

The Pennsylvania State University

The Graduate School

Computer Science and Engineering Department

ASYNCHRONOUS ATTESTATION SCHEME FOR PRESERVING THE INTEGRITY

OF LONG-TERM DIGITAL ARCHIVES

A Thesis in

Computer Science and Engineering

by

Dhivakar Mani

 2009 Dhivakar Mani

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2009

The thesis of Dhivakar Mani was reviewed and approved* by the following:

Trent Jaeger
Associate Professor
Computer Science and Engineering
Thesis Advisor
Chair of Committee

Patrick McDaniel
Associate Professor
Computer Science and Engineering

Raj Acharya
Professor and Head of Department
Computer Science and Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

Increasing number of organizations want to retain data like customer records, business

application data, e-mail and databases, for well over 50 or 100 years. In most cases the lifespan of

the storage devices and the applications are far less than the perceived time of data retention. The

archived data may have to be physically and logically migrated from one device or format to

another at intermediate points in time to prevent data corruption. In this report the challenge of

asserting the integrity of the archived data in the future even in the absence of the originator of

the data is discussed. The Trusted Platform Module along with a Trusted Time Server is used to

attest and verify the integrity of an archive tool running in the user domain of a Xen Virtual

Machine. The root of trust installation is followed for the root domain (Dom-0) of the Xen Virtual

Machine Monitor and a virtual Trusted Platform Module (vTPM) is used to attest the integrity of

the system state of the user domain (Dom-U) created in the Dom-0. A trusted Time Server is used

to create time-stamped Dom-U attestations. The attestations provide an integrity proof of the

system state of Dom-U and Dom-0 by including the PCR values of the vTPM and the integrity

state of the archive by including the Merkle hash tree of the file-system that was archived. An

archive manager is used to manage the security information of the archives. The archive manager

does a verifiable, periodic re-keying of the content proofs with a new signing key pair. It also

generates proofs from the content proofs in response to a challenge from a remote verifier. The

proofs can be used to verify the integrity of the system state of Dom-U and Dom-0, the archive

tool and the archive content over a period of time. The protocol of the archive process, the

archive manager and the trusted time server is detailed and analyzed in this report. The proposed

protocol will enable the archive manager to prove the integrity of archive content proofs (which

were created years ago) to a remote third party.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES ... vii

ACKNOWLEDGEMENTS ... viii

Chapter 1 Introduction .. 1

Long Term Archiving Requirements ... 1
Long Term Archiving Driving Factors .. 2
Long Term Archiving Challenges .. 3
Commitments of a Long Term Archiving Scheme .. 5

Chapter 2 Related Work .. 6

Chapter 3 Background Study .. 8

Trusted Platform Module ... 8
TPM Background ... 8
Core Root of Trust Measurement ... 10
Remote Attestation Protocol .. 11

Virtual Machine Monitor ... 12
Xen Virtual Machine Monitor .. 13
Virtual Trusted Platform Module ... 14

Asymmetric Key Cryptography ... 17
Public-key Encryption .. 18
Digital Signatures ... 18
Aggregate Signature Scheme ... 19
Sequential Aggregate Signature Scheme ... 20
Forward Secure Signature Scheme... 21

Chapter 4 Design and Implementation.. 22

Trusted Time Server ... 23
Design Architecture ... 23

Protocol Conventions ... 24
Asynchronous Attestation protocol of the archiver .. 25
Periodic re-keying of archive manager .. 27
Challenge protocol of the verifier .. 32
Response protocol of the archive manager ... 32
Verification protocol of the verifier ... 35

Chapter 5 Evaluation... 36

Chapter 6 Conclusion .. 43

v

Bibliography .. 44

Appendix A Glossary .. 47

vi

LIST OF FIGURES

Figure 1-1: Longest Retention Requirement.. .. 3

Figure 1-2: Size of long-term archives... ... 4

Figure 3-1: TPM Architecture.. ... 9

Figure 3-2: Chain of trust measurement using TPM Extend operation 11

Figure 3-3: Xen Virtualization Architecture Overview.. ... 14

Figure 3-4: Virtual Trusted Platform Module (vTPM) Architecture.. 15

Figure 3-5: Extension of lower PCR values of vTPM.. ... 17

Figure 4-1: Asynchronous attestation protocol of the archive process X.. 26

Figure 4-2: Merkle Hash Tree of the archived File System with transaction ID, Tid…. 27

Figure 4-3: Quote Q3 generated by the archive process X for transaction ID, Tid.. 27

Figure 4-4: Complete Proof generated by archive process X for transaction ID, Tid….. 28

Figure 4-5: XML Format of the complete proof generated by archive process X.. 28

Figure 4-6: Updated XML Format of the archive dump file after a key-update.. 30

Figure 4-7: Key-update process of archive manager.. ... 31

Figure 4-8: Response protocol of the archive manager process M.. .. 31

Figure 4-9: Quote Q4 generated by the archive manager M for transaction ID, Tid.…. 33

Figure 4-10: Succinct Proof generation for file f1…. .. 34

Figure 4-11: Quote Q8 generated by the archive manager M.. .. 34

Figure 4-12: Complete Proof provided by the archive manager M to the verifier V…. 34

Figure 4-13: Regenerated hashes at the verifier process V…. ... 35

Figure 5-1: Comparison of content proof size to number of files in archive…. 38

Figure 5-2: Processing time break-up for content proof generation…. 39

Figure 5-3: Total processing time for the re-keying operation…. ... 40

vii

LIST OF TABLES

Table 5-1: Time taken for basic TPM commands. ... 37

Table 5-2: Comparison of content proof size and total processing time to archive size. 37

Table 5-3: Processing time break-up for content proof generation .. 38

Table 5-4: Comparison of content proof size and processing time after tenth key-update. 40

Table 5-5: Processing time for succinct proof generation. .. 41

viii

ACKNOWLEDGEMENTS

 I wish to express my deepest gratitude to my thesis advisor Dr. Trent Jaeger, for his

valuable suggestion, guidance and constant encouragement. I sincerely thank Dr. Patrick

McDaniel for his support and encouragement. I sincerely thank Thomas Moyer, Joshua

Schiffman, Hayawardh Vijayakumar, Sandra Rueda and Divya Muthukumaran for their guidance

and encouragement.

 I thank my parents, sister, brother-in-law and my friends who constantly encouraged me

throughout my masters at the Academy.

Chapter 1

Introduction

In the last 50 years, computer systems and information automation have moved work

processes and records online which results in enormous amount of digital resources. Digital

collections are vast, heterogeneous, and are growing at a rate that outpaces the ability to manage

and preserve them. Digital resources like scientific databases, medical records and government

statistics are accumulated over long periods of time at considerable expense. Many of the digital

resources that are created today will be re-purposed and re-used in the future for various reasons.

One unique aspect of digital preservation is the aspect of long term, where long term may mean

long enough to be concerned about the obsolescence of technology or may mean decades or

centuries. When long-term preservation spans several decades, generations, or centuries, the

threat of interrupted management of digital objects becomes critical. Unlike many physical

objects that can withstand some period of neglect without resulting in total loss, digital objects

require constant maintenance. Redundancy, replication, and security against intentional attacks on

archival systems and against technological failures are critical requirements for long-term

preservation.

Long Term Archiving Requirements

 For a digital archive system to effectively monitor the content of the archives and to

assess its preservation needs, the archive system must know as much as possible about the

technical and functional characteristics of its digital archive objects and record that information as

metadata. Digital archiving systems should maintain the archived contents, extract metadata of

2

the contents, restructure and manage metadata over time. It will be essential for future users of

archived materials to recover and relate the metadata schema used when the entity was created.

Likewise, managing the identity of preserved digital objects over time is a challenge for digital

archives because the identifiers assigned to digital objects can be changed easily and the

technologies for naming and tracking digital objects evolve over time. These requirements trigger

the development of methods for unique and persistent naming of archived digital objects, tools

for certification and authentication of the integrity of the preserved digital objects, methods for

version control, and interoperability among naming mechanisms used by different content

providers. Tools are also needed to automatically transform preserved digital objects from

obsolescing to contemporary into the formats, standards, and data models and to document the

effects of these transformations.

