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ABSTRACT 

Increasing number of organizations want to retain data like customer records, business 

application data, e-mail and databases, for well over 50 or 100 years. In most cases the lifespan of 

the storage devices and the applications are far less than the perceived time of data retention. The 

archived data may have to be physically and logically migrated from one device or format to 

another at intermediate points in time to prevent data corruption. In this report the challenge of 

asserting the integrity of the archived data in the future even in the absence of the originator of 

the data is discussed. The Trusted Platform Module along with a Trusted Time Server is used to 

attest and verify the integrity of an archive tool running in the user domain of a Xen Virtual 

Machine. The root of trust installation is followed for the root domain (Dom-0) of the Xen Virtual 

Machine Monitor and a virtual Trusted Platform Module (vTPM) is used to attest the integrity of 

the system state of the user domain (Dom-U) created in the Dom-0. A trusted Time Server is used 

to create time-stamped Dom-U attestations. The attestations provide an integrity proof of the 

system state of Dom-U and Dom-0 by including the PCR values of the vTPM and the integrity 

state of the archive by including the Merkle hash tree of the file-system that was archived. An 

archive manager is used to manage the security information of the archives. The archive manager 

does a verifiable, periodic re-keying of the content proofs with a new signing key pair. It also 

generates proofs from the content proofs in response to a challenge from a remote verifier. The 

proofs can be used to verify the integrity of the system state of Dom-U and Dom-0, the archive 

tool and the archive content over a period of time. The protocol of the archive process, the 

archive manager and the trusted time server is detailed and analyzed in this report. The proposed 

protocol will enable the archive manager to prove the integrity of archive content proofs (which 

were created years ago) to a remote third party. 
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Chapter 1 
 

Introduction 

In the last 50 years, computer systems and information automation have moved work 

processes and records online which results in enormous amount of digital resources. Digital 

collections are vast, heterogeneous, and are growing at a rate that outpaces the ability to manage 

and preserve them. Digital resources like scientific databases, medical records and government 

statistics are accumulated over long periods of time at considerable expense. Many of the digital 

resources that are created today will be re-purposed and re-used in the future for various reasons. 

One unique aspect of digital preservation is the aspect of long term, where long term may mean 

long enough to be concerned about the obsolescence of technology or may mean decades or 

centuries.  When long-term preservation spans several decades, generations, or centuries, the 

threat of interrupted management of digital objects becomes critical.  Unlike many physical 

objects that can withstand some period of neglect without resulting in total loss, digital objects 

require constant maintenance. Redundancy, replication, and security against intentional attacks on 

archival systems and against technological failures are critical requirements for long-term 

preservation.  

Long Term Archiving Requirements 

 For a digital archive system to effectively monitor the content of the archives and to 

assess its preservation needs, the archive system must know as much as possible about the 

technical and functional characteristics of its digital archive objects and record that information as 

metadata. Digital archiving systems should maintain the archived contents, extract metadata of 
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the contents, restructure and manage metadata over time.  It will be essential for future users of 

archived materials to recover and relate the metadata schema used when the entity was created.  

Likewise, managing the identity of preserved digital objects over time is a challenge for digital 

archives because the identifiers assigned to digital objects can be changed easily and the 

technologies for naming and tracking digital objects evolve over time. These requirements trigger 

the development of methods for unique and persistent naming of archived digital objects, tools 

for certification and authentication of the integrity of the preserved digital objects, methods for 

version control, and interoperability among naming mechanisms used by different content 

providers.   Tools are also needed to automatically transform preserved digital objects from 

obsolescing to contemporary into the formats, standards, and data models and to document the 

effects of these transformations. 

Long Term Archiving Driving Factors 

 In 2007, the Storage Networking Industry Association (SNIA) completed a 

comprehensive survey involving hundreds of individuals in a wide variety of organizations from 

countries around the world [1]. An overwhelming 53% of the respondents said they have 

information that must be retained permanently and 83% said over 50 years [1]. The Figure 1-1 

shows that the long-term retention needs are real. The survey also says that most archives are less 

than 5 TB but 18% of the archives are over 100TB, as shown in Figure 1-2. The type of data 

includes databases, custom business application data, customer records and e-mail. The time to 

retain information far exceeds the typical lifespan of storage systems like disk or tape, and 

applications. Even the physical media start to degrade and may become unreadable long before 

the retention period expires. The current practice is to migrate data both physically and logically, 

every 3 to 5 years. Physical migration requires moving information from one physical storage 
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system to another or from one media format to another to maintain physical readability, 

accessibility, and integrity. Factors triggering physical migration include media failure, media or 

storage system obsolescence and system changes. Logical migration requires moving information 

from one logical format to another—such as from an old version of an application to a new 

version—to preserve readability and interpretability. Factors triggering logical migration include 

changing application formats and obsolete applications. Inhibitors to both types of migrations 

include cost, complexity, sheer volume of information, and lack of time. 

Long Term Archiving Challenges 

  The long-term archiving has the following inherent risks and its associated failures. 

Systems must expect that all storage media degrade with time, causing irrecoverable bit errors, 

and to be subject to sudden catastrophic irrecoverable loss of bulk data such as disk crashes or 

loss of off-line media. It should also be expected that all hardware components suffer transient 

recoverable failures, such as power loss, and catastrophic irrecoverable failures, such as burnt-out 

 

 
Figure 1-1: Longest Retention Requirement. Source [1]. 
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power supplies. Most of the software components suffer from bugs that pose a risk to the stored 

data. Systems cannot assume that the network transfers they use to ingest or disseminate content 

will either succeed or fail within a specified time period, or will actually deliver the content 

unaltered. Systems must anticipate that the external network services they use, including resolvers 

such as those for domain names and persistent URLs, will suffer both transient and irrecoverable 

failures both of the network services and of individual entries in them.  

All media and hardware components will eventually fail. Before that, they may become obsolete 

in the sense of no longer being capable of communicating with other system components or being 

replaced when they do fail. This problem is particularly acute for removable media, which have a 

long history of remaining theoretically readable if only a suitable reader could be found. Software 

components will become obsolete. This will often be manifested as format obsolescence when, 

although the bits in which some data was encoded remain accessible, the information can no 

longer be decoded from the storage format into a legible form. Operator actions must be expected 

to include both recoverable and irrecoverable errors. This applies not merely to the digital 

 

 
Figure 1-2: Size of long-term archives. Source [1].  
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preservation application itself, but also to the operating system on which it is running, the other 

applications sharing the same environment, the hardware underlying them, and the network 

through which they communicate. Natural disasters, such as flood, fire and earthquake must be 

anticipated. All systems connected to public networks are vulnerable to viruses and worms. 

Digital preservation systems must either defend against the inevitable attacks, or be completely 

isolated from external networks. Much abuse of computer systems involves insiders, those who 

have authorized access to the system. Even if a digital preservation system is completely isolated 

from external networks, it must anticipate insider abuse. 

