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Abstract

Adjusting signal timings at signalized intersections is a practical way for
transportatioragencies to manage traffic without the need for significant infrastructure
upgrades or additiondraffic signal timings are directly related the delay vehicles
experience at signalized intersectiohgpically, traffic engineerselect signal timingto
minimize the total delagxperienced by vehicles #ite entire intersectiort first glance
this isa fairly reasonable thing to dominimizing the total delagt the intersection reduces
the negative impacts imparted onto cétewever, there are manyherpossible objectives
to considemwhen selecting signal timings at a signalized intersec#danengineer may
wish to consideithe approaclor movementdelay separately and assign a weight of
importance to each. For example, one approachex@griencdéneavy bus trafficand thus
its delay might need to hveeighted more heavilio reduce the total delay experienced by
all passengers served the intersectionOr, by increasing the delay of one approach by a
small amount, the delay of another approach may decrease by a large @musunt
providing a more equitable distribution of delay at the interseclibase and other cases
aregenerallynat consideredindercurrent signal timing standard practiésen when they
are, no methodology exists to incorporate multiple objectives into signal timing

optimization.

In light of this, the goal of this research is to devetwihods thatraffic enginers
canuse to optimize signal timingahile consideringmultiple, potentially competing,
objectivesThe methods proposed rely on the applicationwébknown multiobjective

optimization (MOO) genetic algorithm, NSGA, to obtaina set of signal tinmgs that



considemultiple objectivegshatmay berelevant when selecting signal timingheset of
possible signatimings obtained by the MOQ@epreserga Pareto frontiethat defins the
optimaltradeoff that exist between thuiqueobjectives. heresearchappliesrelatively
newMOO visualization techniqueto easilyexplore the tradeoffs between objectives that
exist within thisPareto frontierand proposes new techniques to identify and remove
objectives that might not be necessary. Additionallgthnads are proposed to select the
bestsolution in thePareto frontiebased on how a user values each of the potentially
competing objectives. Hsemethodswill allow transportatioragencies t@btainsignal
timings thatprovide the best tradeoff betweelbjectiveshat are defined for any particular

location
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1.0Introduction and Literature Review

1.1 Motivation

Traffic congestion in the United States is a serious issue, causing Americans to
spendover 6.9 billion additional hours on the road in 2@1} This isnot onlya great
personal inconvenience, but the effect of urban congestion alseba®environmental
and economic implication&or example, in 201Americans wasted 3.1 billion gallons of
fuel, contributing to a congestion cost of $160 bill{@p This is a problem that is likely
to worsenbefore it inproves. From 2012014, 95 of the 100 largest metro areas

experienced an increase in traffic congestion, while only 61 did in the previoud year

Increases in trafficongestionplace a particularlyheavy strain on urban areas
whereexpanding roadway capacity by building additional infrastructure (e.g., addiag |
to existing roadwaysinay beimpossible due to space constraints. Howen®difying
traffic signal timings cahelp to manage atecrease congestion in urban areas without the
need for additional infrastructure. Changing traffic signal timings at a ignalized
intersection reallocates capacitamong competing traffic streamsllowing a

transportatioragencyto easily change how capacity is distributed between approaches.

Traffic signal timingsaretypically timed such thabnly a singleobjective the total
control delay at an intersectias minimized(2, 3) Control delay is the delay incurréeg
vehiclesdue to the presence of a traffic control de\{®g such as a traffic signarhis is
generallya good metric taconsider sinceeducing the total delay experienced by all

vehicles using the intersectiomnimizes the negative impactshiclesexperience deito



the signal andillows the intersection to operatee mostefficiently. However, this is a
somewhat myopic perspectiasthere are other metrics that traffic engineers should also
consider when computing signal timings;luding somethatmay conflct with each other

in unpredictable waysThese objectives include those that deal with safety, the
environmentdelay to other intersection useegjuity, and multimodal operation§ome,

if not all, of these metrics are important amay need to bsimulaneouslyconsideredn

the signal timing process.

Severalstudieshaveproposed multbbjective optimizationNIOO) to determine
optimal signal timingsvhile accounting for multiple objectives simultaneoubtygeneral,
these methods only consider twottwee objectives. These previous studies also rarely
explore the relationships between the objectives in a systematicSpagifically, these
previous studies have not proposedhniques to identiffand quantifythe tradeoff
between the considered otijiwes. Finally previous studies that have employd®O for
signal timing optimizatiorave nofprovidedany guidanc®n how to apply the results of
the MOO method in practice. Most MOO procedures provide wgighsa large set of
potentialsolutionsthatdefine a Paretfrontier, butobtaining a single signal timing solution
to implement from this Paretoontier is a challenging taskhe proposed research will fill
in thegaps presennh the existing researclA detailed review of existing literature Gits

deficiencies are provided in the following section.

1.2 Literature Review
Previous studies in the research literature happlied several optimization
methodsto select signal timingsvhile considering different potential objectivegost
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studieshave only considered singleobjective, butmorerecentstudies haveonsidered
more than one objective in its signal timing optimizatidimese pape&sand their

limitationd are discussed in this section.

1.2.1Signal timing optimization methods

Several métods have been employeddefineand quantify th@bjectives used in
signal timing optimization Some studiesuse a mathematical approath compute
objectives either analytically or using mathematical modeish as the cell transmission
model (5i 23). Other studiesuse simulation software packages such as VNSir
TRANSYT-7F to quantifyobjectives in the optimizatio(24i 40). Optimization methods
vary. When analytically possible, exact solutions to mathematical progrsuncs as linear
and nalinear program$ are obtainedl11, 1519, 35) In many cases, however, exact
solutions are not possible and heuristics such as genetic algorithms or particle swarm
optimization are used to approximate the optimal solybo8, 20 22, 24 34, 36 38, 41
43, 40, 23) These studies differ both with the specific objectives and the number of
objectives considered simultaneous§any recent stdies have used genetic algorithms
to optimize signal timings, particularly a ndominated sorting genetic algorithm (NSGA
I1) (6, 23, 24, 28, 40that will be discussed in greater detail in Section Relgardless of
the optimization method used, the process is computationally intensive and increases
exponentially as theumber of objectives increas&@ections 1.2.2 and 1.2:8Il describe

the objectives used in previous studies.



1.2.2Singleobjectivesignal timingoptimization

Foy et al.appears to be the first study in the research literatuoptimize signal
timings, minimizing the total intersection deldyr its calculation ease relative to other
objectiveq(32). Zhao et al. and Wei et al. also optimized signal timimgminimizing the
total intersection delagl4, 16) Noaeen et al. minimized the intersection delay including

shockwave effects to optimize isolated intersection cycle lengths and gliee(il3).

In addition to vehicle delay, some paperssidemultimodal operationLhristofa
and Skabardonis minimized the total person delay by considering passenger delay of
passenger cars anddms when including transit signal priority in the optimizatib@),
while Yang et al. minimized bus delay along a coordinated art@&jaKhalighi et al.
minimized automobile and transit vehicle emissionsmorove air quality at intersections
(18). Gokce et al. optimized signal timings at a large traffic circle to minimize the mean

travel time which is inherently related to vehicle del&@y).

Other singleobjective optimization studies also considered objectives other than
delay. Fang and Elefteriadou minimized queue lengths at clepayed diamond
interchanges to avoid queue spillback and queue storage [@%)s Girianna and
Benekohal maximized the throughput when optimizing traffic signals for oversaturated
networks to dissipate queues as quickly as poséilePark et al. minimized the queue
time and compared it to the optimal signal tigs generated from TRANSYTF (30).

Hadi and Wallace optimized signal timings to maximize progresalsausing data from

TRANSYT-7F simulationg31).



