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Abstract

We study the problem of testing unateness of functions f : [n]d → R. A function f is unate if for every
coordinate i ∈ [d], the function is either nonincreasing in the ith coordinate or nondecreasing in the ith
coordinate. A unateness tester is a randomized algorithm which, given parameter ε ∈ (0, 1) and oracle
access to the input function f , accepts f with probability at least 2

3 if it is unate, and rejects f with
probability at least 2

3 if it is ε-far from being unate. A unateness tester is adaptive if its queries depend on
the answers to its previous queries. Otherwise, it is nonadaptive.

We solve the unateness testing problem completely for functions f : [n]d → R by giving an optimal
O(dε · (log d

ε + logn))-query nonadaptive tester and a O(d logn
ε )-query adaptive tester. We also prove that

adaptivity helps for testing unateness of real-valued functions, whereas it does not help for a large class of
similar properties including monotonicity.
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Chapter 1 |
Introduction

1.1 Problem Definition

We study the problem of testing whether a given real-valued function f on domain [n]d, where n, d ∈ N, is
unate. A function f : [n]d → R is unate if for every coordinate i ∈ [d], the function is either nonincreasing
in the ith coordinate or nondecreasing in the ith coordinate. Monotone functions are special case of unate
functions, which are nondecreasing in all coordinates.

The domain [n]d is called a hypergrid and the special case {0, 1}d is called a hypercube. The distance
between two functions f, g : [n]d → R is equal to the fraction of points x ∈ [n]d where f(x) 6= g(x). Given
a parameter ε ∈ (0, 1), two functions f and g are ε-far from each other if the distance between f and g is
at least ε. A function f is ε-far from a property P if it is ε-far from any function which has property P . A
property tester [2,3] for a property P is a randomized algorithm which, given parameter ε ∈ (0, 1) and oracle
access to the input function f , accepts f with probability 2

3 , if it has the property P , and rejects f with
probability 2

3 , if it is ε-far from P . A testing algorithm for property P has 1-sided error if it always accepts
all input functions that satisfy property P and 2-sided error, otherwise. A tester is nonadaptive if it makes
all queries in advance, and adaptive if it can make queries after seeing answers to previous ones.

1.2 Our Work

In this work, we improve previous results for unateness testing. More specifically, we give a O(dε log d
ε )-query

nonadaptive tester and a O(dε )-query adaptive tester of unateness of real-valued functions over hypercube.
And also, O(dε · (log d

ε + logn))-query nonadaptive tester and a O(d logn
ε )-query adaptive tester of unateness

of real-valued functions over the hypergrid domain.
The interesting part of this work is, in contrast of the fact that adaptivity does not help for a large

class of similar properties [4–7], it helps for testing unateness. In other words, unateness treats differently
than monotonicity and, more generally, any derivative-bounded property. We show this by proving that any
nonadaptive tester of real valued functions (for some constant distance parameter) must make Ω(d log d)
queries over the hypercube and Ω(d(log d+ logn)) queries over the hypergrid. These lower bounds also show
that our algorithms for testing unateness are optimal.
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1.3 Previous Work
The problem of testing unateness was first considered by Goldreich et al. [8]. In their work, by extending their
monotonicity tester, they obtained a nonadaptive, 1-sided error tester for unateness with query complexity
O(d

3/2

ε ). Then [9] improved this upper bound by giving an adaptive unateness tester with query complexity
O(d log d

ε ).
The related properties of monotonicity, Lipschitz [10–12] and bounded-derivative properties [7] have

been studied extensively for different types of functions in the context of property testing. The problem
of testing monotonicity of Boolean functions over the hypercube domain was first introduced by [8]. It
was shown in [8, 13] that monotonicity for hypercube domain can be tested with query complexity O(dε ).
A monotonicity tester with better query complexity of Õ(d

7/8

ε3/2 ) was introduced by [14]. After that, [15]
modified the tester of [14] and improved the query complexity to Õ(d

5/6

ε4 ). Most recently, [16] improved the
query complexity of the tester to Õ(

√
d
ε2 ). The lower bound for any nonadaptive one-sided error tester for

monotonicity over the hypercube was proved to be Ω(
√
d) by [17]. Also, [18] gave a lower bound of almost

Ω(
√
d) for any nonadaptive, two-sided error tester. Moreover, there is a lower bound of Ω(min{d, |R|2})

over the real-valued functions by [5]. Most recently, [19] gave a lower bound of Ω̃(d 1
4 ) for adaptive testers

of Boolean functions over the hypercube. [11] proved that any adaptive, two-sided monotonicity tester for
functions f : [n]d → N must make Ω(d logn−log ε−1

ε ) queries.

1.4 Formal Statements and Technical Overview
The following three theorems summarize our final results in this work.

Theorem 1.4.1. Consider functions f : [n]d → R and a distance parameter ε ∈ (0, 1/2).
1. There is a nonadaptive unateness tester that makes O(dε (log d

ε + logn)) queries1.
2. There is an adaptive unateness tester that makes O(d logn

ε ) queries.
Both testers have one-sided error.

This theorem demonstrate the gap between adaptive and nonadaptive unateness testing.

Theorem 1.4.2. Any nonadaptive unateness tester (even with two-sided error) for real-valued functions
f : {0, 1}d → R with distance parameter ε = 1/8 must make Ω(d log d) queries.

This lower bound is an easy adaptation of the monotonicity lower bound presented in [6].

Theorem 1.4.3. Any unateness tester for functions f : [n]d → R with distance parameter ε ∈ (0, 1/4) must
make Ω

(
d logn
ε − log 1/ε

ε

)
queries.

This theorem combine with theorem 1.4.2 shows that our nonadaptive tester is optimal for constant ε,
for both hypercube and hypergrid domains.

1For many properties, when the domain is extended from the hypercube to the hypergrid, testers incur an extra multiplicative factor
of logn in the query complexity. This is the case for our adaptive tester. However, note that the complexity of nonadaptive unateness
testing (for constant ε) is Θ(d(log d+ logn)) rather than Θ(d log d logn).
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1.4.1 Overview of Techniques

For each i ∈ [d], we define an i-edge a pair (x, y) of points in the hypercube where xi = 0, yi = 1, and xj = yj

for all j dimensions other than i. On the function f : {0, 1}d → R, we call an i-edge (x, y) increasing if
f(x) < f(y), decreasing if f(x) > f(y), and constant if f(x) = f(y).

For the nonadaptive tester, we use the work investment strategy from [20] (also refer to Section 8.2.4
of Goldreich’s book [21]) to “guess” a good dimension in the first step. A dimension is good if it leads the
tester to find violations of unateness (containing both increasing and decreasing edges). For all i ∈ [d], we
set αi the fraction of the i-edges that are decreasing, βi the fraction of the i-edges that are increasing, and
µi = min(αi, βi). By using dimension reduction theorem from [7] if the input function is ε-far from unate,
then the average of µi over all dimensions is greater or equal than ε

4d . So, if the tester knew dimensions with
µi = Ω(ε/d), it can find a violation with high probability by querying O(1/µi) = O(d/ε) uniformly random
edges. But the problem is the tester does not know about dimensions with large µi. So, we try to catch
them by doing log d different assumptions. For each k ∈ [log d], we assume exactly 2k different µi’s are ε/2k,
and all others are 0. Which leads us to the query complexity of O(d log d

ε ).
For the adaptive tester, we do not need the log d different assumptions part. A pair of queries find a di-

mension with many non-constant edges. So, the adaptive algorithm try to find violation in those dimensions.
Which leads us to the query complexity of O(d/ε).

It is convenient to extend the adaptive tester from hypercube to hypergrid by adding a extra factor of
logn in the query complexity. Instead of i-edges we define i-lines here, where an i-line is a set of n domain
points that differ only on coordinate i. And everywhere that we where sampling an i-edge we sample an
i-line instead in the hypergrid tester, we call that i-line l and run the tree tester presented in [22] on the
restriction of function f to the line ` or f|`. For the nonadaptive tester, we combine two scenarios. In the
first one, the tree tester is likely to find a unateness violation and in the second one function f is increasing
(and also decreasing) only on a constant fraction of pairs in [n]. Adding the second scenario helps us to
improve the query complexity from O(d(log d)(logn)) to O(d(log d+ logn)).

