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Abstract

Conditional Value-at-Risk (hereafter, CVaR) and Expected Shortfall (CES) play
an important role in financial risk management. Parametric CVaR and CES enjoy
both nice interpretation and capability of multi-dimensional modeling, however
they are subject to errors from mis-specification of the noise distribution. On the
other hand, nonparametric estimations are robust but suffer from the ”curse of
dimensionality” and slow convergence rate.

To overcome these issues, we study semiparametric CVaR and CES estimation
and inference for parametric model with nonparametric noise distribution. In this
dissertation, under a general framework that allows for many widely used time
series models, we propose a semiparametric CVaR estimator and a semiparametric
CES estimator that both achieve the parametric convergence rate.

Asymptotic properties of the estimators are provided to support the inference.
Furthermore, to draw simultaneous inference for CVaR at multiple confidence levels,
we establish a functional central limit theorem for CVaR process indexed by the
confidence level and use it to study the conditional expected shortfall.

A user-friendly bootstrap approach is introduced to facilitate non-expert prac-
titioners to perform confidence interval construction for CVaR and CES. The
methodology is illustrated through both Monte Carlo studies and an application to
S&P 500 index.
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Chapter 1 |
Introduction

1.1 Background

1.1.1 Value-at-Risk

In financial portfolio management, two most important factors of interest are the
average return and its associated risk. While the average return tells the investor
the mean value of the return of a particular portfolio, the risk of returns concerns
the downside of the portfolio, i.e., the potentially large loss when the market
moves in the opposite direction. For example, if the return takes large positive
value (110%, say) and negative value (−90%, say) equally likely, then the average
return is 10%; however, due to the potentially large negative return, a risk-averse
investor may avoid this type of double-or-none portfolio and prefer a portfolio
with 5% average return but low risk. In fact, due to the importance of financial
risk, financial institutions periodically monitor their risk, which forms the basis for
dynamic portfolio management, to meet the supervisory guidance set by regulators.

Among many other risk measures (e.g., the standard deviation, tail conditional
expectation, and entropic risk measure), Value-at-Risk (hereafter, VaR) is the
most prominent risk measure. For example, VaR is the widely used risk measure
by regulators in banking supervision (e.g., Scaillet, 2003); also, VaR can cover
the presence of netting agreements frequently found in the banking industry (e.g.,
Fermanian and Scaillet, 2005). For a given portfolio, denote by Yi the loss (i.e.,
negative return) at time i, its VaR is the threshold L such that

P{Yi ≥ L} = 1− τ, (1.1)
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where (1− τ) is the confidence level, often taken to be 1% or 5%. For example, at
confidence level 1%, the potential loss exceeds the VaR threshold L with probability
1%. The confidence level reflects the investor’s level of tolerance of the worst
scenario. A conservative investor may use a small confidence level, whereas a
more aggressive investor may prefer a larger level. See Duffie and Pan (1997) and
Dowd (1998) for an excellent introduction to VaR. Since (1.1) is derived from pure
statistical inference of the underlying data-generating process, it is often termed as
statistical VaR (Aït-Sahalia and Lo, 2000). To incorporate other aspects of market
risk, Aït-Sahalia and Lo (2000) introduced the state-price density (SPD) based
economic VaR. The state-price density is the density under which the price of any
asset is the riskless-rate discounted expected payoff. Their economic VaR estimate
is based on the Black-Scholes options pricing formula with a nonparametric estimate
of the volatility function. In this dissertation we focus on statistical VaR.

Depending on the goal of the portfolio holder, another closely related VaR
approach is the conditional VaR (hereafter, CVaR), which evaluates the conditional
probability version of (1.1), conditioning on some available information. For
example, an active trader may be very sensitive to short-term market information,
such as the stock performance in the past week and some current global economic
variables, and thus he/she may prefer the CVaR modeling, conditioning on the
immediately available information when evaluating the probability in (1.1). We
refer the reader to Chernozhukov and Umanstev (2001), Cai (2002), Fan and Gu
(2003), Engle and Manganelli (2004), and Cai and Wang (2008) for various CVaR
approaches. On the other hand, it may be reasonable for a retirement fund manager
with a long-time vision to work under the unconditional VaR framework (1.1) as
this marginal approach can avoid the unnecessarily volatile short-term market
fluctuation. See Danielsson and de Vries (2000) for more discussions on these two
approaches. In this dissertation we focus on the CVaR approach.

1.1.2 Expected Shortfall

Another widely used risk measure to quantify the risk of the portfolio is the expected
shortfall (ES) defined as

ES(y) = E(Yi|Yi ≥ y). (1.2)
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Here y is the threshold and is chosen as the τ -th quantile of Yi (i.e., the VaR of
Yi at confidence level 1 − τ) in vast literature. Intuitively, ES(y) quantifies the
average loss given that the loss exceeds the threshold y, i.e., the average worst loss
exceeding y. By monitoring expected shortfalls, portfolio managers can actively
balance the portfolio to control the risk.

Since Artzner et al. (1999) which provides a complete definition of risks, it is
well-known that the ES enjoys some nice properties that VaR does not have. First of
all, ES possess subadditivity while VaR does not. For instance, suppose that we have
a portfolio including A, B, and C assets. The ES of the portfolio should be equal or
less than the sum of ES of individual assets, i.e. ESportfolio ≤ ESA + ESB + ESC ,
while this inequality may not hold when ES is replaced with VaR. Thus an investor
may fail to reduce his VaR by diversifying his asset allocations in the portfolio. See
Frey and McNeil (2002) for more discussions on the theoretical properties of risk
measures. Second, by observing (1.1) and (1.2), one can find that ES tells us more
information about the potential size of losses given that it already exceeds VaR.

In practice, portfolio managers often have some covariates information, denoted
by Xi ∈ Rp, and it is then desirable to incorporate such information into the
modeling of the loss Yi. For example, the covariates Xi may include the historical
loss Yi−1, Yi−2, . . . , and some global economics variables, such as the inflation rates
and unemployment rates. From (1.2), define the conditional expected shortfall
(CES) of Yi given the covariates Xi = x (for some given vector x) as

CES(y|x) = E(Yi|Yi ≥ y,Xi = x). (1.3)

The CES quantifies the average conditional loss, given the covariates Xi = x and
that the loss exceeds y. Compared to the (unconditional) ES in (1.2), the CES
allows us to incorporate the covariates information Xi into the modeling of Yi.

1.2 Motivation
To estimate VaR, ES, or their conditional versions, the parametric approach uses
a specific parametric model (e.g., ARCH-type or GARCH-type models) with the
noises following some known distribution. For example, the RiskMetrics in J. P.
Morgan (1996) uses the Normal distribution; other popular choices include the

3



Student-t and some distributions that can be transformed to Normal (Hull and
White, 1998). On the other hand, Chen, Gerlach and Lu (2012) uses GJR-GARCH
volatility model with an asymmetric Laplace distribution error distribution to
estimate and forecast ES and VaR. These parametric methods enjoy both nice
interpretation and capability of multi-dimensional modeling, however they are
subject to errors from mis-specification of the noise distribution. For example, there
have been numerous discussions on whether stock returns follow Normal, Student-t,
symmetric stable, or other distributions. Ait-Sahalia and Brandt (2001) pointed
out the difficulty of modeling the conditional distribution of returns in practice.
Hypothetically, suppose returns have mean zero and variance one. From (1.1), at
confidence level 1− τ = 1%, the specification of Normal distribution would give
the VaR threshold 2.33, whereas the specification of Student-t distribution with 3
degrees of freedom (normalized to have variance one) would give the quite different
VaR threshold 2.62. Thus, it is desirable to develop a distribution-free method.

Nonparametric VaR or ES estimation is a robust alternative over the parametric
approach. For unconditional VaR estimation, historical simulation and its variants
use empirical sample quantiles or the inverse of some marginal distribution function
estimate based on the historical data to predict the future VaR; see Butler and
Schachter (1998), Gourieroux, Laurent and Scaillet (2000), and Chen and Tang
(2005). For unconditional ES, Scaillet (2004) proposed a smoothed and distribution-
free estimation based on a kernel approach. Chen (2008) further developed an
unsmoothed estimator of ES based on a weighted sample average of excessive
losses greater than a VaR, and compare its estimation accuracy with the smoothed
estimator in Scaillet (2004). For CVaR estimation, Cai (2002), and Wu, Yu
and Mitra (2007) proposed model-free nonparametric estimates based on kernel
smoothing estimates of the conditional distribution function, and Cosma, Scaillet
and von Sachs (2007) studied wavelets-based nonparametric estimation.

Cai and Wang (2008) use the combination of Nadaraya-Watson (NW) method
of Cai (2002) and the double kernel local linear technique of Yu and Jones (1998)
then estimates CES nonparametrically by plugging in the estimated conditional
probability function and the estimated CVaR function, as an extension of Scaillet
(2005) which uses the unweighted NW method.

As pointed out by Chen and Tang (2005), these nonparametric methods have two
major advantages: (i) being distribution-free; and (ii) without imposing parametric
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models, such as ARCH or GARCH models. Despite their robustness to model
assumptions, nonparametric approaches have some well-known challenging issues.
Essentially, nonparametric CVaR methods perform estimation in a small local
window of the covariates, which may contain very few or almost no observations
for high-dimensional covariates. This is the well-known “curse of dimensionality”
issue. Other practically challenging issues include bandwidth selection and slow
convergence rate. See Li and Racine (2007) for discussions.

This dissertation has two main contributions. Our first contribution is to
propose a semiparametric CVaR estimator and a semiparametric CES estimator and
establish their

√
n asymptotic normality. As discussed above, both the parametric

and nonparametric approaches have their strengths and weaknesses, and we propose
combining their strengths via a semiparametric approach of parametric model
with nonparametric noise distribution. Our semiparametric approach has several
appealing features. First, the parametric model structure is capable of modeling the
dependence of returns on high-dimensional covariates. This can avoid the “curse of
dimensionality” issue of the nonparametric approach. Furthermore, the parametric
component has the advantage of including some non-Markovian behavior (e.g.,
GARCH) as opposed to a pure nonparametric kernel regression approach. Second,
adopting nonparametric noise distribution can avoid the error from distributional
mis-specification. Third, unlike the ARCH/GARCH VaR or CES modeling, our
methodology is developed under a very general framework that allows for many
linear and nonlinear processes. Fourth, the proposed CVaR and CES estimators
can achieve the parametric

√
n convergence rate.

Despite the vast literature on VaR and CVaR estimation, little attention has
been paid to calculating the standard error of the estimates; Chen and Tang (2005)
studied this problem for unconditional VaR estimation. Our second contribution
is to develop methodology for statistical inference of CVaR. First, we provide
consistent standard error for the semiparametric CVaR estimator, which is useful
in confidence interval construction. Second, to draw simultaneous inference for
CVaR at multiple confidence levels, we establish a functional central limit theorem
(hereafter, CLT). As an application of the functional CLT, we study semiparametric
estimation of conditional expected shortfall (hereafter, CES). Third, to facilitate
non-expert practitioners to construct confidence intervals for CVaR and CES, we
introduce an easy-to-implement bootstrap approach. One major advantage of the
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bootstrap approach is that practitioners can choose their own particular model and
parameter estimation method to address semiparametric CVaR and CES inference.

The rest of this dissertation is organized as follows. Chapter 2 includes CVaR
results. Section 2.1 contains main results on semiparametric CVaR estimation,
asymptotic normality, and standard error calculation. Section 2.2 studies CVaR pro-
cess and an application to CES. Section 2.3 introduces bootstrap inference. Section
2.4 briefly studies semiparametric conditional distribution estimation. Numerical
analysis is presented in Sections 2.5 and 2.6. Assumptions and proofs of theorems
are in Section 2.7. Chapter 3 includes CES results. Section 3.1 contains main
results on semiparametric CES estimation, consistency, and asymptotic normality.
Finally, technical conditions and proofs are in Section 3.4.

For a matrix A = (ai,j), write |A| = (
∑

i,j a
2
i,j)1/2. For a random vector Z,

write Z ∈ Lq, q > 0, if E(|Z|q) < ∞. Throughout, p→ stands for convergence in
probability.

6



Chapter 2 |
Conditional Value-at-Risk

2.1 Semiparametric CVaR Estimation
Let Yi ∈ R be scalar-valued portfolio loss (i.e., negative gain) at time i. Suppose
the loss Yi depends on some p-dimensional covariates Xi ∈ R1×p. In practice, the
covariates Xi may include both the historical market information, such as the
past portfolio loss Yi−1, . . . , Yi−q, and some overall exogenous economic variables
Ui ∈ Rp−q, such as the inflation rates and unemployment rates. Similar to (1.1), at
confidence level (1− τ), the CVaR of Yi given Xi = x, denoted by CVaR(1− τ |x),
is defined as

CVaR(1− τ |x) = L such that P{Yi ≥ L|Xi = x} = 1− τ. (2.1)

Therefore, conditioning on Xi = x, the loss Yi exceeds CVaR(1− τ |x) with prob-
ability (1 − τ). In particular, if Xi = (Yi−1, . . . , Yi−p), then CVaR(1 − τ |x) is
the predicted CVaR of Yi given Yi−1, . . . , Yi−p. Our goal is to estimate and make
inference about CVaR(1− τ |x).

Denote by Q(τ |x) := Q(τ |Xi = x) the conditional τ -th quantile of Yi given
Xi = x. From (2.1), CVaR(1 − τ |x) = Q(τ |x). From now on we shall focus on
Q(τ |x).

Remark 1. In this dissertation we focus on the case of fixed level 1 − τ , even
though it may be very small. An alternative approach is the extreme quantile
approach, i.e., 1 − τ → 0 as sample size n → ∞ so that in (2.1) the threshold
L → ∞. If we consider aggregated monthly returns as the sum of daily returns,

7



then the moderate deviation approach in Wu and Zhao (2008) may be applied here,
but the asymptotic theory is more challenging. This is beyond the scope of the
current paper and will serve as a direction for future research.

2.1.1 The nonparametric quantile regression approach

The conditional τ -th quantile Q(τ |x) can be estimated by local linear quantile
regression

Q̃(τ |x) = â0, (â0, â1) = argmin
a0∈R,a1∈Rp

n∑
i=1

ρτ

{
Yi − a0 − (Xi − x)a1

}
K
(Xi − x

bn

)
,(2.2)

where ρτ (v) = v(τ − 1v≤0) is the check function, K(·) is a p-variate kernel function,
and bn > 0 is bandwidth; see, e.g., Yu and Jones (1997). Another nonparametric
quantile estimation approach is based on the inverse of conditional distribution
function estimate (Cai, 2002; Wu, Yu and Mitra, 2007; Cai and Wang, 2008). See
Chapter 6 in Li and Racine (2007) for more discussions.

While nonparametric quantile regression is robust against the model structure,
it also suffers from several drawbacks. First, due to the “curse of dimensionality”,
it is generally infeasible to perform nonparametric estimation for p ≥ 3. As a result,
when predicting VaR based on historical loss, nonparametric approach can use only
very local recent historical information (p = 1 or 2 at most). Second, p-dimensional
nonparametric conditional quantile estimation has convergence rate

√
nbpn, which

can be quite slow as bn → 0. Third, it is a practically non-trivial issue to select the
bandwidth bn (Li and Racine, 2007).

2.1.2 The proposed semiparametric approach

By Section 2.1.1, nonparametric quantile estimation is not very appealing in CVaR
estimation. In this section we propose a semiparametric approach. Specifically, we
assume

Yi = G(θ, εi,Xi), (2.3)

where G(θ, ε, x) is a parametric function with unknown k-dimensional parameter
θ ∈ Rk, and {εi}i∈Z are unobservable i.i.d. noises that may represent unobserved
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heterogeneity or technological shocks. We leave the distribution of εi completely
unspecified, leading to a semiparametric structure. This semiparametric approach
can avoid potential mis-specification on the distribution of εi. For example, a
normal distribution may perform poorly in the presence of Cauchy distributed
noises {εi}. On the other hand, the parametric assumption on G(θ, ·, ·) allows us
to avoid the “curse of dimensionality” in nonparametric approach and thus has the
capability of high-dimensional CVaR estimation.

Model (2.3) assumes that the function G can be well parameterized by some
parameter θ with the distribution of εi unspecified. In applications, we can use a two-
stage procedure to determine the function form G. In the first stage, we may use the
sieve nonparametric estimation method (e.g., Chen, 2007) or nonparametric kernel
estimation method (e.g., Matzkin, 2003) to estimate the function nonparametrically.
In the second stage, we then check whether the estimated nonparametric function
can be parameterized by some existing models. The parametric specification stage
is equally important in all aspects of parametric modeling in the literature, such
as model fitting and forecasting, in addition to VaR risk management. Since our
goal is not to develop new specification testing methods but to develop CVaR
estimation for given model, in this dissertation we assume that the researcher has
decided a specific model prior to CVaR estimation. In fact, almost all existing
works on parametric VaR (e.g., EWMA in RiskMetrics of J.P. Morgan, 1994; robust-
EWMA in Guermat and Harris, 2001; CAViaR in Engle and Manganelli, 2004;
skewed-EWMA in Gerlach, Lu and Huang, 2013) also took the same approach.

Example 1. (Nonlinear AR models) Let Xi = (Yi−1, . . . , Yi−p), then (2.3)
becomes

Yi = G(θ, εi, Yi−1, . . . , Yi−p), (2.4)

a nonlinear autoregressive (AR) model of order p. An important special case of
(2.4) is the class of nonlinear ARCH model

Yi = µ(θ, Yi−1, . . . , Yi−p) + σ(θ, Yi−1, . . . , Yi−p)εi, (2.5)

for parametric functions µ(θ, ·) and σ(θ, ·) > 0 with unknown parameter θ. Model
(2.5) includes many popular nonlinear models; see Fan and Yao (2003). Also, (2.5)
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includes the Euler-discretization of the continuous-time diffusion model dYt =
µ(θ, Yt)dt + σ(θ, Yt)dIBt, where {IBt}t≥0 is a Brownian motion or a general Lévy
process. ♦

Example 2. (Nonlinear ARX models) A more flexible generalization of (2.4)
is the nonlinear AR with exogenous/external inputs (ARX) model with Xi =
(Yi−1, . . . , Yi−q,Ui):

Yi = G(θ, εi, Yi−1, . . . , Yi−q,Ui), (2.6)

whereUi ∈ R1×(p−q) are exogenous or external variables. For example, an exogenous
variable can be the inflation rates or unemployment rates affecting stock returns
Yi. The classical linear ARX model is Yi =

∑q
j=1 φjYi−j + Uiβ + εi for coefficients

φ1, . . . , φq ∈ R, β ∈ Rp−q. Model (2.6) allows flexible nonlinear generalization. For
example, (2.6) includes the ARCH model with exogenous inputs:

Yi =
q∑
j=1

φjYi−j + Uiβ + εi

(
α2

0 +
q∑
j=1

α2
jY

2
i−j + U2

i γ
2

)1/2

, β, γ ∈ Rp−q.

This model generalizes Engle’s ARCH model to allow for exogenous variables. ♦

Example 3. (Nonlinear GARCH models) Consider the nonlinear GARCH
model

Yi = σiεi with σi = g(θ, σi−1, . . . , σi−q, Yi−1, . . . , Yi−r), (2.7)

for a parametric function g > 0. By specifying different forms of g, this general
model includes many widely used variants of GARCH models, including the classical
GARCH model (Bollerslev, 1986), the EGARCH model (Nelson, 1991), the GJR-
GARCH model (Glosten, Jagannathan and Runkle, 1993), and the TGARCH
model (Zakoian, 1994), just to name a few. Under appropriate conditions (e.g.,
Wu and Shao, 2004), by recursive iteration, σi admits the representation σi =
g∗(θ, Yi−1, Yi−2, . . .) for some function g∗. Thus (2.7) becomes the ARCH(∞) model
Yi = g∗(θ, Yi−1, Yi−2, . . .)εi and we can take the covariates Xi =(Yi−1,Yi−2,. . . ). In
practice, we need not to know the function form g∗; instead we can recursively
compute σi = g(θ, σi−1, . . . , σi−q, Yi−1, . . . , Yi−r) when the parameter θ is known or
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can be estimated. Since the GARCH model (2.7) is non-Markovian, the “curse
of dimensionality” of g∗ makes it infeasible to use the nonparametric approach in
Section 2.1.1 to estimate Q(τ |Xi = x). ♦

To motivate our semiparametric estimator of Q(τ |x) := Q(τ |Xi = x), we
assume that in (2.3) the function G(θ, εi,Xi) is strictly increasing in εi and that εi
is independent of Xi. By definition, given Xi = x, Q(τ |x) is the τ -th quantile of
Yi = G(θ, εi,Xi) = G(θ, εi, x). Note that the τ -th quantile of any strictly increasing
transformation of a random variable is the same transformation of the τ -th quantile
of that random variable. Therefore,

Q(τ |x) = τ -th quantile of G(θ, εi, x) = G(θ,Qε(τ), x), (2.8)

where Qε(τ) is the τ -th quantile function of εi. In practice, both θ and Qε(τ) are
unknown, and we propose estimating Q(τ |x) by plugging some consistent estimates
of θ and Qε(τ) into (2.8). However, the true innovations {εi} are not observable.
Fortunately, under the above strictly increasing assumption on G(θ, εi,Xi) (as
a function εi), we can invert the function to obtain εi. Formally, we impose
Assumption 1 below.

