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Abstract

The ubiquity of mobile devices has opened up opportunities for a wide range of
applications based on photo/video crowdsourcing, where the server collects a large
number of photos/videos from the public to obtain desired information. How-
ever, transmitting large numbers of photos/videos in a wireless environment with
bandwidth constraints is challenging, and it is hard to run computation-intensive
image processing techniques on mobile devices with limited energy and computa-
tion power to identify the useful photos/videos and remove redundancy. To address
these challenges, we propose a framework to quantify the quality of crowdsourced
photos/videos based on the accessible geographical and geometrical information
(called metadata) including the orientation, position, and all other related param-
eters of the built-in camera. From metadata, we can infer where and how the
photo/video is taken, and then only transmit the most useful photos/videos.

The goal of this dissertation is to design and evaluate metadata-based tech-
niques to support resource-aware crowdsourcing in wireless networks. First, we
propose a metadata-based framework called SmartPhoto which can select the most
useful photos to cover the specified points of interest. Optimization problems re-
garding the tradeoffs between photo coverage and resource utilization are formal-
ized and efficient algorithms with provable performance bounds are designed and
evaluated. Furthermore, SmartPhoto has been evaluated through real experiments
with Android smartphones, and various techniques have been designed to improve
the accuracy of the collected metadata. Second, for some applications, the target
of interest is an area rather than a point. Thus, we extend SmartPhoto to select
the most useful photos to cover an area of interest. Since there are infinite number
of points in an area and each point can be covered differently, area coverage is hard
to analyze. To address this problem, we study how to select photos with the best
area coverage under resource constraints and propose an efficient algorithm with
provable performance bound. Third, for applications such as disaster recovery and
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battlefield, the cellular network may be partly damaged or severely overloaded, and
thus photos have to be delivered through Disruption Tolerant Networks (DTNs).
In DTNs, data can only be transferred when two devices are within the wireless
transmission range of each other, and the storage of each device is also limited.
Therefore, it is important to prioritize more valuable photos to use the limited
resources. We quantify the value of the photos based on their metadata, and pro-
pose a distributed photo selection algorithm to maximize the value of the photos
delivered to the server considering bandwidth and storage constraints. Finally,
we propose VideoMec, a crowdsourcing system which organizes the metadata of
all videos taken by mobile devices. VideoMec supports comprehensive queries for
any application to find and fetch desired videos from the corresponding mobile
devices. For time-critical applications, it may not be possible to upload all desired
videos in time due to limited wireless bandwidth and large video files. Thus, we
propose efficient algorithms to select the most important videos or video segments
to upload under bandwidth constraints. VideoMec has been implemented and ex-
perimental results have demonstrated its effectiveness on organizing and retrieving
mobile videos from mobile devices with resource constraints.
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Chapter 1
Introduction

In the past decade, taking photos/videos using smartphones and tablets has be-

come a common practice in people’s daily life. In the near future, wearable devices

such as smartglasses will make photo/video taking more user-friendly. The prolif-

eration of all these mobile devices will enable a wide range of applications based

on photo/video crowdsourcing, where a central server collects a large amount of

photos/videos from the public to obtain desired information. Such applications in-

clude grassroots journalism [1], law enforcement [2], disaster recovery [3, 4], street

view service [5, 6], and many others.

Consider the following example. A city is under a state of emergency due

to external attacks or natural disasters. To find out where the damage is and

how severe it is, first-hand on-site videos taken by people using mobile devices

become extremely useful. There may be lots of videos taken by mobile users, and

the communication infrastructure may be severely damaged. Thus, the wireless

transmission of videos from mobile users to the central service or central authority

will be limited by the bandwidth constraints, and it is a challenge to efficiently

utilize the limited bandwidth to find and collect the most useful videos.

Street view service can also benefit from crowdsourcing. Areas like university

campuses, theme parks, and outlets are inaccessible to street view cars [7] and thus

often do not have street view. Areas under development may have totally different

views after one year and regularly updating these views can be very costly. With

crowdsourcing, millions of photos taken by visitors can be collected, processed, and

embedded into maps to provide street-view-like service for areas where traditional
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street view is not available or out of date. Unfortunately, the sheer amount of pho-

tos poses big challenges for image processing and recognition. Fully understanding

the semantic of each photo by resource-intensive image processing techniques [8, 9]

would be a luxury if not impossible. Thus, it is a challenge to analyze photos

quickly and select those that provide the best coverage over the area.

In the above two applications, the biggest challenge is the resource limitation

in wireless environments. The limited bandwidth or computing power reduces the

amount of data that can be crowdsourced from the public, and thus reduces the

performance of crowdsourcing applications. Therefore, it is important to develop

resource-aware crowdsourcing solutions for these applications.

Some existing techniques may be applied to address this challenge. For exam-

ple, some content-based image retrieval techniques [9, 10] can be applied to push

the computing to the user end. Users are asked to download a special piece of

code or manually validate image content. Although this can address the comput-

ing limitation of the server, it may discourage user participation and may not be

suitable for disaster recovery scenarios where mobile devices have limited resources

(i.e., computing power and energy) to execute those programs. As another solu-

tion, description-based techniques can be applied to annotate photos by tags [11]

or GPS locations [12]. However, tags may be inaccurate or insufficient for applica-

tions to determine the coverage/content of photos. Some tags require user inputs

and then discourage user participation. Moreover, location itself is not enough to

reveal the view of the camera. Even at the same location, cameras facing different

directions have different views.

To address all the above issues, we propose to use various geographical and ge-

ometrical information, called metadata, to characterize photos/videos. For photos,

metadata includes camera location, orientation, field of view, coverage range, and

other parameters such as focal length, which are accessible from the built-in sen-

sors of most off-the-shelf mobile devices. Whenever a photo is taken, its metadata

is automatically generated and recorded. From metadata, we can determine where

and how the photo is taken and infer which area is covered by the photo without

looking at the image content. For videos, metadata (e.g., orientation) constantly

changes during video recording and thus needs to be recorded periodically as the

video is being taken.
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With metadata, photo/video crowdsourcing becomes much more resource-friendly.

When a crowdsourcing event happens, the server first asks users to upload meta-

data, and selects photos/videos based on the uploaded metadata and the applica-

tion needs (e.g., resource constraints). Then users upload the selected ones and

get paid [13, 14, 15] (how users are paid is out of the scope of this dissertation).

During this process, the unselected photos/videos (except their metadata) will not

be transmitted to the server, thus saving bandwidth and energy on mobile devices.

All the photos/videos are analyzed based on their metadata rather than actual im-

ages, which significantly reduces computational cost and delay. Based on the idea

of metadata, we design a series of models and algorithms to support resource-aware

crowdsourcing in a variety of application scenarios.

1.1 Focus of This Dissertation

The goal of this dissertation is to design and evaluate metadata-based techniques

to support resource-aware crowdsourcing in wireless networks. Specifically, we

focus on four scenarios, i.e., resource-aware photo crowdsourcing for point cover-

age, resource-aware photo crowdsourcing for area coverage, resource-aware photo

crowdsourcing through disruption tolerant networks, and a metadata-enhanced

crowdsourcing system for mobile videos. We briefly explain them in the following

four subsections.

1.1.1 Resource-Aware Photo Crowdsourcing for Point Cov-

erage

In photo crowdsourcing applications, the targets to be covered can be considered

as points on the map, which can be buildings, intersections, or other landmarks.

Intuitively, a target is well covered if there are multiple photos providing multiple

views of the target from different angles. For example, a building is well covered

if there are four photos viewing it from north, south, east, and west. This is

dramatically different from the sensor coverage model in traditional wireless sensor

networks, where the target is well covered as long as it is within the sensing range

of one sensor. Due to this unique property of photo coverage, the models and



4

algorithms for traditional sensor coverage cannot be applied, and new ones need

to be developed specifically for photo coverage.

To this end, we define photo utility to measure how well a set of photos cover the

targets based on how many different angles they cover, which can be calculated

from photo metadata. Then, to address the challenges of resource constraints,

three optimization problems regarding the tradeoffs between photo utility and re-

source usage, namely the max-utility problem, the min-selection problem, and the

min-selection problem with k-coverage, are formulated and studied. There prob-

lems are proved to be NP-hard, and we propose efficient approximation algorithms

to solve them. We show the theoretical performance bounds of the proposed algo-

rithms, and demonstrate their effectiveness through both real-world experiments

and extensive simulations.

1.1.2 Resource-Aware Photo Crowdsourcing for Area Cov-

erage

In some crowdsourcing applications, the target of interest is an area rather than

a point. For example, when crowdsourcing for street view photos, the target area

should be covered as much as possible and for each point covered, the photos

should be taken from multiple angles. Since there are infinite number of points in

the area, and each point can be covered by different photos from different angles,

area coverage is much harder to analyze compared to point coverage.

To address the issue, we first extend the definition of photo utility so that it

works for area coverage. Then we study how to efficiently analyze area coverage

and calculate photo utility based on metadata. Next, we study an optimization

problem which maximizes the utility of selected photos under resource constraints.

The problem is proved to be NP-hard and an efficient approximation algorithm

with guaranteed performance bound is proposed. Finally, the proposed algorithm

is evaluated with both real-world experiments and extensive simulations.
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1.1.3 Resource-Aware Photo Crowdsourcing Through Dis-

ruption Tolerant Networks

Some crowdsourcing applications have bad network conditions. For example, in

a natural disaster or battlefield, the communication between the command center

and mobile users (e.g., rescuers, survivors, and soldiers) can be extremely con-

strained. The cellular network may be damaged or overloaded with extensive

requests, and human-carried satellite radios are only available to a small portion

of users due to the high cost. As a result, we have to use Disruption Tolerant Net-

works (DTNs) to transfer photos among mobile users, and once available, use the

cellular network or satellite connections to upload photos to the command center.

With DTN, selecting useful photos based on metadata becomes more challeng-

ing. The usefulness of a photo depends not only on its coverage obtained from

metadata, but also on the probability that it is delivered to the command center

via opportunistic DTN links. To address this challenge, we use expected coverage,

which combines photo coverage and delivery probability, to measure the usefulness

of photos. Every time two users move near each other and establish a DTN link,

they transmit photos between each other to maximize the expected coverage of

their photos. This way, useful photos can be quickly transmitted through DTN

and delivered to the command center. The proposed design is evaluated with

a real-world demo and extensive simulations using two large-scale DTN contact

traces.

1.1.4 A Metadata-Enhanced Crowdsourcing System for Mo-

bile Videos

Our previous studies focus on selecting photos to best cover some interested targets

or target areas. The targets or target areas are given in one crowdsourcing task

and the crowdsourced photos are only used for that task. To make crowdsourcing

even more efficient, we design a system that collects the information (metadata)

of all videos taken by mobile devices and makes it accessible to all crowdsourcing

tasks. More specifically, whenever a video is taken by mobile devices, its metadata

is automatically uploaded to a central server and stored in a database. Then,

any crowdsourcing application can query the database to find desired videos and
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retrieve them from the corresponding mobile devices. We design the system for

videos because they are more complex than photos and a system that can handle

videos will also be able to handle photos.

To build such system, we first design efficient methods to index and query all

the collected video metadata, which is expected to grow exponentially with the pro-

liferation of mobile devices. Then, after the query, it is possible that mobile devices

cannot upload all requested videos due to limited wireless bandwidth, large video

files, and the urgent need of time-critical applications. Thus, we design efficient al-

gorithms based on metadata to select the most important videos or video segments

to upload first. Finally, we implement a prototype of the proposed crowdsourcing

system, and demonstrate its effectiveness based on real-world experiments.

1.2 Organization

The remainder of the dissertation is organized as follows. In the next chapter, the

related work is discussed. Chapter 3 introduces photo utility for point coverage

and studies the optimization problems regarding photo utility and resource usage.

Chapter 4 extends photo utility to area coverage, and then studies how to effi-

ciently calculate the utility and use it to select photos under resource constraints.

Chapter 5 presents techniques on resource-aware photo crowdsourcing through dis-

ruption tolerant networks. Chapter 6 presents the proposed metadata-enhanced

crowdsourcing system for mobile videos. Finally, we conclude the dissertation and

discuss the future work in Chapter 7.



Chapter 2
Related Work

2.1 Photo Crowdsourcing

The mass adoption of mobile devices makes photo taking and sharing via online

social networks much easier and more enjoyable. It creates opportunities for many

applications based on photo crowdsourcing, which have received much attention

recently in research. For example, in [12], the authors proposed to build photo

annotated world maps and create 3D models of the objects from 2D photos via

online social networks. Zhai et al. investigated the efficient use of crowdsourced

photos in post-earthquake recovery scenarios [4]. In [16], the authors envisioned

the possibility of using crowdsourced photos and associated sensor data to im-

prove outdoor localization. The idea was further extended by Jigsaw [17], Indoor-

Crowd2D [18, 19, 20], and iMoon [21, 22] to achieve indoor navigation and floor

plan reconstruction.

In addition, several image related crowdsourcing frameworks have been pro-

posed. CrowdSearch [10] asks human workers to manually look at images and

validate their content to search for desired images. MediaScope [23] uses content-

based features such as color and texture to search for images on mobile devices.

These content-based approaches involve power-intensive computation at both user

and server end, and the authors had to reduce image resolution to lower the compu-

tational cost at the expense of accuracy. The authors mentioned that their solution

could also be used for videos. However, when applied to videos, such computa-

tional cost will be much higher because each video has a large number of frames
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to be processed (even after sampling). Compared to content-based approaches,

which are challenged by the content diversity and the resource constraints, our

metadata-based approach can effectively characterize photos while using very lit-

tle bandwidth, storage, and computing resources.

2.2 Coverage in Camera Sensor Networks

Camera sensor networks have been extensively studied in recent years. [24, 25, 26,

27, 28, 29, 30, 31, 32]. One basic problem is the coverage problem, e.g., whether

some given camera sensors can cover the interested area or how to optimally place

some camera sensors to do so. One coverage problem studied is called pan and

scan [33], which is proposed to maximize the total coverage in a camera sensor

networks. For camera sensor placement, various optimization models and heuristics

are studied in [34]. However, their coverage model is relatively simple. An object

is considered to be well covered as long as it is within the coverage area of one

photo, which does not consider the uniqueness of photo coverage.

Our work is inspired by the full-view coverage model which was originally pro-

posed in [35] and later extended in [36, 37]. An object is considered to be full-view

covered if no matter which direction the object faces, there is always a camera cap-

turing its front image, or more specifically, there is always a camera whose coverage

range includes the object and whose viewing direction is sufficiently close to the

object’s facing direction. This means that multiple cameras are around the object

and they provide the highest degree of coverage on the object. This idea inspires

lots of follow-up work [38, 39] because the proposed model guarantees to capture

the object’s “face”, which is especially useful in camera surveillance systems. How-

ever, in the full-view coverage model, an object is either full-view covered which

implies the highest degree of coverage, or not. If an object is not full-view covered,

it is not clear how well the coverage is. Compared to their model, the photo utility

proposed in this dissertation is more general, because it measures the degree of

coverage as a continuous function based on how many different directions are cov-

ered. More importantly, we conduct real-world experiments to demonstrate that

our utility metric can truly reflect the coverage of real photos.
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2.3 Routing in Disruption Tolerant Networks

Since cellular networks may not be available in applications such as disaster re-

covery and photos may need to be delivered through DTN, this research is also

related to DTN routing. Early works in DTN routing assume that packets are

equally important, and thus do not differentiate packets based on their content

[40, 41, 42, 43]. Those works are not suitable for disaster recovery scenarios, where

the value of each photo is different and must be considered in routing. More re-

cent works consider the utility of packets and prioritize packets with high utility in

routing decisions [44, 45, 46]. For example, [44] uses several variations of delay as

the utility; [46] uses the average delay and the average delivery rate as the utility;

and [45] routes prefetched webpages to DTN nodes, so it uses the probability that

a link is actually clicked as the utility. A common property of the above utility

metrics is that the utility of one packet is not explicitly affected by the presence of

other packets. However, the utility metric in our work, photo coverage, is differ-

ent. The coverage of a photo can change dramatically depending on the presence

of other similar photos. Hence, existing utility-based approaches are not suitable

for maximizing photo coverage.

PhotoNet [47] and CARE [48] are two closely related papers as they also study

photo delivery in disruption tolerant networks. PhotoNet is a picture delivery

service that prioritizes the transmission of photos by considering the location,

time stamp, and color difference, with the goal of maximizing the “diversity” of

the photos. Compared to their model, we consider direction and angle information,

and develop techniques to obtain them from off-the-shelf mobile devices. These

are very important and unique features for photos and enable us to develop much

finer optimization models. Moreover, the solutions to our optimization problems

are rigorously analyzed. CARE leverages image similarity detection algorithms

to eliminate similar-looking photos, and thus increase the delivery capability of

DTN. While those algorithms can detect similarity in terms of pixels, they do not

necessarily detect similarity in terms of content or semantics. In comparison, our

metadata-based model can detect a broader scope of similarity at a much lower

computational cost, which is critical in resource constrained DTN scenarios.
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2.4 Video Crowdsourcing

Existing works on video crowdsourcing require all video files to be uploaded to the

cloud or cloudlets. For example, Chen et al. [49] presented a cloud leasing strat-

egy where geo-distributed users watch live streaming videos crowdsourced from

geo-distributed contributors. Simoens et al. [50] proposed a video crowdsourc-

ing framework where video files are uploaded to the cloudlets (rather than the

cloud). Based on the cloudlet framework, Bohez et al. [5] presented a live street

view service. However, none of them uses fine-grained sensor data to characterize

crowdsourced videos and reduce resource consumptions.

Applications based on mobile videos and sensor data have been proposed for

various domains. For example, MoVi [51] uses various sensors to automatically

detect interesting events in a social group and stitches video clips from multiple

devices to produce event highlights. FOCUS [52] clusters mobile videos taken in

a small area (e.g., a stadium) by camera orientation, and thus recognizes videos

capturing the same event even when they have different viewing angles. Kim et

al. [53] studied how to select frames from mobile videos, based on camera location

and orientation, to generate high quality panoramic images. Lee et al. [54] studied

the use of vehicular sensing platforms, i.e., vehicles equipped with cameras and

sensors, in public safety and crime investigation applications.

Different from these existing works, we propose a general crowdsourcing system

which organizes and indexes all videos taken by mobile devices based on metadata.

The system supports comprehensive queries for a variety of applications to find

and fetch desired videos while reducing resource consumption at both the server

and the user side.



Chapter 3
Resource-Aware Photo

Crowdsourcing for Point Coverage

3.1 Background

As mentioned in the introduction, metadata can be used to characterize photos

and select photos that best cover interested targets. Intuitively, a target can be

seen as a point on the map, and a good photo coverage should have multiple views

of the target (point) and cover as many aspects as possible. Specifically, given a set

of targets and photos, we consider an aspect of a target to be properly covered if

it is within a proper range of a photo’s viewing direction (defined in Section 3.2).

Then we measure the quality of a photo by utility, which indicates how many

aspects are covered. The utility is calculated based on the metadata, which can

be practically obtained via various embedded sensors in most off-the-shelf mobile

devices. They are independent of the image content, and hence the computation is

very fast and resource-friendly compared to traditional content-based approaches.

With the above model, we address challenges brought by the resource con-

straint, which is referred to as the Max-Utility problem. Resource constraint of

bandwidth, storage and processing capability limits the number of photos that

can be uploaded to the server. Given the metadata of the candidate photos, how

to find a given number of photos such that the total utility is maximized? Note

that this is different from traditional maximization problems on sensor coverage
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in which a target is covered as long as it is inside the sensing range. Here photos

taken at different view points cover different aspects of the target. The total utility

depends on how many aspects can be covered and how they are covered, which

makes the problem unique and complicated.

Another challenge to be addressed is how to remove the redundancy and find

the most representative photos. In general, the amount of candidate photos is

significant and redundancy occurs if multiple photos are taken at similar locations

and from similar angles. The less number of photos is selected, the less amount

of bandwidth, storage and processing capability is needed. In the Min-Selection

problem, given the coverage requirements of the targets, we want to find the mini-

mum set of photos that satisfy the requirements. We also consider having certain

level of redundancy in case better coverage is needed.

In this chapter, we propose SmartPhoto, a novel framework to evaluate and

optimize the selection of crowdsourced photos, based on the collected metadata

from mobile devices. We formulate the Max-Utility problem for bandwidth con-

strained networks, and then extend it into an online optimization problem. We

study the Min-Selection problem for redundancy reduction, and also extend it to

the case where better coverage (e.g., k-coverage) is desired. Moreover, we propose

efficient solutions, and find the performance bounds in terms of approximation or

competitive ratios for the proposed algorithms. We have implemented SmartPhoto

in a testbed using Android based smartphones. We make use of multiple embed-

ded sensors in off-the-shelf smartphones, and propose a series of methods to fuse

data, correct errors, and filter out false information, to improve the accuracy of

the collected metadata. Finally, the performance of the proposed algorithms are

evaluated through real implementations and extensive simulations.

3.2 Models and Notations

Consider a post-disaster scenario in which a set of predefined targets are to be

monitored by a group of people or reporters. They use mobile devices to take

photos and transfer them back to the processing center. However, only a small

number of photos can be transferred due to the limited bandwidth caused by

damage to base stations or overwhelming cellular traffic. For this reason, reporters
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first transmit the metadata of the photos, which is extremely lightweight compared

to the original images. After that, the server runs optimization algorithms to

determine what photos to be actually transferred and notifies the reporters to

transmit the photos.

We first describe the models used in SmartPhoto to characterize targets and

photos. Then the concept of utility is introduced. The idea is based on the

observation that a good photo should cover as many aspects of the targets as

possible. For an aspect to be properly covered, the target should be in a photo

whose viewing direction is not too far away from the direction to which the aspect

points. This is similar to the face recognition problem in computer vision: as the

angle between the object’s facing direction (the aspect) and the camera’s viewing

direction (the vector from the camera to the object) becomes wider, the detection

rate of the recognition algorithm will drop dramatically [55, 56]. The utility defined

here precisely indicates how many aspects of the target are properly covered.

