topics and the size of the vocabulary. Similar is θ modeled as a D × T matrix.
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distribution, φz, which is specific to topic, z. Similarly, topic, z, was drawn from

the conditional topic distribution, θd, which is represented using a row in the

matrix, θ2.

The Author-Word model, similar to the Topic-Word model, prioritizes the au-

thor’s interest as the origin of a word [48]. In Figure 1.1(b), ad is the author’s set

that composes document, d. Each word in d is represents a choice from the author-

specific word distribution. In this Author-Word model, the author responsible for

a certain word is a random choice from ad.

In the Author-Topic model [68], another influential research option follows the

same line of reasoning, combines the Topic-Word and Author-Word models, and

regards the generation of a document as affected by both factors in a hierarchical

manner. Figure 1.1(c) presents the hierarchical Bayesian structure. According to

the Author-Topic model in Figure 1.1(c), for each observed word, ω, in document,

d, an author, x, is uniformly sampled from the corresponding author group, ad.

Then with the probability distribution of topics conditioned on x, θx·, a topic, z,

is generated. Finally, word-by-word, the z produces ω as observed in document,

d. The Author-Topic model has been shown to perform well for document content

characterization because it involves two essential factors in producing a general

document: the author and the topic. Modeling both factors as variables in the

Bayesian network provides the model with the capacity to group into semantic

topics the words used in a document collection. Based on the posterior probability

obtained after establishing the network, a document can be denoted as a mixture

of topic distributions, and each author’s word choice preference and involvement

in topics can be discovered.

2The Topic-Word model was first introduced as Latent Dirichlet Allocation (LDA), and for
consistency this research uses the alternative name.
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The estimation of the Bayesian network in the aforementioned models typically

relies on the observed pairs of author and words in documents. Each word, treated

as an instance, generates the probabilistic hierarchy in the models. Some layers

in the Bayesian hierarchy are observed, such as authors and words. Other hidden

layers, such as topics, require estimation.

1.2 Related Work on Network Analysis

While content analysis of documents introduced earlier has provided powerful

tools for discovering topics in documents, the task of understanding how these

topics form has never been easy. This difficulty motivated consideration of social

actions behind the content. Chapter 4 presents the research [87] that is among

the first to combine content analysis and network analysis as opposed to studies

concerned with discovering patterns from document content alone [75]. Apparently,

the patterns in social content can be explained to a great extent using social actions.

Accordingly, this dissertation follows social content analysis with a strong focus on

mining heterogeneous social networks constructed from social actions.

Two main objectives of mining heterogeneous social networks in this disserta-

tion are establishing ranking and discovering communities. The following material

concerns the introduction of ranking social actors and their clustering by graph

partitioning.

1.2.1 Ranking Social Actors

The problem of ranking scientists and their work naturally belongs to at least

two different fields: sociology [76] and bibliometrics [70]. For example, metrics of

academic impact have been publication intensity or citation counts, impact factors
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of journals, and the Hirsch index [29]. An important step in bibliometrics was a

paper by Garfield [19] in the early 1970s, which discussed the methods for ranking

journals by Impact Factor. Within a few years, Gabriel Pinski and Francis Narin

proposed several improvements [56]. Most importantly, they recognized that cita-

tions from a more prestigious journal should be given greater weight [56]. They

introduced a recursively defined weight for each journal. In particular, incom-

ing citations from more authoritative journals, according to the weights computed

during the previous iteration, contributed more weight to the journal being cited.

Pinski and Narin stated the ranking problem as an eigenvalue problem as ap-

plied to 103 journals in physics. However, their approach did not attract sufficient

attention, and simpler measures have remained in use. One advantage of bib-

liometric approaches is that they are simple and easy to understand. However,

metric-based approaches exploit none of the semantics in topics. Because biblio-

metric approaches require manual calculation, they are not suitable for large-scale

semantic social networks.

Another family of methods for ranking social actors has a basis in network

topology and the relative position of the vertices on the network, which infers

actors’ social positions by measuring the centrality.

Probably the most famous algorithm for ranking networked entities is the

PageRank [5] which defines the actor network as a weighted, directed graph, where

G = (V,E) with E are the edge weights and V are the actor vertices. Normaliza-

tion of the edge weights allows construction of a Markov random walk, described

by a square matrix, P ∈ R
|V |×|V |, where i, j ∈ V and pi,j = P (j|i) denotes the

conditional probability of the transition from vertex, i, to vertex, j. Assuming an

ideal ranking exists and that the ranking scores are contained in x ∈ R
|V |×1, the

PageRank paradigm [5, 38] suggests that the ranking score, xi, for vertex, i, is the
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weighted combination of all edges pointing to i, i.e.:

x = P Tx. (1.1)

Thus, x is the principal eigenvector of the transpose of the Markov transition

matrix, or P T . In standard PageRank [5], the Markov transition matrix P is:

pi,j =





α I((i,j)∈E)
di

+ (1− α) 1
|V | if di 6= 0;

1
|V | otherwise.

(1.2)

where I(x) is an indicator function; di is the out-degree of vertex i, and α is the

parameter that balances the graph weights and the effect of randomness.

Since P uniquely determines the ranking scores, recent study has focused on

the design of the Markov transition matrix [1, 71, 78]. This work argued that

the arbitrary design of P in standard PageRank requires a strong domain-based

hypothesis and might fail to fit certain ranking applications. In particular, advo-

cates argue for a machine learning-based design of P because of its flexibility and

readily accomplished generalization. Transition matrix learning [71], or network

flow modeling, formulates the problem as a constrained entropy maximization of

P . The entropy is maximized for generalization. The matrix, P , is required to

satisfy several constraints for being a Markov process as well as a network flow,

including ∀v ∈ V,
∑

j pv,j = 1 and
∑

i pi,v =
∑

j pv,j . Following the same en-

tropy framework, introduced constraints [1] capture the vertex-wise preferences

among vertices. If denoting the vertex-wise preference for v over u as u ≺a v, then

vertex-wise preference constraints are:

∀u ≺a v,
∑

i

pi,u ≤
∑

i

pi,v, (1.3)
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where the sum of flow into vertex, u, is smaller than that to v. However, a practical

problem with Eq. 1.3 is the availability of such vertex-wise preferences. For exam-

ple, for the focus on actor ranking, a vertex-wise preference between two actors is a

ranking of one actor over the other, which can not be readily derived from various

social network information sources, such as social interactions, social document

contents, and personal acknowledgments.

1.2.2 Discovering Communities of Social Actors

In addition to the ranking of heterogeneous social networks, the current study

also concerns discovering communities among social actors.

Well known graph-theoretic methods include spectral graph partitioning [58,

13], hierarchical community discovery [79], and clustering3 based on random walks [28].

Spectral graph partitioning is a classic spectral method based on the Laplacian of

the graph adjacency matrix [58, 13], with a characteristic focus on the design of

cost functions for partitioning graphs. Hierarchical community discovery seeks to

merge the vertices and edges based on the “closeness” between vertices measured

by distances on graphs, such as the length of the shortest paths or the diffusion dis-

tance [79]. Finally, random walk-based clustering described in [28] applies random

walks to the graphs iteratively. By doing so, the edge weight between two vertices

is modified based on the probabilities that the random walk will circle back to one

of the vertices through the other.

Spectral graph partitioning is a classic spectral method for partitioning graphs

and discovering communities on graphs [58, 13]. This method has been applied

to various domains including image segmentations [65] and text analysis [82, 14,

12, 18, 36]. The principal aim of spectral graph partitioning is to minimize the

3Here, the term “clustering” and “community discovery” are used unless otherwise noted.
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cost of cutting graphs as a function of the Laplacian of the graph adjacency ma-

trix. The partitioning embeds a graph into a low-dimensional subspace subject

to the minimal partitioning cost imposed by the graph adjacency matrix. After

embedding the graph into the subspace, the clustering can be performed via an

additional light-weight clustering algorithm (such as k-means) or by recursively

searching for the binary cutting points [82] on the subspace axes. One traditional

cost function uses the sum of weights on the edges between clusters [58]; however,

this simple approach can create bias towards unbalanced cutting points. Recent

work proposes variants to the cost function, including ratio cut, normalized cut,

and others (a survey can be found in [13]). The most popular cost function for

partitioning graphs is the Normalized Cut (NCut) [65]. The NCut cost function

was originally applied to partitioning homogeneous or bipartite graphs [65, 82, 12].

Due to growing interest in analyzing correlated heterogeneous graphs, recent work

generalizes NCut to star-structured tri-partite graphs and a solution has been pro-

posed based on semi-definite programming [18]. Another recent work introduces

prior knowledge into the cost function so partitioning will inflict minimal violation

of prior knowledge as well [36].

1.3 Contributions

This dissertation seeks to combine the analysis of social document content with

that of heterogeneous social actions. The study pays special attention to social

documents and annotations in its analysis of social content. Of consideration

are traditional social networks as well as heterogeneous social networks defined

by various social actions. The inferences from social actions in heterogeneous

social networks, leveraged for application, include ranking, community discovery,
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information retrieval, and document recommendations.

The first part of this dissertation is analysis of social content. The wide avail-

ability of social content on the Web has its motivation, in part, form the semantic

nature of that medium [2], which aims to render Web resources understandable

to both humans and machines. A stream of Web applications with rich content,

generated by users, have emerged and include Web blogs [39], social annotations

(a.k.a social bookmarking) [22, 67, 80], and Web social networks [90]. This research

addresses two important topics in content-based social network analysis: discovery

of latent communities [39, 90] and analysis of social annotations [22].

(1) For community discovery, most recent research exploits the topology

properties of social networks [52, 8]. However, discovering a community

simply based on network topology sometimes becomes problematic due to a

lack of consideration for semantics and an unreliability in the construction

of networks (see Chapter 2). The methods this study proposes adequately

combines document content and networks to allow for a greater number of

semantic meanings to associate with the communities discovered.

(2) For social annotations, many popular applications exist including those

of delicious (del.icio.us) and flickr (flickr.com), but the analysis of such so-

cial annotation data is still in its infancy. Much of the work focused on the

study of the data properties, the analysis of usage patterns of tagging sys-

tems [22], and the discovery of hidden semantics in tags [80]. The objective

of analyzing social annotations in the current research, however, is to lever-

age social annotations for improving user experience information retrieval

(IR), This concept, while natural, is a barely explored area. An objective is

to advance the value of previous investigation by combining the models of
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social annotations with the models of language: the methods used in IR (see

Chapter 3).

The second part of this study analyzes heterogeneous social networks. Interest

in researching heterogeneous social networks arise naturally from the availability

of heterogeneous actions and interactions by and among social actors. Through-

out, this study construct models for heterogeneous actions among social actors

and the interactions between social actors and other items such as heterogeneous

networks. Interestingly, the evolution of social document content can be explained

using the social interactions in such networks (see Chapter 4), which bridge the

gap between social content and social actions. The later part of this research has

particular interest in the problems of ranking, community discovery, and embed-

ding of such networks. Traditional research in social network analysis focused on

a single network (or homogeneous networks). For example, community discovery

from social networks has employed methods which include spectral graph parti-

tioning [58, 13], hierarchical community discovery [79], and clustering by random

walks [28], all on a single network. Ranking methods for networked entities (such

as PageRank [5] and HITS [38]) presume the existence of only a single network

and only single types of vertices and edges. However, these methods are unable to

deal with heterogeneous social networks with which this dissertation is concerned.

Thus, the proposal is for new methods to address the analysis of heterogeneous

social networks, in particular, the analysis of heterogeneous social networks from

several aspects:

(1) A new framework unifies heterogeneous social actions based on network

flow modeling, where the implicit preferences from various social actions pa-

rameterize the network flow (see Chapter 5). The network flow then ranks
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social actors. The new learning-based ranking framework outperforms tra-

ditional methods and demonstrates the merits of combining heterogeneous

social actions into a single framework.

(2) Ranking social actors can be further improved by leveraging, not only the

relationship among actors, but also leveraging their relationships with other

items, and resulting in a proposed new co-ranking method (see Chapter 6).

(3) After approaching the ranking problem, this research suggests a, new,

effective and efficient method for partitioning temporal heterogeneous graphs

for community discovery. (see Chapter 7).

(4) An approach to the more general problem of measuring graph node simi-

larities combines multiple graphs (see Chapter 8), thus, showing that in real-

world cases, a single graph is usually insufficient to depict the similarities

among vertices due to sparsity and noise. The proposed graph embedding

methods address three general types of graphs and propose different factor-

ization techniques tailored to the unique characteristics of each graph type.

Based on the obtained graph embedding, a new recommended framework is

developed using semi-supervised learning on graphs.

1.4 Summary and Dissertation Organization

The availability of rich social content and semantic-rich social actions on the

Web and the lack of appropriate computational approaches for such data are the

primary reasons for development of much of this study’s methodology.

Figure 1.2 illustrates the remainder of this study’s organization. Following

Chapter 1, the connection between the two parts of the study becomes clear. (1)
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Figure 1.2. Dissertation Organization.

In Part 1 of the content analysis: Chapter 2 proposes new probabilistic models for

social document content. Chapter 3 introduces another modeling method for social

annotations and applies the model for information retrieval. (2) For the connection

between Parts 1 and 2, Chapter 4 presents a new way for explaining the content

evolution of social documents using latent social networks among authors. (3) For

the network analysis in Part 2, Chapter 5 initiates focus on heterogeneous social

networks and provides a uniform learning-based framework for modeling various

social actions by network flows. Chapter 6 extends the research on ranking to het-

erogeneous networks. Chapter 7 introduces new methods for community discovery

in heterogeneous social networks and presents a new technique for considering the

temporal aspect while performing clustering on temporal data. Chapter 8 studies

the general problem of measuring vertex similarities on multiple connected graphs
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and applies the new method for recommending documents housed in digital li-

braries. Finally, conclusions are drawn in Chapter 9.



Chapter 2
Probabilistic Models for Social

Documents

2.1 Community Discovery by Content Analysis

An important characteristic of all social networks (SN) is the community graph

structure: how social actors gather into groups such that they are intra-group

close and inter-group loose [53]. An illustration of a simple two-community SN

is sketched in Fig. 2.1. Here each node represents a social actor in the SN and

different node shapes represent different communities. Two nodes share an edge if

and only if a relationship exists between them according to social definitions such

as their role or participation in the social network.

Figure 2.1. A social network with two communities.

Discovering community structures from general networks is of obvious interest.
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For the extraction of community structures from email corpora [72, 8], the social

network is usually constructed measuring the intensity of contacts between email

users. In this setting, every email user is a social actor, modeled as a node in the

SN. An edge between two nodes indicates that the existing email communication

between them is higher than certain frequency threshold.

However, discovering a community simply based purely on communication in-

tensity becomes problematic in some scenarios. (1) Consider a spammer in an

email system who sends out a large number of messages. There will be edges

between every user and the spammer, in theory presenting a problem to all com-

munity discovery methods which are topology based. (2) Aside from the possible

bias in network topology due to unwanted communication, existing methods also

suffer from the lack of semantic interpretation. Given a group of email users dis-

covered as a community, a natural question is why these users form a community?

Pure graphical methods based on network topology, without the consideration of

semantics, fall short in answering to such questions.

B

A

Figure 2.2. Semantic relationships and hidden communities.

Consider other ways a community can be established, e.g. Fig. 2.2. From the

preset communication intensity, person A and person B belong to two different

communities, denoted by squares and circles, based on a simple graph partitioning.

However, ignoring the document semantics in their communications, their common

interests (denoted by the dashed line) are not considered in traditional community

discovery.



20

Much communication in SNs usually occurs by exchanging documents, such as

emails, instant messages or posts on message boards [46]. Such content rich docu-

ments naturally serve as an indicator of the innate semantics in the communication

among an SN. Consider an information scenario where all communications rely on

email. Such email documents usually reflect nearly every aspect of and reasons for

this communication. We define such a document carrier of communication as a

communication document. In this chapter [90], we examine the inner community

property within SNs by analyzing the semantically rich information, such as emails

or documents. We approach the problem of community detection using a gener-

ative Bayesian network that models the generation of communication in an SN.

As suggested in established social science theory [76], we consider the formation of

communities as resulting from the similarity among social actors. The generative

models we propose introduce such similarity as a hidden layer in the probabilis-

tic model. Our main contribution is resolving the SN communication modeling

problem into the modeling of generation of the communication documents, based

on whose features the social actors associate with each other. Modeling commu-

nication based on communication document takes into consideration the semantic

information of the document as well as the interactions among social actors. Many

features of the SN can be revealed from the parameterized models such as the

leader-follower relation [47]. Using such models, we can avoid the effect of mean-

ingless communication documents, such as those generated by a network spammer,

in producing communities. As a parallel study in social network with the sociologi-

cal approaches, our method advances existing algorithms by not exclusively relying

the intensity of contacts. We test our method on the newly disclosed email corpora

benchmark – the Enron email dataset and compare with an existing method.
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2.2 Community-User-Topic Models

Our definition for a semantic community in a social network is:

Definition 5. A semantic community in a social network includes users with sim-

ilar communication interests and topics that are associated with their communica-

tions.

We study the community structure of an SN by modeling the communication

documents among its social actors and the format of communication documents

we model is email because emails embody valuable information regarding shared

knowledge and the SN infrastructure [72].

Our Community-User-Topic (CUT) model1 builds on the Author-Topic model.

However, the modeling of a communication document includes more factors than

the combination of authors and topics.

Serving as an information carrier for communication, a communication docu-

ment is usually generated to share some information within a group of individuals.

But unlike publication documents such as technical reports, journal papers, etc.,

the communication documents are inaccessible for people who are not in the recip-

ient list. The issue of a communication document indicates the activities of and is

also conditioned on the community structure within an SN. Therefore we consider

the community as an extra latent variable in the Bayesian network in addition

to the author and topic variables. By doing so, we guarantee that the issue of a

communication document is purposeful in terms of the existing communities. As a

result, the communities in an SN can be revealed and also semantically explainable.

1In order to fit our model literally to the social network built on email communication, we
change the name ”Author” to ”User”. An alternative name of our model is Community-Author-
Topic Model: CAT.
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We will use generative Bayesian networks to simulate the generation of emails

in SNs. Differing in weighting the impact of a community on users and topics, two

versions of CUT are proposed.

2.2.1 CUT1: Modeling community with users

Given the impact of community in the generation of communication, the first

step is to determine the interrelationships among this latent variable, the email

users and the topics, i.e. the structure of the Bayesian network.

We first consider an SN community as no more than a group of users. This

is a notion similar to that assumed in a topology-based method. For a specific

topology-based graph partitioning algorithm such as Modularity [53], the connec-

tion between two users can be simply weighted by the frequency of their commu-

nications. In our first model CUT1, we treat each community as a multinomial

distribution over users. Each user u is associated with a conditional probability

P (u|c) which measures the degree that u belongs to community c. The goal is

therefore to find out the conditional probability of a user given each community.

Then users can be tagged with a set of topics, each of which is a distribution over

words. A community discovered by CUT1 is typically in the structure as shown in

Fig. 2.7.

Fig. 2.3 presents the hierarchy of the Bayesian network for CUT1. Let us use

the same notations in Author-Topic model: α and β parameterizing the prior

Dirichlet for topics and words. Let ψ denote the multinomial distribution over

users for each community c, each marginal of which is a Dirichlet parameterized

by γ. Let the prior probabilities for c be uniform. Let C, U , T denote the number

of community, users and topics.
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Figure 2.3. Modeling community with users

Typically, an email message d is generated by four steps: (1) there is a need

for a community c to issue an act of communication by sending an email d; (2) a

user u is chosen from c as observed in the recipient list in d; (3) u presents to read

d since a topic z is concerned, which is drawn from the conditional probability on

u over topics; (4) given topic z, a word ω is created in d. By iterating the same

procedure, an email message d is composed word by word.

Note that the u is not necessarily the composer of the message in our models.

This differs from existing literatures which assume α as the author of document.

The assumption is that a user is concerned with any word in a communication

document as long as the user is on the recipient list.

To compute P (c, u, z|ω), the posterior probability of assigning each word ω to

a certain community c, user u and topic z, consider the joint distribution of all

variables in the model:

P (c, u, z, ω) =P (ω|z)P (c, u, z)

=P (ω|z)P (z|u)P (c, u)

=P (ω|z)P (z|u)P (u|c)P (c) (2.1)
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Theoretically, the conditional probability P (c, u, z|ω) can be computed using

the joint distribution P (c, u, z, ω).

A possible side-effect of CUT1, which considers a community c solely as a

multinomial distribution over users, is it relaxes the community’s impact on the

generated topics. Intrinsically, a community forms because its users communicate

frequently and in addition they share common topics in discussions as well. In

CUT1 where community only generates users and the topics are generated condi-

tioned on users, the relaxation is propagated, leading to a loose connection between

community and topic. We will see in the experiments that the communities dis-

covered by CUT1 is similar to the topology-based algorithm Modularity proposed

in [53].

2.2.2 CUT2: Modeling community with topics

In contrast to CUT1, our second model introduces the notion that an SN com-

munity consists of a set of topics, which are of concern to respective user groups.

As illustrated in Fig. 2.4, each word ω observed in email d is finally chosen

from the multinomial distribution of a user αdi, which is from the recipient list of

d. Before that, αdi is sampled from another multinomial of topic z and z is drawn

from community c’s distribution over topics.

Analogously, the products of CUT2 are a set of conditional probability P (z|c)

that determines which of the topics are most likely to be discussed in community

c. Given a topic group that c associates for each topic z, the users who refer to z

can be discovered by measuring P (u|z).

CUT2 differs from CUT1 in emphasizing the relation between community and

topic. In CUT2, semantics play a more important role in the discovery of com-
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munities. Similar to CUT1, the side-effect of advancing topic z in the generative

process might lead to loose ties between community and users. An obvious phe-

nomena of using CUT2 is that some users are grouped to the same community

when they share common topics even if they correspond rarely, leading to the dif-

ferent scenarios for which the CUT models are most appropriate. For CUT1, users

often tend to be grouped to the same communities while CUT2 accentuates the

topic similarities between users even if their communication seem less frequent.

D

C

T

U

φ ω
Nd

β

c
z
αdi

θα

γ ψ

Figure 2.4. Modeling community with topics

Derived from Fig. 2.4, define in CUT2 the joint distribution of community c,

user u, topic t and word ω:

P (c, u, z, ω) =P (ω|u)P (u|z)P (z|c)P (c) (2.2)

Let us see how these models can be used to discover the communities that

consist of users and topics. Consider the conditional probability P (c, u, z|ω), a

word ω associates three variables: community, user and topic. Our interpretation

of the semantic meaning of P (c, u, z|ω) is the probability that word ω is generated

by user u under topic z, in community c.

Unfortunately, this conditional probability cannot be computed directly. To
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get P (c, u, z|ω) ,we have:

P (c, u, z|ω) =
P (c, u, z, ω)

Σc,u,zP (c, u, z, ω)
(2.3)

Consider the denominator in Eq. 2.3, summing over all c, u and z makes the

computation impractical in terms of efficiency. In addition, as shown in [24], the

summing doesn’t factorize, which makes the manipulation of denominator difficult.

In the following section, we will show how an approximate approach of Gibbs

sampling will provide solutions to such problems. A faster algorithm EnF-Gibbs

sampling will also be introduced.

2.3 The Algorithm

2.3.1 Gibbs sampling

Gibbs sampling is an algorithm to approximate the joint distribution of multiple

variables by drawing a sequence of samples. It is a Markov chain Monte Carlo

algorithm that usually applies when posterior probability is easier to evaluate.

Gibbs sampling was first introduced to estimate the Topic-Word model in [24].

In Gibbs sampling, a Markov chain is formed, the transition between successive

states of which is simulated by repeatedly drawing a topic for each observed word

from its conditional probability on all other variables. In the Author-Topic model,

the algorithm goes over all documents word by word. For each word ωi, the topic

zi and the author xi responsible for this word are assigned based on the posterior

probability conditioned on all other variables: P (zi, xi|ωi, z−i,x−i,w−i, ad). zi and

xi denote the topic and author assigned to ωi, while z−i and x−i are all other
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assignments of topic and author excluding current instance. w−i represents other

observed words in the document set and ad is the observed author set for this

document.

A key issue in using Gibbs sampling for distribution approximation is the eval-

uation of conditional posterior probability. In Author-Topic model, given T topics

and V words, P (zi, xi|ωi, z−i,x−i,w−i, ad) is estimated by:

P (zi = j, xi = k|ωi = m, z−i,x−i,w−i, ad) ∝ (2.4)

P (ωi = m|xi = k)P (xi = k|zi = j) ∝ (2.5)

CWT
mj + β

Σm′CWT
m′j + V β

CAT
kj + α

Σj′CAT
kj′ + Tα

(2.6)

where m′ 6= m and j′ 6= j, α and β are prior parameters for word and topic

Dirichlet, CWT
mj represents the number of times that word ωi = m is assigned to

topic zi = j, CAT
kj represents the number of times that author xi = k is assigned

to topic j.

The transformation from Eq. 2.4 to Eq. 2.5 drops the variables, z−i, x−i, w−i,

ad, because each instance of ωi is assumed independent of the other words in a

message.

By applying the Gibbs sampling, we can discover the semantic communities by

using the CUT models. Consider the conditional probability P (c, u, z|ω), where

three variables in the model, community, user2 and topic, are associated by a word

ω. The semantic meaning of P (c, u, z|ω) is the probability that ω belongs to user

u under topic z, in community c. By estimation of P (c, u, z|ω), we can label a

community with semantic tags (topics) in addition to the affiliated users. The

2Note we denote user with u in our models instead of x as in previous work.
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problem of semantic community discovery is thus reduced to the estimation of

P (c, u, z|ω).

(1) /* Initialization */
(2) for each word ωi in each d
(3) assign ωi to random community, topic and user;
(4) /* Markov chain convergence */
(5) i← 0;
(6) I ← desired number of iterations;
(7) while i < I
(8) for each ωi in each email d
(9) get current assignment of ωi: c, t, u;
(10) decrement assignments of ωi for c, t, u;
(11) estimate P (ci, ui, zi|ωi), u ∈ αd;
(12) sample cp, uq, zr based on P (ci, ui, zi|ωi);
(13) increment assignment counts τ(cp, uq, zr, ωi);
(14) i+ +;

Figure 2.5. Gibbs sampling for CUT models

The framework of Gibbs sampling is illustrated in Fig. 2.5. Given the set of

users U , set of email documents D, the number of desired topic |T |, number of

desired community |C| are input, the algorithm starts with randomly assigning

words to a community, user and topic. A Markov chain is constructed to converge

to the target distribution. In each trial of this Monte Carlo simulation, a block

of (community, user, topic) is assigned to the observed word ωi. After a number

of states in the chain, the joint distribution P (c, u, z|ω) approximates the targeted

distribution.

