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Abstract 

Adjusting signal timings at signalized intersections is a practical way for 

transportation agencies to manage traffic without the need for significant infrastructure 

upgrades or additions. Traffic signal timings are directly related to the delay vehicles 

experience at signalized intersections. Typically, traffic engineers select signal timings to 

minimize the total delay experienced by vehicles at the entire intersection. At first glance, 

this is a fairly reasonable thing to do—minimizing the total delay at the intersection reduces 

the negative impacts imparted onto cars. However, there are many other possible objectives 

to consider when selecting signal timings at a signalized intersection. An engineer may 

wish to consider the approach or movement delay separately and assign a weight of 

importance to each. For example, one approach may experience heavy bus traffic, and thus 

its delay might need to be weighted more heavily to reduce the total delay experienced by 

all passengers served by the intersection. Or, by increasing the delay of one approach by a 

small amount, the delay of another approach may decrease by a large amount thus 

providing a more equitable distribution of delay at the intersection. These and other cases 

are generally not considered under current signal timing standard practice. Even when they 

are, no methodology exists to incorporate multiple objectives into signal timing 

optimization.  

In light of this, the goal of this research is to develop methods that traffic engineers 

can use to optimize signal timings while considering multiple, potentially competing, 

objectives. The methods proposed rely on the application of a well-known multi-objective 

optimization (MOO) genetic algorithm, NSGA-II, to obtain a set of signal timings that 



 

iv 

  

consider multiple objectives that may be relevant when selecting signal timings. The set of 

possible signal timings obtained by the MOO represents a Pareto frontier that defines the 

optimal tradeoffs that exist between the unique objectives. The research applies relatively 

new MOO visualization techniques to easily explore the tradeoffs between objectives that 

exist within this Pareto frontier and proposes new techniques to identify and remove 

objectives that might not be necessary. Additionally, methods are proposed to select the 

best solution in the Pareto frontier based on how a user values each of the potentially 

competing objectives. These methods will allow transportation agencies to obtain signal 

timings that provide the best tradeoff between objectives that are defined for any particular 

location. 
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1.0 Introduction and Literature Review 

1.1 Motivation 

Traffic congestion in the United States is a serious issue, causing Americans to 

spend over 6.9 billion additional hours on the road in 2014 (1). This is not only a great 

personal inconvenience, but the effect of urban congestion also has severe environmental 

and economic implications. For example, in 2014 Americans wasted 3.1 billion gallons of 

fuel, contributing to a congestion cost of $160 billion (1). This is a problem that is likely 

to worsen before it improves. From 2013-2014, 95 of the 100 largest metro areas 

experienced an increase in traffic congestion, while only 61 did in the previous year (1).  

Increases in traffic congestion place a particularly heavy strain on urban areas 

where expanding roadway capacity by building additional infrastructure (e.g., adding lanes 

to existing roadways) may be impossible due to space constraints. However, modifying 

traffic signal timings can help to manage or decrease congestion in urban areas without the 

need for additional infrastructure. Changing traffic signal timings at a signalized 

intersection reallocates capacity among competing traffic streams, allowing a 

transportation agency to easily change how capacity is distributed between approaches.  

Traffic signal timings are typically timed such that only a single objective, the total 

control delay at an intersection, is minimized (2, 3). Control delay is the delay incurred by 

vehicles due to the presence of a traffic control device (4), such as a traffic signal. This is 

generally a good metric to consider since reducing the total delay experienced by all 

vehicles using the intersection minimizes the negative impacts vehicles experience due to 
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the signal and allows the intersection to operate the most efficiently. However, this is a 

somewhat myopic perspective as there are other metrics that traffic engineers should also 

consider when computing signal timings, including some that may conflict with each other 

in unpredictable ways. These objectives include those that deal with safety, the 

environment, delay to other intersection users, equity, and multimodal operations. Some, 

if not all, of these metrics are important and may need to be simultaneously considered in 

the signal timing process.  

Several studies have proposed multi-objective optimization (MOO) to determine 

optimal signal timings while accounting for multiple objectives simultaneously. In general, 

these methods only consider two to three objectives. These previous studies also rarely 

explore the relationships between the objectives in a systematic way. Specifically, these 

previous studies have not proposed techniques to identify and quantify the tradeoffs 

between the considered objectives. Finally, previous studies that have employed MOO for 

signal timing optimization have not provided any guidance on how to apply the results of 

the MOO method in practice. Most MOO procedures provide users with a large set of 

potential solutions that define a Pareto frontier, but obtaining a single signal timing solution 

to implement from this Pareto frontier is a challenging task. The proposed research will fill 

in the gaps present in the existing research. A detailed review of existing literature and its 

deficiencies are provided in the following section. 

1.2 Literature Review 

Previous studies in the research literature have applied several optimization 

methods to select signal timings while considering different potential objectives. Most 
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studies have only considered a single objective, but more recent studies have considered 

more than one objective in its signal timing optimization. These papers—and their 

limitations—are discussed in this section. 

1.2.1 Signal timing optimization methods 

Several methods have been employed to define and quantify the objectives used in 

signal timing optimization. Some studies use a mathematical approach to compute 

objectives either analytically or using mathematical models, such as the cell transmission 

model (5–23). Other studies use simulation software packages such as VISSIM or 

TRANSYT-7F to quantify objectives in the optimization (24–40). Optimization methods 

vary. When analytically possible, exact solutions to mathematical programs – such as linear 

and nonlinear programs – are obtained (11, 15–19, 35). In many cases, however, exact 

solutions are not possible and heuristics such as genetic algorithms or particle swarm 

optimization are used to approximate the optimal solution (5–9, 20–22, 24–34, 36–38, 41–

43, 40, 23). These studies differ both with the specific objectives and the number of 

objectives considered simultaneously. Many recent studies have used genetic algorithms 

to optimize signal timings, particularly a non-dominated sorting genetic algorithm (NSGA-

II)  (6, 23, 24, 28, 40) that will be discussed in greater detail in Section 2.1. Regardless of 

the optimization method used, the process is computationally intensive and increases 

exponentially as the number of objectives increases. Sections 1.2.2 and 1.2.3 will describe 

the objectives used in previous studies. 
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1.2.2 Single-objective signal timing optimization  

Foy et al. appears to be the first study in the research literature to optimize signal 

timings, minimizing the total intersection delay for its calculation ease relative to other 

objectives (32). Zhao et al. and Wei et al. also optimized signal timings by minimizing the 

total intersection delay (14, 16). Noaeen et al. minimized the intersection delay including 

shockwave effects to optimize isolated intersection cycle lengths and green splits (17). 

In addition to vehicle delay, some papers consider multimodal operations. Christofa 

and Skabardonis minimized the total person delay by considering passenger delay of 

passenger cars and buses when including transit signal priority in the optimization (10), 

while Yang et al. minimized bus delay along a coordinated arterial (5). Khalighi et al. 

minimized automobile and transit vehicle emissions to improve air quality at intersections 

(18). Gökce et al. optimized signal timings at a large traffic circle to minimize the mean 

travel time, which is inherently related to vehicle delay (37).   

Other single-objective optimization studies also considered objectives other than 

delay. Fang and Elefteriadou minimized queue lengths at closely-spaced diamond 

interchanges to avoid queue spillback and queue storage limits (35). Girianna and 

Benekohal maximized the throughput when optimizing traffic signals for oversaturated 

networks to dissipate queues as quickly as possible (7).  Park et al. minimized the queue 

time and compared it to the optimal signal timings generated from TRANSYT-7F (30). 

Hadi and Wallace optimized signal timings to maximize progression, also using data from 

TRANSYT-7F simulations (31).  
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Some studies conducted multiple single-objective optimizations to compare how 

signal timings might change when different objectives were considered. Leonard and 

Rodegerdts compared four different single-objective signal timing policies: maximizing 

progression and minimizing delay, number of stops, and fuel consumption (39). Yun and 

Park separately optimized the total delay and the time vehicles spent in a queue (29). Park 

et al. again optimized for total throughput and minimum average delay both with and 

without a penalty on movements with a v/c ratio above 0.9 (33). Rabbani and Bullen 

determined green splits considering minimum total delay and equal marginal delay (44). 

For the latter case, the delay of one additional vehicle at an approach (i.e., the marginal 

delay of that approach) was equalized between all intersection approaches to ensure the 

service at all approaches is equal. 

Although a diverse set of objectives has been considered in single-objective 

optimization studies, real intersections are subject to many different, and potentially 

competing, objectives. The next section describes studies that have considered multiple 

objectives simultaneously in the signal timing optimization process.  

1.2.3 Multi-objective signal timing optimization 

The value of MOO is demonstrated because it simultaneously considers all 

objectives in the optimization process. Numerous studies have applied MOO to signal 

timing optimization. Most include two objectives in the optimizations, although some 

consider three or more objectives. 
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1.2.3.1 Papers with two objectives 

Kesur minimized the total network delay and the network delay imbalance in both 

a fourteen-signal grid network and a nine-signal coordinated arterial network (24). The 

network delay imbalance was determined first by calculating the average delay per foot of 

all possible routes through the network. The maximum value was then minimized to 

minimize the inequity in network delay. It was found that a small increase in total network 

delay corresponded to a relatively large decrease in delay imbalance. For example, a five 

percent increase in network delay corresponded to a 14.4 percent decrease in the arterial 

network delay imbalance and an 8.3 percent decrease in the grid network delay imbalance. 

Although this study examined delay inequity in a network, there was no measure to 

compare the delay inequity within approaches at an intersection. 