3.2.1 Targets and Photos

At the beginning of each event, the application server distributes the information

of the interested targets to the public users. The set of targets are denoted by

T = {T1, . . . , Tm}. Ti also represents the location of the i-th target if there is

no ambiguity. An aspect of the target, denoted by ~v, is a vector that can be

represented by an angle in [0, 2π) with 0 degree indicating the one pointing to the

right (east on the map). For ease of presentation, this angle is denoted by arg(~v)

and is calculated by using arithmetic modulo 2π.

Given a set of photos: P = {P1, . . . , Pn}, each photo Pj is stored locally and it

can be registered to the server with a tuple (lj, rj , ϕj , ~dj), called the metadata of

the photo. Here lj is the location where the photo is taken. To simplify notations,

we also use Pj to represent the location if there is no ambiguity. rj and ϕj are two

internal parameters of the camera used to take the photo. rj is the effective range

of the camera, and ϕj is the field-of-view (FoV, represented in angle) of the camera

lens. ~dj is the orientation of the camera when the photo is taken. Note that ~dj is

the normal vector derived from the camera lens and vertical to the image plane. It

can be acquired by using various sensors embedded in the mobile device. Details
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Figure 3.1. (a) Metadata defines the effective coverage range of a photo. (b) An
aspect is covered if it is close to the viewing direction. (c) Coverage overlap shows the
redundancy in the photos.

of obtaining these geographical information will be given in Section 3.6. As shown

in Figure 3.1(a), the metadata defines the effective coverage range of the photo.

3.2.2 Photo Utility

For a target Ti and a photo Pj , Ti is said to be covered by Pj if Pj’s range includes

Ti. An aspect ~v of Ti is covered if the angle between ~v and
−−→
TiPj is smaller or equal

to a predefined angle θ called effective angle. Here
−−→
TiPj is the viewing direction

of the camera towards the target when the photo is taken1. Further, the utility of

a photo Pj can be defined based on how many aspects of Ti are covered by this

photo.

Definition 1. [Utility] Given a target Ti and a photo Pj covering the target, the

utility of Pj on Ti, denoted by UPj
(Ti), is the portion of aspect that is covered by Pj,

i.e., UPj
(Ti) =

∫ 2π
0 1Pj

(v)dv, where 1Pj
(v) = 1 if ~v is covered by Pj, or 0 otherwise.

Accordingly, the utility of a set of photos P ′ = {Pj : 1 ≤ j ≤ k} regarding

target Ti is the total portion of aspect that is covered by the photos of P ′, i.e.,

UP ′(Ti) =
∫ 2π
0 1P ′(v)dv, where 1P ′(v) = 1 if ~v is covered by any Pj from P ′, or 0

otherwise.

Finally, the total utility of the photos regarding all targets T = {T1, . . . , Tm} is

the sum of the utility regarding each target. It is normalized by dividing the total

number of targets, i.e., UP ′(T ) = 1
m

∑m
i=1 UP ′(Ti).

For example in Figure 3.1(b), target Ti is covered by photo Pj. Its aspect

1Intuitively, it should be from Pj to Ti, but
−−→
TiPj is used for ease of calculation.
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Figure 3.2. The conversion into a set system.

~v1 is covered by Pj but aspect ~v2 is not. In fact, Pj covers all the aspects in

[arg(
−−→
TiPj) − θ, arg(

−−→
TiPj) + θ] (gray sector in Figure 3.1(b)). Thus, Pj’s utility is

2θ. If there are multiple photos covering the same target, possible overlap (darker

area in Figure 3.1(c)) among photos’ coverage needs to be identified and removed.

In that case, the overlap can only be counted once towards the total utility, which

is reflected by the gray area in Figure 3.1(c).

3.3 Max-Utility with Bandwidth Constraint

In the scenario described in Section 3.2, the bandwidth constraint determines the

number of photos that can be selected. The problem is defined as follows.

Definition 2. [Max-Utility Problem] Given a set of m targets with known locations

T = {T1, . . . , Tm} and n photos P = {P1, . . . , Pn} with known metadata, also given

a predefined positive integer B(≤ n), the problem asks for a selection of B photos

P ′ out of the n candidates, such that the total utility of the selected photos UP ′(T )

is maximized.

3.3.1 Conversion to Maximum Coverage

Without loss of generality, we first consider a single target Ti and use the coverage

interval Ii = [0, 2π) to indicate its aspect to be covered. Let P = {P1, . . . , Pn}
be the set of all photos covering Ti. Then for each Pj , if Ti is covered by Pj,

the coverage of Pj on Ti (gray sector in Figure 3.1(b)) can be represented by a

sub-interval of [0, 2π), i.e.,

Sj , [xj , yj] = [arg(
−−→
TiPj)− θ, arg(

−−→
TiPj) + θ]. (3.1)



16

Note that the angles are always calculated by using arithmetic modulo 2π. Here

the two end points xj and yj are called dividing points, which divides Ii into two

parts: one is Sj and the other is Ii − Sj. If there are more photos by which Ti is

covered, there would be more dividing points.

If there are multiple targets, every target corresponds to a coverage interval

Ii = [0, 2π) and each Ii is divided into sub-intervals by the corresponding dividing

points. Let U = {e1, . . . , ew} be a universe set with each element representing a

sub-interval and w being the total number of them. The weight of the element is

the length of the sub-interval. For each photo Pj, a subset of U can be generated

based on what sub-intervals are covered by it. Let Sj denote this subset. Then we

have proved the following lemma:

Lemma 1. A solution to the Max-Utility problem can be obtained by solving the

following problem: given a universe set U of (non-negative) weighted elements, an

integer B and a collection of subsets S = {S1, . . . , Sn}, find B subsets such that

the total weight of the elements covered by the selected subsets is maximized.

3.3.2 Greedy Selection Algorithm

The general maximum coverage problem is proved to be NP-hard [57]. A greedy

algorithm can be used to find a solution. It works as a multi-round selection

process. In each round, the weighted contribution (utility) of every unselected

photos is calculated. The photo with the most contribution to the total utility is

selected. If there are more than one photos with the most contribution, the one

with the lowest index is selected. Once a photo is selected, it will be removed from

the selection. The elements (sub-intervals) covered by the selected photo will be

removed from future consideration. The selection process runs until B photos have

been selected or every aspect of all targets has been covered, whichever comes first.

Theorem 1. Let Uopt be the optimal value of the total utility that can be achieved

by any B photos from P . Let Ugreedy be the total utility achieved by the greedy

selection algorithm. Then

Ugreedy ≥ [1− (1− 1

B
)B] · Uopt > (1− 1

e
)Uopt.
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Proof. From Lemma 1, a selection of B subsets implies a valid selection of B

photos. Moreover, the total utility of the photos is maximized if and only if the

corresponding subsets has the maximum total weight. On the other hand, the

subsets selected by the greedy selection can yield a total weight that is at least

(1 − 1/e) times the optimal value [57]. Therefore, the total utility of the selected

photos is also lower bounded by (1− 1/e) times the maximum total utility.

An Example: Figure 3.2 shows an example of one target and 10 photos. Suppose

θ = 45◦, B = 3. Each photo’s position is shown in Figure 3.2(a). The arrows in

Figure 3.2(b) indicate photos’ viewing directions, and the number beside the arrow

(e.g., 10 beside
−−−→
T1P10) indicates the angle of the viewing direction of the photo

(e.g., P10), which has been defined in Section 3.2. Based on this, each photo’s

coverage interval is calculated and shown in Figure 3.2(c) according to Equation

(3.1). Then target T1’s coverage interval I1 = [0, 2π) is divided into sub-intervals

by the endpoints of all photos’ coverage intervals (Figure 3.2(d)). This is the

universe set U which is composed of weighted elements from e1 to e19, and the

weight of each element is reflected by its length. Finally, each photo’s coverage

interval is converted into a subset Si of elements (Figure 3.2(e)).

We select 3 photos to maximize the total utility. Initially, each Si has a weight

of 2θ = 90◦, and hence S1 is selected due to the smallest index. Elements e11,

e12, e13, e14 are removed from U . Second, the weight of each of S3, S4, S5, S9

and S10 is still 90◦, but for the others the weights become: S2 is 80◦; S6 is 50◦;

S7 is 20◦ and S8 is 40◦. Obviously, S3 is selected. Then elements e3, e4, e5, e6, e7

are removed from U . Finally, we consider the remaining subsets. The weights of

S5, S6, S7, S8 are unchanged, but S2 drops to 45◦, S9 drops to 15◦ and S10 drops

to 80◦. Therefore, the last selected photo is S5. The final selection is S1, S3, S5,

corresponding to P1, P3, P5, and the total achieved utility is 270◦.

Theorem 2. For the Max-Utility problem, the worst case time complexity of the

greedy algorithm is O(Bn2m).

Proof. Since there are n photos and m targets, calculating the coverage intervals

of each photo on each target takes O(mn) time. Then, a target can be covered

by at most n photos, so there are O(n) coverage intervals on a target. Sorting
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the endpoints of those coverage intervals gives us the universe set, which takes

O(mn log n) time for all m targets.

Next, photo selection is done in B steps. There are n candidate photos to

consider in the first step, but the number decreases by 1 after each step. With

assumption B ≪ n, the number of candidate photos to consider is Θ(n) for any

of the B steps. In total, we consider candidate photos for Θ(Bn) times. Now

let’s look at how much time it takes to handle one candidate photo. For each of

the m targets, we need to add the weights of the elements covered by that photo.

The number of those elements is proportional to the total number of elements

on the target, which is in the order of O(n). For example, given effective angle

θ = 45◦, a photo always covers 1/4 of the total aspects, so the elements it covers

are 1/4 of the total number of elements. This means calculating the utility of one

candidate photo takes O(mn). Getting these together, the selection process takes

O(Bn ·mn) = O(Bn2m) time.

To summarize, the worse case time complexity is O(mn+mn log n+Bn2m) =

O(Bn2m).

3.4 Achieving Required Utility With Min-Selection

We consider a different scenario from the Max-Utility problem: the number of

photos is minimized while the total utility is to be above a required level. In many

practical applications such as virtual tours in map services, the major obstacle is

to deal with the sheer amount of raw data (photos) obtained via crowdsourcing.

Thus, it is desirable to remove redundancy and only keep the minimum selection

of photos that satisfies the coverage requirement.

3.4.1 Problem Statement

Each target Ti is associated with a coverage requirement, represented by a coverage

interval Ii = [ai, bi], 0 ≤ ai, bi < 2π. The requirement is met if any aspect ~v chosen

from Ii is covered. The problem is defined as follows.

Definition 3. [Min-Selection Problem] Given a set of m targets with known loca-

tions T = {T1, . . . , Tm} and n photos P = {P1, . . . , Pn} with known metadata, also
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given the coverage requirements for the targets: I = {I1, . . . , Im}, the problem asks

for a minimum selection of photos out of the n candidates, such that the coverage

requirement for each target is met.

Note that in this problem if the requirement can not be met due to the insuffi-

ciency of the original set of photos, the best achievable utility will be used as the

criteria. Here the best achievable utility on a target is the utility of all photos on

it, and the best achievable total utility on all targets is the sum on each targets

normalized by the number of targets.

3.4.2 Min-Selection Algorithm

In the following description, it is assumed that the coverage requirement of each

target can be satisfied by the whole set of photos. Then the following theorem

shows the main result of our findings.

Theorem 3. Suppose the targets’ coverage requirements can be satisfied by all

photos in the pool and let Nopt be the minimum number of photos to satisfy the

requirement. There exists Napprox photos that can be found in polynomial time such

that each target’s requirement can be met by these photos and moreover, Napprox ≤
O(logmn)Nopt.

Proof. We prove this by constructing the selection using a greedy algorithm.

First, we use a conversion process that is similar to Section 3.3.1. Here each

target Ti’s coverage requirement Ii is partitioned into sub-intervals by the dividing

points, and the dividing points are the end points of the coverage intervals (sub-

intervals) of the photos like before. After this preparation, all the sub-intervals are

numbered, and can be represented by elements that altogether form an universe set

U = {e1, . . . , ew}, where w is the total number of sub-intervals. Then for each Pj,

there is a subset Sj ⊂ U which is comprised of the elements corresponding to the

sub-intervals covered by Pj . Based on this, the problem of finding the minimum

photo selection can be converted to the following problem:

Given a universe set U and a collection of subsets of U : S = {S1, . . . , Sn}, and
assume ∪n

j Sj = U , how to find a subset S ′ of S such that ∪Sj∈S′Sj = U and |S ′| is
minimum?
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This is an instance of the set cover problem, which has been proved NP-hard

[57]. Thus for the Min-Selection problem, we can solve it by an approximation

algorithm based on the greedy selection.

Specifically, the algorithm begins by selecting the photo (some Sj) that covers

the most number of sub-intervals (elements). Once a photo is selected, it will not

be removed. The sub-intervals covered will not be considered in the future. Photos

are selected one by one based on how many new sub-intervals can be covered. Each

time, the photo covering the most number of new sub-intervals is selected. Ties

can be broken arbitrarily, e.g., by giving priority to the one with smaller index.

The process stops if all sub-intervals is covered or no more photos can be selected

(i.e., either photos are all selected or no more benefit can be achieved).

Once the photos are found, it is obvious all the elements in U is covered which

implies the requirement of all targets are satisfied. By using similar argument

from Theorem 3.1 in [57], it is easy to see the number of selected photos is upper

bounded as shown in the theorem.

The above discussion can be easily applied to the scenario of multiple targets. In

that case, each target corresponds to a set Ui of elements (sub-intervals). Elements

of all Ui will be considered to determine if a particular Sj can yield the most

coverage. The algorithm stops if elements of all Ui are covered or no more progress

can be made. A detailed example of the algorithm can be found in [58].

Theorem 4. For the Min-Selection problem, the worst case time complexity of the

greedy algorithm is O(n3m).

Proof. The conversion process takes time O(mn+mn log n). For the selection pro-

cess, we highlight two differences between the Max-Utility problem and the Min-

Selection problem. First, in Max-Utility we select the photo that covers maximum

weight of new elements, while in Min-Selection we select the photo that covers

maximum number of new elements. Although weight and cardinality are different,

they can be calculated by the same number of additions. Thus they are the same

with regard to asymptotic running time. The second difference is that Max-Utility

finishes with exactly B steps, while Min-Selection may finish in any steps between 1

and n. Considering the worst case, if Min-Selection finishes with n steps, the num-

ber of candidate photos it considers in those n steps is n+(n−1)+ · · ·+1 = O(n2).
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Since handling each candidate photo requires time O(mn), the time complexity of

the entire algorithm is O(mn+mn log n+ n2mn) = O(n3m).

3.5 Achieving k-Coverage With Min-Selection

Some crowdsourced photos may contain inaccurate information. This may happen

in an emergency situation where photos have to be taken in a very short time,

leaving not much time for users to contemplate. Even if metadata can help un-

derstand how and where the photo was taken, some real photos may still miss our

expectations. The inaccuracy can be caused by various reasons such as image blur,

occlusion, color aberration, or simply inaccurate metadata. To reduce the possi-

bility that an important aspect of the object is missed, applications may require

some degree of fault-tolerance, which can be achieved with k-coverage.

3.5.1 k-coverage

In this problem, an aspect is required to be covered k (k ≥ 2) times. Each target

Ti has a coverage requirement Ii = [ai, bi], 0 ≤ ai, bi < 2π, but now Ii needs to be

covered k times by the selected photos. The problem is formally defined as follows.

Definition 4. [Min-Selection with k-Coverage] Given m targets with known loca-

tions T = {T1, . . . , Tm} and n photos P = {P1, . . . , Pn} with known metadata, also

given the coverage requirements for the targets: I = {I1, . . . , Im} and an integer

k ≥ 2, the problem asks for a minimum number of photos out of the n candidates,

such that the coverage requirement for each target is covered at least k times.

As the original Min-Selection problem can be converted to the set cover prob-

lem, the k-coverage problem can be converted in the same way to the set multicover

problem. The set multicover problem, as its name suggests, differs from the set

cover problem that each element e in the universe set U must appear at least ke

times in the selected subsets of U , where ke is a positive integer for element e.

Note that in our case, ke = k for any element e.

The greedy algorithm for the original Min-Selection problem can be naturally

extended to the case of k-coverage. Specifically, an element is alive until it is

covered k times. In each step, we select the photo that covers as many alive
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Figure 3.3. The idea of 2-coverage+: two photos covering an aspect should have fairly
different viewing directions.

elements as possible, and then update the aliveness of the elements covered by this

photo as appropriate. The selection proceeds until all elements are not alive or no

more photos can be selected (either photos are all selected or no more benefit can

be achieved).

Suppose the overall coverage requirements can be satisfied if all photos are

selected. Dobson [59] proved that the above algorithm achieves an approximation

ratio of O(logmn), which means the number of photos selected by the greedy

algorithm does not exceed O(logmn) times the minimum possible number. Note

that this approximation ratio is the same as the ratio achieved by the Min-Selection

algorithm (Theorem 3).

3.5.2 2-coverage+

Although the k-coverage model looks good in theory, it may not work well in

reality. Consider a scenario shown in Figure 3.3. An aspect ~v of the target T is

covered by three photos, P1, P2 and P3. There is an obstacle between the target

and the photos. By the k-coverage model, if k = 2, any combination of two photos

among P1, P2 and P3 satisfies the coverage requirement on aspect ~v. However,

choosing P1 and P2 will actually leave aspect ~v uncovered because the target is

blocked in photo P1 and P2.

The key observation here is that the existence of obstacles affects our choice

of photos. Ideally, the server should avoid P1 and P2 since they are blocked by

an object and do not cover aspect ~v. Although we will propose techniques in

Section 3.6 to detect occlusion and filter out photos with occlusion, these techniques

are not guaranteed to detect all obstacles. Hence, when selecting photos, the

server should take into consideration the potential existence of obstacles. Instead

of choosing k photos arbitrarily, the photos with fairly different views should be
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chosen, so that even one of them is blocked by an obstacle, the other still covers

the aspect. Specifically, in the 2-coverage+ model, for each aspect covered by

two photos, the angle between their viewing directions should be larger than a

predefined threshold α.

Definition 5. [Min-Selection with 2-Coverage+] Given m targets with known loca-

tions T = {T1, . . . , Tm} and n photos P = {P1, . . . , Pn} with known metadata, also

given the coverage requirements for the targets: I = {I1, . . . , Im} and a threshold

α ∈ [0, 2θ], the problem asks for a minimum number of photos such that each as-

pect in the coverage requirements is covered by at least 2 photos, and the maximum

angle between the viewing directions of those photos is greater than α.

In this problem, the value of α determines the coverage resistance to obstacles.

The larger α is, the farther the two photos are separated, and the less likely they

are blocked by the same obstacle. However, α cannot be arbitrarily large. If a

photo covers a given aspect ~v, its viewing direction must be within a 2θ range,

[arg(~v) − θ, arg(~v) + θ] (light gray area in Figure 3.3). This means α has an

upper bound 2θ. As α becomes closer to 2θ, it becomes harder to find two photos

satisfying the requirement, because the two photos have to be positioned more

precisely so as to both cover the aspect and have far enough viewing directions.

The 2-coverage+ problem is equivalent to the 2-coverage problem when α = 0,

so it is at least as hard as the k-coverage problem, and thus there is no polynomial

time algorithm to find its optimal solution. Similar to the k-coverage problem, we

can use a greedy algorithm to find a solution, but with some adjustment to the

notion of aliveness. Specifically, the aliveness value of an element can be 2, 1 or 0.

alive = 2 means that the element has never been covered; alive = 1 means that it

has been covered at least once, and among the photos covering it, the maximum

angle between their viewing directions is less than α; alive = 0 means that it has

been covered at least twice, and among the photos covering it, the maximum angle

between their viewing directions is no less than α.

In each step of the greedy algorithm, for each photo, we count the number of

elements whose aliveness value would decrease if the photo were selected. Then we

pick the photo with the largest count, and update the aliveness values accordingly.

Here the decrease of an aliveness value means previously alive = 2 and after
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selecting the photo alive = 1, or previously alive = 1 and after selecting the photo

alive = 0. This selection process continues until all alive = 0 or no more photo

can be selected (either photos are all selected or no more benefit can be achieved).

The performance of the greedy algorithm will be evaluated in Section 3.7.2.

3.6 Testbed Implementation

A prototype of SmartPhoto has been implemented in a testbed using Samsung

Nexus S running Android 2.3.6, Samsung Galaxy S III running Android 4.0.4, and

Google (LG) Nexus 4 running Android 4.2.

In the testbed, the smartphones take photos with the metadata automatically

recorded. The metadata is a tuple comprised of a GPS location, a range indicating

how far the photo can cover, a field-of-view (FoV) angle of the camera taking the

photo and an orientation vector indicating the facing direction of the camera lens.

After the photo has been taken, the smartphone uploads the metadata of the

photo to a centralized server, which is a PC in our lab running the photo selection

algorithm. Then the server notifies the smartphones to upload the selected photos.

In this section, we present the technical details on how to obtain the metadata,

how to improve the accuracy of orientation measurement, and how to deal with

occlusion and out-of-focus issues.

3.6.1 Metadata Acquisition

One critical issue is how to get the metadata from off-the-shelf smartphones. The

location can be directly acquired via the built-in GPS receiver. The camera’s field-

of-view is accessible via the Android camera API [60]. The range is a little trickier

as it depends on the resolution of the lens (and the image sensor), the zooming level

(or focal length) and the requirement of the application. Applications requiring a

survey of large scale buildings may find the photos useful even if they are taken a

hundred meters away by a lower resolution camera, while others may require closer

look at the object and hence may exclude photos taken more than a few meters

away. In our experiment, as the subjects are buildings on campus, 50 meter is used

as a reference range. We find that for our purpose, objects in photos taken within
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this range are generally recognizable.