To adapt Gibbs sampling for CUT models, the key step is estimation of P (ci, ui, zi|wi).

For the two CUT models, we describe the estimation methods respectively.

Let P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i) be the probability that

ωi is generated by community p, user q on topic r, which is conditioned on all
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the assignments of words excluding the current observation of ωi. z−i, x−i and

w−i represent all the assignments of topic, user and word not including current

assignment of word ωi.

In CUT1, combining Eq. 2.1 and Eq. 2.3, assuming uniform prior probabilities

on community c, we can compute P (c = p, u = q, z = r|ωi = m, z−i,x−i,w−i) for

CUT1 by:

P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i) ∝

P (ωi = m|zi = r)P (zi = r|ui = q)P (ui = q|ci = p) ∝
CWT

mr + β

Σm′CWT
m′r + V β

CTU
rq + α

Σr′CTU
r′q + Tα

CUC
qp + γ

Σq′CUC
q′p + Uγ

(2.7)

where P (ωi = m|z = r), P (zi = r|ui = q) and P (ui = q|ci = p) are estimated via:

P (ωi = m|zi = r) ∝ CWT
mr + β

Σm′CWT
m′r + V β

(2.8)

P (zi = r|ui = q) ∝
CTU

rq + α

Σr′CTU
r′q + Tα

(2.9)

P (ui = q|ci = p) ∝
CUC

qp + γ

Σq′CUC
q′p + Uγ

. (2.10)

In the equations above, CWT
mr is the number of times that word ωi = m is

assigned to topic zi = r, not including the current instance. CTU
rq is the number

of times that topic z = r is associated with user u = q and CUC
qp is the number

of times that user u = q belongs to community c = p, both not including the

current instance. C is the number of communities in the social network given as

an argument.



30

The computation for Eq. 2.8 requires keeping a W × T matrix CWT , each

entry CWT
ij of which records the number of times that word i is assigned to topic j.

Similarly, a T×U matrix CTU and a U×C matrix CUC are needed for computation

in Eq. 2.9 and Eq. 2.10.

Similarly, P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i) is estimated based on

the Bayesian structure in CUT2:

P (c = p, u = q, z = r|ωi = m, z−i,x−i,w−i) ∝
CWU

mq + β

Σm′CWU
m′q + V β

CUT
qr + γ

Σq′C
UT
q′r + Uγ

CTC
rp + α

Σr′C
TC
r′p + Tα

(2.11)

Hence the computation of CUT2 demands the storage of three 2-D matrices:

CWU , CUT and CTC .

With the set of matrices obtained after successive states in the Markov chain,

the semantic communities can be discovered and tagged with semantic labels. For

example, in CUT1, the users belonging to each community c can be discovered by

maximizing P (u|c) in CUC . Then the topics that these users concern are similarly

obtained from CTU and explanation for each topic can be retrieved from CWT .

2.3.2 Gibbs Sampling with entropy filtering

In this section, we further develop Gibbs sampling to improve computational

efficiency and performance.

Consider two problems with Gibbs sampling illustrated in Fig. 2.5: (1) effi-

ciency: Gibbs sampling has been known to suffer from high computational com-

plexity. Given a textual corpus with N = 106 words. Let there be U = 150
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users, C = 10 communities and T = 20 topics. An I = 1000 iteration Gibbs

sampling has the worst time complexity O(I ∗N ∗ (U ∗C ∗T )), which in this case is

about 3 ∗ 1013 computations. (2) performance: unless performed explicitly before

Gibbs sampling, the algorithm may yield poor performance by including many

non-descriptive words. For Gibbs sampling, some common words like ’the’, ’you’,

’and’ must be cleaned before Gibbs sampling. However, the EnF-Gibbs sampling

saves such overhead by automatically removing the non-informative words based

on entropy measure.

(1) /* Initialization */
(2) assign each ωi in each d to random topic, user and community;
(3) /* Markov chain convergence */
(4) i← 0; TrashCan← φ;
(5) I ← desired number of iterations;
(6) while i < I
(7) for each observed ωi

(8) if i < A /* in early iterations */
(9) get current assignment of ωi: c, t, u;
(10) decrement assignments of ωi for c, t, u;
(11) estimate P (ci, ui, zi|ωi), u ∈ αd;
(12) sample cp, uq, zr based on P (ci, ui, zi|ωi);
(13) increment assignment counts τ(cp, uq, zr, ωi);
(14) else if ωi /∈ TrashCan /* removing non-informative words */
(15) if Entropy(ωi) ≤ θ
(16) get current assignment of ωi: c, t, u;
(17) decrement assignments of ωi for c, t, u;
(18) estimate P (ci, ui, zi|ωi), u ∈ αd;
(19) sample cp, uq, zr based on P (ci, ui, zi|ωi);
(20) increment assignment counts τ(cp, uq, zr, ωi);
(21) else
(22) TrashCan← TrashCan ∪ {ωi};
(23) i+ +;

Figure 2.6. EnF-Gibbs sampling

Fig. 2.6 illustrates the EnF-Gibbs sampling algorithm we propose. We incor-
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porate the idea of entropy filtering into Gibbs sampling. During the interactions

of EnF-Gibbs sampling, the algorithm keeps in TrashCan an index of words that

are not informative. After A times of iterations, we start to ignore the words that

are either already in the TrashCan or are non-informative. In Step 15 of Fig. 2.6,

we quantify the informativeness of a word ωi by the entropy of this word over

another variable. For example, in CUT1 where CWT keeps the numbers of times

ωi is assigned to all topics, we calculate the entropy on the ith row of the matrix.

2.4 Experiments on Emails

We present experimental results of our models with the Enron email corpus.

Enron email dataset was made public by the Federal Energy Regulatory Commis-

sion during its investigations and subsequently made available [64].

2.4.1 Semantic community representation

We processed the Enron email dataset by removing the common stop words.

Each employee in Enron is identified by an email address. For brevity, we use only

the email ids without organization suffixes hereafter.

In all of our experiments, we fixed the number of communities C at 6 and the

number of topics T at 20 3. The smoothing hyper-parameters α, β and γ were

set at 5/T , 0.01 and 0.1 respectively. We ran 1000 iterations for both our Gibbs

sampling and EnF-Gibbs sampling with the MySql database support. Because the

quality of results produced by Gibbs sampling and our EnF-Gibbs sampling are

very close, we simply present the results of EnF-Gibbs sampling hereafter.

3In this Chapter, for the sake of simplicity, we do not seek to automatically look for the
number of communities nor the number of topics. In Chapter 3, we will use a heuristic using
model perplexity for determining the number of latent topics.
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Figure 2.7. A Community Discovered by CUT1

The ontology for both models are illustrated in Fig. 2.7 and Fig. 2.10. In

both figures, we denote user, topic and community by square, hexagon and dot

respectively. In CUT1 results, a community connects a group of users and each

user is associated with a set of topics. In Fig. 2.7, we present all the users and two

topics of one user for a discovered community. By merging all the topics for the

desired users of a community, we can tag a community with topic labels.

Topic 3 Topic 5 Topic 12 Topic 14

rate dynegy budget contract

cash gas plan monitor

balance transmission chart litigation

number energy deal agreement

price transco project trade

analysis calpx report cpuc

database power group pressure

deals california meeting utility

letter reliant draft materials

fax electric discussion citizen

Table 1: Topics Discovered by CUT1
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Fig. 2.7 shows that user mike.grigsby is one of the users in community 3. Two

of the topics that is mostly concerned with mike.grigsby are topic 5 and topic 12.

Table 1 shows explanations for some of the topics discovered for this community.

We obtain the word description for a topic by choosing 10 from the top 20 words

that maximize P (w|z). We only choose 10 words out of 20 because there exist

some names with large conditional probability on a topic that for privacy concern

we do not want to disclose.

abbreviations organizations

dynegy An electricity, natural gas provider

transco A gas transportation company

calpx California Power Exchange Corp.

cpuc California Public Utilities Commission

ferc Federal Energy Regulatory Commission

epsa Electric Power Supply Association

naruc National Association of

Regulatory Utility Commissioners

Table 2: Abbreviations

We can see from Table 1 that words with similar semantics are nicely grouped

to the same topics. For better understanding of some abbreviate names popularly

used in Enron emails, we list the abbreviations with corresponding complete names

in Table 2.

For a single user, Fig. 2.8 illustrates its probability distribution over commu-

nities and topics as learned from the CUT1 model. We can see the multinomial

distribution we assumed was nicely discovered in both figures. The distribution

over topics for all users are presented in Fig. 2.9. From Fig. 2.9, we can see some

Enron employees are highly active to be involved in certain topics while some are
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Figure 2.8. Communities/topics of an employee

relatively inactive, varying in heights of peaks over users.
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Figure 2.9. Distribution over topics for all users

Fig. 2.10 illustrates a community discovered by CUT2. According to the figure,

Topic 8 belongs to the semantic community and this topic concerns a set of users,

which includes rick.buy whose frequently used words are more or less related to

business and risk. Surprisingly enough, we found the words our CUT2 learned to

describe such users were very appropriate after we checked the original positions

of these employees in Enron. For the four users presented in Table 3, d..steffes was

the vice president of Enron in charge of government affairs; cara.semperger was a

senior analyst; mike.grigsby was a marketing manager and rick.buy was the chief
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risk management officer.

Topic 2

Topic 9

Topic 12

Topic 16

joe.stephenovitch

monique.sanchez

charles.weldon

andrea.ring

john.griffith

kenneth.lay

scott.neal

rick.buy

stacy.dickson

Community 2

Topic 8

Figure 2.10. A Community Discovered by CUT2

d..steffes cara.s mike.grigsby rick.buy

power number file corp

transmission cash trader loss

epsa ferc report risk

ferc database price activity

generator peak customer validation

government deal meeting off

california bilat market business

cpuc caps sources possible

electric points position increase

naruc analysis project natural

Table 3: Distribution over words of some users

2.4.2 Semantic community discovery quality

We evaluate the quality of discovered communities against the topology-based

algorithm in [8], a hierarchical agglomeration algorithm for community structure

detection. The algorithm is based on Modularity, which is a measurement of

whether a division of a network is a good one, in the sense that there are many
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edges within communities and only a few between them. We employ the clustering

comparison method in [59] to measure the similarity between our communities and

the clusters of users produced by [8].

Given N data objects, the similarity between two clustering results λ is de-

fined4:

λ =
N00 +N11

N(N − 1)/2

where N00 denotes the count of object pairs that are in different clusters for both

clustering and N11 is the count of pair that are in the same cluster.

Figure 2.11. Community similarity comparisons

The similarities between three CUT models and Modularity are illustrated in

Fig. 2.11. We can see that as we expected the similarity between CUT1 and

Modularity is large while that between CUT2 and Modularity is small. This

is because the CUT1 is more similar to Modularity than CUT2 by defining a

community as no more than a group of users.

We also test the similarity among topics(users) for the users(topics) which

are discovered as a community by CUT1 (CUT2). Typically the topics(users)

associated with the users(topics) in a community represent high similarities. For

example, in Fig. 2.7, Topic 5 and Topic 12 that concern mike.grigsby are both

4Another recent work on comparing clusterings is defined introduced in [92]. But for our
problem where cluster labels are categorical, both clustering comparison perform similarly as
suggested.
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contained in the topic set of lindy.donoho, who is the community companion of

user mike.grigsby.

2.4.3 Computational complexity and EnF-Gibbs sampling
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Figure 2.12. Computational complexity

We evaluate the computational complexity of Gibbs sampling and EnF-Gibbs

sampling for our models. We measure the computational complexity based on (1)

total running time and (2) iteration-wise running time. For overall running time we

sampled different scales of subsets of messages from Enron email corpus. For the

iteration-wise evaluation, we ran both Gibbs sampling and EnF-Gibbs sampling

on complete dataset.

In Fig. 2.12(a), the running time of both sampling algorithms on two models

are illustrated. We can see that generally learning CUT2 is more efficient than

CUT1. It is a reasonable result considering the matrices for CUT1 are larger in

scales than CUT2. Also entropy filtering in Gibbs sampling leads to 4 to 5 times

speedup overall.

The step-wise running time comparison between Gibbs sampling and EnF-

Gibbs sampling is shown in Fig. 2.12(b). We perform the entropy filtering removal
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after 8 iterations in the Markov chain. We can see the EnF-Gibbs sampling well

outperforms Gibbs sampling in efficiency. Our experimental results also show that

the quality of EnF-Gibbs sampling and Gibbs sampling are almost the same.

2.5 Summary

We present two versions of Community-User-Topic models for semantic com-

munity discovery in social networks. Our models combine the generative proba-

bilistic modeling with community detection. To simulate the generative models,

we introduce EnF-Gibbs sampling which extends Gibbs sampling based on entropy

filtering. Experiments have shown that our method effectively tags communities

with topic semantics with better efficiency than Gibbs sampling.



Chapter 3
Probabilistic Models for Social

Annotations

3.1 Social Annotation and Information Retrieval

The social annotating is a form of folksonomy, which by definition refers to

Internet-based methods consisting of collaboratively generated, open-ended text

labels that categorize content such as Web pages, online photographs, and Web

links. Many popular Web services rely on folksonomy including those of delicious

(del.icio.us) and flickr (flickr.com). Incorporating social annotations with docu-

ment content is a natural idea, especially for IR applications. Consider the IR

methods based on language modeling, for example [57, 41], we may simply treat

the terms in annotation tags the same as those in document content, consider them

as additional terms of the documents, and then follow the existing IR approaches.

The pitfalls here, however, come in several aspects: (1) A tag term is generated

differently than a document content term. A tag, upon its generation by a user,

represents an abstract of the document from one perspective of one user; (2) The
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differences in domain expertise of users should be taken into consideration when

incorporating user tags. Some users in certain domains might be more trustwor-

thy than others. Some users for various reasons may just give totally bogus tags.

Although it remains an open problem to discover domain expertise of users, such

peer differences are believed to be important [33] for IR in an information society;

(3) The improvement for IR will be limited without considering the semantics of

the tag terms. Usually the number of tag terms is much smaller than the number

of terms in a document being tagged. Therefore using the tag terms the same way

as the document terms will leads to the same difficulties in traditional language

modeling-based IR, such as the lack of smoothness and the sparsity of observations.

In this chapter, we develop a framework that combines the modeling of social

annotations with the expansion of traditional language modeling-based IR using

user domain expertise [93]. Firstly, we seek to discover topics in the content and

annotations of documents and categorize the users by domains. We propose a

probabilistic generative model for the generation of document content as well as

the associated tags. Secondly, we follow an IR framework based on risk minimiza-

tion proposed earlier [41]. The framework is based on Bayesian decision theory

focusing on improving language models for queries and documents. We then study

several ways for expanding the language models where the user domain interests

and expertise and the background collection language models are incorporated.

In particular, we apply linear smoothing between the original term-level language

models and the new topic-level language models. The newly proposed framework

benefits from the consideration of the differences between document content terms

and tag terms in the modeling process. User domain expertise can be readily in-

cluded in the retrieval framework by the proposed ways of language model expan-

sion. The smoothing of the original term-level language model with the topic-level
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language models addresses the issues raised by the sparsity of observations.

The main contributions of our work presented in this chapter include (1) a

general and a simplified probabilistic generative model for the generation of doc-

ument content as well as the associated social annotations; (2) a new way for

categorizing users by domains based on social annotations. The user domain ex-

pertise, evaluated by activity frequency, are considered to weigh the user interests;

(3) the study of several ways for combining term-level language models with those

topic-level models obtained from topics in documents and users.

3.2 Modeling Social Annotations

We propose a probabilistic generative model for social annotations. The model

specifies the generation process of the terms in document content as well as the

associated user tags. The motivation for modeling the social annotations with

document content is to obtain a simultaneous topical analysis of the terms, docu-

ments, as well as the users. As we will discuss later, the topical analysis of terms

(or the clustering of them by topics) essentially provides the basis for expanding

query and document language models. In addition, the topical analysis of users,

which categorizes the users by domains, enables the input of domain expertise of

users in addition to the tags generated by them.

3.2.1 Generative models for annotations

We start by modeling the generation of words in documents and annotations.

Intuitively, the content of documents and annotations are generated by two simi-

lar but correlated approaches. We illustrate our understanding of the generation
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process in plate notation in Fig. 3.1. On the document side (left-hand side), for

an arbitrary word ω in document d, a topic z is first drawn, then conditioned on

this topic, ω is drawn; Repeating this process for Nd times, which is the number

of words in d, d is generated. The whole collection repeats the same process for

D times 1; On the annotation side (right-hand side), each word in the annotation

is generated similarly. First, an observed user a decides to make annotation on a

particular document, then the user picks a topic z to describe the d, followed by

the generation of ω. The generation of z by user, however, depends not only on

the user but also the topic of d. Note the dependency of user topics on document

topics can be seen as a mapping between two conceptions. Generally speaking,

due to likely differences in perception of document content and annotation con-

tent, there are different number of topics on both sides, Td and Ta. The two topic

sets can be different but are usually very similar.

ω

z
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αd θd

Td

ω

z
D
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Nd Nt

D A
βa
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βd φd
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Figure 3.1. The general generative model for content of documents and annotations
in plate notation. Td (Ta) is the number of topics in documents (annotations); Nd

(Nt) is the number of content words (or tag words) in document d; A and D are the
number of users and documents; θd, θa φd, and φa are Dirichlet priors parameterized
respectively by, αd, αa, βd, and βa. Shaded circles denote the observed variables and the
blank circles denote the hidden ones. Rectangles denote the repetition of models with
the same structure but different parameters, where the lower-right symbol indicates the
number of repetitions.

Inspired by related work on topic analysis [3, 62, 68], we make assumptions

1Note the document side of the general annotation model is essentially the LDA model pro-
posed in [3]. But the right side takes into consideration the generation of annotations as depen-
dent on the document content generation.
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about the probability structures of the generative model in Fig. 3.1. First, we

assume all the conditional probabilities follow multinomial distribution. For ex-

ample, each topic is a multinomial distribution over words where for the conditional

probability of each word is fixed. Second, we assume that the prior distribution for

topics and words follow Dirichlet (θd,φd for documents and θa,φa for annotations),

which are conjugate priors for multinomial, respectively parameterized by αd,βd

and αa, βa.

Given the great number of latent variables and parameters, the generative

model, illustrated in Fig. 3.1, is not quite scalable in practice. The probability

distributions we would have to estimate include: (1) D +A multinomial distribu-

tions for documents over topics; (2) Td + Ta multinomial distributions for topics

over words; (3) Td × Ta conditional probabilities to capture the correlation of the

topics in documents and the topics in annotations. In addition, there are many

parameters that adds difficulty in tuning in practice (αd, βd, αa, βa, Td, and Ta).

Therefore, we will simplify this general annotation model with some relaxations in

assumptions, arriving at a scalable model with easy training algorithms available.

In order to reduce the general model to a one scalable with fewer parame-

ters, we make several compromises in assumptions. First, we assume the topics in

documents and annotations are the same. This assumes that the taggers conceptu-

ally agree with the original document authors without variation of information in

their understanding. Second, we assume that documents and users have the same

structure of prior distributions which are only parameterized differently. Although

arguably the users and documents might have different types of distributions over

topics, we make the assumption here for the sake of simplicity. These assumptions

lead to a simplified generative model for annotations. As illustrated in Fig. 3.2,

we have a single topic-word distribution φ with parameter β; a single source-topic
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distribution with extended dimension (here the source can be a document or a

tagger). Now we have much fewer distributions to estimate, making the modeling

more scalable in practice.

T

A + D

φ ω

θ

β

α

z
x

D
Nd + Nt

Figure 3.2. The User-Content-Annotation (UCA) Model in plate notation. T , A, and D

are the number of topics, users, and documents. Nd and Nt denote the number of terms
in the document and the number of terms in the tag. φ is the topic-word distribution
with parameter β; θ is the source-topic distribution with parameter α.

Let us name the the model in Fig. 3.2 as the user-content-annotation (UCA)

model. The UCA model describes the generation of words in document content and

in the tags in similar but different processes. For document content, each observed

term ω in document d is generated from the source x (each document d maps

one-to-one to a source x). Then from the conditional probability distribution on

x, a topic z is drawn. Given the topic z, ω is finally generated from the conditional

probability distribution on the topic z. For document tags, similarly, each observed

tag word ω for document d is generated by user x. Specific to this user, there is a

conditional probability distribution of topics, from which a topic z is then chosen.

This hidden variable of topic again finally generates ω in the tag.

According to the model structure, we have the joint probability conditional

joint probability of θ, φ, x, z, ω, given the parameters α, β, as below:
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P (θ, φ, x, z, w|α, β) = (3.1)

P (w|z, φ)P (φ|β)P (z|x, θ)P (θ|α)P (x); (3.2)

For inferences of words, we can calculate the conditional probability given a word

as:

P (θ, φ, x, z, |ω, α, β) =
P (θ, φ, x, z, ω|α, β)∑

x

∑
z P (θ, φ, x, z, ω|α, β)

. (3.3)

Again, similar to related work, we assume the prior distribution of topics and

terms follow Dirichlet distributions parameterized respectively by α and β. Let T

be the number of topics (input as a parameter); A is the number of users; D is

the number of documents; Nd and Nt respectively denote the number of terms in

the document and the number of terms in the tag. Each topic is a probabilistic

multinomial distribution over terms, denoted by φ; Each user (or source) is a

probabilistic multinomial distribution over topics, denoted by θ. As illustrated in

Fig. 3.2, there are A +D distributions of topics, each of which corresponds to an

observed user or source. There are T distributions of words, each corresponds to an

unobserved topic. For each document, the generation process repeats for Nd +Nt

times where Nd of the iterations correspond to the terms in the document content

and Nt corresponds to the terms in the tags. The above again repeats for D times

for all documents.
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3.2.2 Model training

The UCA model includes two sets of unknown parameters, the source-topic

distributions θ, and the topic-word distributions φ, corresponding to the assign-

ments of individual words to topics z and source x. We use an effective parameter

estimation method, Gibbs sampling [61], for training the model, which is gaining

popularity in topic analysis recently [24, 90]. Instead of estimating the parameters

directly, we evaluate the posterior distributions.

The algorithm keeps track of the number of times that a term is assigned to a

topic CTW
zw and the number of times that a topic is assigned to the user or source

C
(A+D)T
xz . Here CTW denotes a T ×W matrix and C(A+D)T denotes a (A+D)×T

matrix, where x, z, ω are the indices of the sources (document or user), topics,

and words. We repeat the Gibbs sampling until the perplexity score 2 measured

on distributions converges. The algorithm below illustrates the Gibbs sampling

algorithm for model training.

It can be seen from the algorithm that the key issue here is the evaluation of

the posterior conditional probabilities, i.e. P (z|w), P (d|z), P (x|z), which leads to

the evaluation of P (d|w) or P (x|w). Let us again consider the joint probabilities

P (x, z|w), P (d, z|w). These posterior conditional probabilities can be expressed

as the product of several conditional probabilities on the edges of the Bayesian

network. In particular, for documents, we have:

P (d, z|ω) ∝ CWT
ωz + β∑

k C
WT
kz + V β

C
(A+D)T
dt + α

∑
k C

(A+D)T
dk + Tα

, (3.4)

2The measurement of perplexity will be introduced in Sec. 3.2.3.
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Algorithm 1 Training User-Content-Annotation Model

1: Given a sequence of triplets 〈x, d, ω〉, where d is the document id; ω is the word
id; x = nil if ω is a content word; x = user id if ω is a tag word.

2: Given ε as the threshold for determining convergence.
3: Initialize CTW , C(A+D)T with random positive values.
4: repeat
5: for all 〈x, d, ω〉 do
6: t = z(ω) // get the current topic assignment
7: CTW

tw ← CTW
tw − 1 //decrement count

8: if x == nil then
9: // ω is a document word

10: C
(A+D)T
dt ← C

(A+D)T
dt − 1 // decrement count

11: // compute P (t) below
12: for all z = 1, ..., T do
13: P (z)← P (d, z|ω) = P (d|z)P (z|ω)
14: end for
15: sample to obtain t using P (t)

16: C
(A+D)T
dt ← C

(A+D)T
dt + 1 // increment count

17: else
18: // ω is a tag word

19: C
(A+D)T
xt ← C

(A+D)T
xt − 1 // decrement count

20: // compute P (t) below
21: for all z = 1, ..., T do
22: P (z)← P (x, z|ω) = P (x|z)P (z|ω)
23: end for
24: sample to obtain t using P (t)

25: C
(A+D)T
xt ← C

(A+D)T
xt + 1 // increment count

26: end if
27: CTW

tw ← CTW
tw + 1

28: end for
29: measure the perplexity on a held-out sample;
30: measure the perplexity change in δ;
31: until δ ≤ ε

and for users, we have:

P (x, z|ω) ∝ CWT
ωt + β∑

k C
WT
kz + V β

C
(A+D)T
xt + α

∑
k C

(A+D)T
xk + Tα

. (3.5)

Here the unit conditional probabilities in fact are Bayesian estimation of the pos-
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teriors: P (d|z), P (x|z) and P (z|w):

P (d|z) =
C

(A+D)T
dz + α

∑
k C

(A+D)T
dk + Tα

, (3.6)

P (x|z) =
C

(A+D)T
xt + α

∑
k C

(A+D)T
xk + Tα

, (3.7)

P (z|ω) =
CWT

ωt + β∑
k C

WT
kt + V β

. (3.8)

Accordingly, for implementation, we need to keep track of
∑

k C
(A+D)T
dk ,

∑
k C

(A+D)T
xk

and
∑

k C
WT
kt in addition to C

(A+D)T
dt , C

(A+D)T
xt and CTW

tw . It is easy to implement

these counting using several hash tables. In practice, we set α and β to be 50/T

and 0.05 respectively.

3.2.3 Number of topics

The remaining question is how to select the number of topics. We resort to the

perplexity measure, which is a standard measure for estimating the performance of

a probabilistic model. The perplexity of a set of term-source test pairs, < wd,xd >,

for all d ∈ Dtest documents, is defined as the exponential of the negative normalized

predictive log-likelihood using the trained model:

perplexity(Dtest) = exp[−
∑D

d=1 lnP (wd|xd)∑D
d=1 |{wd,xd}|

]. (3.9)

Here the probability of a set of term-source pairs on a particular document is

obtained by a straightforward calculation:

P (wd|xd) =
∏

(wd,xd)∈{wd,xd}
P (wd|xd) (3.10)
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where the probability of an individual term-source pair P (wd|xd) is evaluated using

the model hierarchy:

P (wd|xd) =
T∑

t=1

P (wd|t)P (t|xd). (3.11)

Note that the better generalization performance of a model is indicated by a

lower perplexity score over a held-out document set. We run the Gibbs sampling

using perplexity score as the termination criterion; the topic number is determined

by using the smallest T that leads to the near maximum perplexity. Similar ap-

proach is also used in previous work [3, 62].