Commitments of a Long Term Archiving Scheme 

 A long-term archiving scheme has to guarantee three key principals, namely, security, 

transparency and proof. The access to the archived data must be guarded by enforcing custom 

security policies. Archived data should be stored in durable devices with schemes that can 

prevent undetectable degradation or corruption. The risk of unrecoverable loss or corruption can 

be prevented by using redundancy and secured distributed storage. An archive scheme should be 

able to make its methods, processes, technology, business mechanisms, and public statistics 

transparent to any verifier who wants to verify the integrity of the archived data. The archive 

scheme should also ensure techniques that can provide a proof of integrity of the archived data to 

any third party. More generally, the archive scheme must be able to build trust over time by 

providing trusted information about the security of the archived data transparently to any 

interested and trusted third party. This report specifically focuses on the problem of providing the 

proof of integrity of the archived data that is expected to have a lifespan of more than 50 or 100 

years. 
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Related Work 

Many papers propose schemes to tackle long-term archival problems. Ganger et al. 

present PASIS [28], a survivable storage based on decentralized architecture. It uses data 

distribution and redundancy schemes to ensure fault tolerance and to protect integrity and 

confidentiality of the documents by forcing the attacker to compromise several nodes in order to 

become a real threat. Another approach based on distributed storage, SafeStore [14], achieves 

data durability by combining replication across different publicly available Storage Service 

Providers. An efficient audit protocol is provided to check that the integrity of the stored 

documents is preserved over time. POTSHARDS [17] is a distributed scheme where secrets are 

not replicated but split into shares and disseminated through different machines. A file can be 

recovered by recovering a portion of the shares that allows the original file’s recovery. A user can 

only recover the file is he or she knows the correct combination of shares. It also uses 

‘approximate pointers’ to allow data recovery even when the key is no longer available. Another 

approach, the LOCKSS [16], is a peer-to-peer system where documents are replicated over peers. 

These peers cooperate to detect and repair damage to their content by majority voting. But in this 

approach, the main goal is availability of content in the future, even if little modifications have 

happened to the documents. Other systems focus on dealing with the future obsolescence of 

software and hardware, of how to store and migrate data such that it is readable well into the 

future. The Public Record Office Victoria propose a system called ‘VERS’ [27] that uses XML 

encapsulation to include metadata together with the stored document, which stores enough 

information to read the document in the future even if the software or hardware which was used 

to create the document is no longer available. This system uses digital signatures to preserve the 

integrity of a document but does not provide a method to confirm the validity of these signatures 
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over time.  Other papers [25, 26] address the obsolescence of cryptography when dealing with 

digital signatures validation far in time (including the fact that the public key certificates used 

may be invalid or no longer available at the time of validation). In these approaches, a digitally 

signed document is stored in a Secure Long-Term Archival System (SLTAS) which uses 

timestamps in order to protect the validity of the initial signature over time. The archive verifies 

the signatures at regular intervals, and, if they are valid, re-timestamps them. This process serves 

to account for any weakness that may have appeared in the signing algorithms, under the 

reasonable assumption that a Time Stamping Authority will always use a non-broken state-of-the-

art algorithm to issue timestamps. The system proposed in [5] enables the use of the TPM to tie 

the web server integrity state to the web content delivered to browsers. An asynchronous usage 

model is proposed to remove the TPM from the critical path of serving content to users. The web 

server creates request-independent attestations by combining the time with a hash tree of the 

served content. The system protects the web server from several types of threats including root-

kits and malicious patches through the use of integrity measurement [7]. 

 
  



 

 

Chapter 3 
 

Background Study 

Trusted Platform Module 

 The Trusted Computing Group (TCG) was formed in 2003 to develop and support open 

industry specifications for trusted computing across multiple platform types. The TCG issued a 

specification for a Trusted Platform Module (TPM), which is a dedicated security chip designed 

to enhance software security. The TPM is realized as a hardware chip attached to the motherboard 

which can be used to securely store confidential information, such as private keys. It also can be 

used to store signatures (hash values) of software running on the computer, allowing non-allowed 

software (such as viruses) to be rejected. 

TPM Background 

The Figure 3-1 presents the main components of the TPM such as the Random Number 

Generator (used for generating asymmetric as well as symmetric keys and nonce that provide 

freshness), Platform Configuration Registers (PCRs), Secure Hash Algorithm (provides SHA-1 

functionality), RSA key generator and Hash Message Authentication Code (HMAC). The 

Endorsement Key (EK) is a pair of RSA keys that is installed when the TPM is manufactured. 

The public EK value is used to uniquely identify a TPM and will not change during the TPM's 

lifetime. The Storage Root Key (SRK) is also a pair of RSA keys that is used to encrypt other 

keys stored outside the TPM. SRK is in effect the Root of Trust for Storage. SRK can change 

when a new user takes ownership of the TPM. The TPM contains a number (at least 16) of 

Platform Configuration Registers (PCRs), essentially internal memory slots. At boot time, all 
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PCRs are initialized to a known value (0 for PCRs 1–16 and -1 for PCRs 17–22). They are used 

to store platform configuration measurements. These measurements are normally hash values 

(SHA-1) of entities (applications) running on the platform. PCRs cannot be written directly; data 

is stored by a process called extending the PCR. The only way for software to change the value of 

a PCR is by invoking the TPM operation: 

PCRExtend(index, data) 

When this operation is invoked on the TPM, it updates the value of the PCR indicated by index 

with a SHA-1 hash (H) of the previous value of that PCR concatenated with the data provided. In 

other words, the TPM performs the following update: 

PCRindex ← H(PCRindex||data) 

Extend operation relies on the infeasibility of finding two different measurement values such that 

when extended returns the same value. It preserves the order in which entities measurement were 

extended and allows an unlimited number of measurement to be stored in a PCR because the 

result is always a 160-bit value. 

 

 

 
Figure 3-1: TPM Architecture. Source [4]. 
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Core Root of Trust Measurement 

 Core Root of Trust Measurement (CRTM) is either the BIOS boot block or the entire 

BIOS. At boot up, the CRTM measures the integrity metrics that show the software state, for e.g. 

the master boot record, BIOS and the code from the other firmware. CRTM [6] measures these 

metrics as hash of the current state of the software in terms of version, patch level and extends a 

particular PCR of the TPM. The whole process of measurement is done in a chain of trust 

manner, i.e. the CRTM initially measures itself, and reports to the TPM. Then it would move up 

the hierarchy and measure the BIOS and report the hash to the TPM. Then the BIOS loads the 

boot loader and boot loader, in turn, measures the Operating System (OS). OS then has the access 

to the TPM to report the software modifications anytime. So, suppose a pirated version of 

software was running on the machine, then the OS (in the trusted zone) would report that to the 

TPM. Thus PCRs in the TPM are used to store the sequence of measurement values. The TPM 

provides reporting of PCR values through the quote operation. To prevent replay of the 

measurement, the requesting party issues a 160-bit random nonce to the attesting system, creating 

a challenge. The TPM has a Storage Root Key stored inside it, which only it knows. It uses this 

key to generate an Attestation Identity Key (AIK), which comprises an RSA key pair, the public 

portion of which (AIKpub) is available through a key management infrastructure. The TPM loads 

the private portion of the AIK pair (AIKpriv) and performs the Quote function, where it signs a 

message containing the values of one or more PCRs and the nonce with AIKpriv. The TPM 

securely transports the result of the Quote function along with their respective logs to the 

requesting party. The attesting party can then verify the integrity of the message using AIKpub, 

and subsequently, every element of the measurement list up to the value stored in the PCR may 

be validated. If the configuration of the platform has changed as a result of unauthorized activities 
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then access to data and secrets can be denied and sealed. Accordingly the requesting party will 

make its decision to carry out the communication in a trusted or a non trusted environment.  

