
The Pennsylvania State University 

 

The Graduate School 

 

Intercollege Program in Materials Science and Engineering 

PHASE-FIELD STUDY ON FERROELECTRIC OXIDE COMPOSITES AND 

HETEROSTRUCTURES 

A Dissertation in 

 

Materials Science and Engineering 

 

by 

 

Tiannan Yang 

 

 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

May 2018  

 

 



ii 

 

 

 

 

The dissertation of Tiannan Yang was reviewed and approved* by the following: 

 

Long-Qing Chen 

Donald W. Hamer Professor of Materials Science and Engineering 

Professor of Engineering Science and Mechanics, and Mathematics 

Dissertation Advisor 

Chair of Committee 

 

Venkatraman Gopalan 

Professor of Materials Science and Engineering 

 

Michael Lanagan 

Professor of Engineering Science and Mechanics 

 

Shujun Zhang 

Professor of Institute for Superconducting & Electronic Materials, and Australian 

Institute of Innovative Materials, University of Wollongong, Australia 

 

Sulin Zhang 

Professor of Engineering Science and Mechanics 

 

Suzanne Mohney 

Professor of Materials Science and Engineering and Electric Engineering 

Chair, Intercollege Graduate Degree Program in Materials Science and 

Engineering 

 

*Signatures are on file in the Graduate School 

 

  



iii 

 

 

ABSTRACT 
 

Ferroelectric materials are a class of materials possessing a spontaneous electric 

polarization that is switchable by an external field. A composite approach can either greatly 

enhance the performance of ferroelectric materials or induce emerging properties and phenomena 

which expands the range of its applicability. Through microstructure design, performances of 

ferroelectric composites and heterostructures can be optimized for multiple applications. This 

dissertation focuses on theoretical understandings of various properties of ferroelectric 

composites and heterostructures by employing a phase-field model.  

Magnetoelectric coupling is a phenomenon in which a material exhibits a polarization 

response to an applied magnetic field. We formulate a phase-field model coupled with 

constitutive equations to investigate the magnetoelectric cross-coupling in magnetic/ferroelectric 

composites. The model allows us to obtain static piezoelectric, piezomagnetic, dielectric, and 

magnetoelectric properties under a given magnetic or electric field, from the local distributions of 

polarization, magnetization, and strain in the composites. As an example, effective 

magnetoelectric coupling coefficient, i.e., magnetic-field-induced voltage output (or changes in 

polarization), of the CoFe2O4-BaTiO3 composites is numerically calculated. Influences of the 

phase connectivity and the phase fraction of the composites on the magnetoelectric coupling 

coefficient are discussed. 

We further develop a phase-field model to study the local elastic coupling between 

magnetic and ferroelectric domains that show one-to-one pattern match. A multiferroic layered 

heterostructure of Co0.4Fe0.6/BaTiO3 is considered. Kinetics of the local elastic coupling is 

investigated by simulating the time-dependent electric-field-driven changes in local 

magnetization/polarization/strain distributions and by comparing the associated velocities of the 

magnetic and ferroelectric domain walls. It is found that the electric-field-driven magnetic 



iv 

 

 

domain evolution manifests itself as an alternating occurrence of local magnetization rotation and 

coupled motion of magnetic and ferroelectric domain walls with almost identical velocities. 

The electrocaloric effect is a phenomenon in which a dielectric material absorbs or 

releases heat in response to an applied electric field. An anomalous negative electrocaloric effect 

in ferroelectric/relaxor composites showing cooling upon applying an electric-field pulse without 

subsequent heating, is studied by applying a phase-field model. Evolution of domain structure 

and changes in dipole ordering upon applying the electric field pulse is simulated. It is revealed 

that coexistence of the normal ferroelectric phase and the ferroelectric relaxor phase in the 

composite enables stability of two distinct remnant states with ordered and disordered dipoles, 

respectively. Application of an electric field switches the composite between ordered and 

disordered states and induces the anomalous electrocaloric effect. The dependence of the 

electrocaloric cooling temperature and overshooting phenomena on operating temperature is 

simulated and discussed. 

Applying an ultrafast stimulus to a ferroelectric material allows one to explore possible 

new transient phenomena or new metastable domain patterns that may emerge during the 

relaxation from its excited state to its original or a new equilibrium state. In this work, we 

develop a phase-field model for understanding and predicting the dynamical responses of both 

ferroelectric and ferroelastic domain patterns under ultrafast electrical, thermal, mechanical, and 

optical stimuli, with advanced numerical algorithms for solving the governing dynamical 

equations.  As an example, the nanoscale and mesoscale domain dynamics of BaTiO3 crystals 

under certain types of ultrafast stimuli were investigated. We demonstrate domain dynamics 

under an external local heat pulse with a combined characteristic of thermal conduction and 

polarization dynamics under pyroelectric effect. We predict possible deterministic 180° 

ferroelectric domain switching through the application of ultrashort mechanical stimuli. We 

further reproduce experimentally observed laser-pulse-induced domain dynamics with distinct 
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responses determined by both the orientation and the location of the domains. Mesoscale 

mechanisms of ferroelectric domain and domain wall responses, as well as intrinsic lattice 

vibrations, are revealed. The theoretical insights on ultrafast domain dynamics will provide useful 

guidance for manipulating dynamic functionalities of ferroelectric materials.   
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Chapter 1  
 

Introduction 

1.1 Brief introduction to ferroelectric oxide composites and heterostructures 

1.1.1 Ferroelectric oxide 

Ferroelectric materials are a class of materials possessing a spontaneous electric 

polarization that can be reoriented by an external electric field [1-3]. The word ferro- originates 

from the analogy to ferromagnetic material with similar behaviors of spontaneous orders and 

hysteresis responses to external fields (discussed below). Dating back to 1920, Rochelle salt is the 

first ferroelectric material reported [4]. Later discovery of ferroelectricity in multiple materials 

including barium titanate (BaTiO3), lead titanate (PbTiO3), etc., belonging to a class of perovskite 

oxides, have long attracted major experimental and theoretical interest due to their improved 

properties and design flexibility. 

Take BaTiO3 for example, which is one of the first known ferroelectric perovskite oxides, 

dating back to 1940s [5]. It shows a typical perovskite structure with a cubic lattice at high 

temperatures. Upon cooling, the crystal lattice undergoes a spontaneous deformation at T~400K 

to a tetragonal lattice with elongated c axes, in which Ti4+ cations are displaced from the cubic 

center of the unit cell and the center of the octahedron formed by neighboring O2- anions, as 

shown by the room temperature crystal structure of BaTiO3 in Fig. 1-1. The displaced cation 

center and anion center generates an electric dipole in the unit cell, and ordering of the dipoles at 

each unit cell in the crystal further results in a net polarization PS in the material, which is called a 

spontaneous polarization. The transformation temperature between the high-temperature cubic 
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phase (paraelectric phase) and the low-temperature phase with spontaneous polarization 

(ferroelectric phase), TC, is called the Curie temperature. 

 

 

Figure 1-1. The unit cell of the tetragonal phase ferroelectric BaTiO3 at room temperature. An 

electric dipole arises in the unit cell from the spontaneous displacement of the center of the Ba2+ 

and Ti4+ cations with respect to the center of the O2- anions.  

 

Formation of ferroelectric domains is an important phenomenon which plays a critical 

role in various properties of ferroelectric materials. For example, upon cooling down a BaTiO3 

crystal from high temperature, a multidomain structure of tetragonal phases are naturally formed, 

without forming a grain boundary. Figure 1-2 shows a typical ferroelectric a/c multidomain 

structure in a BaTiO3 crystal. The existence of 6 possible dipole orientations in a unit cell, i.e., 

along a1
+, a1

-, a2
+, a2

-, c+, and c-, which are symmetry-related in the high-temperature cubic phase, 

enables spontaneous formation of local polarization along all 6 directions.  
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Figure 1-2. Schematics of a typical ferroelectric a/c multidomain structure in a BaTiO3 single 

crystal at room temperature. The right part shows the spatial profile of polarization vector in a 

region across three ferroelectric domains. The domain structure and spatial distribution of 

polarization are from phase-field simulations [6]. The left parts are crystal structures with 

different cation displacements in (top) a- and (bottom) c-domains. 

 

A continuous region with homogeneous electric dipole orientation (or polarization) is 

called a ferroelectric domain. Regions between two adjacent domains are called domain walls, 

across which the local polarization undergoes a spatial variation from the spontaneous 

polarization in one domain to that in the other. Domain walls are typically a few unit cells thick in 

tetragonal domains in BaTiO3 at room temperatures. Such multi-domain structures are usually 

stabilized by electrostatic, elastic, or chemical fields, etc.  

The polarization in ferroelectric materials can be switched between different orientations 

through applying external fields, which is called domain switching. According to the symmetry of 

high-temperature ferroelectric phase, there exists symmetry-related, energetically degenerate 

states which are stabilized at energy minima with respect to structural change (or polarization). 

As schematically illustrated in Fig. 1-3 (a), on applying an external field (e.g., an electric field) to 
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overcome a certain energy barrier between two energy minima, polarization is switched from one 

stable state to another.  

 

 

Figure 1-3. (a) Schematics of the energy path during the process of domain switching between 

energetically degenerate states in a ferroelectric oxide, where the energy barrier is overcome by 

an applied external field. (b) Typical polarization response in a ferroelectric material upon 

applying an electric field loop, showing switching of polarization between two energetically 

degenerate states. 

 

Upon applying an external electric field loop, typical polarization response in a normal 

ferroelectric material demonstrates a hysteresis loop (called a P-E loop) with two polarization 

switching processes between two energetically degenerate stable states in one cycle, as shown by 

the schematics in Fig. 1-3 (b). Similar to an M-H loop in magnetic materials, in the P-E loop, the 

equilibrium polarization upon decreasing the electric field to zero (i.e., no external field) is called 

the remnant polarization (PR), and the external electric field under which polarization reduces to 

zero is called the coercive field (EC). 

Other than to electric field, the ferroelectric polarization also shows responses to many 

other external stimuli, including thermal, mechanical, magnetic, and optical stimuli [7], 

originating from electro-mechanical, electro-thermal, and magnetoelectric couplings, etc. For 
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example, formation or switching of spontaneous polarization in ferroelectric materials is 

accompanied by a deformation of the crystal lattice, which is called electrostriction, and thus 

polarization can be altered or switched upon an external strain or stress, as a converse effect of 

such electro-mechanical coupling. Due to their ability to respond to multiple fields, ferroelectric 

materials found applications in many technologies, e.g., non-volatile memories, sensors, 

transducers, energy-efficient cooling devices, etc. [8-14].   

1.1.2 Ferroelectric composites and heterostructures 

A composite approach, by which two or more materials are combined within specific 

microstructures, explores the combination of properties of constituent materials, and can greatly 

improve the material performance and design flexibility as compared with single phase materials, 

and expand the range of applicability of materials.  

The resultant properties of a composite can be categorized into sum properties, 

combination properties, and product properties [15]. The sum property manifests itself as the 

average of the property of the constituent phases, e.g. density, heat capacity, etc. Combination 

properties follow more complicated mixing rules, which is dependent on the microstructure of the 

composite. For example, in a ferroelectric/ferroelectric two-phase composite, properties including 

elastic stiffness, dielectric permittivity, piezoelectric coefficient, and spontaneous polarization, 

etc., are all combination properties which can be tuned through manipulating the microstructure. 

Product property is considered as a product of two other properties in different constituent phases, 

e.g., magnetoelectric coupling property emerging in a composite with piezoelectric and 

magnetostrictive phases.  

Microstructural factors including phase connectivity, phase fraction, scales of 

microstructure, phase interface quality, etc., would strongly affect properties and performances of 
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a composite. As shown in Fig. 1-4, a two-phase composite may possess a 0-3 connectivity with 

secondary phase (0-dimensional) particles distributed in a (3-dimensional) matrix or a 1-3 

connectivity with secondary phase (1-dimensional) rods distributed in a (3-dimensional) matrix, 

or a 2-2 connectivity with (2-dimensional) layered structures [16]. The different connectivity 

would result in distinct performances of the composite, suitable for different applications. 

Through microstructure and interface design, the performance of a composite can be optimized 

for specific applications. 

 

 

Figure 1-4. Schematics of composites with 0-3, 1-3, and 2-2 connectivities. 

 

Ferroelectric composites and heterostructures have attracted great interest in past decades 

and seen improving performance for multifunctional applications including sensors, transducers, 

energy storage, etc. For example, magnetic/ferroelectric multiferroic heterostructures show 

magnetoelectric cross-coupling as an emerging property, which can be more than a thousand 

times greater than that in the known single-phase magnetoelectrics [17-19]. Composites 

combining ferroelectric oxides with polymer materials offer enhanced piezoelectric performances 

for application in transducers, with improved flexibility and acoustic impedances [16, 20, 21].  

Theoretical understandings and predictions of the properties can provide useful guidance in 

tuning the functionalities of ferroelectric composites and heterostructures. 
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1.2 Brief introduction to the phase-field model of ferroelectric materials and composites 

Phase-field model is a powerful tool for studying microstructure evolution during phase 

transformations, chemical reaction, transport, etc., and predicting properties of materials with 

arbitrary microstructures [22-25]. Instead of explicit treatment of interfaces, the phase-field 

method employs a diffuse interface description, i.e., using a phase field η(x) (x is the spatial 

position) representing the concentration of a phase (or domain, etc.) which can change 

continuously across the interface. The temporal evolution of the microstructure is modeled by 

solving partial differential equations describing the kinetics of the phase field, which are called 

governing equations of the phase-field model. When combined with the Landau theory describing 

phase transformations, the corresponding order parameters are adopted as the phase field in the 

model. 

The phase-field model is a numerical model which more easily considers spatial 

inhomogeneity of a system with an evolving microstructure as compared with analytical models 

similarly based on Landau theory. It is also a mesoscale model which allows description of 

nanoscale structures including phase interfaces, grain boundaries, and ferroelectric and magnetic 

domain walls yet can also be applied to systems with much larger sizes, e.g., hundred microns 

scale. 

1.2.1 Phase-field model of ferroelectric materials 

In the phase-field model of ferroelectric materials, the evolution of the ferroelectric 

polarization field P(x) is governed by the time-dependent Ginzburg-Landau equation [24], 

 i
Pij

j

FP
L

t P






 



P
                                                       (1-1) 
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where t is time, F is the total free energy of the system as a functional of the polarization field, 

and LP is the kinetic coefficient of polarization evolution related to domain wall mobility. 

Subscripts i,j,k,l,m = 1,2,3 are indices for components of vectors and tensors in an x1-x2-x3 3-

dimensional Cartesian coordinate, and summation convention over repeated subscript indices 

i,j,k,l,m = 1,2,3 are employed herein and throughout the whole dissertation.  F P P  here 

indicates a variational derivative of the total free energy with respect to the polarization order 

parameter;  P F  f P P  is called the driving force of polarization evolution. Equation 1-1 is 

solved using a semi-implicit Fourier spectral method [26] in this dissertation. 

The total free energy F(P) includes the following contributions [24, 27]: 

• Landau free energy FLandau; 

• Polarization gradient energy Fgradient; 

• Electrostatic energy Felectric; 

• Elastic energy Felastic; 

as below, 

Landau gradient electric elasticF F F F F                                              (1-2) 

Following the Landau theory of phase transformations, the ferroelectric Landau free 

energy FLandau is a polynomial of the order parameter P. For example, the 8th-order polynomial 

form is written as [24] 

     

   

 

2 2 2 4 4 4 2 2 2 2 2 2
Landau 1 1 2 3 11 1 2 3 12 1 2 1 3 2 3

6 6 6 4 2 4 2 4 2 4 2 4 2 4 2
111 1 2 3 112 1 2 1 3 2 1 2 3 3 1 3 2

2 2 2 8 8 8
123 1 2 3 1111 1 2 3

6 2 6 2 6 2 6 2 6 2 6
1112 1 2 1 3 2 1 2 3 3 1 3

F a P P P a P P P a P P P P P P

a P P P a P P P P P P P P P P P P

a P P P a P P P

a P P P P P P P P P P P

        


        

   

     



 

   

2
2

4 4 4 4 4 4 4 2 2 4 2 2 4 2 2
1122 1 2 1 3 2 3 1123 1 2 3 2 1 3 3 1 2

3

P

a P P P P P P a P P P P P P P P P d     


x

    (1-3) 
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where higher-order terms are neglected. ai, aij, aijk, and aijkl are 2nd-, 4th-, 6th-, and 8th-order Landau 

coefficients of a material, respectively, which can be constructed from fitting experimental 

measurements on ferroelectric properties, or from ab initio calculations. A similar 6th- (or 4th-) 

order polynomial form is also employed in certain ferroelectric systems with 8th- (or 6th- and 8th-) 

order terms further neglected. On the other hand, the Landau free energy of a linear dielectric (or 

paraelectric) material can be written as a 2nd-order polynomial (see Chapter 2). 