3.3 Information Retrieval based on

Risk Minimization

In the language modeling (LM) approach to information retrieval (IR), queries

and documents are modeled respectively by a probabilistic LM. Let θQ denote the

parameters of a query model, and let θD denote the parameters of a document

model. The LM-based IR involves two independent phases: In one case, the gener-

ation of a query is viewed as a probabilistic process associated with a certain user.

This user first selects the query model θQ then picks a query q from the query

model θQ with probability P (q|θQ); In the other case, the document generation

has been carried out. First the document language model θD is chosen and then

the d is generated word by word with probability P (d|θD). The task of an IR

system is to determine the probability of a document being relevant to the query

given their LMs are respectively estimated.

Here we work within a risk minimization framework for IR proposed earlier [41].
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Suppose the relevance is a binary random variable R ∈ {0, 1}. Consider the task

of a retrieval system as the problem of returning a list of documents to the issued

query q. In the general framework of Bayesian decision theory, to each action,

there is an associated loss, which, in our case, is the loss for returning a particular

document to the user. Assume that the loss function only depends on θQ, θD, and

Ri, the expected risk of returning di is:

R(di;q) =
∑

R∈{0,1}

∫

ΘQ

∫

ΘD

L(θQ, θD, R)×

P (θQ|q)P (θD|di)P (R|θQ, θD)dθDdθQ (3.12)

where L(θQ, θD, R) is the loss function, P (θQ|q) is the probability of the query

model being parameterized by θQ given the query q, P (θD|di) is the probability

of the document model being parameterized by θD given the document di, and

P (R|θQ, θD) is the probability of relevance of R given the parameter sets are θQ

and θD.

Following earlier work [41], we make the assumption that the loss function only

depends on θQ and θD and is proportional to the distance between θQ and θD. Let

there be a distance function between two language models named as ∆. We have:

L(θQ, θD, R) ∝ ∆(θQ, θD) (3.13)

The expected risk for returning di to q is thus:

R(di;q) ∝
∫

ΘQ

∫

ΘD

∆(θQ, θD)P (θQ|q)P (θD|di)dθDdθQ. (3.14)
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Note here P (θQ|q) depends on the input q only and is the same for all candidate

documents di. Rather than explicitly computing the risk in the integral format,

we can use the point estimate with the posterior θD and θD:

R(di;q) ∝ ∆(θ̂q, θ̂di
).P (θD|di) (3.15)

where θ̂q and θ̂di
can be obtained using maximum likelihood estimation observing

the words in query and documents.

Further assuming that P (θD|di) is the same for all di, the risk minimization

framework finally becomes a measurement of the distance between two LMs: θ̂q

and θ̂di
. As in other related work, we can employ the Kullback-Leibler divergence

to measure ∆, yielding

R(di;q) ∝ ∆(θ̂q, θ̂di
) =

∑

w

P (w|θ̂q) log
P (w|θ̂q)

P (w|θ̂di
)
. (3.16)

where w is a word in either language model θ̂q or θ̂di
.

According to Eq. 3.16, the setup of the risk minimization framework has made

the measurement of relevance depend only on the LMs of the query and the docu-

ment, i.e. the posterior parameters θ̂q and θ̂di
. This chapter proposes a refinement

of the query and document LMs using the LMs obtained from social annotations.
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3.4 Language Model Expansion using Social An-

notations

Define our goal now to be improving the LMs of query and documents, say

θ̂q → θ′q and θ̂di
→ θ′di

. Here the θ̂q → θ′q is also known as query expansion [40] and

the θ̂di
→ θ′di

is also known as document expansion [69].

There are several ways for LM expansion. In this chapter we focus on the

linear interpolation [35] (a.k.a linear smoothing) for combining two LMs. Define

an operator ⊕λ for linear smoothing where a ⊕λ b ≡ λa + (1− λ)b, assuming a, b

are both normalized to the same scale. When applied to combining two LMs, θ1

and θ2, we define that θ1 ⊕λ θ2 ≡:

∀v ∈ θ1 ∪ θ2, P (v|θ1 ⊕λ θ2) = λP (v|θ1) + (1− λ)P (v|θ2) (3.17)

where the v here can be a word, a phrase, or simply a token that denotes special

meaning (e.g. a topic). In the case when v /∈ θ1, P (v|θ1 ⊕λ θ2) = (1− λ)P (v|θ2).

Similarly, P (v|θ1⊕λ θ2) = λP (v|θ1) when v /∈ θ2. So far, we have seen the original

LMs can be easily improved once we find the new LM to apply the above operator.

Suppose the LMs we want to improve are already estimated. In the following,

we give three types of additional LMs we can estimate based on the previous topical

analysis of annotations and content.

3.4.1 Word-level annotation language model

The annotation LM we give is an ad-hoc improvement. For each document d,

let τ(d) be the set of words in its tags, each having the frequency of being used
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for d. We are able to estimate a LM, say Ld
w, from the observations of τ(d) for all

d’s. It easily follows that Ld
w can be combined with θ̂di

using Eq. 3.17. We now

focus on the simple case of unigram LM, in which each word is assumed to occur

depending on the latent probability distribution only regardless of the surrounding

words.

3.4.2 Topic-level query language models

Recall in the standard framework, θ̂q is just the empirical distribution of the

query q = 〈w1, ...wk〉. This original word-level query model has been shown to

underperform [41, 40]. In our approach, we consider each topic discovered as

a token in the LM. These tokens will later match the topics discovered for the

documents to determine their relevance.

First, we estimate the conditional probability that a query word ω belongs to

the topic t, say P (t|w). Over all topics, we have a vector vt|w = 〈P (t1|w), ..., P (tT |w)〉.

After normalization, vt|w becomes the probability distribution over topics, or

rather, a topic-level LM. Second, we merge the multiple topic distributions for

each query word into a single topic distribution. Let the desired topic-level query

LM be Lq
t . In the unigram case. Lq

t is also a vector of T dimension where each

element denotes the probability of a particular topic. Formally, we have:

Lq
t =

∑

w∈q

δwvt|w. (3.18)

where δw is the normalized weight for the word ω, and Lq
t (i) denotes the probability

of topic i under this model. Note the setting of δw allows us to have
∑

i∈Lq
t
Lq

t (i) =

1. Again, using ⊕λ, we combine the models at different levels.
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3.4.3 Topic-level document language models

Now let us focus on the document LMs. It is easy to see that each document

already has a probability distribution over topics discovered from the proposed

modeling, denoted by a vector vt|d = 〈P (t1|d), ..., P (tT |d)〉. Consider this vector

as a LM where each topic is a unit. We use ⊕λ to combine this topic-level LM

with the original document LM.

Then how to leverage the user information in annotations?. Again, note that

the probabilistic model in Sec. 3.2 also outputs the topic distribution for users.

Denote the distribution by a T dimensional vector ut|x = 〈P (t1|x), ..., P (tT |x)〉.

Here each element P (ti|x) denotes the probability of a user x belonging to the

topic ti. Let the document d be tagged by a set of users, say U(d). We combine

the multiple LMs of users in U(d). In particular, the desired model Ld
t is generated

in addition to and will be combined with the original topic-level LM of document:

vt|d. Let the trust or importance of user x be δx. The Ld
t is obtained as:

Ld
t = δdvt|d +

∑

x∈U(d)

δxut|x, (3.19)

where δd +
∑

x∈U(d) δx = 1. The δd accounts for the emphasis we place on the

original discovery of topics for d, and ∀x ∈ U(d), δx determines the trust we

place on each user x. Now we have successfully incorporated the topical analysis

of documents and users into the original LM-based IR. User domain differences

are also considered. How to evaluate user importance is out of the scope of this

chapter.
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3.5 Experiments on delicious Data

A data sample is collected from del.icio.us using the method similar to [80].

We crawled the del.icio.us Web-site starting with a set of popular URL’s in Jan.

2006. Then we followed the URL collection of users who have tagged these URL’s,

arriving at a new set of URL’s. By iteratively repeating the above process, we

ended up with a collection of 84,961 URL’s tagged from May, 1995 to Apr., 2006.

There are 9070 users along with 62,007 tag words. Then we crawled the URL’s to

collect document content. There are 34,530 URL’s in the collection which are still

valid and have textual content, including 747,935 content words. The activity of

users seems to follow a power-law distribution.

3.5.1 Model perplexity

We first perform the training of the proposed model using the algorithm in-

troduced above. For different settings of the desired topic number, we test the

perplexity of the trained model on a held-out sample dataset. Over iterations, the

perplexity scores always decreases dramatically after the first several iterations and

then soon converges to a stable level. We show a plot of perplexities on five differ-

ent settings of T in Fig. 3.5.1. Here the training set is a 1% random sample of the

data available. We are able to see that the larger setting of topic number leads to

a lower perplexity score from the start, indicating a better prediction performance.

This is because the increased number of topics (before a certain point) reduces the

uncertainty in training. For the same reason, the larger setting of topics also leads

to a smaller perplexity value in the first several iterations, followed by a sharper

drop in perplexity. From the figure, we can see that empirically the algorithm

converges within 20 iterations for a relative small sample. For the full dataset, we



57

repeat the Gibbs sampling for 100 iterations.
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Figure 3.3. The perplexities over the iterations in training for five different settings
of topic number. The training set is a 1% random sample of the available data. The
perplexity is tested on a held-out sample whose size is proportional to size of the training
set.
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Figure 3.4. The perplexities over different settings of topic numbers, for T =
10, 40, 80, 160. Different sample sizes are tested yielding similar curves indicating a min-
imum optimal topic number of 80 on the collected data. The perplexity is tested on a
held-out sample whose size is proportional to size of the training set.

The second set of experiments carried out seeks to determine the best number

of topics in the setting. Using the perplexity measure defined in Eq. 3.9 - Eq. 3.11.

We perform the experiments by setting different number of topics in training on

various sizes of samples from the available data. Generally, the perplexity score first

decreases and then remains stable after T is at certain size. We prefer the smallest

T that yields a convergence since the greater T requires larger computation. In

Fig. 3.5.1, we show the perplexity scores over different T for various sample sizes. It
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is clear that the perplexity decreases much slower from after T = 80. Accordingly,

we choose the desired topic number to be 80 in the following experiments.

3.5.2 Information retrieval quality

Now let us evaluate the IR quality of various language modeling (LM) ap-

proaches. The methods we compare are:

• Word-level LM on content (W-QD): Query LM is trained on the original

query and the document LM is trained on the original document content.

• Word-level LM on content and annotations (W-QDA): The query

LM is trained on the original query and the document LM is trained on both

document content and annotations.

• Word-level LM + LDA on content and annotations (WT-LDA):

We run LDA on document plus annotations by treating annotations as addi-

tional words, without consideration of user differences. The topic-level LM

is combined with W-QDA using the parameter λ1.

• Word-level LM + Topic-level LM (WT-QDA): We run the proposed

topic analysis model on the documents and annotations, obtaining topic

information of documents and users. Then, the topic-level LM is combined

with the word-level LM W-QDA, using the parameter λ1.

• Word-level LM + Topic-level LM on document and users (WT-

QDAU): User domain interests are considered here. First, the word-level

LM and topic-level LM and their combination are trained using WT-QDA.

Second, the document LM is combined with the mixture of topics on users
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who tag the document, using the parameter λ2. Note here the users are

treated the same in the first step.

• Word-level LM + Topic-level LM on document, and users with

differentiation (WT-QDAU+): During the training of the WT-QDAU

is obtained using the parameter λ2, the weights on users are set different.

For simplicity, we use the number of annotations a user has made for the

user-specific trust weights.

In addition, we implement the EM-based retrieval method proposed in a related

work [80], which is defined as:

• EM-based information retrieval (EM-IR): As proposed in [80], the

URL’s and users are first clustered using the EM algorithm. Then the prob-

ability of seeing certain words for a URL is estimated. Those probabilities

are used for retrieval.

For evaluation, we generate 40 queries with lengths varying from one to five

words. The words are chosen from tag and document content. Then for each query,

we use the above six approaches for document retrieval. The quality of retrieval is

evaluated on the top 10 documents using the Discounted Cumulated Gain (DCG)

metric [34]. In particular, two human judges are invited to provide feedback on

the composite set of URL’s which occur in any of the top 10 retrieval results,

yielding the DCG10 scores. Judgments are carried out independently based on

their experience of the relevance quality. Numerical judgment scores of 0, 1, 2, and

3 are collected to reflect the judges’ opinion on the relevance of documents, which

respectively imply the sentiment of poor, fair, good, and perfect. In general, the

judges represent high agreement on the ranking quality. The average judge scores

are used for computing the DCG.
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In Table 3.1, we illustrate the DCG10 scores for the six approaches: W-QD,

EM, W-QDA, WT-LDA, WT-QDA, WT-QDAU, and WT-QDAU+. We can see

that both the EM-based IR and the newly proposed approaches outperform the

traditional LM-based IR. We read Table 3.1 from several aspects:

First, we take a look at the improvement according to the use of tags. The EM-

based IR proposed in related work [80] increased the DCG scores by 11.5% over

traditional LM-based IR (W-QD); The method that uses annotations as additional

words improved the DCG by 18.3% (W-QDA over W-QD), which demonstrates

that the use of annotation can dramatically improve IR quality.

Second, we examine the improvement based on topical analysis on both docu-

ment content and annotations. The basic use of the topic information (WT-LDA)

further improves the use of annotations (W-QDA) by 2.7%. The topic analysis

based on the new generative model, compared with WT-LDA, achieves a gain of

1.3%. It is worthwhile to mention that the LDA-based topic analysis improves a

very recent related work [80] (EM-IR) by 9.1%.

Third, we test the improvement by incorporating tagger interests. As illus-

trated in Table 3.1, WT-QDAU outperforms pure topic-based IR by 1.1%, showing

the importance of user interests.

Fourth, we show the improvement by considering the differences of users while

incorporating user interests. The WT-QDAU+ adds another 1.3% in DCG over

WT-QDAU. This shows that due to the different user expertise, the quality of tags

can be different and thus should be taken into consideration.

Overall, the top performance of our proposed model (WT-QDAU+) improved

the traditional LM-based IR model by 26%, compared with the the 11.5% improve-

ments by the EM-based approach in [80].
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W-QD EM-IR W-QDA WT-LDA
7.6192 8.4945 9.0167 9.2602

WT-QDA WT-QDAU WT-QDAU+

9.3820 9.4938 9.6167

Table 3.1. The DCG10 scores of six compared approaches: W-QD, EM-IR, W-QDA,
WT-LDA, WT-QDA, WT-QDAU, WT-QDAU+.

3.6 Summary

This chapter presents a framework that combines the modeling information

retrieval on the documents associated with social annotations. A new probabilistic

generative model is proposed for the generation of document content as well as

the associated social annotations. A new way for discovering user domains is

presented based on social annotations; Several ways are studied for combining

language models from tags with those from the documents; An exploration is

carried out for evaluating user expertise based on activity intensities; Experimental

evaluation on real-world datasets demonstrates effectiveness of the proposed model

and the improvements over traditional IR approach based on language modeling.



Chapter 4
Topic Dynamics and Social Actions

4.1 Topic Dynamics in Social Documents

While there are a rich set of choices regarding temporal topic discovery in sets

of temporally related documents [51, 49], our concern is when and where these

topics evolve and how the topics relate, if any, dependencies with each other. In

Fig. 4.1, for example, we illustrate the probability of appearance in documents in

CiteSeer of four research topics discovered using Latent Dirichlet Allocation [3],

which is similar to previous topic trend discovery [62].
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Figure 4.1. Probability of four research topics over 14 years in CiteSeer.

Some topics in Fig. 4.1 have been growing dramatically in popularity while

other topics seem to be less popular, at least according to the CiteSeer database. A
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more interesting question is whether a newly emergent topic is truly new or rather

a variation of an old topic? We address this by revealing the dependencies 1 among

the discovered topics. With the temporal dependencies among topics available, one

can survey a research area from a genealogical graph of related topics instead of

perusing the citation graphs.

In order to interpret and understand the changes of topic dynamics in doc-

uments, we resort to discovering the social reasons of why a topic evolves and

relates dependencies with others. We hypothesize that one topic evolves into an-

other topic when the corresponding social actors interact with other actors with

different topics in the latent social network. Consider an actor au associating a

topic ti at time k. For some reason, this actor meets and establishes a social tie

with actor av who is mostly associated with a new topic tj and they start to work

on the new topic with a higher probability. At a later time 2k, we observe that

au is more likely to be concerned with tj rather than the previous ti. In return, tj

has received a higher popularity than ti. When such a switch of topics in actors

is statistically significant, we will observe an aggregate transition tendency from ti

to tj in the topic dynamics, yielding the marginal probabilities of ti and tj moving

towards different directions over time, as illustrated in Fig. 4.1. Such a trend is

defined as transition between topics. The dependency of ti on tj is measured by

the probability of transition from tj to ti. Abstracted from the above example, our

goal seeks to estimate the dependencies between topics using social interactions.

Here we attempt to bridge the dynamics of topics in documents with the latent

social network [87]. In particular, we hypothesize the changes of topics in docu-

1More precisely, here we consider topics as observed labels of documents that are generated
from a Markov process over time. In particular, we assume these topic labels correspond to
instances from the state space in a Markov process. A “dependency” that we seek to discover is
in fact the transition probability from one state to another.
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ments in a social network as a Markov chain process which is parameterized by

estimating the social interactions among individuals conditioned on topics. The

primary assumption is that topics in social documents evolve due to the develop-

ment of the latent social network. Our contributions are: (1) a model of the topic

dynamics in social documents which connect the temporal topic dependency with

the latent social interactions; (2) a novel method to estimate the Markov transition

matrix of topics based on social interactions of different order; (3) the use of the

properties of finite state Markov process as the basis for discovering hierarchical

clustering of topics, where each cluster is a Markov metastable state; (4) a new

topic-dependent metric for ranking social actors based on their social impact. We

test this metric by applying it to CiteSeer authors.

4.2 Topic Transition & Social Interactions

We give a formal definition of the problem we address here. Denote the social

document stream as a matrix DW ∈ R
D×W , where D is the number of documents

and W the number of words. Define the matrix DA ∈ R
D×A = {λi,j}D×A denoting

the creators of these documents, where A is the number of social actors and λi,j =

1(di, aj), an indicator function of whether document di is composed by actor aj .

Note that one document may have several actors. (For our experiments actors will

be denoted as authors.)

Using the summarization tools (LDA [3]) we transform DW into DT ∈ R
D×T ,

where T is the number of pre-specified topics. We assume that DT is normalized

by row such that each document is a distribution over topics.

Using the matrixDA, a collaboration matrixA is obtained by setting {αi,j}A×A =

A = (DA)tDA, where αi,j denotes the number of collaborations between so-
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cial actors ai and aj if i 6= j and the number of composed documents by ai if

i = j. Let the author set be Λ. Using matrix DT and DA, we obtain a set

Q = {〈a, t〉|a ⊆ Λ, t ∈ R
1×T}, where a is the set of authors on a document and t

is the distribution over topic specifying this document. Here each element qi in Q

denotes an observation of a document.

Now the problem becomes, given a set Q = {〈a, t〉|a ⊆ Λ, t ∈ R
1×T} and

A ∈ R
A×A that can be calculated from Q, find a Markov transition matrix Γ ∈

R
T×T that captures the dependencies among the discovered topics, i.e. determine

a function Ψ such that Γ = Ψ(Q,A).

In our setting, where topics are those discovered from social documents, we

propose a measurement method that accentuates the social interactions in the

latent SN in order to estimate the topic transitions. The function Ψ determines

the measurement of pair-wise dependencies between topics.

Namely, we limit our search for Ψ to consider only the social interactions me-

diating the evolution of topics. The assumption is supported by the intuition that

topics created by close social actors in a SN sense[76] represent greater depen-

dencies than those created randomly. For example, a topic ta is more likely to be

dependent on tb if the social actors found in ta are tightly connected to those social

actors found in tb. The idea here is similar to but different from that of collaborative

filtering [50] in that now heterogeneous social ties are taken into consideration.

T2T1

u

v
w

Figure 4.2. Different dependency networks among two sets of variables: topics (squares)
and social actors (circles).

The estimation of Markov topic transition matrix Γ breaks down to a set of
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estimation tasks each in the form of P (ti|tj), which denotes the probability that

topic tj transits to ti in the Markov chain process.

In order to estimate P (ti|tj) using social ties in a SN properly, we first set up

the probability independence among two sets of variables: topics and social actors.

Let Fig. 4.2 illustrate our assumptions of the dependencies of variables. The topics

are assumed to be of no direct dependency between each other. The social actors

are assumed to be pair-wise dependent. For two social actors with no relationships,

we can consider their dependency as zero. In Fig. 4.2, we show that three actors

u,v and w are socially connected (solid lines). The two topics associated with

them, T1 and T2 respectively, are linked (dashed lines) to all actors.

Following the above, consider the joint distribution P (ti, tj) resulting from

the interactions in the latent SN. In particular, we consider the social interac-

tion bounded by order two, i.e. P (ti, tj) is constrained by single self and pairs of

social interactions only, respectively denoted by P (ti, tj)
(1) and P (ti, tj)

(2). This

can be denoted by:

P (ti, tj) = γP (ti, tj)
(1) + (1− γ)P (ti, tj)

(2) (4.1)

= γ
∑

1≤u≤A

P (ti, au, tj) + (1− γ)
∑

1≤u,v≤A

P (ti, au, av, tj) (4.2)

where au and av are social actors in the underlying SN. γ is a smoothing param-

eter that weighs the importance of 1st-order social interactions. Eq. 4.2 assumes

independence when estimating P (ti, au, tj) and P (ti, au, av, tj).

Note the assumption above regarding the order of social interaction can be

relaxed to deal with higher order. We leave it to the readers to generalize Eq. 4.2

in high order case.
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4.2.1 Multiple orders of social interactions

Multiple types of social ties can be considered as a basis for determining the

estimation of the topic transition probability. In this subsection, we provide a

solution to the estimation problem based on social interactions, one typical social

tie in a SN, with different orders. Denote the measurements based on 1st-order and

2nd-order social interactions respectively by P (ti, tj)
(1) and P (ti, tj)

(2). We focus

on deriving P (ti, au, tj) and P (ti, au, av, tj) estimation formulas from our social

interaction considerations.

First, we consider the estimation of P (ti, au, tj) as a 1st-order social interaction.

We illustrate the 1st-order probability dependence between topics and social actors

in Fig. 4.3. The social actor u is present in both topics T1 and T2.

T2T1

u

Figure 4.3. 1st-order probability dependence between topics and a social actor.

We can estimate P (ti, au, tj) by Eq. 4.3:

P (ti, au, tj) = P (ti|au, tj)P (au|tj)P (tj) (4.3)

We derive Eq. 4.3 using the chain rule for a joint probability. Based on the

assumption of the conditional independence between ti and tj on au as illustrated

in Fig. 4.3, we obtain the joint probability P (ti, au, tj) as a chain of probabilities:

P (ti, au, tj) = P (ti|au)P (au|tj)P (tj) (4.4)
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The intuition behind the 1st-order social interaction is that a new topic may

be initiated by the same actor who is present in an older topic but without collab-

oration with any other social actors.

Second, we discuss the estimation of P (ti, au, av, tj) considering the 2nd-order

social interaction (a dyad in SN notation [76]). The 2nd-order probability depen-

dency between topics and social actors is presented in Fig. 4.4. Here we introduce

the pair-wise interaction in the latent SN as the motivation for the evolution of

topics.

T2T1

u

v

Figure 4.4. 2nd-order probability dependence between topics and social actors.

Again, consider the joint distribution P (ti, tj) as being constrained by the re-

lationship between two social actors au and av to the 2nd-order, as measured by

P (ti, au, av, tj). The constraint is captured in Eq. 4.1 by P (ti, tj)
(2). These 2nd-

order SN interaction constraints can be seen as the sum of the joint probabilities

P (ti, au, av, tj), which is represented as:

P (ti, tj)
(2) =

∑

1≤u,v≤A,u 6=v

P (ti, au, av, tj). (4.5)

We factorize the joint probability P (ti, au, av, tj) in Eq. 4.6 to Eq. 4.8 using

chain rule:

P (ti, au, av, tj) = P (ti|au, av, tj)P (au, av, tj) (4.6)

= P (ti|au, av, tj)P (au, av|tj)P (tj) (4.7)
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= P (ti|au, av, tj)P (au|av, tj)P (av|tj)P (tj) (4.8)

Based on the independence assumption in Fig. 4.4, we arrive at a new form of

P (ti, au, av, tj) as:

P (ti, au, av, tj) = P (ti|au)P (au|av)P (av|tj)P (tj) (4.9)

where P (au|av) can be seen as the conditional probability that social actor au

interacts with another social actors av.

Note that the idea of relating the evolution of topics in SNs with the various

orders of social interactions naturally coincides with the assumption that “collab-

orations bring about new topics”.

The assumptions we made about the independence networks in 1st- and 2nd-

order social interactions help the derivations of Eq. 4.4 and Eq. 4.9. In traditional

topic discovery methods where social factors are not considered (e.g. LDA), topics

are assumed to be unconditionally independent from each other. Thus we see the

assumptions of our approach as weaker and relaxed in conditions.

4.2.2 Markov transition

With the derivation for the joint probability of two topics with 1st- and 2nd-

order social interactions, the estimation for Markov transition matrix, Γ, becomes

straightforward. In particular, we define Γ ∈ R
T×T , where each element Γi,j quanti-

fies the transition probability from tj to ti. Then, Γi,j is the conditional probability

P (ti|tj):

Γi,j = P (ti|tj), where Γ ∈ R
T×T . (4.10)



70

where the transition probably is a directional estimate such that Γi,j does not

necessarily equal to Γj,i. We assume Γ will be normalized by row such that the

row elements sum to one.

Next we revisit the estimation of the joint probability P (ti, tj) in Eq. 4.1 for the

estimation of P (ti|tj). Using Bayes rule, we have P (ti|tj) =
P (ti,tj)

P (tj)
. Substituting

this into Eq. 4.1, we obtain P (ti|tj) = γP (ti, tj)
(1) + (1− γ)P (ti,tj)(2)

P (tj)
. According to

Eq. 4.3 and Eq. 4.8, we rewrite Eq. 4.2 as:

P (ti|tj) =
γ

∑
u P (ti, au, tj) + (1− γ)

∑
u,v P (ti, au, av, tj)

P (tj)
(4.11)

= γ
∑

1≤u≤A

P (ti|au)P (au|tj) + (1− γ)
∑

1≤u,v≤A,u 6=v

P (ti|au)P (au|av)P (av|tj) (4.12)

So far we have given analytical formulas for P (ti|tj) which are required for

deriving the Markov transition matrix Γ. In practice, we estimate the required

P (ti|au), P (au|ti) and P (au|av) using the Maximum Likelihood Estimation (MLE).