Orientation is a key factor that has not yet been fully taken advantage of

in previous works. The way used to characterize the orientation in the Android

system is to first define a local and a world coordinate system2, and represent

the orientation as a rotation matrix. The rotation matrix is used to transform a

local coordinate tuple into a global one. Another way to represent the rotation

is to use a three tuple called azimuth, pitch, and roll, which respectively indicate

the phone’s rotation around the Z, X and Y axes [61]. The two representations

are equivalent and the orientation tuple (i.e., the angles) can be derived from the

rotation matrix. In the following description, we use R to denote the rotation

matrix.

In Android system, the rotation matrix can be directly obtained based on

accelerometer and magnetic field sensor readings. The accelerometer measures the

phone’s proper acceleration along the three axes in the phone’s local coordinate

system, including the influence of the gravity. The magnetic field sensor provides

the readings measuring the ambient magnetic field along the three axes in the local

coordinate system. The coordinates of both the gravity and the ambient magnetic

field are known in the world coordinate system. Thus, by combining the above

readings and facts, the orientation of the phone can be obtained. Let us call this

the “basic” method, and let the result be denoted by Rbasic.

3.6.2 Techniques to Improve Accuracy

The rotation matrix Rbasic is susceptible to noise and errors. It fluctuates quickly

due to the vibration of accelerometer’s reading. Also, the magnet field sensor’s

reading is easily affected by nearby magnet objects. Even worse, Rbasic responses

slowly to quick rotation of the phone. Thus, we propose several techniques to

improve the accuracy of the orientation.

2In a world coordinate system, Z axis is perpendicular to ground and points to the sky; Y is
tangential to the ground and points towards the magnetic north pole; X is the vector product
of Y and Z. In the phone’s local coordinate system, Z is perpendicular to the phone screen and
points outward; the X axis is along the width of the phone and the Y axis is along the length
[60, 61].
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Figure 3.4. Hybrid method combines the results of the basic method with gyroscope
readings.

3.6.2.1 Hybrid Method

Apart from the accelerometer and the magnetic field sensor, gyroscope is now

available in most smartphones, and it can also be used to measure the rotation

matrix.

Gyroscope measures the angular rotation speeds along all three axes in the

phone’s local coordinate system. By integrating (multiplying) the angular speed

with the time interval between two consecutive sensor readings, we can obtain

the rotation vector, which indicates the change of orientation in terms of rotation

angles around the three axes. It can also be used to obtain the rotation matrix

(denoted by ∆Rgy). Given an initial rotation matrix, which can be obtained from

Rbasic, we can get the new rotation matrix, denoted as Rgy, by Rgy = Rgy ×∆Rgy.

However, the cumulative error caused by the integration in Rgy can become

greater and the result would drift as time goes by. In fact, the orientation derived

from Rgy alone usually drifts over 10 degrees in about 20 seconds in our lab test.

Thus, we propose a hybrid method which combines the readings from the above

sensors to improve the accuracy of orientation, as shown in Figure 3.4 and explained

as below.

First, a simple Infinite Impulse Response (IIR) low pass filter is used on Rbasic

to remove the short term vibration, i.e.,

R′
basic = Rbasic + µ · (Rprev

basic −Rbasic),

where Rbasic is the current reading and Rprev
basic is the previous reading from the

basic method, and µ ∈ [0, 1] is an adjustable parameter balancing the current and

previous values. In practice, we find µ = 0.3 is good for our purpose.
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Second, we combine R′
basic and Rgy to take advantage of both values; that is,

Rhybrid = ν ×Rgy + (1− ν)×R′
basic

We find ν = 0.9 works well.

Third, Rhybrid is the output, and it will also be used as the initial matrix input

for the computation of a new Rgy.

3.6.2.2 Enhancement by Orthonormalization

We exploit the orthonormal property of the rotation matrix to further improve

the accuracy of orientation. In a valid rotation matrix, any pair of columns (or

rows) of the rotation matrix are orthogonal, i.e., with unit length and vertical to

each other. However, this property may be violated as errors occur. Thus, the

rotation matrix Rhybrid obtained from the above method can be further calibrated

by an orthonormalization process (e.g., the Gram-Schmidt process [62]) to get an

enhanced rotation matrix Renhanced.

Specifically, consider a 3 × 3 rotation matrix: Rhybrid = [α1, α2, α3], with αi

being a column vector. Let the inner product of the two vectors α and β be

< α, β >=
∑n

i=1 αiβj, where n = 3 is the dimension.

First, Rhybrid is orthogonalized by

ξ1 = α1,

ξ2 = α2 −
< α2, ξ1 >

< ξ1, ξ1 >
ξ1,

ξ3 = α3 −
< α3, ξ1 >

< ξ1, ξ1 >
ξ1 −

< α3, ξ2 >

< ξ2, ξ2 >
ξ2.

Second, the above ξi’s are normalized by

βi =
ξi√

< ξi, ξi >
, i = 1, 2, 3.

Then, the final rotation matrix is

Renhanced = [β1, β2, β3].
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Table 3.1. Average error in azimuth (degree)

Nexus S Nexus 4 Galaxy S III
Basic 9.1(±2.0) 8.2(±1.5) 9.6(±2.4)
Hybrid 5.7(±1.9) 5.1(±1.3) 7.3(±1.7)

Enhanced 3.4(±1.4) 1.3(±0.7) 3.4(±1.3)

Comparisons: To verify the effectiveness of the optimization techniques, we mea-

sure the orientation using three different methods: the “basic” method, the “hy-

brid” method, and the “enhanced” method, and compare their results. We place

the phone in a horizontal plane, so the orientation is reflected by the azimuth value.

Then we rotate the phone 30 degrees and measure its azimuth reading against a

commercial compass. Each measurement is repeated 50 times and the statistics are

calculated. Figure 3.5(a) compares the measurement errors (in degree) by these

three methods. The short bar in the middle of each box is the median value of the

azimuth reading error, and the lower and upper side of the box are the first (25%)

and third (75%) quartile, which is denoted by Q1 and Q3. Then the lower limit is

calculated by Q1− 1.5 ∗ (Q3 − Q1) and the upper limit is Q3 + 1.5 ∗ (Q3 − Q1).

More details about the average error and standard variance of each method are

listed in Table 3.1.

We find that the hybrid method can reduce the average measurement error

by 37% compared to the basic method, and the enhanced method can further

reduce the measurement error by more than 40% compared to the hybrid method.

Also, new phones (e.g., Nexus 4), with more advanced hardware and OS, are more

accurate with less variance. For all these phones, with our enhanced method, the

average azimuth reading error is under 3.5 degrees, and the error can be reduced

to 1.3 degree with Nexus 4.

To understand the effectiveness of these techniques clearly, we show the mea-

surement results of these methods when the phone is turned to 90 degree, as

illustrated in Figure 3.5(b). As can be seen, the basic method oscillates frequently.

The hybrid method improves the accuracy compared to the basic method but still

carries the reading errors. With orthonormalization, the enhanced method can

significantly improve the accuracy of orientation.
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Figure 3.5. Orientation errors of the three proposed methods.
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Figure 3.6. Using DOF to detect occlusion and out-of-focus.

3.6.3 Occlusion and Out-of-focus

After a photo is taken, we assume that the user will visually check if the object

appears in the photo, as most people do. However, if the user does not check the

photo, and the object is blocked by unexpected obstacles such as a moving vehicle,

the photo will not be useful to the server. Even if the user checks the photo and

the object is clear, it may be different from what the server is expecting. For

example, the server may expect the photo to be about a building, but the user

may be looking at a tree in front of the building. Although in the two scenarios,

the smartphone may produce the same metadata (e.g., the same facing direction),

the content could be very different, and the one focusing on (blocked by) the tree is

useless for the server’s task. Besides this problem, there are many other occasions

that the interested targets are out-of-focus. Uploading these photos will waste lots

of bandwidths and storage spaces.

We use a feature called focus distance, which is provided by many new smart-

phones with focusing capability, to solve the problem. The focus distance is the

distance between the camera and the object perfectly focused in the photo. Note

that the real distance between the camera and our interested target can be calcu-

lated by GPS locations. Thus in an ideal case, if the two distances do not match,

the target is out-of-focus and the photo should be excluded from consideration.
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The measurement of the focus distance is sensible to errors. A slight offset

does not necessarily mean the target is out-of-focus. In fact, in photography the

distance between the nearest and farthest objects that appear acceptable sharp in a

photo is called the Depth-Of-Field (DOF). DOF is determined by four parameters:

focal length (f), focus distance (vo), lens aperture (A), and circle of confusion

(CoC). Among these parameters, focal length and lens aperture are built-in and

readable from the Android API. CoC (denoted by c) is a predefined number which

determines the resolution limit for our application. Focus distance changes from

case to case but obtainable from Android API. Therefore, we can calculate the

near/far limit of DOF (Figure 3.6(a)) by Dnear =
vo(H−f)
H+vo−2f

, Dfar =
vo(H−f)
H−vo

, where

H = f2

Ac
+ f is the hyperfocal distance [63].

After a photo is taken, the distance between the target and the camera (phone)

is compared with the above two values. If the target falls into the DOF, the photo

is considered valid; otherwise, it will be dropped. This filtering is done at the

user side and the metadata of unqualified photos will not be sent to the server.

As an example, consider the two photos in Figure 3.6(b). The dictionary is the

interested target. In the left photo, the near and far limit of DOF is 85cm and

105cm respectively. In the right photo, the near and far limit of DOF is 5cm and

10cm respectively. The distance between the camera and the dictionary is 100cm.

Based on these parameters, it is clear that the target falls into the DOF in the left

photo. From the figure we can see, the dictionary is clear in the left photo but

blocked by another object in the right photo. Note that this method can detect

most obstacles but not all. If the obstacle is very close to the target (their distances

to the camera are almost the same), it is possible that the target is blocked but

still in the DOF.

Discussions: Energy is an important issue for mobile devices, especially in post-

disaster scenarios. Although various built-in sensors are used to collect metadata,

they do not consume too much energy due to the following two reasons. First,

metadata are collected only when users are taking photos, and the sensors are

inactive most of time. Second, crowdsourcing relies on large number of users to

obtain information. A single user does not need to take many photos and thus

does not spend too much energy.

Photos can be of low quality due to various reasons. Over-exposure or under-
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exposure causes images to be too bright or too dark; camera movement and shutter

speed affect how severe the image is blurred; the quality of lens and digital sensors

is also important. These factors can only be analyzed by image processing. Thus,

before photo selection, some efficient image processing techniques [64] may be

applied at the user end to filter out low quality photos. However, existing image

processing techniques are computationally expensive, and thus should be carefully

adapted considering the resource limitations of mobile devices. Note that our

approach is not meant to replace the role played by image processing algorithms,

but to serve as an important complement to improve the utility of collected photos,

especially when there are resource constraints.

3.7 Performance Evaluations

In this section, we first show a real world demo using the smartphone testbed,

and then evaluate the performance of the photo selection algorithms by extensive

simulations.

3.7.1 Demo in a Real-World Example

The testbed in Section 3.6 is used in a real-world example to demonstrate the

effectiveness of the proposed photo selection algorithm. In this demonstration, a

landmark (a bell tower) is the target. Photos are taken by using the reprogrammed

smartphones around the target with the metadata automatically recorded. The

metadata of all photos are later uploaded into a centralized desktop server. There

are 30 photos in total. Although most of them are taken around the target, some

are not facing the target, and some are blocked by trees or other objects. Also,

the distribution is not uniform, due to the reality that people are likely to take

pictures of the front (more attractive) side of the building.

After the metadata is retrieved, the Max-Utility problem is solved by choosing

4 photos. The photos selected by our algorithm are shown in Figure 3.7(a). The

positions and orientations of the photos are shown in Figure 3.7(d), where the

original 30 photos are marked as dotted “V” shapes, and the selected photos are

marked by bold lines. As a comparison, we randomly choose 4 photos as shown in
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Figure 3.7. Demo results based on Max-Utility. (a) Photos selected by our algorithm.
(b)(c) Photos selected randomly. (d)(e)(f) The locations and orientations of the photos
are marked as “V” shapes on the map.
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Figure 3.8. Demo results based on Min-Selection. To cover all aspects of the target,
our algorithm uses 6 photos, and a random selection uses 15 photos.

Figure 3.7(b), and randomly choose another 4 photos as shown in Figure 3.7(c).

It can be seen that the 4 photos chosen by our algorithm cover the target from

4 different locations well separated from each other, with each one from a totally

different angle. The bell tower is viewable from all 4 photos. In contrast, only

2 photos in the first random selection cover the target. The third photo faces

away from the target, which is because random selection does not consider the

orientation. In the fourth photo, the target is blocked by a flagpole. This photo

is not considered by our algorithm because the target is out of focus according to

the DOF information. For the second randomly selected 4 photos, two of them

cover the target but they are very similar and contain redundant information. The

other two do not cover the target.

We also demonstrate the effectiveness of our algorithm for the Min-Selection

problem where the coverage requirement is from 0◦ to 360◦, i.e., all aspects of
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the target. As shown in Figure 3.8(a), our algorithm selects 6 photos to meet

the coverage requirement. The angle between any two adjacent viewing directions

(dashed lines connecting the photos and the target) is less than 90◦. Since the

effective angle is set to 45◦, all aspects are covered. We also compare the perfor-

mance with a random selection approach, which randomly selects photos one by

one until the coverage requirement is achieved. As shown in Figure 3.8(b), the

random approach has to select 15 photos to meet the same coverage requirement.

The experiment based on the random selection approach is repeated 100 times, and

on average 21 photos are selected to meet the same coverage requirement. This

demonstrates that our algorithm can significantly reduce the number of photos

selected to achieve the required coverage.

3.7.2 Simulation Results

In this section, we evaluate the photo selection algorithms through simulations.

Targets are randomly distributed in a 100m by 100m square area. We generate

photo metadata to represent real photos taken by users as follows. The photo

locations are uniformly distributed in a 200m by 200m square, with the target

area in the center. The orientations are randomly distributed from 0 to 2π. The

field-of-view is set to 120◦, and the range is set to 50m as discussed in Section 3.6.1.

During the simulation, we compare our algorithms with a random selection al-

gorithm that randomly selects photos at each step, until the bandwidth constraint

is reached or the coverage requirement is satisfied. For a fair comparison, the ran-

dom selection excludes any photos that have no target covered, but only consider

photos that cover at least one target, i.e., relevant photos. Note that a more naive

selection could be blindly selecting photos without considering this.

3.7.2.1 Results on Max-Utility Problem

In the first part, we evaluate the performance of our algorithm on addressing the

Max-Utility problem. Intuitively, with more bandwidths, better coverage of the

targets can be achieved. As shown in Figure 3.9(a), both our algorithm (“ours”)

and the random selection (“random”) achieve more utility as the bandwidth B

increases. The total utility achieved by all photos (“best achievable”) is also shown
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Figure 3.9. Simulation results on Max-Utility problem.

to provide an upper bound. The difference between our selection and the random

selection is significant and the advantage of our algorithm is obvious especially

when B is smaller, i.e., bandwidth is more constrained. Although the performance

of both algorithms converges to the best-achievable utility as B becomes larger,

the convergence of ours is much faster.

Figure 3.9(b) shows how the total utility changes as the number of candidate

photos increases while other factors including bandwidth (B = 20) remain un-

changed. The advantage of our algorithm is significant across the range. Consid-

ering the bandwidth limitation (only 20 photos can be selected to cover 30 targets),

the difference between the utility achieved by ours and the best achievable level

is small. Moreover, our algorithm can take advantage of the increasing density of

photos, and improve its performance as the number of photos increases.

Figure 3.9(c) plots the total achieved utility against the effective angle θ, with

all other factors unchanged. As the effective angle increases, the coverage intervals

of photos grow accordingly, so the total utility of both our algorithm and random

selection increases as expected. Moreover, when the effective angle is between 10

to 40 degrees, the utility achieved by ours increase at a faster rate (the red circle

line has larger slope than the blue triangle line). This is because our algorithm

tries its best to avoid coverage overlap and thus benefits more from the coverage

growth of each single photo. Note that as the effective angle increases, photos have

more coverage but also have more coverage overlap. When the effective angle is

more than 40 degrees, the utility obtained by our algorithm approaches the best

achievable, so its increasing rate cannot be as high as before.
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3.7.2.2 Results on Min-Selection Problem

In this part the Min-Selection problem is studied. In reality, the given pool of

photos can be very large and the number of relevant photos (i.e., photos cover-

ing at least one target) can increase very fast as the total number of randomly

taken photos increases. Then, a careful selection of photos can greatly reduce the

redundancy. Figure 3.10(a) shows the effectiveness of our selection algorithm on

reducing the redundancy. There are 20 targets, and all the aspects from 0◦ to

360◦ are required to be covered. As the total number of photos varies from 500

to 2000, the number of related photos (“related”) increases linearly. However, the

number of photos selected by our algorithm (“selected by ours”) to achieve the

same coverage does not increase. It actually decreases slightly since our algorithm

takes advantage of the increased density of the photos and improves its efficiency.

The algorithms are also evaluated under the situation that the number of tar-

gets (m) varies from 5 to 50, while the total number of photos is fixed to be 1000

and all other factors remain the same. As shown in Figure 3.10(b), the algorithms

have to select more photos to cover the increased number of targets. However, the

number of photos selected by our algorithm remains very low, and the increasing

speed is much slower as the number of targets increases, which is much better than

the random algorithm.

In Figure 3.10(c) we fix the number of targets as 30 and change the amount of

aspects to be covered on each target. As expected, the number of photos needed

to achieve the required coverage increases as more aspects are to be covered. In-

terestingly, the increasing rates of the lines rise on the left half but drop on the

right half. The reason behind this can be explained as follows. Let us denote the

amount of aspects to be covered on a target as x. The coverage requirement of

target i is Ii = [0, x]. When x is small (e.g. 30◦), the photos selected to cover [0, x]

also cover more than [0, x], since by definition a photo always covers a 2θ range of

aspects on a target (here θ = 45◦). Then if we increase x a little bit, not many new

photos are needed to achieve the new coverage, since it is almost achieved by pre-

vious photos. As x keeps increasing, this advantage becomes weaker because the

new coverage requirement [0, x] is no longer within the 2θ range. Then many new

photos have to be selected to complete the coverage. That is why the increasing

rate rises for small x. On the other hand, when x is large, this advantage becomes
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Figure 3.11. Simulation results on Min-Selection with k-Coverage.

stronger as x increases, because the remaining uncovered aspects are now within

the 2θ range, and they are more likely to be covered by the selected photos. This

explains the drop of the increasing rate for large x.

3.7.2.3 Results on Min-Selection with k-Coverage

In this part, we study the Min-Selection problem with k-coverage by comparing

five different coverage settings. Three of them are based on the k-coverage model,

with k = 1, 2, 3, respectively. The other two are based on the 2-coverage+ model,

with α = 15 and 30 degrees. Figure 3.11(a) plots the number of selected photos

as a function of the total number of available photos. The other parameters are

fixed and shown in the figure. First, it is clear that all algorithms are able to take

advantage of the increased number of photos, make better choices, and reduce

the number of selected photos. When comparing 1-cover, 2-cover and 3-cover, the

number of selected photos is almost proportional to the degree (k) of coverage.

This shows that k-coverage does not fundamentally differ from single coverage. It

just repeats single coverage for k times. We also compare 2-cover (i.e. 2-cover+

with α = 0), 2-cover+ with α = 15, and 2-cover+ with α = 30. The α = 15 line is

pretty close to the α = 0 line. However, α = 30 requires at least 25% more photos

than α = 15. This suggests that the difficulty of achieving 2-coverage+ and the

value of α are not linearly related. Once α becomes large, it requires much more
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photos to achieve the desired coverage.

In Figure 3.11(b), the number of targets varies from 5 to 50 while the number

of available photos is fixed at 1000. For a target, all the aspects from 0◦ to 360◦

should satisfy the required level of coverage, either k-coverage or 2-coverage+. We

have similar observations as previous figures. The relationships between the lines

are similar to those in Figure 3.11(a), and the increasing trend of the lines is similar

to that in Figure 3.10(b).

In Figure 3.11(c), we fix the number of targets but change the amount of aspects

that should satisfy the required coverage. The relationships between the lines are

similar to those in Figure 3.11(a) and (b), and the increasing trend of the lines is

similar to that in Figure 3.10(c).



Chapter 4
Resource-Aware Photo

Crowdsourcing for Area Coverage

4.1 Background

In the previous chapter, we consider the crowdsourcing targets as points on the

map, and select photos based on their coverage on those points. However, in some

applications, the target of interest is an area instead of a point. For example,

to provide street view for an area, the collected photos should cover as many

points in the area as possible. For each point covered, the photos should be taken

from multiple angles to provide complete views. To achieve such coverage, it is

important to understand how each point in the area is covered from all the different

angles, and also how the photos overlap with each other, which results in redundant

coverage. Since there are infinite number of points in the area, and there are many

possible overlapping patterns between photos, it is a big challenge to efficiently

analyze area coverage.

To address the challenge, we extend the definition of photo utility to make

it suitable for area coverage. Specifically, the new photo utility quantifies how

well a target area is covered by considering the coverage status of all points in

the area based on integration. Then, we propose various techniques to analyze

the overlapping patterns between photos and calculate photo utility efficiently

and accurately. Note that although the coverage problem has been studied in
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Figure 4.1. (a) Coverage area of a photo. (b) Illustration of aspect coverage. Aspect
#”v1 is covered since ∠( #”v1,

#    ”

XL) ≤ θ; aspect #”v2 is not covered since ∠( #”v2,
#    ”

XL) > θ. In fact,
all the 2θ aspects in the gray area are covered.

wireless sensor networks, our application and model are different. Photo utility is

determined not only by the area covered, but also by the angle or viewpoint from

which the photo is taken. Inside the area, each point should be covered by photos

all around it rather than by just one. These issues pose new challenges and will

be addressed in this chapter.