1.4.2 The Nonadaptive Lower Bound

This part is the most exciting part of this work which shows the log d query complexity gap between adaptive
and nonadaptive unateness testers. A tester is comparison-based if it can only perform comparisons of the
function values at queried points, but cannot use the values themselves. According to [4,6], by proving lower
bounds for comparison-based testers, we can say they hold for the general testers as well. So we just prove
the Ω(d log d) lower bound for nonadaptive comparison-based testers of unateness over hypercube domains.

The main idea of the lower bound structure is as follows. We build K = Θ(log d) families of functions
such that in the kth family we have 2k dimensions with µi = Θ(1/2k), while µi = 0 in all others.

The challenge of the lower bound is the fact that as soon as the tester finds a non-constant edge in each
dimension, the problem reduces to testing b-monotonicity while the vector b determined by directions of
non-constant edges. And testing b-monotonicity is O(d) according to [7]. So this means most edges in the
lower bound construction need to be constant.

The summary of our way to deal with this challenge is as follows. By Yao’s minimax principle, it suffices
to construct Yes and No distributions that a deterministic nonadaptive tester cannot distinguish. For a
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parameter m, we partition the hypercube into m subcubes base on the the first log2m most significant
dimensions. Then choose a k ∈ [K] uniformly randomly while K = Θ(log d). Let R ⊆ [d] be a set of size
2k. In each subcube j ∈ [m] select a dimension rj ∈ R called “action dimension”, uniformly randomly. In
each subcube j, the function value is completely determined by the coordinates not in R, and the action
dimension rj . So, all the i-edges for i ∈ (R \ {rj}) are constant. Notice that until this step everything was
the same in both Yes and No distributions. In the Yes distribution, any two cubes j, j′ with the same
action dimension direct those dimensions the same way (both increasing or both decreasing), while in the
No distribution each cube decides on the direction randomly. We prove that according to this instruction
any comparison-based nonadaptive tester must find two subcubes with the same action dimension ans also
make a specific query (in both) that reveals the coefficient of the action dimension in order to distinguish the
distributions. At the end, we show that the probability of these event is very small with o(d log d) queries.
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Chapter 2 |
Upper Bounds

In this chapter, we discuss the proof of Theorem 1.4.1, by giving adaptive and nonadaptive unateness tester
for real valued functions. First, we describe a tester for the simpler case real-valued functions over hypercube
domain and later we extend the tester for hypergrid domain.

The starting point for our algorithms is the dimension reduction theorem from [7]. It bounds the distance
of f : [n]d → R to monotonicity in terms of average distances of restrictions of f to one-dimensional functions.

Theorem 2.0.1 (Dimension Reduction, Theorem 1.8 in [7]). Fix a bit vector b ∈ {0, 1}d and a function
f : [n]d → R which is ε-far from b-monotonicity. For all i ∈ [d], let µi be the average distance of f|` to
bi-monotonicity over all i-lines `. Then,

d∑
i=1

µi ≥
ε

4 .

For the special case of the hypercube domains, i-lines become i-edges, and the average distance µi to
bi-monotonicity is the fraction of i-edges on which the function is not bi-monotone.

2.1 The Nonadaptive Tester over the Hypercube
In this section we describe the nonadaptive tester for unateness over the hypercube.

Algorithm 1: The Nonadaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 for r = 1 to d3 log(4d/ε)e do
2 repeat sr = d 16d ln 4

ε·2r e times
3 Sample a dimension i ∈ [d] uniformly at random.
4 Sample 3 · 2r i-edges uniformly and independently at random and reject if there exists an

increasing edge and a decreasing edge among the sampled edges.
5 accept

It is easy to see Algorithm 1 is a nonadaptive, one-sided error tester. And its query complexity is
O
(
d
ε log d

ε

)
. We just need to prove the correctness of this algorithm which we cover in the following lemma.

Lemma 2.1.1. If f : {0, 1}d → R is ε-far from unate, Algorithm 1 rejects with probability at least 2/3.
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Proof. Recall that αi is the fraction of i-edges that are decreasing, βi is the fraction of i-edges that are
increasing and µi = min(αi, βi).

Let b = (b1, . . . ,bd) be a d-dimensional vector such that for each i ∈ [d], we have bi = 0 if αi < βi and
bi = 1, otherwise. The average distance of f to bi-monotonicity over an i-edge is precisely µi for a random
i. Since f is ε-far from being unate, f is also ε-far from being b-monotone. By Theorem 2.0.1(the dimension
reduction theorem),

∑
i∈[d] µi ≥

ε
4 . Therefore, Ei∈[d][µi] ≥ ε

4d . Now we apply the work investment strategy,
which is in the following, due to Berman et al. [20] to get an upper bound on the probability that Algorithm 1
fails to reject.

Theorem 2.1.2 ( [20]). For a random variable X ∈ [0, 1] with E[X] ≥ µ for µ < 1
2 , let pr = Pr[X ≥ 2−r]

and δ ∈ (0, 1) be the desired error probability. Let sr = 4 ln 1/δ
µ·2r . Then,

d3 log(1/µ)e∏
r=1

(1− pr)sr ≤ δ.

Consider running Algorithm 1 on a function f that is ε-far from unate. Let X = µi where i is sampled
uniformly at random from [d]. Then E[X] ≥ ε

4d . Applying the work investment strategy (Theorem 2.1.2)
on X with µ = ε

4d , we get that the probability that, in some iteration, Step 3 samples a dimension i such
that µi ≥ 2−r is at least 1− δ. We set δ = 1/4. Conditioned on sampling such a dimension, the probability
that Step 4 fails to obtain an increasing edge and a decreasing edge among its 3 · 2r samples is at most
2 (1− 2−r)3·2r

≤ 2e−3 < 1/9, as the fraction of both increasing and decreasing edges in the dimension is at
least 2−r. Hence, the probability that Algorithm 1 rejects f is at least 3

4 ·
8
9 = 2

3 , which completes the proof
of Lemma 2.1.1.

2.2 The Adaptive Tester over the Hypercube
In this section, we describe an adaptive tester for unateness over the hypercube domain in Algorithm 2 with
good expected query complexity (showed in 2.2.1). The final tester repeat this tester and accepts if the
number of queries exceeds a specified bound.

Algorithm 2: The Adaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-edge ei uniformly at random.
4 if ei is non-constant (i.e., increasing or decreasing) then
5 Sample i-edges uniformly at random till we obtain a non-constant edge e′i.
6 reject if one of the edges ei, e′i is increasing and the other is decreasing.
7 accept

Claim 2.2.1. The expected number of queries made by Algorithm 2 is 40d/ε.

6



Proof. Consider one iteration of the repeat-loop in Step 1. We prove that the expected number of queries
in this iteration is 4d. The total number of queries in Step 3 is 2d, as 2 points per dimension are queried.
Let Ei be the event that edge ei is non-constant and Ti be the random variable for the number of i-edges
sampled in Step 5. Then E[Ti] = 1

αi+βi
= 1

Pr[Ei] . Therefore, the expected number of all edges sampled in
Step 5 is

∑d
i=1 Pr[Ei] ·E[Ti] =

∑d
i=1 Pr[Ei] · 1

Pr[Ei] = d. Hence, the expected number of queries in Step 5 is
2d. Since there are 10/ε iterations in Step 1, the expected number of queries in Algorithm 2 is 40d/ε.

Claim 2.2.2. If f is ε-far from unate, Algorithm 2 accepts with probability at most 1/6.

Proof. We start with finding the probability of rejection in some dimension i ∈ [d] in one iteration of the
repeat-loop, which is equal to the probability of finding a decreasing i-edge in Step 3, and an increasing
i-edge in Step 5. The first probability is αi, and the second one is βi

αi+βi
. So, the total probability of finding

violation in dimension i is 2αiβi

αi+βi
≥ min(αi, βi) = µi. Therefore, the probability of failing to find a violation

in all dimensions is at most
∏d
i=1(1 − µi) ≤ exp

(
−
∑d
i=1 µi

)
, which is at most e−ε/4 by Theorem 2.0.1

(Dimension Reduction). By Taylor expansion of e−ε/4, the probability of finding a violation in one iteration
is at least 1 − e−ε/4 ≥ ε

4 −
ε2

32 >
ε
5 . The probability that Algorithm 2 does not reject in any iteration is at

most (1− ε/5)10/ε < 1/6.

Proof of Theorem 1.4.1, Part 2 (special case of the hypercube domain). , for the final algorithm we run Al-
gorithm 2 with this difference that if we ever make more than 240d/ε queries we abort and accept. By
Markov’s inequality, the probability of aborting is at most 1/6. By Claim 2.2.2, if f is ε-far from unate,
Algorithm 2 accepts with probability at most 1/6. The theorem follows by a union bound.