 

Remote Attestation Protocol 

 Remote Attestation (RA) is a method to prove to a remote party that the local PC is a 

trusted platform (TPM-enabled) and to show its current configuration. The remote party needs to 

trust the host to reliably measure and report its configuration. On receipt of a request for 

attestation, the attestor generates  a public/private key pair, called the attestation identity key 

(AIK), and send the public part of AIK signed by the EK to a trusted third party (TTP) called a 

 

 
Figure 3-2: Chain of trust measurement using TPM Extend operation.  
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Privacy CA. The Privacy CA checks the EK's signature and status on the revocation list, and 

signs the AIK. The remote computer just sees the AIK signed by the Privacy CA, and thus cannot 

link it with the EK. Different sessions will use different AIKs, so they cannot be linked either. 

The host can now send its PCR values (signed with AIK), Stored Measurement Log (SML) and 

the received AIK certificate to the challenger. The challenger does the following steps to ensure 

the trust of the host. 

1. Verifies the AIK certificate with the TTP public key. 

2. Uses AIK to verify the signature on the PCR values. 

3. Recalculates the value from the measurement list within SML. 

4. Compares the calculated value with PCR's value. If the PCR value and SML do not match, 

it implies that the SML had been tampered, and the verifier will not to trust the host. If they 

do match, the verifier goes through the fingerprint list in SML and looks for any 

unapproved entity.  

Virtual Machine Monitor 

 Virtualization separates an operating system from the underlying platform resources. 

Traditionally, the software is bound to the hardware, allowing better utilization of the resources at 

hand, but on the other hand creating compatibility issues and limitations. The virtualization 

approach allows higher compatibility and even independence of the software on the hardware 

running it. Virtualization achieves the separation by creating consistent interfaces, implemented 

and used differently depending upon the hardware and the software. There are different types of 

virtualization such as the Software Virtualization and the Resource virtualization. The main 

Software virtualization types are Application virtualization (a single running program is wrapped 

by a layer providing it with additional compatibility to the running environment), OS-level 
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virtualization (a single kernel running otherwise isolated environments) and the Virtual Machines, 

which are Hardware level virtualization - totally isolated environments running in parallel on one 

machine. The two main approaches in Virtual Machine implementation are Full Virtualization 

and Para-Virtualization. Full Virtualization is a fully-simulated hardware set (including every real 

life component in a software form) running a "guest OS" in a closed shell, where the guest has no 

way of knowing it. Para-virtualization is a relatively thin layer between each VM and the 

hardware below, which tries to minimize the extent of intervention in running processes while 

maintaining the integrity (and isolation) of each VM- both from the hardware and from the other 

VMs running on the machine.  

Xen Virtual Machine Monitor 

 Xen is an open-source software project that provides high-performance, resource-

managed virtualization on the x86 processor architecture. It allows multiple operating system 

instances to run concurrently on a single physical computer. It incorporates the principles of Para-

virtualization to create a VMM (Virtual Machine monitor) which is a thin layer between software 

and hardware, allowing the interaction of the two, in the case of more than one guest OS 

concurrently running. Each Xen system has a single privileged OS, called Domain-0 that is 

responsible for starting and managing the other unprivileged OS instances. Domain-0 is the OS 

that boots when the system starts and it has the tools necessary to manage other domains. Xen 

manages the computer's hardware resources so they are shared effectively among the operating 

system instances, called domains. Xen shows good performance and isolation of each VM, while 

featuring unprecedented options like resource control and live migration. Xen virtualization 

provides many exciting benefits over traditional single OS computers, including server 

consolidation, application mobility, secure computing, and research/testing. 
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Virtual Trusted Platform Module 

The main goal described in [12] is to blend the two technologies of Virtualization and 

Trusted Computing or specifically the Trusted Platform Module. These two technologies can 

ensure the complementary requirements of Virtualization for the high availability, the integrity 

and the isolation of each virtual machine and TPM for the security, the chain of trust and the 

remote attestation. Virtualizing the TPM is required to provide TCG services in the virtual 

machines. The virtualization base system should handle the TPM device for its usage and export 

to each virtual machine a TPM emulated device to extend the chain of trust. So each virtual 

machine will be able to use the cryptographic resources, store secret objects and realize remote 

attestations. The first requirement is then to ensure the same level security provided by the 

hardware TPM for the virtualized TPMs. Moreover, new requirements are introduced due to the 

specificities of a virtualized architecture. The vTPM implementation is composed of a vTPM 

 
Figure 3-3: Xen Virtualization Architecture Overview. Source [11]. 
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Manager which manages the hardware TPM, provide services to manages multiple TPM 

emulated devices and a vTPM instance for each virtualized host, which implements the full TCG 

TPM 1.2 specification. 

A vTPM instance is the TPM of a VM. It implements the full TCG TPM Specification version 

1.2. Each VM has its associated vTPM instance running throughout the lifetime of the VM, so 

there as much vTPM instances as there is VMs running. A vTPM instance associated to a VM is 

unique. The vTPM implementation in Xen is software-based, so a vTPM instance is just a piece 

of software running in the Dom0. The vTPM manager creates and manages vTPM instances. 

When a VM is created, it will spawn a vTPM instance that will be associated to this VM. When 

running a paravirtualized DomU, the vTPM manager also redirects the TPM commands from the 

DomU (by listening to the Back-End, /dev/vtpm) to the associated vTPM instance. To make TPM 

 

 
Figure 3-4: Virtual Trusted Platform Module (vTPM) Architecture. Source [12]. 
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functionality available to a paravirtualized DomU, Xen uses the split-driver model. So the vTPM 

driver is split in two parts as shown in Figure 3-4. 

1. The Front-End (FE): FE is the client side part of the vTPM driver that runs on the DomU. 

It exposes the /dev/tpm device file on the DomU to receive TPM commands and it will 

issue these commands to the backend. On Linux, the driver module is called tpm_xenu. 

2. The Back-End (BE): BE is the server side part of the TPM driver that runs on the Dom0. 

It exposes the /dev/vtpm device file on the Dom0 so that the vTPM manager can process 

the TPM commands. On Linux, the driver module is called tpmbk. 