Somestudies conducted multiple singbdjective optimizationso compare how
signal timings might change when different objectives were considessthard and
Rodegerdts compared four different singlgective signal timing policies: mamizing
progression and minimizing delay, number of stops, and fuel consun@@@pryun and
Parkseparatelyptimizedthe total delaynd thetime vehiclesspent in a queu@9). Park
et al. again optimized fatotal throughput and minimum average delagth with and
without a penaltyon movements with a v/c ratio above @3B). Rabbani and Bullen
determined green splitonsideringminimum total delay and equal marginal de(d4).

For the latter casehe delay of one additional vehicle at an appro@aeh, the marginal
delay of that approach) wasjualized between all intersection approaches to ensure the

service at all approaches is equal.

Although a dverse set of objectivebas beenconsidered in singlebjective
optimization studies, real intersectioase subject to mangifferent and potentially
competing,objectives.The next section describes studies that have considered multiple

objectivessimultaneouslyin the signal timing optimization process.

1.2.3Multi-objectivesignal timingoptimization

The value of MOO isdemonstratedbecause it simultaneously considers all
objectivesin the optimization process Numerous studies have applied MOO tonsig
timing optimization.Most include two objectives in the optimizations, although some

consider three or more objectives.



1.2.3.1 Papers with two objectives

Kesur minimized the total network delay and tieworkdelay imbalance in both
a fourteensignal grid network and a ninsignal coordinated arterial netwo(R4). The
network celay imbalance wadetermined firsby calculating theaverage delay per foot of
all possible routes through the netwoiflkhe maximum value was then minimized to
minimize the inequity in network delaly.was found that a smalhcrease in total network
delay corresponded to a relatively large decrease in arl@ajlanceFor example, a five
percent increase in network delay corresponded to apktcént decrease the arterial
networkdelay imbalancandan8.3 percent decreasethe grid networkdelayimbalance
Although this study examined delay inequity in a network, there was no measure

comparehe delaymequitywithin approaches an intersection.

Multiple studiesconsideredoedestrian or bus delamultaneouslywith vehicle
delay.Roshandeh et al. minimized average vehicle delay and average pedestrian delay to
compare crashes using these optimized signal timings with crashes using existing signal
timingsto determine the safety impacts of optimized signal tim{h@¥ The timings were
applied to the Chicago ceat business district (CBD) street network using simulattons
conduct a beforafter analysisThe study found optimized signal timings can improve
both vehicle mobility and the safety of vehicles and pedestryanst al. minimize both
the vehicle dely and pedestrian delay at an intersection, considering botraodéwo
stage crosswalks and their space limitati¢hS). Although these studies considered
multimodal operations in the optimizationseither could examine the relationships

between vehicle, pedestrian, and bus delay because thepdobled twoobjectives.



Sone objectived vehicle delay, number of stops, and vehicular throughpugre
included in several studieghang et al. minimized the total delay and maximized the traffic
throughput at a set of adjacent, coordinated intersections and compared the optimized
signal timings to fixed signal timingd.3). The study found the vehicle delay decreased up
to 14.5 percent depending on the length of the connecting road, while the traffic dissipation
increased up to 2.8 percent. Stevanovic et al. optimized the VISSIM performance index
(P1), which ircludes vehicle delay and number of st{§%¥). Although two objectives were
included in the Plthe tradeoffs cannot be known because the objectreescombined
into a single metricAlso, unit inconsistencies magxist between objectives in PIs, such
as between number of stops and delays. A stop can be set equal to a certain length of delay,
but this would be difficult to determine a priolh a separate stugdystevanovic et al.
optimizedthe number ofvehicle corflicts and throughpu{36). The average delay and
average number of stops werenimized to optimize the effective green time in a study by
Sun et al(6). There were no comparisons to a faptimized signal, attough the study
did emphasize the tradeoff between the two objectives and how an engineer can select the
most appropriate solution using the Pareto frontiea paper by Stevanovic et al., the
number of safety conflicts was minimized and the vehiculaugihput was maximized
along a 14ntersection arterial via simulation to compare the optimized signal timings with
the initial signal timingg(26). A similar phenomenon found i(24) occurred in these
findings although the throughput remained almost the same, the number of conflicts
decreased by approximately seven percent compared to the initial signal tiviiomgs.
and Wongoptimized taffic signal timings by maximizing throughput and minimizing

cycle length(19). Branke et al. performed two separateobjective optimizations,
7



minimizing the average vélte delay and average pedestrian delay and later minimizing

travel time and average number of st(}B).

Other studiesconsidered morenontraditional objectives in the twobjective
optimizations.Zhang et al. optimized the cycle lengths, offsets, green splits, and phase
sequences to minimize total delay and human exposure to pollutants in a study that found
significant tadeoffs between these two objectives after applying the optimization to a
stretch of roadway with five intersectiofb). Yin determined the optimal road toll pattern
by minmizing total delay and maximizing total reveni2d). Although thispaper did not

optimize signal timings, it provided an example of two conflicting objectives

These biobjective optimization problems hasbownthe benefits of optimizing
traffic signal timings. In many cases, one objective can be greatly decredlsezhly
minimal changes to the otheBi-objective optimizations are advantageous because they
show the relationships and tradeoffs between two objecti@sever,these studies are
limited by considering just two objectives at a tirSeme studies have gerurther and
optimized for more than two objectives to gain an even greater understanding of signalized

intersectioroperations

1.2.3.2Papers with more than two objectives

Aziz and Ukkusuriperformed optimizations on several cases, including one that
minimized total system travel time, intersection delay, and lost t{@. Fang and
Elefteriadouconsidered queue length, vehicle delay, and storage ratio (the ratio of the
gueue length to the available spad¢8p). Lertworawanichet al. minimized queue

spillovers and the difference in average approach delays, and maximized network
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throughput(8). Li et al. also considered three objectives and applied the optimized results
to an intersectiom Nanjing, Ching45). The authors examined average delay, emissions
released, and fuel consumption. The optimized signal timing resulted in decreased average
delay and emissions of hydrocarbons, carbon monoxide, ardAitiough these papers
considered a more realistic number of objectives present at an intersteyocombine

all objectives into one objective function. Aiscussed previouslyhe tradeoffs cannot be
determinedand there may be unit inconsistencrdsen objectives are incorporated into

one objective functioriThe remaining studies optimized all objectives separately.

Stevanovic et al. authored a thiagective optimization paper where the three
surrogate measures of mobility, safety, and environnagre examined and used to
optimize signals along a segment of five signalized intersedi@aisThe objectives were
to maximize throughput and minimize conflicts and fuel consumption. The study
developed thredimensional Pareto frontier surfaces and found the ressigngl timings
were greatly improved from the existing timin@henet al. optimized signal timings for

delay, stops per vehicle, and traffic capa®ty

Few studies considered more than three objectipessibly because of the
difficulty in interpreting the results as willebdiscussed in Section 1. Schrbckeret al.
optimized signal timings for average car, bus, and pedestrian delays andandorajor
street queue lengtti20). Matos and Carvalho considered six objectives: control delay, trip
duration, CQ emissiors, fuel consumption, number of stops, and time lost due to driving

below ideal spee(B8).



All of the aforementioned literature that examined traffic signal optimization
whether with one, two, or three objectidedemonstrate the potential for improving
signalized intersections. However, there are severafations or missing components

with the existing literature.

1.3 Gaps inResearch

Although extensive, existing literatucentainsgwo importantshortcomingsthere
is no method to identify objectives with competing tradeoffs and there is no guidance in

selecting which optimal solution is the one best solution for a certain intersection.