Assumption 1. For any given (θ,Xi), the function G(θ, εi,Xi) is strictly increasing
in εi so the inverse G−1(θ, ·,Xi) exists and

εi = H(θ, Yi,Xi) with H(θ, Yi,Xi) = G−1(θ, Yi,Xi). (the inverse) (2.9)

Assumption 1 is satisfied for many practical models. In fact, in the context
of nonparametric estimation of non-additive functions, Matzkin (2003) imposed
the same condition. Clearly, Assumption 1 is satisfied for the nonlinear ARCH
model in (2.5) and the nonlinear GARCH model in (2.7). In addition, it is satisfied
for some transformation models. Let Λ(·) be a strictly increasing transformation
function. Then Assumption 1 is satisfied for the model Λ(Yi) = Xiθ + εi or
equivalently Yi = Λ−1(Xiθ + εi). The latter model includes the well-known Box-
Cox transformation and all the transformation models studied in Horowitz (1996).
Under appropriate conditions on the conditional hazard condition, duration models
with unobserved heterogeneity also satisfy Assumption 1; we refer the reader to
Matzkin (2003) for more details.
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Under Assumption 1, in view of (2.8), we propose the following estimation
procedure:

(i) Let θ̂ be a consistent estimate of θ. From (2.9), we can estimate the innovation
εi by

generalized residuals: ε̂i = H(θ̂, Yi,Xi). (2.10)

(ii) Estimate Qε(τ) by Q̂ε(τ), the sample τ -th quantile of {ε̂i}. Formally,

Q̂ε(τ) = inf
{
z : F̂ε(z) ≥ τ

}
, where F̂ε(z) = 1

n

n∑
i=1

1ε̂i≤z. (2.11)

(iii) Plugging θ̂ and Q̂ε(τ) into (2.8), we propose the following estimator:

Q̂(τ |x) = G(θ̂, Q̂ε(τ), x). (2.12)

Compared with the nonparametric quantile estimation approach in Section
2.1.1, the proposed semiparametric estimator (2.12) is easy to implement and
does not require any bandwidth. To derive the asymptotic normality, a key step
is to study the residual empirical process F̂ε(z) in (2.11). In fact, due to the
important applications in model diagnostics and hypothesis testing, the topic of
residual empirical process itself has attracted much attention; see, e.g., Lee and Wei
(1999) and Horváth and Teyssière (2001) for residual empirical process from AR
models and ARCH models, respectively. Theorem 1 below establishes the uniform
approximation of the generalized-residual empirical process. Given the general form
of model (2.3), our result is more general than existing ones.

Denote by Fε(·), fε(·), and Qε(·), respectively, the distribution, density, and
quantile functions of εi. Throughout we assume that G(θ, ε, x) is continuously
differentiable in θ and ε, with corresponding partial derivatives Ġθ(θ, ε, x) and
Ġε(θ, ε, x) with respect to θ and ε, respectively.

Theorem 1. Recall F̂ε(z) in (2.11). Suppose that Assumption 1 and Assumptions
3–4 (in Section 2.7) hold. Further assume that θ̂ = θ + Op(n−1/2). Then for any
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given c > 0,

sup
|z|≤c

∣∣∣∣∣F̂ε(z)− 1
n

n∑
i=1

1εi≤z − fε(z)E
[
Ġθ(θ, z,X0)
Ġε(θ, z,X0)

]T
(θ̂ − θ)

∣∣∣∣∣ = op(n−1/2). (2.13)

Here and hereafter X0 has the same distribution as Xi.

By Theorem 1, the asymptotic expansion of F̂ε(z) has two components: the first
term n−1∑n

i=1 1εi≤z is the empirical process of the true noises {εi}, which is the
leading term, and the second term fε(z)E[Ġθ(θ, z,X0)/Ġε(θ, z,X0)]T (θ̂ − θ) is the
bias correction term due to the estimation error of θ̂. Therefore, in order to derive
the asymptotic distribution of Q̂(τ |x), it is necessary to impose some condition on
θ̂ − θ.

Assumption 2. The estimator θ̂ ∈ Rk of θ ∈ Rk admits the Bahadur-type
representation

θ̂ − θ = 1
n

n∑
i=1

D(θ, εi,Xi) + oP(n−1/2), (2.14)

for some D(θ, ·, ·) ∈ Rk satisfying D(θ, εi,Xi) ∈ L2 and E[D(θ, εi,Xi)|Xi] = 0.

Assumption 2 asserts that θ̂ − θ has a linear leading term plus some negligible
error. This type of Bahadur representations has been established for different
models in the literature. For example, Hall and Yao (2003) obtained Bahadur rep-
resentation of quasi-maximum likelihood estimates for ARCH and GARCH models,
and Zhao (2010) established Bahadur representation for pseudo-likelihood estimate
of stochastic regression models. See Section 2.1.4 below for more discussions.

Theorem 2. Suppose that Assumption 1 and Assumptions 3–5 (in Section 2.7)
hold.
(i) If θ̂ = θ + Op(n−1/2), then Q̂(τ |x) is

√
n-consistent, i.e., Q̂(τ |x) = Q(τ |x) +

Op(n−1/2).

(ii) If in addition Assumption 2 holds (recall D(θ, εi,Xi) there), then the CLT holds

√
n[Q̂(τ |x)−Q(τ |x)] ⇒ N

(
0,Γ(τ)

)
, (2.15)
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where Γ(τ) = Ġε(θ,Qε(τ), x)2E[W1(τ)2] and

Wi(τ) =
τ − 1εi<Qε(τ)

fε(Qε(τ))

+
{
Ġθ(θ,Qε(τ), x)
Ġε(θ,Qε(τ), x)

− E

[
Ġθ(θ,Qε(τ),X0)
Ġε(θ,Qε(τ),X0)

]}T

D(θ, εi,Xi). (2.16)

By Theorem 2, the proposed semiparametric CVaR estimator can achieve
√
n

parametric convergence rate, regardless of the dimensionality of the covariates Xi.
By contrast, for practical reason, the nonparametric quantile regression approach in
(2.2) works only for p = 1 or 2 and has convergence rate

√
nbpn for some non-trivial

choice of bandwidth bn.

Denote by Q̃ε(τ) the sample quantile of the true innovations {εi}. By the well-
known theory for sample quantiles,

√
n[Q̃ε(τ)−Qε(τ)]⇒ N(0, τ(1−τ)/fε(Qε(τ))2).

Note that E{[(τ − 1εi<Qε(τ))/fε(Qε(τ))]2} = τ(1 − τ)/fε(Qε(τ))2. Thus, the first
term of Wi(τ) in (2.16) reflects the variation of the sample quantile of the true
innovations {εi}. On the other hand, the second term of Wi(τ) reflects the error
due to the estimator θ̂. The first term is an intrinsic feature of sample quantiles,
which never vanishes; the second term generally does not vanish but may vanish
under some special settings. For example, if G(θ, εi,Xi) ≡ G(εi,Xi) is completely
known (does not depend on any parameter), then Ġθ(θ, ·, ·) = 0 and consequently
the second term vanishes. As a second example, if G(θ, εi,Xi) ≡ G(θ, εi) does not
depend on Xi, then the second term also vanishes. Intuitively, in the latter case,
{Yi} are i.i.d. and therefore Q(τ |x) is simply the marginal quantile of {Yi}.

2.1.3 Consistent estimate of the limiting variance

In the vast literature on VaR and CVaR estimation, the standard error calcula-
tion has been largely ignored. Chen and Tang (2005) studied this problem for
unconditional VaR estimation; for nonparametric CVaR estimation in Cai and
Wang (2008), they did not provide consistent estimate for the standard error, and
any such attempt would involve nonparametric function estimation with properly
chosen bandwidth. Here we consider consistent estimate of the limiting variance
Γ(τ) in (2.15). We propose the following procedure:
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(i) Using the estimated innovations {ε̂i} in (2.10), we estimate the density fε(z)
of εi by

f̂ε(z) = 1
nhn

n∑
i=1

K

(
ε̂i − z
hn

)
, (2.17)

where hn > 0 is the bandwidth. For example, the rule-of-thumb bandwidth
choice (Silverman, 1986) is hn = 0.9n−1/5 min{sd(ε̂i), IQR(ε̂i)/1.34}, where
sd(ε̂i) and IQR(ε̂i) are the sample standard deviation and sample interquartile
of {ε̂i}.

(ii) Plugging ε̂i, f̂ε, θ̂, Q̂ε(τ) [see (2.11)] into Wi(τ) in (2.16) to obtain the sample
version

Ŵi(τ) =
τ − 1ε̂i<Q̂ε(τ)

f̂ε(Q̂ε(τ))

+
{
Ġθ(θ̂, Q̂ε(τ), x)
Ġε(θ̂, Q̂ε(τ), x)

− 1
n

n∑
i=1

Ġθ(θ̂, Q̂ε(τ),Xi)
Ġε(θ̂, Q̂ε(τ),Xi)

}T

D(θ̂, ε̂i,Xi).

(iii) Using the sample variance of Ŵi(τ) to estimate Γ(τ) by

Γ̂(τ) = Ġε(θ̂, Q̂ε(τ), x)2 1
n− 1

n∑
i=1

[
Ŵi(τ)−W (τ)

]2
,where

W (τ) = 1
n

n∑
i=1

Ŵi(τ). (2.18)

Theorem 3. Suppose that Assumptions 1–2 and Assumptions 3–6 (in Section 2.7)
hold. In (2.17), assume that: (i) the kernel K(·) has bounded support and bounded
derivative; and (ii) the bandwidth hn satisfies nh4

n → ∞. Recall Γ(τ) defined in
(2.15). Then

Γ̂(τ) p→ Γ(τ).

Consequently, from Theorem 2,

√
n[Q̂(τ |x)−Q(τ |x)]√

Γ̂(τ)
⇒ N(0, 1). (2.19)
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By Theorem 3, an asymptotic (1− α) confidence interval for Q(τ |x) is

Q̂(τ |x)± q1−α

(
Γ̂(τ)
n

)1/2

, (2.20)

where q1−α is the (1− α) quantile of |N(0, 1)|. In Section 2.3 below we introduce
an alternative bootstrap approach that can bypass the estimation of Γ(τ).

2.1.4 Bahadur representation in Assumption 2

From Theorem 2, the
√
n-consistency requires only θ̂ = θ+Op(n−1/2), but the CLT

relies on the Bahadur representation (2.14) in Assumption 2. Also, the variance
estimator Γ̂(τ) in (2.18) relies on the Bahadur representation. Such Bahadur
representation depends on the specific model structure and parameter estimation
method. We briefly discuss this issue.

An important example of (2.3) is the nonlinear model with heteroscedastic
errors:

Yi = µ(θ,Xi) + σ(θ,Xi)εi, (2.21)

for i.i.d. noises {εi} with E(εi) = 0 and E(ε2
i ) = 1 and parametric functions µ(θ, ·)

and σ(θ, ·) > 0. Model (2.21) satisfies Assumption 1. Consider the pseudo-likelihood
estimate:

θ̂ = argmin
θ

n∑
i=1

{[Yi − µ(θ,Xi)
σ(θ,Xi)

]2
+ 2 log σ(θ,Xi)

}
. (2.22)

Theorem 2 in Zhao (2010) established the Bahadur representation (2.14) with

D(θ, εi,Xi) = I(θ)−1

[
εiµ̇(θ,Xi)
σ(θ,Xi)

+ (ε2
i − 1) σ̇(θ,Xi)

σ(θ,Xi)

]
, (2.23)

where µ̇(θ,Xi) and σ̇(θ,Xi) are the partial derivatives with respect to θ, and

I(θ) = E
[ µ̇(θ,X0)µ̇(θ,X0)T + 2σ̇(θ,X0)σ̇(θ,X0)T

σ2(θ,X0)

]
. (2.24)
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Other estimation methods lead to different Bahadur representations, depend-
ing on specific loss functions. For maximum likelihood estimation, the Bahadur
representation depends on the score function. For quantile regression based esti-
mator, consider the special case of (2.3) that σ(·, ·) ≡ 1 and Qε(0.5) = 0 (εi has
median zero), then the median quantile regression estimator is the minimizer of∑n

i=1 |Yi − µ(θ,Xi)|, which satisfies (2.14) with

D(θ, εi,Xi) =
{
E[µ̇(θ,X0)µ̇(θ,X0)T ]

}−1 µ̇(θ,Xi)
fε(0)

(1
2 − 1εi<0

)
. (2.25)

See Jurečková and Procházka (1994). Zhao and Xiao (2014) obtained a Bahadur
representation for quantile regression estimator of the location-scale model Yi =
Xiβ + (Xiγ)εi. He and Shao (1996) obtained Bahadur representations for general
M -estimators.

We point out that it is up to the practitioner to determine the specific model
and parameter estimation method, which are the starting point to carry out any
subsequent CVaR estimation and inference. This parallels to what we usually
do in time series forecasting based on some estimated model for the data. Our
semiparametric CVaR estimator hinges on a preliminary

√
n-consistent estimator θ̂

of θ, and our asymptotic confidence interval relies on the Bahadur representation
of θ̂ − θ. In Section 2.3 below, we propose a sieve bootstrap approach, which can
bypass such Bahadur representation.

2.2 CVaR Process and CES
In financial risk management, the portfolio manager may be interested in different
percentiles (e.g., the top 1, 5, 10, 25-th percentiles) of the potential loss and draw
some simultaneous inference. This type of information provides the basis for
dynamically managing the portfolio to control the overall risk at different levels.
This motivates us to study the CVaR process or equivalently the conditional quantile
process {Q(τ |x)}τ on some quantile interval τ ∈ [δ, 1− δ] with some small δ > 0.
Theorem 4 establishes a functional CLT version of Theorem 2.

Theorem 4. Consider [δ, 1− δ] with any small δ > 0. Suppose that Assumptions
1–2 and Assumptions 3–4 and 5∗ (in Section 2.7) hold. Then the functional CLT
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holds {√
n[Q̂(τ |x)−Q(τ |x)]

}
τ∈[δ,1−δ]

⇒ {Z(τ)}τ∈[δ,1−δ], (2.26)

where {Z(τ)}τ∈[δ,1−δ] is a centered Gaussian process with autocovariance given by
[in the expression below, Wi(τ) is defined as in (2.16)]

Γ(τ, τ ′) : = cov{Z(τ), Z(τ ′)}
= Ġε(θ,Qε(τ), x)Ġε(θ,Qε(τ ′), x)cov{W1(τ),W1(τ ′)}. (2.27)

Remark 2. For the quantile interval [δ, 1 − δ] in Theorem 4, δ > 0 is assumed
to be a given small number to avoid the boundary issue. We conjecture that,
using more sophisticated arguments, it may be possible to extend the interval to
(0, 1). The main technical issue is to establish the Bahadur representation (2.78)
(see Section 2.7.3 in the proof section) uniformly for τ in some expanding interval
[δn, 1− δn] with δn → 0. For example, Portnoy and Koenker (1989) obtained such
results for linear models. To avoid technical difficulties, we shall not pursue this
direction. Also, in practice the most extreme VaR level we normally consider is
1− τ = 1%, substantially below which any estimator may become unstable due to
scarce observations in the extreme tail. ♦

As in Section 2.1.3, we can estimate the covariance function Γ(τ, τ ′) in (2.27) by

Γ̂(τ, τ ′) = Ġε(θ̂, Q̂ε(τ), x)Ġε(θ̂, Q̂ε(τ ′), x)

× 1
n− 1

n∑
i=1

[
Ŵi(τ)−W (τ)

][
Ŵi(τ ′)−W (τ ′)

]
, (2.28)

where Ŵi(τ) and W (τ) are defined in (2.18). Similar to Theorem 3, the uniform
consistency of Γ̂(τ, τ ′) can be established along the similar line of argument. We
omit the details.

The functional CLT in Theorem 4 provides a theoretical basis for simultaneous
inference of CVaR at multiple levels. Here we consider an application to the CES.
Recall that CVaR(1− τ |x) is the (1− τ) worst scenario portfolio loss, given the
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covariates Xi = x. At level γ, conditioning on Xi = x, the CES is

CES(γ|x) = 1
γ

∫ γ

0
CVaR(τ |x)dτ = 1

γ

∫ 1

1−γ
CVaR(1− τ |x)dτ. (2.29)

CES(γ|x) can be interpreted as the average conditional loss given that Xi = x and
that the loss is at or even more extreme than the 100γ-th percentile worst scenario.
Some recent nonparametric approaches include Scaillet (2004) and Chen (2008)
for nonparametric ES estimation and Scaillet (2005) and Cai and Wang (2008) for
nonparametric CES estimation.

In (2.29), the CVaR at all confidence levels are equally weighted, however
practitioners may favor some confidence levels more than other levels. Let T be an
interval of confidence level and w(·) a square-integrable weight function (depending
on the practitioner’s preference). We generalize (2.29) to the the weighted version
on T :

CES(T |x) =
∫
T
w(1− τ)CVaR(1− τ |x)dτ, where

∫
T
w(1− τ)dτ = 1.(2.30)

Clearly, (2.29) is a special case of (2.30) with w(·) ≡ 1/γ and T = [1− γ, 1]. Since
CVaR(1− τ |x) = Q(τ |x), plugging in the estimator Q̂(τ |x) in (2.12), we estimate
CES(T |x) by

ĈES(T |x) =
∫
T
w(1− τ)Q̂(τ |x)dτ. (2.31)

Remark 3. All results stated here also hold when T is a discrete set of confidence
levels. In this case, we simply replace the integrals in (2.30)–(2.31) by summation
over T .

By Theorem 4 and the continuous mapping theorem, we can immediately obtain

Theorem 5. Assume the same conditions in Theorem 4. For any interval T ⊂
[δ, 1− δ],

√
n[ĈES(T |x)− CES(T |x)] ⇒

∫
T
w(1− τ)Z(τ)dτ, (2.32)

where {Z(τ)} is the Gaussian process in Theorem 4.
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It is easy to see that the limiting distribution in (2.32) is a centered normal
distribution with variance∫ ∫

T ×T
w(1− τ)w(1− τ ′)Γ(τ, τ ′)dτdτ ′. (2.33)

Here Γ(τ, τ ′) is the covariance function defined in (2.27). This variance can be
estimated by plugging the estimator Γ̂(τ, τ ′) in (2.28).

2.3 User-friendly Sieve Bootstrap Inference

As discussed in Section 2.1.4, in order to implement the variance estimator Γ̂(τ) in
(2.18) for the confidence interval (2.20), we need to know the Bahadur representation
(2.14); the same requirement is also needed for the covariance estimator Γ̂(τ, τ ′)
in (2.28) [however, the CVaR estimator Q̂(τ |x) in (2.12) does not require this]. It
may be non-trivial for a non-expert practitioner to derive a Bahadur representation
for their specific model and parameter estimation. In this section we provide a
user-friendly bootstrap approach.

For time series, two popular bootstrap methods are the block bootstrap (Lahiri,
2003) and the sieve bootstrap (Bühlmann, 1997). The block bootstrap requires the
challenging issue of block length selection. For a given time series model subject to
unknown parameters, the sieve bootstrap creates bootstrap samples by recursively
using the model with estimated parameters and resampled residuals, and thus the
bootstrap data can preserve the dependence structure of the original data. Here
we adopt the sieve bootstrap.

Assume that the covariates Xi = (Yi−1, . . . , Yi−q,Ui) consist of both lagged Y ’s
and some other covariates Ui. We propose the following sieve bootstrap procedure:

(i) Use some parameter estimation method to obtain the estimate θ̂ and then
compute {ε̂i} [see (2.10)] and Q̂(τ |x) [see (2.12)] based on the original data.

(ii) Obtain the bootstrap samples {(X∗i , Y ∗i )} recursively (with same initial values
as Xi)

Y ∗i = G(θ̂, ε∗i ,X∗i ) with X∗i = (Y ∗i−1, . . . , Y
∗
i−q,Ui), (2.34)
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where {ε∗i } are i.i.d. random samples (with replacement) from {ε̂i}. Use the
bootstrap data {(X∗i , Y ∗i )} and the same parameter estimation method in
step (i) to obtain new parameter estimate θ̂∗ and new conditional quantile
estimate Q̂∗(τ |x).

(iii) Repeat (ii) to obtain a large number (M , say) of realizations of Q̂∗(τ |x),
denoted by Q̂∗(1)(τ |x), . . . , Q̂∗(M)(τ |x).

We make one important comment about the bootstrap procedure in prediction
setting. Suppose we wish to construct bootstrap interval for the predictive quantile
Q(τ |{Yi}i≤n) for Yn+1 based on data {Yi}ni=1 from the GARCH model Yi = σiεi, σ

2
i =

ω + αY 2
i−1 + βσ2

i−1. In step (i) above, we fit GARCH model to obtain estimates
(ω̂, α̂, β̂), σ̂i, and ε̂i = Yi/σ̂i. In step (ii), first we generate bootstrap samples
{Y ∗i }ni=1 from Y ∗i = σ∗i ε

∗
i , σ

∗2
i = ω̂ + α̂Y ∗2i−1 + β̂σ∗2i−1, then fit GARCH model to

{Y ∗i }ni=1 to obtain estimates σ̂∗i and ε̂∗i = Y ∗i /σ̂
∗
i , and finally compute Q̂∗(τ |{Yi}i≤n)

as σ̂n+1 multiplied by the sample τ -th quantile of {ε̂∗i }ni=1. It is important to use
σ̂n+1 instead of σ̂∗n+1. This is because Q(τ |{Yi}i≤n) is the τ -th quantile of Yn+1 given
fixed covariates {Yi}i≤n and σ̂n+1 reflects such fixed covariates. By contrast, using
σ̂∗n+1 would mean that we are estimating Q(τ |{Y ∗i }i≤n) instead of Q(τ |{Yi}i≤n).