Long Term Archiving Driving Factors

 In 2007, the Storage Networking Industry Association (SNIA) completed a

comprehensive survey involving hundreds of individuals in a wide variety of organizations from

countries around the world [1]. An overwhelming 53% of the respondents said they have

information that must be retained permanently and 83% said over 50 years [1]. The Figure 1-1

shows that the long-term retention needs are real. The survey also says that most archives are less

than 5 TB but 18% of the archives are over 100TB, as shown in Figure 1-2. The type of data

includes databases, custom business application data, customer records and e-mail. The time to

retain information far exceeds the typical lifespan of storage systems like disk or tape, and

applications. Even the physical media start to degrade and may become unreadable long before

the retention period expires. The current practice is to migrate data both physically and logically,

every 3 to 5 years. Physical migration requires moving information from one physical storage

3

system to another or from one media format to another to maintain physical readability,

accessibility, and integrity. Factors triggering physical migration include media failure, media or

storage system obsolescence and system changes. Logical migration requires moving information

from one logical format to another—such as from an old version of an application to a new

version—to preserve readability and interpretability. Factors triggering logical migration include

changing application formats and obsolete applications. Inhibitors to both types of migrations

include cost, complexity, sheer volume of information, and lack of time.

Long Term Archiving Challenges

 The long-term archiving has the following inherent risks and its associated failures.

Systems must expect that all storage media degrade with time, causing irrecoverable bit errors,

and to be subject to sudden catastrophic irrecoverable loss of bulk data such as disk crashes or

loss of off-line media. It should also be expected that all hardware components suffer transient

recoverable failures, such as power loss, and catastrophic irrecoverable failures, such as burnt-out

Figure 1-1: Longest Retention Requirement. Source [1].

4

power supplies. Most of the software components suffer from bugs that pose a risk to the stored

data. Systems cannot assume that the network transfers they use to ingest or disseminate content

will either succeed or fail within a specified time period, or will actually deliver the content

unaltered. Systems must anticipate that the external network services they use, including resolvers

such as those for domain names and persistent URLs, will suffer both transient and irrecoverable

failures both of the network services and of individual entries in them.

All media and hardware components will eventually fail. Before that, they may become obsolete

in the sense of no longer being capable of communicating with other system components or being

replaced when they do fail. This problem is particularly acute for removable media, which have a

long history of remaining theoretically readable if only a suitable reader could be found. Software

components will become obsolete. This will often be manifested as format obsolescence when,

although the bits in which some data was encoded remain accessible, the information can no

longer be decoded from the storage format into a legible form. Operator actions must be expected

to include both recoverable and irrecoverable errors. This applies not merely to the digital

Figure 1-2: Size of long-term archives. Source [1].

5

preservation application itself, but also to the operating system on which it is running, the other

applications sharing the same environment, the hardware underlying them, and the network

through which they communicate. Natural disasters, such as flood, fire and earthquake must be

anticipated. All systems connected to public networks are vulnerable to viruses and worms.

Digital preservation systems must either defend against the inevitable attacks, or be completely

isolated from external networks. Much abuse of computer systems involves insiders, those who

have authorized access to the system. Even if a digital preservation system is completely isolated

from external networks, it must anticipate insider abuse.

Commitments of a Long Term Archiving Scheme

 A long-term archiving scheme has to guarantee three key principals, namely, security,

transparency and proof. The access to the archived data must be guarded by enforcing custom

security policies. Archived data should be stored in durable devices with schemes that can

prevent undetectable degradation or corruption. The risk of unrecoverable loss or corruption can

be prevented by using redundancy and secured distributed storage. An archive scheme should be

able to make its methods, processes, technology, business mechanisms, and public statistics

transparent to any verifier who wants to verify the integrity of the archived data. The archive

scheme should also ensure techniques that can provide a proof of integrity of the archived data to

any third party. More generally, the archive scheme must be able to build trust over time by

providing trusted information about the security of the archived data transparently to any

interested and trusted third party. This report specifically focuses on the problem of providing the

proof of integrity of the archived data that is expected to have a lifespan of more than 50 or 100

years.

Chapter 2

Related Work

Many papers propose schemes to tackle long-term archival problems. Ganger et al.

present PASIS [28], a survivable storage based on decentralized architecture. It uses data

distribution and redundancy schemes to ensure fault tolerance and to protect integrity and

confidentiality of the documents by forcing the attacker to compromise several nodes in order to

become a real threat. Another approach based on distributed storage, SafeStore [14], achieves

data durability by combining replication across different publicly available Storage Service

Providers. An efficient audit protocol is provided to check that the integrity of the stored

documents is preserved over time. POTSHARDS [17] is a distributed scheme where secrets are

not replicated but split into shares and disseminated through different machines. A file can be

recovered by recovering a portion of the shares that allows the original file’s recovery. A user can

only recover the file is he or she knows the correct combination of shares. It also uses

‘approximate pointers’ to allow data recovery even when the key is no longer available. Another

approach, the LOCKSS [16], is a peer-to-peer system where documents are replicated over peers.

These peers cooperate to detect and repair damage to their content by majority voting. But in this

approach, the main goal is availability of content in the future, even if little modifications have

happened to the documents. Other systems focus on dealing with the future obsolescence of

software and hardware, of how to store and migrate data such that it is readable well into the

future. The Public Record Office Victoria propose a system called ‘VERS’ [27] that uses XML

encapsulation to include metadata together with the stored document, which stores enough

information to read the document in the future even if the software or hardware which was used

to create the document is no longer available. This system uses digital signatures to preserve the

integrity of a document but does not provide a method to confirm the validity of these signatures

7

over time. Other papers [25, 26] address the obsolescence of cryptography when dealing with

digital signatures validation far in time (including the fact that the public key certificates used

may be invalid or no longer available at the time of validation). In these approaches, a digitally

signed document is stored in a Secure Long-Term Archival System (SLTAS) which uses

timestamps in order to protect the validity of the initial signature over time. The archive verifies

the signatures at regular intervals, and, if they are valid, re-timestamps them. This process serves

to account for any weakness that may have appeared in the signing algorithms, under the

reasonable assumption that a Time Stamping Authority will always use a non-broken state-of-the-

art algorithm to issue timestamps. The system proposed in [5] enables the use of the TPM to tie

the web server integrity state to the web content delivered to browsers. An asynchronous usage

model is proposed to remove the TPM from the critical path of serving content to users. The web

server creates request-independent attestations by combining the time with a hash tree of the

served content. The system protects the web server from several types of threats including root-

kits and malicious patches through the use of integrity measurement [7].

Chapter 3

Background Study

Trusted Platform Module

 The Trusted Computing Group (TCG) was formed in 2003 to develop and support open

industry specifications for trusted computing across multiple platform types. The TCG issued a

specification for a Trusted Platform Module (TPM), which is a dedicated security chip designed

to enhance software security. The TPM is realized as a hardware chip attached to the motherboard

which can be used to securely store confidential information, such as private keys. It also can be

used to store signatures (hash values) of software running on the computer, allowing non-allowed

software (such as viruses) to be rejected.

TPM Background

The Figure 3-1 presents the main components of the TPM such as the Random Number

Generator (used for generating asymmetric as well as symmetric keys and nonce that provide

freshness), Platform Configuration Registers (PCRs), Secure Hash Algorithm (provides SHA-1

functionality), RSA key generator and Hash Message Authentication Code (HMAC). The

Endorsement Key (EK) is a pair of RSA keys that is installed when the TPM is manufactured.

The public EK value is used to uniquely identify a TPM and will not change during the TPM's

lifetime. The Storage Root Key (SRK) is also a pair of RSA keys that is used to encrypt other

keys stored outside the TPM. SRK is in effect the Root of Trust for Storage. SRK can change

when a new user takes ownership of the TPM. The TPM contains a number (at least 16) of

Platform Configuration Registers (PCRs), essentially internal memory slots. At boot time, all

9

PCRs are initialized to a known value (0 for PCRs 1–16 and -1 for PCRs 17–22). They are used

to store platform configuration measurements. These measurements are normally hash values

(SHA-1) of entities (applications) running on the platform. PCRs cannot be written directly; data

is stored by a process called extending the PCR. The only way for software to change the value of

a PCR is by invoking the TPM operation:

PCRExtend(index, data)

When this operation is invoked on the TPM, it updates the value of the PCR indicated by index

with a SHA-1 hash (H) of the previous value of that PCR concatenated with the data provided. In

other words, the TPM performs the following update:

PCRindex ← H(PCRindex||data)

Extend operation relies on the infeasibility of finding two different measurement values such that

when extended returns the same value. It preserves the order in which entities measurement were

extended and allows an unlimited number of measurement to be stored in a PCR because the

result is always a 160-bit value.

Figure 3-1: TPM Architecture. Source [4].