1.31 Tradeoff identification

As previously discussed, every objective has a relationgitiipother objectives.
Some relationships may not be as important, such agectiob pair that has no tradeoff.
Other relationships, such as an objective pair that does have tradeoff, are more important
to theengineerBy knowing which objectives conflict with each other, and to what degree,
an engineegains a better understandif the tradeoffs involved in the signal timing
processand has the knowledgequired to maka more informed decisiof-urthermore,
if there is little or no tradeoff between objectives, one can be removed from the
optimization process to reduce the gfrob mdé s d i maAamsentioned ih Sectipn
1.2.1, optimizations are computationally intensive so reducing the number of objectives
can significantly reduce the time and computational power requiidough some
existing literaturg6, 21, 26, 27has discused the importance of tradeotiad produced
seemingly balanced signal timingspne have offered a method to identify quantify

tradeoffs to verify the quality of the signatings.
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1.32 Guidance in selecting the best solution

Every MOO results in a set oPareto optimabkolutions which define aPareto
frontierin which one objective cannot be improved without negatively impacting another.
Each solution balances the objectwatues differently, and it is left to the discretion of the
analyst to decide what kind of balance, and therefore which solution, is most desired for
the intersection. Even if the desired balance or tradeoffs are knatingds currently do
not exist in he signal timing literature to identify and implement a single final solution
from this set oPareto optimasolutions.Kesur,Lertworawanich et aland Schriicker et
al. mention the problem of choosing a particidatution from the optimal set, but dotn
propose a solutiorf8, 20, 24) As with the tradeff identification, a method to aid a
practitioner in selecting one solution from all optimal solutions would be helpful in making

MOO more practiceeady.

1.33 Summary of research gaps

A review of existing literature foundeveralstudies discussingptimized signal
timings based on one, two, or moobjectives. Overallthe trend in signal timing
optimization is to consider multiple objectivés some cases, one objective can be greatly
decreased while the other remains the same or only slightly seseldowever, there are
some deficiencies in the existing knowledge. While there are many different metrics
interacting with each other at intersectiahgre are currentliew studieshat examine the
interactions of more than three objectivieerhaps écause it is so difficult to interpret the
results Also, few studies considered objectives such as inequity and multimodal

operations and many papers combined multiple objectives into one objective function

11



MOO studiesthat investigated the relationshkifetween multiple objectives have not
offered a way to identifgnd quantifythetradeoft betweerwompeting objectives. Finally,
there has been no guidance for a practitioner to select the best optimized solution. This

research proposes to fill thesed®intheexisting literature.

1.4 Research Objectives

The major research objectives alluded to aboedca

1) use MOO for many different objectives to determine signal timings that
consider more than just two or three objectives simultaneously

2) propose miods to identify and quantify the tradeofs between
objectivesto help remove objectives that might be redundzimd

3) develop a methodology f@rovide guidance in selectiragsignal timing

plan that selecthe best balance between all objectives.

12



2.0Methodology

2.1 Multi-objective Optimization Algorithm

This research will use a MOO algorithm that was implemented in MATLAB. Th
algorithm is the second version of a mwminated sorting genetic algorithm, called
NSGA-1l (46). Genetic ajorithms have been used in various traffic engineering papers as
early as 19927, 22, 32)but have seldom been utilized until recently due to their
computational deman(R7). As a type of evolutionary algorithm, a genetic algorithm
ultimately resits in solutions, or sets of decision variables, that minimizenaximize
objectives while satisfying constraintSirst, the user inputs the amount of soluticios
outputand generation® run The user also inputs the objectives to minimize or maximize
as well as the constraints. With these inputs, the algorithm first chooses a random set of
initial solutions which correspond to a set of initial objective validse decision variables
are randomly changed with each generation, and these changepaifettke objectives
are improvedAfter many generationgachsolutionconvergs to an optimal solutionn
which it is not possible to improve one objective without sacrificing another. The set of
these optimal solutions is referred tothe Pareto frotier. All solutions in the Pareto
frontier are equally optimal in the absence of any additionalpresided information

based on their preferenc#gr example of a Pareto frontierseownin Figurel.

13
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Figure 1: Example of a Pareto frontier

Figure 1 shows that any solution to the right of the frontier can be improved by
decreasing one or both objective valuEse number of solutions considered in the MOO
process defines thegxision at which thPareto frontiecan be determined: more solutions
means a more precise definition of tRareto frontier As mentioned earlier, each
generation brings the initial solutions closer to the Pareto optimal solutions. Therefore, a
higher umber of generations increases the likelihood of converging to the Pareto frontier.
Users should use a high number of solutions and generations to reveal the true Pareto
frontier, although this increases the computational cost due to the increasedralgamnith

time.

A very recent update to NSGIwas createc@ndis known as NSGAII (47). This
algorithm is optimized for mangbjective optimizations, or ojptizations with more than
four objectivesHowever,NSGA-1l has a longer history and has been more widskyd.

FurthermoreMatos and Carvalho found that NSG@Koutperformed NSGAll in a many

14



objective traffic signal timing optimizatiof38). Finally, the main purposes of this research

are to explore many different objectives, introduce a tradeoff visualization and
identification technique, angroposemethods for selecting the best d@n from a set of
solutions. Because the exact algorithm used is not crucial for these purposes, this research
uses thanorewidely-used NSGAIl algorithm. For more detailed information about the

this algorithm, the reader is encouraged to conthidtorginal paper proposing NSGA

(46).

2.2 Tradeoff Index and/osaic Plot

As described in Chapter 1, a major shortcoming of exidtiaffic engineering
literature is that there have not been any methods to idéradgofs that exisbetween
competing objectivesn multi-objective signal timing optimizationResearchers can
speculate which objectivesaylogically conflict with each other, but there is no way to

guantify thetradeofs and know whether or not thesadeoft actually exst.

This research proposes the introduction ofribevly-developed mosaic plot into
the traffic engineering research fielthe mosaic plot, developed by Unal et al. in 2015
(48), improves upon existing methods of identifyiimngdeofs between many objectives
Prior to the development of the mosaic plbe two most common tradeoff identification
techniquesverethe scatter plot matrix and parallel coordinate (89, both of which are
shownin Figure2. The scatter plot matrix showH tihe two-dimensional Pareto frontiers
between all objective pairs. As the number of objectives increases, the number of sub
matricesrequired to show all relationships alspidly increasesThe parallel coordinate
plot displays the objective valuesexdch solution as a single line. The crossing of one line

15



over another indicates a tradeoff between the two objectives, and a higher number of
crossing lines indicates a higher tradeoff. As the number of objectives increases, usage of
the parallel coordinatplotrequires many different figures to observe tladeoffbetween

everyuniquepair of objectives.

Objective 1

1’—‘

Ozl ! Objective 2 = || l A IJB& l
1 ———————— |

051 Objective 3 B Xﬁ

i |
?:—I Objective 1 Obijective 2 Objective 3

O.Si Objective 4

ol
0 05 10 05 10 05 1

Figure 2: Scatter plot matrix and parallel coordinate plot (48)

In contrast to these two methodlse tmosaic plot only requireme reasonably
sized figure and allows the user to quickly determine the relationship between each
objective pairThe key component to the mosaic plot isttaeeoffindex, whichquantifies

the degree affadeoffbetween a pair of objectiveBhe tradedfindex is defined as:

_r ——hQ Q (1)
where:

0 d, number of solutions; and,

I § d, binary factor ifith andjth solutions cross between objectikeandl.

The binary factor j is equal to zero if the solutions do not cross and one if the solutions

do cross. As shown above, the tradeoff index of Solutiean average of ones and zeros

depending on the number of times the Solutio® s | i ne s e g miatiortlinecr os s e
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segments. The tradeoff index is boadtb _; N T1ip , with values near zero indicating
lower tradeoffsand values near one indicatihgher tradeoffsWith the tradeoff index of
all solutions, the homogenized tradeoff ind@x can be calculated to determine the

average tradeoff between Objectikeand| for all solutions:

Q

2

This results in the average value of all tradeoff indices betweerttviegk and I,
representing the average tradeoff between the two objectives. Using this measure, the
tradeoff between objeete pairs can be quantified. Thdsadeoff indices are also used to

create the mosaiplot visualization technique.

