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Abstract

One part of understanding thermoacoustic devices involves studying a physical
phenomenon called acoustic streaming, a steady fluid flow induced by oscillating
acoustic waves. Current numerical calculation of acoustic streaming can involve
major computing time and resources. In order to develop a quicker model, the
vorticity transport equation (VTE) is used. The goal of using the VTE is to
obtain a relatively fast solution with minimal computational resources, which in
this case is a single PC. The intent of this method is that it is used in the early
design stage of thermoacoustic devices where preliminary (although less detailed)
fast results are desired. It is also preferred that the computing power be minimized
as not to tie up other resources for the optimized design of thermoacoustic devices.

The most well known type of acoustic streaming, Rayleigh streaming, is simu-
lated using the VTE method. A clustered grid is utilized to capture the boundary
layer effect on the acoustic streaming. The governing equations used are the VTE,
Poisson’s equation, and an equation that relates the stream function with the ve-
locity. The outline of the method of calculation involves (i) generating a clustered
grid and ensuring there are enough points in the boundary layer, (ii) transforming
the clustered grid into the uniform computational grid, (iii) transforming the gov-
erning equations to account for the clustering, (iv) calculating the vorticity and
the stream function at each grid point using a Direct Method, and (v) calculating
the acoustic streaming velocity using the stream function. Steps (iv) through (v)
are repeated until the solution converges.

It is demonstrated that the VTE method to calculate Rayleigh streaming works
well. There are two cases being simulated in the research, a parallel plate case and
a cylindrical tube case. The numerical results agree with the analytical results for
both cases, although there are some discrepancies in the cylindrical tube case. At
this time, no numerical reason can be given to explain the discrepancies. The goal
to perform the simulation fairly quickly with a single PC has been achieved.
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Chapter 1

Introduction

1.1 Acoustic Streaming

Acoustic streaming is defined as a second order nonlinear effect where the presence

of sound waves generates mean mass flow. A quantitative knowledge of acoustic

streaming is important for the design of thermoacoustic devices, and this will

be explained later. This research focuses on the efficient calculation of acoustic

Rayleigh streaming. Before the method is explained, it is important to review

some concepts of acoustic streaming.

There are different types of acoustic streaming and also several different ways to

categorize the different types. This introduction will look at the acoustic stream-

ing categorized based on their driving mechanism. The few mechanisms that drive

acoustic streaming are: (1) viscous stresses on boundaries, (2) acoustic energy

dissipation, (3) jet-driven streaming, and (4) traveling wave streaming. A very

thorough review of several categories of acoustic streaming from the time when

Rayleigh first presented his analysis until the present day has been written by

Boluriaan and Morris [4]. The next sections follow the acoustic streaming classifi-

cation of that article.

1.1.1 Viscous stresses on boundaries-driven streaming

The earliest record on this type of streaming was found when Faraday [8] did

an experiment with a vibrating plate in 1831. He found that there is a pattern
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of steady vortices of the air in the vicinity of the plate. With the aid of very

fine powder he was able to observe the movement of air from the maximum to

the minimum displacement of the plate. Faraday explained that the vibration of

the plate caused the existence of a boundary layer that caused the air to move.

In another experiment Dvorak observed the gas motion inside a Kundt’s tube.

Although the air motion due to vibration phenomena had been observed by these

individuals, there had been no mathematical explanation offered. Rayleigh [41]

was the first to explain the underlying physical phenomena with the successive

approximation method. He explained that the air motion is caused by a nonlinear

second order effect. He analyzed acoustic streaming when a standing wave is

present between parallel walls. This was the first mathematical explanation of the

mass streaming phenomenon, and Rayleigh’s analysis became the base of many

analyses that followed. As a result, boundary layer generated streaming is often

referred to as “Rayleigh streaming”. This type of acoustic streaming originates

from the tangential motion near the boundary area caused by the sound field. In

his review of acoustic streaming, Nyborg [27] listed some of the analyses on mass

streaming generated by viscous stresses on the boundaries. Table 1.1 lists the mass

streaming sources and the individuals who studied the phenomena.

Streaming source Investigators

Vibrating body (such as cylinders
and spheres)

Andrade [2] in 1931, Schlichting [35,
36] in 1932 and 1955, Holtzmark et
al. [14] in 1954, Raney et al. [30] in
1954, and Skavlem and Tjotta [38]
in 1955

Kundt’s tube Schuster and Matz [37] in 1940,
Thompson and Atchley in 2004 [44]

Orifice traversed by sound Ingard and Labate [15] in 1950
Vibrating membranes Kolb and Nyborg [20] in 1956, Jack-

son and Nyborg [17] in 1958
Vibrating gas bubbles Elder [7] in 1959
The space between a plane solid
boundary and the end of a vibrat-
ing bar

Jackson [16] in 1960

Table 1.1. Streaming sources and the people who studied them
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An illustration of streaming near a cylinder is shown in Fig. 1.1.

Figure 1.1. Streamlines in a quadrant of the field near a cylinder oscillating in a fluid.
Oscillation occurs in the horizontal direction. From Holtzmark et al. [14].

Figure 1.2 shows the distribution of the first order (axial) acoustic velocity (u1),

the x component of the forcing function (Fx), and the axial streaming velocity (U)

for a standing wave in a channel. “A” indicates the antinode and “N” indicates

the node of the standing wave.

Westervelt [49] later corrected Rayleigh’s solution for streaming near a bound-

ary. He derived an expression called the velocity transform or Stokes drift that

relates Eulerian streaming velocity to the Lagrangian streaming velocity [50]. The

Eulerian velocity is the particle velocity observed at a fixed point. This is the ve-

locity that would actually be measured in experiments. The Lagrangian velocity is

the velocity experienced by a particular particle as it moves around in a medium.

The Lagrangian velocity can be measured by flow visualization based on time-lapse

photography recording the path of particles as they move along with the flow [50].

Away from the boundary, streaming in the main body is called outer streaming.

Inside the boundary layer near the wall, there is another streaming cell type called



4

Figure 1.2. Distribution of u1, F , and U for standing waves in channel. From Nyborg
[27].

inner streaming. In his analysis, Rayleigh did not include the details of inner

acoustic streaming near the boundary. Schlichting [35, 36] was the first to study

inner streaming. Figure 1.3 shows the inner and outer streaming in a channel.

Figure 1.3. Inner and outer streaming in a channel. From Rudenko and Soluyan [34].
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Lighthill [22] attempted to rectify misconceptions about acoustic streaming.

He stated that the classical treatment of acoustic streaming (caused by Reynolds

stress forcing resisted by viscosity), did not take into account the effect of the

fluid’s inertia on the streaming motion. He explained that the fundamental prin-

ciple in most acoustic streaming is that the attenuation of acoustic energy flux

makes momentum flux available to force streaming motion. The main intention

of his lecture actually was to explain how turbulent jets are generated by sound.

Along with his explanation about the turbulent jets phenomenon, he clarified the

difference between the Lagrangian and Eulerian motion in the acoustic streaming.

Riley [32] followed the path laid by Rayleigh and Lighthill. He and his research

group developed a theory for streaming in incompressible flow which is valid for

large values of a defined Strouhal number. The assumption of incompressible flow

requires the acoustics condition to be kl << 1, where k is the wave number and l

is a typical length. The flow region is divided into the outer and inner (or Stokes-

layer) regions. The steady streaming in the Stokes-layer region is due to Reynolds

stresses, and continues toward the edge (Rayleigh’s law of streaming). In the outer

region the streaming motion is governed by Helmholtz-type equations.

Rott [33], Waxler [48], Bailliet et al. [3], and Hamilton et al. [11], include

some thermal effects in their streaming analyses. Rott [33] includes the effect of

heat conduction, the dependence of viscosity on temperature, and the effect of

a temperature gradient imposed on the wall on the streaming velocities. Waxler

[48] includes the effect of heat conduction on streaming between parallel plates,

while Bailliet et al. [3] include the heat conduction and the dependence of viscosity

on temperature on streaming between parallel plates and cylindrical tubes. Both

analyses impose a mean temperature gradient along the channel walls. Hamilton

et al. [12] take into account the heat conduction and viscosity dependency on

temperature effects, but leave out the effect of temperature gradient along the

wall on the streaming.

1.1.2 Acoustic energy dissipation-driven streaming

The second type of acoustic streaming is generated by the dissipation of acoustic

energy in the fluid. This type of streaming is also known as the “quartz wind” or
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“Eckert streaming”. Here, streaming is caused by an ultrasonic sound beam of high

amplitude in a medium where the acoustic energy is dissipated in the main body of

the fluid [31]. Riley [32] describes the acoustic energy dissipation streaming based

on Lighthill [22]’s paper as:

The dissipation of acoustic energy flux which permits the gradients in

momentum flux that force the acoustic streaming motion.

Figure 1.4 illustrates the streamlines for the DC flow produced by a focused sound

beam radiated by circular pistons.

Figure 1.4. Illustration of streamlines for the DC flow produced by a focused sound
beam. From Steven J. Younghouse M.S. Thesis [50].

Although he was not the one who made the first observation, Eckert [6] was the

first one who gave a mathematical analysis for the quartz wind in 1948. He derived

the solution for mass streaming that occurred in a closed tube when an intense

sound beam is projected into a fluid. Eckert showed that quartz wind is caused

by the sound absorption attributed to the fluid viscosity. Figure 1.5 illustrates the

acoustic streaming pattern inside a closed volume where the sound beam radius

is denoted by r1 and the cylindrical tube radius is denoted by r0. In Fig. 1.6

we can see the time progression of Eckert streaming in a channel. Markham [23]
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Figure 1.5. Streaming in a closed volume (with rigid walls). The region of Eckert
streaming is indicated by the parallel dashed lines. From Rudenko and Soluyan [34].

later showed that absorption could be from viscosity alone or from viscosity and

relaxation. According to Nyborg’s review [27], the earlier observations of quartz

wind were made by Meissner [25] in 1926 (in liquid) and Walker and Allen [47]

in 1950 (in air). One year after Eckert published his analysis, Liebermann [21]

came out with the report on his experimental results. In terms of theoretical

and experimental works, the groups of researchers that presented their findings on

quartz winds are listed in Table 1.2.

Type of observation Investigators

Theoretical Fox and Herzfeld [9] in 1950, Markham [23] in
1952, Nyborg [27] in 1953, Doak [5] in 1954, and
Truesdell[46] in 1954

Experimental Lieberman [21] in 1949, Piercy and Lamb [28] in
1954, Medwin [24] in 1954, and Johnsen and Tjotta
[18] in 1957

Table 1.2. Theoretical and experimental studies of energy dissipation driven streaming.

Acoustic streaming where the velocity is considerably smaller than the fluid

particle velocity can be categorized as slow streaming. Lighthill [22] explained

that the assumption made by Rayleigh, Westervelt, Eckert and Nyborg, on the

effect of the fluid’s own inertia on the resultant streaming being negligibly small,

is only valid for very slow streaming cases. To linearize the momentum equation
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Figure 1.6. Temporal process of Eckert streaming establishment. Rudenko and Soluyan
[34].

for the streaming calculation the Reynolds number corresponding to the DC flow

must be less than unity [4]. Lighthill pointed out that it is the dissipation of

acoustic energy flux which permits the gradients in momentum flux that force the

acoustic streaming motions.

1.1.3 Jet-driven streaming

Swift [42] explained in his book, “Thermoacoustics: A Unifying Perspective For

Some Engines and Refrigerators”, that if a tube has a small diameter entrance at

one of its ends, a jet of air may blow into the tube when gas enters, driving time-

averaged fluid motion inside the tube. Straightening the flow can break up the jets

but it dissipates acoustic power. More research needs to be done to design flow

straighteners that will optimize the efficiency of thermoacoustic devices. Figure

1.7 illustrates the suction and ejection periods of an orifice. In Fig. 1.7 (a) the

streamlines shows how the fluid enters the orifice, while in (b) the flow separates

to produce a jet [4].

Figure 1.8 shows a case where a tube has a small diameter entrance causing a

jet to blow into the tube when gas enters the tube [39], driving a time-averaged

convection within the tube. The downflow in the first illustration is concentrated

in the center of the tube, while the upflow shown in the second illustration is
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Figure 1.7. Oscillatory flow pattern in an orifice (a) suction period (b) ejection period.
From Boluriaan and Morris [4].

Figure 1.8. Jet-driven streaming in pulse tube caused by a missing flow straightener
at the top of the pulse tube. From Swift [42].

broadly distributed. These two flows can be regarded as the superposition of a

broadly distributed oscillating flow and a time-averaged toroidal circulation shown

in third and fourth illustrations [42].
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1.1.4 Traveling wave-driven streaming

Due to the phasing between the acoustic velocity and density, in an inviscid lossless

flow, mass streaming can still occur. A traveling wave is a mechanism other than

sound absorption that can generate acoustic streaming. Figure 1.9 shows the dis-

tribution of the forcing function F and the streaming velocity U when a plane trav-

eling wave fills a closed channel. The boundary condition is assumed to be no-slip.

Gedeon [10] analyzed and presented a theoretical calculation of acoustic streaming

in Stirling and pulse tube thermoacoustic refrigerators. Streaming caused by a

traveling wave is often referred to as “Gedeon streaming”. Gedeon streaming is a

net time-averaged mass flow along the axis of a regenerator, pulse tube, etc. This

time-averaged mass flux is proportional to the acoustic intensity. This type of mass

streaming can add a thermal load to the cold heat exchanger in a refrigerator or

removes heat from the hot heat exchanger in a thermoacoustic engine. pulse tube,

etc. It is important that the time-averaged mass flow M in the axial direction

through a regenerator, pulse tube, stack, etc. should be near zero to prevent a

large time-averaged convective enthalpy flux from flowing from hot to cold. In a

refrigerator, such a steady energy flux adds an unwanted thermal load to the cold

heat exchanger and in an engine, it wastefully removes high-temperature heat from

the hot heat exchanger without creating acoustic power [42].

Figure 1.9. Distribution of F and U for plane traveling wave which fills closed channel
(no-slip condition at the walls). From Nyborg [27].
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1.2 Research Motivation

As discussed in section 1.1, quite a few researchers have performed acoustic stream-

ing calculations both analytically and numerically since Rayleigh’s first analysis.

The focus of this thesis is on the numerical calculation of acoustic streaming due to

a standing wave in a channel and a cylindrical tube. This research is motivated by

the occurrence of acoustic streaming in thermoacoustic devices due to the high am-

plitude acoustics being used to drive those devices. The effect of acoustic streaming

on such devices can either be detrimental or beneficial [42]. When streaming occurs

in a thermoacoustic device, the fluid flow can carry heat away from the desirable

heat transfer direction and decreases the performance of the engine. While in other

cases, the flow can carry heat in the correct direction to aid the effectiveness of

heat transfer in the engine. Figure 1.10 shows some types of streaming that can

be harmful to thermoacoustic engines and refrigerators, while Fig. 1.11 shows the

type of streaming that can be beneficial. The design of a thermoacoustic device

can be optimized if the behavior of acoustic streaming in such a device is known a

priori.

Figure 1.10. Types of mass streaming that are generally harmful to thermoacoustic
engines and refrigerators. Arrows indicate the time-averaged mass-flux density, which is
superimposed on the much larger oscillating flow. (a) Gedeon streaming. (b) Rayleigh
streaming. (c) Jet-driven streaming. (d) Streaming within a regenerator or stack. From
Swift [42].
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Figure 1.11. Types of mass streaming that can be beneficial for thermoacoustic engines
and refrigerators. (a) Flow parallel to x, through a stack or regenerator. (b) Flow
perpendicular to x, across one end of a stack or regenerator. From Swift [42].

There are several analytical calculations of acoustic streaming available. There

are three analyses that are examined in the present research. One approach was

taken by a group consisting Bailliet, Gusev, Raspet and Hiller [3]. Another group

consisted of Hamilton, Ilinski and Zabolotskaya [11]. The third study is the stream-

ing analysis performed by Rayleigh and reviewed by Nyborg [27]. In the subsequent

chapters, they will be referred to as the “Bailliet et al.”, “Hamilton et al.” and

“Rayleigh/Nyborg” analyses. Like most streaming studies, these three analyses

start with the successive approximation method where the acoustic variables are

expanded to include second order terms and higher. The solution of the first

order velocities (acoustic velocities) where a standing wave is present is derived

first. Then the solution for the second order velocities (the streaming velocities)

is worked out.

The numerical calculation of acoustic streaming usually involves the solution

of the continuity equation, the Navier Stokes equation, and the energy equation.

When a direct numerical simulation (DNS) is used to solve those equations, it

requires considerable computing power and time. In this research, instead of using

the three mentioned equations, the vorticity transport equation (VTE) is utilized

to calculate the streaming behavior. This formulation allows the computation to be

performed on a single PC and give relatively fast results. Although the predicted
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streaming behavior is not as precise in detail as the DNS method, the speed can

be beneficial when a fast calculation of streaming is needed as a part of the design

stage of a thermoacoustic device.

The idea of using the VTE came from an article by Kamakura et al. “Acoustic

streaming induced in focused Gaussian beam” [19]. In the article, Kamakura et al.

numerically simulated Eckert streaming due to an ultrasound source of 1 cm radius

with a 5 cm focal length with a Gaussian amplitude distribution, radiating 5 MHz

ultrasound beams in water. They showed a buildup of acoustic streaming along

and across the acoustic axis. The flow was calculated using the axisymmetric flow

equations for a viscous incompressible fluid that are transformed into the vorticity

and Poisson’s equations. The equations were solved via a finite difference method

with the appropriate initial and boundary conditions. They used a time-stepping

method and an iteration method of SOR (Successive Over-Relaxation) within each

time step to converge to the solution. Their computational domain had 200× 200

grid points uniformly spaced. With a normalized time step of ∆τ = 2× 10−3, the

calculation can be done in about 5 minutes on a 400 MHz PC. Looking at the

speed of the calculation, it was interesting to see if the method would also work

to simulate Rayleigh streaming. So Kamakura et al. ’s article became the starting

point of this research.

1.3 Contribution

As mentioned in section 1.2, existing numerical calculations of acoustic streaming

are made by solving the full Navier Stokes equations using direct numerical sim-

ulation (DNS), without making any assumption of the fluid characteristics. This

type of calculation can give a very detailed view of the fluid flow features. Al-

though the DNS method provides an in-depth insight of what is happening to the

fluid flow inside a thermoacoustic engine, the computation power required is rather

expensive (usually involving a beowolf cluster) and the computation time can be

rather lengthy. In some cases, a less detailed calculation in a preliminary design

process may be desired. The complexity of the numerical model may be lessened

by making a set of assumptions about the flow. The current approach proposed

in this research makes use of several assumptions about the flow and the use of
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the vorticity transport equation as the primary equation to calculate the acoustic

streaming velocity. It will be shown that the calculation can be performed on a

single PC with a relatively fast computational time. The resulting flow patterns

agree well with the analytical results. Provided the first order acoustic particle

velocity inside a thermoacoustic device is known, one should be able to calculate

the acoustic streaming velocity inside such devices fairly quickly. Proving that the

current approach is a valid method to predict acoustic streaming behavior in a

standing wave thermoacoustic device, it is then concluded that this method can

be utilized to predict acoustic streaming behavior in other thermoacoustic devices

having various geometries in a relatively quick and inexpensive manner.

It is worth mentioning that although the idea of using the VTE to obtain the

acoustic streaming velocity came from Kamakura et al.’s article, during the span

of this research it was discovered that their method cannot be implemented for

the present problem. It has been necessary to modify their method for Rayleigh

streaming. By using the appropriate numerical calculation techniques here, it was

possible to get the correct streaming pattern results.

1.4 Thesis Overview

The subsequent chapters of the thesis will discuss the starting point of acoustic

streaming analysis, the driving force of the acoustic streaming, and the results

of the numerical calculation. Chapter 2 discusses the successive approximation

method as the starting point of acoustic streaming analysis and the governing

equations used in this research to calculate the streaming velocity. In Chapter

3 the analytical first order acoustic velocity that is used to derive the forcing

function is presented. The first order velocities employed in this research are

derived by the three research groups mentioned in section 1.2. Each group has a set

of assumptions in their analysis that will be listed before discussing their approach

in detail. Chapter 4 talks about the physical and computational grids that are

used for the calculation. The finite difference form of the governing equations will

also be discussed in that chapter. In Chapter 5 the numerical method utilized

to solve the governing equations is presented in detail. The numerical results are

then compared to the analytical results in Chapter 6. The results from using
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the forcing functions of different research groups will also be compared. Finally in

Chapter 7 the findings in this research will be summarized and some suggestions

for future work will be provided.



Chapter 2

Acoustic Streaming Calculation

There are two ways to predict the behavior of acoustic streaming: analytically or

numerically. Each method has its own set of challenges. Analytical calculations are

usually performed under certain assumptions to simplify the governing equations

which may not be solved otherwise (under general conditions). Numerical predic-

tion may be able to give results that cannot be calculated analytically. It may

also enable the calculation of different operating conditions without starting the

calculation over to account for the changes in the problem setup. The subsequent

sections in this chapter will discuss each approach.

2.1 Method of Successive Approximation

Traditionally, most analytical streaming calculations were made using the method

of successive approximation. This method starts by expanding acoustic variables to

include higher order terms. Subsequently the excess pressure, density and velocity

at any point in the fluid can be defined as:

p− p0 = p1 + p2 + · · ·
ρ− ρ0 = ρ1 + ρ2 + · · ·

u = u1 + u2 (2.1)

where p1, ρ1 and u1 are the first order approximations of the acoustic quantities

which vary sinusoidally in time with frequency ω. The higher order terms are the
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“correction” added to the first order approximations [27]. The corrections consist

of time independent quantities and quantities that vary with frequency 2ω. In

studying acoustic streaming the quantity of interest is u2, the time-independent

second order velocity. So the method of successive approximation starts with the

first order approximation u1. Knowing u1, the second order approximation u2 can

be calculated and then added to the first order approximation as the correction.

To obtain the acoustic streaming velocity u2, the common method of solution is

to apply the new expanded variables to the continuity and momentum equations.

Coupled with the assumptions made prior to the calculation, one can find u2 by

solving the momentum equation. This is the method employed by both Hamilton

et al. and Bailliet et al. in calculating the acoustic streaming velocity analytically.

2.2 Vorticity Transport Equation

An alternative approach to obtain the analytical streaming velocity is through the

use of the vorticity transport equation (VTE). To derive the VTE let us start with

the momentum equation for incompressible fluid with no external body force:

∂u

∂t
+ (u · ∇u) = −1

ρ
∇p + ν∇2u (2.2)

The following vector identities will be utilized:

1

2
∇(u · u) = (u · ∇)u + u× (∇× u) (2.3)

∇× (u× ω) = (ω · ∇)u− (u · ∇)ω + u∇ · ω − ω∇ · u (2.4)

∇ · (∇× u) = 0 (2.5)

∇×∇Φ = 0 (2.6)

where Φ is any scalar quantity and ω = ∇×u is the vorticity. For an incompressible

flow,

∇ · u = 0 (2.7)

From vector identity in Eq. 2.5,

∇ · (∇× u) = ∇ · ω = 0 (2.8)
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Therefore for an incompressible flow, the vector identity in Eq. 2.4 can be expressed

as:

∇× (u× ω) = (ω · ∇)u− (u · ∇)ω (2.9)

Using the vector identity in Eq. 2.3, the momentum equation can be written as:

∂u

∂t
+

1

2
∇(u · u)− u× (∇× u) = −1

ρ
∇p + ν∇2u (2.10)

Taking the curl of the left hand side of Eq. 2.10 and using the vector identities in

Eqs. 2.6 and 2.9,

∇× LHS =
∂

∂t
(∇× u) +

1

2
∇×∇(u · u)−∇× (u× ω)

=
∂ω

∂t
− (ω · ∇)u + (u · ∇)ω (2.11)

Using vector identity in Eq. 2.6, the curl of the right hand side of Eq. 2.10 is:

∇× RHS = −1

ρ
∇×∇p + ν∇2(∇× u)

= ν∇2ω (2.12)

Therefore the curl of the momentum equation can be expressed as:

∂ω

∂t
− (ω · ∇)u + (u · ∇)ω = ν∇2ω (2.13)

or
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω (2.14)

Equation 2.14 is the general form of the vorticity transport equation. The

physical interpretation of the terms in the VTE is:

• ∂ω/∂t is the rate of change of the vorticity with respect to time.