Multiple studies considered pedestrian or bus delay simultaneously with vehicle 

delay. Roshandeh et al. minimized average vehicle delay and average pedestrian delay to 

compare crashes using these optimized signal timings with crashes using existing signal 

timings to determine the safety impacts of optimized signal timings (12). The timings were 

applied to the Chicago central business district (CBD) street network using simulations to 

conduct a before-after analysis. The study found optimized signal timings can improve 

both vehicle mobility and the safety of vehicles and pedestrians. Yu et al. minimized both 

the vehicle delay and pedestrian delay at an intersection, considering both one- and two-

stage crosswalks and their space limitations (15). Although these studies considered 

multimodal operations in the optimizations, neither could examine the relationships 

between vehicle, pedestrian, and bus delay because they only included two objectives.  
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Some objectives—vehicle delay, number of stops, and vehicular throughput—were 

included in several studies. Zhang et al. minimized the total delay and maximized the traffic 

throughput at a set of adjacent, coordinated intersections and compared the optimized 

signal timings to fixed signal timings (13). The study found the vehicle delay decreased up 

to 14.5 percent depending on the length of the connecting road, while the traffic dissipation 

increased up to 2.8 percent. Stevanovic et al. optimized the VISSIM performance index 

(PI), which includes vehicle delay and number of stops (34). Although two objectives were 

included in the PI, the tradeoffs cannot be known because the objectives were combined 

into a single metric. Also, unit inconsistencies may exist between objectives in PIs, such 

as between number of stops and delays. A stop can be set equal to a certain length of delay, 

but this would be difficult to determine a priori. In a separate study, Stevanovic et al. 

optimized the number of vehicle conflicts and throughput (36). The average delay and 

average number of stops were minimized to optimize the effective green time in a study by 

Sun et al. (6). There were no comparisons to a non-optimized signal, although the study 

did emphasize the tradeoff between the two objectives and how an engineer can select the 

most appropriate solution using the Pareto frontier. In a paper by Stevanovic et al., the 

number of safety conflicts was minimized and the vehicular throughput was maximized 

along a 12-intersection arterial via simulation to compare the optimized signal timings with 

the initial signal timings (26). A similar phenomenon found in (24) occurred in these 

findings: although the throughput remained almost the same, the number of conflicts 

decreased by approximately seven percent compared to the initial signal timings. Wong 

and Wong optimized traffic signal timings by maximizing throughput and minimizing 

cycle length (19). Branke et al. performed two separate bi-objective optimizations, 
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minimizing the average vehicle delay and average pedestrian delay and later minimizing 

travel time and average number of stops (28). 

Other studies considered more non-traditional objectives in the two-objective 

optimizations. Zhang et al. optimized the cycle lengths, offsets, green splits, and phase 

sequences to minimize total delay and human exposure to pollutants in a study that found 

significant tradeoffs between these two objectives after applying the optimization to a 

stretch of roadway with five intersections (25). Yin determined the optimal road toll pattern 

by minimizing total delay and maximizing total revenue (21). Although this paper did not 

optimize signal timings, it provided an example of two conflicting objectives.  

These bi-objective optimization problems have shown the benefits of optimizing 

traffic signal timings. In many cases, one objective can be greatly decreased with only 

minimal changes to the other. Bi-objective optimizations are advantageous because they 

show the relationships and tradeoffs between two objectives. However, these studies are 

limited by considering just two objectives at a time. Some studies have gone further and 

optimized for more than two objectives to gain an even greater understanding of signalized 

intersection operations. 

1.2.3.2 Papers with more than two objectives 

Aziz and Ukkusuri performed optimizations on several cases, including one that 

minimized total system travel time, intersection delay, and lost time (11). Fang and 

Elefteriadou considered queue length, vehicle delay, and storage ratio (the ratio of the 

queue length to the available space) (35). Lertworawanich et al. minimized queue 

spillovers and the difference in average approach delays, and maximized network 
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throughput (8). Li et al. also considered three objectives and applied the optimized results 

to an intersection in Nanjing, China (45). The authors examined average delay, emissions 

released, and fuel consumption. The optimized signal timing resulted in decreased average 

delay and emissions of hydrocarbons, carbon monoxide, and NOx. Although these papers 

considered a more realistic number of objectives present at an intersection, they combine 

all objectives into one objective function. As discussed previously, the tradeoffs cannot be 

determined and there may be unit inconsistencies when objectives are incorporated into 

one objective function. The remaining studies optimized all objectives separately. 

Stevanovic et al. authored a three-objective optimization paper where the three 

surrogate measures of mobility, safety, and environment were examined and used to 

optimize signals along a segment of five signalized intersections (27). The objectives were 

to maximize throughput and minimize conflicts and fuel consumption. The study 

developed three-dimensional Pareto frontier surfaces and found the resulting signal timings 

were greatly improved from the existing timings. Chen et al. optimized signal timings for 

delay, stops per vehicle, and traffic capacity (9). 

Few studies considered more than three objectives, possibly because of the 

difficulty in interpreting the results as will be discussed in Section 1.3. Schmöcker et al. 

optimized signal timings for average car, bus, and pedestrian delays and minor- and major-

street queue lengths (20). Matos and Carvalho considered six objectives: control delay, trip 

duration, CO2 emissions, fuel consumption, number of stops, and time lost due to driving 

below ideal speed (38). 
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All of the aforementioned literature that examined traffic signal optimization—

whether with one, two, or three objectives—demonstrates the potential for improving 

signalized intersections. However, there are several limitations or missing components 

with the existing literature. 

1.3 Gaps in Research 

Although extensive, existing literature contains two important shortcomings: there 

is no method to identify objectives with competing tradeoffs and there is no guidance in 

selecting which optimal solution is the one best solution for a certain intersection. 

1.3.1 Tradeoff identification 

As previously discussed, every objective has a relationship with other objectives. 

Some relationships may not be as important, such as an objective pair that has no tradeoff. 

Other relationships, such as an objective pair that does have tradeoff, are more important 

to the engineer. By knowing which objectives conflict with each other, and to what degree, 

an engineer gains a better understanding of the tradeoffs involved in the signal timing 

process and has the knowledge required to make a more informed decision. Furthermore, 

if there is little or no tradeoff between objectives, one can be removed from the 

optimization process to reduce the problem’s dimensionality. As mentioned in Section 

1.2.1, optimizations are computationally intensive so reducing the number of objectives 

can significantly reduce the time and computational power required. Although some 

existing literature (6, 21, 26, 27) has discussed the importance of tradeoffs and produced 

seemingly balanced signal timings, none have offered a method to identify or quantify 

tradeoffs to verify the quality of the signal timings. 
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1.3.2 Guidance in selecting the best solution 

Every MOO results in a set of Pareto optimal solutions, which define a Pareto 

frontier in which one objective cannot be improved without negatively impacting another. 

Each solution balances the objective values differently, and it is left to the discretion of the 

analyst to decide what kind of balance, and therefore which solution, is most desired for 

the intersection. Even if the desired balance or tradeoffs are known, methods currently do 

not exist in the signal timing literature to identify and implement a single final solution 

from this set of Pareto optimal solutions. Kesur, Lertworawanich et al,. and Schmöcker et 

al. mention the problem of choosing a particular solution from the optimal set, but do not 

propose a solution (8, 20, 24). As with the tradeoff identification, a method to aid a 

practitioner in selecting one solution from all optimal solutions would be helpful in making 

MOO more practice-ready.  

1.3.3 Summary of research gaps 

A review of existing literature found several studies discussing optimized signal 

timings based on one, two, or more objectives. Overall, the trend in signal timing 

optimization is to consider multiple objectives. In some cases, one objective can be greatly 

decreased while the other remains the same or only slightly increases. However, there are 

some deficiencies in the existing knowledge. While there are many different metrics 

interacting with each other at intersections, there are currently few studies that examine the 

interactions of more than three objectives, perhaps because it is so difficult to interpret the 

results. Also, few studies considered objectives such as inequity and multimodal 

operations, and many papers combined multiple objectives into one objective function. 
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MOO studies that investigated the relationships between multiple objectives have not 

offered a way to identify and quantify the tradeoffs between competing objectives. Finally, 

there has been no guidance for a practitioner to select the best optimized solution. This 

research proposes to fill these voids in the existing literature. 

1.4 Research Objectives 

The major research objectives alluded to above are to: 

1) use MOO for many different objectives to determine signal timings that 

consider more than just two or three objectives simultaneously;  

2) propose methods to identify and quantify the tradeoffs between 

objectives to help remove objectives that might be redundant; and,  

3) develop a methodology to provide guidance in selecting a signal timing 

plan that selects the best balance between all objectives. 
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2.0 Methodology 

2.1 Multi-objective Optimization Algorithm 

This research will use a MOO algorithm that was implemented in MATLAB. The 

algorithm is the second version of a non-dominated sorting genetic algorithm, called 

NSGA-II (46). Genetic algorithms have been used in various traffic engineering papers as 

early as 1992 (7, 22, 32) but have seldom been utilized until recently due to their 

computational demand (27). As a type of evolutionary algorithm, a genetic algorithm 

ultimately results in solutions, or sets of decision variables, that minimize or maximize 

objectives while satisfying constraints. First, the user inputs the amount of solutions to 

output and generations to run. The user also inputs the objectives to minimize or maximize, 

as well as the constraints. With these inputs, the algorithm first chooses a random set of 

initial solutions, which correspond to a set of initial objective values. The decision variables 

are randomly changed with each generation, and these changes are kept if the objectives 

are improved. After many generations, each solution converges to an optimal solution in 

which it is not possible to improve one objective without sacrificing another. The set of 

these optimal solutions is referred to as the Pareto frontier. All solutions in the Pareto 

frontier are equally optimal in the absence of any additional user-provided information 

based on their preferences. An example of a Pareto frontier is shown in Figure 1. 
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Figure 1: Example of a Pareto frontier 

Figure 1 shows that any solution to the right of the frontier can be improved by 

decreasing one or both objective values. The number of solutions considered in the MOO 

process defines the precision at which the Pareto frontier can be determined: more solutions 

means a more precise definition of the Pareto frontier. As mentioned earlier, each 

generation brings the initial solutions closer to the Pareto optimal solutions. Therefore, a 

higher number of generations increases the likelihood of converging to the Pareto frontier. 

Users should use a high number of solutions and generations to reveal the true Pareto 

frontier, although this increases the computational cost due to the increased algorithm run 

time. 

A very recent update to NSGA-II was created and is known as NSGA-III (47). This 

algorithm is optimized for many-objective optimizations, or optimizations with more than 

four objectives. However, NSGA-II has a longer history and has been more widely-used. 

Furthermore, Matos and Carvalho found that NSGA-II outperformed NSGA-III in a many-
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objective traffic signal timing optimization (38). Finally, the main purposes of this research 

are to explore many different objectives, introduce a tradeoff visualization and 

identification technique, and propose methods for selecting the best solution from a set of 

solutions. Because the exact algorithm used is not crucial for these purposes, this research 

uses the more widely-used NSGA-II algorithm. For more detailed information about the 

this algorithm, the reader is encouraged to consult the original paper proposing NSGA-II 

(46).  

2.2 Tradeoff Index and Mosaic Plot 

As described in Chapter 1, a major shortcoming of existing traffic engineering 

literature is that there have not been any methods to identify tradeoffs that exist between 

competing objectives in multi-objective signal timing optimization. Researchers can 

speculate which objectives may logically conflict with each other, but there is no way to 

quantify the tradeoffs and know whether or not these tradeoffs actually exist.  

This research proposes the introduction of the newly-developed mosaic plot into 

the traffic engineering research field. The mosaic plot, developed by Unal et al. in 2015 

(48), improves upon existing methods of identifying tradeoffs between many objectives. 