For details, refer to [87].

4.3 Markov Metastable State Discovery

Now we have topic and topic-topic dependencies respectively estimated as the

system states and the stochastic transition probability of a Markov chain. We

will explore other topic discovery using well established methods in Markov analy-

sis [63]. This section describes the discovery of metastable states [11] in a Markov

chain as an approach to identifying hierarchical clustering of topics.

Consider a Markov chain with its transition matrix P , state set S with the

marginal distribution of S as π. Let A ⊆ S, B ⊆ S be two subsets of S. Then the
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transition probability from B to A with respect to π is defined as the conditional

probability from B to A:

ωπ(A|B) =

∑
a∈A,b∈B πapa|b∑

b∈B πb

(4.13)

where a,b are dummy variables denoting the states in S.

Let A1,..., AK be disjoint K subsets of S. We define a new K ×K transition

matrix W = {ωπ(Ai|Aj)}ij as described above. Thus we arrive at another Markov

chain with dimensionality reduced to K in which each state now is an aggregate

of the unit states from the previous state space.

Markov chains are called nearly uncoupled if its state space can be decom-

posed into several disjoint subsets A such that ωπ(Ai|Aj) ≈ 1 for i = j and

ωπ(Ai|Aj) ≈ 0 for i 6= j. Each aggregate in a nearly uncoupled Markov chain

M is called a metastable state of M . In our setting, a metastable state in Γ is a

cluster of topics. Recursively discovering the metastable states[11], we may obtain

a hierarchical clustering of topics that capture their taxonomy. Identification of

the metastable states in a Markov chain has been studied extensively [14, 11]. In

numerical analysis, the identification can be viewed as a process which seeks the

matrix permutation such that the transition matrix is as block diagonal as possible;

a method [14] we also use.

4.4 Experiments on CiteSeer

For experiments, we use data from CiteSeer [20], a popular online search engine

and digital library which currently has a collection of over 739,135 academic doc-

uments in Computer Sciences, most of which were obtained by web crawling and
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the others by author submissions. The documents have 418,809 distinct authors

after name disambiguation. Each document is tagged with a time-stamp giving

the parsed time of the first crawled date.
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Figure 4.5. Statistics of the sample CiteSeer.

We associate each document with the list of disambiguated authors [27]. Then

we construct a co-authorship graph where two nodes share an edge if they ever

co-authored a document. Next we perform breadth-first-search search on the co-

authorship graph from several predefined well known author seeds until the graph is

completely connected or there are no new nodes. For seeds selection, we choose two

researchers with a large number of publications in CiteSeer, Michael Jordan and

Jiawei Han, from statistical learning and data mining and database respectively.

The constructed subgraph of authors is further pruned by eliminating the authors

with less than 50 publications in CiteSeer over the last fourteen years. We end

up with a sampling of CiteSeer containing 3,974 authors and 108,676 documents

spanning from 1991 to 2004. The number of documents acquired w.r.t years is

illustrated in Fig. 4.5(a). We observe that the number of documents written by

individual authors follows a power law distribution (Lotka’s law) [44].
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Topic # manual namings Topic # manual namings

0 real-time system, performance 25 network traffic congestion control, protocols
1 rule mining, database 26 document retrieval, search engine
2 database query processing 27 language, automation machine
3 communication, channel capacity 28 mathematical derivation, proof
4 information theory 29 image segmentation, computer
5 programming language, compiler 30 multimedia, video streaming
6 scheduling, queueing 31 statistical learning theory
7 software engineering, system development 32 knowledge representation, learning
8 svm, learning, classification 33 protein sequence, dna structure
9 signal processing 34 robotics
10 ai, planning 35 system kernel, unix
11 matrix analysis, factorization 36 security, cryptography
12 dynamic flow control 37 mobile network, wireless protocols
13 dimension reduction, manifold 38 natural language, linguistic
14 decision tree, learning 39 np problem, complexity
15 numerical optimization 40 network package routing
16 mobile network, energy 41 user agents, interface
17 affiliation and venues 42 geometry, spatial objects
18 object oriented design 43 parallel processing
19 digital library services, web 44 distributed computing, network infrastructure
20 os cache strategy design 45 system architecture
21 circuit design 46 neural network, learning
22 concurrent control, distributed system 47 graph algorithms, coloring
23 game and marketing 48 linear programming
24 algorithm complexity 49 bayesian method, learning

Table 4.1. Topics discovered with manual labels.

4.4.1 Discovered topics

We train a Latent Dirichlet Allocation (LDA) model over our entire sample

collection of CiteSeer by setting the topic number as T = 50, resulting in 50

discovered topics illustrated in Table 4.4. The setting of desired topic number is

small because we only work on a small subset of authors in CiteSeer (3,974 authors

out of 418,809). Due to the limited space, we cannot present all the automatically

extracted top words for all topics. Instead, we manually tag all the topics with

labels using ranked keywords in the word list for each topic.

For a more detailed description of some topics, in Table 4.4, we give a sample

of six topics from Table 4.4 and their top words. Here the last row is manually

labeled to summarize the topics. We are able to observe that LDA easily discovers

the topics from a variety of areas 2.

2Note that Topic 17 denotes the affiliation and venues in which the keywords are university,
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After the models are trained, we re-estimate each document with the LDA

model to obtain the mixture of topics for each document. We further normalize

the weights of the mixture components. It should be noted that this permits us to

track the topic over time using some recently proposed online methods(e.g. [51]).

4.4.2 Topic trends

We visualize the four topic dynamics w.r.t. time in Fig. 4.6. Given a year, the

strength of a topic is calculated as the normalized sum of all the probabilities of

this topic inferred for all documents in this year. The topics trend is an indicator of

the trend of interests in social documents and in our setting, the research interest

trends.
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Figure 4.6. Topic probability of eight topics over 14 years in CiteSeer.

The eight topics we choose to plot are (1) query processing (Topic 02); (2) svm

learning (Topic 08); (3) digital library (Topic 019); (4) information retrieval (Topic

026); (5) knowledge representation (Topic 032); (6) natural language processing

(Topic 038); (7) neural network learning (Topic 046), and (8) Bayesian learning

department, email, conference, proceedings, etc which are also considered as topics since there
was no deliberate removal of such information from the title/abstracts in CiteSeer.
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(Topic 050) (similar results are in [62]). This raises the question of where do

the researchers in a declining trend go (ex. neural networks)? Do they switch

to new topics, and which topics? Our next goal is to automatically extract the

dependencies among these discovered topics.

(a) Transition under
1st-order interaction

(b) Transition under
2nd-order interaction

(c) Transition under
1st-order interaction
after block diagonal-
ization

(d) Transition under
2nd-order interaction
after block diagonal-
ization

Figure 4.7. Markov transition matrices before and after block diagonalization

4.4.3 Markov topic transition

In order to explore the temporal dependencies among a group of discovered

topics, we identify the Markov topic transition matrix via maximum likelihood

estimation of the 1st- and 2nd-order constraints brought about by the hidden

social interactions of authors (interactions of single social actors, or collaboration

between social actor pairs).

The Markov transition matrices Γ are shown in Fig. 4.7(a) and Fig. 4.7(b) to

highlight the extraction of metastable topic states. The values of matrix entities

are scaled with the color intensity with the darker color denoting large value.

Fig. 4.7(a) and Fig. 4.7(b) visualize the Γ with 1st-order and 2nd-order social

relationship, before block diagonalization. From Fig. 4.7(a) and Fig. 4.7(b), we

observe that Γ is a sparse matrix, with large values in diagonal elements. The

sparseness shows that these topics are separate though some transitions among
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them exist. The large diagonal values indicates that the discovered topics in our

case are relatively stable with mostly transitions to themselves. Authors in our

CiteSeer sample prefer to remain in their own topics rather than switching between

topics.

While the separateness among topics is for future investigation, we now take a

closer look at the diagonal elements. Diagonal elements in Γ indicate the probabil-

ity that an author (and author pair collaboration as well) will continue to work on

the same topics over time. This self-transition probability shown in Fig. 4.8 allows

us to rank the topics according to the authors reluctance to change topics.
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Figure 4.8. The self-transition probability ranking of topics. Topics with high proba-
bility are more stable.

Note that Topic 17 (affiliation and venue info.) is that with largest self-

transition probability. The rational is obvious since most authors tend to con-

tinue including their affiliation/venue information which was part of the meta data

used. In addition, we can see that generally the topics with heavy methodology

requirements (e.g. np problem, linear system) and/or popular topics (e.g. mobile

computing, network) are more likely to remain stable. By contrast, topics closely

related to applications are more likely to have higher transition probabilities than

other topics (e.g. data mining in database, security) all things being equal.

Second, in order to investigate the sparseness in matrix Γ, we perform metastable
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# Topic IDs

mT1 1 2 8 10 18 19 23 26 32 38 41
mT2 0 5 7 20 21 22 27 28 35 43 45
mT3 6 25 30 36 37 40 44
mT4 13 14 15 17 24 31 33 39 42 47 48
mT5 3 4 9 11 12 16 29 34 46 49

mT1 data management, data mining
mT2 system, programming language, and architecture
mT3 network and communication
mT4 numerical analysis, machine learning
mT5 statistical methods and applications

Table 4.2. Discovery of mTopics via block diagonal Markov transition matrix.

state recognition (introduced in $ 4.3), viewing Γ as the adjacency matrix of the

Markov transition graph. In particular, we permute Γ in such a way that Γ is ap-

proximated by a block diagonal matrix. The resultant Γ̂ is illustrated in Fig 4.7(c)

and Fig. 4.7(d), on 1st-order and 2nd-order consideration of social relationship

respectively.

The metastable states have in effect reduced the original Markov transition

process to a new Markov process with fewer states and each diagonal block can be

seen as a metastable state [11] which is a cluster of topics with tight intra-transition

edges.

From Fig 4.7(c) and Fig. 4.7(d), we are able to initially break the two Γ̂ into

two major blocks, as noted by the dashed lines. Recursively, we can arrive at five

smaller blocks, illustrated by solid lines, with each block as a metastable topic (or

mTopic). Even though there exists a transition between topics, the transitions are

more likely to occur within a metastable topic rather than between them. Table 4.2

gives the list of mTopics and the corresponding topics.

Comparing Table 4.2 with Table 4.4, we observe that the topic descendants

discovered readily capture natural intuitions of the relationships among topics.

Specifically, mTopics mT1 includes topics on data management and data mining;

mT2 includes programming language, system and architecture; mT3 covers network
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and communication; mT4 covers machine learning and numerical analysis; mT5 are

mainly statistical methods.

4.4.4 Transition within metastable topics

With metastable topics (mTopic) discovered according to the approach intro-

duced in § 4.3, we are able to compute the accumulated transition probability

among mTopics. Fig. 4.9 illustrates the uncoupled Markov transition graph among

five mTopics we have discovered from the original stochastic matrix. Transitions

with probability lower than 0.16 are hidden from the graph to clarify the major

transition among the five mTopics. Such transition probabilities among metastable

topics are very useful information for understanding the major trends of topics and

their dependencies in social document collections.

Comparing Fig. 4.9 with the descriptions of each mTopic in Table 4.2, we

can outline the major dependencies between mTopics. Out data indicates that

mT4 (numerical analysis) has been essential in these mTopics. And there is a

transition to mT5 (statistical methods) and which is tightly coupled with research

inmT1 (data management and data mining). Results also imply that researchers in

mT3 (networks) will be concerned with mT2 (systems) and that data management

research is coupled with systems issues due the high mutual transition probability

between mT1 and mT2.

Next we look at the transitions within these metastable topics. Now that we

know the topics within a metastable topic (mTopic) are very less likely to jump

across mTopics, questions may be asked about how tightly the topics in the same

metastable state are aggregated. We present the stochastic matrices of mT1 and

mT4 in Fig. 4.10(a) and Fig. 4.10(b).
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Figure 4.9. The Markov transition graph among mTopics. Transitions with probability
lower than 0.16 are not shown.
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Figure 4.10. The Markov transition structure in metastable topics

We observe that diagonal elements show the existence of high self-transition

probabilities and that both matrices are almost symmetric, meaning the pairwise

transition between topics in the same mTopic are largely balanced.

4.4.5 Who powers the topic transition

If one accepts the above interpretation of Markov transitions among the topics

discovered in social document collections, a natural question to ask is what au-

thor or authors cause such a transition between topics, evaluating their roles as

prominent social actors.

In particular, in the CiteSeer data setting, we seek to provide rank of authors

based on their impact on the transition from one topic to another. We give a new

metric δ(au) for the author impact ratio of au as measuring the difference between

the obtained P (ti|tj)’s, with and without au.
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Table 4.3. Top ranked authors according to their impact on three topic transitions.

T2→T1 T49→T26 T1→T33
Jiawei Han W. Bruce Croft Mark Gerstein

Jennifer Widom David Madigan Heikki Mannila
Timos Sellis Norbert Fuhr Mohammed Zaki

Dimitris Papadias Andrew Mccallum Limsoon Wong
Hans-peter Kriegel James Allan George Karypis

H. V. Jagadish Thomas Hofmann Jiawei Han
Jeffrey Naughton John Lafferty Susan Davidson
Divesh Srivastava Hermann Ney Dennis Shasha
Amr El Abbadi Michael I. Jordan Serge Abiteboul

Philip S. Yu Ronald Rosenfeld Jignesh M. Patel

Formally, consider how the transition probabilities change if an author au does

not exist. Denote the estimation of P (ti|tj) without au as P (ti|tj)−au
. One can

then measure the importance of au w.r.t. topic tj → ti as δ(au, tj → ti):

δ(au, tj → ti) = P (ti|tj)− P (ti|tj)−au
. (4.14)

The new author ranking differs from previous ranking by citation counting,

currently done in CiteSeer, Google Scholar, and ISI, by now incorporating social

interactions while ranking social actors. In addition, the new ranking is dependent

on the specified topic pairs thus quantifying the impact of social actors w.r.t.

certain field(s).

Next, we choose all pairs of topics from the 50 discovered topics in our data

and test our hypothesis. This ranking of social actors captures common knowl-

edge of the importance of these social actors w.r.t. to different fields. Due space

limitations, we select three topic transition instances (T2→ T1, T49→ T26, and

T1 → T33) and present the corresponding top ten ranked CiteSeer authors in

Table 4.3.
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Topic 00 Topic 01 Topic 02 Topic 03 Topic 05 Topic 07

real data queries channel program software
time database data coding code systems

system mining join rate analysis development
simulation spatial patten performance java tools

fault relational matching bit compiler process
tolerance query clusters capacity data engineering
embedded temporal analysis transmission language components

events large algorithms fading programming application
timing rules hierarchical receiver source design

synchronization association large interference execution component
execution information incremental decoding fortran framework
scheduling management space frequency run modeling
dynamic discovery aggregation low machine specification

performance support evaluation cdma automatic case
response sql views distortion compilation study

distributed frequent cost signal optimization reuse
task patterns efficient systems runtime management

events dbms compression block dynamic evaluation
clock integration approximate modulation static object
period schema text time loops oriented

real-time system association rule query processing communication program lang. software engr.

performance mining capacity compiler system

Table 4.4. Six topics discovered by LDA on CiteSeer subset. Each topic is described
using 20 words with highest probabilities.

We observe that many commonly believed influential researchers in data man-

agement to data mining (T2 → T1), Bayesian learning to search engine (T49 →

T26), and rule mining to bioinformatics (T1→ T33) are well ranked 3.
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Figure 4.11. Ranking of authors w.r.t. their impact on the transition from Topic 02
to Topic 01.

Finally we give the distribution of impact over all authors in Fig. 4.11 for the

transition of topic 02 to 01. The impact distribution is a power law, indicating

that only a few social actors have large effects over a certain topic transitions.

3some researchers are not on the list because of no (indirect) collaboration with our seed
authors and/or having the number of papers in CiteSeer necessary for our cut.
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4.5 Summary

In this chapter, we model the topic dynamics in a social document corpus as

a Markov chain and discover the probabilistic dependency between topics from

the latent social interactions. We propose a novel method to estimate the Markov

transition matrix of topics using social interactions of different orders. With the

properties of Markov process with finite states, we apply the application of Markov

metastable states as an approach for discovering the hierarchical clustering of topics

and new topics. In addition, we give an experimental illustration of our methods

using Markov transitions of topics to rank social actors by their impact on the

CiteSeer database. An initial evaluation of our methodology on authors as social

actors presents other methods for author impact besides citation counting. Future

work could refine our estimation of topic dependency, use larger data sets, derive

social ranking of actors independent of topics, explore better estimation methods

and generate new communities of actors.



Chapter 5
Learning Social Actions to Rank

Actors

5.1 Ranking Social Actors

An important topic in social network analysis (SNA) is the evaluation of roles

of social actors [76], especially for ranking them by social impact. Applications

include customer evaluation [15], viral marketing [60], and reviewer recommen-

dations [78]. Online user communities generate a rich set of social relationships

among users. For example, the authors in CiteSeer [20] are related to each other

by their collaborations, citations, and document content. Traditional approaches

for ranking networked entities seek to measure the centrality of vertices based on

the network topology [5, 38]. However, in these cases, the network is constructed

based on a single semantic type (e.g., hyper-links in PageRank), and the proposed

methods do not address the important issue of dealing with the heterogeneous

relationships among the actors, such as citations or collaborations. Recent work

addresses networks with edges of multiple semantic types [54].
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Recently, learning-based methods have been proposed for the construction of

networks [1, 71]. The learning-based framework models the network flow in the

network as a Markov transition matrix and optimizes an objective function (or

loss function) defined on this matrix, usually subject to several constraints. The

computed weighted network is then used by topology-based ranking methods (such

as PageRank) to rank the vertices. The key to a successful learning-based approach

is the choice of the objective functions and the extraction of the right constraints

from the implicit user preferences that are specifically tailored to the domain in

question.

This chapter introduces a new numerical optimization framework for learning

the network flow of a social network [88]. The proposed approach defines two new

objective functions, namely, the constrained variation and Gini coefficient while

previous work was based on entropy methods [71, 1] and Laplacian graphs [86].

The constrained variation method builds on the standard PageRank transition ma-

trix; The Gini coefficient method is similar to entropy maximization but has an

efficient solution as a quadratic programming problem. Newly introduced edge-

wise and aggregate constraints are derived from the implicit preferences inferred

from multiple sources, including the content of the shared documents by the au-

thors and the various social actions on them including collaborations, citations,

and action temporality such as time delays in citations. The proposed approach

makes it easy to extract preference constraints from social networks and is thus

more practical for ranking actors in social networks. We also show the formulated

optimization problems can be solved using standard quadratic programming (QP)

methods. Our experimental evaluation on real-world large scale dataset (the Cite-

Seer collection) yields a new approach for topic-dependent ranking of authors with

significant improvements.



85

5.2 Network Flow Modeling Framework

Recall from the related work that in the PageRank [5] the ranking scores are

uniquely determined by the transition matrix P on the network. Given this, recent

work has focused on the design of the Markov transition matrix [1, 71, 78].

Transition matrix learning [71], or network flow modeling, formulates the prob-

lem as a constrained entropy maximization of P 1. The entropy is maximized

for generalization and the matrix P is required to satisfy several constraints for

being a Markov process as well as network flow, including ∀v ∈ V,
∑

j pv,j = 1

and
∑

i pi,v =
∑

j pv,j . Following the same entropy framework, constraints [1]

were introduced to capture the vertex-wise preferences among vertices. Denote

the vertex-wise preference for v over u as u ≺a v. The vertex-wise preference

constraints are:

∀u ≺a v,
∑

i

pi,u ≤
∑

i

pi,v, (5.1)

where the sum of flow into vertex u is smaller than that to v. However, a practical

problem with Eq. 5.1 is the availability of such vertex-wise preferences, which is

an absolute preference of the ranking order between any two vertices.

The new approach we propose models the flow in a network, which we denote

by a square matrix P ∈ R
|V |×|V |, where each element is the weight on an edge

E of graph G = (V,E). To this end, we introduce a new numerical optimization

1In [71], the entropy of a Markov process, denoted by a stochastic matrix, is defined as the sum
of entropies on each row of the matrix that is treated as a probability distribution. Alternatively,
one can use conditional entropy. In particular, let Xt denote the state in a Markov process and

thus the conditional entropy H(Xt|Xt−1) =
N∑

i=1

P (X = i)H(Xt|Xt−1 = i) where N is the number

of states in the process, P (X = i) is the stationary probability of state i, and H(Xt|Xt−1 = i) is
the entropy associated with each row.
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framework that searches for the matrix P 2. In the following, we introduce the

objective functions, the constraints for Markov property and preferences, and the

framework for learning network flow.

5.2.1 Objective Functions

We propose two objective functions to be optimized, namely, the constrained

variation and the Gini coefficient. The constrained variation objective function is

the square distance between the learned matrix and the original PageRank edge

weight. Denote the constrained variation as R : R
|V |×|V | 7→ R

+, then:

R(P ) =
∑

u,v∈V

(pu,v − gu,v)
2, (5.2)

where gu,v is the weight on edge (u, v) as in PageRank.

In contrast, the Gini coefficient approach uses the Gini coefficient as its objec-

tive function. The Gini coefficient is a measure of inequality of a distribution [21],

and is usually used as an income inequality metric. Denote the Gini coefficient by

G : R
|V |×|V | 7→ R

+. Per definition,

G(P ) =
∑

u,v∈V

pu,v(1− pu,v). (5.3)

Comments: Note the two objective functions achieve extreme values in differ-

ent scenarios. For constrained variation, the optimal value is at the closest point

to the PageRank matrix on the space constructed by the constraints. This can

be interpreted as a conservative approach that adjusts PageRank nominal values.

For Gini coefficient, the optimal value is determined when the matrix is balanced.

2Similar to related work on PageRank, P will be further augmented by a dummy vertex for
G to become a connected graph.
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This is similar in philosophy to entropy based approaches [71, 1] where a more

general and random condition of the matrix is favored.

5.2.2 Optimization Constraints

The search for optimal objective functions is bounded by several constraints:

(1) the minimization of P should be a Markov matrix; (2) the constraints between

pairs of elements in matrix P is determined by the preferences endorsed on graph

edges; and (3) the constraints are inferred from aggregate preferences. Here the

constraints (2) and (3) are new types of constraints we propose in our new frame-

work for network flow modeling. The vertex-wise preference [1] is a special instance

of our aggregate preference.

C
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V − C

(a)
Collaboration1

a

C V − C

(b)
Collaboration2

a

R V − R

(c) Citation

a

b

c

t2

t1

(d) Temporality

Figure 5.1. Preferences inferred from collaboration, citation and action temporality
such as time delays in citations in academic community. Here a, b, c denote individual
authors in the author set V ; C is the set of collaborator of a; R is the set of authors
whom a cites. t1 and t2 are the average delay in time from the date of cited documents
to the date of citing documents.

5.2.2.1 Markov property

In order to guarantee that the learned P is representative of a Markov process,

we require that the rows of P sum up to one, i.e.

∀v ∈ V,
∑

i

pv,i = 1. (5.4)
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This is different from related work [71] where the network flow is required to be

balanced at each vertex (at each node, the sum of incoming flow is equal to the sum

of outgoing flow). We relax the flow balance constraint and adopt the constraint of

the more conventional Markov property where only the sum of probabilities that

a Markov process flows out from each state is equal to one.

5.2.2.2 Edge-wise preferences: ≺α

The edge-wise preferences are inferred on pairs of edges, which prefer the net-

work flow of one edge over that on another. Let ≺α be a binary operator that

denotes the preference between two edges in a network. For example, e1 ≺α e2

indicates a preference of the edge e1 over e2. Suppose such preferences compose

a set Cα = {〈e1, e2〉| e1 ≺α e2}. The corresponding edge-wise constraints require

that the preferred edges hold a larger flow weight than their counterparts, i.e.:

∀〈eu,v, ei,j〉 ∈ Cr, pu,v ≤ pi,j. (5.5)

Similar to vertex-wise preferences as required in related work [1], the edge-

wise preferences is another type of implicit judgment that can be used to infer

vertex-wise ranking.

5.2.2.3 Aggregate preferences: ≺β

Parallel to the element-wise preference previously introduced, the aggregate

preferences consider the agglomerate weights of network flow on multiple edges.

Such preferences are quite useful when other direct preferences of individual edges

are not available. Practical social networks are typically of this kind where social

actors often form groups in their actions. Accordingly, the preferences are easier
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to derive on groups of actors than on individuals or their singular relationships.

Formally, define a binary operator ≺β between two subsets of edges, say Si and

Sj . Si ≺β Sj indicates that the summation of edges in Si should be smaller than

that in Sj: |Si| ≤ |Sj|, where |Si| =
∑

pu,v∈Si
pu,v. Suppose the previously derived

aggregate preference set is Cβ = {〈Si, Sj〉|Si ≺β Sj}. The aggregate constraints

are then:

∀〈Si, Sj〉 ∈ Cβ , |Si| ≤ |Sj|. (5.6)

The vertex-wise preference used in related work [1] is an instance of the aggre-

gate preference. Note the aggregate preference allows partial preferences and is

therefore easier to obtain.

5.2.3 Optimization framework

With the objective functions and the constraints defined, we propose an opti-

mization framework 3:

min
0≤pu,v≤1

R(P ) or max
0≤pu,v≤1

G(P ) (5.7)

subject to

Eq. 5.4,Eq. 5.5, and Eq. 5.6. (5.8)

Therefore, the key to effective optimization is to determine the preference sets.

3Note here we only present the optimization framework without slack variables, which is a
natural extension of the current formulation. In addition, the framework can be further improved
by introducing a margin into the preference following the SVM paradigm in the case where there
is not much preference data available.
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The next section describes the inferences of preferences from author actions of

social networks in the academic literature, using important indicators including

collaborations, citations and temporal relationships among them.

5.3 Extraction of Preferences

This section gives a case study of the modeling network flow in CiteSeer, a

repository of computer science publications. Here the social actors are authors

and the heterogeneous implicit preferences of actors are inferred from the collabo-

rations, citations, and the temporal characteristics of these actions.

The guidelines for inferring the preferences come from the meaning of edges

in the learned Markov matrix. Per definition, an edge in a Markov graph (or an

element in the Markov matrix) measures the probability that the process will move

from the source of an edge to the sink. In the CiteSeer setting, the Markov process

represents the diffusion of innovation through the networked authors. Here a larger

weight on the edge eu,v denotes a higher probability that author u acknowledges

v’s impact and that readers will be more likely to reach v’s work after knowing u.

5.3.1 Collaboration preferences

The first indicator of preference we explore is collaboration. The intuition

is that the collaborators are more likely to acknowledge each other’s work than

randomly doing so. Accordingly, the information and innovations that diffuse

through the author social network should have a larger probability to move among

collaborators than among non-collaborators.

