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Abstract 

A derecho is a convectively induced windstorm produced by an extratropical 

mesoscale convective system (MCS) with straight-line winds exceeding 25ms-1. Fourteen 

derecho corridors exist in the U.S. The Northern Tier corridor includes derechos that 

track northwest to southeast from the North Central Plains and Upper Midwest regions 

through the mid-Atlantic states. This corridor produces more frequent and damaging 

derechos than those of other U.S. corridors. This dissertation investigates Northern Tier 

derechos to improve understanding of the factors that influence their intensity, to predict 

the cost of federal response and recovery activities, and to develop and apply a 

meteorological impact scale and emergency response GIS tool. Fifty-six summer (JJA) 

Northern Tier derechos along with their physical atmospheric and land-surface attributes 

and population characteristics of those impacted by the events are examined to clarify 

their climatology and impacts. Multiple and geographically weighted regressions, 

principal component analysis, spatial analysis, and cluster analysis are used to reveal 

characteristics of derecho intensity and impact such as track length and federal assistance 

required for response and recovery. Results show that derecho intensity is influenced 

strongly by the atmospheric and land-surface variables of CAPE, the LLJ, and land use 

boundaries. Response and recovery funding is related to the area impacted and 

underlying attributes of the affected populations (e.g., socioeconomic status). A 

meteorological impact scale classifies the different event impacts and an emergency 

management GIS response tool is applied and shown to be useful in depicting resource 

access after a derecho. The research enhances understanding of Northern Tier derechos to 
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help refine attempts to understand their impacts and improves the ability of emergency 

managers to prepare for these events.   
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CHAPTER 1 

INTRODUCTION 

Background 

 A derecho is a widespread, convectively induced straight-line windstorm with 

winds exceeding 25 ms-1 (NOAA SPC, 2004). Differentiated from tornadoes in the late 

1800s, these storms cause wind damage in a swath of increasing size from initiation to 

dissipation (Hinrichs, 1888). Although two types of derechos occur—progressive and 

serial derechos—progressive derechos are the more intense and consequently more 

damaging. Progressive derechos are characterized by airflow oriented parallel to the 

direction of movement of the storm, evident as a single “bow-echo” on radar shaped like 

a backwards “C” (Johns and Hirt, 1987). Progressive derechos occur across the U.S., but 

are sectored into corridors based on region of occurrence and direction which they travel. 

The Northern Tier corridor produces the most frequent and destructive derechos (Bentley 

and Sparks, 2003; Ashley and Mote, 2005). The high-impact of Northern Tier 

progressive derechos makes them the subject of this dissertation. 

On 29 June 2012 a particularly large and damaging Northern Tier progressive 

derecho tracked through the midwestern and eastern U.S. It initiated in Iowa and grew 

progressively larger and more intense as it sped through Illinois, Indiana, Ohio, 

Kentucky, West Virginia, Virginia, North Carolina, Pennsylvania, New Jersey, Delaware, 

Maryland, and D.C. The derecho impacted densely populated cities including Chicago, 

IL, Columbus, OH, and the Baltimore, MD – Washington, DC area. This derecho left a 

wide swath of damage in its wake and caused fatalities. It was difficult for emergency 

managers to estimate the resources that would be required to respond to and recover from 
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the impacts of the 29 June 2012 derecho because emergency operations research had not 

been conducted on the intensity of derechos, their economic impacts, and how they 

compare to past events. Although economic losses and societal impacts attributed to other 

meteorological disasters have been statistically modeled (Boswell et al., 1999; Changnon, 

2003; D’Amico et al., 2016), hitherto the economic losses and societal impacts of 

derechos have not. Also, although other meteorological disasters (e.g., tornadoes, 

hurricanes, and snowstorms) are well defined and classified (Fujita, 1971; Simpson and 

Saffir, 1974; Kocin and Uccellini, 2004; Potter, 2007), there were few well-researched 

Northern Tier derechos against which to compare the apparently anomalous event of 29 

June 2012. Therefore, this dissertation seeks to improve the scientific understanding of 

derechos by determining the meteorological and climatic factors influencing their 

intensity, modeling the costs of their damage to societies and infrastructure, and 

developing and applying a derecho impact scale and recommendations to improve the 

response to their occurrence and to speed recovery from their impacts.  

 

Objectives 

 To improve understanding of derechos and their impacts, this dissertation has the 

following three objectives:  

1. To classify derechos based on new intensity metrics that can describe 

their impacts and determine the atmospheric and land surface variables 

that can be used to predict differences in derecho intensity.  

2. To identify and describe the relationships of variables that influence 

the cost of derecho response and recovery. In particular, the federal 
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response and recovery costs related to Northern Tier derechos are 

assessed, which tend to affect multiple states due to their large size and 

rapid movement. 

3. Improve emergency management of derechos by formulating a 

derecho-specific meteorological impact scale, and developing and 

applying a GIS response tool that can advise decision-making relevant 

to post-event allocation of resources such as federal disaster recovery 

centers that serve survivors. 

These objectives are achieved using statistical testing and modeling, machine learning, 

and geospatial analytics applied to a wide range of meteorological, climatic, and 

population datasets. The research results attain each of the objectives and have direct 

application to improving the ability to forecast derechos impacts. The research improves 

understanding of the multi-faceted issue of disaster response and recovery with respect to 

under-researched derechos. 

  

Chapter Structures 

 The second chapter of this dissertation clarifies the factors influencing the 

intensity of derechos through analysis of their direction, associated rain totals, maximum 

wind speed, and major and minor axis lengths. Derechos are stratified into subsets of high 

and low intensity according to these dominant attributes, and are tested for statistical 

differences in independent variables that potentially explain these intensity differences. 

The subsets of derechos are mapped and spatially compared and analyzed using 

geographically weighted regression. In addition, potential relationships between physical 
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derecho attributes such as CAPE and land use boundaries and these intensity metrics are 

investigated. This chapter further clarifies what dictates the large variance in derecho 

intensity and thus sets the stage for analyzing derecho impacts as is done in the 

subsequent chapters. 

 The third chapter of this dissertation examines the cost of derechos in terms of 

federal relief funding by modeling relationships between the key derecho attributes 

identified in Chapter 2 and characteristics of the populations impacted by derechos. 

Federal Emergency Management Agency (FEMA) Public Assistance (PA) grants are 

awarded to assist in the response to and recovery from disasters. The awards given for 

response and recovery from Northern Tier progressive derechos are statistically modeled 

to describe the relationship between the cost of derechos and physical attributes of the 

storms and the socioeconomic attributes of affected populations. Relationships are further 

analyzed spatially to show the variation in the grant award amounts across the impacted 

areas. This chapter identifies the variables impacting funding of derecho-related recovery 

and the statistics help explain how these variables change over the study area.  

 The fourth chapter of this dissertation clarifies derecho physical and socio-

economic impacts through generation of a derecho impact scale and its application to the 

56 Northern Tier summer derechos studied in the previous chapters. The impact scale 

developed quantifies derecho impacts based on the effects on society as well as physical 

derecho properties. By categorizing derecho events according to their impact, emergency 

management decision-making ultimately will be improved. An emergency management 

decision based on previous similar derecho events improves the likelihood of the success 

of the response and its cost-effectiveness. A GIS tool for use by emergency GIS response 
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teams to predict resource access and deployment in the wake of a derecho also improves 

the likely success of the response effort. As a proof-of-concept, I apply the tool to a 

derecho scenario and demonstrate its utility in derecho-prone areas and as a basis for 

continued refinement in the future as derecho research continues.  
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CHAPTER 2 

INFLUENCE OF ATMOSPHERIC AND LAND SURFACE CONDITIONS ON 

NORTHERN TIER STATES DERECHO INTENSITY 

Abstract 

A derecho is a convectively induced windstorm produced by an extratropical mesoscale 

convective system (MCS) with straight-line winds exceeding 25ms-1. Fourteen derecho 

‘corridors’ exist in the U.S. The Northern Tier corridor includes derechos that track 

northwest to southeast from the North Central Plains and Upper Midwest regions through 

the mid-Atlantic states. This corridor produces the most frequent and damaging derechos 

of all U.S. derecho corridors (Bentley and Sparks, 2003). This study analyzes the 

influence of synoptic atmospheric and land-surface variables on Northern Tier derecho 

intensity. Derecho intensity and physical attributes are classified according to metrics that 

include storm track direction, rain totals associated with the event, maximum wind speed, 

and length of the minor and major axes. Data on atmospheric (e.g., CAPE, vertical shear, 

etc…) and land-surface conditions (soil moisture, land use, etc…) are collected for 56 

summer Northern Tier derecho events occurring between 2000 – 2014, and natural breaks 

are used to separate these derechos into high- and low- intensity subsets. Mean event axes 

and standard deviation ellipses are mapped to show the event average tracks and the areas 

typically affected by the high- versus low-intensity derechos. Mann-Whitney Wilcoxon 

(MWW) tests reveal statistical differences between high- and low-intensity derecho 

subsets. Derecho major axis track length subsets are found to have statistically 

significantly different low-level jet (LLJ) influence and CAPE values that are reasonable 

physically. A multiple regression and geographically weighted regression (GWR) applied 
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to these data are used to further explore derecho track length. Results show that certain 

atmospheric variables—notably the 500 hPa height, CAPE, and 300 hPa winds—and 

land-surface variable dry-wet land use boundaries dominate the differences between 

derecho intensity as given by their associated rain totals, maximum wind speeds, and 

major axis length. Conversely, no statistically significant differences are found between 

derecho physical attributes measured by track direction and minor axis width. The results 

show that atmospheric and land-surface conditions describe statistical differences 

between intensities of derechos as described by rain totals, maximum wind speeds, and 

major axis length.  

Keywords: derechos, derecho intensity, intensity metrics, track length, spatial distribution 
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Introduction 

A derecho is a strong, convectively induced windstorm produced by a mesoscale 

convective system (MCS) with straight-line winds exceeding 25 ms-1 (NOAA SPC, 

2004). The storms can span over 500 km in width (minor axis length), and can travel up 

to 2,000 km from their initiation to dissipation locations (major axis length), over 

approximately 12 – 24 hours. Derechos sustain long paths largely through self-

propagation, which occurs through continuous ingestion of warm moist air from the 

direction of movement (Ashley et al., 2007). The strong winds inflict crippling damage 

on a variety of landscapes—both rural and urban—and can cause fatalities, mostly from 

wind-borne debris (Ashley and Mote, 2005). Derechos caused 153 deaths in the U.S. 

from 1986 to 2003. Compared to fatalities caused by floods, tornadoes, and hurricanes, 

those from derechos may be underreported due to lack of understanding about this 

phenomenon among post-storm data collectors and the media (Black and Ashley, 2011). 

Severe weather-related economic losses are difficult to quantify, but multiple regression 

modeling suggests that estimates can be made from meteorological, physical, and social 

characteristics of the storms and impacted populations (Boswell et al., 1999).  

Understanding the spatial distribution of these hazards could improve life-saving 

endeavors and policies. The spatial distributions of derecho injuries show a hot spot 

located over Lake Michigan and surrounding states (Ashley and Mote, 2005; their Figure 

6). These injuries are associated with Northern Tier derecho events (in which derechos 

develop in North Dakota, South Dakota, Nebraska, Minnesota, Iowa, Missouri, 

Wisconsin, Illinois, Michigan, Indiana, Ohio, and parts of adjacent states), which are the 

subject of this research. This chapter aims to enhance the understanding of the physical 
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variables contributing to potentially damaging and hazardous derecho impacts which are 

shown to be related to the intensity of a derecho. 

Although there are previously documented derecho occurrences and associated 

fatalities, the storms have been under-researched when compared with other severe 

weather events such as tornadoes and hurricanes. Hinrichs (1888) first identified derechos 

in the Great Plains where he noticed wind damage swaths that were much larger than 

those caused by tornadoes. He termed the storms “derechos,” the Spanish word for 

“straight” (Hinrichs, 1888). Following Hinrichs’ observational report, little additional 

research on derechos was undertaken until the 1980s. 

 Derecho research was re-visited by researchers classifying downbursts and 

straight-line wind events into five types (Fujita and Wakimoto, 1981). Aided by satellite 

remotely sensed visible and infrared imagery, the different intensities of these events 

were also examined in terms of their associated wind speed and damage in the Northern 

Tier states comprising initiation and intensification in the North Central Plains and Upper 

Midwest (Fujita and Wakimoto, 1981). In this dissertation, the Northern Tier refers to 

derechos that develop in North Dakota, South Dakota, Nebraska, Minnesota, Iowa, 

Missouri, Wisconsin, Illinois, Michigan, Indiana, Ohio, and parts of adjacent states. 

Subsequent to Fujita and Wakimoto’s (1981) study, the definition of derecho was further 

clarified and the meteorological conditions associated with derechos were identified 

including strong instability and occurrence along a stationary front (Johns and Hirt, 

1987). These authors set criteria for derecho identification from wind observations that 

included spatially concentrated wind reports of over 26 ms-1, the spatial and temporal 

continuity of these reports, and association with a derecho-producing MCS (i.e., DMCS). 
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In addition, Johns and Hirt (1987) distinguished between derechos occurring with parallel 

synoptic airflow (i.e., progressive derechos) and those having perpendicular airflow 

across many bow echoes comprising a squall line (i.e., serial derechos; Johns and Hirt 

(1987), or squall line windstorms; Corfidi et al. (2016)). Progressive derechos, most 

common in the summer (June-August) in the Northern Tier states, are the focus of this 

research.  

 A refined classification of derechos that identified DMCSs and other MCS storm 

types from satellite and radar data, in conjunction with proximity soundings and storm 

reports, was given by Jirak et al. (2003). Similar methods to theirs are used in the present 

research to identify derechos from multiple data sources. A characteristic single “bow 

echo” shape associated with progressive derechos was identified in events occurring in 

both warm and cool atmospheric environments across all seasons (Johns, 1993). In all 

seasons, bow echo development tends to occur with anomalously high Convective 

Available Potential Energy (CAPE), but vertical shear values may vary (Evans and 

Doswell, 2001). CAPE and shear tend to have minimum thresholds for bow echo 

formation but not all events are associated with anomalously high CAPE and large 

vertical shear, and often a low-level stationary front supports bow echo formation (Johns, 

1993; Evans and Doswell, 2001; Metz and Bosart, 2010). In atmospheric environments 

that otherwise support bow echo formation where a stationary front is present, but 

vertical shear is weak, the atmosphere tends to be highly unstable and thus has 

anomalously high CAPE and anomalously low Lifted Index (LI) values (Johns, 1993; 

Weisman, 1993). Warm air advection accompanying a southerly low-level jet (LLJ) is 

associated with many derecho events and aids in their propagation and enhancement of 
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rainfall production (Higgins et al., 1987; French and Parker, 2010). High surface 

temperatures and strong winds aloft at the jet stream level are associated with the 

strongest derechos (Evans and Doswell, 2001; Coniglio and Stensrud, 2004) A favorable 

synoptic setup for a derecho will include all these meteorological characteristics, and 

initiation and propagation will be further aided by surface – atmosphere interactions 

(Bentley et al., 2000).  

 Land-surface features such as land-use/land-cover (LULC) boundaries and soil 

moisture gradients influence convection by changing moisture availability in the 

planetary boundary layer and the convective fluxes of sensible and latent heat. These 

LULC gradients and boundaries are common in agricultural areas of the Northern Tier 

region (i.e., the Corn Belt). The Northern Tier contains mixtures of agriculture, forest, 

grassland, and urban LULC with varying magnitude horizontal-scale boundaries between 

LULC types (Segal and Arritt, 1992; Lambin et al., 2001). However, the dominant LULC 

types of agriculture and forest have boundaries that can influence deep convection and 

rainfall by adding additional moisture to the atmosphere from evaporation and 

enhancement of vertical instability due to associated horizontal gradients in roughness 

length (Anthes, 1984; Pielke and Zheng, 1989; Segal et al., 1989). Observational and 

modeling studies of the Corn Belt have associated its LULC boundaries and gradients 

with enhanced daytime convective cloud presence, thunderstorm generation under 

conditions of weak synoptic flow, and occurrence of non-classical mesoscale circulations 

(NCMCs) (Carleton and O’Neal, 1995; Brown and Arnold, 1998; Carleton et al., 2001; 

Adegoke et al., 2007; Carleton et al., 2008). NCMCs often occur at surface boundaries. 

These local to meso-scale surface – atmosphere interactions aid in the development of a 
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nocturnal LLJ when the synoptic circulation pattern is favorable—typically, incoming 

low pressure and retreating high pressure—with associated warm-air advection that 

propagates the movement of DMCSs west-to-east. A nocturnal LLJ is a diurnally varying 

core of fast winds in the upper planetary boundary layer just below the daytime inversion 

altitude. It forms in very stable atmospheric conditions as a force imbalance is created 

when convective mixing ceases at night. The Great Plains LLJ maximizes at night and in 

the early morning, and is enhanced by other processes that result from the earth's surface 

sloping downward from west to east (Blackadar, 1957; Bonner, 1968; Shapiro and 

Fedorovich, 2010). 

Detailed classification of derechos followed research on the physical processes 

that drive these storms. Geographer-climatologists and meteorologists have used criteria 

derived by Johns and Hirt (1987) with modifications to identify derecho events. A 

classification of derecho corridors by geographers Bentley and Mote (1998) identified six 

main corridors in which derechos formed and propagated during the warm and cool 

seasons of 1986 – 1995. In a subsequent paper, Bentley and Sparks (2003) updated their 

corridor definitions and added additional derecho corridors to give a total of fourteen. 

Two corridors, the Southeast and Great Lakes, are dominated by derechos having a west-

to-east propagation, as opposed to a predominantly northwest to southeast direction for 

the Northern Tier. Between 1996 and 2000, the Southeast corridor produced four 

derechos with moderately long path lengths, whereas the Great Lakes Corridor saw five 

derechos with shorter tracks. Four derecho corridors—spring-season Southeast, Midwest, 

Ohio Valley, and Central Plains—produce derechos associated with a southwesterly 

surface wind. The spring-season 1996-2000 Southeast and Midwest corridors 
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experienced seven and eight derechos, respectively; the Midwest corridor supported 

derechos with extensive path lengths. During this period also, ten derechos were initiated 

in both the Ohio Valley and Central Plains corridors. The Southward Burst corridor, 

located in the central Great Plains, and the Northern Tier corridor are distinguished by 

northwesterly flow (i.e., south-eastward propagating) derechos. Although the Southward 

Burst corridor saw seven derechos in the period 1996-2000, the Northern Tier 

experienced 21 derechos in the same five years. The Bentley and Sparks (2003) study is 

foundational to the present research which updates the Northern Tier derecho climatology 

as one of its first objectives. 

In tandem with the geographical studies of derechos, Coniglio and Stensrud 

(2004) developed a revised set of criteria to identify and create a climatology of derechos 

based on proximity soundings of atmospheric attributes and wind speed and direction. 

These events were divided into subsets of derecho intensity based on wind reports, and 

the Northern Tier region was shown to experience mostly “moderate” and “high-end” 

derechos (Coniglio and Stensrud, 2004).  

Although these climatologies of derechos are comparable, none uses the same 

criteria to define an event. As noted by Corfidi et al. (2016), the wide-ranging definitions 

used by meteorologists and non-meteorologists, such as geographers and emergency 

managers, hamper the development of a universal definition of a derecho that can be used 

by a range of stakeholders to effectively analyze the impacts of the events. Corfidi et al. 

(2016) suggest that such a definition should be standardized objectively based on the 

dynamics of the storm (e.g., the presence of a cold pool which drives the parent MCS) 

and on the fact that damage occurs after complete organization of any smaller 
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thunderstorms into the larger derecho. However, the researchers also acknowledge that 

more basic research is needed on derecho “ingredients” and public understanding of the 

terminology before the definition of a derecho can be made as inclusive as possible of the 

phenomenon and its impacts. Corfidi et al. (2016) also suggest that further taxonomic 

studies will aid in this effort.  

Following from the above scientists’ derecho definitions distinguishing between 

those of meteorologists and non-meteorologists, the present paper will be based on 

geographer-climatologist concepts and methodologies as discussed by Carleton (1999). In 

this way, the research will describe and classify derecho events by using averages and 

statistics to determine derecho attributes from many events, as opposed to a single case, 

and also by emphasizing spatial patterns of derecho intensity and impacts. Accordingly, 

this research will classify derechos according to intensity-based metrics, distinguish the 

spatial patterns of derecho intensity, and conduct statistical analyses of the differences 

between high- and low-intensity derechos to understand why the two distinct populations 

of events are different. Although meteorological modeling and case studies will aid in 

refining the definition of a derecho, geographic investigations including identifying 

statistically significant spatial differences between high- and low-intensity derechos are 

important.  

As an example of a geographic approach to studying derechos, a spatiotemporal 

analysis of their associated lightning densities (Bentley et al., 2016) showed where and at 

what stage derecho-associated lightning strikes occur. Maps of lightning strikes and flash 

densities (i.e., the number of strikes per 16 km2) show where strikes occurred most 

frequently and communicated about what time they were most intense (Bentley et al., 
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2016). However, these maps emphasize only one of the many hazards associated with 

derechos and DMCSs; other derecho-related impacts include wind-borne debris, 

flooding, and felled trees (Ashley and Mote, 2005). To aid in preparation efforts and 

emergency responses, it is vital to study the potential impacts associated with derechos. 