We discuss some bootstrap inference below.

Bootstrap confidence interval for CVaR

For the realizations Q̂∗(1)(τ |x), . . . , Q̂∗(M)(τ |x) in step (iii) above, denote by q∗1−α
the (1−α) sample quantile of

√
n|Q̂∗(1)(τ |x)−Q̂(τ |x)|, . . . ,

√
n|Q̂∗(M)(τ |x)−Q̂(τ |x)|.

Then the (1− α) bootstrap confidence interval for Q(τ |x) is

Q̂(τ |x)± q∗1−α/
√
n. (2.35)

Bootstrap confidence interval for CES

Plugging the realizations Q̂∗(1)(τ |x), . . . , Q̂∗(M)(τ |x) into (2.31) to obtain the
bootstrap-data-based CES estimates ĈES

∗(1)
(T |x), . . . , ĈES

∗(M)
(T |x). Denote the

(1− α) sample quantile of
√
n|ĈES

∗(1)
(T |x)− ĈES(T |x)|,. . .,

√
n|ĈES

∗(M)
(T |x)−

ĈES(T |x)| by r1−α. Then the (1− α) bootstrap confidence interval for CES(T |x)
is

ĈES(T |x)± r1−α/
√
n. (2.36)

21



The easy-to-implement bootstrap confidence intervals (2.35)–(3.19) only require
some parameter estimation method for θ̂, and thus practitioners can construct
CVaR and CES confidence intervals using our proposed semiparametric CVaR and
CES estimator along with their favorite parameter estimation methods. Since the
bootstrap model (2.34) inherits the same structure of the original model (2.3), the
bootstrap data can closely mimic the dependence structure of the original data.
Our simulation study in Section 2.5 suggests that the bootstrap confidence intervals
have better finite sample performance than the asymptotic confidence intervals
based on estimated limiting variances.

2.4 Semiparametric conditional distribution estima-
tion
In this section we adopt the semiparametric approach in Section 2.1 to study
conditional distribution estimation. Denote by F (y|x) = P{Yi ≤ y|Xi = x} the
conditional distribution function of Yi given Xi = x. The conditional distribution
can fully characterize the distributional dependence of the loss Yi on the covariates
Xi.

To estimate F (y|x), the usual nonparametric kernel regression approach is

F̃ (y|x) =
∑n

i=1 1Yi≤yK{(Xi − x)/bn}∑n
i=1 K{(Xi − x)/bn}

, (2.37)

where K(·) and bn are the kernel and bandwidth as in Section 2.1.1; see Chapter
6 in Li and Racine (2007). This nonparametric conditional distribution estimate
has the same drawback as the nonparametric conditional quantile estimation in
Section 2.1.1.

We can easily adapt our method in Section 2.1.2 to construct a
√
n-consistent

estimate of F (y|x). Under Assumption 1 and by the independence between εi and
Xi,

P{Yi ≤ y|Xi = x} = P{G(θ, εi, x) ≤ y}
= P{εi ≤ H(θ, y, x)}
= Fε{H(θ, y, x)}. (2.38)
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Therefore we propose the following semiparametric estimate of F (y|x):

F̂ (y|x) = F̂ε{H(θ̂, y, x)}, (2.39)

where θ̂ is a consistent estimate of θ, and F̂ε(z) [defined in (2.11)] is the sample
empirical distribution of the generalized residuals {ε̂i}. Theorem 6 below presents
a functional CLT, which implies the pointwise CLT.

Theorem 6. Suppose that the same conditions in Theorem 4 hold. Let Y = [Y1,Y2]
be any bounded interval. Then the functional CLT holds{√

n[F̂ (y|x)− F (y|x)]
}
y∈Y
⇒ {S(y)}y∈Y , (2.40)

where {S(y)}y∈Y is a centered Gaussian process with autocovariance

Σ(y, y′) := cov{S(y), S(y′)} = cov{V1(y), V1(y′)}, (2.41)

and

Vi(y) = [1εi≤H(θ,y,x) − E(1εi≤H(θ,y,x))]

+ fε(H(θ, y, x))
{
E

[
Ġθ(θ,H(θ, y, x),X0)
Ġε(θ,H(θ, y, x),X0)

]
+ Ḣ(θ, y, x)

}T

D(θ, εi,Xi).

(2.42)

In (2.42), the first component is from the empirical distribution of the true
innovations {εi}, and the second component is due to the estimation error of θ̂.
Compared to the nonparametric kernel smoothing estimator in (2.37), the proposed
semiparametric estimator in (2.39) is easy to implement and attains

√
n parametric

convergence rate.

Similar to the estimation of Wi(τ) in Section 2.1.2, we can estimate Vi(y) by

V̂i(y) = [1εi≤H(θ̂,y,x) − F̂ε(H(θ̂, y, x))]

+f̂ε(H(θ̂, y, x))
{

1
n

n∑
i=1

Ġθ(θ̂, H(θ̂, y, x),Xi)
Ġε(θ̂, H(θ̂, y, x),Xi)

+ Ḣ(θ̂, y, x)
}T

D(θ̂, ε̂i,Xi).
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Then the covariance in (2.41) can be estimated by the sample covariance

Σ̂(y, y′) = 1
n− 1

n∑
i=1

[
V̂i(y)− V (y)

][
V̂i(y′)− V (y′)

]
, V (y) = 1

n

n∑
i=1

V̂i(y).(2.43)

Similar to Theorem 3, we can establish the consistency of Σ̂(y, y′). Also, the sieve
bootstrap procedure in Section 2.3 can be applied here to avoid the issue of Bahadur
representation.

2.5 Monte Carlo Studies

2.5.1 MISE comparison with nonparametric method

For the nonparametric estimator Q̃(τ |x) in (2.2), let K(·) be the p-variate standard
normal density. Using 300 realizations Q̃(1)(τ |x), . . . , Q̃(300)(τ |x) of Q̃(τ |x), we
measure the performance of Q̃(τ |x) by the empirical mean integrated squared error
(MISE) on a set X :

MISE{Q̃(τ |·); bn} = 1
300

300∑
`=1

∫
X

[Q̃(`)(τ |x)−Q(τ |x)]2dx. (2.44)

Since MISE{Q̃(τ |·); bn} depends on bandwidth bn, we consider its best-case scenario:

MISE{Q̃(τ |·)} = min
bn

MISE{Q̃(τ |·); bn}, (2.45)

which is the theoretical minimum MISE of the nonparametric method. For the
proposed semiparametric estimator Q̂(τ |x) in (2.12), its MISE is defined as in (2.44),
and we further define its relative MISE (RMISE), relative to the nonparametric
estimator Q̃(τ |x) under the best-case scenario, as

RMISE = MISE{Q̃(τ |·)}
MISE{Q̂(τ |·)}

= minbn MISE{Q̃(τ |·); bn}
MISE{Q̂(τ |·)}

. (2.46)

A value of RMISE ≥ 1 indicates better MISE performance of the proposed method.
The comparison will largely favor the nonparametric method as the choice of
bandwidth for Q̃(τ |x) is done under the best-case scenario, which is generally
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unavailable in practice.
We consider the following four increasingly more complicated models:

Model 1: Yi = θ0 + θ1Yi−1 + σεi, (θ0, θ1, σ) = (0.3, 0.4, 0.5);

Model 2: Yi = θ0 + θ1Yi−1 + θ2Yi−2 + σiεi, (θ0, θ1, θ2, σ) = (0.3, 0.4,−0.5, 0.5);

Model 3: Yi = θ0 + θ1Yi−1 + εi

√
θ2

2 + θ2
3Y

2
i−1, (θ0, θ1, θ2, θ3) = (0.3, 0.4, 0.3, 0.5);

Model 4: Yi = θ0 + θ1Yi−1 + γ1Ui + εi

√
θ2

2 + θ2
3Y

2
i−1 + γ2

2U
2
i , Ui : uniform [0, 1],

with (θ0, θ1, θ2, θ3, γ1, γ2) = (0.3, 0.4, 0.3, 0.5,−0.4, 0.3).

Model 1 and 2 are simple AR(1) and AR(2) models, Model 3 is an AR(1)-ARCH(1)
model, and Model 4 is an AR(1)-ARCH(1) with exogenous variable Ui. The AR-
ARCH model with exogenous input allows us to model how stock returns depend
on the past returns as well as other external variables. The noise εi is from two
distributions: (i) standard normal N(0, 1), and (ii) t3/

√
3 (Student-t distribution

with 3 degrees of freedom with the normalizer
√

3 making the variance one). In all
settings we use sample size n = 200.

For Model 1 and 3, we estimate the conditional τ -th quantile of Yi given Yi−1 = x,
and we take X in (2.44) to be the range of 2.5-th and 97.5-th percentiles of {Yi−1};
for Model 2 (resp. Model 4), we estimate the conditional τ -th quantile of Yi given
the bivariate Xi := (Yi−1, Yi−2) = (x1, x2) (resp. Xi = (Yi−1, Ui) for Model 4), and
we take X in (2.44) to be X1 ×X2, where X1 and X2 are, respectively, the range of
2.5-th and 97.5-th percentiles of each of the two coordinates of Xi. The integral
in (2.44) is approximated by 20 evenly spaced grid points in the univariate case
(Model 1 and 3) or 10× 10 evenly spaced grid points in the bivariate case (Model
2 and 4). To implement the semiparametric method, we use (2.22) to estimate
the unknown parameters. The procedure is repeated for 13 different quantiles
τ = 1%, 5%, 10%, . . . , 90%, 95%, 99%.
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Table 1: RMISE [see (2.46)] of the proposed semiparametric estimate of CVaR(1− τ |x) = Q(τ |x)
relative to the nonparametric method in (2.2) with theoretical optimal bandwidth, at different
quantiles τ . Numbers ≥ 1 indicate better performance of the proposed method.

Quantile τ in CVaR(1− τ |x) = Q(τ |x)
noise 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

Model 1 N(0, 1) 2.45 2.09 1.62 1.54 1.47 1.42 1.35 1.32 1.34 1.38 1.72 2.03 2.81
t3/
√

3 3.01 2.39 2.11 1.50 1.14 0.96 0.94 0.98 1.05 1.34 1.80 2.18 3.38
Model 2 N(0, 1) 3.54 2.92 2.14 1.67 1.50 1.43 1.39 1.38 1.46 1.69 2.19 2.61 3.61

t3/
√

3 5.16 3.22 2.25 1.40 1.09 1.01 0.97 0.99 1.15 1.45 2.67 3.67 4.03
Model 3 N(0, 1) 2.58 2.01 1.80 1.48 1.27 1.30 1.37 1.54 1.86 2.11 2.15 2.32 2.93

t3/
√

3 1.85 1.01 0.84 0.80 0.86 0.87 0.88 0.91 0.90 1.00 1.17 1.36 2.24
Model 4 N(0, 1) 3.65 2.61 2.28 2.15 1.79 1.45 1.35 1.46 1.71 1.97 2.19 2.60 3.61

t3/
√

3 2.71 1.13 1.01 0.95 0.87 0.81 0.78 0.77 0.86 1.00 1.02 1.17 3.09

Table 1 summarizes the RMISE [see (2.46)]. The results show that, for almost
all cases considered, a substantial MISE improvement can be achieved by using the
semiparametric CVaR estimator. The MISE improvement is more significant for the
extreme quantiles τ = 90%, 95%, 99%, which correspond to the most widely used
confidence levels 1− τ = 10%, 5%, 1% in the VaR literature. For the practically less
interesting middle-range quantiles τ = 20%, . . . , 80%, the semiparametric estimator
significantly outperforms the nonparametric estimator for N(0, 1) noise, whereas
the two methods have comparable performance for Student-t distributed noise.
However, we emphasize that the MISE comparison is done between the proposed
method and the nonparametric method under the best-case scenario. In practice,
the optimal bandwidth is generally unknown, therefore the proposed estimator can
deliver relatively even more remarkable performance.

2.5.2 Coverage rate evaluation

To evaluate VaR estimator, another criterion is the empirical coverage rate, i.e.,
the empirical proportion, denoted by τ̂ , of realizations such that Yi ≤ Q̂(τ |Xi).
Specifically, our empirical coverage rate is calculated as follows:

(i) For each realization {(Xi, Yi)}ni=1, we use observations {(Xi, Yi)}n−1
i=1 up to

time n− 1 to fit the model and estimate the predicted τ -th quantile Q̂(τ |Xn)
for Yn. We then check whether Yn ≤ Q̂(τ |Xn).

(ii) Repeat (i) 1000 times and compute the empirical coverage rate τ̂ as the
proportion of realizations such that Yn ≤ Q̂(τ |Xn).
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By definition, the closer τ̂ to τ , the better performance of Q̂(τ |Xi).
The four models in Section 2.5.1 are ARCH-type models, and in this section we

examine some GARCH-type models of the form (2.7). We consider three GARCH
models:

Model 5: Yi = σiεi, σ2
i = ω + αY 2

i−1 + βσ2
i−1;

Model 6: Yi = σiεi, log(σ2
i ) = ω + α

Yi−1

σi−1
+ β log(σ2

i−1) + γ

[
|Yi−1|
σi−1

− E
( |Yi−1|
σi−1

)]
;

Model 7: Yi = σiεi, σ2
i = ω + αY 2

i−1 + βσ2
i−1 + γY 2

i−11Yi−1<0.

Model 5 is the standard GARCH model (Bollerslev, 1986), Model 6 is the
EGARCH model (Nelson, 1991), and Model 7 is the GJR-GARCH model (Glosten,
Jagannathan and Runkle, 1993). In Model 5, (ω, α, β) = (0.1, 0.3, 0.5); In Model 6,
(ω, α, β, γ) = (−3,−0.4, 0.5, 0.3); in Model 7, (ω, α, β, γ) = (0.1, 0.3, 0.5, 0.2). As in
Models 1–4, we consider two distributions, N(0, 1) and t3/

√
3, for the noise εi.

As discussed in Example 3, GARCH models are non-Markovian and it is infea-
sible to use the nonparametric approach. Thus, we only evaluate the coverage rate
for the proposed semiparametric method. When using the R package rugarch (Gha-
lanos, 2014) to do parameter estimation, we always specify the noise distribution as
normal, regardless of the actual noise distribution [N(0, 1) or t3/

√
3]. That is, for

t3/
√

3-distributed noises, the parameter estimation is done under mis-specification
of the noise distribution.

Based on 1000 realization for each setting, Table 2 summarizes the empirical
coverage rate at two sample sizes n = 200 and n = 500. Overall, the empirical
coverage rate is close to the nominal level, and the larger sample size n = 500 leads
to better performance.
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Table 2: Empirical coverage rate for GARCH models 5–7 of the proposed semiparametric
estimate of CVaR(1− τ |x) = Q(τ |x) at different quantiles τ .

Quantile τ in CVaR(1− τ |x) = Q(τ |x)
noise n 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

Model 5 N(0, 1) 200 0.014 0.046 0.094 0.195 0.293 0.388 0.498 0.610 0.713 0.800 0.900 0.950 0.983
500 0.012 0.049 0.098 0.198 0.303 0.399 0.497 0.597 0.692 0.777 0.884 0.938 0.983

t3/
√

3 200 0.017 0.045 0.087 0.171 0.273 0.386 0.489 0.590 0.685 0.804 0.904 0.946 0.984
500 0.012 0.056 0.111 0.219 0.314 0.405 0.503 0.604 0.698 0.811 0.896 0.942 0.992

Model 6 N(0, 1) 200 0.019 0.055 0.103 0.202 0.301 0.399 0.502 0.605 0.703 0.801 0.898 0.948 0.982
500 0.012 0.051 0.101 0.196 0.299 0.404 0.506 0.604 0.705 0.805 0.904 0.954 0.990

t3/
√

3 200 0.023 0.063 0.110 0.208 0.302 0.408 0.503 0.601 0.695 0.794 0.893 0.938 0.978
500 0.012 0.048 0.096 0.200 0.302 0.402 0.504 0.600 0.711 0.808 0.904 0.955 0.988

Model 7 N(0, 1) 200 0.019 0.061 0.111 0.207 0.304 0.409 0.505 0.601 0.698 0.801 0.902 0.949 0.982
500 0.011 0.056 0.106 0.207 0.303 0.402 0.497 0.597 0.698 0.797 0.894 0.945 0.985

t3/
√

3 200 0.019 0.062 0.112 0.213 0.309 0.414 0.517 0.609 0.707 0.802 0.899 0.953 0.986
500 0.015 0.053 0.094 0.189 0.283 0.385 0.481 0.581 0.683 0.790 0.885 0.939 0.986

2.5.3 Comparison with parametric distribution based competi-
tors

Many existing VaR methods use parametric distribution for the noise εi in the
model. For example, the EWMA in RiskMetrics of J.P. Morgan (1994) uses
standard Normal distribution. Different approaches have been proposed to model
the observed heavy-tail and asymmetric returns, including the Student-t distribution,
Laplace-distribution based robust-EWMA in Guermat and Harris (2001), and the
asymmetric-Laplace distribution based skewed-EWMA in Gerlach, Lu and Huang
(2013). Both the proposed semiparametric approach and the aforementioned
existing methods require a parametric specification on the model structure, but
our semiparametric approach does not impose any parametric-distribution on the
noises.

To appreciate the advantage of the nonparametric distribution approach (i.e., us-
ing the sample quantile in (2.11)), we compare it with three parametric distribution
based methods:

(i) Fit Normal distribution using maximum likelihood method.

(ii) Fit Student-t distribution using maximum likelihood method.

(iii) Fit asymmetric Laplace distribution using maximum likelihood method (Ger-
lach, Lu and Huang, 2013). This includes the Laplace-distribution (Guermat
and Harris, 2001) as a special case.
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We compare the performance of these methods in estimating the τ -th quantile,
denoted by Qε(τ), of the noise distribution when the noise εi comes from five
distributions: N(0, 1), t3/

√
3, Laplace/

√
2 (the scaled Laplace with the factor 1/

√
2

making the variance one), Normal mixture 0.5N(0, 0.5)+0.5N(0, 1.5), and standard
exponential minus 1. All five distributions have variance one. In all settings we use
sample size n = 1000.

For the nonparametric sample quantile Q̂ε(τ) in (2.11), we define its empirical
mean squared error (MSE) as

MSE{Q̂ε(τ)} = 1
1000

1000∑
`=1

[Q̂(`)
ε (τ)−Qε(τ)]2,

where Q̂(`)
ε (τ) is the estimate based on the `-th realization. The MSE for the three

parametric-distribution methods is calculated similarly. As in (2.46), we define the
relative MSE (RMSE) of Q̂ε(τ) relative to a parametric method as

RMSE = MSE{parametric method}
MSE{Q̂ε(τ)}

. (2.47)

A value of RMSE ≥ 1 indicates better MSE performance of the nonparametric
distribution method.

Table 3 summarizes the RMSE results for different τ . When the noise distribu-
tion is correctly specified, the parametric-distribution method works well; however,
for mis-specified noise distribution, the parametric-distribution methods may suffer
from seriously poor performance. By contrast, the nonparametric distribution
method yields reasonable performance in all cases.
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Table 3: RMSE [see (2.47)] of the proposed nonparametric distribution method relative to three
parametric-distribution (Normal, Student-t, and asymmetric-Laplace (ALD)) based competitors
in the presence of different noise distributions: N(0, 1), t3/

√
3, standard Laplace/

√
2 with variance

one, Normal mixture 0.5N(0, 0.5) + 0.5N(0, 1.5), and standard exponential minus 1. Numbers ≥ 1
indicate better performance of the proposed nonparametric distribution method. For convenience,
numbers ≥ 100 are marked as ∞.

Quantile τ in CVaR(1− τ |x) = Q(τ |x)
noise Method 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
N(0, 1) Normal 0.27 0.55 0.62 0.66 0.68 0.66 0.66 0.66 0.68 0.65 0.63 0.53 0.27

Student-t 0.36 0.54 0.68 0.75 0.72 0.67 0.63 0.66 0.69 0.73 0.67 0.53 0.36
ALD 45.66 9.15 0.90 6.68 8.35 3.84 0.16 3.80 8.21 6.58 0.91 9.24 46.80

t3/
√

3 Normal 2.50 16.72 45.77 70.69 47.36 14.17 1.56 14.18 46.97 70.20 47.17 16.28 2.62
Student-t 0.34 0.36 0.48 0.71 0.80 0.81 0.81 0.82 0.81 0.72 0.50 0.37 0.34
ALD 0.35 2.21 3.34 1.50 1.10 1.08 0.42 1.07 1.07 1.45 3.40 2.24 0.35

Laplace/
√

2 Normal 4.19 0.49 4.94 19.24 23.36 12.29 1.83 12.19 22.71 18.35 4.96 0.52 4.22
Student-t 0.81 1.05 1.01 0.67 1.68 2.05 1.21 2.08 1.67 0.66 1.02 1.09 0.82
ALD 0.28 0.55 0.66 0.67 0.61 0.54 0.49 0.54 0.61 0.66 0.68 0.59 0.29

Normal mixture Normal 1.77 0.44 1.24 2.95 2.31 1.22 0.79 1.31 2.56 3.21 1.51 0.43 1.74
Student-t 0.40 0.49 0.59 0.82 0.83 0.77 0.75 0.76 0.83 0.82 0.59 0.49 0.40
ALD 10.93 3.40 0.86 3.11 4.89 2.67 0.20 2.62 4.89 3.12 0.86 3.44 10.77

Exponential −1 Normal ∞ ∞ ∞ 19.35 34.41 84.45 95.26 76.85 46.08 15.23 0.81 7.17 16.84
Student-t ∞ ∞ ∞ 36.11 2.11 4.53 2.27 2.09 9.13 24.43 38.29 35.09 7.82
ALD ∞ ∞ ∞ 43.73 ∞ ∞ ∞ 41.36 13.43 1.67 2.09 5.36 5.59

2.5.4 Performance under model mis-specification

The proposed semiparametric approach requires a parametrization on the model
structure, and below we examine its performance under model mis-specification.