This driver is based on the Xen network driver. Data exchange between the FE and the BE is 

ensured by the XenBus which provides an API to use grant tables (a single shared memory ring) 

and an event channel for asynchronous notifications of activity. The back-end prepends a 4-byte 

vTPM instance identifier to each TPM commands to identify the vTPM instance of the VM. The 

identifier is prepended in the BE so the VMs cannot forge commands and send them to another 

vTPM instance. The commands are multiplexed inside the character device file /dev/vtpm. This 

special file will be read by the vTPM manager which will redirect the command to the proper 

vTPM instance. Each vTPM instance has a Storage Root Key (SRK) as root for its key hierarchy 

and an Endorsement Key (EK). To allow instance and vTPM migration, these keys are unlinked 

from the key hierarchy of a TPM hardware component. This also allows faster key management 

and cryptographic operations. However, if the SRK, EK and other data of virtual TPM are stored 

in a persistent storage, they must be stored encrypted with a key stored in the hardware TPM 

device. This symmetric key must be sealed or protected with a password. The trust in the VM is 

trustable only if the trust in the environment (TCB, hypervisor...) is guaranteed. For this reason 

the chain of trust must be guaranteed from the hardware TPM to the vTPM, from the TCB to the 

VMs. So, the architecture in [7] provides the vTPM PCRs a merged version of the measures. A 

lower set of PCRs in the vTPM shows measures from the hardware TPM and the upper the 
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measures for the VM, as shown in the Figure 3-5. By this way, a challenger can see all relevant 

measurements during a remote attestation. But in the vTPM implementation, there is no PCRs 

mapping between the vTPM and the hardware TPM (the PCRs 0 to 8 are not the same in the 

vTPM and in the hardware TPM) because there is disagreement on how to do the signatures for 

quotes correctly. The vTPM would sign the complete quote, but it does not own the mapped 

PCRs which is a problem.  

Asymmetric Key Cryptography 

Whitfield Diffie and Martin Hellman introduced the concept of public-key cryptography 

in 1976. In their system, each person gets a pair of keys, one called the public key and the other 

called the private key. The public key is published, while the private key is kept secret. The need 

for the sender and receiver to share secret information is eliminated; all communications involve 

 

 
Figure 3-5: Extension of lower PCR values of vTPM. Source [12]. 
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only public keys, and no private key is ever transmitted or shared. In this system, it is no longer 

necessary to trust the security of some means of communications. The only requirement is that 

public keys be associated with their users in a trusted (authenticated) manner. Anyone can send a 

confidential message by just using public information, but the message can only be decrypted 

with a private key, which is in the sole possession of the intended recipient. Furthermore, public-

key cryptography can be used not only for privacy (encryption), but also for authentication 

(digital signatures) and other various techniques.  

Public-key Encryption 

In cryptography, encryption is the process of obscuring information to make it unreadable 

without special knowledge. For example, When Alice wishes to send a secret message to Bob, 

she looks up Bob's public key in a directory, uses it to encrypt the message and sends it off. Bob 

then uses his private key to decrypt the message and read it. No one listening in can decrypt the 

message. Anyone can send an encrypted message to Bob, but only Bob can read it (because only 

Bob knows Bob's private key). Encryption can be used to ensure secrecy, but other techniques are 

still needed to make communications secure, particularly to verify the integrity and authenticity 

of a message; for example, a message authentication code (MAC) or digital signatures. Another 

consideration is protection against traffic analysis. 

Digital Signatures 

A digital signature method generally defines two complementary algorithms, one for 

signing and the other for verification, and the output of the signing process is also called a digital 

signature. Digital signature schemes rely on public-key cryptography. In public-key 
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cryptography, each user has a pair of keys: one public and one private. The public key is 

distributed freely, but the private key is kept secret and confidential; another requirement is that it 

should be infeasible to derive the private key from the public key. A general digital signature 

scheme consists of three algorithms, namely, a key generation algorithm, a signing algorithm and 

a verification algorithm. For example, consider the situation in which Bob sends a message to 

Alice and wants to be able to prove it came from him. Bob sends his message to Alice and 

attaches a digital signature. The digital signature is generated using Bob's private key, and takes 

the form of a simple numerical value (normally represented as a string of binary digits). On 

receipt, Alice can then check whether the message really came from Bob by running the 

verification algorithm on the message together with the signature and Bob's public key. If they 

match, then Alice can be confident that the message really was from Bob, because the signing 

algorithm is designed so that it is very difficult to forge a signature to match a given message 

(unless one has knowledge of the private key, which Bob has kept secret). For efficiency reasons, 

Bob first applies a cryptographic hash function to the message before signing. This makes the 

signature much shorter and thus saves time since hashing is generally much faster than signing in 

implementations. However, if the message digest algorithm is insecure (for example, if it is 

possible to generate hash collisions), then it might be feasible to forge digital signatures.  

Aggregate Signature Scheme 

 In a general signature aggregation scheme, if user i signs the message Mi to obtain a 

signature σi, then anyone can use a public aggregation algorithm to take all n signatures σ1,...,σn 

and compress them into a single signature σ. Moreover, the aggregation can be performed 

incrementally—signatures σ1,σ2 can be aggregated into σ12 which can then be further 

aggregated with σ3 to obtain σ123, and so on. There is also an aggregate verification algorithm 
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that takes PK1,...,PKn; M1,...,Mn, and σ and decides whether the aggregate signature is valid on 

the given messages under the given keys. Thus, an aggregate signature provides non-repudiation 

at once on many different messages by many users [29]. This mechanism is referred to as general 

aggregation since aggregation can be done by anyone and without the cooperation of the signers. 

The general aggregate signature scheme due to Boneh, Gentry, Lynn, and Shacham [31] uses 

bilinear maps from algebraic geometry. 

Sequential Aggregate Signature Scheme 

 Sequential aggregate signatures are a variant of aggregate signatures. In a sequential 

aggregate signature scheme, signatures are not individually generated and then combined into an 

aggregate. Rather, a would-be signer transforms a sequential aggregate into another that includes 

a signature on a message of his choice. Signing and aggregation are a single operation. Sequential 

aggregate signatures are built in layers, like an onion; the first signature in the aggregate is the 

inmost. As with general aggregate signatures, the resulting sequential aggregate is the same 

length as an ordinary signature. For sequential aggregate signatures, aggregation and signing are 

performed in a single combined operation. The operation takes as input a private key SK, a 

message Mi to sign, and a sequential aggregate signature σ0 on messages M1,...,Mi-1 under 

respective public keys PK1,...,PKi-1, where M1 is the inmost message. It adds a signature on Mi 

under SK to the aggregate, outputting a sequential aggregate σ on all i messages M1,...,Mi. The 

aggregate verification algorithm, given a sequential aggregate signature σ, messages M1,...,Mi, 

and public keys PK1,...,Pki, verifies that σ is a valid sequential aggregate (with M1 inmost) on the 

given messages under the given keys [29]. 
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Forward Secure Signature Scheme 

 In a forward secure signature scheme, a user registers a public key PK and keeps private 

the corresponding secret key SK0. The time during which the public key PK is desired to be valid 

is divided into T periods from 1 to t. While the public key stays fixed, the user evolves the secret 

key with time. Thus in each period, the user produces signatures using a different signing key: 

SK1 in period 1, SK2 in period2 and SKt in period t. The secret key in period i is derived as a 

function of the one in the previous period; specifically, when period i begins, a public one-way 

function h is applied to SKi-1 to get SKi [28]. At that point, the private key SKi-1 is deleted. An 

attacker breaking in during period i will get the key SKi, but not the previous keys SK0,…, SKi-

1, since they have been deleted [28]. A digital signature employing the forward secure signature 

scheme always includes the value j of the time period during which it was produced. The 

verification algorithm takes in the public key PK, a message and candidate signature, and verifies 

that the signature is valid, i.e., it was produced by the legitimate user in the period indicated in the 

signature [28]. Although the user’s secret key evolves with time, the public key stays fixed 

throughout, so that the signature verification process is unchanged, as are the public key 

certification and management process. 