10

Core Root of Trust Measurement

 Core Root of Trust Measurement (CRTM) is either the BIOS boot block or the entire

BIOS. At boot up, the CRTM measures the integrity metrics that show the software state, for e.g.

the master boot record, BIOS and the code from the other firmware. CRTM [6] measures these

metrics as hash of the current state of the software in terms of version, patch level and extends a

particular PCR of the TPM. The whole process of measurement is done in a chain of trust

manner, i.e. the CRTM initially measures itself, and reports to the TPM. Then it would move up

the hierarchy and measure the BIOS and report the hash to the TPM. Then the BIOS loads the

boot loader and boot loader, in turn, measures the Operating System (OS). OS then has the access

to the TPM to report the software modifications anytime. So, suppose a pirated version of

software was running on the machine, then the OS (in the trusted zone) would report that to the

TPM. Thus PCRs in the TPM are used to store the sequence of measurement values. The TPM

provides reporting of PCR values through the quote operation. To prevent replay of the

measurement, the requesting party issues a 160-bit random nonce to the attesting system, creating

a challenge. The TPM has a Storage Root Key stored inside it, which only it knows. It uses this

key to generate an Attestation Identity Key (AIK), which comprises an RSA key pair, the public

portion of which (AIKpub) is available through a key management infrastructure. The TPM loads

the private portion of the AIK pair (AIKpriv) and performs the Quote function, where it signs a

message containing the values of one or more PCRs and the nonce with AIKpriv. The TPM

securely transports the result of the Quote function along with their respective logs to the

requesting party. The attesting party can then verify the integrity of the message using AIKpub,

and subsequently, every element of the measurement list up to the value stored in the PCR may

be validated. If the configuration of the platform has changed as a result of unauthorized activities

11

then access to data and secrets can be denied and sealed. Accordingly the requesting party will

make its decision to carry out the communication in a trusted or a non trusted environment.

Remote Attestation Protocol

 Remote Attestation (RA) is a method to prove to a remote party that the local PC is a

trusted platform (TPM-enabled) and to show its current configuration. The remote party needs to

trust the host to reliably measure and report its configuration. On receipt of a request for

attestation, the attestor generates a public/private key pair, called the attestation identity key

(AIK), and send the public part of AIK signed by the EK to a trusted third party (TTP) called a

Figure 3-2: Chain of trust measurement using TPM Extend operation.

TPM CRTM

Boot Loader

Operating System

Applications

Step 2

Step 1

Step 5

Step 4

Step 8

Step 7

Step 3

Step 6

Step 9

Transfer of control

TPM Extend Op
Measure

12

Privacy CA. The Privacy CA checks the EK's signature and status on the revocation list, and

signs the AIK. The remote computer just sees the AIK signed by the Privacy CA, and thus cannot

link it with the EK. Different sessions will use different AIKs, so they cannot be linked either.

The host can now send its PCR values (signed with AIK), Stored Measurement Log (SML) and

the received AIK certificate to the challenger. The challenger does the following steps to ensure

the trust of the host.

1. Verifies the AIK certificate with the TTP public key.

2. Uses AIK to verify the signature on the PCR values.

3. Recalculates the value from the measurement list within SML.

4. Compares the calculated value with PCR's value. If the PCR value and SML do not match,

it implies that the SML had been tampered, and the verifier will not to trust the host. If they

do match, the verifier goes through the fingerprint list in SML and looks for any

unapproved entity.

Virtual Machine Monitor

 Virtualization separates an operating system from the underlying platform resources.

Traditionally, the software is bound to the hardware, allowing better utilization of the resources at

hand, but on the other hand creating compatibility issues and limitations. The virtualization

approach allows higher compatibility and even independence of the software on the hardware

running it. Virtualization achieves the separation by creating consistent interfaces, implemented

and used differently depending upon the hardware and the software. There are different types of

virtualization such as the Software Virtualization and the Resource virtualization. The main

Software virtualization types are Application virtualization (a single running program is wrapped

by a layer providing it with additional compatibility to the running environment), OS-level

13

virtualization (a single kernel running otherwise isolated environments) and the Virtual Machines,

which are Hardware level virtualization - totally isolated environments running in parallel on one

machine. The two main approaches in Virtual Machine implementation are Full Virtualization

and Para-Virtualization. Full Virtualization is a fully-simulated hardware set (including every real

life component in a software form) running a "guest OS" in a closed shell, where the guest has no

way of knowing it. Para-virtualization is a relatively thin layer between each VM and the

hardware below, which tries to minimize the extent of intervention in running processes while

maintaining the integrity (and isolation) of each VM- both from the hardware and from the other

VMs running on the machine.

Xen Virtual Machine Monitor

 Xen is an open-source software project that provides high-performance, resource-

managed virtualization on the x86 processor architecture. It allows multiple operating system

instances to run concurrently on a single physical computer. It incorporates the principles of Para-

virtualization to create a VMM (Virtual Machine monitor) which is a thin layer between software

and hardware, allowing the interaction of the two, in the case of more than one guest OS

concurrently running. Each Xen system has a single privileged OS, called Domain-0 that is

responsible for starting and managing the other unprivileged OS instances. Domain-0 is the OS

that boots when the system starts and it has the tools necessary to manage other domains. Xen

manages the computer's hardware resources so they are shared effectively among the operating

system instances, called domains. Xen shows good performance and isolation of each VM, while

featuring unprecedented options like resource control and live migration. Xen virtualization

provides many exciting benefits over traditional single OS computers, including server

consolidation, application mobility, secure computing, and research/testing.

14

Virtual Trusted Platform Module

The main goal described in [12] is to blend the two technologies of Virtualization and

Trusted Computing or specifically the Trusted Platform Module. These two technologies can

ensure the complementary requirements of Virtualization for the high availability, the integrity

and the isolation of each virtual machine and TPM for the security, the chain of trust and the

remote attestation. Virtualizing the TPM is required to provide TCG services in the virtual

machines. The virtualization base system should handle the TPM device for its usage and export

to each virtual machine a TPM emulated device to extend the chain of trust. So each virtual

machine will be able to use the cryptographic resources, store secret objects and realize remote

attestations. The first requirement is then to ensure the same level security provided by the

hardware TPM for the virtualized TPMs. Moreover, new requirements are introduced due to the

specificities of a virtualized architecture. The vTPM implementation is composed of a vTPM

Figure 3-3: Xen Virtualization Architecture Overview. Source [11].

15

Manager which manages the hardware TPM, provide services to manages multiple TPM

emulated devices and a vTPM instance for each virtualized host, which implements the full TCG

TPM 1.2 specification.

A vTPM instance is the TPM of a VM. It implements the full TCG TPM Specification version

1.2. Each VM has its associated vTPM instance running throughout the lifetime of the VM, so

there as much vTPM instances as there is VMs running. A vTPM instance associated to a VM is

unique. The vTPM implementation in Xen is software-based, so a vTPM instance is just a piece

of software running in the Dom0. The vTPM manager creates and manages vTPM instances.

When a VM is created, it will spawn a vTPM instance that will be associated to this VM. When

running a paravirtualized DomU, the vTPM manager also redirects the TPM commands from the

DomU (by listening to the Back-End, /dev/vtpm) to the associated vTPM instance. To make TPM

Figure 3-4: Virtual Trusted Platform Module (vTPM) Architecture. Source [12].

16

functionality available to a paravirtualized DomU, Xen uses the split-driver model. So the vTPM

driver is split in two parts as shown in Figure 3-4.

1. The Front-End (FE): FE is the client side part of the vTPM driver that runs on the DomU.

It exposes the /dev/tpm device file on the DomU to receive TPM commands and it will

issue these commands to the backend. On Linux, the driver module is called tpm_xenu.

2. The Back-End (BE): BE is the server side part of the TPM driver that runs on the Dom0.

It exposes the /dev/vtpm device file on the Dom0 so that the vTPM manager can process

the TPM commands. On Linux, the driver module is called tpmbk.

This driver is based on the Xen network driver. Data exchange between the FE and the BE is

ensured by the XenBus which provides an API to use grant tables (a single shared memory ring)

and an event channel for asynchronous notifications of activity. The back-end prepends a 4-byte

vTPM instance identifier to each TPM commands to identify the vTPM instance of the VM. The

identifier is prepended in the BE so the VMs cannot forge commands and send them to another

vTPM instance. The commands are multiplexed inside the character device file /dev/vtpm. This

special file will be read by the vTPM manager which will redirect the command to the proper

vTPM instance. Each vTPM instance has a Storage Root Key (SRK) as root for its key hierarchy

and an Endorsement Key (EK). To allow instance and vTPM migration, these keys are unlinked

from the key hierarchy of a TPM hardware component. This also allows faster key management

and cryptographic operations. However, if the SRK, EK and other data of virtual TPM are stored

in a persistent storage, they must be stored encrypted with a key stored in the hardware TPM

device. This symmetric key must be sealed or protected with a password. The trust in the VM is

trustable only if the trust in the environment (TCB, hypervisor...) is guaranteed. For this reason

the chain of trust must be guaranteed from the hardware TPM to the vTPM, from the TCB to the

VMs. So, the architecture in [7] provides the vTPM PCRs a merged version of the measures. A

lower set of PCRs in the vTPM shows measures from the hardware TPM and the upper the

17

measures for the VM, as shown in the Figure 3-5. By this way, a challenger can see all relevant

measurements during a remote attestation. But in the vTPM implementation, there is no PCRs

mapping between the vTPM and the hardware TPM (the PCRs 0 to 8 are not the same in the

vTPM and in the hardware TPM) because there is disagreement on how to do the signatures for

quotes correctly. The vTPM would sign the complete quote, but it does not own the mapped

PCRs which is a problem.