2.3 Extension to Hypergrids
In this section we extend both adaptie and nonadaptive testers over the hypercube domain described in two
previous sections to hypergrid domain.We start by establishing terminology for lines and pairs. Consider a
function f : [n]d → R. A pair of points that differ only in coordinate i is called an i-pair. An i-pair (x, y)
with xi < yi is called increasing if f(x) < f(y), decreasing if f(x) > f(y), and constant if f(x) = f(y). The
main idea of extending Algorithms 1 and 2 for hypergrid is the tree tester, designed by Ergun et al. [22] to
test monotonicity of functions h : [n]→ R.

Algorithm 3: Tree Tester
input : Query access to a function h : [n] 7→ R.

1 Pick x ∈ [n] uniformly at random.
2 Let Qx ⊆ [n] be the set of points visited in a binary search for x. Query h on all points in Qx.
3 If there is an increasing pair in Qx, set dir← {↑}; otherwise, dir← ∅.
4 If there is a decreasing pair in Qx, update dir← dir ∪ {↓}.
5 Return dir.

We modify the tree tester to return information about directions it observed instead of just accepting or
rejecting. See Algorithm 3. We call a function h : [n] 7→ R antimonotone if f(x) ≥ f(y) for all x < y. The
following lemma prove why the tree tester works.

7



Lemma 2.3.1 ( [7,22]). If h : [n] 7→ R is ε-far from monotone (respectively, antimonotone), then the output
of Algorithm 3 on h contains ↓ (respectively, ↑) with probability at least ε.

Algorithm 4: The Adaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-line `i uniformly at random.
4 Let diri be the output of Algorithm 3 on f|`i

.
5 if diri 6= ∅ then
6 Sample i-lines uniformly at random and run Algorithm 3 on f restricted to each line

until it returns a non-empty set. Call it dir′i.
7 If diri ∪ dir′i = {↑, ↓}, reject.
8 accept

Algorithm 5: The Nonadaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 220/ε times
2 for i = 1 to d do
3 Sample an i-line ` uniformly at random.
4 Reject if Algorithm 3, on input f|`, returns {↑, ↓}.
5 for r = 1 to d3 log(200d/ε)e do
6 repeat sr = d 800d ln 4

ε·2r e times
7 Sample a dimension i ∈ [d] uniformly at random.
8 Sample 3 · 2r i-pairs uniformly and independently at random.
9 If we find an increasing and a decreasing pair among the sampled pairs, reject.

10 accept

Our hypergrid testers are stated in Algorithms 4 and 5. Next, we explain how Lemma 2.3.1 and The-
orem 2.0.1 are used in the analysis of the adaptive tester. For a dimension i ∈ [d], let αi and βi denote
the average distance of f|` to monotonicity and antimonotonicity, respectively, over all i-lines `. Then
µi := min(αi, βi) is the average fraction of points per i-line that needs to change to make f unate. Define
the b-vector with bi = 0 if αi < βi, and bi = 1 otherwise. By Theorem 2.0.1, if f is ε-far from unate,
and thus ε-far from b-monotone, then

∑d
i=1 µi ≥ ε/4. By Lemma 2.3.1, the probability that the output of

Algorithm 3 on f|` contains a decreasing edge (respectively, increasing), where ` is a uniformly random i-line,
is at least αi (respectively, βi). The rest of the analysis of Algorithm 4 is similar to that in the hypercube
case.

Proof of Theorem 1.4.1, Part 2. The tester is Algorithm 4. As in the proof of Claim 2.2.1, the expected
running time of Algorithm 4 is at most (40d logn)/ε. The proof of Claim 2.2.2 carries over almost word-to-
word. Fix dimension i. The probability finding a decreasing edge in dimension i in Step 4 is at least αi.
The probability that finding an increasing edge in the i-th dimension in Step 6 is at least βi

αi+βi
. The rest of

the calculation is identical to that of the proof of Claim 2.2.2.

8



To analyze the nonadaptive tester, we prove Lemma 2.3.2.

Lemma 2.3.2. Consider a function h : [n]→ R which is ε-far from monotone (respectively, antimonotone).
At least one of the following holds:

1. Pr[Algorithm 3, on input h, returns {↑, ↓}] ≥ ε/25.
2. Pru,v∈[n][(u, v) is a decreasing (respectively, increasing) pair] ≥ ε/25.

Proof. Let T be a balanced binary search tree consisting of elements in [n], such that the set of points visited
in a binary search for some x ∈ [n] corresponds to a path from the root to the node containing x in T . Let
Qx denote the set of points visited in a binary search for x ∈ [n]. For x, y ∈ [n], denote the least common
ancestor of x and y by lca(x, y).

LetW↑↓ be a set of points x such that Qx contains both an increasing and a decreasing pair (with respect
to h). If |W↑↓| ≥ εn

10 , then Case 1 of Lemma 2.3.2 holds. We may therefore assume that |W↑↓| < εn
10 . Let

E be the event that for any u, v ∈ [n] such that u < v, the pair (u, v) is decreasing. We will prove that
Pr[E ] ≥ ε/25.

Let W↓ be that set of points x ∈ [n] such that Qx contains a decreasing pair. Similarly, define the set
W↑. Let Wc denote the set of points x such that h|Qx

is constant.

Claim 2.3.3 ( [22]). The function h restricted to the set W↑ ∪Wc is monotone.

Proof. The proof is by contradiction. Suppose x, y ∈ (W↑ ∪Wc) such that x < y, but h(x) > h(y). Consider
z = lca(x, y). Either h(x) > h(z) or h(z) > h(y), contradicting the fact that x, y ∈W↑ ∪Wc.

By symmetry, the function h restricted to the set W↓ ∪Wc is antimonotone.
A priori, points in W↑ and W↓ could be interspersed. The next claim shows that they are in different

halves of the tree T .

Claim 2.3.4. If x ∈W↓ and y ∈W↑, then lca(x, y) is the root of T (which is equal to dn/2e).

Proof. Suppose not. Let z := lca(x, y) and w be the parent of z. Consider the case where z is the left child
of w, x lies in the left subtree of z and y lies in the right subtree of z. (All the other cases have analogous
proofs.) Observe that all points in Qy lie in the interval [z, w]. Both w and z are in Qx as well as in Qy.
As x ∈ W↑ and y ∈ W↓, it must be the case that h(w) = h(z). Since y /∈ W↑↓, for all p ∈ Qy, we have
h(p) = h(w). This contradicts the fact that y ∈W↑.

In all cases, we conclude that either x /∈W↓ or y /∈W↑. Thus, z cannot have a parent, and z = dn/2e.

Claim 2.3.5. Let g : [n] 7→ R be an antimonotone function and dist(g, constant) denote the fraction of points
that need to be changed so that g is a constant function. If g is antimonotone, and dist(g, constant) ≥ ρ,
where ρ ≤ 1

2 , then
Pr

u,v∈[n]:u<v
[(u, v) is decreasing] ≥ ρ

2 .

Proof. The probability that g(u) 6= g(v) is at least ρ(1 − ρ) which is at least ρ
2 when ρ ≤ 1

2 . Since g is
antimonotone, (u, v) is a decreasing pair.

9



Let L (respectively, R) be the set of points in [n] \ W↑↓ in the left (respectively, right) subtree of the
root. Define µL := |L|/n; similarly, define µR. Observe that both µL and µR are at least 1

2 −
ε
10 . By

Claims 2.3.3 and 2.3.4, h|L (and h|R) is either monotone or antimonotone. Now, if any of these two functions
were antimonotone and ε

2 -far from being constant (w.l.o.g., assume h|L satisfies the condition), then by
Claim 2.3.5, we would have

Pr[E ] ≥ Pr
u<v

[(u, v) is decreasing and u, v ∈ L] ≥ ε

4 ·
(

1
2 −

ε

10

)2
≥ ε

25 .

Assume that this doesn’t occur. We have two cases.
Case 1. Both h|L and h|R are ε

2 -close
1 to being constant. In this case, at least (1 − ε

2 )|L| points of L
evaluate to a constant C1, and at least (1 − ε

2 )|R| points of R evaluate to constant C2. We must have
C1 > C2, for otherwise, we can make h monotone by changing only ε

2 · (|R| + |L|) + εn
10 < εn points, which

is a contradiction. Hence,

Pr[E ] ≥ Pr
u<v

[h(u) = C1 and h(v) = C2] ≥
(

1− ε

2

)2
µLµR >

1
4 ·
(

1
2 −

ε

10

)2
≥ ε

25 .