The ferroelectric gradient energy gradientF  is given by [27] 

22 2

3 3 31 2 1 2 1 2
gradient 11 12

1 2 3 1 2 1 3 2 3

2 22

3 31 2 1 2
44

2 1 3 1 3 2

44

1
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1

2

1

2
m

P P PP P P P P P
F g g

x x x x x x x x x

P PP P P P
g

x x x x x x

g
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             

                  

          
          
            





2 22

3 31 2 1 2
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3P PP P P P
d
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                    
             

x

     (1-4) 

g11, g44, and g44m are gradient energy coefficients of a material, related to properties of the 

ferroelectric domain walls including the thickness, energy, and anisotropy, etc. 

The electrostatic energy electricF is given by 

ext 2
electri 0

3
c

1

2

d
i i b iF PE E d 

 
   

 
 x                                          (1-5) 

where Eext and Ed are the external electric field and depolarization field, respectively, κ0 is the 

vacuum permittivity, and κb is the relative background dielectric permittivity [28]. The 

depolarization field Ed arises from the electrostatic interaction and is usually in the opposite 

direction of ferroelectric polarization, thus called the depolarization field. The electrostatic 

condition [29] 

0 0
d
i i

b

i i

E P

x x
 

 
 

 
                                                       (1-6) 
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is assumed to hold at each evolution step, from which Ed can be solved. The electrostatic 

equilibrium equation (Equation 1-6) is a Poisson equation, where a Fourier spectral solution [29] 

is employed in the present dissertation. The contribution of electrostatic energy to the driving 

force is calculated as 

 elastic ext d
P i i if E E                                                       (1-7) 

The elastic energy Felastic is expressed as [30] 

  0 0 3
elastic

1

2
ijkl ij ij kl klF c d      x ,                                        (1-8) 

where c is the elastic stiffness tensor and 0
ε  is the stress-free strain (or eigenstrain) related to the 

local ferroelectric order,  

0 lattice
ij ijkl k l ijQ P P                                                         (1-9) 

Q denoting the electrostrictive coefficient tensor, and lattice
ε  is the stress-free strain of the lattice 

arising from factors other than the polarization order, e.g., lattice mismatch between phases, 

thermal expansion effect, or magnetostriction, etc. Based on Equations 1-8 and 1-9, the 

contribution of the elastic energy to the driving force is further calculated as 

elastic 2 jk jkli lP i Q Pf                                                       (1-10) 

 0
ijkl kl lj ki c    is the local stress field. An elastic equilibrium condition is assumed at each 

evolution step, as expressed by the elastic equilibrium equation: 

   0
j

ij

x





                                                              (1-11) 

with zero external body force. Equation 1-11 is solved using a Fourier spectral scheme [30] in the 

present dissertation.  
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1.2.2 Phase-field model of ferroelectric composites 

For modeling a ferroelectric composite or heterostructure, a fixed phase field ηb(x) 

describing the multi-phase structure is considered, which serves as an additional order parameter 

other than the polarization order. ηb(x) is the local concentration of the b-th phase, with 0 < ηb(x)  

< 1. ηb(x) follows either a sharp interface or diffuse interface description. This allows a spatial 

variation of material properties in the system, expressed as a linear combination of each phase:  

   b b

b

y x x y                                                      (1-12) 

Here y presents material constants including Landau coefficients, background dielectric 

permittivity, elastic stiffness tensor, and electrostrictive coefficient, etc. yb is the material 

constants of the b-th phase. 

 With spatial varying properties, both the electrostatic Poisson equation (Equation 1-6) 

and the elastic equilibrium equation (Equation 1-11) change to partial differential equations with 

spatial-dependent coefficients, which are solved through employing Fourier-spectral iterative-

perturbation methods [31, 32] in the dissertation.  

1.3 Research Objectives 

The main purpose of the present research is to investigate the properties of ferroelectric 

composites and heterostructures using a phase-field model. The specific objectives of the 

dissertation are: (1) to develop several phase-field models describing the piezoelectric, 

magnetoelectric, and electrothermal coupling, of static, relaxational kinetic and ultrafast dynamic 

time scales, in ferroelectric and magnetic/ferroelectric composites and heterostructures; (2) to 

examine linear magnetoelectric cross-coupling in magnetic/ferroelectric composites, focusing on 

microstructure influences; (3) to investigate kinetic properties of elastically coupled colinear 
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ferroelectric and magnetic domains in magnetic/ferroelectric heterostructures; (4) to study 

ferroelectric properties and electrocaloric effect in ferroelectric/relaxor composites; (5) to explore 

transient phenomena during ferroelectric domain evolution under various ultrafast external 

stimuli in ferroelectric oxides. 

 

1.4 Dissertation structure 

This dissertation contains six chapters: (1) Introduction, (2) Predicting effective 

magnetoelectric response in magnetic/ferroelectric composites via phase-field modeling, (3) 

Phase-field study on kinetic properties of elastically coupled magnetic and ferroelectric domains, 

(4) Phase-field study on an anomalous negative electrocaloric effect in a ferroelectric/relaxor 

composite, (5) Phase-field study on inhomogeneous ferroelectric domain dynamics under 

ultrafast stimuli, and (6) Conclusions and future work. 

In Chapter 1, basic concepts of ferroelectric composites and heterostructures are briefly 

introduced. The main research tool of phase-field modeling and research objectives of the 

dissertation are discussed. 

In Chapter 2, a phase-field model coupled with constitutive equations is formulated to 

investigate the magnetoelectric cross-coupling in magnetic/ferroelectric composites. The model 

allows us to obtain static piezoelectric, piezomagnetic, dielectric, and magnetoelectric properties 

under a given magnetic or electric field, from the local distributions of polarization, 

magnetization, and strain in the composites. Taking CoFe2O4/BaTiO3 composites as an example, 

effective magnetoelectric coupling coefficient, i.e., magnetic-field-induced voltage output (or 

changes in polarization response), is numerically calculated. Influences of several microstructural 
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factors including the phase connectivity and the phase fraction of the composites on the 

magnetoelectric coupling properties are discussed. 

In Chapter 3, a phase-field model is employed to study the kinetic properties of 

elastically coupled colinear magnetic and ferroelectric domains that show one-to-one pattern 

match. A multiferroic layered heterostructure of Co0.4Fe0.6/BaTiO3 is considered as an example. 

Kinetics of the local elastic coupling is investigated by simulating the time-dependent electric-

field-driven responses in local magnetization/polarization/strain distributions and by comparing 

the associated velocities of the magnetic and ferroelectric domain walls. The simulation reveals 

the electric-field-driven magnetic domain and domain wall kinetics with an alternating 

occurrence of local magnetization rotation and coupled motion of magnetic and ferroelectric 

domain walls with almost identical velocities. 

In Chapter 4, we investigate an anomalous negative electrocaloric effect in the P(VDF-

TrFE)/P(VDF-TrFE-CFE) ferroelectric/relaxor composite which shows cooling phenomenon 

upon applying an electric-field pulse without subsequent heating, through applying a phase-field 

model. Evolution of domain structure and changes in dipole ordering upon applying the electric 

field pulse is simulated. It is revealed that existence of the P(VDF-TrFE) normal ferroelectric 

phase and P(VDF-TrFE-CFE) relaxor phase act to stabilize the ordered and disordered state, 

respectively, leading to such anomalous electrocaloric effect. At room temperature, an adiabatic 

cooling of ΔT = -2.6°C on applying E = 30MV/m is found. The influence of operating temperature 

is predicted and discussed. 

In Chapter 5, a phase-field model is developed for understanding and predicting the 

dynamical responses of both ferroelectric and ferroelastic domain patterns under ultrafast 

electrical, thermal, mechanical, and optical stimuli, with advanced numerical algorithms for 

solving the governing dynamical equations. As an example, the nanoscale and mesoscale domain 

dynamics of BaTiO3 crystals under ultrafast stimuli are investigated. Deterministic 180° 
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ferroelectric domain switching through the application of ultrashort mechanical stimuli is 

demonstrated. Furthermore, a laser-pulse-induced domain dynamics showing distinct responses 

determined by both the orientation and the location of the domains, as observed experimentally, is 

theoretically examined. Mesoscale mechanisms of ferroelectric domain and domain wall 

responses, as well as intrinsic lattice vibrations, are revealed.  

In Chapter 6, the dissertation is summarized with some major conclusions listed. Some 

future directions related to the topic of the dissertation, including microstructure design of 

piezoelectric composites, phase-field study on ultrafast dynamics in magnetic/ferroelectric 

heterostructures, and phase-field study on ultrafast dynamics in electronic phase transitions, are 

further discussed. 
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Chapter 2  
 

Predicting effective magnetoelectric response in magnetic/ferroelectric 

composites via phase-field modeling 

2.1 Introduction 

Magnetoelectric composites of magnetic and ferroelectric materials offer advantages over 

most single-phase magnetoelectric materials due to their strong magnetoelectric coupling effect at 

room temperature and great design flexibility [17, 33-37]. The magnetoelectric effect in such 

composites is normally understood as a product property of piezoelectricity in ferroelectrics and 

piezomagnetism in magnets [38], leading to an electric polarization excited by a weak AC 

magnetic field (with either low or high frequencies) oscillating in a DC bias magnetic field, i.e., 

the direct magnetoelectric effect, or conversely, a modulation of magnetization upon DC or AC 

electric fields. Among them, the direct magnetoelectric effect has been extensively studied in 

various magnetoelectric composites since the early 1970s, and can be potentially used to develop 

highly sensitive magnetic field sensors [39-41], electric current probes [42], novel 

magnetoelectric read heads [43], and energy harvesters [44].  

Theoretical approaches for such direct magnetoelectric effect include the early parallel-

series type model [45], the Green’s function technique (multiple-scattering approach) [38, 46, 47] 

micromechanical models [48-50] and the Landau-Ginzburg-Devonshire thermodynamic theory 

[51-55]. Although powerful, these continuum media methods are not capable of describing the 

spatial distribution of electric polarization, magnetization and elastic fields upon applying an 

external magnetic field. Such mesoscopic insights, however, can provide more explicit guidelines 
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for the improvement of the overall magnetoelectric responses based on a deeper understanding of 

the microstructure-property correlation. 

In the present work, based on a phase-field model [23, 24, 56-61] coupled with 

constitutive equations, we can simulate both the effective magnetoelectric coupling coefficients 

and the local distributions of electric polarization (i.e., ferroelectric domains) for bulk 

magnetoelectric composites with magnetic inclusions in a ferroelectric matrix. The obtained 

magnetoelectric coefficients are compared with existing results calculated by the Green’s 

function approach [38]. Influences of several parameters including the phase fraction and aspect 

ratio of the magnetic inclusions on the magnetoelectric coefficient were investigated.  

2.2 Phase-field model for magnetoelectric composites with linear properties 

Let us consider a typical two-phase bulk magnetoelectric composite with periodically 

aligned cuboid-shaped CoFe2O4 (CFO) inclusions embedded in a BaTiO3 (BTO) matrix, as 

shown in Fig. 2-1. In particular, by changing the aspect ratio /r c a  of the CoFe2O4 cuboids, 

the 2-2 type laminate ( 0.05r  ), 0-3 type ( 0.05 10r  ) particulate and 1-3 type ( 10r  ) rod 

magnetoelectric composites can be described,6 where each number denotes the connectivity of 

each phase [16], as illustrated in Figs. 2-1(b)~(d), respectively. 
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Figure 2-1. (a) Schematic illustration of the chosen simulation zone of the phase-field model, 

where a cuboid CoFe2O4 inclusion with a dimension of a a c   is embedded in a BaTiO3 matrix. 

The composite is described by periodically aligning CoFe2O4 particles with a uniform separation 

distance d within all three directions. Composites of different phase connectivities including (b) 

2-2, (c) 0-3 and (d) 1-3 types are obtained by varying the aspect ratios r = c/a of the CoFe2O4 

inclusions. The CoFe2O4 and BaTiO3 phases are assumed to be intimately contacted at their 

interface region, with no gas phase (porosity) incorporated in the model. 

 

2.2.1 Phase-field description of magnetoelectric coupling based on constitutive equations 

As an example, uniform spontaneous magnetization MS and polarization PS (magnetic 

and ferroelectric single domains) along the out-of-plane axis are assumed for the CoFe2O4 and 

BaTiO3 phases, respectively. Therefore, it is expected that it exhibits longitudinal magnetoelectric 
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effect6 based on the cross-product of the piezomagnetic and piezoelectric effects. In this case, 

relations between the stress σ , strain ε , electric displacement D, electric field E, magnetic 

induction B and magnetic field H can be described by the following linear constitutive equations 

[38], i.e., 
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for the CoFe2O4 and BaTiO3 phases, respectively. Here c, 0 , rκ , 0  and rμ  denote the elastic 

stiffness, dielectric permittivity of vacuum, relative dielectric permittivity, magnetic permeability 

of vacuum and relative magnetic permeability, respectively. e and q are the piezoelectric and 

piezomagnetic coefficient tensors, respectively. The superscript T denotes the transpose of a 

tensor matrix, while presuperscripts m and e denote the constants of CoFe2O4 (magnetic) and 

BaTiO3 (ferroelectric) phases, respectively. The room-temperature (T = 298K) material constants 

are listed in Table 2-1 [62-64].  

 

Table 2-1. Material constants of CoFe2O4 and BaTiO3. 

 

Material Constant Unit CoFe2O4 BaTiO3 

c11 GPa 286 166.2 

c12 GPa 173 76.5 

c33 GPa 269.5 161.4 

c13 GPa 170.5 77.4 

c44 GPa 45.3 43.0 
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μr33 1 125 8 

q31 N/(A·m) 580.3 0 

q33 N/(A·m) 699.7 0 

κr33 1 10 1350 

e31 C/m2 0 -4.22 

e33 C/m2 0 18.6 

 

The direct magnetoelectric coupling coefficient in magnetoelectric composites can be 

extracted from the linear field-dependence under a relatively small applied magnetic field [35], 

i.e., 

0 .

T T

r

T
r





   


  


 

σ cε e E q H

D eε κ E αH

B qε α E + μ H



                                                   (2-3) 

Note that the magnetoelectric coefficient tensor α in Equations 2-1 ~ 2-3 is absent in both the 

magnetic and ferroelectric phases (Equations 2-1 and 2-2). 

The microstructure (i.e., magnetic/ferroelectric domains, phase distribution) of the bulk 

magnetoelectric composite can be conveniently described within the framework of the phase-field 

model. Three non-conserved order parameters are utilized, including a local magnetization field 

1 2 3( ) ( , , )M M MM x , a local polarization field 1 2 3( ) ( , , )P P PP x , and a phase order parameter 

( ) x  which describes the spatial distribution of the two phases, with ( ) 1 x  for the CoFe2O4 

phase and ( ) 0 x  for the BaTiO3 phase; x is the position vector herein. Furthermore, temporal 

evolution of both the local magnetization and polarization distributions can be described by the 

Allen-Cahn equation [65], i.e., 
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                                                         (2-4) 
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where L1 and L2 are kinetic coefficients related to evolution kinetics, and f is the local free energy 

density. Particularly, the formulation of the free energy density f in the present work is 

constructed based on previous phase-field models [24, 57] such that by minimizing it following 

Equation 2-4, the constitutive equations (Equations 2-1 and 2-2) could be automatically satisfied.  

The total free energy is given by 

magnetic electric elastic ,f f f f                                                  (2-5) 

where magneticf , electricf  and elasticf  are the magnetic, electric, and elastic energy, respectively, 

expressed as, 
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       0 0 0 0
elastic = 1 ,m M e P

IJ I I J J IJ I I J Jf c c                
   

+                 (2-8) 

where summation conventions over , , , 1,2,3i j k l   (or , , , 1~ 6I J K L   where a Voigt notation is 

adopted) are employed. r

μ , r


κ , cM and cP are the stress-free relative magnetic permeability, 

stress-free relative dielectric permittivity, constant magnetization elastic stiffness and constant 

polarization elastic stiffness, given by m m m m m
r ij r ij iK jL KLq q s    , e e e e e

r ij r ij iK jL KLe e s    , 

0/ [ ( 1)]m M m m m m
IJ IJ kI kJ r kkc c q q      and 0/ [ ( 1)]e P e e e e

IJ IJ kI kJ r kkc c e e     , respectively. s 

(=c-1) is the elastic compliance tensor. Hext, Hd, Eext and Ed are the external magnetic, 

demagnetization, external electric and depolarization fields, respectively. 
0
ε  is the stress-free or 

phase transformation strain, which can be calculated as, 
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                                     (2-9)  

The demagnetization field Hd and the depolarization field Ed for the given distributions of 

magnetization and polarization are calculated by numerically solving the magnetostatic and 

electrostatic equations under periodic boundary conditions, i.e., 

 0

      
,

1

i i i i

i i i i

H x M x

E x P x

      

     

                                             (2-10)  

where xi is the i-th component of the position vector in the Cartesian coordinates.  The solution 

for Equation 2-10 is obtained by introducing the magnetic scalar potential and electric potential, 

which are solved in the Fourier space; the details are given in Refs. [66] and [29]. The elastic 

field is obtained by solving the mechanical equilibrium equations 

 0 0ijkl kl kl jc x                                                       (2-11)  

using an iteration method developed for materials with elastic inhomogeneity [67, 68] based on 

Khachaturyan’s microelasticity theory [69]. Note that a 3 3  strain tensor εkl is used in Equation 

2-11, while the Voigt notation is adopted elsewhere for simplicity. A clamped elastic boundary 

condition is employed, i.e., no macroscopic shape deformation happens for the composite 

materials during evolution.  