With increased understanding of the average spatial distribution of derecho intensities 

and the atmospheric and land-surface variables influencing them, planning for derechos 

can be improved. Climatologies can be used to strategically prepare resources for 

deployment and aid in identifying areas historically subject to the impacts of derechos. 

Derechos with longer and wider tracks, higher wind speeds, and higher rain totals 

are likely to cause hazards that have major impacts. Although research on derecho-

specific hazards has been limited, the concept that extensive human impacts are more 

likely with larger, more intense storms are extrapolated from research that investigated 

severe storms such as hurricanes and tornadoes (Brooks, 2004; Zhai and Jiang, 2014). 

Thus, greater derecho storm track lengths and widths are related to increased impacts and 

potentially higher intensity ratings if there were a scale similar to the Saffir-Simpson 

hurricane scale or the Enhanced Fujita tornado scale (Simpson and Saffir, 1974; Potter 

2007). The maximum wind speed in Northern Tier convective high-wind events is related 

to the number of fatalities, and the fatalities show a spatial distribution similar to the 

distribution of derechos (Ashley and Mote, 2005; Schoen and Ashley, 2011). Flooding 

events are also deadly (Ashley and Ashley, 2008a; Ashley and Ashley, 2008b). 

Accordingly, the present research investigates derecho-associated rainfall and wind speed 

as storm intensity metrics. In addition, the physical attribute of derecho direction is also 
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investigated because of its relationship to the other intensity metrics of wind speed and 

track length.  

Therefore, the objective of the present research is to improve understanding of the 

physical links between derecho hazard intensity metrics (i.e., track length and storm 

width, rain amounts, and maximum wind speed) and the atmospheric and land-surface 

variables that influence them. With improved knowledge of these relationships 

determined through map pattern analysis, derecho group difference testing, and 

regression modeling it is shown that metrics describing derecho intensity can be used for 

planning and preparation purposes. Derecho-related hazards can be minimized with 

appropriate response, and long-term preparation and mitigation accomplished through 

better understanding the spatial distributions and physical associations of derecho 

intensity.  

 

Data And Methods 

a. Data 

 Data on derecho occurrence, and atmospheric and land-surface conditions were 

obtained from conventional observations, and remotely sensed and modeled sources. 

They were compiled to generate a detailed dataset of 56 derecho events for the period 

(2000-2014), used to determine the derecho intensity metrics. NOAA Storm Prediction 

Center (SPC) daily archived storm reports were referenced to identify derecho events that 

could be confirmed subsequently. Although evidence of the strong winds accompanying 

derechos and other linear-type storms (e.g., MCS) appears in these reports, the data were 

not entered into the dataset until confirmation of a derecho was made using supporting 
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evidence. On a given day, potential events are identified from a west-to-east expanding 

cluster of SPC wind reports that have a cone-like shape. There are limitations to the SPC 

wind reports, such as repetition and incorrect reporting (Trapp et al., 2006). To validate 

the occurrence of a derecho in the SPC wind reports, surface-based remotely sensed data 

sources were also employed. Specifically, NOAA NWS WSR-88D Level III data were 

used to identify the typical bow echo shape of a derecho and to confirm that the 

convective event followed the path depicted in the SPC reports. These radar data were 

also used to verify temporal continuity of the derecho to ensure that the reports were 

associated with a continuously propagating single event. In addition, visible and infrared 

satellite imagery from geostationary platforms were also consulted to further confirm the 

derecho presence through identification of the high, cold cloud tops that are associated 

with the convective events. 

Criteria for including a derecho in this study require it to have a minor axis over 

100 km wide and a major axis (track/path length) of over 400 km (Johns and Hirt, 1987). 

Although the Johns and Hirt (1987) criteria suggest that derecho wind gusts must be over 

26ms-1, that threshold was increased to 29 ms-1 herein to facilitate comparison to EF0, the 

lowest scale, tornados on the Enhanced Fujita scale (Potter, 2007). Derechos that initiated 

in Canada but propagated into the United States were not included in the analysis for data 

consistency. 

 Remotely sensed and reanalysis data were used together to identify free-

atmosphere and boundary-layer thermodynamic and land-surface variables. Boundary-

layer data include specific humidity and the presence or absence of an LLJ at 925 hPa, 

while free-atmosphere 500 hPa geopotential heights give the wave pattern in the mid-
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troposphere, and 300 hPa winds portray the locations of jet streaks. These data comprise 

part of the NCEP North American Regional Reanalysis (NARR) (Mesinger et al., 2006). 

(In)stability indices including CAPE and convective inhibition (CIN) were also extracted 

from NCEP NARR, and proximity soundings were obtained from the University of 

Wyoming archive (http://weather.uwyo.edu/upperair/sounding.html).  

 Land-surface variables of LULC and normalized difference vegetation index 

(NDVI) were retrieved to represent variations in Earth surface properties of vegetation 

and soil moisture that have been previously shown to influence boundary layer processes 

involved in convection, and to interact with stationary fronts. These data are acquired on 

different time scales to represent the “cycle” that occurs with respect to each type of land-

surface property. For example, NDVI changes with the progression of the seasons (i.e., 

phenology), whereas human land-use change occurs over longer—multi-annual and 

decadal—time periods. Land-use boundaries, such as those between forest and 

agriculture were identified from the Landsat-derived National Land Cover Database 

(NLCD). This dataset stratifies LULC type based on automated classification of remotely 

sensed imagery and data derived by the Multi-Resolution Land Characteristics 

Consortium (MRLC) team, a multi-agency group, and is updated every five years (Homer 

et al., 2001; Homer et al., 2015). Data on phenology-related land-cover variables were 

extracted from weekly AVHRR-derived NDVI. 

 Globally averaged near-surface air temperature data were available as yearly 

averages in the NCDC Global Historical Climatology Network-Monthly (GHCN-M) 

dataset (Lawrimore et al., 2011). In addition, near-surface air temperature averages and 

anomalies were extracted from the U.S. Climate Divisional Dataset (Karl and Koss, 
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1984; Vose et al., 2014) for the U.S. and the Corn Belt region to reflect changes in LULC 

and NDVI data (photosynthesis and respiration). The Corn Belt region data were 

averaged across the climatological summer (JJA) to align with the period of study for 

derechos. These data, along with the atmospheric and land-surface data comprise a suite 

of atmospheric and land surface variables potentially related to explaining intensity of 

Northern Tier derechos.  

 

b. Methods of Analysis 

After identifying and verifying derechos to include in this study, intensity metrics 

were formulated and measured for each event. The intensity metrics include track 

direction, rain totals associated with the event, maximum wind speed, and major and 

minor axis lengths. They were chosen because they help distinguish derechos of different 

intensity and hazard potential according to a number of explanatory variables such as 

CAPE, 300 hPa shear, and near-surface air temperature, shown in previous severe-

weather research (Brooks, 2004; Ashley and Ashley, 2008a; Ashley and Ashley, 2008b; 

Zhai and Jiang, 2014). The present study will further clarify how the above potential 

explanatory variables may influence derecho intensities based on the intensity metrics.  

To facilitate investigation of the differences between high- and low-intensity 

derechos, and determine the reasons for such differences, the 56 events compiled for the 

study period were subset into groups based on within-group similarity. The natural breaks 

method, which minimizes the within-group variance and maximizes the between-group 

variance, was used to determine the subset groups. Natural breaks is an iterative test that 

repeats calculations of the sum of squared deviations of the mean to group events with 
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the lowest variance (Jenks, 1963; Jenks, 1967). The data are not necessarily normally 

distributed and the groups can have sample sizes of less than 30 events. Thus, analysis of 

what differences of physical variables requires nonparametric statistics to describe high- 

versus low-intensity derechos.  

Accordingly, the Mann-Whitney-Wilcoxon (MWW) test was employed to test 

differences between high- and low- intensity derechos for each of the five metrics of 

intensity (i.e., storm track direction, rain totals associated with the event, maximum wind 

speed, major and minor axis lengths). Output statistics with statistically significant p-

values (p < 0.05) represent significant difference between variables associated with high- 

and low-intensity derechos (Wilcoxon, 1945; Mann and Whitney, 1947).  

When the MWW test statistics revealed a statistically significant difference 

between the derecho groups distinguished on the basis of intensity that was not explained 

by a simple physical mechanism known to influence the intensity metric, additional 

analysis of the data was required to understand how the independent atmospheric and 

land-surface variables influenced the intensity variable. To further disclose the possible 

underlying physical reasons revealed by the MWW tests, a multiple regression and 

geographically weighted regression (GWR) were run on the atmospheric and land-surface 

data found to be relevant to the differences identified by the MWW tests. These tests 

clarify the high- versus low- intensity derecho differences and reveal the spatial variation 

of the influence as discussed below.  

Multiple regression estimates the coefficient values of explanatory variables (e.g., 

CAPE) describing an intensity metric. It minimizes the sum of the squared residuals to 

describe the influence of the explanatory variables on the intensity metric (Charlton et al., 
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2009; Scott and Janikas, 2010). The explanatory variables used in the model are tested for 

autocorrelation and multicollinearity so as to eliminate redundancy in the model (i.e., use 

of multiple variables that are correlated and thus have the same influence on the model 

and likely a similar/redundant physical influence).  

To determine the spatial dependence of each of the explanatory variables in the 

regression model, a GWR is used. The GWR reveals where the explanatory variables 

influence the derecho intensity metric that is being examined (Brunsdon et al., 1996; 

Brunsdon et al., 1998; Fotheringham et al., 2002). A Moran’s I test was run on the 

regression residuals to ensure they are not spatially autocorrelated which would bias the 

GWR. If autocorrelation is found, the model inputs were revised. An adaptive bandwidth 

is used to accommodate the non-uniform spatial distribution of the underlying data (the 

derecho information) by finding an optimized number of nearest neighbors on which to 

base the regression. Generating this model has been shown in previous work to improve 

spatial interpretation of the multiple regression results and produces mapped surfaces that 

can be used to estimate locational influences of natural phenomena (Lv and Zhou, 2016; 

Kumari et al., 2017). The mapped model result can also be compared to the observations 

from the derecho events to depict how well the model predicted the magnitude of the 

particular intensity metric across space.  

 

Results and Discussion 

 Fifty-six derecho events are identified in the 15 summer seasons 2000-2014 

(Table 2-1). When two derechos occurred on the same day, the first is identified with an 

‘A’ and the second with a ‘B’ (Table 2-1). The derechos are mapped from initiation to 
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dissipation to show the tracks of propagation (Figure 2-1). Derecho major axis/track 

lengths vary, but generally they propagate northwest to southeast, agreeing with past 

work (Bentley and Sparks, 2003) and many track over the Corn Belt. Tracks average 

902.8 km in length. Spatial analysis of the derechos’ initiation (first sign of convection), 

intensification (the stage at which convection is organized into a coherent bow-echo 

shape), and dissipation (the stage at which the derecho is no longer an organized storm) 

latitudes and longitudes yields ellipses that denote one standard deviation of Northern 

Tier derecho tracks (Figure 2-2). The ellipses reveal that the storms tend to initiate in the 

Upper Midwest and North Central Plains, intensify just southeast of their initiation 

locations, and dissipate across a wider area, also agreeing with past findings (Bentley and 

Sparks, 2003). The ellipses’ increasing size from initiation to dissipation mirror the 

increasing size as a derecho propagates through the stages of development. Although 

derechos tend to initiate, intensify, and dissipate within these ellipse boundaries, they do 

not all share the same intensities (i.e., storm track direction, rain amount associated with 

the event, maximum wind speed, minor axis length, and major axis length) as will be 

further discussed below.  

The results show that using natural breaks to categorize the derechos into two 

groups for each metric sufficiently described the differences between high- and low-

intensity derechos. Other methods to divide the derechos into subsets were tested, 

including manual classification and cluster analysis, but these did not separate events as 

logically as natural breaks. The two groups are distinctly different and have a reasonable 

number of derechos to differentiate statistically. Groups had close to 30 events each 

requiring non-parametric analysis, while maintaining a relatively high sample size.  
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Through separating the derechos using natural breaks, two subsets of storm track 

direction were identified; one subset contained 24 westerly events and the other contained 

32 northwesterly events. Westerly events had a mean track direction of 275.29° and 

northwesterly events had a mean track direction of 300.15°. Rain totals associated with 

the derechos were stratified into subsets of 29 low-rain total events (mean = 26.72 mm) 

and 27 high-rain total events (mean = 60.19 mm). The subset for low maximum wind 

speed has 19 events designated as having lower reported wind speeds (mean = 35.52 m/s) 

while the subset for high maximum wind speed has 37 events having higher reported 

wind speeds (mean = 43.97 m/s). Subsets were generated for derechos with a small minor 

axis (14 events, mean = 159.01 km) and those with a larger minor axis (42 events, mean 

= 356.6 km). Events were subset based on major axis size, or track length, into 25 short 

events with a mean major axis of 615.79 km and 31 long events with a mean major axis 

of 1,134.26 km.  

To show the differences in geographic distribution of high- and low-intensity 

derechos, mean derecho axes and standard deviation ellipses are mapped (Figures 2-3 – 

2-7). Mean event axes show the average track of derechos and the one standard deviation 

ellipses show the area covered by 68% of derechos. The maps are discussed followed by 

a discussion of the results of statistical analyses. Figure 2-3 shows the mean event axes 

(top) and standard deviation ellipses (bottom) for westerly (grey) and northwesterly 

(black) derechos. Westerly derechos have longer tracks on average, but there is minimal 

difference between the typical areas covered by these events as shown by the similarity in 

the ellipses in Figure 2-3, bottom. Mean event axes of the high- and low-rain derecho 

subsets show that derechos associated with higher rain totals tend to track farther south 
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(Figure 2-4, top), and standard deviation ellipses indicate that high rain events cover a 

horizontal area over Iowa through Ohio (Figure 2-4, bottom). The mean event axes for 

events in the high and low-maximum wind speed subsets show that derechos with higher 

maximum wind speeds average a higher latitude track (Figure 2-5, top). Although the 

higher maximum wind speed events tend to have tracks that are further north of the lower 

maximum wind speed events, the latter tend to have a larger domain in which 68% of the 

derechos occur (Figure 2-5, bottom). Mean event axes for small versus large minor axis 

derechos show that events with larger minor axes occur north of derechos having smaller 

minor axes, and the area in which 68% of events occur has the same pattern (Figure 2-6). 

Mean event axes of long and short-track derechos show that longer derechos initiate 

farther west and dissipate farther east and have a slightly lower angle than short derechos 

(Figure 2-7, top). The standard deviation ellipses for long and short-track derechos show 

that long derechos occur over a smaller area than small derechos (Figure 2-7, bottom). 

The MWW tests reveal the statistical differences between the high-intensity and 

low-intensity derecho subsets discussed above and shown in Figures 2-3 – 2-7. 

Differences between the high-intensity and low-intensity groups subset using other 

methods such as manual classification did not reveal any additional statistically 

significant differences that could be explained physically. No statistically significant 

differences in any of the meteorological variables in the dataset were found between 

northwesterly and westerly derechos or between derechos with small and large minor 

axes. This suggests that the derecho subsets in these two metrics are not significantly 

different, and are not a good indicator of intensity and are merely physical attributes of 

derechos. Apparent differences in the rain totals associated with high versus low intensity 
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derechos revealed that derechos with higher rain totals had a statistically significantly 

lower (U = 529.5, p = 0.01603) 500 hPa geopotential mean height (5,800 m vs. 5,840 m) 

over the whole event. Differences between derechos having higher maximum wind 

speeds (43.97 m/s) versus lower maximum wind speeds (35.52 m/s) were associated with 

300 hPa jet streak presence (which was present in 63% of high maximum wind speed 

events and only 35% of low maximum wind speed events; U = 450, p = 0.04892) and 

differences in dissipation location (average of 40.5°N in high maximum wind speed 

derechos and 38.7°N in low maximum wind speed events; U = 491, p = 0.01575).  

Statistically significant differences between derechos having long versus short 

major axes were found (U = 523, p = 0.02542). Derechos having longer major axes are 

associated with more westerly tracks (average = 279.5°) contrasted with derechos having 

shorter major axes (average = 288.5°). This is potentially related to the influence of wind 

direction aloft and according synoptic setup. Derechos having longer major axes also are 

2.5 times as likely (U = 516.5, p = 0.03256) to cross a dry-to-wet land-surface boundary, 

defined as a transition from dry-to-wet land-use types, near its intensification. That is, a 

longer derecho is more likely to cross from an urban center to an irrigated area, for 

example, which could add moisture to the derecho system. In addition, longer-

track/major axis derechos are associated with higher 925 hPa specific humidity than 

derechos having shorter track or major axis (U = 261.5, p = 0.03324); averaging, 

respectively, 13.5 g/kg versus 13 g/kg. Longer axis/track derechos may be associated 

with higher 925 hPa specific humidity than shorter axis/track derechos because the 

increased moisture available aids the propagation of the derecho. These statistically 

significant differences between derechos having long versus short major axes are likely to 
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be physically complex so further investigation is undertaken below to help explain the 

associated mechanisms.  

 Multiple regression and GWR were conducted to further explore the variables 

impacting derecho major axis length. Multiple regression revealed that 925 hPa specific 

humidity, CAPE, and the time of day when the derecho intensified together influence the 

major axis length (Table 2-2). A Moran’s I test confirmed that the residuals of the 

statistical model were not spatially autocorrelated, and thus are likely to be independent, 

further validating the regression results. Specific humidity at 925 hPa shows a strong, 

positive relationship with major axis length (p = 0.000001). The CAPE has a statistically 

significant positive relationship with major axis length (p = 0.02572), while the diurnal 

time of event intensification shows a highly significant negative relationship with major 

axis length (p = 0.00025). Together, the atmospheric specific humidity at 925 hPa, 

CAPE, and time of event explained around two-thirds of the variance in major axis length 

(R2 = 0.679). The model indicates that an increase in specific humidity at 925 hPa and 

CAPE together predict a longer derecho major axis. In addition, the earlier a derecho 

occurs during the day, the longer its major axis will be. This finding indicates that the 

diurnal processes of derecho generation such as strong daytime surface heating and a 

nighttime strong LLJ likely work together to help sustain derecho propagation and 

lengthen the major axis, and thus produce a more intense derecho. This possibility is 

further tested using a GWR, below. 

 To better understand the spatial influences of 925 hPa specific humidity, CAPE, 

and time of day on major axis length, a GWR was conducted. The spatial variation of the 

influence of the coefficients revealed by the GWR improved the model’s effectiveness 
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(R2 = 0.788 versus 0.699). Figure 2-8 shows the spatial variation of the specific humidity 

at 925 hPa concentration coefficient across the study area for the model. The map shows 

that the 925 hPa specific humidity coefficient has the greatest influence on derecho track 

length over the central area of study and is reduced outward across the Corn Belt. This 

pattern of influence on derecho track length resembles that of an LLJ advecting warm, 

moist air from the Gulf of Mexico. The 925 hPa specific humidity coefficient has the 

lowest values in the northwestern part of the study area that lies outside the average 

influence of the LLJ.  

Figure 2-9 shows the CAPE - derecho major axis length coefficients across the 

study region. CAPE has the strongest relationship with major axis length in the west and 

northwest parts of the study region, decreasing south and eastward. This pattern is 

essentially opposite that of the 925 hPa specific humidity-derecho major axis length 

coefficient, and suggests that CAPE has a greater influence on major axis length where 

the LLJ is not as influential. The time of the event coefficient in the GWR also has a 

pattern that is the same as that of a strong LLJ (Figure 2-10). Time is likely another 

representation of the importance of an LLJ in determining major axis length as this 

feature also tends to be strongest at night. 

The GWR reveals where the model is either over-predicting or under-predicting 

derecho major axis length for the 56 observed derechos in the dataset (Figure 2-11). The 

observed and predicted data have a correlation coefficient of P = 0.9104, showing that the 

predicted major axis lengths are highly correlated with the observed major axis lengths of 

derechos. Areas where the model over-predicts, it estimates longer major axis lengths 

than those that were observed. Conversely, areas of under-prediction occur where the 
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model under-predicts the major axis lengths compared to those that were observed. The 

model over-predicts derecho major axis lengths across eastern Minnesota, Wisconsin, and 

western Michigan which may be related to the strong influence of the CAPE regression 

coefficient in this area (Figure 2-9). In these events, instability may be high, but other 

factors necessary for derecho propagation may not be prime to sustain the storm for a 

long track length. The GWR model under-predicts derecho major axis lengths in northern 

Iowa which is on the edge of the area of highest influence of both the 925 hPa specific 

humidity coefficient and the time of event coefficient. The under-prediction may be 

caused by this area frequently experiencing conditions that are prime for development of 

long derechos, but being just outside of these areas of highest influence of the model 

coefficients.   