Case 2. At least one of the functions is ε
2 -far from being constant and is monotone. W.l.o.g., assume h|L

satisfies this condition. Note that all points in L are only in W↑ ∪Wc, and so, all points in R must be in
W↓ ∪Wc. This implies that h|R is antimonotone. (Note that a constant function is also antimonotone.) But
then, h|R must be ε

2 -close to being constant. Then at least (1 − ε
2 )|R| points in R evaluate to a constant,

say C. Let U denote the set of points in L whose values are strictly greater than C. Since h|L is monotone,
we can make h monotone by deleting all points in U,W↑↓, and the points in R that do not evaluate to C.
The total number of points to be deleted is at most |U |+ εn

10 + εn
2 , which must be at least εn, as h is ε-far

from monotone. Hence, |U | > εn/3. Therefore,

Pr[E ] ≥ Pr
u<v

[u ∈ U and h(v) = C] ≥ ε

3 ·
(

1− ε

2

)
µR >

ε

25 .

This completes the proof of Lemma 2.3.2.

We now analyze Algorithm 5. It is evident that it has one-sided error and makes O(dε (logn + log d
ε ))

queries. It suffices to prove the following.

Theorem 2.3.6. If f : [n]d 7→ R is ε-far from unate, then Algorithm 5 rejects with probability at least 2/3.

Proof. For any line `, we define the following quantities.
• α`: the distance of f|` to monotonicity.
• β`: the distance of f|` to antimonotonicity.
• σ`: the probability that Algorithm 3, on input f|`, returns {↑, ↓}.
• δ`: the probability that a uniformly random pair in ` is decreasing.
• λ`: the probability that a uniformly random pair in ` is increasing.
1A function h is ε-close to a property P if it is sufficient to change at most ε-fraction of values in h to make it satisfy P.
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Let Li be the set of i-lines. By Theorem 2.0.1,

1
nd−1

d∑
i=1

min
(∑
`∈Li

α`,
∑
`∈Li

β`

)
≥ ε

4 .

By Lemma 2.3.2, for every line `, we have σ` + δ` ≥ α`/25 and σ` + λ` ≥ β`/25. Also note,

1
nd−1

d∑
i=1

[∑
`∈Li

σ` + min
(∑
`∈Li

δ`,
∑
`∈Li

λ`

)]
≥ 1
nd−1

d∑
i=1

min
(∑
`∈Li

(σ` + δ`),
∑
`∈Li

(σ` + λ`)
)

Combining these bounds, we obtain that the LHS is at least ε/100. Note that the first term, which
is equal to

∑d
i=1 E`∈Li [σ`], is the expected number of times a single iteration of Steps 2-4 rejects. If

this quantity is at least ε/200, then the tester rejects with probability at least 2/3. If not, then we
have n−(d−1)∑d

i=1 min(
∑
`∈Li

δ`,
∑
`∈Li

λ`) ≥ ε/200. Using a calculation identical to that of the proof
of Lemma 2.1.1, the probability that Step 9 rejects in some iteration is at least 2/3.
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Chapter 3 |
The Lower Bound for Nonadaptive
Testers over Hypercubes

In this section, we prove Theorem 1.4.2, which gives a lower bound for nonadaptive unateness testers for
functions over the hypercube.

Fischer [4] showed that in order to prove lower bounds for a general class of properties on the line domain,
it is sufficient to consider a special class of testers called comparison-based testers. The properties he looked
at are called order-based properties (see Definition 3.1.2) which includes monotonicity and unateness. A tester
is comparison-based if it bases its decisions only on the order of the function values at the points it queried,
and not on the values themselves. Chakrabarty and Seshadhri [6] extended Fischer’s proof to monotonicity
on any partially-ordered domain. In the next section we show that Chakrabarty and Seshadhri’s proof goes
through for all order-based properties on partially-ordered domains. We include this proof for completeness,
filling in the details needed to generalize the original proof. So we just need to give a lower bound for
comparison based testers.

Our main technical contribution is the construction of a distribution of functions f : {0, 1}d → R on
which every nonadaptive comparison-based tester must query Ω(d log d) points to determine whether the
sampled function is unate or far from unate. We describe this construction in Section 3.2 and show its
correctness in Sections 3.3-3.5.

3.1 Reduction to Comparison-Based Testers
In this section, we prove that if there exists an ε-tester for an order-based property of functions over a
partially-ordered domain, then there exists a comparison-based ε-tester for the same property making the
same number of queries. This is stated in Theorem 3.1.3. Before stating the theorem, we introduce several
definitions.

Definition 3.1.1. A (t, ε, δ)-tester for a property is a (2-sided error) ε-tester making at most t queries, that
errs with probability at most δ.

Definition 3.1.2 (Order-based property). For an arbitrary partial order D and an arbitrary total order R,

12



a property P of functions f : D → R is order-based if, for all strictly increasing maps φ : R → R and all
functions f , we have dist(f,P) = dist(φ ◦ f,P).

Specifically, unateness is an order-based property. The following theorem is an extension of Theorem 5 in [4]
and Theorem 2.1 in [6]. In particular, Theorem 2.1 in [6] was proved with the assumption that the function
values are distinct. We generalize the theorem by removing this assumption.

Theorem 3.1.3 (implicit in [4,6]). Let P be an order-based property of functions f : D → N. Suppose there
exists a (t, ε, δ)-tester for P. Then there exists a comparison-based (t, ε, 2δ)-tester for P.

The rest of this section is devoted to proving Theorem 3.1.3. Our proof closely follows the proof of
Theorem 2.1 in [6]. The proof has two parts. In the first part, we describe a reduction from a tester to a
discretized tester and, in the second part, we describe a reduction from a discretized tester to a comparison-
based tester.

Let P be a property of functions f : D → R for an arbitrary partial order D and an arbitrary total order
R ⊆ N. Let T be a (t, ε, δ)-tester for P. First, we define a family of probability functions that completely
characterizes T . Fix some s ∈ [t]. Consider the point in time in an execution of the tester T on some input
function f , where exactly s queries have been made. Suppose these queries are x1, x2, . . . , xs ∈ D and the
corresponding answers are a1 = f(x1), a2 = f(x2), . . . , as = f(xs). Let query vector X be (x1, . . . , xs) and
answer vector A be (a1, . . . , as). The next action of the algorithm is either choosing the (s+ 1)th query
from D or outputting accept or reject. For each action y ∈ D ∪ {accept, reject}, let pyX(A) denote the
probability that T chooses action y after making queries X and receiving answers A. Since pyX(A) is a
probability distribution,

∀s < t, ∀X ∈ Ds,∀A ∈ Rs
∑

y∈D∪{accept,reject}

pyX(A) = 1.

Furthermore, the tester cannot make more than t queries, and so the action (t + 1) must be either accept
or reject. Formally,

∀X ∈ Dt,∀A ∈ Rt
∑

y∈{accept,reject}

pyX(A) = 1.

Definition 3.1.4 (Discretized tester). A tester T is discretized if all pyX(A)-values associated with T come
from the range

{
i
K : i ∈ {0, 1, . . . ,K}

}
for some integer K.

Chakrabarty and Seshadhri [6] proved that if there exists a (t, ε, δ)-monotonicity tester T for functions
f : D → N, then there exists a discretized (t, ε, 2δ)-monotonicity tester T ′ for the same class of functions.
Both the statement and the proof in [6] hold not only for testers of monotonicity, but for testers of all
properties of functions f : D → R.

Lemma 3.1.5 (implicit in [6, Lemma 2.2]). Suppose there exists a (t, ε, δ)-tester T for a property P of
functions f : D → R. Then, there exists a (t, ε, 2δ)-discretized tester T ′ for P.

This completes the first part of the proof.
Next, we will show how to transform a discretized tester into a comparison-based tester. Intuitively, a

tester is comparison-based if each query of the tester depends only on the ordering of the answers to the
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previous queries, not on the values themselves. We define a family of probability functions q in order to
characterize comparison-based testers. The q-functions are defined in terms of p-functions, but, in their
definition, we decouple the set of values that were received as answers from their positions in the answer
vector. Let V represent the set {a1, . . . , as} of answer values (without duplicates). Let r be the number
of (distinct) values in V . Note that r ≤ s. Suppose, V is {v1, v2, . . . , vr} where v1, . . . , vr ∈ R and
v1 < v2 < . . . < vr. Let ρ be the map from positions of values in the answer vector to their corresponding
indices in V , that is, ρ : [s]→ [r]. Observe that ρ is surjective. The q-functions are defined as follows:

qyX,ρ(V ) = pyX((vρ(1), vρ(2), . . . , vρ(s))).