With photo utility, we formulate the problem of selecting photos with the

largest utility under a resource budget as the budgeted max-utility problem. Since

the problem is NP-hard, an efficient approximation algorithm is proposed. Through

rigorous theoretical analysis, we prove that the algorithm is near optimal, achiev-

ing constant approximation ratio compared to the optimal solution. Finally, the

effectiveness of the proposed techniques is evaluated through both simulations and

real-world experiments based on Android smartphones.

4.2 Models and Notations

We first review the definition of metadata from the previous chapter. Then, based

on metadata, we extend photo utility to make it suitable for area coverage.

4.2.1 Metadata

The metadata of a photo consists of four parameters, (L,
#”

d , φ, r). Location L is

the geographic coordinates of the place where the photo is taken. Orientation
#”

d is

the viewing direction of the camera when the photo is taken. It is a vector coming

out from the camera aperture and perpendicular to the image plane. Field of view

φ is an angle specifying how wide the camera can see. Objects outside the field of
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view will not appear in the photo. Range r specifies how far the camera can see.

It is the distance beyond which objects are no longer clearly recognizable in the

photo.

Fig. 4.1(a) shows how metadata determines the coverage area of a photo as a

circular sector. Any point inside the coverage area is covered by the photo, and any

point outside is not covered. Hence, the entire sector area is said to be covered by

the photo. This sector model is widely used in previous studies on camera sensor

networks [36, 35, 39].

4.2.2 Photo Utility

We extend photo utility to area coverage, which quantifies how well a set of photos

can cover a target area. To clearly define utility, it is important to know that a

camera normally captures the image of an object from a specific angle or direction.

For example, when a photo shows a building, it shows either its front view, side

view, or back view. These views may contain different information even though

they are about the same building. For instance, the front side of a building may

look good after a disaster but the back side can be on fire.

To capture the essence of camera, we use aspects to represent different sides of

an object, and use aspect coverage to represent which sides of an object appear in

a photo. Specifically, an aspect #”v of a point is a vector represented by an angle

in [0, 2π). Angle 0 represents the vector pointing to the right (east on the map),

and it increases in the counter-clockwise direction. For ease of presentation, this

angle is denoted as arg( #”v ). In Fig. 4.1(b), #”v1 and #”v2 are two aspects of point X

with arg( #”v1) = π and arg( #”v2) =
π
2
.

An aspect #”v of a point X is covered by a photo if X is inside the photo’s

coverage area and the angle between #”v and
#    ”

XL is less than a predefined threshold

θ, called effective angle. Here
#    ”

XL is the photo’s viewing direction on point X. In

Fig. 4.1(b), the angle between #”v1 and
#    ”

XL is less than θ, which means #”v1 points

towards the camera and thus appears in the photo (covered). In contrast, the angle

between #”v2 and
#    ”

XL is more than θ, which means #”v2 points away from the camera

and does not appear in the photo (not covered). As long as a point is covered by

a photo, all its aspects from arg(
#    ”

XL) − θ to arg(
#    ”

XL) + θ are covered (gray area
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in Fig. 4.1(b)). Therefore, the point has 2θ aspects covered by the photo.

Now we define the utility of a set of photos on a target area as follows.

Definition 6 (Utility). Let P be a set of photos, and 1P (
#”v ) be an indicator func-

tion that equals 1 if aspect #”v is covered by at least one photo in P and 0 otherwise.

The utility of P on a given point X is

UP (X) =
∫ 2π

0
1P (

#”v ) d(arg( #”v )), (4.1)

where #”v is an aspect of point X and arg( #”v ) is the variable of integration changing

from 0 to 2π. The utility of P on a target area A is

UP (A) =
∫

A
UP (X) dX. (4.2)

The above definition of photo utility reflects the requirement that the collected

photos should cover as much area as possible and for each point covered, the photos

should be taken from multiple angles and thus cover as many aspects as possible.

If multiple photos in P cover the same aspect #”v , it is counted only once towards

the total utility since 1P (
#”v ) = 1. In this case, these photos contain redundant

information and their total utility is less than the sum of their individual utility.

4.3 Utility Calculation

Given a target area A and a set of photos P , the first problem is how to calculate

utility UP (A) according to Definition 6. Since UP (A) is an integral of UP (X) on

each point X ∈ A, we need to analyze how each point X is covered and calculate

its UP (X) value. However, there are infinite number of points in the area, and

different points can be covered by different photos from different angles. These

issues make coverage analysis and utility calculation highly nontrivial. Therefore,

we first study a simple case with two photos before looking into multi-photo cases.
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Figure 4.2. Two-photo case. (a) The area covered by P1 and P2 is partitioned into four
regions. (b) Critical arcs determine whether photo coverage overlaps with each other.

4.3.1 Two-Photo Case

Consider two photos P = {P1, P2} in Fig. 4.2(a). For simplicity, assume their

coverage area is completely inside a much larger target area A (not shown in the

figure). To calculate UP (A), we need to analyze how each point is covered by P and

calculate its UP (X) value. To do this, we partition the area covered by P into four

non-overlapping regions R1, R2, R3, R4. Let ai denote the area of Ri (i = 1, 2, 3, 4),

and consider R1 and R2 first. Any point (say X) in R1 is only covered by photo

P1, and thus it has 2θ aspects covered by P ; i.e., UP (X) = 2θ. By Definition 6,

the photo utility for region R1 is UP (R1) =
∫

R1
UP (X) dX = 2θa1. Similarly, the

photo utility for region R2 is UP (R2) = 2θa2. Now consider regions R3 and R4,

which are covered by both photos and separated by a critical arc P̆1P2.

Definition 7 (Critical Arc). Given a pair of photos P1, P2, let P1, P2 also denote

the locations of the two photos if there is no ambiguity. A critical arc P̆1P2 is a

circular arc between P1 and P2 such that any point X on it satisfies ∠P1XP2 = 2θ.

As shown in Fig. 4.2(a), there exist two critical arcs that are symmetric with respect

to line P1P2
1.

With critical arcs, we have the following properties established. Any point Y

in region R3 is on the inner side of the arcs, and thus satisfies ∠P1Y P2 > 2θ (see

Fig. 4.2(b)). This means that the viewing directions of P1 and P2 are far enough

from each other such that the aspects covered by P1 and P2 do not overlap. Hence,

1From basic geometry, the center C of the critical arc must be on the perpendicular bisector
of P1P2 and satisfy ∠P1CP2 = 4θ. This can be used to determine the position of the center and
hence the critical arc.
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point Y has 4θ aspects covered by P ; i.e., UP (Y ) = 4θ. On the other hand, any

point Z in region R4 is on the outer side of the arcs, and thus has ∠P1ZP2 < 2θ.

This means that the viewing directions of P1 and P2 are close enough to each

other such that the aspects covered by P1 and P2 have some overlap (dark gray

area in Fig. 4.2(b)). Hence, point Z has 2θ + ∠P1ZP2 aspects covered by P ; i.e.,

UP (Z) = 2θ + ∠P1ZP2. It follows that the photo utility for R3 is UP (R3) = 4θa3,

and the photo utility for R4 is UP (R4) = 2θa4 +
∫

R4
∠P1ZP2 dZ. We will discuss

how to calculate integral
∫

R4
∠P1ZP2 dZ in Section 4.3.3. Once it is calculated,

the total utility can be given as

UP (A) = UP (R1) + UP (R2) + UP (R3) + UP (R4)

= 2θ(a1 + a2 + 2a3 + a4) +
∫

R4

∠P1ZP2 dZ.

Note that calculating UP (A) via the above formula requires the calculation

of area a1, a2, a3, a4. Since regions R1, R2, R3, R4 can be arbitrary shapes formed

by line segments and arcs, it is very complex to calculate the exact area value.

Hence, we approximate each arc by a series of line segments (i.e., a polyline) and

thus change all regions to polygons. The area of a polygon can be calcuated in

O(n) time, where n is the number of vertices [65]. By tuning the number of line

segments that replace an arc, we can control the tradeoff between accuracy and

computational complexity.

4.3.2 Multi-Photo Case

In this subsection, we extend the solution in the two-photo case to consider the

general scenario. Again, we assume the coverage area of all the photos is completely

inside a much larger target area. If not, only the portion inside the target area is the

effective coverage area, and the portion outside is discarded. With multiple photos

covering the same area, the overlap among photos in terms of aspects covered is

hard to calculate. As in the two-photo case, the key to solve the problem is to

partition the area into small regions such that in each region, the points are under

the same coverage condition and the UP (X) value can be calculated using the same

expression. In the following, we elaborate on the three steps of partitioning the
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Figure 4.3. Multi-photo case. The target area is partitioned into small regions in three
steps, so that all points in the same region have the same coverage condition. Then
utility can be calculated for each small region separately.

target area, and describe how to calculate the utility of each small region obtained

from the partition.

4.3.2.1 Coverage Area Partition

The coverage area of photos naturally partitions the target area into small, non-

overlapping regions, as shown in Fig. 4.3(a). We have the following property after

the partition.

Property 1. Given a region obtained from coverage area partition, all points in it

are covered by the same set of photos.

4.3.2.2 Photo Line Partition

Consider a region R obtained from coverage area partition. Based on Property

1, there exists a set of photos P = {P1, . . . , Pn} covering R. To analyze how

these photos cover R, we need another partition step, called photo line partition.

Specifically, we check line PiPj for all i 6= j. If it intersects with R, and Pi, Pj are

on the same side of R, then R is divided into two smaller regions by line PiPj;

otherwise R is unchanged. After all lines are checked, R is divided into several

smaller regions that satisfy the following property.

Property 2. Given a region obtained from photo line partition, the photos covering

the region can be ordered in clockwise (or counter-clockwise) direction according to

their positions with regard to the region.
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As an example, consider the region in Fig. 4.3(b) covered by {P1, . . . , P5}. After
all lines are checked, the region is divided by P1P2 into two smaller regions R1, R2.

For R1, the photos can be ordered in clockwise direction as P1, P2, P3, P4, P5, and

for R2, that order is P2, P1, P3, P4, P5. Note that the region is not divided by P1P4

because P1, P4 are on different sides of the region and their order is the same for

R1 and R2. The same applies to P2P4.

4.3.2.3 Critical Arc Partition

Consider a region R′ obtained from photo line partition. By Property 2, the photos

covering R′ can be ordered in clockwise direction, denoted as P1, P2, . . . , Pn. The

purpose of considering this order is to analyze the coverage overlap between two

adjacent photos Pi and Pi+1, (i = 1, 2, . . . , n and Pn+1 = P1). For a point X ∈ R′,

if ∠PiXPi+1 ≤ 2θ, the viewing directions of Pi and Pi+1 are close enough to each

other such that the coverage of Pi and Pi+1 overlaps. Thus, all the aspects within

∠PiXPi+1 are covered. If ∠PiXPi+1 > 2θ, the coverage of Pi and Pi+1 does not

overlap, which means only 2θ aspects within ∠PiXPi+1 are covered. Combining the

above two cases, there are min{2θ, ∠PiXPi+1} aspects covered within ∠PiXPi+1.

Thus, the utility of photos P = {P1, . . . , Pn} on point X is

UP (X) =
n
∑

i=1

min{2θ,∠PiXPi+1}. (4.3)

Then the tricky part is that for any given i, ∠PiXPi+1 could be either greater

or smaller than 2θ depending on the position of X. Thus, we further divide R′ by

critical arcs P̆1P2, P̆2P3, . . . , P̆nP1 to obtain the following property.

Property 3. Given a region obtained from critical arc partition and any two ad-

jacent photos Pi and Pi+1, either ∠PiXPi+1 < 2θ holds for all points X in the

region, or ∠PiXPi+1 ≥ 2θ holds for all points X in the region.

As an example, consider one of the two regions, R1, obtained from the photo

line partition in Fig. 4.3(b). We perform critical arc partition on R1 in Fig. 4.3(c).

R1 is completely outside the critical arcs P̆1P2 and P̆2P3, which means for ∀X ∈ R1,

∠P1XP2 < 2θ and ∠P2XP3 < 2θ. R1 is completely inside the critical arcs P̆3P4

and P̆4P5, which means for ∀X ∈ R1, ∠P3XP4 ≥ 2θ and ∠P4XP5 ≥ 2θ. P̆5P1
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divides R1 into two regions. For the left smaller region, ∠P5XP1 ≥ 2θ, and

for the right larger region, ∠P5XP1 < 2θ. Hence, for the left smaller region,

UP (X) = 6θ + ∠P1XP3; for the right larger region, UP (X) = 4θ + ∠P5XP3.

4.3.2.4 Utility Calculation for Partitioned Regions

Denote a region obtained from the above three partition steps as R′′. Based

on Property 3, set I1 = {i |∠PiXPi+1 ≥ 2θ} and I2 = {i |∠PiXPi+1 < 2θ}
can be uniquely determined. Then equation (4.3) becomes UP (X) = 2θ|I1| +
∑

i∈I2 ∠PiXPi+1. Thus, the photo utility for R′′ can be given as

UP (R
′′) =

∫

R′′

UP (X) dX

= 2θa|I1|+
∑

i∈I2

∫

R′′

∠PiXPi+1 dX,

where a is the area ofR′′. We will discuss how to calculate integral
∫

R′′ ∠PiXPi+1 dX

in Section 4.3.3. Once it is calculated, the total utility UP (A) can be obtained by

adding up UP (R
′′) for all the regions obtained from the partition.

4.3.3 Integral over a Polygon

In this subsection, we discuss how to calculate integral
∫

R′′ ∠P1XP2 dX, where R′′ is

a polygon obtained from the above three partition steps and P1, P2 are two photos

covering R′′. Note that R′′ is considered as a polygon since arcs are approximated

by polylines.

To the best of our knowledge, the antiderivative of ∠P1XP2 cannot be expressed

as elementary functions, which means it is mathematically impossible to obtain

the exact integral value. Hence, the integral must be approximated by numerical

integration such as [66]. Numerical integration picks certain number of sample

points in the polygon and derives the weight of each sample point. It then evaluates

the integrand on those points (i.e., calculates ∠P1XP2 for each sample point X),

and sums up the weighted results to get the integral. The number of sample points

serves as a knob to balance accuracy and computation time.
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Figure 4.4. Utility error and running time of the grid point method.

4.3.4 Accuracy of Utility Calculation

To see the accuracy of utility calculation, we randomly generate the metadata of

50 photos in a 600m by 600m square area, and calculate their photo utility with

regard to the area. The locations and orientations of the photos are uniformly

random, and the field of view and range are fixed at 60◦ and 100m, respectively.

The experiment is repeated 500 times on an Intel Core i5 3.30GHz machine, and

both the average utility error and the total running time are obtained. To get

the utility error, we calculate the exact utility value by setting the number of line

segments that replace an arc to be 100 (i.e., sufficiently large), and setting the

number of sample points in numerical integration to be 10000 (i.e., sufficiently

many). In contrast, our method uses eight line segments to replace each arc and

uses one sample point for each numerical integration. The average utility error of

our method is 0.42%, and the total running time is 52 seconds.

As a comparison, we also calculate the utility using an intuitive method called

grid point method, which simply samples the area with grid points. Specifically, the

grid consists of
√
n×√

n points evenly distributed over the square area (denoted

as A), with the set of all grid points denoted as N (|N | = n). For every grid point

X ∈ N , its UP (X) value is calculated by Definition 6. Then the total utility is

estimated by UP (A) ≈ a
n

∑

X∈N UP (X), where a is the area of A and a
n
can be

considered as the weight of each grid point. The average utility error and the total

running time as a function of the number of grid points n is shown in Fig. 4.4.

As can be seen, when the running time is 52 seconds, the grid point method uses

about 400 points which has 7.2% utility error, compared to our method of 0.42%

error. Therefore, with the same running time, our method is much more accurate
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than the grid point method. Although the accuracy of the grid point method can

be improved by increasing the number of grid points, its running time will be much

longer compared to our method.

4.4 Budgeted Max-Utility Problem

With photo utility, we can measure how well photos cover a target area and select

those that best serve the purpose of the application. Since different applications

may have different photo selection problems, in this chapter, we study one funda-

mental problem called the budgeted max-utility problem.

4.4.1 Problem Statement

Consider a photo crowdsourcing application where the server is interested in the

condition of a target area, e.g., how it is damaged after a disaster. The server issues

a request to mobile users, who take photos and upload metadata to the server for

evaluation. With the metadata of hundreds or thousands of photos, the server

selects a subset of them such that the target area is best covered and the resource

consumption of collecting or analyzing the selected photos is under a predefined

budget. The budget can be any type of resource budget, such as the bandwidth

limit for uploading the photos, the processing capability in terms of CPU cycle, or

the total incentives that can be paid to mobile users. After selection, the server asks

mobile users to upload the image files of the selected photos. The uploaded photos

can be reviewed by humans or be fed into computer vision programs to extract

useful information. With photo utility, the above problem can be formulated as

follows.

Definition 8 (Budgeted Max-Utility Problem). Given a target area A, which is

a bounded area of any shape2, also given a set of photos P = {P1, . . . , Pn} and the

resource cost associated with each photo c1, . . . , cn, the goal of the problem is to

select a subset of photos P ′ ⊆ P such that the photo utility UP ′(A) is maximized

and the selected photos are subject to a knapsack constraint
∑

i:Pi∈P ′ ci ≤ B, where

B > 0 is a predefined resource budget.

2The problem and solution can be easily extended to multiple disjoint areas.
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To see the difficulty of the problem, consider a special case of the problem

where θ = π and ci = 1 for all i = 1, . . . , n. Since θ = π, as long as a point

is inside the coverage area of a photo, all of its 2π aspects are covered. Hence,

any point X covered by P ′ has utility UP ′(X) = 2π, and the total utility is given

by UP ′(A) =
∫

A UP ′(X) dX = 2πa, where a is the total area covered by P ′. Since

ci = 1 for all i = 1, . . . , n, the knapsack constraint becomes a cardinality constraint

|P ′| ≤ B. Then the problem is to select a subset P ′ such that |P ′| ≤ B and the

total coverage area a is maximized. This is known as the NP-hard maximum

coverage problem [67].

4.4.2 Our Algorithm

Due to the hardness of the problem, we design efficient approximation algorithms.

One natural idea is based on the greedy algorithm, which starts with the empty

selection P ′ = ∅, and in each step, selects a photo Pi which maximizes the per-cost

marginal utility, (UP ′∪{Pi}(A)−UP ′(A))/ci. The algorithm stops when the resource

budget is met. Unfortunately, this cost-aware algorithm can perform arbitrarily

badly compared to the optimal solution. Consider the example where we have

photo P1 with utility U{P1}(A) = 2ǫ and cost c1 = ǫ, and photo P2 with utility

U{P2}(A) = B and cost c2 = B. This cost-aware algorithm would select P1 since

(U{P1}(A)− U∅(A))/c1 = 2 and (U{P2}(A)− U∅(A))/c2 = 1. Then it cannot afford

P2 as the remaining budget is B − ǫ, and the total utility it achieves is 2ǫ. In

contrast, the optimal solution would select P2, achieving B utility. As ǫ → 0, the

algorithm becomes arbitrarily bad.

In the above example, we notice that simply ignoring the cost and selecting

the photo with the largest utility (i.e., P2) would yield the optimal solution. This

idea inspires the cost-ignored algorithm, which in each step, selects the photo Pi

that maximizes the marginal utility, UP ′∪{Pi}(A)−UP ′(A), without considering the

cost. It is easy to see that the cost-ignored algorithm can also perform arbitrarily

badly since it would select a photo with B utility and B cost even though there

are many photos with B − ǫ utility and ǫ cost.

However, we have found that at least one of the two greedy algorithms, cost-

aware algorithm or cost-ignored algorithm, cannot perform too badly. Thus, in
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our algorithm, we use the cost-aware algorithm to get a result Uca, and also use

the cost-ignored algorithm to get a result Uci. Then we use the better of the

two results, max{Uca, Uci}, as the final output. The following theorem shows the

performance bound (i.e., approximation ratio) of our algorithm.

Theorem 5. Let Uca be the photo utility achieved by the cost-aware algorithm, and

Uci be the photo utility achieved by the cost-ignored algorithm. Also let Uopt be the

maximal utility that can be achieved for the problem. We have

max{Uca, Uci}
Uopt

>
1− 1

e

2
≈ 0.32.

Proof. According to Krause et al. [68], it suffices to show that the objective func-

tion, photo utility, is monotone and submodular.

Monotonicity: For any two sets of photos P,Q with P ⊆ Q and every aspect
#”v , we have 1P (

#”v ) ≤ 1Q(
#”v ) since an aspect covered by P is also covered by Q.

After integration, it follows that UP ≤ UQ (we use UP to represent UP (A) for

conciseness), which meets the definition of monotonicity.

Submodularity: By definition, photo utility is submodular if for any two sets of

photos P,Q with P ⊆ Q and every photo Pi /∈ Q, we have

UP∪{Pi} − UP ≥ UQ∪{Pi} − UQ.

The above formula can be rewritten as

∫

A
[UP∪{Pi}(X)− UP (X)] dX

≥
∫

A
[UQ∪{Pi}(X)− UQ(X)] dX,

and further as

∫

A

∫ 2π

0
[1P∪{Pi}(

#”v )− 1P (
#”v )] d(arg( #”v )) dX

≥
∫

A

∫ 2π

0
[1Q∪{Pi}(

#”v )− 1Q(
#”v )] d(arg( #”v )) dX.
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Hence, it suffices to show that for every aspect #”v ,

1P∪{Pi}(
#”v )− 1P (

#”v ) ≥ 1Q∪{Pi}(
#”v )− 1Q(

#”v ),

which can be done by discussing the following three cases.

Case 1: When both P and Q cover aspect #”v , both sides of the above inequality

become 0, and thus the inequality holds.

Case 2: When neither P nor Q covers aspect #”v , both sides become 1Pi
( #”v ), and

thus the inequality holds.

Case 3: When Q covers aspect #”v but P does not, LHS becomes 1P0
( #”v ) and RHS

becomes 0. It is true that 1P0
( #”v ) ≥ 0.

These three cases cover all possibilities and hence the proof is complete.