• (u · ∇)ω is the change of the vorticity due to spatial variations.

• (ω · ∇)u is the change of the vorticity due to stretching.

• ν∇2ω is the diffusion of the vorticity by viscosity
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For a two-dimensional flow, the vorticity vector ω is perpendicular to the plane of

the flow. Therefore if the flow is in the x and y plane, the only nonzero vorticity

component is in the z direction. For that reason, (ω · ∇)u is zero in a two-

dimensional flow and the VTE becomes:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω (2.15)

To clearly understand the concept of the forcing function that drives the VTE

in this research, the VTE derivation will be done in a slightly different manner

by taking the curl of the x and y momentum equations. The x component of the

momentum equation for a two dimensional analysis (assuming constant density

and viscosity and no external force) is:

ρ0

(
∂ux

∂t
+

∂uxux

∂x
+

∂uxuy

∂y

)
= −∂p

∂x
+ µ

(
∂2ux

∂x2
+

∂2ux

∂y2

)
(2.16)

And the y component is:

ρ0

(
∂uy

∂t
+

∂uxuy

∂x
+

∂uyuy

∂y

)
= −∂p

∂y
+ µ

(
∂2uy

∂x2
+

∂2uy

∂y2

)
(2.17)

Here ux and uy represent the two Cartesian components of u.

The VTE is obtained by taking the curl of momentum equation. Taking the x

derivative of the left hand side of the y momentum equation (Eq. 2.17) we obtain:

ρ0
∂

∂x

[
∂uy

∂t
+

∂uxuy

∂x
+

∂uyuy

∂y

]
= ρ0

[
∂

∂t

∂uy

∂x
+

(
∂2uxuy

∂x2

)
+

(
∂2uyuy

∂x∂y

)]
(2.18)

and taking the x derivative of the right hand side of the y momentum equation we

obtain

∂

∂x

[
−∂p

∂y
+ µ

(
∂2uy

∂x2
+

∂2uy

∂y2

)]
= − ∂2p

∂x∂y
+ µ

(
∂2

∂x2

∂uy

∂x
+

∂2

∂y2

∂uy

∂x

)
(2.19)

Similarly by taking the y derivative of the left hand side of the x momentum

equation (Eq. 2.16) we obtain

ρ0
∂

∂y

[
∂ux

∂t
+

∂uxux

∂x
+

∂uxuy

∂y

]
= ρ0

[
∂

∂t

∂ux

∂y
+

(
∂2uxux

∂x∂y

)
+

(
∂2uxuy

∂y2

)]
(2.20)
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and taking the y derivative of the right hand side of the x momentum equation we

obtain

∂

∂y

[
−∂p

∂x
+ µ

(
∂2ux

∂x2
+

∂2ux

∂y2

)]
= − ∂2p

∂x∂y
+ µ

(
∂2

∂x2

∂ux

∂y
+

∂2

∂y2

∂ux

∂y

)
(2.21)

Subtracting Eqs. 2.18 and 2.20 we obtain the left hand side of the VTE:

ρ0
∂

∂t

(
∂uy

∂x
− ∂ux

∂y

)
+ ρ0

[
∂

∂x

(
∂uxuy

∂x

)
− ∂

∂y

(
∂uxux

∂x

)]

+ρ0

[
∂

∂x

(
∂uyuy

∂y

)
− ∂

∂y

(
∂uxuy

∂y

)] (2.22)

And the corresponding right hand side of the VTE is:

[
− ∂2p

∂x∂y
+ µ

(
∂2

∂x2

∂uy

∂x
+

∂2

∂y2

∂uy

∂x

)]
−

[
− ∂2p

∂x∂y
+ µ

(
∂2

∂x2

∂ux

∂y
+

∂2

∂y2

∂ux

∂y

)]
=

µ

[
∂2

∂x2

(
∂uy

∂x
− ∂ux

∂y

)
+

∂2

∂y2

(
∂uy

∂x
− ∂ux

∂y

)]

(2.23)

The vorticity ω is defined as:

ω =
∂uy

∂x
− ∂ux

∂y
(2.24)

Therefore the left hand side of the VTE can be written as:

ρ0
∂ω

∂t
+ ρ0

[
∂

∂x

(
∂uxuy

∂x

)
− ∂

∂y

(
∂uxux

∂x

)]

+ρ0

[
∂

∂x

(
∂uyuy

∂y

)
− ∂

∂y

(
∂uxuy

∂y

)] (2.25)

and the right hand can be written as:

µ

[
∂2ω

∂x2
+

∂2ω

∂y2

]
(2.26)
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Equating the left hand side with the right hand side, the VTE is expressed as:

ρ0
∂ω

∂t
+ ρ0

[
∂

∂x

(
∂uxuy

∂x

)
− ∂

∂y

(
∂uxux

∂x

)]

+ρ0

[
∂

∂x

(
∂uyuy

∂y

)
− ∂

∂y

(
∂uxuy

∂y

)]
= µ

[
∂2ω

∂x2
+

∂2ω

∂y2

]
(2.27)

For this research, following Nyborg’s [27] analysis, it is assumed that the wave

number is much smaller then the inverse of the viscous penetration depth, i.e.

k << β. The wave number and the inverse of the viscous penetration depth are

defined as:

k =
ω

c
(2.28)

β =

√
ωρ

2µ
(2.29)

where ω in Eqs. 2.28 and 2.29 is the angular frequency (and not the vorticity), c

is the speed of sound, ρ is the density, and µ is the dynamic viscosity coefficient.

It was found that when k << β, the absorption coefficient is much smaller then

the wave number or α << k where α = bk3/4β2. This assumption leads to the

conditions of the first order velocity being the sum of an irrotational part and an

incompressible part [27]:

u1 = u1a + u1b (2.30)

where

∇× u1a = 0 (2.31)

∇ · u1b = 0 (2.32)

The VTE further assumes the total field u1 = u1a + u1b is incompressible.

With those conditions in mind, let us now substitute Eq. 2.1 into Eq. 2.27 but

keep terms only up to the second order. The resulting equation is a second order

equation which means quantities on the left hand side and the right hand side are

of second order. Notice that the velocities ux and uy are first order quantities and

the vorticity ω is a second order quantity. Since ux and uy will later be identified

as the axial and transverse acoustic velocities respectively, and their values are
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known, the left hand side of the VTE drives the right hand side of the equation.

Rearranging Eq. 2.27, it can be written as:

ρ0
∂ω

∂t
+ ρ0

[
− ∂

∂y

(
∂uxux

∂x
+

∂uxuy

∂y

)
+

∂

∂x

(
∂uxuy

∂x
+

∂uyuy

∂y

)]

= µ

[
∂2ω

∂x2
+

∂2ω

∂y2

]
(2.33)

We can define:

−Fx =
∂

∂x
(u1xu1x) +

∂

∂y
(u1xu1y) (2.34)

−Fy =
∂

∂x
(u1xu1y) +

∂

∂y
(u1yu1y) (2.35)

where ux = u1x and uy = u1y.

u1x and u1y are the first order axial and transverse velocities respectively. Sub-

stituting Eqs. 2.34 and 2.35 into Eq. 2.33 and dividing through by ρ0, the VTE

can be written compactly as:

∂ω2

∂t
−

(
∂Fy

∂x
− ∂Fx

∂y

)
= ν

(
∂2ω2

∂x2
+

∂2ω2

∂y2

)
(2.36)

where ν = µ/ρ is the kinematic viscosity. The subscript “2” on ω is used to denote

that the vorticity here is a second order quantity.

The time-averaged VTE can be obtained by integrating the time-dependent

VTE with respect to time from time zero to infinity. The resulting equation is

simply:

−
(

∂Fy

∂x
− ∂Fx

∂y

)
= ν

(
∂2ω2

∂x2
+

∂2ω2

∂y2

)
(2.37)

or written in a 2-D vector form,

−∇× F = ν∇2ω2 (2.38)

where F = Fx î + Fy ĵ and ω2 = (∂u2y/∂x)− (∂u2x/∂y) . Fx and Fy are defined in

Eqs. 2.34 and 2.35. It should be noted that since this analysis is in a planar (x, y)

coordinate system, we interpret the vorticity ω as the rotating fluid in the (x, y)

plane, the z component of the vector vorticity ω.
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2.3 Poisson’s Equation

In a two dimensional incompressible flow, a stream function can be defined through

the relationships:

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
(2.39)

Since the vorticity is

ω =
∂uy

∂x
− ∂ux

∂y
(2.40)

replacing the time-averaged quantities u2x and u2y for ux and uy in Eq. 2.39, and

substituting them in Eq. 2.40 yields the expression:

ω2 = −∂2ψ2

∂x2
− ∂2ψ2

∂y2
(2.41)

or

−ω2 =
∂2ψ2

∂x2
+

∂2ψ2

∂y2
= ∇2ψ2 (2.42)

Equation 2.42 is known as Poisson’s equation. From Eq. 2.38 we know that:

−∇× F2 = ν∇2ω2 (2.43)

Substituting ω2 from Eq. 2.42 into Eq. 2.43 we get:

−∇× F2 = ν∇2(−∇2ψ2) (2.44)

or

∇× F2 = ν∇4ψ2 (2.45)

Notice that Eq. 2.45 is a second order equation in the acoustic quantities. Looking

at the above equation and Eq. 2.39, one sees that: (1) Knowing F2 you can solve

for the stream function ψ2, and (2) knowing ψ2 you can solve for the acoustic axial

and transverse streaming velocities u2x and u2y.



Chapter 3

First Order Velocity And

Analytical Acoustic Streaming

Velocity

In the previous chapter we concluded that in order to calculate the acoustic stream-

ing velocity we need to know the first order acoustic velocity. This research par-

ticularly looks at the acoustic streaming (Rayleigh streaming) velocity due to a

standing wave between parallel walls. Therefore it is necessary to have an ex-

pression for the first order acoustic velocity in a channel when a standing wave

is present. There are several first order acoustic velocity expressions used in this

research. The first expression was derived by Rayleigh (and later corrected by

Westervelt and then presented by Nyborg). The second expression was derived

by Hamilton et al. and the third one was derived by Bailliet et al. Each of the

expressions was derived under a set of assumptions. It is imperative that we look

at the assumptions made in these analyses in order to make a fair comparison of

the resulting first order velocities. These first order velocities are going to be the

driving force of the VTE. All three methods will be discussed to understand their

differences that lead to the differences in the calculated analytical streaming veloc-

ities. The differences in the first order velocities of course causes the differences in

the driving forces, which in turn will give different calculated numerical streaming

velocities. Now let us look at each of the methods closely.
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3.1 Rayleigh/Nyborg

3.1.1 First order acoustic velocity

The details of the derivation of the first order velocity solution to a standing wave

between parallel walls will not be presented here, but readers are encouraged to

study Rayleigh’s solution in his Theory of Sound [41]. His analysis assumed the

following domain:

x, y = 0 x = x0

y = h

y = h
2

axis

wall

wall

S1

S2

Figure 3.1. Rayleigh/Nyborg calculation domain

The channel is assumed to be an infinitely long channel. Rayleigh examined a

section of the channel which is half a wavelength long from x = 0 to x = x0. S1

and S2 are the left and right boundaries of the calculation domain. The top and

bottom boundaries of the channel are located at y = 0 and y = h. The axis of

symmetry is located at y = h/2 where h is the channel height.

Some important definitions in what follow include:

• Viscous penetration depth: δν =
√

2ν/ω, where ν is the kinematic viscosity

and ω is the radial frequency. δν arises from the fact that in viscous flow, the

fluid velocity is zero at the surface of solid bodies (“no-slip” condition). This

creates a region called the boundary layer region, which is a region of fluid

where the effect of viscosity causes the transverse gradient of the velocity to

be larger compared to the axial variations. The viscous penetration depth

can be defined as the distance in the transverse direction from the surface of

the solid bodies to the point where the velocity is within 1% of the local free

stream velocity [43].
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• Inverse penetration depth: β = 1/δν .

• Absorption coefficient: α = bk3

4β2 = k2µb
2ρ0c

, where µb = µ′ + 4
3
µ + ρ0R .

µ is the dynamic viscosity coefficient, µ′ is the bulk viscosity coefficient,

and R is a highly frequency dependent constant representing the effects of

relaxation phenomena when pressure varies sinusoidally with time.

• First order axial and transverse acoustic velocities: u1 and w1 respectively.

The assumptions that Rayleigh made when he derived the first order particle

velocity are:

1. The fluid is homogeneous and isotropic.

2. The shear viscosity µ and bulk viscosity µ′ are independent of space and

time.

3. The only forces acting on the fluid are surface stresses due to elasticity and

viscosity.

4. The wavelength is much larger than viscous penetration depth (λ >> δν).

5. λ >> δν means k << 1
δν

or k << β where k is the wave number. If k << β

then α << β because bk3

4β2 is a small quantity so α is very small compared to

k (α << k)

6. When α << k the first order velocity field is irrotational (∇× u1 = 0) and

incompressible (∇ · u1 = 0).

7. Keep terms only up to the second order.

8. The second order velocity is incompressible (∇ · u2 = 0).

The solution was derived by solving the continuity and momentum equations under

the above assumptions. The acoustic first order axial velocity inside a channel when

a standing wave is present can then be expressed as [27]:

u1 = u0 cos(kx)
[
cos ωt− e−βy cos(ωt− βy)

]
(3.1)
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and the first order transverse velocity is:

w1 = u0
k

β
√

2
sin(kx)

[
cos

(
ωt− π

4

)
+ e−βy cos

(
ωt− βy − π

4

)]
(3.2)

The first order axial velocity is plotted in Figs. 3.2 and 3.3 and the first order

transverse velocity is plotted in Figs. 3.4 and 3.5.

The following physical geometry will be used in these and upcoming figures

throughout the thesis. The channel and the cylindrical tube is half a wavelength

long and the distance between the axis of symmetry and the top or bottom wall

is 0.0232 m. The frequency assumed is 310 Hz, therefore the channel (and tube

length) are 0.553 m. For air at 20◦C, the speed of sound c = 343 m/s, the shear

viscosity µ = 1.81 × 10−5 Pa s, and the ambient density ρ0 = 1.21 kg/m3. These

physical parameters are chosen based on Atchley and Thompson’s [45] experiments

to make it possible to compare the numerical results with their experimental re-

sults.

The forcing function that drives the VTE is calculated through Eqs. 2.34 and

2.35 where u1x = u1 and u1y = w1. Therefore,

−Fx =
∂

∂x
(u1u1) +

∂

∂y
(u1w1) (3.3)

−Fy =
∂

∂x
(u1w1) +

∂

∂y
(w1w1) (3.4)

The y component of F is usually negligible compared to the x component and the

x component of F can be expressed as 1:

Fx = ρ0 k u2
0 sin(2kx)

[
1

2
+

1

4

{
e−2βy − 3e−βy cos(βy) + e−βy sin(βy)

}]
(3.5)

Figures 3.6 and 3.7 show the x component of the Rayleigh/Nyborg forcing function.

Notice in Fig. 3.7 that the amplitude of the forcing function has a “bump” near

the wall. This indicates that the forcing function is the strongest in the area near

the boundary (boundary layer area).

1Be aware that this expression is misprinted in [27]. The 1
2 factor in Eq. 3.5 was printed as 1.
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Rayleigh / Nyborg first order axial velocity u1

Figure 3.2. Rayleigh/Nyborg first order axial velocity u1. l = λ/2 = 0.553 m, r =
0.0232 m.
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Rayleigh / Nyborg first order axial velocity u1
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Figure 3.3. Rayleigh/Nyborg first order axial velocity u1 along the y direction, next to
boundary S1. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.4. Rayleigh/Nyborg first order transverse velocity w1. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 3.5. Rayleigh/Nyborg first order transverse velocity w1 along the y direction,
next to boundary S1. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.6. Rayleigh/Nyborg x component Fx of the forcing function. l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 3.7. Rayleigh/Nyborg x component Fx of the forcing function at an antinode.
l = λ/2 = 0.553 m, r = 0.0232 m.



31

3.1.2 Analytical acoustic streaming velocities

Rayleigh calculated the analytical acoustic streaming velocity with the assumption

that the first order field is irrotational (∇×u1 = 0) and divergence-free (∇·u1 = 0).

The second order velocity can be solved by solving the curl of the time-averaged

momentum equation,

−∇× F = ν∇2ω (3.6)

where ω = ∇× u2. Using the relationship

∇2ψ2 = −ω2 = −∇× u2

Eq. 3.6 can be expressed as:

∇× F2 = ν∇4ψ2 (3.7)

Under the assumption that ∇ · u2 is approximately zero, Nyborg presented the

solution to Eq. 3.6. Since β/k >> 1,

∇4ψ2
∼= d4ψ

dy4

Substituting Eq. 3.5 into 3.7,

d4ψ

dy4
= −1

2
βρ0ku2

0 sin(2kx)
{
e−2βy − 3e−βy cos(βy) + e−βy sin(βy)

}
(3.8)

Equation 3.8 has a particular solution of

ψp
2 =

u2
0

8βc
sin(2kx)

(
4e−βy cos(βy) + 2e−βy sin(βy) +

1

2
e−2βy

)
(3.9)

and a homogeneous solution of

ψp
2 = a0 + a1y + a2y

2 + a3y
3 (3.10)

The complete solution is the sum of the particular and the homogeneous solution.

Boundary conditions are needed to obtain the coefficients a0, a1, a2 and a3. The
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boundary conditions that satisfies the no-slip condition (where the velocities of the

fluid in contact with the solid boundary has to be equal to that of the boundary)

are:

1. The second order axial velocity u2 is 0 at the wall:

u2 = 0 at y = 0 (3.11)

2. The second order transverse velocity w2 is 0 at the wall:

w2 = 0 at y = 0 (3.12)

Since the flow is symmetrical about y = h
2
, the boundary conditions on the axis of

symmetry are:

1. u2 must be an even function of y such that:

∂u2

∂y
= 0 at y =

h

2
(3.13)

2. w2 must be an odd function of y such that it vanishes on the axis:

w2 = 0 at y =
h

2
(3.14)

The complete solution is [27]:

ψ2 =
u2

0

8βc
sin(2kx)

[(
4e−βy cos(βy) + 2e−βy sin(βy) +

1

2
e−2βy

)

−9

2
+ 3βy

(
1− y

h

)(
1− 2

y

h

)] (3.15)

The relationship between the stream function and the acoustic streaming ve-

locity is:

u2 =
∂ψ2

∂y
, w2 = −∂ψ2

∂x
(3.16)

The axial and transverse streaming velocities u2 and w2 can now be calculated

because ψ2 is known. Substituting 3.15 into Eq. 3.16, the axial and transverse
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acoustic streaming velocity components are:

u2 =
u2

0

8c
sin(2kx)

[− (
e−2βy + 2e−βy cos(βy) + 6e−βy sin(βy)

)

+3− 18
y

h

(
1− y

h

)]
(3.17)

w2 = − u2
0

8βc
cos(2kx)

[(
4e−βy cos(βy) + 2e−βy sin(βy) +

1

2
e−2βy

)

−9

2
+ 3βh

y

h

(
1− y

h

)(
1− 2

y

h

)]
(3.18)

Figures 3.8 through 3.10 show the analytical axial streaming velocity u2. Figure

3.9 shows u2 at an antinode in the cross section direction. The axial streaming

velocity profile takes a parabolic shape. Zooming into the area near the wall it is

noticeable that there is inner streaming. Inner streaming is a phenomenon where

there are streaming cells inside the boundary layer. Figures 3.11 through 3.13

show the analytical transverse streaming velocity w2. Figure 3.13 shows the cross

sectional profile of w2.
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Figure 3.8. Rayleigh/Nyborg analytical axial streaming velocity u2. l = λ/2 = 0.553
m, r = 0.023 m.
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Figure 3.9. Rayleigh/Nyborg analytical axial streaming velocity u2 at an antinode
along the y direction. l = λ/2 = 0.553 m, r = 0.023 m.
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Figure 3.10. Rayleigh/Nyborg analytical axial streaming velocity u2 near the wall at
an antinode along the y direction. l = λ/2 = 0.553 m, r = 0.023 m.
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Figure 3.11. Rayleigh/Nyborg analytical transverse streaming velocity w2. l = λ/2 =
0.553 m, r = 0.023 m.
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Figure 3.12. Rayleigh/Nyborg analytical transverse streaming velocity w2 at an antin-
ode along the y direction. l = λ/2 = 0.553 m, r = 0.023 m.
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Figure 3.13. Rayleigh/Nyborg analytical transverse streaming velocity w2 near the
wall at an antinode along the y direction. l = λ/2 = 0.553 m, r = 0.023 m.

u2 and w2 are the axial and transverse components of the acoustic streaming

velocity u2. In experiments, the measured quantity is actually the velocity of the

mass instead of the streaming velocity. Because of this it is often desirable to know

the time-average mass flow rate M across a given surface S, The following analysis

is from Nyborg [27] pages 279 - 282. The rate at which mass flows across S is:

M =

∫

S

ρu · dS (3.19)

where ρ is the fluid density and u is the fluid velocity. Using the method of

successive approximation the acoustic variables can be expanded such as:

ρ = ρ0 + ρ1 + ρ2 + · · ·
u = u1 + u2 + · · · (3.20)
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Then Eq. 3.19 can be written as:

M =

∫

S

(ρ0 + ρ1 + ρ2 + · · · ) (u1 + u2 + · · · ) · dS

=

∫

S

ρ0 u1 + ρ1 u1 + ρ2 u1 + ρ0 u2 + ρ1 u2 + ρ2 u2 + · · ·dS

(3.21)

Keeping terms only up to the second order,

M =

∫

S

〈ρ0u2 + ρ1u1〉 · dS (3.22)

where M now represents the time-averaged mass flow rate < M >. Defining new

variables U and uT [27] as

U ≡ u2 + uT , uT ≡ 1

ρ0

〈ρ1u1〉 (3.23)

enables Eq. 3.22 to be written in terms of U:

M

ρ0

=

∫

S

U · dS (3.24)

Equation 3.23 can be interpreted as a net mass flow when acoustic streaming

is present. This is analogous to a condition when there is no acoustic field present

and the mass of an incompressible fluid of constant density ρ flows with steady

velocity U. Since in a steady state condition there is no net gain or loss of matter

in any region bounded by any closed surface S, then

∮
U · dS = 0 (3.25)

and from the general vector theory,

∇ ·U = 0 (3.26)

Equations 3.25 and 3.26 are valid within the second order approximation. U

is sometimes called the mass transport velocity. This mass transport velocity is

the quantity that is actually measured in experiments instead of the second order

velocity u2 itself as mentioned earlier. The second order velocity u2 can be regarded
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as the second order approximation of the Eulerian velocity, which is the average

velocity of particles passing through a fixed point in space.

Nyborg defined uT as

uT =
1

ρ0

< ρ1u1 > = < ε1 · ∇u1 > (3.27)

where |ε1| = ε1 is the displacement amplitude, i.e, u1 = ∂ε1/∂t. Using the expres-

sion for u1 in Eq. 3.1 and ε1 =
∫

u1dt, uT was calculated to be [27] :

uT =
u2

0

4c
sin(2kx)

[
e−βy cos(βy)− e−2βy

]
(3.28)

The mass transport velocity is the sum of u2 and uT (as given in Eq. 3.23) so that:

U = u2 + uT

= −3u2
0

8c
sin(2kx)

[
e−2βy + 2e−βy cos(βy)− 1 + 6

y

h

(
1− y

h

)] (3.29)

It is worth emphasizing that u2 is the acoustic streaming velocity which is a

second order quantity added as a correction to the first order quantity, while U

is the time-averaged mass transport velocity which is the quantity measured in

experiments and is the sum of u2 and uT .

3.2 Hamilton, Illinskii, and Zabolotskaya [11]

Note that in this section, to follow the Rayleigh/Nyborg’s notation, the transverse

velocity is denoted as w (instead of the standard v).