Asymmetric Key Cryptography

Whitfield Diffie and Martin Hellman introduced the concept of public-key cryptography

in 1976. In their system, each person gets a pair of keys, one called the public key and the other

called the private key. The public key is published, while the private key is kept secret. The need

for the sender and receiver to share secret information is eliminated; all communications involve

Figure 3-5: Extension of lower PCR values of vTPM. Source [12].

18

only public keys, and no private key is ever transmitted or shared. In this system, it is no longer

necessary to trust the security of some means of communications. The only requirement is that

public keys be associated with their users in a trusted (authenticated) manner. Anyone can send a

confidential message by just using public information, but the message can only be decrypted

with a private key, which is in the sole possession of the intended recipient. Furthermore, public-

key cryptography can be used not only for privacy (encryption), but also for authentication

(digital signatures) and other various techniques.

Public-key Encryption

In cryptography, encryption is the process of obscuring information to make it unreadable

without special knowledge. For example, When Alice wishes to send a secret message to Bob,

she looks up Bob's public key in a directory, uses it to encrypt the message and sends it off. Bob

then uses his private key to decrypt the message and read it. No one listening in can decrypt the

message. Anyone can send an encrypted message to Bob, but only Bob can read it (because only

Bob knows Bob's private key). Encryption can be used to ensure secrecy, but other techniques are

still needed to make communications secure, particularly to verify the integrity and authenticity

of a message; for example, a message authentication code (MAC) or digital signatures. Another

consideration is protection against traffic analysis.

Digital Signatures

A digital signature method generally defines two complementary algorithms, one for

signing and the other for verification, and the output of the signing process is also called a digital

signature. Digital signature schemes rely on public-key cryptography. In public-key

19

cryptography, each user has a pair of keys: one public and one private. The public key is

distributed freely, but the private key is kept secret and confidential; another requirement is that it

should be infeasible to derive the private key from the public key. A general digital signature

scheme consists of three algorithms, namely, a key generation algorithm, a signing algorithm and

a verification algorithm. For example, consider the situation in which Bob sends a message to

Alice and wants to be able to prove it came from him. Bob sends his message to Alice and

attaches a digital signature. The digital signature is generated using Bob's private key, and takes

the form of a simple numerical value (normally represented as a string of binary digits). On

receipt, Alice can then check whether the message really came from Bob by running the

verification algorithm on the message together with the signature and Bob's public key. If they

match, then Alice can be confident that the message really was from Bob, because the signing

algorithm is designed so that it is very difficult to forge a signature to match a given message

(unless one has knowledge of the private key, which Bob has kept secret). For efficiency reasons,

Bob first applies a cryptographic hash function to the message before signing. This makes the

signature much shorter and thus saves time since hashing is generally much faster than signing in

implementations. However, if the message digest algorithm is insecure (for example, if it is

possible to generate hash collisions), then it might be feasible to forge digital signatures.

Aggregate Signature Scheme

 In a general signature aggregation scheme, if user i signs the message Mi to obtain a

signature σi, then anyone can use a public aggregation algorithm to take all n signatures σ1,...,σn

and compress them into a single signature σ. Moreover, the aggregation can be performed

incrementally—signatures σ1,σ2 can be aggregated into σ12 which can then be further

aggregated with σ3 to obtain σ123, and so on. There is also an aggregate verification algorithm

20

that takes PK1,...,PKn; M1,...,Mn, and σ and decides whether the aggregate signature is valid on

the given messages under the given keys. Thus, an aggregate signature provides non-repudiation

at once on many different messages by many users [29]. This mechanism is referred to as general

aggregation since aggregation can be done by anyone and without the cooperation of the signers.

The general aggregate signature scheme due to Boneh, Gentry, Lynn, and Shacham [31] uses

bilinear maps from algebraic geometry.

Sequential Aggregate Signature Scheme

 Sequential aggregate signatures are a variant of aggregate signatures. In a sequential

aggregate signature scheme, signatures are not individually generated and then combined into an

aggregate. Rather, a would-be signer transforms a sequential aggregate into another that includes

a signature on a message of his choice. Signing and aggregation are a single operation. Sequential

aggregate signatures are built in layers, like an onion; the first signature in the aggregate is the

inmost. As with general aggregate signatures, the resulting sequential aggregate is the same

length as an ordinary signature. For sequential aggregate signatures, aggregation and signing are

performed in a single combined operation. The operation takes as input a private key SK, a

message Mi to sign, and a sequential aggregate signature σ0 on messages M1,...,Mi-1 under

respective public keys PK1,...,PKi-1, where M1 is the inmost message. It adds a signature on Mi

under SK to the aggregate, outputting a sequential aggregate σ on all i messages M1,...,Mi. The

aggregate verification algorithm, given a sequential aggregate signature σ, messages M1,...,Mi,

and public keys PK1,...,Pki, verifies that σ is a valid sequential aggregate (with M1 inmost) on the

given messages under the given keys [29].

21

Forward Secure Signature Scheme

 In a forward secure signature scheme, a user registers a public key PK and keeps private

the corresponding secret key SK0. The time during which the public key PK is desired to be valid

is divided into T periods from 1 to t. While the public key stays fixed, the user evolves the secret

key with time. Thus in each period, the user produces signatures using a different signing key:

SK1 in period 1, SK2 in period2 and SKt in period t. The secret key in period i is derived as a

function of the one in the previous period; specifically, when period i begins, a public one-way

function h is applied to SKi-1 to get SKi [28]. At that point, the private key SKi-1 is deleted. An

attacker breaking in during period i will get the key SKi, but not the previous keys SK0,…, SKi-

1, since they have been deleted [28]. A digital signature employing the forward secure signature

scheme always includes the value j of the time period during which it was produced. The

verification algorithm takes in the public key PK, a message and candidate signature, and verifies

that the signature is valid, i.e., it was produced by the legitimate user in the period indicated in the

signature [28]. Although the user’s secret key evolves with time, the public key stays fixed

throughout, so that the signature verification process is unchanged, as are the public key

certification and management process.

Chapter 4

Design and Implementation

 The design to achieve long-term integrity of archives relies on using digital signatures

and time-stamped attestations. The system must be able to provide proof of the integrity of

archives and validity of the signatures in a distant future. A third party should be able to verify

the integrity of a file or an entire archive. The design consists of the following components:

1. The archive process X running in the Dom-U (user domain) of a trusted machine H1

which is used to archive file systems from one device to another device.

2. The archive manager process M running in a trusted machine H2 which has access to the

attestations generated by the archive process X.

3. The verifier process V running in a remote machine H3 which is interested in verifying

the integrity of a particular archive or of a particular file contained in the archive.

4. A Trusted Time Server process running in a trusted Machine TS with a TPM.

The requirement of long-term archiving drives the assumption that the archive process X and/or

the machine H1 may not be accessible or even present at the time when the verifier needs to

verify the integrity of the archived data. The attestations generated by process X using the vTPM

in machine H1 are securely stored in the trusted machine H2. At a later point of time in the future,

the verifier process V which has access to the archived content, challenges the manager M with

the unique ID of the archive whose integrity it wants to verify. The archive manager M retrieves

the stored attestations corresponding to the requested archive ID and generates succinct proofs in

response to the challenge from the remote verifier process V.

23

Trusted Time Server

The architecture depends on a trusted Time Server which issues a digitally signed current

time that can be remotely verified by any third party. This verifiable timestamp is used along with

the attestation of the root file system to provide a proof of the existence of the signed data at that

moment without the possibility of post-dating or pre-dating. The timestamp is used to provide

evidence of the archival time which is the time when the backup was taken. It can also be used to

verify and refresh the validity of signatures later in time. Logical and physical migration of the

archive, re-timestamping the archive will benefit in determining the connection of an archive to

its creation time.