 

Conclusions 

This research investigates the intensity of Northern Tier states’ derechos for a 56-

event derecho database spanning the period 2000-2014. The derechos initiate, intensify, 

and dissipate over increasingly large areas. The derecho database was subset into two 

independent intensity groups for each of the following metrics that describe event 

intensity: storm direction, associated rain totals, maximum wind speed, and the minor and 

major axes. Modeled reanalysis, observed, and remotely sensed data were employed to 

identify the differences in derecho variables for the high versus low intensity derechos 

according to their direction, rain totals, maximum wind speed, and minor and major axes. 

The high- versus low- intensity derechos were mapped according to the five intensity 

metrics to identify their spatial differences. Mean event axes show the average tracks for 
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derechos in each intensity subset, while mapped standard deviation ellipses showed the 

area influenced by 68% of derechos.  

To determine the statistical significance of the differences between the high- and 

low- intensity derecho subsets for each intensity metric, MWW tests were run. The 

results showed that no statistically significant physically reasonable differences existed 

between the high- and low-intensity groups of derechos in the physical attributes of 

direction of movement and minor axis categories. However, the 500 hPa height was 

significantly lower in derechos that had the higher rain totals, and upper-tropospheric jet 

streaks were more likely to accompany derechos having higher maximum near-surface 

wind speeds. Most interestingly, derechos with longer major axes were associated with a 

more zonal direction, the crossing of a dry-to-wet land use boundary, and higher specific 

humidity at 925 hPa indicating the influence of surface features. 

Further investigation into the variables influencing derecho major axis length 

employed multiple regression and GWR. Although the regressions run on four of the 

intensity metrics (i.e., storm direction, rain totals, maximum wind speed, minor axis 

length) revealed no statistically significant relationships, that run on major axis length 

showed positive and statistically significant relationships with 925 hPa specific humidity 

and CAPE (i.e., greater specific humidity at 925 hPa and higher instability accompanying 

longer track lengths). Also, a negative and statistically significant relationship was found 

for the diurnal time of the derecho and derecho major axis length. A GWR clarified how 

the variables in this model (925 hPa specific humidity, CAPE, and time of event) were 

important across the study area (Figures 2-8 – 2-10). Specific humidity at 925 hPa and 

time of day reflected LLJ influence and had a strong role in the central Midwest. CAPE 
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was more influential in the western part of the study area. The GWR predicts derecho 

major axis lengths well (R2 = 0.788) across the study area, with some areas of minor 

over-prediction and under-prediction (Figure 2-11).  

Although the derecho direction and storm minor axis length are not differentiated 

by statistically significant differences in atmospheric and land-surface characteristics 

tested herein, they still have impacts on society, which are considered in the following 

two chapters. Significant differences in derecho intensity based on their associated rain 

totals and maximum wind speeds are found to be physically related to the atmospheric 

variables of 500 hPa height, upper-tropospheric jet streak presence, and dissipation 

location. Differences in major axis lengths that describe derecho intensity are related to 

specific humidity at 925 hPa, CAPE, and time of day of derecho intensification. In the 

following chapters, the five intensity metrics are used to assess derecho societal impacts 

and to develop a derecho impact scale similar to those applied to hurricanes, tornadoes, 

and snowstorms.   
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Tables and Figures 

Table 2-1. Derecho events identified in this study listed chronologically with associated 

event numbers. 

Derecho Event Number Derecho Date 
1 6/1/2000 
2 6/25/2000 
3 8/6/2000 
4 8/9/2000 A 
5 8/9/2000 B 
6 6/11/2001 
7 7/8/2001 
8 8/9/2001 
9 6/11/2002 

10 7/27/2002 
11 7/2/2003 
12 7/4/2003 
13 7/7/2003 
14 8/26/2003 
15 6/14/2004 
16 7/13/2004 
17 8/3/2004 
18 6/8/2005 
19 6/20/2005 
20 7/23/2005 
21 7/25/2005 
22 7/13/2006 
23 7/21/2006 
24 8/9/2007 
25 8/11/2007 
26 8/12/2007 
27 6/3/2008 
28 6/4/2008 
29 6/8/2008 
30 7/20/2008 
31 7/27/2008 
32 7/31/2008 
33 8/4/2008 
34 6/18/2009 
35 6/19/2009 
36 8/4/2009 
37 6/1/2010 
38 6/18/2010 
39 6/19/2010 
40 6/23/2010 
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41 8/4/2010 
42 6/18/2011 
43 6/26/2011 
44 7/10/2011 
45 7/11/2011 
46 7/30/2011 
47 8/19/2011 
48 6/29/2012 
49 7/24/2012 
50 7/26/2012 
51 8/4/2012 
52 8/16/2012 
53 6/13/2013 A 
54 6/13/2013 B 
55 6/24/2013 
56 6/30/2014 
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Table 2-2. This table shows variables related to major axis length identified in a multiple 

regression. Coefficients are the regression coefficients and p-values are shown for each 

variable. 

Variable Coefficient p-value 

925 hPa specific 

humidity 

82.810 0.000001 

CAPE 0.072 0.02572 

Event time -0.247 0.00025 
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Figure 2-1. Northern Tier derecho tracks from initiation to intensification. 
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Figure 2-2. One-standard deviation ellipses for Northern Tier derecho initiation, 

intensification, and dissipation locations.  
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Figure 2-3. Mean derecho axes (top) and one-standard deviation ellipses (bottom) for 

derechos in the two direction intensity metric subsets (westerly and northwesterly).  
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Figure 2-4. Mean derecho axes (top) and standard deviation ellipses (bottom) for 

derechos in rain totals intensity metric subsets (low-rain and high-rain). 
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Figure 2-5. Mean derecho axes (top) and one-standard deviation ellipses (bottom) for 

derechos in maximum wind speed intensity metric subsets (low maximum wind speed 

versus high maximum wind speed). 

 

  



	 47 

Figure 2-6. Mean derecho axes (arrows) and one standard deviation ellipses (ellipses) for 

derechos in minor axis length intensity metric subsets (small and large). 
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Figure 2-7. Mean derecho axes (top) and one standard deviation ellipses (bottom) for 

derechos in major axis length intensity metric subsets. 
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Figure 2-8. 925 hPa specific humidity – major axis length GWR coefficient values 
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Figure 2-9. CAPE – major axis length GWR coefficient values.  
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Figure 2-10. Event time – major axis length GWR coefficient values.  

 

  



	 52 

Figure 2-11. Major axis lengths observed from the 56 derechos analyzed (top) and as 

predicted by the GWR (bottom).  
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CHAPTER 3 

STATISTICAL MODELING OF NORTHERN TIER STATES DERECHO-

RELATED FEMA PUBLIC ASSISTANCE GRANT AWARDS  

Abstract 

A derecho is a convectively induced windstorm produced by an extratropical mesoscale 

convective system (MCS) with winds that exceed 25 ms-1. Fourteen derecho “corridors” 

exist in the U.S. The Northern Tier corridor includes derechos that track northwest to 

southeast from the North Central Plains and Upper Midwest regions through the mid-

Atlantic states. This corridor produces more frequent and damaging derechos than other 

U.S. corridors. Derecho impacts often overwhelm local and regional emergency 

management organizations. Under the Stafford Act (1998), federal assistance can be 

provided to the affected counties and states through the Federal Emergency Management 

Agency (FEMA) to assist with response and recovery. The present research investigates 

the physical and social factors that determine FEMA grant amounts awarded to aid 

response and recovery efforts related to Northern Tier derechos. A backward stepwise 

regression and geographically weighted regression (GWR) are used to model the 

relationship between explanatory variables such as derecho size and impacted population 

socioeconomic status and total FEMA grant awards. A Varimax-rotated Principal 

Component Analysis (PCA) is employed to further parse the factors explaining the 

variance in FEMA grants. Results show that the areal coverage of the derecho and the 

social vulnerability of the impacted populations influence FEMA grant award amounts. 

Overall, social vulnerability and exposure to hazards primarily determine grant amounts, 
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but more specific social vulnerability factors, such as population age and the number of 

mobile homes in a local area, affect cost variations.  

Keywords: Northern Tier states, derechos, FEMA, FEMA PA grants, damage cost  
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Introduction 

a. FEMA Grants 

 The U.S. Federal Emergency Management Agency (FEMA) was established to 

manage national disasters (Publication 1, 2016). FEMA’s mission is to support survivors 

and first responders to maintain and bolster disaster preparation, protection, response, 

recovery, and mitigation (Publication 1, 2016). The Robert T. Stafford Disaster Relief 

and Emergency Assistance Act of 1988 enables FEMA to fulfill this mission by 

providing economic assistance and coincident support to states impacted by disasters 

(Publication 1; Public Law 100-707). Under this law, FEMA can provide grants for 

response and recovery efforts. FEMA disaster assistance can be given to individuals, 

counties, and states, and can continue for weeks to years. Although FEMA offers support 

for individual citizens in the form of Individual Assistance (IA) grants (CFR 44 Chapter 1 

§ 206.131 – 206.199), the focus of the present research is on assistance to local 

communities which is covered by the Public Assistance (PA) program. 

 The PA program awards grants to local governments to assist with response and 

recovery costs. This program provides government grants to repair and improve publicly 

owned infrastructure and facilities (CFR 44 Chapter 1 § 206.200 – 206.339). For 

example, the repair of public dams, bridges, community centers, and water treatment 

facilities are fundable through PA grants. Funding is categorized into seven groups (A – 

G), as follows: debris removal, emergency protective measures, roads and bridges, water 

control facilities, public buildings and contents, public utilities, and parks, recreational, 
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and other facilities. For FEMA to release funding for these types of work, a Presidential 

emergency or major disaster declaration must be made.  

Emergency declarations allow for funding of categories A and B, whereas major 

disaster declarations allow for funding of all categories (A-G). Emergency declarations 

are made by the President usually in conjunction with the Governor(s) of the affected 

state(s), and typically occur when there is an approaching disaster for which the need for 

federal assistance is anticipated, or immediately following a disaster (CFR 44 Chapter 1 § 

206.61 – 206.100). The purpose of an emergency declaration is to address the immediate 

needs of the affected places by saving lives, protecting property, and ensuring safety. 

Only PA categories A and B and limited categories of IA can be funded through an 

emergency declaration. The federal share of the disaster recovery cost is 75% leaving 

25% to be paid by the state. The state usually pays a share of the 25% and the affected 

county another share, thus reducing the economic stress on local governments. However, 

these shares vary state-to-state.  

Major disaster declarations, on the other hand, provide funding for a wider range 

of recovery efforts (CFR 44 Chapter 1 § 206.1 – 206.60). These declarations are 

requested by the Governor(s) of the impacted state(s) within 30 days of the event and are 

declared or denied by the President. The time immediately following the disaster is used 

to estimate losses and create a budget for recovery through preliminary damage 

assessments (PDAs). Although the state is eligible to receive funding through all PA 

categories (A-G) after a major disaster declaration is made, PDAs, the formal major 

disaster declaration request, and FEMA recommendations determine which IA and PA 

categories will be awarded grants for recovery from a disaster. In addition, with a major 
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disaster declaration, the state receives hazard mitigation support which allows it to 

address vulnerabilities across the state and enhance its resilience. Federal funding of 

recovery ranges from 75% to 90% and the remaining cost is left to the state to cover. 

Following the closure of all event-related funding projects, data on FEMA grant 

funding is published to the FEMA National Emergency Management Information System 

(NEMIS). FEMA disaster declarations that are associated with a derecho are classified as 

straight-line wind events. NEMIS data on each event includes the number of states and 

counties impacted, PA and IA grant approval status, the amount of emergency funding 

awarded, the amount of permanent funding awarded, and the total amount of funding 

awarded. Money is considered awarded once it has been fully paid by FEMA and there 

are no outstanding costs associated with the disaster declaration. 

Through emergency and major disaster declarations, FEMA helps states respond 

to and recover from disasters by providing funding through IA, PA, and Hazard 

Mitigation grant awards. Measuring the cost of recovery through these grant programs 

can be difficult. Hazard mitigation grants cover an entire state which may not be 

representative of a storm’s impact. IA grants are associated with personally identifiable 

information (PII). Although the fine spatial resolution of these data may make it ideal for 

understanding individual losses, major damage to infrastructure (bridges, roads, etc.) is 

not accounted for, and regulations surrounding the use of PII make it difficult to access, 

extract, and analyze without violating privacy policies. In addition, insurance policies and 

individual choice play a role in IA grants. Some individuals may decide to rebuild their 

homes fully and stay in hotels while doing so—thus requesting high grant awards—while 

others may stay with family members and have home repairs fully covered by their 
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insurance. The wide variations in IA grant requests are difficult to quantify over such a 

large region as the Northern Tier states. Thus, PA grant data comprise the most 

comprehensive, accessible, and spatially appropriate FEMA grant program to analyze for 

determining costs of a disaster and community recovery.  

 

b. Statistical Modeling Of Severe Weather-Related Economic Losses 

 Many studies aim to estimate the economic cost of severe weather events. 

Although it is difficult to identify storm loss data that are used consistently across studies, 

insurance records and FEMA’s grant program records are frequently used to study severe 

weather-related losses (Changnon, 2003; Gall et al., 2009). Records of FEMA’s PA grant 

programs are well-maintained and open source. With improved methods of data 

retention, normalization to relate yearly cost data based on inflation, and modeling, the 

datasets are improving and becoming more available for use in emergency management 

research (Changnon, 2003; Noble, 2004; Downton and Pielke, 2005; Gaddis et al., 2007; 

Smith and Katz, 2013). Often, research on disaster losses is driven by the insurance 

industry (Changnon et al., 1999). Insurers and researchers are interested in identifying 

potential losses associated with particular types of storms, climate variability and change, 

and population distribution (Kunkel et al., 1999; Changnon et al., 2001). For example, 

high-density housing in coastal areas and Midwest-region crops are vital to the health of 

the U.S. economy, but are also vulnerable to the impacts of severe weather events. Thus, 

the regional focus has been on coastal areas that are subject to flooding and hurricane 

damage which may be intensified through climate change, and the Midwest which sees 

frequent severe weather events in the warm season (Changnon, 1972; Pielke and 
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Landsea, 1998; Changnon et al., 1999; Gall et al., 2011; Felsenstein and Lichter, 2014). 

Often, the disasters that cause economic losses cover wide areas and cross political 

boundaries. Comparing the events year-to-year can be difficult because loss estimates are 

given in dollar amounts that fluctuate, and population density and distributions change. 

Thus, researchers have devised methods to analyze storm loss data regionally and 

globally to understand economic losses across spatiotemporal scales (Neumayer and 

Barthel, 2011; Mohleji and Pielke, 2014). These studies, however, acknowledge that this 

is a difficult task that requires further study particularly emphasizing variation of affected 

populations across study areas. Investigation of the NWS flood loss database revealed 

that loss estimates are improved when multiple disasters of the same type are aggregated 

and studied (Downton et al., 2005). More research on many disasters of the same type is 

needed to examine the local variations in economic losses associated with a specific type 

of storm (here, derechos). 

 

c. Influence Of Social Vulnerability On Economic Losses 

 When modeling economic losses due to severe weather events it is inherently 

important to understand the storm characteristics, but it is also necessary to incorporate 

knowledge on the affected population. Social vulnerability refers to a population’s ability 

to respond to, recover from, and adjust to disasters (Cutter et al., 2003; Cutter and Finch, 

2008; Flanagan et al., 2011). Research shows that demographic factors such as social 

vulnerability are correlated with losses related to severe weather and extremes 

(Changnon, 2003; Schultz and Elliott, 2012). Evidence from severe weather events in the 

1990s shows that changes that increased social vulnerability led to increased severe 
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weather-related economic losses in that decade (Changnon and Changnon, 1999; Schultz 

and Elliott, 2012). Other work investigated disaster-specific impacts incorporating social 

vulnerability. Felsenstein and Lichter (2014) show the strong influence of social 

vulnerability on economic losses related to flooding. Hurricane Katrina affected 

vulnerable populations more severely than those that were less vulnerable. These 

amplified impacts lasted throughout the storm and into the lengthy response and recovery 

phases (Masozera et al., 2007). Burton (2010) addresses the idea that social vulnerability 

either enhances or diminishes the impacts of a hurricane on a community by modeling 

hurricane-related economic losses. His work calls for more integration of social 

vulnerability variables into economic loss modeling and notes that while results shown in 

studies like that by Masozera et al. (2007) are important, often their results are not 

incorporated into statistical models. Changnon (2003) also cites the importance of 

including social vulnerability when assessing economic impacts of disasters and building 

statistical models. Recently, work has emphasized forward projecting economic loss 

while incorporating social vulnerability. Future losses have been suggested to increase 

because of the combination of social vulnerability factors (Preston, 2013) and climate 

change (Visser et al., 2014). Discussing climate change and future losses reinforces the 

importance of considering social vulnerability in economic loss studies. For example, 

social vulnerability of coastal populations increases with sea-level rise. In addition, 

climate change-social vulnerability research shows that it is important to continue 

studying loss and to refine statistical models to assist with this task. Severe weather 

response and recovery costs are related to the needs and social vulnerability 
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characteristics of the impacted population and are thus also an emphasis of the present 

research. 

 

d. The Importance of Studying Derechos In The Context of Economic Loss and 

Social Vulnerability 

 Derechos can track over large areas covering close to half of the U.S. (2,000 km) 

and can be as wide as 500 km (NOAA SPC, 2004). The storms have associated winds 

reaching tropical storm to hurricane-force and can cause widespread damage across urban 

and rural landscapes. Derechos also are often accompanied by heavy rain and lightning 

(Bentley et al., 2016). Although the public may not understand derechos as well as they 

do hurricanes and tornadoes, they can be just as damaging (Black and Ashley, 2011; 

Corfidi et al., 2016). Table 3-1 shows the number of fatalities caused by derechos 

compared to those caused by hurricanes and low-category tornadoes in the period 1986 – 

2003 (Ashley and Mote, 2005; adapted from their Table 3). Although derechos occur less 

frequently than F0 and F1 tornadoes, they caused more fatalities during this period. In 

addition, derechos caused over three billion dollars in damage from 1986 – 2003 (Ashley 

and Mote, 2005). Some derechos ranked comparatively in insurance losses among the 

costliest of hurricanes (Table 3-2) (Ashley and Mote, 2005; adapted from their Table 5). 

As is demonstrated by derecho impacts, it is appropriate to study derecho-associated 

economic losses using FEMA response and recovery cost data.  

 

Background 
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Although hurricane economic loss estimates, like those associated with floods, 

have been modeled in previous research, very few investigations into derecho economic 

loss modeling exist. The present research aims to quantify derecho losses through the 

analysis of PA grant awards, and identify the variables that determine those losses. 

Further, few studies look at the geographic goodness of fit, or local effectiveness, of 

model results. Thus, these questions are addressed in the present research which 

statistically models FEMA PA grant award amounts associated with derecho event 

damage. In addition, overall goodness of fit, or model effectiveness, is tested along with 

local goodness of fit, or model effectiveness at a point in space, to determine where, 

geographically, the model performs best and where, geographically, it needs 

improvement. Thus, this research enhances understanding of derecho-related economic 

losses regionally and locally, and improves knowledge on derecho-related FEMA PA 

grant awards.  

Floods can cause widespread economic and social devastation. Flooding events 

are often studied with respect to their associated economic costs. They are also studied 

because they occur frequently across the U.S. and can have economic impacts on 

different populations across space and time which can be analyzed through statistical 

modeling (Dutta et al., 2003; Zhu et al., 2007; Smith and Katz, 2013). Flood losses are so 

common that flood insurance is federally regulated by the National Flood Insurance 

Program (NFIP) through the Federal Insurance and Mitigation Administration (FIMA). 

FEMA’s severe storm hazards impacts tool, the Hazards U.S. Multi-Hazard (HAZUS-

MH) is capable of modeling potential damage from multiple types of severe weather. It is 

frequently used to model flood losses and damage caused by flooding. Statistical 
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evaluations show that HAZUS-MH can aid in predicting the types and number of 

resources required for response efforts across the U.S. (Scawthorn et al., 2006a; 

Scawthorn et al., 2006b). Location-specific case studies by flood loss models are also 

used to identify and refine variables that determine loss (Dutta et al., 2003; Zhu et al., 

2007). Case studies cover smaller regional and local areas, and studies examining flood 

insurance purchasing address flood loss at individual and community levels (Browne and 

Hoyte, 2000). Flooding occurs at many spatiotemporal scales, and thus many studies 

explore flood economic losses (Kunkel et al., 1999; Pielke and Downton, 2000). In an 

effort to compare flood losses across time, normalizing the loss data with respect to 

inflation is also a topic of interest to researchers (Noble, 2004; Pielke et al., 2002). 

Although floods are a frequently researched topic, less common but still large-scale (in 

damage and size) derechos are not studied as specifically. In addition, flood loss 

modeling tends to be undertaken at a finer resolution than is appropriate for derecho 

events.  

 Akin to the economic losses associated with floods, hurricane economic losses 

due to extreme winds and storm surge are investigated using similar approaches. 

Derechos have hazards similar to those of hurricanes such as high winds and flooding. 

