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Abstract  

Paralinguistic	features	of	speech	communicate	emotion	in	the	human	voice.	In	addition	to	
semantic	content,	speakers	imbue	their	messages	with	prosodic	features	comprised	of	
acoustic	variations	that	listeners	decode	to	extract	meaning.		Psychological	science	refers	
to	these	acoustic	variations	as	affective	prosody.	This process of encoding and decoding 
emotion remains a phenomenon that has yet to be acoustically operationalized.  
Studies aimed at sifting and searching for the salience in emotional speech are often 
limited to conducting new analyses on material generated by other researchers. 
This project presented an opportunity for analyzing the communication of emotion 
on a corpus of naturalistic	emotional speech generated in collaboration with Penn 
State’s Psychology Department. To this end, fifty-five participants were recorded 
speaking the same semantic content in angry, happy, and sad expressive voicings in 
addition to a neutral tone.	Classic	parameters	were	extracted	including	pitch,	loudness,	
timing,	as	well	as	other	low-level	descriptors	(LLDs).	The	LLDs	were	compared	with	
published	evidence	and	theory. In general, results were congruent with previous 
studies for portrayals of more highly aroused emotions like anger and happiness, 
but less so for sadness. It was determined that a significant portion of the 
deviations from the scientific consensus could be explained by baseline definitions 
alone, i.e. whether deviations referenced neutral or emotional LLD values. 
 
A listening study was subsequently conducted in an effort to qualify and contrast 
the objectively determined effects with perceptual input. Only three of the fifty-five 
speakers were sampled due to practical concerns for testing time. The study tested 
whether the sampled recordings reflected naturally recognizable emotion, and the 
perceived intensity of these emotions. Listeners were able to discriminate the 
intended emotion of the speaker with success rates in excess of 87%. Perceptual 
intensity ratings revealed that some of the prototypical acoustical cues did not 
significantly correlate with the perception of emotional intensity. Results from both 
rounds of analysis indicate that a wealth of emotionally salient acoustical 
information has yet to be fully characterized. 
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1 Introduction 

The work presented in this thesis is the product of a collaboration between 
acousticians and psychologists at The Pennsylvania State University.  This effort, 
called the Processing of the Emotional Environment Project (PEEP) has both short- 
and long-term goals that shaped the scope and methods of the presented works in 
acoustics. First and foremost, the primary topic of interest is the production and 
processing of emotional speech or more specifically affective prosody. This term has 
several meanings, but the features of speech to which it refers are generally 
consistent. The most presently relevant definition of affective prosody is “the 
suprasegmental patterns of stress and intonation in speech that contain emotional 
information” [1]. 
 
PEEP’s short-term goals were to examine how affective prosody in natural speech is 
processed by children at the neurological level.  The primary focus was maternal 
affective prosody, so the vocal connection between mothers and their children was 
considered. A large corpus of emotional speech recordings was created specifically 
intended for playback in a highly structured and noisy environment. Differences in 
neural activity of the children were measured through the use of functional 
magnetic resonance imaging (fMRI) as they listened to these recordings of 
emotional speech.  
 
These design objectives fundamentally shaped the direction for the work in this 
thesis. Firstly, only female voices were recorded and analyzed. This detail, as will be 
discussed in later sections, shifts many of the expected ranges for acoustics by an 
octave, a factor of 10, or many other ratios relevant to analyzing the voice. Second, 
every recording was limited to exactly ten seconds in length. So the spectrum of 
emotional content was practically constrained in a temporal manner whilst natural 
inclinations may extend beyond those bounds.   
 
The primary objectives summarized in this thesis are to create and characterize a 
database of realistic emotional speech. Although the initial and broader purpose of 
the database is for neurocognitive evaluation, the wealth of its acoustic information 
bears a unique opportunity for further study. In Chapter 3, details regarding the 
design and construction of the speech corpus will be discussed. Here, greater time 
will be devoted to the procedures and processing as they affect the acoustics rather 
than the neuroimaging goals.  
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With a finished corpus ready for examination, the remaining chapters will attempt 
to characterize the stimuli via acoustical and subjective means. Chapter 4 will focus 
on acoustic analysis of the measured stimuli. Acoustic features will be included on 
the basis of comparability to previous works.  This feature set will go hand in hand 
with details specific to calculation methods and challenges discovered along the 
way.  In Chapter 5, justification, design, and results will be discussed for a study 
aimed at evaluating decoders’ perception of the new speech corpus. The collection of 
listener’s perceptual ratings will then be compared to patterns found in the 
acoustical analysis. With a full set of objective and subjective information, this 
thesis will attempt to answer the following five questions:     
 

i. Does the presented speech corpus exhibit acoustic cues that agree with the 
literature?  

ii. Do the acoustic cues known to carry emotional information correlate 
independently of semantic content? 

iii. How well does the subjective perception of emotion in the corpus agree with 
the intended emotion of the speaker? 

iv. Does the subjective perception of emotion in the corpus correlate with the 
acoustic patterns? 

v. To what degree does the semantic content interfere with the perception of 
emotion? 

