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Abstract

This dissertation consists of two parts. In the first part, we develop a new
statistical procedure for analysing HIV data to improve efficiency of parameter
estimates by incorporating extra available information. Also, we use the procedure
to study the impact of this additional information. In the second part, we develop a
new error variance function estimation procedure for ultrahigh dimensional varying
coefficient models.

The human immunodeficiency virus (HIV) is a lentivirus that causes HIV
infection and acquired immunodeficiency syndrome (AIDS). Accurate estimation
and prediction of HIV epidemics can help people have a better understanding
on HIV epidemics, and also help government make laws and formulate policies.
Two key indicators, prevalence and incidence, are widely used to estimate HIV
epidemics. HIV prevalence is the proportion of HIV positive population among
the general population. HIV incidence is the proportion of new HIV infections
among the general population.The new treatment, Antiretroviral treatment (ART),
reduces the AIDS-related deaths, and changes the AIDS-related mortality rate
substantially. In the UNAIDS 2014 Gap report, the number of people who are
newly infected with HIV is continuing to decline in most countries and regions
in the world, which suggests a slow-down of HIV epidemics. Traditionally, the
increase of HIV prevalence rate mostly is due to the increase of new infections.
However, reduction of AIDS-related deaths becomes another important reason of
increasing HIV prevalence rate. In this case, knowing incidence helps people fuller
understand the HIV epidemic. One of our goals is to utilize the newly available
incidence assays in the process of estimation and projection of HIV epidemics, and to
understand the contribution of such data in the presence of historical HIV prevalence
data, which has been the main data source for estimating HIV epidemics. The
Susceptible-Infectious-Recovered (SIR) system is widely used in the epidemiology.
Under Bayesian framework, Incremental Mixture Importance Sampling (IMIS) can
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be used to draw the posterior samples. The current method to incorporate new
incidence assays with SIR model is to fit the historical prevalence data and new
incidence data all over again even if the fitted results to the prevalence data are
available. We propose a new method, Sequential IMIS, to estimate prevalence
and incidence with assay data. Our method reduces the computing time in most
scenarios, and enables the study the impact of incidence assay data in multiple
scenarios. Also, we improve the stopping rule for IMIS to avoid the algorithm
stops in the local maximum. Incidence assay data are impact by four parameters:
prevalence, incidence, the false recent rate (FRR), and mean duration of recent
infection (MDRI). We use the proposed method to study the impact to prevalence
and incidence rates and impact to the changes of prevalence and incidence rates
over time when incorporating the new incidence assay data. This impact takes
both one time data and time series data into consideration. Our research shows
that in most countries, incidence assay data can significantly improve the accuracy
of the incidence estimate.

In the second part, we propose a new estimation procedure for error variance
function estimation for ultrahigh dimensional varying coefficient models (VCM).
Low dimensional VCM was systematically introduced in Hastie and Tibshirani
(1993), and is one of the most commonly used nonparametric regression models in
statistics. Error variance function estimation plays important roles in estimation
of confidence interval and hypothesis testing for VCM, and is very challenging in
the present of ultrahigh dimensional covariates. A naive way is to select variables
first, and refit the model with low dimensional selected models. We first show both
theoretically and empirically that this naive estimator significantly underestimates
the error variance and may lead to an inconsistent estimate. We further propose a
new estimation procedure for error variance function by using group least absolute
shrinkage and selection operator (LASSO) and refitted cross-validation (RCV)
techniques. We study the asymptotic property of the RCV estimate, and compare
it with the naive estimate. Our findings include that the RCV estimator is consistent
estimator and follows an asymptotic normal distribution with smallest variance. It
significantly improves the naive estimator. We further conduct simulation studies
to examine the finite sample performance of the RCV estimate.
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Chapter 1 |
Introduction

This dissertation consists of two parts. The first part is devoted to developing

more efficient statistical estimation procedures, Sequential Incremental Mixture

Importance Sampling (S-IMIS), to incorporate incidence assays. Also, we use this

new procedure to study the impact of assay data. In the second part, We propose

a new error variance estimation procedure for varying coefficient models in the

presence of ultrahigh dimensional covariates. This introduction will consist of two

parts respectively, one for S-IMIS and the other one for error variance estimation

in ultrahigh dimensional regression models.

1.1 Introduction for S-IMIS

1.1.1 Motivation

The human immunodeficiency virus (HIV) is a lentivirus that causes HIV

infection and acquired immunodeficiency syndrome (AIDS). It ranks sixth in the

causes of death among all people, and ranks second in the low-income group,

according to World Health Organization (WHO) 2012 report. Two key indicators,

prevalence and incidence, are widely used to estimate HIV epidemics. Prevalence is
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the proportion of people living with HIV infection at a given time, such as at the end

of a given year. Incidence is the proportion of new HIV infections that occur during

a given year. Prevalence is the commonly used indicator, because incidence is hard

to be measured due to lack of accurate testing method. HIV/AIDS epidemics are

defined by the HIV prevalence in the general population. Based on the prevalence

level in the population, we describe the HIV epidemics as concentrated epidemics

and generalized epidemics. Generalized epidemics are defined as the epidemics with

HIV prevalence among pregnant women above 1% on a national basis, which are

considered as high-prevalence. generalized or low level epidemics are defined as

HIV prevalence below 1% in the general population, but exceeds 5% in specific

at-risk population (UNAIDS, 2000).

Since mid-1970s, HIV starts an explosive epidemic around the world. It becomes

critical to estimate the HIV trend accurately. Fortunately, HIV prevalence did not

increase infinitely, it saturated at some level as most other epidemics (UNAIDS,

1999). At that time, because of technology restriction, our focus is to estimate

prevalence. After two decades, the prevalence of HIV reached the peak in most

countries, which already resulted in more than a quarter of young and middle-aged

adults are infected with HIV in many cities in sub-Saharan African countries (MAP,

2001). In most countries with available and adequate HIV surveillance data, there

was an observed fall in HIV prevalence around 1990s (UNAIDS, 1999). Recent

years, the number of people who are newly infected with HIV is continuing to

decline in most parts of the world, which suggests a slow-down of HIV epidemics

(UNAIDS, 2014b).

Numerous work has been done by governments and organizations all over the

world, and we have made a great achievement by significantly reducing the new

HIV infection during the past two decades. One most important achievement is

availability of antiretroviral treatment (ART), which has substantially reduced

the AIDS-specific mortality. According to UNAIDS Gap report 2014, since 1995,
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ART has averted 7.6 million deaths globally, and have gained approximately 40.2

million life-years since the epidemic started. However, the situation is still critical

especially in some low-income countries. Globally, nearly 75% of all people with

HIV live in fifteen countries. In every region of the world, the majority of people

with HIV live in three to four countries (UNAIDS, 2014b). Therefore, controlling

new infections in those high risk countries becomes the critical part to fulfill the

Fast-Track strategy to end the AIDS epidemic by 2030 (UNAIDS, 2014a). To

achieve the goal, a 90% decline compared 2030 to 2010 of the number of new HIV

infections and AIDS-related deaths is required.

Since 1980s, a long-time series of surveillance data has been collected, which

allows us to estimate HIV prevalence and incidence. Due to technology restriction,

in the past, only HIV prevalence data is available. HIV prevalence data records

HIV status, and classifies population into HIV positive and negative groups. There

are several kinds of prevalence data, such as the national population-based survey

(NPBS) data, antenatal clinical (ANC) data, the prevention of mother-to-child

transmission (PMTCT) data, and voluntary counseling and testing (VCT) data.

NPBS is a door-to-door survey with HIV related questions and HIV testing. It

collects the most accurate prevalence data in most generalized epidemic countries.

Countries with NPBS conducted give a better performance on the estimates, such

as smaller confidence intervals than the countries without (UNAIDS, 2014c). NPBS

provides estimates of HIV prevalence in the national level, as well as for different

subgroups, such as different location groups, different age groups, and different sex

groups. It is a major advantage compared to other HIV prevalence data. Also, it

can be linked to other information, such as social, behavioral and other biomedical

information. Those combined information gives the scientists the chance to study

the epidemics in details (Gouws et al., 2008). However, due to the high cost of this

survey, NPBS data is only available for very few years, especially in the low-income

countries. Moreover, a selection bias might be exists. One of the reason is the
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intention to reject the test of people with acknowledge of their infection. Another

reason is the absence of survey due to the limited survey time (WHO/UNAIDS,

2003). A systematic selection model can be applied here to correct the bias, when

HIV positive individuals are systematically opting out of HIV testing (Marra et al.,

2015).

Another important data source is antenatal clinical (ANC) data. It records

the HIV status of pregnant women attending antenatal clinics. ANC data is the

major data source to assess the HIV trends (Ghys et al., 2006). Obviously, we

have a clinical bias and a selection bias since pregnant women usually have more

sex activities. Moreover, for those countries with limited participating clinics, the

concern about the ANC data limited coverage arises(WHO/UNAIDS, 2003). But

still, it is the most feasible data with acceptable cost, especially in those countries

cannot afford frequent national surveys. In more than 115 countries worldwide,

ANC data is available (UNAIDS/WHO/CDC, 2003).

There are also some other prevalence data such as the prevention of mother-

to-child transmission (PMTCT), and voluntary counseling and testing (VCT).

However, they are less available, representative of a small section of the population

(sex workers, occupational groups), or subject to additional bias (for example,

VCT). There is a much better data, case-report data, which records all the HIV

infections in the countries. However, it is only available in very few high-income

countries. In this dissertation, our focus in in Africa countries. Therefore, NPBS

data and ANC data are the main data sources.

From the discussion above, we can see that it is not easy to estimate HIV

prevalence and incidence with those surveillance data. First, there is a serious

sampling bias, for example, only pregnant women are tested in ANC data. Since data

from reviewed scientific publications are not available for many localities, it is very

hard to estimate the bias accurately based on the historical data. Second, sample
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size might be very small considering the scale of the clinics and the availability of

the national survey in those countries with war zone. Moreover, in some low-income

countries, the reliability of diagnostic tests is a big concern. In the last, there

are some countries without any national survey and the estimates may have bad

national representative (UNAIDS, 1999). All those reasons lead to a difficulty to

estimate HIV prevalence accurately, not mention the HIV incidence.

In the past, due to the high epidemics, our main focus is on HIV prevalence.

However, the estimation methods were pretty rough. As long-time surveillance data

becomes available, more complicated models have been proposed. For concentrated

epidemics, the workbook method is currently recommended. For generalized

epidemics, UNAIDS has developed a new tool, Estimation and Projection Package

(EPP), to construct the epidemic curves. EPP gives national and sub-national

epidemic curves. It allows us to study the levels and trends easily. Since our main

focus is in Africa, where the HIV prevalence is relative large, EPP model is our

primary model is this dissertation. This model incorporates different data sources,

which makes the model available even for new data sources. For countries with

unclear epidemic level, both methods can be applied (Ghys et al., 2004).

1.1.2 Challenges for Estimating the Impact of Incidence Assays

Data

Traditionally, the increase of HIV prevalence rates mostly due to the increase

of new infections. However, reduction of AIDS-related deaths becomes another im-

portant reason of increasing HIV prevalence rates. In this case, knowing prevalence

is not enough, we also need to know incidence to help people fully understand HIV

epidemics. One of the United Nation (UN) Millennium Sustainable Development

Goals is that “by 2030, end the epidemics of AIDS". The goal requires strong

control on the new infection population, which is monitored by incidence rates. In

5



this dissertation, one of our major goals is to study the impact of newly available

incidence assay data to the current incidence estimate, and to improve related

computing algorithm.

Considering the limited budget in most generalized epidemic countries, accu-

rate estimation and prediction of both prevalence and incidence rates become

an important part to control the HIV epidemics. It can help people to have a

better understanding on HIV epidemics, and also help government make laws and

formulate policies. Multiple billion dollars has been used to stop HIV epidemics

each year. Accuracy of the estimation and prediction may determine the usage of

billion dollars, which affects millions of people’s life.

Traditionally, due to lack of availability of incidence data, incidence is hard to

estimate. One easy way to roughly estimate HIV incidence is to use the difference

of prevalence estimates. For example, the incidence rate in 1980 is approximately

the difference between prevalence estimates in 1979 and 1980 after considering the

immigration, mortality and other social information. This method is acceptable in

the early years since the difference was mostly due to the new infection. However,

after the epidemic peak around 1990s, HIV prevalence rates started to fall in most

countries. In some area, high HIV prevalence is due the longer years of HIV positive

population. It is obviously not appropriate to use the estimates of prevalence rate

to cover the usage of estimates of incidence rates. Estimating incidence becomes a

new focus, which makes the availability on incidence data become an urgent work.

Recently, new technology makes it possible to test for new infection efficiently,

which allows the collection of incidence data. Incidence data classifies the population

into three groups, HIV negative groups, HIV non-recent infected groups and HIV

recent infected groups. The main incidence data we discuss in this dissertation

is incidence assay data. The data estimates the infectious window period based

on antibody assays (Busch et al., 2010). Now, incidence assay data is collected
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under the framework of national population based survey. The new NPBS further

classifies the HIV positive groups into recent and non-recent infected groups. To

avoid confusion, NPBS data in this dissertation still refers to the prevalence data

we talked before. The new incidence data is called incidence assay data. Naturally,

the new incidence assay data directly gives us information on the HIV incidence,

comparing to “borrow” information from prevalence data. So, theoretically, we can

have a better estimates on incidence based on incidence data. Since prevalence and

incidence are highly related, it is necessary to use both data sources to estimate

prevalence and incidence. Therefore, how to incorporate the incidence data to the

old models and the impact to the old estimates become new problems.

Incidence data came to reality only about five years ago, and there are still

argument about its real value. For governments, without a significant improve

on estimates, a huge money used for incidence tests can be saved for other fields,

especially for those countries with very limited budgets. In this dissertation, one of

our goals is to estimate the impact of new incidence assays to the current prevalence

and incidence estimates, and also improve related computing algorithm.

The major challenge to estimate impact of assay data, is the small sample size.

Assay data came into reality only for a few years, and the data is inadequate in

most Africa countries. Considering the small sample size of the original NPBS

data, the final number of HIV positive individuals in the sample is very small. So,

the different incidence rate does not change the likelihood as much as the different

prevalence. For example, in Kenya rural area, the sample size of NPBS data in

year 2012 is 7501, among which the HIV positive number is 383. According to the

estimates from without assay data, the number of HIV recent-infected is around

15. Even the incidence estimates directly from assay data has a big difference

from the estimates from estimates without assays, it can affect the final estimates

very little considering the very small sample size. Another challenge is about the

quality of incidence assays. Considering the small sample size, there is possible
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randomness which can affects the quality of assay data. Also, since this is related

new technology, there is also doubt of the reliably. This situation will become

better after several years of incidence assay data been collected in the future.

1.1.3 Contributions

As we discussed above, multiple data sources are used to estimate the prevalence

and incidence. For the new data source, incidence assay data, we first introduce

the method to incorporate it to the existing model (Bao, Ye, and Hallett, 2014).

Our goal is to study the impact of the assay data, and justify its real value. In

that case, we cannot afford to wait for enough data and then study the impact.

So, simulation study becomes a good strategy. This can consider all the possible

scenarios of new assays. One nature way to incorporate the assay data, is to add a

new data structure in EPP and fit the historical prevalence data and new incidence

data all over again. However, we have to consider a large quantity of scenarios

in order to give an overall suggestion to the impact of incidence data. There are

too many countries and variables affecting the incidence estimates. It leads to an

unaffordable computing cost. It is very time-consuming and even a waste to re-run

the whole EPP again, especially when we already have the estimates without assays.

In this dissertation, we propose sequential-IMIS to reduce the computing time by

using the existing EPP results from prevalence data without assays. Our method

reduces the computing time in most scenarios, and enables the study of the impact

of incidence assay data in multiple scenarios. Also, we improve the stopping rule

for IMIS to avoid the algorithm stops in the incorrect local maximum.

In order to study the impact, two impacts are taken into consideration, one

is the impact to the estimator of prevalence and incidence, and another one is

the changes of prevalence and incidence over time. We simulate all kinds of

scenarios of incidence data based on different FRR and MDRI. We first consider
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the simplest case, in which we will only have one-year incidence assay data. Based

on the method, a time series incidence data is naturally the next study goal. We

impose a simple time series structure on the infection rate to ensure the simulation

covering both increasing and decreasing incidence trend. Our research shows that

in most countries, incidence assay data can significantly improve the accuracy of

the incidence estimate.

1.2 Introduction for Error Variance Estimation

High-dimensional data have frequently been collected in various scientific re-

search areas such as tumor classifications, biomedical imaging, genomics, tomog-

raphy and finance. Analysis of high-dimensional data poses many challenges for

statisticians. As demonstrated in Donoho et al. (2000), there is urgent need for devel-

oping new statistical methodologies and theories for high-dimensional data analysis.

A comprehensive overview of statistical challenges with high-dimensionality in

various statistical problems can be found in Fan and Li (2006). Various challenges

in analysis of big data may be found in Fan, Han, and Liu (2014). In the last

two decades, statisticians were devoted to developing new variable selection and

feature screening procedures, which are fundamental for high-dimensional data

analysis. There have been a huge number of research works on high dimensional

data analysis in the literature. It is impossible for us to give a comprehensive review

here. Readers are referred to Fan and Lv (2008), Bühlmann and Van De Geer

(2011) and references therein. Statistical inference on high-dimensional data calls

for new statistical methodologies and theories.
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1.2.1 Error Variance Estimation

Error variance estimation plays a critical role in statistical inference for high

dimensional regression models. Confidence/Prediction interval construction and

testing hypotheses on regression coefficients all require an accurate estimate of the

error variance. For linear regression with finite dimensional predictors, the adjusted

mean squared error provides an unbiased estimate of the error variance, and it

performs well when the sample size is much larger than the number of predictors.

In the presence of ultrahigh dimensional covariates, error variance estimation

indeed is a challenging task. It has been empirically observed that the mean

squared error estimator leads to an underestimation of the error variance when

model is significantly over-fitted. Specifically, it is typical to impose sparsity

assumption in the presence of ultrahigh dimensional covariates. Feature screening

and variable selection procedures will be implemented to reduce dimensionality.

This leads to spurious correlation. Inclusion of spuriously correlated variables leads

to significantly over-fitted model. As a result, this leads to an underestimate of

error variance. On the other hand, if one does not impose sparsity assumption,

the full model is saturated and all residuals equal 0. As a result, residual sums of

squares equals 0, and the mean squared errors does not perform well in this case.

Sun and Zhang (2012) developed the scaled LASSO methods for estimating

the regression coefficients and error variance jointly. They further demonstrated

the scaled LASSO works reasonably well for error variance estimation in high

dimensional linear models. Clearly, it is challenging to extend the scaled LASSO

for other models. Fan, Guo, and Hao (2012) demonstrated the challenges of error

variance estimation in the high-dimensional linear regression analysis. They firstly

confirmed that the ordinal adjusted mean squared errors is an underestimate

of the error variance, and it is not a consistent under certain conditions. They

further developed an accurate error variance estimator by introducing refitted cross-
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validation (RCV) techniques. Reid, Tibshirani, and Friedman (2013) compared

eleven methods for error variance estimation methods. Readers are referred to their

paper for details.

Due to the complex structure of high dimensional data, the high dimensional

linear regression analysis may be a good start, but it may not be powerful to

explore nonlinear features inherent into data. Nonparametric regression modeling

provides valuable analysis for high dimensional data (Negahban et al., 2009; Hall

and Miller, 2009). This is particularly the case for error variance estimation, as

nonparametric modeling reduces modeling biases in the estimate. This paper aims

to study issues of error variance estimation in ultrahigh dimensional nonparametric

regression settings. Chen, Fan, and Li (2016) further extended the RCV method to

ultrahigh dimensional additive models. The second part of this dissertation aims to

develop new error variance estimation for ultrahigh dimensional varying coefficient

models, which was systematically studied by Hastie and Tibshirani (1993).

1.2.2 Contribution

Let Y be a response variable, U be a continuous covariate and X be a p-

dimensional covariate vector. Varying coefficient model to be studied in this

dissertation has the following form

Y = XTα(U) + σ(U)ε,

where α(u) = (α1(u), · · · , αp(u))T consists of the nonparametric coefficient func-

tions, ε is a random error with mean 0 and variance 1. The second part of this

dissertation aims to construct a root n consistent estimator for σ2(u) in the presence

of ultrahigh dimensional covariate (i.e, log(p) = O(nζ), for some ζ > 0, where n

is the sample size). We call σ2(u) to be the varying error variance function to
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emphasize it is not a constant error variance. Existing work on error variance

estimation is limited to estimate constant error variance. Thus, this dissertation

is the first one to consider estimation of error variance function under ultrahigh

dimensional setting.

In Chapter 5, we first study the behavior of naive error variance function

estimator. The naive estimator is a three-step procedure: (a) we employ local linear

grouped LASSO to select important variables; (b) we use local linear regression to

estimate the coefficient functions in the selected model in order to avoid estimation

bias inherent in the LASSO procedure, and (c) we applied kernel regression on the

squared residuals to estimate the error variance function. We prove that this naive

estimator has non-ignorable bias, and is not root nhn convergent, where hn is the

bandwidth used in the kernel regression in Step (c).

To avoid the non-ignorable bias of the naive estimator, we propose a new

estimator for the error variance function based on the RCV techniques (Fan, Guo,

and Hao, 2012; Chen, Fan, and Li, 2016). Both Fan, Guo, and Hao (2012) and Chen,

Fan, and Li (2016) proposed the RCV technique to estimate constant variance

based on (global) least squares method, in which the projection matrix can be

easily obtained. There are several challenging in using RCV techniques to estimate

the error variance function using local model techniques. The first hurdle is the

numerical optimization related to local linear group LASSO. To deal with these

issues, we propose coordinate block descent (BCD) algorithm for the local linear

group LASSO. The second hurdle is to develop the theoretical properties of the

RCV estimator. The challenge is the difference between the observed responses

and the fitted values cannot be represented as the same way as that for constant

error variance estimator. This requires to develop entirely new theory for the newly

proposed RCV estimator. We systematically study the asymptotical properties

of the proposed RCV estimator, and establish the asymptotical normality of the

resulting RCV estimator. The asymptotical normality implies that the proposed
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RCV estimator shares the same asymptotic variance as the oracle estimator in

which one knew the true values of regression coefficient functions in advance. Our

Monte Carlo simulation study confirms our theoretical findings.

1.3 Organization of This Dissertation

Chapter 2 gives a literature review on the model and statistical procedures

related to this dissertation research. Section 2.1 describes the history, structure,

mechanics of EPP model and the within Bayesian framework. Section 2.2 describes

IMIS algorithm. Section 2.3 presents the estimation methods for low dimensional

varying coefficient model, and Section 2.4 summarizes a brief review on variable

selection and feature screening. Section 2.5 discusses the challenge of analysing

ultrahigh dimensional data, and introduces refitted cross-validation (RCV) method

to estimate error variance along with some other common methods.

In Chapter 3, we propose sequential IMIS algorithm. Section 3.1 describes the

proposed method and algorithm thoroughly. Section 3.2 is the simulation study

based on EPP model to show the advantages of our proposed method.

In Chapter 4, we further study the impact of the new incidence assay data.

Section 4.1 is the general methods and goals for the numerical study in this chapter.

Section 4.2 studies the impact of single year incidence assays, and Section 4.3

studies the impact of time series incidence assays.

In Chapter 5, we devote to developing the error variance function estimation

procedure for the ultrahigh dimensional varying coefficient models. Section 5.1

gives a brief introduction to the error variance estimating problem for high dimen-

sional data. Section 5.2 introduces the model for ultrahigh dimension VCM with

heteroscedastic error. Section 5.3 proposes the three-stage naive estimator for the

error variance, along with the theoretical results. Section 5.4 proposes an RCV

13



estimator for the error variance. Theoretical property of RCV estimator is also

given. Section 5.5 develops the algorithm to implement group LASSO, which is

the variable selection method in this chapter. Then the simulation study and real

data example are put in Section 5.6 and 5.7 respectively. Section 5.8 is the detailed

proofs of the theory along with the regularity conditions.
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Chapter 2 |

Literature Review

In the first part of this chapter, we introduce the Estimation and Projection

Package (EPP) framework and the within computing method, Incremental Mixture

Importance Sampling (IMIS), in Section 2.1 and 2.2 respectively. And in the

second part, Section 2.3 presents the estimation methods for low dimensional

varying coefficient model, and Section 2.4 summarizes a brief review on variable

selection and feature screening. Section 2.5 discusses the challenge of analysing

ultra-dimensional data, and introduces refitted cross-validation (RCV) method to

estimate error variance along with some other common methods.

2.1 Estimation and Projection Package (EPP)

We have briefly talked about EPP software in previous section. In this section,

we further introduce EPP model, including the history and model details.

2.1.1 History

Since 1980s, HIV surveillance data becomes available, which allows us to study

the trend of HIV prevalence and incidence. The method to derive the HIV prevalence
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and incidence estimates in early 1990s are pretty naive, which can only derive the

point estimation. The method to derive the WHO end-1994 estimates is simply

to use the HIV survey prevalence estimate of certain group times the group size

proportion in the whole population, and take the summation based on the group.

Estimated number of HIV positive individual =
∑

i Ripi/ni, where pi is the HIV

positive in the sample group i, ni is the group sample size, and Ri is the estimated

population size of group i (Burton and Mertens, 1998). Then, it was extended to

a two-step method to derive the WHO end-1997 country-specific estimates. The

first step is to produce the point estimates from 1994 to 1997, then the second

step is to fit an epidemic curve which could describe the spread of HIV in each

country. The AIDS epidemic software, EPIMODEL, is used to calculate estimates

of incidence and mortality from this epidemic curve. This is the first time that

the HIV prevalence trend is estimated properly (Schwartländer et al., 1999). Then

in 1999, Joint United Nations Programme on HIV/AIDS (UNAIDS) Reference

Group on Estimates, Modelling and Projections is created to provide guidance on

the procedures and assumptions used in preparing estimates of HIV/AIDS and its

impact (Walker et al., 2003).

Estimation and Projection Package (EPP) is a software developed by UNAIDS

to estimate national or sub-national time-series prevalence and incidence. Besides

incidence and prevalence projection, EPP also produces deaths, and AIDS impacts,

which can be the input to Spectrum (Brown et al., 2006). The Spectrum Projection

Package is a tool to study the consequence of AIDS, such as AIDS-related mortality,

AIDS group effect and other epidemiology information (Stover, 2004). EPP is first

introduced in the UNAIDS/WHO end-2001 estimates for the generalized epidemics.

There are four parameters in the model in the original EPP model: infection rate r,

starting date t(0), the peak prevalence at starting time with respect to each at-risk

group f(0), and final endemic prevalence parameter Φ. The method is to find the

best curve with least square estimation of the four parameters, which minimizing
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the square difference between the curve and the data points (Walker et al., 2003;

Zaba et al., 2002). In this version, only prevalence projection is available. UNAIDS

also gives a detailed introduction of EPP (Ghys et al., 2004).

Since then, EPP software and model have been updated every few years. In

EPP 2005, the major updates of the model include: incidence trends are available;

the infection rate r is allowed to change over time; EPP can adjust HIV prevalence

considering the general population information (Brown et al., 2006). In EPP

2007, the Bayesian melding approach is added (Brown et al., 2008). It is part of

the current method in EPP. In EPP 2009, ART information is available, which

includes the CD4 eligibility criterion, HIV progression rate and numbers on first-

and second-line ART. Also, IMIS is first introduced to use in the EPP model,

which helps to draw posterior samples under the Bayesian framework (Brown et al.,

2010). And r-stochastic model was first introduced into EPP. In EPP 2011, two

new infection models, r-spline model and r-trend model are added, which allow

the infection rate to change over time much more smooth with limited parameters

(Hogan and Salomon, 2012). Also, the integration of EPP and Spectrum came into

reality (Stover et al., 2012). The basic model structure has not changed since then

(Bao et al., 2012).

The most recent update is in 2013. In this version, the range of selection of

models is wider (Brown et al., 2014). The main model in Chapter 3 and Chapter 4,

which is described in EPP 2013 (Bao et al., 2012). It is consisted of three parts:

epidemiological dynamic models, an infection rate model, and data models.

2.1.2 Epidemiological Dynamic Models

The UNAIDS EPP 2013 is based on a simple susceptible-infected-removed(SIR)

epidemiological model. We only consider the population with age between 15 to 50.

At any given time t, the targeted population is divided into two groups: Z(t) is the
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number of uninfected individuals, and Y(t) is the number of infected individuals.

N(t) = Z(t) + Y(t) is naturally the whole population size. We use the following

differential equations to describe the rates at which the sizes of the groups change:
dZ(t)
dt

= E(t) − r(t)Y(t)Z(t)
N(t)

− µZ(t) − a50(t)Z(t)
N(t)

+ M(t)Z(t)
N(t)

,

dY(t)
dt

= r(t)Y(t)Z(t)
N(t)

−HIVdeath− a50(t)Y(t)
N(t)

+ M(t)Y(t)
N(t)

.
(2.1.1)

At any given time t,

• E(t) is the number of new adults entering the targeted population (age

between 15-50), which depends on the population size of 15 years ago, the

birth rate and the survival rate from birth to age 15,

• r(t) is the average infection risk,

• µ is the non-AIDS death rate,

• HIV death is the AIDS related death rate,

• a50(t) is the number of adults exit the model after attaining age 50,

• M(t) is the number of net migration into the population.