Given the observations of collaborations among authors, we are able to come up

with a variety of possible implicit preferences regarding network flow, two of which
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are illustrated in Fig. 5.1(a) and Fig. 5.1(b). In the figures, given an actor a from

the complete authors set V and her collaborator set C, the implicit preferences we

derive are: (1) information is more likely to flow from collaborators C to a than

from the rest of the authors, V −C; (2) innovations that tend to flow from a to her

collaborators C should be stronger than those from a to the rest of the authors,

V − C. The edge set corresponding to (1) is E1
C(a) = {(u, a)|u ∈ C(a)} and the

edge set corresponding to (2) is E2
C(a) = {(a, v)|v ∈ C(a)}, and are respectively in

a column and a row of matrix P with a as index, and C(a) is the collaborator set

of a. The preferences are then derived for the edge sets E1
C(a) and E2

C(a) over their

complements, Ē1
C(a) and Ē2

C(a). Following the same notation, for each author a ∈ V ,

the aggregate preference is denoted by the operator as Ēi
C(a) ≺β Ei

C(a), i = 1, 2.

Therefore, we obtain the first aggregate preference set due to collaboration which

we denote as C
c:

C
c = {〈Ēi

C(a), E
i
C(a)〉|a ∈ V, i = 1, 2}. (5.9)

Next, we discuss the preferences inferred from citations.

5.3.2 Citation preferences

The second type of preferences we propose is based on the citation relationship

among authors. Similar to the collaboration preferences, the citation preferences

assume a higher probability of citation from the citing authors to the cited authors.

Fig. 5.1(c) illustrates the case where author a prefers her citation author set R over

that of the rest of the authors, V − R. As a result, the sum of the edge weights

from author a to her cited authors is preferred over that to the authors she has
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not cited.

Let ER(a) be the set of edges pointing from a to the cited author set R(a),

and let ĒR(a) be the set of edges pointing from a to the rest of the authors. It

immediately follows that the derived aggregate preference set is

C
r = {〈ĒR(a), ER(a)〉|a ∈ V }. (5.10)

Note that ER(a) and ĒR(a) are all from the row of matrix P indexed by a and

their union constitutes the full row.

Combining both aggregate preference sets, the complete aggregate preference

set Cβ is the union of the preferences derived from collaborations and citations:

Cβ = C
c ∪C

r.

5.3.3 Temporal Preferences

The previous sections introduce the aggregate preference set Cβ . This section

focuses on the edge-wise preference set Cα. Our assumption for inferring temporal

preferences is that the edges with a strong network flow should have low latency

in information delivery, thus leading to short delays in responsive actions, such as

creating citations.

As illustrated in Fig. 5.1(d), we derive preferences from the shorter average

delays from the date of cited documents to the date of citing documents, for every

author. For example, in Fig. 5.1(d), the fact t1 � t2 leads to the preference that

(a, c) ≥ (b, c). In particular, we pair-wisely compute the average delay of citations

(if any), denoted by t(i, j). The edge-wise preference set is generated as:
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Cα = {〈(u, v), (i, j)〉|t(u, v)� t(i, j) > 0} (5.11)

where� can be tuned by users according to the confidence of deriving preferences

from different time granularity.

Given the preference set Cα and Cβ, we have shown that the solution to the

optimization in Eq. 5.7 - Eq. 5.8 can be obtained via quadratic programming

(QP) [88].

5.4 Experiments on CiteSeer

For experiments, we use the data introduced in Chapter 4. For efficiency,

we adopt a two-step approach. In the first step, the authors are sorted by their

accumulated weight on each topic. In the second step, only a subset of the top

authors are examined using the proposed numerical approach.
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Figure 5.2. Density of author collaboration/citation networks v.s. the number of top
authors, on the topic 48: database and data mining. The bin-wise graph density only
measures the subgraph of the vertices in the i-th bin of ranked authors. The accumulated
graph density is computed on the subset of authors drawn from the first bin to the i-th
bin. Note in general the citation network density is often significantly higher than that
of the collaboration network.
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A concern with such author subset generation is whether a significant amount

of information will be compromised in the reduced problem and as a result, there

are very few linkages in the graph to work on. To address this issue, we perform a

simple statistical analysis on the graph densities of author subsets. Our preliminary

investigation shows that the subsets of top authors actually endorse more inter-

author information on average than the complete author set. This observation

also implies that a leading author is more likely to collaborate with other leading

authors. Given this observation, it is safe to work on a small subset of top authors

without losing much information. Fig. 5.2(a) and Fig. 5.2(b) present the graph

density of collaboration and citation networks, on topic 48, i.e. the topic of database

and data mining. We can see that the density fall sharply as the size of author

graph increases. In the following experiments, we work on the top 200 authors

with the highest accumulated weights on a specific topic.

5.4.1 PageRank Matrix Formation

We compare our learning of network flow with PageRank [5], in which the

network flow is designed based on certain metrics. This section describes the

computation of the weighted adjacency matrix in PageRank. Two useful metrics

for forming the PageRank matrix are the citations and collaborations relationship

among authors. Thus, we construct two graphs, citation graph and collaboration

graph.

For citation graph, the weight on edge from u to v is defined as the sum of the

topic weights in the citing documents of u divided by the sum of topic weights in

all citations u have formed. Denoting the edge weight as s1(v|u, Ti), we have:
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s1(v|u, Ti) =

∑
d∈C(u→v) di∑

d∈C(u) di
(5.12)

where di is the weight of topic Ti for document d, C(u) is the set of documents u

have put citations on, C(u→ v) is the set of documents composed by u that cites

one of the documents authored by v.

For collaboration graph, for topic Ti and two authors u, v, the edge weight

from u to v, s2(v|u, Ti), is defined as

s2(v|u, Ti) =

∑
d∈A(u,v) di∑
d∈A(u) di

(5.13)

where di is the weight of topic Ti for document d, A(u) (or A(u, v)) are the set of

documents authored by u (or both u and v).

Then, using linear combination, we put the two graph together, yielding a new

graph that considers both citations and collaborations. So the final weight from u

to v with regard to topic Ti looks like:

s(v|u, Ti) = λs1(v|u, Ti) + (1− λ)s2(v|u, Ti); (5.14)

where λ ∈ [0, 1] is the combination parameter. We prefer a larger λ because

the denser graph raises less concern about sparsity issue of the matrix (The ci-

tation graph has more edges as discussed in the previous section). Otherwise,

an ill-conditioned matrix will have problems in the eigen-decomposition required

for obtaining the PageRank scores. The PageRank matrix obtained above is rea-

sonable if the traditional weighted graph design in PageRank is used for network

flow.
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5.4.2 Ranking Quality: Quantitative Evaluation

Hereafter, a quantitative evaluation of the proposed two approaches, namely,

Gini coefficient and constrained variation, is carried out against the other ranking

methods, including metric-based and PageRank based methods. The methods we

compare are itemized below:

• Topic weight ranking (TW), given a topic, the ranking score for each

author is the sum of topic weights of all documents published by this author;

• Citation PageRank (CitePR), the ranking scores are given in the prin-

cipal eigenvector of the weighted citation graph, as constructed according to

Eq. 5.12;

• Collaboration PageRank (CoPR), the ranking scores are given in the

principal eigenvector of the weighted collaboration graph, as constructed in

Eq. 5.13;

• Constrained PageRank (CPR), the ranking is given by the principal

eigenvector of the matrix learned using constrained variation as the objective

function;

• Gini PageRank (GiniPR), the ranking is given by the principal eigenvec-

tor of the matrix learned using Gini coefficient as the objective function;

We use the Discounted Cumulated Gain (DCG) metric [34] to evaluate the

ranking quality of various approaches. In particular, four human judges are in-

vited to provide feedback on the composite set of authors who occur in any of

the top 20 domain specific ranking list, yielding the DCG20 scores. As suggested,

assessments are carried out based on readily accepted professional achievement
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Figure 5.3. DCG20 scores for T6, T8, T9, T12, T17, T19, T26, T36, T39, T48 in
Table 4.4. The ranking using the learned matrices, i.e. the Gini PageRank and the
constrained PageRank, normally outperform the ranking using the designed PageRank
matrix. All PageRank-based rankings are significantly better than the counting-based
ranking.

of these authors, such as winning of prestigious international awards (e.g. Tur-

ing Award), membership of national academy, and fellowship of ACM/IEEE, etc.

Numerical assessment scores of 0, 1, 2, and 3 are collected to reflect the judges’

opinion with regard to whether an author is ranked top 20 in a certain field,

which respectively imply the sentiment of stronglydisagree, disagree, agree, and

stronglyagree. The average judge scores are used for computing the DCG. We

repeat this ranking and assessment process for 10 of the 50 automatically gener-

ated topics, which our judge are most familiar with. In general, the judges reach

a high agreement on the ranking quality, with the Kappa Coefficient [9] between

73%-92%.

The DCG scores attained for four methods on the 10 selected topics are pre-

sented in the Fig. 5.3(b) and Fig. 5.3(b). Each figure shows five categories of

bars, each denoting the evaluations on a specific topic. The PageRank-based ap-

proaches clearly outperform the ranking using topic-weight counts. On average,

the proposed constrained variation learning yields an improvement of 28.7%, and
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the Gini coefficient of 35.4%, both over the count-based approach. In addition,

we observe significant higher DCG scores of the two proposed approaches over the

traditional PageRank on the citation-based graph (we omit collaboration-based

PageRank here due to their very similar performances). On average, the new con-

strained variation-based learning generates an improvement of 2.3% while the new

Gini coefficient-based learning brings an advance of 7.6%, both over the traditional

PageRank, in ranking quality.

5.4.3 Ranking Quality: Case Study

To provide a closer look at the reported improvements, we follow by several

case studies in two specific topics. The topics we choose are T19 and T48, i.e.

topic database and data mining and topic learning and classification.

First, we compare the PageRank on the proposed Gini-based learning with the

other metric-based ranking, as presented in Table 5.1. We can see the ranking

based on topic-weight count generally complies with the number of publications

as collected in CiteSeer. As a result, the commonly valued citation factor is not

weighted enough to reflect the acknowledgement from the community. On the

other hand, the ranking based on citation count fails to differentiate the research

domains and misses the topology of the hidden collaboration network. Similar

problems exist with CitePR, CoPR which only look at one aspect of the picture. By

contrast, the proposed GiniPR well combines the factors of topic weights, citations,

and collaborations. For example, Rajeev Motwani does not appear in the top 30

of the TW Rank because of having insufficient documents in CiteSeer. However,

the Gini index ranks him in top 5 in database research due to the large number

of citations to him. Another example is Hector Garcia-Molina who ranks 6th in
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TopicWeight Rank Pub # Cite # Col. # CitePR CoPR GiniPR Gini Rank

Jiawei Han 142 1312 13 ⇓15 ⇓1 ⇓7 Jennifer Widom
Christian S. Jensen 104 390 11 ⇓50 ⇑1 ⇓24 Hector Garcia-Molina

Jennifer Widom 113 3331 18 ⇑1 ⇓1 ⇑2 Rakesh Agrawal
Rakesh Agrawal 129 4068 11 ⇑3 ⇓4 ⇑1 Rajeev Motwani

Serge Abiteboul 115 2497 18 ⇑1 ⇑2 ⇓1 Jeffrey Scott Vitter

Hector Garcia-Molina 169 2504 20 ⇑3 ⇑1 ⇑4 Serge Abiteboul
Joseph Hellerstein 75 41 2 ⇓131 ⇓4 ⇓59 Divesh Srivastava

Elke A. Rundensteiner 124 422 4 ⇓80 ⇓9 ⇓86 Jiawei Han
Michael Stonebraker 144 857 6 ⇓1 ⇓9 ⇓7 Jeffrey D. Ullman

Richard T. Snodgrass 68 471 9 ⇓30 ⇑1 ⇓25 Ramakrishnan Srikant

Dan Suciu 98 1589 10 ⇑5 ⇓2 ⇓1 Gio Wiederhold

Leonid Libkin 124 791 10 ⇓11 ⇓10 ⇓13 Dan Suciu
Carlo Zaniolo 84 579 4 ⇓25 ⇓58 ⇓20 Christos Faloutsos

Heikki Mannila 86 920 5 ⇓4 ⇓13 ⇓4 Surajit Chaudhuri
Giuseppe De Giacomo 140 784 4 ⇓62 ⇑8 ⇓81 Luis Gravano

Diego Calvanese 87 537 4 ⇓53 ⇑10 ⇓54 Michael Stonebraker
Surajit Chaudhuri 51 548 6 ⇓3 ⇓11 ⇑3 Alon Levy
Divyakant Agrawal 78 286 1 ⇓102 ⇓30 ⇓72 Heikki Mannila

Amr El Abbadi 74 208 1 ⇓120 ⇓30 ⇓90 Raghu Ramakrishnan

Jan Chomicki 77 560 6 ⇓30 ⇓1 ⇓7 Richard T. Snodgrass
Maurizio Lenzerini 86 1087 4 ⇓46 ⇑11 ⇓50 Rajeev Rastogi

Alon Levy 83 1470 6 ⇑13 ⇓3 ⇑5 Ben Shneiderman

Divesh Srivastava 62 943 17 ⇑6 ⇑4 ⇑16 Peter Buneman

Philip S. Yu 85 576 9 ⇓18 ⇑4 ⇓4 Timos Sellis

Rajeev Rastogi 97 671 8 ⇓5 ⇑2 ⇑4 Leonid Libkin
Joel Saltz 105 1081 7 ⇓68 ⇑12 ⇓28 Christian S. Jensen

Hans-Peter Kriegel 63 458 2 ⇓14 ⇓121 ⇓2 Jan Chomicki
Sudarshan Chawathe 61 376 5 ⇓4 ⇓1 ⇓154 Philip S. Yu

Ling Liu 106 341 4 ⇓37 ⇓3 ⇓30 Hans-Peter Kriegel
George Karypis 125 1211 4 ⇓24 ⇓7 ⇓4 Ling Liu

Table 5.1. Top authors in T48, database and data mining, ranked by various meth-
ods. Rankings are provided by topic weight count (TW Rank), PageRank on citation
graph (CitePR), PageRank on collaboration graph (CoPR), PageRank on learned graph
using gini coefficient (GiniPR). Simple statistics included are the publication number,
citation number, and the number of collaborators. Authors exclusively in Gini Rank are
highlighted.

TW Rank is now 2nd in GiniRank since he has 20 collaborators within the same

author bin (top 200 authors). Note that in the last column many of the highlighted

authors missing from the first column have great impacts in the field.

Second, we compare the PageRank on the proposed constrained variation learn-

ing and the PageRanks on the networks by design. This is a case study on the topic

19: learning and classification. In the second column of Table 5.2, the top authors

by their total citation number are shown. It is obvious that the citation counts

fail to differentiate research domains by preferring many influential researchers

from other domains. Both citation graph and collaboration graph-based PageR-

ank seem to disagree strongly with the ranking by citation count. In particular,

compared with citation count, the citation graph-based PageRank seems to give
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Cite Rank Pub # Cite # Col. # CitePR CoPR GiniPR CPR Rank

Robert E. Schapire 67 2030 13 - ⇓6 - Robert E. Schapire
Sebastian Thrun 293 1832 9 ⇓11 ⇑1 ⇓12 Yoav Freund
Michael I. Jordan 91 1540 4 ⇓1 ⇓167 - Michael I. Jordan

Yoav Freund 68 1439 12 ⇑2 ⇓1 ⇑2 David Haussler
Ron Kohavi 71 1395 7 ⇓5 ⇓6 ⇓3 Avrim Blum

Leslie Pack Kaelbling 62 1383 6 ⇓9 ⇓125 ⇓10 Michael Kearns
Jiawei Han 142 1312 1 ⇓70 ⇓79 ⇓70 Trevor Hastie

Stephen Muggleton 45 1272 4 ⇓21 ⇓181 ⇓23 Ron Kohavi
Daphne Koller 137 1250 7 ⇓3 ⇓37 - Daphne Koller

Michael L. Littman 79 1229 7 ⇓1 ⇓156 ⇓19 Yoram Singer
George Karypis 125 1211 1 ⇓116 ⇓61 ⇓118 Manuela Veloso

Thomas G. Dietterich 53 1167 1 ⇓2 ⇓77 ⇓1 Manfred K. Warmuth
William W. Cohen 68 1140 6 ⇓5 ⇓27 ⇓5 Thomas G. Dietterich

Tomaso Poggio 88 1055 4 ⇓29 ⇓170 ⇓28 Sebastian Thrun
Manuela Veloso 196 991 4 ⇓7 ⇓119 ⇑4 Tom Mitchell
Marco Dorigo 80 976 1 ⇓49 ⇓57 ⇓36 Leslie Pack Kaelbling
Trevor Hastie 88 941 1 ⇓11 ⇓49 ⇑10 Peter Dayan

Michael Kearns 73 920 15 ⇑12 ⇑12 ⇑12 William W. Cohen
David Haussler 65 864 9 ⇑14 ⇓119 ⇑15 Sebastian B. Thrun

Thorsten Joachims 57 806 4 ⇓20 ⇓30 ⇓19 Vladimir Vapnik
Zoubin Ghahramani 77 783 3 - ⇓158 ⇓1 Yishay Mansour
David H. Wolpert 41 783 3 ⇓16 ⇓136 ⇓15 Zoubin Ghahramani

Dayne Freitag 65 782 9 ⇓13 ⇓20 ⇓11 Pat Langley
Eric Brill 49 779 1 ⇓36 ⇓75 ⇓33 Nir Friedman

Yoram Singer 78 769 10 ⇑18 ⇓4 ⇑15 Richard S. Sutton
Avrim Blum 295 768 10 ⇓6 ⇑24 ⇑21 Leo Breiman
Nir Friedman 131 756 6 ⇑1 ⇓110 ⇑3 Tommi Jaakkola

Yishay Mansour 115 754 11 ⇑8 - ⇑7 Satinder Singh
Vladimir Vapnik 33 742 4 ⇑6 ⇓167 ⇑9 Michael L. Littman
Richard S. Sutton 35 726 6 ⇑6 ⇓93 ⇑5 Naftali Tishby

Table 5.2. Top authors in T19, learning and classification, ranked by various methods.
Rankings are provided by citation count ranking (Cite #), PageRank on citation graph
(CitePR), PageRank on collaboration graph (CoPR), PageRank on learned graph using
Gini coefficient (GiniPR), and PageRank by constrained variation learning (CPR).

better ranking due to its topic consideration and the citation factor. Accordingly,

we set the smoothing parameter λ = 0.7 to prioritize the citation graph in the ob-

jective function in learning. As a result, the CPR Rank generated on the matrix

by constrained variation-based learning agrees better with the CoPR. In general,

the CPR Rank is closer to traditional methods. Then when should one choose the

CPR over GiniRank? We discuss this next.

The overall preliminary experiments show the change in ranking is smaller in

constrained variation-based learning but is larger in Gini index-based learning.

Thus we consider the constrained variation as a more conservative improvement

over PageRank even though it usually brings less changes. On the other hand,

the Gini index-based approach seems to differ much more from other alternatives

and thus it is preferred when an reference approach is not available or poor. In
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fact, as discussed before, the Gini index is very similar to the entropy measure,

which reaches the minimum when the entropy is maximized. Previous studies has

shown improved ranking quality when the entropy of the network flow matrix is

maximized [71, 1]. Thus our result is also supported by the related work based on

entropy.

5.5 Summary

We proposes a new method for ranking social network actors based on the

social documents they share and act on in terms of citing others. The proposed

method models the network flow by learning the implicit preferences from mul-

tiple preferences of actors in a social network. The problem can be shown to be

described as a QP problem. Two variants of the new methods differ in their objec-

tive functions, with one minimizing the distance to the PageRank weighted graph

(CPR) and the other maximizing the balance of the resulting network flow using

the Gini coefficient (GiniPR). In particular, the CPR method behaves similar to

the traditional PageRank approach and is thus more conservative. The GiniPR

method parallels entropy maximization approaches and empirically performs bet-

ter. Experimental evaluations are carried out on real-world dataset, the CiteSeer

author records, showing significant improvements in the ranking quality.



Chapter 6
Co-Ranking in Heterogeneous Social

Networks

6.1 The Co-Ranking Problem

Quantitative evaluation of researchers’ contributions has become an increas-

ingly important topic since the late 80’s due to its practical importance for making

decisions concerning matters of appointment, promotion and funding. As a result,

bibliometrics indicators such as citation counts and different versions of the Jour-

nal Impact Factor [19, 42] are being widely used, although it is a subject of much

controversy [77]. Accordingly, new metrics are constantly being proposed and ques-

tioned, leading to ever-increasing research efforts on bibliometrics [29, 42]. These

simple counting metrics are attractive, because it is convenient to have a single

number that is easy to interpret. However, it has become evident in recent research

that the evaluation if the scientific output of individuals can be performed better

by considering the network structures among the entities in question (e.g. [66, 43]).

Recently, a great amount of research has been concerned with ranking net-
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worked entities, such as social actors or Web pages, to infer and quantify their

relative importance, given the network structure. Several centrality measures have

been proposed for that purpose [5, 38, 76]. For example, a journal can be consid-

ered influential if it is cited by many other journals, especially if those journals are

influential, too. Ranking networked documents received a lot of attention, particu-

larly because of its applications to search engines. (e.g. PageRank [5], HITS [38]).

Ranking social network actors, on the other hand, is employed for exploring scien-

tific collaboration networks [78], understanding terrorist networks [45, 78], ranking

scientific conferences [66] and mining customer networks for efficient viral market-

ing [15]. While centrality measures are finding their way into traditional biblio-

metrics, let us point out that the evaluations of the relative importance of net-

worked documents have been carried independently, in the similar studies, from

social network actors, where the natural connection between researchers and their

publications authorship and the social network among researchers are not fully

leveraged.

Figure 6.1. Three networks we use for co-ranking: a social network connecting authors,
the citation network connecting documents, and the co-authorship network that ties the
two together. Circles represent authors, rectangles represent documents.

This chapter introduce a new framework for co-ranking entities of different

kinds in a heterogeneous network connecting the researchers (authors) and publi-

cations they produce (documents) [91]. The heterogeneous network is comprised of

GA, a social network based on social actions connecting authors, GD, the citation

network connecting documents, and GAD, the bipartite authorship network that
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ties the previous two together. Further details will be given in § 6.2. A simple

example of a such a heterogeneous network is shown in Fig. 6.1.

We propose a co-ranking method in a heterogeneous network by coupling two

random walks on GA and GD using the authorship information in GAD. We assume

that there is a mutually reinforcing relationship between authors and documents

that could be reflected in the rankings. In particular, the more influential an

author is, the more likely his documents will be well-received. Meanwhile, well-

known documents bring more acknowledgments to their authors than those that

are less cited. While it is possible to come up with a ranking of authors based solely

on a social network and obtain interesting and meaningful results [43], these results

are inherently limited, because they include no direct consideration neither of the

number of publications of a given author (encoded in the authorship network) nor

of their impact (reflected in the citation network).

6.2 Co-Ranking Framework

Denote the heterogeneous graph of authors and documents as G = (V,E) =

(VA ∪ VD, EA ∪ED ∪EAD). There are three graphs (networks) in question. GA =

(VA, EA) is the unweighted undirected graph (social network) of authors. VA is

the set of authors, while EA is the set of bidirectional edges, representing social

ties. The number of authors nA = |VA| and authors are denoted as ai, aj, · · · ∈ VA.

GD = (VD, ED) is the unweighted directed graph (citation network) of documents,

where VD is the document set, ED is the set of links, representing citations between

documents. The number of documents nD = |VD|. Individual documents are

denoted as di, dj, · · · ∈ VD. GAD = (VAD, EAD) is the unweighted bipartite graph

representing authorship. VAD = VA ∪ VD. Edges in EAD connect each document
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with all of its authors.

The framework includes three random walks, one on GA, one on GD and one on

GAD. A random walk on a graph is a Markov chain, its states being the vertices

of the graph. It can be described by a square n × n matrix M , where n is the

number of vertices in the graph. M prescribes the transition probabilities. That

is, 0 ≤ p(i, j) = Mi,j ≤ 1 is the conditional probability that the next state will be

vertex j, given that the current state is vertex i. If there is no edge from vertex

i to vertex j then Mi,j = 0, with the exception when there are no outgoing edges

from vertex i at all. In that case we assume that Mi,j = 1
n

for all vertices j. By

definition, M is a stochastic matrix, i.e. its entries are nonnegative and every row

adds up to one. A simple random walk on a graph goes equi-probably to any of

the current vertex’ neighbors.

In this chapter, “Markov chain” and “random walk” are used interchangeably

to mean “time-homogeneous finite state-space Markov chain”. After one step of a

random walk, described by a stochastic matrix M , the probability distribution will

be MT v, where MT is the transpose of M . A stationary probability distribution

vst = limn→∞(MT )nv contains the limiting probabilities after a large number of

steps of the random walk. It is a common convention that the PageRank ranking

vector r satisfies ‖r‖1 = 1, naturally, since r is a probability distribution. The

co-ranking framework will produce two ranking vectors, a for authors and d for

documents, also satisfying

∀1 ≤ i ≤ nA, 1 ≤ j ≤ nD, ai, dj ≥ 0; (6.1)

‖a‖1 = 1, ‖d‖1 = 1 (6.2)
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As mentioned above, we will have three random walks. The random walk on

GA (respectively, GD) will be described by a stochastic matrix Ã (respectively,

D̃). We shall start from two random walks, described by stochastic matrices A

and D, and then slightly alter them in § 6.2.1 to actually obtain Ã and D̃. All

of them are called Intra-class random walks, because they walk either within the

authors’ or the documents’ network. The third random walk on GAD is called the

Inter-class random walk. It will suffice to describe it by an nA × nD matrix AD

and an nD × nA matrix DA, since GAD is bipartite. The design of A, D, AD and

DA is postponed until § 6.4.

GD

α

α

λ

λ

GA
GAD

Figure 6.2. The framework for co-ranking authors and documents. GA is the social
network of authors. GD is the citation network of documents. GAD is the authorship
network. α is the jump probability for the Intra-class random walks. λ is a parameter
for coupling the random walks, quantifying the importance of GAD versus that of GA

and GD.

Before making everything precise, let us briefly sketch the co-ranking frame-

work. The conceptual scheme is illustrated in Fig. 6.2. Two Intra-class random

walks incorporate the jump probability α, which has the similar meaning to the

damping factor as used in PageRank. They are coupled using the Inter-class ran-

dom walk on the bipartite authorship graph GAD. The coupling is regulated by λ.

In the extreme case λ = 0 there is no coupling; this amounts to separately ranking

authors and documents by PageRank. In general, λ represents the extent to which
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we want the rankings of documents and their authors depend on each other1.