 

 

Chapter 4 
 

Design and Implementation 

 The design to achieve long-term integrity of archives relies on using digital signatures 

and time-stamped attestations. The system must be able to provide proof of the integrity of 

archives and validity of the signatures in a distant future. A third party should be able to verify 

the integrity of a file or an entire archive. The design consists of the following components: 

1. The archive process X running in the Dom-U (user domain) of a trusted machine H1 

which is used to archive file systems from one device to another device. 

2. The archive manager process M running in a trusted machine H2 which has access to the 

attestations generated by the archive process X. 

3. The verifier process V running in a remote machine H3 which is interested in verifying 

the integrity of a particular archive or of a particular file contained in the archive. 

4. A Trusted Time Server process running in a trusted Machine TS with a TPM. 

The requirement of long-term archiving drives the assumption that the archive process X and/or 

the machine H1 may not be accessible or even present at the time when the verifier needs to 

verify the integrity of the archived data. The attestations generated by process X using the vTPM 

in machine H1 are securely stored in the trusted machine H2. At a later point of time in the future, 

the verifier process V which has access to the archived content, challenges the manager M with 

the unique ID of the archive whose integrity it wants to verify. The archive manager M retrieves 

the stored attestations corresponding to the requested archive ID and generates succinct proofs in 

response to the challenge from the remote verifier process V.  
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Trusted Time Server 

The architecture depends on a trusted Time Server which issues a digitally signed current 

time that can be remotely verified by any third party. This verifiable timestamp is used along with 

the attestation of the root file system to provide a proof of the existence of the signed data at that 

moment without the possibility of post-dating or pre-dating. The timestamp is used to provide 

evidence of the archival time which is the time when the backup was taken. It can also be used to 

verify and refresh the validity of signatures later in time. Logical and physical migration of the 

archive, re-timestamping the archive will benefit in determining the connection of an archive to 

its creation time. 

Design Architecture 

A host machine ‘H1’ is assumed to run with a TPMH1, TrustedGrub, IMA and Xen 

Virtual Machine Monitor. The measurements of the BIOS, MBR, bootloader, Linux kernel, initrd, 

modules and loaded files are assumed to be in the file /sys/kernel/security/ima/ascii_runtime_ 

measurements and are extended in the respective PCRs in the TPMH1.  Thus the Dom-0 of the 

host machine ‘H1’ follows the Core Root of Trust Measurement as explained in Figure 3-2 and in 

Section 3-1. A process X is assumed to run in the user domain of Xen Virtual Machine Monitor 

with a virtual Trusted Platform Module, vTPMH1. A lower set of PCRs of the vTPM H1 has the 

measurements from the hardware TPMH1 and the upper PCRs contains the measurements for the 

VM, as shown in the Figure 3-5. The extension of the lower set of PCRs of the vTPM H1 ensures 

that the dom-0 Core Root of Trust Measurement is chained to the trust measurement of the VM. 

The process X is used to archive data or the file system from one device to another. The process 

X generates vTPM Quotes, as explained later in this document, for each of the archive operation 
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it does. The machine H1 and the process X is assumed to have existed years ago and they may not 

be present or accessible to the user currently. Only the XML format of security information of 

archived data like the hash trees, vTPM Quotes and the measurement lists of H1 are signed and 

saved securely in machine H2 for later use. An architecture is proposed for remote verification by 

a third party of the integrity of a archive process X and the integrity of the archived data.  The  

machine H2 is assumed to run with a TPMH2, TrustedGrub and IMA. The archive manager 

process M manages the security information of archives that was generated by archive process. 

The manager will respond to challenge requests from a remote verifier. The verifier process V 

runs in the remote machine and challenges the manager process M for the integrity of a particular 

file or the entire file system that was copied by process X in host H1.  

Protocol Conventions 

The function h(d) denotes a cryptographic hash using SHA1 algorithm over some data d, 

and concatenation of different data elements is denoted as |. The quoting hosts are denoted H1 for 

the archive process, H2 for the manager process and H3 for the verifier process. PCRi denotes the 

integrity state of host i. A TPM quote is denoted Quote(h, s, c), where h is the host identity 

performing the quote, s is the PCR state, and c is the quote challenge. The archive tool is assumed 

to copy the file system FSYS from one device to the other. The files in the file system are 

represented as fi. Ttime is a time epoch returned from a hardware clock on the trusted time server. 

The protocols described below hashes the time quote t1 along with the data to be attested, so the 

hash h1 is constructed as h(time quote t1 | h(d)). The resulting hash h1 is then used a the quote 

challenge c. Thus the TPM quote Quote(i, s, c) of host i effectively ties the data to both the 

integrity state of host i and time t1. The Linux Integrity Measurement Architecture (IMA) is used 

for measuring the state of the code loaded in the system as mentioned in [6]. 
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Asynchronous attestation protocol of the archiver 

1. Each archive operation is considered as a transaction done by the process.  After copying 

a file system ‘FSYS’ successfully, the process X creates a unique Transaction ID, Tid, 

representing the successful archive operation done.  

2. Process X requests a quote from the vTPMH1 with Tid as the nonce. 

3. Q1 = Quote(vTPMH1, PCRH1, Tid) is generated by the archive process X. 

4. The process X requests the current time quote from a trusted Time Server ‘TS’. 

5. The Q2 = Quote(TPMTS, PCRTS, h(Ttime)) and Ttime is returned to the process X by the 

Time Server. 

6. The content of (Q1 | Tid | Q2 | Ttime) is written in XML format to the root of the file 

system in a file named archive_info.xml and signed with h(Q1 | Tid | Q2 | Ttime). 

7. Process X calculates the root hash of the file system that is archived MHTFSYS = 

SHA1(FSYS). M1 is calculated as h(MHTFSYS | Tid | Q2). 

8. The Process X requests a quote from the vTPMH1 with M1 as the nonce. 

9. Q3 = Quote(vTPMH1, PCRH1, M1) is returned to the process X, as shown in Figure 4-3. 

10. An entry of (Tid, Q1, Q2, Q3) in XML format is appended to the log file Integrity_X.log 

11. XML Format of the complete proof and related credentials is generated by archive 

process X for transaction Tid as shown in Figure 4-5. This XML is written to the 

Tid.dump file in the root of the archived file system. Quote(vTPMH1, PCRH1, h(tid | all 

entries in Tid.dump file)) is appended to the Tid.dump file. The Tid.dump file is called as 

the archive transaction dump file or the content proof file. 

12. The steps from 1 to 11 are followed in sequence for each archive operation. 
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Depending on the interval set by the user, the archive process dumps all the files created till 

then to a secure storage. The archive transaction dump files(Tid.dump files) created for each 

archive operation are saved in a secure storage that will be accessible to the archive manager 

process M at a later point in time. The trusted, secure storage maintains a time line of the set 

of the Tid.dump files. 

The Merkle hash tree of the archived file system, FSYS, is generated as shown in the Figure 4-2. 