In the model, E(t), µ, a50(t) andM(t) are given either directly from the government

statistic or from Spectrum software. They are considered fixed parameters. r(t)

can be derived from the infection model introduced following. Only Z(t) and Y(t)

are the parameters need to be estimated.

2.1.3 Infection Models

The infection rate, r(t), is the rate of infection, which defines as the average

number of new infections caused by one HIV positive person at year t. In the earlier

time, we often assume a constant infection as in EPP 2001, which is acceptable

due to the high infection. However, as epidemic slows down, especially after ART

comes to the reality, there are significant evidences of changing infection rate.
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Constant infection rate is no longer a good choice. Instead of assuming a constant

infection rate, several refined models were proposed to allow r(t) change: r-jump

model, r-spline model, r-stochastic model, and r-trend model. The r-jump model

assumes that there is only one change in the infection rate. It adds the variation to

the infection rate, however also leaves the problem that when to performance the

“jump”. It is hard to explain why the infection rate has a such sudden change at

one point (Brown et al., 2008). The other three are more flexible models which

allow the infection rate to change smoothly over the time of the epidemic. The

stochastic model assumes the infection rate follows a Gaussian random walk with

mean zero (Bao and Raftery, 2010). This model provides more flexibility than

the r-jump model, but the parameter estimation is challenging when we have a

long history of the epidemic since the infection rate at each year is treated as a

parameter. The r-spline model assumes infection rate depend on time, and can

be modeled by penalized B-spline (Hogan et al., 2010; Hogan and Salomon, 2012;

Brown et al., 2014). R-trend model assumes the current infection rate depends

on the past prevalence, the past incidence, and a stabilization condition. In this

dissertation, we mainly use r-trend model according to UNAIDS recommendation

(Bao et al., 2012).

R-trend Model

With epidemic starting time t0 and initial infection rate r0, the r-trend model

assumes that the average infection risk r(t) can be described as (Bao, 2012):

log(rt+1) − log(rt) = β1(β0 − rt) + β2ρt + β3γt, (2.1.2)

where

• β0 is equilibrium condition which lead to no shift of log(rt) at r(t) = β0,

• β1 describes the change of log(rt), when it is not at equilibrium value,
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• β2 is the expected change of log(rt) given a unit increase of the prevalence,

• β3 describes the related change of log(rt) and stabilization status,

• ρt is the prevalence rate at time t,

• γt = (ρt+1 − ρt)(t − t0 − t1)
+/ρt is the relative change of prevalence times

the positive part of t− t0 − t1,

• t0 is the starting year of epidemic,

• t1 is the number of years that epidemic takes to stabilize.

We can see that r-trend model considers more factors which can affect the

infection rate. Taken seven parameters, β1, β2, β3, r0, t0, t1, into consideration,

r-trend model explores the shape of HIV prevalence trend in a more restricted

parameter space than the r-spline model.

R-spline Model

B-spline is the most common tool in the functional data analysis to approximate

a target function. In the r-spline model (Hogan et al., 2010; Hogan and Salomon,

2012; Brown et al., 2014), seven equal space functions were used as the basis

function with coefficients βi, i = 1, . . . 7. Also, we apply a second-degree difference

penalty on the coefficients, which can be described as:

β = βi− 1+ (βi−1 − βi−2) + ui, (2.1.3)

where ui ∼ N(0, τ2). Then we have 9 variables in r-spline model, coefficients

βi, i = 1, . . . , 7, τ, along with initial pulse of infection to seed the epidemic Y0. The

model is more flexible, however with a big problem: It is risky to predict beyond

the data period using spline models because the prediction is driven by a relatively

small number of observations near the last year of data. To stabilize the prediction,

after last year of data t1, instead of B-spline, there are two ways to model the

trend. One way, we assume log(r(t)) follows a random work with mean log(r(t))
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and σ2t . Also, the variance σ2t has the formula: σ2t = σ2t1(t− t1). Another way is to

use “equilibrium prior”. We further assume that after the data year, prevalence

will approach equilibrium, and r(t) follows a normal distribution. It leads to a

step-by-step trend of r(t).

2.1.4 Data Models

It is clear that it is very hard to estimate all 8 or 10 parameters using only the

epidemiology models and infection model. In this case, Bayesian framework is used

to find posterior distribution of our target HIV epidemic indicators, prevalence and

incidence. Under Bayesian framework, we need to find out the likelihood of each

data source. Here we described the data models for commonly used prevalence data,

antenatal clinical (ANC) data and the national population-based survey (NPBS)

data, along with the newly available incidence assay data.

ANC data

ANC data is the major source in Africa countries to monitor the HIV epidemic

trend. For clinic s in year t, the data records two numbers: the number of infected

pregnant women, Yst, and the number of pregnant women tested, Nst. In EPP 2013,

ANC data model is described by a hierarchical model with a clinic random effect

bs accounting for the repeated measurement within clinic (Brown et al., 2014):

Φ−1(Xst) = Φ
−1(ρt) + c+ bs + εst, (2.1.4)

where

• Φ is the standard normal cumulative distribution function,

• Xst = (Yst + 0.5)/(Nst + 1),

• ρt is the overall population prevalence in year t,
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• c is the calibration constant for the ANC data, which determined based on

the historical data:  c = 0.11, for urban area,

c = 0.17, for rural area.
(2.1.5)

Now, we need to estimate likelihood of ANC data. However, there is no close

form of this likelihood considering the complicated structure. In Alkema et al.

(2007), they proposed a method to calculate the likelihood by integrating out σ2

and bs.

Assume γst is the prevalence at clinic s in year t, and Yst then follows a binomial

distribution Yst ∼ binom(Nst, γst). Then Xst is the posterior mean of γst with a

non informative Jeffery’s prior Beta( 1
2
, 1
2
). Then we have:


bs ∼ N(0, σ2),

εst ∼ N(0, νst),

νst = 2π exp(Φ−1(γst)
2)γst(1− γst)/Nst.

(2.1.6)

We also assign a prior to σ2 during the calculating:

σ2 ∼ InverseGamma(0.58, 93). (2.1.7)

Then the likelihood becomes:

L(ANC|ρ) =

∫ ∫
L(ANC|ρ, b)p(b|σ2)dbp(σ2)dσ2. (2.1.8)

where p(·) stands for the prior distributions. We can numerically estimate the

likelihood by using existing software functions.

NPBS data and assay data
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The national population-based survey data give the information of HIV epidemic

at the national level. NPBS data records two numbers for each country in year

t: the number of uninfected people NS and the number of infected people NI. If

the HIV positive individuals in NPBS data were further tested for whether they

were recently infected by using incidence assays, then incidence assay data would

separate NI into two groups: non-recent infected people with number NNR, and

recent infected people with number NR, where naturally NNR +NR = NI.

Following the work of Welte et al. (2010), we assume (NS, NR, NNR) follow a

trinomial distribution with the following probabilities (Kassanjee et al., 2012):
P(S) = 1− ρt,

P(R) = (1− ρt)It(Ωt − βtT)/365+ βtρt,

P(NR) = ρt − (1− ρt)It(Ωt − βtT)/365+ βtρt,

(2.1.9)

where

• ρt and It are EPP output prevalence and incidence (calibrated to the national

level) at time t,

• βt is the false recent rate (FRR) at time t,

• Ωt is the mean duration of recent infection (MDRI) at time t, and

• T = 450 is the cut-off length of recent infection.

So, for NPBS data, the number of infected people follows a binomial distribution:

NI ∼ (NS +NI, P(I)).

For assay data, the number of recent infected people further follows a binomial

distribution:

NR ∼

(
NR +NNR,

P(R)

P(R) + P(NR)

)
.
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Then the log-likelihoods are defined as:


lNPBS = NIP(I)(1− P(I)) + (NR +NNR))(P(R) + P(NR)),

lassays = NR

P(R)

P(R) + P(NR)
+NNR

P(NR)

P(R) + P(NR)
.

(2.1.10)

2.1.5 Prior Assumptions

For Bayesian framework, we first define the prior function of all parameters. In

the ANC data structure, there is a parameter of the random clinical effect bs. In

this dissertation we define the prior as:

bs ∼ N(0, 0.042), c = 0.11, for urban area,

bs ∼ N(0, 0.052), c = 0.17, for rural area.
(2.1.11)

In the r-trend model (2.1.2), there are seven parameters: β0, β1, β2, β3, t0, t1
and r0. Prior distributions of those seven parameters are defined as:



t0 ∼ Uniform[1970, 1990],

t1 ∼ Uniform[10, 30],

r0 ∼ LogUniform[
1

11.5
, 10],

β0 ∼ N(0, 0.2),

β1 ∼ N(0, 0.2),

β2 ∼ N(0, 0.2),

β3 ∼ N(0, 0.2).

(2.1.12)

Therefore, we have eight parameters in total for r-trend model.

In the r-spline model (2.1.3), there are nine parameters: βi, i = 1, . . . , 7, τ,and
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Y0. Prior distributions of those nine parameters are defined as:



τ2 ∼ inverse-gamma(0.001, 0.001),

Y0 ∼ Uniform[10−13, 0.0025],

β1 ∼ N(1.5, 1),

βi ∼ N(0, τ2), i = 2, . . . , 7.

(2.1.13)

Therefore, we have ten parameters in total for r-spline model.

2.1.6 How EPP Works

Under Bayesian framework, the basic formula is:

f(θ|x) =
f(x|θ)p(θ)

p(x)
∝ L(θ|x)p(θ) (2.1.14)

where L(θ|x) is the data likelihood and p(θ) is the prior distribution of θ. In

Section 2.1.4, we already present all the data structures, and log-likelihoods of

three data sources are lANC, lNPBS, and lassays. Then, The targeted log-likelihood is

the summation of all the data source log-likelihood with the following format:

EPP without assays: lEPP = lANC + lNPBS,

EPP with assays: lEPP = lANC + lNPBS + lassays.
(2.1.15)

One of the advantage of EPP model is that it produces all key epidemic indicators

together through the dynamic systems as described in Equation (2.1.1). However,

we need to input r(t) at each time step to make the equations work. Either r-trend

or r-spline model involves with parameters more than we can directly estimate.

Therefore, Bayesian framework is used. We can use the prior functions defined in

Section 2.1.5, along with the epidemiology models and infection model to derive
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the posterior samples of our targeted indicators.

One of the problems to study posterior samples of HIV prevalence and incidence,

η = (prevalence, incidence) = (ρ, I), is that we have no idea of their prior functions

(p(η)). What we have is the prior functions of the parameters θ (8 in r-trend, 10

in r-spline). However, our data log likelihood functions lANC, lNPBS, and lassays, are

based on HIV prevalence and incidence η. The linkage between θ and η is EPP

model, which is defined as:

η = g(θ), (2.1.16)

where g(·) is the mapping from θ to η by EPP model. However, due to the

complication of EPP, there is no close form of g(·).

Algorithm 2.1.1. Take r-trend model as an example to illustrate the algorithm:

algorithm for EPP model
1. Draw n prior samples of original parameters θ = θ(1), . . . ,θ(n).
2. For any sample θ(i) = (β0, β1, β2, β3, t0, t1, r0, bs),
(2.1) at time 1, using all the parameters, r(1) is derived (by 2.1.2),
(2.2) using r(1), Y(1) and Z(1) can be derived by (2.1.1),
(2.3) then, ρ1 = Y(1)/N(1), and I1 = r(1)Y(1)/N(1),
(2.4) using β0, β1, β2, β3, t0, t1 and ρ1, r(2) is derived.

3. Move the time forward, following the procedure in 2, until we have all the prevalence and incidence estimator
η(i) in all time steps.
4. Repeat 2-3 for all the samples θ = θ(1), . . . ,θ(n), and get η = η(1), . . . ,η(n).
For any time t,
5. Draw the posterior samples of ηt by certain method.
6. Take the median of posterior samples as the estimator at time t.

Then, we have the estimators of the prevalence and incidence at all time steps.

One naturally problem arises is the method to draw the posterior samples. In some

early versions of EPP, simple Sampling Importance Resampling (SIR) algorithm

(Rubin, 1987) under Bayesian framework is used to draw the posterior samples of

η (Alkema et al., 2007). The procedures are following:

Algorithm 2.1.2.
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SIR algorithm for EPP model to draw posterior distribution
Once we have η = η(1), . . . ,η(n),
1. calculate the target likelihood function of ηt, L(·|η(1)

t ), . . . , L(·|η(n)
t ).

2. Calculate the weight of each sample, w(i)
t =

L(·|η(i)
t )∑n

i=1 L(·|η
(i)
t )
, i = 1, . . . n.

3. Draw the posterior samples of ηt with replacement with probabilities w(1)
t , . . . , w

(n)
t .

In the early version of EPP, since we only have 4 parameters, SIR was the

primary algorithm (Alkema et al., 2007). As more data are collected, and the model

flexibility is extended (from 4 parameters to 8 or 10 parameters), the computing

cost has increased significantly. We need to simulate a large number of samples in

order to cover the parameter space. As a response, UNAIDS updated the primary

algorithm to IMIS to generate the posterior samples more efficient. The basic

procedures are very similar to the procedures above, except we repeat “reweight-

resample” multiple times until the algorithm converges. More details of IMIS will

be given in the following section.

2.2 Incremental Mixture Importance Sampling (IMIS)

When we fit a Bayesian model, one of our major goals is to find posterior

distribution. Sometimes, we can achieve that easily by using conjugate priors

and Gibbs sampler. When we have analytic form of the exact posterior density

function or the density function with an unknown normalizing constant, some simple

sampling algorithm, such as inverse cumulative density function method (Devroye,

1986), rejection sampler (Gilks and Wild, 1992), and ratio-uniform sampler (Luengo

and Martino, 2012) can be used to simulate the target distribution. However, in

reality, the close form of posterior distribution is often not available. Therefore, we

need to describe the unknown posterior distribution by drawing posterior samples

with numerical method. Alternatively, we will use equation (2.1.14) to derive the
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posterior samples:

f(θ|x) ∝ L(θ|x)p(θ).

Then, the problem moves on to calculating likelihood and the normalization con-

stant.

2.2.1 Methods to Generate Posterior Distribution

When direct sampling from target distribution is difficult, there are two common

choices: Markov Chain Monte-Carlo (MCMC) and importance sampling. MCMC

method is a class of algorithms to sample a distribution based on Markov chain,

including Metropolis-Hastings (M-H) algorithm, Gibbs sampler, etc. The primary

application of MCMC method is to calculate numerical approximations of multi-

dimensional integrals. One of the examples is expectation. Assume X is a random

variable with density function f(·), the goal is to calculate the expectation of

function of X, E[h(X)] with respect to f.

1

n

n∑
i=1

h(Xi)→ ∫ h(x)f(x)dx = E[h(X)]. (2.2.1)

This technique can be easily used to generate the normalization constant.

Importance sampling is the main focus in Chapter 3 and Chapter 4. Importance

sampling is a general technique for estimating properties of a particular distribution,

while only having samples generated from a different distribution than the distribution

of interest (Chakraverty, 2014). For importance sampling, we have:

1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)
g(Xi)→ ∫ h(x) f(x

g(x)
g(x)dx = E[h(X)], (2.2.2)

where g(·) is an importance sampling function, called envelope, which is usually a

common distribution, such as normal or uniform distribution.
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One application of importance sampling, is Sample-Importance-Resample(SIR)

algorithm (Givens and Hoeting, 2012). SIR is an approximation simulation method,

which is an approach not exact simulation of target density function f(·). Still, we

need to define an envelope g(·) first.

Algorithm 2.2.1.

General SIR algorithm
1. Draw n samples x1, . . . ,xn from g(·).
2. Calculate the standardized importance weights,
wi =

f(xi)/g(xi)∑n
i=1 f(xi)/g(xi)

, i = 1, . . . n.
3. Resample y1, . . . ,ym with replacement with probabilities w1, . . . , wn.
Then y1, . . . ,ym form the shape of target density function.

The procedure is usually described as Sample-Importance-Resample. Under

Bayesian framework, we consider the prior distribution density as the envelope.

Then we have the weights as in Algorithm 2.1.1, which are simply proportion to

log likelihoods. Due to the convenient property, SIR is commonly used to draw

Bayesian posterior samples.

SIR is very easy and straightforward, and performances well for smooth and

uni-modal distribution. However, it remains some problems. First, under Bayesian

framework, we will choose a simple prior function, such as normal or uniform

distribution, and simulate a large quantity of samples to cover the range of θ as

much as possible. As the number of parameters increases, we need to increase the

initial sample size rapidly to ensure sufficient coverage of the high density region

of the target distribution. For example, if θ ∈ [0, 100], we sample 1000 to cover

the range, then for θ ∈ [0, 100]× [0, 100], we will need 10002 samples. When the

dimension of θ comes to 8 as r-trend model, we will need 10008 samples, which is

not feasible in our research considering the complication of EPP model. Secondly,

SIR has a bad performance when the posterior distribution has nonlinear ridges or

be multi-modal. Therefore, Raftery and Bao (2010) derived Incremental Mixture

Importance Sampling (IMIS) to fix the those problems.
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2.2.2 Introduction to IMIS

IMIS was originally developed for calculating normalizing constants for finite

mixture models, which is the integrated likelihood (Steele et al., 2006). The basic

idea of IMIS is that instead of a large quantity of initial samples, a median size

of initial samples are generated. Then, after calculating the importance weights

of these samples, in each iteration, we will mainly sample around the points with

high importance weight in last iteration, instead of sampling evenly in the range.

Therefore, we “save” a lot of samples in the low-weight area, and can describe the

high-weight area more clearly. When applying IMIS to EPP model, the algorithm

becomes (cited from Raftery and Bao (2010)):

Algorithm 2.2.2. (IMIS)

1. Initial Stage:

• Sample N0 inputs θ1, θ2, . . . , θN0
from the prior distribution p(θ).

• For each θi, calculate the likelihood Li, and form the importance weights:

w
(0)
i =

Li∑N0

j=1 Lj
.

2. Importance Sampling Stage: For k = 1, 2 . . . , repeat the following steps:

• Choose the current maximum weight input as the center θ(k). Estimate

Σ(k) as the weighted covariance of the B inputs with the smallest Maha-

lanobis distances to θ(k), where the distances are calculated with respect

to the covariance of the prior distribution and the weights are taken to

be proportional to the average of the importance weights and 1
Nk

.
• Sample B new inputs from a multivariate Gaussian distribution Hk with

covariance matrix Σ(k).
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• Calculate the likelihood of the new inputs and combine the new inputs

with the previous ones. Form the importance weights:

w
(k)
i = cLi ×

p(θi)

q(k)(θi)
,

where c is chosen so that the weights add to 1, q(k) is the mixture sampling

distribution q(k) = N0

Nk
p+ B

Nk

∑k
s=1Hs, Hs is the s-th multivariate normal

distribution, and Nk = N0 + Bk is the total number of inputs up to

iteration k.

3. 3. Resample Stage: Once the stopping criterion is satisfied, resample J inputs

with replacement from θ1, . . . , θNk
with weights w1, . . . , wNK

, where K is the

number of iterations at the importance sampling stage.

The algorithm has several control parameters to be set by the user: the number

of initial samples N0, the sample size at each importance sampling iteration B,

and the number of resamples J. The algorithm is unbiased for any choice of

control parameters, because it is an importance sampling algorithm, but the control

parameters can affect its efficiency. We have found good results with the choices

N0 = 1000d, B = 100d and J = 3000, where d is the dimension of the integrand.

A great advantage of importance sampling is that it is effectively self-monitoring,

in that poor coverage of the target distribution by the importance sampling is

immediately seen by the presence of large importance weights. We use the following

specific criteria to assess the performance of the various importance sampling

algorithms considered here:

• The maximum importance weight among the Nk inputs.
• The variance of the rescaled importance weights,

V̂(w) =
1

Nk

Nk∑
i=1

(Nkwi − 1)
2
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• The entropy of the importance weights relative to uniformity,

Û(w) = −

Nk∑
i=1

wi
log(wi)
log(Nk)

• The expected number of unique points after re-sampling,

Q̂(w) =

Nk∑
i=1

(1− (1−wi)
M)

• The effective sample size, ESS(w) = Nk

1+CV
, where the coefficient of variation

CV is defined as CV = Varq[L(θ)p(θ)/q(θ)]

E2q[L(θ)p(θ)/q(θ)]

.
= V̂(w) (Kong et al., 1994). We can

also write

ESS(w) =
Nk

1+ V̂(w)
=

Nk

1+Nk

∑Nk

i=1w
2
i

− 2

Nk∑
i=1

wi + 1 =
1∑Nk

i=1w
2
i

By using IMIS, the total sample we need to draw is Nk = N0 + Bk, which is

normally smaller than SIR sample size. The iteration stops when the number of

unique points is larger than (1− e−1)× B. This is the expected fraction when the

importance sampling weights are all equal, which is the case when the importance

sampling function is the same as the target distribution.There are four numbers

calculated for each iteration: the raw marginal likelihood, the expected number

unique points, the maximum weight, and the effective sample size. We intend to

stop the algorithm, as the change of marginal likelihood goes to 0, the expected

number of unique points and the effective sample size goes to B, and the maximum

weight approaches 1/Nk.
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2.3 Varying Coefficient Models

In this section, we review statistical procedures for varying coefficient models

(VCM). Let Y be the response variable, U and X = (X1, . . . , Xp)
T be its associated

covariates. The VCM assumes that

Y = a0(u) + a1(u)X1 + · · ·+ ap(u)Xp + ε, (2.3.1)

where αk’s are unknown regression coefficients, and ε is a random error with

E(ε|X) = 0. This model was systematically studied in Hastie and Tibshirani (1993),

in which the authors observed that

aj(u) =
E
[
Xj
{
Y −
∑

k 6=j Xkak(u)
}
|u
]

E (X2j |u)
=

E
[
X2j
{
Y −
∑

k 6=j Xkak(u)
}
/Xj|u

]
E (X2j |u)

.

(2.3.2)

This offers a natural interpretation of the regression coefficient function in the

VCM.

The VCM is a nonparametric regression model. Hastie and Tibshirani (1993)

introduced two estimation methods of the coefficients. The first one is based on

spline smoothing method, and is to approximate the regression coefficient functions

αk’s by a linear combination of natural cubic spline bases, and using the following

penalized least squares(Wahba, 1990):

J(a(·)) =
n∑
i=1

{
Yi −

p∑
j=1

Xijaj(ui)
}2

+

p∑
j=1

λj

∫
a′′j (u)

2du, (2.3.3)

based on a random sample {ui,xi, Yi} from model (2.3.1).

Hastie and Tibshirani (1993) also provide Bayesian interpretation of time-

varying coefficient models. When u is a time variable t which is sampled over an

equally-spaced grid points, and {xt, Yt} were collected over the time variable t, the
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VCM can be written as

Yt = xTtαt + εt, (2.3.4)

where αt = (a0(t), · · · , ap(t))T and xt = (1, Xt1, · · · , Xtp)T . This can be viewed as

a dynamic linear models (West et al., 1985), and Bayesian method can be used to

carry out the estimation of model parameter. Specifically, one may consider

Yt = xTtαt + εt, εt ∼ N(0, Vt),

αt = Gtαt−1 +ωt, ωt ∼ N(0,Wt).

When p = 1, and Gt = 1, and the variance Vt is constant, the mean of α(·)

can be approximately approached by an exponentially weighted moving average

of Yj/Xj, 0 ≤ j ≤ t − 1. δ/X2j is the weight assigned to Yt−j/Xt−j, where δ is

discount factor between 0 and 1. It also follows the idea from (2.3.2). The Bayesian

procedures for dynamic linear model can be directly implement for the time-varying

coefficient model to obtain the estimate of the regression coefficients and their

posterior confidence interval.

To avoid solving large linear systems in spline smoothing methods, kernel

regression and local polynomial regression have been proposed for the VCM in

Hoover et al. (1998); Fan and Zhang (1999). For given point u0 and u in the

neighborhood of u0, the local polynomial regression is to approximate aj(u) by

aj(u) ≈
q∑
l=0

1

l!
a
(l)
j (u0)(u− u0)

l, (2.3.5)

where a(l)
j is the l-th derivative of aj(·). The kernel regression is corresponding to

q = 0. The local polynomial regression is to minimize the local least-squares:

n∑
i=1

{
Yi −

p∑
j=1

q∑
k=0

cj,k(Ui − u0)
kXij
}2
Kh(Ui − u0), (2.3.6)
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where K(·) = h−1K(·/h) with a kernel function K(·) and a bandwidth h = hn > 0.

Here cj,k, j = 1, . . . , p, k = 0, . . . , q is the estimated coefficient of k-th derivative

of aj(u) around u0. The local least squares estimator has a close form solution,

which can be expressed by using matrix notation. Denote y = (Y1, . . . , Yn)
T ,

W = diag(Kh(U1 − u), . . . , Kh(Un − u)), and

X =


x11 · · · X11(U1 − u)

q · · · x1p · · · x1p(U1 − u)
q

... . . . ... . . . ... . . . ...

xn1 · · · Xn1(Un − u)q · · · xnp · · · xnp(Un − u)q

 . (2.3.7)

The local polynomial estimator of aj(u) is

âj(u) = e
T
j,κ(XTWX)−1XTXy, (2.3.8)

where ej,κ is a vector with length j, and 1 as κ-th element, 0 in the other position,

and κ = p(q+ 1). When q = 1 in (2.3.5), the resulting estimate is referred to as

the local linear estimate, which is the estimation method in this dissertation.

Fan and Zhang (1999) derived the asymptotic bias and variance for âj(u), and

further established the asymptotic normality of the local polynomial estimates. The

asymptotic normality enables us to construct pointwise conference interval for aj(·)

at a specific point u. In practice, it is of great interest to construct simultaneously

confidence band for aj(·) for u over a certain interval.

Fan and Zhang (2000) developed a simultaneously confidence band for local

polynomial regression. For local polynomial estimate in (2.3.8), the error variance

can be estimated by smoothing the corresponding residuals. A normalized weighted

residual sum of squares is used to estimate error variance:

ŷ = X(XTWX)−1XTWy (2.3.9)
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σ̂2(u) =
1

tr(W− (XTWX)−1XTW2X)

n∑
i=1

(Yi − Ŷi)
2Kh(Ui − u) (2.3.10)

In order to construct confidence bands, one needs the estimation of bias(âj(u)|D)

and var(âj(u)|D). Naturally, based on (2.3.8), bias of âj(u) can be calculated as:

bias(âj(u)|D) = eTj,κ(XTWX)−1XTWβ (2.3.11)

where D = (U1, . . . , Un, X11, . . . , X1n, . . . , Xp1, . . . , Xpn)
T , and

βi =

p∑
j=1

{
aj(Ui) −

q∑
k=0

1

k!
a
(k)
j (u)(Ui − u)

k
}
Xij. (2.3.12)

In order to estimate this bias, q+ 2 order Taylor expansion is used to approach

β in (2.3.12), and we call this approach τ.

Then, the bias of aj(u) can be estimated by

b̂ias(âj(u)|D) = eTj,κ(XTWX)−1XTWτ̂, (2.3.13)

where the i-th element of vector τ̂ is:

p∑
j=1

{ 1

(q+ 1)!
â
(q+1)
j (u)(Ui − u)

q+1 +
1

(q+ 2)!
â
(q+2)
j (u)(Ui − u)

q+2)
}
Xij. (2.3.14)

Also, since the estimated error variance can be derived from (2.3.10),

v̂ar(âj(u)|D) = eTj,κ(XTWX)−1(XTW2X)(XTWX)−1eTj,κσ̂
2(u). (2.3.15)

Notice here, the pilot bandwidth h∗ used to calculate σ̂2(u) is of order n−1/(2q+5)

according to the theorem conditions. The theoretical result of the asymptotic

property of b̂ias(âj(u)|D) is given in Fan and Zhang (2000).
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Denote ‖b(u)‖∞ = supu∈I |b(u)| for a function b(u). Fan and Zhang (2000)

further derived the asymptotic distribution of the following statistic:

(−2 logh)1/2
(∥∥∥v̂ar(âj(u)|D)(âj − a0 − b̂ias(âj(u)|D))

∥∥∥∞ − dν,n

)
, (2.3.16)

where dν,n is calculable, and the detailed definition can be found in Theorem 1

(Fan and Zhang, 2000). This enables one to construct confidence band for aj(·).

Practical implementation issues for local polynomial regression under the VCM

framework have been studied. Bandwidth selection for local polynomial regression

was studied in Zhang and Lee (2000); Wu and Chiang (2000); Cai et al. (2000); Fan

et al. (2005). It is easy to understand the importance of choosing a right bandwidth.

If the bandwidth is too small, there are too little samples in each interval, which

leads to severe inaccuracy of the estimation. On the other hand, if the bandwidth

is too large, the approximation that approaches the coefficients in each interval by

Taylor expansion might be wrong and may lead to significant bias.