We consider the following model mis-specification:

true model: GJR-GARCH Model 7 with (ω, α, β) = (0.1, 0.3, 0.5) and different γ;
mis-specified model: standard GARCH Model 5.

If γ = 0, then GJR-GARCH reduces to the standard GARCH model; in general, the
parameter γ measures the deviation between the true model and the mis-specified
model. As in Section 2.5.2, we examine the empirical coverage rate under the
mis-specified model for different γ, noise distribution (normal, t3/

√
3), and sample

size (n = 200, 500). Since the results for other settings were similar, Table 4 presents
the results for γ = 0.0, 0.2, 0.4, 0.6, 0.8, normal noise, and sample size n = 200. We
see that the method performs reasonably well under model mis-specification.
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Table 4: Empirical coverage rate of the proposed semiparametric estimate of CVaR(1− τ |x) =
Q(τ |x) under model mis-specification. True data-generating model is the GJR-GARCH Model 7
with (ω, α, β) = (0.1, 0.3, 0.5) and different choices of γ, the mis-specified model is the GARCH
Model 5, and γ is the deviation parameter. The row γ = 0.0 is copied from Table 2.

Quantile τ in CVaR(1− τ |x) = Q(τ |x)
γ 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
0.0 0.014 0.046 0.094 0.195 0.293 0.388 0.498 0.610 0.713 0.800 0.900 0.950 0.983
0.2 0.016 0.057 0.099 0.198 0.302 0.395 0.475 0.587 0.693 0.783 0.890 0.939 0.984
0.4 0.017 0.041 0.095 0.189 0.281 0.401 0.500 0.601 0.702 0.790 0.918 0.945 0.981
0.6 0.021 0.061 0.115 0.212 0.315 0.406 0.506 0.605 0.714 0.802 0.903 0.956 0.977
0.8 0.019 0.062 0.113 0.206 0.295 0.394 0.501 0.613 0.710 0.798 0.903 0.949 0.971

In our numerical studies, we also examined other model mis-specifications. For
example, the true data-generating model is

AR-GARCH: Yi = γYi−1 + σiεi σ2
i = ω + αY 2

i−1 + βσ2
i−1.

The mis-specified model is the standard GARCH Model 5. Using different choices
of γ, we found that the method still yields satisfactory performance. To keep the
length, we did not include the results here.

2.5.5 Asymptotic versus bootstrap confidence intervals

The finite sample performance of CVaR confidence intervals has not been examined
in the literature; in this section we compare the performance of the asymptotic
confidence interval and the bootstrap confidence interval for CVaR: the asymp-
totic confidence interval is based on the asymptotic normality in Theorem 2 with
estimated limiting variance in Section 2.1.3, and the bootstrap confidence inter-
val is constructed using the procedure in Section 2.3 with M = 1000 bootstrap
replications. The empirical coverage probability is the proportion of confidence
intervals among 1000 realizations of (1 − α) confidence intervals that cover the
true CVaR(1 − τ |x). Table 5 presents the results for the most typical setting
1 − τ = 5% and 1 − α = 90%, 95%, 99%, at different values of x. Overall, the
bootstrap confidence interval delivers much better performance and has empirical
coverage probabilities close to the nominal levels. Given the easy implementa-
tion and superior empirical performance, we recommend the bootstrap confidence
interval in practice.
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Table 5: Empirical coverage probability of asymptotic and bootstrap confidence intervals (CI)
for CVaR(0.05|x).

(Model 1) CVaR(0.05|x): x at different percentiles of covariates {Yi−1}
Asymptotic CI for CVaR(0.05|x) Bootstrap CI for CVaR(0.05|x)

CI level x at different percentiles x at different percentiles
noise 1− α 25th 50th 75th 90th 95th 99th 25th 50th 75th 90th 95th 99th
N(0, 1) 90% 85.8 83.3 82.5 82.6 84.4 85.2 90.4 88.7 88.5 87.8 88.2 88.2

95% 91.7 89.3 88.7 89.2 90.0 90.7 94.6 94.1 93.9 94.1 94.9 95.1
99% 96.0 95.7 95.5 96.2 96.8 97.6 98.2 97.8 97.6 98.7 98.6 98.9

t3/
√

3 90% 83.2 82.2 82.8 83.2 83.2 86.2 90.0 89.8 90.4 91.3 92.0 92.2
95% 87.6 88.0 87.6 88.6 90.0 91.4 94.1 94.4 95.2 94.8 95.8 95.6
99% 94.2 94.2 94.6 96.0 96.6 97.2 98.8 98.4 98.4 98.6 98.8 98.8

(Model 2) CVaR(0.05|(x1, x2)): x1 at different percentiles of {Yi−1}, x2 at median of {Yi−2}
Asymptotic CI for CVaR(0.05|(x1, x2)) Bootstrap CI for CVaR(0.05|(x1, x2))

CI level x1 at different percentiles, x2 at median x1 at different percentiles, x2 at median
noise 1− α 25th 50th 75th 90th 95th 99th 25th 50th 75th 90th 95th 99th
N(0, 1) 90% 90.3 89.6 88.7 88.2 88.2 88.7 91.8 91.7 91.4 91.3 91.9 91.0

95% 94.7 93.5 92.6 93.1 93.3 94.4 95.9 95.8 96.3 95.6 95.6 95.8
99% 98.6 97.2 96.5 97.5 98.1 97.9 99.3 98.8 98.1 98.1 98.6 98.6

t3/
√

3 90% 83.2 82.8 82.8 84.4 85.0 85.6 87.4 87.1 87.0 88.4 90.2 89.8
95% 88.2 87.0 86.6 89.0 89.2 91.4 93.2 93.8 93.6 92.8 92.4 93.6
99% 94.2 93.0 92.6 93.2 94.4 96.6 98.0 97.0 97.4 97.6 98.2 98.8

(Model 3) CVaR(0.05|x): x at different percentiles of {Yi−1}
Asymptotic CI for CVaR(0.05|x) Bootstrap CI for CVaR(0.05|x)

CI level x at different percentiles x at different percentiles
noise 1− α 25th 50th 75th 90th 95th 99th 25th 50th 75th 90th 95th 99th
N(0, 1) 90% 100 100 99.8 97.7 94.2 85.0 89.0 87.3 88.3 89.1 88.3 89.0

95% 100 100 100 99.8 98.5 91.7 93.6 93.6 94.2 93.3 93.6 95.0
99% 100 100 100 100 100 97.7 97.7 98.8 98.3 98.1 98.3 98.8

t3/
√

3 90% 99.3 99.3 98.3 96.3 94.1 86.6 85.6 90.7 90.2 86.3 86.1 85.9
95% 99.8 99.8 99.0 98.0 97.6 91.0 91.4 94.1 94.2 91.2 89.7 89.9
99% 100 100 99.5 99.0 98.5 95.8 97.8 98.0 97.3 97.3 96.8 96.1

(Model 4) CVaR(0.05|(x1, x2)): x1 at different percentiles {Yi−1}, x2 at median of {Ui}
Asymptotic CI for CVaR(0.05|(x1, x2)) Bootstrap CI for CVaR(0.05|(x1, x2))

CI level x1 at different percentiles, x2 at median x1 at different percentiles, x2 at median
noise 1− α 25th 50th 75th 90th 95th 99th 25th 50th 75th 90th 95th 99th
N(0, 1) 90% 100 100 99.7 99.2 98.3 95.7 88.8 89.6 88.5 87.5 87.3 88.2

95% 100 100 99.8 99.7 100 98.8 95.3 94.1 94.4 92.8 93.1 93.2
99% 100 100 100 100 100 100 99.2 98.9 98.2 97.2 96.0 96.0

t3/
√

3 90% 100 100 100 98.5 95.5 86.2 88.2 89.1 89.9 83.4 80.3 75.7
95% 100 100 100 99.3 97.2 89.9 93.7 95.9 95.1 91.7 87.4 83.8
99% 100 100 100 99.8 99.4 95.5 98.5 98.9 98.3 97.4 95.7 92.0

2.6 An Empirical Application to S&P 500 Index
As an illustration, we consider S&P 500 index daily loss defined as Yi = −[log(Si)−
log(Si−1)], where Si is the index at day i. Figure 2.1 is a plot of the loss series {Yi}
over the ten-year time period January 2004–December, 2013. There are n = 2516
observations. The plot clearly shows volatility clustering, so GARCH models are
natural choices.
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Figure 2.1. Time series plot of daily S&P 500 index loss {Yi}n
i=1 (i.e., negative logarithm

return) during the ten-year period January 2004–December, 2013.

2.6.1 Comparison under different GARCH models

We consider sequential predictions of CVaR using three GARCH models: standard
GARCH, EGARCH, and GJR-GARCH, as described in Model 5–7 in Section 2.5.2.
For a given time i, based on the historical data Xi = {Yj}j≤i−1, we apply our
semiparametric CVaR method to obtain the estimate ĈVaR(1 − τ |Yj, j ≤ i − 1)
for the “unobservable” loss Yi. Repeating the procedure for i = n− (J − 1), n−
(J − 2), . . . , n, we obtain the sequentially predicted CVaR for the last J = 1000
daily losses, which roughly corresponds to the daily losses during the last four years
2010–2013. Cai and Wang (2008) studied daily loss over the period 1998–2006 and
nonparametrically estimated the CVaR curve for Yi conditioning on Yi−1 = x. In
our setting, due to the non-Markovian structure of GARCH models, it is infeasible
to use their nonparametric approach.

Using the three GARCH models, Figure 2.2 plots the corresponding sequential
CVaR predictions at level 1 − τ = 10% (top plot), 5% (middle plot), and 1%
(bottom plot). From Figure 2.2, at each level, the three CVaR curves based on
standard GARCH, EGARCH, and GJR-GARCH exhibit quite similar pattern,
indicating the robustness of our method.

Despite the vast literature on VaR/CVaR estimation, their confidence interval
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Figure 2.2. Sequentially predicted semiparametric CVaR for daily losses during 2010–
2013, using standard GARCH (solid curve), EGARCH (dashed curve), and GJR-GARCH
(dotted curve) models. Top, middle, and bottom plots correspond to level 1 − τ =
10%, 5%, 1%, respectively.

construction has been largely ignored. Using the bootstrap procedure in Section
2.3, Figure 2.3 presents the semiparametrically estimated CVaR at level 5% and the
corresponding pointwise 95% confidence interval. Due to the quite similar pattern
of CVaR using different GARCH models, we only report the result for standard
GARCH.
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Figure 2.3. Sequentially predicted semiparametric CVaR (solid curve) at level 5% for daily
losses during 2010–2013 using standard GARCH. The dotted curves are the pointwise bootstrap
95% confidence interval.

2.6.2 Comparison with some existing methods

We compare our semiparametric CVaR predictions with three parametric-distribution
based approaches: the EWMA in RiskMetrics of J.P. Morgan (1994), the robust-
EWMA in Guermat and Harris (2001), and the skewed-EWMA in Gerlach, Lu
and Huang (2013). The EWMA is based on IGARCH model and RiskMetrics
recommends the decay factor 0.94 for daily observations. For the robust-EWMA,
Guermat and Harris (2001) found that a decay factor in the range [0.92, 0.95]
performs well, so we use the same decay factor 0.94 as the EWMA. To implement
the skewed-EWMA in Gerlach, Lu and Huang (2013), we use their procedure
with daily re-estimated parameters, including both the time-varying parameters
in the asymmetric-Laplace distribution and the time-independent decay factors.
Figure 2.4 plots the sequential CVaR predictions using the aforementioned four
methods: the semiparametric method with standard GARCH (as shown in Figure
2.2, EGARCH and GJR-GARCH lead to similar curves and are omitted), EWMA,
robust-EWMA, and skewed-EWMA. The four methods lead to quite similar CVaR

35



curves.

2010 2011 2012 2013 2014

0
.0

0
0

.0
2

0
.0

4

Level 10%

Time (year)

S
&

P
 5

0
0

 L
o

ss

2010 2011 2012 2013 2014

0
.0

0
0

.0
3

0
.0

6

Level 5%

Time (year)

S
&

P
 5

0
0

 L
o

ss

2010 2011 2012 2013 2014

0
.0

0
0

.0
6

0
.1

2

Level 1%

Time (year)

S
&

P
 5

0
0

 L
o

ss

Figure 2.4. Comparison of sequentially predicted CVaR for daily losses during 2010–
2013, using four methods: semiparametric method with standard GARCH (solid curve),
the EWMA method (dotted curve), the robust-EWMA method (dashed curve), and the
skewed-EWMA method (dotdashed curve). Top, middle, and bottom plots correspond to
1− τ = 10%, 5%, 1%, respectively.

To numerically examine the accuracy of the four methods in predicting CVaR(1−
τ |Yj, j ≤ i− 1) at times n− 999 ≤ i ≤ n, first we consider the empirical violation
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rates (i.e., the empirical proportion that the observed loss exceeds the predicted
CVaR):

the number of n− 999 ≤ i ≤ n with Yi ≥ ĈVaR(1− τ |Yj, j ≤ i− 1)
1000 × 100%.

Table 6 presents the empirical violation rates for the four methods at nominal levels
1− τ = 10%, 5%, 1%. We can see: (i) The semiparametric method with EGARCH
and the skewed-EWMA have comparable and top performance; (ii) The EWMA
has the worst performance and substantially underestimates the risk at level 1%
and 5%, i.e., the empirical violation rate is much higher than the nominal level; and
(iii) the other methods rank in the middle. For the semiparametric method, the
empirical violation rates are generally quite close to the nominal levels. Therefore,
although the true CVaR is unknown, we conclude that the predicted CVaR should
be reasonably close to the true CVaR.

Table 6: Empirical violation rates for four methods: the proposed semiparametric method with
different GARCH models (standard GARCH, EGARCH, GJR-GARCH), the EWMA method, the
robust-EWMA method, and the skewed-EWMA method. The bracketed number (2.5%) means
that the violation rate is different from the nominal level, according to the unconditional coverage
test at significance level 5%.

Level 1− τ
method 1% 5% 10%
semiparametric standard GARCH 1.3% 5.0% 9.0%

EGARCH 1.1% 5.1% 9.5%
GJR-GARCH 1.6% 4.8% 9.2%

parametric EWMA (2.5%) 6.1% 9.0%
robust-EWMA 0.8% 5.6% 9.7%
skewed-EWMA 1.1% 5.6% 10.0%

Next, as in Gerlach, Lu and Huang (2013), we consider two statistical tests:

• (Unconditional coverage test). Denote by Jv the number of violations Yi ≥
ĈVaR(1− τ |Yj, j ≤ i− 1). Under the null hypothesis that the true violation
rate is 1− τ and the violations are independent, the binomial-distribution
induced likelihood ratio test

2[(J − Jv) log(1− Jv/J) + Jv log(Jv/J)− (J − Jv) log(τ)− Jv log(1− τ)]

is asymptotically χ2(1)-distributed. In Table 6, bracketed number indicates
rejection of the null hypothesis at significance level 5%. Thus, EWMA fails
the test at nominal level 1− τ = 1% while other methods all pass the test.
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• (Dynamic quantile test.) This test simultaneously tests the joint null hypoth-
esis of correct violation rate and that the violations are uncorrelated over
time. The idea is to regress the de-meaned ”hit” variables on lagged ”hit”
variables and test for zero coefficients, i.e., testing for β0 = · · · = βp = 0 in
the linear regression

Hiti ∼ β0 +
p∑
r=1

βrHiti−r, Hiti := 1
Yi≥ĈVaR(1−τ |Yj ,j≤i−1) − (1− τ). (2.48)

Here p is the order of the lagged regression. Denote by Y and X the corre-
sponding response vector and covariate matrix of the above linear regression.
Under the null hypothesis, [τ(1− τ)]−1Y TX(XTX)−1XTY is asymptotically
χ2(p+ 1) distributed. See Engle and Manganelli (2004) for more details.

At significance level 5%, Table 7 presents the results of the dynamic quantile
test with different choices of order p in (2.48), where ”N” indicates rejection
of the null hypothesis. The semiparametric method with EGARCH or GJR-
GARCH and the skewed-EWMA have the best performance and pass the test
for all choices of order p = 1, 2, 3, 4 and nominal levels 1− τ = 10%, 5%, 1%,
while the EWMA has the worst performance.

Combining the above analysis from violation rates, unconditional coverage test,
and dynamic quantile test, we conclude that the semiparametric method with
EGARCH and the skewed-EWMA have the best performance among the methods
considered.

Table 7: Dynamic quantile test for the accuracy of the predicted ĈVaR(1− τ |Yj , j ≤ i− 1) at
times n− 999 ≤ i ≤ n using the proposed semiparametric method with different GARCH models
(standard GARCH, EGARCH, GJR-GARCH), the EWMA method, the robust-EWMA method,
and the skewed-EWMA method. ”N” represents rejection of the joint null hypothesis of correct
violation rate and that the violations are not correlated over time, at significance level 5%.

Level 1− τ
order p = 1 order p = 2 order p = 3 order p = 4

method 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
semiparametric standard GARCH N N N

EGARCH
GJR-GARCH

parametric EWMA N N N N N N
robust-EWMA N N N
skewed-EWMA
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2.6.3 Conditional VaR vs unconditional VaR

Another popular approach is the unconditional or marginal VaR, which uses the
quantile of the marginal distribution of the losses. To estimate unconditional VaR,
one can use parametric or nonparametric methods. For parametric methods, one
imposes some parametric distribution, denoted by Fθ(x), for the losses, then the
(1 − τ) unconditional VaR is F−1

θ̂
(τ), where θ̂ is an estimate of θ. For example,

a simple choice is the N(µ, σ2) distribution with µ an σ2 estimated from the
sample. For nonparametric or historical simulation method, one uses the sample
τ -th quantile of the losses to estimate the (1− τ) unconditional VaR.

Table 8 summarizes the empirical violation rates for the unconditional VaR
using the aforementioned four methods. Comparing Table 6 and Table 8, we
can clearly see the overall better performance of the conditional VaR over the
unconditional VaR. It is generally believed that financial returns are uncorrelated
but not independent. The marginal distribution ignores such dependence and thus
leads to inferior performance.

Table 8: Empirical violation rates for unconditional VaR using four methods: Normal distribution,
Student-t distribution, asymmetric Laplace distribution, and nonparametric estimate (historical
simulation). The bracketed numbers mean that the violation rate is significantly (significance
level 5%) different from the nominal level.

Level 1− τ
method 1% 5% 10%
Normal 0.9% (2.9%) (4.6%)
Student-t 0.7% 4.6% 10.2%
asymmetric-Laplace 0.7% 3.7% 8.2%
nonparametric estimate 0.4% (3.5%) 8.3%

2.7 Assumptions and Proofs of Theorems
Throughout C1, C2, c, c1, c2, . . . , are generic constants that may vary from line to
line.

2.7.1 Technical conditions and some preliminary results

We list some technical conditions and preliminary results used in the proof of our
theorems.
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Assumption 3. In model (2.3): (i) the innovations {εi}i∈Z are i.i.d.. Denote
by Fi the sigma-algebra generated by {Xi+1,Xi, . . . ; εi, εi−1, . . .}. For each i, εi
is independent of Fi−1. (ii) {(Xi, εi)}i∈Z is stationary and α-mixing with mixing
coefficient αj ≤ C1j

−α for some constants 0 < C1 <∞ and α > 8 + 4k, where k is
the dimension of the parameter θ.

In Assumption 3(ii), the α-mixing condition is the most commonly used depen-
dence assumption [Fan and Yao (2003)].

Assumption 4. Recall H(θ, Yi,Xi) in (2.9). Let ε > 0 be some small constant.
(i) G(θ, ε, x) is continuously differentiable in θ and ε.
(ii) There exists C2 > 0 such that

E

[
sup

|ϑ|≤ε,z∈R
1|H(θ+ϑ,Y0,X0)−z|≤v

]
≤ C2v, for all v > 0. (2.49)

(iii) Let Ḣ(θ, Yi,Xi) be the partial derivative with respect to θ. There exists
L(Yi,Xi),

sup
|ϑ|≤ε
|Ḣ(θ + ϑ, Yi,Xi)| ≤ L(Yi,Xi) and L(Yi,Xi) ∈ L1. (2.50)

(iv) Define

J(ϑ, z) = P{H(θ + ϑ, Y0,X0) ≤ z}, ϑ ∈ Rk, z ∈ R. (2.51)

Let J̇(ϑ, z) and J̈(ϑ, z) be the gradient vector and Hessian matrix of J(ϑ, z) with
respect to ϑ. J̇(0, z) is continuous in z and |J̈(ϑ, z)| is bounded on |ϑ| ≤ ε, z ∈ R.