Prior to the development of the mosaic plot, the two most common tradeoff identification 

techniques were the scatter plot matrix and parallel coordinate plot (48), both of which are 

shown in Figure 2. The scatter plot matrix shows all the two-dimensional Pareto frontiers 

between all objective pairs. As the number of objectives increases, the number of sub-

matrices required to show all relationships also rapidly increases. The parallel coordinate 

plot displays the objective values of each solution as a single line. The crossing of one line 
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over another indicates a tradeoff between the two objectives, and a higher number of 

crossing lines indicates a higher tradeoff. As the number of objectives increases, usage of 

the parallel coordinate plot requires many different figures to observe the tradeoff between 

every unique pair of objectives. 

 
Figure 2: Scatter plot matrix and parallel coordinate plot (48)  

In contrast to these two methods, the mosaic plot only requires one reasonably-

sized figure and allows the user to quickly determine the relationship between each 

objective pair. The key component to the mosaic plot is the tradeoff index, which quantifies 

the degree of tradeoff between a pair of objectives. The tradeoff index is defined as: 

𝜆𝑖,𝑘𝑙 =
∑ 𝛽𝑖𝑗,𝑘𝑙

𝑁𝑠𝑜𝑙
𝑗=1

𝑁𝑠𝑜𝑙−1
, 𝑗 ≠ 𝑖  (1) 

where: 

𝑁𝑠𝑜𝑙: number of solutions; and, 

𝛽𝑖𝑗,𝑘𝑙: binary factor if ith and jth solutions cross between objectives k and l. 

The binary factor 𝛽𝑖𝑗,𝑘𝑙 is equal to zero if the solutions do not cross and one if the solutions 

do cross. As shown above, the tradeoff index of Solution i is an average of ones and zeros 

depending on the number of times the Solution i'’s line segment crosses other solution line 
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segments. The tradeoff index is bounded to 𝜆𝑖,𝑘𝑙 ∈ [0,1], with values near zero indicating 

lower tradeoffs and values near one indicating higher tradeoffs. With the tradeoff index of 

all solutions, the homogenized tradeoff index 𝛬𝑘𝑙 can be calculated to determine the 

average tradeoff between Objectives k and l for all solutions: 

𝛬𝑘𝑙 =
∑ 𝜆𝑖,𝑘𝑙

𝑁𝑠𝑜𝑙
𝑖=1

𝑁𝑠𝑜𝑙
  (2) 

This results in the average value of all tradeoff indices between objectives k and l, 

representing the average tradeoff between the two objectives. Using this measure, the 

tradeoff between objective pairs can be quantified. These tradeoff indices are also used to 

create the mosaic plot visualization technique. 

Tradeoffs are color-coded, with white representing no tradeoff, black representing 

complete tradeoff, and varying shades of gray to represent all levels in between. A darker 

gray represents higher tradeoff between two objectives. Example mosaic plots are shown 

in Figure 3. 
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a)  

b)  
Figure 3a) Mosaic plot, and b) homogenized mosaic plot (49) 

In Figure 3a, the small individual squares show the tradeoff of every solution, or 

the tradeoff index 𝜆. The homogenized mosaic plot in Figure 3b is obtained by computing 

the average tradeoff of all solutions, or the homogenized tradeoff index 𝛬. In the above 

example, Objective 1 and Objective 2 have the highest tradeoff because their intersecting 

square is the darkest. Likewise, Objectives 1 and 4 have the lowest tradeoff because that 

square is the lightest. In the mosaic plot creation process, the calculated tradeoff indices 
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are saved if the user desires to more accurately compare tradeoffs rather than visually 

estimating them. It can be seen that if a fifth objective were added to Figure 3, the mosaic 

plot would slightly grow in size to compare all possible objective pairs, but no additional 

plots would be required (unlike the parallel coordinate plot and scatter plot approaches). 

This research will use the mosaic plot to easily illustrate the tradeoffs between 

competing objective pairs. If one objective is determined to be non-competing with all 

other objectives, this non-competing objective can be removed to reduce the 

dimensionality of the problem and ensure two similar objectives do not influence the 

solutions in a biased manner. This is described in further detail in the next section.  

To determine if an objective is non-competing, the average homogenized tradeoff 

index 𝛿𝑘 is proposed here. This index is simply the mean of all homogenized tradeoff 

indices for a given objective value. It represents the overall relationship an objective has 

with all other objectives. Like the individual objective tradeoff indices, the higher the 

value, the greater the tradeoff. The average homogenized tradeoff index is defined as: 

𝛿𝑘 =
∑ 𝛬𝑘𝑚

𝑀−1
𝑚

𝑀−1
, 𝑘 ≠ 𝑚 (3) 

where 

𝛬𝑘𝑚: homogenized tradeoff between Objective k and Objective m 

𝑀: number of objectives 

Once the optimal solutions are generated by the MOO algorithm and the mosaic 

plots are created, the next step is to identify and remove redundant objectives. 
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2.3 Redundant Objective Identification 

The above indices can determine if an objective is redundant and if so, it can be 

removed from the MOO and a new iteration of the MOO process can be performed. Only 

one objective is removed per iteration. This process continues and stops when there are no 

more redundant objectives in an iteration. The practitioner will then select solutions from 

this final iteration. 

There are several reasons why removing redundant objectives is desirable. The 

most applicable reason to practitioners is computational efficiency. MOOs with many 

objectives require more powerful computers or more time to run. By decreasing the number 

of objectives, the optimization can be completed more quickly. While this requires more 

work initially, the redundant objective results can be used for similar intersections or the 

next time MOO is used for the intersection. Another reason to remove redundant objectives 

is because it increases the likelihood of finding the Pareto optimal solution within the given 

number of generations. Each objective corresponds to one dimension in the solution space, 

so the space increases as the number of objectives increases. Finding the Pareto optimal 

solution is less likely when the space is large. By removing redundant objectives and 

decreasing the size of the space, the solutions become denser and the MOO has a higher 

chance of finding the Pareto optimal solution. Finally, practitioners may choose to remove 

two correlating objectives simply due to their redundancy so the MOO does not take two 

similar objectives into consideration. An example of this will be provided in Chapter 3, 

which provides a numerical example demonstrating the methodology. 
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There are two methods to determine if objectives are redundant. One method is to 

use the average homogenized tradeoff index, or 𝛿𝑘, described in the previous section. 

Practitioners may set a minimum acceptable value for 𝛿𝑘 and if an objective is less than 

this value, it is removed. The procedure for determining this value can be as simple as 

assigning a value (for example, 0.3) or some other more involved process. Another way to 

identify redundant objectives is to compare the respective tradeoff indices of two objectives 

with the remaining objectives. If the tradeoff indices between the remaining objectives and 

the two objectives are similar and the two objectives do not trade off significantly with 

each other, one of them can be removed. For example, if Objectives k and l have respective 

tradeoffs of 0.55 and 0.54 with Objective a, 0.38 and 0.37 with Objective b, and 0.62 and 

0.63 with Objective c, either Objective k or l can be considered redundant (provided they 

have low tradeoff with each other) because their tradeoffs with the remaining objectives 

are similar. As with the other objective redundancy identification method, the definition of 

similar is chosen by the practitioner. In this example, the absolute difference was 0.01 for 

each remaining objective but a practitioner can choose their threshold values for 

redundancy. 

If the above procedures are followed, a practitioner will identify a redundant 

objective in the MOO to remove. However, the results may conflict with the desire of 

transportation agencies. For example, a practitioner may conclude that a certain objective 

should be removed but if an agency requires that objective to always be included, the 

second most redundant objective can be removed. While the above procedures are 

guidelines for identifying redundant objectives, they are not strict standards. Practitioners 
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may follow these guidelines as closely as they desire depending on the agency’s mandates. 

In the absence of such mandates, these guidelines should be followed. 

2.4 Methods for Selecting Best Solution 

As mentioned earlier, the MOO will output as many optimal solutions as the user 

specifies, which should be a large number in order to precisely define the Pareto frontier 

and maximize the probability of finding the best solution for an intersection. With these 

MOO-generated optimal solutions, the user will need to apply their own judgement to 

subjectively pick one solution that works best for an intersection.  To do so, the user will 

require a method to select the best of the optimal solutions. 

A mathematically sound method is required to fairly rank all solutions so that all 

objectives are weighted equally. For example, simply summing the objective values and 

using the minimum sum as the best solution would result in a biased solution because 

objectives with larger values will have a greater effect on the sum. Also, objectives have 

different units that cannot be added together. For example, there is no logical meaning to 

the sum of stops and delay because stops and vehicle-seconds cannot be added. As 

mentioned earlier, it would be difficult to set one stop equal to a certain length of delay a 

priori. This is a drawback of approaches that combine multiple objectives into one single 

objectives. In order for a fair comparison to be made, objective values must be compared 

to other objective values of the same magnitude and units. 

In this research, two methods are proposed to help a user sort through the solutions 

and identify the one(s) that provide the best balance between the competing objectives. The 
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methods are described using the objective value ratio 𝜃𝑖𝑘 and ratio product 𝛩𝑖, as proposed 

below. 

2.4.1 Method 1 

In Method 1, all solutions are ranked based on their objective value ratio to the 

minimum objective value. Since all objectives are to be minimized (maximized objectives 

can be multiplied by −1 and then minimized), the best solution will have relatively low 

objective values for all objectives. For each objective value of each solution, the objective 

value ratio is defined as: 

𝜃𝑖𝑘 =
𝑂𝑉𝑖𝑘

𝑚𝑖𝑛
𝑖

(𝑂𝑉𝑖𝑘)
 (4) 

where: 

𝑂𝑉𝑖𝑘: Solution i's value for Objective k 

Every solution i will have an objective value ratio for each objective k and 𝜃𝑖𝑘 ≥ 1. 

For each solution, all objective value ratios are then multiplied together to obtain the ratio 

product: 

𝛩𝑖 = ∏ 𝜃𝑖𝑘
𝑀
𝑘=1

𝑤𝑘
 (5) 

where: 

𝑀: number of objectives 

𝑤𝑘: weighting factor for Objective k 
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The decision-maker may assign weighting factors to objectives they deem more 

important, which is helpful if a decision-maker or agency wishes to prioritize one or more 

objectives. The objective value is raised to 𝑤𝑘 rather than multiplied to ensure 𝑤𝑘 is applied 

to the desired objective. If it were multiplied, the commutative property would cause 𝑤𝑘  

to be applied to the product of all objective values and not be specific to one objective, 

essentially rendering it useless. Calculation of 𝑤𝑘 is dependent on the decision-maker. 