4.5 Performance Evaluations

In this section, we evaluate the performance of the proposed solutions. In partic-

ular, we are interested in answering the following questions:

1. Is our utility metric effective? Does high photo utility really imply good

photo coverage?

2. Is our photo selection algorithm effective? How does it compare with other

algorithms?

3. What is the impact of the number of candidate photos (n), the resource

budget (B), and the effective angle (θ)?

We answer questions 1) and 2) by using real-world experiments, and answer ques-

tion 3) with simulations.

4.5.1 Real-World Experiments

4.5.1.1 Experimental Setup

We use a Nexus 4 phone running Android 5.1.1 to take photos around a target area,

with metadata automatically obtained and recorded in the phone (see Section 3.6.1
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(a) (b) (c)

Figure 4.5. (a) Satellite image of the target area. (b) A photo covering two front
entrances with white stairs. (c) A photo covering two back entrances with brown decks.

and our paper [69] for details). The target area (large pentagon in Fig. 4.5(a)) is a

local townhouse community with 14 rows of houses (small rectangles), where each

row consists of 6 or 8 units. The community spreads over a 264m by 183m area, and

has a total of 106 units. Every two neighboring units, as shown in Fig. 4.5(b)(c),

share a common front entrance with white stairs and a common back entrance

with a brown deck. Hence, there are 53 front entrances and 53 back ones, for a

total of 106 entrances.

The goal of this experiment is to select photos that cover the community as

well as possible. Since how well the community is covered is often a subjective

matter, we quantify it by counting the number of entrances appear in the photos.

If all entrances appear in the selected photos, it is considered perfect coverage,

which is expected to fully describe the condition of the community such as how it

is damaged after a disaster.

We take 150 candidate photos around the community using the phone men-

tioned above. We use a bandwidth limit for uploading the selected photos as the

resource budget, and the file size of each photo as its resource cost3. From the

150 candidates, which have a total size of 400MB, we select up to 75MB of photos

using three selection algorithms: 1) Our algorithm: the proposed photo selec-

tion algorithm; 2) Location-random: select randomly from the photos whose

locations are inside the target area; and 3) Random: select randomly from all

candidate photos. For each set of selected photos, we record both the total utility

and the total number of entrances covered (i.e., appear in the photos). Note that

if an entrance is covered by multiple photos, it is counted only once towards the

3Bandwidth is only used as an example. It can be changed to any quantifiable resources in
practice.



53

25 50 75
0

2

4

6

8

10

12

14

16

18

x 10
4

Bandwidth budget (MB)

T
o

ta
l 

u
ti

li
ty

 

 
Our algorithm

Location−random

Random

(a)

25 50 75
0

10

20

30

40

50

60

70

80

Bandwidth budget (MB)

C
o

v
er

ed
 e

n
tr

an
ce

s

 

 
Our algorithm

Location−random

Random

(b)

Figure 4.6. Experiment results: (a) utility vs. bandwidth budget; (b) covered entrances
vs. bandwidth budget.

total.

4.5.1.2 Results

Fig. 4.6 shows the results, where the results of Location-random and Random are

the average of 20 repeated experiments. We have the following three observations.

First, photo utility is an effective metric of photo coverage. Generally speak-

ing, the results for photo utility match the results for covered entrances. Photos

with higher utility cover more entrances, and photos with lower utility cover fewer

entrances. This indicates that our utility metric can truly reflect the coverage of

real photos.

Second, our algorithm achieves about 100% more utility and covers about 85%

more entrances than Location-random, which performs better than Random. Our

algorithm is much better because it considers photo utility and resource cost across

the selection process and it has a proved approximation ratio of 0.32. Location-

random is better than Random because it limits candidate photos to those located

inside the target area, and thus ensures that every photo it selects covers some

part of the target area. However, location itself is not enough to determine the

photo coverage, which is a major reason that Location-random is not comparable

to our algorithm.

Third, when photos are selected properly, we can save a significant amount

of bandwidth and still achieve excellent coverage on the target area. Note that

uploading all the 150 candidate photos would consume 400MB bandwidth. They

achieve 1.66 × 105 utility and cover 86 of the 106 entrances, while the remaining
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Figure 4.7. Heat maps of the photos selected by the three algorithms. This figure is
better viewed in color.

20 are back entrances (decks) surrounded by trees and not “coverable” by any

photos. In comparison, uploading the photos selected by our algorithm consumes

only 75MB ( 75
400

≈ 19%) bandwidth, yet they achieve 1.60 × 105 (1.60
1.66

≈ 96%)

utility and cover 74 (74
86

≈ 86%) entrances. We believe this is very good coverage

and these photos can accurately reflect the condition of the community.

Fig. 4.7 further illustrates how well the selected photos cover the community.

Subfigures (a)(b)(c) shows the 75MB of photos selected by our algorithm, Location-

random, and Random, respectively. As can be seen, the target area (large pen-

tagon) is partitioned into many small regions by the method described in Sec-

tion 4.3. Each region is colored based on how many aspects are covered on its

centroid, i.e., cyan if no aspects are covered, yellow if 160◦ aspects are covered (θ

is set to 80◦ here so one photo covers 160◦), and red if all 360◦ aspects are covered.

These heat maps show that our algorithm achieves much better coverage than the

other two algorithms. Many regions in subfigure (a) are fully or almost fully cov-

ered by the selected photos, which is why they can capture most of the entrances

in the community.

4.5.2 Simulations

We generate photos with random locations and orientations in a 400m by 400m

square, and set the 200m by 200m square in the center as the target area. The

photos have 60◦ field of view and 100m range. The file size of each photo is gener-

ated randomly in [2, 4]MB. In each experiment, we select photos from n candidate

photos under bandwidth budget B using the same selection algorithms as those

in the real-world experiments, and then record the total utility achieved by the

selected photos.



55

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of candidate photos (n)

T
o

ta
l 

u
ti

li
ty

 

 
Our algorithm

Location−random

Random

(a)

50 75 100 125 150
0

0.5

1

1.5

2

2.5

3
x 10

5

Bandwidth budget (B) in MB

T
o

ta
l 

u
ti

li
ty

 

 
Our algorithm

Location−random

Random

(b)

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

5

Effective angle (θ)

T
o
ta

l 
u
ti

li
ty

 

 
Our algorithm

Location−random

Random

(c)

Figure 4.8. Simulation results: (a) utility vs. number of candidate photos; (b) utility
vs. bandwidth budget; (c) utility vs. effective angle.

Fig. 4.8 shows the simulation results, where the results of Location-random

and Random are the average of 20 repeated experiments. Our algorithm performs

much better than the other two across all experiments. In what follows, we discuss

the impact of the number of candidate photos (n), the bandwidth budget (B), and

the effective angle (θ), respectively.

The impact of the number of candidate photos (n) is shown in Fig. 4.8(a), where

B = 100MB and θ = 60◦. As can be seen, Location-random or Random does not

benefit from the increase of n because they select photos randomly. On the other

hand, the results of our algorithm exhibit diminishing returns as n increases. In

particular, the total utility increases very little after n > 400. This means that

there is a turning point n′ (in this case n′ ≈ 400) beyond which crowdsourcing more

candidate photos cannot bring enough benefit. In real applications, the server can

find such a turning point by simulations and crowdsource no more than n′ photos.

Fig. 4.8(b) shows the impact of the bandwidth budget (B) with n = 300 and

θ = 60◦. Again, diminishing returns can be observed for our algorithm, and a

turning point can be found roughly at B′ ≈ 125MB. Note that in real applications,

the turning point is not determined subjectively. Instead, it is the point where the

cost of collecting or selecting more photos exceeds the benefit brought by their

utility. For the other two lines, they grow almost linearly as B increases. This is

because for those two algorithms, the total utility is much less than the maximum

possible utility (2.5 × 105, i.e., 2π times the size of the target area). Thus on

average, every selected photo brings roughly the same increase in utility.

Fig. 4.8(c) shows the impact of effective angle (θ) with n = 300 and B =

100MB. As θ increases, the aspects covered by each photo increase linearly, and

thus the total utility grows almost linearly when it is much less than the maximum
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possible utility. The growth slows down when the total utility becomes larger, since

there are more coverage overlaps between photos. In real applications, θ controls

the number of photos needed to fully cover (i.e., cover all aspects of) an object.

It should be set based on the level of details that the application demands for the

covered objects.

4.6 Discussions

4.6.1 Occlusion

As mentioned in the previous chapter, occlusion means that the view of the target

is blocked by obstacles, though the target is considered to be covered based on

the metadata. One way to detect occlusion is to process the photo using resource-

intensive computer vision algorithms, which is contrary to the purpose of resource-

aware crowdsourcing. Another way to detect occlusion is to use a camera parameter

called Depth-Of-Field. When the target is a point and it is outside the camera’s

Depth-Of-Field, then it must be occluded (see Section 3.6.3 for details). When the

target is an area, the same technique can be used to detect whether any part of the

area is occluded. However, this technique cannot detect the case where the target

and the obstacle are close to each other. Another idea is to check a map and use

the locations and shapes of buildings to detect occlusion caused by buildings. This

idea needs further investigation and it cannot detect occlusion caused by other

obstacles such as trees and vehicles. Due to its complexity, we leave this study as

future work.

It is important to note that occlusion issue is orthogonal to the contributions

of this work. Since everything behind the obstacle is not visible in the photo,

occlusion effectively reduces the photo’s coverage area. The coverage area may

no longer be a circular sector, and it can be an arbitrary shape depending on the

locations and shapes of obstacles. However, our design works for arbitrary shapes

of photo coverage area. If the occlusion issue is solved and a more accurate coverage

area is found, we can use it to improve the performance. Otherwise, we can still

use the sector model as it represents the general situation and works well in our

real-world experiments. Moreover, our utility metric encourages each point to be
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covered from multiple directions, which effectively mitigates the occlusion issue

because an object blocked in one direction may be visible from other directions.

4.6.2 Photo Quality Control

Crowdsourced photos can be of low quality due to problems like blurring, distor-

tion, noise, and improper brightness. Collecting and analyzing such photos is a

waste of resources. Thus, before metadata is sent to the server, image quality as-

sessment (IQA) [70, 64] can be used in mobile devices to detect low-quality photos.

The metadata of unqualified photos will not be sent to the server or be considered

in photo selection. However, existing image processing techniques are computa-

tionally expensive, and thus should be carefully adapted considering the resource

limitations of mobile devices.



Chapter 5
Resource-Aware Photo

Crowdsourcing Through Disruption

Tolerant Networks

5.1 Background

An important application of photo crowdsourcing is emergency management [3]. In

a natural disaster or a battlefield, a command center may need information about

some specific targets. Rescuers, survivors and soldiers in the field can use mobile

devices to take photos and upload them to the command center. The information

contained in the photos, such as the damage of a building or the extent of flooding,

helps the command center make critical decisions on the assignment of manpower,

equipment, and supplies.

Unfortunately, the communication between the command center and crowd-

sourcing participants can be extremely constrained in these scenarios. The cellular

network may be partly damaged or overloaded with extensive requests, and hence

not accessible to all participants. Human-carried satellite radios may be an option,

but only a small portion of participants have satellite radios due to the high cost.

As a result, it is better to use Disruption Tolerant Networks (DTNs) to transfer

photos among participants, and once available, use the cellular network or satel-

lite connections to upload photos to the command center. Although DTN cannot
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guarantee prompt data delivery, it may be the last resort and its cost-effectiveness

also makes it a feasible solution in such resource constrained environments.

Even with DTN, how to save resources such as storage and bandwidth poses

many challenges. Participants can take many megapixel photos which consume a

lot of storage space. The photos may contain redundant information, or may be

irrelevant to the targets of interest. These redundant or irrelevant data exacerbate

the contention for storage resources. Moreover, data can only be transferred when

two participants are within the wireless transmission range of each other. Trans-

mitting redundant or irrelevant data reduces the chance to transmit other useful

data since the wireless bandwidth is limited and the participants may move out

of the transmission range quickly. Thus, it is important to eliminate redundant

or irrelevant photos without sacrificing useful information related to the targets of

interest.

We take two steps to address these challenges. First, based on the proposed

metadata, we define a photo coverage model to quantify the value of photos. Sec-

ond, we study how to incorporate the value of photos into routing, so that the most

useful photos are prioritized to use the limited storage and bandwidth resources.

There are some existing utility-driven routing algorithms for DTN [44, 45, 46],

and simply using photo coverage as the utility metric and running their algorithms

could enable us to prioritize photos based on their individual coverage. However,

this simple solution does not consider the redundancy between photos. If two sim-

ilar photos both have high coverage, those algorithms will prioritize both photos in

routing, without considering that it is only meaningful to deliver one of them. This

unique feature, caused by the redundancy (or coverage overlap) between photos,

motivates us to develop a photo selection algorithm different from previous utility-

based approaches. Our algorithm considers both the coverage overlap between

photos and the contact opportunities related to user mobility. It prioritizes the

storage and transmission of the most useful photos, and thus significantly increases

the value of the photos delivered to the command center.

In this chapter, we propose a resource-aware photo crowdsourcing framework

based on DTNs, including a photo coverage model and a photo selection algorithm.

The photo coverage model quantifies the value of photos using lightweight meta-

data, and the photo selection algorithm considers the coverage overlap between
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photos, which is unique for photo crowdsourcing and has not been addressed in

previous utility-based routing algorithms. We evaluate our design through experi-

ments based on Android smartphones and through extensive trace-driven simula-

tions. The results demonstrate that our resource-aware framework works well in

practice and significantly increases the value of the crowdsourced photos.

5.2 Photo Coverage Model

In this section, we introduce the model used to quantify the value of photos (called

photo coverage).

5.2.1 PoIs and Photos

The command center has some Points of Interest (PoIs) it wants to observe. It

issues a PoI list containing the coordinates of the PoIs, and spreads it to as many

participants as possible through DTN or other communication networks. The PoI

list is denoted as X = {x1, x2, x3, · · · }, where each xi is a PoI. Without ambiguity,

xi also means the location of the i-th PoI.

Each participant has some photos in the mobile device, called his/her photo

collection. A photo collection is denoted as F = {f1, f2, f3, · · · }, where each fj

is a photo. A photo f is characterized by its metadata (l, r, φ,
#”

d ), which is the

same metadata as in the previous two chapters. Here l is the location where the

photo is taken. r is the coverage range of the camera, beyond which people can

hardly identify anything in the photo. φ is the field-of-view of the camera, which

determines how wide the camera can see.
#”

d is the orientation of the camera when

the photo is taken. It can be expressed as a vector coming out from the camera and

vertical to the image plane. These four parameters jointly determine the coverage

area of a photo (gray area in Fig. 5.1(a)).

5.2.2 Point Coverage and Aspect Coverage

The crowdsourced photos should cover the PoIs. In traditional sensor networks,

a target is covered if it is inside the coverage area of a sensor. Similarly, a PoI is

covered if it is inside the coverage area of a photo, referred to as point coverage.
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Figure 5.1. (a) For point coverage, PoI x is covered by photo f , so Cpt(x, f) = 1. (b)

For aspect coverage, aspect #”v1 is covered by photo f since ∠( #”v1,
#”

xl) < θ. #”v2 is not covered
since ∠( #”v2,

#”

xl) > θ. In fact, all the aspects in the darker area are covered by photo f , so
Cas(x, f) = 2θ.

For a PoI x and a photo collection F = {f1, f2, · · · }, point coverage Cpt(x, F ) = 1

if x is in the coverage area of any fj from F ; otherwise Cpt(x, F ) = 0.

If Cpt(x, F ) = 1, PoI x can be found in photo collection F . However, it is

not clear how x appears in the photos. If the PoI is a building, we may see its

front view, side view, or even back view. This is quite different from traditional

sensor coverage, where the relative angle of sensors and targets does not matter.

From the command center’s perspective, only seeing the PoI is not good enough,

and it is better to view the PoI from multiple directions so as to obtain omnibus

information.

Therefore, we introduce aspect coverage to capture this unique property of

photos. An aspect of a PoI, denoted by #”v , is a vector that can be represented by

an angle in [0, 2π). Angle 0 represents the vector pointing to the right (east on the

map), and it increases in the clockwise direction. For example, in Fig. 5.1(b), #”v1

and #”v2 are two aspects with angle 270◦ and 190◦, respectively.

Aspect #”v of PoI x is covered by photo f if the following conditions hold: x

is inside the coverage area of f , and the angle between #”v and
#”

xl is less than a

predefined threshold θ (called effective angle). Here
#”

xl is the vector from the PoI

to the camera, representing the viewing direction of the camera. Then for a PoI x

and a photo collection F , we have aspect coverage Cas(x, F ) =
∫ 2π
0 1F (v)dv, where

1F (v) = 1 if #”v is covered by any fj from F , or 0 otherwise.

Aspect coverage shows how many aspects of a PoI are covered in the photos.

With larger aspect coverage, more different views of the PoI can be seen, and thus

more information can be obtained about the PoI. However, only considering aspect
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coverage may cause problems. A photo collection may have large aspect coverage

on some PoIs but leave many other PoIs completely uncovered. Thus, we should

first consider point coverage to ensure more PoIs are covered, and then maximize

the aspect coverage of those PoIs.

5.2.3 Photo Coverage

Photo coverage combines point coverage and aspect coverage, and gives point cov-

erage higher priority.

Definition 9 (photo coverage). Given a PoI x and a photo collection F , photo

coverage Cph is defined as

Cph(x, F ) = (Cpt(x, F ), Cas(x, F )),

where Cpt(x, F ) and Cas(x, F ) obey lexicographical order. In other words, Cph1 >

Cph2 if and only if 1) Cpt1 > Cpt2 or 2) Cpt1 = Cpt2 and Cas1 > Cas2.

The above photo coverage is defined for one PoI. For a PoI list X = {x1, x2, · · · }
and a photo collection F , photo coverage Cph is defined as

Cph(X,F ) =

Ñ
∑

xi∈X

Cpt(xi, F ),
∑

xi∈X

Cas(xi, F )

é

.

In the rest of this chapter, photo coverage is always calculated for the same PoI

list, so we omit the notation X and use Cph(F ) to denote the photo coverage of F .

5.3 Photo Selection Algorithm

In this section, we first describe the optimization problem considered in this chap-

ter. We identify and address two important design challenges, and then present

our photo selection algorithm.

5.3.1 Problem Description

At the beginning of a crowdsourcing event, the command center issues a PoI list de-

scribing its interests and a deadline indicating how long the PoI list will be valid.
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Before the deadline, photos are selected and delivered to the command center

through DTN and other communication links. Specifically, when two nodes (par-

ticipants) move within the wireless communication distance (Bluetooth or WiFi),

they are in contact and photos can be transmitted between them. The command

center can be seen as a special node, denoted by n0, who can receive photos from

other nodes when cellular or satellite connections are available.

Before the deadline, the command center has received a collection of photos

F0. Our objective is to maximize its photo coverage, i.e., max Cph(F0), under the

following constraints: 1) limited contact opportunities and limited bandwidth in

DTN, 2) limited availability of cellular and satellite connections, and 3) limited

storage space of mobile devices.

A centralized solution to the above problem will not work because the contacts

among DTN nodes are not known a priori. Therefore, to maximize Cph(F0) in a

distributed way, nodes should optimize their local photo collections by exchanging

photos with each other whenever a contact happens. This local optimization is

the core of our photo selection algorithm, which will be presented in Section 5.3.4.

However, such optimization requires accurate calculation of photo coverage, which

poses two new challenges. First, due to coverage overlap, the coverage of a photo

depends not only on itself, but also on the presence of other photos. We address this

challenge by proposing a metadata management scheme in Section 5.3.2. Second,

when a photo is in DTN, its potential value to the command center depends not only

on its photo coverage, but also on how likely it can be delivered to the command

center. We address this challenge by introducing expected coverage in Section 5.3.3.

5.3.2 Metadata Management

Due to coverage overlap, the coverage of a photo depends on the presence of other

photos. For example, a photo’s coverage will decrease if another photo already

covers the same PoI. To calculate photo coverage accurately, it is essential to take

the presence of other existing photos into account. To this end, nodes should share

the metadata of their photos with each other whenever a contact happens. Thus,

every node maintains its knowledge about the metadata of every other node. Such

metadata is cached and used later for photo coverage calculation. Note that when
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the metadata of the command center is shared, it works as an acknowledgment,

telling nodes which photo has already been delivered to the command center.

Caching metadata costs very little storage space, but cache validation is a big

challenge. After the node whose metadata has been cached leaves after a contact,

its photos may change when it meets other nodes. However, these changes may not

be known to those who have cached the metadata. Such inconsistency cannot be

solved by traditional cache validation schemes due to the low connectivity of DTN.

To address this issue, we propose a metadata management scheme as follows.

The inter-contact time Tab between two nodes na and nb has been shown to

have exponential decay for many mobility models (e.g., random waypoint and

Brownian motion) and real traces [71, 72, 73]. Hence, to capture the contact

patterns of nodes (e.g., rescuers in the same team contact more often), we assume

Tab to be exponentially distributed with parameter λab. Then, the inter-contact

time between node na and any other node is a random variable Ta = minnb 6=na
Tab,

so it follows exponential distribution with parameter λa =
∑

nb 6=na
λab.

In a contact between na and nb, na sends nb its photo metadata and parameter

λa learned from historical contacts. Later, when nb wishes to use na’s metadata to

calculate the coverage of its photos, it computes the time elapsed since their last

contact, denoted as t. Then it calculates the probability that na has met another

node within time t as

P{Ta < t} = 1− e−λat. (5.1)

The outcome P{Ta < t} is compared with a predefined threshold Pthld. If it

exceeds the threshold, the metadata is considered invalid and removed from the

cache, because there is a high probability that node na has already met another

node and therefore has updated its photos. Otherwise, the metadata of na is

valid and can be used to calculate photo coverage. The value of Pthld is currently

determined by simulations. It is difficult, if not impossible, to theoretically evaluate

its effect, because it is hard to estimate how many photos have been updated during

a contact.
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5.3.3 Expected Coverage

By our model, the value of a photo can be estimated by its photo coverage. How-

ever, for photos in DTN, it is not clear if the photo coverage can be achieved since

these photos may never reach the command center. Thus, the potential value of

a photo depends not only on its photo coverage, but also on how likely it can be

delivered to the command center.