Tradeoft arecolor-coded, with white representing tradeoff black representing
completetradeoff and varying shades of gray to represent all levels in betwedarker
gray represents higher tradeoff between two objectieample mosaic plots ashown

in Figure3.
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Figure 3a) Mosaic plot, and b) homogenizedhosaic plot(49)

In Figure 3a, thesmallindividual squares show the tradeoff of every solytimm
the tradeoff index. The homogenized mosaic plothigure3b is obtained by computing
the average tradeoff oéll solutiors, or the homogenized tradeoff ind€x In the above
example, Objective 1 and Objective 2 have the higinadeoffbecause their intersecting
square is the darkest. Likewise, Objectives 1 and 4 have the lvadsbffbecaise that

square is the lightesin the mosaic plot creation process, the calculatsdeoffindices
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are savedif the userdesires to more accurately compateadeoft rather than visually
estimatingthem It can be seen that if a fifth objective were eddoFigure3, the mosaic
plot would slightly grow in sizéo compare all possible objective paiositno additional

plots would be required (unlike the parallel coordinate plot and scatter plot approaches)

This research will se the mosaic plot teasily illustrate the tradeofs between
competing objective pairs. ine objective is determined to be raympeting with all
other objectives,this noncompeting objectivecan be removed to reduce the
dimensionality of the problemnd ensure two similar objectives do not influence the

solutions in a biased mann@ihis is described in further detail in the next section.

To determine if an objective is narompeting, the average homogenized tradeoff
index] is proposedhere This index is simply the mean of dbmogenizedradeoff
indices for a given objective value. It represetie overall relationship an objective has
with all other objectivesLike the individual objective tradeoff indices, thalmer the

value, the greater the tradedfheaverage homogenized tradeoff indexlefined as:

Q a 3
where

Q d, homogenized tradeoff between Objectiv@nd Objectivan

0d number 6 objectives

Once theoptimal solutions are generated by the MOO algoridnd the mosaic

plots are createdhe next step is taentify and remove redundant objectives
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2.3 Redundant Objectivdentification

The above indices can determineif objectie is redundant and if so, it can be
removed from the MOO and a new iteratmiithe MOO processan be performednly
one objective is removed per iteratidiis process continues and stops when there are no
more redundant objectivés an iteration. Theractitioner willthenselect solutions from

this final iteration

There are several reasons why removing redundant objectives is desirable. The
most applicable reason to practitioners is computational efficiency. MOOs with many
objectives require more perful computers or more time to run. By decreasing the number
of objectives, the optimization can be completed more quidkhile this requires more
work initially, the redundant objective results can be used for similar intersections or the
next time MQD is used for the intersectiolnother reason to remove redundant objectives
is because it increases the likelihood of finding the Pareto optimal solution within the given
number of generations. Each objective corresponds to one dimension in the splaten
so the space increases as the number of objectives increases. Finding the Pareto optimal
solution is less likely when the space is larBg. removing redundant objectives and
decreasing the size of the space, the solutions bedenserand the MOChas a higher
chance of finding the Pareto optimal solutiBmally, practitioners may choose to remove
two correlatingobjectives simply due to their redundarszythe MOO does not take two
similar objectives into consideration. An example of this willpbevided in Chapter,3

which provides a numerical example demonstrating the methodology
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There are two methods to determine if objectives are redur@aetmethod is to
use theaverage homogenized tradeoff index] , described in the previous section.
Practitioners may set a minimum acceptable valug fand if an objective is less than
this value, it is removed. The procedure for determining this value can be as simple as
assigning a value (for exampl&3) or some other more involved processother way to
identify redundant objectives is to compare the respective tradeoff indices of two objectives
with the remaining objectives. If the tradeoff indices between the remaining objectives and
the two objetives are similaand the two objectives do not trade off significantly with
each otherone of then can be removedrkor example, if Objectivdsand| have respective
tradeoffs of 0.55 and 0.54 with Objectiaeg0.38 and 0.37 with Objective and 0.62 ad
0.63with Objectivec, either Objectivek or | can be considered redunddptovidedthey
have low tradeoff with each othdrecauseheir tradeoffs with the remaining objectives
are similar. As with the other objective redundancy identification methedlefinition of
similar ischoserby the practitioner. In this example, the absolute difference was 0.01 for
each remaining objective but a practitioner can choose their threshold values for

redundancy.

If the above procedures are followed, a practgiowill identify a redundant
objectivein the MOOto remove. However, the results may conflict with the desire of
transportatioragencies. For example, a practitioner may conclude that a certain objective
should be removed but if an agency requires thgctibe to always be included, the
second most redundant objective can be remoVile the above procedures are

guidelines for identifying redundant objectivéisgey are not stricstandardsPractitioners
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may follow these guidelines akselyastheyd si re depending on the

In the absence of such mandates, these guidelines should be followed.

2.4 Methods forSelectingBestSolution

As mentioned earlierhe MOO will output as many optimal solutions as the user
specifies which shouldoe alarge number in order tprecisely define th@areto frontier
and maximizethe probability 6 finding the bestsolutionfor an intersectionWith these
MOO-generated optimagolutions, the user will need to apply their own judgement to
subjectively ptk one solution that works best for an intersectidn.do sothe user will

require a method to select the best of the optimal solutions.

A mathematically sound method is required to fairly rank all solutions so that all
objectives araveightedequally. For example, simply summing the objective values and
using the minimum sum as the best solution would result in a biased solution because
objectives with larger values will have a greater effect on the Aisn, objectives have
different units that canndte added together. For example, there is no logical meaning to
the sum of stops and delay because stops and wskiobmnds cannot be addedls
mentioned earlier, it would be difficult to setestop equdo a certain length of delay
priori. This is adrawback of approaches that combine multiple objectives into one single
objectives.n order for a fair comparison to be made, objective values must be compared

to other objective values of the same magnitude and units.

In this researchiywo methods arenpposed to help a user sort throughgbkitions

and identify the one(s) that provide the best balance between the competing objectives. The
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methods are described using tigective value ratie— and ratio producO, asproposed

below.

2.41 Method 1

In Method 1, all solutions are ranked based on their objective value ratio to the
minimum objective value. Since all objectives are to be minimized (maximized objectives
can be multiplied by p and then minimized}the best solution willhaverelatively low
objective values for all objectiveBor each objective value of each solution,dbgctive

value ratiois defined as:

- — @

where:

0w d, Solutioni's valuefor Objectivek

Every solution will have an objective value ratio for each objecthand—  p.
For each solution, abhbjective value ratioarethenmultiplied together to obtain thratio

product

0O B — )

where:

0d, number of objectives

0 d weightingfactor for Objectivek
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The decisiormakermay assigrweighting factors to objectives they deem more
important, which is helpfuf a decisioamaker or agency wishes to prioritizesoor more
objectives. The objective value is raised torather than multiplied to ensube is applied
to the desired objective. If it were multiplied, the commutative property would ¢ause
to be applied to the product of all objectivalues and not be specific to one objective,
essentially rendering it useless. Calculation)ofis dependent on the decisiamker.
They may use a relatively arbitrary numbeg.,three to denote an objective as three times
more important or they may create a more complex definition process. To weigh all
objectives equally, each weigig factor is set to on&dutions with lower— have lower
deviations from the minimum objective vaj@esolution with ar— equal to one indicates
the solution has the lowest value for the corresponding obje@iwetinuing with this
logic, a solution with 2D closer to one has the fewest differences from minimum objective
values.Thereforeall theratio productdor each solutiorare sortedn ascending order to
determine whiclobjectivesfrom among the solutiorare closest to the minimum value.
The highestranked solution is labelled the best solutjoas it does the best jodt

simultaneouslyninimizing all objective values.