2.2.2 Simulation setup 

The basic building block of the magnetoelectric composites (see Fig. 2-1(a)) is 

discretized into a 3-dimensional array of cubic grid cells, i.e., n1Δl × n2Δl × n3Δl, where n1, n2 and 

n3 denote the numbers of grid cells along the x1, x2, and x3 axes, respectively, with a total grid cell 

number of around n1n2n3 = 300,000; Δl is the size of each grid in the real space. By properly 

choosing the grid numbers along each cubic axis and allocating the grid cells for BaTiO3 and 
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CoFe2O4 regions, systems with different aspect ratios r and phase fractions Vf of the CoFe2O4 

inclusions can be modeled. Δl is taken as 2.5 nm, corresponding to a total system size of n1Δl × 

n2Δl × n3Δl = 4,500,000nm3. In this case, the lateral size of the CoFe2O4 inclusions, e.g., a = 

28.2nm for r = 100 and Vf = 0.5, would be comparable to experiments (i.e., 20~30nm, Ref. [70]). 

Through solving Equation 2-4 using the forward Euler method [71], the magnetization and 

polarization distributions responsive to a given external field are obtained, and the effective direct 

magnetoelectric response of the composite can then be calculated upon local 

magnetization/polarization/strain fields achieving an equilibrium.  

2.3 Results and discussion 

2.3.1 Elasticity-mediated polarization response to an external magnetic field 

Figures 2-2(a)~(c) show the equilibrium spatial distributions of the local strain and 

polarization fields in the 0-3 type, 2-2 type, and 1-3 type CoFe2O4/BaTiO3 composites, 

respectively, in response to an external magnetic field along the positive x3 axis, i.e., 

ext
3 100 A / mH  . The volume fraction of the CoFe2O4 phase Vf is fixed at 0.5. Upon this field, 

the magnetic CoFe2O4 phase would expand in the x1-x2 plane [see the strain distributions of ε2 

(=ε1) on the left of Figs. 2-2(a)~(c)] due to its positive piezomagnetic coefficient 32 31( )q q , 

which leads to a compression near the contact region of the ferroelectric BaTiO3 phase in the 

lateral direction (denoted as region 1), i.e., a negative strain ε2(=ε1), due to zero shape 

deformation in the whole composite under the clamped elastic boundary condition. Accordingly, 

such in-plane compressive strains in the BaTiO3 phase induce a positive longitudinal polarization 

P3 due to its negative piezoelectric coefficient 32 31( )e e  [see the polarization distributions on the 
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right of Figs. 2-2(a)~(c)]. Furthermore, CoFe2O4 also expands along the longitudinal x3 direction 

[see the strain distributions of ε3 in the middle of Figs. 2-2(a)~(c)] upon the positive ext
3H  because 

of a positive q33. It compresses its intimately contacted BaTiO3 phase region in the longitudinal 

direction (denoted as region 2), i.e., a negative 3 , and thus induces a negative P3 in region 2 as 

33 0e  .  
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Figure 2-2. Equilibrium distributions of the lateral strain 2 , longitudinal strain 3 , and the 

longitudinal polarization P3 responsive to an longitudinally applied magnetic field 
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3 100 A / mH   , in composites of (a) 0-3 ( 1r  ), (b) 2-2 ( 0.02r  ) and (c) 1-3 ( 10r  ) 

connectivities, with the CoFe2O4 phase fraction Vf taken as 0.5. For clarity, only 1/8 (half length 

in each dimension) of one building block is shown. Dashed lines indicate the CoFe2O4/BaTiO3 

phase boundaries and the partition of lateral and longitudinal regions in the BaTiO3 phase. 

 

Hence, the average polarization response 3P  of the composite is determined by the 

competition between the lateral and longitudinal regions. For the laminated 2-2 type composites 

with a small r (see Fig. 2-2(b) for the case of r = 0.02), the BaTiO3 phase is dominated in volume 

by the longitudinal region 2, leading to an overall negative 3P  as discussed above. However, the 

magnitude of 3P  is small in such laminate geometry due to the strong longitudinal depolarization 

and demagnetization effect (Equation 2-10). For 0-3 type composites (see Fig. 2-2(a) for the case 

of 1r  ), the BaTiO3 phase is composed of region 1 and region 2 with comparable volumes. 

However, the contribution from the lateral region 1 is dominant due to the stronger depolarization 

in the longitudinal region 2, and therefore the composite exhibits a positive 3P . It also shows a 

larger magnitude than that in laminated composites due to the enhanced value of both the strain ε2 

and ε3 (Fig. 2-2(a)) from the reduced longitudinal demagnetization (and therefore a larger M3) in 

such particulate magnetoelectric composites. Finally, in the 1-3 type magnetoelectric composites 

with an even larger aspect ratio r (= 10 in Fig. 2-2(c)) for the CoFe2O4 rod, the volume of the 

lateral region 1 becomes dominant, leading to a positive 3P . The greatly reduced longitudinal 

depolarization and demagnetization effects in such vertical geometry further enhance the 

magnitude of this positive 3P , indicating a very strong magnetoelectric coupling. evolution.  
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2.3.2 Influence of the aspect ratio of inclusions 

With these magnetic-field-induced polarization distributions in mind, the effective direct 

magnetoelectric coefficient ij  (in the unit of s/m) can be easily calculated following the 

constitutive equations (Equation 2-3), expressed as, 

ext .ij i jP H                                                              (2-12)  

For illustration, Fig. 2-3(a) presents the effective magnetoelectric coefficient 33  of 

CoFe2O4/BaTiO3 composites with a fixed CoFe2O4 phase fraction Vf = 0.5 as a function of the 

aspect ratio r. The composite shows a small and negative 33  at a low r below 0.05 (2-2 type). As 

aspect ratio increases, 33  undergoes a sign change and then increases significantly at r > 1, 

indicating a reversal of the net longitudinal polarization 3P  from downward to upward direction 

as discussed above. 
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Figure 2-3. Effective (a) magnetoelectric coefficients (enlarged scale of the red rectangle part 

shown as inset), (b) magnetoelectric voltage coefficients (relative dielectric permittivity shown as 

inset), (c) piezoelectric coefficients and (d) piezomagnetic coefficients of the CoFe2O4/BaTiO3 

composites as a function of the aspect ratio r . The volume fraction of the CoFe2O4 phase is set to 

be 0.5. 

 

Moreover, the effective magnetoelectric voltage coefficient 33E  (in the unit of 

1 1mVcm Oe 
) can be written as  33 33 0 33 .E r      The relative dielectric permittivity rκ  of 

the composite can be calculated following Equation 2-3 with the equilibrium average electric 

displacement D  obtained under an applied external electric field Eext, 

 ext
0 .r ij i jD E                                                        (2-13) 
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We employ a small electric field ext
3E  = 50V/cm along the positive x3 axis. Dependences 

of the effective 33E  and r   on the aspect ratio r are shown in Fig. 2-3(b) and its inset, 

respectively. As seen, the composite shows a dielectric permittivity starting from a small

48r    for r = 0.01.   The dielectric constant is greatly enhanced with an increasing r to a large

682r    for r = 200, which can be explained in the context of an equivalent serial circuit of the 

low-capacitance CoFe2O4 and the high-capacitance BaTiO3 for the 2-2 laminated geometry 

gradually changing to an equivalent parallel circuit for the 1-3 rod geometry. As a combined 

property of 33  and r  , the magnetoelectric voltage coefficient 33E  is positive in the 

laminated composites (r < 0.05), undergoes a sign change at around r = 0.05 (belonging to 0-3 

particulate composites), and then increases remarkably on increasing r in 0-3 ( 0.05 10r  ) 

particulate and 1-3 ( 10r  ) rod composites. 

Besides the magnetoelectric response, the piezoelectric and piezomagnetic properties of 

the composite can also be obtained by examining the induced average polarization and 

magnetization upon imposing a uniaxial net strain J  (taken as 0.01% herein), i.e., iJ i Je P   

and 0iJ i Jq M  . Shown in Figs. 2-3(c) and 2-3(d) are the variations of the longitudinal 

piezoelectric coefficient e3I ( 1,3I  ) and piezomagnetic coefficient q3I ( 1,3I  ) with the aspect 

ratio r. Both coefficients gradually increase with an increasing r, indicating a higher longitudinal 

piezoelectric and piezomagnetic coupling in the 1-3 rod composites, which would allow a 

stronger elastic interaction across the CoFe2O4/BaTiO3 interface and hence a larger direct 

magnetoelectric effect. By contrast, the average longitudinal polarization 3P  and magnetization 

3M  in the 2-2 laminated composites would be suppressed by large longitudinal depolarization 

and demagnetization fields, respectively, leading to smaller  piezoelectric and piezomagnetic 

coefficients and a weaker direct magnetoelectric coupling. 
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2.3.3 Influence of phase fractions 

With We further study the influence of the phase fraction Vf on the direct magnetoelectric 

coefficient, as shown in Fig. 2-4(a). The obtained results agree well with previous predictions 

based on Green’s function approach6 in CoFe2O4/BaTiO3 composites with ellipsoidal CoFe2O4 

inclusions. As can be seen, for all aspect ratios studied, the direct magnetoelectric coefficient 33

, which is zero in the single CoFe2O4 and BaTiO3 phases (i.e., Vf = 1 and 0), emerges in the 

composite and reaches a maximum at a certain phase fraction.  For instance, the maximum value 

of 33  at r = 100 is about 2.81×10-9
 s/m at Vf ≈ 0.59 (Fig. 2-4(a)). To better understand this, the 

elastic interaction between the BaTiO3 and CoFe2O4 phases is examined. For the clamped case 

studied, the average field-induced strain in the CoFe2O4 and BaTiO3 phases, i.e., m
ε  and e

ε , 

would be related as  f f1m eV V   ε ε , where f
mV  ε  could be considered as the average strain 

transferred across the CoFe2O4/BaTiO3 interface, i.e., the strength of the elastic interaction. As an 

example, Fig. 2-4(b) shows the f
mV ε  as a function of Vf in composites with different aspect 

ratios r. The maximum f 1
mV   appears at medium phase fractions (e.g. Vf ≈ 0.59 for r = 100), 

where both m
ε  and e

ε  can reach a relatively large value and hence ensure the largest 

magnetoelectric coupling coefficient 33  (Fig. 2-4(a)).   
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Figure 2-4. Effective (a) magnetoelectric coefficients, (c) relative dielectric permittivity and (d) 

magnetoelectric voltage coefficients of the CoFe2O4/BaTiO3 composite with different aspect 

ratios r as a function of the phase-fraction Vf. (b) f 1
mV   of the composite with different aspect 

ratios r upon applying a magnetic field ext
3H =100A/m, as a function of the phase-fraction Vf. 

 

It is also worth noting that the phase fraction Vf for the maximum α33 gradually shifts 

towards the CoFe2O4-rich side (i.e., Vf > 0.5) from 0.59 to 0.74 as the aspect ratio r decreases 

from 100 to 1 (see Fig. 2-4(a)). This is because higher volume fractions Vf would be required to 

compensate the shrinking area of contact interface in the cases of 0-3 particulate composites 

compared to the relatively large interface area in the 1-3 rod composites such that the transferred 

field-induced strain f
mV  ε  can remain at a high value. 
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On the other hand, the effective longitudinal dielectric constant r   rapidly decreases with 

increasing CoFe2O4 phase fraction Vf (Fig. 2-4(c)) due to the much smaller dielectric permittivity 

of the CoFe2O4, while it demonstrates a Vf dependence characteristic of an equivalent serial 

circuit of the low-capacitance CoFe2O4 and the high-capacitance BaTiO3 for the 2-2 type 

structure (r = 0), and of an equivalent parallel circuit for the 1-3 type structure (r = 100). Figure 2-

4(d) show the effective magnetoelectric voltage coefficient 33E  as a function of CoFe2O4 phase 

fraction Vf. As shown, the strongest magnetoelectric voltage response emerges in heavily 

CoFe2O4-rich side where r   is small.  For example, the largest 33E is obtained as 

783 mV/(cmOe)    at Vf = 0.93 and r = 100.  

2.3.4 Magnetoelectric coupling in thin film nanocomposites 

Although CoFe2O4/BaTiO3 bulk composites with 1-3 type rod geometry exhibit the 

largest magnetoelectric coupling, it can be further enhanced in thin film and island 

nanostructures, through releasing the mechanical clamping in the longitudinal direction or both 

direction of the CoFe2O4 rods. Through phase-field simulation, we demonstrate (see Fig. 2-5) the 

enhanced magnetoelectric response in 1-3 type thin film and island nanostructures, compared 

with that of a clamped bulk. In addition, the thin film composites also show a sign change of 

longitudinal polarization response on altering aspect ratio r of the CoFe2O4 rods, due to the 

competition between lateral and longitudinal elastic interactions, similar to the elastic interaction 

discussed above in bulk composites.  
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Figure 2-5. 1-3 type CoFe2O4/BaTiO3 composites with thin film and island nanostructures show 

an enhanced magnetoelectric coupling property compared with 1-3 bulk composites with the 

same phase fraction. (a)~(c) Schematics of 1-3 type CoFe2O4/BaTiO3 (a) bulk composites and 

composites with (b) thin film nanostructure and (c) island nanostructure. (d) Equilibrium 

polarization response P3 as a function of the aspect ratio r = h/a of the CoFe2O4 rods in 1-3 type 

island nanostructure and thin film nanostructure, respectively, compared with the polarization 

response in a 1-3 bulk composite, on applying an external magnetic field. Volume fraction of the 

CoFe2O4 phase is fixed at Vf = 0.35 for all composite structures. 

 

 

Conclusion 

In this chapter, a phase-field model coupled with constitutive equations has been 

developed to investigate the direct magnetoelectric coupling in bulk multiferroic 
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magnetic/ferroelectric composites. It provides a detailed examination of the composites that goes 

from the mesoscopic modeling of the local polarization/elastic field distributions (domains) to the 

predictions of effective magnetoelectric response within the context of the continuum media 

theory under a periodic boundary condition. These functional properties have proven to be 

strongly dependent on several microstructural factors of the composites including the phase 

fraction and phase connectivity. Such a simple phase-field based multi-scale approach should also 

have broad potential applications in predicting various effective properties such as the 

piezoelectric [72], piezomagnetic [73], dielectric [74], and elastic [75] responses in composite 

materials, which are directly deduced from the response of the complex microstructure to external 

fields. 

This model can also be extended to include non-linear contributions to the effective 

properties, e.g., from domain wall motion, by incorporating magnetic exchange energy [66] and 

ferroelectric gradient energy [24, 27] in total free energy to describe magnetic and ferroelectric 

domain walls, respectively.  
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Chapter 3  
 

Phase-field study on kinetic properties of elastically coupled magnetic and 

ferroelectric domains 

3.1 Introduction 

The scaling law for ferroics [76, 77] indicates that the domain width of magnets and 

ferroelectrics become comparable only when the thickness of ferroelectrics is much larger. 

Indeed, it has been recently demonstrated in multiferroic layered heterostructures with magnetic 

thin films directly grown on ferroelectric BaTiO3 (BTO) substrates [78-85] that the domains in an 

as-grown magnetic thin film have not only the same width but also a surprising collinear 

alignment with the contacted ferroelectric domains. This further enables a precise control over the 

magnetic domain wall motion by electrically driving its elastically coupled ferroelectric domain 

wall [86, 87]. Such one-to-one match between magnetic and ferroelectric domains offers new 

opportunities for the creation of periodic magnetic domain patterns used for magnonic devices 

[88], and particularly, the low-power spintronic devices based on electro-strain-driven magnetic 

domain orientation [89, 90] or domain wall propagation [91, 92].  