Let R(r) denote the set of all subsets of R of size r.

Definition 3.1.6 (Comparison-based tester). A tester T for an order-based property P is comparison-based
for functions f : D → R, if for all r, s satisfying r ≤ s ≤ t, and all X ∈ Ds, y ∈ D ∪ {accept, reject}
and surjections ρ : [s] → [r], the function qyX,ρ is constant on R(r). That is, for all V, V ′ ∈ R(r), we have
qyX,ρ(V ) = qyX,ρ(V ′).

To complete the proof of Theorem 3.1.3, we show that if there exists a discretized tester T for an order-based
property P over the functions f : D → N, then there exists an infinite set R ⊆ N such that, for functions
f : D → R, the tester T is comparison-based. The existence of this infinite set R is proved using Ramsey
theory arguments.

We introduce some Ramsey theory terminology. Consider an integer C, where [C] represents a set of
colors. For any positive integer i, a finite coloring of N(i) is a function coli : N(i) → [C]. An infinite set R ⊆ N
is monochromatic with respect to coli if for all i-sized subsets V, V ′ ∈ R(i), the color coli(V ) = coli(V ′).
A k-wise finite coloring of N is a collection of k-colorings col1, col2, . . . , colk. Note that each coloring
col1, . . . , colk is defined over subsets of different sizes. An infinite subset R ⊆ N is k-wise monochromatic
with respect to col1, . . . , colk if R is monochromatic with respect to all coli for i ∈ [k].

We use the following variant of Ramsey’s theorem which was also used in [4, 6].

Theorem 3.1.7 (Theorem 2.3 in [6]). For any k-wise finite coloring of N, there exists an infinite k-wise
monochromatic subset R ⊆ N.

Proof of Theorem 3.1.3. Suppose there exists a (t, ε, δ)-tester for property P of functions f : D → N. By
Lemma 3.1.5, there exists a (t, ε, 2δ)-discretized tester T for P. Special name for family of q functions? Let
q be the family of probability functions that characterizes T .

We define a t-wise finite coloring of N. For each r ∈ [t] and V ∈ N(r), the color colr(V ) is defined as a
vector of probability values qyX,ρ(V ). The vector is indexed by (y,X, ρ) for each y ∈ D∪{accept, reject}, s
satisfying r ≤ s ≤ t and X ∈ Ds and surjection ρ : [r]→ [s]. The value at the index (y,X, ρ) in colr(V ) is
equal to qyX,ρ(V ). Note that, there are finitely many possible values for y and X, and surjections ρ. So, the
dimension of the vector colr(V ) is finite. Furthermore, since the tester is discretized, the number of different
values that the q-functions take is also finite. Hence, the range of colr is finite. Now, we have a t-wise finite
coloring col1, . . . , colt of N. By Theorem 3.1.7, there exists an infinite t-wise monochromatic set R ⊆ N.
Thus, for each r ∈ [t] and V, V ′ ∈ R(r), we have colr(V ) = colr(V ′), implying that qyX,ρ(V ) = qyX,ρ(V ′) for
all y,X, ρ. Thus, T is comparison-based for functions f : D → R.
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Consider a strictly monotone increasing map φ : N → R. Given any function f : D → N, consider
φ ◦ f : D → R. Define an algorithm T ′, which on input f , runs T on φ ◦ f . Since P is order-based,
dist(f,P) = dist(φ ◦ f,P). Hence, T ′ is a (t, ε, 2δ)-tester for P. Moreover, since the tester T ′ just runs T
on a input φ ◦ f : D → R as a subroutine and T is comparison-based for that input, the tester T ′ is also
comparison-based.

3.2 The Hard Distributions
Our main lower bound theorem is stated next. Together with Theorem 3.1.3, it implies Theorem 1.4.2.

Theorem 3.2.1. Any nonadaptive comparison-based unateness tester of functions f : {0, 1}d → R must
make Ω(d log d) queries.

The proof of Theorem 3.2.1 is presented in Sections 3.2-3.5 and forms the core technical content of this work.
By Theorem 3.1.3 and Yao’s minimax principle [23], it suffices to prove the lower bound for deterministic,

nonadaptive, comparison-based testers over a known distribution of functions. It may be useful for the reader
to recall the sketch of the main ideas given in Section 1.4.1. For convenience, assume d is a power of 2 and
let d′ := d+ log2 d. We will focus on functions h : {0, 1}d′ → R, and prove the lower bound of Ω(d log d) for
this class of functions, as Ω(d log d) = Ω(d′ log d′).

We partition {0, 1}d′ into d subcubes based on the most significant log2 d bits. Specifically, for i ∈ [d],
the ith subcube is defined as

Ci := {x ∈ {0, 1}d
′

: val(xd′xd′−1 · · ·xd+1) = i− 1},

where val(z) :=
∑p
i=1 zi2i−1 denotes the integer equivalent of the binary string zpzp−1 . . . z1.

Let m = d. We denote the set of indices of the subcube by [m] and the set of dimensions by [d]. We use
i, j ∈ [m] to index subcubes, and a, b ∈ [d] to index dimensions. We now define a series of random variables,
where each subsequent variable may depend on the previous ones.

• k: a number picked uniformly at random from
[ 1

2 log2 d
]
.

• R: a uniformly random subset of [d] of size 2k.
• ri: for each i ∈ [m], ri is picked from R uniformly and independently at random.
• αb: for each b ∈ [d], αb is picked from {−1,+1} uniformly and independently at random. (Note: αb

only needs to be defined for each b ∈ R. We define it over [d] just so that it is independent of R.)
• βi: for each i ∈ [m], βi is picked from {−1,+1} uniformly and independently at random.

We denote the tuple (k,R, {ri}) by S, also referred to as the shared randomness. We use T to refer to the
entire set of random variables (k,R, {ri}, {αb}, {βi}). Given T , define the functions

fT (x) :=
∑

b∈[d′]\R

xb3b + αrixri3ri ,

gT (x) :=
∑

b∈[d′]\R

xb3b + βixri3ri

where i is the subcube containing x, i.e., i = val(xd′xd′−1 · · ·xd+1) + 1. The distributions Yes and No
generate fT and gT , respectively.
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In all cases, the function restricted to any subcube Ci is linear. Consider some dimension b ∈ R. There
can be several i ∈ [m] such that ri = b. For fT , in all of these subcubes, the coefficient of xri

has the same
sign, namely αri . For gT , the coefficient βi is potentially different, as it depends on the actual subcube.
We write f ∼ D to denote that f is sampled from distribution D.

Claim 3.2.2. Every function f ∼ Yes is unate.

Proof. Fix some f ∈ supp(Yes). Since f|Ci
is linear, it suffices to argue that, for any b ∈ [d′], the coefficient

of xb (when it is non-zero) has the same sign in all subcubes. When b ∈ [d′]\R, the coefficient of xb is always
3b. If b ∈ R, then the coefficient is either 0 or 3bαb.

Claim 3.2.3. A function g ∼ No is 1
8 -far from unate with probability at least 9/10.

Proof. Note that |R| ≤
√
d. For any r ∈ R, let Ar := {i : ri = r}, the set of subcube indices with

ri = r. Observe that E[|Ar|] ≥ m/
√
d =
√
d. By Chernoff bound and union bound, for all r ∈ R, we have

|Ar| ≥
√
d/2 with probability at least 1− d exp(−

√
d/8).

Condition on the event that |Ar| ≥
√
d/2 for all r ∈ R. For each i ∈ Ar, there is a random choice

of βi. Partition Ar into A+
r and A−r , depending on whether βi is +1 or −1, respectively. Again, by a

Chernoff bound and union bound, for all r ∈ R, we have min(|A+
r |, |A−r |) ≥ |Ar|/4 with probability at least

1− d exp(−
√
d/32). Thus, we can assume that the event min(|A+

r |, |A−r |) ≥ |Ar|/4 holds with probability at
least 1− d(exp(−

√
d/8) + exp(−

√
d/32)), which is at least 9/10, for large enough d and for any choice of k

and R.
Denote the size of any subcube Ci by s. In gT , for all i ∈ A+

r , all r-edges in Ci are increasing, whereas,
for all j ∈ A−r , all r-edges in Cj are decreasing. To make gT unate, all these edges must have the same
direction (i.e., increasing or decreasing). This requires modifying at least s

2 ·min(|A+
r |, |A−r |) ≥

s|Ar|
8 values

in gT . Summing over all r, we need to change at least s
8
∑
r |Ar| values. Since the Ar’s partition the set of

subcubes, this corresponds to at least a 1
8 -fraction of the domain.