2.4.2Method 2

The process for Method 2 is similar to Method 1, but usesnatrained sebf
solutions instead of all solutions the Pareto frontierset Decisionmakers establish a
maximum value for one or more desired objectives and #ueha constraint in the
optimization such that no objective values excinedcriteria After the optimization isan

and a new set of constrained solutions is credtes process follows similar steps as
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Method 1. The only difference is the calculation®@f The objective vale ratio for the
constrainedbjective is not included in this calculation because its effe@ aras already

taken into accounwith the added constrairffor Method 20 is defined as:
0O B — hQ & (6)
where

ad, filtered objective

This method would be used if a decisimaker or agency requires a maximum acceptable

objective value for one or more objectives.
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3.0Numerical Example

A fictional intersection will be used to demonstrate riiethodobgy describedn
the previougshapterThis fictional example was used for its simplicity in order to focus on
relationships between the objectives, which are described delswoted that the purpose
of this example is to demonstrate the methdluksjntersection properties and objectives

here are not crucial for the methodology.

3.1 SetumndObjectives Used

Signal timings were optimized for@etimed signalized intersection with the following

characteristics:

1 Isolated

1 Undersaturated

1 Four tweway approaches

1 Protectedr permittedeft turns
1 Four pedestrian crosswalks

1 Uniform vehicle and pedestrian arrivals

The geometry, lane group vehicle volumes, and crosswalk pedestrian volumes are shown

in Figure4, and the phase sequee diagram is shown Figure5.
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Figure 4: Isolated intersection example
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Figure 5: Isolated intersection phase sequence

There was no constraint on the cycle length. Addétilgnthere were two types of

left turn treatments tested: protected and permifibé. eastvest (EW) left turnswere

assumed to always havetected left turphasebutthenorth-south(NS) left turns were

assumed to be protected in one case and fiednin another to demonstrate that this
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method can be applied in either situatibheassumedignal timing informations shown

in Tablel.
Table 1: Traffic signal characteristics
Variable Value
Cycle kength Variable
Left turn minimum green times 2 seconds
Left turn maximum green times 60 secondg
Thru/right minimum green times 19.1secondgNYS); 9.6 secondsEW)
Thru/right maximum green times 60 secondg
Yellow time 3 seconds
All -red time 1 second
Lost time per cycle 16 seconds

The minimum green times were calculatesthg the 2016{CM Equation 3172to
allow sufficient pedestrian crossing timile assuming elevefoot lanes a pedestrian
walking speed of3.5 feet per secondand the use of thgellow phase for pedestrian
crossing All lane group occupancies were 1.1 passengers/veh, with the exception of the
Northbound left which had an average occupancy of 1.5 passengers/veh to model an
approach with heavy bus traffic. The base saturation flasvz1v00 veh/hr/lane, with right
and leftturn adjustments made in accordance with Equatiosi)laéhd 1811 in the 2010

HCM (4). Again, it is noted these intersection properties were chosen for simplicity.

Six objectives were used in th¢OO. These objectives were chosen because of
their novelty, applicability, and ability to be analytically quantifiedy. not derived from
simulations). However, the ranking methodology does not require these objective
characteristio$ if desired, objectives may be obtained throuwgher methods such as
simulationor the use of a mathematical madas long as the finajeneration of MOO
solutions are provided, the ranking methods will wétk objective values areomputed
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for a one hourperiodand are minimizedObjective value calculations for permitted and
protected left turns were the same for all objectives exoefite total number of stops as

noted in Section 3.1.5.

3.1.1Total intersection vehicle delay

The first objective considered is the total intersection vehicle delay, whitie
primaryobjective that is currently considered when timing traffic sigaatording to the
research literatur€2, 3) The total intersection vehicle delay represents the total delay
experienced by allehiclestraveling through the intersection during the -broeir analysis
period considered. For the purposes of this research, vehicle detagstimated using the
methodology contained in the 2010 edition of thghway Capacity ManugHCM) (4).

Since only undesaturated conditions are considered, the delay for each lane group at the
intersection is equal to the sum of two components: uniform delay and incremental delay.
Uniform delay is the average delay vehicles will experience uhdexssumption that they
arrive at a constant rate, while incremental delay accounts for the random periods during
which demand exceeds capacity and the intersection is temporarily oversaturated. The
averageuniform and incrementalelay per vehicle for anydividual lane groupQ, is

calculated from Equation 3159 from the 2010 HCM:

z 8z z - z z 1z
Q — WnITY: ® p O p - (7
0O B Q a¢o®Q (8)
where
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‘Qgd, average delay per vehicle [seconds/vehicle]
0d, number of lane groups

ag, capacity [vehicles/hour]

Qd, greentime for Lane Grougdseconds]

q

adjustment factor for upsten filtering/metering [1 for isolated
intersections]

‘@, adjustment factor for controller type [0.5 for pretimed controllers]
0 " progression factor [1 for uncoordinated intersections]

Y], analysis period [1 hour]

®d, volume/capacity (v/c) ratio fdrane Group

wd, vehicle volume for Lane Grougvehicles/hour]

The first part of the above equation represents the uniform delay component while

the second part represents the incremental delay component.

The total intersection vehicle deld®,, is simply the weighted sum of the average

delay per vehicle, using the hourly volumes as the individual weights:

0O B Qza (9)

where

0O d, total vehicle delay [vehiclseconds]

3.1.2Vehicle dehy inequity

Vehicle delay inequity quantifies the fairness of vehicle delays experienced by
individual lane groupsompared to the other§he vehicle delays used to compute the

difference between the arimum averagedelay experienced byng lane group ad the
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minimum averagedelay experienced bgny lane groupA larger difference indicates a
more unequal distribution of delays. Not only is a large inequity unfair, but drivers may be
more likely to perform illegal maneuvers if they perceive their deddyetunequalTlhis

objective is defined as:

NNQ T A@I Q T ERIQ (10

with all variables defined previously.

This objective is important to consider becaadewer objective valuereatesan
intersectiorwhere delays are distributed more equitably across approdhewxcluding
vehicle delaynequity in theMOO, theoverall tradeoffs betwedane group delaysan be
expected talecrease. For example, if a solution catiseaverage delagf one lane group
to increase by five seconds while anotlage group delaglecreases by thirty seconds, the
solutioncan be considered more equaVen thoughhe average delay increaséat one

lane groupthe other lane grougverage delaglecreased by much largeramount.

3.1.3Total intersection passenger delay

The total intersection vehicle delay objective is a useful metritablsito consider
passenger occupancies in each vehicle. In reality, lane groups can have different average
occupancies, padilarly lane groups with heawyigher-occupancy public transportation
traffic. Total intersection passenger delay is a better objective when considering
intersections and lane groups with higbecupancy vehicles, such as budseven though
a bus is only ne vehicle, this objective prioritizes buses because of its higher average
occupancy. Because buses typically have a higher occupancy, reducing the bus delay

decreases the passenger delay more than by reducing the vehicle delay, which includes
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lower-occupacy vehicles.The total intersection passenger delay is based on the total
intersection vehicle delay and the average vehicle delay estimation methodology. The
difference here is that each lane group delay is multiplied by its average occupancy to

obtain te total passenger delay in units of passesgeonds:

0O B Qzmzé ® (1)
where

O d total passenger delay [passengeconds]