Since its introduction in Hastie and Tibshirani (1993), the VCM has been a

very popular in longitudinal data analysis (Hoover et al., 1998; Chiang et al., 2001;

Eubank et al., 2004; Qu and Li, 2006). The VCM has been applied to various

scientific research. For example, the VCM has been used for analysis of data

collected in ecological studies (Yi et al., 2004; Kürüm et al., 2014) and analysis of

neuroimaging data (Zhu et al., 2011) . It has become a popular nonparametric

models for analysis of data collected in social and behavior researches (Tan et al.,

2012; Liu et al., 2013; Lanza et al., 2013; Vasilenko et al., 2014; Shiyko et al., 2013;

Trail et al., 2014; Dziak et al., 2015; Yang et al., 2015).

Cai, Fan, and Li (2000) consider the VCM under generalized linear model

framework. Denote m(u,x) to be the regression function of the response variable

Y on the covariate U and X. That is, m(u,x) = E(Y|U = u,X = x). Generalized
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VCM (GVCM) assumes that

η(u,x) = g(m(u,x)) =
n∑
j=1

aj(u)xj, (2.3.17)

for a known link function g(·), where aj(u)’s are unknown regression coefficient

functions defined on a bounded compact set U.

Cai, Fan, and Li (2000) give detailed estimation and hypothesis testing procedure

for GVCM based on local likelihood technique. For u in the neighbourhood of

given point u0, approximate aj(u) by a local function aj + bj(u − u0), and then

estimate aj(u) by estimating aj and bj. Suppose that {ui,xi, Yi} is a random sample

from model (2.3.17). Local likelihood approach is to maximize the following local

likelihood function:

ln(a,b) =
1

n

n∑
i=1

l(g−1[

p∑
j=1

{aj + bj(Ui − u0)}Xij, Yi])Kh(Ui − u0), (2.3.18)

where a = (a1, a2, · · · , ap)T , b = (b1, b2, · · · , bp)T , K(·) = h−1K(·/h) with a kernel

function K(·) and a bandwidth h = hn > 0. In general, there is no closed form

solution for the local likelihood estimate. Thus, numerical optimization algorithm

such as Newton-Raphson algorithm is used to find the maximizer of the local

likelihood function (2.3.18). However, one has to run hundreds of the numerical

optimization algorithm in order to estimate the regression coefficient functions over

a set of hundreds of grid points. This leads to great computational burden. To save

computational cost, Cai, Fan, and Li (2000) proposed a one-step Newton-Raphson

estimator to maximize the likelihood with only one iteration for each grid point.

Specifically, denote β = β(u0) = (a1, · · · , ap, b1, · · · , bp)T , and l′n(β), l′′n(β) be

the gradient and the Hessian matrix of ln(β). With a given initial estimator
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β̂0 = (âT(u0), b̂T(u0))T , one-step local likelihood estimator is defined to be,

β̂OS = β̂0 − (l′′n(β̂0))
−1l′n(β). (2.3.19)

The estimation of the regression coefficient functions is carried out by evaluating

the one-step estimator over a set of grid points over the support of U.

In practice, there are several practical implementation issues to carry out the

one-step estimator. The first one is how to select the bandwidth. The empirical

bias method (Carroll et al., 1998) is used. The second issue is how to set the initial

values. It is crucial to set good initial value in the one-step estimator. An initial

point far away from the true value may lead to a bad local maximum likelihood

estimator (MLE). In the univariate setting, a natural choice of initial value is the

least squares estimate. However, in the multivariate setting, there is no easy way to

construct the initial values. Cai, Fan, and Li (2000) proposed a systematic scheme

to construct the initial values. The third problem is that Hessian matrix of local

likelihood function l′′n(β) may be singular. This leads to the failure of the one-step

estimator. Cai, Fan, and Li (2000) advocated the use of ridge regression for solving

issues related to Hessian matrix singularity. and further studied the theoretical

properties of the one-step estimator.

Condition 2.3.1. The regularity conditions are:

C1. The function q2(s, y) < 0 for s ∈ R and y in the range of the response

variable.

C2. The functions fU(u), Γ(u), V(m(u,x)), V ′(m(u,x), and g′′′(m(u,x)) are

continuous at the point u = u0. Further, assume that fU(u0) > 0 and Γ(u0) > 0.

C3. K(·) has a bounded support.

C4. a′′j (·) is continuous in a neighbourhood of u0 for j = 1, . . . , p.

C5. E (|X|3 |U = u) is continuous at the point u = u0.

C6. E (Y4|U = u,X = x) is bounded in a neighborhood of U = U0.
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where qj(s, y) = (∂j/∂sj)l{g−1(s), y}.

The local likelihood function (2.3.18) is concave guaranteed by Condition Cl. It

is satisfied for the canonical exponential family with a canonical link. Note that

condition C2 implies that q1(·, ·), q2(·, ·), q3(·, ·), ρ′(·, ·), and m′(·, ·) are continuous.

In order to justify the one-step estimator β̂OS, one need to prove that it has an

asymptotic distribution. In theorem 2.3.1, it is shown that β̂MLE has an asymptotic

distribution. Define µk =
∫
ukK(u)du, νk =

∫
ukK2(u)du, H = diag(1, h) ⊗ Ip,

and ⊗ as the Kronecker product. The theorem in Cai, Fan, and Li (2000) is:

Theorem 2.3.1. Suppose the conditions are hold, and that h = hn → 0 and

nh→∞ as n→∞. Then

√
nh
[
H{β̂MLE(u0) − β(u0)}−

h2

2(µ2 − µ21)
×(

(µ22 − µ1µ3)a′′(u0)
(µ23 − µ1µ2)a′′(u0)

)
+ op(h

2)
] D→ N(0,∆−1Λ∆−1),

(2.3.20)

where

∆ = fU(u0)

 1 µ1

µ1 µ2

⊗ Γ(u0), Λ = fU(u0)

 1 ν1

ν1 ν2

⊗ Γ(u0).
The detail definition of Γ(·) can be found in the Section 2.3 of Cai, Fan, and Li

(2000).

Theorem 2.3.2. Under the assumptions in Theorem 2.3.1 , β̂OS has the same

asymptotic distribution as β̂MLE, provided that the initial estimator β̂0 satisfies

H(β̂0 − β) = Op(h
2 + (nh)−

1
2 ).

In practice, it is of great interest to test whether the varying coefficients really

vary over u. In other words, it is of interest to test whether the data can be fit well
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by a linear regression model. This problem is equivalent to the hypothesis testing

H0 : a1(u) = a1, · · · , ap(u) = ap. (2.3.21)

Cai, Fan, and Li (2000) proposed a likelihood ratio type statistic for testing this

hypothesis:

T = 2[l(H1) − l(H0)], (2.3.22)

where l(H1) and l(H0) are the likelihood under H1 and H0, respectively. In order

to conduct the test, we need to obtain the null distribution of T . For parametric

models, the corresponding likelihood ratio test follows a χ2 distribution under null

hypotheses. For varying coefficient models, the degrees of freedom tends to infinite

under alternative hypothesis. Cai, Fan, and Li (2000) proposed conditional bootstrap

to construct the null distribution of test statistics T . Denote {âj} as the MLE under

the null hypothesis. For any given covariates (Ui,Xi), bootstrap sample Y∗i can be

generated from the distribution of Y decided by linear predictor η̂ =
∑p

j=1 âjXij, and

the test statistic T ∗ can be calculated the same way as T . Therefore, a distribution

of T ∗ is defined here, which can be used to approximate the distribution of T . This

becomes a valid method since the asymptotic null distribution does not rely on

the values of {âj} (Fan, Zhang, and Zhang, 2001). Huang et al. (2002); Qu and Li

(2006) further generalize this strategy for other statistical settings. The confidence

band proposed in Fan and Zhang (2000) may serve as an alternative method for

testing hypothesis

H0 : aj(u) = a0(u)↔ H1 : aj(u) 6= a0(u). (2.3.23)

Readers are referred to these papers for details.
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2.4 Variable Selection and Feature Screening

Suppose that {xi, yi}, i = 1, · · · , n is a random sample from a linear model

yi = xTiβ+ εi,

where εi is a random error with mean 0 and variance σ2.

At the initial stage of modelling, it is common to consider a large model by

including many potential useful variables into the linear regression model in order

to reduce modelling bias. To enhance model predictability and interpretation, it

is always desirable to exclude unimportant variables from the final model. Thus,

variable selection plays an important role in statistical modelling. Variable selection

has been an active research topic since 1970s. Traditional variable selection criteria

include Akaike’s information criterion (Akaike, 1974) and Bayesian information

criterion (Schwarz et al., 1978). To carry out variable selection with the traditional

variable selection criteria, one has to conduct best subset selection by exhaustively

searching over all possible sets. This becomes infeasible when the dimensional

of covariate vector is large due to computational cost. Thus, traditional variable

selection typically is carried out by using backward elimination, forward addition

or stepwise regression. Although the select model may not optimal, it provides a

parsimonious model with good interpretation and prediction performance.

Penalized least squares method has been proposed for variable selection in the

literature. The penalized least squares function is defined by

1

2

n∑
i=1

(yi − xTiβ)2 +
p∑
j=1

pλ(|βj|), (2.4.1)

where p is the dimension of β, and pλ(·) is a penalty function with a tuning

parameter λ. Traditional information criteria including the AIC and BIC can be
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written as an equivalent form of the penalized least squares (2.4.1) with L0 penalty,

defined by

pλ(|β|) = λI{|β| 6= 0}

with a properly chosen λ (Fan and Li, 2006). Bridge regression, proposed by Frank

and Friedman (1993), is the penalized least squares with Lq penalty

pλ(|β|) = λ|β|
q

for 0 ≤ q ≤ 2. The LASSO, proposed by Tibshirani (1996), corresponds to the

penalized least squares with L1 penalty. Fan and Li (2001) provided insights into

how to select a penalty function and advocates using nonconvex penalty function.

They further proposed the smoothly clipped absolute deviation (SCAD) penalty,

defined by

pλ(θ) =

∫ θ
0

λ

{
I(t ≤ λ) + (aλ− t)+

(a− 1)λ
I(t > λ)

}
dt, (2.4.2)

in which a = 3.7 suggested by Fan and Li (2001), and I( · ) is the indicator function,

and (b)+ denotes the positive part of b. Another popular nonconvex penalty is the

MCP penalty proposed by Zhang (2010), and is defined by

pλ(θ) =

∫ θ
0

(aλ− t)+
a

dt (2.4.3)

for a > 2.

2.4.1 Grouped Variable Selection

Since grouped variable selection will be used to select important variables

in varying coefficient models, this section is devoted to review this statistical

procedure. Partition β = (β1, · · · ,βJ). Yuan and Lin (2006) proposed group
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LASSO by minimizing the following penalized least squares

1

2

n∑
i=1

(yi − xTiβ)2 + λ
J∑
j=1

‖βj‖2, (2.4.4)

where ‖ · ‖2 is the L2-norm of a vector. When all dimensions of βj’s equal one, the

group LASSO becomes the LASSO. Thus, the group LASSO is a natural extension

of the LASSO to select grouped variables. Grouped variable selection is particularly

useful under the setting analysis of variance in the presence of multiple levels for

factors.

Although the objective function of the original LASSO is convex, the objective

function of group LASSO is not convex. Thus, optimization problem associated the

group LASSO is much more complicated than the original LASSO. Qin, Scheinberg,

and Goldfarb (2013) proposed two algorithms to conduct the group LASSO method

based on different sample size. For moderate sample size, a general version of Block

Coordinate Descent (BCD) algorithm is proposed. This is the algorithm used in

Chapter 5 of this dissertation. The detailed procedure is introduced following. For

large size, an extension of (Fast) Iterative shrinkage thresholding (ISTA/FISTA) is

proposed.

Let y = (y1, · · · , yn)T and X = (x1, · · · ,xn)T be the response vector and the

design matrix, respectively. Then the penalized least squares function of the group

LASSO can be written as

min
β

1

2
‖y−Xβ‖2 + λ

J∑
j=1

∥∥βj∥∥ . (2.4.5)

BCD optimizes this objective function by updating the coefficients group by group.

Within each sub-iteration, it finds the coefficients for this group, while the coefficients

in other groups staying fixed. Define Mj = XT
jXj, and pj = XT

j (
∑

i6=j(yi −Xiβi)).
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The objective function can be re-written for j-th sub-iteration as:

min
βj

1

2
βTjMjβj + p

T
j βj + λ

∥∥βj∥∥ . (2.4.6)

When Xj is orthogonal, the coefficients have close form. Qin, Scheinberg, and

Goldfarb (2013) drops the condition, and give a generalized algorithm to solve the

problem by using Newton method.

If ‖pj‖ ≤ λ, βj = 0 is the optimal solution. If βj 6= 0, under optimality

conditions

(Mj +
λ∥∥βj∥∥ In )βj = −pj, (2.4.7)

there exist ∆ > 0, so that (2.4.6) becomes

min 1
2
βTjMjβj + p

T
j βj, s.t.

∥∥βj∥∥ ≤ ∆. (2.4.8)

Denote x∗j as the unique solution for (2.4.8) we are looking for, then
∥∥x∗j ∥∥ = ∆.

(2.4.7) leads to

β∗j = −(Mj +
λ

∆
I)pj = ∆zj(∆), (2.4.9)

where zj(∆) = −(∆Mj + λI)
−1pj with norm equals to 1. Our problem further

changes to find the solution of ∆ which satisfying ‖zj(∆)‖ = 1.

Assume γi and qi are the i-th eigenvalue and eigenvector ofMj, by decomposing

Mj, the following function can be derived:

‖zj(∆)‖2 =
∑
i

(qTi pj)
2

(γi∆+ λ)2
. (2.4.10)

Newton’s method is applied to find ∆ iteratively with:

φ(∆) = 1−
1

‖zj(∆)‖
. (2.4.11)
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The algorithm (denoted as BCD-GL) is summarized as:

Algorithm 2.4.1. Block Coordinate Descent Group LASSO algorithm:

BCD-GL algorithm
Given β(0) ∈ Rm, compute Mj = XT

jXj, for j = 1, . . . , J. For k = k∗, k∗ ≥ 1:
1. Let β(k) is from last iteration, for j = j∗:
(a). pj = XT

j (
∑

i6=j(yi −Xiβi)).
(b). If ‖pj‖ ≤ λ, then β(k+1)

j = 0.
(c). If not, calculate ‖zj(∆)‖ by (2.4.10).
(d). then find ∆ by applying Newton’s root-finding method to (2.4.11).
(e). Then zj(∆) can be derived from its definition. β(k+1)

j = ∆zj(∆).
2. After exploring all j = 1, . . . , J, β(k+1) is derived.
End the iteration k until it meets the stopping criteria, and the estimate in final step is βopt.

In the article, Iterative shrinkage thresholding (ISTA) algorithm is also in-

troduced. Basically, it separate the targeted function (2.4.5) by setting g(β) =
1
2
‖y−Xβ‖2 and h(β) = λ

∑J
j=1

∥∥βj∥∥. After using quadratic approximation on

g(β), the target function can be transferred to an additive form. Then, the target

function can be optimized by each coordinate. Qin, Scheinberg, and Goldfarb

(2013) improve the algorithm by using block coordinate step when optimizing each

coordinate (ISTA-BC). A hybrid version of BCD-GL and ISTA-BC is proposed,

and global convergence of this hybrid version is proved.

2.4.2 Feature Screening

When the dimension p is greater than the sample size n, the least squares

estimator of β is not well defined due to the singularity of XTX. For a data, if

log(p) = O(nk), k > 0, then we call the data ultrahigh dimensional data. This

type of data widely appears within the field of genomic, economics, etc. In these

area, the predictors may have influence on response could be millions while the

number of subjects could be as few as tens or hundreds. In this case, traditional

variable selection method may lead to a unacceptable computing burden, due to
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the huge p. For one of the solution, Fan and Lv (2008) proposes a new idea based

one the ranking of Pearson correlation.

The ridge regression is a useful technique to deal with singularity of the design

matrix X and is defined by

β̂λ = (XTX+ λIp)
−1XTy,

where λ is a ridge parameter. The ridge regression estimator β̂λ tends to the least

squares estimator if it is well-defined when λ→ 0. On the other hand, λβ̂λ tends

to XTy if λ→∞. This implies that β̂λ ∝ XTy. In practice, all covariates and the

response are marginally standardized so that their means and variances equals 0

and 1, respectively. Then 1
n
XTy becomes the vector consists of the sample version

of Pearson correlations between the response and individual covariate. This is the

motivation of using Pearson correlation as a marginal utility for feature screening.

Specifically, denote

ωj =
1

n
XT
j y, for j = 1, 2, . . . , p. (2.4.12)

Here it is assumed that both Xj and y are marginally standardized. Thus, ωj

indeed is the sample correlation between the j−th predictor and the response

variable.

Fan and Lv (2008) suggested ranking all predictors according to |ωj| and select

the top predictors which are relatively strongly correlated with the response. To

be specific, for any given γ ∈ (0, 1), the [γn] top ranked predictors are selected to

obtain the submodel

M̂γ = {1 ≤ j ≤ p : |ωj| is among the first [γn] largest of all}, (2.4.13)

where [γn] denotes the integer part of γn. It reduces the ultrahigh dimensionality
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down to a relatively moderate scale [γn], i.e. the size of M̂γ, and then the well-

established penalized variable selection methods is applied to the submodel M̂γ.

This screening procedure defined in (2.4.13) is referred to as sure independence

screening (SIS) in the literature.

Several methods are developed since then for all kinds of different models. Zhu

et al. (2011) develops a novel feature screening procedure, and it can be used for a

lot of parametric and semiparametric models. Li, Zhong, and Zhu (2012) proposes

independence screening procedure based on the distance correlation (DC-SIS). It has

no model specification, and can be directly used for multivariate response variables.

Also, Li, Peng, Zhang, and Zhu (2012) proposes a robust rank correlation based

screening. This method can be used to deal with a data with large quantitative of

outliers and influence points.

Also, the idea of SIS has been extended for varying coefficient model with

ultrahigh dimensional covariates:

y = β0(u) + xTβ(u) + ε, (2.4.14)

where E (ε|x,u) = 0, β0(u), β(u) = (β1(u), . . . , βp(u))
T are nonparametric smooth

functions over u. Fixing u, the varying coefficient model is a linear regression

model.

Liu, Li, and Wu (2014) proposed a conditional correlation sure independence

screening (CC-SIS) to measure the importance of predictor variable. Specifically,

define

ρ(xj, y|u) =
cov(xj, y|u)√

cov(xj, xj|u)cov(y, y|u)
, (2.4.15)

which is a function of u. To avoid directly comparing two functions, Liu, Li and
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Wu (2014) define the following marginal utility

ρj0 = E [ρ2(xj, y|u)]. (2.4.16)

In order to estimate cov(xj, y|u), cov(xj, xj|u), and cov(y, y|u) in (2.4.15), we need

to estimate E (y|u), E (y2|u), E (xj|u), E (x2j |u), and E (xjy|u). Kernel smoothing

method is used to estimate the five conditional expectation. Take E (y|u) as an

example:

Ê (y|u) =

n∑
i=1

Kh(ui − u)yi∑n
i=1 Kh(ui − u)

, (2.4.17)

where K(·) is a kernel function, and Kh(t) = h−1K(t/h). Follow the idea, Ê (y|u),

Ê (y2|u), Ê (xj|u), Ê (x2j |u), and Ê (xjy|u) can be calculated. One thing should be

noticed is that the bandwidth h should be the same for all the five conditional

means in order to guarantee |ρ̂(xj, y|u)| ≤ 1.

Based on the definition of covariance, cov(xj, y|u), cov(xj, xj|u), and cov(y, y|u)

are easily estimated from the five conditional means. Furthermore, ρ(xj, y|u) can

be estimated by plugging-in the estimate of the conditional mean. Thus, ρj0 can be

estimated by

ρ̂∗j =
1

n

n∑
i=1

ρ̂2(xj, y|ui). (2.4.18)

Intuitively, the larger ρ̂∗j is, the more important xj is. Thus, for a given d, the

screening procedure is to select the d variables with largest ρ̂∗j . That is,

M̂ = {j : ρ̂∗j ≥ ρ̂(d), 1 ≤ j ≤ p}, (2.4.19)

where ρ̂(1) ≥ ρ̂(2) ≥ · · · ≥ ρ̂(p). Extending the strategy in Fan and Lv (2008)

to varying coefficient models, the authors suggested setting d = [n4/5/ log(n4/5)],

where [a] stands for the integer part of a. By feature screening, we may reduce the

dimensionality from p to d.
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Define the true model index as:

M∗ = {j : 1 ≤ j ≤ p, βj(u) 6= 0 for some u ∈ U }. (2.4.20)

Liu, Li, and Wu (2014) further studied the theoretical properties of their proposed

feature screening procedure. First, all the regularity conditions are listed here for

clear understanding.

Condition 2.4.1. The regularity conditions for CC-SIS:

(B1): The following inequality holds uniformly in n:

min
j∈M∗

ρ∗j0 > E
{
λmax{cov(xM∗ ,xTMc

∗
|u)cov(xMc

∗ ,xTM∗ |u)}× λmax{ρM∗(u)ρ
T
M∗(u)}

λ2min{cov(xM∗ |u)}

}
.

(2.4.21)

(B2): Assume that conditioning on xTM∗βM∗(u) and u,x and ε are independent.

Further assume that the following linearity condition is valid:

E {x|xTM∗βM∗(u), u} = cov(x,xTM∗ |u)βM∗(u){cov(x
T
M∗βM∗(u)|u)}

−1×βTM∗(u)xM∗ .

(2.4.22)

(C1) Denote the density function of u by f(u). Assume that f(u) has continuous

second-order derivative on U.

(C2) The kernel K(·) is a symmetric density function with finite support and is

bounded uniformly over its support.

(C3) The random variables xj and y satisfy the sub exponential tail probability

uniformly in p. That is , there exists x0 > 0, such that for 0 ≤ s ≤ S0,

sup
u∈U

max
1≤j≤p

E {exp(sx2j |u)} <∞, (2.4.23)

sup
u∈U

E {exp(sy2|u)} <∞, (2.4.24)

sup
u∈U

max
1≤j≤p

E {exp(sxjy|u)} <∞. (2.4.25)
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(C4) All conditional means E (y|u), E (y2|u), E (xj|u), E (x2j |u), and E (xjy|u),

their first and second order derivatives are finite uniformly in u ∈ U. Further

assume that

inf
u∈U

min
1≤j≤p

var(xj|u) > 0, (2.4.26)

inf
u∈U

var(y|u) > 0. (2.4.27)

Theorem 2.4.1. Under Condition(B1) and (B2),

lim inf
n→∞

{
min
j∈M∗

ρ∗j − max
j∈Mc

∗
ρ∗j
}
> 0. (2.4.28)

This theorem suggests a clear separation between ρ∗j for important and unimpor-

tant variables. This theorem enables the authors to further establish the ranking

consistency property of the proposed procedure.

Theorem 2.4.2. Under more conditions (B1),(B2), (C1)-(C4), suppose that band-

width h→ 0 but nh3 →∞ as n→∞. Then for p = o{exp(an)} with some a > 0,

we have

lim inf
n→∞

{
min
j∈M∗

ρ̂∗j − max
j∈Mc

∗
ρ̂∗j
}
> 0 in probability. (2.4.29)

Also, the sure screening property is described as:

Theorem 2.4.3. Under conditions(C1)-(C4) , suppose the bandwidth h = O(n−γ),

where 0 < γ < 1/3, then we have

P
(
max
1≤j≤p

∣∣ρ̂∗j − ρ∗j0∣∣ > c3 · n−κ
)
≤ O
{
np exp(−n1/3−κ/ξ)

}
. (2.4.30)

And if we further assume that there exist some c3 > 0 and 0 ≤ κ < γ, such that

min
j∈M∗

ρ∗j0 ≥ 2c3n−κ, (2.4.31)
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then

P
(
M∗ ⊂ M̂

)
≥ 1−O

{
nsn exp(−n1/3−κ/ξ)

}
, (2.4.32)

where ξ is some positive constant determined by c3, and sn is the cardinality of

M∗, which is sparse and may vary with n.

This theorem shows that the selected variables contain the important variable

with not too weak signal.

Besides CC-SIS method mentioned above, Fan, Ma, and Dai (2014) also propose

a nonparametric independence screening(NIS) to select variables for ultrahigh

dimensional sparse varying coefficient models. It is a follow-up work of Fan, Feng,

and Song (2011). They use an iterative-NIS(INIS) approach to avoid the false

negative and false positive.

2.5 Error Variance Estimation in Ultrahigh Dimen-

sional Linear Regression Models

When facing a large quantity of unimportant variables, there might exist

unimportant variables with high correlation with realized noises. Due to this

spurious correlation, error variance estimation is challenging in the presence of

ultrahigh dimensional covariates. The sparsity principle is a typical assumption

in the analysis ultrahigh dimensional data. Thus, a common strategy to analyze

ultrahigh dimensional data is two stage procedure: first conduct feature screening,

and then follow a variable selection procedure to further clean up unimportant

variable. In the presence of spurious correlation, spurious correlated variables will

be ranked highly in the screening stage, and will be further selected by variable

selection stage. The selected spurious correlated variables will explain the variation

of the random error. This leads the mean squared errors significantly underestimate
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the error variance. This phenomenon has confirmed by Fan, Guo, and Hao (2012).

Fan, Guo, and Hao (2012) gave the evidence of the influence of spurious

correlation. Take null linear regression y = ε as an example.

σ̂2n = (1− γ̂2n)
1

n− 1

n∑
i=1

(Yi − Ȳ)
2, (2.5.1)

and γn is the sample correlation of the spurious variables and the response, or

noise in this example. Most variable selection methods tend to select variables

with high correlation with response. Assume γn = max1≤j≤p |ĉorrn(Xj, Y)|. Since

all variables are not important, this γn leads to bias to the σ̂2n. And this γn could

be very large considering the large p, thus σ̂2n could be significantly underestimate.

A simulation study gives further view of this problem.

Still the null linear regression model, take n = 100, and p = 100, or 10000.

Simulate data with xj
i.i.d.
∼ N(0, 1), j = 1, . . . , p , y i.i.d.

∼ N(0, 1). γn and σ̂2n can be

computed from the data. Repeat for 500 random generated sample, and the figures

shows the density of γn and σ̂2n. It is easy to see from the figure, as p goes larger,

γn becomes larger which leads to a larger biased σ̂2n.

Let y = (Y1, . . . , Yn)
T be the response, and X = (x1, . . . ,xn)T be the predictors,

consider the linear regression

y = Xβ+ ε, (2.5.2)

where β = (β1, · · · , βp)T be the coefficient, and ε = (ε1, . . . , εn)
T consists of the

identical independent distributed random errors.

Denote M0 = {j : βj 6= 0}, and s = |M0|, the cardinality of M0. Further assume

s is fixed or diverging at a mild rate. Denote M as a sub-index of {1, 2, . . . , p}.

Then XM is the predictors with respect to the index M, βM are the coefficients

with respect to XM, and PM = XM(XT
MXM)

−1XT
M.

The naive way to estimate error variance is to screen and select variables first
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Figure 2.1: Spurious correlation.

(a) is the density of γn. Dash line refers to p = 100, and solid red line refers to
p = 10, 000. (b) is the density of σ̂. Dash line refers to p = 100, solid red line
refers to p = 10, 000, and the bold line is the true error variance. Adapted from
Fan, Guo, and Hao (2012).

and use the mean squares error estimator (MSE) to estimate σ2. To be more

specific, define M̂ as the index of selected variables. Then,

σ̂2
M̂

=
yT(In − P M̂)y

n− ŝ
=
εT(In − P M̂)ε

n− ŝ
. (2.5.3)

Rewrite σ̂2
M̂

as

σ̂2n =
1

n− ŝ
(1− γ̂2n)ε

Tε, (2.5.4)

where γ̂2n = (εTPM̂ε)/(εTε).

For ease of theoretical analysis, assume that

P(M̂ ⊃M0)→ 1, as n→∞. (2.5.5)
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This implies that all important variables have been retained in the selected model.

The following assumptions have been imposed in Fan, Guo, and Hao (2012) to

facilitate the asymptotic analysis of the naive estimator.

Define

φmin(m) = max
M:|M|≤m

{
λmin

( 1
n
XT
MXM

)}
,

and

φmax(m) = max
M:|M|≤m

{
λmax

( 1
n
XT
MXM

)}
.

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a matrix

A respectively.

Condition 2.5.1. The regularity conditions are following:

Assumption 1. The errors ε1, . . . , εn are IID with zero mean and finite variance σ2

and independent of the design matrix X.

Assumption 2. There is a constant λ0 > 0 and bn such that bn/n→ 0 such that

P{φmin(bn) ≥ λ0} = 1 for all n.

Assumption 3. There is a constant L such that maxi,j |Xi,j| ≤ L, where Xij is the

(i, j) element of the design matrix X.

Assumption 4. E [exp(|ε1| /a)] ≤ b for some finite constant a, b > 0.

These assumptions may not be the weakest ones. The aim of Assumption 3,4

is to guarantee that γ̂n in theorem is of the order O[
√
ŝ log(p)/n]. Some of the

alternative conditions are:

Assumption 5. The random vectors x1, . . . ,xn are i.i.d. and there is a constant

α such that E [exp{(|Xij| /ρ)α}] ≤ L for all i and j and some constant α > 1, and

ρ, L > 0, where Xij is the (i, j)th element of X.