Theoretically, both ab initio calculations [80] and continuum-scale models [83] have 

been employed to describe the variations in the average magnetization as a function of electric 

field and/or temperature for such multiferroic magnetic/ferroelectric heterostructures. However, a 

rigorous 3-dimensional mesoscale model that can simulate the kinetic evolution of these elastic 

coupled magnetic and ferroelectric domains under external magnetic/electric field, is still lacking.  
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In this work, a phase-field model is developed to study the kinetics of such local elastic 

coupling between magnetic and ferroelectric domains in multiferroic heterostructures. We 

simulate the evolution of both types of domains upon applying an electric field to the 

heterostructure including field-driven changes in domain morphology and domain wall velocity. 

The simulation results agree with existing experimental observations. For illustration, we choose 

a model heterostructure with a polycrystalline Co0.4Fe0.6 (CoFe) magnetic film deposited on a 

BaTiO3 single crystal substrate that initially has a periodic in-plane ferroelectric domain pattern 

[78, 81, 82] .  

3.2 Phase-field model 

To overcome the challenge to model the large discrepancy between the thicknesses of the 

BaTiO3 substrate (μm~mm) and the CoFe film (~nm), the phase-field modeling is carried out in 

two steps to mostly capture the mechanical boundary conditions in real systems: 1) simulating 

ferroelectric domain evolution and associated ferroelastic strain distribution in bulk BaTiO3 

substrate (Fig. 3-1(a)); 2) simulating magnetic domain evolution in CoFe film within a film-

substrate system (Fig. 3-1(b)) [24], where effects of ferroelastic strains from the BaTiO3 substrate 

are considered by employing a modified elastic boundary condition.  
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Figure 3-1. (a) Schematics of the simulation system in Step 1 of the phase-field model: 

determining ferroelectric domain structures in a fully electroded BaTiO3 crystal substrate with 

uncompensated bound charges (see the circle) (b) Step 2: determining magnetic domain structures 

in the CoFe film in a film-substrate system. The simulation zone is marked by dashed lines, 

where a unique displacement boundary condition relating to polarization distribution (Equation 3-

10) is applied at the bottom of the substrate at x3 = -hs.  

 

3.2.1 Phase-field model on the ferroelectric domains 

In Step 1, the total size of the bulk BaTiO3 crystal is set as 3800 800 400 nm  , which is 

discretized into a 3-dimensional array of 160 160 80   cells. The ferroelectric domain structure is 

described with a local polarization field P(x), where x is the position vector.  

Temporal evolution of the polarization field follows the time-dependent Ginzburg-

Landau equation, i.e., 

,P

F
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
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
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

P

P
                                                          (3-1) 

where LP is a kinetic coefficient related to ferroelectric domain wall mobility [93] . F is the total 

free energy of the BaTiO3 crystal, Landau gradient electric elasticF F F F F    . Here FLandau and Fgradient 

are the ferroelectric bulk free energy and ferroelectric gradient energy, respectively, with 

mathematic expressions given in Equations 1-3 and 1-4. Felectric is the electrostatic energy, 
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                                             (3-2) 

where Ed and Eext denote the depolarization field and the external electric field, respectively; 

summation conventions over repeat indices (i = 1,2,3) are employed. A mixed electrostatic 

boundary is considered in solving Ed, in which the bound charges at the top and bottom 

electrodes are partly compensated (Fig. 3-1(a)), through treating the depolarization field as the 
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sum of a heterogeneous field Ed,A and a homogeneous field Ed,B, i.e., Ed
 = E

d,A
 + E

d,B. Ed,A is 

calculated by numerically solving the electrostatic equation 

0 0
d

b i i

i i

E P

x x
 

 
 

 
                                                       (3-3) 

using a short-circuit condition [29] on top and bottom boundaries, where κ0 and κb are the vacuum 

and background dielectric permittivity [28], respectively. Ed,B is given by  ,
0  /d B

bk   E P , in 

which P  is the average polarization in the system, and k is a factor determined by both the shape 

of the BaTiO3 substrate and the fraction of uncompensated bound charges, which would affect the 

volume fraction of in-plane and out-of-plane ferroelectric domains at the remnant state. Here k is 

taken as 1% to describe the presence of a small fraction of uncompensated bound charges at the 

electrode/BaTiO3 interface. The elastic energy Felastic is expressed as, 

  0 0
elastic

1
,

2
ijkl ij ij kl klF c dV                                              (3-4) 

where c is the elastic stiffness tensor and ε the total strain. 
0
ij  (=QijklPkPl, Q denoting the 

electrostrictive coefficient tensor) is the stress-free (or ferroelastic herein) strain during 

ferroelectric phase transitions (e.g., appearance of spontaneous polarization and polarization 

switching). The total strain ε(x) is numerically solved based on Khachaturyan’s mesoscopic 

elasticity theory [69] under a 3-dimensional periodic stress-free boundary condition. The 

evolution of ferroelectric domains (Equation 3-1) is solved numerically using the semi-implicit 

Fourier spectral method [26]. Material parameters for the BaTiO3 bulk crystal are 

   7
1 8.0 10 1/ tanh 160 / 1/ tanh 160 / 390 ,T        8

11 1.154 10 ,     8
12 6.530 10 ,    

9
111 2.106 10 ,     

9
112 4.0 091 1 ,    

9
123 6.6 1088 ,    

10
1111 7.59 10 ,    
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10
1112 2.1 193 0 ,   10

1122 2.221 10 ,     10
1123 2.416 10   , Q1 = 0.11, Q2 = -0.045, Q4 = 

0.029, κb
 = 10, 12

11 9.1 10 ,s    12
12 3.2 10 ,s     12

44 8.2 10s    (in SI units) [28, 94-96]. 

The ferroelastic strains in the BaTiO3 substrate include (1) the structural strain from the 

cubic to tetragonal phase transition that can be partly transferred to CoFe film during its growth 

[81]; and (2) the electric-field-induced strain during 90° ferroelectric domain switching [97], 

which normally can be fully transferred to the CoFe film [98, 99] . As mentioned above, spatial 

distribution of such ferroelastic strains will be used as the elastic boundary condition of the 

substrate (see discussion later) in Step 2 for simulating magnetic domain evolution in the CoFe 

film. The simulation zone of the film-substrate system (Fig. 3-1(b)) is discretized into a 3-

dimensional array of 160 160 32   cells, wherein 12 layers of CoFe are placed over 15 layers of 

BaTiO3 substrate and the uppermost 5 layers are air. The size of each cell is taken as 
35 5 1 nm 

, and hence the thicknesses of the CoFe film (i.e., hf) and the top layers of BaTiO3 substrate (i.e., 

hs) are 12 nm and 15 nm, respectively. Three sets of order parameters are used to describe such 

CoFe/BaTiO3 system, including a local polarization field P(x), a local magnetization field M(x)  

= MSm(x) where MS is the saturation magnetization and m the normalized magnetization, and a 

phase field variable η(x) describing the spatial distribution of the two phases, with η(x) = 1 in the 

CoFe film and η(x) = 0 in the BaTiO3 substrate.  

3.2.2 Phase-field model on the magnetic domains 

The temporal evolution of the magnetization field is described by the Landau-Lifshitz-

Gilbert equation, i.e., 

   2 0
0 eff eff1 ,

St M

 
 


      



M
M H M M H                               (3-5) 
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where α is the damping constant, γ0 is the gyromagnetic ratio, and Heff is the effective magnetic 

field, given by   eff 01/ /F   H M . The free energy F for CoFe is calculated as 

exch ms external elastic ,F F F F F     where Fexch, Fms, and Fexternal are the magnetic exchange energy, 

magnetostatic energy, and external magnetic field energy, respectively, with the same 

formulations as in Ref. [100]. The expression of elastic energy Felastic is the same as Equation 3-4, 

but here the stress-free strain 
0
ij  is written as, 

   

   

3 1
2 30

3
2

1 ,
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S i j ijkl k l

ij

S i j ijkl k l

m m Q P P i j

m m Q P P i j

  


  

         
 

    


                               (3-6) 

where λS is the saturation magnetostriction, and the polarization field distribution P relating to the 

ferroelastic strain QijklPkPl is taken from that in the top few layers of the BaTiO3 substrate from 

Step 1. The total strain is calculated as the sum of a homogeneous strain ε  and a heterogeneous 

strain δε(x), i.e.,     ε x ε ε x . Here ε  (including 11 , 22 , and 12 ) are calculated as 

BTO BTO,growth  ( , =1,2),ij i gj ijr i j     where BTO,growth
ε  and BTO

ε  are the volume averages of the 

spatially varying strain ε(x) within the top 15 layers of the BaTiO3 substrate during film growth 

and under the applied electric field, respectively, taken from Step 1, and rg is the fraction of the 

relaxed strain taken as 0.9 according to experimental measurements [81]. In doing so, both the 

partial relaxation of the initial structural strain during the magnetic thin film growth and the full 

transfer of electric-field-induced strain are incorporated. The heterogeneous strain δε, the volume 

average of which is zero [100] , is computed as, 

1
.

2

ji
ij

j i

uu

x x


 
  

   

                                                     (3-7) 
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Here u(x) is the spatial distribution of local displacements, which can be obtained by solving the 

elastic equilibrium equation 0ij jx   , expanded as, 

2 0

.k kl
ijkl ijkl

l j j

u
c c

x x x

 


  
                                                     (3-8) 

Note that a stress-free boundary condition is applied at the top surface of the film (x3 = hf, see Fig. 

3-1(b)), i.e., 

3

3

0
3 3 ,

f

f

k
i kl i kl kl

x h
l x h

u
c c

x









                                                (3-9) 

while a displacement boundary condition is imposed at the bottom of the substrate (x3 = -hs, see 

Fig. 3-1), expressed as [30], 

3

BTO BTO,growth  ( =1,2,3),
s

i i igx h
u u ur i


                                        (3-10) 

where uBTO,growth and uBTO are the displacement distributions in the top layers of the BaTiO3 

substrate during film growth and under the applied electric field, respectively. Equation 3-8 is 

solved by utilizing a superposition methodology [30] . The evolution of magnetic domains 

(Equation 3-5) is solved numerically using semi-implicit Fourier spectral method and Gauss-

Seidel projection method [101]. Material parameters of CoFe are 519.099 10 ,SM    

41.39 10S
  , α = 0.025, 9

11 257 10 ,c    9
12 162 10 ,c    9

44 105 10c    (in SI units) [102-

104]. 
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3.3 Results and discussion 

3.3.1 Pattern copy between elastically coupled magnetic and ferroelectric domains 

Utilizing the above-described phase-field model, we can easily reproduce the 

experimentally observed [78, 81] pattern copy between the elastically coupled magnetic and 

ferroelectric domains in the CoFe/BaTiO3 heterostructure. As illustrated in in Fig. 3-2(a), 

alternating a1 and a2 in-plane ferroelectric domains with orthogonal polarizations are stabilized in 

the BaTiO3 substrate before electric field poling, similar as those in experiments [78, 81, 82]. 

This pattern is precisely imprinted to the overlaying CoFe film during its growth through local 

elastic coupling. Such elastic modulation of the magnetic domains can be interpreted based on the 

difference between the two in-plane normal strain components, i.e., ε11-ε22, which determines the 

orientations of magnetic easy axes in the CoFe film. Specifically, an alternating distribution of 

positive and negative ε11-ε22 (~ 1% and -1%) are generated corresponding to the alternating 

ferroelectric a1 and a2 domains in the BaTiO3 substrate (see Fig. 3-2(b)), respectively, which are 

partly (10% [81] for rg = 0.9) transferred to the top CoFe film (see Fig. 3-2(c)). Such striped strain 

field induces the observed one-to-one match between the ferroelectric and magnetic domains [78, 

81, 82] , e.g., a1 (ferroelectric) to a1 (magnetic), and a2 (ferroelectric) to a2 (magnetic), due to the 

positive λS of Co0.6Fe0.4 [105].  
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Figure 3-2. (a) Initial ferroelectric domain configuration of the BaTiO3 substrate and magnetic 

domain configuration of the as grown CoFe film. The arrows indicate the directions of local 

polarization/magnetization vectors. Domain definitions and the corresponding 

polarizations/magnetizations: a1: (P1, 0, 0) or (m1, 0, 0); a2: (0, P2, 0) or (0, m2, 0); c: (0, 0, P3) or 

(0, 0, m3). (b) Corresponding distributions of the in-plane strain difference ε11-ε22 at the top 

surfaces of the original BaTiO3 substrate and the CoFe film. The dashed lines indicate boundaries 

of the ferroelectric domains. The double-headed arrows indicate the elongated in-plane axes. 

 

A theoretical examination of the magnetic domains in the as grown CoFe film through 

applying an in-plane magnetic field loop reveals perpendicular in-plane magnetic easy axes and 

correlated domain switching behavior of CoFe film regions on top of ferroelectric a1 and a2 

domains, as seen in Fig. 3-3. 

 

 



43 

 

 



44 

 

Figure 3-3. (a) Polar plot of the remnant magnetization MR in regions on top of ferroelectric a1 

domains and regions on top of ferroelectric a2 domains, respectively, on applying a magnetic field 

along in-plane direction. (b) (Left column) average magnetization response on applying a 

magnetic field loop along in-plane directions with angles θ = 0°, θ = 45°, and θ = -45° with respect 

to the x1 axis, respectively, and (right column) corresponding remnant magnetization 

configurations. 

 

3.3.2 Electric field-manipulation of magnetic domain pattern 

We next show the electric-field manipulation of magnetic domain pattern in such 

elastically coupled CoFe/BaTiO3 heterostructure. An electric field along the out-of-plane x3 

direction, E3, is applied to the system, which cycles linearly between 0 and 600 kV/m at a rate of 

7 kV/(m ns)  . Upon increasing electric field, the initial in-plane a1/a2 stripe domains in the 

BaTiO3 substrate gradually rotate off the plane and eventually become an out-of-plane c single 

domain at E3 = 600kV/m (see the second column in Fig. 3-4(a)). During this process, the strain 

field at the surface of BaTiO3 changes from a striped pattern (see the first column in Fig. 3-4(b)) 

to an isotropic (ε11-ε22 ≈ 0) uniform distribution (see the second column in Fig. 3-4(b)), thereby the 

initial ferroelectric a1 and a2 domain regions undergoing the strain changes (i.e., Δ(ε11-ε22)) of 

about -1% and 1%, respectively. These electric-field-induced strain changes at the BaTiO3 top 

surface are fully transferred to the overlaying CoFe film with an initial strain distribution shown 

in the first column in Fig. 3-4(c), resulting in a new striped strain field with ε11-ε22 ≈ 0.9% as 

shown by the second column in Fig. 3-4(c). Accordingly, magnetic a2 and a1 domains are induced 

on top of the initial ferroelectric a1 and a2 domain regions, respectively, leading to a pattern 

interchange of the original magnetic a1 and a2 domain regions (see the second column in Fig. 3-

4(a)).  
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Figure 3-4. (a) Ferroelectric domain configuration of the BaTiO3 substrate and magnetic domain 

configuration of the CoFe film upon increasing E3 from 0 (first column) to 600kV/m (second 

column), followed by reducing E3 to 240kV/m (third column) and then to 0 (fourth column). The 

arrows indicate the directions of local polarization/magnetization vectors. Domain definitions and 

the corresponding polarizations/magnetizations: a1: (P1, 0, 0) or (m1, 0, 0); a2: (0, P2, 0) or (0, m2, 

0); c: (0, 0, P3) or (0, 0, m3). Corresponding distributions of the in-plane strain difference ε11-ε22 at 

(b) the top surfaces of the original BaTiO3 substrate and (c) the CoFe film. The dashed lines 

indicate boundaries of the ferroelectric domains. The double-headed arrows indicate the 

elongated in-plane axes.  

 

Subsequent decrease of E3 induces the formation and growth of in-plane ferroelectric a1 

domains in the BaTiO3 substrate, presenting a multi-domain a1/c structure (see the third column 

in Fig. 3-4(a)). The development of ferroelectric a1 domains is associated with an in-plane strain 

change, Δ(ε11-ε22), of 1.0%, leading to the striped strain field of ε11-ε22 ≈ 0.1% and 1.9% within the 

regions of initial ferroelectric a1 and a2 domains at the BaTiO3 surface, respectively (see the third 
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column in Fig. 3-4(b)). The corresponding strain distribution in CoFe film is illustrated by the 

third column in Fig. 3-4(c), where variations take place on top of the newly-developed 

ferroelectric a1 domain and would favor an alignment of a magnetic a1 domain as λS > 0. By 

contrast, the magnetic stripe domain on top of ferroelectric c domains is preserved, leading to a 

mixed a1 and striped a1/a2 domain pattern in the CoFe film (see the third column in Fig. 3-4(a)). 

As E3 further decreases, the induced magnetic a1 domain keeps growing with the 

expansion of its elastically coupled ferroelectric a1 domain underneath, eventually exhibiting a 

magnetic a1 single domain at E3 = 0 (see the fourth column in Fig. 3-4(a)). An increase of E3 back 

to 600kV/m brings back the magnetic a1/a2 stripe domain in CoFe film and the ferroelectric c 

single domain in BaTiO3 substrate exactly as shown by the second column in Fig. 3-4(a). Such 

repeatable electric-field writing and erasure of magnetic striped a1/a2 domains have been 

demonstrated by experimental observations [81].  