3.2.1 First order particle velocities

Hamilton et al. also derived the first order velocities due to the presence of a

standing wave [11]. Some of their assumptions are similar to Rayleigh/Nyborg’s

but additional assumptions are made. The computational domain is:
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Figure 3.14. Hamilton et al. [11] calculation domain

The assumptions made by Hamilton et al. [27] are:

1. The fluid is viscous but not heat conducting.

2. The excitation is obtained by shaking the resonator along the x axis with

velocity v(t).

3. The resonator is excited harmonically.

4. Wave number is much larger than the viscous penetration depth (k >> δν).

5. For a resonator driven at its lowest mode, the above conditions correspond

to x0 >> ν/c0.

6. The influence of the two ends of the resonator only affects the sound field to

within a viscous penetration depth δν .

7. δν is negligible compared to the resonator length, so the boundary condition

on u1 at the tube ends have negligible effect on the field in the volume of the

resonator.

8. Keep terms only up to the second order.

9. The model can take into account a specific source excitation.

10. There is no restriction to the channel width.
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Since the acoustic streaming in the upper and lower half of the tube is sym-

metrical, the x component of the velocity, u1, must be an even function of y such

that ∂u1/∂y = 0 on the axis (i.e. at y = 0). The y component of the velocity, w1,

must be an odd function of y such that it vanishes at y = 0. The y component of

the particle velocity w1 does not vanish at the tube ends unlike u1.

The x and y first order velocities derived by Hamilton et al. are [11]:

u1 = −v0

(
1− cosh αx

cosh αx0

)(
1− cosh βy

cosh βy0

)
(3.30)

w1 = −v0y0 α fν
sinh αx

cosh αx0

(
y

y0

− sinh βy

sinh βy0

)
(3.31)

where

β =
1 + i

δν

(3.32)

δν =

√
2ν

ω
(3.33)

fν =
tanh βy0

βy0

(3.34)

α =
iω/c0√
1− fν

(3.35)

Note that β here is not exactly the same as β defined in Rayleigh/Nyborg section.

In the Rayleigh/Nyborg section, β = 1/δν and it is a real quantity. Here β is still

the inverse of the viscous penetration depth but is a complex quantity. Figures

3.15 and 3.16 show the first order axial velocity derived by Hamilton et al. and

Figs. 3.17 and 3.18 show the first order transverse velocity.
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Figure 3.15. Hamilton et al. first order axial velocity u1. l = λ/2 = 0.553 m, r = 0.0232
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Figure 3.16. Hamilton et al. first order axial velocity u1 along y direction. l = λ/2 =
0.553 m, r = 0.0232 m.
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Figure 3.17. Hamilton et al. first order transverse velocity w1. l = λ/2 = 0.553 m,
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Figure 3.18. Hamilton et al. first order transverse velocity w1 along y direction. l =
λ/2 = 0.553 m, r = 0.0232 m.
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The forcing function is calculated by substituting the first order velocities in

Eqs. 3.30 and 3.31 into Eq. 3.3. The resulting forcing function is shown in Figs.

3.19 and 3.20. Notice that the forcing function has the same features as the one

derived by Nyborg. In Fig. 3.20 the occurrence of the bump near the boundary on

the forcing function can be observed.
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Figure 3.19. Hamilton et al. x component Fx of forcing function. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 3.20. Hamilton et al. x component Fx of forcing function at an antinode along
y direction. l = λ/2 = 0.553 m, r = 0.0232 m.

3.2.2 Analytical acoustic streaming velocities

Through the continuity and momentum equations Hamilton et al. [11] calculated

the averaged mass transport velocity. The x component of the mass transport

velocity is:

uM
x = UM

x +
1

y0

[
3A3(x)

y2

y2
0

+ A1(x)

]
(3.36)

where

UM
x = V0 Re

{
G(x)[H1(y) + iH2(y)] +

1

4
i(1− fν)G

∗(x)Y ∗
x (y)

}
(3.37)

and

V0 =
2|v0|2
x0ω

(3.38)

is a characteristic velocity amplitude,

G(x) = α∗x0
sinh α∗x
cosh α∗x0

(
cosh αx

cosh αx0

− 1

)
(3.39)
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H1(y) =
cosh(2y/δν)− cos(2y/δν)

8| cosh βy0|2 − Im
cosh βy

cosh βy0

(3.40)

H2(y) = f ∗ν
cosh βy − βy sinh βy

4 cosh βy0

+
1

4

cosh β∗y
cosh β∗y0

−cosh(2y/δν) + i cos(2y/δν)

8βδν | cosh βy0|2
(3.41)

Yx(y) = 1− cosh βy

cosh βy0

(3.42)

A1(x) and A3(x) are determined from the no-slip boundary condition to be

A1(x) = −3

2
Ψ(x, y0) +

1

2
y0 V (x, y0) (3.43)

A3(x) =
1

2
Ψ(x, y0)− 1

2
y0 V (x, y0) (3.44)

where

Ψ = V0δνRe

{
G(x)[H3(y) + iH4(y)] +

1

4
i (1− fν) G∗(x)H5(y)

}
(3.45)

and

H3(y) =
sinh(2y/δν)− sin(2y/δν)

16| cosh βy0|2 − Im
sinh βy

βδν cosh βy0

(3.46)

H4(y) = f ∗ν
2 sinh βy − βy cosh βy

4βδν cosh βy0

+
i

4βδν

sinh β∗y
cosh β∗y0

−sinh(2y/δν) + i sin(2y/δν)

16βδν | cosh βy0|2
(3.47)

H5(y) =
y

δν

− i

βδν

sinh β∗y
cosh β∗y0

(3.48)

The mass transport velocity ūM can be expressed in terms of the Eulerian

streaming velocity ū and the particle velocity ũ:

ūM = ū +
Re( p̃ ũ∗)

2ρ0c2
0

(3.49)
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Note that the calculated quantity is the time-averaged mass transport velocity

(which is the equivalent of U in Nyborg’s calculation) and not the acoustic stream-

ing velocity. The acoustic streaming velocity u2 can be obtained by subtracting

Re( p̃ ũ∗)/2ρ0c
2
0 from ūM . Care must be taken when comparing the acoustic

streaming velocity between the different groups as they present different velocities

as their computation results. Nevertheless the streaming velocity u2 can usually

be worked out from the presented results.
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Figure 3.21. Hamilton et al. analytical mass transport velocity uM . l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 3.22. Hamilton et al. analytical mass transport velocity uM on the axis along
x direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.23. Hamilton et al. analytical mass transport velocity uM at an antinode
along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.24. Hamilton et al. analytical acoustic streaming velocity u2. l = λ/2 = 0.553
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Figure 3.25. Hamilton et al. analytical acoustic streaming velocity u2 at an antinode
along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.26. Hamilton et al. analytical acoustic streaming velocity u2 at an antinode
along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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3.3 Bailliet, Gusev, Raspet and Hiller [3]

Note that in this section, to follow Rayleigh/Nyborg’s notation, the transverse

velocity is denoted as w (instead of the standard v).

3.3.1 First order particle velocities

Another group that calculated the first order velocity of a standing wave in a

channel and the acoustic streaming that resulted from it is the Bailliet et al. group.

Their computational domain is:

x = 0 x = x0

η = −1

η = 1

η = 0
axis

wall

wall

wall

wall

Figure 3.27. Bailliet et al. calculation domain

They assumed that:

1. The fluid is homogeneous.

2. The only forces acting on the fluid are surface stresses due to elasticity and

viscosity.

3. The second viscosity coefficient is neglected.

4. An acoustic wave propagates laminarly in an ideal gas along the x axis be-

tween two infinitely wide rigid plates or in a cylindrical tube.

5. The transverse dimensions (τ) are supposed to be much smaller than the

longitudinal (x) ones.
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6. Since τ ¿ x, the ratio of the wavelength and the transverse dimension is

large so that:
c0

Rω
À 1

where R is the typical transverse dimension, c0 is the adiabatic speed of

sound, and ω is the angular frequency of the acoustic oscillation.

7. Transverse variations are much more rapid than the longitudinal ones.

8. The acoustic wave is a plane wave.

9. The acoustic streaming velocity is slow enough that it does not alter the first

order variables.

10. There is no mean flow apart from acoustic streaming.

11. The transverse variation of acoustic pressure is neglected.

12. Axial particle velocity is much greater than transverse particle velocity: ux À
uτ

The x component of the first order velocity was calculated using the Navier

Stokes equation (to the first order). In the presence of a standing wave between

parallel walls the first order acoustic axial velocity is:

u1 =
∂p1/∂x

iωρ0

Fη (3.50)

where

Fη = 1− cosh(bη)

cosh b
(3.51)

and

b =
(1− i)R

δν

=
(1− i)R

√
ω√

2ν
(3.52)

The acoustic pressure p1 is:

p1(x) =
p1(0)

2

(
e−ikx + eikx

)
(3.53)
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with the complex wave number

k =
ω

c0

√
γ−(γ−1)Ft

F

The functions F and Ft are defined as:

F = 1− tanh b

b
(3.54)

Ft = 1− tanh(
√

σb)√
σb

(3.55)

The transverse component of the first order velocity can be obtain from the con-

tinuity equation,
Dρ

Dt
+ ρ∇ · u = 0 (3.56)

To the first order, the continuity equation gives:

−iωρ1 +
∂

∂x
(ρ0u1) +

ρ0

R

∂

∂η
w1 = 0 (3.57)

u1 is known and R is the distance from the axis of symmetry to the wall.

The first order transverse velocity neglecting the effect of temperature is:

w1 =
iR

ωρ0

[
∂2p1

∂x2
(η − φ) +

ω2

c2
0

p1(η + (γ − 1)φt)

]
(3.58)

with

φ =
sinh(bη)

b cosh b
(3.59)

φt =
sinh(

√
σbη)

b
√

σ cosh(
√

σb)
(3.60)

Figures 3.28 through 3.35 show the first order axial and transverse velocity as

derived by Bailliet et al. for the parallel plate case. Figures 3.28 and 3.29 show

the real part of the first order axial velocity. Figure 3.29 is the real part of the

axial velocity profile in the cross sectional direction. Figures 3.30 and 3.31 show

the imaginary part of the first order axial velocity. Figure 3.31 is the imaginary

part of the axial velocity profile in the cross sectional direction. Figures 3.32 and
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3.33 show the real part of the first order transverse velocity. Figure 3.33 is the

real part of the transverse velocity profile in the cross sectional direction. Figures

3.34 and 3.35 show the imaginary part of the first order transverse velocity. Figure

3.35 is the imaginary part of the transverse velocity profile in the cross sectional

direction. As with the other groups’ first order axial velocity, there is the same

feature where a bump occurs in the boundary.
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Figure 3.28. Bailliet et al. real part of first order axial velocity u1. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 3.29. Bailliet et al. real part of first order axial velocity u1 along y direction.
l = λ/2 = 0.553 m, r = 0.0232 m.



56

0

0.2

0.4

0.6

0.8

Im
(u

1)
(m

/s
)

0

0.2

0.4
x (m)

0
0.01

0.02

y (m)

0.2343
0.2181
0.2018
0.1855
0.1693
0.1530
0.1368
0.1205
0.1042
0.0880
0.0717
0.0554
0.0392
0.0229
0.0067

Bailliet imaginary part of first order
axial velocity u1

et al.

Figure 3.30. Bailliet et al. imaginary part of first order axial velocity u1. l = λ/2 =
0.553 m, r = 0.0232 m.
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Figure 3.31. Bailliet et al. imaginary part first order axial velocity u1 along y direction.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.32. Bailliet et al. real part of first order transverse velocity w1. l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 3.33. Bailliet et al. real part of first order transverse velocity w1 along y direc-
tion. l = λ/2 = 0.553 m, r = 0.0232 m.



58

-0.0005

0

0.0005

Im
(w

1)
(m

/s
)

0
0.2

0.4x (m) 0
0.01

0.02

y (m)

0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

-0.0000
-0.0001
-0.0002
-0.0003
-0.0004
-0.0005
-0.0006
-0.0007

Bailliet imaginary part of first order transverse
velocity w1

et al.

Figure 3.34. Bailliet et al. imaginary part first order transverse velocity w1. l = λ/2 =
0.553 m, r = 0.0232 m.
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Figure 3.35. Bailliet et al. imaginary part first order transverse velocity w1 along y
direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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The forcing function is calculated by substituting the first order velocities in

Eqs. 3.50 and 3.58 into Eq. 3.3. The resulting forcing function is shown in Figs. 3.36

and 3.37. Notice that the forcing function has the same feature as the one derived

by Rayleigh/Nyborg and Hamilton et al. Figure 3.37 shows the occurrence of the

bump near the boundary on the forcing function.
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Figure 3.36. Bailliet et al. x component of forcing function. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 3.37. Bailliet et al. x component of forcing function at an antinode along y
direction. l = λ/2 = 0.553 m, r = 0.0232 m.

3.3.2 Analytical acoustic streaming velocities

For a channel with parallel plates located at y = ±R and η = y/R, by solving the

momentum and continuity equation they obtained the analytical axial streaming

velocity (neglecting the effect of temperature):

〈u2〉 = − 3

8ωρ2
0c

2
0

(
η2 − 1

)
Re

(
ip1

∂p∗1
∂x

Ψ1

)

− 1

2ωρ2
0c

2
0

Re

(
ip1

∂p∗1
∂x

Ψ2

) (3.61)
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The functions Ψ1 and Ψ2 are:

Ψ1 = β(γ − 1)

[
2σ

σ + 1
− 2(1− F ∗)

(
1 +

σ − 1

(σ + 1)2

)

+
4σ(1− Ft)

(σ + 1)2
+2b2σ(1− Ft)

1− F ∗

σ + 1

]

+ 2(γ − 1)(1− Ft)

(
1

σ
+

1− σ

(σ + 1)2
− 1

σ + 1

)

− 2(γ − 1)(1− F ∗)
σ + 1

(
σ +

2

σ + 1

)

+ 2(γ − 2)(1− F ∗) + 2 + 2b2(1− F ∗)− 2(γ − 1)

σ(σ + 1)

+ 2b2(γ − 1)
(1− F ∗)(1− Ft)

σ + 1

− 1 + (γ − 1)(1− Ft)

F

[
3(1− F )− 8(1− F ∗) + b2|1− F |2 + 5 + 2b2(1− F ∗)

]

(3.62)

Ψ2 = β(γ − 1)

[
σ

σ + 1
− (1− F ∗

η ) + (1− F ∗
η )

1− Fηt

σ + 1
− b2φ∗φt

σ

σ + 1

+
σb2(1− Ft)(1− F )

σ + 1

]
+ F ∗

η + (1− F ∗)b2 − ηφ∗b2 − γ − 1

σ(1 + σ)

+
(γ − 1)(1− Fηt)

σ
− γ − 1

σ + 1
(1− F ∗

η )(1− Fηt) +
b2(γ − 1)(1− F ∗)(1− Ft)

(σ + 1)

− b2φtφ
∗γ − 1

σ + 1
− 1 + (γ − 1)(1− Ft)

F
×

[
(1− F ∗)b2 + 3F ∗

η − ηφ∗b2 1

2
+
|1− Fη|2

2
−b2 |φ|2

2
+

b2|1− F |2
2

− Fη

]

(3.63)

Figures 3.38 through 3.40 show the analytical acoustic streaming velocity as de-

rived by Bailliet et al. Figures 3.39 and 3.40 are the cross sectional profile of the

streaming velocity at an antinode. From Fig. 3.40 it can be seen that there is no

inner streaming in the boundary layer area unlike the other groups’ calculations.

The analytical acoustic streaming obtained by the three groups will be com-

pared in Chapter 6.
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Figure 3.38. Bailliet et al. analytical acoustic streaming velocity u2. l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 3.39. Bailliet et al. analytical acoustic streaming velocity u2 at an antinode
along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 3.40. Bailliet et al. analytical acoustic streaming velocity u2 at an antinode
along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.

3.4 Chapter 3 Discussion

By observing Figs. 3.6, 3.7, 3.19, 3.20, 3.36, 3.37, it can be concluded that although

the forcing functions derived using the different groups’ first order velocities look

similar in their overall profiles, the details are different in the region near the wall.

Since Rayleigh streaming originates from viscous stresses on the boundaries, slight

discrepancies in the forcing functions near the boundaries lead to variations in

the resulting streaming velocities. The assumptions made when deriving the first

order velocities play a significant part in determining the behavior of the first order

velocities and hence the forcing functions. The differences in the forcing functions

will be discussed in more detail in Chapter 6 to emphasize their importance in

causing the differences in the analytical and numerical streaming velocities.

So far in Chapter 3 the analyses performed by the three different groups have

been discussed. Their assumptions, the first order acoustic velocities, the forcing

functions, and the analytical streaming velocities have been presented. The forcing

functions derived from the three groups’ first order velocities will be used to drive
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the VTE. In the next two chapters the computational grid and the numerical

method utilized to solve the VTE will be explained. Then the resulting numerical

streaming velocities as well as the analytical velocities will be compared in Chapter

6.



Chapter 4

Computational Grid

4.1 Nonuniform Physical Domain

The numerical calculation in this research is performed on only one half of a channel

due to the fact that acoustic streaming is symmetrical on the upper and lower

halves of the channel. The simulation can model either the upper or lower half.

Here the computational domain is chosen to be the upper half of the channel as

shown in Fig. 4.1.

S1 (wall) S3 (wall)

S2 (wall)

S4 (axis of symmetry)

Figure 4.1. Computational domain

The top boundary of the computational domain (S2) represents the top wall of

the channel while the bottom boundary (S4) represents the axis of symmetry

(i.e. the middle of the channel). The left (S1) and right (S3) boundaries of the

computational domain represent rigid ends.
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As seen in Chapter 3, the forcing function’s highest amplitude is concentrated

at the area near the wall. Because of this, the computational grid spacing needs

to be fine enough to capture this feature. Further, having an accurate forcing

function is critical for the calculation. The need for adequate grid points in the

vicinity of the wall results in the need to have a large number of grid points in the

cross section of the channel if the points are uniformly spaced. This would lead to

undesirable additional computation time and memory requirements. In actuality,

we only need to have grid points concentrated near the boundary S2 instead of

having a large number of points uniformly spaced in the computational domain.

Therefore it is possible to use a grid that is clustered near the boundary instead

of a uniformly spaced grid. That way, with a fixed amount of grid points, we can

have more points in the vicinity of the boundary and less everywhere else.

A physical domain is a domain that represents the physical dimensions of the

actual device being simulated. The grid points in the physical domain represent

“probes” where sources are located or measurements are taken. Because we need

more probes near the wall to act as the “source” representing the forcing function,

the grid points are clustered near the wall and as a consequence the spacing between

grid points in the cross sectional direction will vary.

Unequal grid spacings can pose some problems in the numerical computation.

Not only can this add to the complexity of the program, but it can lead to in-

stability in the computation. To overcome these problems, the calculation itself

is going to be done in a computational domain that has uniform spacing between

grid points. A computational domain is a domain where the actual computation

is performed. It does not necessarily represent the physical dimensions of the sim-

ulated device but it is related to the physical domain through a transformation

step. The transformation of the physical domain into the computational domain

is performed by mapping the points in the physical domain to the computational

domain. There are a few requirements that must be met in the transformation

process [13]:

1. The mapping must be one to one which means grid lines of the same family

cannot cross each other.

2. The grid point distribution is smooth (with minimum grid line skewness).
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3. The grid lines must have orthogonality or near orthogonality.

4. The grid points are concentrated where there are high flow gradients.

Since we only need to cluster the grid points in the area near the wall we can

use the simplest technique of grid generation which is the algebraic method. The

following steps outline and give an example of how to generate a physical domain

grid:

1. Determine the desired number of grid points in the x and y directions. As

an example, let the number of points in the x direction nx = 25 and the

number of grid points in the y direction ny = 25.

2. Generate a uniform grid points in the x direction. In Fortran this can be

done by the following:

do i = 1, nx

x(i) =
i− 1

nx− 1
× l

end do (4.1)

where l is the length of the channel (or tube).

3. Generate a clustered grid in the y direction. The hyperbolic tangent function

was chosen to cluster the grid in one direction. In Fortran this can be done

in the following manner:

do j = 1, ny

y(j) =
tanh

(
π cf j−1

ny−1

)

tanh(π cf)
× h

end do (4.2)

where cf is the clustering factor and h is the distance between the axis

of symmetry and the top boundary S2. Notice that the argument of the

hyperbolic tangent function is a uniform grid multiplied by the clustering

factor and π. The reason for this is because
(

j−1
ny−1

)
has a maximum value of

1 at j = ny and the Tanh function has a maximum value of 1 for argument

value of π and above (see Fig. 4.2). To control the amount of clustering, the



68

x

Ta
nh

(x
)

-3 -2 -1 0 1 2 3
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
Hyperbolic Tangent Function

Figure 4.2. Hyperbolic tangent function

argument can be multiplied by a factor (in this case it is called the clustering

factor cf) whose value is less than 1. The clustering factor is chosen to be

less than or equal to 1 because | tanh(x)| ≤ 1 for |x| ≥ π. The higher the

value of the argument (but still less than π), the more clustered the grid is.

For example, let x be a uniform grid, and if 0 ≤ x ≤ π then the grid points

are mapped as in Fig. 4.3. When 0 ≤ x ≤ π/2 the grid points are mapped

as in Fig. 4.4.
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Since the same number of grid points are distributed in a shorter distance,

they will be clustered more as the maximum value of the argument of the

Tanh function is reduced. Notice that as the grid is more clustered, the

maximum value of the Tanh function is no longer 1. To take this into account

when y is calculated, it is divided by the maximum value of tanh(x) to make∣∣∣tanh
(
π cf j−1

ny−1

)
/ tanh(π cf)

∣∣∣ = 1 (see Eq. 4.2). Then the result can be

scaled by h to get the correct crosswise dimension. Figure 4.5 shows a typical

result for a 25× 25 clustered grid.

x

y

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

Physical domain clustered grid (25 x 25)

Figure 4.5. Physical domain clustered grid with 25×25 points. l = 0.553 m, h = 0.0232
m

4.2 Uniform Computational Domain

The next step to be done is to transform the clustered physical grid into a uniform

computational grid. In order to do this one will need the metrics of transformation.
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4.2.1 Metrics of Transformation

When finite differencing is applied to a partial differential equation, one will need

the distance between neighboring grid points to calculate the spatial derivatives. If

there is some clustering in the computational grid, the distance between adjacent

grid points will not be the same for all points (in the same direction) in the grid.

This can lead to instability in the calculation because the largest distance between

two points may not satisfy the stability condition. In order to avoid such instability,

the computational grid needs to be uniform in space. This can be obtained by

transforming the clustered physical grid into a uniform computational grid through

the use of the metrics in the partial differential equations to be solved.

Let x and y be the coordinates in the physical domain and ξ and η be the coor-

dinates in the computational domain. Then the relationship between the physical

and computational domains can be defined as:

ξ = ξ(x, y) (4.3)

η = η(x, y) (4.4)

Partial derivatives with respect to x and y are then:

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
(4.5)

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+

∂η

∂y

∂

∂η
(4.6)

Using the notation ∂ξ
∂x

= ξx, the above equations can be written as:

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
(4.7)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
(4.8)

ξx, ξy, ηx, and ηy are called the metrics of transformation. Because of approxima-

tion such as:

ξx =
∂ξ

∂x
∼= ∆ξ

∆x
(4.9)

it can be said that the metrics of transformation give the ratio of arc lengths in
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the computational domain to that of the physical domain.

For this research, the uniform computational domain was chosen to be: 0 ≤
ξ ≤ 1 and 0 ≤ η ≤ 1. Since the grid is already uniformly spaced in the x direction

it only has to be scaled so that the maximum value of ξ is 1:

ξ =
x

l
(4.10)

The grid has to be “unstretched” to make it uniformly spaced in the y direction

and scaled at the same time to make the maximum value of η to be 1:

η =
1

π cf
tanh−1

(
y × tanh(π cf)

h

)
(4.11)
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Figure 4.6. Computational domain uniform grid with 25× 25 points

The metrics are calculated by:

ξx =
∂ξ

∂x
=

∂(x/l)

∂x
=

1

l
(4.12)
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and

ηy =
∂η

∂y
=

∂

∂y

[
1

π cf
tanh−1

(
y × tanh(π cf)

h

)]

=
1

π cf

tanh(π cf)/h

1− (tanh(π cf)/h)2 y2

(4.13)

Also

ηyy =
∂2η

∂y2

=
1

π cf

2 (tanh(π cf)/h)3 y

[1− (tanh(π cf)/h)2 y2]2

(4.14)

These metrics are going to be utilized in the calculation to transform the PDE.