Assumption 6. ε1 satisfies the condition that E [exp{(|ε1| /a)θ}] ≤ b for some finite

positive constants a, b, θ > 0 and 1/α+ 1/θ ≤ 1, where α is defined by assumption

5.

Theorem 2.5.1. Under Assumptions 1-4 or 1,2,5,6, the following results:
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(a) It the procedure satisfies the sure screening property with ŝ ≤ bn and bn = o(n),

then

σ2/(1− γ̂2n)
p→ σ2, as n→∞ (2.5.6)

√
n(σ2/(1− γ̂2n) − σ

2)
D→ N(0,E [ε41] − σ

2) as n→∞ (2.5.7)

(b) In addition, log(p)/n = O(1), then γ̂n = O[
√
ŝ log(p)/n].

This means the consistency of the naive estimator depends on γ̂. It is a fraction

of bias of σ̂2n. More specifically, if ŝ log(p)/
√
n → ∞, the estimator is no longer

root n consistent. This affirms the challenge of error variance estimation.

In order to provide a more reliable estimator, Fan, Guo, and Hao (2012) proposed

a novel error variance estimator by refitted cross-validation (RCV) method. The

RCV procedures can be described as follows:

• Split data evenly and get (y(1),X(1)), (y(2),X(2)).

• Select a model separately for each of two datasets. The selected indices for

two datasets are M(1),M(2).

• Estimate error variance same as (2.5.3) with the variables selected from the

other data set:

σ̂2i =
y(i)T(In/2 − P (i)

M̂2−i
)y(i)

n− |M̂2−i|
, i = 1, 2. (2.5.8)

Then, the final estimator is

σ̂2RCV = (σ̂21 + σ̂
2
2)/2. (2.5.9)

Fan, Guo, and Hao (2012) also established the asymptotic normality of the

RCV estimator.

Theorem 2.5.2. Assume that regularity conditions 1 and 2 hold and E [ε4] ≤∞.
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If a procedure satisfies the sure screening property with ŝ1 ≤ bn and ŝ2 ≤ bn, then

√
n(σ̂2RCV − σ

2)
D→ N(0,E [ε41] − σ

2), as n→∞. (2.5.10)

Denote the oracle estimator σ̂2O = n−1
∑n

i=1(Yi − xTiβ)2, where β is the true

value of the regression coefficients. This theorem indicates that there is no γ̂n
involving in the asymptomatic distribution, and the RCV estimator shares the

same asymptotic variance of the oracle estimator. In other words, the theorem

shows that RCV estimator has oracle property. Thus, it is expected that the RCV

estimator has similar good performance as oracle estimator. This was confirmed by

simulation studies in Fan, Guo, and Hao (2012).

Also, there are other methods to estimate the error variance or the noise level.

Sun and Zhang (2012) propose an algorithm for scaled sparse linear regression to

estimates the regression coefficients and error variance. The penalized loss function

is

Lλ(β) =
|y− Xβ|22
2n

+ λ2
p∑
j=1

ρ(|β| /λ), (2.5.11)

where β = (β1, . . . , βp)
T is coefficient, and ρ(·) is a penalty function. ρ(t) is

standardized to ρ′(0+) = 1. In order to find the optimization point of (2.5.11), β̂

need to satisfy: 
x′j(y− Xβ̂)/n = λsgn(β̂j)ρ′(

∣∣∣β̂∣∣∣ /λ), β̂ 6= 0,
x′j(y− Xβ̂)/n ∈ λ[0, 1], β̂ = 0.

(2.5.12)

Also, a proper λ is required. Sun and Zhang (2012) propose an iterative algorithm

which can simultaneously update σ̂, λ, β̂:

σ̂← ∣∣∣Y − Xβ̂old
∣∣∣
2
/((1− a)n)1/2, (2.5.13)

λ← σ̂λ0, (2.5.14)
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β̂← β̂new, Lλ(β̂new) ≤ LÎż(β̂old). (2.5.15)

Set constant (a, λ0) = (p/n, 0), and initial value β̂lse as least squares estimator of

β. So, the algorithm procedure is following. For (2.5.12), starting from β̂(λ) = 0,

and λ = |X′y/n|∞, the solution paths of β̂(λ) can be found for fixed λ. Then, use

the algorithm in (2.5.13), and β̂new is updated by each step of solution paths of

β̂(λ). By this algorithm, error variance can be estimated.
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Chapter 3 |
Incorporating Additional Data

In this chapter we first introduce the method to incorporate incidence assay data

to the existing EPP model in Section 3.1. We further propose a sequential-IMIS to

improve the computing efficiency for all the situations that incorporating additional

data into a known model in Section 3.2. And a simulation study on EPP model is

conducted in Section 3.3 to justify our method.

3.1 Incorporating Incidence Assays within EPP Frame-

work

The Estimation and Projection Package(EPP) is a widely used software for

estimating the trends of HIV epidemics. The use of prevalence data has been

described in 1.1.1. As the HIV incidence data becomes available, we seek approaches

for including this information in the model fitting precess, so that we can have

more accurate estimates, especially for HIV incidence. The statistical model that

simultaneously fit the prevalence data and incidence data is described inside Bao,

Ye, and Hallett (2014). EPP model is consisted of three parts: epidemiological

dynamic models(2.1.1), an infection rate model (2.1.3 and 2.1.2), and data models

(2.1.4 and 2.1.6). As described in section 2.1.4, we have both prevalence data,
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antenatal clinical (ANC) data and the national population-based survey (NPBS)

data, and the newly available incidence assay data.

To incorporate the new incidence assay data, we propose combining the likelihood

of the incidence assay data with the likelihood of other data, in a manner that is

consistent with the biomarker-based incidence estimator using incidence assay data

(Bao, Ye, and Hallett, 2014). Also, after the combining, new data likelihood is

generated, and it allows EPP to produce new prevalence and incidence estimates.

Our proposed method enables us to study the impact of assay data. We point out

that by adding into incidence assay data, incidence rate has more accurate estimates,

which suggests that incidence assay data provides additional information. However,

one thing need to notice is that, due to the small sample size, the improvement

could be too small to make a difference. And also, the simulation study only shows

the results with one-time assay data.

Based on Bao, Ye, and Hallett (2014), we need to further analyze the impact of

the assays for multiple scenarios or with time-series assay data. However, hundreds

of simulation scenarios will be taken into consideration due to the complexity of the

incidence assays. The computing burden is unacceptable if we still use the method

proposed in Bao, Ye, and Hallett (2014). A more efficient computing method

becomes necessary. However, it does not mean the original method is useless. It is

still accurate method, which we treat as the benchmark.

Also, the current convergence rule stops the algorithm after the expected number

of unique points is larger than (1 − e−1)× B, where B is the re-sampling sample

size in IMIS. When the distribution has nonlinear ridge and multi-modal, it may

cause a false converge, and leads to neglect of other modes. We propose adding

another convergence criteria to avoid false converge.
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3.2 Sequential IMIS

In some circumstances, the epidemics trends have been estimated by only using

prevalence data without considering incidence data, because those two data sources

might not be available to modellers at the same time. Instead of re-fitting the EPP

package to fit the prevalence and incidence data simultaneously, we suggest taking

the use of existing inference based on prevalence data, and gradually evolve it to

approximate the inference based on both prevalence data and incidence data. We

also expand this idea to the more general models beyond EPP.

3.2.1 Framework

Suppose that we have the old data source xA and new data source xB, which are

independent given θ. In the EPP application, prevalence data is xA, and incidence

data is xB. They both can be used to estimate the same parameters θ. We have

an original prior distribution p(θ), and for each data sources, we have sampling

distribution f(xA|θ), and f(xB|θ). Also, we have the posterior distribution without

new data source f(θ|xA). Our goal is to find the posterior distribution f(θ|xA,xB).

f(θ|xA,xB) =
f(xA,xB|θ)p(θ)∫
f(xA,xB|θ)p(θ)dθ

=
f(xA|θ)f(xB|θ)p(θ)∫
f(xA,xB|θ)p(θ)dθ

= f(xB|θ)×
f(xA|θ)p(θ)∫
f(xA|θ)p(θ)dθ

×
∫
f(xA|θ)p(θ)dθ∫

f(xA,xB|θ)p(θ)dθ

∝ f(xB|θ)× f(θ|xA)

(3.2.1)

Intuitively, f(θ|xA,xB) would be more similar to f(θ|xA), the posterior of partial

data, than to p(θ), the prior. From 3.2.1, we find out that the posterior distribution

f(θ|xA,xB) is proportion to the old result f(θ|xA) multiplied by new data density
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f(xB|θ). It shows that instead of starting with prior distributions p(θ), we can

use f(θ|xA) as initial sampling distribution. The proposed method significantly

reduces computing time, especially when likelihood of old data L(θ|xA) = f(xA|θ)

is hard to calculate.

3.2.2 Algorithm

Since we already used IMIS to draw the posterior distribution f(θ|xA), the

following variables have been obtained in IMIS. We inherit the notation from

Algorithm 2.2.2.

• N0 is initial sample size,

• B is sample size drawn in each iteration,

• K is the total iterations,

• NK = N0 + BK is the total sample size,

• p(·) is the prior function of θ,

• Lold is the likelihood function,

• θ(k) is the center, and Σ(k) is weighted covariance in each iteration k,

• Hk is multivariate Gaussian distribution in iteration step k,

• q(k) is the mixture sampling distribution in each step k,

q(k) =
N0

Nk

p+
B

Nk

k∑
s=1

Hs, (3.2.2)

• θi, . . .θNK
are the samples, with likelihood L1, . . . LNK

,

• w1, . . . wNK
are the weights,

wi = cLold(θi)×
p(θi)

q(K)(θi)
, i = 1, . . .NK. (3.2.3)

The algorithm details are provided below:
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Algorithm 3.2.1. (S-IMIS)

1. Updating step:

The updated likelihood function becomes: Lold × Lnew, where Lnew is the likelihood

of new data source. For each sample θi, . . .θNK
, the new weights of these samples

become:

w
(update)
i ∝ Lold(θi)× Lnew(θi)×

p(θi)

q(m)(θi)
∝ Lnew(θi)×wi, i = 1, . . . ,NK

2. New step:

Then, similar as IMIS, algorithm still goes on as the Importance Sampling Stage in

Algorithm 2.2.2 from iteration m = (k+ 1). We still record multivariate Gaussian

distribution Hm along with its mean and weighted covariance in each iteration step

m. q(m) is calculated the same as 3.2.2. The new weights become:

w∗i ∝ Lnew(θi)×
p(θi)

q(m)(θi)
, i = 1, . . . ,NK

3. Resample step:

Resample J inputs with replacement from θ1, . . . , θNM
with weights w1, . . . , wNM

,

where M is the number of iterations at the importance sampling stage.

3.2.3 Stopping Rule

The original stopping rule for IMIS is based on the expect number of unique

points. One major application of sequential IMIS is to incorporate different data

sources. One drawback of sequential IMIS is that it starts from a more concentrated

distribution f(θ|xA) which may miss some high density regions of the target distribu-

tion f(θ|xA,xB) if those two distributions differ a lot. To avoid the false convergence

— the algorithm provides sufficient unique points but does not cover all high density
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regions, we revise the stopping criterion by further requiring the marginal likelihood

has been stable. To be specific, we require |MarLikek/MarLikek−1 − 1| < 0.001

stands for consecutive 3 steps, where k is the step indicator.

3.2.4 Sequential IMIS in EPP

Under EPP framework, IMIS starts with drawing parameters from the prior

distribution, and its proposal distribution are a mixture of multivariate normal

distributions and the prior distribution, In EPP model, the incidence and prevalence

are independent given the 8 r-trend parameters, θ. Therefore we can read the

posterior f(θ|xA) as the prior, and xB as the only data, where xA is the prevalence

data and xB is the incidence data. The resulting posterior would be f(θ|xA,xB),

the target distribution of interest.

Then starting from the posterior f(θ|xA), our focus is on different scenarios of

incidence assays data xB. Simulation study allows us to change the parameters

which have influence on incidence assays data based on our research requirements.

This is a more efficient and flexible way to analysis the impact of incidence assays,

compared to real data. Theoretically, a big difference between the estimation from

xA and xB would cause inefficient or even wrong estimates from the algorithm.

In this case, the posterior f(θ|xA) might be a worse prior than the flat normal or

uniform distributions. However, in practice, since assays data is conducted under

survey data framework, they are highly unlikely to have that much inconsistency.

We notice that, when the difference between estimation from two data sets xA and

xB is large, using old posterior as prior might not a be good choice. Here, we also

propose that once the point estimates based on the new data do not fall in 95%

credible interval of the old posterior distribution, the sequential IMIS should not

be used because it would be hard to move from the sharp distribution f(θ|xA) to
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the target distribution f(θ|xA,xB).

3.3 Numerical Studies

In this section, we presents both the method described in Bao, Ye, and Hallett

(2014) (Method 1) and our newly proposed method S-IMIS (Method 2) to

incorporate the incidence assay data. We consider Method 1 as a benchmark.

Also, a comparison of the new and original stopping rule is performed here.

The data we use is from Kenya rural area, and has Both ANC data and NPBS

data up to year 2012. The NPBS data here refers to the prevalence data without and

simulate new incidence assays data. Besides, we also have the posterior distribution

of prevalence and incidence without assay data. In order to avoid future confusion,

we call this posterior distribution result 1.

The basic framework of our numerical study is described below. Since we already

have (result 1), from algorithm 2.2.2, the following parameters are recorded during

the procedure: total iteration number K, prior functions p(·), the mixture sampling

distribution q(k), all the samples θi, . . .θNK
and their weights w1, . . . wNK

. Figure

3.1 plots the prevalence and incidence trends in result 1, along with the real NPBS

and ANC data. The colorful ANC data varies due to the location and capability

of different clinics. NPBS data point estimation are very close to the median

of posterior estimates. The trends are calculated by taking median of posterior

distribution in each year.

Now, assume in 2012, we can further collect incidence assay data. Here, we

simulate incidence data based on the 2012 posterior median of prevalence and

incidence estimates in result 1 : 0.0524 as prevalence estimate and 0.002384 as

incidence estimate. The ratio r between incidence and prevalence estimates is

0.0456.
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Figure 3.1: Kenya Rural prevalence and incidence trend.

(a) It shows the estimated prevalence estimates time trend derived by EPP without
using incidence assays. Black line is the prevalence estimates trend and the dash
line is the 95% credible interval of the posterior distribution. The large red dots
are the NPBS data, and the colorful dots are ANC data. Each color represents
one clinic. (b) This is the incidence estimates time trend plots derived by result 1.
Black line is the incidence estimates trend and the dash line is the 95% credible
interval of the posterior distribution. 66



As point out in (2.1.9), in order to simulate incidence assays data, four parame-

ters should be taken into consideration: prevalence rate ρ, incidence rate I, false

recent rate (FRR) β, and mean duration of recent infection (MDRI) Ω.

Setting 3.3.1. Since our goal is to explore all the scenarios, we allow the parameters

to change from following settings:

·ρ is the same as the prevalence estimate in result 1,

·I is is formulated as the ratio with ρ, and detailed setting differs in different

scenarios.

·β = 0.025,

·Ω = 150.

Once we have the simulated data, we can generate the new posterior distribution

of prevalence incidence using the methods in Section 3.1 and Section 3.2. Still,

in order to simplify the notation, we can these two new psoterior distributions as

result 2 and result 3, with respect to Method 1 and Method 2. We can do

comparison and further analysis based on those results.

3.3.1 Stopping Rule

First, we show the advantage of the new stopping rule. We believe combining this

new additional rule, |MarLikek/MarLikek−1 − 1| < 0.001 stands for consecutive 3

steps, and the original stopping rule could more efficiently prevent the false converge

problem.

Simulation Design 1:

We set incidence rate as 0.1 times prevalence estimates, and the other parameters

are the same as in Setting 3.3.1. We compare three stopping rules: the expected

number of unique points criterion(old stopping rule); the expected number of unique

points criterion and the additional marginal likelihood criterion (new stopping rule),
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and an arbitrary large number, saying 100 iterations as the “correct” stopping rule.

Our goal is to compare the performance under the old stooping rule v.s. the new

stopping rule. And the results under 100 iterations is the benchmark here.

The outputs in Simulation Design 1 is in Appendix A. When we only apply the

old rule, the algorithm ends after 3 iterations. From the outputs, we can find our

the unique points have already achieved 718, which is larger than the critical value

1000× (1− e−1) = 632. However, when we apply the new stopping rule, the ratio

of marginal likelihood becomes −30.836/(−21.596) − 1 = 0.428. Under the new

stopping rule, it arrives convergence in around 56 iterations.

To ensure the convergence, we continue iteration the IMIS algorithm until

reaching 100 iterations. We compare the three scenarios in these figures, and show

that estimates stopping by new rule has the almost exact the same result as the

100 iterations, however, it has a great difference from the estimates stopped by the

old rule.

Figure 3.2 presents the time trend at different number of iterations, old rule in

black with 3 iterations, new rule in blue with 56 iterations, and 100 iterations in

green. The curves produced under the new stopping tule largely overlap with 100

iterations but clearly distinct from the ones produced under the old stopping rule.

Figure 3.3 shows the expected number of unique points and the ratio of likelihood

as the IMIS algorithm continues. From Figure 3.3(b), we can see there is a obvious

peak in the iteration 3, which leads the IMIS stop at a false converge. The peak is

due to the existence of local maximum. However, the ratio of likelihood has not

been stabilized, so that the new stopping rule forces IMIS run a few more iterations

and move away from the local maximum to the true value.
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Figure 3.2: Stopping criteria plots.

(a) This is the prevalence estimates time trend at different number of iterations,
old rule in black with 3 iterations, new rule in blue with 56 iterations, and 100
iterations in green. (b) This is the incidence estimates time trend at different
number of iterations, old rule in black with 3 iterations, new rule in blue with 56
iterations, and 100 iterations in green.
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Figure 3.3: Stopping rule comparison.

The targeted values in both rule for the three scenarios. (a)Targeted values for
new rule, the blue line is the old rule stop place, the green line is the new rule stop
place, and the red line is the critical value (0.001). (b)Targeted values for old rule,
the blue line is the old rule stop place, the green line is the new rule stop place,
and the red line is the critical value (632).
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3.3.2 Sequential IMIS

After establishing the stopping rule, we further compare Method 1 and

Method 2, in order to justify the proposed S-IMIS.

Simulation Design 2:

We set incidence rate from 0.01 to 0.15 times prevalence estimates, and the other

parameters are the same as the settings above. We use both Method 2, that utilize

the posterior f(θ|xA) , and Method 1. We apply the newly proposed stopping

rule in Section 3.2.3 to the algorithm. Our goal is to validate sequential IMIS.

The proposed sequential IMIS (Method 2) will be considering as successful

with two conditions. First, the resulting posterior samples are close enough to the

posterior samples generated by Method 1. Second, the computing time is reduced

comparing with the computing time of (Method 1).

Figure 3.4 compares the sequential IMIS results that fit both the prevalence

data and the incidence data (black) under different simulations with ratio from

0.01 to 0.15. The ratio suggested by prevalence data is 0.045, which indicates a

consistency of point estimates from both prevalence and incidence data.

Compare all the plots, and we find out that the difference between estimates

from sequential method and the estimates from full-run EPP is insignificant until the

ratio is 0.08. Since the ratio suggested by prevalence data is 0.045, we can roughly

conclude that once the point estimates from both methods are close, sequential

IMIS provides estimates close to the estimates from full-run EPP.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

prev 0.56 0.51 0.55 0.56 0.56 0.58 0.47 0.11 0.10 0.10 0.10 0.07 0.04 0.04 0.04

inc 0.58 0.51 0.56 0.56 0.54 0.59 0.47 0.10 0.09 0.11 0.08 0.08 0.07 0.04 0.05

Table 3.1: Comparison of distribution of Result 2 and Result 3
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In order to quantify the similarity between two posterior, we calculate the

probability of Result 3 posterior greater than Result 2 posterior on the 15 ratios

different simulation settings, which is the Wilcoxon test statistics divide by sample

size of Result 2 times sample size of Result 3. Table 3.1 shows the test statistic

of each ratio. Since the statistics measure the probability of prevalence or incidence

from S-IMIS and the full-run EPP, 0.5 suggests similar posterior distribution.
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Figure 3.4: Kenya Rural prevalence and incidence for two methods comparison.

The results from simulation settings ratio = 0.01, 0.02, 0.03. (a) This is the
prevalence estimates time trend plots derived by results from full-run EPP and
Sequential IMIS. Blue line is the prevalence estimates trend and the dash line is
the 95% credible interval of the posterior distribution. Black line is the prevalence
estimates trend of full-run results and the dash line is the 95% credible interval of
the posterior distribution. The large red dots are the NPBS data, and the colorful
dots are ANC data. Each color represents one clinic. (b) This is the incidence
estimates time trend plots for both methods. Blue line is the incidence estimates
trend and the dash line is the 95% credible interval of the posterior distribution.
Black line is the incidence estimates trend of full-run results and the dash line is
the 95% credible interval of the posterior distribution. The large red dot is the
incidence rate used in the simulation settings.73



1980 1990 2000 2010

0
1

0
2

0
3

0
4

0

(a) Kenya Rural Prevalence, rate= 0.04

Year

P
re

v
a

le
n

c
e

(%
) full run

approximation
NPBS data

1980 1990 2000 2010

0
.0

1
.0

2
.0

3
.0

(b) Kenya Rural Incidence, rate= 0.04

Year

In
c
id

e
n

c
e

(%
)

full run
approximation
assays data

1980 1990 2000 2010

0
1

0
2

0
3

0
4

0

(a) Kenya Rural Prevalence, rate= 0.05

Year

P
re

v
a

le
n

c
e

(%
) full run

approximation
NPBS data

1980 1990 2000 2010

0
.0

1
.0

2
.0

3
.0

(b) Kenya Rural Incidence, rate= 0.05

Year

In
c
id

e
n

c
e

(%
)

full run
approximation
assays data

1980 1990 2000 2010

0
1

0
2

0
3

0
4

0

(a) Kenya Rural Prevalence, rate= 0.06

Year

P
re

v
a

le
n

c
e

(%
) full run

approximation
NPBS data

1980 1990 2000 2010

0
.0

1
.0

2
.0

3
.0

(b) Kenya Rural Incidence, rate= 0.06

Year

In
c
id

e
n

c
e

(%
)

full run
approximation
assays data

Figure 3.4(continue): The results from simulation settings ratio = 0.04, 0.05, 0.06.
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Figure 3.4(continue):The results from simulation settings ratio = 0.07, 0.08, 0.09.
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Figure 3.4(continue):The results from simulation settings ratio = 0.10, 0.11, 0.12.
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Figure 3.4(continue): The results from simulation settings ratio = 0.13, 0.14, 0.15.

77



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
approx 834 826 843 861 783 785 960 1013 1148 858 1864 3736 5492 9204 12974
full-run 5213 6263 6834 6944 9718 7193 8530 9399 7833 9949 10288 7292 9224 9709 7810

Table 3.2: Computing time comparison

Table 3.2 shows the computing time of both methods of each ratio setting.

We can see our method constantly has less computing time than (Method 1).

Especially when the two data sets have consistent estimates, our method has a

significant time reduce. When the ratio equals to 0.05, our methods spend less

than 1/10 time compared to Method 1.

As a summary, if the two data sources has similar estimates, S-IMIS produce

estimates with much less computing time, and the difference between result 2

and result 3 has not significant difference. However, once the difference between

estimates from two data sets is signifiant, the original IMIS (Method 1) is suggested.

For instance, in the EPP application, ratio larger than 0.08.

In reality, considering both data measure the same parameter f(θ), they should

yield to the same estimates especially with large sample size. But sometimes, when

sample size is small and some other random effect, the two data could have really

big difference. Then, we first need to check the reliability of the data for missing

bias or use different model to fit the data. Once we confirm the collecting procedure

and choice of model is correct, we can use the following criteria to determine

whether to use method 1 or method 2.

If the estimates from only new data source(incidence assay here) falls into

the 95% credible interval of the old posterior distribution(result 1), S-IMIS is

suggested. Otherwise, a full-run of the EPP is a better way. For example, in Figure

3.5(b), when ratio is We also propose a criteria to choose which method to use.

illustrates the criteria to choose the methods. When ratio is 0.05, it falls in between

of the black dash lines(95% credible interval), and S-IMIS is suggested. When

ratios is 0.1, it is outside of black lines, and method 1 is suggested. Figure 3.4
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justifies our choice.

3.4 Outputs in Chapter 3

Output for iteration 100

[1] "5248 non-zero likelihoods, time used= 11.61 minutes"

[1] "Stage MargLike UniquePoint MaxWeight ESS"

[1] 1.000 -6.315 119.705 0.105 24.404

[1] 2.000 -21.596 458.063 0.027 267.749

[1] 3.000 -30.836 718.602 0.028 602.313

----------------------------------------------------old rule stops

[1] 4.000 -31.001 741.018 0.011 1168.251

[1] 5.000 -31.011 702.011 0.053 261.477

[1] 6.000 -31.092 691.626 0.071 165.041

[1] 7.000 -30.731 504.429 0.304 10.455

[1] 8.000 -30.821 534.685 0.185 23.181

[1] 9.000 -28.535 71.633 0.887 1.270

[1] 10.000 -29.801 219.687 0.585 2.853

[1] 11.000 -30.008 262.534 0.347 5.820

[1] 12.000 -30.018 264.268 0.334 6.782

[1] 13.000 -29.812 230.362 0.251 9.852

[1] 14.000 -29.934 264.618 0.141 20.488

[1] 15.000 -30.061 298.849 0.090 29.316

[1] 16.000 -29.952 280.488 0.129 25.147

[1] 17.000 -30.050 308.258 0.079 36.134

[1] 18.000 -30.029 308.098 0.090 35.491

[1] 19.000 -30.039 317.320 0.064 45.611

[1] 20.000 -30.076 333.308 0.059 54.033
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Figure 3.5: Criteria for the intervals.

(a) The dots are the two sample Wilcox test statistics between incidence posterior
distributions of full-run and S-IMIS methods. The crosses are the p-value of two
sample Wilcox test between prevalence posterior distributions of full-run and S-
IMIS methods. The red line is 0.05 line. (b)The dots are the simulation settings
of incidence rate. The red line is the posterior mean of incidence estimates of old
result. the blue dash lines are the 98% credible interval of incidence estimates, the
black dash lines are the 95% credible interval of incidence estimates, and the green
dash lines are the 90% credible interval of incidence estimates.
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[1] 21.000 -29.975 321.637 0.053 57.538

[1] 22.000 -30.044 342.039 0.044 63.097

[1] 23.000 -30.019 340.932 0.076 56.623

[1] 24.000 -30.055 356.013 0.048 70.901

[1] 25.000 -30.097 369.231 0.038 79.573

[1] 26.000 -30.109 379.874 0.035 88.377

[1] 27.000 -30.092 380.584 0.031 94.310

[1] 28.000 -30.110 387.671 0.031 101.423

[1] 29.000 -30.071 385.217 0.029 107.654

[1] 30.000 -30.004 369.242 0.094 62.584

[1] 31.000 -30.055 387.408 0.076 75.780

[1] 32.000 -30.005 382.624 0.058 72.828

[1] 33.000 -29.895 365.362 0.085 61.785

[1] 34.000 -29.887 379.018 0.060 87.057

[1] 35.000 -29.840 386.925 0.043 107.167

[1] 36.000 -29.826 398.287 0.040 115.750

[1] 37.000 -29.793 403.220 0.030 127.045

[1] 38.000 -29.816 417.667 0.028 142.495

[1] 39.000 -29.725 405.562 0.052 116.976

[1] 40.000 -29.743 425.286 0.043 143.728

[1] 41.000 -29.749 444.032 0.036 169.013

[1] 42.000 -29.747 461.510 0.030 200.673

[1] 43.000 -29.763 477.399 0.026 227.062

[1] 44.000 -29.767 489.319 0.023 252.849

[1] 45.000 -29.760 498.971 0.021 274.883

[1] 46.000 -29.729 503.016 0.026 260.210

[1] 47.000 -29.729 524.070 0.022 315.287

[1] 48.000 -29.730 539.137 0.019 336.400
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[1] 49.000 -29.732 556.620 0.016 370.904

[1] 50.000 -29.732 572.317 0.014 414.458

[1] 51.000 -29.713 583.981 0.012 451.223

[1] 52.000 -29.724 598.408 0.011 494.694

[1] 53.000 -29.762 618.051 0.010 549.297

[1] 54.000 -29.776 634.161 0.009 605.264

[1] 55.000 -29.787 650.282 0.008 667.427

[1] 56.000 -29.797 662.256 0.008 717.341

------------------------------------------------ new rule stops

[1] 57.000 -29.806 676.346 0.007 784.143

[1] 58.000 -29.791 684.865 0.006 836.189

[1] 59.000 -29.789 695.390 0.006 892.202

[1] 60.000 -29.792 706.116 0.005 956.517

[1] 61.000 -29.792 714.153 0.005 1007.579

[1] 62.000 -29.786 723.499 0.005 1068.246

[1] 63.000 -29.785 731.126 0.004 1121.385

[1] 64.000 -29.794 739.661 0.004 1177.939

[1] 65.000 -29.795 741.861 0.004 1197.924

[1] 66.000 -29.798 744.911 0.004 1220.302

[1] 67.000 -29.803 747.822 0.004 1241.028

[1] 68.000 -29.793 753.302 0.004 1292.066

[1] 69.000 -29.801 762.359 0.004 1366.748

[1] 70.000 -29.799 766.289 0.003 1406.213

[1] 71.000 -29.802 770.437 0.003 1445.499

[1] 72.000 -29.799 772.604 0.003 1469.464

[1] 73.000 -29.800 776.148 0.003 1504.058

[1] 74.000 -29.796 777.777 0.003 1523.180

[1] 75.000 -29.792 785.447 0.003 1610.189
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[1] 76.000 -29.796 788.220 0.003 1638.571

[1] 77.000 -29.799 790.478 0.003 1663.605

[1] 78.000 -29.800 797.457 0.003 1753.247

[1] 79.000 -29.801 800.812 0.003 1794.805

[1] 80.000 -29.795 803.194 0.003 1828.138

[1] 81.000 -29.795 809.396 0.002 1918.866

[1] 82.000 -29.797 810.749 0.002 1937.280

[1] 83.000 -29.801 816.954 0.002 2030.865

[1] 84.000 -29.802 819.425 0.002 2068.248

[1] 85.000 -29.804 820.974 0.002 2091.062

[1] 86.000 -29.804 823.452 0.002 2129.940

[1] 87.000 -29.802 828.278 0.002 2216.591

[1] 88.000 -29.801 830.301 0.002 2248.874

[1] 89.000 -29.798 834.133 0.002 2318.954

[1] 90.000 -29.795 835.888 0.002 2350.428

[1] 91.000 -29.794 837.239 0.002 2377.634

[1] 92.000 -29.792 838.162 0.002 2396.648

[1] 93.000 -29.796 843.140 0.002 2497.283

[1] 94.000 -29.800 845.314 0.002 2542.739

[1] 95.000 -29.803 847.147 0.002 2581.025

[1] 96.000 -29.807 851.064 0.002 2672.996

[1] 97.000 -29.809 851.918 0.002 2692.195

[1] 98.000 -29.804 853.920 0.002 2741.951

[1] 99.000 -29.799 853.964 0.002 2731.405

[1] 100.000 -29.800 856.156 0.002 2783.588
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Chapter 4 |

Impact of Incidence Assay Data

This chapter is a continuous study of Chapter 3. In Chapter 3, we justify our

newly proposed sampling method, and a new stopping rule. In this Chapter, we

further analyse the impact of adding in incidence assay data to the estimation of

prevalence, incidence and the change of incidence over time. For example, we can

compare the incidence estimate at 2015 before and after adding in incidence assay

data to study the impact to prevalence and incidence. And we can compare the

ratio of 2015 incidence and 2010 incidence before and after adding in incidence

assay data to study the impact to incidence change over time. In this chapter, we

start from the simplest case, which we only have one year assay data, and extend

to the case that we have a time series assay data.