Intuitively, (2.49) asserts that the probability mass of H(θ + ϑ, Y0,X0) on
[z − v, z + v] is O(v) uniformly, which is reasonable if the density is uniformly
bounded. The condition (2.50) is used to control errors in Taylor’s expansions. In
view of ε̂i = H(θ̂, Yi,Xi) in (2.10), J(ϑ, z) in (2.51) measures how the distribution
function of ε̂i changes in response to the departure ϑ from the true parameter θ.
In particular, J(0, z) = P{ε0 ≤ z}.

Assumption 5. Density fε(z) of εi is continuous, bounded, positive at z = Qε(τ).
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Assumption 5∗. Density fε(z) of εi is continuous, bounded, positive on the interval
[Qε(δ),Qε(1− δ)].

Definition 1. Recall Fi in Assumption 3. We say that a function g(z,Fi) (may
be vector or matrix valued) is stochastically continuous at a point z∗ if

lim
ε→0

E[G(ε,Fi)] = 0, where G(ε,Fi) = sup
|z−z∗|≤ε

|g(z,Fi)− g(z∗,Fi)|. (2.52)

In (2.52), G(ε,Fi) quantifies the maximal fluctuation of g(z,Fi) in the ε-
neighborhood of z∗, and the condition limε→0 E[G(ε,Fi)] = 0 asserts that the
maximal fluctuation asymptotically vanishes under expectation, which suggests
“stochastic continuity”. The stochastic continuity extends the continuity of deter-
ministic functions to that of stochastic functions.

Assumption 6. Ġθ(θ, ε,Xi)/Ġε(θ, ε,Xi) is stochastically continuous at (θ,Qε(τ)).
For H(θ, Yi,Xi) in (2.9) and D(θ, εi,Xi) in Assumption 2, write

Di(ϑ) = D(ϑ,H(ϑ, Yi,Xi),Xi),

with Di(ϑ) and Di(ϑ)Di(ϑ)T being stochastically continuous at ϑ = θ.

Lemma 1. Suppose that g(z,Fi) is stochastically continuous at z = z∗ and that
g(z∗,Fi) ∈ L1. Then for any random sequence zn

p→ z∗, n−1∑n
i=1 g(zn,Fi) =

E[g(z∗,F0)] + op(1).

Proof. Let ε > 0 be any given small number. Since zn
p→ z∗, with probability

tending to one, |zn − z∗| ≤ ε. On the event {|zn − z∗| ≤ ε} [recall G(ε,Fi) defined
in (2.52)],∣∣∣∣∣ 1n

n∑
i=1

g(zn,Fi)−
1
n

n∑
i=1

g(z∗,Fi)

∣∣∣∣∣ ≤ 1
n

n∑
i=1

G(ε,Fi)
p→ E[G(ε,F0)], (2.53)

where the last convergence follows from the ergodic theorem (the mixing condition
in Assumption 3 implies ergodicity). The result then follows from (2.52)–(2.53)
and the ergodic theorem n−1∑n

i=1 g(z∗,Fi)
p→ E[g(z∗,F0)]. ♦

Lemma 2. Let z and z′ be any real numbers. Then for any c > 0,

|1z≤0 − 1z′≤0| ≤ 21|z−z′|≥c + 1|z′|<c. (2.54)

41



Proof. Notice that |1z≤0 − 1z′≤0| = 1z≤0<z′ + 1z′≤0<z. The result then follows from

1z≤0<z′ = 1z≤0<z′,|z−z′|≥c + 1z≤0<z′,|z−z′|<c ≤ 1|z−z′|≥c + 10<z′<c,

and similarly 1z′≤0<z ≤ 1|z−z′|≥c + 1−c<z′≤0. ♦

Lemma 3. let {ξi}i∈Z be a stationary α-mixing process with mixing coefficient
αj, j ∈ N. Assume E(ξ0) = 0 and |ξi| ≤ c for some c. Then, for ` = 1, . . . , bn/2c
and z > 0,

P

{∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣ > z

}
≤ 4 exp

{
− z2`

144n2E(ξ2
0) + 4czn

}
+ 22`αbn/(2`)c

√
1 + 4cn

z
.

(2.55)

Proof. Theorem 2.18 in Fan and Yao (2003) presents a slightly different version of
(2.55) with the term 144n2E(ξ2

0) replaced by 16n2Γr/r2, where r = n/(2`),

Γr = max
0≤j≤2`−1

E
{

(bjrc+ 1− jr)ξ1 + ξ2 + · · ·+ ξs + (jr + r − bjr + rc)ξs+1

}2
,

and s = b(j + 1)rc − bjrc. The result then follows from the Cauchy-Schwarz
inequality Γr ≤ (s+ 1)E(ξ2

1 + · · ·+ ξ2
s+1) ≤ br + 2c2E(ξ2

0) ≤ 9r2E(ξ2
0). ♦

2.7.2 Proof of Theorem 1

Lemma 4. Recall J(ϑ, z) and J̇(ϑ, z) in Assumption 4(iv). Then

J̇(0, z) = fε(z)E
[
Ġθ(θ, z,X0)
Ġε(θ, z,X0)

]
. (2.56)

Proof. Under Assumption 1,

{H(θ + ϑ, Y0,X0) ≤ z} ⇔ {Y0 ≤ G(θ + ϑ, z,X0)}
⇔ {G(θ, ε0,X0) ≤ G(θ + ϑ, z,X0)}
⇔ {ε0 ≤ H(θ,G(θ + ϑ, z,X0),X0)}.
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Thus,

J(ϑ, z) = P{ε0 ≤ H(θ, u,X0)} = E[Fε(H(θ, u,X0))], u = G(θ + ϑ, z,X0).

By the chain rule,

∂J(ϑ, z)
∂ϑ

= E

[
fε(H(θ, u,X0))∂H(θ, u,X0)

∂u

∂u

∂ϑ

]
.

Note that

∂H(θ, u,X0)/∂u = 1/Ġε(θ,H(θ, u,X0),X0) and
∂u/∂ϑ = Ġθ(θ + ϑ, z,X0).

When ϑ = 0, H(θ, u,X0) = H(θ,G(θ, z,X0),X0) = z. This completes the proof. ♦

Proof of Theorem 1. To reflect the dependence of F̂ε(z) on θ̂ and in view of
ε̂i = H(θ̂, Yi,Xi), write ϑ as the departure from the true parameter θ and define

F̂ε(ϑ, z) = 1
n

n∑
i=1

1H(θ+ϑ,Yi,Xi)≤z. (2.57)

Then F̂ε(z) = F̂ε(θ̂−θ, z). By the expression for J̇(0, z) in (2.56) and the assumption
θ̂ − θ = Op(n−1/2), in order to prove (2.13), it suffices to prove that, for all given
c1 > 0,

sup
|ϑ|≤c1/

√
n,|z|≤c

∣∣∣∣∣F̂ε(ϑ, z)− F̂ε(0, z)− J̇(0, z)Tϑ

∣∣∣∣∣ = op(n−1/2). (2.58)

For simplicity we assume that: (i) k = 1, i.e., ϑ is scalar-valued, (ii) c1 = c = 1,
and (iii) ϑ ∈ [0, 1/

√
n] and z ∈ [0, 1], since the general k-dimensional case follows

similarly. Let

ξi(ϑ, z) = 1H(θ+ϑ,Yi,Xi)≤z − 1H(θ,Yi,Xi)≤z. (2.59)

Recall J(ϑ, z) in (2.51). By Taylor’s expansion, E[ξi(ϑ, z)] = J(ϑ, z) − J(0, z) =
J̇(0, z)Tϑ+O(n−1) uniformly on ϑ ∈ [0, 1/

√
n], z ∈ [0, 1]. Thus, to prove (2.58), it
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suffices to prove

sup
(ϑ,z)∈[0,1/

√
n]×[0,1]

|M(ϑ, z)| = op(
√
n), where M(ϑ, z) =

n∑
i=1

{ξi(ϑ, z)− E[ξi(ϑ, z)]}.

(2.60)

To prove (2.60), we adopt a chain argument. Let N = bn1+εc with ε > 0 to be
determined later, and consider the evenly spaced points

ϑj = jω1 with ω1 = 1√
nN

, zj = jω2 with ω2 = 1
N
, j = 0, 1, . . . , N.

The (N+1)2 grid points {(ϑj, zj′)}Nj,j′=0 partition [0, 1/
√
n]× [0, 1] into N2 cells. For

each (ϑ, z) ∈ [0, 1/
√
n]×[0, 1], there exists one grid point (ϑj, zj′) such that |ϑ−ϑj| ≤

ω1 and |z − zj′ | ≤ ω2. Thus, by |M(ϑ, z)| ≤ |M(ϑj, zj′)| + |M(ϑ, z) −M(ϑj, zj′)|,
we have

sup
(ϑ,z)∈[0,1/

√
n]×[0,1]

|M(ϑ, z)| ≤ max
0≤j,j′≤N

|M(ϑj, zj′)|+Rn, (2.61)

where

Rn = sup
Ω
|M(ϑ, z)−M(ϑ′, z′)| with Ω = {|ϑ− ϑ′| ≤ ω1, |z − z′| ≤ ω2}.(2.62)

It is easy to see that

sup
Ω
|ξi(ϑ, z)− ξi(ϑ′, z′)| ≤ 2 sup

Ω

[
|1H(θ+ϑ,Yi,Xi)≤z − 1H(θ+ϑ′,Yi,Xi)≤z′ |

]
. (2.63)

Therefore, by (2.60), (2.62) and (2.63),

E(Rn) ≤ 4nE
{

sup
Ω

[
|1U(ϑ)−z≤0 − 1U(ϑ′)−z′≤0|

]}
with U(ϑ) = H(θ + ϑ, Y0,X0)

≤ 4nE
{

sup
Ω

[
21|[U(ϑ)−U(ϑ′)]−(z−z′)|≥λ + 1|U(ϑ)−z|<λ

]}
, (2.64)

where the second “≤” follows from Lemma 2 and λ > 0 is any given number. By
Assumption 4(iii), on Ω, |[U(ϑ)− U(ϑ′)]− (z − z′)| ≤ ω1L(Y0,X0) + ω2. Thus, by
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(2.64),

E(Rn) ≤ 8nP{ω1L(Y0,X0) + ω2 ≥ λ}+ 4nE
{

sup
Ω

1|U(ϑ)−z|<λ

}
≤ 8nω1E|L(Y0,X0)|+ ω2

λ
+O(nλ), (2.65)

where, in the second “≤”, the first term follows from Markov inequality and
the second term follows from Assumption 4(ii). Letting λ = √ω2, we have Rn =
Op(n

√
ω2) = op(

√
n), where the last equality follows from ω2 = N−1 andN = bn1+εc

with ε > 0.

By (2.61), it remains to prove max0≤j,j′≤N |M(ϑj, zj′)| = op(
√
n). Note that,

in (2.59), ξ1(ϑ, z) = −1, 0, or +1, and we in each of the three cases always have
ξ2

1(ϑ, z) = |ξ1(ϑ, z)| = |1U(ϑ)−z≤0−1U(0)−z≤0| with U(ϑ) defined in (2.64). Therefore,
by Lemma 2,

var{ξ1(ϑ, z)} ≤ E|1U(ϑ)−z≤0 − 1U(0)−z≤0|
≤ E

[
21|U(ϑ)−U(0)|≥n−1/4 + 1|U(ϑ)−z|<n−1/4

]
. (2.66)

By Assumption 4(iii), |U(ϑ)− U(0)| ≤ n−1/2L(Y0,X0) on |ϑ| ≤ 1/
√
n. Applying

the latter inequality to (2.66) and by the same argument in (2.65) [i.e., Markov
inequality and Assumption 4(ii)], we obtain that, there exists some constant c2

such that

var{ξ1(ϑ, z)} ≤ c2n
−1/4, uniformly on |ϑ| ≤ 1/

√
n, z ∈ R. (2.67)

Note that |ξi(ϑ, z) − E[ξi(ϑ, z)]| ≤ 2. By Lemma 3, for any c3 > 0 and ` =
1, . . . , bn/2c,

P{|M(ϑ, z)| ≥ c3
√
n} ≤ 4 exp

(
− c2

3n`

144c2n7/4 + 8c3n3/2

)

+ 22`αbn/`c

√
1 + 8n

c3
√
n
. (2.68)

Let ` = bnβc with some β ∈ (3/4, 1) to be determined later. Recall αj ≤ C1j
−α in

45



Assumption 3(ii). Thus, from (2.68), there exists constants c4 and c5 such that

P{|M(ϑ, z)| ≥ c3
√
n} ≤ c5

[
exp{−c4n

β− 3
4}+ nβ(1+α)+ 1

4−α
]
, (2.69)

uniformly over |ϑ| ≤ 1/
√
n, z ∈ R. Recall that N = bn1+εc. By (2.69),

P

{
sup

0≤j,j′≤N
|M(ϑj, zj′)| ≥ c3

√
n

}
≤

N∑
j,j′=0

P{|M(ϑj, zj′)| ≥ c3
√
n}

= O
[
n2+2ε exp{−c4n

β− 3
4}+ n2ε+ 9

4 +β(1+α)−α
]
.

(2.70)

From Assumption 3(ii), α > 12 (k = 1), which implies 3/4 < (α − 9/4)/(1 + α).
Take any

3
4 < β <

α− 9/4
1 + α

and ε = α− 9/4− β(1 + α)
3 > 0.

Then it is easy to see that the right hand side of (2.70) goes to zero. Since c3 is
arbitrary, we conclude sup0≤j,j′≤N |M(ϑj, zj′)| = op(

√
n). This completes the proof.

♦

2.7.3 Proof of Theorem 2

Lemma 5. Let d(·, ·) be a measurable function such that d(εi,Xi) ∈ L2 and
E[d(εi,Xi)|Xi] = 0. Suppose Assumption 3 holds. Then n−1/2∑n

i=1 d(εi,Xi) ⇒
N(0,E[d2(ε0,X0)]).

Proof. Let Fi−1 be defined as in Assumption 3. By the independence between εi
and Fi−1 (Assumption 3) and the condition E[d(εi,Xi)|Xi] = 0, we have

E[d(εi,Xi)|Fi−1] = 0.

Thus, {d(εi,Xi)} are stationary martingale differences with respect to {Fi}. The
mixing condition in Assumption 3(ii) implies the ergodicity of {d(εi,Xi)}. The
result then follows from the CLT for martingales with stationary and ergodic
increments. ♦
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Proof of Theorem 2. In what follows we shall prove only the CLT in (ii) under
Assumption 2. The same argument can be used to prove the weaker assertion
Q̂(τ |x) = Q(τ |x) +Op(n−1/2) in (i) under the weaker condition θ̂ = θ +Op(n−1/2).

The empirical quantile function Q̂ε(τ) is a solution to

min
ν

n∑
i=1

ρτ (ε̂i − ν).

Here ρτ (v) = v(τ − 1v≤0) is the check function. Thus, Q̂ε(τ) is also a minimizer
of the function (as a function of ν)

∑n
i=1[ρτ (ε̂i − ν) − ρτ (ε̂i − Qε(τ))]. Let the

transformation ∆ =
√
n[ν − Qε(τ)]. Then ε̂i − ν = ε̂i − Qε(τ) − ∆/

√
n. Thus,

∆̂ :=
√
n[Q̂ε(τ)−Qε(τ)] is a minimizer of the re-parametrized minimization problem

min∆ S(∆), where

S(∆) =
n∑
i=1

[
ρτ{ε̂i −Qε(τ)−∆/

√
n} − ρτ{ε̂i −Qε(τ)}

]
.

By Knight’s identity ρτ (u − v) − ρτ (u) = −v(τ − 1u<0) +
∫ v

0 (1u≤s − 1u≤0)ds, we
can rewrite

S(∆) = − ∆√
n

n∑
i=1

[τ − 1ε̂i<Qε(τ)] +
∫ ∆√

n

0

n∑
i=1

[1ε̂i≤Qε(τ)+s − 1ε̂i≤Qε(τ)]ds. (2.71)

For the second term, by the uniform approximation of F̂ε(z) in Theorem 1, for
fixed ∆,

∫ ∆√
n

0

n∑
i=1

[1ε̂i≤Qε(τ)+s − 1ε̂i≤Qε(τ)]ds = I1 + I2 + op(1), (2.72)

where

I1 =
n∑
i=1

∫ ∆√
n

0
[1εi≤Qε(τ)+s − 1εi≤Qε(τ)]ds, (2.73)

I2 = n

∫ ∆√
n

0
[J̇(0, Qε(τ) + s)− J̇(0, Qε(τ))]T (θ̂ − θ)ds. (2.74)
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For I1, we have

E(I1) = n

∫ ∆√
n

0
[Fε(Qε(τ) + s)− Fε(Qε(τ))]ds → fε(Qε(τ))

2 ∆2, (2.75)

where the last convergence follows from the Taylor expansion Fε(Qε(τ) + s) −
Fε(Qε(τ)) = sfε(Qε(τ)) + o(s). Note that |1εi≤Qε(τ)+s − 1εi≤Qε(τ)| ≤ 1|εi−Qε(τ)|≤ |∆|√

n

uniformly on |s| ≤ |∆|/
√
n. Thus, by the i.i.d. assumption of {εi},

var(I1) =
n∑
i=1

var
{∫ ∆√

n

0
[1εi≤Qε(τ)+s − 1εi≤Qε(τ)]ds

}

≤
n∑
i=1

E


[

∆√
n

1|εi−Qε(τ)|≤|∆|/
√
n

]2
 = O(n−1/2). (2.76)

Here the last convergence follows from the continuity and boundedness of fε(z)
at z = Qε(τ), which implies P{|εi − Qε(τ)| ≤ |∆|/

√
n} = O(n−1/2). By (2.75)–

(2.76), we have I1 = ∆2fε(Qε(τ))/2 + op(1). By Assumption 2 and Lemma 5,
θ̂ − θ = Op(n−1/2). By the continuity of J̇(0, z), I2 = op(1) for each fixed ∆.
Therefore, in view of (2.71)–(2.72), the following quadratic approximation holds for
each fixed ∆:

S(∆) = S̃(∆) + op(1), S̃(∆) = − ∆√
n

n∑
i=1

[τ − 1ε̂i<Qε(τ)] + fε(Qε(τ))
2 ∆2. (2.77)

By the quadratic approximation and convexity lemma [Pollard (1991)], the mini-
mizer ∆̂ =

√
n[Q̂ε(τ)−Qε(τ)] of S(∆) has the approximation

∆̂ = argmin
∆

S̃(∆) + op(1) = 1√
nfε(Qε(τ))

n∑
i=1

[τ − 1ε̂i<Qε(τ)] + op(1). (2.78)

Recall that ∆̂ =
√
n[Q̂ε(τ)−Qε(τ)]. In (2.78), by the uniform approximation for∑n

i=1 1ε̂i<Qε(τ) in Theorem 1 and the Bahadur representation for θ̂−θ in Assumption
2, we obtain

Q̂ε(τ)−Qε(τ) = 1
n

n∑
i=1

{
τ − 1εi<Qε(τ)

fε(Qε(τ)) − E

[
Ġθ(θ,Qε(τ),X0)
Ġε(θ,Qε(τ),X0)

]T
D(θ, εi,Xi)

}

48



+op(n−1/2). (2.79)

By Lemma 5, Q̂ε(τ) = Qε(τ) +Op(n−1/2). Thus, by (2.79) and Assumptions 2 and
4(i),

G(θ̂, Q̂ε(τ), x)−G(θ,Qε(τ), x)
= Ġθ(θ,Qε(τ), x)T (θ̂ − θ) + Ġε(θ,Qε(τ), x)[Q̂ε(τ)−Qε(τ)] + op(n−1/2)

= Ġε(x,Qε(τ), x) 1
n

n∑
i=1

Wi(τ) + op(n−1/2), (2.80)

where Wi(τ) is defined in (2.16). The result then follows from (2.80) and Lemma 5.
♦

2.7.4 Proof of Theorem 3

Lemma 6. Recall f̂ε(z) in (2.17). Under the conditions in Theorem 3, f̂ε(z)
p→

fε(z) uniformly in the neighborhood of z = Qε(τ).