¢ d average vehicle occupancy [passengers/vehicle]
3.14 Passenger delay inequity

Passenger delay inequity considered to incorporate vehicle occupancies into the
inequity calculations Again, the inequity is defined as the difference between the
maximumaveragepassenger delay and tmenimumaverage passeger delay. The larger

the difference, the more unequal the intersection is. Passenger delay inequity is defined as:
NNQ T A ¢l QT EQ ¢al 0 (12

where

"QeNQ : vehicle delay inequity [seconds]
3.1.5Total number of stops

The total number of stops per cycle is an important mb&@ause it has safety,
environmental, and economic impacts. A higher number of vehicles stopping increases the

opportunities for reaend collisions. Also, a vehicleling or accelerating from a stop
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releases more emissions than cruising through ansedgon without stopping or
decelerating. Finally, stopping and decelerating at intersections increases both user and
agency costs. Increased braking wears out vehicle brake pads earlier, and decelerating
heavy vehicles can cause longitudinal rutting emifile pavements. The number of stops

perhourcan be analytically estimated usiggeuingtheoryas(50):

£ B ——mM— 13
where

€ d,  number of stops per hour in Lane Gradpehicles]

“Yd, saturation flow of Lane Groudvehicles/hour]
"Q:  "Qfor protecte left turns[seconds]

"Q (green timeunblocked by opposing vehickefor permitted left turns

[seconds]
As stated earlierhe above equation assumesrgform demand an@dn undefsaturated

intersection

3.1.6Total crosswalk pedestrian delay

Previais objectives focused on vehicles and passengers of vehicles. At urban
intersections, it is also important to consider the needs of pedestrians. Therefore, the total
delay pedestrians experience waiting to cross on crosswalks is another objective to
consicer. It is important to consider the pedestrian delay because if pedestrians experience
a high delay, they may become impatient and cross the street illegally, creating a safety
hazard for both themselves and motorists. The individual delay experiencaih atreet
crossing is estimated using the 2010 HCM Equatioré9l8nd 1871 (4):
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Q5 — (19

where

'@  crosswalk group
Q rdaverage delay per pedestrian [seconds/pedestrian]

"Qd, vehicular crosdraffic green time [seconds]

The addition of four seconds to the crbsdfic green time represents an addition to the
pedestrian effective walk time caused by pedestrians entering the intersection in the first
four seconds of the pedestrian clear intelddl As with vehicle delay, the individual
crosswalk delay is then weighted by the hourly pedestrian volumes. The total pedestrian

delay on crosswalks is an objective defiasd
(@] B Q fzw j (15
where

O ¢, total pedestrian delay [pedestrisaconds]
0d,  number of crosswalks

@ d, pedestrian volume [pedestrians/hour]

Including this objective esures the intersection signal timing considers pedestrians in

addition to vehicles

The results of optimizing signal timings for the above interseatimmstraintsand

objectivesare discussed ithe next twasectiors.
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3.2 SingleobjectiveOptimization Results

First, the results of singlebjective optimizatiofSOQO)are shown to demonstrate
the need for multobjective optimizationFirst, the results from the protected left turns
(protected LT) intersection are discussed. Then, the results from thatpeéreft turns

(permittedLT) intersection are discussed.

3.2.1Protected left turns

Thesingleobjective optimizedjyreen times foprotected LTareprovided inTable

2 and the ranges are shownTiable3.

Table 2: Single-objective optimized green timegprotected LT)

Minimized objective NS L NS T/R EW L EW T/R Cycle

green (€9 | green (£0 | green (€9 | green (€9 | length (sec)
Total vehicle delay 10.7 19.1 4.1 43.0 92.9
Vehicle delay inequity 18.6 19.1 13.0 34.1 100.8
Total passenger delay 11.0 19.1 4.1 41.9 92.1
Passenger delay inequit 20.0 19.1 7.7 29.9 92.8
Total number of stops 8.7 19.1 2.7 60.0 106.5
Total pedestrian delay 6.5 19.1 2.0 35.5 79.1

Not e: i lthelefitarngorteeesn t i me and A T/tRgredndimeot e s

Table 3: Range in singleobjective optimized green timesgrotected LT)

NS T/R range EW L range EW T/R range Cycle length

NS L range (29 (seQ ) (seQ ) (seQ ) erge (sec)
13.5 0.0 11.0 30.1 27.4

The cycle length andaeh green timegreatly varieswhen minimizing for one
objective compared to minimizing fadhe other objectives. The large range in single
objective minimized green timdsr each approactiemonstratethe needo optimize for
multiple objectiveslf the green times had a small range (e.g. all green times were very

similar), it would not be nexssary to consider multiple objectives during the optimization
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because optimizing for any one objective would also optimize all other objectives.
However, the large range indicates each objective requires a different green time to be
minimized. For exampleoptimizing forpassengedelay inequity requires 20.0 seconds of

NS L green time. If vehicle delay issteadoptimized, the resulting green time is 40.
seconds. This would likely result in a large vehicle delay inequity objective. Yliée

the cyclelength and most approaches have a large range, the NS T/R green time does not
have a large rang&his is becausellavalues are the minimum green time to allow
sufficient pedestrian crossing time. If this constraint was not imposed, the NS T/R green
times would likely also display a large rangéhe objective values resulting fro8B00

also vary greatlyasshown inTable4 andTable5. Minimum objective values are bolded.

Table 4. Single-objective optimized objective valuegprotected LT)

Objective Value
Minimized Tot'al Vehicle Total Passenger| Total Total.
Objective vehicle _ delay passenger| dela_y number of | pedestrian
delay inequity delay inequity stops delay (ped
(veh-sec) (sec) (passsec) (sec) (vehs) sec)
gglt:;"eh'c'e 72,320 59| 82,240 68 2,103 18,896
Vehicle
delay 106,534 18 119,120 35 2,444 29,402
inequity
Total
passenger 72,365 60 82,176 66 2,121 19,030
delay
Passenger
delay 110,951 23 123,655 26 2,480 27,615
inequity
Zf;?(')ggmber 107,356 298| 124,503 328 1,826 16,725
Total
pedestrian 106,792 285 123,278 313 2,142 15,854
delay

36



Table 5: Range in singleobjective optimizedobjective values(protected LT)

Total Vehicle Total Passenger| Total Total
vehicle delay passenger| delay number | pedestrian
delay inequity delay inequity of stops delay
(veh-sec) (sec) (passsec) (sec) (vehs) (ped-sec)
Value 38,631 280 42,327 302 654 13,548
E]ier:icriztmo\ialue 53%|  1,556% 52%|  1,162% 36% 85%

As with the green timesh¢ objective valuealsohad a wide range of values when
only one objective was minimized. Several objectives had extremely large ranges. For
example, theehicledelay inequityranged froml8 seconds t@98secondsa range 0280
secondsor over 1,500 percent of the minimized val#es with the singleobjective

optimized green times, the large range in values helps demonstrate the imporf&é@€: of

3.2.2Permitted left turns

Table6 andTable7 below shev the permitted LTgreen times when the objectives

were optimized for one objective.

Table 6: Single-objective optimized green timegpermitted LT)

L L NS L/T/R EW L green EW T/R Cycle length
Minimized objective
green (sec) (sec) green (sec) (sec)
Total vehicle delay 28.8 3.2 28.7 76.6
Vehicle delay inequity 35.9 11.4 32.1 95.4
Total passenger delay 28.8 3.2 28.7 76.6
Passenger delay inequity 35.9 11.4 32.1 95.4
Total number of stops 47.9 3.3 60.0 127.2
Total pedestrian delay 21.5 2.0 17.8 57.3

Table 7: Range in singleobjective optimized green timegpermitted LT)
NSL/T/R range (29 EW L range (9 | EW T/R range (29 Cycle length (sec)
26.4 9.4 42.2 69.9

As with the protected LT, kErge range in green times presentThe needto

consider multiple objectives in the optimization is also required for this intersection for the
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same reasons as with the protected\driation in theNS approaches is present because

all movementsequire a green time greater than the minimum, which provides a large range
similar to the other green timeBhe ranges are larger for the permitted LT intersection,
which indicates an even greater need for MQ@ese trends are also observed in the

objective values and their rangshpwnin Table8 andTable9.