They may use a relatively arbitrary number (e.g., three to denote an objective as three times 

more important) or they may create a more complex definition process. To weigh all 

objectives equally, each weighting factor is set to one. Solutions with lower 𝜃𝑖𝑘 have lower 

deviations from the minimum objective value; a solution with an 𝜃𝑖𝑘 equal to one indicates 

the solution has the lowest value for the corresponding objective. Continuing with this 

logic, a solution with a 𝛩𝑖 closer to one has the fewest differences from minimum objective 

values. Therefore, all the ratio products for each solution are sorted in ascending order to 

determine which objectives from among the solutions are closest to the minimum value. 

The highest-ranked solution is labelled the best solution, as it does the best job at 

simultaneously minimizing all objective values. 

2.4.2 Method 2 

The process for Method 2 is similar to Method 1, but uses a constrained set of 

solutions instead of all solutions in the Pareto frontier set. Decision-makers establish a 

maximum value for one or more desired objectives and then add a constraint in the 

optimization such that no objective values exceed the criteria. After the optimization is ran 

and a new set of constrained solutions is created, the process follows similar steps as 
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Method 1. The only difference is the calculation of 𝛩𝑖. The objective value ratio for the 

constrained objective is not included in this calculation because its effect on 𝛩𝑖 was already 

taken into account with the added constraint. For Method 2, 𝛩𝑖 is defined as: 

𝛩𝑖 = ∏ 𝜃𝑖𝑘
𝑀
𝑘=1  , 𝑘 ≠ 𝑚  (6) 

where 

𝑚: filtered objective 

This method would be used if a decision-maker or agency requires a maximum acceptable 

objective value for one or more objectives. 
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3.0 Numerical Example 

A fictional intersection will be used to demonstrate the methodology described in 

the previous chapter. This fictional example was used for its simplicity in order to focus on 

relationships between the objectives, which are described below. It is noted that the purpose 

of this example is to demonstrate the methods; the intersection properties and objectives 

here are not crucial for the methodology.  

3.1 Setup and Objectives Used 

Signal timings were optimized for a pre-timed signalized intersection with the following 

characteristics: 

 Isolated  

 Under-saturated 

 Four two-way approaches 

 Protected or permitted left turns 

 Four pedestrian crosswalks 

 Uniform vehicle and pedestrian arrivals 

The geometry, lane group vehicle volumes, and crosswalk pedestrian volumes are shown 

in Figure 4, and the phase sequence diagram is shown in Figure 5. 
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Figure 4: Isolated intersection example 

 

 
Figure 5: Isolated intersection phase sequence 

There was no constraint on the cycle length. Additionally, there were two types of 

left turn treatments tested: protected and permitted. The east-west (EW) left turns were 

assumed to always have a protected left turn phase but the north-south (NS) left turns were 

assumed to be protected in one case and permitted in another to demonstrate that this 
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method can be applied in either situation. The assumed signal timing information is shown 

in Table 1. 

Table 1: Traffic signal characteristics 
Variable Value 

Cycle length Variable 

Left turn minimum green times 2 seconds 

Left turn maximum green times 60 seconds 

Thru/right minimum green times 19.1 seconds (NS); 9.6 seconds (EW) 

Thru/right maximum green times 60 seconds 

Yellow time 3 seconds 

All-red time 1 second 

Lost time per cycle 16 seconds 

 

The minimum green times were calculated using the 2010 HCM Equation 31-72 to 

allow sufficient pedestrian crossing time while assuming eleven-foot lanes, a pedestrian 

walking speed of 3.5 feet per second, and the use of the yellow phase for pedestrian 

crossing. All lane group occupancies were 1.1 passengers/veh, with the exception of the 

Northbound left which had an average occupancy of 1.5 passengers/veh to model an 

approach with heavy bus traffic. The base saturation flow was 1700 veh/hr/lane, with right- 

and left-turn adjustments made in accordance with Equations 18-10 and 18-11 in the 2010 

HCM (4). Again, it is noted these intersection properties were chosen for simplicity. 

Six objectives were used in the MOO. These objectives were chosen because of 

their novelty, applicability, and ability to be analytically quantified (e.g. not derived from 

simulations). However, the ranking methodology does not require these objective 

characteristics—if desired, objectives may be obtained through other methods such as 

simulation or the use of a mathematical model. As long as the final generation of MOO 

solutions are provided, the ranking methods will work. All objective values are computed 
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for a one hour period and are minimized. Objective value calculations for permitted and 

protected left turns were the same for all objectives except for the total number of stops as 

noted in Section 3.1.5. 

3.1.1 Total intersection vehicle delay 

The first objective considered is the total intersection vehicle delay, which is the 

primary objective that is currently considered when timing traffic signals according to the 

research literature (2, 3). The total intersection vehicle delay represents the total delay 

experienced by all vehicles traveling through the intersection during the one-hour analysis 

period considered. For the purposes of this research, vehicle delays are estimated using the 

methodology contained in the 2010 edition of the Highway Capacity Manual (HCM) (4). 

Since only under-saturated conditions are considered, the delay for each lane group at the 

intersection is equal to the sum of two components: uniform delay and incremental delay. 

Uniform delay is the average delay vehicles will experience under the assumption that they 

arrive at a constant rate, while incremental delay accounts for the random periods during 

which demand exceeds capacity and the intersection is temporarily oversaturated. The 

average uniform and incremental delay per vehicle for any individual lane group, 𝑑𝑖, is 

calculated from Equation 31-159 from the 2010 HCM: 

𝑑𝑖 = (
𝑃𝐹∗0.5∗𝐶∗(1−(

𝑔

𝐶
)

𝑖
)

2

1−[𝑚𝑖𝑛(1,𝑋𝑖)∗(
𝑔

𝐶
)

𝑖
]
) + [900 ∗ 𝑇 ∗ [(𝑋𝑖 − 1) + √(𝑋𝑖 − 1)2 +

8∗𝑘∗𝐼∗𝑋𝑖

𝑐∗𝑇
]]   (7) 

𝐶 = ∑ 𝑔𝑖
𝑁
𝑖 + 𝑙𝑜𝑠𝑡 𝑡𝑖𝑚𝑒   (8) 

where 
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𝑑𝑖: average delay per vehicle [seconds/vehicle] 

𝑁: number of lane groups 

𝑐:  capacity [vehicles/hour] 

𝑔𝑖: green time for Lane Group i [seconds] 

𝐼: adjustment factor for upstream filtering/metering [1 for isolated 

intersections] 

𝑘: adjustment factor for controller type [0.5 for pretimed controllers] 

𝑃𝐹: progression factor [1 for uncoordinated intersections] 

𝑇: analysis period [1 hour] 

𝑋𝑖: volume/capacity (v/c) ratio for Lane Group i 

𝑉𝑖: vehicle volume for Lane Group i [vehicles/hour] 

The first part of the above equation represents the uniform delay component while 

the second part represents the incremental delay component.  

The total intersection vehicle delay, 𝐷𝑣, is simply the weighted sum of the average 

delay per vehicle, using the hourly volumes as the individual weights: 

𝐷𝑣 = ∑ 𝑑𝑖 ∗ 𝑉𝑖 
𝑁
𝑖=1   (9) 

where 

𝐷𝑣: total vehicle delay [vehicle-seconds] 

 

3.1.2 Vehicle delay inequity 

Vehicle delay inequity quantifies the fairness of vehicle delays experienced by 

individual lane groups compared to the others. The vehicle delay is used to compute the 

difference between the maximum average delay experienced by any lane group and the 
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minimum average delay experienced by any lane group. A larger difference indicates a 

more unequal distribution of delays. Not only is a large inequity unfair, but drivers may be 

more likely to perform illegal maneuvers if they perceive their delay to be unequal. This 

objective is defined as: 

𝑖𝑛𝑒𝑞𝑣𝑒ℎ = max(𝑑𝑖 ∀ 𝑖) − min(𝑑𝑖 ∀ 𝑖)  (10) 

with all variables defined previously. 

This objective is important to consider because a lower objective value creates an 

intersection where delays are distributed more equitably across approaches. By including 

vehicle delay inequity in the MOO, the overall tradeoffs between lane group delays can be 

expected to decrease. For example, if a solution causes the average delay of one lane group 

to increase by five seconds while another lane group delay decreases by thirty seconds, the 

solution can be considered more equal. Even though the average delay increased for one 

lane group, the other lane group average delay decreased by a much larger amount. 

3.1.3 Total intersection passenger delay 

The total intersection vehicle delay objective is a useful metric but fails to consider 

passenger occupancies in each vehicle. In reality, lane groups can have different average 

occupancies, particularly lane groups with heavy higher-occupancy public transportation 

traffic. Total intersection passenger delay is a better objective when considering 

intersections and lane groups with higher-occupancy vehicles, such as buses—even though 

a bus is only one vehicle, this objective prioritizes buses because of its higher average 

occupancy. Because buses typically have a higher occupancy, reducing the bus delay 

decreases the passenger delay more than by reducing the vehicle delay, which includes 
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lower-occupancy vehicles. The total intersection passenger delay is based on the total 

intersection vehicle delay and the average vehicle delay estimation methodology. The 

difference here is that each lane group delay is multiplied by its average occupancy to 

obtain the total passenger delay in units of passenger-seconds: 

𝐷𝑝 = ∑ 𝑑𝑖 ∗ 𝑉𝑖 ∗ 𝑜𝑐𝑐𝑖
𝑁
𝑖=1   (11) 

where 

𝐷𝑝: total passenger delay [passenger-seconds] 

𝑜𝑐𝑐𝑖:  average vehicle occupancy [passengers/vehicle] 

3.1.4 Passenger delay inequity 

Passenger delay inequity is considered to incorporate vehicle occupancies into the 

inequity calculations. Again, the inequity is defined as the difference between the 

maximum average passenger delay and the minimum average passenger delay. The larger 

the difference, the more unequal the intersection is. Passenger delay inequity is defined as: 

𝑖𝑛𝑒𝑞𝑣𝑒ℎ = max(𝑑𝑖 × 𝑜𝑐𝑐𝑖 ∀ 𝑖) − min(𝑑𝑖  × 𝑜𝑐𝑐𝑖 ∀ 𝑖) (12) 

where 

𝑖𝑛𝑒𝑞𝑣𝑒ℎ: vehicle delay inequity [seconds] 

3.1.5 Total number of stops 

The total number of stops per cycle is an important metric because it has safety, 

environmental, and economic impacts. A higher number of vehicles stopping increases the 

opportunities for rear-end collisions. Also, a vehicle idling or accelerating from a stop 
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releases more emissions than cruising through an intersection without stopping or 

decelerating. Finally, stopping and decelerating at intersections increases both user and 

agency costs. Increased braking wears out vehicle brake pads earlier, and decelerating 

heavy vehicles can cause longitudinal rutting on flexible pavements. The number of stops 

per hour can be analytically estimated using queuing theory as (50): 

𝑛𝑖 = ∑
𝑉𝑖∗𝑆𝑖∗(𝐶−𝑔𝐿)

𝐶∗(𝑆𝑖−𝑉𝑖)

𝑁
𝑖=1   (13) 

where  

𝑛𝑖: number of stops per hour in Lane Group i [vehicles] 

𝑆𝑖: saturation flow of Lane Group i [vehicles/hour] 

𝑔𝐿: 𝑔𝑖 for protected left turns [seconds] 

𝑔𝑈 (green time unblocked by opposing vehicles) for permitted left turns 

[seconds]  

As stated earlier, the above equation assumes a uniform demand and an under-saturated 

intersection. 