4.1 Methods and Goals

Our numeric study is similar to the one in Chapter 3. We will first repeat some

importance concepts here. Our strategy is still to simulate incidence assay data,

and compare the results before and after incorporating incidence assay data. Four

parameters related to incidence assays:

· The prevalence (ρ) is the proportion of HIV positive population.
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· The incidence (I) is the proportion of HIV recent infection population.

· The false recent rate (FRR, β), is the proportion of non-recent HIV infections in

the population incorrectly classified as being recent. It describes the propensity for

individuals with long-standing infection to return recent results.

· The mean duration of recent infection (MDRI, Ω), is the average length of time

that people with newly acquired infection in the population are to be classified as

having recently acquired infection.

After introducing new incidence assays data, the estimates of incidence is

anticipated to be more accurate. And due to the high correlation between prevalence

and incidence, it will also improve the accuracy of prevalence estimates. The two

quality parameters, FRR and MDRI, describe the reliability of the assays data.

We hope that FRR to be suitably low and MDRI to be sufficiently large. However,

in reality, FRR cannot be zero and MDRI cannot be life-long. Also, in order to

improve the accuracy of the current assay data, more expensive equipments and

testing tools are required.

Our goal is to study the impact of assays data to the estimates in EPP model.

To be more specific, there are two impacts we are interested in. One is to accurately

estimate the impact to prevalence and incidence rates, and another one is to

accurately estimate the impact to the changes of prevalence and incidence rates

over time. The first one is easy to understand, since the absolute number of HIV

infection and new infection is always a focus to our study. The changes of rates over

time are also important because of Millennium Sustainable Development Goals:

“by 2030, end the epidemics of AIDS” (UNAIDS, 2014a). As we have explained in

Chapter 1, in order to achieve this goal, by 2030, a 90% decline compared to 2010

of the number of new HIV infections and AIDS-related deaths is required.

In order to better understand the contribution of incidence assays in the model

fitting process, we experiment different hypothetical values of the quality parameters,
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FRR and MDRI. However, there are four parameters, which we have no knowledge

of the true values are, can impact the performance of assays data. To consider

them together, then we might have a large quantity of scenarios in one country or

region. And the data are not available or only one year in most countries, it is hard

to just use real data to give a full evaluation of assay data. We will rely on the

simulation study.

Since incidence assays add information mostly to incidence estimates, we will

keep prevalence generating data the same as prevalence posterior median in result 1

. For the remaining 3 parameters, incidence, FRR, MDRI, we change one parameter

at a time. The details are in the next sections.

Some of the notations used in Chapter 3 are still used in this chapter. The

posterior distribution generated from only prevalence data (without incidence assay

data) is called result 1, and the posterior distribution generated from S-IMIS

incorporating incidence assay data is called result 3.

4.2 Impact of Incorporating Single Year Incidence As-

say Data

The settings are similar with the settings in Section 3.3. We still use synthetic

data, based on prevalence data obtained from ANC, and in some cases NPBS, from

Kenya Rural, to examine the impact of incorporating incidence assay data. We

assume the incidence assays data are collected in 2012 as the last year of NPBS

data. The following three key parameters are allowed to vary in the simulated

scenarios: FRR, MDRI, and incidence rate. Here, we still use R, which is the ratio

between the incidence rate using to generate data, and the incidence rate estimated

in result 1 to represent incidence. And we keep the same prevalence rate from

which we simulate incidence assays as the prevalence rate in result 1. Our goal is
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to compare result 1, which using only prevalence data and result 3, which using

both prevalence and incidence assay data.

4.2.1 Impact to Parameter Estimates

The goal is to examine the impact of incidence assays data to absolute prevalence

and incidence estimates as parameter changes. The settings is:

Setting 4.2.1. We define their default values as follows:

n = 20, 000, β = 0.025,Ω = 150, R = 2. To simulate the incidence assay data, two

parameters will be fixed at the default values, and the remaining one varies.

· For R, we try 0.5, 1, 1.5, . . . , 5 (10 levels);

· For β, we try 0.005, 0.010, 0.015, . . . , 0.05 (10 levels);

· For Ω, we try 100, 110, 120, . . . , 190 (10 levels) .

We are interested in the estimates of prevalence and incidence in 2015. We

compare posterior mean of prevalence, incidence respectively, and the probability

of estimates in result 3 smaller than estimates in result 1. The following are the

simulation results. In all the figures in this section, the upper plot shows the 95%

credible intervals in each scenario. And the lower plot is the percentage that the

new estimate from result 3 is smaller than old estimate from result 1.
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Figure 4.1: Impact of prevalence rate one time assay data with ratio changing.

(a) This is the prevalence posterior mean estimates with simulation ratio from 0.5
to 5, and the estimates from without assays data. The dots in the middle are the
estimated prevalence means. The bars are the 95% credible interval of posterior
prevalence estimates. (b)This is the percentage that the new prevalence estimates
smaller than old posterior.

We find that when introducing the incidence assays data, even though prevalence

of incidence assays data is generated the same as the prevalence of prevalence data,

due to the effect of strong relationship between prevalence and incidence, prevalence

estimates increase slightly. At the meantime, the credible interval has a significant

decrease, which indicates an improvement in the estimates accuracy. The probability

is expected to decrease considering the increase of ratio.
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Figure 4.2: Impact of incidence rate for one time assay data with ratio changing.

(a) This is the incidence posterior mean estimates with simulation ratio from 0.5
to 5, and the estimates from without assays data. The dots in the middle are the
estimated incidence means. The bars are the 95% credible interval of posterior
incidence estimates. (b)This is the percentage that the new incidence estimates
smaller than old posterior.

When introducing the incidence assays data, the incidence estimates increase

significantly due to the increase of ratio. The credible interval decreases when the

ratio is around 1, which suggests the incidence from new incidence assay data is

similar with the incidence from prevalence data estimates. However, the interval

enlarges as the difference between the incidence from two data estimates become

larger. When the ratio is greater than 3, the estimates change dramatically, and

leads to the probability goes to 0.
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Figure 4.3: Impact of prevalence rate for one time assay data with β changing.

(a) This is the prevalence posterior mean estimates with simulation β from 0.005 to
0.05, and the estimates from without assays data. The dots in the middle are the
estimated prevalence means. The bars are the 95% credible interval of posterior
prevalence estimates. (b)This is the percentage that the new prevalence estimates
smaller than old posterior.

When introducing the incidence assay data, prevalence estimates do not change

over the increase of false recent rate β. However, the credible interval has a

significant decrease, which indicates an improvement in the estimates accuracy.

The probability deceases as false recent rate β increases.
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Figure 4.4: Impact of incidence rate for one time assay data with β changing.

(a) This is the incidence posterior mean estimates with simulation β from 0.005 to
0.05, and the estimates from without assays data. The black dots in the middle are
the estimated incidence means. The bars are the 95% credible interval of posterior
incidence estimates. (b)This is the percentage that the new incidence estimates
smaller than old posterior.

As β increases, the estimates decreases. The probability increases as β increases.
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Figure 4.5: Impact of prevalence rate for one time assay data with Ω changing.

(a) This is the prevalence posterior mean estimates with simulation Ω from 100 to
190, and the estimates from without assays data. The dots in the middle are the
estimated prevalence means. The bars are the 95% credible interval of posterior
prevalence estimates. (b)This is the percentage that the new prevalence estimates
smaller than old posterior.

The prevalence estimates do not change with the mean duration of recent infect

Ω. However, the credible interval has a significant decrease, which indicates an

improvement in the estimates accuracy. The probability slightly deceases as the

mean duration of recent infect Ω increases.
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Figure 4.6: Impact of incidence rate for one time assay data with Ω changing.

(a) This is the incidence posterior mean estimates with simulation Ω from 100 to
190, and the estimates from without assays data. The black dots in the middle are
the estimated incidence means. The bars are the 95% credible interval of posterior
incidence estimates. (b)This is the percentage that the new incidence estimates
smaller than old posterior.

Both the estimates and the probability do not have a significant change as Ω

increases.

4.2.2 Impact to Change over Time

The goal is to examine the impact of incidence assays data to changes of

prevalence and incidence estimates over time as parameter changes. Suppose We

are interested in the change of estimated prevalence and incidence rate between

2007 and 2012. So, we check the probability of prevalence and incidence rates in
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2007 less than 2012 for both result 1 and result 3.

Setting 4.2.2. We only consider ratio here.

· For R, we try 0.5, 1, 1.5, . . . , 5 (10 levels).

We are interested in the ratio between prevalence, incidence estimates of 2007

and 2012. We show an extreme case that ratio is 5 to illustrate the impact of

incidence assays data.
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Figure 4.7: Kenya Rural, impact for single year assay data.

Kenya Rural. (a) This is the prevalence time trend posterior mean estimates with
simulation ratio 5. Blue line is the prevalence estimates trend after introducing
assays data and the dash line is the 95% credible interval of the posterior distribution.
Black line is the prevalence estimates without assays data the dash line is the 95%
credible interval of the posterior distribution. The large red dots are the NPBS
data, and the colorful dots are ANC data. Each color represents one clinic. (b)This
is the Kenya Rural incidence time trend posterior mean estimates with simulation
ratio 5. Blue line is the prevalence estimates trend after introducing assays data
and the dash line is the 95% credible interval of the posterior distribution. Black
line is the prevalence estimates without assays data the dash line is the 95% credible
interval of the posterior distribution. The large red dots is the simulation incidence
rate.

There is a big difference between estimates with and without incidence assays

data. After introducing assay data with large incidence, both prevalence and

incidence have a significant increase in 2012.
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Figure 4.8: Kenya Rural, impact for change over time with single year assay data.

Kenya Rural. The left columns are the ratio between 2012 prevalence, incidence
and 2017 as incidence increases. The right columns are the probability of 2012
prevalence, incidence larger than 2007.

Originally, both prevalence and incidence in 2007 is larger than 2012. Since the

ratio increases significantly, which indicates the increase of simulation incidence,

both probabilities increase as ratio increase.
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Figure 4.9: South Africa, impact for single year assay data.

South Africa KZN. (a) This is the prevalence time trend posterior mean estimates
with simulation ratio 5. Blue line is the prevalence estimates trend after introducing
assays data and the dash line is the 95% credible interval of the posterior distribution.
Black line is the prevalence estimates without assays data the dash line is the 95%
credible interval of the posterior distribution. The large red dots are the NPBS
data, and the colorful dots are ANC data. Each color represents one clinic. (b)This
is the Kenya Rural incidence time trend posterior mean estimates with simulation
ratio 5. Blue line is the prevalence estimates trend after introducing assays data
and the dash line is the 95% credible interval of the posterior distribution. Black
line is the prevalence estimates without assays data the dash line is the 95% credible
interval of the posterior distribution. The large red dots is the simulation incidence
rate.

For this region, we can see the original prevalence estimates are stable at high

level, and incidence estimates decrease a lot. So, when introducing the incidence

assays data, it increases the incidence estimates however not enough to be larger

than 2007.
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Figure 4.10: South Africa, impact for change over time with single year assay data.

South Africa KZN. The left columns are the ratio between 2012 prevalence, incidence
and 2017 as incidence increases. The right columns are the probability of 2012
prevalence, incidence larger than 2007.

For prevalence estimates, since estimates without assays data is very flat after

2003, a little increase can result in a large change of the ratio between prevalence of

2007 and 2012. For incidence estimates, the estimates without assays data decrease

significantly. So, even after introducing incidence data with large incidence, it is

still not enough for incidence in 2012 to be higher than 2007.

We can draw the conclusion that the effect of incidence assay data to the change

over time relies on the original trend in result 1. If original trend is flat, then

it could significant change the trend. If the original trend is significantly, then a

single year incidence data could do little to this change, especially when sample

size is small.
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4.3 Impact of Time Series Incidence Assays Data

In previous study, we examine the impact of single-year incidence assays with

the presence of ANC prevalence, NPBS prevalence and pre-assumed structure

of infection rate r(t) within EPP. However, a time series assays data is more

realistic. Then, a natural problem arises during the numerical study is that we

cannot simulate incidence data only based on those parameters as in Section 3.3

and Section 4.2 since there should be a time effect relationship among prevalence

and incidence for each year. Also, the ANC prevalence are biased and r(t) trend

assumptions might be incorrect. The r-trend model has a lot restriction on how

the epidemic evolves in the future. For some countries, if the epidemic trend is not

stable, r−trend model will be no longer suitable.

Furthermore, since we have no knowledge on not only future assays not but

also prevalence data. It is hard to tell the impact of assays itself by simulate the

datasets we use above. In that case, to unpack the contribution of time series

incidence assays, we start with simple scenario without complications from ANC

data and EPP assumptions. In this part of simulation study, assume that the key

quantities summarizing the epidemic before 2012 are known, e.g. HIV prevalence,

incidence and morality. It comes from applying EPP to a real dataset, e.g. Kenya

rural with ANC data up to 2011 and NPBS data up to 2012. We also assume that

the epidemic after 2012 is driven by a free parameter θ,

log r(t) = log r(t− 1) + θ, for t > 2012 (4.3.1)

We first examine the impact of θ to r(t) and prevalence, incidence rate. Naturally,

first take θ = 0, which indicates the infection rate stays same after 2012. For Figure

4.11, it shows the prevalence and incidence still has a clear decreasing trend. If

θ taking a negative number, it is easier to predict a faster decreasing trend for
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prevalence and incidence. So, we take a positive theta θ = 0.01. Even if this

slope is very small, we can still see from Figure 4.12, that the incidence begins on

increase after some time, though prevalence still decreasing. The two plots tell

that prevalence and incidence are very sensitive to this θ. We use two settings to

represent the scenarios that epic slows and epic grows.

Figure 4.11: Kenya Rural. Data is up to 2012. Assume constant infection rate over
time after 2012. Three plots are infection rate, prevalence rate, and incidence rate
over time.

Figure 4.12: Kenya Rural. Data is up to 2012. Assume infection rate changes with
a negative slope 0.01 over time after 2012. Three plots are infection rate, prevalence
rate, and incidence rate over time.
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We simulate NPBS data with incidence assays in 2014, 2016, 2018 and 2020,

given different settings of θ, β and Ω. Very similar to the simulation study in

Section 4.2, we consider the following scenarios:

Setting 4.3.1. 1. The true incidence (used for simulating surveys) is declining

v.s. raising (θ = 0, 0.01 respectively). 2. The false recent rate varies, β =

0.005, 0.01, . . . , 0.05. 3.The mean duration varies, Ω = 110, 120, . . . , 200.

Still incorporate incidence assay data using S-IMIS. Two new parameters are

taken into consideration to evaluate the estimation. First, we compare the percentile

of the true value among posterior samples. It means after we draw the posterior

sample of incidence in 2020, it is easy to compute the quantile of the true value

within these posterior samples. Naturally, the estimation is considering more

accurate if this percentile is closer to 50%. Secondly, we compare estimated 2020

incidence rate and true value, which is known the simulation. We already have the

simulated 2020 incidence as true value, and also we can estimate this incidence from

these time series data. The estimation is considering more accurate if the posterior

mean is closer to the true value. The results are summarized in the following plots:
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Figure 4.13: Kenya rural, impact to incidence change over time with β changes, for
decreasing incidence simulation setting.

Kenya Rural. θ = 0, n = 7501, the incidence declining after 2012. The upper
two fix Ω = 150, and allow β to change from 0.005 to 0.05. The lower two fix
β = 0.025, and allow Ω to change from 110 to 150. The left two are the quantile of
the true value within these posterior samples, and the right two are the posterior
mean of estimated 2020 incidence and true value.
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Figure 4.14: Kenya rural, impact to incidence change over time with β changes, for
increasing incidence simulation setting.

Kenya Rural. θ = 0.01, n = 7501, the incidence raising after 2012. The upper
two fix Ω = 150, and allow β to change from 0.005 to 0.05. The lower two fix
β = 0.025, and allow Ω to change from 110 to 150. The left two are the quantile of
the true value within these posterior samples, and the right two are the posterior
mean of estimated 2020 incidence and true value.

From the Figure 4.13, we can see that as β increases, the quantile is far from

the red line, which means more inaccurate estimation. Also, as Ω increases, the

estimation tend to be more accurate, which is consistent with the result in previous

section. Figure 4.14 shows similar results.
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Chapter 5 |

Estimation of Ultrahigh Dimen-
sional Varying-coefficient Model
with Heteroscedastic Error

5.1 Introduction

Let Y be the response variable, U and X = (X1, . . . , Xp)
T be its associated

covariates. The varying coefficient model (VCM) assumes that

Y = α1(U)X1 + · · ·+ αp(U)Xp + ε, (5.1.1)

where αk’s are unknown regression coefficients, and ε is a random error with

E(ε|X) = 0. We set X1 ≡ 1 to include an intercept in the model. This model was

systematically studied in Hastie and Tibshirani (1993). Given U, the VCM becomes

a linear regression model. And the regression coefficients can be interpreted in a

similar way to those in linear regression model. Thus, it has become a very popular

nonparametric regression models. A brief review has been given in Section 2.3.

This chapter aims to develop an estimation procedure for error variance function.
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Error variance estimation plays a critical role in statistical inference such

as confidence interval estimation for high dimensional VCM. Due to spurious

correlation inherent from model selection in the presence of high dimensional

covariates, the traditional mean squared errors (i.e. naive estimator) leads to

significant underestimation of the error variance. In this chapter, we utilize the

RCV techniques (Fan, Guo, and Hao, 2012) and group LASSO technique to develop

a new error variance function estimator. We study the asymptotic property of both

naive estimator and the newly proposed estimator.

This chapter is organized as follows. Section 5.2 introduces the model for

ultrahigh dimension VCM with heteroscedastic error. Section 5.3 described the

three stage naive estimator for the error variance function, along with the theoretical

results. Section 5.4 introduces the main method- RCV estimator for the error

variance function. A detail results of asymptomatic consistency of RCV estimator

is also given. Section 5.5 shows the algorithm to implement group LASSO, which

is the variable selection method in this chapter. Then the simulation study and

real data example are put in Section 5.6 and 5.7. Section 5.8 is the detailed proofs

of the theory along with the regularity conditions.

5.2 Ultrahigh Dimensional VCM with Heteroscedas-

tic Error

For ease of presentation, let us use vector notation. Suppose that {Ui,xi, yi},

i = 1, · · · , n is a random sample from the VCM in (5.1.1).

yi = xTiα(Ui) + εi, (5.2.1)
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where α(u) = (α1(u), · · · , αp(u))T is the unknown functional coefficient vector.

We assume that U has a bounded compact set U on R1. Without loss of generality,

we set U = [su, S
U] ⊂ R1.

In this chapter, we consider the VCM with ultrahigh dimensional covariates.

That is, log(p) = O(nζ), for some ζ > 0. Considering the heteroscedastic random

error, this chapter assumes that

E (ε|x, U) = 0, and σ2(U) = var(ε|x, U) <∞. (5.2.2)

For simplicity, we rewrite the VCM model as

y = xTα(U) + σ(U) ε, (5.2.3)

where, with slightly abuse notation, thenrandom error ε with mean 0 and variance

1 is independent of x and U. The function σ2(u) defined on U is called the error

variance function. This chapter aims to develop an estimation procedure for σ2(u)

in the presence of ultrahigh dimensional covariates.

Sparsity is a commonly-used principle in the analysis of high dimensional data.

By sparsity in VCM, many coefficient functions αj(·) equal 0. That is, αj(u) ≡ 0,

for most j ∈ {1, · · · , p} and any u ∈ U . Denote ‖f(u)‖`2 = (
∫
U f

2(u)du)1/2. It is

equivalent to, when the k-th derivative ofαj(u) exists for k ≥ 1,

‖αj(u)‖`2 = 0, and dkαj(u)

duk
= 0, for any u ∈ U .

Let S be the active index set, and the cardinality of S is denoted by s = |S|.

Then Sc = {j : αj(u) ≡ 0, ∀u ∈ U , j = 1, · · · , p}, the complement set of S.

Identifying the index set S is the pivot of the high dimensional statistical analysis.

The related high dimensional statistical procedures and statistical computation
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attract much attention and are extensively studied in the literature over the last

decades. Since the random error ε is unobservable, we have to get the residuals in

order to estimate its variance function. This requires us to first identify the index

S, and then fit the data with the selected model. In the following sections, we

propose multistage statistical procedures to estimate the error variance function.

5.3 Naive error variance function estimator

In this section, we first show the naive estimator, which is defined to be the

traditional mean squared errors, leads to nonignorable bias. The naive estimator

can be described as a three-stage estimator.

5.3.1 Stage 1: Estimate the Local Active Index Set Su

We shall use the local linear regression method, although general local polynomial

fits are also applicable. The local linear regression has nice properties, such as high

statistical efficiency, low computational burden and good boundary behavior (Fan

and Gijbels, 1996).

To deal with high dimensionality, we have to select the important independent

variables among p candidates in the first stage. In the same spirit of regularization

methods for high/ultrahigh linear models, we consider minimizing the constrained

least squares which can be written as:

min
αj∈F
j=1,··· ,p

E (y− xTα(U))2

subject to
p∑
j=1

‖αj(u)‖`2 ≤ η, u ∈ U ,
(5.3.1)

where F is the functional space in which each function has k, k > 1, continuous
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derivatives and is squared integrable with respect to the induced probability measure

by {U,x, y}. The corresponding Lagrangian is

min
αj∈F
j=1,··· ,p

E (y− xTα(U))2 + λ
p∑
j=1

‖αj(u)‖`2 , u ∈ U . (5.3.2)

Using the empirical measure generated by samples replace the population measure

will get the sparse estimators of the functional coefficients. As the functional space F

is an infinite-dimensional space, it is hard to solve the optimization problem (5.3.2).

By using Taylor’s expansion, αj(u) ≈ α(u0) + α ′j(u0)(u − u0) for u in the small

neighbor of u0. Using the local linear approximation, we can locally parameterize

the functional coefficients in (5.3.2), and obtain the local nonparametric estimators

as

(α̂Loc(u)
T , α̂

′
Loc(u)

Th)T = argmin
a,b∈Rp

1

2

n∑
i=1

Kh(Ui − u)(yi − xTi a− xTi (
Ui − u

h
)b)2

+λ

p∑
j=1

√
a2j + b

2
j , for fixed u ∈ U ,

(5.3.3)

where Kh(·) = K(·/h)/h with a bandwidth h, and K(·) is the kernel function.

Equation (5.3.3) is a weighted group `2 regularization regression (also known as

the group LASSO) with the tuning parameter λ that λ→ 0, as n→∞ (Yuan and

Lin, 2006). One may use other convex or nonconvex penalties to replace the `2
norm in equation (5.3.3), such as

(α̃Loc(u)
T , α̃ ′Loc(u)

Th)T = argmin
a,b∈Rp

1

n

n∑
i=1

Kh(Ui − u)(yi − xTi a− xTi (
Ui − u

h
)b)2

+

p∑
j=1

Pλ(
√
a2j + b

2
j ), for fixed u ∈ U ,

(5.3.4)
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where Pλ(·) could be SCAD (Fan and Li, 2001) or MCP (Zhang, 2010) penalty

with the tuning parameter λ.

Denote the local active index set at u by Su, such that Su = {j : α̂Loc,j(u) 6=

0, α̂ ′Loc,j(u) 6= 0, ∃u ∈ U , j ∈ (1, · · · , p)}. By the properties of the group `2 regular-

ization regression, the estimators of paired coefficients α̂Loc,j(u) and α̂ ′Loc,j(u) are

zero or not zero at the same time. We can fit the selected model only with the

independent variables belong to Su in the same way as the low dimensional local

smoothing technique.

5.3.2 Stage 2: Locally Estimate the Functional Coefficients

In the stage 1, we use group `2 regularization regression obtain the local active

index set Su. To avoid bias inherited from the group LASSO method, we propose

to fit the following local linear regression to estimate the functional coefficients

corresponding to Ŝu without penalty:

(α̂Su(u)
T , α̂

′
Su(u)

Th)T = argmin
a,b∈Rsu

n∑
i=1

Kh(Ui − u)
(
yi − xTu,i(a+ b(Ui − u

h
))
)2
.

(5.3.5)

And su = |Su| is the cardinality of Su.

The solution of equation (5.3.5) can be considered as a weighted least squares

estimator, which has the closed form

α̂Su,j(u) = eTj (DT
uWuDu)

−1DT
uWuy (5.3.6)

where Wu is the n × n diagonal weights matrix with the j-th diagonal element

being Kh(Uj − u), ej is a 2su-dimensional unit vector with j-th element being 1,

109



and the design matrix

Du =


xTu,1

U1−u
h

xTu,1
... ...

xTu,n Un−u
h

xTu,n

 . (5.3.7)

The residuals are obtained by

ε̂i(u) = yi − ŷi = yi − xTu,iα̂Su(u), i = 1, · · · , n. (5.3.8)

By localizing the residuals around any fixed u ∈ U , σ2(u) is approximately a

constant and the mean squared errors is a well-performed estimator of σ2(u).

5.3.3 Stage 3: Local Estimator of Varying-error-variance Func-

tion

In the stage 2, we obtain the residuals {ε̂1(U1), · · · , ε̂n(Un)} by (5.3.8). The

varying-error-variance function σ2(u), u ∈ U , can be locally estimated by the

weighted mean square errors. The kernel estimator or local constant estimator is

defined by

σ̂2(u) =
1

c(u)

n∑
i=1

Kh∗(Ui − u) ε̂
2
i (Ui). (5.3.9)

where c(u) is used to obtain the nearly unbiased estimator of σ2(u). We will

detailed discuss it later. The bandwidth h∗ may be different from the bandwidth h

used in the previous stages to achieve a better estimate. Furthermore, the local

linear regression also can be applied to estimate σ2(u) as

(σ̂2(u), σ̂2
′
(u)) = argmin

α,β

n∑
i=1

Kh∗(Ui − u)
(
ε̂ 2i (Ui) − α− β(Ui − u)

)2
. (5.3.10)
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This method is proposed by Fan and Yao (1998). In this paper, we just study the

estimator (5.3.9) for simplicity. The extension to local linear regression involves no

fundamentally new ideas.

We call estimator (5.3.9) three-stage local variance estimator. The three stages

include the first stage that reducing the dimensionality by group `2 regularization

regression, the second stage that locally fitting the selected model and obtaining

the residuals, and the third stage that locally estimate the variance function.