Table 8: Single-objective optimized objective valuegpermitted LT)

Objective Value
Minimi Total Vehicle Total Passenger| Total Total
inimized . .
Objective vehicle _ delay passenger| dela_y number of | pedestrian
delay inequity delay inequity stops delay (ped
(veh-sec) (sec) (passsec) (sec) (vehs) sec)
gglt:;"eh'c'e 69,460 59| 77,460 65 2,253 17,634
Vehicle
delay 96,827 20 107,862 22 2,369 25,392
inequity
Total
passenger 69,460 59 77,460 65 2,253 17,634
delay
Passenger
delay 96,827 20 107,862 22 2,369 25,392
inequity
Z}f’;’;‘é;‘:mber 96,843 286| 108,396 315 1,992 23,300
Total
pedestrian 99,050 83 109,707 92 2,420 14,989
delay
Table 9: Range in singleobjective optimizedobjective values(permitted LT)
Total Vehicle Total Passenger| Total Total
vehicle delay passenger| delay number | pedestrian
delay inequity delay inequity of stops delay
(veh-sec) (sec) (passsec) (sec) (vehs) (ped-sec)
Value 29,590 266 32,247 292 428 10,403
Z?r:icrflﬂtmof/alue 43%|  1,330% 42%|  1,327% 21% 69%
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The range in singtebjective optimized objective values were also large for the
permitted LT resultswith the inequity objectives again exhibiting a range over 1,000

percent of the minimized objective value

Both types of left turn treatmendemonstrated the need forplementing MOO at
the example intersection. The green timad objective valuet®r each approach widely
varied, suggesting the need for a balance between all objectives. The proposed MOO
ranking methodsntroduced in Section .2 can determine solutions that provide this

balance. These results are presented in the following section.

3.3 Multi-objectiveOptimization Results

This section presents the MOO results lboth types ofleft turn treatmentsin
Sections 3.3.1 and 3.3ike tradeoff indices and mosaic plots are shown, followed by the
top-ranked solutions provideldy the ranking methqdand concluding withanalyseso

determine the finalsolui onsd® sensitivity to objective

3.3.1Protected left turns

3.3.1.1Tradedf indices and mosaic plots
Figure 6 below shows the mosaic plot for the protected LT intersection. The

tradeoff indices for each objective pair are labelled.
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Figure 6: Homogenized mosaic plofprotected LT, first iteration)

Therewereseveral trends evident in the above mosaic plot. As described in Section

2.2, objective pairs with darkeolored squares (or higher tradeoff indices) exhibit more
tradeoff. One trend that was expected wadairey low tradeoff between the number of
stops and both vehicle delay and passenger delay. This was expected betayse
increase as the number of stops incredsmther expected trend was the low tradeoff
between vehicle delay and passenger delay. The passéeiggris the vehicle delay
weighted by the average occupancy, so the two objectives were expected to behave
similarly when the passenger occupancies for egmgroachare similar (as is the case

here) This is also true for the vehicle delay inequity padsenger delay inequity.
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An unexpected tradeoff was tloav tradeoff between pedestrian delay and number
of stops. It was expected that there would be high tradeoff between the two: as the number
of stops increases, the pedestrian delay should deceszamesk pedestrians can walk when
vehicles are stopped. However, the opposite is true; as the number of stops decrease, the
pedestrian delay also decreasA@spossible explanation for this is because th&
pedestrian volumes are much heavier thanBWepedestrian volumes. Because tN&
vehicle approaches are the minor approaches, they receive less green time and therefore
experience a greater number of stops. The hééSypedestrian volumes therefore

experience increased delay because of the Bl®vehicle green times.

Another noticeable trend was the high tradeoff between the pedestrian delay and
number of stops with the inequitie§he inequity of the intersection increases as the
pedestrian delay and number of stops decr&ésevehicle delay and psenger delay have
the lowest average tradeoff with all other objectiveshasvnin Table10. Tablel1 shows

the similarities between the vehicle delay and passenger delay.

Table 10: Average homogenized tradeoff indicespfotected LT, first iteration)

Total Vehicle Total Passenger Total Total
vehicle delay passenger delay number of | pedestrian

delay inequity delay inequity stops delay
0.370 0.526 0.370 0.530 0.516 0.627

Table 11: Total vehicle delay versus total passenger delay tradeoff indicgsrotected
LT, first iteration)

Objective Total vehicle delay | Total passenger delay| Absolute difference
Vehicle delay inequity 0.484 0.464 0.020
Passenger delayequity 0.492 0.472 0.020
Total number of stops 0.333 0.354 0.021
Total pedestrian delay 0.517 0.536 0.020
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Af ter examining each objectiveods aver a
passenger delay was deemed redundant because it had the lowest intiexi aedy
similar tradeoff indices with the vehicle delay as showhahlell. Because vehicle delay
is the traditional objective used to time traffic signals, it was kept and the passenger delay
objective was removed for the sedoMOO iteration The mosaic plotfor the second

iterationis shownin Figure?.

Ped del Num stops Pass del ineq Veh del ineq

Veh del

Veh del ineq

Pass del ineq
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Figure 7: Homogenized mosaic plotgrotected LT, second iteratior)

The second iteration mosaic plwasrelatively similar to the first iteratiorwith
some small changes in tradeoff indices. The average homogenized tradeoff indices shown
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in Table12 also experienced relatively small chandg@emoving theobjective competing
with vehcle delayincreased the e h i c | draddodf.Thee yehisle delay inequity and
passenger delay inequity again exhibit the lowest tradeoff between two objethess.
objectives are not the least conflicting with other objectiveshasvnin Table 12, but

behave very similarly to each other as showhable13.

Table 12 Average homogenized tradeoff indicespfotected LT, second iteration)

Total vehicle Vehicle Passenger | Total number Total
delay delay delay inequity of stops pedestrian
inequity delay
0.460 0.540 0.541 0.572 0.653

Table 13: Vehicle delay inequityversuspassenger delay inequityradeoff indices
(protected LT, second iteration)

Objective Vehicle delay inequity | Passenger delay inequity Absolute difference
Total vehicle delay 0.457 0.463 0.005
Total number of stops 0.785 0.798 0.013
Total pedestrian delay 0.881 0.868 0.014

In the second iteration, the vehicle delay had the lowestbgemzed tradeoff
index. Howeverthis objective wasf high interestFurthermore, as shown aboveTiable
13, thepassenger delay inequity was found to be very similar to the vehicle delay inequity.
Therefore, the passenger dellaequity objective was removed for the tHid®O iteration.
Thiswasan example where a practitioner would not necessarily remove the objective with
the lowest average homogenized tradeoff index, but instead remove an objective
(passenger delay inequitthat has very similar tradeoffs with remaining objectives as
another objective (vehicle delay inequity). The homogenized mosaic plot of the third

iteration is shown ifrigure8.
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Figure 8: Homogenized nosaic plot(protected LT, third iteration)

The vehicle delay inequity exhibited the highest tradedfi the pedestrian delay
and number of stop®edestrian delay and number of stops exhibited the lowest tradeoff,
and the remaining objective pairs exkéloi average tradeoffsThe tradeoff indices
remained relatively similar to those in the second itera#diiough the vehicle delay,
number of stops, and pedestrian delay all exhibit low average homogenized tradeoff indices
as shown inTable 14, they are objectives of interest so none were removed for a fourth

iteration. It is noted that this decision is based on the opinion and methodology of the
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decisionmaker.Furthermore, theomparisons between pedestrian delay maumthber of

stops theleast conflicting objectivesare provided below ifiable15.