3.3.3 Domain evolution kinetics 

A close examination on the kinetics of the magnetic domain evolution reveals an 

alternating occurrence of local magnetization rotation and domain wall motion associated with 

the ferroelectric domain evolution. In the downhill electric-field cycle, when the width of the 

newly-formed ferroelectric a1 domains is small, the magnetic stripe pattern remains unchanged 

i.e., new magnetic a1 domain does not form on top of the ferroelectric a1 domain. When the 

underlying ferroelectric a1 domain reaches a critical width of around 70 nm at E3 = 280kV/m, the 

magnetic striped a1/a2 domain above ferroelectric a1 domain starts transforming into a magnetic 

a1 domain through a coherent magnetization rotation of 90° (see Fig. 3-5(a)) as the ferroelastic 

strain-induced magnetic anisotropy is sufficiently large to overcome the exchange and 
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magnetostatic energy penalty. Detailed magnetic free energy analysis for such finite-size scaling 

of domain pattern transfer has been reported in a recent study [85]. 

 

 

Figure 3-5. Magnetic and ferroelectric domain structures at (a) E3 = 280kV/m and (b) E3 = 

110kV/m in a downhill electric-field cycle. (Right columns) close-up vector plots of the 
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polarization and magnetization configuration within the selected areas; the white dashed lines and 

the hollow arrows indicate the domain wall and the direction of the domain wall motion, 

respectively; the white solid circles indicate the regions undergoing magnetization rotation.  

 

 

Such transformation from local magnetic a1/a2 to a1 domain is complete as the E3 

decreases to 260 kV/m, at which the newly-developed magnetic a1 domain are wider and gets 

coupled to the underlying ferroelectric a1 domain. From the moment on, the evolution of the 

mixed a1 and a1/a2 magnetic domains closely tracks the ferroelectric domain evolution through 

the motion of the elastically coupled magnetic and ferroelectric domain walls. For illustration, we 

select a certain magnetic a1/a2 domain wall and the associated ferroelectric a1/c domain wall (as 

indicated by the white dashed lines in the third column of Fig. 3-4(a)) and track their velocities 

along the x1 direction, as demonstrated in Fig. 3-6(a). The domain wall positions are located 

where P1 = P3 for a ferroelectric a1/c domain wall and m1 = m2 for a magnetic a1/a2 domain wall 

(as an example, see Fig. 3-6(b) for the domain wall configurations at E3 = 240kV/m). As seen, the 

velocity of the magnetic a1/a2 domain wall is almost identical to the ferroelectric domain wall 

from E3 = 250kV/m to E3 = 130kV/m (see the region encircled by dash-dotted lines in Fig. 3-6(a)). 

Upon further reducing E3 from 130 kV/m when the width of ferroelectric c domains reduces to 

about 110 nm, the a2 domain rapidly shrinks, becoming decoupled from the underlying 

ferroelectric c domains due to the reduction of the ferroelastic strain-induced magnetic 

anisotropy. Such decoupling of magnetic a2 and ferroelectric c domain is another manifestation of 

the finite-size scaling of the domain pattern transfer besides the onset of magnetic a1-to-

ferroelectric a1 domain coupling at E3 = 260kV/m. Indeed, the local a2 domain starts transforming 

into a magnetic a1 domain through a coherent magnetization rotation (e.g., see Fig. 3-5(b) at 

which E3 = 110kV/m) and eventually vanishes, creating a uniform a1 single domain in the whole 
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CoFe film. Similar domain evolution behaviors are observed in the subsequent uphill electric-

field cycle.  

 

 

Figure 3-6. (a) (Top) time sequence of the applied out-of-plane electric field E3, and the velocities 

of (middle) ferroelectric and (bottom) magnetic domain wall motion, in ferroelectric a1/c domain 

and mixed a1 and a1/a2 magnetic domain configurations, respectively. The regions encircled by 

dash-dotted lines indicate the coupled domain wall motion, and the background colors indicate 

the dominant ferroelectric or magnetic domains at various stages. (b) (Top) polarization and 

(bottom) magnetization configurations across the selected ferroelectric and magnetic domain 

walls, respectively, at E3 = 240kV/m in the downhill cycle. The dashed lines indicate the domain 

wall positions. 

 

3.4 Conclusion 

In this chapter, a phase-field model has been developed to study the local elastic coupling 

behaviors of the magnetic and ferroelectric domains in a multiferroic heterostructure of a 

magnetic film grown on a ferroelectric substrate. Taking a polycrystalline CoFe and a BaTiO3 
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crystal as an example, the one to one match of the initial magnetic and ferroelectric domain 

structures and the repeated electric-field writing and erasure of the magnetic striped domains have 

been simulated, providing modeling supplement and theoretical insights to experimental 

observations. Studies on the kinetics of the electric-field driven magnetic domain evolution reveal 

an alternating occurrence of local magnetization rotation and the coupled motion of magnetic and 

ferroelectric domain walls with almost identical velocities.  



51 

 

 

Chapter 4  
 

Phase-field study on an anomalous negative electrocaloric effect in a 

ferroelectric/relaxor composite 

4.1 Introduction 

The electrocaloric effect is a phenomenon in which a dielectric material absorbs or 

releases heat in response to an applied electric field [106-111]. It originates from the electro-

thermal coupling and is considered as the converse effect of pyroelectricity. The electrocaloric-

effect-induced cooling shows high energy efficiency and is promising for next-generation 

environmental-friendly cooling technologies with improved efficiency and low cost [110, 111]. It 

has been experimentally demonstrated that electrocaloric effect can be tuned through ferroelectric 

or dielectric composite design [112-114].  

An electrocaloric material will absorb (or release) heat if dipolar entropy is increased (or 

decreased). As shown in Fig. 4-1, applying an electric field would, in most cases, align the 

dipoles (i.e., ordered dipoles) and decrease the dipolar entropy inducing heating, and removing 

the field would increase the dipolar entropy (disordered dipoles) inducing cooling. However, in 

some cases [115-117], applying an electric field may also decrease the dipolar entropy leading to 

cooling, and removing the field would induce heating, which phenomenon is called a negative 

electrocaloric effect. Furthermore, our experimental collaborators X. Qian, Q. Zhang et al. report 

an anomalous negative electrocaloric effect in P(VDF-TrFE)/P(VDF-TrFE-CFE) normal 

ferroelectric/ relaxor polymer composites which shows cooling upon applying an electric field 

without subsequent heating on removing the field [118]. The phenomenon indicates that the 

applied field induces disordered dipoles in the composite with an increased dipolar entropy, 
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which structure remains stable upon removing the field. Such cooling effect can work on-demand 

with an instant cooling pulse, which is promising in some applications such as on-chip hotspot 

striking. 

 

 

 

Figure 4-1. Dipole ordering and electrocaloric heat upon applying and removing an electric field 

for the normal electrocaloric effect, negative electrocaloric effect, and the anomalous negative 

electrocaloric effect. 

 

Phase-field model is a powerful tool for studying microstructure evolution during phase 

transformation and predicting material properties, which has been applied to study ferroelectric 

materials [24, 30] and heterostructures [119, 120] based on Landau theory of phase 

transformations and time-dependent Ginzburg-Landau equation. In the present work, we employ 
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a phase-field model and thermodynamic analyses to verify the electric-field control on the dipole 

ordering in such ferroelectric composites and study the anomalous negative electrocaloric effect 

and its dependence on the temperature and the applied field. 

4.2 Model and simulation method 

4.2.1 Phase-field model on the ferroelectric domain evolution 

To model the evolution of polarization and domain structure in the P(VDF-

TrFE)/P(VDF-TrFE-CFE) composite, two sets of position-dependent order parameters are used to 

describe the microstructure, including a non-evolving η(x) for the two-phase structure, with η(x) = 

1 for the P(VDF-TrFE) phase and η(x) = 0 for the P(VDF-TrFE-CFE) phase, respectively, and the 

electric polarization P(x,t) describing the ferroelectric domain structure in P(VDF-TrFE), where x 

is the position vector, and t is the time.  

The evolution of electric polarization in the composite responsive to an applied electric 

field is modeled through solving the time-dependent Ginzburg-Landau equation (Equation 1-1) 

by employing a semi-implicit Fourier-spectral method [26]. In evaluating total free energy of the 

system, the Landau free energy, the polarization gradient energy, and the electrostatic energy are 

considered, i.e.,  

       3
Landau gradient

ext
Landau gradient

2
0, , 1

1

2

C C T dT
bF T f f f f d   

 
     

 
   P EE EP x  (4-1)   

where superscripts C and T stand for the P(VDF-TrFE) copolymer and P(VDF-TrFE-CFE) 

terpolymer phases, respectively. The Landau potential is considered anisotropic and is expanded 

to a 6th-order polynomial as 

   2 4 6
Landau 1 11 111
C C C Cf a a a  P P P P                                            (4-2) 
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for the normal ferroelectric copolymer P(VDF-TrFE) and to a 2nd-order polynomial as 

   2
Landau 02T T

rf  P P                                                    (4-3) 

for the relaxor terpolymer P(VDF-TrFE-CFE), respectively; a and κr are the Landau energy 

coefficients and the relative dielectric permittivity, respectively. The distribution of electric field 

E upon polarization evolution is obtained by solving the electrostatic Poisson equation 

 0 0  E P  using a Fourier-spectral method [29]. Materials constants of P(VDF-TrFE) and 

P(VDF-TrFE-CFE) are listed in Table 4-1. 

 

Table 4-1. Material constants of P(VDF-TrFE) and P(VDF-TrFE-CFE).  

 

Material 

Constant 
Unit P(VDF-TrFE) P(VDF-TrFE-CFE) 

a1 N·m2/C2 1.412×107(T/°C − 36.8) (2κ0κr11)
-1 

a11 N·m6/C4 -1.842×1011 0 

a111 N·m10/C6 2.585×1013 0 

g11 N·m4/C2 5×10-7 0 

g44 N·m4/C2 2.5×10-7 0 

g44m N·m4/C2 2.5×10-7 0 

κr11 1 / 
8.8 − 0.412(T/°C) − 6.20×10-3(T/°C)2

 + 

5.26×10-5(T/°C)3  (15°C ≤ T ≤ 70°C) 

 

The Landau energy coefficients of ferroelectric P(VDF-TrFE) with composition 

65/35mol% are obtained from fitting experimental measurements on the temperature-dependent 

spontaneous polarization and coercive field of pure P(VDF-TrFE) (Table 4-1). The fitted Curie-

Weiss temperature of pure P(VDF-TrFE) is 42°C. We employed the fitted Landau energy 

coefficients to a phase-field simulation on the P-E loops of pure P(VDF-TrFE) at different 

temperatures. As seen in Fig. 4-2, a square-shaped P-E loop characteristic of a normal 

ferroelectric phase is described. The temperature dependence of dielectric permittivity of P(VDF-
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TrFE-CFE) is fitted to a 3rd-order polynomial from the experimentally measured dielectric 

permittivity at 15 C 70 CT     (Table 4-1). 

 

 

Figure 4-2. P-E loops of pure P(VDF-TrFE) at temperatures 15°C ≤ T ≤ 70°C, from the phase-

field simulation. 

 

4.2.2 Calculation of electrocaloric effect 

To calculate the electrocaloric-induced change in temperature and entropy based on the 

simulated response of domain structures with a phase-field model, a thermodynamic scheme is 

employed in the present work. As a matter of fact, phase-field model explicitly considers the free 

energy of the system, which allows convenient evaluation of the electrocaloric-induced change in 



56 

 

entropy and system temperature during domain evolution. The entropy density, i.e., entropy per 

unit volume, of a system contributed by the polarization order is calculated as 

ext

f
S

T

 
  

 E

                                                          (4-4) 

where f(P) is the free energy density caused by the polarization order, expressed as 

2 ext1
Landau 02

df f E   P E                                                (4-5) 

 The change of entropy density of the system in a process is 

f f
S

T T

  
      

  
                                                    (4-6) 

Following Equation 4-6, the electrocaloric-induced entropy change of a system at isothermal 

condition (constant temperature) can be calculated through tracking the free energy change of a 

process and then calculate the shift of such free energy change within the same process (i.e., the 

same external field sequence) at a slightly different temperature (by 1K in the present work), i.e., 

   1 2

1 2

f T f T
S

T T

 
  


                                                   (4-7) 

Such isothermal entropy change, however, does not solely determine the heat released to 

the environment during isothermal processes. In ferroelectric systems, the evolution of 

ferroelectric domains under an external field may involve irreversible processes, including 

domain switching and domain wall motion, i.e., the change in the total entropy of the system and 

the environment ΔStotal > 0. ΔStotal is related to the heat produced due to the irreversible process, 

Qirr, i.e., 

irr
total

Q
S

T
                                                              (4-8) 
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Here Qirr can be evaluated using the first law of thermodynamics, i.e., based on the work done by 

external electric field, and the change of the internal energy density of the system, with the 

following relation: 

ext
irr intQ d f  E P                                                      (4-9) 

where the internal energy density fint is expressed as 

ext 21
int Landau 02

df f f E    P E                                          (4-10) 

Using Equation 4-10, we can also rewrite Equation 4-9 as 

ext
irrQ d f   P E                                                    (4-11) 

Equation 4-11 is used in the present work to calculate Qirr of any processes. In an isothermal 

process, the heat release to the environment can be expressed as 

irrQ T S Q                                                            (4-12) 

Alternatively, under an adiabatic condition, the temperature change of the system is 

calculated as 

 irr

1 1

P PV V

T QdV T S Q dV
VC VC

                                         (4-13) 

where CP is the heat capacity of the system at a fixed pressure and fixed polarization order, and V 

is the volume of the system. A small temperature change (ΔT ≪ T) is assumed herein. Equation 4-

13 is adopted in the present work in evaluating the electrocaloric-effect-induced temperature 

change.  

Note that the Maxwell-relation  

T

S

T

    
   

    E

P

E
                                                       (4-14) 

were also used in some studies for theoretical calculations of electrocaloric effect, where the 

entropy change is expressed as 
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Equation 4-15 indicates that the electrocaloric-effect-induced entropy change can be calculated 

by tracking the temperature-dependence and electric-field-dependence of the net polarization of 

the system. However, the Maxwell-relation fails the consider the inhomogeneous distribution of 

local polarization as well as heat generated in the irreversible processes as discussed above, and 

hence Equation 4-15 should not be applied to calculate the entropy change of processes which 

contains irreversible processes of ferroelectric domain evolution, e.g., domain switching, and is 

not adopted in the present work. 

4.2.3 Simulation setup 

In the phase-field simulation, the total size of the simulation system is taken as 24 2μm , 

which is discretized into a 2-dimensional array of 800 × 400 grid points. The two-phase structure 

is generated by a phase-separation simulation using a spinodal free energy potential, where each 

phase takes a 50% volume fraction, with connected stripe patterns with 70~150 nm in width, as 

shown in Fig. 4-3. A sharp two-phase interface is adopted. 
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Figure 4-3. Spatial distribution of the two-phase structure of the P(VDF-TrFE)/P(VDF-TrFE-

CFE) composite with a 50/50vol% phase fraction. P(VDF-TrFE) is shown by the white regions, 

while P(VDF-TrFE-CFE) is shown by the black regions.  

 

4.3 Results and discussion 

4.3.1 Ferroelectric properties of the composite 

The simulated P-E loops of the P(VDF-TrFE)/P(VDF-TrFE-CFE) 50/50vol% composite 

at different temperatures is shown in Fig. 4-4, showing a mixed behavior of normal ferroelectric 

materials and ferroelectric relaxors. At room temperature (T = 25°C), the composite shows a 

strong remnant polarization PR = 0.042C/m2 and a large coercive field EC = 35MV/m, exhibiting 

the normal ferroelectric behavior similar to that of the P(VDF-TrFE) component. On the other 

hand, on increasing the temperature, the composite shows a gradual transition from a normal 

ferroelectric to a relaxor (or dielectric material) with narrower hysteresis loops, and exhibits the 
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relaxor (or dielectric) behavior of the P(VDF-TrFE-CFE) component at T = 70°C, with a greatly 

reduced remnant polarization PR = 0.004C/m2 and a weak coercive field EC = 10MV/m. 

 

 

Figure 4-4. Simulated P-E loops of the P(VDF-TrFE)/P(VDF-TrFE-CFE) 50/50vol% with a E = 

100MV/m poling field, at (a) 15°C, (b) 25°C, (c) 40°C, and (d) 70°C, respectively, showing the 

transition from a normal ferroelectric material with strong remnant polarization and coercive field 

in the P-E loop, to a relaxor (or dielectric material) with smaller hysteresis upon increasing the 

temperature. 