Hurricanes are large-scale events that impact broad populations and cause major 

infrastructure destruction and financial devastation. As with floods, attempts are made to 

normalize the economic impacts of hurricanes over time based on inflation for improved 

analysis (Pielke and Landsea, 1998; Pielke et al., 2008). Similarly, statistical models are 

constructed to predict hurricane-related economic losses (Watson and Johnson, 2004; 

Malmstadt et al., 2009; Pan, 2014). Although these models have improved over time, 
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there is a call for continued research on better defining the economic losses from 

hurricanes. Derechos are under-researched in this area. HAZUS-MH has been used to 

estimate potential losses from a hypothetical hurricane showing that while local 

variations are important, regional models can aid understanding of hurricane economic 

losses (Pan, 2011). Boswell et al. (1999) examined PA grant awards associated with 

hurricanes and used multiple regression to generate a model to predict PA cost. They then 

estimated public costs for hurricanes in each of the Saffir-Simpson categories using 

various statistical models (Boswell et al., 1999). Likewise, this research uses a backward 

stepwise regression to generate a similar model for derechos.  

Although derecho-related economic losses have not been thoroughly investigated, 

the FEMA PA grant program and FEMA response operations have been previously 

examined by researchers studying local and federal emergency response to derechos. For 

example, relationships between FEMA disaster declarations and blizzard tracks have 

been analyzed. Although qualitative relationships were evident, backward stepwise 

regressions revealed that a single equation could not predict FEMA declarations from 

blizzard tracks (Atkinson, 2010). Other studies look at FEMA response and recovery 

operations immediately following various storm types through PDAs and debris removal, 

which are activities that require coordinating community involvement and FEMA 

support. The studies reveal that little research has been conducted on the effectiveness 

and impact of these initial stages of FEMA support. (Fetter, 2010; Fleming, 2012). 

Downton and Pielke (2005) investigated FEMA loss data and found that the over- and 

under-predictions evident in the county-level information were improved upon when the 

data were spatially aggregated and then analyzed. These authors suggest that using the 
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data over regional areas and longer time periods yield more statistically significant results 

(Downton and Pielke, 2005). A similar approach is undertaken in the present research 

which investigates PA funding of derecho events.  

 

Data and Methods 

a. Data 

 The data used in this study include storm reports, satellite and remotely sensed 

imagery, local near-surface air temperatures, FEMA grant award amounts, and social 

vulnerability measures of populations by Census tract. These data are used to identify 

derechos and their synoptic climatological properties, associate FEMA grant award 

amounts with derecho events, and identify socioeconomic factors of impacted 

populations such as housing types and family makeup. The data comprise a suite of 

variables that can be tested statistically to reveal relationships between derecho events 

and FEMA funding of response and recovery efforts, and make comparisons to other 

disaster types. 

  High-wind reports for the climatological summer (June, July, and August) period 

of 2000 to 2014 are available from NOAA Storm Prediction Center (SPC). They were 

inspected for spatial and temporal continuity of wind reports exceeding 25 m/s to identify 

potential derecho events. However, previous research shows that SPC wind reports can 

be flawed due to observer and reporting errors (Trapp et al., 2006). Following Trapp et 

al. (2006), derecho identification from SPC wind reports was verified using NOAA NWS 

WSR-88D Level III radar reflectivity data. In the presence of a derecho, this imagery 

displays evidence of sustained convection organized quasi-linearly—often in a “bow-
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echo”, or backward-C shape that progresses along a long path—to support the SPC wind 

data. Satellite visible and infrared imagery are also used to confirm derecho development 

and progression by determining if high, cold-top clouds are present. In addition, National 

Centers for Environmental Protection (NCEP) North American Regional Reanalysis 

(NARR) three-hourly reanalysis model output (Mesinger et al., 2006) and University of 

Wyoming 12-hour vertical profiles provide data on atmospheric properties of the 

confirmed derechos such as Convective Available Potential Energy (CAPE) and vertical 

wind shear. Other important variables obtained through inspection of radar images 

include the major axis length (in km) and dissipation latitude of the storm centroid. The 

dissipation latitude is that at which the storm weakens enough to no longer maintain 

organized convection. Local near-surface temperature data were acquired using the U.S. 

Climate Divisional Dataset (Karl and Koss, 1984; Vose et al., 2014).  

 The social vulnerability data for this analysis comprise measurements of 

socioeconomics, household composition and disability, minority status and language, and 

housing and transportation. They are extracted from the 2014 Centers for Disease Control 

and Prevention Agency for Toxic Substances and Disease Registry (CDC/ATSDR) 

Geospatial Research, Analysis & Services Program (GRASP) Social Vulnerability Index 

(SVI). This index provides the disaster management-specific vulnerability rankings and 

metrics for U.S. Census tracts (Flanagan et al., 2011). Each of the four categories in the 

SVI mentioned above contains data on two to five related social vulnerability sub-factors. 

The Socioeconomics category encompasses the number of individuals below the poverty 

line, the number of unemployed individuals, the per capita income, and percentage of 

people over 25 who do not have a high school diploma. The Household Composition and 
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Disability category includes the number of people over 65 years old, the number of 

people 17 and younger, the number of people with a disability, and the number of single-

parent households with children. The Minority Status and Language category includes the 

estimate of all non-White people and the number of people over five years-old who speak 

English “less than well.” The Housing and Transportation category includes housing in 

structures with more than 10 units, number of mobile homes, the number of households 

that have more people than rooms in their dwellings, the number of households without a 

personal vehicle, and the number of people institutionalized (Flanagan et al., 2011). 

Every Census tract is given a percentile score in each of these sub-factors and summary 

categories. An overall social vulnerability ranking is included as a percentile (Flanagan et 

al., 2011). The disaster-specific SVI is used widely by FEMA to analyze program 

effectiveness in post-event scenarios and potential impacts following disaster events. Its 

use in the present research maintains consistency with FEMA’s analyses and encourages 

FEMA’s acceptance of the results while helping to explain the variance in the disaster 

losses. 

 To analyze the statistical relationship of FEMA funding with derecho impacts and 

social vulnerability variables, FEMA disaster declaration data were used. The NEMIS 

data, accessed using OpenFEMA, was cross-referenced with derecho event dates to 

identify if the derecho prompted a FEMA disaster declaration and subsequent release of 

funding. Although the declarations can be coincident with the event, often the damage 

assessments, application, and subsequent presidential approval of a disaster requiring 

FEMA assistance take several weeks (Publication 1). Thus, this analysis addresses all 
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funded projects, including those that were applied for in the weeks following a derecho, 

but not those in which FEMA funding was applied for but denied.  

 

b. Methods 

A backward stepwise regression is used to generate a linear model that predicts 

FEMA PA grant award amounts based on the explanatory variables of social 

vulnerability and storm properties. Backward stepwise regression has been used in 

climatological research, social vulnerability studies, and disaster research (Ninyerola et 

al., 2000; Ebert et al., 2009; Burton, 2010). The regression produces an equation that 

describes how the independent variables of population, storm attributes (e.g., size), and 

social vulnerability affect FEMA PA grant award amounts. The backward stepwise 

approach tests all the potential independent variables to determine a combination of 

variables needed to produce the most statistically significant model fit to the data. The 

statistically significant model fit shows that the equation that describes the overall trends 

in the PA data relative to the explanatory variables is likely to accurately estimate results 

at the 95% confidence level. This regression technique also eliminates problems of 

multicollinearity and redundancy in explanatory variables, which means that variables 

can be considered to be independent of one another and not representative of the same 

information. Backward stepwise regression results can be confirmed and expanded upon 

by conducting a geographically weighted regression (GWR) to show the model’s spatial 

variation by creating geographically relevant regression coefficients that can be plotted 

on a map. 
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A GWR is used in this research to further clarify regression results across the 

study area in terms of regression coefficients and model goodness of fit and identify 

spatial relationships between explanatory variables and FEMA PA grant awards 

(Ninyerola, 2000; Ebert et al., 2009; Lv and Zhou, 2016; Kumari et al., 2017). The GWR 

depicts the relationships between the explanatory variables and the FEMA PA grants by 

mapping the regression coefficients across the study area to show their relative influence 

and by mapping the R2 to show local goodness of fit (Brunsdon et al., 1996; Brunsdon et 

al., 1998; Fotheringham et al., 2002). GWR has been used to validate and further define 

simple regressions in disaster-related work (Ebert et al., 2009; Burton, 2010). For this 

analysis, the GWR shows where the regression coefficients are highest and lowest and 

thus have the most influence on the FEMA PA grant award amounts. An adaptive 

bandwidth is used to accommodate spatial non-conformity of the underlying FEMA PA 

grant award data by referencing a varying number of nearest neighbors best suited to each 

location to generate the regression. The adaptive bandwidth method finds an optimized 

number of nearest neighbors on which to base the coefficient surface as opposed to a 

fixed number or fixed radius that may be unrepresentative of the data because of the 

varying spatial distribution of the derechos. Especially given the region of interest, which 

has many physical and social variations across space, the adaptive bandwidth approach is 

highly effective. In addition, the GWR also permits local evaluation of goodness of fit 

which is defined as the location-respective R2 for the model, which is important to the 

research to show that the influence of the explanatory variables and how the model varies 

over space. To ensure GWR residuals are not spatially autocorrelated, and thus the model 

is not biased, a Moran’s I test is conducted (Goodchild, 1986). Should the residuals be 
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autocorrelated, the model would not be representative of an independent process and 

would be discarded.  

 To further clarify inter-variable relationships and their statistical significance 

identified by the backward stepwise backward stepwise regression and the GWR, a 

Varimax-rotated principal components analysis (PCA) is subsequently used to describe 

the variance of explanatory variables in the derecho-related dataset. The Varimax rotation 

ensures the PCA has a simple structure where the component loadings show clustering of 

the loading variables allowing for easily interpretable results (Richman, 1986; White et 

al., 1991).  

 

Results 

 Results from the backward stepwise regression, GWR, and PCA are explained in 

this section that is followed by a subsequent discussion of their implications in the 

Discussion section. 

 

a. Predicting Grant Award Amounts from Explanatory Variables 

 Results of the backward stepwise regression show that FEMA PA grant award 

amounts are directly related to the population impacted by the derecho. The model 

revealed that two variables significantly predict FEMA PA grant award amounts – the 

number of counties impacted and overall percentile SVI ranking, at a significance level of 

p < 1*10-7. This model has a high adjusted R2 of 0.9202, meaning that it successfully 

predicts grant award amounts based on the number of impacted counties and overall 

percentile SVI ranking at a rate of 92%.  
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The standardized residuals of the model are normally distributed and not spatially 

autocorrelated, thus showing the backward stepwise regression model is not biased 

because any error is a result of a random process and there is not another equation that 

could better fit the data (Figure 3-1). The size of the storm relates positively to the 

number of counties impacted; a larger storm will likely impact more counties as it tracks 

over a larger area and thus increases the total FEMA PA grant award amounts. In 

addition, the social vulnerability of the impacted Census tracts positively correlates with 

the FEMA grant award amounts. The influence of social vulnerability is less than that of 

the number of counties impacted. Thus, it is likely that the social vulnerability moderates 

the variation of the data on a finer geographic scale, or is a more locally important 

component. Further spatial and statistical analyses are therefore undertaken to reveal how 

the localized influence of SVI helps to shape the model.  

 

b. Spatial Variations of Grant Award Regression Coefficients Related to Derechos 

 Depicting the relationship shown in the backward stepwise regression through a 

GWR shows where each of the regression coefficients discussed below are most 

influential. Both variables (i.e., the number of impacted counties and the overall 

percentile SVI ranking) that significantly predicted the FEMA PA grant award amounts 

in the backward stepwise regression also significantly predicted the grant awards when 

mapped. The GWR improved the model’s fit, such that the independent variables of 

number of impacted counties and overall percentile SVI ranking significantly predict the 

dependent variable of FEMA PA grant award amount with an adjusted R2 of 0.974. 

Coefficient surfaces that show the change in coefficient values across the study area 
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produced in the GWR show spatial variations in the influence of the independent 

variables (number of impacted counties and overall percentile SVI ranking) on the 

dependent variable (PA grant award amounts) across space (Figure 3-2a – 3-2c). 

 The map of regression coefficient values for the number of counties (Figure 3-2a) 

shows a high-to-low gradient of the coefficient values from west to east across the region. 

The coefficient is highest in northeastern Wisconsin and southwestern Virginia. It is 

lowest in the southeastern portion of the study area with the exception of the high values 

in Virginia. Figure 3-2b shows the mapped regression coefficient values for the overall 

percentile SVI ranking. The coefficient is highest at the intersection of the border of 

Minnesota, Iowa, and Wisconsin. Immediately west of this area the overall percentile 

SVI ranking regression coefficient is low meaning that the influence of the SVI 

coefficient is lower in this area. It is also low in the eastern part of the study region. This 

coefficient value field has a map pattern similar to that of the intercept field which shows 

the field of intercept values in the equation (Figure 3-2c), however there is more variation 

in the intercept field. The intercept field is highest and lowest in similar locations to the 

overall percentile SVI ranking regression coefficient. This pattern implies that the 

number of counties coefficient drives the relationship to the dependent variable. 

However, the spatial variation of the SVI shows that the ranking will guide the model in 

areas where it is highest (e.g., at the border of Minnesota, Iowa, and Wisconsin). 

 The mapped standardized residuals of the GWR (Figure 3-3) show that the model 

predicts most FEMA PA grant award amounts to within two standard deviations, with the 

majority of the study region falling within one standard deviation. Areas that are over-

predicted are in southern Wisconsin, northern Illinois, and northwestern Iowa. The model 
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under-predicts FEMA PA grant award amounts south of Lake Michigan, at the 

intersection of the borders of Iowa, Wisconsin, and Illinois, and in western Iowa meaning 

that grants will likely be higher in these areas than the model shows. The standardized 

residuals are randomly distributed and not statistically significant (not shown) verifying 

that the model is not biased, and therefore that the equation explains the variation of the 

data adequately and without duplicate inputs. The mapped standardized residuals are not 

spatially autocorrelated as determined by a Moran’s I test (Figure 3-4), implying that they 

are randomly distributed and independent (z = -1.361, p = 0.173).  

  The local R2 values—depicting the locations where the model is most effective at 

predicting PA grant awards—vary in a similar way to the standardized residuals across 

the study area (Figure 3-5). The majority of the study area has an R2 > 0.787, with the 

southern portion of the region having the highest R2 values (mostly exceeding 0.910). 

This result shows that the model locally predicts PA grant award amounts correctly at a 

rate between 78.7% and 91% in these areas. The model does not perform as well in 

northern Indiana and southern Michigan, where local R2 values are less than 0.5. These 

locations may be influenced by other variables that are less important across the study 

area generally, but have a high local importance. The model is a reasonably good fit with 

moderate to high R2 values and predicts the FEMA PA grant amounts well across the 

study region in connection with derechos. 

 

c. Further Clarifying the Variance of FEMA PA Grant Award Amounts  

 The Varimax-rotated PCA further clarifies the results of the backward stepwise 

regression and GWR by revealing principal components loaded by independent variables 
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that describe the dependent variable, FEMA PA grant award amounts. The scree test 

(Cattell, 1996) determines the number of principal components that collectively explain 

the greatest amount of variance in the dataset. The scree plot (Figure 3-6) shows the 

variances of the individual components from the PCA run on the FEMA PA grant award 

amount data. The graph shows ten components that are potentially useful in explaining 

the variance in the dataset. Components on the tail of the graph where the slope flattens 

out should be eliminated because they do not explain a sufficient amount of the variance 

(Cattell, 1996). The first five components have steep slopes; accordingly, these 

components are used to describe the variance in the FEMA PA grant award amounts data. 

The first five rotated principal components explain 99% of the variation in FEMA grant 

award amounts. The rotated component names, the variables that load heavily onto each 

rotated component, and the percent of variance explained by each rotated component, are 

shown in Table 3-3.  

Accordingly, local temperature is heavily loaded onto the Temperature rotated 

component, suggesting that while the measured social vulnerability characteristics are 

important factors in the overall grant award amount, local environmental factors can have 

an antecedent influence. Antecedent factors may influence vulnerability on different 

temporal scales. Persistent flooding, for example, could occur over weeks, whereas a 

short, pronounced heat wave could occur in a few days before a derecho and both could 

increase vulnerability. The Temperature rotated component explains 25% of the variance 

in the data. Physically, this association could be because higher temperatures are 

associated with higher energy (e.g., CAPE) and potentially larger storms that impact 

more counties. Socially, impacted communities are at a greater risk when pre-event 
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temperatures are higher than when they are lower (e.g., Watts and Kalkstein, 2004; 

Harlan et al., 2006).  

The second rotated component, Living Conditions, is loaded by Minority Status, 

Household Composition, and Mobile Home Units. The Living Conditions component 

explains 22% of the variance in the grant award amounts and shows that areas with more 

minorities, more vulnerable residents, and more mobile homes are associated with higher 

grant award amounts following derecho events. 

The third rotated component, Size, is heavily loaded by the Major Axis of the 

derecho. This rotated component explains 19% of the variance in the grant award 

amounts. The result that longer derecho path lengths are associated with higher grant 

award amounts is logical because longer-lived derechos are likely to impact more people 

and communities which would require increased grant funding for recovery. In addition, 

derechos with longer path lengths also tend to be more intense storms with higher winds 

and, accordingly, greater potential for damage, as shown in the first chapter of this 

dissertation. The Size component reflects the number of impacted counties coefficient 

identified as significant in the backward stepwise regression analysis.  

The fourth rotated component, Exposure, is loaded by variables that show that 

both the physical attributes of the derecho such as dissipation latitude and the social 

vulnerability of the impacted population are statistically significant in determining grant 

award amount. The Exposure rotated component explains 17% of the variance. It is 

loaded by dissipation latitude of the derecho and the percentage of people living below 

the poverty line. The loading of this component shows that grant award amounts are 

statistically likely to be higher when the dissipation latitude is lower. This relationship 
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has two possible explanations. First, these derechos could have longer path lengths 

because they dissipate further south. In this situation, the exposure is higher and there is a 

similar relationship to that shown in the Size rotated component. Another explanation is 

that the derechos that impact the lower latitudes are also impacting more vulnerable 

populations. This rotated component likely addresses both of these possible explanations. 

However, the Exposure rotated component is also loaded heavily by percentage below 

the poverty line showing that poorer communities receive higher grant award amounts, 

and thus indicating that those derechos that dissipate at lower latitudes are likely 

impacting more vulnerable populations. 

The fifth rotated component, Socioeconomics, is loaded heavily by 

socioeconomic status variables from the SVI. The Socioeconomic rotated component 

explains 17% of the variation in the data. The Socioeconomic rotated component is 

heavily loaded by the overall SVI ranking, which is inclusive of all sub-category 

variables identified in the CDC SVI: Socioeconomic Status, Household Composition and 

Disability, Minority Status and Language, and Housing and Transportation. Thus, this 

rotated component represents the overall impact of the socioeconomic factors on FEMA 

PA grant award amounts. 

 

Discussion 

 This research demonstrates that FEMA PA grant award amounts for straight-line 

wind damage accompanying Northern Tier states’ derechos can be predicted to a high 

degree of confidence (i.e., statistical significance) through spatial modeling of a number 

of atmospheric and socio-economic variables. The results, above, confirm that FEMA PA 
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grant award amounts are closely tied to the number of counties impacted by a derecho 

and the socioeconomic status of these affected counties (explains 92% of the variance, 

backward stepwise regression model). This significant association is logical because 

when a derecho impacts many counties more infrastructure is destroyed and more local 

governments and counties become involved with response and recovery efforts. 

Likewise, more counties apply for federal assistance in the form of FEMA PA grants and 

more are likely to be awarded the necessary funding. The socioeconomic status of the 

affected population is also important because more socially vulnerable counties will 

require greater financial assistance from FEMA PA grants for recovery and rebuilding of 

public resources. Moreover, the community infrastructure may be more easily damaged 

due to antecedent state of disrepair or insufficient antecedent care in poorer communities. 

The PCA indicates that the socioeconomic status of communities explain 17% of the 

FEMA PA grant award variation. This result reinforces that it is necessary to account for 

social vulnerability when investigating meteorological disaster-related losses. It would be 

advisable to conduct similar research to analyze the spatial and statistical relationships 

between FEMA PA grant award amounts and social vulnerability for other storm types. 