Proof. Let f̃ε(z) = (nhn)−1∑n
i=1K{(εi − z)/hn} be the density estimator based

on the true innovations. By the bounded derivative of K(·), there exists a constant
c1 such that

|f̂ε(z)− f̃ε(z)| ≤ 1
nhn

n∑
i=1

∣∣∣∣∣K
(
ε̂i − z
hn

)
−K

(
εi − z
hn

)∣∣∣∣∣ ≤ c1

nh2
n

n∑
i=1

|ε̂i − εi|.(2.81)

Under Assumption 4(iii) and θ̂ − θ = Op(n−1/2), we have

|ε̂i − εi| = |H(θ̂, Yi,Xi)−H(θ, Yi,Xi)| = Op(n−1/2)L(Yi,Xi). (2.82)

From (2.81)–(2.82), under condition L(Yi,Xi) ∈ L1 and nh4
n → ∞, we have

|f̂ε(z)− f̃ε(z)| = op(1) uniformly on z ∈ R. By the well-known theory for kernel
density estimator (Silverman, 1986), f̃ε(z) p→ fε(z) uniformly on compact interval,
completing the proof. ♦

Lemma 7. Under the conditions in Theorem 3, we have n−1∑n
i=1[τ −1ε̂i<Q̂ε(τ)]

p→
0.
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Proof. By Lemma 2,

|1ε̂i−Q̂ε(τ)<0 − 1εi−Qε(τ)<0| ≤ 21|(ε̂i−εi)−[Q̂ε(τ)−Qε(τ)]|≥2n−1/4 + 1|εi−Qε(τ)|≤2n−1/4

:= Ji. (2.83)

By (2.82), |ε̂i − εi| = op(n−1/2 log n)L(Yi,Xi) uniformly in i. From the proof of
Theorem 2, Q̂ε(τ) − Qε(τ) = Op(n−1/2) = op(n−1/4). Hence, with probability
tending to one, |(ε̂i − εi)− [Q̂ε(τ)−Qε(τ)]| ≤ (n−1/2 log n)L(Yi,Xi) + n−1/4, and
consequently,

Ji ≤ 21L(Yi,Xi)|≥n1/4/ logn + 1|εi−Qε(τ)|≤2n−1/4 := J i. (2.84)

Note that E[1L(Yi,Xi)|≥n1/4/ logn] ≤ EL(Yi,Xi)/(n1/4 log n)→ 0. Also, by the continu-
ity and boundedness of fε(z) at Qε(τ), E[1|ε1−Qε(τ)|≤2n−1/4 ]→ 0. Thus, E(J i)→ 0.
By (2.83)–(2.84),

1
n

n∑
i=1

[τ − 1ε̂i−Q̂ε(τ)<0] = 1
n

n∑
i=1

[τ − 1εi−Qε(τ)<0] + op(1) p→ 0, (2.85)

via the law of large numbers n−1∑n
i=1 1εi<Qε(τ)

p→ E[1ε1<Qε(τ)] = τ . ♦

Proof of Theorem 3. First, we prove W (τ) = op(1). Since θ̂ p→ θ and Q̂ε(τ) p→
Qε(τ), by the continuity of Ġθ(θ, ε, x) and Ġε(θ, ε, x) [Assumption 4(i)] and the
stochastic continuity condition in Assumption 6, from Lemma 1 we obtain

Ġθ(θ̂, Q̂ε(τ), x)
Ġε(θ̂, Q̂ε(τ), x)

− 1
n

n∑
i=1

Ġθ(θ̂, Q̂ε(τ),Xi)
Ġε(θ̂, Q̂ε(τ),Xi)

p→ Ġθ(θ,Qε(τ), x)
Ġε(θ,Qε(τ), x)

− E

[
Ġθ(θ,Qε(τ),X0)
Ġε(θ,Qε(τ),X0)

]
, (2.86)

1
n

n∑
i=1

D(θ̂, ε̂i,Xi) = 1
n

n∑
i=1

D(θ̂, H(θ̂, Yi,Xi),Xi)
p→ E[D(θ, ε0,X0)] = 0. (2.87)

By (2.86)–(2.87) and Lemmas 6–7, W (τ) = op(1).

It remains to prove n−1∑n
i=1 Ŵi(τ)2 p→ E[W1(τ)2]. Recall that Di(ϑ) =

D(ϑ,H(ϑ, Yi,Xi),Xi) in Assumption 6. Then we have D(θ̂, ε̂i,Xi) = Di(θ̂) and
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D(θ, εi,Xi) = Di(θ). By Lemma 6 and (2.86), it suffices to prove

1
n

n∑
i=1

[τ − 1ε̂i<Q̂ε(τ)]2 −
1
n

n∑
i=1

[τ − 1εi<Qε(τ)]2
p→ 0, (2.88)

1
n

n∑
i=1

1ε̂i<Q̂ε(τ)Di(θ̂)−
1
n

n∑
i=1

1εi<Qε(τ)Di(θ)
p→ 0, (2.89)

1
n

n∑
i=1

Di(θ̂)Di(θ̂)T −
1
n

n∑
i=1

Di(θ)Di(θ)T
p→ 0. (2.90)

Note that |[τ − 1ε̂i<Q̂ε(τ)]2− [τ − 1εi<Qε(τ)]2| ≤ 2|1ε̂i<Q̂ε(τ)− 1εi<Qε(τ)|. Thus, by
(2.83),∣∣∣∣∣ 1n

n∑
i=1

[τ − 1ε̂i<Q̂ε(τ)]2 −
1
n

n∑
i=1

[τ − 1εi<Qε(τ)]2
∣∣∣∣∣ ≤ 2

n

n∑
i=1

|1ε̂i<Q̂ε(τ) − 1εi<Qε(τ)|
p→ 0.

This proves (2.88).

To prove (2.89), assume without loss of generality that D(θ, εi,Xi) is scalar-
valued. By the triangle inequality and (2.83)–(2.84),∣∣∣∣∣ 1n

n∑
i=1

1ε̂i<Q̂ε(τ)Di(θ̂)−
1
n

n∑
i=1

1εi<Qε(τ)Di(θ)

∣∣∣∣∣
≤ 1

n

n∑
i=1

1ε̂i<Q̂ε(τ)|Di(θ̂)−Di(θ)|+
1
n

n∑
i=1

|1ε̂i<Q̂ε(τ) − 1εi<Qε(τ)||Di(θ)|

≤ 1
n

n∑
i=1

|Di(θ̂)−Di(θ)|+
1
n

n∑
i=1

J i|Di(θ)|, with probability tending to one,

(2.91)

where J i is defined in (2.84). By the stochastic continuity of Di(ϑ) at ϑ = θ,
the argument in Lemma 1 shows n−1∑n

i=1 |Di(θ̂) − Di(θ)|
p→ 0. Also, by the

Cauchy-Schwarz inequality,

1
n

n∑
i=1

E[Ji|Di(θ)|] ≤
√

E[D1(θ)2] 1
n

n∑
i=1

√
E(J2

i ) ≤
√

E[D1(θ)2] 1
n

n∑
i=1

√
3E(J i)→ 0,

where the second “≤” follows from J i ≤ 3 so that J2
i ≤ 3J i, and the last convergence

“→ 0” follows from E(J i) → 0 (see the proof of Lemma 7). Thus, in view of
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(2.91), (2.89) is verified. Finally, (2.90) follows from the stochastic continuity of
Di(ϑ)Di(ϑ)T at point ϑ = θ (Assumption 6) and Lemma 1. This completes the
proof. ♦

2.7.5 Proof of Theorem 4

Lemma 8. Suppose that Assumption 5∗ holds. Let ∆ be any given number. Define

I(z) =
n∑
i=1

ζi(z), ζi(z) =
∫ ∆√

n

0

{
[1εi≤z+s − 1εi≤z]− [Fε(z + s)− Fε(z)]

}
ds.

Then I(z) = op(1) uniformly on z ∈ [Qε(δ), Qε(1− δ)].

Proof. We adopt the same chain argument in Theorem 1. Assume without loss of
generality that ∆ > 0 and [Qε(δ), Qε(1− δ)] = [0, 1]. Consider the evenly spaced
grid points zj = j/n, j = 0, . . . , n, which partition [0, 1] into n equal intervals
[zj−1, zj ], j = 1, . . . , n. By the boundedness of fε, there exists some universal c1 > 0
such that for all z ∈ [zj−1, zj],

Fε(zj + s)− Fε(zj−1)− c1

n
≤ Fε(z + s)− Fε(z) ≤ Fε(zj−1 + s)− Fε(zj) + c1

n
.

(2.92)

Also, observe the following inequalities

1εi≤zj−1+s − 1εi≤zj ≤ 1εi≤z+s − 1εi≤z ≤ 1εi≤zj+s − 1εi≤zj−1 , for all z ∈ [zj−1, zj].
(2.93)

Combining (2.92)–(2.93), we obtain

ζ
ij
− ∆c1

n3/2 ≤ ζi(z) ≤ ζ ij + ∆c1

n3/2 , for all z ∈ [zj−1, zj], (2.94)

where

ζ ij =
∫ ∆√

n

0

{
[1εi≤zj+s − 1εi≤zj−1 ]− [Fε(zj + s)− Fε(zj−1)]

}
ds,

ζ
ij

=
∫ ∆√

n

0

{
[1εi≤zj−1+s − 1εi≤zj ]− [Fε(zj−1 + s)− Fε(zj)]

}
ds.
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By (2.94), |I(z)| ≤ |
∑n

i=1 ζ ij|+ |
∑n

i=1 ζ ij|+ ∆c1/
√
n for all z ∈ [zj−1, zj]. Hence,

sup
z∈[0,1]

|I(z)| = max
1≤j≤n

sup
z∈[zj−1,zj ]

|I(z)|

≤ max
1≤j≤n

∣∣∣∣∣
n∑
i=1

ζ ij

∣∣∣∣∣+ max
1≤j≤n

∣∣∣∣∣
n∑
i=1

ζ
ij

∣∣∣∣∣+ o(1). (2.95)

Note that |ζ ij| ≤ 2∆/
√
n. Furthermore, by the same argument in (2.76), we can

obtain var(
∑n

i=1 ζ ij) ≤ c2n
−1/2 for some constant c2 independent of j. Thus, by

Berstein’s exponential inequality (Bennett, 1962) for the sum of bounded and
independent random variables,

P

{∣∣∣∣∣
n∑
i=1

ζ ij

∣∣∣∣∣ ≥ n−1/4 log n
}
≤ 2 exp

{
−(n−1/4 log n)2

2c2n−1/2 + 4∆n−1/2(n−1/4 log n)

}
= O[exp(−2 log n)] = O(n−2),

for large enough n and all j. Therefore,

P

{
max
1≤j≤n

∣∣∣∣∣
n∑
i=1

ζ ij

∣∣∣∣∣ ≥ n−1/4 log n
}
≤

n∑
j=1

P

{∣∣∣∣∣
n∑
i=1

ζ ij

∣∣∣∣∣ ≥ n−1/4 log n
}

= O(n−1),

which gives max1≤j≤n |
∑n

i=1 ζ ij| = op(1). Similarly, max1≤j≤n |
∑n

i=1 ζ ij| = op(1).
The proof is completed in view of (2.95). ♦

Proof of Theorem 4. First, we show that the asymptotic representation (2.79)
holds uniformly on τ ∈ [δ, 1−δ]. It suffices to show that the quadratic approximation
(2.77) holds uniformly on [δ, 1− δ]. Recall I1 and I2 in (2.73) and (2.74). In the
proof of Theorem 2, it is shown that I1 = ∆2fε(Qε(τ))/2 + op(1) and I2 = op(1) for
fixed quantile τ . Now we shall prove that they also hold uniformly on [δ, 1− δ]. By
Assumption 4(iv), the continuity of J̇(0, z) on z ∈ R implies uniform continuity on
compact interval. Thus, J̇(0, Qε(τ) + s)− J̇(0, Qε(τ)) = o(1) uniformly on [δ, 1− δ]
and |s| ≤ ∆/

√
n. This shows I2 = op(1) uniformly. Similarly, by the uniform

continuity of fε, (2.75) holds uniformly. Thus, by Lemma 8, we conclude that
I1 = ∆2fε(Qε(τ))/2 + op(1) uniformly on [δ, 1− δ].

By the above argument, (2.79) and hence (2.80) hold uniformly on [δ, 1− δ]. To
prove the functional CLT, it suffices to prove the tightness and finite-dimensional
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convergence of the leading term Ġε(x,Qε(τ), x)n−1∑n
i=1Wi(τ) in (2.80). The

tightness follows from two facts: (i) after normalization, the empirical process
n−1∑n

i=1 1εi≤Qε(τ) is tight [Chapter 14 in Billingsley (1999)]; and (ii) if ηn ⇒ η,
then for any continuous function g(τ) the process {g(τ)ηn}τ is tight on [δ, 1− δ]
[Theorem 7.3 in Billingsley (1999)]. Using (2.80), the finite-dimensional convergence
follows from the Cramér-Wold device and Lemma 5. ♦

2.7.6 Proof of Theorem 6

Lemma 9 below follows from the same chain argument in the proof of Lemma 8.

Lemma 9. Assume that fε is continuous and bounded on [−c1, c1] for some constant
c1 > 0. Then for any given constant c2 > 0,

sup
|z|≤c1,|v|≤c2/

√
n

∣∣∣∣∣ 1n
n∑
i=1

1εi≤z+v −
1
n

n∑
i=1

1εi≤z − vfε(z)

∣∣∣∣∣ = op(n−1/2).

Proof of Theorem 6. Recall F̂ (y|x) in (2.39). Write z = H(θ, y, x) and ẑ =
H(θ̂, y, x). Since by Assumption 1, H(θ̂, y, x) is an increasing function in y,
H(θ̂,Y1, x) ≤ H(θ̂, y, x) ≤ H(θ̂,Y2, x) uniformly on y ∈ Y . Thus, using θ̂ = θ+op(1)
and the continuity assumption, |ẑ| = Op(1) uniformly on y ∈ Y. Note that
F̂ (y|x) = F̂ε(ẑ). By the uniform approximation of F̂ε(z) in Theorem 1 and the
equivalent expression for J̇(0, z) in Lemma 4, we have

sup
y∈Y

∣∣∣∣∣F̂ (y|x)− 1
n

n∑
i=1

1εi≤ẑ − J̇(0, ẑ)T (θ̂ − θ)

∣∣∣∣∣ = op(n−1/2). (2.96)

Furthermore, by θ̂ − θ = Op(n−1/2) and Assumption 4(iii), we have ẑ − z =
Op(n−1/2)L(y, x) = Op(n−1/2) uniformly on y ∈ Y . Therefore, by Lemma 9,

sup
y∈Y

∣∣∣∣∣ 1n
n∑
i=1

1εi≤ẑ −
1
n

n∑
i=1

1εi≤z − (ẑ − z)fε(z)

∣∣∣∣∣ = op(n−1/2). (2.97)

The continuity of J̇(0, z) in Assumption 4(iv) implies the uniform continuity of
J̇(0, z) on compact intervals. Thus, J̇(0, ẑ)− J̇(0, z) = op(1) uniformly on y ∈ Y.
Combining the latter with (2.96)–(2.97) and E(1εi≤z) = F (y|x) [see (2.38)], we
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obtain the uniform approximation

F̂ (y|x)− F (y|x) = 1
n

n∑
i=1

[1εi≤z − E(1εi≤z)]

+ J̇(0, z)T (θ̂ − θ) + (ẑ − z)fε(z) + op(n−1/2).

Hence, by Taylor’s expansion ẑ − z = Ḣ(θ, y, x)T (θ̂ − θ) + op(n−1/2), the Bahadur
representation for θ̂ − θ in Assumption 2, and the equivalent expression for J̇(0, z)
in (2.56) (see Lemma 4), we can further obtain the uniform approximation on y ∈ Y

F̂ (y|x)− F (y|x) = 1
n

n∑
i=1

Vi(y) + op(n−1/2), (2.98)

where Vi(y) is defined in (2.42). From (2.98), the tightness follows from the tightness
of the empirical process of {εi} and the differentiability of H(θ, y, x) in y, and the
finite-dimensional convergence follows from the Cramér-Wold device and Lemma 5.
♦
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Chapter 3 |
Conditional Expected Shortfall

3.1 Main Results
Assume that we have stationary observations {(Xi, Yi)}ni=1, where Xi ∈ Rp and
Yi ∈ R are, respectively, the covariates and stock loss at time i. Our goal is to
estimate and draw inference for CES(y|x) in (1.3). In Sections 3.1.1 and 3.1.2 below,
we consider nonparametric approach and semiparametric approach, respectively.

3.1.1 Nonparametric Estimation

Denote by 1A the usual indicator function for A. From (1.3), we can rewrite

CES(y|x) = E(Yi1Yi≥y|Xi = x)
E(1Yi≥y|Xi = x) . (3.1)

Note that both the numerator and denominator are of the form E[g(Yi)|Xi = x] for
some function g. Thus, we propose the following nonparametric kernel smoothing
estimate of CES(y|x):

C̃ES(y|x) =
∑n

i=1 Yi1Yi≥yKbn(Xi − x)∑n
i=1 1Yi≥yKbn(Xi − x) , (3.2)

where Kbn(u) = K(u/bn) for a p-variate kernel function K(·) and a bandwidth bn >
0. By Li and Racine (2007), under appropriate regularity and mixing conditions,
C̃ES(y|x) has asymptotic normality with convergence rate

√
nbpn. Formally, we

impose the regularity and mixing condition below.
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Assumption 7. (i) {(Xi, Yi)}i∈Z is stationary and α-mixing with mixing coefficient
αj ≤ C1α

j, j ≥ 0, for some constants 0 < C1 <∞ and α ∈ (0, 1). (ii) {εi}i∈Z are
i.i.d., and for each i, εi is independent of {Xj}j≤i.

3.1.2 Semiparametric Estimation

We consider the nonlinear heteroscedastic model:

Yi = µ(θ,Xi) + σ(θ,Xi)εi, (3.3)

for parametric functions µ(θ, ·) and σ(θ, ·) > 0 with some unknown column vector
of parameter θ ∈ Rk, and {εi} are independent and identically distributed (i.i.d.)
errors.

Example 4. Let Xi = (Yi−1, . . . , Yi−p), p ∈ N, be the lagged returns, then (3.3)
becomes the nonlinear autoregressive conditional heteroscedastic (NARCH) model
Yi = µ(θ, Yi−1, . . . , Yi−p) + σ(θ, Yi−1, . . . , Yi−p)εi.

Example 5. Stock returns Yi may depend on the lagged returns (Yi−1, . . . , Yi−p)
as well as some overall exogenous economic variables Ui ∈ Rq, such as the inflation
rates and unemployment rates. To incorporate such exogenous variables, let
Xi = (Yi−1, . . . , Yi−p,Ui), then (3.3) becomes the NARCH model with exogenous
variables.

Example 6. Consider the continuous-time diffusion model dYt = µ(θ, Yt)dt +
σ(θ, Yt)dIBt, where {IBt}t≥0 is a Brownian motion or a general Lévy process. With
different specifications of µ and σ, the latter model includes many popular models;
see Zhao (2008). Let ∆ > 0 be the sampling interval. Then the Euler-discretization

Yi∆ − Y(i−1)∆ = µ(θ, Yi∆)∆ + σ(θ, Yi∆)[IBi∆ − IB(i−1)∆]

is of the form (3.3) with εi = IBi∆ − IB(i−1)∆.

As elaborated below, this NARCHX model possesses several appealing features.

First, it allows exogenous/external variables Ui to affect the main time series
{Yi}, thus providing a more flexible modeling framework. If we drop Ui from
(3.3), the model reduces to the nonlinear autoregressive conditional heteroscedastic
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(NARCH) model Yi = µ(θ, Yi−1, . . . , Yi−p) + σ(θ, Yi−1, . . . , Yi−p)εi, which includes
many popular nonlinear time series models, such as the linear AR model, threshold
AR models [Tong (1990)], exponential AR models [Haggan and Ozaki (1981)],
and Engle’s ARCH models, among others; see Fan and Yao (2003). On the other
hand, the general formulation (3.3) allows user-defined models. For example, (3.3)
includes the ARCH model with exogenous (ARCHX) inputs:

Yi =
p∑
j=1

φjYi−j + Uiβ + εi

(
α2

0 +
p∑
j=1

α2
jY

2
i−j + U2

i γ
2

)1/2

, φj, αj ∈ R, β, γ ∈ Rq.

This model generalizes Engle’s ARCH model to allow for exogenous variables.

Second, the distribution of εi is completely unspecified, and thus this semi-
parametric approach can avoid potential mis-specification on the distribution
of εi. For example, if εi ∼ N(0, 1) has the standard normal distribution, then
E(εi|εi > 2) = 2.37; if εi ∼ t3/

√
3, i.e., the normalized student-t distribution

with 3 degrees of freedom (the normalizer
√

3 makes the variance one), then
E(εi|εi > 2) = 2.99, representing a 26% increase from that of the N(0, 1) specifi-
cation. Therefore, it is desirable to construct a distribution-free estimator of the
conditional expected shortfall.

Third, using parametric specifications µ(θ, ·) and σ(θ, ·) can avoid the “curse of
dimensionality”. For nonparametric models, it is practically infeasible to consider
three or higher dimensional covaraites, and the convergence rate decreases with
dimension. By contrast, as shown below, our semiparametric approach has the
parametric

√
n convergence rate, regardless of the dimensionality of the covariates

Xi. This is particularly useful as we can incorporate more variables in Xi for
predicting the CES of Yi.

In (3.3), we assume that the innovation εi is independent of Xi. Given Xi = x,
we have: (i) Yi = µ(θ, x) + σ(θ, x)εi is independent of Xi; and (ii) Yi ≥ y is
equivalent to εi ≥ [y − µ(θ, x)]/σ(θ, x). Thus, by the definition in (1.3), we can
easily obtain

CES(y|x) = µ(θ, x) + σ(θ, x)E[εi|εi ≥ `(θ)]

= µ(θ, x) + σ(θ, x)
E[εi1εi≥`(θ)]
E[1εi≥`(θ)]

with `(θ) = y − µ(θ, x)
σ(θ, x) . (3.4)
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Here and hereafter 1 stands for the indicator function. If the parameter θ and
the innovations εi were known, then we can replace the expectation and probability
in (3.1) by their empirical version, leading to the estimate of CES(y|x):

CES(y|x) = µ(θ, x) + σ(θ, x)
∑n

i=1 εi1εi≥`(θ)∑n
i=1 1εi≥`(θ)

. (3.5)

Assume εi ∈ L2. Since εi are iid, by the delta-method, the asymptotic normality
holds

√
n
[
CES(y|x)− CES(y|x)

]
⇒ N

(
0, var(η0)

)
, (3.6)

where

ηi = σ(θ, x)
P{εi ≥ `(θ)}2

[
P{εi ≥ `(θ)}εi1εi≥`(θ) − E[εi1εi≥`(θ)]1εi≥`(θ)

]
. (3.7)

In practice, since the parameter θ is unknown and the innovations {εi} are
not observable, CES(y|x) is an infeasible estimator. Nevertheless, this infeasible
estimator serves as a standard against which we can measure other estimators.