The files contained in the source file system are lexicographically sorted and a balanced complete 

binary tree is created with all the files as the leaf nodes of the tree. A SHA1(NULL) is taken as 

the hash of the null entries in the complete binary tree. The SHA1 hash of each file is created with 

the contents of the file and will include metadata information such as the inode number, 

timestamp, creation time, etc., depending on the custom user settings. The hash stored in the 

 

 
Figure 4-1:  Asynchronous attestation protocol of the archive process X.  
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binary tree leaves is calculated as hi = SHA1(contents of file fi | metadata of file fi). The hash in 

the intermediate nodes of the binary tree is calculated as hk = SHA1(hi | hj), where i, j are child 

nodes of node k. After the copy operation it is ensured by process X that h8 is equal to h’8. h’8 is 

taken to be the SHA1(FSYS) or the root hash of the file system MHTFSYS. 

 

 

 

 
Figure 4-2: Merkle Hash Tree of the archived File System with transaction ID, Tid.  

 

 
Figure 4-3:  Quote Q3 generated by the archive process X for transaction ID, Tid. 
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Figure 4-4:  Complete Proof generated by archive process X for transaction ID, Tid.  

An archive transaction dump file identified by Tid as the transaction ID 

 
Figure 4-5:  XML Format of the complete proof and related credentials generated by archive 
process X for transaction Tid. This XML is written to the Tid.dump file in the root of the archived 
file system. Quote(vTPMH1, PCRH1, h(tid | all entries in Tid.dump file)) is appended to Tid.dump. 

<archive  id=’Tid’  time=’Ttime’  algorithm=’RSA’> 

    <integrity  metadata=’list of attributes hashed’  type=’MerkleTree’> 

           <roothash> MHTFSYS </roothash> 

           <dump> dump of MHT created in Figure 4-2 </dump>  

           <quote> Q3 </quote> 

           <pubkey> PUBKEY3 = public key used for Q3 </pubkey> 

           <certificate> certificate of PUBKEY3 </certificate> 

            <measurements> IMA list of H1 & PCRs of TPMH1 </measurements> 

    </integrity> 

    <timequote> Qts3 = Quote(TPMTS, PCRTS, h(Ttime)) </timequote> 

    <measurementsTS> IMA list of TS & PCRs of TPMTS</measurementsTS> 

     <settings> list of custom user settings during archive </settings> 

</archive> 

Q3 | MHTFSYS | Quote(TPMTS, PCRTS, h(Ttime)) | Ttime | Ttid 

Quote Q3, 
filesystem Merkle 
tree root hash 

Time Server Proof Transaction Time 
and ID 

Complete proof generated by Archive Process X 
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Periodic re-keying of archive manager 

 The archive manager manages the security information generated by the archiver process. 

It is assumed that the archive manager runs in the machine H2 and has access to the time-lined 

secure storage of the archive transaction dump files. The archive transaction dump files contain 

security information of each archive operation done by archive process in XML format as shown 

in Figure 4-5. The archiver process created the archive transaction dump files with signatures 

using the Attestation Identity Key (AIK) of vTPMH1. The expiration or revocation of the 

certificate of a signature public key and any compromise of a key pair necessitates the need for an 

automatic and transparent update of the signature key pairs by re-keying with a new signature key 

pair. The archive manager should choose the frequency of re-keying operation according to 

security policy of the organization maintaining the security information of the archives. Before 

the re-keying of the archive content proof, the archive manager checks the validity of the quote 

present in the content proof and the validity of the certificate of the public key of the quote. For 

example, the manager will verify the quote Q3 and the certificate of PUBKEY3 while re-keying 

the content proof shown in Figure 4-5.  

 

 The re-keying process involves the creation of a new key pair with the public key 

PUBKEY4 and loading it as the Attestation Identity key (AIK) of TPMH2. It then updates the 

Tid.dump file with the quote of h(MHTFSYS) from the TPMH2 with the new AIK, as shown in 

Figure 4-6. The resulting Tid.dump file is as shown in Figure 4.7. The re-key operation provides 

an automated mechanism for restricting the amount of data which might be exposed when the 

private key is compromised. Updating the signing key pairs is a fundamental component of 

preserving the integrity information of the long term archives. The re-keying operation also 

provides a transparent way to change algorithms and/or key lengths (for example, it is possible to 
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change from 1024-bit RSA to 2048-bit RSA). The archive manager can employ the state of the 

art algorithms during a re-keying and specify the algorithm used as an attribute in the XML 

created as shown in Figure 4-7 and the Tid.dump file is updated with the modified XML as 

shown in Figure 4-8. The archive manager creates the new key pair's public key certificate of 

PUBKEY4 and adds the certificate to the modified Tid.dump XML file. The manager can also 

use the state of the art format to dump the integrity information rather than as the XML file. The 

decisions of the periodicity of re-keying, factors that should automatically trigger re-keying and 

the format of the dump of transaction files should be made according to the technologies, 

requirements and security challenges that exist at the point of time of managing the archive 

security information. The forward secure signature scheme [28] can be used to derive the new 

private key which will help to maintain the same public key with the corresponding certificate but 

with the different private keys.  

 

 

 

 

 

 

 

 
Figure 4-6:  Quote Q4 generated by the archive manager M for transaction ID, Tid. 
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An updated archive transaction dump file after a key-update 

 
Figure 4-7:  Updated XML Format of the archive dump file after re-keying operation. 

 

 
 
 

 
Figure 4-8:  Re-keying process of archive manager. 
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<archive  id=’Tid’  time=’Tre-key-time’  algorithm=’RSA’> 

    <integrity  metadata=’list of attributes hashed’  type=’MerkleTree’> 

           <roothash> MHTFSYS </roothash> 

           <dump> dump of MHT created in Figure 4-2 </dump>  

           <quote> Q4 </quote> 

           <pubkey> PUBKEY4 = public key used for Q4 </pubkey> 

           <certificate> certificate of PUBKEY4 </certificate> 

            <measurements> IMA list of H2 & PCRs of TPMH2 </measurements> 

    </integrity> 

    <timequote> Qts4 = Quote(TPMTS, PCRTS, h(Tre-key-time)) </timequote> 

    <measurementsTS> IMA list of TS & PCRs of TPMTS</measurementsTS> 

     <settings> list of custom user settings during archive </settings> 

</archive> 
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Challenge protocol of the verifier 

 Verifier ‘V’ reads the Tid and Ttime contained in the archive_info.xml file in the root 

node of the file system that was archived using process X. It validates the quotes Q1, Q2 and 

ensures that Tid and Ttime correspond to the challenge contained in the quotes Q1 and Q2. 

Verifier ‘V’ challenges the archive manager ‘M’ using OpenSSL with a randomly generated 160 

bit nonce ‘N’ (to prevent replay attacks), Tid, Ttime and the name of the file ‘fi’ to be verified.  

Response protocol of the archive manager 

 The archive manager retrieves the Tid.dump file corresponding to the Tid. The archive 

manager reads the XML file Tid.dump that was created by archive process and updated by 

archive manager. The integrity of Tid.dump is verified using the signature contained in it. The 

attribute ‘algorithm’ is referred to identify the algorithm with which the digital signature was 

generated and the verification proceeds accordingly. The validity of the certificate of the public 

key is also verified. After successful verification of the signature, the archive manager reads the 

Merkle hash tree of the file system from Tid.dump and searches for file f1 in the hash tree. It 

retrieves the hash of the root node as MHTFSYS. It then generates a succinct proof for file fi, 

denoted as Pf(fi), consisting of the root node and all of the siblings on the path to the root, as 

shown in Figure 4-10.  