The multiple regression model is improved by introducing a spatial component; 

the goodness of fit of the GWR model, which increases the R2 to 97%, means that 

introducing local variations of the grant award amounts and explanatory variables 

increases the model’s ability to predict the FEMA PA grant award amounts. From the 

maps of GWR coefficients, the fact that the “number of counties” term has a higher 

coefficient where long-tracking derechos are likely to form means that more counties will 

be impacted by a derecho tracking from the northwest of the study area to the southeast; 
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therefore, more funding will be requested. The socioeconomic coefficient will have a 

larger influence on the dependent variable (FEMA PA grant award amounts) in areas 

where the number of counties term is lower. The implication of this result is that when 

fewer counties request FEMA grants and they are awarded amounts similar to those 

awarded to many counties, those fewer counties are likely to be highly socially 

vulnerable. Furthermore, if many counties are awarded low FEMA PA grant amounts 

they are likely to be less socially vulnerable. The results of the Varimax-rotated PCA 

showing that five factors explain most of the variance in the FEMA PA grant award 

amounts (i.e., temperature, living conditions, size of event, exposure, and 

socioeconomics) are reasonable because they support the idea that the areal impact of a 

derecho and the socioeconomics of those impacted by a derecho can predict the FEMA 

PA grant award amounts resulting from a derecho event. These analyses agree that the 

number of people impacted by a derecho and their social vulnerability are directly related 

to and can be a predictor of FEMA PA grant award amounts. 

 

Conclusions 

This research investigated the statistical relationships between FEMA PA grant 

award amounts given in response to derechos and potential explanatory variables such as 

social vulnerability. The number of counties that were impacted by the derecho and the 

overall percentile SVI ranking were shown to be directly and significantly related to the 

FEMA PA grant award amounts. These two variables fit the grant award amount data 

well with an adjusted R2 = 0.9202 (backward stepwise regression). A GWR examined the 

data spatially and the model fit increased to an adjusted R2 = 0.974, meaning that taking 
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spatial variations into account improved the model. Regression coefficient spatial 

surfaces show the number of counties term is highest in the north central and southeast 

parts of the study area and the social vulnerability term is highest near the boundaries of 

Wisconsin, Minnesota, and Iowa. In addition, the spatial variation of the success of the 

model in predicting the FEMA PA grant award amounts over space (standardized 

residuals and local R2 fields) indicate the model performs well across the study region 

except in southern Michigan and northern Indiana. A Varimax-rotated PCA identified 

combinations of variables that explain the variance in the data. Five components in 

descending order of importance—temperature, living conditions of the impacted 

populations, derecho major axis, population exposure, and socioeconomic status of the 

affected population—explain most of the variation in the FEMA PA grant award 

amounts. These results show that FEMA PA grant award amounts for derechos can be 

well-predicted using information on the number of counties impacted and social 

vulnerability of the affected populations, with additional variance explained by mitigating 

physical and social factors such as temperature and mobile home housing. Temperature 

plays a dominant role in the PCA and it is likely related to higher temperatures being 

associated with larger storms which thus impact a broader area (and likely more 

counties).  

This work provides a basis for analyzing derecho impacts and FEMA PA grant 

awards for derecho events. Future work can be done to further explore what types of 

damage result from derechos and how much funding is allocated to different categories of 

recovery. Further investigation into these topics will improve FEMA’s ability to respond 

to derechos and predict potential funding requirements. These results could be used in 
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conjunction with a climatological study on derecho frequency and intensity to determine 

what months and years may require the most FEMA PA grant awards to serve 

communities impacted by damaging derechos on a year-to-year basis. 
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Tables And Figures 

Table 3-1. Number of deaths caused by derechos, hurricanes, and F0 and F1 tornadoes. 

Modified from Ashley and Mote (2005), their Table 3. 

Year Derechos Hurricanes F0 and F1 
tornadoes 

1986 6 8 0 
1987 8 0 2 
1988 0 4 3 
1989 13 37 9 
1990 7 0 2 
1991 6 15 8 
1992 2 23 3 
1993 2 3 6 
1994 6 8 2 
1995 18 23 3 
1996 11 48 3 
1997 13 2 7 
1998 21 5 2 
1999 14 60 6 
2000 10 1 1 
2001 9 0 5 
2002 6 0 6 
2003 1 17 3 
Total 153 254 71 
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Table 3-2. Costliest hurricanes and derechos 1986 – 2003. (Adapted from Ashley and 

Mote (2005), their Table 5). 

Storm Cost (in millions) Year 
Andrew 18,985 1992 
Hugo 3,993 1989 
Opal 2,411 1995 
Floyd 2,117 1999 
Fran 1,803 1996 
Isabel 1,685 2003 
Georges 1,264 1998 
Bob 766 1991 
Lili 437 2002 
May 31 derecho 432 1998 
Erin 431 1995 
Bonnie 394 1998 
September 7 derechos 252 1998 
June 4 – 6 derechos 191 1998 
May 4 derecho 180 1989 
February 16 derecho 176 2001 
April 26 derecho 162 1999 
Bertha 152 1996 
March 9 derechos 137 2002 
Irene 108 1999 
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Table 3-3. Varimax-rotated PCA rotated principal components, loadings, and percent 

variance explained. 

Rotated Component Loading Variables Variance Explained 

Temperature Local Temperature 25% 

Living Conditions Minority Status, Household 

Composition, Mobile Home 

Units 

22% 

Size Derecho Major Axis Length 19% 

Exposure Derecho Dissipation 

Latitude, Percent Living 

Below Poverty Line 

17% 

Socioeconomics SVI Socioeconomic Theme, 

Overall SVI Ranking 

17% 
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Figure 3-1. Histogram of standardized residuals from the backward stepwise regression 

analysis. The graph shows a normal distribution of the standardized residuals implying 

the model is not biased; therefore, that the data are independent.  
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Figure 3-2a. Mapped GWR coefficients for the “number of impacted counties” term. 
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Figure 3-2b. Mapped GWR coefficients for the overall percentile SVI ranking term. 
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Figure 3-2c. Mapped GWR intercept values. 
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Figure 3-3. GWR standardized residuals mapped across the study area show that the 

model generally fits well, with some areas of over-prediction (red) and some areas of 

under-prediction (blue). Each blue and red category represents one standard deviation 

from the center (yellow).

 

  



	 96 

 

Figure 3-4. Results of Moran’s I test on the backward stepwise regression residuals. The 

results show that the data are random and thus not spatially autocorrelated; therefore, the 

model is not biased with collinear inputs. 
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Figure 3-5. Mapped local R2 values from the GWR model. 
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Figure 3-6. Screeplot showing explained variances by rotated PCA component (refer 

text). 
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CHAPTER 4 

IMPROVING EMERGENCY MANAGEMENT RESPONSE TO DERECHOS VIA 

THE CREATION AND APPLICATION OF A DERECHO IMPACT SCALE AND 

GIS TOOL 

Abstract 

 This chapter addresses the emergency management responses to derechos through 

the generation of a derecho impact scale and a recommended process for a GIS tool that 

visualizes emergency management resource access. Many types of severe weather events 

have been categorized in terms of their intensity; two widely used examples of such 

meteorological impact scales are those for tornadoes—the Enhanced Fujita scale—and 

hurricanes, the Saffir-Simpson scale. However, these impact scales do not account for the 

storm direct impacts on populations and do not address certain physical aspects of the 

storms they categorize, such as size (which is a determining factor in the number of 

people it impacts). Conversely, the Northeast Snowfall Impact Scale (NESIS) includes 

both the physical characteristics and human impacts of Northeast snowstorms. Thus, the 

present research uses NESIS as a model to develop a derecho impact scale for Northern 

Tier States derecho events called the Derecho Wind-Area-Society (DEWARS) Impact 

Scale. To further facilitate the emergency management responses to derechos, a GIS tool 

is developed that aids decision-making by effectively and efficiently mapping emergency 

management resource access immediately following the storm. As demonstrated in a case 

study, incorporating the DEWARS impact scale in this GIS tool is recommended for use 

by FEMA.  
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Introduction and Background 

The present research aims to aid the emergency management responses to 

Northern Tier States summer derecho events. This chapter expands on the research 

presented earlier in this dissertation by presenting an impact-based derecho scale for 

Northern Tier summer derechos designed to inform emergency management decisions. 

An emergency management GIS tool that will aid derecho emergency response activities 

is also developed and applied to a case study. A framework for developing this tool is 

also presented based on calls for this type of decision-support tool in the emergency 

management literature (Meade and Abbott, 2003; Morss and Ralph, 2007). This chapter 

is organized as follows: The first section provides a review of the literature relevant to 

severe weather event impact scales and the importance of integrating social and physical 

variables in emergency management decision support systems (DSSs). Next is a 

discussion of the data and methods used to create the derecho impact scale. Following, 

the results of applying the impact scale to Northern Tier derecho events are discussed. 

Then, the GIS emergency management tool that can be used alongside the impact scale is 

described. Finally, a conclusion that summarizes the work is presented. 

 

a. Meteorological Impact Scales and Categorization of Severe Weather Events 

 Emergency managers use disaster impact scales to aid in real-time emergency 

management decision-making. However, these impact scales have been developed by 

meteorologists and engineers. Meteorological impact scales such as the Enhanced Fujita 

(EF) tornado scale (Fujita, 1971) and the Saffir-Simpson hurricane scale (Simpson and 

Saffir, 1974; Saffir, 1977) empower decision-makers by providing a description of the 



	 102 

impacts of tornadoes and hurricanes and grouping events of similar magnitude into 

categories based on the potential of the storm to cause damage to different types of 

structures. By enabling comparisons to previous severe weather events in the same 

category, impact scales can inform senior leaders’ decisions on distributing emergency 

resources and allocating recovery funding (Xu and Brown, 2008; Li and Jin, 2010; Tate 

et al., 2010). Although general in scope, these scales permit quick evaluation of potential 

storm impacts and facilitate effective responses by providing emergency managers a 

relative impact of the disaster. Often, emergency managers must make critical decisions 

in real time based on limited information and complex meteorological data which can be 

difficult to reconcile and interpret owing to lack of understanding of meteorological 

processes (Pielke and Carbone, 2002; Baumgart et al., 2006; White and Turoff, 2012). 

Thus, reduction and amalgamation of these data in order to improve understanding of 

forecasts is commonplace in emergency response situations. Emergency managers use 

tools such as general principles and guiding frameworks to guide decision-making based 

on complex information and situations (Meade and Abbott, 2003; Morss et al., 2008). 

Using impact scales to inform decisions provides a general understanding of the range of 

societal impacts from which estimates of required emergency support can be made. 

 Categorizing the impacts of severe storms on society has been undertaken 

extensively since sailors started monitoring wind speeds affecting their ships. 

Accordingly, the Beaufort scale was developed based on rudimentary experiments that 

related wind speeds to their effects on ship sails (Meaden et al., 2007). Tornado impact 

scales were first developed in the late 1800s when Hazen (1890) suggested a tornado 

scale based on economic losses. Although this early tornado impact scale focused on 
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human impacts, few meteorological impact scales developed since have incorporated the 

human component. Fujita (1971) created a tornado impact scale that relied on damage 

assessments to estimate wind speeds. Post-event damage assessments are required to 

categorize a storm on the Fujita scale and it was subsequently suggested that its 

categories needed further refinement (Forbes and Wakimoto, 1983; Doswell and Burgess, 

1988; Doswell, 2003; Edwards et al., 2013). Meaden (1975) proposed a tornado impact 

scale called the TORRO scale or T-Scale that ranked tornadoes based only on wind 

speed, but it is disfavored in comparison to Fujita’s scale. The Beaufort scale, Fujita 

scale, and T-Scale can be used to rate tornado intensity, but each impact scale emphasizes 

wind speed and does not address economic losses or human impacts (Meaden et al., 

2007). The EF scale updates the Fujita scale to make it more relevant to current U.S. 

structures and more easily related to specific types of damage to newer building materials 

(Potter, 2007; Doswell et al., 2009). Tornado frequencies, path widths, and seasonal 

variations have been associated with specific EF scale categories in studies that show 

high numbers of small tornadoes in low EF rankings and low frequencies of large 

tornadoes in high EF rankings (Fujita, 1973; Brooks and Doswell, 2001; Dotzek et al., 

2003; Brooks, 2004; Feuerstein et al., 2005; Edwards et al., 2013). Currently, the EF 

scale is the standard tornado impact scale for emergency managers even though research 

shows emergency managers have difficulty interpreting wind speed data to inform their 

decisions (Baumgart et al., 2006).  

 Like tornadoes, hurricanes also have been categorized based on their 

meteorological impacts. The Saffir-Simpson scale assesses a hurricane’s potential impact 

based on sustained wind speeds and was implemented to advise officials on the damage a 
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hurricane could cause (Simpson and Saffir, 1974; Saffir, 1977). Categorizing hurricanes 

has enabled researchers to further investigate hurricane hazards and clarify the wind 

impacts of hurricanes on both human and physical landscapes (Dvorak, 1975; Sallenger, 

2000; Webster et al., 2005; Senkbeil and Sheridan, 2006; Irish et al., 2008; Irish and 

Resio, 2009). However, the Saffir-Simpson scale has been criticized for its discrete 

ranges of wind speed associated with each intensity category, its highest category 

containing too many events to represent the relative infrequency of these high-intensity 

hurricanes, and its lack of accounting for differences in rainfall rates and storm surge 

height and its inland extent (Mahendran, 1998; Kantha, 2006). Alternative scales have 

been created to describe hurricane impacts on populations and coastlines that address 

some of the shortcomings with the Saffir-Simpson scale. Kantha (2006) recommended 

adding metrics, or standards for evaluating storm intensity, to the Saffir-Simpson scale 

that incorporate hurricane rainfall, flood damage, and storm surge height. Likewise, 

Jordan and Clayson (2008) found including surge height improves the hurricane impact 

scale. Likewise, Irish and Resio (2009) suggested a hydrodynamically based impact scale 

for hurricanes that includes storm surge height and physical attributes related to 

hydrodynamics of the storm such as regional bathymetry. In addition, many of these 

alternative scales attempt to take into account that the number and frequency of high-

ranking hurricanes are projected to increase under climate change (Emmanuel, 2005; 

Webster et al., 2005). With increasing number and frequency, hurricane categorization 

that incorporates all potential impacts is critical to successful emergency response. 

Powell and Reinhold (2007) propose an impact scale that estimates hurricane destruction 

potential on human environments through modeling and comparing storm-associated 
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energy. Other researchers emphasize the need to have different scales for hurricanes that 

make landfall as opposed to those that remain at sea or those that may make landfall in 

places that are particularly vulnerable in terms of coastal development and population 

density (Sallenger, 2000; Senkbeil and Sheridan, 2006). Although many researchers 

argue for modifications of the Saffir-Simpson scale to improve its application to disaster 

management, emergency managers use it as the standard hurricane impact scale. Thus, 

lessons learned from developing and refining hurricane impacts scales can be applied to 

the development of a derecho impact scale.  

 Although it would be convenient to copy the EF scale and Saffir-Simpson scale 

processes to create a derecho impact scale, there are insufficient derecho damage 

assessments to support this method. In addition, these scales have been criticized for not 

accounting for important variables that relate to human impacts such as the density of the 

population impacted and the population’s vulnerability to meteorological disasters 

(Kantha, 2006; Potter 2007). Moreover, research shows it is challenging for emergency 

managers to use severe weather wind speeds to inform their decisions because it is not 

usual practice for them to convert wind speeds into human impacts which may include 

flooded homes and downed power lines. Thus, the present study seeks to show that 

derechos can be categorized using an impact scale that incorporates their wind speed, but 

that also emphasizes their size (i.e., the total area over which they track from initiation to 

dissipation) and influence on societies of various sizes and vulnerabilities. The scale will 

also follow the Magnitude-Frequency relationship that holds that severe weather events 

that have uncharacteristically large impacts and occur less frequently and those that have 

lesser impacts and occur more frequently.  
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 Development of a derecho impact scale can incorporate certain characteristics of 

another severe weather event that impacts human and physical landscapes, the 

snowstorm. Call (2005) argues that snowstorms must be analyzed in the context of their 

effects on daily life interruptions. Snowstorm impacts on transportation, fatalities, and 

business and education operations have been categorized regionally (i.e., across several 

states) and locally (i.e., in towns and cities) using classification scales similar to the EF 

and Saffir-Simpson scales (Zielinski, 2002). Cluster analysis has driven the 

categorization of storms that have wide impacts, and researchers show that similar events 

can be grouped by their meteorological properties into a five-category impact scale 

(Dolan and Davis, 1992). Additional research has incorporated the presence and 

vulnerability of affected populations, climatological normals, and antecedent weather 

events into a description of a snowstorm’s physical and social impacts (Hart and Grumm, 

2001; Cerruti and Decker, 2011; Mayes Boustead et al., 2015). The ranking of Northeast 

snowstorms according to their severity that has served as a model for ranking snowstorms 

in other regions is the Northeast snowfall impact scale (NESIS). NESIS incorporates both 

storm extent and human effects, defined as the population affected by the storm at 

different intensities (Kocin and Uccellini, 2004; Squires and Lawrimore, 2006; Squires et 

al., 2014). The NESIS equation is: 

NESIS = [𝑛(
𝐴!

𝐴!"#$
+

𝑃!
𝑃!"#$

)
!

!

], 

where n is snow accumulation over an area, An represents the area where snow 

accumulations are greater than n, and Amean is the mean area of snow accumulation above 

10 inches in a 30-event sample. Pn represents the total population living in areas with 

snow accumulation and Pmean refers to the average population size computed from a 30-
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event sample living within areas of snow accumulation greater than 10 inches (Kocin and 

Uccellini, 2004). The framework used to develop the NESIS serves as a model for the 

present research which takes into account storm and population attributes. The impact 

scale defined by the NESIS equation and subsequent classification scheme put forth by 

Kocin and Uccellini (2004) identifies variables that are needed to define impacts of 

snowstorms that closely align with those that are also needed to analyze the impact of 

derechos. Thus, to improve the emergency management of derechos, this research 

develops a derecho impact scale similar to the NESIS and analyzes classification methods 

to statistically find groups that appropriately categorize the human impacts of derechos. 

 

b. Integrating Physical and Social Variables in a GIS to Aid Emergency 

Management Decision Support  

Geographic Information Systems (GISs) are used in meteorological applications 

and emergency management procedures, and include both planning and response. 

Although the use of mapping products and tools is commonplace in these fields, there is 

little cross-disciplinary research, development, and implementation of GIS technology 

(Riad et al., 1999; Meade and Abbott, 2003). Moreover, emergency management could 

be improved with deeper integration of meteorological concepts and social vulnerability, 

or the ability of a population to respond to, recover from, and adjust to a disaster 

(Morrow, 1999; Riad et al., 1999; Cutter et al., 2003; Cutter and Finch, 2008; Flanagan et 

al., 2011), in their DSSs (Subramaniam and Kerpedjiev, 1998; Golden and Adams, 2000; 

Meade and Abbott, 2003; Morss et al., 2008). Tools that incorporate weather data and 

decision support methodologies are underdeveloped, not used broadly, and many are out 
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of date (Subramaniam and Kerpedjiev, 1998; Golden and Adams, 2000; Han and Liu, 

2008; Zhao et al., 2009). Researchers and government agencies call for further DSS 

development, enhanced meteorological data and forecasts, and improved cross-

disciplinary applications (Meade and Abbott, 2003; Morss et al., 2008). Advancement 

toward simplifying meteorological outputs for interpretation by emergency managers will 

greatly improve emergency response capabilities, and aid life-saving efforts (Morss and 

Ralph, 2007).  

As indicated above, social vulnerability also needs to be accounted for in 

conceptual models that aid emergency management decisions. Based on interviews, 

Morss and Ralph (2007) observed that emergency managers tend to use local knowledge 

of social vulnerability, however it is situational and based on individual perceptions. 

Social vulnerability research is vast and the scope of the present research does not permit 

a detailed comparison of social vulnerability indices. However, some general comments 

are appropriate. Social vulnerability varies across space and time, but can be defined 

using indices that depict the resilience of a population, or their ability to recover from, 

and adaptive capacity, or the ability of a population to adjust to, a disaster (Cutter et al., 

2003; Smit and Wandel, 2006; Cutter and Finch, 2008; Fekete et al., 2010; Flanagan et 

al., 2011). These factors are particularly important to consider within the context of 

climate change because populations will face new and different intensities and 

frequencies of hazards and disasters (Smit and Wandel, 2006; McLaughlin and Dietz, 

2008). Social vulnerability indices and markers (e.g., number of mobile home units, 

population age) should be used with real-time meteorological data for emergency 

managers to improve the effectiveness of their operations (Cutter et al., 2003; Cutter and 
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Finch, 2008; Morss et al., 2008, Morss et al., 2011). The nexus of these fields—

meteorology, social vulnerability, and emergency management—is a relatively new 

interdisciplinary area in which further research and GIS development could directly 

improve emergency planning and response, an aim of this study. Another aim of the 

present research is to develop and apply an emergency management GIS tool that 

visualizes access to emergency management resources such as first responders and 

disaster recovery centers.  