6.2.1 PageRank: two random walks

First of all, we are going to rank the networks of authors and documents inde-

pendently, according to the PageRank paradigm [5]. Consider a random walk on

the author network GA and let A be the transition matrix (A will be defined in

§ 6.4). Fix some α and say that at each time step with probability α we do not

make a usual random walk step, but instead jump to any vertex, chosen uniformly

at random. This is another random walk with the transition matrix

Ã = (1− α)A+
α

nA
11T (6.3)

Here 1 is the vector of nA entries, each being equal to one. Let a ∈ RnA, ‖a‖1 =

1 be the only solution of the equation

a = ÃTa (6.4)

.

Vector a contains the ranking scores for the vertices in GA. It is a standard

fact that the existence and uniqueness of the solution of (6.4) follows from the

random walk Ã being ergodic, and this is why we are using Ã instead of A. (α > 0

guarantees irreducibility, because we can jump to any vertex in the graph.)

Documents can be ranked in the citation network GD in a similar way. In

1This is a symmetric setting of parameters. An asymmetric setting of parameters can intro-
duce αA 6= αD and λAD 6= λDA. We do not expect that different α can make any difference. We
do expect that different λ can make a difference, but we did not investigate that. Note, how-
ever, that in the latter case one would need a different normalization instead of (6.2), satisfying
‖a‖1λAD = ‖d‖1λDA.
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particular,

D̃ = (1− α)D +
α

nD
11T, (6.5)

6.2.2 (m,n, k, λ)–coupling of two Intra-class random walks

To couple these two random walks we construct a combined random walk on

the heterogeneous graph G = GA ∪GD ∪GAD. A probability distribution on such

a graph will have the form (a,d), satisfying ‖a‖1 + ‖d‖1 = 1. We will use the

stationary probabilities of the vertices in VA to rank authors and the stationary

probabilities of the vertices in VD to rank documents. In fact, we will multiply all

of them by 2 to ensure that ‖a‖1 = ‖d‖1 = 1. Of course, the greater the stationary

probability (ranking score), the higher the rank of an author or a document.

The coupling is parameterized by four parameters, m, n, k and λ. Ordinary

PageRank score is sometimes viewed as the probability that a random surfer will

be on this web page at some moment in the distant future. Similarly, we present

the combined random walk in terms of a random surfer (RS) who is capable of

browsing over documents and their authors as well.

If at any given moment RS finds himself on the author side, the current vertex

v ∈ VA, then he can either make an Intra-class step (one step of the random

walk parameterized by Ã) or an Inter-class step — one step of the Inter-class

random walk. Similarly, if RS finds himself on the document side, the current

vertex v ∈ VD, then one option is to make an Intra-class step (one step of the

random walk parameterized by D̃) while another option is to make one step of the

Inter-class random walk. In general, one Intra-class step changes the probability

distribution from (a, 0) to (Ãa, 0) or from (0,d) to (0, D̃d), while one Inter-class

step changes the probability distribution from (a,d) to (DATd, ADTa).
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Now, the combined random walk is defined as follows:

1. If the current state of RS is some author, v ∈ VA, then with probability λ

take 2k+ 1 Inter-class steps, while with probability 1− λ take m Intra-class

steps on GA.

2. If the current state of RS is some document, v ∈ VD, then with probability λ

take 2k + 1 Inter-class steps, while with probability 1− λ take n Intra-class

steps on GD.

It is convenient to write a subroutine BiWalk (Algo. 2) that takes x, the prob-

ability distribution on one side of a bipartite graph and returns the distribution

on the other side after taking 2k + 1 Inter-class steps. U is the transition matrix

from the current side to the other and V is the transition matrix from the other

side back to the current side.

Algorithm 2 Random walk on a Bipartite Graph

procedure BiWalk(U, V,x, k)

1: c← x
2: for i = 1 to k do
3: b← UTc
4: c← V Tb
5: end for
6: b← UT c
7: return b

Now, everything is ready to realize co-ranking in the following procedure, Cou-

pleWalk (Algo. 3). It should be noted that the very recent work [32] of learning

on subgraphs can be considered an implicit special version of our algorithm with

infinite k and m = n = 1.
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Algorithm 3 Coupling random walks for co-ranking

procedure CoupleWalk(Ã, D̃, AD,DA,m, n, k, λ, ε)

1: a← 1
nA

1

2: d← 1
nD

1
3: repeat
4: a′ ← a
5: d′ ← d
6: a← (1− λ)(ÃT )ma′ + λBiWalk(DA,AD,d′, k)

7: d← (1− λ)(D̃T )nd′ + λBiWalk(AD,DA, a′, k)
8: until |a− a′| ≤ ε
9: return a, d

6.3 Convergence Analysis

We need to ensure that Algo. 3 converges. Note that BiWalk(U, V,x, k) =

UT (V TUT )kx. Therefore, lines 6 and 7 in Algo. 3 can be rewritten as:

at+1 = (1− λ)(ÃT )mat + λDAT (ADTDAT )kdt (6.6)

dt+1 = (1− λ)(D̃T )ndt + λADT (DATADT )kat (6.7)

where at and dt are the ranking vectors for authors and documents from the

previous iteration; m,n are prescribed parameters. Now we concatenate a and

d into a vector v such that v = [aT ,dT ]T . In particular, vt = [(at)T , (dt)T ]T , is

composed of a and d as in Algo. 3 after t iterations. Construct a matrix M , where

M =




(1− λ)(ÃT )m λDAT (ADTDAT )k

λADT (DATADT )k (1− λ)(D̃T )n


 . (6.8)

Clearly, vt+1 = Mvt, and M is a stochastic matrix that parameterizes the

combined random walk. It is also easy to see that for 0 < α, λ < 1, this Markov
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Chain is ergodic. Thus, the stationary probabilities can be found as limn→+∞M
nv,

for any initial vector v. In particular, a and d in Algo. 3 will converge to the

ranking scores as we defined them. In practice, the convergence can be established

numerically.

6.4 Random Walks in a Scientific Repository

This section sets up the co-ranking framework to be applied to co-ranking

scientists and their publications. It includes defining three networks and the three

corresponding random walks, parameterized by four stochastic matrices: A (giving

rise to Ã), D (giving rise to D̃), AD and DA.

6.4.1 GD: citation network, and D the Intra-class random

walk

The citation document network GD is defined as follows: there is a directed

edge from di to dj, if document di cites document dj at least once. The graph is

not weighted; we ignore repeated citations from the same document to the same

document. Self-citations are technically allowed, but, presumably, there are none.

The design of D is straightforward. Namely, the Intra-class random walk on

GD is just a simple random walk on it. The transition probability

P (j|i) = Di,j =
nD

i,j

nD
i

, (6.9)

where nD
i,j is the indicator of whether document i cites j; nD

i is the total number of

citations document imakes. If a document does not cite anything (which effectively

means that the citations of this documents are not in the corpus), let the transition
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probabilities from this document be 1
nD

.

6.4.2 GA: social network, and A the Intra-class random

walk

To define A, we come up with a more general definition to employs the notion

of a social event. A social event could be any kind of activity, involving a group of

authors. A co-occurrence of two authors in a social event is supposed to create or

strengthen their social ties. In particular, we view collaborating on a paper or co-

participating in a conference as such ”co-occurrences”. Let the set of social events

be E = {ei}, where an event ei is identified with the set of participating authors.

We construct GA as an unweighted graph, where two authors are connected by an

edge if they co-occur in some social event e ∈ E .

Intuitively, a paper of fewer authors infers stronger social ties among them on

average (cf. [43]). To take this into account, we first make the graph GA weighted.

Define the social tie function τ(i, j, ek) : A×A×E → [0, 1] representing the strength

of a social tie between actor ai and actor aj resulting from their co-occurrence in

the event ek. The strength of the social tie depends on the size of the corresponding

social event. If there are only two people taking part in an event (say, collaborating

on a paper), we say that it infers a unit social tie. Otherwise, the tie is somehow

normalized by the size of the event:

τ(i, j, ek) =
I(i, j ∈ ek)

|ek|(|ek|+ 1)/2
(6.10)

where I(i, j ∈ ek) is the indicator function of whether authors i and j co-occur in

the event ek (that is, if ai ∈ ek and aj ∈ ek; it can be that ai = aj). |ek| ≥ 2 is

the number of authors involved in event ek. For |ek| = 1, only a self social tie of



113

that author is inferred. Adding up social ties inferred from all events, we obtain a

cumulative matrix T = (Ti,j) ∈ R
nA×nA, by definition:

Ti,j =
∑

ek∈E
τ(i, j, ek) (6.11)

where E is the set of social events. Now GA can be viewed as a weighted graph,

with the weight on the edge connecting ai and aj being Ti,j .

In this chapter, we consider two kinds of social events. The first kind is a

collaboration on a paper (even if the paper has a single author), in this case the

’event’ includes exactly all the authors of this paper. The second kind is the

appearance of names in conference proceeding lists. Each conference instance (i.e.

ACM SIGMOD ‘01) is a separate event, consisting of the authors who took part

in it. We treat the two kinds equally, and we find it appropriate because of the

normalization (6.10).

We proceed to define the Intra-class random walk on GA in a natural way,

namely, the next step is chosen according to the weights on the edges. Technically,

it amounts to normalizing T by rows. The transition probabilities from author ai

to author aj (i.e. of the author aj given ai) can then be found as:

P (j|i) = Ai,j =
Ti,j∑
j Ti,j

. (6.12)

Here T is symmetric due to the design of τ . A is not necessarily symmetric

because row sums can be different. Ã is defined accordingly.
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6.4.3 GAD: the bipartite authorship network, and AD, DA:

the Inter-class random walk on GAD

The bipartite authorship graph GAD is defined in the natural way. Namely, the

entries in its adjacency matrix EAD are the values of the indicator function of a

document being written by an author, i.e.

EAD(i, j) = I(dj is authored by ai). (6.13)

Using the adjacency matrix EAD, we define a weight matrix WAD = (w(i, j))

as follows:

w(i, j) =
EAD(i, j)

nA
j

, (6.14)

where nA
j is the number of authors of the document dj .

Then we proceed to define AD and DA, containing the conditional transition

probabilities of a random surfer moving from author i to document j and vice

versa, respectively, given that the next step is taken in the bipartite graph GAD.

That is, let

P (dj|ai) = ADi,j =
w(i, j)∑
k w(i, k)

, (6.15)

P (ai|dj) = DAj,i =
w(i, j)∑
k w(k, i)

. (6.16)

This completes the descriptions of networks and random walks. Note that

(6.14) implies
∑

k w(k, j) = 1. The design of the matrices AD and DA is asym-

metric to reflect the asymmetric relationship between authors and documents.
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Indeed, it is better for an author to create many good documents; for a document

it is better to have better authors, but not necessarily more authors.

6.5 Experiments on CiteSeer

For experiments, we use the CiteSeer datasets as introduced in Chapter 4.

While performing the ranking on the full data collection is technically feasible,

the bias in collection sizes towards certain domains can undermine the fairness

of ranking scientists from different areas. Therefore, we start from categorizing

the documents into domains. We selected five topics that are well-represented in

the database: T6: stochastic and Markov processes, T8: WWW and information

retrieval, T19: learning and classification, T36: statistical learning, and T48: data

management. All experiments were carried out for each of these five topics.

6.5.1 Author Rankings

To evaluate the co-ranking approach, we perform a ranking of authors in each

topic t by the methods listed below:

• Publication count, the number of papers (on the topic t) an author has in

the document subset;

• Topic weight, the sum of topic weights of all documents, produced or co-

authored by an author;

• Number of citations, the total number of citations to the documents of

an author from the other documents on the same topic;
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• PageRank in the social network, ranking by PageRank on the graph GA,

constructed as outlined in § 6.4;

• Co-Ranking, co-ranking authors and documents by the new method.

The parameter values we used in the Co-Ranking framework are m = 2, n = 2,

k = 1, λ = 0.2, α = 0.1. For different settings of m,n, k the top 20 authors and

papers varied slightly, even less for different α.
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Figure 6.3. DCG20 scores for author rankings: number of papers, topic weights, number
of citations, PageRank, and Co-Ranking.

We used a well-known metric, the Discounted Cumulated Gain (DCG) [34], in

order to compare the five different rankings of authors. Top 20 authors according

to each ranking (publication count, etc.) are merged in a single list, shuffled and

submitted for judgment. Two human judges, one an author of this paper and the

other one from outside, provide feedback. Numerical assessment scores of 0, 1, 2,

and 3 are collected to reflect the judges’ opinion with regard to whether an author

is ranked top 20 in a certain field, which respectively means strongly disagree,

disagree, agree, and strongly agree, with the fact that these authors are ranked top

20 in the corresponding field. As suggested, assessments were carried out based

on professional achievement of the authors such as winning of prestigious awards,
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r author names con# r p# r cite# r
1 Rakesh Agrawal 171 44 129 32 1915 1
2 Serge Abiteboul 209 12 115 42 1300 3
3 Jennifer Widom 234 5 113 44 1617 2
4 Jiawei Han 271 2 142 22 720 10
5 Hector Garcia-Molina 232 7 169 16 1247 4
6 Ian Foster 142 79 215 12 513 19
7 Azer Bestavro 97 198 174 14 354 42
8 Deborah Estrin 134 100 186 13 471 23
9 Subbarao Kambhampati 118 130 275 8 173 132
10 Michael Stonebraker 59 322 144 21 299 66
11 Christos Faloutsos 218 11 98 58 770 9
12 Moshe Y. Vardi 184 29 148 20 415 30
13 Rajeev Motwani 145 75 127 33 579 15
14 Richard T. Snodgrass 125 115 68 131 330 50
15 Joseph Hellerstein 63 305 75 103 132 208

Table 6.1. Top authors in the topic data management when m = 2, n = 2, k = 1. con#
is the number of neighbors in the social network; p# is the number of papers; cite# is
the number of citations; r denotes the ranks by the corresponding methods.

being a fellowship of ACM/IEEE, etc. The judges’ assessment scores are averaged.

We observe a high agreement between the two judges.

The DCG20 scores obtained are presented in Fig. 6.3. The figure shows five

groups of bars corresponding to five topics. This evaluation shows that the new co-

ranking method outperforms the other four ranking methods, achieving an average

improvement of 27.8%, 19.1%, 10.6%, and 7.7% over rankings by the number of

papers, the topic weights, the number of citations, and the PageRank.

We list the top 15 authors ordered by the Co-Ranking scores on the topics data

management and learning and classifications in Table 6.1 and Table 6.2. Along

with both tables, the ranks based on simple metrics are also presented. Note that

in the top author lists, we observe a mix of famous scientists from different fields.

This is due to the imperfect automatic categorization performed by LDA; manual

categorization labels can be used instead.
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r author names con# r p# r cite# r
1 Sebastian Thrun 178 6 293 8 782 4
2 Bernd Girod 72 180 217 10 313 33
3 Jurgen Schmidhuber 152 21 160 14 446 18
4 Stephen Muggleton 99 88 45 200 492 11
5 Robert E. Schapire 133 35 67 105 1093 1
6 Avrim Blum 102 82 295 7 239 58
7 Trevor Hastie 68 199 88 52 263 53
8 Rakesh Agrawal 68 197 129 22 843 2
9 Manuela Veloso 155 18 196 11 491 12
10 Thomas G. Dietterich 74 173 53 159 514 8
11 Alex Pentland 126 47 110 36 369 21
12 Michael I. Jordan 172 9 91 50 566 7
13 David J.C. MacKay 22 379 73 91 349 25
14 David Haussler 113 61 65 112 351 24
15 David Heckerman 77 163 56 150 491 14

Table 6.2. Top authors in the topic learning and classifications when m = 2, n = 2,
k = 1. con# is the number of neighbors in the social network; p# is the number
of papers; cite# is the number of citations; r denotes the ranks by the corresponding
methods.
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Figure 6.4. Average CPU runtime and number of documents w.r.t. the number of
authors for five topics, where m = 2, n = 2, k = 1. Appropriate units have been chosen,
so that a single normalized scale can be used. Everything is averaged over five topics.

6.5.2 Parameter Effect

We ran Co-Ranking on 50 synthetic datasets with various settings of m, n, k,

λ, and α and arrived at the following conclusions: (1) Large λ introduces more

mutual dependence of the rankings between authors and documents. In particular,

as λ increases, the ranking of authors becomes closer to the ranking by the number

of publications; (2) In case of large α such as 0.5, the ranking of authors becomes

more uniform, so that the documents of productive authors are neglected, and
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also generally benefiting the documents with many authors. Since both effects are

undesirable, keep α small; (3) For small m, especially m = 1, the weight of edges in

GA is not fully taken into account, but only the local differences in weights matter;

(4) Prevent large k. It completely eliminates the effect of authors on documents

and vice versa, except for the authorship information: the bipartite random walk

forgets everything, as expected from a Markov chain after many steps; (5) For small

n, the structure of the citation network is less important, making the Co-Ranking

more like a citation counting.

6.5.3 Convergence and Runtime

Finally, we present some observations about the computational complexity: We

observed that the algorithm converges faster for larger α. This is expected because

a Markov chain takes a shorter time to reach the stationary status if the transition

matrix is closer to uniform.
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Figure 6.5. Effect of m-n on convergence.

We fix k = 1, λ = 0.2, α = 0.1 and vary m and n. Fig. 6.5(a) and Fig. 6.5(b)

show the effect of m and n on the number of iterations before convergence and

the runtime of the program. It can be seen that for large and increasing m and n

the number of iterations decreases slowly. This is because the Intra-class random
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walks have enough steps to become nearly stationary before the next Inter-class

step.

The computational complexity of Algo. 2 is O(k × nA × nD). The complexity

of Algo. 3 is O(t × nA × nD × (n + m + 2k + 1)), where n,m, k are parameters

and t is the number of steps before convergence. Fig. 6.4 shows the average CPU

runtime w.r.t. to the number of authors. The Co-Ranking was implemented in

Python and tested on Intel CoreDuo 1.66 GHz, 1G RAM, Windows O.S.

6.6 Summary

This chapter proposes a new link analysis ranking approach for co-ranking

authors and documents respectively in their social and citation networks. Starting

from the PageRank paradigm as applied to both networks, the new method is

based on coupling two random walks into a combined one, presumably exploiting

the mutually reinforcing relationship between documents and their authors: good

documents are written by reputable authors and vice versa. Experiments on a real

world data set suggest that Co-Ranking is more satisfactory than counting the

number publications or the total number of citations a given scientist has received.

Also, it appears competitive with the PageRank algorithm as applied to the social

network only. We did not evaluate the ranking of documents due to the lack of

any objective criteria.



Chapter 7
Communities in Heterogeneous

Social Networks

7.1 Discovering Communities in Heterogeneous

Social Networks

Well known graph-theoretic methods for discovering communities from net-

works include spectral graph partitioning [58, 13], hierarchical community discov-

ery [79], and clustering based on random walks [28]. Despite the wide range of

choices for partitioning homogeneous networks, research on discovering communi-

ties from heterogeneous social networks is rather limited 1. Treating heterogeneous

graphs the same as homogeneous ones leads to difficulty in normalization since dif-

ferent edge types may be incomparable [18]. However, observations of real-world

networks often indicate diverse network structures, many of which can be mod-

eled as heterogeneous networks of social actors and the other node types such as

1Here we define a heterogeneous graph as a graph where there are multiple types of vertices
and edges.
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documents (e.g. emails, blogs, collaborative publications) or social events. In this

chapter, we are particularly interested in communication documents as these data

sources represent the most widely available sources of information regarding social

networks.

In this chapter [85], we addresses the community discovery problem in a tem-

poral heterogeneous social network consisting of authors, document content, and

the venues in which the documents are published, all of which are constructed

by different types of social actions over time. We propose a new framework that

addresses the two main challenges in this new problem: (a) handling of the het-

erogenous network and (b) incorporation of the temporal aspect of the data. For

(a), we formulate community discovery in a heterogeneous social network (the so-

cial network is a network of authors, words, and publication venues) as a tripartite

graph partitioning problem. A normalized cut (NCut) cost function is defined over

the partitions. We show that partitioning a tripartite graph is a quadratically con-

strained quadratic programming (QCQP) problem. For (b), we introduce a new

method for incorporating prior knowledge, such as prior community membership,

into the current discovery process. The discovery of temporal communities is then

performed by threading communities discovered at consecutive time periods using

the output from the previous period as prior knowledge. At each time period, the

constrained graph partitioning method is able to capture both the current graph

topology and historical information regarding the vertex membership. This prob-

lem is efficiently solved using a proposed fractional orthogonal iteration algorithm

(instead of pursuing the semidefinite program (SDP) as in [18], which is compu-

tationally intractable). We evaluate the proposed approach on synthetic datasets

with various settings in order to explore the properties of the new algorithm. A

great improvement in clustering precision is observed. In addition, we show the



123

results of applying this method to a sample dataset obtained from CiteSeer.

Let us now consider consider social networks of researchers in the context

of their collaborations on published work. The data in focus includes the co-

occurrences of authors with documents, documents with words, and documents

with venues. All data are associated with time stamps, which are the years

of publication. The data is collapsed on documents yielding the (1) author-

word co-occurrences and (2) word-venue co-occurrences, over a certain amount

of time. Thus, within each time period there are two correlated bipartite graphs,

G(VX , VY ,WXY ) and G(VY , VZ ,WY Z), where VX is the author set, VY is the word

set, VZ is the venue set, WXY is the bipartite edge weights between VX and VY , and

WY Z is the edge weights for VY and VZ . Here G(VX , VY ,WXY ) and G(VY , VZ ,WY Z)

share the vertex set VY . We refer to G(VX , VY ,WXY ) and G(VY , VZ ,WY Z) as a

bipartite graph couple, which can be seen as a generalized social network of au-

thors, words, and documents. Two static communities in such a social network are

illustrated in Fig. 7.1, where a static community, at a specific time, is defined on

the snapshot below:

Definition 6. A static community in a static social network is a composite of

closely associated authors, words, and venues. Entities within the same community

are closely related while entities in different communities are loosely associated if

at all.

Over the entire time period, the underlying social network structure is dynamic.

Accordingly, instead of observing a single static social network over the entire data

set, a sequence of static social networks of various structures is generated, with

consecutive snapshots showing significant overlap of entities. The definition of a

temporal community thus embodies the temporal aspects of the network:
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Figure 7.1. A static social network. triangles denote the authors, circles denote
the words, and rectangles denote the venues. The graph between authors and
words is inferred from the document authorship and the graph between words and
venues is based on the publication records of documents. Two static communities
are separated by the dashed line.

t1 t2 t3

Figure 7.2. A dynamic social network. Three snapshots are included in the
network with various numbers of authors (denoted by triangles), venues (denoted
by rectangles), and words (denoted by circles).

Definition 7. A temporal community in a dynamic social network is a threaded

sequence of static communities at each time period. In a temporal community,

the structure of a static community at a specific time depends on the previous N

temporal networks, where N is a parameter that can be defined as the order of the

temporal community.

A dynamic social network is illustrated in Fig. 7.2. Three snapshots are in-

cluded, each having different network structures. It can be seen that each static

social network is a bipartite graph couple.

The goal is to cluster authors, words and venues given their changing relation-

ships over time. The desired number of communities k is assumed and given as a

parameter.
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7.2 Graph Partitioning

We start from the discovery of static communities from a static social network.

Suppose there are two bipartite graphs, GXY = G(VX , VY ,WXY ) and GY Z =

G(VY , VZ ,WY Z), where VX is the author set, VY is the word set, and VZ is the

venue set; WXY ∈ R
+nX×nY is a matrix where the elements represent the number

of co-occurrences of an author and a word; and WY Z ∈ R
+nY ×nZ is a matrix whose

elements are the number of co-occurrences of a word and a venue (nX , nY , nZ are

the size of VX , VY , VZ). Note GXY and GY Z share VY .

Consider a community with two types of vertices from VX and VY , say which

are represented by two subsets SX
i and SY

j . The weight of the community is:

W (SX
i , S

Y
j ) =

∑

u∈SX
i ,v∈SY

j

wu,v. (7.1)

Likewise, the weight between a subset of vertices and the vertex set that they are

from are from is denoted asW (SX
i , Y ) orW (X,SY

i ). Given k as the desired number

of communities, the cost function of Normalized Cut (NC) is defined as [82]:

J2 =

k∑

i=1

W (SX
i , S

Y
i ) +W (SX

i , S
Y
i )

W (SX
i , Y ) +W (X,SY

i )
(7.2)

where SX
i , SY

i are the subsets of VX and VY in community i; SX
i , SY

i are the subsets

of VX and VY not in community i. The sets {SX
i }ki=1, {SY

i }ki=1 that minimize the

cost J2 belong to the discovered k communities.

Now define several indicator matrices. Let X = [X1, ..., Xk], where Xi is an

indicator vector of whether the corresponding element belongs to community i,

with 1 indicating so or 0 otherwise. Similarly, we have Y = [Y1, ..., Yk] and Z =

[Z1, ..., Zk].
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Define DXY and DY Z as diagonal matrices where the elements are the sums

of rows in WXY and WY Z . Define DY X and DZY as diagonal matrices where

elements are the sums of columns in WXY and WY Z . After some manipulations,

we can rewrite Eq. 7.2 as:

J2 =
∑k

i=1
XT

i DXY Xi+Y T
i DY XYi−2XT

i WXY Yi

XT
i DXY Xi+Y T

i DY XYi
(7.3)

= k −
∑k

i=1
2XT

i WXY Yi

XT
i DXY Xi+Y T

i DY XYi
. (7.4)

The problem of searching for best solutions to the above minimization problem

has been shown to be NP-hard. In order to obtain a solution efficiently, prior

work relaxes the elements in Xi and Yi to real values instead of the discrete set

{0, 1} [82]. Extending this work, we further scale Xi and Yi to the denominator.

In particular, assuming Xi = D
− 1

2
XY X̂i and Yi = D

− 1
2

Y X Ŷi, we let X̂T
i X̂i = Ŷ T

i Ŷi = 1.

Thus, J2 becomes:

J2 = k −
k∑

i=1

X̂T
i D

− 1
2

XYWXYD
− 1

2
Y X Ŷi. (7.5)

Here D
− 1

2
XYWXYD

− 1
2

Y X is in fact the normalized edge weight matrix. The mini-

mization of cost function J2 is carried out over X̂i and Ŷi for i = 1, ..., k. Tradi-

tionally, the different minimizers are assumed to be orthogonal to each other [81],

i.e. X̂T X̂ = I and Ŷ T Ŷ = I. We impose the same constraint on our solution.

Now let us generalize the cost function for a bipartite graph couple, where

we have an additional set of vertices Z and the edge weights with Y in WY Z .