3.3 From Functions to Signed Graphs that are Hard to Distinguish

For convenience, denote x ≺ y if val(x) < val(y). Note that ≺ forms a total ordering on {0, 1}d′ . Given
x ≺ y ∈ {0, 1}d′ and a function h : {0, 1}d′ → R, define sgnh(x, y) to be 1 if h(x) < h(y), 0 if h(x) = h(y),
and −1 if h(x) > h(y).

Any deterministic, nonadaptive, comparison-based tester is defined as follows: It makes a set of queries
Q and decides whether or not the input function h is unate depending on the

(|Q|
2
)
-comparisons in Q. More

precisely, for every pair (x, y) ∈ Q×Q, x ≺ y, we insert an edge labeled with sgnh(x, y). Let this signed graph
be called GQh . Any nonadaptive, comparison-based algorithm can be described as a method to partition the
universe of all signed graphs over Q into GY and GN . The algorithm accepts the function h iff GQh ∈ GY .

Let GQ
Y be the distribution of the signed graphs GQh when h ∼ Yes. Similarly, define GQ

N when h ∼ No.
Our main technical theorem is Theorem 3.3.1, which is proved in Section 3.4.

Theorem 3.3.1. For small enough δ > 0 and large enough d, if |Q| ≤ δd log d, then ‖GQ
Y −GQ

N‖TV = O(δ).

We now prove that Theorem 3.3.1 implies Theorem 3.2.1, the main lower bound.
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Proof of Theorem 3.2.1. Consider the distribution over functions where with probability 1/2, we sample
from Yes and with the remaining probability we sample from No. By Theorem 3.1.3 and Yao’s minimax
principle, it suffices to prove that any deterministic, nonadaptive, comparison-based tester making at most
δd log d queries (for small enough δ > 0) errs with probability at least 1/3. Now, note that

Pr[error] = 1
2 · Pr

h∼Yes
[GQh ∈ GN ] + 1

2 · Pr
h∼No

[GQh ∈ GY and h is 1
8 -far from unate].

By Theorem 3.3.1, the first term is at least 1
2 ·
(

Prh∼No[GQh ∈ GN ]−O(δ)
)
, and by Claim 3.2.3, the second

term is at least 1
2 ·
(

Prh∼Yes[GQh ∈ GY ]−O(δ)− 1
10

)
. Summing them up, we get Pr[error] ≥ 1

2 −O(δ)− 1
20

which is at least 1
3 for small enough δ.

The proof of Theorem 3.3.1 is naturally tied to the behavior of sgnh. Ideally, we would like to say that
sgnh(x, y) is almost identical regardless of whether h ∼ Yes or h ∼ No. Towards this, we determine exactly
the set of pairs (x, y) that potentially differentiate Yes and No.

Claim 3.3.2. For all h ∈ supp(Yes)∪ supp(No), x ∈ Ci and y ∈ Cj such that i < j, we have sgnh(x, y) = 1.

Proof. For any h, we can write h(x) as
∑
b>d 3b · xb +

∑
b≤d cb(x) · 3b · xb, where cb : {0, 1}d′ → {−1, 0,+1}.

Thus, h(y)−h(x) =
∑
b>d 3b(yb−xb) +

∑
b≤d 3b(cb(y) ·yb− cb(x) ·xb). Recall that x ∈ Ci, y ∈ Cj , and j > i.

Let q denote the most significant bit of difference between x and y. We have q > d, and yq = 1 and xq = 0.
Note that for b ≤ d, |cb(y) · yb − cb(x) · xb)| ≤ 2. Thus, h(y)− h(x) ≥ 3q − 2

∑
b<q 3b > 0.

Thus, comparisons between points in different subcubes reveal no information about which distribution h

was generated from. Therefore, the “interesting” pairs that can distinguish whether h ∼ Yes or h ∼ No
must lie in the same subcube. The next claim shows a further criterion that is needed for a pair to be
interesting. We first define another notation needed for the claim.

Definition 3.3.3. For any setting of the shared randomness S, subcube Ci, and points x, y ∈ Ci, we define
tiS(x, y) to be the most significant coordinate of difference (between x, y) in ([d] \R) ∪ {ri}.

Note that S determines R and {ri}. For any T that extends S, the restriction of both fT and gT to Ci is
unaffected by coordinates in R \ {ri}. Thus, tiS(x, y) is the first coordinate of difference that is influential in
Ci.

Claim 3.3.4. Fix some S, subcube Ci, and points x, y ∈ Ci. Let c = tiS(x, y), and assume x ≺ y. For any
T that extends S:

• If c 6= ri, then sgnfT
(x, y) = sgngT

(x, y) = 1.
• If c = ri, sgnfT

(x, y) = αc and sgngT
(x, y) = βi.

Proof. Assume x ∈ Ci. Recall that fT (x) =
∑
b∈[d′]\R xb3b + αri

· xri
3ri and gT (x) =

∑
b∈[d′]\R xb3b + βi ·

xri3ri .
First, consider the case c 6= ri. Thus, c /∈ R. Observe that xb = yb, for all b > c such that b /∈ R.

Furthermore, xc = 0 and yc = 1. Thus, fT (y)− fT (x) > 3c −
∑
b<c 3b > 0. An identical argument holds for

gT .
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Now, consider the case c = ri. Thus, fT (y) − fT (x) = αc3c +
∑
b<c,b/∈R(yb − xb)3b. Using the same

geometric series arguments as above, sgnfT
(x, y) = αc. By an analogous argument, we can show that

sgngT
(x, y) = βi.

3.4 Proving Theorem 3.3.1: Good and Bad Events
For a given set of queries Q, we first identify certain “bad” values for S, on which Q could potentially
distinguish between fT and gT for any T that extends S. We will prove that the probability of a bad S is
small for a given Q. Furthermore, we show that Q cannot distinguish between fT and gT for any T that
extends good S. First, we set up some definitions.

Definition 3.4.1. Given a pair (x, y), define cap(x, y) to be the 5 most significant coordinates1 in which
they differ. We say (x, y) captures these coordinates. For any set of points S ⊆ {0, 1}d′ , define cap(S) :=⋃
x,y∈S cap(x, y) to be the coordinates captured by the set S.

Fix any Q. We set Qi := Q ∩ Ci. We define two bad events for S.

• Abort Event A: There exist x, y ∈ Q with cap(x, y) ⊆ R.

• Collision Event C: There exist i, j ∈ [d] with ri = rj , such that ri ∈ cap(Qi) and rj ∈ cap(Qj).

If A does not occur, then for any pair (x, y), the sign sgnh(x, y) is determined by cap(x, y) for any h ∈
supp(Yes) ∪ supp(No). The heart of the analysis lies in Theorem 3.4.2, which states that the bad events
happen rarely. Theorem 3.4.2 is proved in Section 3.5.

Theorem 3.4.2. If |Q| ≤ δd log d, then Pr[A ∪ C] = O(δ).

When neither the abort nor the collision events happen, we say S is good for Q. Next, we show that
conditioned on a good S, the set Q cannot distinguish f ∼ Yes from g ∼ No.

Lemma 3.4.3. For any signed graph G over Q,

Pr
f∼Yes

[GQf = G|S is good]= Pr
g∼No

[GQg = G|S is good].

Proof. We first describe the high level ideas in the proof. As stated above, when the abort event does not
happen, the sign sgnh(x, y) is determined by cap(x, y) for any h ∈ supp(Yes)∪supp(No). Furthermore, a pair
(x, y) has a possibility of distinguishing (that is, the pair is interesting) only if x, y ∈ Ci and ri ∈ cap(x, y).
Focus on such interesting pairs. For such a pair, both sgnfT

(x, y) and sgngT
(x, y) are equally likely to be

+1 or −1. Therefore, to distinguish, we would need two interesting pairs, (x, y) ∈ Ci and (x′, y′) ∈ Cj with
i 6= j. Note that, when g ∼ No, the signs sgngT

(x, y) and sgngT
(x′, y′) are independently set, whereas when

f ∼ Yes, the signs are either the same when ri = rj , or independently set. But if the collision event does
not occur, then ri 6= rj for interesting pairs in different subcubes. Therefore, the probabilities are the same.