Motivated by (3.5), we propose replacing θ and εi in (3.5) by their consistent
estimates. Specifically, we adopt the following procedure:
(i) Let θ̂ be a consistent estimate of θ. We can estimate the innovation εi by

ε̂i = Yi − µ(θ̂,Xi)
σ(θ̂,Xi)

. (3.8)

(ii) In view of (3.5), we propose estimating CES(y|x) by

ĈES(y|x) = µ(θ̂, x) + σ(θ̂, x)
∑n

i=1 ε̂i1ε̂i≥`(θ̂)∑n
i=1 1ε̂i≥`(θ̂)

. (3.9)

In practice, if we choose y to be the τ -th quantile of Yi given Xi = x, (3.9)
becomes

ĈES(y|x) = µ(θ̂, x) + σ(θ̂, x)
∑n

i=1 ε̂i1ε̂i≥`(θ̂)
n(1− τ) . (3.10)
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The estimator ĈES(y|x) has the nice feature that it does not depend on the
underlying distribution of innovations εi. If θ̂ = θ and ε̂i = εi, then by the law of
large numbers and Slutsky’s Theorem,

ĈES(y|x) p→ µ(θ, x) + σ(θ, x)E[εi1εi≥`(θ)]/P{εi ≥ `(θ)} = CES(y|x).

In general, when θ̂ and ε̂i are subject to estimation errors, whether and how
fast ĈES(y|x) converges to CES(y|x) depend on the accuracy of the estimates θ̂
and ε̂i. Theorem 7 below shows that the proposed estimator ĈES(y|x) can achieve
the parametric

√
n convergence rate.

Theorem 7. Suppose Assumptions 7 and 9-10 (in Section 3.3) hold. Further
assume θ̂ − θ = Op(n−1/2). Then

ĈES(y|x) = CES(y|x) +Op(n−1/2).

3.1.3 Asymptotic Normality

To implement the estimator ĈES(y|x), it is necessary to construct a consis-
tent estimate θ̂ of θ. Using Xi in (1.3), we can rewrite model (3.3) as Yi =
µ(θ,Xi) + σ(θ,Xi)εi. Assume without loss of generality that the innovations εi are
standardized so that E(εi) = 0 and var(εi) = 1. Consider the pseudo-likelihood
estimate, recall (2.22):

θ̂ = argmin
θ

n∑
i=1

{[Yi − µ(θ,Xi)
σ(θ,Xi)

]2
+ 2 log σ(θ,Xi)

}
.

Due to the nonlinearity structure, this estimator θ̂ generally does not have a
closed form. Under appropriate regularity conditions, Theorem 2 in Zhao (2010)
established the following asymptotic Bahadur representation which was discussed
in (2.23) and Assumption 2:

θ̂ − θ = 1
n

n∑
i=1

ζi + op(n−1/2) with ζi = I(θ)−1

[
εiµ̇(θ,Xi)
σ(θ,Xi)

+ (ε2
i − 1) σ̇(θ,Xi)

σ(θ,Xi)

]
,

(3.11)
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where µ̇(θ,Xi) and σ̇(θ,Xi) are the partial derivatives with respect to θ, and

I(θ) = E
[ µ̇(θ,X0)µ̇(θ,X0)T + 2σ̇(θ,X0)σ̇(θ,X0)T

σ2(θ,X0)

]
. (3.12)

Assumption 8. The estimator θ̂ ∈ Rk of θ ∈ Rk admits the Bahadur-type
representation

θ̂ − θ = 1
n

n∑
i=1

ζ(θ, εi,Xi) + oP(n−1/2), (3.13)

for some ζ(θ, ·, ·) ∈ Rk satisfying ζ(θ, εi,Xi) ∈ L2 and E[ζ(θ, εi,Xi)|Xi] = 0.

In practice, it is often desirable to derive the asymptotic distribution of (3.10)
in order to make statistical inference, such as confidence interval construction and
hypothesis testing. Since the accuracy of ĈES(y|x) depends on θ̂, it is necessary
to study the effect of θ̂. Recall ε̂i in (3.8). To reflect the dependence of ε̂i on the
accuracy of θ̂, define

εi(δ) = Yi − µ(θ + δ,Xi)
σ(θ + δ,Xi)

, δ ∈ Rk. (3.14)

Define

J1(δ, z) = E[εi(δ)1εi(δ)≥z], and J2(δ, z) = E1εi(δ)≥z. (3.15)

Here δ measures the departure of the estimator θ̂ from the true parameter θ. Clearly,
εi(θ̂ − θ) = ε̂i and εi(0) = εi. Intuitively, J1(δ, z) and J2(δ, z) measures how the
tail expectation and tail probability of εi(δ) changes in response to the departure δ
from the true θ.

Theorem 8. Suppose Assumptions 7-8 and 9-10 (in Section 3.3) hold. Further
assume that (3.11) holds. Denote by J̇(δ) the gradient vector of J(δ). Then the
CLT holds

√
n[ĈES(y|x)− CES(y|x)]⇒ N

(
0, var(η0 +HT ζ0)

)
, (3.16)
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where ηi is defined in (3.7), ζi is defined as in (3.11), and

H = µ̇(θ, x) + σ̇(θ, x)
E[ε01ε0≥`(θ)]
E1ε0≥`(θ)

+ σ(θ, x)
P{ε0 ≥ `(θ)}2

{
P{ε0 ≥ `(θ)}[J̇1(0, `(θ))T

− ˙̀(θ)`(θ)fε(`(θ))]− E[ε01ε0≥`(θ)][J̇2(0, `(θ))T − ˙̀(θ)fε(`(θ))]
}

(3.17)

For the limiting variance var(η0 +HT ζ0) in (3.16), the two terms represent two
sources of randomness: η0 is the same as in (3.6) and represents the randomness
of the estimator when θ and εi are known; HT ζ0 represents the effect from the
randomness of the estimator θ̂ [see the Bahadur representation (3.11)], and the
constant factorHT is analogous to the derivative in the first-order Taylor’s expansion
of ĈES(y|X) at θ̂ ≈ θ.

3.2 Monte Carlo Studies

3.2.1 MISE comparison with nonparametric method

In this section, we compare MISE performance between nonparametric CES esti-
mator and our proposed semiparametric CES estimator. Recall the definitions of
MISE and RMISE in (2.44)-(2.46), denote MISE{ĈES(y|·)} by the MISE of the
proposed semiparametric estimator ĈES(y|x) in (3.10), its RMISE, relative to the
nonparametric estimator C̃ES(y|x) under the best-case scenario, is

RMISE = MISE{C̃ES(y|·)}
MISE{ĈES(y|·)}

= minbn MISE{C̃ES(y|·); bn}
MISE{ĈES(y|·)}

. (3.18)

As remarked in (2.44)-(2.46), a value of RMISE ≥ 1 indicates better MISE perfor-
mance of the proposed method.

We consider the four ARCH-type models, Model 1 - Model 4, as defined in
Section 2.5.1. In all of the four models, the thresholds y are taken to be τ -th quantile
of Yi given Yi−1 = x, where τ = 2.5%, 5%, 10%, 20% . . . , 80%, 90%, 95%, 97.5%. The
noise εi is from two distributions: (i) standard normal N(0, 1), and (ii) t3/

√
3

(Student-t distribution with 3 degrees of freedom with the normalizer
√

3 making
the variance one). In all settings we use sample size n = 200.
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For Model 1 and 3, we estimate the conditional expected shortfall of Yi given
Yi ≥ y and Yi−1 = x where X in (2.44) is taken to be the range of 2.5-th and 97.5-th
percentiles of {Yi−1}; for Model 2 (resp. Model 4), we estimate the conditional τ -th
quantile of Yi given the bivariate Xi := (Yi−1, Yi−2) = (x1, x2) (resp. Xi = (Yi−1, Ui)
for Model 4), and we take X in (2.44) to be X1 × X2, where X1 and X2 are,
respectively, the range of 2.5-th and 97.5-th percentiles of each of the two coordinates
of Xi. The integral in (2.44) is approximated by 20 evenly spaced grid points in
the univariate case (Model 1 and 3) or 10 × 10 evenly spaced grid points in the
bivariate case (Model 2 and 4). To implement the semiparametric method, we use
(2.22) to estimate the unknown parameters.

Table 8: RMISE [see (3.18)] of the proposed semiparametric estimate of CES(y|x) relative to
the nonparametric method in (3.1) with theoretical optimal bandwidth, at different quantiles τ .
Numbers ≥ 1 indicate better performance of the proposed method.

Quantile τ in P{Yi ≥ y} = 1− τ
noise 2.5% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 97.5%

Model 1 N(0, 1) 2.52 2.61 3.01 4.05 5.49 8.00 10.60 13.69 16.21 16.69 12.74 8.74 5.46
t3/
√

3 3.94 3.84 4.03 5.11 7.24 10.73 12.80 14.76 14.31 12.72 9.55 4.82 2.08
Model 2 N(0, 1) 8.56 8.78 9.51 12.55 17.04 22.73 28.97 34.98 39.32 40.73 34.32 25.71 17.65

t3/
√

3 12.55 12.74 13.91 18.54 25.04 33.60 39.95 46.50 46.70 41.46 26.28 14.68 6.99
Model 3 N(0, 1) 5.65 5.65 5.53 5.68 6.03 6.91 9.02 13.02 19.20 26.34 27.35 19.27 11.78

t3/
√

3 6.38 6.06 5.52 5.93 6.84 7.82 10.39 12.24 15.17 15.15 10.32 6.19 3.66
Model 4 N(0, 1) 5.45 5.64 5.79 6.27 7.09 7.98 8.91 9.97 11.28 12.84 14.16 12.32 9.03

t3/
√

3 8.68 8.47 8.68 8.71 9.38 10.13 11.14 10.72 9.71 7.97 5.81 3.52 1.89

Table 8 summarizes the RMISE [see (3.18)]. The results show that, for almost
all cases considered, a substantial MISE improvement can be achieved by using the
semiparametric CES estimator.

Comparing with RMISE performance of CVaR in Table 1, nonparametric CES
estimates no longer have the advantages in middle-range quantiles τ = 20%, . . . , 80%.
The semiparametric estimator significantly outperforms the nonparametric estimator
for both N(0, 1) and Student-t noise, whereas the two methods have comparable
performance for Student-t distributed noise at extreme quantiles τ = 90%, 95%,
which correspond to the widely used confidence levels 1− τ = 10%, 5% in the ES
literature.
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3.2.2 Bootstrap confidence intervals

The finite sample performance of CES confidence intervals has not been examined
in the literature; in this section we evaluate the performance of the bootstrap
confidence interval for CES: the bootstrap confidence interval is constructed using
the procedure in Section 2.3. Formally, denote by r1−α the (1− α) sample quantile
of

√
n|ĈES

∗(1)
(y|x)− ĈES(y|x)|, . . . ,

√
n|ĈES

∗(M)
(y|x)− ĈES(y|x)|,

with M = 1000 bootstrap replications. Then the (1 − α) bootstrap confidence
interval for CES(y|x) is

ĈES(y|x)± r1−α/
√
n.

The empirical coverage probability is the proportion of confidence intervals
among 1000 realizations of (1−α) confidence intervals that cover the true CES(y|x).
Table 9 presents the results for the most typical setting 1− τ = 5% and 1− α =
90%, 95%, 99%, at different values of x. Overall, the bootstrap confidence interval
delivers nice performance and has empirical coverage probabilities close to the
nominal levels. Given the fact that the limiting variance of asymptotic normality in
(3.6) and (3.7) is difficult to estimate and computationally expensive, we recommend
the bootstrap confidence intervals that can be easily implemented and possess
superior performance over asymptotic confidence intervals in practice.
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Table 9: Empirical coverage probability of bootstrap confidence intervals (CI) for CES(y|x).
(Model 1) CES(y|x): x at different percentiles of covariates {Yi−1}

x at different percentiles
noise 1− α 2.5th 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th
N(0, 1) 90% 85.7 84.3 89.0 86.3 84.7 87.0 87.0 87.3 88.0 87.0 87.7 89.0 88.0

95% 94.0 92.0 93.7 93.3 92.0 92.0 92.7 94.0 94.0 93.3 93.7 92.7 93.0
99% 98.7 98.3 98.3 98.7 98.0 99.0 99.0 97.3 98.3 98.7 98.3 98.7 98.7

t3/
√

3 90% 85.3 85.3 86.3 85.7 87.0 87.3 87.3 87.3 86.7 85.7 87.7 87.7 87.0
95% 92.0 91.7 91.3 90.3 92.3 91.7 91.7 91.7 91.3 91.3 92.3 93.3 93.7
99% 97.3 97.7 97.0 97.0 96.3 95.3 95.3 94.7 95.3 94.7 96.0 97.7 98.7

(Model 2) CES(y|(x1, x2)): x1 at different percentiles of {Yi−1}, x2 at median of {Yi−2}
x1 at different percentiles, x2 at median

noise 1− α 2.5th 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th
N(0, 1) 90% 87.0 80.3 70.3 78.7 77.0 83.3 85.0 86.3 89.7 90.0 89.7 92.0 92.0

95% 92.7 87.3 80.3 82.7 85.0 87.3 88.7 92.3 93.7 93.3 94.0 94.3 94.7
99% 98.0 94.7 91.7 90.0 93.7 94.0 95.7 96.3 97.3 99.0 98.3 99.0 98.3

t3/
√

3 90% 77.7 76.3 79.0 79.0 81.7 83.3 81.3 82.7 83.3 84.3 87.0 87.0 89.0
95% 83.7 82.7 86.0 83.0 85.0 85.7 87.3 88.0 89.3 88.7 88.7 91.0 92.0
99% 89.3 92.3 92.7 94.0 94.3 93.0 94.0 93.7 94.7 95.3 96.7 96.3 97.0

(Model 3) CES(y|x): x at different percentiles of {Yi−1}
x at different percentiles

noise 1− α 2.5th 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th
N(0, 1) 90% 90.3 90.7 91.0 92.7 85.0 67.0 81.7 80.7 86.0 87.7 87.7 89.3 90.0

95% 94.7 94.3 94.7 96.3 91.3 77.7 86.0 89.7 91.3 91.7 93.0 94.3 96.0
99% 99.3 99.7 99.3 100.0 98.3 90.7 89.7 96.7 97.0 96.7 98.3 99.0 99.7

t3/
√

3 90% 76.7 72.0 78.0 76.0 80.7 84.3 85.0 88.3 88.7 87.3 85.3 83.7 83.3
95% 83.3 80.7 84.0 87.7 88.7 88.0 89.7 92.7 93.0 94.0 89.3 89.3 88.7
99% 90.0 89.3 90.3 93.0 94.0 95.7 96.7 95.3 96.7 97.0 96.0 95.7 96.3

(Model 4) CES(y|(x1, x2)): x1 at different percentiles {Yi−1}, x2 at median of {Ui}
x1 at different percentiles, x2 at median

noise 1− α 2.5th 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th
N(0, 1) 90% 84.7 84.3 78.0 77.0 76.0 79.7 83.0 85.0 87.3 91.3 86.3 87.3 89.7

95% 91.3 90.3 87.0 87.7 86.0 85.0 87.7 89.0 93.3 93.7 92.3 93.0 93.3
99% 98.7 97.7 96.0 95.3 94.0 94.7 94.7 95.7 96.3 97.0 96.7 95.7 96.3

t3/
√

3 90% 79.7 80.0 80.3 78.3 75.7 78.7 80.7 84.3 87.7 86.7 82.3 76.7 73.7
95% 86.3 87.7 86.0 84.7 85.3 85.3 87.7 87.3 91.0 92.0 90.7 86.0 84.3
99% 96.3 96.0 93.3 92.0 93.7 93.7 94.3 95.0 95.3 97.3 96.0 95.0 95.7
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3.3 An Empirical Application to S&P 500 Index
We use the same S&P 500 index data as in Section 2.6. In Figure 2.1, there are a few
peaks during the middle of year 2011 when the US credit rating was downgraded
from AAA to AA+ and European sovereign debt crisis has been taken place in
the European Union. To visualize the robustness of our proposed semiparametric
CES estimation, we focus our analysis on the daily losses during this period 2010–
2013. Moreover, we compare the performance of our semiparametric method and
some existing parametric methods. In the following sections, we use our proposed
semiparametric CVaR estimates from Section 2.6 as the thresholds of loss to predict
CES and its bootstrap confidence intervals semiparametrically.

3.3.1 Comparison under different GARCH models

In Section 2.6.1, we sequentially predicted CVaR using three GARCH models:
standard GARCH, EGARCH, and GJR-GARCH, as described in Model 5–7 in
Section 2.5.2. To predict CES sequentially, we use a similar approach. For a
given time i, based on the historical data Xi = {Yj}j≤i−1, we apply our proposed
semiparametric method to obtain the estimate ĈVaR(1 − τ |Yj, j ≤ i − 1) for
the “unobservable” loss Yi. We then use this semiparametric CVaR estimate as
threshold loss y and predict ĈES(y|Yj, j ≤ i − 1) Repeating the procedure for
i = n− (J − 1), n− (J − 2), . . . , n, we obtain the sequentially predicted CES for
the last J = 1000 daily losses, which is able to capture the pattern of daily losses
and not overestimate the daily losses during the last four years 2010–2013. Since
GARCH models are non-Markovian, it is infeasible to use their nonparametric
approach.
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Figure 3.1. Sequentially predicted semiparametric CES for daily losses during 2010–
2013, using standard GARCH (solid curve), EGARCH (dashed curve), and GJR-GARCH
(dotted curve) models. Top, middle, and bottom plots correspond to level 1 − τ =
10%, 5%, 1%, respectively.

Using the three GARCH models, Figure 3.1 plots the corresponding sequential
CES predictions at level 1− τ = 10% (top plot), 5% (middle plot), and 1% (bottom
plot). From Figure 3.1, at each level, the three CES curves based on standard
GARCH, EGARCH, and GJR-GARCH exhibit quite similar pattern, indicating
the robustness of our method.

Despite the vast literature on CES estimation, their confidence interval con-
struction has been largely ignored. Using the bootstrap procedure in Section 2.3,
Figure 3.2 presents the semiparametrically estimated CES at level 5% and the
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corresponding pointwise 95% confidence interval. Due to the quite similar pattern
of CES using different GARCH models, we only report the result for standard
GARCH.
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Figure 3.2. Sequentially predicted semiparametric CES (solid curve) at level 5% for daily losses
during 2010–2013 using standard GARCH. The dotted curves are the pointwise bootstrap 95%
confidence interval.

3.3.2 Comparison with some existing methods

We compare our semiparametric CES predictions with three parametric-distribution
based approaches which were introduced in Section 2.6.2. Again, we use the decay
factor 0.94 for EWMA and robust-EWMA and the procedure in Gerlach, Lu and
Huang (2013) for skewed-EWMA. Figure 3.3 plots the sequential CES predictions
using the aforementioned four methods: the semiparametric method with standard
GARCH, EWMA, robust-EWMA, and skewed-EWMA. The four methods lead to
quite similar CES curves.
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Figure 3.3. Comparison of sequentially predicted CES for daily losses during 2010–2013,
using four methods: semiparametric method with standard GARCH (solid curve), the
EWMA method (dotted curve), the robust-EWMA method (dashed curve), and the
skewed-EWMA method (dotdashed curve). Top, middle, and bottom plots correspond to
level 1− τ = 10%, 5%, 1%, respectively.

3.4 Assumptions and Proofs of Theorems
Throughout C1, C2, . . . , c1, c2, . . . , are generic constants that may vary from line to
line.

Assumption 9. Recall εi(δ) in (3.14). Let ε > 0 be some small constant. For all
i ∈ {1, 2, ..., n}
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(i) There exist b1, b2, b3, and b4 > 0 such that

E
[

sup
|δ|≤ε,z∈R

|εi(δ)|r1|εi(δ)−z|≤v
]
≤ brv, for r = 1, 2, 3, 4. (3.19)

(ii) Let ε̇i(δ) be the partial derivative with respect to δ. There exists L1(Yi,Xi) and
L2(Yi,Xi), both being independent of εi(δ) such that

sup
|δ|≤ε

[εi(δ)] ≤ L1(Yi,Xi) ∈ L4, and sup
|δ|≤ε

[ε̇i(δ)] ≤ L2(Yi,Xi) ∈ L4. (3.20)

Assumption 10. Recall J(δ, z) from (3.15).Denote by J̇(δ, z) and J̈(δ, z) the
gradient vector and Hessian matrix of J(δ, z). Let ε > 0 be the small constant in
Assumption 9. Assume that |J̇(0, z)| is continuous in z and that |J̈(δ, z)| is bounded
on |δ| ≤ ε.