Similarly, define X̂ = [X̂1, ..., X̂k], Ŷ = [Ŷ1, ..., Ŷk] and Ẑ = [Ẑ1, ..., Ẑk], where

X̂T X̂ = Ŷ T Ŷ = ẐT Ẑ = I. Let JXY be the cost function of partitioning graph
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GXY and JY Z be the cost function for GY Z . We introduce a parameter λ to balance

the costs on both graphs. Based on Eq. 7.5, we define the new cost function J3 on

the bipartite graph couple as:

J3 = λJXY + (1− λ)JY Z

= k − λ
∑k

i=1 X̂
T
i D

− 1
2

XYWXYD
− 1

2
Y X Ŷi

−(1− λ)
∑k

i=1 Ŷ
T
i D

− 1
2

Y ZWY ZD
− 1

2
ZY Ẑi (7.6)

where the second and third terms represent the cost functions on GXY and GY Z .

Thus, the minimization of cost function J3 over X̂, Ŷ , and Ẑ becomes a maxi-

mization of the negative term in J3:

minX̂,Ŷ ,Ẑ J3

≡ maxX̂,Ŷ ,Ẑ λ
∑k

i=1 X̂
T
i D

− 1
2

XYWXYD
− 1

2
Y X Ŷi

+(1− λ)
∑k

i=1 Ŷ
T
i D

− 1
2

Y ZWY ZD
− 1

2
ZY Ẑi (7.7)

subject to

X̂ = [X̂1, ...X̂k], X̂T X̂ = I; (7.8)

Ŷ = [Ŷ1, ..., Ŷk], Ŷ T Ŷ = I; (7.9)

Ẑ = [Ẑ1, ..., Ẑk], ẐT Ẑ = I; (7.10)

where I is an identity matrix.

Now let us rewrite the problem in matrix form. Define ŴXY = D
− 1

2
XYWXYD

− 1
2

Y X
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and ŴY Z = D
− 1

2
Y ZWY ZD

− 1
2

ZY . Define U = [U1, ..., Uk], where Ui = [X̂T
i , Ŷ

T
i , Ẑ

T
i ]T ;

Let there be a matrix M such that:

M =




0 λŴXY 0

λŴ T
XY 0 (1− λ)ŴY Z

0 (1− λ)Ŵ T
Y Z 0



. (7.11)

It is easy to verify that the cost function in Eq. 7.7 is 1
2

∑k
i=1 U

T
i MUi. The problem

thus becomes to minimize the trace of the matrix (The trace of a square matrix is

defined as the sum of the diagonal elements):

max
U

tr(UTMU) (7.12)

subject to

U = [X̂T , Ŷ T , ẐT ]T (7.13)

X̂, Ŷ , Ẑ satisfy Eq. 7.8 - Eq. 7.10 (7.14)

Here the optimization problem is a quadratically constrained quadratic pro-

gramming problem [4]. Note that Eq. 7.8 - Eq. 7.10 is not equivalent to UTU = I.

Constraints on U apply to its segments (i.e. X̂, Ŷ , Ẑ) respectively.

7.3 Partitioning Temporal Graphs

The problem of community discovery has been formulated as a graph partition-

ing issue. Next we present a constrained graph partitioning method that threads

community discovery across consecutive time periods.
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7.3.1 Graphs with consistent vertices

We first focus on the case where graphs have consistent vertices. For each

time period, we have M t and U t as described in Eq. 7.11 and Eq. 7.8 - Eq. 7.10,

where t = 1, ..., T are the time stamps and U t contains the community membership

of authors, words, and venues. Assume that the graphs have consistent vertices;

thus, all U t have the same dimensions. Now, let us define a cost function on the

difference between U ti and U tj for an arbitrary time stamp pair ti, tj , denoted

c(U ti , U tj ). The discovery of community structure at time t seeks to minimize

the weighted sum of the distances between the current and previous community

membership back to t− δ:

min
U t

t−1∑

π=t−δ

απc(U
π, U t) (7.15)

where απ is the weight on the distance to the community membership at π time

periods ago. The weights on different historic periods are prescribed parameters.

Hereafter, for simplicity, we concern ourselves only with the first-order dependency

case where δ = 1 and απ = 1.

A key issue is the design of the cost function c(U̇ , U). Here we let the cost

function be the negative cosine distance between two subspaces. Suppose Ẋ, Ẏ ,

and Ż are the reference subspaces of X, Y , Z. We know that ‖Ẋ‖2 = ‖Ẏ ‖2 =

‖Ż‖2 = 1. Thus, the square of cosine distances between the desired subspace

and the reference subspace are respectively ‖ẊT X̂‖2, ‖Ẏ T Ŷ ‖2, and ‖ŻT Ẑ‖2. In

addition, we know that the cosine distances are within [0, 1]. We thus seek to

maximize the cosine distances to minimize the cost imposed by the distance from

the reference subspaces. In particular, define the cost function c(U̇ , U):
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− c(U̇ , U) = α‖ẊT X̂‖2 + β‖Ẏ T Ŷ ‖2 + γ‖ŻT Ẑ‖2 (7.16)

= α.tr(X̂T ẊẊT X̂) + β.tr(Ŷ T Ẏ Ẏ T Ŷ ) + γ.tr(ẐT ŻŻT Ẑ) (7.17)

= tr(UT U̇ U̇T U), (7.18)

where U̇ = [
√
αẊT ,

√
βẎ T ,

√
γŻT ]T , α, β and γ are the weight parameters of the

membership differences in authors, words, and venues. Here, notice that U̇U̇T is

essentially the covariance matrix between the vertices in the reference time pe-

riod. Since we have assumed consistent vertices in the graphs across different time

periods, we essentially minimize the conflicts between the discovered U and the

referenced covariance.

7.3.2 Graphs with evolving vertices

Now we generalize the previous section to graphs with evolving vertices. In

practice, some vertices may disappear and other new ones may show up, thus the

U̇ obtained from previous period can disagree with the dimensionality of the U in

the current time period. We introduce an additional step to adapt U̇ to address

this issue.

First, some vertices from previous time period may disappear. Since each vertex

corresponds to a row in U̇ , we can delete these rows from U̇ , forming a matrix with

the same number of columns but a smaller number of rows, U̇ ′. We call the first

step shrink(). Thus we have:

U̇ ′ = shrink(U̇) = [Ẋ ′T , Ẏ ′T , Ż ′T ]T (7.19)
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where U̇ ′ is the adapted subspace with disappeared vertices removed. Ẋ ′, Ẏ ′, and

Ż ′ still correspond to the remaining Ẋ, Ẏ , and Ż. Second, some new vertices may

appear in the current time period. In this case, we have no prior knowledge about

their membership. Therefore, we require zero co-variances of them with others,

corresponding to zeros in the corresponding rows. Name this second step expand():

U̇ ′′ = expand(U̇ ′) = [Ẋ ′T , 0, Ẏ ′T , 0, Ż ′T , 0]T , (7.20)

where [Ẋ ′T , 0]T , [Ẏ ′T , 0]T , and [Ż ′T , 0]T respectively correspond to the newly ob-

served X t, Y t, and Y t; all 0′s has the appropriate number of rows and k columns.

We then arrive at the new reference covariance matrix c(U̇ , U) as:

Ċ = U̇ ′′U̇ ′′T , (7.21)

which leads to the new cost function c(U̇ , U) on U and reference U̇ defined as:

−c(U̇ , U) = tr(UT ĊU), where Ċ is given in Eq. 7.19 - Eq. 7.21.

Note the handling of new vertices here. Since the reference U̇ ′′ still has values

in the rows corresponding to the old vertices, these previously observed vertices

will be made consistent with the previous period. On the other hand, the new

vertices will not be affected by such prior knowledge of the previous time period

because of the zeros in the rest of U̇ ′′. To see this, note that the tr(UT ĊU) has zero

diagonals in the indices of those newly observed vertices regardless of the values

of U in the corresponding rows.

Given the above, the combined community discovery problem at each time

period is written as:



132

min
U
J̃ = min

U
J3 + c(U̇ , U)

≡ max
U

tr(UTMU) + tr(UT ĊU)

= max
U

tr(UT (M + Ċ)U) (7.22)

subject to

U = [X̂T , Ŷ T , ẐT ]T (7.23)

X̂, Ŷ , Ẑ satisfy Eq. 7.8 - Eq. 7.10 (7.24)

M is given in Eq. 7.11 (7.25)

U̇ = [
√
αẊT ,

√
βẎ T ,

√
γŻT ]T (7.26)

Ċ is given by Eq. 7.19 - Eq. 7.21. (7.27)

where α, β and γ are the weight parameters for the membership differences in

authors, words, and venues; U̇ is the reference membership matrix. We arrive at

a quadratically constrained quadratic programming problem.

7.4 Efficient Approximate Solutions

This section gives an efficient algorithm to solve the problem formulated in

Eq. 7.22 - Eq. 7.27. It can be seen that Eq. 7.22 has a quadratic cost function of

the matrix U . Here Eq. 7.22 can be rewritten as:

max
U

∑

i

UT
i (M + Ċ)Ui) (7.28)
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where the Ui’s are column vectors in U . We can see that this is a sum of a

sequence of quadratic functions each corresponding to a subset of constraints in

Eq. 7.23 - Eq. 7.27. Thus we have a sequence of quadratically constrained quadratic

programming (QCQP) sub-problems. Note these QCQP problems are not isolated

because their solution vectors Ui are required to be orthogonal.

For each QCQP sub-problem alone, there exists a standard solution using

semidefinite programming (SDP) [4]. For example, a related work [18] studied the

binary clustering case and proposed an approximate solution using an interior-point

method. However, we note that our optimizer here is a matrix (U = [XT , Y T , ZT ]T )

instead of a single vector. Thus, to apply SDP on each column vector and combine

them together is overly complex. Nevertheless, one might construct a very high-

dimensional vector by columns of U and still translate the problem into SDP, but

difficulty still arises from the exploding dimensionality of the problem. Recall that

U ∈ R
(nX+nY +nZ)×k, where nX , nY , and nZ are the numbers of authors, words,

and venues. The translated SDP problem will have a k(nX +nY +nZ)-dimensional

vector as the minimizer (with a k(nX + nY + nZ)× k(nX + nY + nZ) semidefinite

matrix of constraints), which can easily surpass the capacity of most SDP solvers.

Instead, we propose an efficient algorithm that searches for approximate solu-

tions. The new algorithm is based on algorithms for eigenvectors. First we are

aware that the Eq. 7.22, without constraints, reaches the maximum when U con-

tains the first k eigenvectors of the symmetric matrix A = M + U̇ U̇T . This is a

standard result from matrix theory [23]. In addition, we have ∀U ∈ {U |UTU =

I}, UTAU ≤ λ1 + ... + λk, where λ1, ...λk are the first k largest eigenvalues of

A. Second, we seek to preserve the constraints as much as possible while maximiz-

ing J̃ . We modify the orthogonal iteration method which is used to calculate the

eigenvector space without constraints. The idea is to incorporate the constraints
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into the classical method. The new algorithm, fractional orthogonal iteration, is

presented below:

Algorithm 4 fractional orthogonal iteration
1: U̇ = [

√
αẊT ,

√
βẎ T ,

√
γŻT ]T ;

2: U̇ ′ ← shrink(U̇) as in Eq. 7.19

3: U̇ ′′ ← expend(U̇ ′) as in Eq. 7.20

4: Ċ ← U̇ ′′U̇ ′′
T

5: A = M + Ċ
6: [U, D]← eig(A, k)
7: for i = 1, 2, 3, ... do

8:




X̂

Ŷ

Ẑ



 ← A× U

9: QXRX ← X̂ // QR factorization

10: QY RY ← Ŷ // QR factorization

11: QZRZ ← Ẑ // QR factorization

12: U ←




QX

QY

QZ





13: end for

14: U ←M × U
15: run k-means on U to obtain the desired partitioning, where each row in U denotes the original data object

of the same index.

Here eig(A, k) calculates the k-dimensional eigenvector space of A without con-

straints. This is the initial value for the subsequent orthogonal iteration. In the

algorithm, step 9 - step 11 produce the normalized X̂, Ŷ and Ẑ as specified in

the constraints. Step 8 performs the power iteration as in the original orthogonal

iteration method for calculating eigenvectors. Up to step 15, the algorithm has

projected the original bipartite graph couple into an approximate k-dimensional

eigenspace. The distribution of the points in the new space preserves the distribu-

tion of objects at the current time period, in addition to imposing the community

membership from the last period. Then we run k-means to cluster the heteroge-

neous objects as current communities.
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7.5 Experiments on CiteSeer

A synthetic data generator was created to test the proposed method in various

conditions, including different edge density-to-noise ratio, various proportions of

X/Y/Z, different settings of λ, and different numbers of clusters (k). Two con-

nected graphs GXY and GY Z are generated for the prescribed K and sizes of X, Y ,

and Z. All clusters contain the same number of entities with specified proportions

of X, Y, andZ. The densities of all the clusters are the same, but the edge weights

vary randomly. Random noise is added to the graph and density is determined

by the given noise-signal ratio parameter (nsr). Setting nsr = 1 yields a ran-

dom graph without cluster structures. Presumably, the community structures in

the graph XY diminish as the noise-signal ratio (nsr) grows. Low nsr indicates

that graph partitioning will be easier. The table below includes a complete list of

parameters and their meanings.

abbr. usages

fsi fractional subspace iteration

par partitioning static graphs using fsi

t-par partitioning temporal graphs using fsi

k number of clusters

density the edge density of the graph clusters

nsr noise-signal ratio, noise density / cluster density

x/z the size of X / the size of Z

λ the weight parameter in Eq. 7.11

7.5.1 Precision w.r.t. graph conditions

First, we focus on the clustering precision w.r.t. different densities and nsr

for k = 2. As illustrated in Fig. 7.4(a) we present four values of nsr, indicating

increasing difficulty for partitioning. In general, we observe that the precision

decreases as nsr grows. In each subfigure, we can see that the clustering precision
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grows quickly as the graph clusters become denser. On graphs with less noise,

the precision grows faster than on the highly noisy graphs. Comparatively, the

proposed fsi algorithm outperforms the traditional subspace iteration algorithm

(without consideration of constraints) for different nsr. We are able to see that

the special scaling introduced in fsi improves the subspace iteration. The fsi

usually outperforms subspace iteration by a greater amount in the more difficult

situations (large nsr). All precisions are measured using k-means with random

initial medians. For each case, the k-means is repeated for 10 times and the

averages are presented.

Second, we perform fsi on different settings of x/z ratios for a fixed setting

of λ. In real world datasets, the sizes X and Z are usually not balanced. We

compare fsi with subspace iteration for imbalanced data against fsi by varying

the x/z ratio. Fig. 7.4(b) shows different settings of x/z for different densities.

Recall that a large x/z indicates that the size of X is much greater than that of

Z. Without loss of generality, we assume x/z ≥ 1. We can see that for sparse

graphs (small density) the fsi outperforms subspace iteration greatly (illustrated

in the subfigure on the bottom). In simple cases (large density), the fsi generally

outperforms subspace iteration for small x/z; however, fsi underperform subspace

iteration slightly for small x/z on dense graphs. Note that real-world graphs are

usually very sparse; thus, fsi could be favored on many real-world datasets.

7.5.2 Precision w.r.t. parameter settings

Here we test different settings of parameters and their impact on community

discovery precision. A set of experiments were run with different settings of λ in

different x/z ratios. The results illustrated in Fig. 7.4(c) show that the favorable
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λ are different when x/z varies. When the X outnumbers Z by a large margin, a

greater value in λ is favored; similarly, small λ performs better when there are few

X entities compared with Z. This suggests that graphs with more edges deserve

a larger weight in the cost evaluation.

In order to better visualize the effect of λ with different x/z, we present the

subspace scatter plots for different λ. Note that here |X|/|Y |/|Z| = 50 : 200 : 5.

The X outnumber Z, indicated by a great x/z ratio. In Fig. 7.3, we show precisions

for λ = 0.5, 0.8. Here k = 2 so we have 2-D subspaces. In this case, a large λ

better scales the edges in Y Z and thus better embeds Z into the subspace.
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Figure 7.3. Subspace plots for different λ when |X|/|Y |/|Z| = 50:200:5. Different
clusters are colored differently. Entities of different types have different markers (circles,
dots, stars for X, Y , Z). Here k = 2.

Finally, we compare fsi with subspace iteration on different numbers of clus-

ters, at different subspace iteration. We can see that, for large density, fsi still

outperforms subspace iteration for large numbers of clusters. However, the subspace

iteration seems to work better than fsi for the case of many clusters on sparse

graphs. In practice, we can substitute fsi by recursively performing k-means using

k = 2 for bi-partitioning the graph, similar to [82].
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Figure 7.4. Clustering precision w.r.t. different graph conditions
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Figure 7.5. The precision w.r.t. k, at different densities: density = 0.05, density =
0.25, density = 0.45.

7.5.3 Real-world dataset and experiments

A real-world data set for further experimentation was generated by sampling

documents from CiteSeer using combined document meta-data from CiteSeer, the
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Figure 7.6. Amount of publications and community size over time. Two different group-
ing methods are shown, one by uniform grouping of years and the other by proportional
grouping.

ACM Guide, and the DBLP for enhanced data accuracy and coverage. A set of

venues was chosen from five fields in computer science (software engineering, data

mining, artificial intelligence, databases, and distributed computing), such that

data from each field included at least 2000 distinct author names and at least ten

years of significant coverage. All documents contained in CiteSeer from each venue

were obtained and the top 100 key phrases were extracted from each document

using the KEA key phrase extraction algorithm [17]. The final dataset contained

12,677 authors and 45,295 key phrases from 30 distinct venues ranging over the

years 1969 to 2004. The total number of documents used was 13,310.

Experiments on this data set began by empirically determining the appropriate

number of clusters. While it is an open problem to determine the dimension

of a subspace for embedding a graph, we used simple heuristics. We ran the

proposed community discovery algorithm (fsi) with different k and chose the k

corresponding to the smallest J̃ (or the greatest γ = tr(UT (M + Ċ)U)) as in

Eq. 7.22. We observed that the γ initially grows dramatically as k increases, but

grows at a much lower rate as k becomes large. Thus we chose the smallest k that

gave the near maximum γ. This gave us k = 4.
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Then we ran the temporal community discovery (t-par) algorithm with k = 4

with various settings of λ. For screening the results, we judge the quality of

discovery by examining the grouping of venues since their number is small. We

observed that the quality is better for greater λ, supporting the results from syn-

thetic datasets that suggest λ should be set proportionally to |X|/|Z|. Here we

set λ = 0.6.

We observe that the resulting communities of authors, venues, and words are

well grouped. Four communities are discovered for artificial intelligence and ma-

chine learning, database and data mining, parallel and distributed computing, and

software engineering. We present two discovered communities and their authors in

Table 7.1 and Table 7.2. In our experiments, we used the discovered venue set to

manually produce community labels. The key phrases (ranked by frequency) were

considered as the summarization of a community.

Table 7.1 includes a subset of authors discovered in the artificial intelligence

and machine learning community over six time periods. For presentation, we rank

the authors by their number of chapters within the corresponding periods. We

can observe that the community memberships of authors are relatively stable but

change over time. In the experiments, we observed that the top authors remained

as the “core” members of the corresponding community and there were many

more authors who had joined and left from the communities during these six time

periods. Similarly, authors from the database and data mining community are

presented in Table 7.2. The top venues, which due to space limit we cannot show

in the table, are for JMLR, PAMI, ICML, AAAI/IAAI, UAI, IJCAI, JAIR, and

PODS, SIGMOD, VLDB, SIGMOD Record, ICDE for Table 7.2.

We used the discovered clusters of words as the description for the correspond-

ing communities. Summarizations of two communities are presented in Table 7.3
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1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M I Jordan M I Jordan W L Johnson S Thrun D Koller A Blum

L P Kaelbling L P Kaelbling N Friedman C Boutilier A W Moore S Thrun
J Y Halpern Z Ghahramani D Koller T Sandholm M I Jordan S Zilberstein
S P Singh S P Singh R E Schapire D Koller M L Littman P Stone

Z Ghahramani M K Warmuth Y Singer N Friedman S Thrun J Langford
M K Warmuth T G Dietterich R Dechter Y Singer D Schuurmans T Eiter
T G Dietterich T Dean T J Sejnowski A Mccallum J Shawe-taylor P Domingos

T Dean Y Bengio H S Seung L P Kaelbling S P Singh A K Jain
Y Bengio P Smets D Poole S P Singh N Friedman S Baker
P Smets W Maass M I Jordan P R Cohen N Cristianini S Chawla
W Maass V Tresp N Tishby R Khardon A Mccallum R Dechter
V Tresp D Weinshall R Greiner M J Kearns P Domingos C Guestrin

D Weinshall D Geiger Y Mansour K Nigam Y Bengio C Boutilier
D Geiger S Kambhampati M K Warmuth N Cristianini D Freitag M J Kearns
D Poole A Saffiotti Y Freund J Shawe-taylor A Y Ng T Lukasiewicz

R E Schapire R E Schapire D P Helmbold C Baral M K Warmuth A Demiriz
S Kambhampati D S Nau C Boutilier A W Moore G E Hinton S P Singh

C Baumlckstroumlm H A Simon M L Littman D Fox N Tishby D Koller
F Bacchus F Bacchus P Dayan D Roth A J Smola D Schuurmans
A Saffiotti D Poole A J Grove M P Wellman G Raumltsch S Prabhakar

Table 7.1. Machine learning community during 1969-2004 in a CiteSeer sample.

1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M Yannakakis M Yannakakis R Hull A Mendelson G Gottlob S Abiteboul

V Vianu V Vianu A Mendelzon J Paredaens V Vianu L Popa
A Gupta J Y Halpern Z M Zsoyoglu C Papadimitriou H Garcia-molina T Milo

Garciacute Garciacute H Garcia-molina H Garcia-molina J Widom P G Kolaitis
J Widom J Widom D Suciu S Abiteboul A Y Halevy P S Yu

J F Naughton H Garcia-molina A Silberschatz D Florescu C Faloutsos F Neven
H Garcia-molina J F Naughton A Y Levy A Y Levy D Suciu C Beeri

C Faloutsos C Faloutsos L Libkin R Motwani D Gunopulos R Rastogi
A Kemper J Hammer G Moerkotte L Lakshmanan S Lee J Han

K Ramamritham A Biliris S Seshadri T Milo J Han D Srivastava
G Moerkotte K Ramamritham S Abiteboul S Cluet W Fan M N Garofalakis
I S Mumick A Kemper J Widom J Han R Rastogi J Widom

A Biliris C Baumlckstroumlm R Agrawal D Suciu C S Jensen A Y Halevy
J Hammer G Moerkotte R Ramakrishnan J S Vitter H V Jagadish C Li
M Chen I S Mumick S Sudarshan R Rastogi D Kossmann J Madhavan
P S Yu K Lin K Ramamritham G D Giacomo D Srivastava W Fan
T Milo S Berson A Kemper C S Jensen K Chakrabarti B Babcock
D Suciu D Suciu D Florescu D Srivastava S Muthukrishnan C Y Chan
J Han D Kossmann P Atzeni O Shehory D S Weld C Koch
K Lin C A Knoblock M Benedikt M Lenzerini G D Giacomo J Gehrke

Table 7.2. Database community during 1969-2004 in a CiteSeer sample.

and Table 7.4. Words are ranked by their frequency of occurrence within the data.

Those words that did not occur in the previous period are highlighted. Over the six

time periods, we can see the emergence of new words, which presumably indicate

the evolution of interests of the community.

Finally, we show the changes in communities’ sizes over time in Fig. 7.6(b).

The size of a community is measured by the number of distinct authors discovered

within a particular time period. The sizes of the four communities are scaled to

sum up to one.
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years words

1994-96
learning model training probability value image set action input points output variables goal point values search policy
agent function selection examples error units distance knowledge classification representation recognition region test

1996-98
learning state model image value training probability network set values variables class error points input point action
vector representation sequence agent search distribution recognition units random output classification case robot

1998-00
learning model state value training set image probability values action points policy error search point sequence actions

noise function knowledge distribution classification robot parameters estimate text optimal estimation accuracy representation

2000-02
learning model training set error image probability matrix point sequence distribution kernel classification random features state
estimation function representation input accuracy strategy vector text prediction parameters bound approach selection

2002-04
learning model set probability policy points training sequence image variables optimal algorithm function matrix search

point error distance erent random bound classification max robot estimate representation case expected distribution vector

Table 7.3. Frequent words in the machine learning community during 1994-2004 in a
CiteSeer sample.

years words

1994-96
query data database queries object path event cost type user execution objects table class transaction local rules server client
join name formula update rule attribute attributes view pages plan read

1996-98
query data queries database object cost tree information view user attributes pages objects rules join plan table update
transaction type attribute constraints page access server disk requests real-time label client

1998-00
query data queries user information database pages rules constraints plan path attributes attribute view join formula table
sources update objects request strategy documents level instance items rule web spatial application

2000-02
data query queries points information path cost xml database attributes values pages tree constraints table join plan
type objects page distance management example document attribute update labeled items documents web

2002-04
data query node queries xml path values tree database attributes table document join name plan service cache

objects return selection constraints type patterns label mapping attribute tuples index items root

Table 7.4. Most frequent words in the database community during 1994-2004 in a
CiteSeer sample.

7.6 Summary

This chapter addresses an emerging problem of temporal community discovery

from communication documents, by which one can observe the temporal trends in

community membership over time. The problem is formulated as a tripartite graph

partitioning problem with prior knowledge available of entity covariances. Tempo-

ral communities are discovered by threading the partitioning of graphs in different

time periods, using a new constrained partitioning algorithm. Evaluation of the

new algorithm is carried out on several synthetic datasets and a real-world dataset

prepared from CiteSeer. Experiments on synthetic data reveal the properties of

the new algorithm in various graph conditions. Experiments on CiteSeer data

show the effectiveness of the proposed approach in author community discovery

and community summarization.



Chapter 8
Recommendations using

Heterogeneous Social Networks

8.1 Recommender Systems for Networked Data

Recommender systems continue to play important and new roles in business

on the World Wide Web [73, 31, 74]. The most popular method adopted by con-

temporary recommender systems is Collaborative Filtering (CF), where the core

assumption is that similar users on similar items express similar interests. The

heart of memory-based CF methods is the measurement of similarity: either the

similarity of users (a.k.a user-based CF) or the similarity of items (a.k.a items-

based CF) or a hybrid of both. The user-based CF computes the similarity among

users, usually based on user profiles or past behavior [31], and seeks consistency

in the predictions among similar users. But it is known that user-based CF of-

ten suffers from the data sparsity problem because most of the user-item ratings

are missing in practice. The item-based CF, on the other hand, allows input of

additional item-wise information and is also capable of capturing the interactions
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among them [73]. This is a major advantage of item-based CF when it comes to

dealing with items that are networked, which are usually encountered on the Web.