3.1.6 Total crosswalk pedestrian delay 

Previous objectives focused on vehicles and passengers of vehicles. At urban 

intersections, it is also important to consider the needs of pedestrians. Therefore, the total 

delay pedestrians experience waiting to cross on crosswalks is another objective to 

consider. It is important to consider the pedestrian delay because if pedestrians experience 

a high delay, they may become impatient and cross the street illegally, creating a safety 

hazard for both themselves and motorists. The individual delay experienced at each street 

crossing is estimated using the 2010 HCM Equations 18-49 and 18-71 (4): 
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𝑑𝑝𝑒𝑑,𝑗 =
0.5(𝐶−𝑔𝑜+4.0)2 

𝐶
   (14) 

where 

𝑗: crosswalk group 

𝑑𝑝𝑒𝑑,𝑗: average delay per pedestrian [seconds/pedestrian] 

𝑔𝑜: vehicular cross-traffic green time [seconds] 

The addition of four seconds to the cross-traffic green time represents an addition to the 

pedestrian effective walk time caused by pedestrians entering the intersection in the first 

four seconds of the pedestrian clear interval (4). As with vehicle delay, the individual 

crosswalk delay is then weighted by the hourly pedestrian volumes. The total pedestrian 

delay on crosswalks is an objective defined as: 

𝐷𝑝𝑒𝑑  = ∑ 𝑑𝑝𝑒𝑑,𝑗 ∗ 𝑉𝑝𝑒𝑑,𝑗
𝑀
𝑗=1   (15) 

where 

𝐷𝑝𝑒𝑑: total pedestrian delay [pedestrian-seconds] 

𝑀: number of crosswalks 

𝑉𝑝𝑒𝑑:  pedestrian volume [pedestrians/hour] 

Including this objective ensures the intersection signal timing considers pedestrians in 

addition to vehicles. 

The results of optimizing signal timings for the above intersection, constraints, and 

objectives are discussed in the next two sections. 
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3.2 Single-objective Optimization Results 

First, the results of single-objective optimization (SOO) are shown to demonstrate 

the need for multi-objective optimization. First, the results from the protected left turns 

(protected LT) intersection are discussed. Then, the results from the permitted left turns 

(permitted LT) intersection are discussed. 

3.2.1 Protected left turns 

The single-objective optimized green times for protected LT are provided in Table 

2 and the ranges are shown in Table 3. 

Table 2: Single-objective optimized green times (protected LT)  

Minimized objective 
NS L 

green (sec) 

NS T/R 

green (sec) 

EW L 

green (sec) 

EW T/R 

green (sec) 

Cycle 

length (sec) 

Total vehicle delay 10.7 19.1 4.1 43.0          92.9  

Vehicle delay inequity 18.6 19.1 13.0 34.1        100.8  

Total passenger delay 11.0 19.1 4.1 41.9          92.1  

Passenger delay inequity 20.0 19.1 7.7 29.9          92.8  

Total number of stops 8.7 19.1 2.7 60.0        106.5  

Total pedestrian delay 6.5 19.1 2.0 35.5          79.1  

Note: “L” denotes the left turn green time and “T/R” denotes the thru/right turn green time 

Table 3: Range in single-objective optimized green times (protected LT)  

NS L range (sec) 
NS T/R range 

(sec) 

EW L range 

(sec) 

EW T/R range 

(sec) 

Cycle length 

range (sec) 

         13.5           0.0             11.0           30.1           27.4  

 

The cycle length and each green time greatly varies when minimizing for one 

objective compared to minimizing for the other objectives. The large range in single-

objective minimized green times for each approach demonstrates the need to optimize for 

multiple objectives. If the green times had a small range (e.g. all green times were very 

similar), it would not be necessary to consider multiple objectives during the optimization 
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because optimizing for any one objective would also optimize all other objectives. 

However, the large range indicates each objective requires a different green time to be 

minimized. For example, optimizing for passenger delay inequity requires 20.0 seconds of 

NS L green time. If vehicle delay is instead optimized, the resulting green time is 10.7 

seconds. This would likely result in a large vehicle delay inequity objective value. While 

the cycle length and most approaches have a large range, the NS T/R green time does not 

have a large range. This is because all values are the minimum green time to allow 

sufficient pedestrian crossing time. If this constraint was not imposed, the NS T/R green 

times would likely also display a large range. The objective values resulting from SOO 

also vary greatly, as shown in Table 4 and Table 5. Minimum objective values are bolded. 

Table 4: Single-objective optimized objective values (protected LT)  

Minimized 

Objective 

Objective Value 

Total 

vehicle 

delay 

(veh-sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay 

(pass-sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number of 

stops 

(vehs) 

Total 

pedestrian 

delay (ped-

sec) 

Total vehicle 

delay 
     72,320              59       82,240              68         2,103       18,896  

Vehicle 

delay 

inequity 

  106,534              18    119,120              35         2,444       29,402  

Total 

passenger 

delay 

     72,365              60       82,176              66         2,121       19,030  

Passenger 

delay 

inequity 

  110,951              23    123,655              26         2,480       27,615  

Total number 

of stops 
  107,356            298    124,503            328         1,826       16,725  

Total 

pedestrian 

delay 

  106,792            285    123,278            313         2,142       15,854  
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Table 5: Range in single-objective optimized objective values (protected LT)  
 Total 

vehicle 

delay 

(veh-sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay 

(pass-sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number 

of stops 

(vehs) 

Total 

pedestrian 

delay 

(ped-sec) 

Value 38,631 280 42,327 302 654 13,548 

Percent of 

minimum value 
53% 1,556% 52% 1,162% 36% 85% 

 

As with the green times, the objective values also had a wide range of values when 

only one objective was minimized. Several objectives had extremely large ranges. For 

example, the vehicle delay inequity ranged from 18 seconds to 298 seconds, a range of 280 

seconds or over 1,500 percent of the minimized value. As with the single-objective 

optimized green times, the large range in values helps demonstrate the importance of MOO. 

3.2.2 Permitted left turns 

Table 6 and Table 7 below show the permitted LT green times when the objectives 

were optimized for one objective. 

Table 6: Single-objective optimized green times (permitted LT)  

Minimized objective 
NS L/T/R 

green (sec) 

EW L green 

(sec) 

EW T/R 

green (sec) 

Cycle length 

(sec) 

Total vehicle delay 28.8 3.2 28.7 76.6 

Vehicle delay inequity 35.9 11.4 32.1 95.4 

Total passenger delay 28.8 3.2 28.7 76.6 

Passenger delay inequity 35.9 11.4 32.1 95.4 

Total number of stops 47.9 3.3 60.0 127.2 

Total pedestrian delay 21.5 2.0 17.8 57.3 

Table 7: Range in single-objective optimized green times (permitted LT) 
NS L/T/R range (sec) EW L range (sec) EW T/R range (sec) Cycle length (sec) 

26.4 9.4 42.2 69.9 

 

As with the protected LT, a large range in green times is present. The need to 

consider multiple objectives in the optimization is also required for this intersection for the 
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same reasons as with the protected LT. Variation in the NS approaches is present because 

all movements require a green time greater than the minimum, which provides a large range 

similar to the other green times. The ranges are larger for the permitted LT intersection, 

which indicates an even greater need for MOO. These trends are also observed in the 

objective values and their ranges, shown in Table 8 and Table 9. 

Table 8: Single-objective optimized objective values (permitted LT)  

Minimized 

Objective 

Objective Value 

Total 

vehicle 

delay 

(veh-sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay 

(pass-sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number of 

stops 

(vehs) 

Total 

pedestrian 

delay (ped-

sec) 

Total vehicle 

delay 
     69,460              59       77,460              65         2,253       17,634  

Vehicle 

delay 

inequity 

     96,827              20    107,862              22         2,369       25,392  

Total 

passenger 

delay 

     69,460              59       77,460              65         2,253       17,634  

Passenger 

delay 

inequity 

     96,827              20    107,862              22         2,369       25,392  

Total number 

of stops 
     96,843            286    108,396            315         1,992       23,300  

Total 

pedestrian 

delay 

     99,050              83    109,707              92         2,420       14,989  

Table 9: Range in single-objective optimized objective values (permitted LT) 
 Total 

vehicle 

delay 

(veh-sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay 

(pass-sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number 

of stops 

(vehs) 

Total 

pedestrian 

delay 

(ped-sec) 

Value      29,590            266       32,247            292            428       10,403  

Percent of 

minimum value 
43% 1,330% 42% 1,327% 21% 69% 
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The range in single-objective optimized objective values were also large for the 

permitted LT results, with the inequity objectives again exhibiting a range over 1,000 

percent of the minimized objective value. 

Both types of left turn treatments demonstrated the need for implementing MOO at 

the example intersection. The green times and objective values for each approach widely 

varied, suggesting the need for a balance between all objectives. The proposed MOO 

ranking methods introduced in Section 2.4 can determine solutions that provide this 

balance. These results are presented in the following section. 

3.3 Multi-objective Optimization Results 

This section presents the MOO results for both types of left turn treatments. In 

Sections 3.3.1 and 3.3.2, the tradeoff indices and mosaic plots are shown, followed by the 

top-ranked solutions provided by the ranking method, and concluding with analyses to 

determine the final solutions’ sensitivity to objective removal. 

3.3.1 Protected left turns 

3.3.1.1 Tradeoff indices and mosaic plots 

Figure 6 below shows the mosaic plot for the protected LT intersection. The 

tradeoff indices for each objective pair are labelled. 
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Figure 6: Homogenized mosaic plot (protected LT, first iteration) 

There were several trends evident in the above mosaic plot. As described in Section 

2.2, objective pairs with darker-colored squares (or higher tradeoff indices) exhibit more 

tradeoff. One trend that was expected was the fairly low tradeoff between the number of 

stops and both vehicle delay and passenger delay. This was expected because delays 

increase as the number of stops increase. Another expected trend was the low tradeoff 

between vehicle delay and passenger delay. The passenger delay is the vehicle delay 

weighted by the average occupancy, so the two objectives were expected to behave 

similarly when the passenger occupancies for each approach are similar (as is the case 

here). This is also true for the vehicle delay inequity and passenger delay inequity.  
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An unexpected tradeoff was the low tradeoff between pedestrian delay and number 

of stops. It was expected that there would be high tradeoff between the two: as the number 

of stops increases, the pedestrian delay should decrease because pedestrians can walk when 

vehicles are stopped. However, the opposite is true; as the number of stops decrease, the 

pedestrian delay also decreases. A possible explanation for this is because the NS 

pedestrian volumes are much heavier than the EW pedestrian volumes. Because the NS 

vehicle approaches are the minor approaches, they receive less green time and therefore 

experience a greater number of stops. The heavy NS pedestrian volumes therefore 

experience increased delay because of the short NS vehicle green times.  