 

 The manager computes M4 = h(N | MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime)) and 

then requests a quote from the TPMH2 with M4 as the challenge. The quote Q8 = Quote(TPMH2, 

PCRH2, M4) is returned by TPMH2 to the archive manager. The quote Q8 is as shown in Figure 4-

11. The archive manager sends the following to the verifier ‘V’ as shown in Figure 4-12. 
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1. Tid, Ttime - Transaction ID and time of corresponding to the archive operation 

2. Q8 = Quote(TPMH2, PCRH2, M4) 

3. MHTFSYS - The root hash of the file system whose integrity is to be verified 

4. Pf(fi) - Succinct proof for file fi belonging to transaction Tid 

5. Tid.dump file containing the integrity of transaction Tid generated by Archive 

process X 

 

 

 
Figure 4-9:  Response protocol of the archive manager process M.  
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Figure 4-10:  Succinct Proof generation for file f1. 

 

 
Figure 4-11:  Quote Q8 generated by the archive manager M. 

 

 
Figure 4-12:  Complete Proof provided by the archive manager M to the verifier V. 
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Verification protocol of the verifier 

 The verifier reads the XML file Tid.dump that was created by archive process and 

updated by archive manager. The integrity of Tid.dump is verified using the signature contained 

in it. The attribute ‘algorithm’ is referred to identify the algorithm with which the digital signature 

was generated and the verification proceeds accordingly. The validity of the certificate of the 

public key is also verified. After successful verification of the signature, the verifier computes M7 

= h(MHTFSYS | Tid | Quote(TPMTS, PCRTS, h(Ttime))) and M8 = h(N | M7) as shown in Figure 4-

13. The verifier validates Q8 and checks that M8 is equal to M4. The verifier thus ensures that the 

quote Q8 can only be created by TPMH2 which verifies the integrity of the environment of the 

archive manager M in machine H2. The Verifier process V computes the hash of the root node of 

the file system as M7 by using the succinct proof Pf(fi) and the hash of the file fi as shown in 

figure 4-13. The Verifier process verifies if M7 is equal to MHTFSYS. This step will ensure the 

integrity of the content of the file fi that was archived at time Ttime with the Transaction ID Tid 

and the validity of the quote Q3.  

The successful verification of the signature contained in Tid.dump file and the successful 

validation of the certificate of the public signature key will ensure that the integrity of the archive 

content proof was maintained till the current time by the archive manager.  

 

 
Figure 4-13:  Regenerated hashes at the verifier process V. 
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Chapter 5 
 

Evaluation 

 The design consists of four main components, namely, the archiver, the manager, the 

verifier and the trusted time server. The design is implemented in Python and C. The libtpm 

library in C is used for the TPM interface operations such as the TPM_CreateKey, 

TPM_LoadKey, TPM_Extend and TPM_Quote operations. The Python-C extensions were 

written for the TPM operations. The trusted Time Server is implemented in Python as a TCP 

server. Whenever a client requests the time server for a quote, the time server reads the clock in 

the machine TS and computes the hash of the current time t1 as a challenge to the TPMTS to 

generate a time quote as Quote(TPMTS, PCRTS, h(t1)). The archive process X uses the python 

library function ‘shutil.copytree’ to archive the file system along with the file attributes from one 

device to the other. It then generates the content proof with the asynchronous time attestation as 

described in the previous section. Debian Linux 2.6.18 patched with IMA and Xen is used for the 

Dom-0 and Debian Linux 2.6.24 patched with IMA and compiled with vTPM support is used for 

the Dom-U where the archive process X runs.  

  

 The manager process M periodically makes a re-key operation to the generated content 

proofs or the transaction dump files as shown in Figure 4-7. Before any re-key of a particular 

content proof, the manager checks the validity of the attestation already contained in the content 

proof. It also has a thread running as a TCP server which listens to any incoming challenge 

requests from the verifier. In response to a challenge, the manager TCP server thread generates 

the succinct proof as shown in Figure 4-9 and sends the entire proof as shown in Figure 4-12 to 
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the verifier process. The manager process M and the verifier process V are run in a host hosting 

Debian Linux 2.6.24 patched with IMA. 

The time taken for the basic TPM operations is as shown in Table 5-1. The archiver is evaluated 

with file systems of size ranging from 3GB to 16GB. The content proof size and the total time to 

generate the archive content proof is shown in Table 5-2. The content proof size depends on the 

number of files present in the archive as shown in Figure 5-1.  

Table 5-1:  Time taken for basic TPM commands. 

TPM Operation Time in Seconds (s) 
TPM_Quote 1.48 
TPM_Verify 0.06 
TPM_LoadKey 1.10 
TPM_EvictKey (a single key) 0.18 
TPM_ListKeys 0.06 

 

 

Table 5-2:  Comparison of content proof size and total processing time to archive size. 

Archive 
ID 

Archive Size (GB) 
Content Proof Size 

(MB) 

Total processing 
time to generate 
content proof (s) 

Number of files in 
the archive 

8 3.09 0.56 75.84 2324 
9 4.25 0.90 112.55 4618 

10 5.57 1.04 120.69 5240 
11 5.81 0.86 142.85 4149 
12 7.35 1.30 184.90 6924 
13 8.66 1.39 212.27 7564 
14 9.82 1.79 234.97 9858 
15 11.13 1.90 264.89 10480 
16 11.78 1.99 279.16 11094 
17 12.91 2.17 300.30 12182 
18 14.22 2.27 330.50 12804 
19 14.87 2.37 344.27 13418 
20 16.19 2.46 440.94 14040 
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 The processing time break-up for the content proof generation of the archiver is shown in 

Table 5-3. The total processing time depends on the archive size as shown in Figure 5-2. The time 

to generate the Merkle file hash tree dominates the total processing time to generate the content 

proof for the archives.  

 

Table 5-3:  Processing time break-up for content proof generation. 

Archive 
ID 

Archive Size (GB) 
Time to generate 
file hash tree (s) 

Time to generate 
TPM quotes (s) 

Number of files in 
the archive 

8 3.09 72.16 3.66 2324 
9 4.25 108.70 3.85 4618 

10 5.57 116.82 3.85 5240 
11 5.81 139.09 3.76 4149 
12 7.35 180.95 3.94 6924 
13 8.66 208.27 3.98 7564 
14 9.82 230.74 4.18 9858 
15 11.13 260.68 4.17 10480 
16 11.78 274.93 4.22 11094 
17 12.91 295.97 4.31 12182 
18 14.22 326.03 4.44 12804 
19 14.87 339.74 4.48 13418 
20 16.19 436.48 4.45 14040 

 

 

 
Figure 5-1:  Comparison of content proof size to number of files in archive. 
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 The Table 5-4 and Figure 5-3 compare the size of the content proofs and re-keying 

processing time to the archive size. The size of content proof after every re-keying remains the 

same, thus ensuring that the size of the content proofs is independent of the number of re-key 

operations. The total processing time increases only linearly when compared to the size of the 

content proofs as shown in Figure 5-3, mainly due to the size of the XML content proof file that 

has to be processed. Thus the re-key processing time is not affected much by the content proof 

size, which in effect is dependent on the number of files in the archive.  