Lemma 10. Suppose Assumption7, and 9-10 hold. Then for any given c > 0,

sup
|z|≤c

∣∣∣ 1
n

n∑
i=1

ε̂i1ε̂i≥z −
1
n

n∑
i=1

εi1εi≥z − J̇1(0, z)(θ̂ − θ)
∣∣∣ = op(n−1/2), (3.21)

and

sup
|z|≤c

∣∣∣ 1
n

n∑
i=1

1ε̂i≥z −
1
n

n∑
i=1

1εi≥z − J̇2(0, z)(θ̂ − θ)
∣∣∣ = op(n−1/2). (3.22)

Proof. We will prove (3.21), (3.22) can be shown using similar arguments. Define

φi(δ, z) = εi(δ)1ε(δ)≥z − εi1ε≥z.

To prove (3.21), it suffices to prove that, for any given c1 > 0,

sup
|δ|≤c1/

√
n,|z|≤c

∣∣∣ 1
n

n∑
i=1

φi(δ, z)− J̇1(0, z)(θ̂ − θ)
∣∣∣ = op(n−1/2) (3.23)

For simplicity we assume that: (i) c1 = c = 1, and (ii) z ∈ [0, 1], δ ∈ [0, 1/
√
n]. By

Taylor’s expansion and θ̂ = θ +Op(n−1/2),

E[φi(δ, z)] = J1(δ, z)− J1(0, z) = δJ̇1(0, z) +O(n−1), (3.24)
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uniformly on δ ∈ [0, 1/
√
n], z ∈ [0, 1]. Thus to prove 3.23, it suffices to prove

sup
(δ,z)∈[0,1/

√
n]×[0,1]

∣∣∣M(δ, z)
∣∣∣ = op(n−

1
2 ),with M(δ, z) =

n∑
i=1

(
φi(δ, z)− E[φi(δ, z)]

)
(3.25)

Let N = bn1+εc with ε being determined later. Consider the evenly spaced (N + 1)2

grid points

δj =
√
j

n
w1 with w1 =

√
1
N
, and zj = jw2 with w2 = 1

N
, j = 0, 1, ..., N

partitioning [0, 1/
√
n]× [0, 1] into N2 cells. For each (δ, z) ∈ [0, 1/

√
n]× [0, 1] there

exists one grid point (δj, zj′) such that |δ − δj| ≤ w1 and |z − zj′| ≤ w2. Thus
|M(δ, z)| ≤ |M(δj, zj′)| ≤ |M(δj, zj′)|+ |M(δ, z)−M(δj, zj′)| and we have

sup
(δ,z)∈[0,1/

√
n]×[0,1]

|M(δ, z)| ≤ max
0≤j,j′≤N

|M(δj, zj′)|+Rn, (3.26)

where

Rn = sup
Ω
|M(δ, z)−M(δ′, z)| with Ω = {|δ − δ′| ≤ w1, |z − z′| ≤ w2}. (3.27)

To show Rn = op(
√
n), note that for all i = 1, 2, ..., n,

sup
Ω
|φi(δ, z)− φi(δ′, z′)| ≤ 2 sup

Ω
|εi(δ)1εi(δ)≥z − εi(δ′)1εi(δ′)≥z′ |. (3.28)

Therefore

E[Rn] ≤ 4nE[sup
Ω
|ε1(δ)1ε1(δ)≥z − ε1(δ′)1ε1(δ′)≥z′ |] (3.29)

Using the fact that εi(δ) ≥ z is equivalent to

εi ≥
σ(θ + δ,Xi)z + [µ(θ + δ,Xi)− µ(θ,Xi)]

σ(θ,Xi)
:= ξ(δ, z,Xi),

and the inequality that, for any λ > 0, |1z≤0 − 1z′≤0| ≤ 21|z−z′|≥λ + 1|z′|<λ ,we can
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write

sup
Ω
|ε1(δ)1ε1(δ)≥z − ε1(δ′)1ε1(δ′)≥z′ |

= sup
Ω
|[ε1(δ)− ε1(δ)1ε1(δ)<z]− [ε1(δ′)− ε1(δ′)1ε1(δ)<z′ ]|

≤ sup
Ω
|ε1(δ)− ε1(δ′)|+ sup

Ω
|ε1(δ)1

ε1<ξ(δ,z,X1) − ε1(δ′)1
ε1<ξ(δ′,z′,X1)|

≤ 2 sup
Ω
|ε1(δ)− ε1(δ′)|+ sup

Ω
[|ε1(δ′)||1

ε1<ξ(δ,z,X1) − 1
ε1<ξ(δ′,z′,X1)|]

≤ 2 sup
Ω
|ε1(δ)− ε1(δ′)|+ sup

Ω
[|ε1(δ′)|(21|ξ(δ′,z′,X1)−ξ(δ,z,X1)|≥λ + 1|ε1−ξ(δ′,z′,X1)|<λ)]

= 2 sup
Ω
|(δ − δ′)ε̇1(δ′)|+ sup

Ω
[|ε1(δ′)|(21|(δ−δ′)ε̇1(δ′)+(z′−z)|≥λ + 1|ε1(δ′)−z′|<λ)] (3.30)

By Assumption 9(ii), on Ω, |(δ − δ′)ε̇1(δ′)| ≤ w1|L2(Y1,X1)|. Thus by (3.30) and
Assumption 9(i),

E[Rn] ≤ 4n
{

2w1E|L2(Y1,X1)|

+2E|L1(Y1,X1)|P{w1|L2(Y1,X1)|+ w2 > λ}+ b1λ
}

≤ 4n
{

2w1E|L2(Y1,X1)|+ 2w1
E|L1(Y1,X1)|E|L2(Y1,X1) + w2|

λ
+ b1λ

}
(3.31)

The second inequality in (3.31) is followed by Markov inequality. By taking
λ = w1 =

√
1
N
, E[Rn] = O( n√

n1+ε ) = op(
√
n). By (3.26), it remains to show that

max0≤j,j′≤N |M(δj, z′j)| = op(
√
n). Define

A = max
1≤i≤n

[φi(δ, z)− Eφi(δ, z)] = max
1≤i≤n

[εi(δ)1εi(δ)≥z − εi1εi≥z] +O(n−1/2) (3.32)

By Markov’s inequality, Assumption 9, and similar argument from (3.30) and (3.31),

P{|A| ≥ n5/12+5ε/8} ≤ n−(5/3+5ε/2)E[A]4
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≤ 8n−(5/3+5ε/2)E[ max
1≤i≤n

{[εi(δ)− εi]1εi≥ξ(δ,z,Xi) + εi[1εi−ξ(δ,z,Xi)≥0 − 1εi−z≥0]}4

+O(n−2)]

≤ 64n−(5/3+5ε/2)E[ max
1≤i≤n

{[δε̇i(0)]4 + ε4
i |1εi−ξ(δ,z,Xi)≥0 − 1εi−z≥0|+O(n−2)}]

≤ 64n−(5/3+5ε/2)E[ max
1≤i≤n

{ε4
i (21|δε̇i(0)|>n−1/3 + 1|εi−z|≤n−1/3) +O(n−2)}

≤ 64n−(5/3+5ε/2)E[ max
1≤i≤n

ε4
i

2δ4E[L2(Yi,Xi)]4
n−4/3 +O(n−1/3)]

= O[n−2−5ε/2] (3.33)

The first and the fifth inequality in (3.33) follows from Markov’s inequality; And
the second and the third inequality in (3.33) follows from (a + b)4 ≤ 8(a4 + b4).
Similarly we have

V ar[φi(δ, z),−Eφi(δ, z)] ≤ E[A]2 ≤ c2n
−1/3, for some c2 > 0. (3.34)

Thus by exponential inequality for stationary α-mixing process with mixing coeffi-
cient recalling from Assumption 7 (i), αj < C1α

j with 0 < C1 <∞ and α ∈ (0, 1),
for all c3 > 0, take ` = bnβc, with some β being determined later, we have

P{|M(δ, z)| ≥ c3
√
n} = P{|

n∑
i=1

[φi(δ, z)− Eφi(δ, z)]| ≥ c3
√
n}

≤ P{|
n∑
i=1

[φi(δ, z)− Eφi(δ, z)]| ≥ c3
√
n, |A| ≤ n5/12+5ε/8}+ P{|A| > n5/12+5ε/8}

≤ 4exp
{ −c2

3n
β+1

144n2c2n−1/3 + 4n5/12+5ε/8(c3
√
n)n

}
+22nβα(n/2nβ)

√
1 + 4(n5/12+5ε/8)n

c3
√
n

+O(n−2−5ε/2)

= O
[
exp
{ −nβ

n2/3 + n11/12+5ε/8

}
+ nβ+11/24+5ε/16αn

1−β + n−2−5ε/2
]
, (3.35)

uniformly on |δ| ≤ 1/
√
n, z ∈ R. Recall N = bn1+εc, by (3.35),

P{ sup
0≤j,j′≤N

|M(δj, zj′)| ≥ c3
√
n}
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≤
N∑

j,j′=0

P{|M(δj, zj′)| > c3
√
n}

= O[n2+2εexp{−nβ−11/12−5ε/8}+ nβ+59/24+37ε/16αn
1−β + n−ε/2] (3.36)

Take any

11
12 + 5

8ε < β < 1, and 0 < ε <
2
15 .

Then the right-hand-side of (3.36) becomes op(
√
n). Since c3 is arbitrary, we

conclude that sup0≤j,j′≤N |M(δj, zj′)| = op(
√
n). ♦

Lemma 11. Suppose fε is continuous, bounded, and positive on [−c1, c1], for some
constant c1 > 0. Then for any given constant c2 > 0,

sup
|z|≤c1,|v|≤c2/

√
n

∣∣∣ 1
n

n∑
i=1

εi1εi≥z+v −
1
n

n∑
i=1

εi1εi≥z + vzfε(z)
∣∣∣ = op(n−

1
2 ), (3.37)

and

sup
|z|≤c1,|v|≤c2/

√
n

∣∣∣ 1
n

n∑
i=1

1εi≥z+v −
1
n

n∑
i=1

1εi≥z + vfε(z)
∣∣∣ = op(n−1/2). (3.38)

Proof. We shall prove (3.37), (3.38) can be shown similarly. For simplicity we
assume that: (i) c1 = c2 = 1, and (ii) z ∈ [0, 1], v ∈ [−1/

√
n, 0]. Let

κi(z, v) = εi1εi≥z+v − εi1εi≥z = εi1z+v≤εi<z. (3.39)

Then by Taylor’s expansion,

E[κi(z, v)] = E[εi1z+v≤εi<z] = G(z)−G(z + v) = −vĠ(z) + op(n−1/2),

where

G(z) = zFε(z)−
∫ z

0
Fε(s)ds, and Ġ(z) = zfε(z).

Note that Ġ(z) is bounded and continuous, for all z ∈ [0, 1]. To prove (3.37), it
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suffice to show

sup
(z,v)∈[0,1]×[−1/

√
n]
|

n∑
i=1

{κi(z, v)− E[κi(z, v)]}| = op(
√
n). (3.40)

Consider the evenly-spaced points

zj = j/n, vj′ = j′/n3/2, j, j′ = 0, 1, ..., n, partitioning [0, 1]× [−1/
√
n] into n2 cells.

By the bounded derivative of G(z), there exists an universal b3 > 0 such that for
all z ∈ [zj−1, zj] and all v ∈ [vj′ , vj′−1],

G(zj)−G(zj−1 + vj′)−
b3

n
≤ G(z)−G(z + v) ≤ G(zj−1)−G(zj + vj′−1) + b3

n
(3.41)

Observe that, for εi > 0,

εi(1εi<zj−1 − 1εi<zj+vj′−1) ≤ εi(1εi<z − 1εi<z+v) ≤ εi(1εi<zj − 1εi<zj−1+vj′ ). (3.42)

Define

λ̄ijj′ = εi(1εi<zj − 1εi<zj−1+vj′ )− [G(zj)−G(zj−1 + vj′)] (3.43)

λijj′ = εi(1εi<zj−1 − 1εi<zj+vj′−1)− [G(zj−1)−G(zj + vj′−1)] (3.44)

Combine (3.41) and (3.42), we have

λijj′ −
b3

n
≤ κi(z, v)− Eκi(z, v) ≤ λ̄ijj′ +

b3

n
(3.45)

Thus |
∑n

i=1[κi(z, v)− Eκi(z, v)]| ≤ |
∑n

i=1 λ̄ijj′ |+ |
∑n

i=1 λijj′ |+ b3.
Hence

sup
(z,v)∈[0,1]×[−1/

√
n,0]
|

n∑
i=1

[κi(z, v)− Eκi(z, v)]|

= max
1≤j,j′≤n

sup
z∈[zj−1,zj ],v∈[vj′ ,vj′−1]

|
n∑
i=1

[κi(z, v)− Eκi(z, v)]|

≤ max
1≤j,j′≤n

|
n∑
i=1

λ̄ijj′|+ max
1≤j,j′≤n

|
n∑
i=1

λijj′ |+ o(
√
n) (3.46)
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For all εi > 0, i = 1, 2, ..., n,

|λ̄ijj′ | = |εi(1zj−1++vj′<εi<zj)− [G(zj)−G(zj−1 + vj′)]|
≤ |εi1εi<zj |+ |zj − zj−1 − vj′||zj−1 + vj′ |fε(zj−1 + vj′)
≤ zj + [|zj − zj−1|+ |vj′|]|zj−1 + vj′|fε(zj−1 + vj′)
≤ b4, for some b4 > 0. (3.47)

The last inequality in (3.47) holds by the positivity and boundedness of fε. On the
other hand, by Hölder’s inequality and Assumption 9(ii),

V ar[
n∑
i=1

λ̄ijj′ ] = nV ar[λ̄1jj′ ] = nE[λ̄2
1jj′ ]

≤ nE[ε11zj−1++vj′<εi<zj ]
2

≤ n
√
E[ε4

1]E[1zj−1++vj′<εi<zj ]

= n
√
E[ε4

1][Fε(zj)− Fε(zj−1 + vj′)]

= O[n
√
n−1 + n−1/2] = O(n3/4). (3.48)

Therefore, we have
√
V ar[

∑n
i=1 λ̄ijj′ ] ≤ b5n

3/8, for some b5 > 0. Using (3.47),
(3.48), and Bernstein’s exponential inequality (Bennett, 1962) for the sum of
bounded and independent random variables, we obtain

P{|
n∑
i=1

λ̄ijj′ | ≥ b6
√
n} ≤ 2 exp

{ −( b6n1/8

b5
)2

2 + 2
3( b4

b5n3/8 )( b6n1/8

b5
)

}
= O[exp{−n1/2}],

for large enough n and all j, j′, where b6 > 0 is some given constant. Therefore,

P{ max
0≤j,j′≤n

|
n∑
i=1

λ̄ijj′ | ≥ b6
√
n} ≤

n∑
j,j′=0

P{|
n∑
i=1

λ̄ijj′ | ≥ b6
√
n} = O[n2 exp{−n1/2}].

Since b6 is arbitrary, (3.49) implies that max0≤j,j′≤n |
∑n

i=1 λ̄ijj′ | = op(
√
n). Similarly

we have max0≤j,j′≤n |
∑n

i=1 λijj′| = op(
√
n). The results in (3.37) then follows in
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view of (3.46).
♦

Lemma 12. Suppose the assumptions in Lemma 10 and Lemma 11 hold. Then

1
n

n∑
i=1

ε̂i1ε̂i≥`(θ̂) −
1
n

n∑
i=1

εi1εi≥`(θ)

= [J̇1(0, `(θ))T − ˙̀(θ)`(θ)fε(`(θ))](θ̂ − θ) + op(n−1/2), (3.49)

and

1
n

n∑
i=1

1ε̂i≥`(θ̂) −
1
n

n∑
i=1

1εi≥`(θ)

= [J̇2(0, `(θ))T − ˙̀(θ)fε(`(θ))](θ̂ − θ) + op(n−1/2). (3.50)

Proof. We will prove (3.49), (3.50) can be shown similarly. Let Y = [Y1,Y2] be
any bounded interval. Recall `(θ) from (3.4). Write z = `(θ) := `(θ, y, x)
and ẑ = `(θ + δ) := `(θ̂, y, x). Since `(θ̂, y, x) is clearly increasing in y,
`(θ̂,Y1, x) ≤ `(θ̂, y, x) ≤ `(θ̂,Y2, x), uniformly on y ∈ Y . By Lemma 10,

sup
y∈Y

∣∣∣ 1
n

n∑
i=1

ε̂i1ε̂i≥ẑ −
1
n

n∑
i=1

εi1εi≥ẑ − J̇1(0, ẑ)(θ̂ − θ)
∣∣∣ = op(n−1/2). (3.51)

By θ̂ − θ = Op(n−1/2) and Assumption 9(ii),

ẑ − z = `(θ̂)− `(θ) = ˙̀(θ)(θ̂ − θ) + op(n−1/2). (3.52)

Thus, by (3.52) and Lemma 11,

sup
y∈Y

∣∣∣ 1
n

n∑
i=1

εi1εi≥ẑ −
1
n

n∑
i=1

εi1εi≥z − [− ˙̀(θ)(θ̂ − θ)`(θ)fε(`(θ))]
∣∣∣ = op(n−1/2).

(3.53)

The continuity of J̇1(0, z) in Assumption 10 implies J̇1(0, ẑ) − J̇1(0, z) = op(1)
uniformly on y ∈ Y. Combine with (3.51) and (3.53), we obtain the uniform
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approximation

1
n

n∑
i=1

ε̂i1ε̂i≥ẑ −
1
n

n∑
i=1

εi1εi≥z

= J̇1(0, z)(θ̂ − θ) + [− ˙̀(θ)`(θ)fε(`(θ))(θ̂ − θ)] + op(n−1/2). (3.54)

♦

3.4.1 Proof of Theorem 7

Proof. By Lemma 12,

1
n

n∑
i=1

ε̂i1ε̂i≥`(θ̂) = E[ε01ε0≥`(θ)] + A+ op(n−1/2), (3.55)

1
n

n∑
i=1

1ε̂i≥`(θ̂) = E[1ε0≥`(θ)] +B + op(n−1/2). (3.56)

where

A = 1
n

n∑
i=1

{
εi1εi≥`(θ) − E[εi1εi≥`(θ)]

}
+ [J̇1(0, `(θ))T − ˙̀(θ)`(θ)fε(`(θ))](θ̂ − θ),

B = 1
n

n∑
i=1

{
1εi≥`(θ) − E[1εi≥`(θ)]

}
+ [J̇2(0, `(θ))T − ˙`(θ)fε(`(θ))](θ̂ − θ) (3.57)

Since {εi} are iid, the first term in A and the first term in B are of the order
Op(n−1/2). Under the condition θ̂ − θ = Op(n−1/2), A = Op(n−1/2), B = Op(n−1/2).
By the condition θ̂ = θ + Op(n−1/2) and Taylor’s expansion, µ(θ̂, x) = µ(θ, x) +
µ̇(θ, x)T (θ̂ − θ) + op(n−1/2) and σ(θ̂, x) = σ(θ, x) + σ̇(θ, x)T (θ̂ − θ) + op(n−1/2).
Substituting the latter expansions and (3.56) into (3.10) and using the expression
(3.4) for CES(y|x), we can obtain

ĈES(y|x) = µ(θ̂, x) + σ(θ̂, x)
E[ε01ε0≥`(θ)] + A

E[1ε0≥`(θ)] +B
+ op(n−1/2),

= CES(y|x) +
[
µ̇(θ, x)T + σ̇(θ, x)T

E[ε01ε0≥`(θ)]
E1ε0≥`(θ)

]
(θ̂ − θ)

+σ(θ, x)
[E[ε01ε0≥`(θ)] + A

E[1ε0≥`(θ)] +B
−

E[ε01ε0≥`(θ)]
E1ε0≥`(θ)

]
+ op(n−1/2)
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= CES(y|x) +Wn + op(n−1/2), (3.58)

where

Wn =
[
µ̇(θ, x)T + σ̇(θ, x)T

E[ε01ε0≥`(θ)]
E1ε0≥`(θ)

]
(θ̂ − θ)

+ σ(θ, x)
(E1ε0≥`(θ))2

[
E1ε0≥`(θ)A− E[ε01ε0≥`(θ)]B

]
. (3.59)

The result then follows from (3.58) in view of θ̂ − θ = Op(n−1/2), A = Op(n−1/2),
and B = Op(n−1/2). ♦

3.4.2 Proof of Theorem 8

Proof. Substituting the expressions for θ̂ − θ in (3.11) and A and B in (3.57) into
(3.59), after some calculations we can rewrite

Wn = n−1
n∑
i=1

ψi + op(n−1/2), where ψi = HT ζi + ηi. (3.60)

ηi, ζi = ζ(θ, εi,Xi), and H in (3.60) are defined in (3.7), (3.11), and (3.17),

respectively. By Assumption 8, E
{
HT ζi|Xi

}
= 0. Thus E[ψi|Xi] = 0. On the

other hand,

E[ψ2
i ] = (HTH)E[ζT (θ, εi,Xi)ζ(θ, εi,Xi)] + 2HTE[ηiζ(θ, εi,Xi)] + E[(η2

i ]
< ∞. (3.61)

The first term in (3.61) is finite because ζi ∈ L2. For the third term in (3.61), by
Assumption 9,

E[η2
i ] = (E[ηi])2 + V ar(ηi) <∞.

The second term in (3.61) then followed by Hölder’s inequality. Thus by Lemma 5,
(3.16) is proved. ♦
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