Another noticeable trend was the high tradeoff between the pedestrian delay and 

number of stops with the inequities. The inequity of the intersection increases as the 

pedestrian delay and number of stops decrease. The vehicle delay and passenger delay have 

the lowest average tradeoff with all other objectives, as shown in Table 10. Table 11 shows 

the similarities between the vehicle delay and passenger delay. 

Table 10: Average homogenized tradeoff indices (protected LT, first iteration) 
Total 

vehicle 

delay 

Vehicle 

delay 

inequity 

Total 

passenger 

delay 

Passenger 

delay 

inequity 

Total 

number of 

stops 

Total 

pedestrian 

delay 

0.370 0.526 0.370 0.530 0.516 0.627 

Table 11: Total vehicle delay versus total passenger delay tradeoff indices (protected 

LT, first iteration) 
Objective Total vehicle delay Total passenger delay Absolute difference 

Vehicle delay inequity 0.484 0.464 0.020 

Passenger delay inequity 0.492 0.472 0.020 

Total number of stops 0.333 0.354 0.021 

Total pedestrian delay 0.517 0.536 0.020 
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After examining each objective’s average homogenized tradeoff index, the 

passenger delay was deemed redundant because it had the lowest index and had very 

similar tradeoff indices with the vehicle delay as shown in Table 11. Because vehicle delay 

is the traditional objective used to time traffic signals, it was kept and the passenger delay 

objective was removed for the second MOO iteration. The mosaic plot for the second 

iteration is shown in Figure 7. 

 

 Figure 7: Homogenized mosaic plot (protected LT, second iteration) 

The second iteration mosaic plot was relatively similar to the first iteration, with 

some small changes in tradeoff indices. The average homogenized tradeoff indices shown 
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in Table 12 also experienced relatively small changes. Removing the objective competing 

with vehicle delay increased the vehicle delay’s tradeoff. The vehicle delay inequity and 

passenger delay inequity again exhibit the lowest tradeoff between two objectives. These 

objectives are not the least conflicting with other objectives, as shown in Table 12, but 

behave very similarly to each other as shown in Table 13. 

Table 12: Average homogenized tradeoff indices (protected LT, second iteration) 

Total vehicle 

delay 

Vehicle 

delay 

inequity 

Passenger 

delay inequity 

Total number 

of stops 

Total 

pedestrian 

delay  

0.460 0.540 0.541 0.572 0.653 

Table 13: Vehicle delay inequity versus passenger delay inequity tradeoff indices 

(protected LT, second iteration) 
Objective Vehicle delay inequity Passenger delay inequity Absolute difference 

Total vehicle delay  0.457 0.463 0.005 

Total number of stops 0.785 0.798 0.013 

Total pedestrian delay 0.881 0.868 0.014 

 

In the second iteration, the vehicle delay had the lowest homogenized tradeoff 

index. However, this objective was of high interest. Furthermore, as shown above in Table 

13, the passenger delay inequity was found to be very similar to the vehicle delay inequity. 

Therefore, the passenger delay inequity objective was removed for the third MOO iteration. 

This was an example where a practitioner would not necessarily remove the objective with 

the lowest average homogenized tradeoff index, but instead remove an objective 

(passenger delay inequity) that has very similar tradeoffs with remaining objectives as 

another objective (vehicle delay inequity). The homogenized mosaic plot of the third 

iteration is shown in Figure 8. 
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 Figure 8: Homogenized mosaic plot (protected LT, third iteration) 

The vehicle delay inequity exhibited the highest tradeoff with the pedestrian delay 

and number of stops. Pedestrian delay and number of stops exhibited the lowest tradeoff, 

and the remaining objective pairs exhibited average tradeoffs. The tradeoff indices 

remained relatively similar to those in the second iteration. Although the vehicle delay, 

number of stops, and pedestrian delay all exhibit low average homogenized tradeoff indices 

as shown in Table 14, they are objectives of interest so none were removed for a fourth 

iteration. It is noted that this decision is based on the opinion and methodology of the 
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decision-maker. Furthermore, the comparisons between pedestrian delay and number of 

stops, the least conflicting objectives, are provided below in Table 15. 

Table 14: Average homogenized tradeoff indices (protected LT, third iteration) 

Total vehicle 

delay 

Vehicle 

delay 

inequity 

Total 

number of 

stops 

Total 

pedestrian 

delay  

0.484 0.722 0.523 0.571 

Table 15: Total pedestrian delay versus total pedestrian delay tradeoff indices 

(protected LT, third iteration) 
Objective Total number of stops Total pedestrian delay Absolute difference 

Total vehicle delay 0.455 0.545 0.089 

Vehicle delay inequity 0.828 0.883 0.055 

 

Because the difference between the tradeoffs for these two objectives was relatively 

large and all remaining objectives were of high interest, this was the final iteration. From 

the first iteration to the third iteration, the objectives similar to removed redundant 

objectives experienced an increase in the average homogenized tradeoff indices. 

Meanwhile, the other objectives experienced a decrease. Removing one of the objectives 

of a non-competing pair will increase the overall tradeoff of the remaining objective. The 

overall tradeoffs of the other objectives will decrease because there is one less competing 

objective.   

3.3.1.2 Ranking method results 

The MOO results of each ranking method are shown in Table 16 (the green times) 

and Table 17 (the objective values). In Method 2, the vehicle delay was constrained to be 

no more than 20 percent greater than the minimum vehicle delay obtained in the single-

objective optimization. In addition to the two methods, two different weighting factors 

were applied: one where all objectives were weighted equally, and one where the number 
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of stops and pedestrian delay were each weighted by a factor of 3.0. The number of stops 

was weighted because it has safety, environmental, and economical implications. A higher 

number of stops can increase rear-end collisions, increase emissions related to idling and 

accelerating, and cause brake wear and longitudinal grooving in pavement. The pedestrian 

delay was weighted because it is the only objective not specific to vehicles. These 

constraints and weighting factors were used for both left turn treatments. The objective 

values for removed objectives in the second and third iterations were manually calculated 

using the same formulas used in the MATLAB script. 

Table 16: Multi-objective optimized green times (protected LT) 
Method and weighting 

factors used 

NS L 

green (sec) 

NS T/R 

green (sec) 

EW L 

green (sec) 

EW T/R 

green (sec) 

Cycle length 

(sec) 

Iteration 1 

Method 1 – equal 𝑤𝑘 12.4 19.1 6.2 27.5 81.2 

Method 1 – weighted 𝑤𝑘 11.5 19.1 6.0 30.9 83.5 

Method 2 – equal 𝑤𝑘 12.9 19.1 7.1 30.3 85.4 

Method 2 – weighted 𝑤𝑘 10.4 19.1 5.3 26.7 77.5 

Iteration 2 

Method 1 – equal 𝑤𝑘 13.8 19.1 8.0 28.2 85.1 

Method 1 – weighted 𝑤𝑘 10.7 19.1 5.3 28.4 79.5 

Method 2 – equal 𝑤𝑘 12.0 19.1 6.6 28.7 82.4 

Method 2 – weighted 𝑤𝑘 10.7 19.1 5.6 26.9 78.3 

Iteration 3 

Method 1 – equal 𝑤𝑘 12.2 19.1 6.9 28.3 82.5 

Method 1 – weighted 𝑤𝑘 10.6 19.1 4.9 40.6 91.2 

Method 2 – equal 𝑤𝑘 11.8 19.1 6.4 28.5 81.8 

Method 2 – weighted 𝑤𝑘 10.4 19.1 4.8 40.0 90.3 
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Table 17: Multi-objective optimized objective values (protected LT) 

Method and 

weighting 

factors used 

Objective Value 

Total 

vehicle 

delay (veh-

sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay (pass-

sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number of 

stops (vehs) 

Total 

pedestrian 

delay (ped-

sec) 

Iteration 1 

Method 1 – 

equal 𝑤𝑘 
90,296 23 101,169 37 2,442 22,400 

Method 1 – 

weighted 𝑤𝑘 
80,597 27 90,712 45 2,358 21,314 

Method 2 – 

equal 𝑤𝑘 
86,601 23 97,195 40 2,400 22,915 

Method 2 – 

weighted 𝑤𝑘 
85,492 26 96,027 43 2,429 20,771 

Iteration 2 

Method 1 – 

equal 𝑤𝑘 
97,916 20 109,548 35 2,462 24,274 

Method 1 – 

weighted 𝑤𝑘 
81,725 28 92,118 44 2,392 20,695 

Method 2 – 

equal 𝑤𝑘 
86,768 24 97,581 40 2,416 22,235 

Method 2 – 

weighted 𝑤𝑘 
86,424 25 96,960 42 2,431 21,119 

Iteration 3 

Method 1 – 

equal 𝑤𝑘 
89,318 23 100,211 39 2,431 22,623 

Method 1 – 

weighted 𝑤𝑘 
72,927 45 82,876 66 2,150 19,349 

Method 2 – 

equal 𝑤𝑘 
86,542 24 97,083 40 2,417 22,048 

Method 2 – 

weighted 𝑤𝑘 
72,922 45 82,865 67 2,157 19,245 

 

The first two iterations are shown for completion; the discussion will focus on the 

third iteration because its results are the final results used. The equal 𝑤𝑘 results for Methods 

1 and 2 are very similar as each approach’s green times did not greatly vary. The NS T/R 

green was the only green time that all ranking methods selected the same best green time. 

As mentioned in Section 3.2.1, this is likely because the minimum green time was more 

than enough for the low NS vehicle volumes. Likewise, the objective values were relatively 
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similar. Although some differences seem large, such as the 2,776 vehicle-seconds of total 

vehicle delay, it equates to approximately one second per vehicle. The weighted 𝑤𝑘 results 

for Methods 1 and 2 exhibited the same pattern. 