We address this issue by jointly considering the photo coverage and the prob-

ability of data delivery from a node to the command center. To this end, we

compute delivery probability as defined in the PROPHET routing protocol [41].

The delivery probability from node na to node nb is a probabilistic metric of how

likely na can deliver a packet to nb. It is computed based on three heuristics: 1)

the delivery probability should increase if two nodes encounter each other; 2) the

delivery probability should decrease if two nodes do not encounter for a while; 3) if

the delivery probability from na to nb is high and that from nb to nc is high, then

the delivery probability from na to nc is also high (transitive property). The exact

calculation of delivery probability can be found in Section III-A of [41]. Here, we

use the delivery probability from ni to the command center n0, denoted as pi, as

an indicator of how likely ni’s photos can be delivered.

Intuitively, if we multiply a photo’s coverage by the probability that it is deliv-

ered, the result will be the expectation of the achieved coverage, referred to as the

expected coverage. Compared to the original photo coverage, the expected coverage

is a better estimate of a photo’s value, because it takes into account whether or

not the photo can actually be delivered. However, the above definition of expected

coverage only works for one single photo. It does not consider the possible coverage

overlap between this photo and other existing photos. To consider the coverage

overlap between photos and thus assess the value of photos more accurately, we

extend the above definition of expected coverage to a set of photos, as detailed

below.

In a contact between na and nb, the two nodes can assess the value of their

photos by calculating expected coverage. To consider coverage overlap between

photos, expected coverage is calculated for a node set M that contains all nodes

of which na and nb have valid metadata. First, M includes na and nb. Second,

M includes the nodes whose metadata is valid according to equation (5.1). Third,
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M also includes n0 because it is important to consider what has been received by

the command center. We assume the command center does not drop photos, and

thus the metadata of n0 is always valid. The expected coverage of node set M is

defined as follows.

Definition 10 (Expected Coverage). Given a node set M = {n0, n1, · · · , nm−1},
let Fi and pi be the photo collection and the delivery probability of node ni (i =

0, 1, · · · ,m−1), respectively. Also let bi ∈ {0, 1} denote whether node ni can deliver

its photos to the command center. Then a binary string B = b0b1 · · · bm−1 denotes

one possible outcome with regard to whether each node can deliver its photos. The

probability of this outcome is

PB =
m−1
∏

i=0

pbii (1− pi)
(1−bi).

In this outcome, the photo coverage obtained by the command center is

CB = Cph

Ñ
⋃

bi=1

Fi

é

.

Hence, the expected coverage of M is defined as Cex(M) =
∑

B∈{0,1}m PB · CB.

As an example, with m = 3, node set M = {n0, na, nb}. Since the command

center always reaches itself (b0 = 1), we have four cases, B = 100, 101, 110, 111.

Therefore,

Cex(M) = Cph(F0) · (1− pa)(1− pb)

+Cph(F0 ∪ Fb) · pb(1− pa)

+Cph(F0 ∪ Fa) · pa(1− pb)

+Cph(F0 ∪ Fa ∪ Fb) · papb. (5.2)

From formula (5.2) we can see two advantages of using expected coverage.

First, it always considers the photos already received by the command center (F0).

Second, it considers all possible cases about whether the nodes can reach the

command center. In this example, there are two nodes (na and nb), and each node

may or may not reach the command center. Each of the four possible cases is
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considered with a weight indicating its probability of happening.

Via Definition 10 we calculate the expected coverage of the nodes in M . Since

our initial purpose is to assess the value of photos in na and nb. we also denote

Cex(M) as Cex(Fa, Fb) to emphasize that purpose.

5.3.4 Photo Selection Algorithm

Recall that our objective is to maximize the photo coverage obtained by the com-

mand center. To achieve this goal in a distributed way, nodes should maximize the

potential value (i.e., expected coverage) of their local photo collections by exchang-

ing photos with each other. Specifically, when two nodes na and nb are in contact,

they reallocate their photos to maximize the expected coverage Cex(Fa, Fb). The

reallocation is based on a selection pool that contains all the candidate photos,

Fa ∪ Fb = {f1, f2, · · · , fk}. Let sj be the size of photo fj. We have the following

photo reallocation problem.

max Cex(Fa, Fb),

subject to
k
∑

j=1

yjsj ≤ Sa,
k
∑

j=1

zjsj ≤ Sb,

where yj , zj ∈ {0, 1} means whether photo fj is selected into node na or nb. Sa

and Sb is the storage size of na and nb.

The above problem is NP-hard since the standard 0-1 knapsack problem can

reduce to it. Also, its objective function Cex(·) is non-convex due to coverage

overlap: the coverage of a photo depends not only on itself, but also on other

existing photos. This makes the photo reallocation problem even more challenging.

Here, we propose a greedy algorithm to solve it.

Without loss of generality we assume pa > pb, i.e., node na has more chances

than nb to deliver photos to the command center. Thus, na should have higher

priority to select photos. We first fill up the storage of na by solving the following

problem.

max Cex(Fa, ∅),
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subject to
k
∑

j=1

yjsj ≤ Sa. (5.3)

It is a non-convex optimization problem, so the solution is based on greedy

heuristics. In each step of selection, one photo from the selection pool is selected

and stored in na, such that the current expected coverage Cex(Fa, ∅) is greedily

maximized. The selection proceeds for the remaining part of the selection pool

until na’s storage is full or no more benefit can be achieved.

Afterward, node nb selects photos to its storage by solving a similar problem to

(5.3). nb considers what na has selected by maximizing Cex(Fa, Fb). Thus, nb may

not choose photos that are similar to (or the same as) those stored in na. This

happens when na can reach the command center with a high probability, i.e., pa is

large. However, nb uses the same selection pool as na, that is, the original Fa ∪Fb.

It is possible that nb selects a photo fj that is already stored in na (yj = zj = 1).

This happens when fj is very useful but na cannot deliver it with a high probability.

The above algorithm assumes that the contact duration is long enough to com-

plete the required photo transmission. In some cases, the assumption may not be

valid; i.e., the contact duration is too short to transmit all required photos. With

such network constraints, the algorithm should be adjusted as follows.

First, the two contacting nodes run the above algorithm to obtain a solution

that maximizes the expected coverage. The solution can be different from their

current photo collections. Then they transmit photos between each other so that

their photo collections gradually become the same as the solution. To do this,

the photos in the solution are considered one by one, in the order that they are

selected. Specifically, we start by considering the first photo selected to na in

the solution (given pa > pb). If the photo is already in na’s photo collection, no

transmission is needed. Otherwise, the photo is currently in nb and is transmitted

to na. Then we consider the second photo selected to na and check whether a

transmission is needed. Similarly, all photos selected to na are considered and na’s

photo collection finally becomes the same as the solution. After that, the same

operation proceeds for nb. The contact may end at any time during this process,

and any unfinished transmission will be discarded.
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TARGET

Figure 5.2. (a) Screenshot of the programmed phone. (b) We take 40 photos and assign
them to 8 nodes in the trace. The locations and orientations of the photos are shown in
V shapes, where the photos assigned to different nodes have different colors.

5.4 Prototype Implementation

We have implemented a proof-of-concept prototype to test whether our photo

selection algorithm works for real photos. It is based on a Google Nexus 4 running

Android 4.2, and it enables automatic metadata acquisition when a photo is taken

(see Section 3.6.1 and our paper [74] for details). We apply the proposed photo

selection algorithm to real photos to see the selection results. To run the selection

algorithm, we extract the contact information among 9 nodes from an existing

DTN trace, MIT Reality. The MIT trace records the contacts among users carrying

handheld Bluetooth devices. The devices periodically detect their peers nearby,

and a contact is recorded when two devices move into the transmission range of

each other. Among the 9 nodes, 8 of them represent crowdsourcing participants,

and the other one represents the command center. It can be considered as a rescuer

carrying a satellite radio or a data mule that periodically moves back and forth

between the area and the command center. We use the last 48 contacts among the

9 nodes to run the algorithm and collect photos, and use all previous contacts to

learn the delivery probability of nodes.

Furthermore, we take 40 photos using the programmed phone and assign five

of them to each crowdsourcing participant in the trace, as if the node took these

photos for the crowdsourcing task. The locations and orientations of the photos

are shown in Figure 5.2(b) in V shapes, where the photos assigned to different

nodes are in different colors. The target (PoI) is a historic church near the center

of the area.

Based on the photo metadata and the contact trace, we simulate the photo
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(a) PhotoNet (b) Spray&Wait

(c) Our scheme

Figure 5.3. Photos delivered and aspects covered.

crowdsourcing process using three different algorithms: our scheme, PhotoNet,

Spray&Wait. PhotoNet [47] is a picture delivery service that prioritizes the trans-

mission of photos by considering location, time stamp, and color difference, with

the goal of maximizing the “diversity” of the photos. Spray&Wait [40] is a clas-

sic DTN routing protocol that balances resource utilization and delivery ratio. It

is used to represent a set of general-purpose DTN routing protocols that do not

differentiate packets by their content.

In real crowdsourcing applications, a participant may possess hundreds of pho-

tos while the peer-to-peer communication bandwidth is at 1MB/s level and the

device storage is at 1GB level. In our experiments a participant has much fewer

(five) photos, so the bandwidth and storage constraints must be scaled down ac-

cordingly. We limit the number of photos that can be transferred in a contact to

be three and the number of photos that can be stored in a device to be five.

Figure 5.3 shows the photos delivered to the command center at the end of the

trace. For photos covering the target, dashed lines show their viewing directions

and gray areas show the covered aspects (effective angle θ = 40◦). Both PhotoNet

and Spray&Wait deliver 12 photos because there are four contacts between the

participants and the command center, and three photos are transferred in each

contact. PhotoNet delivers photos that are diverse in terms of location, time and

color histogram, and thus the delivered photos spread across the area. However, it

does not have much information about the target, with only two photos covering



71

Figure 5.4. Images delivered by our scheme.

160◦. Spray&Wait does not consider photos by their content, and the results are

not good either. Three of the 12 photos cover 171◦ of the target. Among the three

schemes, ours has the best performance. Although 12 photos can be delivered, six

of them are not helpful for increasing the photo coverage. Thus, our scheme only

delivers the six most useful photos, which cover 346◦ of the target.

Figure 5.4 shows the real images delivered by our scheme. As can be seen, the

photos cover the church from different angles, showing a quite complete view of the

church. Having complete information about the target is important in a disaster

recovery scenario, where the command center needs to identify any damage related

to the building and determine whether it is safe for survivors. The images delivered

by the other two algorithms are not shown due to space limitation. From the photo

metadata and the aspect coverage shown in Figure 5.3, it is clear that they are not

as good as those delivered by our scheme.

5.5 Trace-Driven Simulations

Real photo crowdsourcing applications have a much larger scale than our demon-

stration. In this section, we use trace-driven simulations to further evaluate the

performance of our photo selection algorithm.
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Table 5.1. Simulation Settings

Parameter Notation Value*
photo size 4MB
effective angle θ 30◦

orientation
#”

d [0◦, 360◦)
field-of-view φ [30◦, 60◦]
coverage range r [50, 100] cot(φ/2)m
valid threshold Pthld 0.8
PROPHET Pinit, β, γ 0.75,0.25,0.98
# of nodes 97/54
simulation time 300/200 hr

*A range means that the value is randomly
generated in that range; two numbers with
“/” means the value in the MIT/Cambridge06
trace.

5.5.1 Simulation Setup

We assume participants move in a 6300m×6300m square region, like a town or

the central area of a city. The command center issues a list of 250 PoIs randomly

located in the region.

The contact information between participants is retrieved from two traces: MIT

Reality and Cambridge06 [75]. Similar to the MIT trace, Cambridge06 records the

contacts among users carrying handheld Bluetooth devices. The devices periodi-

cally scan their peers nearby and record a contact if a peer is discovered. The scan

interval for the MIT trace is five minutes, and the scan interval for the Cambridge06

trace is two minutes.

Participants may be able to communicate with the command center through

various ways such as DTN links, satellite radios, etc. To simulate such links,

we randomly pick about 2% of the total participants and assume they can com-

municate with the command center. They can be rescuers in a disaster area or

commanders in a battlefield who have satellite radios, or they can be data mules

that move back and forth between the interested area and the command center.

Photos are randomly generated by the participants. Photo metadata and other

simulation settings are shown in Table 5.1.
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5.5.2 Comparing With Other Schemes

In this subsection, we evaluate the performance of our scheme by comparing it with

other solutions. The evaluation is based on the MIT trace, and the performance

is measured in terms of the point coverage and aspect coverage obtained by the

command center (normalized by the number of PoIs). Each data point is the

average of 50 simulation runs.

The proposed photo selection algorithm (called our scheme) is compared with

the following schemes.

• BestPossible: There is no storage or bandwidth constraint for this scheme.

The only constraint is contact opportunity. Nodes will try to replicate every

useful photo to everyone, and achieve the best possible coverage.

• NoMetadata: Disable the metadata caching and metadata management

component from our scheme.

• Spray&Wait: The binary spray and wait protocol with four allowed copies,

as described in [40].

• ModifiedSpray: It is based on Spray&Wait. When a node transmits photos

to another node, it transmits the photo with the most photo coverage first.

When a node receives a photo and its storage is full, it first removes the

photo with the least photo coverage.

Fig. 5.5 shows the results, where the storage size is 0.6GB and the number

of created photos is 250 per hour. As time goes, more photos are delivered and

thus the coverage increases. Our scheme covers 70% of PoIs after 150 hours of

crowdsourcing. This time would be significantly shorter in real world applications

because there could be much more participants than those in the DTN traces.

Comparing the five schemes, BestPossible provides the performance upper

bound, and our scheme performs close to it with a maximum of 10% less point cov-

erage and 17% less aspect coverage. NoMetadata performs worse than our scheme,

which shows that metadata caching and metadata management can improve per-

formance even though the inter-contact time used in metadata management does

not strictly follow exponential distribution in real traces. Spray&Wait has the
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Figure 5.5. Comparing our scheme with other four schemes.

worst performance because it is designed for routing general data and does not

consider which photo is more useful. At 150 hours, it has 49% less point cover-

age and 69% less aspect coverage than our scheme. ModifiedSpray outperforms

Spray&Wait because it considers the coverage of photos. However, like previous

utility-based routing algorithms, ModifiedSpray prioritizes photos by their individ-

ual coverage without considering the overlap (redundancy) between photos. This

is why it still underperforms our scheme. At 150 hours, ModifiedSpray has 26%

less point coverage and 38% less aspect coverage than our scheme.

5.5.3 The Effects of Short Contact Duration

We usually assume the contact duration is long enough to do the required photo

transmission. In this subsection, we evaluate how our scheme performs under

short contact duration. The transmission bandwidth is set as 2MB/s, which can

be achieved by Bluetooth 3.0+hs, WiFi ad hoc mode, and WiFi Direct. Thus, a 10

minute contact results in 1.2GB transmission capacity, enough for the transmission

between two nodes with 0.6GB storage.

The results are shown in Fig. 5.6. Since 10 minutes means no limit on the

contact duration, its performance is the same as before. When the contact dura-

tion is reduced to 2 minutes, the performance only decreases by about 1%. This

is because our scheme prioritizes the transmission of important photos, and thus

those photos are still delivered to the command center even though the contact

duration reduces by 80%. Nonetheless, the performance drops faster when the

contact duration is further reduced and becomes insufficient for transmitting im-

portant photos. In the 30 seconds case, only 5% of the photos can be transmitted,
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Figure 5.6. The effects of short contact duration.

and the performance degrades to a similar level of ModifiedSpray with 10 minutes

duration. In sum, our scheme maintains good performance unless the contact du-

ration is drastically reduced (e.g., by 95%), in which case the performance is still

comparable to ModifiedSpray with 10 minutes duration.

5.5.4 The Effects of Storage Capacity

In this subsection, we evaluate the effects of storage capacity. At the end of a

simulation run, the point coverage and aspect coverage obtained by the command

center are recorded (normalized by the number of PoIs). We also record the number

of photos delivered to the command center.

Fig. 5.7 summarizes the results, where the number of generated photos is 250

per hour. Fig. 5.7(a)(b)(c) is based on the MIT trace and Fig. 5.7(d)(e)(f) is based

on the Cambridge06 trace. From Fig. 5.7(a)(b)(d)(e), we can see that increasing

storage capacity generally improves photo coverage since more photos can be de-

livered to the command center. For our scheme and NoMetadata, the performance

is improved mainly because with larger storage space, a useful photo has more

copies stored in different nodes, and thus it is more likely to be delivered. How-

ever, ModifiedSpray is not affected too much by storage space since the number of

copies for a photo is limited to four.

Fig. 5.7(c)(f) shows the number of delivered photos in logarithmic scale. In our

scheme and NoMetadata, photos are transferred to the command center only if

they can contribute to the photo coverage. Thus, the number of delivered photos

in our scheme and NoMetadata is dramatically less than that in ModifiedSpray

and Spray&Wait.



76

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Storage size (GB)

P
h
o
to

 c
o
v
e
ra

g
e
 C

p
t

 

 

our scheme
NoMetadata
ModifiedSpray
Spray&Wait

(a) Point coverage

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Storage size (GB)

A
s
p
e
c
t 

c
o
v
e
ra

g
e
 C

a
s
 (

d
e
g
re

e
)

 

 

our scheme
NoMetadata
ModifiedSpray
Spray&Wait

(b) Aspect coverage

0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

Storage size (GB)

P
h

o
to

s
 d

e
liv

e
re

d

 

 

our scheme
NoMetadata
ModifiedSpray
Spray&Wait

(c) Photos delivered

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Storage size (GB)

P
o

in
t 

c
o

v
e

ra
g

e
 C

p
t

 

 

our scheme

NoMetadata
ModifiedSpray

Spray&Wait

(d) Point coverage

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

Storage size (GB)

A
s
p

e
c
t 

c
o

v
e

ra
g

e
 C

a
s
 (

d
e

g
re

e
)

 

 

our scheme

NoMetadata
ModifiedSpray

Spray&Wait

(e) Aspect coverage

0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

Storage size (GB)

P
h

o
to

s
 d

e
liv

e
re

d

 

 

our scheme
NoMetadata
ModifiedSpray
Spray&Wait

(f) Photos delivered

Figure 5.7. The effects of storage capacity. (a)(b)(c) are based on the MIT trace and
(d)(e)(f) are based on the Cambridge06 trace.

5.5.5 The Effects of the Number of Generated Photos

The number of generated photos has two opposite effects: 1) network and storage

contention is exacerbated with more generated photos; and 2) photo coverage can

be increased if more useful photos are generated and received by the command

center.

Fig. 5.8 summarizes the results, where the storage size is fixed at 0.6GB. As

shown in Fig. 5.8(a)(b)(d)(e), our scheme can significantly improve the point cov-

erage and aspect coverage when more photos are generated. This is because our

scheme is able to select an increasing amount of useful photos from an increasing

amount of candidate photos, and thus the good effect (more candidate photos)

overcomes the bad effect (more contention). Similarly, NoMetadata and Modi-

fiedSpray follow the same trend because they consider photo coverage and thus

can select useful photos from candidate photos. Spray&Wait fluctuates because

it cannot select useful photos from candidate photos, hence suffering from the

exacerbated resource contention.

Fig. 5.8(c)(f) shows the number of delivered photos in logarithmic scale. Again,

our scheme and NoMetadata deliver much fewer photos than the other two schemes.
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However, these photos achieve good coverage and contain little redundancy. Con-

sider the case where 250 photos are generated per hour in Fig. 5.8(c). Our scheme

delivers around 800 photos to the command center. Since there are 250 PoIs in

total, on average each PoI is covered by 3.2 photos. With 30◦ effective angle (Ta-

ble 5.1), the 3.2 photos would cover 3.2 × 2 × 30◦ = 192◦ if they do not overlap

with each other at all. In fact, from Fig. 5.8(b), we can see that the actual aspect

coverage on each PoI is about 180◦, which shows that the redundancy between the

3.2 photos is only 12◦.

To summarize the simulation results, our scheme performs close to the best

possible results where no bandwidth or storage constraint is enforced. Our scheme

significantly outperforms Spray&Wait, which represents a set of general-purpose

routing protocols that do not consider packet utility in routing. Our scheme also

outperforms ModifiedSpray, which is similar to previous utility-based approaches

in that they prioritize packets by their individual utility, without considering the

overlap (redundancy) between photos.
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Figure 5.8. The effects of the number of generated photos. (a)(b)(c) are based on the
MIT trace and (d)(e)(f) are based on the Cambridge06 trace.



Chapter 6
A Metadata-Enhanced

Crowdsourcing System for Mobile

Videos

6.1 Background

Video technology has improved dramatically in the past decade. Large, heavy dig-

ital cameras and camcorders have been replaced with smaller, lighter smartphones

capable of shooting Ultra High Definition (UHD) videos. In the near future, a

variety of wearable devices such as smartglasses, smartwatches, and smart jewelry

will make video recording more user-friendly. Taking a video may only require

users to press a button, rather than taking their smartphones out of pockets and

performing multiple touch screen actions. Through smartphones or wearable de-

vices, the convenience of video recording is expected to significantly increase the

number of mobile videos recorded and shared over the Internet.

The videos, if managed properly, could enable many useful and critical appli-

cations. For example, terrorist attacks and gun violence have been increasingly

common around the world. In such incidents, authorities often identify the sus-

pects from surveillance videos. If all the mobile videos taken around the time and

location of the incidents were collected, they could have served as additional re-

sources for identifying and locating the suspects, especially in places not covered
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by security cameras. In fact, officers investigating 2016 Brussels bombings were

unable to trace a suspect along his escape route due to the absence of security cam-

eras, and they had to ask people who inadvertently filmed or photographed the

suspect to contact the police [76]. Besides crime investigation, mobile videos can be

used in many other applications, such as locating a missing child or investigating

traffic accidents.