Design Architecture

A host machine ‘H1’ is assumed to run with a TPMH1, TrustedGrub, IMA and Xen

Virtual Machine Monitor. The measurements of the BIOS, MBR, bootloader, Linux kernel, initrd,

modules and loaded files are assumed to be in the file /sys/kernel/security/ima/ascii_runtime_

measurements and are extended in the respective PCRs in the TPMH1. Thus the Dom-0 of the

host machine ‘H1’ follows the Core Root of Trust Measurement as explained in Figure 3-2 and in

Section 3-1. A process X is assumed to run in the user domain of Xen Virtual Machine Monitor

with a virtual Trusted Platform Module, vTPMH1. A lower set of PCRs of the vTPM H1 has the

measurements from the hardware TPMH1 and the upper PCRs contains the measurements for the

VM, as shown in the Figure 3-5. The extension of the lower set of PCRs of the vTPM H1 ensures

that the dom-0 Core Root of Trust Measurement is chained to the trust measurement of the VM.

The process X is used to archive data or the file system from one device to another. The process

X generates vTPM Quotes, as explained later in this document, for each of the archive operation

24

it does. The machine H1 and the process X is assumed to have existed years ago and they may not

be present or accessible to the user currently. Only the XML format of security information of

archived data like the hash trees, vTPM Quotes and the measurement lists of H1 are signed and

saved securely in machine H2 for later use. An architecture is proposed for remote verification by

a third party of the integrity of a archive process X and the integrity of the archived data. The

machine H2 is assumed to run with a TPMH2, TrustedGrub and IMA. The archive manager

process M manages the security information of archives that was generated by archive process.

The manager will respond to challenge requests from a remote verifier. The verifier process V

runs in the remote machine and challenges the manager process M for the integrity of a particular

file or the entire file system that was copied by process X in host H1.

Protocol Conventions

The function h(d) denotes a cryptographic hash using SHA1 algorithm over some data d,

and concatenation of different data elements is denoted as |. The quoting hosts are denoted H1 for

the archive process, H2 for the manager process and H3 for the verifier process. PCRi denotes the

integrity state of host i. A TPM quote is denoted Quote(h, s, c), where h is the host identity

performing the quote, s is the PCR state, and c is the quote challenge. The archive tool is assumed

to copy the file system FSYS from one device to the other. The files in the file system are

represented as fi. Ttime is a time epoch returned from a hardware clock on the trusted time server.

The protocols described below hashes the time quote t1 along with the data to be attested, so the

hash h1 is constructed as h(time quote t1 | h(d)). The resulting hash h1 is then used a the quote

challenge c. Thus the TPM quote Quote(i, s, c) of host i effectively ties the data to both the

integrity state of host i and time t1. The Linux Integrity Measurement Architecture (IMA) is used

for measuring the state of the code loaded in the system as mentioned in [6].

25

Asynchronous attestation protocol of the archiver

1. Each archive operation is considered as a transaction done by the process. After copying

a file system ‘FSYS’ successfully, the process X creates a unique Transaction ID, Tid,

representing the successful archive operation done.

2. Process X requests a quote from the vTPMH1 with Tid as the nonce.

3. Q1 = Quote(vTPMH1, PCRH1, Tid) is generated by the archive process X.

4. The process X requests the current time quote from a trusted Time Server ‘TS’.

5. The Q2 = Quote(TPMTS, PCRTS, h(Ttime)) and Ttime is returned to the process X by the

Time Server.

6. The content of (Q1 | Tid | Q2 | Ttime) is written in XML format to the root of the file

system in a file named archive_info.xml and signed with h(Q1 | Tid | Q2 | Ttime).

7. Process X calculates the root hash of the file system that is archived MHTFSYS =

SHA1(FSYS). M1 is calculated as h(MHTFSYS | Tid | Q2).

8. The Process X requests a quote from the vTPMH1 with M1 as the nonce.

9. Q3 = Quote(vTPMH1, PCRH1, M1) is returned to the process X, as shown in Figure 4-3.

10. An entry of (Tid, Q1, Q2, Q3) in XML format is appended to the log file Integrity_X.log

11. XML Format of the complete proof and related credentials is generated by archive

process X for transaction Tid as shown in Figure 4-5. This XML is written to the

Tid.dump file in the root of the archived file system. Quote(vTPMH1, PCRH1, h(tid | all

entries in Tid.dump file)) is appended to the Tid.dump file. The Tid.dump file is called as

the archive transaction dump file or the content proof file.

12. The steps from 1 to 11 are followed in sequence for each archive operation.

26

Depending on the interval set by the user, the archive process dumps all the files created till

then to a secure storage. The archive transaction dump files(Tid.dump files) created for each

archive operation are saved in a secure storage that will be accessible to the archive manager

process M at a later point in time. The trusted, secure storage maintains a time line of the set

of the Tid.dump files.

The Merkle hash tree of the archived file system, FSYS, is generated as shown in the Figure 4-2.

The files contained in the source file system are lexicographically sorted and a balanced complete

binary tree is created with all the files as the leaf nodes of the tree. A SHA1(NULL) is taken as

the hash of the null entries in the complete binary tree. The SHA1 hash of each file is created with

the contents of the file and will include metadata information such as the inode number,

timestamp, creation time, etc., depending on the custom user settings. The hash stored in the

Figure 4-1: Asynchronous attestation protocol of the archive process X.

 Time Server (TS)

Host Machine H1 with TPMH1 & IMA

X vTPMH1

Step 5

Steps 2, 3, 8, 9

TPMTS

Integrity_X.log

10 Step 11

src

dest

Tid

1

Transaction.dump files

27

binary tree leaves is calculated as hi = SHA1(contents of file fi | metadata of file fi). The hash in

the intermediate nodes of the binary tree is calculated as hk = SHA1(hi | hj), where i, j are child

nodes of node k. After the copy operation it is ensured by process X that h8 is equal to h’8. h’8 is

taken to be the SHA1(FSYS) or the root hash of the file system MHTFSYS.

Figure 4-2: Merkle Hash Tree of the archived File System with transaction ID, Tid.

Figure 4-3: Quote Q3 generated by the archive process X for transaction ID, Tid.

Quote(TPMH1, PCRH1, h(MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime))))

Proof of archived file system FSYS Time Server Proof

Quote Q3 generated by Archive Process X

h 8

h 6 h 7

h1 h2 h3 h4

h' 8

h' 6 h' 7

h’1 h'2 h'3 h’4

Archive

28

Figure 4-4: Complete Proof generated by archive process X for transaction ID, Tid.

An archive transaction dump file identified by Tid as the transaction ID

Figure 4-5: XML Format of the complete proof and related credentials generated by archive
process X for transaction Tid. This XML is written to the Tid.dump file in the root of the archived
file system. Quote(vTPMH1, PCRH1, h(tid | all entries in Tid.dump file)) is appended to Tid.dump.

<archive id=’Tid’ time=’Ttime’ algorithm=’RSA’>

 <integrity metadata=’list of attributes hashed’ type=’MerkleTree’>

 <roothash> MHTFSYS </roothash>

 <dump> dump of MHT created in Figure 4-2 </dump>

 <quote> Q3 </quote>

 <pubkey> PUBKEY3 = public key used for Q3 </pubkey>

 <certificate> certificate of PUBKEY3 </certificate>

 <measurements> IMA list of H1 & PCRs of TPMH1 </measurements>

 </integrity>

 <timequote> Qts3 = Quote(TPMTS, PCRTS, h(Ttime)) </timequote>

 <measurementsTS> IMA list of TS & PCRs of TPMTS</measurementsTS>

 <settings> list of custom user settings during archive </settings>

</archive>

Q3 | MHTFSYS | Quote(TPMTS, PCRTS, h(Ttime)) | Ttime | Ttid

Quote Q3,
filesystem Merkle
tree root hash

Time Server Proof Transaction Time
and ID

Complete proof generated by Archive Process X

29

Periodic re-keying of archive manager

 The archive manager manages the security information generated by the archiver process.

It is assumed that the archive manager runs in the machine H2 and has access to the time-lined

secure storage of the archive transaction dump files. The archive transaction dump files contain

security information of each archive operation done by archive process in XML format as shown

in Figure 4-5. The archiver process created the archive transaction dump files with signatures

using the Attestation Identity Key (AIK) of vTPMH1. The expiration or revocation of the

certificate of a signature public key and any compromise of a key pair necessitates the need for an

automatic and transparent update of the signature key pairs by re-keying with a new signature key

pair. The archive manager should choose the frequency of re-keying operation according to

security policy of the organization maintaining the security information of the archives. Before

the re-keying of the archive content proof, the archive manager checks the validity of the quote

present in the content proof and the validity of the certificate of the public key of the quote. For

example, the manager will verify the quote Q3 and the certificate of PUBKEY3 while re-keying

the content proof shown in Figure 4-5.