Meteorological forecasts, data, and research have greatly developed since the 

1970s (Golden and Adams, 2000), however integration of these data and techniques such 

as probabilistic (as opposed to static deterministic) warnings into usable DSSs has lagged 

(Meade and Abbott, 2003). Regardless, situational awareness of and planning for 

potential meteorological disasters is a daily activity at the U.S. federal, state, and local 

levels. In the wake of a meteorological disaster, monetary and operational losses are 

difficult to measure, particularly when the definition of disaster impacts is unclear 

(Changnon, 2003; Doswell et al., 2006). Social vulnerability is a confounding factor in 

identifying loss and recovery needs including funding amounts that takes into account the 

at risk population and socioeconomic status of communities (Riebsame et al., 1986; 

Changnon, 2003; IPCC, 2013). Moreover, research shows that climate change will likely 

enhance severe weather intensity and frequency (IPCC, 2013). Although scientists 

generally agree on the role of climate change in amplifying severe weather frequency and 

intensity, uncertainty varies with severe weather type. Climate change impacts on severe 

weather will differentially impact communities across spatial and temporal scales 

(Kunkel et al., 1999; Greenough et al., 2001; Choi and Fisher, 2003). This spatiotemporal 
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variability compounds difficulties of analyzing socioeconomic loss that are pertinent to 

improving emergency management responses to severe weather disasters. Using a GIS 

would likely improve understanding of the geographic variations of severe weather 

impacts. 

The social vulnerability of populations is often omitted from meteorological 

research and is not always used in emergency management response operations. Often it 

is not a lack of information that leads to mismanagement, but too much information in a 

format that is too detailed for interpretation by non-meteorologists (Liu et al., 1996; 

Baumgart et al., 2006, White and Turoff, 2012). Qualitative research has been done to 

understand the community-based component of preparing for meteorological disasters 

(Penning-Roswell and Wilson, 2006; Kapucu, 2008). Although these studies emphasize 

the importance of community awareness, they similarly highlight the necessity of 

comprehensible meteorological information for appropriate preparation.  

The integration of updated meteorological products with emergency management 

decision structures, the frameworks that guide emergency management decisions, will 

improve emergency responses. Currently, emergency management operating procedures 

and policies are not consistently updated to incorporate meteorological advancements. 

Pielke and Carbone (2002) highlight that emergency management decision-makers do not 

use meteorological information productively because they often do not understand 

forecasts. Likewise, Morss et al. (2008) argue that forecasts are not effective without 

considering the impacts of the forecasted weather on society. The synthesis of 

meteorological data, information on the socioeconomic contexts of affected populations, 

and emergency management decision structures are required for effective severe weather 
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disaster response and planning. Although the desire to collaborate is emphasized by 

government research agenda advisors, there are very few funded projects that incorporate 

social vulnerability and DSSs like GIS map products (Meade and Abbott, 2003).  

It is expected that climate change will continue to change the intensity and 

frequency of severe weather events (IPCC, 2013). The social vulnerability literature, 

however, is still lagging on identifying the most appropriate approach to analyzing 

vulnerability to meteorological disasters with respect to climate change because variables 

like urban development and adaptive capacity are fluid (Thomalla et al., 2006; Fussel, 

2007; Ionescu et al., 2009). The exposure of a population to hazards is often left out of 

analyses of vulnerability and emergency response (Comfort et al., 1999). Confounding 

these difficulties is the inherent disagreement as to how vulnerability research should be 

conducted and interpreted, as often, studies fail to take into account the scale of a 

population (i.e., local vs. national) and how important specific vulnerability markers may 

be within that population (Hinkel, 2011).  

The three distinct research areas discussed above (meteorology, emergency 

management, and vulnerability) require collaboration by researchers at this nexus and 

collaboration with GIS developers (Demuth et al., 2007; Morss et al., 2008). The tool 

presented in this paper aims to marry meteorology, emergency management, and 

vulnerability in a DSS that supports emergency management decision-making after a 

derecho.  

 

Data 
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The derecho dataset used in the previous chapters is also used herein. That dataset 

contains 56 summer-season (JJA) Northern Tier States events for the period 2000-2014, 

identified using NOAA Storm Prediction Center (SPC) high wind reports, in conjunction 

with remotely sensed imagery including NOAA NWS WSR-88D Level III radar images 

and visible and infrared satellite imagery. Derecho size was obtained through overlaying 

the radar and satellite images in a GIS and extracting the area that the storm affected, 

from initiation to dissipation. For purposes of describing derecho impact, data is also 

included on derecho physical properties, attributes of the impacted populations, and the 

derecho intensity metrics as discussed in the first chapter of this dissertation. Physical 

atmospheric properties of derecho environments such as Convective Available Potential 

Energy (CAPE), surface air temperature, and 300 hPa shear are obtained from National 

Centers for Environmental Prediction (NCEP) North American Regional Reanalysis 

(NARR) 3-hourly modeled data (Mesinger et al., 2006). The SPC high wind reports, 

radar and satellite imagery, and physical atmospheric properties for Northern Tier 

summer derechos are used in GIS format for analysis with respect to Census American 

Community Survey (ACS) population data by Census tract. 

ACS data are referenced for total population and population density, as well as in 

the social vulnerability index. These data are obtained for the geospatial and statistical 

analyses to be described below. The social vulnerability data are collected from the 2014 

Centers for Disease Control and Prevention Agency for Toxic Substances and Disease 

Registry (CDC/ATSDR) Geospatial Research, Analysis & Services Program (GRASP) 

Social Vulnerability Index (SVI). Those data include a social vulnerability ranking, and 

indices that represent social vulnerability based on four summary categories including: 
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Socioeconomic Status, Household Composition and Disability, Minority Status and 

Language, and Housing and Transportation (Flanagan et al., 2011). These categories 

incorporate vulnerability-related metrics including number of people below the poverty 

line, number of mobile homes, and number of children and elderly. The CDC SVI is 

designed particularly for emergency management use because it develops vulnerability 

metrics based on disaster risk and hazards, and is thus chosen for this investigation. 

Derecho impact metrics derived and analyzed in the first chapter of this dissertation are 

also used in the present research. These metrics include major axis length, minor axis 

length, rain rate, maximum wind speed and wind direction. Federal Emergency 

Management Agency (FEMA) Public Assistance (PA) grant award amount data are also 

used as an indicator of storm impact. All of these data have geographic attributes that can 

be spatially analyzed within a GIS, and include raw data that can be analyzed using 

traditional non-geospatial statistical methods such as multiple regression and cluster 

analyses. These methods are described below.   

 

Methods 

 Regression and clustering methods are used to investigate associations among 

variables under consideration for a derecho impact scale. Relationships are analyzed 

between storm impact and physical atmospheric characteristics, including wind speed, 

which has been used in other meteorological disaster impact scales such as the EF Scale 

and Saffir-Simpson scale (see above). Derecho impacts and attributes of the impacted 

populations such as population density are also analyzed. Simple linear and multiple 

regressions identify relationships between derecho impacts and physical atmospheric 
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characteristics such as wind speed, pressure, and CAPE and population density and social 

vulnerability. Many combinations of variables are tested to determine their association to 

derecho impacts. Random forest regressions, a decision tree-based regression technique, 

are run to identify if any non-linear patterns exist that could describe and categorize 

derecho impacts. The random forest method is also used to rank the importance of 

independent variables such as wind speed, population density, and social vulnerability in 

explaining derecho impact. These regression techniques expose if a linear or non-linear 

relationship exists between explanatory variables such as wind speed and social 

vulnerability and derecho impact (Ho, 1998; Breiman, 2001; Liaw and Wiener, 2002; 

Criminisi et al., 2012). Many combinations of variables are tested using regressions to 

identify if they collectively describe derecho impact. 

 Clustering methods are also used to generate derecho impact scales by grouping 

similar derechos into groups of three to five according to their associated meteorological 

and social variables. Through hierarchical clustering, k-means, and Self Organizing Maps 

(SOMs), the multidimensional derecho attributes are reduced to a more manageable set of 

clusters of similar events. The cluster members are then compared to derecho impacts by 

testing their statistical relationships to the intensity metrics discussed in the second 

chapter (maximum wind speed, associated rain totals, and minor and major axis/track 

length) to determine if the clusters accurately reflect derecho groups with similar 

intensities. Clusters of derecho events are created by reducing the entire multidimensional 

dataset of meteorological and social variables into groups using hierarchical and non-

hierarchical methods such as hierarchical and k-means clustering. Hierarchical clustering 

segments the data into groups based on a distance matrix (Jain and Dubes, 1988). 
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Conversely, non-hierarchical k-means clustering partitions the multidimensional data into 

similar groups based on the closeness of the group means. The k-means method reduces 

within-group variance and identifies a centroid of the clusters to produce groups of 

similar items (MacQueen, 1967). Clustering is conducted on sets of specific physical 

atmospheric variables (e.g., CAPE, 300 hPa shear, pressure, and wind speed) and social 

variables (e.g., SVI, total impacted population, and number of mobile homes) to develop 

categorizations of derecho impact. As an alternative method, self-organizing maps 

(SOMs) are also employed to group the derechos into statistically similar categories by 

simplifying the multi-dimensional data into distinct nodes (Kohonen, 1982; Kohonen, 

1998 Agarwal and Skupin, 2008). 

 As stated earlier, Kocin and Uccellini’s (2004) NESIS equation is used as a basis 

for quantifying the impact of derechos in the Northern Tier. Derecho impacts are 

quantified by calculating a DEWARS value using the following equation modeled on the 

NESIS:  

DEWARS value = [𝑛(
𝐴!

𝐴!"#$
+

𝑃!
𝑃!"#$

)
!

!

]. 

In this equation, n represents derecho wind speed. Four categories of wind speed are used 

to represent the frequency distribution of SPC high-wind reports; n = 1, n = 4, n = 6, and 

n = 9, which are calculated based on the frequency distribution of SPC high-wind reports 

for the derechos in this research. Following Kocin and Uccellini (2014), An is the area of 

high-wind reports that exceeds the minimum wind speed represented by n. Amean is the 

average area covered by high-wind reports in category n in the sample of derechos. Pn is 

the population that lives within An and Pmean is the average population affected by high 

winds in category n calculated from the derechos in this study. Wind speed, derecho 
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spatial extent, duration, and impacted population comprise the variables that are used to 

calculate the DEWARS values for the 56 Northern Tier derecho events. DEWARS values 

are analyzed statistically and qualitatively to determine how well the derechos were 

ranked by their DEWARS value. 

DEWARS values are then categorized using clustering and natural breaks to 

create the DEWARS impact scale. Jenks natural breaks and k-means clustering sort the 

derecho events into categories by optimization (natural breaks) and machine learning 

following techniques investigated by research that classifies convective weather events. 

Clusters can describe their similarities in intensity of derecho events (Gong and Richman, 

1995; Tudurí and Ramis, 1997). To maintain similarity to other impact scales while 

accounting for the fact that only 56 events are available to be categorized, four and five 

categories of derecho events were tested to analyze which produced an impact scale 

comparable to NESIS categories 1 – 5, EF0 – EF5 tornadoes, and category 1 – 5 

hurricanes. The classifications derived through natural breaks and clustering were 

correlated with FEMA PA grant award amounts to recommend the most appropriate 

impact categories for derechos that are statistically similar and relevant to emergency 

management-based impact scales.  

 

Results and Discussion 

 Simple linear, multiple, and random forest regressions run on physical 

atmospheric derecho data (e.g., CAPE, 300 hPa shear, pressure) and affected population 

data did not yield statistically significant results that could be used to group derecho 

events according to their impacts. Although some individual attributes are found to be 
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significantly related to derecho intensity (e.g., a positive correlation exists between CAPE 

and derecho maximum wind speeds implying high winds are related to high instability), 

the correlations do not adequately describe the impact of the derechos. No combination of 

physical and social variables used in the simple linear and multiple regressions yields R2 

> 0.4. Similarly, using random forest regressions to find non-linear relationships among 

physical and social variables and derecho intensity yielded no statistically significant 

associations. Models have an error rate consistently over 50% and most combinations of 

variables are associated with a model error rate of greater than 65%. These results show 

that there is no direct linear relationship between derecho physical atmospheric variables 

(e.g., CAPE, temperature, pressure) and social variables (e.g., population, SVI, number of 

mobile homes) as measured by size of the derecho, associated wind speed, rain rates, 

major axis, minor axis, or direction. Although these relationships are not evident in this 

dataset, it is possible that more finely resolved spatial and temporal physical atmospheric 

and derecho intensity data may yield stronger relationships through regression modeling. 

Meteorological case studies of derechos may reveal what data are most important to 

analyze and at what scale. In addition, reducing the generalization of the physical 

atmospheric and social data, which is introduced when aggregating the information by 

Census tract, may reduce the model error. These recommendations are made for possible 

future study with additional and more finely resolved derecho-specific data and 

collaboration among sociologists and meteorologists. The results from the regression 

analyses conducted herein produce some isolated significant results, but have 

accompanying errors too high to be statistically significant.  
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 Likewise, assembling derechos into groups of similar impact using clustering is 

not successful in fully describing the differences in their impacts. Three, four, and five 

clusters of derechos based on their impacts are created using hierarchical clustering and 

k-means clustering designed to groups items together, in this case derechos. Comparing 

the clusters to the derecho intensity metrics of major axis length, minor axis length, wind 

speed, associated rain totals, and direction (the intensity metrics used in Chapter 2) 

revealed no statistically significant, consistent relationships among the clusters in terms 

of derecho impacts. Although the clustering methods were qualitatively more successful 

than the regression techniques, in other words they successfully grouped particularly 

large and damaging (high-impact) derechos together, the clusters did not distinguish 

between moderate- and low-impact derechos (which would have progressively lesser 

impacts). Another drawback of the clustering results was that clusters often contained a 

similar number of derechos, which is undesirable because it does not follow the 

Magnitude-Frequency relationship. Thus, clustering the events statistically does not 

generate a derecho impact scale that adequately described the events’ impacts as an 

expected negative relationship.  

The SOMs analysis grouped derecho impacts into four categories, but similar to 

the clustering methods, these categories did not adequately arrange the derechos based on 

their impacts. Using SOMs, high-impact derechos were again classified into their own 

group, but low-impact derechos were classified as a small group, which violates the 

Magnitude-Frequency relationship, and moderate-impact derechos were sorted into two 

large groups whose impacts were difficult to distinguish. Statistical relationships of 

derecho impacts with associated physical atmospheric attributes and population 
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characteristics were not statistically significant using either clustering or SOMs. These 

techniques could be further explored with additional cases as the record is extended 

forward in time such that each classification will contain 30 or more events. Additional 

events would likely improve the cluster and SOM results because variation in the 

derechos would increase between the classes but decrease within the classes, which is the 

ultimate objective of a successful classification system. 

  Despite the foregoing results, it is still important to categorize the impacts of 

derechos to aid decision-makers using an impact scale that can be compared to other 

meteorological impact scales with which emergency managers are familiar (Blong, 2003; 

Baumgart et al., 2006). Accordingly, it is also important to relate the derecho impact 

categories to an emergency management metric such as FEMA PA grant awards. 

DEWARS values were calculated for the 56 Northern Tier derechos in the 2000-2014 

study period (Table 4-1). Table 4-2 shows the events organized by descending DEWARS 

value. Qualitatively, the DEWARS impact values adequately identify derecho impact 

because they agree with NOAA SPC’s list of “Noteworthy” Derechos in which 

particularly damaging derechos are indicated. Of the derechos studied herein, the SPC 

identifies 19 of them to be “Noteworthy” Derechos, and these are noted by an asterisk in 

Table 4-2. As indicated by the † in Table 4-2, 15 (79%) of these events have DEWARS 

values that are in the top half of the 56 Northern Tier derechos studied. As indicated by 

the ‡ in Table 4-2, 8 (42%) of the noteworthy events have DEWARS values that are in 

the top third of the 56 Northern Tier derechos. In particular, the June 29, 2012 derecho 

(derecho number 48) is often used as an example of an extraordinary derecho that 

impacted a large population and caused significant damage. This derecho has the highest 
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DEWARS value, indicating it had the greatest impact of the 56 events analyzed. 

Derechos having high DEWARS values tend to also have long major axes (> 1,000 km), 

affect a large population (20 – 40 million), and have high-wind reports associated with 

strong winds (> 39 m/s). Derechos that have moderate DEWARS values either have 

moderate major axis lengths (~ 900 km) affect medium-sized populations (tens of 

millions), and have associated moderate wind speeds (37 – 39 m/s), or are accompanied 

by high values of one or two of these factors and a very low value of the other(s). Last, 

derechos with low DEWARS values have associated shorter major axis lengths (<800 

km), lower affected populations (< 10 million), and lower wind speeds (~ 37 m/s). Thus, 

the categories of DEWARS values seem to accurately separate large or intense events 

from those that may not be very large but track through major urban areas with high 

population densities or that are very large but that do not impact many people.  

  The Jenks natural breaks and k-means clustering approaches split the derecho 

event DEWARS values into categories that represent derecho impacts similar to those 

suggested by the NESIS, the tornado EF Scale, and the hurricane Saffir-Simpson scale. 

Tables 4-3a and 4-3b show the distribution of derechos across impact categories 

generated by splitting the events into four and also five categories using the natural 

breaks and clustering approaches. The final row of Tables 4-3a and 4-3b show Pearson’s 

correlation coefficients of the DEWARS values with FEMA PA grant award amounts and 

their respective p-values. Each of these correlations is statistically significant for the four 

impact scales considered and is highest for the clustered derecho impact categories. The 

positive relationship between the PA grant award amounts and the DEWARS values of 

the derecho impact scales confirm that the scales accurately represent derecho impact. 
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 Although each impact scale tested shows statistically significant correlation with 

PA grant award amounts, only one scale—the best performing—should be chosen for use 

by emergency managers. The distribution of derechos across the four categories 

generated using k-means clustering shows that the two lowest-impact derecho categories 

contain the same number of derechos. Thus, the four-category cluster-based scale does 

not demonstrate that lowest-intensity meteorological disasters tend to occur most 

frequently. However, the four-category classification scheme driven by Jenks natural 

breaks shows the more expected distribution of derecho events across impact categories, 

but also has the lowest correlation with FEMA PA grant award amounts. Using the four-

category Jenks natural breaks scale may be less useful in an emergency management 

setting because it is less comparable to the five-category impact scales that emergency 

managers are familiar with using for tornadoes and hurricanes. While the EF scale has 

one additional category, five categories of derecho impact are closer to six categories 

than are four. Categorizing the derechos into five natural-break categories creates a 

reasonable distribution of a small number of highly impactful events to a large number of 

less impactful events across impact categories, however, there are still more events in 

Category 2 than Category 1. Although categorizing the events using clustering creates 

five categories of events that are evenly distributed in the two middle-impact categories 

(2 and 3), this categorization produces a decreasing number of derechos across the 

categories overall. In addition, the cluster-based categorization has a stronger correlation 

to FEMA PA grant award amounts relative to the impact scale produced using the natural 

breaks method. Thus, it is recommended to categorize derechos into five categories based 

on the k-means clustering of the 56 Northern Tier derechos. Each of the other methods 
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(i.e., four-category clustering and natural breaks and five-category natural breaks) could 

also be used, but the five-category clustering categorization is likely the best impact scale 

for emergency managers because it adequately distributes decreasing derechos across 

increasing intensities, it is significantly correlated with FEMA PA grant award amounts, 

and it is comparable to other meteorological impact scales.  

Of the tests used to separate the 56 derechos into distinct impact categories, the 

five categories generated from k-means classification appears to be optimal. Table 4-4 

lists the derecho impact scale category and DEWARS value for each derecho event. 

Table 4-5 shows color-coded impact categories along with descending DEWARS values 

for the derechos to help illustrate the categorization scheme. The categories are also 

shown in Figure 4-1 with five circles representing the 5 categories and the numbers 

representing the derecho events as numbered in Table 4-1. The range of DEWARS values 

associated with each category is shown in Table 4-6. A derecho ranked in DEWARS 

Category 1 is “low” impact, is small and affects small populations. DEWARS categories 

2 and 3 derechos have “low-moderate” and “moderate” impacts. These events tend to be 

physically large, but affect low-population areas, or are small but affect more densely 

populated places. DEWARS Category 4—“severe”—derechos tend to be large events 

that affect a large number of people. DEWARS Category 5 derechos have the highest 

impact, and are considered “crippling” because they affect a very large number of people 

and are the largest. These DEWARS designations are similar to those used for the 

tornado EF Scale, hurricane Saffir-Simpson scale, and NESIS.  

 Calculating a DEWARS value for each future derecho event as it occurs would 

be ideal. However, it is a computationally cumbersome and time-consuming venture 
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because it requires pre-processing of social vulnerability, area of interest, and emergency 

management data, data collection of wind reports, and extended computing time. In an 

emergency response situation, it is important to have information as soon as possible. 

Thus, averages of potentially storm-relevant physical and social variables are given for 

each DEWARS impact scale category (Table 4-7) to serve as a guide for classifying 

derechos quickly, as is typically required in emergency response operations. Table 4-7 

shows that major axis length and number of people impacted by the derecho increase 

positively with increasing DEWARS impact scale categorization. However, wind speed 

is not directly related to increasing DEWARS impact scale category. Although there is an 

overall upward trend in wind speed as derecho impact increases, the wind in a Category 4 

derecho is only marginally higher than that in a Category 1 event. This lack of linearity is 

likely due to problems with SPC high-wind reports data such as over-reporting or 

overestimating high-wind occurrences (Trapp et al., 2006). Overall, the five-category 

clustering derecho impact scale, derived from calculation of the associations among 

derecho area, societal, and wind impacts using the NESIS equation, can be used as a 

quick yet reliable guide to classifying derecho events in the field and improving 

emergency response. 