However, due to existence of spurious correlation in high dimensional data,

lots of redundant variables may be selected to fit the model. It will lead to an

underestimate of variance by the mean squared errors. In the next section, we will

discuss this problem and propose new statistical procedure to calibrate the the

high/ultrahigh dimensional multistage local variance estimator.

5.3.4 Theoretical properties of Naive Estimator

In this subsection, we study the theoretical properties of the multistage variance

estimator σ̂2(u) for u ∈ U . All regularity conditions are provided in Section 5.8.1.

In the classic parametric linear model, the unbiased variance estimator is

σ̂2LS =
1

n− s
yT(I−P)y, (5.3.11)

where P is the corresponding n× n projection matrix. The estimator is calibrated

by replacing n with n− s, where s is the number of predictors used to fit the model.

By Lemma 5 in Section 5.8.2, the weighted mean squared errors should be divided

by cj(u) , tr((I − S)TWu(I − S)) instead of n to make the variance estimator

nearly unbiased. The following proposition shows the magnitude of the correction.

Proposition 1 Denote by c(u) = tr((I − S)TWu(I − S)), for any given u ∈ U .
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Under regularity conditions (C1)-(C10) in Section 5.8.1, it follows that, for any

u ∈ U ,

fU(u)n− 2
K(0)

h
su ≤ c(u) ≤ fU(u)n− 2

K(0)

h
su + 2

K(0)

h
s2u (5.3.12)

Remark The leading term of upper and lower bound of c(u) is the same as the

effective number of local polynomial regression in Fan and Chen (1999). Because

of the local fitting, the effective number is decide by the location fU(u). However,

under the high-dimensional settings, the bounds are also related with the diverging

dimension.

For the special case,

tr
(
Wu − (DT

uWuDu)
−1DT

uW2Du

)
= tr(Wu(I−W1/2

u Du(DT
uWuDu)

−1DT
uW1/2

u )).
(5.3.13)

Denote by Pu = {Pij(u)}i,j = W1/2
u Du(DT

uWuDu)
−1DT

uW1/2
u . Notice that Pu is a

projection matrix satisfying that rank(Pu) = tr(Pu). ForWu = diag(wn,1, · · · , wn,n),

the i-th diagonal element is wu,i(1− Pii),

fU(u)n−
K(0)

h
su ≤

n∑
i=1

wu,i −

n∑
i=1

Pii(u) ≤
n∑
i=1

wu,i(1−Pii(u))

≤ K(0)
h

n∑
i=1

(1−Pii(u)) =
K(0)

h
(n− su).

(5.3.14)

The result directly shows the difference of corrections between the ordinary least

squares and the weighted least squares.

We construct the large sample properties of traditional two-stage local estimate

under high-dimensional settings. Lots of redundant predictors may lead an biased

estimator. Using the aforementioned notations, we have the following theorem.
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Theorem 1 Suppose Condition (C1)-(C10) presented in Section 5.8.1 holds,

and S∗u ⊂ Su, su ≤ sn = o(n), i = 1, · · · , n, the bias term biasdim = εTSTW∗
uSε

due to the diverging dimension follows that

γ̂2n =
εTSTW∗

uSε
εTW∗

uε
= Op(

su log(p)
nh2h∗

), (5.3.15)

where W∗
u respect to the bandwidth h∗ in the third stage. Specially, when

log(p)/n→ C0 > 0, term εTSTW∗
uSε can not be ignored.

Theorem 2 Suppose Condition (C1)-(C10) presented in Section 5.8.1 holds,

and S∗u ⊂ Su, su ≤ sn = o(n), i = 1, . . . , n, where S∗u is the true active index set,

the nonparametric multistage local variance estimator defined in (5.3.9)

σ̂2(u) =
ε̂
TW∗

uε̂

c(u)
=

YT(I− S)TW∗
u(I− S)Y

c(u)
, for u ∈ U , (5.3.16)

follows the asymptotic normality

√
nh
(
σ̂2(u) − σ2(u) − biasn-para − biasdim

) d−→ N (0, κ(u)ν0
fU(u)

)
, (5.3.17)

where the term

biasn-para =
h2µ

fU(u)

(
(σ2(u)) ′f ′U(u)) +

1

2
(σ2(u)) ′′

)
stands for the bias due to the the nonparametric fitting and the term biasdim

defined in the theorem 1 stands for the bias from redundant predictors. Also,

ν0 =
∫
K2(u)du, κ(u) = E (ε4|u).

Theorem 1 and 2 show that many redundant predictors and diverging dimension

can lead a non-negligible bias to variance estimator at each u ∈ U .
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5.4 RCV Variance Function Estimator

Spurious correlation is a common phenomenon in high/ultrahigh dimensional

data analysis (Fan, Guo, and Hao, 2012). It severely influences the performance of

variable selection procedures or independent sure screening procedures and leads

lots of redundant variables into the fitted model. The intuitive interpretation of

geometry is roughly that when scattering p points on n-dimensional space, there

exist at most n orthogonal vectors in n-dimensional vector space. If p� n, it is very

likely that there is a small angle between two vectors. In addition, to avoid missing

any important variables, the tuning parameter λ usually is set very small, which

also results in far more variables being selected into the fitted model than expected.

In this case, using the mean squared errors as the estimator will underestimate the

error variances. To overcome the defect and calibrate the variance estimator, we

propose combining the refitted cross-validation (RCV) procedure (Fan, Guo, and

Hao, 2012) with the high/ultrahigh dimensional multistage local variance estimator

defined in previous section.

The refitted cross-validation procedure is to randomly split the samples into

to two parts with equal sizes. Denote by (y
(j)
i ,x

(j)
i , U

(j)
i ), i ∈ Ij, Ij = {i : i ∈

(1, · · · , n)}, |Ij| = n/2, j = 1, 2. For j-th group and any fixed u, we get the local

active index set S(j)
u via the group `2 regularization regression (5.3.3). Denote by

su,j =
∣∣∣S(j)
u

∣∣∣ and X(3−j)

S(j)u

= {Xi,j}, i ∈ I3−j, j ∈ S(j)
u . Then we locally estimate the

functional coefficients in the S(j)
u by samples (y(3−j),X(3−j)

S(j)u

, U(3−j)). The local linear

estimators of functional coefficients has the closed form

α̂
(3−j)
k (u) = eTk(D(3−j)

u

TW(3−j)
u D(3−j)

u )−1D(3−j)
u

TW(3−j)
u y(3−j), j = 1, 2. (5.4.1)

where the design matrix is D(3−j)
u = (X(3−j)

S(j)u

, diag((U(3−j)
1 − u)/h, · · · , (U(3−j)

n/2 −
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u)/h)X(3−j)

S(j)u

). By (5.3.8), the residuals are

ε̂
(3−j)
i (U

(3−j)
i ) = y

(3−j)
i − x(3−j)

i,S(j)u

T
α̂

(3−j)

S(j)u

(U
(3−j)
i ), j = 1, 2.

Define smoothing matrix

S(3−j) =


(x(3−j)

1,S(j)u

T
, 0)(D(3−j)

u1

TW(3−j)
u1

D(3−j)
u1

)−1D(3−j)
u1

TW(3−j)
u1

· · · · · · · · ·

(X(3−j)

n/2,S(j)u

T
, 0)(D(3−j)

un/2

TW(3−j)
un/2

D(3−j)
un/2

)−1D(3−j)
un/2

TW(3−j)
un/2

 . (5.4.2)

The residuals can be expressed as a matrix form: ε̂(3−j) = (I−S(3−j))y(3−j). For any

given u, the local error variance estimator is defined by

σ̂2j (u) =
ε̂
(j)TW(j)

u ε̂
(j)

c(u)(j)
=

y(j)T(I− S(j))TW(j)
u (I− S(j))y(j)

c(u)(j)
, j = 1, 2, (5.4.3)

where c(u)(j) = tr((I− S(j))TW(j)
u (I− S(j))) to make the estimator nearly unbiased.

Recall that the bandwidth used in W(j)
u is different from that used in the fitting

process (mentioned in Section 5.3.3). Finally, we obtain a new estimator

σ̂2RCV(u) =
σ̂21(u) + σ̂

2
2(u)

2
, for any u ∈ U . (5.4.4)

This estimator is very similar to the other two respectively proposed in Fan,

Guo, and Hao (2012) for linear regression models and Chen, Fan, and Li (2016)

for additive models. However, it is a nonparametric estimator for varying-error-

variance rather than the other two parametric estimators. Consequently, it is much

more challenge in computation and establishing the asymptotic properties. In the

following sections, we will further discuss these two problems. The procedure of

refitted cross-validation (RCV) is illustrated schematically in Figure (5.1).

In this section, we study the theoretical properties of the RCV varaince estimator
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Data: (yi,xi, Ui), i = 1, · · · , n

Data Splitting

Half Data:
(yi,xi, Ui), i ∈ I1

Variable Selection

Half Data:
(yi,xi, Ui), i ∈ I2

Variable Selection

Active Index Set 1: Ŝ1Stage 1 Active Index Set 2: Ŝ2

Fitting: α̂(1)(u)

Residual: ε̂(1)(U)Stage 2

Cross Refit

Fitting: α̂(2)(u)

Residual: ε̂(2)(U)

Cross Refit

σ̂21(u)Stage 3

Variance Estimate

σ̂22(u)

Variance Estimate

Merge

σ̂2RCV(u) =
(
σ̂21(u) + σ̂

2
2(u)

)
/2

Figure 5.1: The flowchart of the multistage RCV variance estimate

σ̂2RCV(u), for u ∈ U . All regularity conditions are provided in Section 5.8.1.

Theorem 3 Suppose Conditions (C1)-(C10) in Section 5.8.1, and S∗u ⊂ S
(j)
u , su,j ≤

sn,j = o(n), i = 1, · · · , n, j = 1, 2, where S∗u is the true active index set, the RCV

nonparametric variance estimator defined in (5.4.4) follows the asymptotic normality

√
nh
(
σ̂2RCV(u) − σ

2(u) − biasn-para

) d−→ N (0, κ(u)ν0
fU(u)

)
. (5.4.5)

Theorem 3 shows that the RCV nonparametric variance estimator can completely

eliminate the negative effects of many redundant variables in terms of asymptotic

consistency.
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5.5 Statistical computation and implementation is-

sues

Statistical computation is always a huge challenge for high/ultrahigh dimensional

data analysis. Since the objective functions of regularization regression are usually

not smooth and the dimension of data is very high, the computational instability and

burden are much larger than the common cases. The fast and efficient algorithms

are the goal that everyone pursues. Coordinate descent (CD) algorithm have been

considered as an efficient and fast algorithm for the `1 regularization regression

(LASSO) applied to high dimensional linear models (Wu and Lange, 2008; Friedman,

Hastie, and Tibshirani, 2010). Naturally, we introduce the blocked coordinate

descent (BCD) algorithm to deal with the newly proposed `2 group regularization

regression defined by (5.3.3) in section 5.3.1.

For existence of the explicit solution of 1-dimensional `1 regularization regression

(LASSO), the coordinate descent algorithm can be applied to solve the multiple

or high-dimensional `1 regularization regression. However, because the design

matrix is not orthogonal, there is no explicit solution for each sub-iteration of `2
regularization regression (Yuan and Lin, 2006). To overcome such problem, Qin,

Scheinberg, and Goldfarb (2013) suggest using the Newton’s method for marginal

regression and construct the blocked coordinate descent algorithm. We employ the

blocked coordinate descent algorithm (Qin, Scheinberg, and Goldfarb, 2013) to

solve (5.3.3) that is a weighted least squares with `2 penalty. At each sub-iteration,

we need to solve that

min
al,bl∈R1

1

2

n∑
i=1

wi (ril − alXil − blXil(Ui − u0))
2 + λ

√
a2l + b

2
l , (5.5.1)

where ril = yi−
∑

j 6=l (ajXij + bjXij(Ui − u0)) is the residual of the previous iteration.
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Denote by rl = (r1l, · · · , rnl)T , Ail = (Xil, Xil(u0 − Ui))
T , Al = (A1l, · · · ,Anl)

T ,

W = diag(w1, · · · , wn), and αl = (al, bl)
T , respectively. We rewrite the problem

in matrix form

min
αl∈R2

1

2
αTlAT

lWAlαl − rTlAlαl + λ ‖αl‖2

, min
αl∈R2

1

2
αTlMlαl − pTlαl + λ ‖αl‖2 . (5.5.2)

Hence, αl = 0 is the optimal solution of (5.5.2) if and only if ‖pl‖2 ≤ λ. For the

case that the solution α∗l 6= 0, there exists a constant ∆ > 0 such that (5.5.2) is

equivalent to

min
αl

1

2
αTlMlαl − pTlαl, subject to ‖αl‖2 ≤ ∆,

(Ml + (λ/ ‖αl‖2)I)αl = pl. (5.5.3)

Thus, the unique solution α∗l (by the convexity) satisfies that

‖α∗l ‖2 = ∆, α
∗
l = (Ml + (λ/∆)I)−1pl,

which can be represented as a function of ∆ that α∗l = ∆zl(∆) with

zl(∆) = (∆Ml + λI)−1pl. (5.5.4)

Obviously, ‖zl(∆)‖2 = 1. Using the eigenvalue decomposition of Ml,

Ml = γ1q1qT1 + γ2q2qT2 , (5.5.5)

where γi’s and qi’s are the eigenvalues and the corresponding eigenvectors, it follows

that

‖zl(∆)‖22 = (
qT1pl
γ1∆+ λ

)2 + (
qT2pl
γ2∆+ λ

)2.

118



Then applying the Newton’s root finding method to solve

f(∆) = 1− 1/ ‖zl(∆)‖2 . (5.5.6)

The derivative is obtained by

d

d∆

1

‖zl(∆)‖2
= −

1

2
(‖zl(∆)‖22)

−3/2 d

d∆
‖zl(∆)‖22 , (5.5.7)

d

d∆
‖zl(∆)‖22 = 2

2∑
i=1

(
qTi pl
γi∆+ λ

)2
γi

γi∆+ λ
. (5.5.8)

The pseudo code is listed in the following table:

Algorithm 5.5.1. Extension of BCD-GL to local linear regression group LASSO

Algorithm 1 BCD for (5.3.4)
Given initial value α(0) ∈ R2p and λ. Set k = 1, compute Ml = AT

lWAl, and
eigenvalue decomposition (5.5.5), for l = 1, · · · , p.
repeat
α⇐ α(k−1)

for l = 1, · · · , p do
compute pl by (5.5.2)
if ‖pl‖2 ≤ λ then
αl = (0, 0)T

else
compute the derivative by (5.5.7) and (5.5.8).
find the root ∆ of f(∆) = 1− 1/ ‖zl(∆)‖2, using Newton’s method.
compute zl(∆) by (5.5.4).
αl ⇐ ∆zl(∆).

end if
end for
α(k) ⇐ α, k⇐ k+ 1

until k = maxIter or α(k) satisfies the stopping rule
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5.6 Numerical studies

In the simulation studies, we examine the finite sample performance of the

newly proposed multistage variance estimate and the RCV variance estimate by

Monte Carlo simulation. All numerical studies were conducted by MATLAB code.

In the simulation studies, we use the oracle estimator as the benchmark. The

oracle estimator is obtained by directly using the local linear regression method to

fit the true model. In the stage 1, the variable selection stage, we use two different

strategies. First, we locally apply the group `2 regularization regression at each

given u. Second, we use CC-SIS procedure to select the significant functional

coefficients over the entire interval U . Therefore, for two different u1 and u2, the

associated active index sets obtained by the first strategy may be different. However,

the active index sets obtained by the second strategy are totally the same. In

the stage 2, we locally estimate the selected functional coefficients and get the

associated residuals at each Ui, i = 1, · · · , n. In the stage 3, we carry out the pilot

study and obtain the curve of variance function. To avoid the boundary issues of

the local linear regression, the grid points are restricted by 0.05 ≤ u ≤ 0.95.

We compare four different methods: Oracle(oracle), naive group LASSO(naive),

group LASSO refitted cross-validation (GL-RCV), and conditional correlation sure

independence screening refitted cross-validation(CC-SIS-RCV). The acronym in the

parentheses are used in the tables of results and stand for the different methods.

The oracle estimator is used as the benchmark. GL-RCV applies the local strategy

in the variable selection stage and CC-SIS-RCV applies the global strategy. In

our simulation, we use generalized cross-validation (GCV) to choose the tuning

parameter λ is the group LASSO.
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5.6.1 Bandwidth

Bandwidth selection is a big issue in nonparametric statistical procedures.

Considering the use of multistage nonparametric estimate, it is more complicated

for the proposed procedures. Theoretically, the three bandwidths using in the

three stages (variable selection, refitting, error estimation) are not necessarily to be

the same. The bandwidths in different methods (orale, naive, GL-RCV, CC-SIS-

RCV) are also not necessarily to be the same. Therefore, there are 12 bandwidth

combinations to be considered. We use the same batch of bandwidths for the oracle

and the naive methods, and same for two RCV methods in order to simply this

problem. Meanwhile, we use the same bandwidths at both variable selection stage

and refitting stage for each procedure. In the simulation studies, we use mean

squared errors of functional coefficients to choose the optimal the bandwidth h. It

is defined as

MSE(h) = 1

n

n∑
i=1

p∑
j=1

(α̂j(Ui) − αj(Ui))
2. (5.6.1)

And we conduct a pilot study to select the optimal bandwidth,

hopt = argminhMSE(h). (5.6.2)

The following plot shows the pilot study results for the oracle estimate. From

Figure ??, the minimum MSE is approached near bandwidth 0.2. So, we choose

0.2 as optimal bandwidth. Also, we can see the MSE curve decreases rapidly when

bandwidth smaller than 0.2, and increases very slowly when bandwidth larger

than 0.2, So, we also consider h = 0.15 for undersmoothing and h = 0.3 for

oversmoothing for variable selection and refit steps.

For the RCV methods, since the sample size reduces to n/2, by using the

bandwidth calculator h2/h1 = (n1/n2)
1/5, we obtain the new bandwidths batch

(0.18, 0.23, 0.35).
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Figure 5.2: The MSE plot for varying error variance, and SNR = 2.

Next we choose the bandwidths for kernel method used to estimate σ̂2(u).

According to Fan and Zhang (2000), it should be slightly small than the bandwidth

used in the model fitting. Thus, we choose (0.1, 0.15, 0.2) for the oracle and the

naive methods, and (0.15, 0.2, 0.3) for RCV methods.

method bandwidth for variable selection and refitting bandwidth for calculating σ̂2(u)
oracle (0.15, 0.2, 0.3) (0.1, 0.15, 0.25)
naive (0.15, 0.2, 0.3) (0.1, 0.15, 0.25)

GL-RCV (0.18, 0.23, 0.35) (0.15, 0.20, 0.25)
CC-SIS-RCV (0.18, 0.23, 0.35) (0.15, 0.20, 0.25)

Table 5.1: RCV Simulation Settings

5.6.2 Simulation settings

The random samples {Ui, yi,xi} of size n = 400, is generated from

yi = β

(
p∑
j=1

αj(Ui)Xij

)
+ εi, i = 1, · · ·n.
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where the covariates {xi} follow multinormal distribution with mean vector zero

and covariance matrix Σ = {σij = 0.2
|i−j|}. The dimension of x is set to p = 200.

Random errors {εi} follow normal distribution with mean 0 and two variance settings:

(1) the constant error variance σ2 = 1; (2) the varying error variance σ2(u) = 1+

0.125 sin(2π(u+ 0.125)). The random variable {Ui} in functional coefficients αj(u)

comes from uniform distribution Unif([0, 1]). The nonzero functional coefficients

are respectively

α1(u) = −2u2 + 2u, α2(u) = 0.5 sin(2πu), α5(u) = 0.5− 0.5u. (5.6.3)

They has the similar degree of smoothness and associate with the covariates X1, X2
and X5. β is used to control the signal-to-noise ratio (SNR). Three different SNR

settings 0, 1, 2 represent white noise, weak signals, and strong signals, respectively.

The number of replications for each case is 600.

5.6.3 Simulation Results

From the settings above, we have six scenarios in total with respect to three

kinds of SNR settings and two kinds of error variance settings. Also, within each

scenario, we compare the undersmoothing, optimal, oversmoothing bandwidth. The

detailed bandwidth settings are shown in Table 5.1. For small bandwidths, the

effective number would be relatively small, so the it often appears singular problem.

We choose to use ridge regression to avoid singularity.

We start with the easiest case, which is constant error variance. Figure 5.3

shows the estimates when SNR= 0, which represents the null model. The solid

black line is the simulation settings or error variance, which we consider as the true

value. The solid and dash colorful lines are mean estimates for each method along

with their 95% credible intervals (within 600 replications). All four estimates lines
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Figure 5.3: SNR = 0, constant error variance.

Error variance estimates for the compared four methods. The black lines are true
error variance. The bold lines are mean estimates for each method, and the dash
lines show 95% credible intervals.

Figure 5.4: SNR = 1, constant error variance.
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Figure 5.5: SNR = 2, constant error variance.

have a relative close shape compared to true value. However, for naive method, It

has a clear underestimates due to the spurious correlation. Especially with small

and regular bandwidths, the credible intervals can hardly cover the true lines. RCV

method clearly has a better performance. GL-RCV and CC-SIS-RCV, they both

fits the line well even compared to oracle method. Figure 5.4 shows the estimates

when SNR= 1. It is the “hardest” scenario for all the methods, since it represents

the situation that signal is similar as noise. The pattern is similar as Figure 5.3.

However, GL-RCV performances not as well as the scenario when SNR= 0. Even

so, RCV method still much better than naive. Figure 5.5 shows the estimates when

SNR= 2, which represents the situation that signal is strong. The pattern shown in

this plot is similar as previous two figures. Also, for oracle and two RCV methods,

the estimates did not change too much as bandwidth change. However, for naive

method, there is a clear increasing trend of estimates as bandwidth increases. Also,

the boundary problem gets more clear as the bandwidth grows.

Next we explore the performance of four methods on varying error variance
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Figure 5.6: SNR = 0, varying error variance.

Figure 5.7: SNR = 1, varying error variance.

model. The patterns are similar to constant error variance case, however, the Figure

5.6 shows that for naive method, the three mean estimates lines cannot capture

the pattern of true values. It has a clear underestimates. RCV method clear has a
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Figure 5.8: SNR = 2, varying error variance.

better performance. GL-RCV and CC-SIS-RCV, they both fits the line well. For

varying error variance, the advantage of RCV method is obvious.

We also construct the 95% confidence intervals based on the standard deviation

and the true value. So, the confidence intervals becomes:

[σ2method − 1.96sd(σ̂method), σ
2
method + 1.96sd(σ̂method)] (5.6.4)

And we calculate the probability of the 600 replication falls into this interval.

The average probability are summarized in Table 5.2 following:

It is obviously that the estimates with probability closer to 95% has a better per-

formance. From the table, we can see that RCV method has a similar performance

with oracle method. However, naive method performances much worse especially

when bandwidth is small and regular. Also, generally, probabilities of constant

error variance are closer to 0.95 compared to probabilities of varying error variance.

It is easy to understand since we ignore heteroscedasticity locally, however, it could
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constant varying
SNR = 0 SNR = 1 SNR = 2 SNR = 0 SNR = 1 SNR = 2

oracle
small h 0.9527 0.9515 0.9502 0.9161 0.9196 0.9307
optimal h 0.9499 0.9482 0.9494 0.9157 0.9158 0.9272
large h 0.9475 0.9498 0.9499 0.9228 0.9181 0.9251

naive
small h 0.1013 0.1172 0.1175 0.0941 0.1164 0.0022
optimal h 0.4623 0.4741 0.4448 0.4322 0.4380 0.2830
large h 0.9264 0.9223 0.9224 0.8835 0.8784 0.8655

glrcv
small h 0.9517 0.9347 0.9475 0.9149 0.9368 0.9426
optimal h 0.9494 0.9430 0.9483 0.9155 0.9412 0.9432
large h 0.9484 0.9335 0.9377 0.9229 0.9275 0.9358

ccsisrcv
small h 0.9506 0.9512 0.9479 0.9375 0.9341 0.9278
regular h 0.9492 0.9430 0.9449 0.9372 0.9286 0.9282
large h 0.9505 0.9459 0.9412 0.9341 0.9350 0.9264

Table 5.2: Average probability of falling into 95% confidence interval.

cause problems especially when bandwidth is large and error variance changes

rapidly. We also need to point out that group LASSO has a better performance

when signal is strong. The other methods are not sensitive to signal.

To further shown the performance of the methods pointwise, we also choose

a few points to present our results. Table 5.2-5.8 shows the bias and standard

deviation at point 0.3, 0.4, 0.5, 0.6, 0.7 for 6 scenarios. From the tables, we can

see the patterns more clear. Compared across methods, the bias and standard

deviation of RCV methods is similar to oracle methods, sometimes even smaller.

Furthermore, in all the scenarios, naive method produces estimates with much

larger bias than RCV method compared to naive method. It shows that RCV

method produces good estimates for varying coefficient model. Compared across

bandwidth, the standard deviation do not change with bandwidth for all 4 methods.

However, bias has a clear decreasing trend as bandwidth increases. It could due to

the number of points to estimate is larger as bandwidth increases. Compared across

points, there is no clear pattern that both bias and standard deviation changes with

different points. Compared across error variance settings, the bias of varying error

variance is larger than constant variance under then same SNR settings. Compared
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0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oralce
small h -0.058 0.209 -0.048 0.209 -0.05 0.189 -0.047 0.199 -0.053 0.203
optimal h -0.022 0.169 -0.032 0.166 -0.032 0.155 -0.033 0.157 -0.032 0.163
large h -0.013 0.145 -0.019 0.139 -0.017 0.134 -0.019 0.135 -0.021 0.137

naive
small h -0.376 0.117 -0.374 0.112 -0.376 0.117 -0.368 0.12 -0.377 0.105
optimal h -0.222 0.109 -0.219 0.111 -0.217 0.109 -0.216 0.111 -0.218 0.107
large h -0.064 0.112 -0.064 0.113 -0.064 0.113 -0.063 0.118 -0.059 0.116

glrcv
small h -0.002 0.156 -0.009 0.142 -0.001 0.144 0.006 0.144 0.012 0.15
optimal h -0.002 0.133 -0.007 0.122 -0.001 0.122 0.006 0.123 0.01 0.124
large h 0.015 0.12 -0.005 0.114 -0.003 0.11 0.004 0.112 0.021 0.111

ccsisrcv
small h 0.013 0.16 0.011 0.158 0.016 0.169 0.028 0.168 0.03 0.158
optimal h 0.01 0.131 0.014 0.139 0.019 0.142 0.024 0.142 0.019 0.136
large h 0.012 0.125 0.007 0.124 0.014 0.122 0.014 0.123 0.026 0.125

Table 5.3: Bias and standard deviation for constant error variance, SNR = 0 at
local point u = 0.3, 0.4, 0.5, 0.6, 0.7.

0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oracle
small h -0.059 0.215 -0.04 0.211 -0.063 0.205 -0.058 0.201 -0.065 0.215
optimal h -0.046 0.172 -0.036 0.169 -0.047 0.17 -0.041 0.166 -0.05 0.165
large h -0.025 0.149 -0.018 0.147 -0.025 0.147 -0.026 0.142 -0.03 0.14

naive
small h -0.37 0.112 -0.378 0.118 -0.378 0.119 -0.372 0.11 -0.375 0.123
optimal h -0.224 0.11 -0.232 0.113 -0.224 0.112 -0.219 0.11 -0.219 0.123
large h -0.07 0.118 -0.073 0.118 -0.07 0.118 -0.067 0.119 -0.066 0.119

glrcv
small h 0.04 0.209 0.039 0.213 0.053 0.207 0.069 0.194 0.075 0.199
optimal h 0.014 0.174 0.009 0.17 0.016 0.162 0.027 0.16 0.044 0.158
large h 0.023 0.155 -0.023 0.141 -0.023 0.136 -0.009 0.136 0.055 0.141

ccsisrcv
small h 0.026 0.157 0.023 0.154 0.023 0.165 0.019 0.161 0.017 0.165
optimal h 0.019 0.127 0.023 0.129 0.02 0.135 0.02 0.134 0.013 0.128
large h 0.023 0.12 0.018 0.116 0.018 0.118 0.012 0.119 0.023 0.117

Table 5.4: Bias and standard deviation for constant error variance, SNR = 1 at
local point u = 0.3, 0.4, 0.5, 0.6, 0.7.

across signal strength, biases of GL-RCV seems to be sensitive with signal strength.

Generally, I would say that it performance better with strong signal. The estimates

of the other methods do not change with signal strength.
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0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oracle
small h -0.052 0.202 -0.052 0.204 -0.046 0.202 -0.043 0.207 -0.054 0.196
optimal h -0.033 0.163 -0.025 0.167 -0.035 0.165 -0.029 0.162 -0.032 0.16
large h -0.009 0.14 -0.005 0.142 -0.018 0.143 -0.011 0.137 -0.012 0.14

naive
small h -0.37 0.12 -0.37 0.117 -0.382 0.113 -0.378 0.118 -0.367 0.121
optimal h -0.222 0.11 -0.222 0.112 -0.23 0.106 -0.23 0.109 -0.219 0.11
large h -0.062 0.117 -0.065 0.115 -0.073 0.112 -0.07 0.111 -0.064 0.114

glrcv
small h 0.021 0.155 0.024 0.167 0.026 0.173 0.053 0.167 0.061 0.162
optimal h 0.011 0.121 0.011 0.125 0.016 0.136 0.027 0.13 0.035 0.128
large h 0.034 0.109 0.018 0.111 0.021 0.114 0.023 0.111 0.05 0.112

ccsisrcv
small h 0.028 0.166 0.027 0.168 0.029 0.159 0.027 0.166 0.013 0.164
optimal h 0.018 0.138 0.021 0.137 0.024 0.13 0.023 0.135 0.013 0.137
large h 0.038 0.123 0.026 0.122 0.025 0.12 0.02 0.121 0.03 0.124

Table 5.5: Bias and standard deviation for constant error variance, SNR = 2 at
local point u = 0.3, 0.4, 0.5, 0.6, 0.7.