 The re-keying process involves the creation of a new key pair with the public key

PUBKEY4 and loading it as the Attestation Identity key (AIK) of TPMH2. It then updates the

Tid.dump file with the quote of h(MHTFSYS) from the TPMH2 with the new AIK, as shown in

Figure 4-6. The resulting Tid.dump file is as shown in Figure 4.7. The re-key operation provides

an automated mechanism for restricting the amount of data which might be exposed when the

private key is compromised. Updating the signing key pairs is a fundamental component of

preserving the integrity information of the long term archives. The re-keying operation also

provides a transparent way to change algorithms and/or key lengths (for example, it is possible to

30

change from 1024-bit RSA to 2048-bit RSA). The archive manager can employ the state of the

art algorithms during a re-keying and specify the algorithm used as an attribute in the XML

created as shown in Figure 4-7 and the Tid.dump file is updated with the modified XML as

shown in Figure 4-8. The archive manager creates the new key pair's public key certificate of

PUBKEY4 and adds the certificate to the modified Tid.dump XML file. The manager can also

use the state of the art format to dump the integrity information rather than as the XML file. The

decisions of the periodicity of re-keying, factors that should automatically trigger re-keying and

the format of the dump of transaction files should be made according to the technologies,

requirements and security challenges that exist at the point of time of managing the archive

security information. The forward secure signature scheme [28] can be used to derive the new

private key which will help to maintain the same public key with the corresponding certificate but

with the different private keys.

Figure 4-6: Quote Q4 generated by the archive manager M for transaction ID, Tid.

Quote(TPMH2, PCRH2, h(MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Tre-key-time))))

Proof of archived file system FSYS Time Server Proof

Quote Q4 generated by Archive Manager M

31

An updated archive transaction dump file after a key-update

Figure 4-7: Updated XML Format of the archive dump file after re-keying operation.

Figure 4-8: Re-keying process of archive manager.

<archive>

 <pubkey>

 PUBKEY4

 </pubkey>

</archive>

Updated Tid.dump
Update Tid.dump with

quote challenge as
h(MHTFSYS | Tid | Qts4))
to the TPMH2 with new

AIK key pair

<archive>

 <pubkey>

 PUBKEY3

 </pubkey>

</archive>

Updated Tid.dump

<archive id=’Tid’ time=’Tre-key-time’ algorithm=’RSA’>

 <integrity metadata=’list of attributes hashed’ type=’MerkleTree’>

 <roothash> MHTFSYS </roothash>

 <dump> dump of MHT created in Figure 4-2 </dump>

 <quote> Q4 </quote>

 <pubkey> PUBKEY4 = public key used for Q4 </pubkey>

 <certificate> certificate of PUBKEY4 </certificate>

 <measurements> IMA list of H2 & PCRs of TPMH2 </measurements>

 </integrity>

 <timequote> Qts4 = Quote(TPMTS, PCRTS, h(Tre-key-time)) </timequote>

 <measurementsTS> IMA list of TS & PCRs of TPMTS</measurementsTS>

 <settings> list of custom user settings during archive </settings>

</archive>

32

Challenge protocol of the verifier

 Verifier ‘V’ reads the Tid and Ttime contained in the archive_info.xml file in the root

node of the file system that was archived using process X. It validates the quotes Q1, Q2 and

ensures that Tid and Ttime correspond to the challenge contained in the quotes Q1 and Q2.

Verifier ‘V’ challenges the archive manager ‘M’ using OpenSSL with a randomly generated 160

bit nonce ‘N’ (to prevent replay attacks), Tid, Ttime and the name of the file ‘fi’ to be verified.

Response protocol of the archive manager

 The archive manager retrieves the Tid.dump file corresponding to the Tid. The archive

manager reads the XML file Tid.dump that was created by archive process and updated by

archive manager. The integrity of Tid.dump is verified using the signature contained in it. The

attribute ‘algorithm’ is referred to identify the algorithm with which the digital signature was

generated and the verification proceeds accordingly. The validity of the certificate of the public

key is also verified. After successful verification of the signature, the archive manager reads the

Merkle hash tree of the file system from Tid.dump and searches for file f1 in the hash tree. It

retrieves the hash of the root node as MHTFSYS. It then generates a succinct proof for file fi,

denoted as Pf(fi), consisting of the root node and all of the siblings on the path to the root, as

shown in Figure 4-10.

 The manager computes M4 = h(N | MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime)) and

then requests a quote from the TPMH2 with M4 as the challenge. The quote Q8 = Quote(TPMH2,

PCRH2, M4) is returned by TPMH2 to the archive manager. The quote Q8 is as shown in Figure 4-

11. The archive manager sends the following to the verifier ‘V’ as shown in Figure 4-12.

33

1. Tid, Ttime - Transaction ID and time of corresponding to the archive operation

2. Q8 = Quote(TPMH2, PCRH2, M4)

3. MHTFSYS - The root hash of the file system whose integrity is to be verified

4. Pf(fi) - Succinct proof for file fi belonging to transaction Tid

5. Tid.dump file containing the integrity of transaction Tid generated by Archive

process X

Figure 4-9: Response protocol of the archive manager process M.

TPMH2

Tid.dump

OpenSSL

Verifier Machine

Archive_info.xml

(Q1 | Tid | Q2 | Ttime)

Transaction.dump files

Periodic key
update of the
transaction
dump files

Challenge

Response

Processing
challenge
of Tid

Manager Machine

H2 with TPMH2

M V

34

Figure 4-10: Succinct Proof generation for file f1.

Figure 4-11: Quote Q8 generated by the archive manager M.

Figure 4-12: Complete Proof provided by the archive manager M to the verifier V.

Q8 | MHTFSYS | Quote(TPMTS, PCRTS, h(Ttime)) | Pf(fi) | Ttime | Ttid | Tid.dump

Quote Q8,
FSYS root
hash

Time Server Proof Succinct Proof,
Transaction Time
and ID

Complete proof generated by archive manager M

Quote(TPMH2, PCRH2, h(N | MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime))))

FSYS Proof Time Server Proof

Quote Q8 generated by Proxy Process

h' 8

h' 6 h' 7

h’1 h'2 h'3 h’4

h’1 = SHA1(f1), h’2 = SHA1(f2)

h’3 = SHA1(f3), h’4 = SHA1(f4)

h’6 = SHA1(h’1 | h’2)

h’7 = SHA1(h’3 | h’4)

h’8 = SHA1(h’6 | h’7)

Succinct Proof for file f1, Pf(f1), consists

of all of the siblings on the path to the

root.

Pf(f1) = h’2, h’7

35

Verification protocol of the verifier

 The verifier reads the XML file Tid.dump that was created by archive process and

updated by archive manager. The integrity of Tid.dump is verified using the signature contained

in it. The attribute ‘algorithm’ is referred to identify the algorithm with which the digital signature

was generated and the verification proceeds accordingly. The validity of the certificate of the

public key is also verified. After successful verification of the signature, the verifier computes M7

= h(MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime))) and M8 = h(N | M7) as shown in Figure 4-

13. The verifier validates Q8 and checks that M8 is equal to M4. The verifier thus ensures that the

quote Q8 can only be created by TPMH2 which verifies the integrity of the environment of the

archive manager M in machine H2. The Verifier process V computes the hash of the root node of

the file system as M7 by using the succinct proof Pf(fi) and the hash of the file fi as shown in

figure 4-13. The Verifier process verifies if M7 is equal to MHTFSYS. This step will ensure the

integrity of the content of the file fi that was archived at time Ttime with the Transaction ID Tid

and the validity of the quote Q3.

The successful verification of the signature contained in Tid.dump file and the successful

validation of the certificate of the public signature key will ensure that the integrity of the archive

content proof was maintained till the current time by the archive manager.

Figure 4-13: Regenerated hashes at the verifier process V.