Now, we prove the lemma formally. Condition on a good S. Note that the probability of the Yes
distribution depends solely on {αb} and that of the No distribution depends solely on {βi}.

1There is nothing special about the constant 5. It just needs to be sufficiently large.
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Consider any pair (x, y) ∈ Q × Q with x ≺ y. We can classify it into three types: (i) x and y are
in different subcubes, (ii) x and y are both in the same subcube Ci, and tiS(x, y) 6= ri, (iii) x and y

are both in Ci, and tiS(x, y) = ri. For convenience, we refer to the third type as interesting pairs. Let
h ∈ supp(Yes|S) ∪ supp(No|S). For the first and second types of pairs, by Claim 3.3.2 and Claim 3.3.4, we
have sgnh(x, y) = 1. For interesting pairs, by Claim 3.3.4, sgnh(x, y) must have the same label for all pairs
in Qi ×Qi. Thus, any G whose labels disagree with the above can never be GQf or GQg .

Fix a signed graph G. For any pair (x, y) ∈ Q×Q, where x ≺ y, let w(x, y) be the label in G. Furthermore,
for all interesting pairs within the same Qi, the label w(x, y) is the same and denoted by wi. Let I denote
the set of subcubes with interesting pairs. At this point, all of our discussion depends purely on S and
involves no randomness.

Now we focus on g ∼ (No|S).

Pr
g∼(No|S)

[GQg = G] = Pr
[∧
i∈I

∧
x,y∈Qi

tiS(x,y)=ri

(w(x, y) = sgngT
(x, y))

]

= Pr
[∧
i∈I

∧
x,y∈Qi

tiS(x,y)=ri

(w(x, y) = βi)
]

(by Claim 3.3.4)

= Pr
[∧
i∈I

(wi = βi)
]
.

Observe that each βi is chosen uniformly and independently at random from {−1,+1}, and so this probability
is exactly 2−|I|.

The analogous expression for f ∼ (Yes|S) yields

Pr
f∼(Yes|S)

[GQf = G] = Pr
[∧
i∈I

(wi = αri
)
]
.

Notice that if multiple ri’s are the same, then the individual events are not independent over different
subcubes. This is precisely what the abort and collision events capture. We formally argue below.

Consider an interesting pair (x, y) ∈ Qi ×Qi. Since the abort event A does not happen, cap(x, y) * R.
If tiS(x, y) = ri /∈ cap(x, y), then there is a coordinate of R that is more significant than tiS(x, y). This
contradicts the definition of the latter; so ri ∈ cap(x, y) ⊆ cap(Qi). Equivalently, a subcube index i ∈ I iff
ri ∈ cap(Qi).

Since the collision event C does not happen, for any j ∈ [m] such that rj = ri, we have rj /∈ cap(Qj).
Alternately, for any i, i′ ∈ I, we have ri 6= ri′ . Thus, Pr[

∧
i∈I(wi = αri)] =

∏
i∈I Pr[wi = αri ] = 2−|I|,

completing the proof of the lemma.

Now, we are armed to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Given any subset of signed graphs, G, it suffices to upper bound∣∣∣∣ Pr
f∼Yes

[GQf ∈ G]− Pr
f∼No

[GQf ∈ G]
∣∣∣∣ ≤ ∑

good S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQf ∈ G|S]− Pr
f∼No

[GQf ∈ G|S]
)∣∣∣∣
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+
∑

bad S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQf ∈ G|S]− Pr
f∼No

[GQf ∈ G|S]
)∣∣∣∣ .

The first term of the RHS is 0 by Lemma 3.4.3. The second term is at most the probability of bad events,
which is O(δ) by Theorem 3.4.2.

3.5 Bounding the Probability of Bad Events: Proof of Theorem 3.4.2
We prove Theorem 3.4.2 by individually bounding Pr[A] and Pr[C].

Lemma 3.5.1. If |Q| ≤ δd log d, then Pr[A] ≤ d−1/4.

Proof. Fix any choice of k (in S). For any pair of points x, y ∈ Q, we have Pr[cap(x, y) ⊆ R] ≤ ( 2k

d−5 )5.
Since d− 5 ≥ d/2 for all d ≥ 10 and k ≤ (log2 d)/2, the probability is at most 32d−5/2. By a union bound,
Pr[A] ≤ |Q×Q| · 32d−5/2 ≤ d−1/4 for a large enough d.

The most challenging part of this work is bounding the probability of the collision event, which forms the
heart of the lower bound. We start by showing that, if each Qi captures few coordinates, then the collision
event has low probability. A critical point is the appearance of d log d in this bound.

Lemma 3.5.2. If
∑
i |cap(Qi)| ≤M , then Pr[C] = O

(
M

d log d

)
.

Proof. For any r ∈ [d], define Ar := {j : r ∈ cap(Qj)} to be the set of indices of Qj ’s that capture coordinate
r. Let ar := |Ar|. Define n` := |{r : ar ∈ (2`−1, 2`]}|. Observe that

∑
`≤log2 d

n`2` ≤ 2
∑
r∈[d] ar ≤ 2M .

Fix k. For r ∈ [d], we say the event Cr occurs if (a) r ∈ R, and (b) there exists i, j ∈ [d] such that
ri = rj = r, and ri ∈ cap(Qi) and rj ∈ cap(Qj). By the union bound, Pr[C|k] ≤

∑d
r=1 Pr[Cr|k].

Now, we compute Pr[Cr|k]. Only sets Qj ’s with j ∈ Ar are of interest, since the others do not capture r.
Event Cr occurs if at least two of these sets have ri = rj = r. Hence,

Pr[Cr|k] = Pr[r ∈ R] · Pr[∃i, j ∈ Ar : ri = rj = r | r ∈ R]

= 2k

d
·
∑
c≥2

(
ar
c

)(
1
2k

)c(
1− 1

2k

)ar−c

. (3.1)

A fixed r is in R with probability
(
d−1
2k−1

)
/
(
d
2k

)
= 2k

d . Given that |R| = 2k, the probability that ri = r is
precisely 2−k.

If ar ≥ 2k

4 , then we simply upper bound (3.1) by 2k

d . For ar <
2k

4 , we upper bound (3.1) by

2k

d

(
1− 1

2k

)ar ∑
c≥2

(
ar ·

1
2k ·

(
1− 1

2k

)−1
)c
≤ 2k

d

∑
c≥2

( ar
2k−1

)c
≤ 8a2

r

2kd .

Summing over all r and grouping according to n`, we get

Pr[C|k] ≤
d∑
r=1

Pr[Cr|k] ≤
∑

r:ar≥2k−2

2k

d
+ 8
d

∑
r:ar<2k−2

a2
r

2k ≤
2k

d

∑
`>k−2

n` + 8
d

k−2∑
`=1

n`22`−k.
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Averaging over all k, we get

Pr[C] = 2
log2 d

(log2 d)/2∑
k=1

Pr[C|k] ≤ 16
d log2 d

(log2 d)/2∑
k=1

(
k−2∑
`=1

n`22`−k +
∑
`>k−2

n`2k
)

= 16
d log2 d

(log2 d)/2∑
`=1

n`
∑
k≥`+2

22`−k +
log2 d∑
`=1

n`
∑
k<`+2

2k
 . (3.2)

Now,
∑
k≥`+2 22`−k ≤ 2` and

∑
k<`+2 2k ≤ 4 ·2`. Substituting, Pr[C] ≤ 80

d log2 d

∑log2 d
`=1 n`2` ≤ 160M

d log2 d
, proving

the lemma.

We are now left to bound
∑
i |cap(Qi)|. This is done by the following combinatorial lemma.

Lemma 3.5.3. Let V be a set of vectors over an arbitrary alphabet and any number of dimensions. For any
natural number c and x, y ∈ V , let capc(x, y) denote the (set of) first c coordinates at which x and y differ.
Then |capc(V )| ≤ c(|V | − 1).