 

 

 

 

 

 
 

 
Figure 5-2:  Processing time break-up for content proof generation. 
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Table 5-4:  Comparison of content proof size and total processing time for re-keying. 

Archive 
ID 

Size of Content Proof 
(MB) 

Total Time for re-
keying operation (s) 

8 0.56 3.51 
9 0.90 3.64 

10 1.04 3.69 
11 0.86 3.65 
12 1.30 3.82 
13 1.39 3.85 
14 1.79 3.99 
15 1.90 4.05 
16 1.99 4.09 
17 2.17 4.35 
18 2.27 4.20 
19 2.37 4.24 
20 2.46 4.29 

 

 

 

 
Figure 5-3:  Total processing time for the re-keying operation. 
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 The TPM quote operations for the generation of the new attestation dominates the XML 

updating time for the re-keying operation. The succinct proof generation for a particular file 

depends on the time to re-generate the file hash tree, which in turn is dependent on the number of 

files present in the archive, as shown in Table 5-5.  

 The protocol ensures freshness of the challenge-response protocol through the nonce ‘N’ 

used by the verifier. This prevents the replay attacks. The use of the Time Server TS will enable 

the verifier to verify the time at which the archive operation was done by the archive process ‘X’. 

The hash tree of the entire file system that was archived is signed and the transaction ID of each 

archive operation along with its time quote and content proof quote is also saved in the content 

proof file by process X for future use. The use of the Merkle hash tree effectively uses the single 

time-stamped attestation for the entire archive. The archive manager ‘M’ is also tied to the state 

of TPMH2, so that the integrity of the manager machine H2 can also be verified by the verifier V. 

Table 5-5:  Processing time for succinct proof generation. 

Archive 
ID 

Number of files in 
the archive 

content proof 

Total time to 
verify archive 

content proof (s) 

Breakup of time 
to recreate file 
tree hashes (s) 

Total time to 
generate succinct 

proof (s) 
8 2324 0.14 0.07 0.14 
9 4618 0.22 0.15 0.22 

10 5240 0.22 0.16 0.23 
11 4149 0.21 0.14 0.21 
12 6924 0.26 0.20 0.27 
13 7564 0.27 0.21 0.28 
14 9858 0.38 0.31 0.40 
15 10480 0.39 0.33 0.40 
16 11094 0.41 0.35 0.42 
17 12182 0.43 0.36 0.45 
18 12804 0.44 0.37 0.47 
19 13418 0.45 0.38 0.49 
20 14040 0.47 0.40 0.52 
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The re-keying operation of the archive manager process addresses the weakening of cryptography 

over time and the need to re-validate signed archives and the certificates of the signing keys.   

 

 



 

 

Chapter 6 
 

Conclusion 

A protocol is proposed to prove far in the future the integrity of an archive by the use of 

digital signatures, verifiable timestamps, Trusted Platform Module and Xen Virtual Machine 

Monitor. The asynchronous attestation protocol relies on a verifiable timestamp that is used along 

with the attestation of the root file system to provide a proof of the integrity of the file system at 

the time of archive without the possibility of post-dating or pre-dating. The issues of the 

weakening of cryptography over time and the need to re-validate signed archive content proofs 

and the certificates of the signing keys are addressed by the re-keying protocol. The re-keying of 

the content proofs is tied to the time of the content proof update and hence a third party verifier 

will be able to attest that the signing key was not compromised at the time of signing the archive 

or at the time of a re-keying operation. The re-keying process also follows the asynchronous 

attestation protocol. The XML format used by the re-keying process enables the option of using 

state of the art algorithm for the digital signature existing at that point in time. The XML format 

used in this protocol can also be changed to a compatible format at a later point in time in the 

future by the archive manager.  

 

However the migration of archives from one media or logical format to the other and 

software and hardware unreliability has to be taken into more detailed analysis to build a 

comprehensive archival system that can ensure data reliability over a very long period of time of 

more than 50 or 100 years. The proposed protocol can be integrated with other proposed solutions 

to account for migration problems, data availability and data readability. 
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Appendix A 
 

Glossary 

Asymmetric key encryption - In this encryption method, key exchange occurs with the existence 

and use of both a public and private key, in which anyone can encrypt a message using the public 

key, but only the holder of the private key is able to decrypt messages. Page 18. 

AIK Attestation – an asymmetric key, the private portion of which is non-migratable and 

protected by the TPM. The public portion of an AIK is part of the AIK Credential, issued using 

either the Privacy CA. An AIK can only be created by the TPM Owner. The AIK can be used for 

platform authentication, platform attestation and certification of keys. Page 11. 

AIK Credential -  A credential issued by a Privacy CA that contains the public portion of an 

AIK key signed by a Privacy CA. Page 11. 

Attestation of the Platform - An operation that provides proof of a set of the platform’s integrity 

measurements. This is done by digitally signing a set of PCRs using an AIK in the TPM. Page 11. 

Authenticated Boot - A boot after which the platform’s Root-of-Trust-for-Reporting (RTR) can 

report an accurate record of the way that the platform booted. Page 10. 

Challenger - An entity that requests and has the ability to interpret integrity metrics. Page 11. 

Endorsement Key - EK; an RSA Key pair composed of a public key (EKpu) and private (EKpr). 

The EK is used to recognize a genuine TPM. The EK is used to decrypt information sent to a 

TPM in the Privacy CA and during the installation of an Owner in the TPM. Page 8. 

Integrity challenge - A process used to send accurate integrity measurements and PCR values to 

a challenger. Page 11. 

Privacy CA - An entity trusted by both the Owner and the Verifier, that will issue AIK 

Credentials. Page 11. 
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Private key - Key owned by recipient of encrypted message in private key cryptography.  Private 

key is used to decrypt the message. Page 17. 

Private key encryption - See asymmetric key encryption. Page 18. 

Public key - Key owned by sender of encrypted message in private key cryptography (used to 

encrypt messages, (or) Key owned by both sender and recipient of a message – the single public 

key is used to both encrypt and decrypt the message. Page 17. 

Public key encryption - See symmetric key encryption. Page 18. 

RSA - Algorithm developed by: Rivest, Shamir, Adleman.  Their creation was named after the 

first letters of their surnames. Page 19. 

Symmetric key encryption - The sender and the recipient each have a copy of the public key 

(which is to be kept secret between the two of them).  The public key both encrypts and decrypts 

the message. Page 18. 

SRK - Storage Root Key: the root key of a hierarchy of keys associated with a TPM’s Protected 

Storage function; a non-migratable key generated within a TPM. Page 8. 

TSS - TCG Software Stack: untrusted software services that facilitate the use of the TPM and do 

not require the protections afforded to the TPM. Page 8. 

Trust - Trust is the expectation that a device will behave in a particular manner for a specific 

purpose. Page 10. 

Trusted Computing Platform - A Trusted Computing Platform is a computing platform that can 

be trusted to report its properties. Page 8. 
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