The numerical scheme used in this research is a second order finite difference

method. Since the computational domain involves the clustering of the grid near a

boundary, the governing equations have to be transformed to take account of the

grid clustering. The metrics in Eqs. 4.12, 4.13, and 4.14 will take into account the

nonuniformity of the grid in the PDE.

Recall Eqs. 4.7 and 4.8, and the second derivatives with respect to x and y are:

∂2

∂x2
= ξxx

∂

∂ξ
+ ξ2

x

∂2

∂ξ2
+ ηxx

∂

∂η
+ η2

x

∂2

∂η2
+ 2 ξxηx

∂2

∂ξ∂η
(4.15)

∂2

∂y2
= ξyy

∂

∂ξ
+ ξ2

y

∂2

∂ξ2
+ ηyy

∂

∂η
+ η2

y

∂2

∂η2
+ 2 ξyηy

∂2

∂ξ∂η
(4.16)

Using the metrics of transformation, the transformed time-averaged VTE is:

−
(

ξx
∂Fy

∂ξ
− ηy

∂Fx

∂η

)
= ν

[
ξ2
x

∂2ω

∂ξ2
+ ηyy

∂ω

∂η
+ η2

y

∂2ω

∂η2

]
(4.17)

Recall from Chapter 2 that the stream function ψ is related to the vorticity ω by

the Poisson’s equation:

−ω =
∂2ψ

∂x2
+

∂2ψ

∂y2
(4.18)

The transformed Poisson’s equation can be expressed as:

−ω = ξ2
x

∂2ψ

∂ξ2
+ ηyy

∂ψ

∂η
+ η2

y

∂2ψ

∂η2
(4.19)
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Equations 4.17 and 4.19 clearly show that the clustering is taken into account in

the PDE through the metrics of transformation ξx, ηy, and ηyy.

4.2.2 Boundary Conditions

Vorticity

Let P be a point at the boundary S2 and Q be a point adjacent to P . The distance

between them is ∆y. Suppose ψ is sufficiently smooth [26], then:

ψQ = ψP +
∂ψP

∂y
∆y +

1

2

∂2ψ

∂y2

∣∣∣∣
P

∆y2 +
1

6

∂3ψ

∂y3

∣∣∣∣
P

∆y3 + O
(
∆4

)
(4.20)

If the wall is not penetrable by the fluid, u2y = 0 at P . Recall:

ω =
∂uy

∂x
− ∂ux

∂y

and

u2x =
∂ψ

∂y
, u2y = −∂ψ

∂x

Since u2y = 0, at point P :

ω = −∂u2x

∂y
(4.21)

or

ωP = − ∂

∂y

(
∂ψ

∂y

)
= − ∂2ψ

∂y2

∣∣∣∣
P

(4.22)

Taking the derivative of Eq. 4.22,

∂ωP

∂y
= − ∂3ψ

∂y3

∣∣∣∣
P

(4.23)

Substituting Eqs. 4.22 and 4.23 to Eq. 4.20:

ψQ = ψP +
∂ψP

∂y
∆y − ωP

2
∆y2 − 1

6

∂ωP

∂y
∆y3 (4.24)

The first order derivative can be approximated as:

∂ωP

∂y
=

ωQ − ωP

∆y
(4.25)
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Therefore Eq. 4.24 can be expressed as:

ψQ = ψP +
∂ψP

∂y
∆y − ωP

2
∆y2 − 1

6

ωQ − ωP

∆y
∆y3

= ψP +
∂ψP

∂y
∆y − ωP

2
∆y2 − 1

6
(ωQ − ωP ) ∆y2

(4.26)

Placing ωP on the left hand side and all other terms on the right hand side,

ωP
∆y2

3
= −ψQ + ψP +

∂ψP

∂y
∆y − 1

6
ωQ∆y2 (4.27)

or

ωP = − 3

∆y2

(
ψQ − ψP − ∂ψP

∂y
∆y

)
− ωQ

2
(4.28)

Applying Eq. 4.28 to the uniform computational domain, the boundary condition

for the vorticity is:

ωP = − 3

∆η2

(
ψQ − ψP − ∂ψP

∂η
∆η

)
− ωQ

2
(4.29)

Stream Function

The boundary condition is assumed to be a no-slip condition so that velocities

are zero at the wall. Due to the fact that u = ∂ψ/∂y and w = −∂ψ/∂x, the

no-slip condition enables the stream function ψ to be set to any constant value,

which is zero in this case. The value of zero is chosen for convenience, although

any constant value will work. Therefore the stream function boundary condition

is ψ = 0 at the walls. On the axis of symmetry, ψ is set to zero because there the

transverse streaming velocity u2y is zero.



Chapter 5

Numerical Calculation Through A

Direct Method

There are different ways to numerically solve the VTE and Poisson’s equation. One

way is to solve them through an iterative method and another way is through a

direct method. In this research we use the direct method because here the VTE is a

time-averaged equation and the method itself is unconditionally stable. The direct

method involves solving a set of linear algebraic equations. To do this, we first

need to form a matrix of the coefficients of the vorticity (in the case of VTE) or the

stream function (in the case of Poisson’s equation). We then have to decompose

each matrix into its lower and upper matrices, taking advantage of the fact that

the solution to a triangular set of equations is quite trivial. The solution is then

obtained through backsubstitution.

Although Lower-Upper (LU) decomposition is a well known technique in the

numerical calculation area, it is worthwhile to discuss how it works in the following

sections because it is the backbone of the calculation in this research.

5.1 Lower Upper Decomposition

The following explanation is taken from Numerical Recipes Chapter 2 pages 34

through 39 [29].
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A matrix A can be written as a product of two matrices such that

L ·U = A (5.1)

where L is the lower triangular matrix (with elements only on the diagonal and

below it), and U is the upper triangular matrix (with elements only on the diagonal

and above it). A set of algebraic equations can be written in a vector form as:

A · x = b (5.2)

Here x is the unknown vector and b is the known vector. In analogy with Hooke’s

Law from mechanics, A is called the stiffness matrix and b is the load vector. A

can be decomposed into lower and upper matrices such that:

A · x = (L ·U) · x = L · (U · x) = b (5.3)

Let U · x = y then

L · y = b (5.4)

Vector y can be obtained through forward substitution and x is obtained by solving

U · x = y (5.5)

through backsubstitution. Another advantage of the LU decomposition method is

that the method can be done with as many right hand sides b as necessary.

To illustrate LU decomposition, let us look at the following example (from

Numerical Recipes page 45 [29]). A 4× 4 matrix A can be written as a product of

its lower and upper triangular matrices such as

A = L ·U
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or




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




=




α11 0 0 0

α21 α22 0 0

α31 α32 α33 0

α41 α42 α43 α44



·




β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44




(5.6)

Then

L · y = b

is 


α11 0 0 0

α21 α22 0 0

α31 α32 α33 0

α41 α42 α43 α44







y1

y2

y3

y4




=




b1

b2

b3

b4




(5.7)

The equations to be solved are:

α11y1 = b1 → y1 =
b1

α11

(5.8)

α21y1 + α22y1 = b2 → y2 =
1

α22

(b2 − α21y1) (5.9)

α31y1 + α32y2 + α33y3 = b3 → y3 =
1

α33

(b3 − α31y1 − α32y2) (5.10)

α41y1+α42y2+α43y3+α44y4 = b4 → y4 =
1

α44

(b4 − α41y1 − α42y2 − α43y3) (5.11)

or

yi =
1

αii

[
bi −

i−1∑
j=1

αijyj

]
i = 2, 3, . . . , N (5.12)

This is the forward substitution procedure. The next step is to solve:

U · x = y
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or 


β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44







x1

x2

x3

x4




=




y1

y2

y3

y4




(5.13)

The equations to be solved are:

β11x1+β12x2+β13x3+β14x4 = y1 → x1 =
1

β11

(y1 − β12x2 − β13x3 − β14x4) (5.14)

β22x2 + β23x3 + β24x4 = y2 → x2 =
1

β22

(y2 − β23x3 − β24x4) (5.15)

β33x3 + β34x4 = y3 → x3 =
1

β33

(y3 − β34x4) (5.16)

β44x4 = y4 → x4 =
y4

β44

(5.17)

or

xi =
1

βii

[
yi −

N∑
j=i+1

βijxj

]
i = N − 1, N − 2, . . . , 1 (5.18)

This is the backward substitution procedure. From Eqs. 5.12 and 5.18, it can be

seen that divisions are done with the diagonal elements as the divisor (i.e., αii and

βii). Those elements are called the pivots. When the pivots are small with respect

to the other elements in the matrix the results can be inaccurate. To overcome

this problem, rows in the matrix are permutated so that the pivots can be replaced

by other larger elements. Exchanging rows in a matrix does not change the linear

algebraic equation itself as long as the matching rows in b are also exchanged.

To decompose matrix A into its lower and upper matrices let us first look at

Eq. 5.6. If Eq. 5.6 is written out as its ith and jth component, the first row

equations are:

α11β11 = a11 (5.19)

α11β12 = a12 (5.20)

α11β13 = a13 (5.21)
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α11β14 = a14 (5.22)

The second row equations are:

α21β11 = a21 (5.23)

α21β12 + α22β22 = a22 (5.24)

α21β13 + α22β23 = a23 (5.25)

α21β14 + α22β24 = a24 (5.26)

The third row equations are:

α31β11 = a31 (5.27)

α31β12 + α32β22 = a32 (5.28)

α31β13 + α32β23 + α33β33 = a33 (5.29)

α31β14 + α32β24 + α33β34 = a34 (5.30)

The fourth row equations are:

α41β11 = a41 (5.31)

α41β12 + α42β22 = a42 (5.32)

α41β13 + α42β23 + α43β33 = a43 (5.33)

α41β14 + α42β24 + α43β34 + α44β44 = a44 (5.34)

In terms of i and j, they can be written as

αi1β1j + · · · = ai,j

The number of terms in the sum depends on whether i is smaller than j or vice

versa. There are three cases:

i < j : αi1β1j + αi2β2j + · · ·+ αiiβij = aij (5.35)

i = j : αi1β1j + αi2β2j + · · ·+ αiiβjj = aij (5.36)

i > j : αi1β1j + αi2β2j + · · ·+ αijβjj = aij (5.37)
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One procedure to decompose a matrix into its lower and upper matrices is

Crout’s algorithm. The steps that are taken for the LU decomposition are:

1. Set the diagonal of the lower triangular matrix αii = 1, where i = 1, . . . , N

2. For each j = 1, 2, 3, . . . , N :

(a) For i = 1, 2, . . . , j use 5.35, 5.36 and 5.37 to calculate βij

βij = aij −
i−1∑

k=1

αikβkj (5.38)

(b) For i = j + 1, j + 2, . . . , N use 5.37 to calculate αij

αij =
1

βjj

(
aij −

j−1∑

k=1

αikβkj

)
(5.39)

Since αii = 1 (i.e. α11 = 1) Eqs. 5.19 through 5.22 are now:

β11 = a11 (5.40)

β12 = a12 (5.41)

β13 = a13 (5.42)

β14 = a14 (5.43)

Then we can calculate Eqs. 5.23 through 5.26 to get:

α21 =
a21

β11

(5.44)

β22 =
1

α22

(a22 − α21β12) = a22 − α21β12 (5.45)

β23 =
1

α22

(a23 − α21β13) = a23 − α21β13 (5.46)

β24 =
1

α22

(a24 − α21β14) = a24 − α21β14 (5.47)

Equations 5.24 through 5.34 can be solved in the same manner. So once a matrix

is decomposed into its upper and lower matrices, the set of algebraic equations

can be solved using the forward and backward substitution technique as explained
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before.

5.1.1 Storing Band Diagonal Matrix Elements Compactly

When the set of equations that resulted from taking the finite difference of the

vorticity transport equation and Poisson’s equation are put in a matrix form as

in Eq. 5.1, it yields banded matrices. A banded matrix is a matrix with nonzero

elements only along a few diagonal lines above and below the main diagonal. The

advantage of banded matrices is the fact that only the nonzero elements need to

be stored. This can reduce the memory allocation requirements significantly. A

banded matrix can be stored compactly by tilting the matrix 45◦ to make the

nonzero elements lie in a long narrow matrix. The new compact matrix will have

(m1 + 1 + m2) columns and N rows. Here m1 is the number of nonzero elements

in the diagonals below the main diagonal (subdiagonal) and m2 is the number of

nonzero elements in the diagonals above the main diagonal (superdiagonal). The

example below is from Numerical Recipes page 44 [29]. It illustrates the formation

of a compact matrix from a banded diagonal matrix. A 7 × 7 banded diagonal

matrix: 


3 1 0 0 0 0 0

4 1 5 0 0 0 0

9 2 6 5 0 0 0

0 3 5 8 9 0 0

0 0 7 9 3 2 0

0 0 0 3 8 4 6

0 0 0 0 2 4 4




has N = 7 rows, m1 = 2 subdiagonal and m2 = 1 superdiagonal. It can be stored
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compactly as a 7× 4 matrix:




# # 3 1

# 4 1 5

9 2 6 5

3 5 8 9

7 9 3 2

3 8 4 6

2 4 4 #




The # denotes the wasted space that will not be referenced by any manipulation

and can have arbitrary values. LU decomposition of the compact matrix can

then be conducted. This research uses Fortran subroutines provided by Numerical

Recipes to do a banded matrix decomposition along with the forward and backward

substitution process.

The techniques we discussed so far will be applied to solve the VTE and Pois-

son’s equation. The transformed time-averaged VTE for a clustered grid from

Eq. 4.17 was:

−
(

ξx
∂Fy

∂ξ
− ηy

∂Fx

∂η

)
= ν

(
ξ2
x

∂2ω

∂ξ2
+ ηyy

∂ω

∂η
+ η2

y

∂2ω

∂η2

)
(5.48)

The second order accurate finite difference approximation for the above equation

is:

−
(

ξxi,j

F(y)i+1,j − F(y)i−1,j

2∆ξ
− ηyi,j

F(x)i,j+1 − F(x)i,j−1

2∆η

)
=

ν

(
ξ2
xi,j

ωi+1,j − 2ωi,j + ωi−1,j

(∆ξ)2
+ ηyyi,j

ωi,j+1 − ωi,j−1

2∆η
+

η2
yi,j

ωi,j+1 − 2ωi,j + ωi,j−1

(∆η)2

)
(5.49)

∆ξ is the distance between adjacent grid points in the x direction and ∆η is the

distance between adjacent grid points in the y direction. Rewriting Eq. 5.49 by

placing the unknown quantities (in this case ω) on the left hand side and the known
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quantities (in this case the forcing function) on the right hand side:

−
(

ν
ξ2
xi,j

(∆ξ)2

)
ωi+1,j −

(
ν

ξ2
xi,j

(∆ξ)2

)
ωi−1,j − ν

(
ηyyi,j

2∆η
+

η2
yi,j

(∆η)2

)
ωi,j+1

−ν

(
−ηyyi,j

2∆η
+

η2
yi,j

(∆η)2

)
ωi,j−1 + 2 ν

(
ξ2
xi,j

(∆ξ)2
+

η2
yi,j

(∆η)2

)
ωi,j

=
ξxi,j

2∆ξ
F(y)i+1,j −

ξxi,j

2∆ξ
F(y)i−1,j −

ηyi,j

2∆η
F(y)i,j+1 +

ηyi,j

2∆η
F(y)i,j−1

(5.50)

The boundary conditions from Chapter 4 are:

1. Boundary S1.

ωi,j = − 3

∆ξ2

(
ψi+1,j − ψi,j +

∂ψi,j

∂ξ
∆ξ

)
− ωi,j

2
(5.51)

where
∂ψi,j

∂ξ
=

ξx

2∆ξ
(−ψi+2,j + 4ψi+1,j − 3ψi,j) , and i = 1

2. Boundary S3.

ωnx,j = − 3

∆ξ2

(
ψnx−1,j − ψnx,j − ∂ψnx,j

∂ξ
∆ξ

)
− ωnx−1,j

2
(5.52)

where
∂ψnx,j

∂ξ
=

ξx

2∆ξ
(3ψnx,j − 4ψnx−1,j + ψnx−2,j)

3. Boundary S2.

ωi,ny = − 3

∆η2

(
ψi,ny−1 − ψi,ny − ∂ψi,ny

∂η
∆η

)
− ωi,ny−1

2
(5.53)

where
∂ψny,j

∂η
=

ηy

2∆η
(3ψi,ny − 4ψi,ny−1 + ψi,ny−2)

4. Axis of symmetry.

ωi,1 = 0 (5.54)
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There are a total of (nx×ny) equations in 5.50 and (nx− 2)× (ny− 2) unknowns

ωi,j where i = 2, . . . , nx−1 and j = 2, . . . , ny−1. nx and ny are the total number

of grid points in the x and y directions, respectively. Equation 5.50 can be put in

a matrix form A · x = b. The stiffness matrix A is sparse and banded with equal

left and right bandwidths of (nx + 1). It holds the entries for the coefficients of

the unknown values (ω) and has a dimension of (nx× ny) rows by (m1 + m2 + 1)

columns. The coefficients are stored as follows:

1. The diagonal elements are stored in A(1 : n,m1 + 1), where n = nx× ny.

2. The subdiagonal elements are stored in A(j : n, 1 : m1), j > 1 according to

the number of elements on each subdiagonal.

3. The superdiagonal elements are stored in A(1 :j,m1+2 : m1+m2+1),

j < n according to the number of elements on each superdiagonal.

The inner points coefficients of the computational grid are stored first. The bound-

ary points are stored next. The rows corresponding to the boundary points only

have one nonzero entry equal to unity.

The finite difference of the VTE (Eq. 5.50) written in a generalized form is:

ai,j ωi+1,j + bi,j ωi−1,j + ci,j ωi,j+1 + di,j ωi,j−1 + ei,j ωi,j = (∇× F)i,j (5.55)

with

ai,j =−
(

ν
ξ2
x

(∆ξ)2

)

bi,j =−
(

ν
ξ2
x

(∆ξ)2

)

ci,j =− ν

(
ηyy

2∆η
+

η2
y

(∆η)2

)

di,j =− ν

(
− ηyy

2∆η
+

η2
y

(∆η)2

)

ei,j = 2 ν

(
ξ2
x

(∆ξ)2
+

η2
y

(∆η)2

)

(5.56)
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and

(∇× F)i,j =
ξx

2∆ξ
F(y)i+1,j − ξx

2∆ξ
F(y)i−1,j − ηy

2∆η
F(y)i,j+1 +

ηy

2∆η
F(y)i,j−1 (5.57)

For illustration let the grid be a 5×5 rectangular grid. The equations for the inner

grid points are:

a2,2 ω3,2+ b2,2 ω1,2+ c2,2 ω2,3+ d2,2 ω2,1+ e2,2 ω2,2 = −(∇× F)2,2

a3,2 ω4,2+ b3,2 ω2,2+ c3,2 ω3,3+ d3,2 ω3,1+ e3,2 ω3,2 = −(∇× F)3,2

a4,2 ω5,2+ b4,2 ω3,2+ c4,2 ω4,3+ d4,2 ω4,1+ e4,2 ω4,2 = −(∇× F)4,2

a2,3 ω3,3+ b2,3 ω1,3+ c2,3 ω2,4+ d2,3 ω2,2+ e2,3 ω2,3 = −(∇× F)2,3

a3,3 ω4,3+ b3,3 ω2,3+ c3,3 ω3,4+ d3,3 ω3,2+ e3,3 ω3,3 = −(∇× F)3,3

a4,3 ω5,3+ b4,3 ω3,3+ c4,3 ω4,4+ d4,3 ω4,2+ e4,3 ω4,3 = −(∇× F)4,3

...

Then the coefficients of ω of the inner grid points are stored in the stiffness matrix

A, while ∇× F is stored in the right hand side as vector b such that:




e2,2 a2,2 0 0 c2,2 0 0 0 0 0 · · ·
b3,2 e3,2 a3,2 0 0 c3,2 0 0 0 0 · · ·
0 b4,2 e4,2 a4,2 0 0 c4,2 0 0 0 · · ·
0 0 b5,2 e5,2 0 0 0 c5,2 0 0 · · ·

d2,3 0 0 0 e2,3 a2,3 0 0 c2,3 0 · · ·
0 d3,3 0 0 b3,3 e3,3 a3,3 0 0 c3,3 · · ·
...

...
...

...
...

...
...

...
...

... · · ·







ω2,2

ω3,2

ω4,2

ω2,3

ω3,3

ω4,3

...




= −∇× F

where

−∇× F =




−(∇× F)2,2

−(∇× F)3,2

−(∇× F)4,2

−(∇× F)2,3

−(∇× F)3,3

−(∇× F)4,3

...



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Then we have to put in the coefficients for the boundary points whose values are

all equal to unity so that:

A · ω = −∇× F (5.58)

where

A =




· · · ...
...

...
...

...
...

...
...

...
...

... · · ·
· · · 1 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 1 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 b2,2 e2,2 a2,2 0 0 c2,2 0 0 0 · · ·
· · · 0 0 0 b3,2 e3,2 a3,2 0 0 0 c3,2 0 · · ·
· · · 0 0 0 0 b4,2 e4,2 a4,2 0 0 0 c4,2 · · ·
· · · 0 0 0 0 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 d2,3 0 0 0 b2,3 e2,3 a2,3 0 · · ·
· · · 0 0 0 0 d3,3 0 0 0 b3,3 e3,3 a3,3 · · ·
· · · 0 0 0 0 0 d4,3 0 0 0 b4,3 e4,3 · · ·
· · · ...

...
...

...
...

...
...

...
...

...
... · · ·




(5.59)

ω =




...

ω4,1

ω5,1

ω1,2

ω2,2

ω3,2

ω4,2

ω5,2

ω1,3

ω2,3

ω3,3

ω4,3

...




−∇× F =




...

−(∇× F)4,1

−(∇× F)5,1

−(∇× F)1,2

−(∇× F)2,2

−(∇× F)3,2

−(∇× F)4,2

−(∇× F)5,2

−(∇× F)1,3

−(∇× F)2,3

−(∇× F)3,3

−(∇× F)4,3

...




(5.60)
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Note, in this section only, that the ω’s elements in bold are the boundary points.

We can store the stiffness matrix A compactly by taking the diagonal along

with the (nx+1) subdiagonal and superdiagonal, and tilt them 45◦ clockwise. The

resulting matrix dimension is (nx× nx) rows by (2 nx + 1) columns:

Acompact =




0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

d2,2 0 0 0 b2,2 e2,2 a2,2 0 0 c2,2

d3,2 0 0 0 b3,2 e3,2 a3,2 0 0 c3,2

d4,2 0 0 0 b4,2 e4,2 a4,2 0 0 c4,2

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

d2,3 0 0 0 b2,3 e2,3 a2,3 0 0 c2,3

d3,3 0 0 0 b3,3 e3,3 a3,3 0 0 c3,3

d4,3 0 0 0 b4,3 e4,3 a4,3 0 0 c4,3

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

d2,4 0 0 0 b2,4 e2,4 a2,4 0 0 c2,4

d3,4 0 0 0 b3,4 e3,4 a3,4 0 0 c3,4

d2,4 0 0 0 b2,4 e2,4 a2,4 0 0 c2,4

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0




Once the compact form of matrix A is established, LU decomposition is per-

formed. Since the LU decomposition of A produces additional nonzero fill-ins,

it cannot be stored as compactly as A itself [29]. A subroutine from Numerical
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Recipes provides a storage scheme that returns the upper triangular matrix in the

space that was previously occupied by A with the diagonal elements of A located

in the first column of the storage. The lower triangular matrix is placed into a

separate compact matrix of size N ×m1. Pivoting is exercised to avoid instability

caused by divisions by small numbers. Since Crout’s method of LU decomposition

is employed, only partial pivoting (interchanging rows only) can be efficiently im-

plemented [29]. In essence, the LU decomposition is not done on matrix A itself

but rather the rowwise permutation of A.