Proof. We construct c different edge-colored graphs G1, . . . , Gc over the vertex set V . For every coordinate
i ∈ capc(V ), there must exist at least one pair of vectors x, y such that i ∈ capc(x, y). Thinking of each
capc(x, y) as an ordered set, find a pair (x, y) where i appears “earliest” in capc(x, y). Let the position of i
in this capc(x, y) be denoted by t. We add edge (x, y) to Gt, and color it i. Note that the same edge (x, y)
cannot be added to Gt with multiple colors, and hence all Gt’s are simple graphs. Furthermore, observe that
each color is present only once over all Gt’s.

We claim that each Gt is acyclic. Suppose not. Let there be a cycle C and let (x, y) be the edge in C
with the smallest color i. Clearly, xi 6= yi since i ∈ capc(x, y). There must exist another edge (u, v) in C
such that ui 6= vi. Furthermore, the color of (u, v) is j > i. Thus, j is the tth entry in capc(u, v). Note that
i ∈ capc(u, v) and must be the sth entry for some s < t. But this means that the edge (u, v) colored i should
be in Gs, contradicting the presence of (x, y) ∈ Gt.

We wrap up the bound now.

Lemma 3.5.4. If |Q| ≤ δd log d, then Pr[C] = O(δ).

Proof. Lemma 3.5.3 applied to each Qi, yields
∑
i |cap(Qi)| ≤ 5|Qi| = 5|Q|. An application of Lemma 3.5.2

completes the proof.
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Chapter 4 |
Conclusion and Open Directions

In this work, we give the first algorithms for testing unateness of real-valued functions over the hypercube
as well as the hypergrid domains. We also show that our algorithms are optimal by proving matching
lower bounds, thus resolving the query complexity of testing unateness of real-valued functions. Our results
demonstrate that, for real-valued functions, in contrast to monotonicity testing, adaptivity helps with testing
unateness.

The query complexity of testing unateness of Boolean functions has not been completely resolved yet.
Concurrent with our work, Chen et al. [24] proved a lower bound of Ω

(
d2/3

log3 d

)
for adaptive unateness testers

of Boolean functions over {0, 1}d. Subsequently, Chen et al. [25] gave an adaptive unateness tester with
query complexity Õ

(
d3/4

ε2

)
for the same class of functions. It remains to be seen if this polynomial gap (in

d) between the bounds can be closed further.
On nonadaptive unateness testing of Boolean functions over {0, 1}d, in a subsequent work, Baleshzar et

al. [26] proved a lower bound of Ω
(

d
log d

)
for one-sided error testers. Since Boolean functions are special cases

of real-valued functions, our nonadaptive algorithm over the hypercube also works for Boolean functions.
The query complexity of this algorithm is O

(
d log d
ε

)
which is currently the best known upper bound. An

interesting open question is to determine if testers with two-sided error have better query complexity than
testers with one-sided error in the nonadaptive setting.
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Appendix |
Missing Details from the Main Body

1 The Lower Bound for Adaptive Testers over Hypergrids

We show that every unateness tester for functions f : [n]d 7→ R requires Ω
(
d logn
ε − log 1/ε

ε

)
queries for

ε ∈ (0, 1/4) and prove Theorem 1.4.3.

Proof of Theorem 1.4.3. By Yao’s minimax principle and the reduction to testing with comparison-based
testers from [4,6] (stated for completeness in Theorem 3.1.3), it is sufficient to give a hard input distribution
on which every deterministic comparison-based tester fails with probability more than 2/3. We use the
hard distribution constructed by Chakrabarty and Seshadhri [6] to prove the same lower bound for testing
monotonicity. Their distribution is a mixture of two distributions, Yes and No, on positive and negative
instances, respectively. Positive instances for their problem are functions that are monotone and, therefore,
unate; negative instances are functions that are ε-far from monotone. We show that their No distribution is
supported on functions that are ε-far from unate, i.e., negative instances for our problem. Then the required
lower bound for unateness follows from the fact that every deterministic comparison-based tester needs the
stated number of queries to distinguish Yes and No distributions with high enough probability.

We start by describing the Yes and No distribution used in [6]. We will define them as distributions
on functions over the hypercube domain. Next, we explain how to convert functions over hypercubes to
functions over hypergrids.

Without loss of generality, assume n is a power of 2 and let ` := log2 n. For any z ∈ [n], let bin(z) denote
the binary representation of z − 1 as an `-bit vector (z1, . . . , z`), where z1 is the least significant bit.

We now describe the mapping used to convert functions on hypergrids to functions on hypercubes. Let
φ : [n]d → {0, 1}d` be the mapping that takes y ∈ [n]d to the concatenation of bin(y1), . . . , bin(yd). Any
function f : {0, 1}d` 7→ R can be easily converted into a function f̃ : [n]d 7→ R, where f̃(y) := f(φ(y)).

Let m := d`. For x ∈ {0, 1}m, let val(x) =
∑m
i=1 xi2i−1 denote the value of the binary number

represented by vector x. For simplicity, assume 1/ε is a power of 2. Partition the set of points x ∈ {0, 1}m

according to the most significant log(1/2ε) dimensions. That is, for k ∈ {1, 2, . . . , 1/2ε}, let

Sk := {x : val(x) ∈ [(k − 1) · ε2m+1, k · ε2m+1 − 1]}.
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The hypercube is partitioned into 1/2ε sets Sk of equal size, and each Sk forms a subcube of dimension
m′ = m− log(1/ε) + 1.

We now describe the Yes and No distributions for functions on hypercubes. The Yes distribution
consists of a single function f(x) = 2val(x). The No distribution is uniform over m′/2ε functions gj,k,
where j ∈ [m′] and k ∈ [1/2ε], defined as follows:

gj,k(x) =

2val(x)− 2j − 1 if xj = 1 and x ∈ Sk;

2val(x), otherwise.

To get the Yes and No distributions for the hypergrid, we convert f to f̃ and each function gj,k to g̃j,k,
using the transformation defined before.

Chakrabarty and Seshadhri [6] proved that f is monotone and each function g̃j,k is ε-far from monotone.
It remains to show that functions g̃j,k are also ε-far from unate.

Claim 1.1. Each function g̃j,k is ε-far from unate.

Proof. To prove that g̃j,k is ε-far from unate, it suffices to show that there exists a dimension i, such that
there are at least ε2d` increasing i-pairs and at least ε2d` decreasing i-pairs w.r.t. g̃j,k and that all of these
i-pairs are disjoint. Let u, v ∈ [n]d be two points such that φ(u) and φ(v) differ only in the jth bit. Clearly,
u and v form an i-pair, where i = dj/`e. Now, if φ(u), φ(v) ∈ Sk and u ≺ v, then g̃j,k(v) = g̃j,k(u)− 1. So,
the i-pair (u, v) is decreasing. The total number of such i-pairs is 2d`−log(1/2ε)−1 = ε2d`. If φ(u), φ(v) ∈ Sk′
where k′ 6= k, then the i-pair (u, v) is increasing. Clearly, there are at least ε2d` such i-pairs. All the i-pairs
we mentioned are disjoint. Hence, g̃j,k is ε-far from unate.

This completes the proof of Theorem 1.4.3.

2 The Lower Bound for Nonadaptive Testers over Hypergrids
The lower bound for nonadaptive testers over hypergrids follows from a combination of the lower bound for
nonadaptive testers over hypercube and the lower bound for adaptive testers over hypergrids.

Theorem 2.1. Any nonadaptive unateness tester (even with two-sided error) for real-values functions f :
[n]d 7→ R must make Ω(d(logn+ log d)) queries.

Proof. Fix ε = 1/8. The proof consists of two parts. The lower bound for adaptive testers is also a lower
bound for nonadaptive tester, and so, the bound of Ω(d logn) holds. Next, we extend the Ω(d log d) lower
bound for hypercubes. Assume n to be a power of 2. Define function ψ : [n] 7→ {0, 1} as ψ(a) := 1[a >
n/2] for a ∈ [n]. For x = (x1, x2, . . . , xd) ∈ [n]d, define the mapping Ψ : [n]d 7→ {0, 1}d as Ψ(x) :=
(ψ(x1), ψ(x2), . . . , ψ(xd)). Any function f : {0, 1}d 7→ R can be extended to f̃ : [n]d 7→ R using the mapping
f̃(x) = f(Ψ(x)) for all x ∈ [n]d. The proof of Theorem 3.2.1 goes through for hypergrids as well, and so we
have an Ω(d log d) lower bound. Combining the two lower bounds, we get a bound of Ω(d ·max{logn, log d}),
which is asymptotically equal to Ω(d(logn+ log d)).
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