For example, consider the problem of document recommendation in a digital li-

brary such as the CiteSeer (http://citeseer.ist.psu.edu). As illustrated in Fig. 8.1,

let documents be denoted as vertices on a directed graph where the edges indicate

their citations. The similarity among documents can be measured by their coci-

tations (cociting the same documents or being cocited by others) 1. In this case,

document B and C are similar because they are cocited by E.

A
B

C

D E

Figure 8.1. An example of citation graph.

Working with networked items for CF is of recent interest. A recent work

approaches this problem by leveraging the item similarities measured on an item

graph [73]. They model item similarities by an undirected graph and, given several

vertices labeled interesting, perform label propagation to rank the remaining ver-

tices. The key issue in label propagation on graphs is the measurement of vertex

similarity, where related work simply borrows the recent results of the Laplacian

on directed graphs [7] and semi-supervised learning of graphs [86]. Nevertheless,

using a single graph Laplacian to measure the item similarity can overfit in prac-

tice, especially for data on the Web, where the graphs tend to be noisy and sparse

in nature. For example, if we revisit Fig. 8.1 and consider two quite common sce-

narios, as illustrated in Fig. 8.2, it is easy to see why measuring item similarities

based on a single graph can sometimes cause problems. The first case is called

1In fact, the term cocitation in this chapter refers to two concepts in information sciences:
bibliographic coupling and cocitation.
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missing citations, where for some reason a citation is missing (or equivalently is

added) from the citation graph. Then the similarity between A and B (or C) will

not be encoded in the graph Laplacian. The second case, called same authors,

shows that if A and E are authored by the same researcher Z, using the citation

graph only will not capture the similarity between D and B, which presumably

should be similar because they are both cited by the author Z.

A
B

C

D E

(a) Missing citations

A
B

C

D E

Z

(b) Same authors

Figure 8.2. Two common scenarios: missing citations and same authors, which give
rise to the problems for measuring item similarities based on a single citation graph.

Needless to say, the cases presented above are just two of the many problems

caused by the noise and sparsity of the citation graph. Noise in a citation graph

is a result of a missing citation link or an incorrect one. Fortunately, real world

data can usually be described by different semantics or can be associated with

other data. In the focus of this chapter, where only relational data is concerned,

we work with several graphs regarding the same set of items. For example, in

the case of document recommendation, and in addition to the document citation

graph, we also have a document-author bipartite graph that encodes the author-

ship, and a document-venue bipartite graph that indicates where the documents

were published. Such relationship between documents and other objects can be

used to improve the measurement of document similarity. The idea of this work is

to combine multiple graphs to calculate the similarities among items. The items

can be the full vertex set of a graph (as in the citation graph) or can be a subset



146

of a graph (as in document-author bipartite graph) 2. By doing so, we let data

from different semantics regarding the same item set complement each other3.

In this chapter [94], we implement a model of learning from multiple graphs

by seeking a single low-dimensional embedding of items that captures the rela-

tive similarities among them. Based on the obtained item embedding, we perform

label propagation, giving rise to a new recommendation framework using semi-

supervised learning on graphs. In addition, as introduced in the reference but not

here [94], we address the scalability issue and propose an incremental version of

our new method, where an approximate embedding is calculated only for the new

items. The new methods are evaluated on two real world datasets prepared from

CiteSeer. We compare the new batch method with a baseline modified from a

recent semi-supervised learning algorithm on a directed graph and a basic user-

based CF method using Singular Value Decomposition (SVD). Also, we compare

the new incremental method with the new batch method in terms of recommen-

dation quality and efficiency. We observe significant quality improvement in our

batch method and significant efficiency improvement with tolerable quality loss for

our incremental method.

8.2 Recommendation by Label Propagation

Label propagation is one typical kind of transductive learning in the semi-

supervised learning category where the goal is to estimate the labels of unlabeled

data using other partially labeled data and their similarities. Label propagation

on a network has many different applications. For example, recent work shows

2Note the difference between this work and the related work [84] where multiple graphs with
the same set of vertices are combined.

3Note the difference with another related work [74] is that we are not working with the user-
rating matrix but rather starting from a directed graph of items.
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that trust between individuals can be propagated on social networks [26] and user

interests can be propagated on item graphs for recommendations [73].

In this work, we focus on using label propagation for document recommenda-

tion in digital libraries. Let the document set be D, where |D| is the number of

documents. Suppose we are given the document citation graph GD = (VD, ED),

which is an unweighted directed graph. Suppose the pair-wise similarities among

the documents are described by the matrix S ∈ R
|D|×|D| measured based on GD.

A few documents have been labeled “interesting” while the remaining are not, de-

noted by positive and zero values in the label vector y. The goal is to find the score

vector f ∈ R
|D| where each element corresponds to the propagated interests. Then

document recommendation can be performed by ranking the documents by their

interest scores. A recent approach addressed the graph label propagation problem

by minimizing the regularization loss below [86]:

Ω(f) ≡ fT (I − S)f + µ‖f − y‖2, (8.1)

where µ > 0 is the regularization parameter. The first term is the cost function for

the smoothness constraint, which prefers small differences in labels between nearby

points; the second term is the fitting constraint that measures the difference of f

from given data label y. Setting the ∂Ω(y)/∂f = 0, we can see that the solution

f ∗ is essentially the solution to the linear equation:

(I − αS)f ∗ = (1− α)y, (8.2)

where α = 1/(1 + µ). One solution to the above is given in a related work using a
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power method [86]:

f t+1 ← αSf t + (1− α)y (8.3)

where f 0 is the random guess and f ∗ = f∞ is the solution. Here, notice that

L = (I − αS) is essentially a variant Laplacian on this graph using S as the

adjacency matrix; and K = (I − αS)−1 = L−1 is the graph diffusion kernel. Thus,

one essentially applies f ∗ = (1− α)L−1y (or f ∗ = (1− α)Ky )to rank documents

for recommendation.

Now the interesting question is how to calculate S (or equivalently the kernel K)

among the set D. However, there has been limited amount of work on obtaining S.

For graph data, recent work borrows the results from spectral graph theory [6, 7],

where the similarity measures on both undirected and directed graphs have been

given. For undirected graph, Su is simply the normalized adjacency matrix:

Su = Π−1/2WΠ−1/2 (8.4)

where Π is a diagonal matrix such that We = Πe and e is an all-one column vector.

For directed graph, where the adjacency matrix is first normalized as a random

walk transition matrix P (= Π−1W ), the similarity measure Sd is calculated as:

Sd =
Φ1/2PΦ−1/2 + Φ−1/2P TΦ1/2

2
(8.5)

where Φ is a diagonal matrix where each diagonal contains the stationary proba-

bility on the corresponding vertex 4.

Note that the similarity measures given above are derived from a single graph on

4In practice when some nodes have no outgoing or incoming edges, the probability distribution
over nodes can incorporate certain randomness so that P denotes an ergodic Markov chain.
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D. However, many real world data can be described by multiple graphs, including

those within D and between D and another set. Such information is of more

importance to combine especially when a single view of the data is sparse or even

incomplete. In the following, we introduce a new way to integrate three general

types of graphs. Instead of estimating S directly, we seek to learn a low-dimensional

latent linear space.

8.3 Learning Multiple Graphs

The immediate goal of this section is to determine the relative positions of all

documents in a k-dimensional latent semantic space, say X ∈ R
|D|×k, which will

combine the social inferences in document citations, authorship and venues. In the

sequel, we assume k is a prescribed parameter which we do not seek to determine

automatically. Note a contribution of this work is the different strategies used for

different graphs based on their characteristics, which are described in the following

subsections.

We begin by a formulation of our problem. Let D, A, V be the sets of docu-

ments, authors and venues and |D|, |A|, |V| be their sizes. We have three graphs,

one directed graph GD on D; one bipartite graph GDA between D and A; and

one bipartite graph GDV between D and V, which describe the relationship among

documents, between documents and authors, and between documents and venues.

Let the adjacency matrices of GD, GDA, GDV be D, A and V . We assume all

relationships in question are described by nonnegative values. For example, GD

can be considered as to describe the citation relationship among D and Di,j = 1 if

document di cites dj (Di,j = 0 if otherwise); GA can be considered as the author-

ship relationship (an author composes a document) or the citation relationship (an
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author cites a document) between D and A.

8.3.1 Learning from Citation Matrix: D

In this section, we relate the document embedding X to the citation matrix D,

which is the adjacency matrix of the directed graph GD.

The citation matrix D include two kinds of document co-occurrences: cociting

and being cocited. A cociting relationship among a set of documents means that

they all cite a same document; A cocited relation refer to that several documents

are cited together by an another document. In many related work (e.g. [86]) on

directed graphs, these two kinds of document co-occurrences are used to infer the

similarity among documents. Probably the most well recognized way to represent

the similarities among the nodes of a graph is associated with the graph Lapla-

cian [7], say L ∈ R
|D|×|D|, which is defined as:

L = I − αSd, (8.6)

where Sd is the similarity matrix on directed graphs as measured in Eq. 8.5; α ∈

(0, 1) is a parameter for the Laplacian to be invertible; I is an identity matrix.

Note that S is symmetric and positive-semidefinite. In practice, different weights

can be assigned to similarities measured from cociting and cocited relations in

Eq. 8.5 which now assumes an equal importance of both parts.

Next we give the method to learn from GD.

Objective function: Suppose we have a document embedding X = [x1, ...xk]

where xi contains the distribution of values of all documents on the i-th dimension

of a k-dimensional latent space. The overall “lack-of-smoothness” of the distribu-
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tion of these vectors w.r.t. to the Laplacian L can be measured as

Ω(X) =
∑

1≤i≤k

xT
i Lxi = Tr(XTLX), (8.7)

where X = [x1, ...xk]. Here we seek to minimize the overall “lack-of-smoothness”

so that the relative positions of documents in X will reflect the similarity in Sd.

Constraint: In addition to the objective function ofX, we enforce a constraint

on X so as to avoid getting a trivial solution (Note that X = 0 minimizes Eq. 8.7 if

there is no constraint on X). We choose to use the newly proposed log-determinant

heuristic on XTX, a.k.a the log-det heuristic, denoted by log |XTX| [16]. It has

been shown that the log |Y | is a smooth approximation for the rank of Y if Y

is a positive semidefinite matrix. It is obvious the gram matrix XTX is positive

semidefinite. Thus, when we maximize log |XTX|, we effectively maximize the

rank of X, which is at most k. Another way to understand log |XTX| is to note

that |XTX| =
∏

i λi(X
TX) =

∏
i σi(X)2, where λi(Y ) is the i-th eigen-value of Y

and σi(X) is the i-th singular value of X. Therefore, a full-ranked X is preferred

when log |XTX| is maximized. For more reasons on using the log-det heuristic,

refer to the Comments below and [16].

Using the log-det heuristic, we arrive at the combined optimization problem:

min
X

{
Tr(XTLX)− log |XTX|

}
(8.8)

where Tr(A) is the trace function defined as the sum of diagonal elements of A.

It has been shown that max{log |XTX|} (or equivalently min{− log |XTX|}) is a

convex problem [16]. So Eq. 8.8 is still a convex problem.

Comments: First, it is interesting to notice that we did not use the tradi-
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tional constraint on X (such as the orthonormal constraint of the subspace used in

PCA [81]). The reason of choosing log-det heuristic in our case is because that (1)

the orthonormal constraint is non-convex; (2) the orthonormal constraint cannot

be solved by gradient-based methods and thus cannot be efficiently solved and

cannot be easily combined with the other two factorizations in the following sec-

tions; (3) the log-det, log |XTX|, has a small problem scale (k × k) and can be

solved effectively by gradient-based methods. Second, note a key difference of this

work from related work on link matrix factorization (e.g. [95]) is that we seek to

determine X to comply with the graph Laplacian (not to factorize the link matrix)

which gives us a convex problem that is global optimal.

8.3.2 Learning from Author Matrix: A

Here, we show how to learn from an author matrix, A, which is the adjacency

matrix of the bipartite graph, GDA, that captures the relationship between D and

A. We can use GDA to encode two kinds of information between authors and

documents, one being the authorship and the other being the author-citation-ship.

To encode authorship, we let A ∈ I
|D|×|A|, where Ai,j indicates whether the i-th

paper is authored by the j-th author; To encode author-citation-ship, we assume

A ∈ R
|D|×|A|, where Ai,j can be the number of times that document i is cited by

author j (or the logarithm of the citation count for rescaling).

We can consider both kinds of author-document relationship using matrix fac-

torization, where authors in both cases are considered social features of documents,

inferring similarities between documents. The basic intuition is that the document

related to a same set of authors should be relatively close in the latent space X.

The inference of this intuition to citation recommendation is that the other work
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of an author will be recommended given a reader is interested in several work by

similar authors.

Given the authorship matrix A ∈ R
|D|×|A|, we want to use X to approximate

it. Let the authors be described by an author profile matrix W ∈ R
|A|×k. We can

approximate A by XW T as:

min
X,W
‖A−XW T‖2F + λ1‖W‖2F , (8.9)

where X and W are the minimizers. To prevent overfitting, the second term is

used, where λ1 is the parameter. Note that later we will combine Eq. 8.8 and

Eq. 8.9; So we do not show the constraint on ‖X‖2F here. It is worth mentioning

that the idea of using two latent semantic spaces to approximate a co-occurrence

matrix is similar to that used in document content analysis (e.g. the LSA [10]).

8.3.3 Learning from Venue Matrix: V

In the above, we have given the method for learning a representation of D

from a directed citation graph GD and an undirected bipartite graph GDA. In

this section, we are given an additional piece of categorical information, which can

be described by the bipartite venue graph GDV , where one set of nodes are the

documents from D and the other set are the venues from V.

Similar to A, we have the venue matrix V ∈ I
|D|×|V|, where Vi,j denotes whether

document i is in venue j. However, a key difference here is that each row in V

has at most one nonzero element because one document can proceed in at most

one venue. Although we could as well employ XW T to approximate V (as in

Sec. 8.3.2), we will show that the special property of V can help us cancel the

variable matrix W , and thus reducing the optimization problem size for better
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efficiency. Accordingly, we follow a similar but different approach. In particular,

let us consider to use V to predict the X via linear combinations. Suppose we

have W2 as the coefficient, we seek to minimize the following:

min
X,W2

‖VW T
2 −X‖2F . (8.10)

One can understand Eq. 8.10 in this way: Here each column of W2 can be consid-

ered as a cluster center of the corresponding class (i.e., the venues). Then solving

Eq. 8.10 in fact simultaneously (1) pushes the representation of documents close

to their respective class centers; and (2) optimizes the centers to be close to their

members.

Next, we cancel W2 using the unique property of our venue matrix V . Setting

the derivative to be zero, we have 0 = ∂‖VW T
2 −X‖2F/∂W2 = 2(V TVW2−V TX),

suggesting that W2 = (V TV )−1V TX. Note that V TV is diagonal matrix and is

thus invertible. Plug in W2 back to Eq. 8.10. We arrive at the optimization where

W2 is canceled:

min
X
‖V (V TV )−1V TX −X‖2F , (8.11)

where (V TV )−1V T is the pseudo inverse of V . Here since V TV is |V|×|V| diagonal

matrix, its inverse can be computed in |V| flops. Meanwhile, V (V TV )−1V T is block

diagonal where each block denotes a complete graph among all documents within

the same venue. Note that Eq. 8.9 cannot be handled in the same way because

(ATA)−1 is a dense matrix, resulting in a |D| × |D| dense matrix of A(ATA)−1AT ,

which in practice raises scalability issues.
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8.3.4 Learning Document Embedding

We have arrived at a combined optimization formulation given the above sub-

problems. We will combine Eq. 8.8, Eq. 8.9 and Eq. 8.10 in a unified optimization

framework. Define the new objective J(X,W ) as a function of X,W . We have an

optimization below to learn the document embedding matrix X:

J(X,W ) = (Tr(XTLX)− log |XTX|

+α‖A−XW T‖2F + λ‖W‖2F

+β‖V (V TV )−1V TX −X‖2F ) (8.12)

where λ is the weight of regularization on W ; α is the weight for learning from A;

β is the weight for learning from V .

The optimization illustrated above can be solved using standard Conjugate

Gradient (CG) method, where the key step is the evaluation of objective function

and the gradient. Below, we show the gradients for the combined optimization in

Eq. 8.12:

∂J

∂X
= 2LX − 2X(XTX)−1

+2α(XW TW − AW ) +

+2β(V V † − I)T (V V † − I)X (8.13)

∂J

∂W
= 2α(WXTX − ATX) + 2λW (8.14)

where V † = (V TV )−1V T is the pseudo inverse of V . When searching for the

solutions, we vectorize the gradients of X,W into a long vector. In implementa-
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tion, different calculation order of matrix product leads to very different efficiency.

For example, it is much more efficient to calculate (V V † − I)T (V V † − I)X as

(V †)TV TV V †X − 2V V †X +X because V and V † are very sparse.

After X is calculated, we can use linear model in the recommendation, i.e.

f ∗ = X(XTX)−1XTy, which has been shown to arrive at the same solution of the

power method in Eq. 8.3 [86]. By doing so, we can obtain efficiency advantage

over the power method as in Eq. 8.3.

8.4 Experiments on CiteSeer

We continue to use the CiteSeer datasets as introduced in previous chapters

(Ch. 4). In particular, two datasets were prepared with different sizes. The first

dataset, referred to as DS1, has 400 authors, 9, 197 documents, 50 venues, and

19, 844 citations; The second dataset, referred to as DS2, which is larger in size,

has 800 authors, 15, 073 documents, 100 venues, and 38, 614 citations.

8.4.1 Evaluation Metrics

The performance of recommendation can be measured by a wide range of met-

rics, including user experience studies and click-through monitoring. For experi-

mental purpose, we will evaluate the proposed method against citation records by

cross-validation. In particular, we randomly remove t documents, use the remain-

ing documents as the seeds, perform recommendations, and judge the recommen-

dation quality by examining how well these removed documents can be retrieved.

As suggested by real user usage patterns, we are only interested in the top recom-

mended documents. Quantitatively, we define the recommendation precision (p) as

the percentage of the top recommended documents that are in fact from the true
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citation set. The recall (r) is defined as the percentage of true citations that are

really recommended in the top m documents. The F-score, which combines preci-

sion and recall is defined as f = (1 + δ2)rp/(r+ δ2p), where δ ∈ [0,∞) determines

how relatively important we want the recall to be (Here we use δ = 1, i.e. F-1

score, as in many related work.). We have introduced a parameter in evaluation,

m, which is the number of top documents we evaluate the f-score at.

8.4.2 Recommendation Quality

This section introduces the experiments on recommendation quality. We com-

pare the recommendation by our algorithm with two other baselines: one based on

Laplacian on directed graphs [7] and label propagation using graph Laplacian [86]

(named as Lap) and the other based on Singular Vector Decomposition of the au-

thor matrix (named as SVD). We chose to compare with the Lap method to see

whether the fusion of different graphs can effectively produce additional informa-

tion than the original graph citation graph; We chose the SVD on author matrix

as another baseline because we would like compare our method against the tra-

ditional CF method on the additional graph information (as one can argue that

the significant improvement of the new method is purely due to the use of the

additional information).

f \ m m=t m=5 m=10

DS1
f(lap) 0.013 0.048 0.192
f(svd) 0.035 0.086 0.138
f(new) 0.108 0.242 0.325

DS2
f(lap) 0.011 0.046 0.156
f(svd) 0.027 0.072 0.109
f(new) 0.083 0.158 0.229

Table 8.1. The f-score calculated on different numbers of top documents, m.

Table 8.1 and Table 8.2 list the f-scores of three different methods (our new
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f \ t t=1 t=2 t=3 t=4

DS1
f(lap) 0.041 0.048 0.075 0.086
f(svd) 0.062 0.088 0.099 0.103
f(new) 0.197 0.242 0.248 0.252

DS2
f(lap) 0.037 0.047 0.068 0.077
f(svd) 0.049 0.072 0.082 0.086
f(new) 0.121 0.158 0.181 0.182

Table 8.2. The f-score w.r.t. different numbers of left-out documents, t.

method with Lap and SVD) on two datasets (DS1 and DS2). Table 8.1 for different

number of top documents evaluated on (denoted by m). We are able to see that

the new method outperforms both Lap and SV D significantly on both datasets

in different settings of parameters. In general, the new method are 3 − 5 times

better in f-score than Lap and 2.5 times better than SV D. The Lap method

under-performs SV D on the very top documents but beats it if evaluated on more

top documents. In addition, we notice that the f-scores get better in general as

we look at more top documents. Also, the f-scores on the smaller dataset DS1

are generally higher than those on the larger dataset DS2. Here, we can see that

the recommendation quality can be significantly improved by using the author

matrix as the additional information. Note that the different information, when

used individually, such as the Lap on the citation graph or the SV D on the author

graph, can be not as good. However, if the multiple information are combined, the

performance is greatly improved5.

5In our experiments, additionally, we work with different methods of formulating the author
matrix, A, for example, using the number of citations from authors to documents in A. The
experiments show that using the citation-ship in A can be even better. Due to space limit, here
we present the experiments with authorship in A only.
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8.4.3 Parameter Effect

The effect of parameters for the new method is experimented in this section. We

experiment with different settings of dimensionality, or k, and weights on authors

and venues, or α and β. In Table 8.3, we show the f-scores for different k’s. It

occurs that the f-scores become higher for greater k. We believe this is because the

higher dimensional space can better captures the similarities in the original citation

graphs. However, on the other hand, we observe that it takes longer training time

for greater k. Seeking k thus become a trade-off between quality and efficiency. In

our experiments, we chose k = 100 as greater k do not seem to give much better

results. The CPU time for training at different k’s are illustrated in Table 8.4.

f \ k k=50 k=100 k=150 k=200

DS1 0.203 0.242 0.249 0.262
DS2 0.095 0.158 0.181 0.197

Table 8.3. The f-score w.r.t. different setting of dimensionality, k.

t(lap) t(new)

time \ k k=50 k=100 k=150 k=200

DS1 694s 440s 502s 558s 621s

DS2 940s 638s 743s 820s 910s

Table 8.4. The CPU time for recommendations w.r.t. different dimensionalities.

Fig. 8.3 illustrates the f-scores for different settings of α and β, which are respec-

tively the weights on authors and venues. Here α and β are obtained by testing

on a held-out set. We determine which of the two components obtains greater

improvement if incorporated, search for the best parameter for this component,

fix it, and then search for the best parameter for the other component. In our

experiments, we observe that adding the author component tends to improve the

recommendation quality better so we first tune α, which yields different f-scores, as

shown by the blue curve in Fig. 8.3. Then we fix the α = 0.1 and tune β, arriving
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at the best f-score at β = 0.05.
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Figure 8.3. f-scores for different settings of weights on the authors, α, and on the
venues, β. The α is tuned first for β = 0; Then β is tuned for the fixed best α = 0.1.

8.5 Summary

We address the item-based collaborative filtering problem for items that are net-

worked. We propose a new method for combining multiple graphs in order to mea-

sure item similarities. In particular, the new method seeks a single low-dimensional

embedding of items that captures the relative similarities among them in the latent

space. We formulate this as an optimization problem, where the learning of three

general types of graphs are formulated as three sub-problems, each using a fac-

torization strategy tailored to the unique characteristics of the graph type. Based

on the obtained item embedding, a new recommendation framework is developed

using semi-supervised learning on graphs. In addition, we address the scalability

and propose an incremental version of the new method. The new methods are

evaluated on two real world datasets prepared from CiteSeer. Experiments have
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demonstrated significant quality improvement for our batch method and significant

efficiency improvement with tolerable quality loss for our incremental method.



Chapter 9
Conclusions

This research consists of a series of new methods for data mining of social

documents and social networks. In general, the steps are proposing new content

models for user generated social documents, presenting the connection between

social content and social actions, and proposing new techniques for data mining

heterogeneous social networks constructed by various social actions.

In particular, contributions of this dissertation include: (1) New content models

for emails and social annotations, estimated using Gibbs sampling and improved by

entropy filtering [90, 93]. The models have been applied for semantic community

discovery and language modeling-based information retrieval. (2) Exploration of

the connection between content evolution and social actions for hierarchical clus-

tering of topics in document analysis [87]. The topic dynamics in social document

corpora are modeled as a Markov chain and the dependency among these topics

are estimated using social interactions of different orders. The topic clustering is

done by a Markov metastable state detection. (3) New methods for ranking and

co-ranking in heterogeneous social networks constructed by multiple kinds of social

actions [91, 88]. The ranking of social actors occurs through modeling the network
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flow by learning the implicit preferences of social actors’ actions. The co-ranking of

authors and documents is achieved by coupling two random walks into a combined

one, presumably exploiting the mutually reinforcing relationship between docu-

ments and their authors. (4) New methods for discovering temporal communities

from communication documents, by which one can observe the temporal trends

in community membership over time [85]. The problem is formulated as a tripar-

tite graph partitioning problem with entity covariance, prior knowledge available.

Temporal communities are discovered by threading the partitioning of graphs in

different time periods, using a new, constrained partitioning algorithm. (5) A new

framework for combining multiple graphs to measure document similarities, applied

for digital libraries’ document recommendations [94]. This framework seeks doc-

uments’ single, low-dimensional embedding that captures the relative similarities

in the latent space. The formulation of this is as an optimization problem, where

the learning of three general types of graphs constitute three sub-problems, each

using a factorization strategy tailored to the unique characteristics of the graph

type. Based on the obtained item embedding, a new recommendation framework

is developed using semi-supervised learning with graphs.

In addition, due to physical constraints other research has mention but details

are absent. These considered omissions include new methods for learning user

click-throughs in Web searches [83], clustering results comparisons [89], and dis-

covering organizational structures from corporate email corpora [92]. Also, the

incremental method for learning from multiple graphs is an intentional omission

in Chapter 8 [94].

Considerations for future research include: (1) Exploration of the connection

between social actions and the topology and evolution of social networks (the con-

nection between social actions and social content is addressed in this dissertation);
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(2) Consideration and measurement of negative social actions and social ties (this

study and traditional literature, positively weighted social ties leaving open the

question of usefulness of introducing negative ties to explain some observations).

(3) Information flow in a social network. This study attempts to measure the flow

of information in social networks by learning from heterogeneous social actions.

An interesting aspect would be to explore whether or not information can flow

over social networks and how that can be captured in the social content. More

importantly, would be to investigate how such an information flow correlates with

social actions. (4) Prediction of social actions. This dissertation presents results

for predicting document citations for recommendations. A useful endeavor would

be explore the predictability of other kinds of social actions, such as collaborations

or acknowledgments. (5) Focus on scalability. Many approaches proposed in this

study deal with sparse matrices. More efficient solutions and experiments on very

large datasets are recommended to deal with the ever-growing Web data.
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