5.1.2 Boundary Points

The boundary points are known quantities. Because of this their coefficients are

unity in the stiffness matrix as explained in the numerical calculation chapter.

5.1.3 Right Hand Side Vector Formation

The right hand side vector holds the known quantities, which is the forcing function

and the boundary conditions in this case. By storing the boundary conditions in

the right hand side vector, it enables us to set the boundary points values to unity

in the stiffness matrix as mentioned above.

The stream function can be solved by the same method as the vorticity. Pois-

son’s equation in the transformed domain is:

ξ2
x

∂2ψ

∂x2
+ ηyy

∂ψ

∂η
+ η2

y

∂2ψ

∂y2
= −ω (5.61)

The finite difference form is:

ξ2
x

ψi+1,j − 2ψi,j + ψi−1,j

(∆ξ)2
+ ηyy

ψi,j+1 − ψi,j−1

2∆η

η2
y

ψi,j+1 − 2ψi,j + ψi,j−1

(∆η)2
= −ωi,j

(5.62)

Placing the unknown values on the left hand side and the known values on the
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right hand side:

(
ξ2
x

(∆ξ)2

)
ψi+1,j +

(
ξ2
x

(∆ξ)2

)
ψi−1,j +

(
ηyy

2∆η
+

η2
y

(∆η2)2

)
ψi,j+1+

(
− ηyy

2∆η
+

η2
y

(∆η2)2

)
ψi,j−1 − 2

(
ξ2
x

(∆ξ)2
+

η2
y

(∆η)2

)
ψi,j = −ωi,j

(5.63)

The coefficients for the stiffness matrix are then:

ai,j =

(
ξ2
x

(∆ξ)2

)

bi,j =

(
ξ2
x

(∆ξ)2

)

ci,j =

(
ηyy

2∆η
+

η2
y

(∆η2)2

)

di,j =

(
− ηyy

2∆η
+

η2
y

(∆η2)2

)

ei,j =− 2

(
ξ2
x

(∆ξ)2
+

η2
y

(∆η)2

)

Fi,j =− ωi,j

(5.64)

The LU decomposition of the compact stiffness matrix and the forward and

backward substitutions are performed in the same manner as explained in the VTE

solution section. Once the stream function is computed, the axial and transverse

acoustic streaming velocities are calculated by:

u2 =
∂ψ

∂y
= ηy

∂ψ

∂η
= ηy

ψi,j+1 − ψi,j−1

2∆η

w2 =− ∂ψ

∂x
= −ξx

∂ψ

∂η
= ηy

ψi+1,j − ψi−1,j

2∆ξ

(5.65)

with boundary conditions:

u2, w2 = 0 on tube ends and at the wall

w2 = 0 on the axis of symmetry

∂u2

∂y
= 0 on the axis of symmetry

(5.66)
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5.2 Under-Relaxation

The calculation steps as explained thus far, are as follows:

1. Calculate the vorticity ω, using the VTE with first order acoustic velocities

as the driving force.

2. Knowing the values of ω, calculate the stream function ψ by solving Poisson’s

equation.

3. Calculate the axial and transverse acoustic streaming velocities by taking the

y and x derivatives of ψ.

It was found that if these steps were performed just one time to calculate the

streaming velocities, the results will be incorrect. Steps 1 through 3 have to be

executed many times until the solution converges. And in order to reach conver-

gence, an under-relaxation method has to be utilized when calculating ψ to prevent

divergence [40]. This is because for large sets of linear equations, roundoff errors

can accumulate and grow to the extent that the matrix is close to singular [29].

Therefore to restore the full machine precision, iterative improvement (in this case

the under-relaxation method) can be done to the solution. For each iteration, an

“intermediate” step is performed between step 2 and 3 such that:

ψn+1 = εψ + (1− ε)ψn (5.67)

where ψn+1 is the “under-relaxed” stream function, ψ is the “newly” calculated

value of the stream function (from step 2), and ψn is the value of stream function

from the previous iteration. The new under-relaxed value of the stream function

ψn+1 then has to saved as the “old” value so that it can be used as ψn for the

next iteration. ε is the relaxation factor where 0 ≤ ε ≤ 1. Hence ψn+1 is the

weighted average of the old (ψn) and the new (ψ) solutions. It was found that for

this research the value of ε has to be sufficiently small for the solution to converge

correctly. A typical value of ε used in this research is 10−4. This means that the

iteration number is large and if the size of the computational grid is large, the

calculation time can be long.
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5.3 Outline of Computation

The numerical computation consists of the following steps:

1. Define the physical parameters to be used in the calculation such as the

dimensions of the simulated device, the speed of sound, viscosity, driving

velocity amplitude, etc.

2. Make the physical grid and the computational grid.

3. Define the metrics of transformation.

4. Calculate the forcing function from the first order velocities.

5. Store the coefficients of ω of the inner grid points in the compact stiffness

matrix.

6. Store the boundary values in the compact stiffness matrix.

7. Perform LU decomposition for the banded matrix.

8. Solve the set of algebraic equations for the VTE through back substitution.

9. Store the newly calculated values of ω to be used as the forcing function for

Poisson’s equation

10. Store the coefficients of ψ of the inner grid points in the compact stiffness

matrix.

11. Store the boundary values in the compact stiffness matrix.

12. Perform LU decomposition for the banded matrix.

13. Solve the set of algebraic equations for Poisson’s equation through back sub-

stitution.

14. Perform the under-relaxation process on the stream function ψ using the

newly calculated and the old (from previous iteration) values of ψ.

15. Calculate the acoustic streaming velocity by taking the derivative of the

stream function with respect to x and y.
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16. Repeat steps 5 through 15 until the solution converges.



Chapter 6

Analytical And Numerical

Acoustic Streaming Comparison

In the following sections, the analytical and numerical streaming velocities are

going to be compared. First the forcing functions computed by the three groups

(Rayleigh/Nyborg [27], Hamilton et al. [11] and Bailliet et al. [3]) will be exam-

ined. Then the analytical streaming velocities from each group will be evaluated.

After that the analytical and numerical streaming velocities are going to be com-

pared. Finally the numerical streaming velocities resulting from the different forc-

ing functions (i.e. from the different groups) will be investigated. All of the results

presented in this chapter were calculated using the parameters given in Chapter 3.

6.1 Forcing Functions And Their Gradients

Comparison

Figure 6.1 shows the x component of the forcing function for all three groups. Away

from the boundary, the Hamilton et al. and Bailliet et al. forcing functions are very

close in amplitude while Rayleigh/Nyborg’s has a slightly lower amplitude. It is

0.065 kg/m2s2 (3.2%) lower than Hamilton et al. and 0.06 kg/m2s2 (2.94%) lower

than Bailliet et al. Their differences are more pronounced in the area near the

wall as seen in Fig. 6.2. The Hamilton et al. forcing function has the highest peak

near the wall of 2.357 kg/m2s2 compared to the two other groups. The highest
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amplitude in the area near the wall for the Rayleigh/Nyborg forcing function is

2.281 kg/m2s2 (3.23% lower than Hamilton et al.) and for Bailliet et al. it is 2.148

kg/m2s2 (8.87% lower than Hamilton et al.). The forcing function amplitudes on

the axis and near the boundary are tabulated on Table 6.1.

Research group On axis (kg/m2s2) Positive peak near
boundary (kg/m2s2)

Rayleigh/Nyborg 1.975 2.281
Hamilton et al. 2.039 2.357
Bailliet et al. 2.034 2.148

Table 6.1. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. forcing function on the
axis and near the boundary for a 21× 81 grid.

y (m)

F x
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Bailliet et al.

Rayleigh/Nyborg, Hamilton , and Bailliet
x component Fx of the forcing function

axis wall

et al.et al.

Figure 6.1. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. forcing functions at
an antinode along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.2. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. forcing functions at
an antinode along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Since in the time-averaged VTE the gradient of the forcing function is the

driving force of the equation, it is essential that one observes the gradient of the

forcing function along with the forcing function itself. For this reason, the gradients

of the forcing functions of the three groups are plotted in Figs. 6.3 and 6.4. In

Fig. 6.4, it can be observed that away from the wall, the differences between the

gradients of the forcing functions are not significant while in the area near the wall,

the differences are more considerable. Notice that the difference in the gradients

between Rayleigh/Nyborg and the Hamilton et al. is significantly smaller than

the difference between the two groups’ gradients compared to the Bailliet et al.’s

gradients shown in Fig. 6.4.
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x/
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Bailliet et al.

boundary

Gradient of the axial forcing function ∂Fx / ∂y

axis wall

Figure 6.3. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. gradients of the forcing
functions along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.4. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. gradients of the forcing
functions along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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6.2 Analytical Streaming Comparison

Figure 6.5 shows the analytical streaming velocities of all three groups at an anti-

node. Towards the axis, the Rayleigh/Nyborg and Hamilton et al. analytical

streaming velocities are fairly close to each other. Hamilton et al.’s streaming

velocity is 7.5× 10−6 m/s (2.3%) higher than Rayleigh/Nyborg’s. The Bailliet et

al. analytical streaming velocity is noticeably higher than the other two. Com-

pared to Rayleigh/Nyborg, Bailliet et al.’s u2 is 2.63 × 10−5 m/s (7.7%) higher.

Compared to Hamilton et al., it is 1.89 × 10−5 m/s (5.6%) higher. In the area

next to the wall, it can be observed from Fig. 6.6 that the Rayleigh/Nyborg and

Hamilton et al. streaming velocities agree well with each other. The values of their

positive peaks only differ by 3.3 × 10−6 m/s (5.1%). Their negative peaks differ

by 3.1 × 10−5 m/s (4.7%). The Bailliet et al.’s positive peak is lower than both

Rayleigh/Nyborg and Hamilton et al. by 4.8× 10−5 m/s (74%), while its negative

peak is higher by 5.4× 10−5 m/s (8.5%).

Research group On axis (m/s) Positive peak
(m/s)

Negative peak
(m/s)

Rayleigh/Nyborg 3.14× 10−4 6.12× 10−5 6.18× 10−4

Hamilton et al. 3.21× 10−4 6.45× 10−5 6.49× 10−4

Bailliet et al. 3.41× 10−4 1.67× 10−5 7.04× 10−4

Table 6.2. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. analytical streaming
velocities on the axis and near the boundary for a 21× 81 grid.
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Figure 6.5. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. analytical streaming
velocities at an antinode along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.6. Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. analytical streaming
velocities at an antinode along y direction. l = λ/2 = 0.553 m, r = 0.0232 m.
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6.3 Analytical vs. Numerical Streaming: Paral-

lel Plate Case

6.3.1 Rayleigh/Nyborg

Figures 6.7 through 6.12 show the numerical streaming velocity at an antinode

calculated using the Rayleigh/Nyborg forcing function. In Figs. 6.7 and 6.8 the

calculation was made using 21× 31 grid points, in Figs. 6.9 and 6.10 the grid was

21 × 61, and 21 × 81 in Figs. 6.11 and 6.12. It can be observed from Figs. 6.7,

6.9, and 6.11 that away from the boundary the numerical streaming velocity is not

significantly affected by the number of grid points. But Figs. 6.8, 6.10, and 6.12

show that in the boundary layer the number of grid points used in the calculation

affects the accuracy of the results. The finer the grid spacing is near the boundary,

the closer the numerical results are to the analytical values. For this calculation,

21× 81 grid points give velocity results which agree very well with the analytical

velocities.
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Figure 6.7. Numerical streaming velocity calculated using the Rayleigh/Nyborg forcing
function at an antinode along y direction with 21× 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.8. Numerical streaming velocity calculated using the Rayleigh/Nyborg forcing
function at an antinode along y direction with 21× 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.9. Numerical streaming velocity calculated using the Rayleigh/Nyborg forcing
function at an antinode along y direction with 21× 61 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.10. Numerical streaming velocity calculated using the Rayleigh/Nyborg forc-
ing function at an antinode along y direction with 21× 61 grid points. l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 6.11. Numerical streaming velocity calculated using the Rayleigh/Nyborg forc-
ing function at an antinode along y direction with 21× 81 grid points. l = λ/2 = 0.553
m, r = 0.0232 m.
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Figure 6.12. Numerical streaming velocity calculated using the Rayleigh/Nyborg forc-
ing function at an antinode along y direction with 21× 81 grid points. l = λ/2 = 0.553
m, r = 0.0232 m.
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6.3.2 Hamilton et al.

In Figs. 6.13 through 6.18 the numerical streaming velocities calculated using the

Hamilton et al. forcing function are presented. The calculation was performed

using three grid sizes. Figures 6.13 and 6.14 are the results with 21 × 31 grid

points, Figs. 6.15 and 6.16 with 21× 61 grid points, and Figs. 6.17 and 6.18 with

21× 81 grid points. As in the Rayleigh/Nyborg’s case, the size of the grid makes

a difference when it comes to the streaming velocity near the boundary. A 21× 81

grid will suffice for this calculation. The numerical velocity agrees well with the

analytical velocity as observed in Figs. 6.17 and 6.18.
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Figure 6.13. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.14. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.15. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 61 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.16. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 61 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.17. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 81 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.18. Numerical streaming velocity calculated using Hamilton et al. forcing
function at an antinode along y direction with 21× 81 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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6.3.3 Bailliet et al.

The numerical streaming velocities calculated using the Bailliet et al. forcing func-

tion are presented in Figs. 6.19 through 6.24. Figures 6.19 and 6.20 are the results

with 21 × 31 grid points, Figs. 6.21 and 6.22 with 21 × 61 grid points, and Figs.

6.23 and 6.24 with 21 × 81 grid points. From Figs. 6.19, 6.21, and 6.23 it can be

observed that the numerical streaming velocity is higher than the analytical value.

The difference is especially substantial in the boundary layer. On the axis, the

difference between the numerical and analytical streaming velocities for 21 × 31,

21×61, and 21×81 grid points are 1.303×10−5 m/s (3.7 %), 1.833×10−5 m/s (5.1

%), and 1.896 × 10−5 m/s (5.3 %) respectively. The difference in the streaming

velocity amplitude near the boundary (the positive peak) is 2.93 × 10−4 m/s (97

%), 2.88× 10−4 m/s (94 %), and 2.88× 10−4 m/s (95 %) for 21× 31, 21× 61, and

21×81 grid points respectively. For the negative peak, the difference is 2.23×10−5

m/s (3.1 %), 4.14 × 10−5 m/s (5.6 %), and 4.26 × 10−5 m/s (5.7 %) for 21 × 31,

21× 61, and 21× 81 grid points respectively.
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Figure 6.19. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.20. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 31 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.21. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 61 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.22. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 61 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.23. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 81 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.24. Numerical streaming velocity calculated using Bailliet et al. forcing func-
tion at an antinode along y direction with 21 × 81 grid points. l = λ/2 = 0.553 m,
r = 0.0232 m.
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6.3.4 Numerical Streaming Velocity Comparison

The numerical streaming velocities calculated using the Rayleigh/Nyborg vs. the

Hamilton et al. vs. the Bailliet et al. forcing functions will be compared in this

section. Figures 6.25 and 6.26 show the streaming velocities with the 21 × 31

grid, Figs. 6.27 and 6.28 show the streaming velocities with the 21× 61 grid, and

Figs. 6.29 and 6.30 show the streaming velocities with the 21×81 grid. The calcu-

lated streaming velocities with the Rayleigh/Nyborg and Hamilton et al. forcing

functions agree very well with each other. This is true for the streaming away from

the boundary as well as near the boundary. It can be observed from those figures

that the more points the grid has in the y direction, the better the agreement in

the results. The streaming velocity calculated with the Bailliet et al. forcing func-

tion is significantly higher than the other two group. On the axis it is 3.82× 10−5

m/s (11%) higher than the Rayleigh/Nyborg and 5.97 × 10−5 m/s (17%) higher

than the Hamilton et al. velocities (based on the 21 × 81 grid). Near the bound-

ary the difference is substantially larger, which is about 1 × 10−4 m/s (13%) on

the negative peak and 2.45× 10−4 m/s (80%) on the positive peak (based on the

21× 81 grid) higher than the Rayleigh/Nyborg. Compared to the Hamilton et al.

it is about 1.4× 10−4 m/s (18%) on the negative peak and 2.5× 10−4 m/s (81%)

on the positive peak (based on the 21× 81 grid) higher. The streaming velocities

on the axis and near the boundary (positive and negative peaks) are tabulated on

Table 6.3 for the 21× 31 grid, Table 6.4 for the 21× 61 grid, and Table 6.5 for the

21× 81 grid.

Research group On axis u2 (m/s) Positive peak near
boundary (m/s)

Negative peak near
boundary (m/s)

Rayleigh/Nyborg 3.36× 10−4 2.84× 10−5 −6.9× 10−4

Hamilton et al. 3.05× 10−4 4.1× 10−5 −6.3× 10−4

Bailliet et al. 3.54× 10−4 3.04× 10−4 −7.2× 10−4

Table 6.3. Numerical streaming velocities at various locations along the cross-sectional
direction for 21× 31 grid points.
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Research group On axis u2 (m/s) Positive peak near
boundary (m/s)

Negative peak near
boundary (m/s)

Rayleigh/Nyborg 3.23× 10−4 5.64× 10−5 −6.6× 10−4

Hamilton et al. 3× 10−4 5.46× 10−5 −6.1× 10−4

Bailliet et al. 3.59× 10−4 3.05× 10−4 −7.5× 10−4

Table 6.4. Numerical streaming velocities at various locations along the cross-sectional
direction for 21× 61 grid points.

Research group On axis u2 (m/s) Positive peak near
boundary (m/s)

Negative peak near
boundary (m/s)

Rayleigh/Nyborg 3.21× 10−4 6.02× 10−5 −6.5× 10−4

Hamilton et al. 3× 10−4 5.67× 10−5 −6.1× 10−4

Bailliet et al. 3.59× 10−4 3.05× 10−4 −7.5× 10−4

Table 6.5. Numerical streaming velocities at various locations along the cross-sectional
direction for 21× 81 grid points.
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Figure 6.25. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 31 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.26. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 31 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.27. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 61 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.28. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 61 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.29. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 81 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.30. Numerical streaming velocities calculated using the Rayleigh/ Nyborg,
Hamilton et al., and Bailliet et al. forcing functions at an antinode along y direction with
21× 81 grid points. l = λ/2 = 0.553 m, r = 0.0232 m.
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6.4 Analytical vs. Numerical Streaming: Cylin-

drical Tube Case

6.4.1 Bailliet et al. vs. Schuster and Matz

For the cylindrical tube case, Bailliet et al. did not present a closed form solution

for the streaming velocity in their paper. In another paper, Hamilton et al. [12]

also presented a solution for streaming in a cylindrical tube. Like Bailliet et al.’s

solution, Hamilton et al.’s solution involves the integration of Bessel functions. As

a consequence, both groups did some numerical integrations to approximate the

streaming velocity for a cylindrical tube. The streaming velocity in a cylindrical

tube solution derived by Hamilton et al. [12] is presented in Appendix A. Due

to the lack of a closed form solution for streaming in a cylindrical tube, the VTE

numerical streaming of Chapter 5 is compared to the analytical streaming in a

cylindrical tube derived by Schuster and Matz. The expression for streaming in a

cylindrical tube derived by Schuster and Matz [37] is:

u2 = −
(

3

8

u2
0

c0

)(
1− 2

r2

r2
0

)
sin 2kx (6.1)

Figures 6.31 through 6.36 show the VTE numerical streaming velocities cal-

culated using the Bailliet et al. forcing function for a cylindrical tube and the

analytical streaming velocity obtained by Schuster and Matz. On the axis, the

numerical streaming velocity is 7.9 × 10−5 m/s (12%) higher than the analytical

streaming velocity (based on the 21 × 81 grid). Near the boundary, Schuster and

Matz’s calculation does not show the inner streaming unlike the calculated nu-

merical streaming. Schuster and Matz’s negative peak value near the boundary is

1× 10−4 m/s (17%) lower than Bailliet et al.’s value (based on the 21× 81 grid).

The streaming velocities on the axis and the negative peak are tabulated on Table

6.6 for the 21×31 grid, Table 6.7 for the 21×61 grid, and Table 6.8 for the 21×81

grid.
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Research group On axis u2 (m/s) Negative peak near boundary
(m/s)

Bailliet et al. 6.9× 10−4 −7× 10−4

Schuster and Matz 6.3× 10−4 −6.24× 10−4

Table 6.6. Bailliet et al. numerical vs. Schuster and Matz analytical streaming velocities
on the axis and near the boundary for 21× 31 grid points.

Research group On axis u2 (m/s) Negative peak near boundary
(m/s)

Bailliet et al. 7× 10−4 −7.3× 10−4

Schuster and Matz 6.3× 10−4 −6.3× 10−4

Table 6.7. Bailliet et al. numerical vs. Schuster and Matz analytical streaming velocities
on the axis and near the boundary for 21× 61 grid points.

Research group On axis u2 (m/s) Negative peak near boundary
(m/s)

Bailliet et al. 7.4× 10−4 −7.7× 10−4

Schuster and Matz 6.6× 10−4 −6.6× 10−4

Table 6.8. Bailliet et al. numerical vs. Schuster and Matz analytical streaming velocities
on the axis and near the boundary for 21× 81 grid points.
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Figure 6.31. Bailliet et al. numerical streaming velocity vs. the Schuster and Matz
analytical streaming velocity at an antinode along y direction with 21× 31 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.32. Bailliet et al. numerical streaming velocity vs. the Schuster and Matz
analytical streaming velocity at an antinode along y direction with 21× 31 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.33. Bailliet et al. numerical streaming velocity vs. the Schuster and Matz
analytical streaming velocity at an antinode along y direction with 21× 61 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.34. Bailliet et al. numerical streaming velocity vs. the Schuster and Matz
analytical streaming velocity at an antinode along y direction with 21× 61 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.35. Bailliet et al. numerical streaming velocity vs. the Schuster and Matz
analytical streaming velocity at an antinode along y direction with 21× 81 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.36. Bailliet et al. numerical streaming velocity vs. the Schuster & Matz
analytical streaming velocity at an antinode along y direction with 21× 81 grid points.
l = λ/2 = 0.553 m, r = 0.0232 m.
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6.5 Acoustic streaming numerical velocities vec-

tor plots

Figures 6.37 and 6.38 show the acoustic streaming velocity vector plots from the

Rayleigh/Nyborg forcing function calculation. Note that in this section the chan-

nel dimension is not to scale. Figures 6.37, 6.39, 6.41, and 6.43 show the upper

half of the channel for the entire length (one half of a wavelength) of the channel.

Figure 6.38, 6.40, and 6.42, and 6.44 show the region near the top wall where inner

streaming occurs in the boundary layer. Figures 6.39 and 6.40 show the acoustic

streaming velocities vector plots from the Hamilton et al. forcing function calcu-

lation and Figs. 6.41 and 6.42 from the Bailliet et al. forcing function calculation.

Figures 6.37 through 6.42 are for the parallel plate cases. The cylindrical tube

cases are shown in Figs. 6.43 and 6.44.

Comparing the inner streaming cells from Figs. 6.38, 6.40 and 6.42, it can be

observed that the inner streaming cells are a little bit larger (in the y direction)

for the Bailliet et al. than Rayleigh/Nyborg and Hamilton et al. cases. It appears

that the Bailliet et al.’s streaming cells are about twice as thick (in the cross

sectional direction) as the Rayleigh/Nyborg and Hamilton et al.’s. This can be

confirmed from Fig. 6.30. The zero crossing of the Bailliet et al.’s axial streaming

velocity is at about y = 2.302 cm from the axis of symmetry, while the zero

crossing of Rayleigh/Nyborg and Hamilton et al.’s axial streaming velocity is at

about y = 2.312 cm. The zero crossing marks the change in the direction (or

the “turn-around” point) of the streaming velocity. It is the location where the

inner streaming ends and the outer streaming begins. Figure 6.44 shows that the

cylindrical tube case also has inner streaming cells.
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Figure 6.37. Rayleigh/Nyborg streaming cells. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.38. Rayleigh/Nyborg streaming cells. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.39. Hamilton et al. streaming cells. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.40. Hamilton et al. streaming cells. l = λ/2 = 0.553 m, r = 0.0232 m.
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Figure 6.41. Bailliet et al. streaming cells in a channel. l = λ/2 = 0.553 m, r = 0.0232
m.
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Figure 6.42. Bailliet et al. streaming cells in a channel. l = λ/2 = 0.553 m, r = 0.0232
m.