M7 = h(h(fi) | Pf(fi))

M8 = h(MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime)))

M9 = h(N | M8)

Chapter 5

Evaluation

 The design consists of four main components, namely, the archiver, the manager, the

verifier and the trusted time server. The design is implemented in Python and C. The libtpm

library in C is used for the TPM interface operations such as the TPM_CreateKey,

TPM_LoadKey, TPM_Extend and TPM_Quote operations. The Python-C extensions were

written for the TPM operations. The trusted Time Server is implemented in Python as a TCP

server. Whenever a client requests the time server for a quote, the time server reads the clock in

the machine TS and computes the hash of the current time t1 as a challenge to the TPMTS to

generate a time quote as Quote(TPMTS, PCRTS, h(t1)). The archive process X uses the python

library function ‘shutil.copytree’ to archive the file system along with the file attributes from one

device to the other. It then generates the content proof with the asynchronous time attestation as

described in the previous section. Debian Linux 2.6.18 patched with IMA and Xen is used for the

Dom-0 and Debian Linux 2.6.24 patched with IMA and compiled with vTPM support is used for

the Dom-U where the archive process X runs.

 The manager process M periodically makes a re-key operation to the generated content

proofs or the transaction dump files as shown in Figure 4-7. Before any re-key of a particular

content proof, the manager checks the validity of the attestation already contained in the content

proof. It also has a thread running as a TCP server which listens to any incoming challenge

requests from the verifier. In response to a challenge, the manager TCP server thread generates

the succinct proof as shown in Figure 4-9 and sends the entire proof as shown in Figure 4-12 to

37

the verifier process. The manager process M and the verifier process V are run in a host hosting

Debian Linux 2.6.24 patched with IMA.

The time taken for the basic TPM operations is as shown in Table 5-1. The archiver is evaluated

with file systems of size ranging from 3GB to 16GB. The content proof size and the total time to

generate the archive content proof is shown in Table 5-2. The content proof size depends on the

number of files present in the archive as shown in Figure 5-1.

Table 5-1: Time taken for basic TPM commands.

TPM Operation Time in Seconds (s)
TPM_Quote 1.48
TPM_Verify 0.06
TPM_LoadKey 1.10
TPM_EvictKey (a single key) 0.18
TPM_ListKeys 0.06

Table 5-2: Comparison of content proof size and total processing time to archive size.

Archive
ID

Archive Size (GB)
Content Proof Size

(MB)

Total processing
time to generate
content proof (s)

Number of files in
the archive

8 3.09 0.56 75.84 2324
9 4.25 0.90 112.55 4618

10 5.57 1.04 120.69 5240
11 5.81 0.86 142.85 4149
12 7.35 1.30 184.90 6924
13 8.66 1.39 212.27 7564
14 9.82 1.79 234.97 9858
15 11.13 1.90 264.89 10480
16 11.78 1.99 279.16 11094
17 12.91 2.17 300.30 12182
18 14.22 2.27 330.50 12804
19 14.87 2.37 344.27 13418
20 16.19 2.46 440.94 14040

38

 The processing time break-up for the content proof generation of the archiver is shown in

Table 5-3. The total processing time depends on the archive size as shown in Figure 5-2. The time

to generate the Merkle file hash tree dominates the total processing time to generate the content

proof for the archives.

Table 5-3: Processing time break-up for content proof generation.

Archive
ID

Archive Size (GB)
Time to generate
file hash tree (s)

Time to generate
TPM quotes (s)

Number of files in
the archive

8 3.09 72.16 3.66 2324
9 4.25 108.70 3.85 4618

10 5.57 116.82 3.85 5240
11 5.81 139.09 3.76 4149
12 7.35 180.95 3.94 6924
13 8.66 208.27 3.98 7564
14 9.82 230.74 4.18 9858
15 11.13 260.68 4.17 10480
16 11.78 274.93 4.22 11094
17 12.91 295.97 4.31 12182
18 14.22 326.03 4.44 12804
19 14.87 339.74 4.48 13418
20 16.19 436.48 4.45 14040

Figure 5-1: Comparison of content proof size to number of files in archive.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5000 10000 15000

Co
nt

en
t p

ro
of

 s
iz

e
in

 M
B

Number of files in archive

ContentProofSize (MB)

ContentProofSize (MB)

39

 The Table 5-4 and Figure 5-3 compare the size of the content proofs and re-keying

processing time to the archive size. The size of content proof after every re-keying remains the

same, thus ensuring that the size of the content proofs is independent of the number of re-key

operations. The total processing time increases only linearly when compared to the size of the

content proofs as shown in Figure 5-3, mainly due to the size of the XML content proof file that

has to be processed. Thus the re-key processing time is not affected much by the content proof

size, which in effect is dependent on the number of files in the archive.

Figure 5-2: Processing time break-up for content proof generation.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 5.00 10.00 15.00 20.00

Pr
oc

es
si

ng
 T

im
e

in
 s

ec
on

ds

Archive Size in GB

Total Time to generate
Content Proof (s)

Time to generate file hash
tree (s)

Time to generate TPM
quotes (s)

40

Table 5-4: Comparison of content proof size and total processing time for re-keying.

Archive
ID

Size of Content Proof
(MB)

Total Time for re-
keying operation (s)

8 0.56 3.51
9 0.90 3.64

10 1.04 3.69
11 0.86 3.65
12 1.30 3.82
13 1.39 3.85
14 1.79 3.99
15 1.90 4.05
16 1.99 4.09
17 2.17 4.35
18 2.27 4.20
19 2.37 4.24
20 2.46 4.29

Figure 5-3: Total processing time for the re-keying operation.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.5 1 1.5 2 2.5

Pr
oc

es
si

ng
 t

im
e

in
 s

ec
on

ds

Content proof size in MB

Total Time for re-keying operation

41

 The TPM quote operations for the generation of the new attestation dominates the XML

updating time for the re-keying operation. The succinct proof generation for a particular file

depends on the time to re-generate the file hash tree, which in turn is dependent on the number of

files present in the archive, as shown in Table 5-5.

 The protocol ensures freshness of the challenge-response protocol through the nonce ‘N’

used by the verifier. This prevents the replay attacks. The use of the Time Server TS will enable

the verifier to verify the time at which the archive operation was done by the archive process ‘X’.

The hash tree of the entire file system that was archived is signed and the transaction ID of each

archive operation along with its time quote and content proof quote is also saved in the content

proof file by process X for future use. The use of the Merkle hash tree effectively uses the single

time-stamped attestation for the entire archive. The archive manager ‘M’ is also tied to the state

of TPMH2, so that the integrity of the manager machine H2 can also be verified by the verifier V.

Table 5-5: Processing time for succinct proof generation.

Archive
ID

Number of files in
the archive

content proof

Total time to
verify archive

content proof (s)

Breakup of time
to recreate file
tree hashes (s)

Total time to
generate succinct

proof (s)
8 2324 0.14 0.07 0.14
9 4618 0.22 0.15 0.22

10 5240 0.22 0.16 0.23
11 4149 0.21 0.14 0.21
12 6924 0.26 0.20 0.27
13 7564 0.27 0.21 0.28
14 9858 0.38 0.31 0.40
15 10480 0.39 0.33 0.40
16 11094 0.41 0.35 0.42
17 12182 0.43 0.36 0.45
18 12804 0.44 0.37 0.47
19 13418 0.45 0.38 0.49
20 14040 0.47 0.40 0.52

42

The re-keying operation of the archive manager process addresses the weakening of cryptography

over time and the need to re-validate signed archives and the certificates of the signing keys.

Chapter 6

Conclusion

A protocol is proposed to prove far in the future the integrity of an archive by the use of

digital signatures, verifiable timestamps, Trusted Platform Module and Xen Virtual Machine

Monitor. The asynchronous attestation protocol relies on a verifiable timestamp that is used along

with the attestation of the root file system to provide a proof of the integrity of the file system at

the time of archive without the possibility of post-dating or pre-dating. The issues of the

weakening of cryptography over time and the need to re-validate signed archive content proofs

and the certificates of the signing keys are addressed by the re-keying protocol. The re-keying of

the content proofs is tied to the time of the content proof update and hence a third party verifier

will be able to attest that the signing key was not compromised at the time of signing the archive

or at the time of a re-keying operation. The re-keying process also follows the asynchronous

attestation protocol. The XML format used by the re-keying process enables the option of using

state of the art algorithm for the digital signature existing at that point in time. The XML format

used in this protocol can also be changed to a compatible format at a later point in time in the

future by the archive manager.

However the migration of archives from one media or logical format to the other and

software and hardware unreliability has to be taken into more detailed analysis to build a

comprehensive archival system that can ensure data reliability over a very long period of time of

more than 50 or 100 years. The proposed protocol can be integrated with other proposed solutions

to account for migration problems, data availability and data readability.

Bibliography

[1] 100 Year Archive Requirements Survey, January 2007
http://www.snia.org/forums/dmf/programs/ltacsi/forums/dmf/programs/ltacsi/100_year/100YrAT
F_Archive-Requirements-Survey_20070619.pdf

[2] J. McKnight, T. Asaro, and B. Babineau, ‘‘Research Report: Digital Archiving: End-User
Survey & Market Forecast 2006–2010,’’ Enterprise Strategy Group, Milford, MA, January 2006.