 

4.3.2 Anomalous electrocaloric effect 

Cooled from high temperature to the room temperature, the composite exhibits disordered 

polarization directions without an external electric field due to the relaxor nature of the 
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terpolymer component. A poling electric field aligns the polarization direction and generates a 

quasi-single domain which is stabilized by the copolymer phase upon removing the field. As seen 

in the top panel of Fig. 4-5, at room temperature, the remnant state after poling at E3 = 100MV/m 

shows a ferroelectric quasi-single domain with aligned polarization along the previous poling 

direction x3 (indicated by point A in Fig. 4-4(b)). This is referred to as the poled state.  

 

 

Figure 4-5. Simulated spatial map of the polarization vectors in the room temperature P(VDF-

TrFE)/P(VDF-TrFE-CFE) 50/50vol% composite, at remnant states (top panel) after poling with 

E3 = 100MV/m, and (bottom panel) after subsequent depoling with E3 = -35MV/m, respectively. 

The light and dark backgrounds indicate regions of the P(VDF-TrFE) and P(VDF-TrFE-CFE) 

phases, respectively. 
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The remnant polarization in the ferroelectric copolymer generates a strong electric field 

along the previous poling direction in the adjacent terpolymer relaxor phase, stabilizing and 

aligning the polarization in the relaxor phase. As a result, the poled composite exhibits a strong 

alignment of electric dipoles around direction θ = 90°, the poling direction, which is also shown 

by the probability distribution of the polarization directions θ in the terpolymer phase in Fig. 4-

6(a). Such ordering of electric dipoles indicates a low dipolar entropy state with potential cooling 

effect upon subsequent depoling. 

 

 

Figure 4-6. Simulated probability distribution of the orientation θ of polarization vectors inside 

the P(VDF-TrFE-CFE) relaxor phase, (a) at remnant states after poling with E3 = 100MV/m, and 

after subsequent depoling with (b) E3 = -35MV/m and (c) E3 = -40MV/m, respectively, of the 

room temperature P(VDF-TrFE)/P(VDF-TrFE-CFE) 50/50vol% composite. 
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The anomalous electrocaloric effect occurs upon subsequent depoling of such poled state 

with dipole ordering. On applying an increasing external field opposite the poling direction, the 

macroscopic polarization undergoes a continuous decrease with a steady slope on the P-E loop 

(Fig. 4-4(b)), showing a mixed behavior of normal ferroelectric materials and ferroelectric 

relaxors, where domain switching in P(VDF-TrFE) is buffered by the interaction of polar 

nanoregions in the P(VDF-TrFE-CFE) relaxor phase. With increasing external field, locally 

switched domains form and continuously expand, hence showing a continuous decrease of 

macroscopic polarization of the composite. 

 Upon increasing the depoling field to the coercive field value E3 = -35MV/m, the 

composite is fully depoled with almost zero macroscopic polarization (indicated by point B in 

Fig. 4-4(b)). A disordered domain state is generated where the random dipole arrangement is 

stabilized by the P(VDF-TrFE-CFE) relaxor phase, due to the intrinsic polar nanoregions of the 

relaxor. Such disordered domain structure remains stable after the depoling field is removed 

(indicated by point C in Fig. 4-4(b)), as seen in the bottom panel of Fig. 4-5, referred to as the 

depoled state. The depoled state contains randomly oriented dipoles which are almost uniformly 

distributed in all directions, as shown by the probability distribution of polarization directions θ in 

Fig. 4-6(b). 

Such disordering in dipoles upon depoling the composite induces a significant cooling 

through electrocaloric effect. By applying a thermodynamic calculation (Equation 4-13), the 

depoling process with an electric field pulse of E = 30MV/m generates an adiabatic cooling of ΔT 

= -2.6°C through the electrocaloric effect, which quantitatively agrees with the experimental 

measurement of ΔT = -2.1°C [118].  
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4.3.3 Dependence of the electrocaloric effect on temperature and electric field 

We next come to investigate the influence of operating temperature and electric field 

magnitude on the anomalous electrocaloric effect. As seen in Fig. 4-7, at T = 25°C, with 

increasing magnitude of the depoling electric field pulse, the electrocaloric-induced cooling 

temperature ΔT increases upon formation of depoled ferroelectric domain structure and 

disordered electric dipoles, with a maximum ΔT = -2.6K at around E = 31MV/m, which is close to 

the coercive field EC = 35MV/m. Further increasing of electric field would lead to a subsequent 

poling along the reverse direction (i.e., field overshoot), and would again induce an increased 

polarization ordering (e.g., see Fig. 4-6(c) for a depoling field of E = 40MV/m), and thus result in 

a decrease of the electrocaloric-induced cooling, as shown by the decreased cooling temperature 

ΔT = -2.0K at E = 40MV/m. 
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Figure 4-7. Simulated electrocaloric-induced cooling temperature ΔT in the P(VDF-

TrFE)/P(VDF-TrFE-CFE) 50/50vol% composite as a function of the applied depoling field, at 

different operating temperatures T = 25°C, 30°C, and 40°C. With an increasing temperature, the 

overshooting threshold field decreases, resulting in a decreased maximum cooling temperature. 

 

With increasing operating temperatures, the overshooting threshold field sharply 

decreases. As seen in Fig. 4-7, the overshooting threshold decreases to E = 24MV/m at 30°C and 

E = 11MV/m at 40°C. This is caused by the smaller coercive field of the P(VDF-TrFE)/P(VDF-

TrFE-CFE) composite at increased temperatures (see Fig. 4-4) during the transition of the 

composite from a normal ferroelectric material to a ferroelectric relaxor. Such temperature 

dependence of overshooting threshold results in a decreased cooling peak ΔT at increased 

operating temperatures. 

On the other hand, at a fixed low electric field (smaller than the overshooting threshold), 

the electrocaloric-induced cooling temperature ΔT is also slightly enhanced upon increasing 

operating temperatures, due to the more prominent depoling effect of the ferroelectric domains 

upon applying a small field before overshooting. For example, at E = 5MV/m, the cooling 

temperature increases from ΔT = -0.4K to ΔT = -0.6K, upon increasing the operating temperature 

from 25°C to 40°C. 

4.4 Conclusion 

In this chapter, through applying a phase-field model, we studied the anomalous negative 

electrocaloric effect, i.e., cooling phenomenon upon applying an electric-field pulse without 

subsequent heating, in the ferroelectric P(VDF-TrFE)/P(VDF-TrFE-CFE) 50/50vol% composite. 

A thermodynamic scheme is employed to calculate the electrocaloric effect during the evolution 

of domain structures.  
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Upon applying a reverse electric field to a poled composite, the sample is depoled with 

randomly oriented domains, which structure is stable upon removing the electric field. A 

decreased dipole order in such process results in an entropy decrease, i.e., a cooling effect. Both 

the P(VDF-TrFE) normal ferroelectric phase and the P(VDF-TrFE-CFE) relaxor phase are crucial 

in such phenomena, as they act to stabilize the poled (ordered) state and depoled (disordered) 

state, respectively. An adiabatic cooling of ΔT = -2.6°C on applying and electric field pulse of E = 

30MV/m is found, which quantitatively agrees with the previous experimental measurement 

[118]. The dependence of the electrocaloric cooling temperature and overshooting field on the 

operating temperature is predicted. 
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Chapter 5  
 

Phase-field study on inhomogeneous ferroelectric domain dynamics under 

ultrafast stimuli 

5.1 Introduction 

5.1.1 Background 

Recent experimental observations and discoveries show fascinating dynamic phenomena 

and responses of inhomogeneous ferroelectric crystals under ultrafast (>GHz) external stimuli 

[121-129]. For example, applying a 100fs laser pulse on the surface of a BaTiO3 single crystal 

with a typical ferroelectric a/c domain structure generated local lattice oscillations with different 

dynamical behaviors of a- and c-domains [130], as shown in Fig. 5-1. It was shown that a single 

100fs, 800 nm laser pulse applied to a PbTiO3/SrTiO3 superlattice led to the formation of an 

emergent “supercrystal” state, i.e. a 3-dimensional periodic array of regular domains of nanoscale 

sizes [131] that are unexpected under normal thermodynamic conditions.  
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Figure 5-1. Experimentally measured oscillations of local surface strain ε33 in c-type domains 

(top-left plot) with an out-of-plane polarization direction (indicated by the blue arrow) and in a-

type domains (top-right plot) with an in-plane polarization direction (indicated by the red arrow), 

upon applying an ultrashort laser pulse to the surface of a BaTiO3 crystal. The figure is adapted 

from Ref. [130]. 

 

According to recent experimental reports, ultrafast electric and mechanical stimuli might 

produce extraordinary thermal, electric, mechanical and other multifunctional responses. For 

example, it was predicted that an ultrafast electric field pulse could generate a negative 

electrocaloric effect as high as 35K in PbTiO3 within picoseconds [132]. The application of a 

femtosecond laser pulse on the surface of a ferroelectric PbTiO3 [121] or BiFeO3 [129] thin film 

yielded a transient strain arising from photostriction, a combination of photovoltaic and converse 

piezoelectric effects [133], which is two orders of magnitude larger than those generated through 

the static converse piezoelectric coupling.  

As discussed above, applying an ultrafast stimulus to a polarization/strain pattern allows 

one to explore possible new transient phenomena or new metastable domain patterns that may 

emerge during the relaxation from its excited state back to the original or a new equilibrium state. 

Furthermore, many practical applications of transducers utilize the piezoelectric responses under 

stimuli with fast frequencies. A fundamental understanding of ultrafast dynamics in ferroelectrics 
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domains could further lead to potential applications of ferroelectric materials to THz electronics 

and all-optical manipulation of electric polarization and polarization domain walls. 

Despite increasing experimental interests in ultrafast phenomena of ferroelectric crystals, 

there is currently still a lack of computational methods for modeling, understanding and 

predicting the ultrafast-external-fields-stimulated dynamics of complex mesoscale 

polarization/strain domain and domain wall patterns involving long-range elastic and electrostatic 

interactions. Although analytical theories [134-145] have been proposed to understand the 

dynamics of individual domains or planar walls as well as the dynamic dielectric responses of 

single domain ferroelectrics under high-frequency electric fields, it is challenging to utilize these 

theories to analyze more complex polarization domain patterns, e.g., those recently discovered in 

ferroelectric nanostructures (thin-films, islands, superlattices, etc.), such as polarization vortices 

[146-148], flux-closure domains [149-151], and skyrmions [152, 153].  It is also challenging to 

analytically treat the electrostatic and mechanical problems within ferroelectric nanostructures of 

complicated geometries.  

5.1.2 Research Objectives 

In the present work, we develop a dynamical phase-field model for understanding and 

predicting the ultrafast-external-fields-stimulated dynamic responses of domains and domain 

walls in ferroelectric nanostructures. Phase-field method allows us to take into account the long-

range electrostatic and elastic interactions between the volume elements of a domain structure 

[154] and the polarization gradient energy as well as arbitrarily complex mesoscale polarization 

patterns and wall configurations. The present work further expands the conventional phase-field 

description of ferroelectric domains to the application in the ultrafast regime, i.e., GHz-THz 

scales. 
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The dynamics of a ferroelectric domain under ultrafast time range involves various 

dynamical mechanisms, including polarization dynamics, elastodynamics, and electrodynamics. 

As seen in the dielectric spectroscopy, polarization dynamics of a solid typically shows a 

relaxational behavior at around GHz frequency and 2 resonance behaviors at around THz and 

higher frequencies indicating polarization oscillation under an external field. Phase-field model 

based on Time-dependent Ginzburg-Landau equation (Equation 1-1) describe only the kinetic 

relaxation of a non-equilibrium state towards equilibrium, during which the free energy of an 

inhomogeneous state always decreases. Therefore, they cannot be directly applied to describing 

the oscillations of polarization and strain under high-frequency electric fields or mechanical 

forces.  

 

Figure 5-2. Schematic illustration of dielectric responses of a solid subject at different 

frequencies. The figure is adapted from [155]. 

 

Furthermore, the electrostatic and elastic equilibrium conditions considered in 

conventional phase-field descriptions are based on an important assumption that electrostatic and 

elastic equilibrium conditions are achieved in a much shorter time than the time for relaxation of 

domain structures or response to external stimuli. However, the assumption is no longer valid if 

the applied mechanical force pulse or electric field pulse is shorter than the minimum time span 
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for reaching the mechanical equilibrium or electrostatic equilibrium. As a matter of fact, the time 

for the establishment of a mechanical equilibrium condition or electrostatic equilibrium condition 

would scale proportionally with system size. For example, the typical time for the establishment 

of mechanical equilibrium ~10-12s in a system with ~100nm size. In a sample with similar size, 

electrostatic equilibrium is established within much shorter time, typically ~10-15s. The present 

work aims at investigating domain dynamics under external stimuli with an ultrafast frequency of 

GHz~THz. Hence elastodynamics is treated instead of the conventional elastic equilibrium 

conditions, while the electrostatic condition still holds. 

5.2 Phase-field model on ultrafast dynamics of ferroelectric materials 

Following the discussion above, the present work focuses on a phase-field model of 

ferroelectric materials integrated with ultrafast polarization dynamics and elastodynamics. 

5.2.1 Polarization dynamics 

In an ultrafast scheme, we replace the time-dependent Ginzburg-Landau equation 

(Equation 1-1) with the nonlinear Klein-Gordon equation 

  
2

2
0i i

ij ij

j

P P F

t Pt


 



 
  


                                                 (5-1) 

to describe the temporal evolution of polarization. The kinetic parameters μ and γ are effective 

mass coefficient and damping coefficient of polarization evolution, respectively, which are 

related to the oscillation behavior of ferroelectric domains. μ and γ possess the symmetry of the 

high-temperature paraelectric phase and are therefore isotropic in ferroelectric perovskites, i.e., 

11 22 33    , 12 13 23 0     and 11 22 33    , 12 13 23 0     . 
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Such description on the evolution of the local polarization P is first proposed by Glinchuk 

et al. [140] in an analytical study on the high-frequency dielectric responses of a ferroelectric 

multilayer, where they extracted the nonlinear dielectric dispersion law as a function of wave 

vector and film thickness using the proposed equation. Similarly [141], they calculated the 

temperature dependence of the soft-mode frequency and the frequency dependence of the 

dielectric susceptibility of a ferroelectric thin film, which are qualitatively consistent with 

experimental measurements. 

Here we briefly show the relation between kinetic parameters μ and γ and the intrinsic 

polarization oscillation and induced elastic vibration of ferroelectric domains. Consider the 

intrinsic vibration of P in a ferroelectric single domain around its equilibrium value Peq. 

Assuming small vibration amplitude and constant external field, a linear restoring force can be 

expressed as 

 1
eq=

F




  P P
P

                                                     (5-2) 

where κ is the static dielectric permittivity of the ferroelectric domain. Thus, the general solution 

of Equation 5-2 is a damped oscillation written as  

2
2

0 0 eqexp exp
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t t I t
 


   
             

P P P                                   (5-3)                         

where 11 11
   , 2 1 1

0 11    , Pt0 is a constant determined by the initial condition, and I is 

the imaginary unit. As seen, the intrinsic frequency and rate of decay of the damped oscillation 

are determined by the kinetic parameters μ and γ. Under constant applied strain or stress, the 

evolution of strain in the ferroelectric domain is dominated by the evolution of ferroelectric order 

(i.e., polarization), and can also be estimated as a damped oscillation with the same frequency and 

rate of decay with the polarization evolution,  
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This indicates that the kinetic parameters μ and γ can be obtained using experimental 

measurements of the evolution of either polarization or strain, under a constant external field, by 

fitting the evolution of polarization/strain into a damped oscillation model and solving with the 

fitted intrinsic frequency and rate of decay. 

The kinetic parameters of the BaTiO3 single crystal are obtained through fitting the 

observed vibration of lattices reported by our experimental collaborators in Ref. [130]. Material 

constants of BaTiO3 used in the dynamical phase-field model are listed in Table 5-1 [156]. 