127

x (m)

y(
m

)

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.00057
0.00049
0.00041
0.00033
0.00024
0.00016
0.00008
0.00000

-0.00008
-0.00016
-0.00024
-0.00033
-0.00041
-0.00049
-0.00057

axis of symmetry

top wall
rightwalllef

tw
all

Acoustic streaming velocity pattern in cylindrical tube
calculated using Bailliet forcing function

with 21 x 81 grid
et al.

Figure 6.43. Bailliet et al. streaming cells in a cylindrical tube. l = λ/2 = 0.553 m,
r = 0.0232 m.
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Figure 6.44. Bailliet et al. streaming cells in a cylindrical tube. l = λ/2 = 0.553 m,
r = 0.0232 m.
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6.6 Results Summary

Let us summarize the results presented in the previous sections.

1. Forcing function.

The forcing functions derived by Rayleigh/Nyborg, Hamilton et al., and Bail-

liet et al. are very close to each other in amplitudes with discrepancies that

are more pronounced near the boundary.

2. Analytical streaming velocities.

Similar to the forcing functions, the analytical streaming velocities calcu-

lated by Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. are reason-

ably close to each other in amplitudes with the difference being more pro-

nounced near the boundary. The analytical streaming velocities calculated

by Rayleigh/Nyborg and Hamilton et al. are closer to each other compared

to Bailliet et al.’s streaming velocities.

3. Analytical vs. numerical streaming velocities.

The more points there are near the boundary (in the boundary layer region),

the more the numerical results agree with the analytical results. In the case

of the calculation using the Rayleigh/Nyborg and Hamilton et al. forcing

functions, the numerical results agree very well with the analytical results

when the finest grid was used. In the case of Bailliet et al., the results agree

fairly well except in the region of inner streaming (right next to the bound-

ary). For the cylindrical tube case, the numerical results were compared

to the analytical results derived by Schuster and Matz. The discrepancies

in the results are considerable although the correct streaming pattern was

attained from the numerical calculation. Schuster and Matz’s solution does

not include the inner streaming cell, therefore no comparison can be made

for the inner streaming.

4. Numerical streaming velocities.

The numerical streaming velocities resulting from using the Rayleigh/Nyborg

and Hamilton et al. forcing functions agree well with each other both in

the regions away from and in the vicinity of the boundary. The numerical
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streaming velocities calculated using the Bailliet et al. forcing function is

slightly higher than the other two away from the boundary. However, they

are significantly higher in amplitude in the inner streaming region.

5. Inner and outer streaming.

From the streaming velocity vector plots, it can be observed that the inner

streaming due to using the Bailliet et al. forcing function is about twice as

thick in the cross sectional direction as those for the Rayleigh/Nyborg and

Hamilton et al. forcing functions.



Chapter 7

Conclusions and Future Work

Suggestions

7.1 Review and Discussion

Rayleigh/Nyborg, Hamilton et al., and Bailliet et al. derived the first order acoustic

velocities that have been used to calculate the forcing functions that drive the vor-

ticity transport equation. They all started the calculation with the successive

approximation method, but use different assumptions in the calculations. The

different assumptions yield similar yet somewhat different forcing functions. The

overall features of the forcing functions are alike, but the details are dissimilar.

Recall that the acoustic streaming generated by a standing wave is caused by the

shear forces in the viscous boundary layer along the boundaries. That is why the

forcing function is the greatest in the region near the boundary as was discussed in

Chapter 3. This particular feature is very important in the acoustic streaming due

to the origin of the streaming itself. The differences in the forcing functions (espe-

cially in the boundary layer region) give way to different streaming velocities. It is

explicable because as mentioned, the forcing functions are the ones that drive the

VTE. Hence different forcing functions will result in different streaming velocities.

Another way to look at it is, acoustic streaming is a second order nonlinear effect

generated by sound waves. So the first order acoustic velocities characteristics will

determine the resulting streaming velocities. Differences in the acoustic velocities

can yield dissimilar streaming velocities. This explains why Rayleigh/Nyborg’s
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streaming velocities are more in agreement with the Hamilton et al. streaming

velocities than with the Bailliet et al. streaming velocities. The Rayleigh/Nyborg

forcing function is closer in value to the Hamilton et al. forcing function compared

to the Bailliet et al. forcing function.

In the case of a cylindrical tube, the difference in the streaming velocities

calculated using the Bailliet et al. and the analytical values derived by Schuster

and Matz are more significant than for the parallel plate case. No explanation can

be offered at this time on the cause of their discrepancies.

It is noteworthy that the correct vorticity boundary condition is critical for the

calculation. Kamakura et al. [19] set their vorticity boundary condition to be zero.

It is not applicable in this research. Setting the vorticity boundary condition to zero

yielded the correct overall streaming pattern but the wrong amplitude (which is

several orders of magnitude higher). Care must be taken when setting the vorticity

boundary condition as different streaming types may require different boundary

conditions in the simulation. Also in Kamakura et al.’s calculation, a time-stepping

method is used to converge to the solution. It is also not applicable in this research.

A direct method is used instead, iterated until the solution converges.

7.2 Conclusions

Typical acoustic streaming calculations using a DNS method require considerable

computing time and resources [1, 4]. Although the results are very detailed, the

long computing time can sometimes be a problem if results are needed fairly quickly

(such as in the early design stage). The current method requires a relatively short

computing time and it can be done on a single PC. The finest grid used in this

research is 21 × 81 grid points and it requires about 1 hour and 15 minutes of

computing time on a 2 GHz Intel Pentium 4, 512 RAM PC using an Absoft com-

piler. This reduces the amount of computing time significantly as DNS sometimes

requires a few days to finish the calculation on multiple processors. The resulting

numerical solutions agreed fairly well with the analytical solutions. This is proof

that this method is a valid method to be used as a tool in thermoacoustic design.

As long as one has a knowledge of the first order acoustic velocities inside a ther-

moacoustic device, then this method can be used to predict the Rayleigh streaming
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in that device.

The number of grid points near the boundary will determine the accuracy of the

resulting streaming velocities. The more grid points there are near the boundary,

the better the agreement is between the numerical and analytical results. A balance

must be made between the number of grid points (which means larger grid size) and

a reasonable computing time. After a certain point, adding more grid points will

not affect the numerical results anymore. The assumptions made in deriving the

analytical first order velocities are vital. Different assumptions can give different

details in the first order velocities. Even little discrepancies in the first order

velocities (i.e. the forcing functions) can result in a fairly significant difference in

the streaming velocities. When making a comparison, one has to keep in mind all

of the assumptions made in order to make a fair comparison.

Besides the forcing function, the other crucial aspect of the calculation is estab-

lishing the correct boundary conditions. Different types of streaming may require

different types of boundary conditions. For example, a zero vorticity boundary

condition worked for the Eckert streaming calculation performed by Kamakura et

al. But when the same boundary condition was applied to Rayleigh streaming cal-

culation, the results were incorrect in amplitude (although the correct streaming

pattern was obtainable).

In a recent paper, Hamilton et al. extended their analysis to include the effect

of heat conduction and the dependence of the fluid’s viscosity on temperature [12].

However they did not include the temperature gradient along the channel walls in

their model. They found that for a wide channel the thermal effects change the

streaming velocity by only a few percent. Their findings are in agreement with Rott

[33]. This means the exclusion of heat conduction and the viscosity dependence

on temperature in the current research’s model does not undermine the model’s

validity in making quick estimates of Rayleigh streaming in thermoacoustic devices.

7.3 Future Work

Although analytical results show that heat conduction and the dependence of vis-

cosity on temperature affect the acoustic streaming velocities only by a few percent

[12], they did not include the effect of the mean temperature gradient along the



133

channel wall. It is known and proven through experiment that the temperature

gradient along the resonator’s inner wall can have significant effect on the acoustic

streaming velocities. The streaming velocity profiles depart from the theoretical re-

sults for high streaming Reynolds number due to fluid inertia and the temperature

gradient [45]. The current method does not provide a way to include the effects

of temperature gradient or the fluid inertia. It will be interesting to see how the

numerical results vary with the inclusion of the thermal effects (heat conduction,

viscosity dependency on temperature, and temperature gradient along resonator’s

wall) and the fluid inertia.

When one wants to calculate the Rayleigh streaming inside thermoacoustic de-

vices, it is likely that the geometries may not be a straight parallel plate or a

cylindrical tube. In such cases, one will need the expression for the first order

velocities inside the devices. If no analytical expressions are available, a possible

approach is to use acoustics software such as SYSNOISE to numerically calcu-

late the first order velocity and use then use the SYSNOISE results to calculate

the forcing function. Modeling the geometries of a thermoacoustic device in SYS-

NOISE and doing the simulation to obtain the acoustic field inside the device is

an interesting project in its own. Then one may be able to predict the behavior of

acoustic streaming in any thermoacoustic device which can be modeled.

Another interesting research topic in acoustic streaming is the suppression of

Rayleigh streaming by using a small angle tapered tube. The geometry of the

tapered tube is relatively simple, and no analytical acoustic velocity expression

is available currently. If one is able to model the tapered tube in SYSNOISE

and obtain the values of the linear acoustic velocity inside the tube, by using the

present method then one can possibly see the effect of the angle of the tube on

acoustic streaming suppression.

The comparisons made have all been between the analytical and numerical

velocities. It would be beneficial if comparison could be made with experimental

data. This is especially crucial when analytical results are not available. The

analytical results for streaming velocities are very limited in terms of the type of

geometry used in the calculation. Usually the calculations have been performed

for a channel or a cylindrical tube. The calculation can be extremely complicated

when a more complex geometry is involved. Therefore experimental data will be
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very useful in benchmarking the method when it is utilized for geometries other

than a channel or a cylindrical tube.

It would also be interesting to see how the finite difference scheme affects the

results of the calculation. It may be possible to use other finite difference methods

to get a more accurate solution more quickly.



Appendix A

Acoustic Streaming In A Cylind-

rical Tube

A.1 Hamilton, Illinskii, and Zabolotskaya’s solu-

tion

The calculation domain used by Hamilton et al. [12] to calculate the acoustic

streaming in a cylindrical tube is as follows:

−z0 z0−z0

−r0

r0

r = 0
axis

wall

wall

wall

wall

Figure A.1. Hamilton et al. [12] calculation domain for streaming in a cylindrical tube.
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The x component of the Eulerian streaming velocity, ūz is:

ūz = ūM
z − Re

{
dũz0

dz
ũ∗z0Q5(r)

}
(A.1)

where

Q5(r) = − f1

2iω
Rρ(r)R

∗
z(r) (A.2)

and

ũz0(z) = v0

(
cosh αz

cosh αz0

− 1

)
(A.3)

α2 = −
(

1 + (γ − 1)fχ

1− fν

)
ω2

c2
0

(A.4)

f1 =
1− fν

1 + (γ − 1)fχ

(A.5)

fν,χ =
2J1(βν,χr0)

βν,χr0J0(βν,χr0)
(A.6)

βν,χ =
i− 1

δν,χ

(A.7)

δν,χ =

√
2ν

ω
(A.8)

δν,χ =

√
2χ

ω
(A.9)

χ =
κ0

ρ0cp

(A.10)

r0 is the radius of the tube, κ0 is the equilibrium thermal conductivity (it is 0 when

there is no heat conduction), ρ0 is the equilibrium density, cp is the specific heat

at constant pressure, ν is the equilibrium kinematic viscosity, and γ is the ratio of

specific heats.

ūM
z is the x component of the mass transport velocity:

ūM
z = ŪM

z (z, r) +
2

r0

[
2A3(z)

r2

r2
0

+ A1(z)

]
(A.11)

where

ŪM
z = Re

{
dũz0

dz
ũ∗z0[Q1(r) + Q2(r) + Q3(r) + Q5(r)] +

dũz0

dz
v∗0Q4(r)

}
(A.12)
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The functions A1(z) and A3(z) are determined by the condition that the motion

must vanish at the walls. A1 and A3 are:

A1(z) = −2Ψ(z, r0) +
r0

2
ŪM

z (z, r0) (A.13)

A3(z) = Ψ(z, r0)− r0

2
ŪM

z (z, r0) (A.14)

where

Ψ(z, r) = Re

{
dũz0

dz
ũ∗z0[P1(r) + P2(r) + P3(r) + P5(r)] +

dũz0

dz
v∗0P4(r)

}
(A.15)

and

Pi(r) =
1

r

∫ r

0

Qi(r
′) r′dr′ , 1 ≤ i ≤ 5 (A.16)

Qi(r) =

∫ r

0

Ti(r
′) dr′ , 1 ≤ i ≤ 4 (A.17)

T1(r) =
1

νr

∫ r

0

|Rz(r
′)|2 r′ dr′ (A.18)

T2(r) = −r0fν

4ν
Rr(r)R

∗
z(r) (A.19)

T3(r) = (γ − 1)
b r0f1f

∗
ν

4ν
RT (r)

J∗1 (βνr)

J∗1 (βνr0)
(A.20)

T4(r) = −(γ − 1)
f1

2νr

∫ r

0

RT (r′) r′dr′ (A.21)

The functions Rz(r), Rr(r), RT (r) and Rρ(r) are:

Rz(r) = 1− J0(βνr)

J0(βνr0)
(A.22)

Rr(r) =
r

r0

− J1(βνr)

J1(βνr0)
+

(γ − 1)(1− fν)fχ

[1 + (γ − 1)fχ]fν

×
(

r

r0

− J1(βχr)

J1(βχr0)

)
(A.23)

RT (r) = 1− J0(βχr)

J0(βχr0)
(A.24)

Rρ(r) = 1 + (γ − 1)
J0(βχr)

J0(βχr0)
(A.25)
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A.2 Bailliet, Gusev, Raspet, and Hiller solution

The analysis for a cylindrical tube was performed using polar coordinates, such

that η = r/R, where r is the radial direction and R is the radius of the tube. The

calculation domain used by Bailliet et al. [3] to calculate acoustic streaming in a

cylindrical tube is as follows:

x = 0 x = x0

η = −1

η = 1

η = 0
axis

wall

wall

wall

wall

Figure A.2. Bailliet et al. calculation domain for streaming in a cylindrical tube

The x component of the streaming velocity is:

〈u2〉 =
4

ρ0

(
η2 − 1

) ∫ 1

0

〈ρ1u1x〉 η dη

+
4R2

µ0

(η2 − 1)×
∫ 1

0

η

∫ η

−1

1

η′

∫ η′

0

∂x(ρ0

〈
u2

1x

〉
)η′′dη dη′dη′′

+
4R

ν0

(η2 − 1)

∫ 1

0

η

∫ η

−1

〈u1xu1η〉 dη dη′

− 4β

T0

(η2 − 1)

∫ 1

0

∫ η

−1

〈T1∂ηu1x〉 dη dη′

+
R2

µ0

∫ η

−1

1

η′

∫ η′

0

∂x(ρ0

〈
u2

1x

〉
)η′′dη′dη′′

+
R

ν0

∫ η

−1

〈u1xu1η〉 dη′ − β

T0

∫ η

−1

〈T1∂ηu1x〉 dη′

(A.26)
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The first order axial velocity u1x is:

u1x =
∂xp1

iωρ0

Fη (A.27)

where the acoustic pressure varies along x:

p1(x) =
p1(0)

2

(
e−ikx + eikx

)
(A.28)

p1(0) is the rms first order pressure. ω is the radial frequency, c0 is the speed

of sound, and γ is the ratio of specific heat. The complex wave number k =

ω/c0

√
[γ − (γ − 1)Ft]/F . The coefficients that describe the viscous and thermal

boundary layer effects are:

Fη = 1− J0(bη)

J0(b)
(A.29)

b =
(1 + i)R

δν

, δν =
2µ

ωρ
(A.30)

ρ1 =
γ − (γ − 1)Fηt

c2
0

p1 − ∂xT0

T0ω2
∂xp1

[
σFη − Fηt

σ − 1

]
(A.31)

T1 =
γ − 1

ρ0c2
0

T0Fηtp1 − ∂xT0

ρ0ω2
∂xp1

[
σFη − Fηt

σ − 1

]
(A.32)

Fηt = 1− J0(
√

σbη)

J0(
√

σb)
(A.33)

φ =
J1(bη)

bJ0(b)
, φt =

J1(
√

σbη)√
σbJ0(

√
σb)

(A.34)

F = 1− 2J1(b)

bJ0(b)
, Ft = 1− 2J1(

√
σb)√

σbJ0(
√

σb)
(A.35)

µ is the shear viscosity, ρ is the fluid density, σ is the Prandtl number, T0 is the

equilibrium temperature in the absence of oscillation, and β is the coefficient that

expresses the viscosity and heat conduction as functions of the mean temperature

of the fluid approximated around a reference temperature.
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The first order radial velocity u1η is:

u1η =
iR

ωρ0

[
∂2p1

∂x2

(η

2
− φ

)
+

∂xT0

T0

∂xp1

{
η

2
+
−σφ + φt

σ − 1

}

+
ω2

c2
0

p1

(η

2
+ (γ − 1)φt

)
+ ∂xp1

β + 1

2

∂xT0

T0

×
{

η (1− Fη)− φ +
φb2(1− F )

2

}]
(A.36)



Appendix B

Running The Code

The program is structured in a way that the main program calls the subroutines

where the codes for the calculation are written and a module is used to define

the global variables. In the following sections the module, main program and

subroutines will be listed (in the order of their calling by the main program).

1. Main program

In the main program the frequency, wavelength, radial frequency, period,

wave number, viscous penetration depth, tube length, tube height and acous-

tic velocity are defined. These variables are defined in the main program

because given a certain frequency then the other variables can be calculated.

Therefore, to change the model, according to the thermoacoustic working

frequency, one only has to change the value of the frequency in the main

program. The other variables will be changed accordingly.

2. Make the grid

The first thing that needs to be done after defining the physical variables is to

make the grid for the calculation. First a uniform grid is generated, then the

physical stretched grid is generated. After that, the uniform computational

grid is generated.

3. Define the metrics

The metrics of transformation are calculated in this subroutine.

4. Calculate analytical streaming velocity
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Having defined the physical variables and grids, the analytical streaming

velocity can then be calculated in this subroutine.

5. Calculate dummy variables

Some dummy variables are calculated in this subroutine. This is done so

that the variables do not have to be calculated inside the loops. This saves a

few calculation operations. This is especially important if many grid points

are used in the calculation. Defining the dummy variables can potentially

save some calculation time.

6. Calculate the forcing function

Before the iteration step is performed, the forcing function is calculated us-

ing the first order axial and tangential (or radial) acoustic velocity in this

subroutine.

7. Calculate coefficients of vorticity solution

The coefficients of the vorticity solution as defined in Eq. 5.56 are calculated

in this subroutine.

8. Setting up the stiffness matrix

The stiffness matrix for the coefficients of the vorticity solution at the inner

points is then set up in this subroutine. The right hand side vector containing

the forcing function is also set up in this subroutine.

9. Setting up the boundary condition for the vorticity

This subroutine sets up the boundary condition for the vorticity solution.

10. Banded matrix decomposition

The banded matrix can now be decomposed into its upper and lower matrices.

11. Backsubstitution process

The solution is found through the backsubstitution process.

12. Put results in an array

The results from the backsubstitution process (the vorticity) are put in a

vector. To be used in the next step as the forcing function of the VTE, they



143

need to be put back in an array form. This subroutine converts the vector

form into the array form.

13. Calculate coefficients of the stream function solution

The coefficients of the stream function solution as defined in Eq. 5.64 are

calculated in this subroutine.

14. Setting up the boundary condition for the stream function

This subroutine sets up the boundary conditions for the stream function

solution.

15. Calculate acoustic streaming velocity

Once the stream function is computed, the acoustic streaming velocity can

be calculated in this subroutine.

16. Saving data to files

The data can be saved every few thousands iterations or as desired. The data

is saved in a format that can be read by Tecplot. The vorticity and stream

function are also saved so in case the calculations process is interrupted, there

will be restart files available.

The two subroutines to do the banded matrix decomposition and backsubstitution

(subroutine BANDEC and BANBKS in appendix B) were taken from the corre-

sponding subroutine of Numerical Recipes [29] and were modified for use in the

present work.



Appendix C

Acoustic Streaming Calculation

Codes

C.1 Main Program

PROGRAM MAIN_TIME_MARCHING

USE PHYSICAL_PARAMETERS
USE ARRAYSIZEINFO
USE COMPUTATIONAL_PARAMETERS
USE COEF_FOR_MATRIX
USE STIFFNESS_MATRIXandRHS_VECTOR
USE WRITING_TO_FILES

IMPLICIT NONE

Integer i, j, rownumber, m1, m2, nooftime
Integer iter_chi

Real calc_time1, calc_time2, myseconds

Double precision distfromwall
Double precision percentdiff
Double precision integral_result

Real*8, dimension (array_size_x, array_size_y) :: residue_diff

f = 310. ! frequency = 310 Hz.
! This is to match Mike Thompson’s experiment

lambda = c_0/310. ! wavelength
period = 1./f
omegafreq = 2.0*pi*f ! radial frequency (rad/sec)
k = omegafreq/c_0 ! swave number
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print*, "f= ",f, ",period=",period
print*, "omega= ",omegafreq
print*, "k= ",k

nu = mu/rho_0 ! kinematic viscosity
print*, "nu= ",nu

betha_sqr = (omegafreq * rho_0) / (2.0 * mu)
betha = sqrt(betha_sqr)
acboundlayerthick = 1.0/betha ! viscous penetration depth
print*, "acboundary layer thickness= ",acboundlayerthick

!--- thermal penetration depth ---!
thermalpendepth = acboundlayerthick/sqrt(prandtl)
print*,"thermal penetration depth = ",thermalpendepth

tube_length = 0.0 ! initialize variable tube_length for the channel length
tube_height = 0.0 ! initialize variable tube_height for the channel height

tube_length = lambda/2.0 ! length of channel is half a wavelength
tube_height = 0.0232 ! radius = 2.32 cm.

! This parameter is from
! Mike Thompson’s experiment

print*,"tube length = ", tube_length
print*,"tube height = ", tube_height
print*,"It is", ceiling(tube_height/acboundlayerthick), "times bl thickness"

!**************************************************************************!
! Calculate u_0 from nonlinear Reynolds number !
! Nonlinear Re no = (U1^2 * R^2 * rho0 * omega) / (c_0^2 * mu) !
! So u_0 = sqrt( (Re_nl * c_0^2 * mu)/(R^2 * rho0 * omega) !
! Mike Thompson’s use Re_nl = 0.36, 5.7, and 19 !
!**************************************************************************!
u_0 = sqrt( (Re_nl*(c_0**2)*mu)/((tube_height**2)*rho_0*omegafreq) )

! u_0 here is the peak acs velocity amplitude
! at the antinode

Ppeak = u_0*rho_0*c_0 ! Peak pressure
Mach = u_0 / c_0 ! Mach number

print*,"Nonlinear Reynold’s number = ",RE_nl
print*,"u_0=",u_0, "m/s, u(rms) = ", u_0/sqrt(2.0), "m/s"
print*,"Ppeak=",Ppeak,
print*,"Pa or in SPL =",20 * log10((Ppeak/sqrt(2.))/Pref),"dB"
print*,"Mach number = ",Mach

l = tube_length ! put tube_length variable into l for later use
h = tube_height ! put tube_height variable into h for later use

!--- nondimensional Reynold’s number ---!
Re_nondim = (rho_0*u_0*tube_length)/(mu)



146

print*,"Nondimensional Reynold’s number = ",Re_nondim

!--- Make the physical and computational grid for the calculation ---!
print*,"Calling subroutine MAKE_GRID"
call MAKE_GRID

!--- Calculate the metrics of transformation ---!
print*,"Calling subroutine DEFINE_METRICS"
call DEFINE_METRICS

!--- Calculate the analytical streaming velocity ---!
print*,"Calling subroutine CALCULATE_VEL_ANALYTIC"
call CALCULATE_VEL_ANALYTIC

!--- Calculate some dummy variables to save some operations ----!
print*,"Calling subroutine CALCULATE_SPEEDUP_CONSTANTS"
call CALCULATE_SPEEDUP_CONSTANTS

!-----------------------------------------------------------------------!
! Initialize variables
!-----------------------------------------------------------------------!