[3] R. A. Lorie, ‘‘Long Term Preservation of Digital Information,’’ Proceedings of the First
ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, VA, 2001, pp. 346–352.

[4] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based
integrity measurement architecture. In Proceedings of USENIX Security Symposium, pages 223–
238, 2004.

[5] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger. Scalable Asynchronous Web
Content Attestations.

[6] L. St.Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishing and Sustaining System
Integrity via Root of Trust Installation. In 23rd Annual Computer Security Applications
Conference (ACSAC), pages 19–29, Miami, FL, December 2007.

[7] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-Reduced Integrity Measurement
Architecture. In Proceedings of the 11th ACM Symposium on Access Control Models and
Technologies (SACMAT 2006), Lake Tahoe, CA, June 2006.

[8] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R. Sailer. Shamon: A system for
distributed mandatory access control. In ACSAC ’06: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Computer Security Applications Conference, pages
23–32, Washington, DC, USA, 2006. IEEE Computer Society.

[9] R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, Oakland, CA, Apr. 1980.

[10] D. Eastlake 3rd, J. Reagle, and D. Solo. (Extensible Markup Language) XML-Signature
Syntax and Processing. RFC 3275 (Draft Standard), Mar. 2002.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization," in SOSP '03: Proceedings of the nine-teenth
ACM symposium on Operating systems principles.

[12] Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX Security
Symposium, USENIX, August 2006, pp. 305–320 (2006)

45

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-
based platform for trusted computing. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[14] R. Kotla, M. Dahlin, and L. Alvisi. SafeStore: A durable and practical storage system. In
Proceedings of the 2007 USENIX Annual Technical Conference, pages 129–142. USENIX, June
2007.

 [15] P. Maniatis and M. Baker. Secure History Preservation Through Timeline Entanglement. In
Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA, August 2002.

[16] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker. The LOCKSS
peer-to-peer digital preservation system. ACM Trans. Comput. Syst., 23(1):2–50, 2005.

[17] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti. POTSHARDS: Secure long-
term storage without encryption. In Proceedings of the 2007 USENIX Annual Technical
Conference, pages 143˝U–156. USENIX, June 2007.

[18] Sproull, R. F., and Eisenberg, J. Building an Electronic Records Archive at the National
Archives and Records Administration: Recommendations for a Long-Term Strategy.
<http://www.nap.edu/catalog/11332.html>, June 2005.

[19] A. Jerman Blazic. Long term trusted archive services. In First International Conference on
the Digital Society ICDS, page 29. IEEE Computer Society, Jan 2007.

[20] Maniatis, P., Giuli, T., and Baker, M. Enabling the Long-Term Archival of Signed
Documents through Time Stamping. Technical report, Computer Science Department, Stanford
University, Stanford, CA, USA, June 2001.

[21] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[22] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[23] SHA-1 Standard. http://www.itl.nist.gov/fipspubs/fip180-1.htm

[24] Trusted Computing Group. TPMWorking Group.
https: //www.trustedcomputinggroup.org/groups/tpm/.

[25] Trusted Computing Group. Trusted Platform Module Specifications.
https://www.trustedcomputinggroup.org/specs/TPM/.

[25] C. Wallace, R. Brandner, and U. Pordesch. Long-term archive service requirements. RFC
4810, Internet Engineering Task Force, March 2007.

[26] A. Jerman Blazic. Long term trusted archive services. In First International Conference on
the Digital Society ICDS, page 29. IEEE Computer Society, Jan 2007.

46

[27] G. R. Ganger, P. K. Khosla, M. Bakkaloglu, M. W. Bigrigg, G. R. Goodson, S. Oguz, V.
Pandurangan, C. A. N. Soules, J. D. Strunk, and J. J. Wylie. Survivable storage systems.

[28] M. Bellare and S. Miner, “A forward-secure digital signature scheme”

[29] D. Boneh, C. Gentry, B. Lynn and H. Shacham, "A survey of two signature aggregation
techniques"

[30] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. “Sequential aggregate signatures
and multi-signatures without random oracles”

[31] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and verifiably encrypted
signatures”

[32] P. Ting and F. Chu, "Enhancing the Security Promise of a Digital Time-Stamp"

[33] D. Song, "Practical Forward Secure Group Signature Schemes"

Appendix A

Glossary

Asymmetric key encryption - In this encryption method, key exchange occurs with the existence

and use of both a public and private key, in which anyone can encrypt a message using the public

key, but only the holder of the private key is able to decrypt messages. Page 18.

AIK Attestation – an asymmetric key, the private portion of which is non-migratable and

protected by the TPM. The public portion of an AIK is part of the AIK Credential, issued using

either the Privacy CA. An AIK can only be created by the TPM Owner. The AIK can be used for

platform authentication, platform attestation and certification of keys. Page 11.

AIK Credential - A credential issued by a Privacy CA that contains the public portion of an

AIK key signed by a Privacy CA. Page 11.

Attestation of the Platform - An operation that provides proof of a set of the platform’s integrity

measurements. This is done by digitally signing a set of PCRs using an AIK in the TPM. Page 11.

Authenticated Boot - A boot after which the platform’s Root-of-Trust-for-Reporting (RTR) can

report an accurate record of the way that the platform booted. Page 10.

Challenger - An entity that requests and has the ability to interpret integrity metrics. Page 11.

Endorsement Key - EK; an RSA Key pair composed of a public key (EKpu) and private (EKpr).

The EK is used to recognize a genuine TPM. The EK is used to decrypt information sent to a

TPM in the Privacy CA and during the installation of an Owner in the TPM. Page 8.

Integrity challenge - A process used to send accurate integrity measurements and PCR values to

a challenger. Page 11.

Privacy CA - An entity trusted by both the Owner and the Verifier, that will issue AIK

Credentials. Page 11.

48

Private key - Key owned by recipient of encrypted message in private key cryptography. Private

key is used to decrypt the message. Page 17.

Private key encryption - See asymmetric key encryption. Page 18.

Public key - Key owned by sender of encrypted message in private key cryptography (used to

encrypt messages, (or) Key owned by both sender and recipient of a message – the single public

key is used to both encrypt and decrypt the message. Page 17.

Public key encryption - See symmetric key encryption. Page 18.

RSA - Algorithm developed by: Rivest, Shamir, Adleman. Their creation was named after the

first letters of their surnames. Page 19.

Symmetric key encryption - The sender and the recipient each have a copy of the public key

(which is to be kept secret between the two of them). The public key both encrypts and decrypts

the message. Page 18.

SRK - Storage Root Key: the root key of a hierarchy of keys associated with a TPM’s Protected

Storage function; a non-migratable key generated within a TPM. Page 8.

TSS - TCG Software Stack: untrusted software services that facilitate the use of the TPM and do

not require the protections afforded to the TPM. Page 8.

Trust - Trust is the expectation that a device will behave in a particular manner for a specific

purpose. Page 10.

Trusted Computing Platform - A Trusted Computing Platform is a computing platform that can

be trusted to report its properties. Page 8.

	The Pennsylvania State University The Graduate School Computer Science and Engineering Department
	ASYNCHRONOUS ATTESTATION SCHEME FOR PRESERVING THE INTEGRITY OF LONG-TERM DIGITAL ARCHIVES
	A Thesis in Computer Science and Engineering by Dhivakar Mani
	Master of Science
	May 2009
	Chapter 1 Introduction
	Long Term Archiving Requirements
	Long Term Archiving Driving Factors
	Long Term Archiving Challenges
	Commitments of a Long Term Archiving Scheme

	Chapter 2 Related Work
	Chapter 3 Background Study
	Trusted Platform Module
	TPM Background
	Core Root of Trust Measurement
	Remote Attestation Protocol

	Virtual Machine Monitor
	Xen Virtual Machine Monitor

	Virtual Trusted Platform Module
	Asymmetric Key Cryptography
	Public-key Encryption
	Digital Signatures
	Aggregate Signature Scheme
	Sequential Aggregate Signature Scheme
	Forward Secure Signature Scheme

	Chapter 4 Design and Implementation
	Trusted Time Server
	Design Architecture
	Protocol Conventions
	Asynchronous attestation protocol of the archiver
	Periodic re-keying of archive manager
	Challenge protocol of the verifier
	Response protocol of the archive manager
	Verification protocol of the verifier

	Chapter 5 Evaluation
	Chapter 6 Conclusion
	Bibliography
	Appendix A Glossary