 

Table 5-1. Material constants of BaTiO3 in the dynamical phase-field model 

Material Constant Value 

a1   5 2388 4.124 10 J m CT       

a11 8 5 42.097 10 J m C     

a12 8 5 47.974 10 J m C    

a111 9 9 61.294 10 J m C    

a112 9 9 61.950 10 J m C     

a123 9 9 62.501 10 J m C     

a1111 10 13 83.863 10 J m C    

a1112 10 13 82.529 10 J m C    

a1122 10 13 81.637 10 J m C    

a1123 10 13 81.367 10 J m C    

g11 10 1 24.0 10 J m C      

g12 0 

g44 10 1 22.0 10 J m C      

g'44 10 1 22.0 10 J m C      

c11 111.98 10 Pa  

c12 109.6 10 Pa  

c44 111.22 10 Pa  

Q11 4 20.11m C  

Q12 4 20.045m C   
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Q44 4 20.059m C  

αL 6 19 10 K   

μ11 11 25 10 J m A     

γ11 2 2 15 10 J m A s       

ρ 3 16.02 10 kg m   

α 0 

β 126.0 10 s  

 

We developed a numerical solution based on Semi-implicit Fourier-spectral method [157-

159] for Equation 5-1. First, we separate the contribution of gradient energy  

gradient
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to the driving force from all other energy contributions, i.e., 
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and rewrite Equation 5-1 as 
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For time discretization, a central, implicit, 2nd-order accurate difference scheme [160-162] is 

adopted, i.e., 

         
 
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          
   

 
   (5-8) 

Superscripts [n] denote quantities at the n-th evolution time step. τ is the time period per evolution 

step. The spatial differentials are then treated using a Fourier-spectral method. Through taking a 
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Fourier transform in the 3-dimensional space, i.e.,    1 2 3 1 2 3, , , ,x x x q q qP P  and 

   1 2 3 1 2 3, , , ,P Px x x q q qf f , the solution of Equation 5-1 is given by 

       1 124
n n n nA
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5.2.2 Elastodynamics 

In the dynamical phase-field model for ferroelectric materials, the displacement field u 

(or alternatively, strain field ε) is employed as a second set of order parameter in addition to the 

polarization field P, whose temporal evolution is described by the elastodynamics equation  

2

2

j iji
ij Vi ij

j

uu
f

t x tt


   

     
      

     
.                                (5-10) 

Here ρ is the density of the material, α and β are mass damping coefficient and stiffness damping 

coefficient, respectively, fV is the external body force density, i.e., external body force per unit 

volume, and σ is the local stress field, expressed as 

 0
ij ijkl kl klc                                                         (5-11) 

where ε0 is the eigenstrain field which is coupled to the polarization order parameter through the 

electrostrictive effect, i.e., 

0 lattice
ij ijkl k l ijQ P P                                                       (5-12) 

through which the elastodynamics equation and the polarization dynamics is coupled; Q is the 

electrostrictive tensor, and 
lattice
ε  is the spontaneous strain of the lattice due to factors other than 
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polarization order, e.g., lattice mismatch between different phases, or thermal expansion. 

Formulations similar to Equation 5-10 have previously been adopted in simulations of crack 

propagation dynamics [163-166]. It replaces the elastic equilibrium equation in regular phase-

field models treating phase transformations with longer time ranges. 

There have been previous attempts to numerically solve Equation 5-10 for the 

elastodynamics based on the finite element method [167-169]. Here we develop a numerical 

solution based on Fourier-spectral method [157-159] to Equation 5-10 with a 3-dimensional 

periodic boundary condition. The local strain is considered summation of a homogeneous strain 

and a heterogeneous strain, i.e.,    ij ij ij   x x , where the heterogeneous strain  ij x  is 

defined as 
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                                                    (5-13) 

and satisfies 

3 0ij

V

dx  .                                                           (5-14) 

The homogeneous strain ij  represents the macroscopic deformation of the whole system. 

Equation 5-10 is thus rewritten as 
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               (5-15) 

The time discretization is conducted similarly to the treatment of the polarization dynamics 

equation (Equation 5-1), where a central, implicit, 2nd-order accurate difference scheme is 

adopted, i.e., 
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Here y represents several variables including displacement, strain, stress, and eigenstrain, etc. 

Equation 5-10 is reduced to a 2nd-order linear differential equation of    1n
u x , expressed as  
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A Fourier spectral method is adopted herein for solving the equation. Through performing a 3-

dimensional Fourier transform in space for all spatial variables, e.g.,    1 2 3 1 2 3, , , ,x x x q q qu u , 

the solution is given by 
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δ is the Kronecker delta herein. 

This solver works on a 3-dimensional periodic boundary problem with given applied 

strain or applied stress type of boundary condition and an initial local displacement field and local 

velocity field as the initial condition. For testing the numerical accuracy of the solver, a 
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preliminary test is conducted. We chose an isotropic system with 11 210GPac  , 12 90GPac  ,

3 3.0 10 /m5 kg  , 1
11

0 1.02 10 s  , and 12.0 1 s2 0  . For simplicity, we employed a 2-

dimensional system and assumed an initial displacement field u with a Gaussian distribution 

centered in the middle of the simulation cell, zero initial velocity, zero body force, zero 

homogeneous strain, and zero eigenstrain. We plot the displacement along the central line as a 

function of time. As shown, the displacement field spreads out in space as a traveling wave whose 

magnitude decays over time. To check the correctness of the numerical solutions, we compare the 

solutions using the spectral solver with those using the finite-element method. As shown in Fig. 

5-3, our preliminary results show that the solution from our spectral solver accurately matches the 

finite-element-method-based solution using the software COMSOL Multiphysics®. Moreover, our 

preliminary tests show that our spectral solver for the elastodynamics is at least an order of 

magnitude faster than the finite-element-method-based solver implemented in COMSOL 

Multiphysics®.  
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Figure 5-3. Numerical solution to the elastodynamics equation with our own solver based on the 

Fourier-spectral method (Equation 5-18), as compared with the elastodynamic solver in 

COMSOL Multiphysics® based on finite-element method (a) Initial displacement field u2, set as a 

Gaussian function of distance to the center of the simulation region. Initial velocity is set as 0. (b) 

Displacement field along the central line (indicated by the dashed line in (a)) at different times. 

 

The solution of elastodynamics equation, coupled with the solution of polarization 

dynamics equation, and electrostatic equilibrium Poisson equation, are employed in the 
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dynamical phase-field model for ferroelectric systems, which will yield the spatial polarization 

dynamics and elastodynamics of a ferroelectric and ferroelastic domain structure as well as the 

local electric potential and stress distributions.  

5.3 Domain wall dynamics under ultrafast electric field stimuli 

We applied the dynamical phase-field model to a study on the high-frequency response 

behavior of ferroelectric domain walls and vortex core in BaTiO3. As shown in Figs. 5-4(a) and 

5-4(b), in a regular a/c stripe multi-domain with 90° domain walls, an AC electric field parallel to 

the domain wall plane is applied, which induces periodic domain wall motions, together with 

expansion and compression of the domain stripes. Shown in Figs. 5-4(c) and 5-4(d) is the motion 

of the vortex core in an island with a vortex domain structure, responsive to an AC electric field. 

Differences in characteristics of high-frequency and low-frequency dynamics of ferroelectric 

domain walls are described, where the high-frequency domain wall motion shows a typical flat 

stage during the cycle of a decreasing field, which is absent in the low-frequency mode.  
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Figure 5-4. Dynamics of ferroelectric domain wall and vortex upon applying an AC electric field. 

(a) A multi-domain structure in BaTiO3 with 90° domain walls and (b) the change in the width of 

the domain stripe responsive to an AC electric field. (c) A vortex domain structure in a BaTiO3 

island and (d) the displacement of the vortex core responsive to an AC electric field. 

 

5.4 Ultrafast domain dynamics under thermal stimuli 

We further study the polarization dynamics on applying ultrashort external thermal 

stimuli. As shown in Fig. 5-5(a), in a BaTiO3 single domain with P1 = 0.260C/m2 at room 

temperature (T = 298K), an ultrafast heat pulse is applied in a circular region (in orange) at time t 

= 0, which instantaneously raises the local temperature by ΔT = 100K. The temporal evolution and 
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spatial distribution of temperature field in the system is simulated by solving the thermal 

conduction equation, and the polarization dynamics is investigated. 

 

 

Figure 5-5. Ferroelectric domain dynamics upon applying a local heat pulse. (a) At t = 0, a heat 

pulse is applied in a circular region (in orange) in a BaTiO3 single domain, which raises the local 

temperature instantaneously by ΔT = 100K. (b) The spatial-temporal map of the polarization 

change ΔP1 along the vertical line across the center of the heated region (as indicated by the 

dashed line in (a)), after applying the laser pulse. The vertical axis indicates the distance Δx3 from 

the center of the heated region. (c) Temperature T and (d) polarization P1 in the first 2.5ns after 

heating, at different points below the heated region (along the dashed line in (a)), at distances Δx3 

= 0 (Point A), Δx3 = 0.5μm (Point B), Δx3 = 1.0μm (Point C), Δx3 = 1.5μm (Point D), Δx3 = 2.0μm 

(Point E), respectively. 

 

As seen in Fig. 5-5(c), points A~E on the vertical dashed line in 6-5(a) with increasing 

distance d = 0, 0.5, 1.0, 1.5, and 2.0μm from the center of the heated region undergoes a 
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temperature evolution with decreasing peak temperatures as well as increasing time delays on 

reaching the temperature peak, before reaching an equilibrium temperature T = 302K within ~2ns. 

Response of the polarization field arises from the temperature change due to the pyroelectric 

effect, in which the polarization P1 undergoes an initial decrease and subsequent oscillation 

(before approaching the new equilibrium value P1 = 0.258C/m2) at all points throughout the 

affected region (Fig. 5-5(d)) yet with various oscillation amplitudes, periods and phases. With 

increasing distances, the first trough of the oscillation appears at an increasing time delay t = 0.40, 

0.49, 0.57, 0.61, and 0.64ns, respectively, with a decreasing oscillation amplitude, as caused by 

the increasing delay and decreasing temperature of the temperature peak. Points C~E undergo 

similar oscillation periods of ~1.4ns, while points A and B from within the initially heated 

regions undergo additional oscillation periods compared with points C~E, as shown by two 

additional wave crests at t = 0.81ns and t = 2.30ns in the polarization oscillation. This is caused by 

the fast temperature decrease at these positions, which shifts the equilibrium position of 

polarization at a higher rate than the intrinsic oscillation frequency of polarization, showing more 

features of a forced oscillation. 

The spatial-temporal map of polarization change ΔP1 along the vertical dashed line in (a), 

is shown in Fig. 5-5(b). The evolution of polarization field at various positions outside the 

initially heated regions shows a similar oscillation period ~1.4ns as determined by the intrinsic 

polarization dynamics, yet a delayed phase determined by the local temperature field, showing a 

dependence of polarization evolution on both the thermal conduction process and the intrinsic 

polarization dynamics.  
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5.5 Domain dynamics under ultrafast mechanical stimuli 

The domain dynamics on applying ultrafast mechanical stimuli to a ferroelectric domain 

is further investigated. Figure 5-6 shows the simulated ferroelectric domain evolution on applying 

an ultrashort pulse of a local force. As seen in the first panel in the first row, in a ferroelectric a+ 

single domain, we apply a force perpendicular to the polarization vector with body force density 

3
3 2.5nN/nmVf   and duration of 10ps within the dashed circular region at the center of the 

simulation system with radius R = 320nm. The evolution of strain and ferroelectric domains is 

simulated using the dynamical phase-field model. 

 

 

Figure 5-6. Evolution of (upper row) the strain field and (lower row) ferroelectric domain 

structure after applying a local body force with 
3

3 2.5nN/nmVf  and a duration of 10ps within a 

circular region (with radius R = 320nm) in a ferroelectric a1 single domain. Local 180° domain 

switching is observed. 

 

A mechanical wave is induced by the applied force with ripple patterns of alternating 

positive and negative strain changes Δε33 (using the strain field ε at t=0 as a reference), as shown 

by the red/orange and blue/cyan regions in the first row in Fig. 5-6, which propagates away from 
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the center of the simulation system. A polarization response is induced by the mechanical wave 

due to the polarization-mechanical coupling through electrostrictive effect, which is shown by the 

evolution of ferroelectric domain structure in the second row in Fig. 5-6. In addition to regions 

with ±90° domain switching forming c+ and c- domains, regions below the center of the system 

undergoes a distinct 180° domain switching, forming an a- domain which grows through time and 

remains stable. Consequently, a new multidomain structure dominated by mixed a+ and a- 

domains is generated upon reaching the new equilibrium. 

Mesoscale mechanism of such ferroelectric domain structure evolution is revealed by 

analyzing the coupling of local polarization response to local strain field. As seen in the first 

panel of Fig. 5-7, at time delay t = 0.5ns after applying the force, the spatial distribution of 

polarization response can be categorized into 4 different regimes, as indicated by point A, B, 

C1/C2, and D, respectively.  
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Figure 5-7. The profile of polarization P at time delay t = 0.5ns, and the profile of strain change 

Δε33, Δε11, and Δε13 at time delay t = 0.25ns, after applying the external force. 

 

The polarization response at point A is dominated by a decrease in polarization amplitude 

without notable polarization rotation. This is caused by the change in normal strain components 

Δε33 > 0 and Δε11 < 0 which reduces P1 through piezoelectric effect, as shown in Fig. 5-7. Note 

that the strain changes at time delay t = 0.25ns is demonstrated herein, which advances the 

observed polarization response (t = 0.5ns) by Δt = 0.25ns, considering a finite time delay of 

polarization response under the influence of the local strain. Meantime, Point B undergoes an 

increase in polarization P1, which is induced by a strain change Δε33 < 0 and Δε11 > 0 through 

piezoelectric effect. 
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Regions around points C1 and C2 show counterclockwise polarization rotation by an 

angle θ < 90°, which is caused by the positive local shear strain ε13(=Δε13) > 0 favoring rotation of 

the polarization vector towards the +x3 direction forming a region with P1 > 0 and P3 > 0. 

However, distinct changes in local normal strains Δε33 and Δε11 also affect the polarization 

response, in which regions around point C1 undergo Δε33 < 0 and Δε11 > 0, favoring a decrease of 

P1 and an increase of P3, thus resulting in a relatively small rotation angle θ < 45° where P would 

easily relax back to the original a+ domain once the strain change Δε13 diminishes in time; regions 

around point C2 undergo a strain change Δε33 > 0 and Δε11 < 0, favoring an increase of P1 and 

decrease of P3, with a much larger rotation angle θ > 45°, approaching the c+ ferroelectric domain.  

Point D undergoes a distinct process in which polarization rotates by an even larger angle 

θ > 90°. This is caused by the dynamical process of the local polarization evolution coupled to the 

evolution of the strain. Figure 5-8 shows the temporal evolution of polarization rotation angle and 

local shear strain ε13(=Δε13) in the 180° domain switching region, at point D in Fig. 5-7. In the 

first 0.25ns after applying the local force, the local shear strain ε13 at point D undergoes a sign 

change from Δε13 > 0 to Δε13 < 0, as induced by the periodically alternating positive and negative 

strains generated and propagating from the center of the simulated system (Fig. 5-8(b)). As a 

result, the local polarization first undergoes a counterclockwise rotation towards the +x3 direction 

during t = 0~0.3ns (similarly to the adjacent C2 point at t = 0.5ns discussed above), and then 

further rotates counterclockwise with θ > 135° at t = 0.5ns under the effect of a negative Δε13 

which energetically favors a monoclinic ferroelectric domain with P1 < 0 and P3 > 0 (Fig. 5-8(a)).  

Subsequent evolution in local strain Δε13 continues to undergo several additional sign changes, 

yet with a fast decaying amplitude and is no longer strong enough to further switch the 

ferroelectric domain. Consequently, the local polarization gradually approaches the new 

equilibrium of an a- domain at an energy minimum equivalent to the initial a+ domain.  
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Figure 5-8. Time sequence of (a) rotation angle of polarization and (b) strain change Δε13 at Point 

D (as indicated in Fig. 5-7), after applying the external force. 

 

As a result, local deterministic non-volatile 180° ferroelectric domain switching is 

achieved through applying an ultrashort local mechanical pulse. Note that such 180° domain 

switching is difficult to achieve through applying a static force, strain, or stress, since the electro-

mechanical coupling always possesses an inverse symmetry of polarization upon applying an 

external strain or stress, due to the symmetry of the ferroelectric perovskites, and thus favors 

formation of domains along either direction opposite each-other. To break such symmetry and 

achieve possible deterministic 180° domain switching, one can provide an external strain or stress 

with spatial variation and utilize the flexoelectric effect, or alternatively, one can provide an 

external strain or stress with temporal variation and utilize the polarization dynamics. Here we 

demonstrated through dynamical phase-field modeling a simple approach of applying an 

ultrashort pulse of a local force. More transient phenomena involving ultrafast dynamics of 

ferroelectric domains can be explored in future using the developed dynamical phase-field model. 
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5.6 Domain dynamics of a BaTiO3 crystal under an ultrashort laser pulse 

We further apply the dynamical phase-field model to study experimentally measured 

laser-pulse activated domain dynamics in a BaTiO3 crystal. Experiments are conducted by our 

collaborators H. Akamatsu, V. Gopalan et al. [130].  