Omega = 0.
Omega_old = 0.
Chi = 0.
Chi_old = 0.

forcing_function = 0.

m1 = array_size_x ! subdiagonal bandwidth
m2 = array_size_x ! superdiagonal bandwidth

!***********************************************!
! Start iterations !
!***********************************************!

! --- Initialize ---!
iteration_no = 0
time_print = 0
tau = 0.0
tau_start = 0.0
tau_end = 0.0
cycles_tobe_calc = 0.0
cycle_no = 0.0
saveeveryNperiod = 0.0
total_for_averaging = 0
nooftime = 0

calc_time1 = 0.0
calc_time2 = 0.0

!--- It was found that solution already converges at 60,000 iterations ---!
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total_no_iteration = 60000
print*," Total number of iteration for the program: ", total_no_iteration

!--- define how often to save the data ---!
saveeveryiteration = 4000 ! save every 4,000 iterations
print*,"save every", saveeveryiteration, "iteration"

!--- calculate the number of files for the data ---!
nooftime = total_no_iteration/saveeveryiteration
print*,"No of files to be written",nooftime

!--- Calculate the forcing function from 1st order velocity ---!
call CALCULATE_FORCE_RAYLEIGH

Ux = 0.
Uy = 0.

!---- Use this when restarting the computation ----!
!call CHIOMEGA_RESTART_FILE(Omega_old, Chi)
!Chi_old = Chi

time_marching_1 : do tau_iter =1, total_no_iteration

iteration_no = iteration_no + 1
cycle_no = (iteration_no*delta_tau)/period
modulo = mod(iteration_no,saveeveryiteration)
mod_int = nint(modulo)

tau = (delta_tau*(iteration_no-1))

call OMEGA_COEFF_SETUP ! set up the coefficients of vorticity

call INNERPOINTS_MATRIX_SETUP(a_coef_omega, b_coef_omega, c_coef_omega, &
d_coef_omega,e_coef_omega, forcing_function, array_size_x, array_size_y)

! set up the stiff matrix

call OMEGA_BOUNDARY_CONDITION ! set up the coefficients of vorticity

lowertriang = 0.0 ! initialize

call BANDEC(array_size_x,array_size_y) ! banded matrix decomposition

call BANBKS(array_size_x,array_size_y) ! backsubstitution process

!--- The rhs_vector now holds the solution to Omega. ---!
!--- Put it back in the original form (array) --- !
call RESULTINVECTOR_TO_ARRAY(rhs_vector, Omega_old, array_size_x, &

array_size_y)

!--- Calculate Chi first ---!
call CHI_COEFF_SETUP ! set up the coefficients of stream function
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! --- (min forcing_function because ...=-omega) is the forcing ---!
! --- function now. The Stiffmatrix & rhs_vector will be cleared ---!
! --- inside the INNERPOINTS_MATRIX_SETUP ---!
call INNERPOINTS_MATRIX_SETUP(a_coef_chi, b_coef_chi, c_coef_chi, &

d_coef_chi,e_coef_chi, -forcing_function, array_size_x, array_size_y)

call CHI_BOUNDARY_CONDITION ! set up the coefficients of stream function

lowertriang = 0.0 ! initialize

call BANDEC(array_size_x,array_size_y) ! banded matrix decomposition

call BANBKS(array_size_x,array_size_y) ! backsubstitution process

!--- The rhs_vector now holds the solution to Chi. ---!
!--- Put it back in the original form (array) ---!
call RESULTINVECTOR_TO_ARRAY(rhs_vector, Chi, array_size_x, array_size_y)

!======= Under Relaxation Process. Have to be done for convergence =======!
Chi_new = 1.e-4*Chi + (1.-1.e-4)*Chi_old

! Put the "under-relaxed" value of Chi at Chi_new
! Chosen relaxation factor is 1e-4. Too little value will
! result in a too long of computation. Too large of a value
! will cause instability

Chi_old = Chi_new ! Now put the under-relaxed value into the old variable
! for the use in next iteration

Chi = Chi_new

!========== Calculate the numerical acoustic streaming velocity ==========!
call CALCULATE_VELOCITY

!--- if the remainder = 0 then print ---!
if ( (iteration_no>(saveeveryiteration-1)) .AND. (mod_int == 0) ) then

time_print = time_print + 1
print*,"printing at cycle no", cycle_no," time_print= ", time_print
print*,"Max streaming velocity = ",maxval(Ux), "m/s at",maxloc(Ux)

if (time_print < 10) then
write(file_ext,’(i1,a)’) time_print,’.dat’

else if (10 <= time_print .AND. time_print < 100) then
write(file_ext,’(i2,a)’) time_print,’.dat’

else if (100 <= time_print .AND. time_print < 1000) then
write(file_ext,’(i3,a)’) time_print,’.dat’

end if

myfile=’Ux_100dB’//file_ext
call tecout(Ux, x, y, array_size_x, array_size_y, myfile)
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myfile=’Fx’//file_ext
call tecout(Fx, x, y, array_size_x, array_size_y, myfile)

myfile=’Omega’//file_ext
call tecout(Omega_old, x, y, array_size_x, array_size_y, myfile)
myfile=’Chi’//file_ext
call tecout(Chi, x, y, array_size_x, array_size_y, myfile)

myfile=’restart.dat’
call RESTART_FILE(Omega_old, Chi, myfile)

myfile=’Uy_100dB’//file_ext
call tecout(Uy, x, y, array_size_x, array_size_y, myfile)

myfile=’UxUycombo_100dB’//file_ext
call tecout_combo(Ux, Uy, x, y, array_size_x, array_size_y, myfile)

end if

end do time_marching_1

print*,"No of file to be read:",nooftime
call READ_VERTICAL_LINE(nooftime)
call READ_Fx(nooftime)

STOP
END PROGRAM MAIN_TIME_MARCHING

C.2 Subroutines

C.2.1 Subroutine to make physical and computational grid

SUBROUTINE MAKE_GRID

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Double precision stretchlimit

Integer i, j

!-----------------------------------------------------------------------!
! The physical domain grid is clustered near the wall
!-----------------------------------------------------------------------!

! --- Allocating space for the grid. This is temporary storage. --- !
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! --- It will be deallocated at the end of the subroutine ---!
Allocate(xgen(array_size_x, array_size_y))
Allocate(ygen(array_size_x, array_size_y))

!--- This controls the amount of clustering in the grid ---!
print*,"clustering factor = ",clustering_factor

!--- This is defined for the Tanh function. See thesis for explanation ---!
y_gridscale = clustering_factor*pi
x_gridscale = clustering_factor*pi

delx_gridgen = x_gridscale/(array_size_x-1) ! Grid spacing in x direction
dely_gridgen = y_gridscale/(array_size_y-1) ! Grid spacing in y direction
print*,"delta y grid gen= ", dely_gridgen
print*,"delta x grid gen= ", delx_gridgen

do j=1,array_size_y
do i=1, array_size_x

xgen(i,j) = ((i-1) * delx_gridgen) ! Generate "uniform grid" in the
! x and y directions

ygen(i,j) = ((j-1) * dely_gridgen) ! which will be transformed into
! physical clustered grid

end do
end do

do j=1,array_size_y
do i=1,array_size_x

x(i,j) = xgen(i,j)*(tube_length/x_gridscale)
! uniformly spaced in the x direction

y(i,j) = Tanh(ygen(i,j)) ! clustering the grid in the y direction
! towards the wall

end do
end do

ymax = maxval(y) ! ymax is actually Tanh(clustering_factor*pi)
print *,"ymax at cf ",clustering_factor, "= ",ymax

y = (y/ymax)*tube_height ! The generated clustered grid must be scaled
! so that the maximum value is one. It is then
! scaled by the tube_height to get the right
! channel height.

print *,"ymax after scaling= ",maxval(y)

!------------------------------------------------------------------!
! ksi and eta are in the computational domain (x and y directions !
! respectively). They are uniformly spaced. !
!------------------------------------------------------------------!

ksi = 0.0 ! initiliaze
eta = 0.0 ! initialize
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ksi = x/tube_length ! uniform grid, with max value of grid in x
! direction being 1

!--- For y = h/ymax * Tanh( eta * cf * pi). Wall at y =array_size_y ---!
eta = (1.0/(clustering_factor*pi))*0.5*log( (1.+(y*ymax/tube_height))/&

(1.-(y*ymax/tube_height)) )

delta_ksi = 0.0 ! computational domain spacing in x direction
delta_eta = 0.0 ! computational domain spacing in y direction

delta_ksi = ksi(2,1) - ksi(1,1)
delta_eta = eta(1,2) - eta(1,1)

print*,"Delta ksi = ",delta_ksi
print*,"Delta eta = ",delta_eta

!----------------------------------------------------------!
! Calculate how many points are inside the boundary layer !
!----------------------------------------------------------!
nopoint_inside_bl = 0 !initialize
acboundlayerthick_limit = tube_height - acboundlayerthick

! wall at y = array_size_y

!---- This is for wall at y = array_size_y ---!
do i=1, array_size_y

if ( y(1,array_size_y+1-i) > acboundlayerthick_limit) then
nopoint_inside_bl = nopoint_inside_bl +1

end if
end do

print *, "Bottom limit of ac boundary layer = ", acboundlayerthick_limit
print *, "No of pts inside the boundary (including end points) = ", &

nopoint_inside_bl

nopoint_inside_bl = nopoint_inside_bl-1 ! discount the boundary point
print *, "No of pts inside boundary layer (discounting boundary pt)= ",

nopoint_inside_bl

!-------------------------------------------------------------!

!--- Deallocate the temporary storage ---!
Deallocate(xgen)
Deallocate(ygen)

RETURN
END SUBROUTINE MAKE_GRID
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C.2.2 Subroutine to calculate the metrics of transforma-
tion

SUBROUTINE DEFINE_METRICS

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Integer i, j

!---------------------------------------------!
! Define the metrics ksix, ksiy, etay, etayy !
!---------------------------------------------!

ksix = 0.0
etay = 0.0
etayy =0.0

oneon2deltaksi = 1.0 / (2.0*delta_ksi)
oneon2deltaeta = 1.0 / (2.0*delta_eta)

!--- ksix is derived from taking the derivative of ---!
!--- ksi with respect to x ---!
ksix = 1./tube_length

!--- wall is at y=array_size_y ---!
!--- y = h/ymax * Tanh( eta * cf * pi) ----!

! --- etay is derived from taking the derivative of eta ---!
! --- with respect to y ---!
etay = (1.0/(clustering_factor*pi))*((ymax/tube_height) / &

( 1.0 - ((ymax/tube_height)**2)*(y**2) ))

! --- derived from taking the 2nd derivative of eta ---!
! --- with respect to y ---!
etayy = (1.0/(clustering_factor*pi))*((2.0*((ymax/tube_height)**3)*y) / &

(( 1.0 - ((ymax/tube_height)**2)*(y**2) )**2))

RETURN
END SUBROUTINE DEFINE_METRICS

C.2.3 Subroutine to calculate analytical streaming velocity

SUBROUTINE CALCULATE_VEL_ANALYTIC

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS
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USE WRITING_TO_FILES

IMPLICIT NONE

Double precision constG, distfromwall

Double precision, dimension(array_size_x,array_size_y) :: bigU, bigW

Integer i, j

!--- Initializing ---!
constG=0.0
bigU=0.0
bigW=0.0

constG=(u_0**2)/(8.0*betha*c_0)

! --- Rayleigh’s solution for acoustic streaming --- !
! --- velocity between parallel plate --- !
do j=1, array_size_y

do i=1,array_size_x

distfromwall = y(i,array_size_y) - y(i,j)
! distance of the grid point from the wall

!--- analytical acoustic streaming velocity from Nyborg’s chapter ---!
bigU(i,j) = -((u_0**2)/(8.*c_0)) * Sin(2.*k*x(i,j)) * &

( -(Exp(-2.*betha*distfromwall) + &
(2.*Exp(-betha*distfromwall)*&

cos(betha*distfromwall)) + &
(6.*Exp(-betha*distfromwall)*sin(betha*distfromwall))) + &
3. - (18.*(distfromwall/(2.*tube_height))*&
(1.-(distfromwall/(2.*tube_height)))) )

end do
end do

print*,"Max analytical velocity from Rayleigh is = ", maxval(bigU),&
"m/s at", maxloc(bigU)

!--- Boundary Condition for acoustic streaming ---!
do i=1,array_size_x

bigU(i,1) = (4.0*bigU(i,1+1) - bigU(i,1+2))/3.0
! on-axis BC using forward diff 2nd order

end do

do j=1,array_size_y
bigU(1,j)=0.0 ! on S1
bigU(array_size_x,j)=0.0 ! on S3
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end do

do i=1,array_size_x
bigU(i,array_size_y)=0.0 ! on S2

end do

!--- Save the acoustic streaming velocity data in TECPLOT format ---!
myfile=’u2analy3D.dat’
call tecout(bigU, x, y, array_size_x, array_size_y, myfile)

!--- Saving the cross section data for quick check of the results ---!
open(unit=65,file=’u2analy.dat’,form=’FORMATTED’)
do j=1,array_size_y

write(65,*) y(6,j), bigU(6,j), bigU(16,j)
end do
close(65)

!--- Saving the on-axis data for quick check of the results ---!
open(unit=65,file=’u2analy_alongx.dat’,form=’FORMATTED’)
do i=1,array_size_x

write(65,*) x(i,array_size_y), bigU(i,1)
end do
close(65)

RETURN
END SUBROUTINE CALCULATE_VEL_ANALYTIC

!--------------------------------------------------------------------!

SUBROUTINE READ_LINE_RAYLEIGH(nooftime)

!*******************************************************************!
! This program read vertical mesh lines !
!*******************************************************************!
! CHANGE THE DIMENSION TO MATCH THE GRID SIZE BEFORE USING!!!!!!! !
!*******************************************************************!

USE ARRAYSIZEINFO
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Real time, delta_time

Integer i,j,k
Integer nooftime
Integer offset

! ***** REMEMBER TO CHANGE THE COLUMN SIZE TO "# OF TIME +1"
! ***** IF READING MORE OR LESS THAN 5 FILES,
! ***** I.E. MORE THAN 5 TIME DATA !!!!
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Double precision, dimension (array_size_y+1,nooftime+1) :: Ux_towrite, &
Uy_towrite

! 5 columns time data for array_size_y rows, 1 column for
! y-coordinate values array_size_y+1 -> 1 additional
! row for time-value

Double precision, dimension (array_size_y+1,nooftime+1) :: Ux_towrite13

Double precision, dimension (array_size_x*array_size_y+3,3) :: Uxfromfile, &
Uyfromfile

Double precision, dimension (array_size_x,array_size_y) :: Uxread, Uyread

character*30 myfile, file_ext
character*30 input_line

i = 0
j = 0
k = 0
time_print = 0

Ux_towrite13 = 0.0

open (unit=23,file=’Urayl_atx13.dat’,form=’FORMATTED’)
write(23,*) ’TITLE="data"’
write(23,*) ’variables="time","U"’

do k=1,nooftime
time_print=time_print+1

if (time_print < 10) then
write(file_ext,’(i1,a)’) time_print,’.dat’

else if (10 <= time_print .AND. time_print < 100) then
write(file_ext,’(i2,a)’) time_print,’.dat’

else if (100 <= time_print .AND. time_print < 1000) then
write(file_ext,’(i3,a)’) time_print,’.dat’

end if

myfile =’Ux_’//file_ext
myfile=’Ux_100dB’//file_ext
myfile = ’Urayl.dat’
myfile=’Uy_’//file_ext
print*,"myfile = ", myfile

delta_time = 1
time = time_print * delta_time

!-------------------------------------------------------------!



156

! This is to get the data at x=1 for the whole y’s
!-------------------------------------------------------------!

Uxfromfile = 0.0
Uyfromfile = 0.0

open (unit=70, file=myfile, form=’FORMATTED’)

do i = 1, (array_size_x*array_size_y)+3
if (i<=3) then ! because the first 3 rows are

!tecplot header
read(70,*) input_line ! just read but don’t save

else if (i > 3) then
read(70,*) Uxfromfile(i,:)

end if
end do

close(70)

do j = 1, array_size_y
do i = 1, array_size_x

offset = (j-1)*array_size_x
Uxread(i,j)=Uxfromfile(i+offset+3,3) ! +3 is for the

! tecplot header
Uyread(i,j)=Uyfromfile(i+offset+3,3)

x(i,j) = Uxfromfile(i+offset+3,1)
y(i,j) = Uxfromfile(i+offset+3,2)

end do
end do

Ux_towrite13(1,k+1) = time

do j=2,array_size_y+1
Ux_towrite13(j,1) = y(1,j-1)

end do

do j = 2, array_size_y+1 ! because the first row is for
! x-coordinate values

Ux_towrite13(j,k+1) = Uxread(13,j-1)
! at x13 (antinode). Use with CAUTION.
! Change it according to the number of
! grid point in the x direction!!!

end do
end do

do j = 1, array_size_y+1
write(23,*) Ux_towrite13(j,:)

end do

close(60)
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RETURN
END SUBROUTINE READ_LINE_RAYLEIGH

C.2.4 Subroutine to calculate analytical streaming velocity

SUBROUTINE CALCULATE_VEL_ANALYTIC

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS
USE WRITING_TO_FILES

IMPLICIT NONE

Double precision constG, distfromwall

Double precision, dimension(array_size_x,array_size_y) :: bigU, bigW

Integer i, j

!--- Initializing ---!
constG=0.0
bigU=0.0
bigW=0.0

constG=(u_0**2)/(8.0*betha*c_0)

! --- Rayleigh’s solution for acoustic streaming --- !
! --- velocity between parallel plate --- !
do j=1, array_size_y

do i=1,array_size_x

distfromwall = y(i,array_size_y) - y(i,j)
! distance of the grid point from the wall

!--- analytical acoustic streaming velocity from Nyborg’s chapter ---!
bigU(i,j) = -((u_0**2)/(8.*c_0)) * Sin(2.*k*x(i,j)) * &

( -(Exp(-2.*betha*distfromwall) + &
(2.*Exp(-betha*distfromwall)*&

cos(betha*distfromwall)) + &
(6.*Exp(-betha*distfromwall)*sin(betha*distfromwall))) + &
3. - (18.*(distfromwall/(2.*tube_height))*&
(1.-(distfromwall/(2.*tube_height)))) )

end do
end do
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print*,"Max analytical velocity from Rayleigh is = ", maxval(bigU),&
"m/s at", maxloc(bigU)

!--- Boundary Condition for acoustic streaming ---!
do i=1,array_size_x

bigU(i,1) = (4.0*bigU(i,1+1) - bigU(i,1+2))/3.0
! on-axis BC using forward diff 2nd order

end do

do j=1,array_size_y
bigU(1,j)=0.0 ! on S1
bigU(array_size_x,j)=0.0 ! on S3

end do

do i=1,array_size_x
bigU(i,array_size_y)=0.0 ! on S2

end do

!--- Save the acoustic streaming velocity data in TECPLOT format ---!
myfile=’u2analy3D.dat’
call tecout(bigU, x, y, array_size_x, array_size_y, myfile)

!--- Saving the cross section data for quick check of the results ---!
open(unit=65,file=’u2analy.dat’,form=’FORMATTED’)
do j=1,array_size_y

write(65,*) y(6,j), bigU(6,j), bigU(16,j)
end do
close(65)

!--- Saving the on-axis data for quick check of the results ---!
open(unit=65,file=’u2analy_alongx.dat’,form=’FORMATTED’)
do i=1,array_size_x

write(65,*) x(i,array_size_y), bigU(i,1)
end do
close(65)

RETURN
END SUBROUTINE CALCULATE_VEL_ANALYTIC

!--------------------------------------------------------------------!

SUBROUTINE READ_LINE_RAYLEIGH(nooftime)

!*******************************************************************!
! This program read vertical mesh lines !
!*******************************************************************!
! CHANGE THE DIMENSION TO MATCH THE GRID SIZE BEFORE USING!!!!!!! !
!*******************************************************************!

USE ARRAYSIZEINFO
USE COMPUTATIONAL_PARAMETERS
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IMPLICIT NONE

Real time, delta_time

Integer i,j,k
Integer nooftime
Integer offset

! ***** REMEMBER TO CHANGE THE COLUMN SIZE TO "# OF TIME +1"
! ***** IF READING MORE OR LESS THAN 5 FILES,
! ***** I.E. MORE THAN 5 TIME DATA !!!!

Double precision, dimension (array_size_y+1,nooftime+1) :: Ux_towrite, &
Uy_towrite

! 5 columns time data for array_size_y rows, 1 column for
! y-coordinate values array_size_y+1 -> 1 additional
! row for time-value

Double precision, dimension (array_size_y+1,nooftime+1) :: Ux_towrite13

Double precision, dimension (array_size_x*array_size_y+3,3) :: Uxfromfile, &
Uyfromfile

Double precision, dimension (array_size_x,array_size_y) :: Uxread, Uyread

character*30 myfile, file_ext
character*30 input_line

i = 0
j = 0
k = 0
time_print = 0

Ux_towrite13 = 0.0

open (unit=23,file=’Urayl_atx13.dat’,form=’FORMATTED’)
write(23,*) ’TITLE="data"’
write(23,*) ’variables="time","U"’

do k=1,nooftime
time_print=time_print+1

if (time_print < 10) then
write(file_ext,’(i1,a)’) time_print,’.dat’

else if (10 <= time_print .AND. time_print < 100) then
write(file_ext,’(i2,a)’) time_print,’.dat’

else if (100 <= time_print .AND. time_print < 1000) then
write(file_ext,’(i3,a)’) time_print,’.dat’
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end if

myfile =’Ux_’//file_ext
myfile=’Ux_100dB’//file_ext
myfile = ’Urayl.dat’
myfile=’Uy_’//file_ext
print*,"myfile = ", myfile

delta_time = 1
time = time_print * delta_time

!-------------------------------------------------------------!
! This is to get the data at x=1 for the whole y’s
!-------------------------------------------------------------!

Uxfromfile = 0.0
Uyfromfile = 0.0

open (unit=70, file=myfile, form=’FORMATTED’)

do i = 1, (array_size_x*array_size_y)+3
if (i<=3) then ! because the first 3 rows are

!tecplot header
read(70,*) input_line ! just read but don’t save

else if (i > 3) then
read(70,*) Uxfromfile(i,:)

end if
end do

close(70)

do j = 1, array_size_y
do i = 1, array_size_x

offset = (j-1)*array_size_x
Uxread(i,j)=Uxfromfile(i+offset+3,3) ! +3 is for the

! tecplot header
Uyread(i,j)=Uyfromfile(i+offset+3,3)

x(i,j) = Uxfromfile(i+offset+3,1)
y(i,j) = Uxfromfile(i+offset+3,2)

end do
end do

Ux_towrite13(1,k+1) = time

do j=2,array_size_y+1
Ux_towrite13(j,1) = y(1,j-1)

end do

do j = 2, array_size_y+1 ! because the first row is for
! x-coordinate values
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Ux_towrite13(j,k+1) = Uxread(13,j-1)
! at x13 (antinode). Use with CAUTION.
! Change it according to the number of
! grid point in the x direction!!!

end do
end do

do j = 1, array_size_y+1
write(23,*) Ux_towrite13(j,:)

end do

close(60)

RETURN
END SUBROUTINE READ_LINE_RAYLEIGH

C.2.5 Subroutine to calculate dummy variables

SUBROUTINE CALCULATE_SPEEDUP_CONSTANTS

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Integer i, j

!-------------------------------------------------------!
! Define some variables to minimize divison operation !
!-------------------------------------------------------!