Table 14: Average homogenized tradeoff indicespfotected LT, third iteration)
Total vehicle Vehicle Total Total_
delay number of pedestrian
delay . .
inequity stops delay
0.484 0.722 0.523 0.571

Table 15: Total pedestrian delayversustotal pedestriandelay tradeoff indices
(protected LT, third iteration)

Objective Total number of stops | Total pedestriandelay | Absdute difference
Total vehicle delay 0.455 0.545 0.089
Vehicle delay inequity 0.828 0.883 0.055

Because the difference between the tradeoffs for these two objectives was relatively
largeand all remaining objectives were of high interdésis was theifal iteration.From
the first iteration to the third iteration, the objectives similar to removed redundant
objectives experienced an increase in the average homogenized tradeoff. indices
Meanwhile, he other objectives experienced a decre@eemoving oe of the objectives
of a noncompeting pair will increase the overall tradeoff of the remaining objedthe.
overall tradeoffs of the other objectivedl decrease because there is one less competing

objective.

3.3.1.2Ranking method results

The MOO esults of eaclnankingmethod are showim Table16 (the green times)
andTablel7 (the objective values)n Method 2, the vehicle delay was constrained to be
no more than 20 percent gteathan the minimum vehicle delay obtained in the single
objective optimizationIn addition to the two methods, two different weigh factors

were applied: one where all objectivegre weightedequally, and one where tinember
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of stops and pedestri@ielay were eactveighted by a factor of 3.0’he number of stops

was weighted because it has safety, environmental, and economical implications. A higher
number of stops can increase read collisions, increase emissions related to idling and
acceleratg, and cause brake wear and longitudinal grooving in pavement. The pedestrian
delay was weighted because it is the only objective not specific to vehitlese
constraints anaveightingfactors were used for both left turn treatmeritise objective

values for removed objectives in the second and third iterations were manually calculated

using the same formulas used in the MATLAB script.

Table 16: Multi -objective optimized green timesgrotectedLT)

Method and weighting NS L NS T/R EW L EW T/R Cycle length
factors usel green (€c) | green (sec)| green (sec)| green (sec) (sec)
Iteration 1
Method 1i equall 12.4 19.1 6.2 27.5 81.2
Method 1i weighted) 115 19.1 6.0 30.9 83.5
Method 2i equall 12.9 19.1 7.1 30.3 85.4
Method 2i weighted0 10.4 19.1 5.3 26.7 77.5
Iteration 2
Method 1i equall 13.8 19.1 8.0 28.2 85.1
Methad 11 weightedd 10.7 19.1 5.3 28.4 79.5
Method 2i equall 12.0 19.1 6.6 28.7 82.4
Method 2i weightedd 10.7 19.1 5.6 26.9 78.3
Iteration 3
Method 1i equall 12.2 19.1 6.9 28.3 82.5
Method 1i weighted0 10.6 19.1 4.9 40.6 91.2
Method 2i equall 11.8 19.1 6.4 28.5 81.8
Method 2i weightedd 10.4 19.1 4.8 40.0 90.3
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Table 17: Multi -objective optimized objective valuesgrotectedLT)

Objective Value
Method and Total Vehicle Total Passenger Total Total
weighting vehicle delay passenger delay number of | Pedestrian
factors used | delay (veh | inequity | delay (pass | inequity stops (vehs) delay (ped
sec) (sec) sec) (sec) P sec)

Iteration 1
Method 11 90,296 23 101,169 37 2,442 22,400
equaly
Method 1i 80,597 27 90,712 45 2,358 21,314
weightedv
Method 2 86,601 23 97,195 40 2,400 22915
equaly
Method 2i 85,492 26 96,027 43 2,429 20,771
weighted0

Iteration 2
Method 11 97,916 20 109548 35 2,462 24274
equaly
Method 1i 81,725 28 92,118 44 2,392 20,695
weighted0
Method 2i 86,768 24 97581 40 2416 22235
equaly
Method 21 86,424 25| 96960 42 2,431 21,119
weighted0

Iteration 3
Method 11 89,318 23 100,211 39 2,431 22623
equal
Method 1i 72.927 45 82,876 66 2,150 19,349
weighted0
Method 2 86,542 24 97,083 40 2,417 22048
equaly
Method 2i 72,922 45 82,865 67 2,157 19,245
weightedy

The first two iterations are shown for completion; the discassidl focus on the
third iteration because its results are the final results used. The)egeaslults for Methods
1 and 2 are very similar as eachheBPTR oacho
green was the only green time that all ragkmethods selected the same best green time.

As mentioned in SectioB.2.], this is likely because the minimum green time was more

than enough for the low NS vehicle volumiakewise, the objective values were relatively
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similar. Although some differencegem large, such as the 2,776 vehsdeonds of total
vehicle delay, it equates to approximately one second per vehicle. The weéigheslilts

for Methods 1 and 2 exhibited the same pattern.

An additional trend to note for these results are the lower objective values for the
weighted objectives. The number of stops and pedestrian delay values are noticeably lower
for the weightedesults compared to the equalleighted results, regardless of the method
used. Al so, most approachesd green times
equallyweighted results. The EW T/R green time, however, was approximately 12 seconds
longer forweighted cases. This suggests a longer green time is needed to decrease nhumbe

of stops and pedestrian delay

Most optimizedgreen times fell within the range of the singlgective optimized
green timeswith the exception of the EW T/R green times. Witiwas expected that all
MOO green times would fall in the SOO green times, it is possible for this not to happen.
The combined effect of all four green times influence the objective values. One MOO green
time falling outside the SOO range is logicastcularly because it is relatively close to

being within range. This demonstrathe ability of MOO to balance different objectives

3.3.1.3Sensitivity analysis

The removal of redundant objectives one at a time raises the concern of how the
final rankel solutions would change if different redundant objectives were removed (e.g.
vehicle delay versus passenger delay) or if the objectives were removed in a different order
(e.g. passenger delay first and passenger delay inequity second, or vice versay. tim o

address this potential issue, a sensitivity analysis was conducted to determine the effect of
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different objective removal strategies. Four cases were tested and are described below in

Tablel8.

Table 18: Sensitivity analysis test scenarios

Case Iteration 1 removal | Iteration 2 removal

Case A | passenger delay passenger delay inequity
Case B | vehicle delay vehicle delay inequity
Case C | passenger delay vehicle delay inequity
Case D | vehicle delay passeger delay inequity

The results of the unweighted Method 1 solutionsshmvnin Table19.

Table 19: Sensitivity analysis resultyprotected LT)

Case NSL(sec) | NST/R(sec)| EWL (sec) | EW T/R (sec) Cycl(iéir)lgth
Case A 12.1 19.1 6.6 30.2 84.0
Case B 13.4 19.1 5.0 29.4 82.9
Case C 13.4 19.1 5.0 29.4 82.9
Case D 12.2 19.1 6.7 29.2 83.2
Range 1.36 0.00 1.70 1.02 1.09

The rangsof green times anelatively small This indicates the objective renad
order does not affect the final solutions because all green times are very similar, regardless
of which case was tested. The NS T/R waactly the same regardless of the objective
removal orderThese results suggetste final solution is not sensitivto the objective

removal process.
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3.3.2Permitted left turns

3.3.2.1Tradeoff indices and mosaic plots
The mosaic plot for the first iteration of the permitted LT intersection is shown

bel ow with each objective pairds tradeoff

Figure 9: Homogenized mosaic plotgermitted LT, first iteration)
Overall, the permitted LT mosaic plot shows less tradeoff than the protected LT

mosaic plotThe two mosaic plots look relatively similar with some noticeable exceptions.
The tradetis between pedestrian delay and both vehicle and passenger delays increased.

This is likely because lefurning vehicles must yield to pedestrians because there is no
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