 Categorizing meteorological disasters can also help improve the climatological 

analysis of severe weather events. These storm climatologies can help emergency 

managers anticipate the impacts of a potential severe weather event, and are easily 

displayed on maps. To this end, Figure 4-2 maps the average tracks of derechos in each 

DEWARS impact scale category for the full 56 events. Category 1 derechos tend to be 

the shortest and track through the central Midwest. Category 2 derechos track slightly 
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north of Category 1 events and may impact Chicago, a densely populated city with 

pockets of populations that have high social vulnerability scores. Category 3 derechos 

average a longer track than Category 1 and 2 events. Category 4 derechos average a track 

farther south of categories 1, 2, and 3, and the path is longer. Finally, Category 5 

derechos track over long distances and are more likely to impact the major population 

centers of Chicago and Washington than events in categories 1-4. Mapping derecho 

categories is useful for emergency management because it shows where impacts may 

occur and why an event may be more or less impactful (i.e., whether it affects major 

urban areas or if it has a long track). 

 

GIS Tool Development And Application To A Derecho 

 Access to emergency management resources including, but not limited to 

hospitals, police stations, and disaster recovery centers, is critical for a community’s 

recovery from a disaster. Integrating social vulnerability and physical attributes in a GIS 

can create a mapping product that aids emergency managers in decision-making when 

responding to a severe weather event. Accordingly, in addition to calculating a derecho 

impact scale to aid emergency management, a preliminary GIS tool is developed to 

visualize accessibility of emergency management resources. The DSS proposed here is 

intended to assist senior leaders in deciding where to site additional disaster recovery 

resources, such as mobile communications centers, to best suit the community based on 

the type and severity of a disaster and social vulnerability markers of the community 

(Figure 4-3). The physical impacts of a disaster such as potential flooding and wind-

borne debris are analyzed in a GIS within context of the social vulnerability metrics 
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socioeconomic status and mobility, to create a map that identifies areas with adequate 

versus inadequate access to emergency management resources.  

The development of a GIS tool, or utility that produces an analytical output such 

as a map, aid emergency managers in making decisions that are specific to the disaster 

they are addressing. Figure 4-4 shows a conceptual design for the tool. It incorporates 

physical variables such as the storm area of interest (AOI), defined as a previously 

identified area or a SPC-issued polygon, and storm type and impact scale category. 

During response operations FEMA runs dynamical models that generate areas impacted 

by the disaster every 12 hours that could be used as AOIs. Using this 12-hour AOI would 

allow the tool to model changes in access to emergency response resources such as 

disaster recovery centers over time. Storm type is also be an input to this tool; hazards 

vary with storm type and incorporation of the storm type should enable optimal analysis 

of hazards due to flooding, downed trees, bridge and dam breaks, and other disaster-

specific hazards. These hazards can be portrayed in a land surface properties layers that 

includes terrain, soil types, and land-use/land-cover (LULC) showing vulnerability where 

the lowest elevations are in floods or where many trees could be blown down in a 

derecho. As emphasized in the Introduction to this chapter, storm impact scales often 

guide emergency management decisions because broad comparisons can be made to the 

impacts from past events. Thus, it is also important to include storm impact category in 

this tool. Social vulnerability is included through the CDC SVI and optional more 

specific metrics such as the number of mobile homes. Incorporating social vulnerability 

will improve understanding of the community’s ability to respond to and recover from a 

disaster. The physical and social data are analyzed by the tool along with locations and 
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availability of emergency management resources such as disaster recovery centers and 

police stations where individuals can seek help and information in the wake of a disaster.  

A workflow for the tool is presented in five steps (Figure 4-5). The tiered 

approach is important because it enables review of the data and outputs at the end of each 

step to ensure a logical, uncorrupted by user-error result, and it creates a standard for 

operating the tool to which an emergency manager with any level of experience can 

adhere because it is user-friendly and includes natural review points at each step. All data 

must be pre-processed in the tool to ensure appropriate map projection and registration of 

data layers. Next, emergency management resource coverage areas are identified by 

using a metric like walking distance. Often, in the wake of a disaster walking is the only 

means of transportation available to survivors. Social vulnerability is incorporated 

through the addition of a SVI and any relevant social vulnerability markers such as 

population below the poverty line and number of children and elderly. These data are 

related in a total vulnerability layer in the GIS tool to show areas of high-vulnerability 

and limited resource access grading through to areas that are less vulnerable and have 

easy access to emergency management resources. Finally, storm type, DEWARS impact 

scale category, and associated hazards are added to the tool to show how the storm could 

have affected emergency management resource access. Although the tool can be run 

successfully using the above steps, the workflow is a general guideline and can be altered 

to fit the needs of the specific disaster or the emergency manager running the tool. For 

example, a new AOI may be defined that is relevant to a specific region but that does not 

relate to the whole disaster. Similarly, specific vulnerability markers may be included or 

removed as desired. In addition, the tool is flexible such that while it is intended to be run 



	 127 

in a response operation (post-disaster), it could also be run prior to an event with 

estimated or anticipated values. Thus, the tool is versatile and able to be used in many 

situations and by many operators.   

One of the main advantages of the tool is that it is simple and in a disaster 

response environment broad-scale, generalized analyses provide the best support to 

decision-makers. Simple DSSs are valued for their ability to aid senior leaders, who 

decide to deploy resources and allocate assistance, and in making educated decisions in 

an environment where an array of data and the luxury of time do not exist. Prioritizing 

efficiency and generalization of impact are important in the initial stages of disaster 

response. As communications are restored, additional information about the event can be 

incorporated into more complex decision support products including this flexible tool.  

As proof-of-concept, the tool is run for a case study of a Category 5 derecho 

(Figure 4-6). The AOI (Philadelphia, PA) was used because the city has a high 

concentration of high-wind reports compared to others in the path of major Northern Tier 

derechos, it was impacted by the Category 5 29 June 2012 derecho, data are readily 

available, and the city has a diverse population that is well represented in a social 

vulnerability index. In addition, the tool could be used on another type of event in this 

area (e.g., flooding) to facilitate comparison of the outputs of the tool for different 

disasters. The map in Figure 4-6 shows areas having people who will have more 

difficulty reaching emergency management resources (dark red) versus those who have 

easier access (lighter red). Beige areas represent where data are not available for the 

analysis. The darkest red areas show locations with the highest socially vulnerable 

populations that are also likely to be impacted by derecho damage based on their LULC 
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type (i.e., downed trees and debris). With emergency management resources less 

accessible in the dark red areas, the people who live in these areas become more 

vulnerable and may have a more difficult time recovering from the derecho. An 

emergency manager may use this map to advise his or her decision to deploy mobile 

recovery or communications centers to areas that serve these isolated populations. In this 

situation, mobile assistance may be best deployed to the central part of the city where the 

darkest red is shown. The tool output improves community access to emergency 

management resources that enable their recovery. The development of this tool and its 

application support the goal of emergency management, and full recovery and 

improvement, by providing a link to isolated populations and those that may need more 

assistance faster, thereby bolstering their chances for a quicker recovery.    

   

Summary and Conclusion 

 In this Chapter I investigate emergency management responses to derechos by 

developing a derecho impact scale similar to those used for other meteorological high 

impact events (e.g., tornados, snowstorms), and developed and applied a GIS tool that 

visualizes emergency management resource access for affected populations in a derecho 

event. Other meteorological disaster impact scales include the EF Scale, which ranks 

tornadoes EF0 – EF5 (i.e., 6 categories) based on the damage that correlates to increasing 

wind speeds. The Saffir-Simpson scale ranks hurricanes using a similar schema of five 

impact categories. These scales, however, have been criticized for not accounting for how 

the storms may impact people. Socioeconomic status, mobile homes residences, and 

population age are all social factors that influence the impact of a storm. Of all 
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meteorological impact scales used in the United States, only the NESIS attempts to 

incorporate storm intensity and a measure of human impact (i.e., the number of people in 

the impacted area). Therefore, the conceptual premise of the NESIS scale is used as a 

basis for the DEWARS derecho impact scale developed herein.  

The DEWARS impact scale classifies derechos into five categories by calculating 

a value that takes into account storm size, wind speed, and total affected population. The 

five DEWARS categories range from “low”-impact events to those that are “crippling.” 

Although developing the DEWARS impact scale is intended to improve emergency 

management of and response to derechos, it can be further refined as more events occur 

and are included in the database. Climatological analyses of DEWARS categories shows 

that higher-impact events (those that fall in the higher categories) have the longest tracks 

and track through major cities. These analyses also could be further clarified as additional 

events occur in the future. In addition, direct collaboration of geographer-climatologists 

with social scientists and meteorologists could lead to development of other derecho 

impact scales that are better suited to applications such as community outreach or for 

weather forecasters. Moreover, the DEWARS impact scale is ideal for emergency 

management use because it provides a general categorization that can be quickly referred 

to in the wake of a derecho. In addition, this research suggests that the impact scale be 

used in conjunction with the DSS GIS tool developed and applied herein that integrates 

the physical attributes of a storm (i.e., the meteorology) and social factors of the impacted 

population to aid decisions-makers who determine the allocation of resources and 

commodities when responding to disasters.   



	 130 

References 

Agarwal P, Skupin A. (Eds.). 2008. Self-organising maps: Applications in geographic 

information science. John Wiley & Sons. 

Baumgart L, Bass E, Philips B, Kloesel K. 2006. Emergency management decision-

making during severe weather. Proceedings of Human Factors and Ergonomics Society 

Annual Meeting, 50(3): 381-385.   

Blong R. 2003. A review of damage intensity scales. Natural hazards, 29(1): 57-76. 

Breiman L. 2001. Random forests. Machine learning, 45(1): 5-32. 

Brooks HE. 2004. On the relationship of tornado path length and width to intensity. 

Weather and Forecasting, 19(2): 310-319. 

Brooks H, Doswell CA. 2001. Some aspects of the international climatology of tornadoes 

by damage classification. Atmospheric Research, 56(1): 191-201. 

Cerruti BJ, Decker SG. 2011. The local winter storm scale: A measure of the intrinsic 

ability of winter storms to disrupt society. Bulletin of the American Meteorological 

Society, 92(6): 721-737. 

Changnon S. 2003. Measures of economic impacts of weather extremes: Getting better 

but far from what is needed-a call for action. Bulletin of the American Meteorological 

Society, 84(9): 1231-1235.   

Choi O, Fisher A. 2003. The impacts of socioeconomic development and climate change 

on severe weather catastrophe losses: Mid-Atlantic Region (MAR) and the US. Climatic 

Change, 58(1-2): 149-170.   



	 131 

Comfort L, Wisner B, Cutter S, Pulwarty R, Hewitt K, Oliver-Smith A, ... & Krimgold F. 

1999. Reframing disaster policy: the global evolution of vulnerable communities. Global 

Environmental Change Part B: Environmental Hazards, 1(1), 39-44. 

Criminisi A, Shotton J, Konukoglu E. 2012. Decision forests: A unified framework for 

classification, regression, density estimation, manifold learning and semi-supervised 

learning. Foundations and Trends® in Computer Graphics and Vision, 7(2–3): 81-227. 

Cutter S, Boruff B, Shirley W. 2003. Social vulnerability to environmental hazards. 

Social Science Quarterly, 84(2): 242-261.   

Cutter S, Finch, C. 2008. Temporal and spatial changes in social vulnerability to natural 

hazards. Proceedings of the National Academy of Sciences, 105(7): 2301-2306.   

Demuth JE, Gruntfest DS, Morss RE Lazo J. 2007. WAS*IS: Building a community for 

integrating meteorology and social science. Bulletin of the American Meteorological 

Society, 88(11): 1729.   

Dolan R, Davis RE. 1992. An intensity scale for Atlantic coast northeast storms. Journal 

of Coastal Research, 840-853. 

Doswell, CA. 2003. A guide to F-scale damage assessment. US Dept. of Commerce, 

NOAA/NWS. 

Doswell CA, Brooks HE, Dotzek N. 2009. On the implementation of the enhanced Fujita 

scale in the USA. Atmospheric Research, 93(1): 554-563. 

Doswell CA, Burgess DW. 1988. On some issues of United States tornado climatology. 

Monthly Weather Review, 116(2): 495-501. 

Doswell CA, Edwards R, Thompson R, Hart J, Crosbie K. 2006. A simple and flexible 

method for ranking severe weather events, Weather and forecasting, 21(6): 939-951.   



	 132 

Dotzek N, Grieser J, Brooks HE. 2003. Statistical modeling of tornado intensity 

distributions. Atmospheric research, 67: 163-187. 

Dvorak, VF. 1975. Tropical Cyclone Intensity Analysis and Forecasting from Satellite 

Imagery. Monthly Weather Review, 103: 420-430. 

Edwards R, LaDue JG, Ferree JT, Scharfenberg K, Maier C, Coulbourne WL. 2013. 

Tornado intensity estimation: Past, present, and future. Bulletin of the American 

Meteorological Society, 94(5): 641-653. 

Emanuel K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. 

Nature, 436(7051): 686. 

Fekete A, Damn M, Birkmann J. 2010. Scales as a challenge for vulnerability assessment. 

Natural Hazards, 55(3): 729-747.   

Feuerstein B, Dotzek N, Grieser J. 2005. Assessing a tornado climatology from global 

tornado intensity distributions. Journal of Climate, 18(4): 585-596. 

Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B. 2011. A social 

vulnerability index for disaster management. Journal of Homeland Security and 

Emergency Management, 8(1). 

Forbes GS, Wakimoto RM. 1983. A concentrated outbreak of tornadoes, downbursts and 

microbursts, and implications regarding vortex classification. Monthly Weather Review, 

111(1): 220-236. 

Fujita TT. 1971. Proposed characterization of tornadoes and hurricanes by area and 

intensity. Satellite and Meteorology Research Paper 91, The University of Chicago. 

Chicago, IL. 

Fujita TT. 1973. Tornadoes around the world. Weatherwise, 26(2): 56-83.  



	 133 

Golden J, Adams C. The tornado problem: Forecast, warning, and response. Natural 

Hazards Review, 1(2): 107-118.   

Greenough G, McGeehin M, Bernard S, Trtanj J, Riad J, Engelberg D. 2001. The 

potential impacts of climate variability and change on health impacts of extreme weather 

events in the United States. Environmental health perspectives, 109(s2): 191.   

Gong X, Richman MB. 1995. On the application of cluster analysis to growing season 

precipitation data in North America east of the Rockies. Journal of climate, 8(4): 897-

931. 

Han Q, Liu Z. 2008. Goal programming model for emergency material dispatch problem. 

Logistics at The Emerging Frontiers of Transportation and Development in China, 1007-

1013.   

Hart RE, Grumm RH. 2001. Using normalized climatological anomalies to rank synoptic-

scale events objectively. Monthly weather review, 129(9): 2426-2442. 

Hazen HA. 1890. The Tornado. Hodges. 

Hinkel J. 2011. “Indicators of vulnerability and adaptive capacity”: Towards a 

clarification of the science–policy interface. Global Environmental Change, 21(1), 198-

208. 

IPCC 2013 Working Group I. 2013. Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.   

Ho TK. 1998. The random subspace method for constructing decision forests. IEEE 

transactions on pattern analysis and machine intelligence, 20(8): 832-844. 

Irish JL, Resio DT. 2010. A hydrodynamics-based surge scale for hurricanes. Ocean 

Engineering, 37(1): 69-81. 



	 134 

Irish JL, Resio DT, Ratcliff JJ. 2008. The influence of storm size on hurricane surge. 

Journal of Physical Oceanography, 38(9): 2003-2013. 

Jain AK, Dubes RC. 1988. Algorithms for clustering data. Prentice-Hall, Inc. 

Jordan MR, Clayson CA. 2008. Evaluating the usefulness of a new set of hurricane 

classification indices. Monthly Weather Review, 136(12): 5234-5238. 

Kantha L. 2006. Time to replace the Saffir‐Simpson hurricane scale?. Eos, Transactions 

American Geophysical Union, 87(1): 3-6. 

Kapucu N. 2008. Collaborative emergency management: better community organising, 

better public preparedness and response. Disasters, 32(2): 239-262.   

Kocin PJ, Uccellini LW. 2004. A snowfall impact scale derived from Northeast storm 

snowfall distributions. Bulletin of the American Meteorological Society, 85(2): 177-194. 

Kohonen T. 1982. Self-organized formation of topologically correct feature maps. 

Biological cybernetics, 43(1): 59-69. 

Kohonen T. 1998. The self-organizing map. Neurocomputing, 21(1): 1-6. 

Kunkel K, Pielke Jr. R, Changnon S. 1999. Temporal fluctuations in weather and climate 

extremes that cause economic and human health impacts: A review. Bulletin of the 

American Meteorological Society, 80(6): 1077.   

Li L, Jin M. 2010. Sheltering planning and management for natural disasters. In THC-IT 

2010 Conference & Exhibition. 

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R news, 2(3): 

18-22. 



	 135 

Liu S, Quenemoen L, Malilay J, Noji E, Sinks T, Mendlein J. 1996. Assessment of a 

severe- weather warning system and disaster preparedness, Calhoun County, Alabama, 

1994. American journal of public health, 86(1): 87-89.   

MacQueen J. 1967. Some methods for classification and analysis of multivariate 

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics 

and probability, 1(14): 281-297. 

Mahendran, M. 1998. Cyclone Intensity Categories. Weather and Forecasting, 13(3): 

878-883. 

Mayes Boustead BE, Hilberg SD, Shulski MD, Hubbard KG. 2015. The accumulated 

winter season severity index (AWSSI). Journal of Applied Meteorology and Climatology, 

54(8): 1693-1712. 

McLaughlin P, Dietz T. 2008. Structure, agency and environment: Toward an integrated 

perspective on vulnerability. Global Environmental Change, 18(1): 99-111.   

Meade C, Abbott M. 2003. Assessing federal research and development for hazard loss 

reduction, Rand Corporation.   

Meaden GT. 1975. Tornadoes in Britain. Physics Bulletin, 26(10): 429. 

Meaden GT, Kochev S, Kolendowicz L, Kosa-Kiss A, Marcinoniene I, Sioutas M, ... & 

Tyrrell J. 2007. Comparing the theoretical versions of the Beaufort scale, the T-Scale and 

the Fujita scale. Atmospheric research, 83(2): 446-449. 

Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, ... & Ek MB. 

2006. North American regional reanalysis. Bulletin of the American Meteorological 

Society, 87(3): 343-360. 



	 136 

Morrow B. 1999. Identifying and mapping community vulnerability. Disasters, 23(1): 1-

18.   

Morss R, Lazo J, Brown B, Brooks H, Ganderton P, Mills B. 2008. Societal and 

economic research and applications for weather forecasts in decision support systems. 

Bulletin of the American Meteorological Society, 89(3): 335.   

Morss R, and Ralph, F. 2007. Use of information by National Weather Service 

forecasters and emergency managers during CALJET and PACJET-2001. Weather and 

forecasting, 22(3): 539-555.   

Morss RE, Wilhelmi OV, Meehl GA, Dilling L. 2011. Improving societal outcomes of 

extreme weather in a changing climate: an integrated perspective. Annual Review of 

Environment and Resources, 36. 

Penning-Roswell E, Wilson T. 2006. Gauging the impact of natural hazards: the pattern 

and cost of emergency response during flood events. Transactions of the Institute of 

British Geographers, 31(2): 99-115.   

Pielke Jr R, Carbone R. 2002. Weather impacts, forecasts, and policy: An integrated 

perspective. Bulletin of the American Meteorological Society, 83(3): 393.   

Potter S. 2007. Fine-Tuning Fujita: After 35 years, a new scale for rating tornadoes takes 

effect. Weatherwise, 60(2): 64-71. 

Powell MD, Reinhold TA. 2007. Tropical cyclone destructive potential by integrated 

kinetic energy. Bulletin of the American Meteorological Society, 88(4): 513-526. 

Riad J, Norris F, Ruback, R. 1999. Predicting evacuation in two major disasters: risk 

perception, social influence, and access to Resources. Journal of Applied Social 

Psychology, 29(5): 918-934. 



	 137 

Riebsame W, Price M, Diaz H, Moses T. 1986. The social burden of weather and climate 

hazards. Bulletin of the American Meteorological Society, 67(11): 1378-1388.   

Saffir H. 1977. Design and Construction Requirements for Hurricane-Resistant 

Construction. American Society of Civil Engineers. 

Sallenger Jr AH. 2000. Storm impact scale for barrier islands. Journal of Coastal 

Research, 890-895. 

Senkbeil JC, Sheridan SC. 2006. A postlandfall hurricane classification system for the 

United States. Journal of Coastal Research, 1025-1034. 

Simpson RH, Saffir H. 1974. The hurricane disaster potential scale. Weatherwise, 27(8): 

169. 

Smit B, Wandel J. 2006. Adaptation, adaptive capacity and vulnerability. Global 

Environmental Change, 16(3): 282-292.   

Squires MF, Lawrimore JH. 2006. 5.9 Development of an Operational Northeast 

Snowfall Impact Scale. 