0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oracle
small h 0.01 0.217 -0.04 0.201 -0.112 0.167 -0.134 0.16 -0.136 0.164
optimal h 0.024 0.177 -0.033 0.161 -0.086 0.139 -0.117 0.131 -0.113 0.136
large h 0.032 0.154 -0.021 0.137 -0.066 0.122 -0.094 0.114 -0.088 0.119

naive
small h -0.397 0.123 -0.354 0.111 -0.338 0.097 -0.322 0.092 -0.321 0.099
optimal h -0.233 0.116 -0.213 0.109 -0.207 0.098 -0.205 0.088 -0.204 0.089
large h -0.046 0.128 -0.07 0.114 -0.093 0.096 -0.106 0.092 -0.095 0.098

glrcv
small h 0.059 0.166 -0.008 0.142 -0.063 0.128 -0.092 0.109 -0.089 0.113
optimal h 0.05 0.137 -0.007 0.12 -0.053 0.107 -0.077 0.097 -0.072 0.099
large h 0.058 0.125 -0.001 0.108 -0.04 0.096 -0.06 0.091 -0.041 0.092

ccsisrcv
small h 0.075 0.18 0.014 0.149 -0.035 0.133 -0.066 0.127 -0.056 0.131
optimal h 0.062 0.149 0.011 0.127 -0.03 0.114 -0.052 0.105 -0.049 0.113
large h 0.055 0.127 0.01 0.113 -0.02 0.102 -0.038 0.096 -0.029 0.103

Table 5.6: Bias and standard deviation for varying error variance, SNR = 0 at local
point u = 0.3, 0.4, 0.5, 0.6, 0.7.
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0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oracle
small h 0.014 0.231 -0.058 0.194 -0.129 0.166 -0.145 0.153 -0.129 0.158
optimal h 0.022 0.187 -0.042 0.154 -0.109 0.138 -0.126 0.122 -0.106 0.126
large h 0.027 0.158 -0.023 0.134 -0.078 0.118 -0.091 0.104 -0.084 0.108

naive
small h -0.389 0.129 -0.368 0.114 -0.339 0.1 -0.317 0.105 -0.326 0.102
optimal h -0.228 0.119 -0.225 0.102 -0.219 0.096 -0.207 0.098 -0.211 0.098
large h -0.051 0.123 -0.081 0.11 -0.101 0.099 -0.103 0.096 -0.099 0.099

glrcv
small h 0.109 0.252 0.031 0.228 -0.037 0.175 -0.057 0.165 -0.044 0.18
optimal h 0.054 0.195 -0.015 0.173 -0.056 0.151 -0.07 0.136 -0.051 0.146
large h 0.055 0.173 -0.041 0.145 -0.078 0.128 -0.081 0.12 -0.023 0.127

ccsisrcv
small h 0.074 0.183 0.008 0.155 -0.056 0.14 -0.075 0.13 -0.061 0.135
optimal h 0.059 0.153 0.01 0.131 -0.039 0.116 -0.062 0.109 -0.06 0.109
large h 0.055 0.136 0.003 0.118 -0.031 0.101 -0.047 0.097 -0.032 0.103

Table 5.7: Bias and standard deviation for varying error variance, SNR = 1 at local
point u = 0.3, 0.4, 0.5, 0.6, 0.7.

point 0.3 0.4 0.5 0.6 0.7
bias std bias std bias std bias std bias std

oracle
small h 0.0085 0.2169 -0.056 0.182 -0.1181 0.1568 -0.1419 0.1426 -0.129 0.154
optimal h 0.0326 0.1753 -0.033 0.1457 -0.0941 0.1244 -0.1209 0.1162 -0.1086 0.1209
large h 0.0439 0.1502 -0.0182 0.1281 -0.0699 0.1102 -0.0915 0.1028 -0.0827 0.1053

naive
small h -0.601 0.103 -0.55 0.096 -0.529 0.085 -0.498 0.08 -0.5 0.083
optimal h -0.212 0.103 -0.216 0.097 -0.218 0.088 -0.219 0.081 -0.203 0.082
large h -0.029 0.098 -0.029 0.091 -0.044 0.086 -0.045 0.08 -0.048 0.081

glrcv
small h 0.0691 0.1779 0.0012 0.1496 -0.0437 0.1347 -0.0528 0.1371 -0.0335 0.1387
optimal h 0.0586 0.1443 0.0023 0.1216 -0.04 0.1108 -0.0501 0.1079 -0.0364 0.1091
large h 0.0713 0.1298 0.0157 0.1098 -0.0197 0.0989 -0.0349 0.0944 -0.0016 0.101

ccsisrcv
small h 0.1194 0.1774 0.0366 0.1661 -0.045 0.1401 -0.0775 0.1247 -0.0427 0.1299
optimal h 0.0932 0.1448 0.0337 0.1335 -0.0397 0.1168 -0.0619 0.1058 -0.0358 0.1105
large h 0.1152 0.1355 0.0381 0.1152 -0.0206 0.1044 -0.0398 0.0961 -0.0006 0.104

Table 5.8: Bias and standard deviation for varying error variance, SNR = 2 at local
point u = 0.3, 0.4, 0.5, 0.6, 0.7.
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5.7 Real Data Application

To illustrate the methodology, we apply the newly proposed procedures to the

Framingham Heart Study (FHS) data. It is a cardiovascular study that began in

1948 under the guidance of the National Heart, Lung and Blood Institute (Dawber,

Meadors, and Moore 1951; Jaquish 2007). There are n = 977 samples (subjects)

and p = 349, 985 variables (nonrare SNPs). Our major goal is to spot the SNPs that

are most associated with body mass index (BMI). Since each SNP has the dominant

effect (D) and the additive effect (A), the total variables are 2p = 699, 970. This

is typical ultrahigh dimensional data. According to existing experience and some

previous research results, the effect of SNPs changes with age. Therefore, the

varying coefficient model naturally becomes a reasonable choice to this data. In

this model, y is the BMI, U is the age, and x is the SNPs. We first use conditional

correlation sure independent screening (CC-SIS) to reduce the number of predictors

from 2p = 699, 970 to a moderate size (132). The 132 SNPs with the largest 132

conditional correlations are listed in Table 5.10. According to the recommendation

in Liu, Li, and Wu (2014), the variables with highest d = n4/5/(log(n4/5)) ≈ 44

should be chosen. In this dissertation, we compare the estimates from different

sample size 34, 44, 88, 132. 34 is the number of variables Liu, Li, and Wu (2014)

chose, and we use it as the benchmark for comparison.

For data (y,X,u), we use naive method to approach the coefficients estimation

α̂j(u). The detailed procedure is described in Section 5.3. Generally speaking, we

use group LASSO to further select variables first and refit the selected variables

with low dimension varying-coefficient model method (local liner regression) for the

estimation. Also, we calculate the σ̂2naive for the comparison purpose. Meanwhile,

we use the proposed RCV method to calculate σ̂2rcv. Also, two kinds of confidence

interval of coefficients can be constructed based on the two kinds of σ̂2. Since, the

naive method is expected to significantly underestimate the error variance, the
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method rcv naive
d U = 34 37 41 43 48 34 37 41 43 48
34 18.481 15.815 18.585 14.631 15.682 16.549 15.503 12.577 12.180 14.604
44 16.704 15.115 15.824 12.578 14.500 14.625 14.671 12.932 11.871 11.245
88 19.143 15.284 13.324 14.108 13.224 12.299 10.015 8.273 9.131 9.022
132 20.241 14.525 17.432 11.461 14.466 8.258 6.725 6.619 8.086 9.880

Table 5.9: The error variance estimates at 5 points of covariate U.

confidence bands based on naive method may have more significant variables than

ones from RCV method.

After apply the two methods onto the data, we first compute σ̂2naive and σ̂2rcv
for sample size 34, 44, 88, 132. Since they are both function, we show the values at

(0.15, 0.25, 0.5, 0.75, 0.85) quantile of U.

In Table 5.9, it is easy to see that σ̂2naive has a clear decreasing trend as the

number of variables chosen getting larger. Meanwhile, σ̂2rcv stays similar. And, for

any particular covariate point, σ̂2rcv always larger than σ̂2naive .

Since the optimize sample size is 44, it is used to conduct further study. We

first use naive method, and the coefficient function {α̂j(U)}, j = 1, . . . , p can be

estimated. We further compare
∫
|α̂j(U)|2 du for each j in 1 . . . p, can choose the

predictors with largest nine L2 norm. Along with the σ̂2 estimated from the both

naive methods, and RCV method, we can further construct confidence bands for

these 9 variables.

The RCV confidence bands in Figure 5.9 are clearly larger than the naive

confidence bands, which is consistent with our theoretical proof and simulation

results.
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Table 5.10: List of the selected 132 SNP’s

SNP ρ2 SNP ρ2

1 ss66511535(A) 0.0261 67 ss66209054(A) 0.0179
2 ss66517429(D) 0.0258 68 ss66526138(D) 0.0179
3 ss66112931(D) 0.0243 69 ss66102245(D) 0.0179
4 ss66088050(D) 0.0243 70 ss66265096(A) 0.0178
5 ss66155306(A) 0.0233 71 ss66056760(A) 0.0178
6 ss66070305(A) 0.0233 72 ss66265548(D) 0.0178
7 ss66398253(A) 0.0232 73 ss66103158(A) 0.0178
8 ss66319388(A) 0.0228 74 ss66409420(D) 0.0177
9 ss66489729(A) 0.0223 75 ss66039508(D) 0.0177

10 ss66258748(D) 0.0219 76 ss66183857(D) 0.0177
11 ss66398882(A) 0.0215 77 ss66356701(D) 0.0177
12 ss66353634(D) 0.0213 78 ss66272727(D) 0.0177
13 ss66144265(A) 0.0213 79 ss66097729(D) 0.0177
14 ss66346559(A) 0.0211 80 ss66040305(D) 0.0176
15 ss66085516(D) 0.0211 81 ss66536393(D) 0.0176
16 ss66461698(D) 0.021 82 ss66141492(A) 0.0176
17 ss66159949(A) 0.0209 83 ss66269504(D) 0.0176
18 ss66363198(A) 0.0208 84 ss66438421(D) 0.0176
19 ss66485483(A) 0.0207 85 ss66116314(D) 0.0176
20 ss66084087(D) 0.0205 86 ss66302804(A) 0.0176
21 ss66393072(A) 0.0204 87 ss66507772(D) 0.0175
22 ss66058021(D) 0.0204 88 ss66411959(A) 0.0175
23 ss66264934(A) 0.0203 89 ss66164865(D) 0.0175
24 ss66516012(A) 0.0202 90 ss66416614(A) 0.0174
25 ss66058506(A) 0.02 91 ss66305798(D) 0.0174
26 ss66102722(A) 0.0199 92 92(D) 0.0174
27 ss66404926(A) 0.0198 93 ss66336837(D) 0.0174
28 ss66089086(A) 0.0198 94 ss66052897(D) 0.0174
29 ss66491317(D) 0.0197 95 ss66143305(A) 0.0174
30 ss66236850(A) 0.0196 96 ss66320873(D) 0.0173
31 ss66153510(A) 0.0196 97 ss66222883(D) 0.0173
32 ss66282476(A) 0.0196 98 ss66139687(D) 0.0173
33 ss66188749(A) 0.0195 99 ss66430303(D) 0.0172
34 ss66306173(A) 0.0194 100 ss66346937(A) 0.0172
35 ss66435333(A) 0.0193 101 ss66079410(D) 0.0171
36 ss66101395(D) 0.0193 102 ss66404926(D) 0.0171
37 ss66305798(A) 0.0192 103 ss66362972(A) 0.0171
38 ss66137328(A) 0.0192 104 ss66082721(D) 0.017
39 ss66469808(D) 0.0191 105 ss66316243(A) 0.017
40 ss66509394(D) 0.0191 106 ss66220359(D) 0.017
41 ss66080432(D) 0.0189 107 ss66047081(A) 0.017
42 ss66173508(D) 0.0189 108 ss66071513(A) 0.017
43 ss66302110(A) 0.0189 109 ss66367461(D) 0.017
44 ss66041456(D) 0.0188 110 ss66370736(D) 0.017
45 ss66501923(A) 0.0187 111 ss66379476(A) 0.0169
46 ss66354801(D) 0.0186 112 ss66358965(A) 0.0169
47 ss66052226(A) 0.0186 113 ss66281927(A) 0.0169
48 ss66176990(D) 0.0186 114 ss66321055(D) 0.0168
49 ss66205766(A) 0.0185 115 ss66282595(A) 0.0168
50 ss66158449(A) 0.0185 116 ss66221481(D) 0.0168
51 ss66184897(A) 0.0185 117 ss66358314(D) 0.0168
52 ss66451201(A) 0.0185 118 ss66467683(D) 0.0168
53 ss66272727(A) 0.0185 119 ss66332935(D) 0.0168
54 ss66190611(A) 0.0184 120 ss66485672(A) 0.0168
55 ss66522817(A) 0.0183 121 ss66119591(D) 0.0167
56 ss66141715(D) 0.0183 122 ss66262246(A) 0.0167
57 ss66323107(A) 0.0183 123 ss66426981(A) 0.0167
58 ss66532146(A) 0.0182 124 ss66534314(D) 0.0167
59 ss66422022(A) 0.0182 125 ss66126299(A) 0.0167
60 ss66383596(A) 0.0182 126 ss66268589(A) 0.0167
61 ss66374124(D) 0.0182 127 ss66445258(D) 0.0167
62 ss66115664(D) 0.0181 128 ss66333299(D) 0.0167
63 ss66470378(A) 0.018 129 ss66340691(D) 0.0166
64 ss66219875(D) 0.018 130 ss66274749(D) 0.0166
65 ss66168969(A) 0.0179 131 ss66367982(A) 0.0166
66 ss66174853(A) 0.0179 132 ss66518380(A) 0.0166
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Figure 5.9: The coefficient function of 9 variables with largest L2 norm of coefficient
functions.

The red dash lines are the confidence bands respected to RCV method, and the
blue dash lines are the confidence bands respected to naive method.

5.8 Regularity Conditions and Technical Proofs

5.8.1 Regularity Conditions

The following conditions are imposed to facilitate the proofs. They may not

be the weakest conditions. Suppose S is a subset of {1, 2, · · · , p} and denote

the cardinality of S by |S|. Let s = o(n). Define the conditional constrained

135



eigenvalues as

φmin(s |u) = min
|S|<s

λmin
(
E (xSxTS |U = u)

)
φmax(s |u) = max

|S|<s
λmax

(
E (xSxTS |U = u)

) (5.8.1)

(C1) For j = 1, · · · , p and any u ∈ U , α ′′j (u) exists and is continuous.

(C2) For an s > 2 and j = 1, · · · , p, E |ε|2s <∞, and E |Xj|2s <∞.

(C3) The random variable Ui has a bound support U ⊂ R1. Its density function

fU(u) is Lipschitz continuous with order γ ≥ 2 that is ,

|fU(u1) − fU(u2)| ≤ C |u1 − u2|γ , for some C > 0,

and bounded away from 0 on its support.

(C4) For j = 1, · · · , p, the joint distribution f(u,Xj, ε) has a bounded support

and uniformly continuous on its support.

(C5) nh4 → 0 and n2h2/(log(1/h))2 →∞.

(C6) Define r(u) = E (X2ε2
∣∣U = u). Assume that r(u) is bounded away from 0

for u ∈ U , and has a bounded first derivative on U .

(C7) Let S ⊂ (1, · · · , p) and sn = |S|. Assume that for sn = o(n), E (xSxTS
∣∣U =

u) and E ((xSxTS)−1
∣∣U = u) are both Lipschitz continuous with order γ ≥ 2.

Assume that κ(Ui) = E (ε4i |Ui) exists.

(C8) The kernel K(u) is a symmetric density function with finite support U and

satisfies that

sup
u∈U
|K(u)| <∞.

Define

µk =

∫
U
ukK(u)du, νk =

∫
U
ukK2(u)du,
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(C9) There exist two constants λ0 > 0 and λ1 > 0 such that

P (inf
u
φmin(su |U = u) ≥ λ0) = 1

P (sup
u
φmax(su |U = u) ≤ λ1) = 1

(5.8.2)

5.8.2 Technical Proofs

Lemma 1. Let (X1, Y1), · · · , (Xn, Yn) be i.i.d. random vectors, where the Yi’s are

scalar random variables. Further assume that E |Y|s <∞ and supx
∫
|y|s f(x, y)dy <∞, where f denotes the joint density of (X, Y). Let K be a bounded positive function

with a bounded support, satisfying a Lipschitz condition. Given that n2ε−1h→∞
for some ε < 1− s−1, then

sup
x

∣∣∣∣∣ 1n
n∑
i=1

Kh(Xi − x)Yi − E (Kh(Xi − x)Yi)

∣∣∣∣∣ = Op
((

log(1/h)
nh

)1/2)
. (5.8.3)

Lemma 2. [Smirnov, 1944] Let X1, X2, · · · , Xn be independent identically dis-

tributed random variables with distribution function F(t). Fn(t) = 1
n

∑n
i=1 I(Xi ≤ t)

is the corresponding empirical distribution function. For λ ≥ 0, we have:

P
(
sup
t
(Fn(t) − F(t)) < λn

− 1
2

)→ 1− exp{−2λ2}, n→∞. (5.8.4)

For the two-dimensional independent identically distributed random variables

(X1, Y1), . . . , (Xn, Yn) with distribution function F(u, v) and empirical distribution

function Fn(u, v), we also have, for λ ≥ 0,

P
(
sup
u,v

(Fn(u, v) − F(u, v)) < λn
− 1

2

)→ 1− exp(−cλ2), n→∞, (5.8.5)
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where constant 0 < c ≤ 2.

Lemma 3. Let G(v) and K(u) be bounded differentiable functions. F(u, v) is a

bivariate joint cumulative distribution function. We have

∫Su
su

∫Sv
sv

G(v)K(u)dF(u, v)

= −

∫
L1

⋃
L3

G(v0)K(u)dF(u, v0) −

∫
L2

⋃
L4

F(u0, v)K(u)dG(v)

+

∫Su
su

∫Sv
sv

F(u, v)dK(u)dG(v),

where

L1 : su ≤ u ≤ Su, v0 = sv,

L2 : u0 = S
u, sv ≤ v ≤ Sv,

L3 : S
u ≥ u ≥ su, v0 = Sv,

L4 : u0 = su, S
v ≥ v ≥ sv.

.

Proof of Lemma 3.

Let

a(u, v) = G(v)K(u)
∂F(u, v)

∂u
,

b(u, v) = G ′(v)K(u)F(u, v).

Using the Green’s identity, we obtain

∫
⋃

i Li

a(u, v)du+ b(u, v)dv =

∫Su
su

∫Sv
sv

(
−
∂a(u, v)

∂v
+
∂b(u, v)

∂u

)
dudv. (5.8.6)
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We calculate each term of the left hand side of Equation (5.8.6) as follows.

∫
L1

a(u, v)du =

∫
L1

G(sv)K(u)
∂F(u, sv)

∂u
du =

∫
L1

G(v0)K(u)
∂F(u, v0)

∂u
du,

where v0 = sv on L1. Similarly, we have

∫
L3

a(u, v)du =

∫
L3

G(v0)K(u)
∂F(u, v0)

∂u
du, v0 = S

v.

We notice that
∫
L2∪L4

a(u, v)du = 0 due to du = 0 on L2 ∪ L4. Thus, the left hand

side equals

∫
L1∪L3

G(v0)K(u)
∂F(u, v0)

∂u
du+

∫
L2∪L4

K(u0)F(u0, v)dG(v).

We calculate the right hand side of Equation (5.8.6). By denoting Ω = [su, S
u]×

[sv, S
v], we get

−

∫
Ω

∂a(u, v)

∂v
dudv

= −

∫
Ω

∂

∂v

(
G(v)K(u)

∂F(u, v)

∂u

)
dudv

= −

∫
Ω

K(u)

(
G ′(v)

∂F(u, v)

∂u
+G(v)

∂2F(u, v)

∂u∂v

)
dudv

= −

∫
Ω

K(u)
∂F(u, v)

∂u
dudG(v) −

∫
Ω

K(u)G(v)dF(u, v)

(5.8.7)

Analogously, we also have

∫
Ω

∂b(u, v)

∂u
dudv =

∫
Ω

K(u)
∂F(u, v)

∂u
dudG(v) +

∫
Ω

F(u, v)dK(u)dG(v).

(5.8.8)

Combining Equations (5.8.7) and (5.8.8), the right hand side of equation (5.8.6)

equals ∫
Ω

F(u, v)dK(u)dG(v) −

∫
Ω

K(u)G(v)dF(u, v).
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Consequently, we prove the result of Lemma 3.

Lemma 4. Denote the kernel estimator by

(j)
n (u) =

1

n

n∑
i=1

Kh(u−Ui)Xijεi =
1

nh

n∑
i=1

K(
u−Ui
h

)Xijεi. (5.8.9)

Under the regularity conditions presented in the section 8.1, it follows that

P
(

sup
su≤u≤Su

∣∣(j)
n (u) − E (j)

n (u)
∣∣ > M1

)
≤ 4 exp(−2c1M2

1 nh
2), (5.8.10)

where c1 > 0 and M1 > 0 are positive constants.

Proof of Lemma 4.

Denote the conditional mean function by (j)(u) = E (Xijεi|Ui = u), i = 1, · · · , n,

and the corresponding kernel estimator by

(j)
n (u) =

1

n

n∑
i=1

Kh(u−Ui)Xijεi =
1

nh

n∑
i=1

K(
u−Ui
h

)Xijεi, (5.8.11)

where K(·) is symmetric kernel function with bounded support.

E (j)
n (u) =

1

h

∫
K(
u− ui
h

) (j)(ui)dui =

∫
K(ui)

(j)(u− uih)dui, (5.8.12)

then,

E (j)
n (u) −(j) (u) =

∫
K(ui)

(j)(u− uih)dui −

∫
K(ui)

(j)(u)dui

=

∫
K(ui)

(
−((j)(u)) ′uih+

1

2
((j)(u− ξuih))

′′u2ih
2

)
dui

= O(h2).

(5.8.13)

The last equation holds by ((j)(u)) ′′ exists and is uniformly bounded. For τ <
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1/2, n2τh4 < nh4 → 0. There exists a constantN1, for any n > N1, nτ
∣∣∣E (j)

n (u) −(j) (u)
∣∣∣ <

c1n
τh2 < c2. Therefore, we have

P
(

sup
su≤u≤Su

∣∣E (j)
n (u) −(j) (u)

∣∣ > c2n−τ
)
< ε. (5.8.14)

Denote by Vij = Xijεi. Suppose Vij is integrable. Then by dominated convergence

theorem, we have

E (j)
n (u) =

1

h

∫+∞
−∞
∫Svj
svj

vijK(
u− ui
h

)dF(ui, vij)

= lim
M→∞

∫M
−M

∫Svj
svj

vijK(
u− ui
h

)dF(ui, vij).

(5.8.15)

By Lemma 3, the integral equals

1

h
lim
M→∞

[
−

∫M
−M

svjK(
u− ui
h

)dF(ui, svj) −

∫M
−M

SvjK(
u− ui
h

)dF(ui, S
vj)

−

∫Svj
svj

F(M,vij)K(
u−M

h
)dvij −

∫Svj
svj

F(−M,vij)K(
u+M

h
)dvij

]
+
1

h
lim
M→∞

∫M
−M

∫Svj
svj

F(ui, vij)dK(
u− ui)

h
dvij

(5.8.16)

For K(·) is a kernel function with bounded support,

lim
M→∞

∫Svj
svj

F(M,vij)K(
u−M

h
)dvij = lim

M→∞
∫Svj
svj

F(−M,vij)K(
u+M

h
)dvij = 0.

(5.8.17)

Notice that F(ui, svj) = 0, F(ui, Svj) = FU(ui), the marginal cumulative distribution
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function of random variable U. By integration by parts, we have

∫M
−M

svjK(
u− ui
h

)dF(ui, svj) = 0∫M
−M

SvjK(
u− ui
h

)dF(ui, S
vj) =

∫M
−M

SvjFU(ui)dK(
u− ui
h

).

(5.8.18)

Therefore, it follows

E (j)
n (u) = −

1

h

[∫+∞
−∞ SvjFU(ui)dK(

u− ui
h

) −

∫+∞
−∞
∫Svj
svj

F(ui, vij)dK(
u− ui
h

)dvij

]
.

(5.8.19)

Replacing the probability measure by the empirical measure, we can have

(j)
n (u) =

1

h

∫+∞
−∞
∫Svj
svj

vijK(
u− ui
h

)dFn(ui, vij)

= −
1

h

[∫+∞
−∞ SvjFU,n(ui)dK(

u− ui
h

) −

∫+∞
−∞
∫Svj
svj

Fn(ui, vij)dK(
u− ui
h

)dvij

]
,

(5.8.20)

where FU,n(·) and Fn(·) are the empirical distribution function corresponding to the

sample (Vij, Ui), Ui i = 1, · · · , n, respectively.

sup
su≤u≤Su

∣∣(j)
n (u) − E (j)

n (u)
∣∣

≤ sup
su≤u≤Su

∣∣∣Svj
h

∫+∞
−∞ (FU,n(ui) − FU(ui))dK(

u− ui
h

)

+
1

h

∫+∞
−∞
∫Svj
svj

(Fn(ui, vij) − F(ui, vij))dK(
u− ui
h

)dvij

∣∣∣
≤ Svj

h
sup

−∞≤ui≤∞ |FU,n(ui) − FU(ui)|M
∗ +

1

h
sup

−∞≤ui≤∞
svj≤vij≤S

vj

|Fn(ui, vij) − F(ui, vij)|M∗S∗j .

(5.8.21)
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Using Lemma 1, it follows that

P
(

sup
su≤u≤Su

∣∣(j)
n (u) − E (j)

n (u)
∣∣ > M1

)
≤ P

(
sup

−∞≤ui≤∞ |FU,n(ui) − FU(ui)| > M2h
)

+ P
(

sup
−∞≤ui≤∞
svj≤vij≤S

vj

|Fn(ui, vij) − F(ui, vij)| > M2h
)

≤ 2 exp(−2M2 nh
2) + 2 exp(−2M2 nh

2)

= 4 exp(−2M2 nh
2)

(5.8.22)

Lemma 5 Let ε = (ε1, · · · , εn)T be an i.i.d. random vector with E ε1 = 0,Varε1 =

1,E ε41 = κ. If Σ ≥ 0, then it follows

E
(
1

n
εTΣε−

1

n
tr(Σ)

)2
=
2

n
tr(Σ2) + κ− 3

n2

n∑
i=1

σ2ii (5.8.23)

Proof of Proposition 1. (Order of c(u))

Recall that c(u) = tr((I−Su)TW∗
u(I−Su)) = tr(W∗

u)−tr(W∗
uSu)−tr(STW∗

u)+

tr(STuW∗
uSu). Here the superscript ∗ means using the different bandwidth h∗. First,

we have

1

n
tr(W∗

u) =
1

n

n∑
i=1

w∗u,i =
1

n

n∑
i=1

1

h∗
K(
Ui − u

h∗
) = E 1

h∗
K(
Ui − u

h∗
)+ Op(

√
log(1/h∗)
nh∗

),

(5.8.24)

where

E 1

h∗
K(
Ui − u

h∗
) =

∫
1

h∗
K(
ui − u

h∗
)fU(ui)dui = fU(u) +Op(h

∗2) (5.8.25)

Thus, tr(W∗
u) = nfU(u) +Op(nh

∗2). Denote by w(i)
j = Wui(j, j), w∗u,i = W∗

u(i, i)
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and P(i) = Dui(D
T
ui
WuiDui)

−1DT
ui
. Because W1/2

ui
P(i)W1/2

ui
is a projection matrix,

it follows that

tr(W1/2
ui
P(i)W1/2

ui
) =

n∑
j=1

w
(i)
j P

(i)
jj = 2sui . (5.8.26)

Therefore, we have

tr(W∗
uS) = tr(STW∗

u)

=

n∑
i=1

w∗u,ieTn,iDui(D
T
ui
WuiDui)

−1DuiWuien,i

=

n∑
i=1

w∗u,iw
(i)
i P

(i)
ii

=
K(0)

h

n∑
i=1

w∗u,iP
(i)
ii

=
K(0)

h
sui + op(1).