An additional trend to note for these results are the lower objective values for the 

weighted objectives. The number of stops and pedestrian delay values are noticeably lower 

for the weighted results compared to the equally-weighted results, regardless of the method 

used. Also, most approaches’ green times were similar when comparing the weighted to 

equally-weighted results. The EW T/R green time, however, was approximately 12 seconds 

longer for weighted cases. This suggests a longer green time is needed to decrease number 

of stops and pedestrian delay. 

Most optimized green times fell within the range of the single-objective optimized 

green times, with the exception of the EW T/R green times. While it was expected that all 

MOO green times would fall in the SOO green times, it is possible for this not to happen. 

The combined effect of all four green times influence the objective values. One MOO green 

time falling outside the SOO range is logical, particularly because it is relatively close to 

being within range. This demonstrates the ability of MOO to balance different objectives. 

3.3.1.3 Sensitivity analysis 

The removal of redundant objectives one at a time raises the concern of how the 

final ranked solutions would change if different redundant objectives were removed (e.g. 

vehicle delay versus passenger delay) or if the objectives were removed in a different order 

(e.g. passenger delay first and passenger delay inequity second, or vice versa). In order to 

address this potential issue, a sensitivity analysis was conducted to determine the effect of 
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different objective removal strategies. Four cases were tested and are described below in 

Table 18. 

Table 18: Sensitivity analysis test scenarios 

Case Iteration 1 removal Iteration 2 removal 

Case A passenger delay passenger delay inequity 

Case B vehicle delay vehicle delay inequity 

Case C passenger delay vehicle delay inequity 

Case D vehicle delay passenger delay inequity 

 

The results of the unweighted Method 1 solutions are shown in Table 19. 

Table 19: Sensitivity analysis results (protected LT) 

Case NS L (sec) NS T/R (sec) EW L (sec) EW T/R (sec) 
Cycle length 

(sec) 

Case A 12.1 19.1 6.6 30.2 84.0 

Case B 13.4 19.1 5.0 29.4 82.9 

Case C 13.4 19.1 5.0 29.4 82.9 

Case D 12.2 19.1 6.7 29.2 83.2 

Range 1.36 0.00 1.70 1.02 1.09 

 

The ranges of green times are relatively small. This indicates the objective removal 

order does not affect the final solutions because all green times are very similar, regardless 

of which case was tested. The NS T/R was exactly the same regardless of the objective 

removal order. These results suggest the final solution is not sensitive to the objective 

removal process. 
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3.3.2 Permitted left turns 

3.3.2.1 Tradeoff indices and mosaic plots 

The mosaic plot for the first iteration of the permitted LT intersection is shown 

below with each objective pair’s tradeoff indices. 

 

Figure 9: Homogenized mosaic plot (permitted LT, first iteration) 

Overall, the permitted LT mosaic plot shows less tradeoff than the protected LT 

mosaic plot. The two mosaic plots look relatively similar with some noticeable exceptions. 

The tradeoffs between pedestrian delay and both vehicle and passenger delays increased. 

This is likely because left-turning vehicles must yield to pedestrians because there is no 
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protected left-turning phase where pedestrians do not receive the “WALK” indication. 

Because these vehicles must yield, the vehicle and passenger delays increase. Another 

difference is that the tradeoffs between number of stops and all three delays (vehicle, 

passenger, and pedestrian) all decreased. 

The average homogenized tradeoff indices, shown in Table 20, were also similar to 

the LT protected indices with two noticeable exceptions. The number of stops decreased 

and the pedestrian delay increased. This is consistent with the changes in the tradeoff 

indices discussed earlier. The vehicle delay and passenger delay both have similar average 

homogenized tradeoff indices, as do the vehicle delay inequity and passenger delay 

inequity. The vehicle delay and passenger delay have the lowest values and were compared 

to determine their tradeoff similarities with other objectives. These results are shown in 

Table 21. 

Table 20: Average homogenized tradeoff indices (permitted LT, first iteration) 
Total 

vehicle 

delay 

Vehicle 

delay 

inequity 

Total 

passenger 

delay 

Passenger 

delay 

inequity 

Total 

number of 

stops 

Total 

pedestrian 

delay 

0.396 0.499 0.395 0.499 0.652 0.456 

Table 21: Total vehicle delay versus total passenger delay tradeoff indices 

(permitted LT, first iteration) 
Objective Total vehicle delay Total passenger delay Absolute difference 

Vehicle delay inequity 0.600 0.598 0.002 

Passenger delay inequity 0.600 0.598 0.002 

Number of stops 0.599 0.606 0.008 

Total pedestrian delay 0.172 0.165 0.007 

 

As with the protected LT intersection, the passenger delay was removed for the 

second iteration because of its low average homogenized tradeoff index and its similarity 
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to the more conventional vehicle delay. The second iteration mosaic plot is shown in Figure 

10.  

 

Figure 10: Homogenized mosaic plot (permitted LT, second iteration) 

After removing the passenger delay, the same LT protected differences as the first 

iteration were observed. The tradeoff between pedestrian delay and vehicle delay 

increased, and the tradeoffs between number of stops and the remaining delays (vehicle 

and pedestrian) decreased.  

As with the protected LT case, the vehicle delay inequity and passenger delay 

inequity were investigated for redundancy because they have the same (lowest) average 
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homogenized tradeoff index, as shown in Table 22. The differences between these 

objectives’ tradeoffs are shown in Table 23. 

Table 22: Average homogenized tradeoff indices (permitted LT, second iteration) 

Total vehicle 

delay 

Vehicle delay 

inequity 

Passenger 

delay inequity 

Total 

number of 

stops 

Total 

pedestrian 

delay 

0.493 0.471 0.471 0.661 0.534 

Table 23: Vehicle delay inequity versus passenger delay inequity tradeoff indices 

(permitted LT, second iteration) 
Objective Vehicle delay inequity Passenger delay inequity Absolute difference 

Vehicle delay 0.596 0.596 0.000 

Number of stops 0.662 0.662 0.000 

Total pedestrian delay 0.627 0.627 0.000 

 

As with the protected LT, the passenger delay inequity was removed for the third 

iteration because of its similarity to vehicle delay inequity. The two objectives had the same 

tradeoff with every other objective, showing the two objectives exhibited very high 

redundancy. The third iteration mosaic plot with tradeoff indices is shown below in Figure 

11. 
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Figure 11: Homogenized mosaic plot (permitted LT, third iteration) 

 

The same differences between the protected LT mosaic plots from the first two 

iterations were also seen in the third iteration. The pedestrian and vehicle delay tradeoff 

decreased and the number of stops and pedestrian delay tradeoff increased. 

Most objective pairs have a tradeoff greater than 0.500, meaning that over 50 

percent of solutions exhibit tradeoff between the two objectives. Pedestrian delay and 

vehicle delay had a low tradeoff. Although unexpected, this can likely be explained by the 

same reason pedestrian delay and number of stops had a low tradeoff (in Section 3.3.1.1). 
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The pedestrian-heavy direction is NS, while the vehicle-heavy direction is EW. If the NS 

approaches get more green time, the many pedestrians experience less delay while the few 

vehicles experience more delay. If the EW approaches get more green time, the many 

vehicles experience less delay while the few pedestrians experience more delay. 

The average homogenized tradeoff indices shown in Table 24 were deemed 

acceptable for the final iteration.  

Table 24: Average homogenized tradeoff indices (permitted LT, third iteration) 

Total vehicle 

delay 

Vehicle delay 

inequity 

Total number of 

stops 

Total pedestrian 

delay 

0.457 0.630 0.661 0.496 

 

As with the protected LT intersection, the vehicle delay and vehicle delay inequity 

average homogenized tradeoff indices increased from the first to third iteration because 

their corresponding redundant objectives were removed. The number of stops and 

pedestrian delay indices were relatively constant, increasing by 0.009 and 0.040 

respectively. 

3.3.2.2 Ranking method results 

The green times and objective values are shown below in Table 25 and Table 26. 
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Table 25: Multi-objective optimized green times (permitted LT) 
Method and weighting 

factors used 

NS L/T/R 

green (sec) 

EW L green 

(sec) 

EW L green 

(sec) 

Cycle length 

(sec) 

Iteration 1 

Method 1 – equal 𝑤𝑘 28.7 6.0 25.6 76.3 

Method 1 – weighted 𝑤𝑘 28.2 5.3 25.4 74.9 

Method 2 – equal 𝑤𝑘 29.2 6.4 26.0 77.6 

Method 2 – weighted 𝑤𝑘 28.0 5.7 24.8 74.5 

Iteration 2 

Method 1 – equal 𝑤𝑘 29.3 6.7 25.8 77.8 

Method 1 – weighted 𝑤𝑘 26.8 5.1 23.1 71.0 

Method 2 – equal 𝑤𝑘 29.1 6.3 25.9 77.3 

Method 2 – weighted 𝑤𝑘 27.5 5.3 24.2 73.0 

Iteration 3 

Method 1 – equal 𝑤𝑘 28.5 6.0 25.2 75.7 

Method 1 – weighted 𝑤𝑘 25.2 4.0 21.9 67.1 

Method 2 – equal 𝑤𝑘 28.8 6.2 25.5 76.5 

Method 2 – weighted 𝑤𝑘 26.1 4.6 22.8 69.5 

 

  



 

57 

  

Table 26: Multi-objective optimized objective values (permitted LT) 

Method and 

weighting 

factors used 

Objective Value 

Total 

vehicle 

delay (veh-

sec) 

Vehicle 

delay 

inequity 

(sec) 

Total 

passenger 

delay (pass-

sec) 

Passenger 

delay 

inequity 

(sec) 

Total 

number of 

stops (vehs) 

Total 

pedestrian 

delay (ped-

sec) 

Iteration 1 

Method 1 – 

equal 𝑤𝑘 
       82,022              23         91,274              26         2,361        19,658  

Method 1 – 

weighted 𝑤𝑘 
       79,122              25         88,059              28         2,351        19,037  

Method 2 – 

equal 𝑤𝑘 
       83,176                 23       92,562                 25         2,363       20,033  

Method 2 – 

weighted 𝑤𝑘 
       82,047                 24       91,272                 26         2,367       19,219  

Iteration 2 

Method 1 – 

equal 𝑤𝑘 
       85,363               22  95,338                24        2,372        20,293  

Method 1 – 

weighted 𝑤𝑘 
85,047 24 94,796 26 2,385 18,567 

Method 2 – 

equal 𝑤𝑘 
       83,016                 23  92,440             25      2,363       19,941  

Method 2 – 

weighted 𝑤𝑘 
       82,188                 24  91,304             27      2,370       18,890  

Iteration 3 

Method 1 – 

equal 𝑤𝑘 
83,091 23 92,577 25 2,368 19,565 

Method 1 – 

weighted 𝑤𝑘 
       81,906                29  90,752 32          2,383             17,338  

Method 2 – 

equal 𝑤𝑘 
       83,153                 23  92,948 25        2,366          19,791  

Method 2 – 

weighted 𝑤𝑘 
82,242 26 91,167 28 2,380 17,971 

 

Trends from the protected LT case were also noticed in the permitted LT third 

iteration. The equally-weighted solutions resulted in very similar results as each other, as 

did the weighted solutions. When comparing the unconstrained delay solutions (Method 1) 

to the constrained delay solutions (Method 2), the constrained solutions actually had a 

higher vehicle delay. While this was unexpected, the delay was still within 120 percent of 

the single-objective optimized delay value. The weighted solutions did not always provide 
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a lower objective value for both weighted objectives. In some cases, the weighted number 

of stops would be higher than the unweighted number of stops, but the weighted pedestrian 

delay was still lower than the unweighted pedestrian delay. Because these objectives had a 

high tradeoff (0.704), it would be difficult to lower both. At least one weighted objective 

value was always lower than its corresponding unweighted objective value. 