To enable the above applications, one possible approach is to ask mobile users to

upload all videos to the cloud or cloudlets, and then use content-based techniques

to enable user search [50]. This approach, however, is extremely resource hungry.

Uploading all videos consumes lots of bandwidth and energy on mobile devices,

while storing and processing videos consumes a large amount of disk space and

processing power on the server side. To make things worse, only a small part of

the uploaded videos may be useful to the applications. Thus, the resources spent

on uploading, storing, and processing all other videos are wasted.

Due to the aforementioned issues, a better approach is to let mobile devices

upload high level video descriptions initially, and only ask for actual video files

in response to user queries. However, existing geo-tagging features on mobile

devices only tag videos with coarse location information, which is not sufficient

to reveal the view of the camera. Even at the same location, cameras facing

different directions will have different views. Besides location, existing systems

(e.g., YouTube) rely heavily on user-generated annotations. Tagging each video

manually is not convenient and discourages public participation. More importantly,

these annotations may be inaccurate or miss important information. For example,

when a tourist inadvertently films a suspect, the video may be tagged as travel

related, nothing to do with the suspect. Thus, it is difficult for applications to find

the videos they need simply based on annotations.

To address these problems, we design and implement VideoMec, a system that

organizes and indexes all videos taken by mobile devices based on the idea of

metadata, which supports efficient queries for applications to find and fetch the

requested videos. VideoMec consists of two components, a VideoMec server and a

VideoMec app (see Fig. 6.1). When a video is recorded using the VideoMec app

on a mobile device, its metadata is automatically generated and uploaded to the

VideoMec server. Since metadata is very small, the uploading does not consume



80

much bandwidth and energy. In the VideoMec server, the uploaded metadata is

organized and indexed in a database. Then, the application can query the database

to find the desired videos, by providing information such as when and where the

event happened, and from which angle or distance the event should be captured.

Thus, when a crime happens at certain time and location, every video taken around

that time and location can be found and used to search for the suspect, regardless

of whether mobile users are aware of the suspect or not.

If the video description also includes user-generated annotations, the appli-

cation can provide extra keywords in the query, and the returned videos should

either match the keywords or satisfy the metadata requirements. After process-

ing the query, the VideoMec server returns the matching videos if they have been

uploaded; otherwise, the server notifies the corresponding mobile devices, which

automatically upload the videos and get paid.

When uploading videos, it is possible that mobile devices cannot upload all

requested videos in time due to limited wireless bandwidth and large video files. For

example, the latest smartphones can shoot UHD videos at about 40 Mbps bitrate,

and then uploading one-minute UHD video would take 40 minutes for a 1 Mbps

cellular connection. Since some applications are time-sensitive, requiring videos to

be available within a short time, it is important to decide which videos are more

valuable to the application based on the metadata, and then upload them first. To

achieve this goal, we design an upload decision engine that decides which videos

(possibly a short clip in a long video) should be uploaded given bandwidth and

time constraints. The decision engine considers two typical application scenarios,

one prioritizing videos that provide good time coverage, and the other prioritizing

videos at the right locations.

In this chapter, we present VideoMec, a metadata-enhanced crowdsourcing

system for mobile videos. By using the uploaded metadata to serve queries and

only uploading queried video files, the proposed crowdsourcing system is capable

of handling a very large number of mobile videos while reducing the bandwidth

and energy consumption of mobile devices. VideoMec supports comprehensive

queries including time, location, angle, and distance information, for applications

to find desired videos quickly and accurately from the distributed video repository.

Moreover, VideoMec’s upload decision engine selects the most valuable videos to
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upload when bandwidth and time resources are limited. Finally, we have imple-

mented a prototype of VideoMec, evaluated its performance and demonstrated its

effectiveness based on real experiments.

6.2 Metadata and Its Storage

6.2.1 Metadata

A mobile video can be characterized by its metadata; i.e., when, where and how the

video is taken. The metadata includes the start and end time of a video, denoted

as ts and te, respectively. Between ts and te, we define a series of timestamps

t0, t1, t2, . . . such that t0 = ts and ti+1 − ti = 1 second for all i = 0, 1, 2, · · · . Then
each timestamp ti is associated with four parameters (ℓi,oi, φi, ri) which jointly

determine an area on the Earth’s surface that is viewable in the current video

frame.

As shown in Fig. 6.2, location ℓi (also referred to as video location) is the

geographic coordinates of the camera, including longitude xi and latitude yi. Ori-

entation oi is the direction to which the camera is facing. It is a vector coming

from the camera aperture and perpendicular to the image plane. Field of view φi

specifies how wide the camera can see. Objects outside the field of view will not

appear in the video. Coverage range ri specifies how far the camera can see. It is

the distance beyond which objects are no longer clearly recognizable in the video.

Besides the above metadata, VideoMec uses frame rate and resolution available

in the video header as video quality metrics. It also uses file size as a cost metric,

since a larger video requires more network resources to upload.
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6.2.2 Metadata Storage

When a mobile video is recorded, its metadata is automatically generated and

uploaded to the VideoMec server. The uploaded metadata can be stored in a

relational database for future queries. However, as mobile videos continue to grow

exponentially, there should be efficient ways to index and query metadata. We

propose to use R*-tree [77] to index the metadata. R*-tree is a tree-based data

structure designed for efficient indexing of spatial information such as geographical

coordinates. It has been commonly used in geographical information systems (GIS)

to store locations of objects such as gas stations or shapes of objects such as roads,

and then find answers quickly to queries such as “find the nearest gas station” or

“find all road segments within 5 miles of my location”. Although R*-tree has been

used in GIS, it has never been applied to video query and selection, and video

metadata cannot be directly stored in R*-tree.

To use R*-tree, we convert the raw metadata of a video to the minimum bound-

ing box of the video in a 3D space, which can then be stored in R*-tree for efficient

query and selection. More specifically, consider the 3D space formed by the two

dimensional plane of the Earth’s surface1 (called x-y plane) and the third dimen-

sion of time (called t-axis). Each timestamp ti and its corresponding location

ℓi = (xi, yi) maps to a point (ti, xi, yi) in the t-x-y space. As time goes from ts

to te, point (ti, xi, yi) moves in the t-x-y space and forms a trace. The minimum

bounding box of the trace is defined as (tmin, tmax, xmin, xmax, ymin, ymax), where

tmin = ts, tmax = te,

xmin = min
i

xi, xmax = max
i

xi,

ymin = min
i

yi, ymax = max
i

yi.

This minimum bounding box represents the spatiotemporal boundary of the video,

and it is stored in R*-tree.

Fig. 6.3 shows an example of R*-tree containing five videos. The left figure

depicts the minimum bounding box of each video as B1 through B5. The key

idea of R*-tree is to group nearby objects and represent them with their minimum

1The Earth’s surface is not flat. Here we use a plane instead of a sphere for the convenience
of illustration.
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Figure 6.3. An example of a R*-tree containing five videos.

bounding box in the next higher level of the tree. In this example, the left three

boxes, B1, B2, B3, are close to each other. Hence, they are grouped together and

their minimum bounding box, B6, is generated. Similarly, the right two boxes

B4 and B5 are grouped and their minimum bounding box B7 is generated. At a

higher level, B6 and B7 are further grouped and their minimum bounding box, B8,

is generated.

The right figure shows the structure of the corresponding R*-tree. The leaf

nodes store the minimum bounding box of each video, and the nodes at higher

levels store larger bounding boxes which aggregate multiple videos. Based on

this tree structure, consider a query to “find all videos whose minimum bounding

boxes intersect with a given box”, where two boxes intersect with each other if

they contain at least one common point. If the given box does not intersect with

a larger bounding box, e.g., B7, it also cannot intersect with any of the contained

boxes, i.e., B4 or B5. Therefore, the entire subtree rooted at B7 can be skipped in

the search. As R*-tree has mechanisms to maintain its balance after insertion or

deletion, it guarantees a search time of O(log n) for the above query, where n is

the total number of videos in the R*-tree.

6.3 Query Design and Processing

In VideoMec, an application can query the server to retrieve videos of interest. In

this section, we present the supported queries and describe how those queries are

processed.
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6.3.1 Query Design

An application typically searches for videos related to a particular event. For

example, a police officer may search for videos related to a traffic accident and

seek evidence to determine the responsible party. Therefore, the approximate

time duration and location of the queried event should be included in the query.

The location of the queried event is denoted as ℓe. The query may also contain

angle, distance, or quality requirements as follows. The query may include one or

more angles a1,a2, . . . from which the event should be captured, in order to avoid

obstructions (e.g., buildings and trees) blocking the line of sight. The query can

also specify the distance d between video location and event location, based on

how large the interested objects would appear in the video. Since the required

angle or distance may not be met completely, a deviation value adev or ddev is

given to indicate how much deviation is allowed from the required value. Finally,

a minimum acceptable frame rate or resolution can be provided to filter out videos

of low quality. Fig. 6.4(a) shows an example of query with all the requirements

specified.

6.3.2 Query Processing

Queries are processed using the filter-refine paradigm. The filter step leverages

R*-tree to quickly filter out most videos that are irrelevant to the query. Then the

refinement step checks the metadata of each remaining video to determine whether

it matches the query or not. Details of the two steps are elaborated below.

6.3.2.1 Filter Step

We derive the necessary conditions that a video must satisfy in order to match the

query. The conditions can be easily checked using R*-tree, and thus videos not

satisfying these conditions can be quickly found and filtered out.

Consider the query shown in Fig. 6.4(a). We redraw the query in Fig. 6.4(b) and

consider a video frame located at ℓi. For the video frame to capture the event, the

distance between the video location ℓi and the event location ℓe must be within the

coverage range of the camera, i.e.,
∥

∥

∥

#   ”

ℓiℓe
∥

∥

∥ ≤ ri. However, this condition cannot be

efficiently checked using R*-tree because R*-tree only contains information about
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video locations while this condition also involves the coverage range. Thus, we

replace ri with a predefined constant R representing the upper bound of all ri and

obtain a necessary condition that can be efficiently checked using R*-tree:

∥

∥

∥

#   ”

ℓiℓe
∥

∥

∥ ≤ R. (6.1)

When a required distance d and an allowed deviation ddev are given, the distance

between the video location and the event location should also satisfy

∣

∣

∣

∥

∥

∥

#   ”

ℓiℓe
∥

∥

∥− d
∣

∣

∣ ≤ ddev. (6.2)

If there are required angles a1,a2, . . . and an allowed deviation adev, the video

frame should capture the event from an angle close to one of the required angles:

min
j

∠
(

#   ”

ℓeℓi,aj

)

≤ adev. (6.3)

For the video frame to match the query, its location ℓi must satisfy inequalities

(6.1), (6.2), and (6.3) simultaneously2. On the x-y plane, the set of all video

locations that satisfy the three inequalities form a closed area, as the colored

annular sector shown in Fig. 6.4(b). To simplify the shape of that area, we find its

minimum bounding rectangle shown as the dashed rectangle in Fig. 6.4(b). The

minimum bounding rectangle and the time duration of the event together define

a minimum bounding box in the t-x-y space, referred to as query box. For a given

query, VideoMec derives its query box and uses R*-tree to find all videos whose

minimum bounding boxes intersect with the query box. Then only the returned

videos may match the query, and they will be further evaluated in the refinement

step.

6.3.2.2 Refinement Step

In this step, the metadata of the videos returned from the filter step is further

checked to generate the final query result.

First, if there are any video quality requirements in the query such as the

2Depending on if there is any specified distance or angle, inequality (6.2) or (6.3) may or may
not exist.
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Figure 6.4. An example query. (a) All the requirements specified in the query. Note
that there is only one required angle. (b) The set of video locations matching the query.
For simplicity, assume that d+ ddev ≤ R.

minimum frame rate or the minimum resolution, videos not satisfying the quality

requirements will be discarded. Then for each remaining video, since the metadata

can be different for different timestamps, it is necessary to check the metadata at

each timestamp to see which part of the video matches the query and which part

does not. Specifically, we check whether the following four conditions hold.

1. Timestamp ti is within the time duration of the queried event.

2. The distance between the video location and the event location is within the

coverage range of the camera, i.e.,
∥

∥

∥

#   ”

ℓiℓe
∥

∥

∥ ≤ ri.

3. Orientation oi is appropriate so that the event location is within the field of

view of the camera, i.e., ∠
(

#   ”

ℓiℓe,oi

)

≤ φi/2.

4. If distance or angle is specified in the query, inequalities (6.2) or (6.3) should

be satisfied.

A video frame matches the query if all four conditions hold, which means

that the queried event is captured in the video frame (2nd and 3rd conditions) at

the required time (1st condition) and from the required angle and distance (4th

condition). When multiple video frames from the same video with consecutive

timestamps all match the query, the video clip containing these frames will be

returned as the output. For example, if the frames at timestamps t2, t3, t4 match

the query but those at t0, t1 and t5, t6, . . . do not, the video clip [t2, t4] will be

returned as an output. After all videos obtained from the filter step are checked,

a set of video clips is returned as the final query result.
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6.4 Upload Decision Engine

Videos returned from query processing should be uploaded by mobile devices.

When uploading videos, it is possible that mobile devices cannot upload all re-

quested videos in time due to limited wireless bandwidth and large video files.

The upload decision engine decides which videos (possibly a short clip in a long

video) should be uploaded given bandwidth and time constraints. Based on two

typical application scenarios, we propose two different strategies.

6.4.1 Time-Based Strategy

The Time-Based Strategy (TBS) is motivated by applications which require up-

loaded videos to cover a certain period of time. Since multiple devices can take

videos at the same time, uploading a video whose time interval is already covered

by other videos does not increase the total time coverage. Thus, it is a challenge to

select videos with the most time coverage under bandwidth and time constraints.

6.4.1.1 TBS Problem

Given a set of videos, we consider the problem of selecting a subset of them such

that every mobile device can upload its selected videos within a time limit and the

total time coverage of the selected videos is maximized. When selecting videos, it is

sometimes necessary to cut a long video into smaller pieces and only upload part of

the video due to time constraints. Hence, we divide a video into segments of fixed

length L, and decide whether each segment should be selected. Having smaller

L increases the flexibility of selecting “good” segments from different videos and

different devices, thus improving the overall time coverage. However, if L is too

small (e.g., one second), the quality of experience suffers since the selected videos

contain many small segments and may switch scenes too frequently. The choice

of L will be evaluated in Section 6.5. Now, we formally define the problem of

selecting video segments as follows.

Definition 11 (TBS Problem). Consider a set of devices D1, D2, . . . , Dd, where

each device Di has an average bandwidth Bi and a set of video segments Vi,1, Vi,2,

. . . , Vi,ni
. Each segment Vi,j has a start time ts(Vi,j), end time te(Vi,j), and file size
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s(Vi,j). Given an upload time limit T , the TBS problem is to select a subset of

segments V ⊆ {Vi,j | (i = 1, . . . , d) ∧ (j = 1, . . . , ni)} such that every device can

upload its segments in V within the time limit, i.e.,
∑

Vi,j∈V s(Vi,j) ≤ BiT for every

i = 1, . . . , d, and the total length of
⋃

Vi,j∈V [ts(Vi,j), te(Vi,j)] is maximized.

Theorem 6. The TBS problem is NP-hard.

Proof. We reduce a known NP-hard problem, the 0-1 knapsack problem, to the

TBS problem. In the 0-1 knapsack problem, there are a set of items, each with a

value and weight. Given a knapsack with a weight limit, the problem is to find a

subset of items such that their total weight is no more than the weight limit and

their total value is maximized.

For any instance of the 0-1 knapsack problem, we can construct an instance of

the TBS problem as follows. We construct a mobile device D1, where the network

bandwidth limit B1T is set to the weight limit of the knapsack, and the number

of video segments n1 is set to the number of items. For the j-th segment V1,j , its

length te(V1,j)− ts(V1,j) is set to the value of the j-th item, and its file size s(V1,j)

is set to the weight of the j-th item. Also, we ensure that the segments do not

overlap in time because a device cannot record two videos simultaneously.

A solution V to this instance of the TBS problem maximizes the total length of
⋃

V1,j∈V [ts(V1,j), te(V1,j)]. Since the segments do not overlap, it actually maximizes
∑

V1,j∈V [te(V1,j) − ts(V1,j)]. When the segments are seen as items, V is a subset

of items which satisfies the weight constraint and maximizes the total value of

items. Thus, V is also a solution to the 0-1 knapsack problem. This completes the

reduction and hence the proof.

The proof above shows that the TBS problem is at least as hard as the knap-

sack problem. Unfortunately, the TBS problem is much harder than the knapsack

problem, because its objective function is non-additive; i.e., selecting a video seg-

ment may not increase the total time coverage. The amount of increase depends

on how much the segment overlaps with others.

6.4.1.2 TBS Algorithm

Due to the hardness of the problem, we propose an algorithm based on several

heuristics. First, let ∆Di = max{0,∑j=1,...,ni
s(Vi,j) − BiT} denote how much
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D1

D2

L

Figure 6.5. Suppose D1 can upload 2 of its 8 segments, and D2 can upload 3 of its 4
segments, so ∆D1 > ∆D2. If D2 selects first, no matter what it selects, D1 can avoid
overlap and achieve a total time coverage of 5L. If D1 selects first, it may select two
segments in the middle (shown in color). Then D2 cannot avoid overlap and the total
time coverage is at most 4L.

video segments in device Di cannot be uploaded due to bandwidth constraints. If

∆Di = 0, all Di’s segments can be uploaded. Then, segments in other devices

which have time overlap with Di’s segments need to be updated. That is, if a

segment partially or fully overlaps with Di’s segments, the overlapping part should

be discarded since it is no longer useful. By doing so, the video segments in other

devices becomes shorter, and thus for those devices, ∆Di should be checked to see

if it is now equal to zero. This process, referred to as constraint checking procedure,

identifies devices for which no selection is needed.

After the constraint checking procedure, the remaining devices have ∆Di >

0, and we need to decide which video segments to upload for each device. We

start from the device with the smallest ∆Di. The reason is that the device with

smaller ∆Di throws away fewer segments during selection and thus is less likely

to make mistakes (i.e., select segments that overlap with others). This heuristic is

illustrated in Fig. 6.5.

For the device with the smallest ∆Di, we select a subset of its video segments

for uploading. Because segments in one device do not have time overlap, the

total time coverage of those segments is equal to the sum of the length of each

segment. Hence, the selection becomes a 0-1 knapsack problem where the items

are video segments, the weight of a segment is its file size, and the value of a

segment is its length. The knapsack problem can be solved using a polynomial

time approximation scheme via dynamic programming [78]. It’s time complexity

is O(n3
i ǫ

−1), and it has an approximation ratio of (1− ǫ).

Simply applying the knapsack problem may not be the best solution. The

knapsack problem values each segment by its length, but a segment overlapping

with other segments in other devices is often less valuable than a “unique” segment
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Figure 6.6. Value adjustments for segments in D1.

which does not overlap with any other segments, even though the two segments

have the same length. Thus, the value of segments should be adjusted based on

their time overlap.

As an example, consider the first segment in D1 in Fig. 6.6, where L = 5

seconds. For each second of the video, let d′ denote the number of devices that

have video segments in that second. Then, d′ = 0 for the first three seconds of the

video, and d′ = 2 for the last two seconds3. The value of each one-second video

is then decreased from 1 to 1
1+d′

. For example, for D1, its value is one in the first

three seconds, and its value is 1
3
in the fourth and the fifth second, and then its

value for the first segment is 3.66.

After value adjustment, the video segments are selected by solving the knapsack

problem. Then, segments in other devices overlapping with the selected segments

should be updated to remove the overlapping parts. The update may cause some

devices to have ∆Di = 0, so a constraint checking procedure is needed and we

are back to the first step. The entire process repeats until the selection is done

for all devices. Then, the VideoMec server groups the selected segments that are

continuous in time and in the same video, and notifies the devices which part

of their videos should be uploaded. Then, the notified devices will upload the

corresponding segments. Algorithm 1 shows the formal description of the TBS

algorithm.

3For simplicity, each timestamp is rounded to its closest whole second, so that two one-second
videos either completely overlap, or do not overlap at all.



91

Algorithm 1 TBS algorithm

1: while selection is not done for some devices do
2: while any device has ∆Di = 0 do

3: selection is done for that device;
4: update segments in other devices to remove the
5: overlapping parts;
6: end while

7: pick device Di where i = argmini ∆Di;
8: for all segments Vi,j in Di do

9: adjust their values based on the time overlap;
10: end for

11: solve the 0-1 knapsack problem for Di;
12: selection is done for Di;
13: update segments in other devices to remove overlap;
14: end while

6.4.2 Location-Based Strategy

The Location-Based Strategy (LBS) is motivated by applications that have strict

requirements on the locations of the uploaded videos. For example, a video cap-

turing a suspect’s face or a vehicle’s license plate should have an appropriate angle

and a close distance, so that the face or the plate number can be clearly recognized.

Such information can be specified as angle and distance requirements in the query,

and videos that are close to the required angle and distance should be uploaded

first. Hence, we have the following optimization problem.

6.4.2.1 LBS Problem

Similar to the TBS problem, we consider how to select a subset of video segments

such that the selected segments can be uploaded in time and their total value is

maximized. Here the value of a segment is determined based on the video location,

as described below.

Recall that at a given timestamp ti,
#   ”

ℓiℓe denotes the vector from the video

location to the queried event location. Let adiff = minj ∠(
#   ”

ℓeℓi,aj) be the smallest

difference between the actual viewing angle and any required angles. Then accord-

ing to Section 6.3, only video frames satisfying adiff ≤ adev may be included in

the query result. Thus, we have adiff ∈ [0, adev] for all video frames considered in
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the LBS problem. Similarly, let ddiff =
∣

∣

∣

∥

∥

∥

#   ”

ℓiℓe
∥

∥

∥− d
∣

∣

∣ be the difference between the

actual viewing distance and the required distance. We have ddiff ∈ [0, ddev]. Then,

the value of the video frame at timestamp ti is defined as

µ

Ç
1− adiff

adev

å
+ (1− µ)

Ç
1− ddiff

ddev

å
,

where µ ∈ [0, 1] is a predefined constant representing the relative importance of

angle against distance (µ = 0.5 in our experiments). For each one-second video

[ti, ti+1], its value is the average value of the frame at ti and the frame at ti+1. Then,

the value of a segment, denoted as v(Vi,j), is the total value of all the one-second

videos. The LBS problem is formally defined as follows.