As shown in Fig. 5-1, applying a 100fs laser pulse on the surface of a BaTiO3 crystal with 

a typical a/c ferroelectric domain structure generates strain oscillations with ~GHz frequency. In 

addition to different dynamic behaviors observed in a- and c-domains, distinct dynamic behaviors 

of domains near the surface (surface regions) and domains at ≥ 700nm deep below the surface 

(subsurface domains) are also observed [130]. 

The response in the subsurface domains of the BaTiO3 crystal under the applied laser 

pulse is modeled by considering the thermal effect of the laser which would heat up the affected 

region containing a few ferroelectric domains, as illustrated in the first panel in Fig. 5-9. A 

tentative effective temperature increase of ΔT = 6K is used.  

 

 

Figure 5-9. (First panel) schematics of domain structure in the subsurface region. (Other panels) 

simulated strain map Δε33 at time delays t = 0ns, t = 0.7ns, and t = 3.2ns, respectively, in the 

subsurface region. 

 

As shown in Fig. 5-10(a), under the increased temperature ΔT = 6K, the polarization 

inside each domain undergoes a damped oscillation with ~GHz frequency and decreases to a new 

equilibrium state through pyroelectric effect. Evolution of the strain field is closely coupled to the 
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polarization response through electrostrictive effect, and it undergoes a damped oscillation with 

almost the same frequency. Effect of the temperature increase directly through thermal expansion 

shows a smaller influence in the change of the strain field. The simulated temporal evolution of 

the strain Δε33 in c-domains shows an oscillation and decrease due to the decrease of local P3, 

which quantitatively agrees with the experimental measurement in subsurface c-domains, as 

shown in Fig. 5-10(b). Similarly, the simulated temporal evolution of the strain Δε33 in a domains 

undergoes a slight increase due to the decrease of local P1. Simulated strain map of the subsurface 

domains at different time delays are shown in Fig. 5-9. Therefore, the observed lattice dynamics 

of subsurface domains under the applied laser pulse can be explained by a pure thermal effect.  
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Figure 5-10. (a) Evolution of polarization change ΔP3 in subsurface c-domain from the dynamical 

phase-field simulation. (b) Evolution of strain change Δε33 in subsurface a- and c-domains from 

experimental measurement (dots) [130] and dynamical phase-field simulation (solid lines). 

 

The dynamical evolution of the surface regions undergoes an initial increase of the out-

of-plane strains Δε33 in both a- and c-domains (Fig. 5-1) [130], showing different behavior from 

subsurface domains, which indicates the existence of a possible surface layer [170-174]. 

Specifically, the initial increase of Δε33 in surface c-domains is contrary to a pure thermal effect. 

To understand the phenomena, we consider possible generation of an effective out-of-plane 
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electric field pulse E in the surface layer on applying the laser pulse onto the BaTiO3 crystal, in 

addition to the thermal effect, as shown in the first panel of Fig. 5-11. An effective electric field 

pulse of E = 20MV with duration of 0.1ns is considered. 

 

 

Figure 5-11. (First panel) schematics of domain structure in the surface region. The a/c domain 

wall (DW) moves towards a domain, while polarization inside a domain rotates towards the out-

of-plane direction. (Other panels) simulated strain map Δε33 at time delays t = 0ns, t = 0.7ns, and t 

= 3.2ns, respectively, in the surface region. 

 

Fig. 5-12(b) shows simulated temporal evolution of out-of-plane strain Δε33 in surface a- 

and c-domains. The initial increase of Δε33 in both a- and c-domains induced by the effective 

electric field pulse is observed showing agreement with the experimental measurement. Surface 

c-domains also undergo a decrease of the out-of-plane strain upon reaching the new equilibrium, 

i.e., Δε33 < 0 at t = 6ns, due to the decreased equilibrium P3 through the thermal effect of the laser 

similar to the case of subsurface c-domains.  
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Figure 5-12. (a) Temporal evolution of displacement Δrwall of the surface a/c domain walls and 

rotation angle ΔθP of the polarization vector in surface a domains from the dynamical phase-field 

simulation. (b) Evolution of strain change Δε33 in the surface a- and c-domains from experimental 

measurement (dots) [130] and dynamical phase-field simulation (solid lines). 
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The effective electric field pulse also activated the motion of surface domain walls, where 

the a/c domain wall moves towards the a domain by ~1.6nm or ~4 unit cells, resulting in a shrink 

of the surface a domain, leading to a subsonic domain wall speed of 2.5m/s within the first 1ns, as 

shown in Fig. 5-12(a). Such domain wall motion is also represented by a strong strain change at 

regions Δε33 around the domain wall upon approaching new equilibrium, as shown in the 

simulated strain profile at the surface region at time delay 3.2ns in Fig. 5-11. The domain wall 

motion is further coupled with a rotation of polarization inside surface a domain towards the out-

of-plane direction (see schematics in the first panel of Fig. 5-11) by an equilibrium value of ΔθP = 

2°, as shown in Fig. 5-12(a). Such polarization rotation in surface a domains coupled to domain 

wall motion results in the observed increase of out-of-plane strains towards the new equilibrium, 

i.e., Δε33 = 0.04% at t = 6ns. Therefore, we conclude that a combination of thermal effect and 

generation of an effective electric field pulse is responsible for the distinct behavior of the 

observed lattice dynamics in surface domains excited by an applied laser pulse. 

 

5.7 Conclusion 

In this chapter, we developed a dynamical phase-field model for understanding and 

predicting dynamical responses of inhomogeneous ferroelectric domains under ultrafast electrical, 

thermal,  mechanical, and optical stimuli. Governing equations for ultrafast polarization dynamics 

and elastodynamics were introduced, where advanced numerical algorithms were employed. 

As an example, we investigated the domain dynamics of BaTiO3 under various types of 

ultrafast stimuli. The frequency-dependent response of domain wall motion and vortex core 

evolution to an external AC electric field is demonstrated. Domain dynamics under an external 
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local heat pulse show a combined characteristic of thermal conduction and intrinsic polarization 

dynamics under local temperature changes.  

Ferroelectric domain dynamics under an ultrafast external mechanical force is determined 

by the dynamical process of the local polarization evolution couple to the temporal evolution of 

the strain. Our simulation demonstrated ultrafast-stimulated emerging transient phenomena which 

is absent on applying static stimuli. A deterministic 180° ferroelectric domain switching is 

discovered, which shows possibilities for precise mechanical manipulation of ultrafast 

ferroelectric domain switching. 

We further successfully explained the experimentally observed laser-pulse-induced 

domain dynamics with distinct responses determined by both the orientation and the location of 

the domains. Mesoscale mechanisms of ferroelectric domain and domain wall responses under 

laser excitation as well as intrinsic lattice vibrations are revealed, where the critical influence of 

surface phenomena is demonstrated. 

The present dynamical phase-field study focused on the polarization dynamics and 

elastodynamics at the GHz-THz scales while assuming electrostatic equilibrium. Future study can 

further incorporate the electrodynamics at petahertz (PHz) frequencies which will allow one to 

explore a full range of dynamic phenomena. We also plan to introduce into the phase-field model 

the electron correlation order for correlated systems, and employ electron-lattice, electron-

polarization, and electron-antiferromagnetic coupling, and further investigate potential formation 

of novel electronic phases under ultrafast stimuli, including manipulation of metal-insulator 

transitions in correlated systems. The theoretical insights on ultrafast domain dynamics will 

provide useful guidance for exploring and manipulating dynamical functionalities of ferroelectric 

materials. 
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Chapter 6  
 

Conclusions and future work 

6.1 Summary and conclusions 

In this dissertation, we developed phase-field models to investigate the properties of 

ferroelectric composites and heterostructures. Material properties including polarization, elastic, 

and thermal responses during the evolution of ferroelectric and ferroelastic domains in chosen 

systems, arising from the piezoelectric coupling, magnetoelectric coupling, electro-thermal 

coupling, as well as under ultrafast dynamic stimuli, are examined. The main contributions of the 

dissertation include:   

I. In Chapter 2, a phase-field model coupled with constitutive equations was developed to 

investigate the direct magnetoelectric coupling in bulk multiferroic magnetic/ferroelectric 

composites. It provides a detailed examination of the composites that goes from the 

mesoscopic modeling of the local polarization/elastic field distributions (domains) to the 

predictions of effective magnetoelectric response within the context of the continuum 

media theory under a periodic boundary condition. These functional properties have 

proven to be strongly dependent on several microstructural factors of the composites 

including the phase fraction and phase connectivity. Such a simple phase-field based 

multi-scale approach should also have broad potential applications in predicting various 

effective properties such as the piezoelectric, piezomagnetic, dielectric, and elastic 

responses in composite materials, which are directly deduced from the response of the 

complex microstructure to external fields. 
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The present model can also be extended to include non-linear contributions to the 

effective properties, e.g., from domain wall motion, by incorporating magnetic exchange 

energy and ferroelectric gradient energy in total free energy to describe magnetic and 

ferroelectric domain walls, respectively. 

II. In Chapter 3, we employed a phase-field model to study the local elastic coupling 

behaviors of the magnetic and ferroelectric domains in a multiferroic heterostructure of a 

magnetic film grown on a ferroelectric substrate. Taking a polycrystalline Co0.4Fe0.6 and a 

BaTiO3 crystal as an example, the one to one match of the initial magnetic and 

ferroelectric domain structures and the repeated electric-field writing and erasure of the 

magnetic striped domains have been simulated, providing modeling supplement and 

theoretical insights to experimental observations. Studies on the kinetics of the electric-

field-driven magnetic domain evolution reveal an alternating occurrence of local 

magnetization rotation and the coupled motion of magnetic and ferroelectric domain 

walls with almost identical velocities. 

III. In Chapter 4, through applying a phase-field model, we studied the anomalous negative 

electrocaloric effect, i.e., cooling phenomenon upon applying an electric-field pulse 

without subsequent heating, in the ferroelectric P(VDF-TrFE)/P(VDF-TrFE-CFE) 

50/50vol% composite. A thermodynamic scheme is employed to calculate the 

electrocaloric effect during the evolution of domain structures, based on tracking the 

evolution of the free energy of the system.  

Upon applying a reverse electric field to a poled composite, the sample is depoled with 

randomly oriented domains, which structure is stable upon removing the field. A 

decreased dipole order in such process results in an entropy decrease, i.e., a cooling 

effect. Both the P(VDF-TrFE) normal ferroelectric phase and the P(VDF-TrFE-CFE) 

relaxor phase are crucial in such phenomena, as they act to stabilize the poled state and 
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depoled state, respectively. An adiabatic cooling of ΔT = -2.6°C on applying E = 30MV/m 

is found, which quantitatively agrees with the previous experimental measurement. The 

dependence of the electrocaloric cooling and overshooting field on operating temperature 

is predicted. 

IV. In Chapter 5, we developed a dynamical phase-field model for understanding and 

predicting dynamical responses of ferroelectric domains under ultrafast electrical, 

thermal, and mechanical stimuli. Governing equations for ultrafast polarization dynamics 

and elastodynamics were introduced, where advanced numerical algorithms were 

employed. As an example, we investigated the ferroelectric domain dynamics of BaTiO3 

crystals under various types of ultrafast stimuli. The frequency-dependent response of 

domain wall motion and vortex core evolution to an external AC electric field is 

demonstrated. Domain evolution dynamics under an external local heat pulse show a 

combined characteristic of thermal conduction and intrinsic polarization dynamics under 

local temperature changes. 

Ferroelectric domain dynamics under an ultrafast external mechanical force is determined 

by the dynamical process of the local polarization evolution coupled to the temporal 

evolution of the strain. Our simulation demonstrates ultrafast-stimulated emerging 

transient phenomena which are absent on applying static stimuli. A deterministic 180° 

ferroelectric domain switching is discovered, which shows possibilities for precise 

mechanical manipulation of ultrafast ferroelectric domain switching. 

We further successfully explained the experimentally observed laser-pulse-induced 

domain dynamics with distinct responses determined by both the orientation and the 

location of the domains. Mesoscale mechanisms of ferroelectric domain and domain wall 

responses under laser excitation as well as intrinsic lattice vibrations are revealed, where 

the critical influence of surface phenomena is demonstrated. 
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6.2 Directions for future work 

Based on the phase-field model for ferroelectric composites and heterostructures and the 

inhomogeneous ferroelectric dynamics under ultrafast external stimuli, the following topics can 

be further studied. 

6.2.1 Microstructure design of piezoelectric composites 

Piezoelectricity, in which an electric voltage or polarization develops in response to an 

applied mechanical stress, finds wide applications in sensors, actuators, and transducers etc., 

which is important in various industrial and scientific areas. Piezoelectric composite materials 

offer advantages over single phase piezoelectrics with better performance and greater tunability 

[15, 16, 175, 176], which involves piezoelectric, dielectric, elastic, and conductivity 

considerations. Microstructure design has been used to control the performance of the 

piezoelectric composite. Using the concept of phase connectivity, composites are categorized into 

0-3 type (particles), 1-3 type (rods), 2-2 type (multilayers) structures, or more complicated 

structures like 3-3 type inter-connected network structures (Fig. 6-1); these will strongly 

influence the effective piezoelectric properties of the composite.  
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Figure 6-1. Comparison of the structure of piezoelectric composites (left panel) with ferroelectric 

oxide particles in a dielectric polymer matrix, and (right panel) with a porous ferroelectric 

ceramic forming interconnected networks in a dielectric polymer matrix. The silver phases 

indicate the ferroelectric oxide, while the rest of the space in the composite is filled with the 

polymer phase which is not drawn for clarity. The geometry of the network structure is generated 

with a grain growth simulation code. 

 

For example, by constructing a porous ferroelectric PZT ceramic forming interconnected 

networks in a PDMS dielectric polymer matrix (see Fig. 6-1), preliminary phase-field simulation 

results show that the piezoelectric voltage response is enhanced by 4 times compared with that of 

composites with 0-3 type particle-matrix structure with the same phase fractions. It is revealed 

that such structure design would induce a stress distribution more concentrated on the ceramic 

network, upon applying an external force, resulting in the enhanced effective piezoelectric 

coupling. 

One of the future directions is the theoretical investigation on the effective properties of a 

piezoelectric composite, including the influence of the phase structure and interfaces, and on 

enhancing the performance from a microstructural perspective. Both bulk composites and thin 

film and island nanostructures will be investigated. 
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6.2.2 Phase-field study on ultrafast dynamics in magnetic/ferroelectric heterostructures 

In Chapter 5, a dynamical phase-field model for dynamical responses of ferroelectric 

domains under ultrafast stimuli is developed based on the coupled ultrafast polarization dynamics 

and elastodynamics. One future direction in theoretical studies of the dynamical functionalities of 

electronic materials is to couple the elastodynamics with the micromagnetic formulation for 

modeling the dynamics of magnetization under an ultrafast local mechanical pulse in 

ferromagnets, a topic that has recently gained rapidly increasing research interests [177-179]. The 

Landau-Lifshitz-Gilbert equation (Equation 3-5) describing the magnetization dynamics and the 

elastodynamics equation (Equation 5-10) are simultaneously solved.  

It’s also important to further extend the present dynamical phase-field model based on the 

present work for studying the ultrafast magnetoelectric response in a magnetic/ferroelectric 

heterostructure (Chapters 2 and 3), with a fully coupled elastodynamics, polarization dynamics, 

and magnetization dynamics. For example, the elastically coupled magnetic/ferroelectric domain 

in Chapter 3 (see Figs. 3-5 and 3-6) can be revisited, to investigate how the film thickness, the 

mechanical compatibility of the magnetic and ferroelectric materials, and the frequency of the 

applied electric-field pulses will influence the coupling between the ferroelectric and magnetic 

domains. This fully coupled ferroelectric-micromagnetic-elastodynamic phase-field model would 

provide a basis for computational optimization of the performances of piezostrain-enabled 

magnetic and spintronic applications. 

6.2.3 Phase-field study on ultrafast dynamics in electronic phase transitions 

Electronic phase transitions in strongly correlated oxides like VO2 have attracted great 

scientific and technological interest in the past decades. The metal-insulator transition, in which 
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the material switches between metallic and insulating states in an ultrashort time scale under 

external stimuli, exhibits great potential in novel power-efficient electronic and optical devices 

[180-182]. 

A mesoscale theoretical study of ultrafast electronic phase transitions in such systems that 

help reveal the mesoscale mechanisms would be important in providing theoretical guidance for 

optimizing the electronic and optical functionalities. In Chapter 5, we developed a dynamical 

phase-field model focusing on the evolution of polarization and elastic domains through 

introducing polarization dynamics and elastodynamics. It will be helpful to further introduce into 

the phase-field model the electron correlation order to describe the electronic phase and domains 

in strongly correlated systems and enable simulation of ultrafast electronic phase transitions. It’s 

also important to employ electron-lattice, electron-polarization, and electron-antiferromagnetic 

coupling, and further investigate the potential formation of novel electronic phases under ultrafast 

stimuli, including manipulation of metal-insulator transitions in correlated systems, etc.  
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