The NS L/T/R green times were close to the sum of the NS L and NS T/R green 

times in the protected case, as shown below in Table 27. 

Table 27: Sum of protected NS L and NS T/R green times versus permitted NS 

L/T/R green times 

Method and weight NS L + NS T/R (sec) NS L/T/R (sec) 

Method 1 – equal 𝑤𝑘 31.3 28.5 

Method 1 – weighted 𝑤𝑘 29.7 25.2 

Method 2 – equal 𝑤𝑘 30.9 28.8 

Method 2 – weighted 𝑤𝑘 29.5 26.1 

 

3.3.2.3 Sensitivity analysis 

As with the protected LT intersection, a sensitivity analysis was performed on the 

permitted LT intersection using the same cases in Table 18. The results of the unweighted 

Method 1 solutions are shown in Table 28. 

Table 28: Sensitivity analysis results (permitted LT) 

Case NS L (sec) EW L (sec) EW T/R (sec) 
Cycle length 

(sec) 

Case A          27.7             5.8           24.2           73.7  

Case B          28.0             5.9           24.5           74.4  

Case C          27.6             5.6           24.2           73.4  

Case D           28.1              5.8            24.7            74.6  

Range           0.47            0.32            0.49            1.19  
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The ranges between different cases are even smaller than the protected LT 

intersection, with each green time varying by less than one second. This again suggests the 

objectives are not sensitive to the redundant objective removal process. 

3.3.3 Multi-objective optimization summary 

Two intersections were tested: one with protected NS left turns and one with 

permitted NS left turns. There were similarities and differences between these cases. 

Both intersections had a relatively similar mosaic plots for each iteration, though 

some objective pairs exhibited noticeably different tradeoffs between the two intersections. 

This suggests the tradeoff between most objectives is independent of the left-turning 

treatment. Both cases demonstrated the validity of the weighting factor and Method 2 

constraint. Also, both cases had the same objectives removed due to redundancy. After the 

first iteration, the passenger delay was removed because it had a low average homogenized 

tradeoff index and was very similar to the vehicle delay. After the second iteration, the 

passenger delay inequity was removed because it was very similar to the vehicle delay 

inequity. In the LT protected intersection, this was an example where a high-tradeoff 

objective was removed from the iteration because it was too similar to another objective. 

This demonstrates the importance of considering both methods described in Section 2.3 for 

redundant objective removal. In the sensitivity analyses, both intersections showed the final 

solutions are independent of the redundant objective removed or the removal order. 

After the third iteration, the objectives in all four cases were deemed to display 

enough tradeoff and no more objectives were removed. This action is dependent on the 

opinion of the decision-maker; e.g. if another decision-maker was solving this problem, 
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they may decide to continue onto a fourth iteration. Ranking methods are applied to the 

final MOO iteration, although here they were also applied to the first and second iterations 

to show the evolution of the solutions. A decision-maker would use the solution produced 

by their desired ranking method, or the one of four that matches their desired weighting 

factor and constraint. 

The MOO results for the two intersections were shown separately for the sake of 

discussion. In order to compare both intersection results, all eight top-ranked solutions for 

both intersections are shown in Table 29 in the ratio products’ ascending order. 

Table 29: Comparison of protected and permitted LT top-ranked results 

LT treatment, ranking method, 

𝑤𝑘 

Ratio 

product 

NS L/T/R (permitted) 

or NS L and 

NS T/R (protected) 

(sec) 

EW L 

(sec) 

EW 

T/R 

(sec) 

Cycle 

length 

(sec) 

Permitted, Method 2, unweighted 1.52 28.8 - 6.2 25.5 76.5 

Protected, Method 2, unweighted 1.80 11.8 19.1 6.4 28.5 81.8 

Permitted, Method 1, unweighted 2.14 28.5 - 6.0 25.2 75.6 

Protected, Method 1, unweighted 2.93 12.2 19.1 6.9 28.3 82.6 

Permitted, Method 2, weighted 3.03 26.1 - 4.6 22.8 69.4 

Permitted, Method 1, weighted 4.53 25.2 - 4.0 21.9 67.1 

Protected, Method 2, weighted 4.96 10.4 19.1 4.8 40.0 90.3 

Protected, Method 1, weighted 7.43 10.6 19.1 4.9 40.6 91.2 

 

The weighted solutions logically had the highest ratio products because the 

objective value ratios were increased. Constraining the vehicle delay (e.g. the Method 2 

solutions) provides lower ratio products. The ratio products of the Method 2 solutions were 

both lower than the Method 1 solutions for unweighted solutions. For weighted solutions, 

a Method 2 solution provided the lowest ratio product. This is likely because the vehicle 

delay objective value ratio was excluded from the ratio product calculation. Interestingly, 

the permitted Method 1 solution had a lower ratio product than the protected Method 2 
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solution—despite including the vehicle delay objective value ratio in the ratio product 

calculation.  

The permitted LT treatments provide lower ratio products than protected LT 

treatments. For unweighted solutions, the permitted solution did better than the protected 

solution for the same vehicle delay constraint (e.g. Method 1 and Method 2). For weighted 

solutions, both permitted solutions had lower ratio products than the protected solutions. 

These results demonstrate that not only can the ranking methodology be used to determine 

signal timings, but also the LT treatment. If a decision-maker was considering either 

protected or permitted left turns, the results here would suggest using permitted left turns. 

It is noted that these results are dependent on the example problem. A different intersection 

geometry, vehicle and pedestrian volumes, or objectives would likely drastically change 

the results. 
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4.0 Conclusions and Future Work 

Traffic signal timing optimization has been the subject of considerable research 

interest for over two decades, with the more recent work considering multiple objectives 

in the optimization process. Most MOO studies only used two or three objectives, which 

are not enough to fully capture the complexities of intersection operations. While the range 

of objectives considered in previous work has been diverse, the relationships cannot be 

observed if only one, two, or three objectives are used to optimize traffic signal timings. 

Existing literature does not provide methods for a decision-maker to easily identify 

or quantify the tradeoff between objectives. Consequently, there is no way to quickly 

determine the conflict or degree of tradeoff between objectives. Without this knowledge, 

the objectives at an intersection cannot be fully understood. Existing work also lacks 

guidance for a decision-maker in selecting which MOO-generated optimal solution is the 

“best” solution for a particular scenario. While many papers have used MOO in signal 

timing optimization, none have proposed a methodology to apply one solution to an 

intersection—though some papers have highlighted this as a gap in knowledge. Without 

such a methodology, the usefulness of MOO is diminished as the decision-maker is 

required to select from many optimal solutions. There is also no guidance on the 

identification and removal process of redundant objectives. Removing redundant 

objectives decreases the problem dimensionality while ensuring the optimization includes 

only objectives that conflict with each other. 

This work introduced the existing tradeoff index and mosaic plot to the traffic 

engineering research field. The tradeoff index identifies and quantifies the tradeoffs 
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between objectives, while the mosaic plot presents the tradeoffs in an easily understood 

graphic. Based on the tradeoff index, new indices were proposed for dimensionality 

reduction and ranking the optimal solutions. The average homogenized tradeoff index was 

used in one of the two proposed methods to remove redundant objectives. The objective 

value ratio and ratio product were used to rank the solutions resulting from the MOO. Four 

different ranking methods were proposed as four combinations of objective constraints and 

objective weighting factors. The ranking methodology is independent of the objective 

definition and optimization processes used. 

A numerical example was used to demonstrate the proposed indices and methods 

in use, as well as demonstrating the validity of the methodology. Six diverse objectives 

were used, including ones that consider multimodal operations and the delay inequity 

within an intersection. Two different intersections were used, with the left turn treatments 

varying in each case. Solutions and their corresponding objective values of each iteration 

were shown and discussed. Finally, sensitivity analyses were performed to determine the 

effect of redundant objective removal on final solutions. It was found that the removal 

process did not noticeably affect the final solutions. Each intersection resulted in four 

“best” optimal solutions depending on the objective constraint and weighting factor, a 

significant decrease from the population size of 2,500. The decision-maker would use the 

solution that uses their desired objective constraint and weighting factor to implement at 

the intersection. 

There are several possibilities to continue or add to this work: 
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 Define a process to select the weighting factors used. While they may be 

chosen somewhat arbitrarily, a decision-maker may desire a more 

methodological approach.  

 Apply the process to a coordinated arterial with multiple signalized 

intersections. In addition to the objective tradeoffs within an intersection, 

the tradeoffs between intersections can be determined. 

 Repeat the process with more realistic objective definitions. The objectives 

used here were defined analytically but could also be obtained through 

simulations. For example, the number of stops could be outputted from a 

simulation rather than estimated. Simulations could also obtain direct 

measures of safety or emissions, such as number of conflicts or emissions 

released, rather than surrogate measures. 

 Investigate other methods to obtain the objective value ratio. The proposed 

method here divides a solution’s objective value by the minimum objective 

value. However, a potential way to calculate the objective value ratio is to 

divide the solution’s objective value by a threshold value. If a solution’s 

quotient is less than or equal to one, meaning the value is acceptable, its 

objective value ratio is set to one. Otherwise, the value is set to the quotient. 

The effects of this calculation method on the ratio products could be 

determined in a future study. 

 Consider the effects of a potential option for redundant objective removal. 

When one of two redundant objectives is removed, the remaining objective 

can be weighted such that it is twice as important. The optimization would 
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consider the effects of both objectives while still reducing the 

dimensionality of the problem. The results proposed here can be compared 

to the results proposed earlier in this paper. 

 A review of literature has determined there is much interest in multi-objective 

signal timing optimization. This work helps a decision-maker understand objective 

relationships at an intersection, reduces the dimensionality of the optimization problem, 

and presents a method to select the solution best-suited for a particular intersection. 
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