Definition 12 (LBS Problem). Consider a set of devices D1, D2, . . . , Dd, where

each device Di has an average bandwidth Bi and a set of video segments Vi,1, Vi,2,

. . . , Vi,ni
. Each segment Vi,j has a value v(Vi,j) and file size s(Vi,j). Given an

upload time limit T , the LBS problem is to select a subset of segments V ⊆ {Vi,j |
(i = 1, . . . , d) ∧ (j = 1, . . . , ni)} such that every device can upload its segments in

V within the time limit, i.e.,
∑

Vi,j∈V s(Vi,j) ≤ BiT for every i = 1, . . . , d, and the

total value
∑

Vi,j∈V v(Vi,j) is maximized.

6.4.2.2 LBS Algorithm

Different from the TBS problem, the LBS problem is easier because its objective

function is additive; i.e., the total value of segments equals to the sum of the value

of each segment. Thus, selecting the best segments for all devices is equivalent

to selecting the best segments for each device independently. Hence, the LBS

algorithm solves the following problem for each device Di.

max
∑

j∈J

v(Vi,j),

s.t.
∑

j∈J

s(Vi,j) ≤ BiT, J ⊆ {1, . . . , ni}

This is a 0-1 knapsack problem where the items are video segments. As men-

tioned before, it can be solved by a polynomial time approximation scheme which
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Figure 6.7. Power consumption of the VideoMec app vs. the Android Camera app.

gives a (1 − ǫ) approximation. Because the value achieved for each device is at

least (1−ǫ) times the optimal value for that device, the total value achieved by the

LBS algorithm is also at least (1− ǫ) times the optimal value of the LBS problem.

Therefore, the LBS algorithm has an approximation ratio of (1− ǫ).

6.5 Performance Evaluations

In this section, we present evaluation results of VideoMec. The VideoMec app

was developed on Android smartphones, with the functionality of video recording,

metadata recording, and video and metadata uploading. The app has been in-

stalled on four smartphones, two Samsung Galaxy S5 running Android 4.4.2 and

two Motorola Nexus 6 running Android 5.1.1. The VideoMec server runs on a Dell

OptiPlex 9020 desktop with Intel Core i7-4770 3.4GHz CPU.

6.5.1 Metadata Acquisition

When a mobile user starts recording a video, a timer is started and it triggers

the metadata acquisition process every second to record the current timestamp,

location, orientation, field of view, and coverage range (see Section 3.6.1 and our

paper [79] for details). When the video recording is finished, the timer is terminated

and additional information such as frame rate, resolution, and file size is recorded.

We use the Monsoon power monitor to measure the power consumption of

metadata acquisition. More specifically, we measure and compare the power con-

sumption of the VideoMec app and the standard Android Camera app on a Galaxy
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S5 phone 4. For each app, we measure the power consumption of the preview state

where camera preview is shown on the screen but no video is being recorded, and

the recording state where a video is being recorded. During the experiments, the

camera records the same scene, so that the scene displayed on the screen has the

same brightness. The results are shown in Fig. 6.7, where Fig. 6.7(a) is the raw

measurement data and Fig. 6.7(b) is the average power consumption and the stan-

dard deviation. Compared to the Android Camera app, our app consumes 9.6%

more power in the preview state, and 7.8% more power in the recording state.

Based on the measured power consumption, a fully charged Galaxy S5 phone

(2800mAh, 3.7V) can record videos for 3.53 hours using our app, which is only 17

minutes less than using the standard Android Camera app.

The power consumption of our app can be further reduced by increasing the

metadata acquisition interval. For example, location usually does not change

rapidly and it can be updated every five or ten seconds. The locations between

two updates can be inferred by interpolation. Fig. 6.7(c) shows that increasing the

metadata acquisition interval to five seconds reduces the extra power consumption

to 4-5%.

6.5.2 Effectiveness of Query Processing

In this part, we evaluate the effectiveness of query processing by comparing it with

a content-based approach, which requires all video files to be uploaded and uses

computer vision algorithms to find desired videos.

6.5.2.1 Experimental Setup

To compare VideoMec with a content-based approach, we have implemented a

query processor based on optical character recognition (OCR). This query pro-

cessor accepts a word as a query, and outputs a set of video frames containing

the word. Specifically, for each video, it extracts one frame per second, and for

each extracted frame, it runs a text localization algorithm [80] to determine which

part of the frame contains text. Then the localized text is recognized by Tesseract

4The geo-tagging feature of the standard Android Camera app is disabled by turning GPS
and network off.
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Walmart

McDonald's

Figure 6.8. Satellite image of the
shopping plaza. Yellow triangles
are the initial locations of the 100
videos.

Figure 6.9. An example of
correctly recognized logos.

OCR [81]. Since the recognition is subject to errors, edit distance [82] is used

to determine whether the recognized text is approximately the same as the given

word. A video frame matches the query if the minimum edit distance between the

recognized text and the given word is less than a threshold.

Using VideoMec and the OCR-based query processor, we conduct the following

experiments. We take 100 videos using four smartphones around a shopping plaza.

The metadata (150 KB) is automatically generated and uploaded to the VideoMec

server. The video files (10.7 GB) are also uploaded for the OCR-based query

processor to use. Then we consider two queries: “find all videos containing the

Walmart logo” and “find all videos containing the McDonald’s logo”. Here we

consider queries on store logos because they are large, clear, and can be easily

recognized by OCR.

The two queries are processed by both VideoMec’s query processor and the

OCR-based query processor. In addition, the ground truth is manually generated.

VideoMec. For VideoMec’s query processor, we set up queries by specifying the

locations, angles and allowed deviation from the specified angles. For Walmart,

the event location is the position of the store logo on the building, and the specified

angle is the angle from which we get the front view of the logo. For McDonald’s,

since it has two store logos on two sides of the building, the query location is set

to be the center of the building, and there are two specified angles, one for each

logo. These setups are shown as blue circles and arrows in Fig. 6.8. The allowed

deviation from the specified angles is 45◦, and other requirements such as time and

distance are left unspecified.
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VideoMec

Logo? Yes No

Truth
Yes 492 26

No 5 2530

OCR

Logo? Yes No

Truth
Yes 295 223

No 16 2519

(a) Walmart

VideoMec

Logo? Yes No

Truth
Yes 295 7

No 8 2743

OCR

Logo? Yes No

Truth
Yes 213 89

No 2 2749

(b) McDonald’s

Table 6.1. Confusion matrices of the query results. Each number represents the number
of frames in the corresponding category.
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Figure 6.10. Precision and recall of the query results. Precision=true positive/(true
positive+false positive). Recall=true positive/(true positive+false negative).

OCR. For the OCR-based query processor, the queries are simply two words,

“Walmart” and “McDonalds”. An example of correctly recognized logos are shown

in Fig. 6.9.

Ground truth. Ground truth is obtained by visually checking each extracted

frame to see whether the logo appears clearly and completely.

6.5.2.2 Results

By comparing the query results of VideoMec and OCR with the ground truth, we

obtain several confusion matrices as shown in Table 6.1. Each number in the table
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(a) Precision (b) Recall

Figure 6.11. Precision and recall of the Walmart query vs. induced location and
orientation error.

VideoMec OCR

Preparation
Upload metadata 0.24s

Upload videos 730s
Build database 0.022s

Processing
Processing 0.004s

Processing 3466s
Upload videos 139s

Table 6.2. Query processing time of the Walmart query. Each upload time is the
longest time it took for any of the four smartphones to upload the corresponding data
through WiFi.

represents the number of frames in the corresponding category. False judgments

(i.e., false positives and false negatives) of VideoMec are mainly caused by large

location and orientation error, which only happens occasionally. OCR, on the

other hand, has more false judgments due to the imperfect text localization and

recognition. Based on the confusion matrices, we calculate the precision and recall

of queries for VideoMec and OCR, as shown in Fig. 6.10. Both VideoMec and

OCR have very high precision (≥ 95%), which means that among the frames they

report as containing the logos, most indeed contain the logos. Although the recall

of VideoMec is still high (≥ 95%), the recall of OCR drops significantly, which

means that OCR often fails to report frames that actually contain the logos. This

is because OCR has difficulty of locating and recognizing text viewed from the

side; i.e., when there is a large difference between the actual viewing angle and the

specified angle.

We further evaluate the impact of location and orientation error on VideoMec’s

query processing performance. The obtained metadata already contains some er-
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rors, but these errors cannot be controlled. Hence, we induce additional errors

into the metadata and evaluate the sensitivity of precision and recall to errors in

Fig. 6.11. For reference, the precision and recall of OCR are also drawn in the

figure. They are not affected by metadata errors and thus appear as flat surfaces.

As can be seen, the precision is not affected much by the induced errors. Even with

10 m location error and 20◦ orientation error, the precision is still around 92%. On

the other hand, the recall decreases more when the induced errors become large.

This is because when the metadata errors become larger, the number of false neg-

atives increases much faster than the number of false positives. Nevertheless, the

recall remains above 80% as long as the induced location error is less than 5 m

and the induced orientation error is less than 10◦. Compared to the recall of OCR

(57%), the recall of VideoMec is almost always higher.

In addition to precision and recall, the query processing time is also compared

in Table 6.2. For VideoMec, the metadata needs to be uploaded and stored into

the database beforehand. Then the query can be processed quickly and videos

matching the query are uploaded. If a time limit is given, VideoMec can run the

TBS algorithm or the LBS algorithm to further bound the upload time (at the cost

of uploading fewer, but more important videos). On the other hand, OCR takes

much more time to prepare since it requires all videos to be uploaded, although

many of them are not useful. It also takes more time to process the query because

like most computer vision algorithms, OCR is computationally expensive.
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6.5.3 Effectiveness of TBS and LBS algorithms

In this subsection, we evaluate the performance of the algorithms used in VideoMec’s

upload decision engine. To obtain the uploading bandwidth used in the algorithms,

we collect 50 uplink throughput measurements using our smartphones at various

locations. In each measurement, we upload a 1 MB video to the VideoMec server

and calculate the throughput. Half of the uploading used cellular networks and half

used WiFi. The median throughput measured for cellular networks is 3.3 Mbps,

and the median for WiFi is 18.4 Mbps. The results are shown in Fig. 6.12. Those

measurements are used as traces to compare our algorithms with other algorithms

under the same bandwidth setting.

Five different queries are executed based on 100 collected videos. For each

query, the selected videos should be uploaded to the VideoMec server. Based on

the measured bandwidth, each phone will randomly pick a measurement value to

be its available wireless bandwidth. Since the wireless bandwidth is limited, TBS

or LBS is used to determine which part of the videos should be uploaded. For

TBS, the performance is evaluated by the time coverage of the uploaded videos.

For LBS, the performance is evaluated by the total value of the uploaded videos.

Since there are five queries, and 10 bandwidth measurements are used for each

query, we have 50 experiment runs, and each data point is averaged over those 50

runs.

6.5.3.1 TBS Algorithm

The TBS algorithm is compared with the following three algorithms:

• RndDevice: It is based on the TBS algorithm. When deciding which device

to select next, it randomly picks a device instead of choosing the one with

the smallest ∆Di.

• OriValue: It is based on the TBS algorithm. Instead of value adjustment

before solving the knapsack problem, it uses the original value (i.e., the

length) of the video segments.

• MultiKnap: It considers the TBS problem as the multiple independent

knapsack problem. Each knapsack problem maximizes the time coverage for
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Figure 6.13. Comparisons between different TBS algorithms.

one device, while the time overlap among devices is ignored. It uses the

polynomial time approximation scheme to solve each knapsack problem.

Fig. 6.13 (a) shows the time coverage as a function of the time limit, where

the segment length L is fixed at 10 seconds. When using the polynomial time

approximation scheme to solve the knapsack problem, parameter ǫ is set to 0.01.

As shown in the figure, the two heuristics used in the TBS algorithm have some

benefits. Choosing the device with the smallest ∆Di instead of choosing randomly

improves the time coverage by 2-4%, and using the adjusted value rather than

the original value improves the coverage by 6-12%. Compared to MultiKnap,

which maximizes the time coverage for each device but ignores the time overlap

among devices, the TBS algorithm achieves 30-36% more coverage. For all four

algorithms, the time coverage increases as the time limit increases. The increase,

however, slows down gradually because with more videos uploaded, the remaining

videos will be more likely to overlap with the uploaded videos, and thus contribute

less coverage when being uploaded.

Fig. 6.13 (a) shows the time coverage as a function of the segment length, where

the upload time limit T is fixed at 1 minute. As can be seen, smaller segment

length increases the flexibility of selecting different parts of the video, and thus

improves performance. Since switching to a different segment too frequently hurts

user experience, a moderate segment length such as 10 seconds is used to balance

the tradeoff between time coverage and user experience.



101

Time limit (minutes)

0 1 2 3 4

T
o
ta

l 
v
a
lu

e

0

50

100

150

200

LBS

RatioFirst

ValueFirst

SizeFirst

(a)

Segment length (seconds)

0 5 10 15 20

T
o

ta
l 
v
a

lu
e

30

40

50

60

70

80

90

LBS

RatioFirst

ValueFirst

SizeFirst

(b)

Figure 6.14. Comparisons between different LBS algorithms.

6.5.3.2 LBS Algorithm

The LBS algorithm has (1− ǫ) approximation ratio where ǫ > 0 can be arbitrarily

small. To evaluate its performance, we compare it with the following heuristic

based algorithms:

• RatioFirst: It solves the knapsack problem for each device by selecting

segments from the largest value-to-size ratio to the smallest, until the upload

time limit is reached.

• ValueFirst: It is similar to RatioFirst, but selects segments from the largest

value to the smallest.

• SizeFirst: Similar to RatioFirst, but selects segments from the smallest size

to the largest.

Fig. 6.14(a) shows the total value as a function of the time limit, where the

segment length L is fixed at 10 seconds. As can be seen, the LBS algorithm

performs 4-11% better than RatioFirst, 12-43% better than ValueFirst, and 21-

61% better than SizeFirst. We also find that the performance difference between

the LBS algorithm and the heuristic based algorithms is larger when the time limit

is shorter, because with a longer upload time, good segments will always be selected

even though the heuristic based algorithms do not have the optimal selection. For

all four algorithms, the total value increases as the time limit increases, though the

increase does not slow down as much as that in Fig. 6.13(a). Here the slow down

occurs because some devices have selected all their segments and thus additional

upload time does not provide any benefits.
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Fig. 6.14 (b) shows the total value as a function of the segment length, where

the upload time limit T is fixed at 1 minute. Similar to Fig. 6.13(b), the total value

decreases as the segment length increases. Thus, in the LBS problem, it is also

important to choose the appropriate segment length to achieve a better tradeoff

between total value and user experience.



Chapter 7
Conclusions and Future Work

7.1 Summary

In this dissertation, we designed and evaluated various metadata-based techniques

to support resource-aware crowdsourcing in wireless networks. Metadata includes

camera location, orientation, field of view, coverage range, and other parameters

such as focal length, which are easily accessible from the embedded sensors of most

off-the-shelf mobile devices. Metadata describes where and how a photo/video is

taken, and can be used to measure the value of crowdsourced photos/videos. More

importantly, metadata is very small and consumes very little bandwidth, storage,

and computing resources, which addresses the challenges of resource constraints in

crowdsourcing applications. Based on metadata, we designed various solutions to

support resource-aware crowdsourcing, which are summarized as follows.

In Chapter 3, we designed SmartPhoto, a resource-aware framework which can

select the most useful photos to cover some points of interest. A metric called

photo utility was proposed to evaluate the value of photos based on how many an-

gles of the interested points are covered, which can be calculated from metadata.

Three optimization problems regarding the tradeoffs between photo utility and re-

source usage, namely max-utility, min-selection and min-selection with k-coverage,

have been studied. The performance bounds of the proposed algorithms were the-

oretically proved. We have implemented SmartPhoto in a testbed using Android

smartphones, and proposed techniques to improve the accuracy of the collected

metadata and mitigate the occlusion and out-of-focus issues. Results based on
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real implementations and extensive simulations validated the effectiveness of the

proposed algorithms.

In Chapter 4, we extended the proposed framework so that it can also select

photos to cover an area of interest. Since such coverage is affected by the an-

gle or viewpoint from which the photo is taken, it is very different from previous

coverage problems studied in wireless sensor networks. To address the challenge,

we extended the definition of photo utility to measure how well the entire target

area is covered. Various techniques have been proposed to analyze area coverage

and calculate photo utility accurately and efficiently. We further studied the bud-

geted max-utility problem, where the server selects photos with the largest utility

under a resource budget. As the problem was proved NP-hard, we proposed an

efficient approximation algorithm that achieves constant approximation ratio. Re-

sults of simulations and real-world experiments demonstrated the effectiveness of

the proposed techniques.

In Chapter 5, we studied the photo crowdsourcing problem in scenarios like

disaster recovery and battlefield, where the cellular network can be partly dam-

aged or overloaded with extensive requests. In these scenarios, photos related to

points of interest have to be transmitted to the command center through DTN.

Due to bandwidth and storage limitations in DTN, nodes need to select and trans-

mit the most valuable photos. We measured the value of photos based on their

metadata, and designed a distributed photo selection algorithm to maximize the

total value of photos delivered to the command center considering bandwidth and

storage constraints. Results based on a proof-of-concept prototype and extensive

simulations demonstrated the effectiveness of our design.

In Chapter 6, we designed VideoMec, a crowdsourcing system that organizes

and indexes the metadata of all videos taken by mobile devices. By using the

uploaded metadata to serve queries and then only uploading the queried video files,

VideoMec has much better scalability while reducing the bandwidth and energy

consumption of the mobile devices. VideoMec supports comprehensive queries

for applications to find videos quickly and accurately from the distributed video

repository. For time-sensitive applications where not all identified videos can be

uploaded in time, VideoMec selects the most important videos or video segments

to upload given bandwidth and time constraints. A prototype of VideoMec has
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been implemented, and various experiments have been conducted to demonstrate

its effectiveness.

7.2 Future Directions

Our work to date has provided a series of techniques for resource-aware crowd-

sourcing in wireless networks. There are other research directions worth further

studies. Next we outline several directions for future work that one could pursue.

• Extension to three-dimensional metadata and coverage model: So

far the metadata and the coverage model considered in our studies are two-

dimensional. The metadata, including location, orientation, etc., is repre-

sented as 2D information on the map. The coverage is only calculated along

the longitude and latitude of the earths surface, without considering altitude.

In practice, users can take photos/videos towards the top of a high skyscraper

or towards its ground entrance, resulting in totally different scenes. To han-

dle these cases, it is necessary to extend the metadata and coverage model

to the third dimension in space.

Specifically, for location, the altitude of the camera needs to be recorded

together with the longitude and latitude. Orientation, represented by one

angle in 2D, will be represented by three angles (azimuth, pitch, and roll) in

3D. Field of view, also represented by one angle in 2D, will be represented

by two angles (horizontal field of view and vertical field of view) in 3D. The

resulting 3D metadata will define a pyramid-shaped 3D space covered by the

camera. With this 3D coverage model, we can accurately compute whether

a 3D point can be captured in a 2D image, and if so, where it will appear in

the image. Furthermore, we can map any 3D scene to a 2D image as long as

we know the 3D metadata of the photo/video and the geometric structure of

the 3D scene.

The 3D coverage model can help us detect occlusion much more accurately.

For example, we can check the altitude of the camera, the interested targets,

and the objects in between. Occlusion occurs when the objects in between is

high enough to block the line-of-sight between the camera and the targets.
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Based on this idea, effective occlusion detection techniques may be devel-

oped. Moreover, the 3D coverage model can be used to develop much finer

optimization models for photo/video selection, though 3D coverage is more

complex than 2D coverage and extensive studies are needed to address the

challenge.

• Crowdsourcing for target tracking: In our studies, the targets to be

covered are static objects or events with known locations. In some applica-

tions such as law enforcement, the target can be a person or a vehicle on

the move. The proposed techniques may be adjusted or new techniques may

be developed to efficiently track moving targets using crowdsourced pho-

tos/videos. The key challenge here is that when tracking a moving target,

its current location is unknown to the server. The server may know the pre-

vious locations of the target and may use domain knowledge or movement

prediction algorithms [83, 84] to predict the current location of the target.

The prediction will indicate the area where the target may appear as well

as the probability that the target appear at each point in the area. Thus,

photos/videos should be crowdsourced based on the prediction to maximize

the probability of finding the target. Such optimization will be challenged

by the probability-based coverage models, the mobility of mobile users, and

the resource constraints at both the server and the user side.

• Integrating with content-based approaches: Our metadata-based solu-

tions and content-based approaches can be complementary to each other. On

one hand, metadata-based solutions support new applications which cannot

be supported by content-based approaches. For example, when a tourist in-

advertently films a suspect in a video, content-based techniques may label the

video as travel related, nothing to do with the suspect. Then the video will

never be considered useful for identifying the suspect unless its metadata is

considered. On the other hand, content-based approaches can address some

issues such as occlusion in metadata-based approaches. Metadata-based ap-

proaches can be used as a filter step to quickly eliminate photos/videos that

do not match the required spatiotemporal information (e.g., location, angle,

etc.). Then, content-based approaches can be applied to refine the search
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so that photos/videos in which the target is occluded are not selected or

uploaded. Consequently, developing a system where metadata-based and

content-based approaches work seamlessly together will be an important next

step, though the high bandwidth and computational cost of content-based ap-

proaches must be carefully considered in resource constrained environments.
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