!--- For Vorticity Transport Equation ---!
N = ((mu/rho_0)*t_0) / (l**2)

! mu is the shear viscosity

ND = Fmax*(t_0**2)/l
print*, "ND=",ND

lonhsqr = (l/h)**2

delksisqr = delta_ksi**2
deletasqr = delta_eta**2

NDonynorm = 0.0
oneonynorm = 0.0
ksix2dksi2 = 0.0
lonhsqronynorm = 0.0
etay2ondeta2 = 0.0
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ksixon2dksi = 0.0
etayon2deta = 0.0
etayyon2deta = 0.0
etayonynorm2deta = 0.0

!--- These are array opertion ---!
oneonynorm(1:array_size_x,2:array_size_y) = &

1.0/ynorm(1:array_size_x,2:array_size_y)
! j index start at 2 because ynorm=0.0 at j=1.
! This way I avoid dividing by zero

! Equate the axis value (i.e. j=1) to be equal to the value at j=2
! to avoid dividing by 0
oneonynorm(1:array_size_x,1) = 1.0/ynorm(1:array_size_x,2)

NDonynorm(1:array_size_x,2:array_size_y) = &
ND/ynorm(1:array_size_x,2:array_size_y)

NDonynorm(1:array_size_x,1) = ND/ynorm(1:array_size_x,2)

ksix2dksi2 = (ksix**2)/delksisqr

lonhsqronynorm(1:array_size_x,1:array_size_y) = &
lonhsqr*oneonynorm(1:array_size_x,1:array_size_y)
! j starts at 1 because oneonynorm has been initialized
! above and it has value at j=1

etay2ondeta2 = (etay**2)/deletasqr
ksixon2dksi = ksix/(2.0*delta_ksi)
etayon2deta = etay/(2.0*delta_eta)
etayyon2deta = etayy/(2.0*delta_eta)

etayonynorm2deta(1:array_size_x,1:array_size_y) = &
etay(1:array_size_x,1:array_size_y)*&
oneonynorm(1:array_size_x,1:array_size_y)/(2*delta_eta)
! j starts at 1 because oneonynorm has been initialized
! above and it has value at j=1

!-- For Stream function / Poisson eqn --!
dummy_const = 0.0
oneondummyconst = 0.0

dummy_const = -2.0*( ksix2dksi2 + lonhsqr*etay2ondeta2 )
oneondummyconst = 1.0 / dummy_const

print*,"Finish calculating misc speed-up variables"

RETURN
END SUBROUTINE CALCULATE_SPEEDUP_CONSTANTS
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C.2.6 Subroutine to calculate the driving force

SUBROUTINE CALCULATE_FORCE_RAYLEIGH

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Double precision distfromwall, SPL

Integer i, j

Character*30 myfile

!--- Initialize ----!
Fx = 0.0
Fy = 0.0
distfromwall = 0.0

!--- This is from Nyborg’s chapter with wall at y=array_size_ny ---!
do j=1,array_size_y

do i=1,array_size_x
distfromwall = y(i,array_size_y) - y(i,j)

Fx(i,j) = ( k * (u_0**2) * sin(2.*k*x(i,j)) ) + &
( 0.25 * k * (u_0**2) * sin(2.*k*x(i,j)) * &
((-3.*exp(-betha*distfromwall)* &

cos(betha*distfromwall)) + &
(exp(-betha*distfromwall) * &
sin(betha*distfromwall)) + &

(exp(-2.*betha*distfromwall))) )

end do
end do
!----------------------------------------------------------------------!

Fx=-Fx*rho_0

!--- Save data in TECPLOT format ---!
myfile=’Fx3D.dat’
call tecout(Fx, x, y, array_size_x, array_size_y, myfile)

!--- Save cross sectional data for quick viewing of results ---!
open(unit=65,file=’Fx_analy_along_y.dat’,form=’FORMATTED’)
do j=1,array_size_y

write(65,*) y(5,j), Fx(5,j)
end do
close(65)
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!--- Save axial data for quick viewing of results ---!
open(unit=65,file=’Fx_analy_along_x.dat’,form=’FORMATTED’)
do i=1,array_size_x

write(65,*) x(i,1), Fx(i,1), Fx(i,array_size_y)
end do
close(65)

Fxnorm=Fx

RETURN
END SUBROUTINE CALCULATE_FORCE_RAYLEIGH

C.2.7 Subroutine to setup the coefficients of the vorticity

!==============================================================!
! This subroutine calculates the coefficents of the voriticity !
! in the computational domain. Notice that it involves !
! the METRICS of transformation !
!==============================================================!
SUBROUTINE OMEGA_COEFF_SETUP

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS
USE COEF_FOR_MATRIX
USE WRITING_TO_FILES

IMPLICIT NONE

Double precision distfromwall

Integer i, j

a_coef_omega = 0.0
b_coef_omega = 0.0
c_coef_omega = 0.0
d_coef_omega = 0.0
e_coef_omega = 0.0
forcing_function = 0.0

do j=2,array_size_y-1
do i=2,array_size_x-1
distfromwall = y(i,array_size_y) - y(i,j)

a_coef_omega(i,j) = ksix2dksi2(i,j) - &
( (rho_0/mu)*Ux(i,j)*ksixon2dksi(i,j) )

b_coef_omega(i,j) = ksix2dksi2(i,j) + &
( (rho_0/mu)*Ux(i,j)*ksixon2dksi(i,j) )

c_coef_omega(i,j) = etayyon2deta(i,j) + etay2ondeta2(i,j) + &
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((rho_0/mu)*Uy(i,j)*etayon2deta(i,j))

d_coef_omega(i,j) = -etayyon2deta(i,j) + etay2ondeta2(i,j) - &
((rho_0/mu)*Uy(i,j)*etayon2deta(i,j))

e_coef_omega(i,j) = -(2.*ksix2dksi2(i,j)) - (2.*etay2ondeta2(i,j)) - &
(rho_0/mu)*&
( (ksixon2dksi(i,j)*(Ux(i+1,j)-Ux(i-1,j))) + &
(etayon2deta(i,j)*(Uy(i,j+1)-Uy(i,j-1))) )

end do
end do

do j=1,array_size_y
do i=1,array_size_x

distfromwall = y(i,array_size_y) - y(i,j)

forcing_function(i,j) = -0.5*betha*(rho_0/mu) * k * (u_0**2) * &
Sin(2.*k*x(i,j))* &

((2.*Exp(-betha*distfromwall)*Cos(betha*distfromwall))+&
(Exp(-betha*distfromwall)*Sin(betha*distfromwall))-&
(Exp(-2.*betha*distfromwall)))

end do
end do

RETURN
END SUBROUTINE OMEGA_COEFF_SETUP

C.2.8 Subroutine to setup the stiffness matrix

!=====================================================================!
! This subroutimne puts the coefficient of vorticity (or the stream !
! function - depending on the input) into the stiffness matrix !
!=====================================================================!
SUBROUTINE INNERPOINTS_MATRIX_SETUP(a_coef, b_coef, c_coef, d_coef, &

e_coef, forcefunc, nx, ny)

USE STIFFNESS_MATRIXandRHS_VECTOR

IMPLICIT NONE

Double precision, dimension(nx, ny) :: a_coef, b_coef, c_coef, d_coef, &
e_coef

Double precision, dimension (nx, ny) :: forcefunc

Integer i, j, nx, ny, rownum, m1, m2

m1 = nx ! subdiagonal bandwidth
m2 = nx ! superdiagonal bandwidth
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!-- initialize --!
StiffMatrix = 0.0
rhs_vector = 0.0

! --- For inner points ---!
do j= 2, ny-1

do i=2, nx-1
rownum = (j-1)*nx + i

StiffMatrix(rownum,m1+1) = e_coef(i,j) ! diagonal

StiffMatrix(rownum,m1+2) = a_coef(i,j) ! 1st SUPERdiagonal

StiffMatrix(rownum,m1) = b_coef(i,j) ! 1st SUBdiagonal

StiffMatrix(rownum,m1+1+nx) = c_coef(i,j) ! 2nd SUPERdiagonal

StiffMatrix(rownum,1) = d_coef(i,j) ! 1st SUBdiagonal

rhs_vector(rownum) = forcefunc(i,j) ! forcing function on
! right hand side vector

end do
end do

RETURN
END SUBROUTINE INNERPOINTS_MATRIX_SETUP

C.2.9 Subroutine to apply the vorticity boundary condi-
tion

!================================!
! Vorticity Boundary Condition !
!================================!
SUBROUTINE OMEGA_BOUNDARY_CONDITION

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS
USE STIFFNESS_MATRIXandRHS_VECTOR

IMPLICIT NONE

Double precision, dimension (array_size_x, array_size_y) :: dChidx,&
dChidy

Double precision distfromwall

Integer i, j, rownum, m1

m1 = array_size_x
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! -- S1 (left boundary) -- !
do j=1,array_size_y

delta_ksi = x(2,j)-x(1,j)

rownum = (j-1)*array_size_x + 1

dChidx(1,j) = ksixon2dksi(1,j) * (-Chi(1+2,j)+4.*Chi(1+1,j)-&
3.*Chi(1,j))

rhs_vector(rownum) = -(3./(delta_x**2)) * ( Chi(1+1,j) - Chi(1,j) + &
(dChidx(1,j)*delta_x) ) - (Omega_old(1+1,j)/2.)

StiffMatrix(rownum,m1+1) = 1.0 ! for Boundary Condition
end do

! -- S3 (right boundary) -- !
do j=1,array_size_y

delta_eta = x(array_size_x,j)-x(array_size_x-1,j)
rownum = j*array_size_x

dChidx(array_size_x,j) = ksixon2dksi(array_size_x,j) * &
(3.*Chi(array_size_x,j)-&
4.*Chi(array_size_x-1,j)+&
Chi(array_size_x-2,j))

rhs_vector(rownum) = -(3./(delta_x**2)) * &
( Chi(array_size_x-1,j) - Chi(array_size_x,j) - &

(dChidx(array_size_x,j)*delta_x) ) - &
(Omega_old(array_size_x-1,j)/2.)

StiffMatrix(rownum,m1+1) = 1.0 ! for Boundary Condition
end do

! -- S2 (top boundary) -- !
do i=2,array_size_x-1

delta_eta = y(i,array_size_y) - y(i,array_size_y-1)
rownum = (array_size_y-1)*array_size_x + i

dChidy(i,array_size_y) = etayon2deta(i,array_size_y) * &
(3.*Chi(i,array_size_y)-&
4.*Chi(i,array_size_y-1)+&
Chi(i,array_size_y-2))

rhs_vector(rownum) = -(3./(delta_y**2)) * &
( Chi(i,array_size_y-1) - Chi(i,array_size_y) - &

(dChidy(i,array_size_y)*delta_y) ) - &
(Omega_old(i,array_size_y-1)/2.)

StiffMatrix(rownum,m1+1) = 1.0 ! for Boundary Condition
end do
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! -- Bottom boundary (axis) -- !
do i=2,array_size_x-1

delta_eta = y(i,array_size_y) - y(i,1)
rownum = i

dChidy(i,1) = etayon2deta(i,1) * (-Chi(i,1+2)+4.*Chi(i,1+1)-&
3.*Chi(i,1) )

rhs_vector(rownum) = 0.

StiffMatrix(rownum,m1+1) = 1.0 ! for Boundary Condition
end do

RETURN
END SUBROUTINE OMEGA_BOUNDARY_CONDITION

C.2.10 Subroutine to do banded matrix decomposition

!=================================================================!
! Subroutine to decompose banded matrix. From Numerical Recipes. !
!=================================================================!
SUBROUTINE BANDEC(nx,ny)

USE STIFFNESS_MATRIXandRHS_VECTOR

IMPLICIT NONE

Integer row, column, nx, ny, m1, m2, i, j, k, el, bandwidth, rownum
Double precision d, dum
Double precision, parameter :: tiny = 1.0e-20

!---------------------------------------------------------------------------!
! Given an N x N band diagonal matrix A with m1 subdiagonal rows and !
! m2 superdiagonal rows, compactly stored inthe array a(1:N,1:m1+m2+1) !
! as described in the comment for routine banmul, this routine construct !
! an LU decomposition of a rowwise permutation of A. The upper triangular !
! matrix replaces a, while the lower triangular matrix is returned in !
! al(1:N,1:m1). indx is an output vector of length N that records the row !
! permutation effected by the partial pivoting; d is output as +-1 depending!
! on whether the number of row interchanges was even or odd, respectively. !
! This routine is used in combination with banbks to solve band-diagonal !
! sets of equations. !
!---------------------------------------------------------------------------!

indx=0

m1=nx
m2=nx
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row = nx*ny
column = nx*ny
bandwidth = m1 + 1 + m2

el = m1

do i =1,m1 ! rearrange the storage a bit
do j = m1+2-i, bandwidth

StiffMatrix(i,j-el) = StiffMatrix(i,j)
end do

el = el-1
do j= bandwidth - el, bandwidth

StiffMatrix(i,j) = 0.0
end do

end do

d = 1.0
el = m1

do k=1,row ! For each row ...

dum = StiffMatrix(k,1)
i = k
if (el < row) el = el+1

do j = k+1,el ! Find the pivot element
if (abs(StiffMatrix(j,1)) > abs(dum)) then

dum = StiffMatrix(j,1)
i=j

end if
end do

indx(k) = i

if (dum == 0.0) StiffMatrix(k,1) = tiny

if (i /= k) then
d = -d
do j = 1,bandwidth

dum = StiffMatrix(k,j)
StiffMatrix(k,j) = StiffMatrix(i,j)
StiffMatrix(i,j) = dum

end do
end if

!--- The elimination ---!
do i = k+1,el ! Do the elimination

dum = StiffMatrix(i,1)/StiffMatrix(k,1)
lowertriang(k,i-k) = dum !lower triangular
do j = 2, bandwidth
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StiffMatrix(i,j-1) = StiffMatrix(i,j) - dum*StiffMatrix(k,j)
end do

StiffMatrix(i,bandwidth) = 0.0
end do

end do

RETURN
END SUBROUTINE BANDEC

C.2.11 Subroutine to do banded matrix backsubstitution

!==============================================!
! Subroutine that does the backsubstitution. !
! From Numerical Recipes. !
!==============================================!
SUBROUTINE BANBKS(nx,ny)

USE COMPUTATIONAL_PARAMETERS
USE STIFFNESS_MATRIXandRHS_VECTOR
USE WRITING_TO_FILES

IMPLICIT NONE

Integer row, nx, ny, m1, m2
Double precision, parameter :: tiny = 1.0e-20

Integer i, j, k, l, bandwidth, rownum

Double precision d, dum

!--------------------------------------------------------------------------!
! Given the arrays a, al, and indx as returned form bandec, and given !
! a right-hand side vector b(1:n), solves the band diagonal linear eqns !
! Ax = b. The solution vector x overwrites b(1:n). The other input arrays !
! are not modified, and can be left in place for succesive calls with !
! different right-hand sides. !
!--------------------------------------------------------------------------!
m1=nx
m2=nx
row = nx*ny
bandwidth = m1 + 1 + m2

l = m1

do k=1,row ! Forward substitution, unscrambling the permutated
! rows as we go

i = indx(k)
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if(i /= k) then
dum = rhs_vector(k)
rhs_vector(k) = rhs_vector(i)
rhs_vector(i) = dum

end if

if (l < row) l = l+1

do i = k+1,l
rhs_vector(i) = rhs_vector(i) - lowertriang(k,i-k)*rhs_vector(k)

end do

end do

l = 1

do i=row,1,-1 ! Backsubstitution
dum = rhs_vector(i)
do k = 2,l

dum = dum - Stiffmatrix(i,k)*rhs_vector(k+i-1)
end do

rhs_vector(i) = dum / Stiffmatrix(i,1)

if (l < bandwidth) l = l+1

end do

RETURN
END SUBROUTINE BANBKS

C.2.12 Subroutine to convert the result from vector to ar-
ray format

!===========================================================================!
! This subroutine put the results that is in a vector format into an array !
! format !
!===========================================================================!
SUBROUTINE RESULTINVECTOR_TO_ARRAY(rhs_vector, originalarrayform, &

nx, ny)

IMPLICIT NONE

Integer i, j, nx, ny, rownum

Double precision, dimension (nx,ny) :: originalarrayform
Double precision, dimension (nx*ny) :: rhs_vector
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! --- For inner points ---!
do j= 1, ny

do i=1, nx
rownum = (j-1)*nx + i

originalarrayform(i,j) = rhs_vector(rownum)
end do

end do

RETURN
END SUBROUTINE RESULTINVECTOR_TO_ARRAY

C.2.13 Subroutine to setup the coefficients of the stream
function

!=====================================================================!
! This subroutine calculates the coefficents of the stream function !
! in the computational domain. Notice that it involves the METRICS !
! of transformation. !
!=====================================================================!
SUBROUTINE CHI_COEFF_SETUP

USE PHYSICAL_PARAMETERS
USE COMPUTATIONAL_PARAMETERS
USE COEF_FOR_MATRIX

IMPLICIT NONE

Integer i, j

a_coef_chi = 0.0
b_coef_chi = 0.0
c_coef_chi = 0.0
d_coef_chi = 0.0
e_coef_chi = 0.0

do j=2,array_size_y-1
do i=2,array_size_x-1

a_coef_chi(i,j) = ksix2dksi2(i,j)

b_coef_chi(i,j) = ksix2dksi2(i,j)

c_coef_chi(i,j) = ( etayyon2deta(i,j) + etay2ondeta2(i,j) )

d_coef_chi(i,j) = ( -etayyon2deta(i,j) + etay2ondeta2(i,j) )

e_coef_chi(i,j) = -(2.*ksix2dksi2(i,j)) - (2.*etay2ondeta2(i,j))
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forcing_function(i,j) = Omega_old(i,j)

end do
end do

RETURN
END SUBROUTINE CHI_COEFF_SETUP

C.2.14 Subroutine to apply the stream function boundary
condition

!=====================================================================!
! Apply stream function boundary condition for the stiffness matrix !
! and right hand side vector. !
!=====================================================================!
SUBROUTINE CHI_BOUNDARY_CONDITION

USE PHYSICAL_PARAMETERS
USE STIFFNESS_MATRIXandRHS_VECTOR
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Double precision distfromwall

Integer i, j, rownum, m1

!-- Note: Analytically, psi is 0 at the boundaries. --!
!-- I double-checked it with Mathematica --!

m1 = array_size_x

! -- S1 (left boundary) -- !
do j=1,array_size_y

rownum = (j-1)*array_size_x + 1

StiffMatrix(rownum,m1+1) = 1.0

rhs_vector(rownum) = 0.
end do

! -- S3 (right boundary) -- !
do j=1,array_size_y

rownum = j*array_size_x

StiffMatrix(rownum,m1+1) = 1.0

rhs_vector(rownum) = 0.
end do



174

! -- S2 (top boundary) -- !
do i=2,array_size_x-1

rownum = (array_size_y-1)*array_size_x + i

StiffMatrix(rownum,m1+1) = 1.0

rhs_vector(rownum) = 0.
end do

! -- Axis (bottom boundary) -- !
do i=2,array_size_x-1

rownum = i

StiffMatrix(rownum,m1+1) = 1.0

rhs_vector(rownum) = 0.
end do

RETURN
END SUBROUTINE CHI_BOUNDARY_CONDITION

C.2.15 Subroutine to calculate the numerical acoustic
streaming velocity

!=======================================================!
! Calculate the numerical acoustic streaming velocity. !
!=======================================================!
SUBROUTINE CALCULATE_VELOCITY

USE PHYSICAL_PARAMETERS
USE ARRAYSIZEINFO
USE COMPUTATIONAL_PARAMETERS

IMPLICIT NONE

Integer i, j

!*******************************************************!
! Then we need to calculate Ux and Uy. !
!*******************************************************!

do j=2,array_size_y-1
do i=2,array_size_x-1

Ux(i,j) = etayon2deta(i,j) * (Chi(i,j+1)-Chi(i,j-1))

Uy(i,j) = -ksixon2dksi(i,j) * (Chi(i+1,j)-Chi(i-1,j))
end do

end do
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!-------------------------------------------------------!
! BC for U: Ux & Uy =0 on S1, wall, S3 !
! Uy=0 & dUy/dy=0 on axis !
!-------------------------------------------------------!

do j=1,array_size_y
Uy(1,j)=0.0 ! on S1
Uy(array_size_x,j)=0.0 ! on S3

Ux(1,j)=0.0 ! on S1
Ux(array_size_x,j)=0.0 ! on S3

end do

do i=1,array_size_x
Uy(i,1)=0.0 ! on axis (axis is at j=1)
Uy(i,array_size_y)=0.0 ! at wall (wall is at j=array_size_y)

Ux(i,1) = (4.*Ux(i,1+1)-Ux(i,1+2))/3.
! on axis (axis is at j=1)

Ux(i,array_size_y)=0.0 ! at wall (wall is at j=array_size_y)
end do

RETURN
END SUBROUTINE CALCULATE_VELOCITY

C.2.16 Subroutine to write data in TECPLOT format

!========================================================================!
! This subroutine writes the data to a file in a format that can be read !
! by TECPLOT !
!========================================================================!

SUBROUTINE TECOUT (functowrite, x, y, arraysize_x, arraysize_y, &
myfile)

IMPLICIT NONE

character*30 myfile
integer arraysize_x, arraysize_y
integer i, j

Double precision, dimension (arraysize_x,arraysize_y) :: functowrite, &
x, y

open(unit=75, file=myfile, form=’FORMATTED’)

write(75,*) ’TITLE="data"’
write(75,*) ’variables="x","y","f"’
write(75,*) ’ZONE I=’,arraysize_x,’J=’,arraysize_y,’f=point’
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do j=1,arraysize_y
do i=1,arraysize_x

write(75,*) x(i,j), y(i,j), functowrite(i,j)
end do

end do

close(75)

RETURN
END SUBROUTINE TECOUT

C.2.17 Subroutine to write axial and tangential (or radial)
data in TECPLOT format

!=========================================================================!
! Write AXIAL and TANGENTIAL (or radial) data in a format that can be !
! read by TECPLOT !
!=========================================================================!
SUBROUTINE TECOUT_COMBO (Function_x, Function_y, x, y, arraysize_x, &

arraysize_y, myfile)

IMPLICIT NONE

character*30 myfile

Integer i,j
Integer arraysize_x, arraysize_y

Double precision, dimension (arraysize_x,arraysize_y) :: Function_x, &
Function_y, x, y

open (unit=80, file=myfile, form=’FORMATTED’)
write(80,*) ’ TITLE=" Ur Uz"’
write(80,*) ’variables="X","Y","Ux","Uy"’
write(80,*) ’ ZONE, i=’, arraysize_x, ’,j=’, arraysize_y, ’,F=POINT’

do j=1,arraysize_y
do i=1,arraysize_x

write(80,*) x(i,j), y(i,j), Function_x(i,j), Function_y(i,j)
end do

end do
close(80)

RETURN
END SUBROUTINE TECOUT_COMBO
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C.2.18 Subroutine to write stream function and vorticity
data for restarting the calculation

!=========================================================================!
! Write stream function and vorticity to a file so that when the !
! process is interrupted, it can be started back up from the last saved !
! step without staring over !
!=========================================================================!
SUBROUTINE RESTART_FILE (Omega_old, Chi, myfile)

USE ARRAYSIZEINFO

IMPLICIT NONE

character*30 myfile
integer i, j

REAL(KIND = 8),DIMENSION(array_size_x,array_size_y), &
INTENT(IN) :: Omega_old, Chi

OPEN(75, FILE=myfile, STATUS=’unknown’, ACTION=’write’, FORM=’unformatted’)
REWIND(75)

WRITE (75) ((Omega_old(i,j), i=1,SIZE(Omega_old,1)), &
j=1,SIZE(Omega_old,2)),&

((Chi(i,j), i=1,SIZE(Chi,1)), j=1,SIZE(Chi,2))
CLOSE(75)

RETURN
END SUBROUTINE RESTART_FILE
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