(5.8.27)

By using equation (5.8.47) and Lemma 1, the last equation holds for

n∑
i=1

w∗u,iP
(i)
ii

=

n∑
i=1

w∗u,ieTn,iDui(D
T
ui
WuiDui)

−1DT
ui
en,i

=
1

n

n∑
i=1

1

h∗
K(
Ui − u

h∗
)f−1U (Ui) [xTi E ((XSui

XT
Sui

)−1 |Ui)xi] (1+Op(h2 +
√

log(1/h)
nh

))

= E
{
1

h∗
K(
Ui − u

h∗
)f−1U (Ui)xTi E [(XSui

XT
Sui

)−1 |Ui]xi
} (
1+Op(

√
log(1/h∗)
nh∗

)
)(
1+Op(h

2 +

√
log(1/h)
nh

)
)
.

(5.8.28)
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and

E
{
1

h∗
K(
Ui − u

h∗
)f−1U (Ui)xTi E [(XSui

XT
Sui

)−1 |Ui]xi
}

=E
{
1

h∗
K(
Ui − u

h∗
)f−1U (Ui) tr

(
E [(XSui

XT
Sui

)−1 |Ui]xixTi
)}

= tr
(
E U

{
1

h∗
K(
Ui − u

h∗
)f−1U (Ui)E [(XSui

XT
Sui

)−1 |Ui]E
(
xixTi

∣∣Ui)})
=EU

(
1

h∗
K(
Ui − u

h∗
)f−1U (Ui) sui

)
.

(5.8.29)

Notice that the sample xi consists of variables belonging to the active set Sui .

Together with equation (5.8.28) and equation (5.8.29), we have

n∑
i=1

w∗u,iP
(i)
ii = sui (1+Op(

√
log(1/h∗)
nh∗

))(1+Op(h
2+

√
log(1/h)
nh

)) = sui +op(1).

(5.8.30)

Similarly, we can calculate the order of term

tr(STW∗
uS)

=

n∑
i=1

w∗u,ieTn,iP(i)W2
ui
P(i)en,i

=

n∑
i=1

w∗u,i(P
(i)
i1 , · · · ,P

(i)
in )W

2
ui
(P(i)

i1 , · · · ,P
(i)
in )

T

=

n∑
i=1

n∑
k=1

w∗u,i (w
(i)
k )2 (P(i)

ik )
2

≤
n∑
i=1

n∑
k=1

w∗u,i (w
(i)
k )2P(i)

kkP
(i)
ii

≤
n∑
i=1

w∗u,iP
(i)
ii

K(0)

h

n∑
k=1

w
(i)
k P(i)

kk

= 2
K(0)

h
su

n∑
i=1

w∗u,iP
(i)
ii

= 2
K(0)

h
s2u.

(5.8.31)
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As a result, it follows that

fU(u)n− 2
K(0)

h
su ≤ c(u) ≤ fU(u)n− 2

K(0)

h
su + 2

K(0)

h
s2u (5.8.32)

In the other hand, as an simplified version that h∗ = h, we have

tr
(
Wu − (DT

uWuDu)
−1DT

uW2
uDu

)
= tr(Wu −WuDu(DT

uWuDu)
−1DT

uWu)

= tr(Wu(I−W1/2
u Du(DT

uWuDu)
−1DT

uW1/2
u ))

(5.8.33)

Denote by Pu = {Pij(u)}i,j = W1/2
u Du(DT

uWuDu)
−1DT

uW1/2
u . Notice that I − Pu

is a projection matrix satisfying that rank(I − Pu) = tr(I − Pu). For Wu =

diag(wn,1, · · · , wn,n), equation (5.8.33) equals
∑

iwu,i(1−Pii(u)) and

fU(u)n−
K(0)

h
su ≤

n∑
i=1

wu,i −

n∑
i=1

Pii(u) ≤
n∑
i=1

wu,i(1−Pii(u))

≤ K(0)
h

n∑
i=1

(1−Pii(u)) =
K(0)

h
(n− su).

(5.8.34)

The proof of Proposition 1 is completed.

Proof of Theorem 1. and Theorem 2. Recall the varying-coefficient model

yi =

p∑
j=1

αj(Ui)Xij + εi, (5.8.35)

where αj(U), j = 1, · · · , p, are unknown functional coefficients. For each function

α(u), we apply locally linear approximation in the neighbor of fixed point u0 that

α(u) ≈ α(u0) + α ′(u0)(u− u0), u ∈ Nε(u0). (5.8.36)
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For local linear regression, the design matrix is defined by

Du =


xT1

U1−u
h

xT1
... ...

xTn Un−u
h

xTn

 . (5.8.37)

The local linear regression estimator of
(
αT(u), (α ′(u))T

)T is a weighted least

squares estimator defined by

(α1(u), · · · , αsu(u), α ′1(u)h, · · · , α ′su(u)h)
T = (DT

uWuDu)
−1DT

uWuY, (5.8.38)

where Wu is the weights matrix based on kernel function. Let

M =


αT(U1)x1

...

αT(Un)xn

 , M̃u =


αT(u)x1 + (α ′(u))T(U1 − u)x1

...

αT(u)xn + (α ′T(u))T(Un − u)xn

 , (5.8.39)

and

M̂ =


α̂
T
(U1)x1
...

α̂
T
(Un)xn

 =


(xT1 , 0)(DT

u1
Wu1Du1)

−1DT
u1
Wu1

· · · · · · · · ·

(xTn, 0)(DT
un
WunDun)

−1DT
un
Wun

Y , SY, (5.8.40)

where S is called the smooth matrix. The corresponding estimators of errors are

ε̂ = (I− S)Y. The local error variance estimator is defined by

σ̂2(u) =
ε̂
TW∗

uε̂

c(u)
=

YT(I− S)TW∗
u(I− S)Y

c(u)
, (5.8.41)

where c(u) is used to obtain the nearly unbiased estimator. The denominator could
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be divided into three parts.

(MT + εT)(I− S)TW∗
u(I− S)(M+ ε)

= MT(I− S)TW∗
u(I− S)M+ 2MT(I− S)TW∗

u(I− S)ε

+ ε(I− S)TW∗
u(I− S)ε

, ∆1 +∆2 +∆3

(5.8.42)

First, we study

W∗1/2
u Sε

= W∗1/2
u


eT1,nDu1(D

T
u1
Wu1Du1)

−1DT
u1
Wu1

· · · · · · · · ·

eTn,nDun(DT
un
WunDun)

−1DT
un
Wun

 ε

=


w
∗1/2
u,1 eT1,nDu1(D

T
u1
Wu1Du1)

−1DT
u1
Wu1ε

· · · · · · · · ·

w
∗1/2
u,n eTn,nDun(DT

un
WunDun)

−1DT
un
Wunε

 , H

(5.8.43)

∥∥∥W∗1/2
u Sε

∥∥∥2 = HTH = (h1, · · · , hn)(h1, · · · , hn)T =
n∑
j=1

h2j . (5.8.44)

For each hj, j = 1, · · · , n, we have

h2j = εTWujDuj(D
T
uj
WujDuj)

−1DT
uj

(
w
∗1/2
u,j en,je

T
n,jw

∗1/2
u,j

)
Duj(D

T
uj
WujDuj)

−1DT
uj
Wujε

≤ λmax

[
(DT

uj
WujDuj)

−1DT
uj

(
w
∗1/2
u,j en,je

T
n,jw

∗1/2
u,j

)
Duj(D

T
uj
WujDuj)

−1
] ∥∥∥DT

uj
Wujε

∥∥∥2∞
Notice that face

λmax(A−1BA−1) ≤ λmax(B) λmax(A−2) = λmax(B) λ−2min(A). (5.8.45)
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Thus, the last equation is bounded by

λmax

[
DT
uj

(
w
∗1/2
u,j en,je

T
n,jw

∗1/2
u,j

)
Duj

]
(λmin(DT

uj
WujDuj))

−2. (5.8.46)

With Lemma 1 and the symmetry of kernel function, it holds uniformly in u that

1

n
DT
uWuDu

=

 n−1
∑n

i=1 xixTi Kh(Ui − u) n−1
∑n

i=1 xixTi
(
Ui−u
h

)
Kh(Ui − u)

n−1
∑n

i=1 xixTi
(
Ui−u
h

)
Kh(Ui − u) n−1

∑n
i=1 xixTi

(
Ui−u
h

)2
Kh(Ui − u)


=

fU(u)E (xxT |u) 0

0 µ2fU(u)E (xxT |u)

 (1+Op(h
2 +

√
log(1/h)
nh

))

(5.8.47)

Notice the fact that positive definite matrices A and B, then

λmin

A 0

0 B

 = min(λmin(A), λmin(B)). (5.8.48)

We also have

λmin(fU(u)E (xxT |u)(1+Op(h2 +
√

log(1/h)
nh

)))

= λmin(E (xxT |u))fU(u)(1+Op(h2 +
√

log(1/h)
nh

))

≥ λ0fU(u)(1+Op(h2 +
√

log(1/h)
nh

))

λmin(µ2fU(u)E (xxT |u)(1+Op(h2 +
√

log(1/h)
nh

)))

= λmin(E (xxT |u))µ2fU(u)(1+Op(h2 +
√

log(1/h)
nh

))

≥ λ0µ2fU(u)(1+Op(h2 +
√

log(1/h)
nh

))

(5.8.49)
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As the result, it follows

λmin

(
1

n
DT
uj
WujDuj

)
≥ min{1, µ2} λ0 fU(u) (1+Op(h2 +

√
log(1/h)
nh

)) (5.8.50)

Next we study the first term in equation (5.8.46). We have

DT
uj

(
w
∗1/2
u,j en,je

T
n,jw

∗1/2
u,j

)
Duj

=

 x1 · · · xj · · · xn
x1 U1−Uj

h
· · · 0 · · · xnUn−Uj

h




0

. . .

w∗u,j
. . .

0





xT1
U1−Uj

h
xT1

... ...

xTj 0
... ...

xTn
Un−Uj

h
xTn


=
(
0 · · · w∗1/2u,j xj · · · 0)

)(
0 · · · w∗1/2u,j xj · · · 0)

)T
= w∗n,jxjxTj .

(5.8.51)

Thus, for Xi i = 1, · · · , p, has bounded support, it follows

λmax

[
DT
uj

(
w
∗1/2
u,j en,je

T
n,jw

∗1/2
u,j

)
Duj

]
= w∗n,jxTj xj

≤ K(0)

h∗
‖xj‖2 =

K(0)

h∗
O(n).

(5.8.52)
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To find the order of DT
uWuε, we notice that

DT
uWuε

=

 x1 · · · xn
x1 U1−u

h
· · · xnUn−u

h



wu,1ε1

...

wu,nεn


=

 ∑n
i=1wu,ixiεi∑n

i=1wu,i
Ui−u
h

xiεi



=



∑n
i=1wu,iXi1εi

...∑n
i=1wu,iXisuεi∑n

i=1wu,i
Ui−u
h
Xi1εi

...∑n
i=1wu,i

Ui−u
h
Xisuεi



(5.8.53)

is a 2su-by-1 vector. For the symmetry of kernel function,
∫
uK(u)du = 0 and

the last su terms have the same expectation 0. Using Lemma 4, we can uniformly

construct the probabilistic bound of DT
uWuε.

P
(

max
j=1,··· ,p

sup
u

∣∣∣∣∣ 1n∑
i=1

Kh(Ui − u)Xijεi

∣∣∣∣∣ ≥M)
≤

p∑
j=1

P
(
sup
u

∣∣∣∣∣ 1n∑
i=1

Kh(Ui − u)Xijεi

∣∣∣∣∣ ≥M)
≤

p∑
j=1

4 exp{−2c1M2nh2}

= 4 exp{log(p) − 2c1M2nh2}

= 4 exp{log(p)
(
1−

2c1M
2nh2

log(p)
)
}.

(5.8.54)
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Let M = c2

√
log(p)
2nh2

, when c2 is sufficiently large, the power is negative. Together

with equation (5.8.44), (5.8.50) and (5.8.52), we have

γ̂2n =
εTSTW∗

uSε
εTW∗

uε
= Op(

su log(p)
nh2h∗

). (5.8.55)

In here the order of εTW∗
uε is obtain by LLN. The proof of Theorem 1 is completed.

Next, we study the limiting distribution of the leading term 1
n
εTW∗

uε
T . The

expectation is

E
(
n−1εTW∗

uε
T
)

=
1

n

n∑
i=1

E (Kh∗(Ui − u) ε
2
i )

= E
[
E
(
1

h∗
K(
Ui − u

h∗
)ε2i

∣∣∣Ui)]
= E

[
1

h∗
K(
Ui − u

h∗
)E
(
ε2i

∣∣∣Ui)]
=

∫
σ2(ui)

1

h∗
K(
ui − u

h∗
)fU(ui)dui,

(5.8.56)

Denote by f̂U(u) = n−1
∑n

i=1 K
∗
h(Ui−u) and f̂U(u) converges to fU(u) in probability

for any given u ∈ U.

E
(
n−1εTW∗

uε
T − σ2(u)f̂U(u)

)
=
1

n

n∑
i=1

E
(
Kh∗(Ui − u) (ε

2
i − σ

2(u)
)

= E
[
E
(
1

h∗
K(
Ui − u

h∗
)(ε2i − σ

2(u))
∣∣∣Ui)]

= E
[
1

h∗
K(
Ui − u

h∗
)
(
E
(
ε2i

∣∣∣Ui)− σ2(u))]
=

∫ (
σ2(ui) − σ

2(u)
) 1
h∗
K(
ui − u

h∗
)fU(ui)dui,

(5.8.57)
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Denote by ũ = (ui − u)/h
∗. Using Taylor series approximation, it follows

σ2(u+ ũh∗) − σ2(u) = (σ2(u)) ′ũh∗ +O(h∗2)

fU(u+ ũh∗) = fU(u) + f
′
U(u)ũh

∗ +O(h∗2)

By changing variable in the integral, we got the nonparametric bias∫
(σ2(u+ ũh∗) − σ2(u))K(ũ)fU(u+ ũh∗)dũ

=

∫ (
(σ2(u)) ′ũh∗ +

1

2
(σ2(u)) ′′ũ2h∗2 + o(h∗2)

)
×
(
fU(u) + f

′
U(u)ũh

∗ +O(h∗2)
)
K(ũ)dũ

= ((σ2(u)) ′f ′U(u))µ2h
∗2 +

1

2
fU(u)(σ

2(u)) ′′µ2h
∗2

= h∗2µ2
(
(σ2(u)) ′f ′U(u)) +

1

2
(σ2(u)) ′′fU(u)

)
.

(5.8.58)

Similarly, we have the variance

Var
(
n−1εTW∗

uε
T
)

=
1

n

n∑
i=1

Var(Kh∗(Ui − u) ε2i )

= E
(
ε2i
1

h∗
K(
Ui − u

h∗
)

)2
−

[
E
(
εi
1

h∗
K(
Ui − u

h∗
)

)]2
= E

(
ε4i
1

h∗2
K2(

Ui − u

h∗
)

)
−
[
((σ2(u))2f2U(u)(1+O(h

∗2) +O(h∗4))
]

(5.8.59)

Denote by κ(Ui) = E (ε4i |Ui). For the first term, we apply the similar strategy for
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the expectation and obtain

E
(
ε4i
1

h∗2
K2(

Ui − u

h∗
)

)
=
1

h∗

∫ (
κ(u) + κ ′(u)ũh∗ +O(h∗2)

) (
fU(u) + f

′
U(u)ũh

∗ +O(h∗2)
)
K2(ũ)dũ

=
1

h∗
κ(u)fU(u)ν0 + h

∗κ ′(u)f ′U(u)ν2 +O(h
∗)

=
1

h∗
κ(u)fU(u)ν0(1+O(h

∗2)).

(5.8.60)

Thus, the variance equals to

Var
(
n−1εTW∗

uε
T
)
=

(
1

h∗
κ(u)fU(u)ν0 − (σ2(u))2f2U(u)

)
(1+O(h∗2)). (5.8.61)

By CLT, we have that√
h∗

n

(
εTW∗

uε
T − σ2(u)fU(u) − biasn-parafU(u)

) d−→ N (0, κ(u)fU(u)ν0), (5.8.62)

where the bias term equals to h∗2µ2
(
(σ2(u)) ′f ′U(u)) +

1
2
(σ2(u)) ′′fU(u)

)
. We also

have the fact that

εT(I− S)TW∗
u(I− S)ε

= εTW∗
uε− 2ε

TSTW∗
uε+ ε

TSTW∗
uSε

≥ εTW∗
uε− 2

∥∥∥W∗1/2
u Sε

∥∥∥∥∥∥W∗1/2
u ε

∥∥∥+ εTSTW∗
uSε

= εTW∗
uε

(
1−

√
εTSTW∗

uSε
εTW∗

uε

)2
.

(5.8.63)

Term MT(I− S)TW∗
u(I− S)M. Define

βu = (βu,1, · · · , βu,su)T , βu,i =

su∑
j=1

(
αj(Ui) − αj(u) − α

′
j(u)(Ui − u)

)
Xij.
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By Taylor expansion, it can be bounded by

βu,i =

su∑
j=1

(
1

2
α ′′j (u)(Ui − u)

2 + o((Ui − u)
2)

)
Xij. (5.8.64)

Consider the term

SM =


(xT1 , 0)(DT

u1
Wu1Du1)

−1DT
u1
Wu1M

· · · · · · · · ·

(xTn, 0)(DT
un
WunDun)

−1DT
un
WunM

 , (5.8.65)

for i-th row, we have

(xTi , 0)(DT
ui
WuiDui)

−1DT
ui
WuiM

= (xTi , 0)(DT
ui
WuiDui)

−1DT
ui
Wui(M− M̃+ M̃)

= (xTi , 0)(DT
ui
WuiDui)

−1DT
ui
Wuiβui + (xTi , 0)(DT

ui
WuiDui)

−1DT
ui
WuiM̃.

(5.8.66)

Notice that

M̃ =


αT(Ui)x1 + (α ′(Ui))

ThU1−Ui

h
x1

...

αT(Ui)xn + (α ′(Ui))
ThUn−Ui

h
xn

 = Dui

 α(Ui)

α ′(Ui)h

 , (5.8.67)

then

(xTi , 0)(DT
ui
WuiDui)

−1DT
ui
WuiM̃ = αT(Ui)xi. (5.8.68)

Using equation (5.8.47) and the similar argument again, we get

(
1

n
DT
ui
WuiDui)

−1 1

n
DT
ui
Wui


(U1 −Ui)x1

...

(Un −Ui)xn




1
2
α ′′1 (Ui)

...
1
2
α ′′su(Ui)

 = Op(h
2). (5.8.69)
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According to the above results, we have

MT(I− S)TW∗
u(I− S)M

=


(xT1 , 0)(DT

u1
Wu1Du1)

−1DT
u1
Wu1βu1

· · · · · · · · ·

(xTn, 0)(DT
un
WunDun)

−1DT
un
Wunβun


T

W∗
u


(xT1 , 0)(DT

u1
Wu1Du1)

−1DT
u1
Wu1βu1

· · · · · · · · ·

(xTn, 0)(DT
un
WunDun)

−1DT
un
Wunβun


=

n∑
i=1

w∗u,iβ
T
ui
WuiDui(D

T
ui
WuiDui)

−1(xTi , 0)T(xTi , 0)(DT
ui
WuiDui)

−1DT
ui
Wuiβui

=

n∑
i=1

w∗u,i
[
1T(xTi , 0)T(xTi , 0)1

]
Op(h

4)

By the similar arguments before, we have

sup
u

MT(I− S)TW∗
u(I− S)M

c(u)
= Op(s

2
nh

4) (5.8.70)

For any n-dimensional non-negative definite matrix Σ ≥ 0, define the Σ-inner

product and Σ-norm as, a,b are n-vectors,

〈a,b〉Σ = aTΣb, ‖a‖Σ = (aTΣa)1/2. (5.8.71)

It also follows the Cauchy-Schwarz inequality,

〈a,b〉Σ ≤ ‖a‖Σ ‖b‖Σ . (5.8.72)

The crossing term is bounded by

MT(I− S)TW∗
u(I− S)ε

=

n∑
i=1

w∗u,i(εi − (Sε)i)(xTi , 0)(DT
ui
WuiDui)

−1DT
ui
Wuiβui

= Op(snnh
2

√
− log(h∗)
nh∗

).

(5.8.73)
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Thus,

sup
u

MT(I− S)TW∗
u(I− S)ε

c(u)
= Op(snh

2

√
− log(h∗)
nh∗

). (5.8.74)

Together with equation (5.8.62), (??, (5.8.70) and (5.8.74), the proof of Theorem 2

is completed.

Proof of Theorem 3.

We split whole samples (Yi,xi, Ui), i = 1, · · · , n, into two parts (Y(j)
i ,x

(j)
i , U

(j)
i ), i ∈

Ij, j = 1, 2; |Ij| = |I3−j| = n/2. Though group LASSO procedure, we select two ac-

tive index sets S1 and S2 for different data sets, respectively. And sj = |Sj| , j = 1, 2.

The indices of true covariates is S. Suppose the selected active index sets include

the true one, that is S ⊂ Sj, j = 1, 2. Denote by XIj the σ-field generated by

Xi, i ∈ Ij, j = 1, 2.

First we study the leading term εT(I− S)TWu(I− S)ε. We observe that

ε(2)
T
(I− S(2))TW(2)

u (I− S(2))ε(2)

= ε(2)
T
(I−


(X(2)

1

T
, 0)(D(2)

u1

TW(2)
u1
D(2)
u1
)−1D(2)

u1

TW(2)
u1

· · · · · · · · ·

(X(2)
n/2

T
, 0)(D(2)

un/2

TW(2)
un/2

D(2)
un/2

)−1D(2)
un/2

TW(2)
un/2


T

W(2)
u (I− S(2))ε(2).

(5.8.75)

We notice that

E (X(2)
i X(2)

i

T
Kh(U

(2)
i − u)

∣∣XI2)
, E XI2 (

1

h
K(
Ui − u

h
)X(2)

i X(2)
i

T
)

= E XI2
(
E XI2

(
X(2)
i X(2)

i

T
Kh(U

(2)
i − u)

) ∣∣∣Ui)
= fU(u)E XI2 (X

(2)X(2)T |u)

(5.8.76)
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by Lemma 1, it follows that

2

n

∑
i∈I1

X(2)
i X(2)

i

T
Kh(U

(2)
i −u) = fU(u)E XI2 (X

(2)X(2)T |u)(1+Op(h
2+

√
− log(h)
nh

)).

(5.8.77)

Similarly,
2

n

∑
i∈I1

X(2)
i X(2)

i

T
Kh(U

(2)
i − u)

(
U

(2)
i − u

h

)
= op(1), (5.8.78)

2

n

∑
i∈I1

X(2)
i X(2)

i

T
Kh(U

(2)
i −u)

(
U

(2)
i − u

h

)2
= µ2fU(u)E XI2 (X

(2)X(2)T |u)(1+Op(h
2+

√
− log(h)
nh

)).

(5.8.79)

It follows that(
2

n
D(2)
u

TW(2)
u D(2)

u

)−1

=

f−1U (u)E XI2 [(X
(2)X(2)T)−1 |u] 0

0 µ−1
2 f

−1
U (u)E XI2 [(X

(2)X(2)T)−1 |u]

 (1+Op(h
2 +

√
− log(h)
nh

))

(5.8.80)

By the definition of constrained eigenvalue and the condition, we have

inf
u
λmin

(
E XI2 (X

(2)X(2)T |u)
)
≥ λ∗0. (5.8.81)

Using the similar strategy to the term D(2)
ui

TW(2)
ui
ε(2), we obtain

2

n
D(2)
ui

TW(2)
ui
ε(2) =

 E XI2
[
X(2)
i ε

(2)Kh(U
(2)
i − u)

]
E XI2

[
X(2)
i ε

(2)Kh(U
(2)
i − u)

(
U

(2)
i −u

h

)]
+Op(

√
− log(h)
nh

).

(5.8.82)

Consequently,
2

n
D(2)
ui

TW(2)
ui
ε(2) =

Op(√− log(h)
nh

)

Op(
√

− log(h)
nh

)

 . (5.8.83)
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Substituting the results into the smoothing matrix S(2), we have

(X(2)
i

T
, 0)(D(2)

ui

TW(2)
ui
D(2)
ui
)−1D(2)

ui

TW(2)
ui

= f−1U (u)X(2)
i

T
E XI2 [(X

(2)X(2)T)−1 |u]Op(

√
− log(h)
nh

)(1+ op(1))

(5.8.84)

Thus,

(I− S(2))ε(2) = ε(2)(1+Op(

√
− log(h)
nh

)), (5.8.85)

and

df−1ε(2)
T
(I− S(2))TW(2)

u (I− S(2))ε(2)

= df−1ε(2)
TW(2)

u ε
(2)(1+Op(

√
− log(h)
nh

))

= df−1
∑
i∈I1

wu,iε
2
i (1+Op(

√
− log(h)
nh
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(5.8.86)

By CLT and the obtained results, it follows that

√
2

nh

(∑
i∈I1

wu,iε
2
i − σ

2(u)fU(u)

)
d−→ N (0, κ(u)fU(u)ν0), (5.8.87)

Moreover by the order of degree of freedom,

√
nh

(
1

df

∑
i∈I1

wu,iε
2
i − σ

2(u)

)
d−→ N (0, κ(u)ν0

fU(u)

)
. (5.8.88)

Next we deal with the the rest terms. We consider

sup
u

M(2)T(I− S(2))TW(2)
u (I− S(2))M(2)

df
= Op(h

6) (5.8.89)
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and

M(2)T(I− S(2))TW(2)
u (I− S(2))ε(2)

=
∑
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D(2)
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)−1D(2)
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Using the similar argument above, we show that

(X(2)T , 0)(D(2)
u

TW(2)
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u )−1D(2)
u

TW(2)
u M(2) = X(2)TαS2(u)(1+Op(h
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− log(h)
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(5.8.90)

and

ε
(2)
i − (S(2)ε(2))i = ε

(2)
i (1+Op(

√
− log(h)
nh

)). (5.8.91)

Plugging the results into, it follows that

M(2)T(I− S(2))TW(2)
u (I− S(2))ε(2)

=
∑
i∈I1

wu,iε
(2)
i X(2)

i

T
αS2(Ui)Op(h

2 +
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− log(h)
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− log(h)
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(5.8.92)

using the Lemma 2 again, we have

2

n

∑
i∈I1

wu,iε
(2)
i X(2)

i

T
αS2(Ui) = Op(

√
− log(h)
nh

). (5.8.93)

The proof is completed.
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Chapter 6 |

Contribution Remark and Fu-
ture Work

In this section, we summarize the conclusions and important contributions

in this dissertation first, and open a discussion of extending our proposed RCV

method to partial varying-coefficient model.

6.1 Contribution Remark

This dissertation consists of two parts. In the first HIV related research, our

goal is to study the impact of HIV prevalence and incidence estimates when adding

into new incidence assay data. To fulfil that goal, in Chapter 3, we first introduce

our proposed method to incorporate assay data (Bao, Ye, and Hallett, 2014). This

method is accurate and we consider it as the benchmark. However, the method

has too large computing cost, which makes large simulation studies impossible.

Therefore, we propose a new method to draw posterior distribution, sequential

IMIS. It can significantly reduce the computing time, and it has very close results

with the benchmark method. We also propose a new stopping criteria to avoid
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false converge. The idea of S-IMIS is also extended to a more general framework.

In Chapter 4, by using the proposed S-IMIS in Chapter 3, we further study the

impact of new incidence assay data. We consider two impacts, one is the impact

to incidence estimate, and another one is to impact to the change of incidence

estimate over time. Also, we consider both one-time incidence assay data and time

series assay data. The results would show that the impact is highly related to the

original prevalence and incidence trend. We discuss the different kinds of trends

and the impact to each of the trend.

In the second RCV research, our goal is to estimate the error variance function for

ultrahigh dimension varying-coefficient model. We first propose a three-stage naive

estimator to estimate the coefficients functions and error variance function. We

show from both theoretical proofs and simulation results that this naive estimator

is biased under ultrahigh dimension setting due to spurious correlation. Then, we

further proposed RCV estimator for error variance function estimation. We also

show from both theoretical proofs and simulation results that RCV estimator has

good asymptotic properties.

6.2 Future Work

For ultrahigh dimension data, error variance function estimation is always a big

problem. Let Yi be the response and zi be the predictors. Considering an extension

of varying-coefficient model: semi-parametric varying coefficient model with the

form:

Yi = ν
′
iγ(zi) + δ(zi) + ui, i = 1, . . . , n, (6.2.1)

where γ(z) is a vector of unknown smooth function of z, δ(·) is an unknown function.

Compared to our varying coefficient model (2.3.1), it allows more flexibility which

adds a new term function of zi, and, it avoids much of the “curse of dimensionality"
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problem, since the nonparametric functions are restricted only to part of the variable

z.

Under this model frame, when restrict one or some of the coefficients β to

constants, we can generalize a more specific model,

Yi = ω
′
iγ+ x′iβ(zi) + ui, i = 1, . . . , n, (6.2.2)

where ωi is a vector of variables whose coefficient γ is a vector of constant. This

model is called partially linear varying-coefficient model. Compared to VCM and

semiparametric VCM, it allows some variables having changing coefficients and

some variables having constant coefficients. RCV method can be extend to both of

these two models to estimate the varying error variance function.
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