Squires MF, Lawrimore JH, Heim Jr RR, Robinson DA, Gerbush MR, Estilow TW. 

2014. The regional snowfall index. Bulletin of the American Meteorological Society, 

95(12): 1835-1848. 

Subramaniam C, Kerpedjiev S. 1998. Dissemination of weather information to 

emergency managers: a decision support tool. IEEE Transactions on Engineering 

Management, 45(2): 106-114.   

Tate E, Cutter SL, Berry M. 2010. Integrated multihazard mapping. Environment and 

Planning B: Planning and Design, 37(4): 646-663. 



	 138 

Trapp RJ, Wheatley DM, Atkins NT, Przybylinski RW, Wolf R. 2006. Buyer beware: 

Some words of caution on the use of severe wind reports in postevent assessment and 

research. Weather and forecasting, 21(3): 408-415. 

Tudurí E, Ramis C. 1997. The environments of significant convective events in the 

western Mediterranean. Weather and Forecasting, 12(2): 294-306. 

Webster PJ, Holland GJ, Curry JA, Chang HR. 2005. Changes in tropical cyclone 

number, duration, and intensity in a warming environment. Science, 309(5742): 1844-

1846. 

White C, Turoff M. 2012. Factors that influence crisis managers and their decision-

making ability during extreme events. Managing Crises and Disasters with Emerging 

Technologies: Advancements, 161.  

Xu L, Brown RE. 2008. A hurricane simulation method for Florida utility damage and 

risk assessment. In Power and Energy Society General Meeting-Conversion and Delivery 

of Electrical Energy in the 21st Century, 1-7. 

Zhao D, Zhao Y, Li Z, Chen J. 2009. Multi-objective emergency facility location 

problem based on genetic algorithm. Computational Intelligence and Intelligent Systems, 

97-103.   

Zielinski GA. 2002. A classification scheme for winter storms in the eastern and central 

United States with an emphasis on nor'easters. Bulletin of the American Meteorological 

Society, 83(1): 37-51. 

 

  



	 139 

Tables and Figures 

Table 4-1. Chronological listing of derecho events with derecho date and DEWARS 

value.  

Event 
Number 

 
Derecho Date 

 
DEWARS Value 

1 01 Jun 2000 30.1 
2 25 Jun 2000 23.7 
3 06 Aug 2000 40.2 
4 09 Aug 2000 A 9.8 
5 09 Aug 2000 B 40.3 
6 11 Jun 2001 46.1 
7 08 Jul 2001 52.4 
8 09 Aug 2001 4.1 
9 11 Jun 2002 5.3 
10 27 Jul 2002 3.1 
11 02 Jul 2003 17.6 
12 04 Jul 2003 57.6 
13 07 Jul 2003 37.2 
14 26 Aug 2003 22.9 
15 14 Jun 2004 42.9 
16 13 Jul 2004 37.5 
17 03 Aug 2004 51 
18 08 Jun 2005 28.7 
19 20 Jun 2005 40.8 
20 23 Jul 2005 13.4 
21 25 Jul 2005 13.7 
22 13 Jul 2006 20.2 
23 21 Jul 2006 58.6 
24 09 Aug 2007 15 
25 11 Aug 2007 10 
26 12 Aug 2007 7.1 
27 03 Jun 2008 28.7 
28 04 Jun 2008 34.9 
29 08 Jun 2008 33.5 
30 20 Jul 2008 26.5 
31 27 Jul 2008 11.4 
32 31 Jul 2008 14.1 
33 04 Aug 2008 29.4 
34 18 Jun 2009 37 
35 19 Jun 2009 32.9 
36 04 Aug 2009 72.8 
37 01 Jun 2010 12 
38 18 Jun 2010 66.3 
39 19 Jun 2010 18.6 
40 23 Jun 2010 60.8 
41 04 Aug 2010 55.5 
42 18 Jun 2011 25.6 
43 26 Jun 2011 80.5 
44 10 Jul 2011 21.1 
45 11 Jul 2011 107.3 
46 30 Jul 2011 17 
47 19 Aug 2011 17 
48 29 Jun 2012 142.4 
49 24 Jul 2012 42 
50 26 Jul 2012 22.4 
51 04 Aug 2012 27.1 
52 13 Aug 2012 14 
53 13 Jun 2013 A 44.8 
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 54 13 Jun 2013 B 27.5 
55 24 Jun 2013 35.7 
56 30 Jun 2014 50.6 



	 141 

Table 4-2. Derecho events sorted by descending DEWARS Value. * represents a derecho 

listed in the SPC-designated list of “Noteworthy” derechos. † identifies a SPC 

“Noteworthy” derecho that is ranked within the top half of derechos based on DEWARS 

values. ‡ denotes a SPC “Noteworthy” derecho that is ranked within the top third of 

derechos based on DEWARS values.  

Event 
Number 

 
Derecho Date 

 
DEWARS 

Value 
48 *†‡ 29 Jun 2012 142.4 
45 *†‡ 11 Jul 2011 107.3 
43 26 Jun 2011 80.5 
36 04 Aug 2009 72.8 
38 *†‡ 18 Jun 2010 66.3 
40 *†‡ 23 Jun 2010 60.8 
23 *† 21 Jul 2006 58.6 
12 04 Jul 2003 57.6 
41 04 Aug 2010 55.5 
7 08 Jul 2001 52.4 
17 03 Aug 2004 51 
56 *†‡ 30 Jun 2014 50.6 
6 *†‡ 11 Jun 2001 46.1 
53 *†‡ 13 Jun 2013 A 44.8 
15 14 Jun 2004 42.9 
49 24 Jul 2012 42 
19 20 Jun 2005 40.8 
5 *†‡ 09 Aug 2000 B 40.3 
3 06 Aug 2000 40.2 
16 *† 13 Jul 2004 37.5 
13 07 Jul 2003 37.2 
34 *† 18 Jun 2009 37 
55 *† 24 Jun 2013 35.7 
28 *† 04 Jun 2008 34.9 
29 08 Jun 2008 33.5 
35 *† 19 Jun 2009 32.9 
1 01 Jun 2000 30.1 
33 *† 04 Aug 2008 29.4 
18 08 Jun 2005 28.7 
27 03 Jun 2008 28.7 
54 * 13 Jun 2013 B 27.5 
51 04 Aug 2012 27.1 
30 * 20 Jul 2008 26.5 
42 18 Jun 2011 25.6 
2 25 Jun 2000 23.7 
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14 26 Aug 2003 22.9 
50 26 Jul 2012 22.4 
44 * 10 Jul 2011 21.1 
22 13 Jul 2006 20.2 
39 19 Jun 2010 18.6 
11 02 Jul 2003 17.6 
46 30 Jul 2011 17 
47 19 Aug 2011 17 
24 09 Aug 2007 15 
32 31 Jul 2008 14.1 
52 13 Aug 2012 14 
21 25 Jul 2005 13.7 
20 23 Jul 2005 13.4 
37 01 Jun 2010 12 
31 27 Jul 2008 11.4 
25 11 Aug 2007 10 
4 * 09 Aug 2000 A 9.8 
26 12 Aug 2007 7.1 
9 11 Jun 2002 5.3 
8 09 Aug 2001 4.1 
10 27 Jul 2002 3.1 
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Table 4-3a. Number of derechos (and percent) in each category of a potential four-

category impact scale categorized using Jenks natural breaks and clustering. Bottom row 

shows Pearson’s correlation coefficient for correlation of categories and FEMA PA grant 

award amounts and p-value in parentheses. 

DEWARS Impact 
Scale Category 

Jenks Natural 
Breaks 

Clustering 

1 32 (57.1%) 22 (39.3%) 
2 21 (37.5%) 22 (39.3%) 
3 2 (3.6%) 10 (17.9%) 
4 1 (1.8%) 2 (3.6%) 
Correlation with 
FEMA PA grant 
award amounts 

0.27 (0.04) 0.44 (0.0006) 

 

 

Table 4-3b. Number of derechos (and percent) in each category of a potential five-

category impact scale categorized using Jenks natural breaks and clustering. Bottom row 

shows Pearson’s correlation coefficient for correlation of categories and FEMA PA grant 

award amounts with p-value given in parentheses. Highlighted text designates the 

recommended categorizations for the DEWARS impact scale. 

DEWARS Impact 
Scale Category 

Jenks Natural 
Breaks 

Clustering 

1 21 (37.5%) 17 (30.4%) 
2 22 (39.3%) 15 (26.8%) 
3 10 (17.9%) 15 (26.8%) 
4 2 (3.6%) 7 (12.5%) 
5 1 (1.8%) 2 (3.6%) 
Correlation with 
FEMA PA grant 
award amounts 

0.35 (0.007) 0.42 (0.001) 
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Table 4-4. Derechos listed as in Table 4-1 with additional column indicating DEWARS 

impact scale category. 

Event 
Number 

 
Derecho Date 

 
DEWARS Value 

DEWARS Impact 
Scale Category 

1 01 Jun 2000 30.1 2 
2 25 Jun 2000 23.7 2 
3 06 Aug 2000 40.2 3 
4 09 Aug 2000 A 9.8 1 
5 09 Aug 2000 B 40.3 3 
6 11 Jun 2001 46.1 3 
7 08 Jul 2001 52.4 3 
8 09 Aug 2001 4.1 1 
9 11 Jun 2002 5.3 1 
10 27 Jul 2002 3.1 1 
11 02 Jul 2003 17.6 1 
12 04 Jul 2003 57.6 4 
13 07 Jul 2003 37.2 3 
14 26 Aug 2003 22.9 2 
15 14 Jun 2004 42.9 3 
16 13 Jul 2004 37.5 3 
17 03 Aug 2004 51 3 
18 08 Jun 2005 28.7 2 
19 20 Jun 2005 40.8 3 
20 23 Jul 2005 13.4 1 
21 25 Jul 2005 13.7 1 
22 13 Jul 2006 20.2 2 
23 21 Jul 2006 58.6 4 
24 09 Aug 2007 15 1 
25 11 Aug 2007 10 1 
26 12 Aug 2007 7.1 1 
27 03 Jun 2008 28.7 2 
28 04 Jun 2008 34.9 3 
29 08 Jun 2008 33.5 2 
30 20 Jul 2008 26.5 2 
31 27 Jul 2008 11.4 1 
32 31 Jul 2008 14.1 1 
33 04 Aug 2008 29.4 2 
34 18 Jun 2009 37 3 
35 19 Jun 2009 32.9 2 
36 04 Aug 2009 72.8 4 
37 01 Jun 2010 12 1 
38 18 Jun 2010 66.3 4 
39 19 Jun 2010 18.6 1 
40 23 Jun 2010 60.8 4 
41 04 Aug 2010 55.5 4 
42 18 Jun 2011 25.6 2 
43 26 Jun 2011 80.5 4 
44 10 Jul 2011 21.1 2 
45 11 Jul 2011 107.3 5 
46 30 Jul 2011 17 1 
47 19 Aug 2011 17 1 
48 29 Jun 2012 142.4 5 
49 24 Jul 2012 42 3 
50 26 Jul 2012 22.4 2 
51 04 Aug 2012 27.1 2 
52 13 Aug 2012 14 1 
53 13 Jun 2013 A 44.8 3 
54 13 Jun 2013 B 27.5 2 
55 24 Jun 2013 35.7 3 
56 30 Jun 2014 50.6 3 
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Table 4-5. Table 4-2 with descending DEWARS impact scale categories identified by 

lightening the greyscale. 

Event	
Number	

	
Derecho	Date	

	
DEWARS	Value	

48	 ***29	Jun	2012	 142.4	
45	 ***11	Jul	2011	 107.3	
43	 26	Jun	2011	 80.5	
36	 04	Aug	2009	 72.8	
38	 ***18	Jun	2010	 66.3	
40	 ***23	Jun	2010	 60.8	
23	 **21	Jul	2006	 58.6	
12	 04	Jul	2003	 57.6	
41	 04	Aug	2010	 55.5	
7	 08	Jul	2001	 52.4	
17	 03	Aug	2004	 51	
56	 ***30	Jun	2014	 50.6	
6	 ***11	Jun	2001	 46.1	
53	 ***13	Jun	2013	A	 44.8	
15	 14	Jun	2004	 42.9	
49	 24	Jul	2012	 42	
19	 20	Jun	2005	 40.8	
5	 ***09	Aug	2000	B	 40.3	
3	 06	Aug	2000	 40.2	
16	 **13	Jul	2004	 37.5	
13	 07	Jul	2003	 37.2	
34	 **18	Jun	2009	 37	
55	 **24	Jun	2013	 35.7	
28	 **04	Jun	2008	 34.9	
29	 08	Jun	2008	 33.5	
35	 **19	Jun	2009	 32.9	
1	 01	Jun	2000	 30.1	
33	 **04	Aug	2008	 29.4	
18	 08	Jun	2005	 28.7	
27	 03	Jun	2008	 28.7	
54	 *13	Jun	2013	B	 27.5	
51	 04	Aug	2012	 27.1	
30	 *20	Jul	2008	 26.5	
42	 18	Jun	2011	 25.6	
2	 25	Jun	2000	 23.7	
14	 26	Aug	2003	 22.9	
50	 26	Jul	2012	 22.4	
44	 *10	Jul	2011	 21.1	
22	 13	Jul	2006	 20.2	
39	 19	Jun	2010	 18.6	
11	 02	Jul	2003	 17.6	
46	 30	Jul	2011	 17	
47	 19	Aug	2011	 17	
24	 09	Aug	2007	 15	
32	 31	Jul	2008	 14.1	
52	 13	Aug	2012	 14	
21	 25	Jul	2005	 13.7	
20	 23	Jul	2005	 13.4	
37	 01	Jun	2010	 12	
31	 27	Jul	2008	 11.4	
25	 11	Aug	2007	 10	
4	 *09	Aug	2000	A	 9.8	
26	 12	Aug	2007	 7.1	
9	 11	Jun	2002	 5.3	
8	 09	Aug	2001	 4.1	
10	 27	Jul	2002	 3.1	
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Table 4-6. DEWARS impact scale categories and associated DEWARS values and 

impact descriptions.  

DEWARS Impact 
Scale Category 

 
DEWARS Values 

Impact 
Description 

1 0 – 19.99 “Low” 
2 20 – 33.99 “Low-Moderate” 
3 34 – 53.99 “Moderate” 
4 54 – 99.99 “Severe” 
5 ≥ 100 “Crippling” 
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Table 4-7. Averages of DEWARS values, event rank, major axis length, wind speed, and 

impacted populations associated with derechos in each DEWARS impact scale category. 

DEWARS 
Impact 
Scale 
Category 

DEWARS 
Value 

DEWARS 
Relative 
Rank 

Major 
Axis 
Length 
in km 

Wind 
Speed 
in m/s  

Impacted 
Population 
in millions  

1 13.8 46 783.8 36.8 8.0 
2 34 24.5 945.5 39.1 18.4 
3 57.2 8.5 954.4 40.2 19.6 
4 93.9 2.5 1190.2 36.9 20.4 
5 142.4 1 1371.6 41.6 41.3 
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Figure 4-1. Derecho categories identified by k-means clustering. Derecho numbers (as in 

Table 4-1) are in grey. DEWARS impact scale categories are identified in the blue 

ellipses. 
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Figure 4-2. Composite tracks of Northern Tier derechos by DEWARS Category.  
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Figure 4-3. Representation of the emergency management GIS tool developed and 

applied herein. Inputs of AOI (such as storm warning polygon or previously identified 

area), storm impact category, and social vulnerability are analyzed together to create an 

output map of access to emergency management resources such as disaster recovery 

centers (refer text). 
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Figure 4-4. Framework for the emergency management GIS tool showing integration of 

physical variables (blue and green), social variables (purple), and emergency 

management context (yellow) with the output (grey box) being a map showing resource 

access (refer text).  
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Figure 4-5. A sample GIS workflow for the tool that maps resource access to follow 

(refer text).  
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Figure 4-6. Example tool output that shows resource access in the wake of a derecho in 

AOI (Philadelphia, PA). Darker red areas have less access to emergency management 

resources that could help them in the wake of a damaging derecho.  
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CHAPTER 5 

CONCLUSION 

 This dissertation investigates derecho intensity and impacts. Intensities are 

defined in terms of storm direction, associated rain totals, maximum wind speed, and 

major and minor axis lengths. These storm attributes are tested for associations with 

physical atmospheric and land surface features that could magnify or reduce their 

intensity. Impact is then considered in terms of FEMA PA grant awards through 

examining the social characteristics that are related to response and recovery grant 

amounts awarded in the wake of derechos. Finally, a meteorological impact scale for 

derechos is developed and applied to the 56 Northern Tier derechos investigated herein. 

In addition, an emergency management response GIS tool is developed and applied to a 

derecho scenario.  

 The intent of these chapters is to investigate and describe derecho intensity and 

impacts in order to improve response to and recovery from these storms. The work 

directly applies to emergency management operations, and specifically can be used by 

FEMA to improve their response to derechos. Although FEMA conducts cost analysis for 

other disaster types (e.g., hurricanes, floods), derechos hitherto have not been analyzed in 

this way. The spatial component investigated in this dissertation adds to regression and 

correlation tests to show where certain meteorological, climatic, and social variables 

influence derecho impact.  

The objectives of this study laid out in the Introduction are to identify 

atmospheric and land surface variables that are associated with differences in derecho 

intensity, to describe the relationships of variables that influence the cost of FEMA 
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response to and recovery from derechos, and to develop a derecho meteorological impact 

scale and GIS tool for emergency managers. Each of these objectives moves toward the 

larger aim of improving emergency management of derecho events. The goals were met 

through statistical and geospatial analysis of modeled, observed, and remotely sensed 

data on 56 summer 2000 – 2014 Northern Tier derecho events. 

Chapter 2 classified derechos by intensity based on storm direction, associated 

rain totals, maximum wind speed, and major and minor axis lengths. High- and low-

intensity subsets are mapped to display how the tracks differed for higher versus lower 

intensity derechos. Results show that direction of movement and minor axis length are 

not statistically significantly related to any atmospheric or land surface variables tested. 

Rain totals, however, are higher in events with lower 500 hPa geopotential mean height. 

Maximum wind speeds are higher in events with the presence of an upper-tropospheric 

jet streak and dissipate farther north. A longer major axis length is associated with storms 

coming from a more westerly direction, higher CAPE, tracking over a dry-to-wet land 

use boundary, and higher specific humidity at 925 hPa, the latter being related to the 

presence of a LLJ. This relationship is further investigated to show that 925 hPa specific 

humidity, CAPE, and time of event can successfully predict derecho major axis length in 

the Northern Tier, however these variables’ influence varies across the study region.  

Chapter 3 relates FEMA PA grant award amounts to physical and social 

properties of derechos and the populations they impact. Multiple and geographically 

weighted regressions show that the number of counties impacted and the social 

vulnerability of the impacted populations, successfully predict the amount of FEMA PA 

grants awarded for response and recovery efforts. A Varimax-rotated PCA finds that five 
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components explain the variance of the data and further clarifies the results shown in the 

regressions. Temperature, living conditions, storm size, exposure, and socioeconomics 

are the five components that describe the variation in FEMA PA grant awards, showing 

that both physical and social variables play an important role in determining the value of 

PA grants awarded. 

Chapter 4 describes meteorological impact scales (e.g., EF scale, Saffir-Simpson 

scale, NESIS) and how they are used in emergency management situations, and develops 

a derecho-specific impact scale. The DEWARS impact scale is derived from an equation 

used to calculate winter snow storm impacts (NESIS) that takes into account storm size, 

wind speed, and the impacted population. DEWARS values are calculated for each 

derecho using this equation. Categorizations are then made using k-means clustering of 

the events to create a five-category impact scale. The DEWARS values are correlated 

with FEMA PA grant award amounts to ensure that the calculated impact scale is a 

reasonable representation of the effects of derechos, and that emergency managers could 

use the scale logically to improve operations. An emergency management GIS tool that 

maps resource access of communities is also developed. It is applied to an AOI 

(Philadelphia) in the wake of a derecho event as proof-of-concept. 

The work presented in this dissertation is important for research linking 

climatology, hazards, and emergency management. The Northern Tier derecho 

climatology is updated and further described in terms of intensity. Economic losses from 

hazards are investigated using a geographic approach that shows the importance of spatial 

variation and population characteristics in awarding emergency management grants. 

Emergency management operations are improved through development and application 
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of a derecho meteorological impact scale and GIS tool. Future research adding derecho 

events as the data extend forward in time can build on these results and applications. The 

GIS tool can be applied and adjusted to suit other storm types and can be tested in both 

pre- and post- storm operations. Future research in these areas will also directly improve 

emergency management operations, and thus enhance life-saving and community-

stabilizing abilities.  

The research comprising this cohesive dissertation meets the objectives of 

classifying derecho intensity, describing FEMA PA grant awards, and improving 

emergency management of derechos. The work thoroughly analyzes derecho intensity 

and impact, and develops a scale and tool based on findings to help guide emergency 

management. The results and products of this study have immediate and important 

broader impacts on the emergency management of derechos.   
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