  



 3 

 

2 Background Information 

2.1 Psychology of Human Emotion 
The word ‘emotion’ is more easily defined in terms of a few key compositional 
elements, and the functional role that emotion plays in life. A fair consensus in the 
literature identifies the following components: cognitive appraisal, subjective 
feeling, physiological arousal, expression, action tendency, and regulation. Scherer 
combines the aforementioned elements into the following definition for emotion: 
“emotions are episodes of coordinated changes in several components (including at 
least neurophysiological activation, motor expression, and subjective feeling but 
possibly also action tendencies and cognitive processes) in response to external or 
internal events of major significance to the organism” [2].  There are, however, two 
general interpretations of emotion: 1. The ‘narrow sense’ in which emotion “…is 
(temporarily) the dominant feature of mental life…” and “directs people strongly 
towards a course of action…” and 2. The ‘broad sense,’ which encompasses 
“underlying emotion”(s) that, to a lesser extent, modify a person’s thinking and 
interactions [3]. Accepting the broader interpretation of emotion, impure as it may 
be by the standards of others, enables a greater depth of research into human-
computer interaction. After all, training a machine to predict the occurrence of “full-
blown” anger based on the underlying precursors merits inclusion in the analysis if 
possible [3]. 
 

2.1.1 Theories on human emotion 

One of the primary roadblocks facing the quantification and analysis of emotional 
speech is reconciling current theoretical models of emotion with its real natural 
mechanisms. In pursuit of the ground truth, researchers have extrapolated from the 
theory of evolution while others have built theories from observationally 
substantiated modern cognitive theory. Attempting to fully characterize emotion 
without a theory-driven hypothesis is like linearly regressing apples with oranges; 
searching in the dark risks a fruitless yield. 
 
Scientists have postulated evolution’s role in the development of emotion in the 
human race since the time of Charles Darwin [4]. Evolution as theorized creates a 
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causal link between natural selection and neurophysiological advantages of the 
fittest. It would seem fitting that emotions were born of the same process; stronger 
and faster neurological reactions to goal-oriented environmental changes would be 
favored in the presence of an adversary. e.g. “…an event may be appraised as 
harmful, evoking feelings of fear and physiological reactions in the body; individuals 
may express this fear verbally and nonverbally and may act in certain ways rather 
than others…” [3].  A theoretical implication of the link between emotions and 
evolution is the prioritization of survival-specific emotions over others [5]. Years of 
propagating this hierarchy would result in a set of core or “basic” emotions from 
which humans would efficiently convey the desired information with the least 
chance of misjudgment in perception.        
 
Categorical or discrete theories concerning emotion construct a hierarchy of 
emotions in order of their significance to survival. While there is little agreement on 
a definitive set of basic emotions, researchers in support of the discrete theory agree 
on the principal that natural selection has advantaged hard boundaries between the 
basic emotions. Confusing emotional signs of fear with happiness while in the 
presence of a life-threatening stimulus would have catastrophic results. 
Furthermore, the biological grounds of the origin of emotion suggest that as humans 
evolved alike their emotions changed similarly [4]. Over  the course of evolution, 
changes to the nervous system would be reflected in unique sets of cognitive 
appraisal, physiological arousal, expression, action tendency [2] [4] [5].  
Implications of how emotional states produce observable differences in the central, 
somatic and autonomic nervous systems is discussed in Chapter 4.  
  

Unfortunately, societal norms across most cultures disfavor frequent 
expression of strong emotions, thus there exists a disagreement between the 
evolutionary favor of “full-blown” emotions and the discouragement seen today. 
Cognitive theorists have proposed that emotions are related on the basis of a 
coordinate system comprised of a small set of underlying continuous dimensions.  
Two primary dimensions include a horizontal “valence” and vertical “activation” 
axes illustrated in Figure 2.1. Valence refers to the positive (right) or negative (left) 
evaluation people assign to a given stimulus. Furthermore, the activation level 
indicates each emotion’s proclivity to cause a person to take an action. 
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Figure 2.1. Dimensional representation of emotion (Fig. 2 from Cowie and Corneilus 2003). 

 
The distinction between discrete and dimensional emotion theories is drawn here 
because each theory offers differing views on how emotion is expressed and 
perceived. If the perception of emotion is categorical and discrete, then the 
dimensional approach of placing emotions in a fixed space relative to one another 
loses support.  Scherer proposed a theory of emotion that models emotion as a 
response to a series of successive checks on internal and external stimuli [6]. 
Although he does not directly support discrete emotion theory, the initial 
predictions he provided matched the same five basic emotions of anger, fear, 
disgust, happiness, and sadness. Although many of these details are beyond the 
immediate scope of this thesis, attention must still be drawn to the fact that there is 
still debate over the definitions and functions of emotion.    
 

2.1.2 How people convey emotion 

 
The communication of emotion is accomplished by two main roles: encoders and 
decoders. Encoders (speakers) perform the act of imbuing their emotional state into 
speech by changing specific modes of articulation and phonation. It should be noted 
that the social environment of the speaker also helps determine the code by which 
their emotions may be patterned into speech [7].  As a result, the origin of what 
influences the way a speaker encodes emotion is differentiated in terms of push 
(internal) and pull (external) effects [8]. While the encoder may feel the urge to yell 
loudly at a competitor, social norms (e.g. in the office environment) may curb the 
magnitude of the expression [9]. 
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There is, of course, an inevitable difference between the natural phenomenon of 
communication and that which can be measured objectively. Scherer’s modified 
version of Brunswik’s functional lens model delineates a model for vocal 
communication of emotion by objectivity and respective roles as illustrated in 
Figure 2.2 [10]. 

 
Figure 2.2  A Bruswikian lens model of the vocal communication of emotion (From Fig. 1 Scherer 
2003). 

The upper half of the diagram, which is labeled the “phenomenal” level, represents 
the flow of emotional information as it is heard and felt in the natural world, 
whereas the lower “operational” level represents this flow by way of measureable 
and experimentally surveyed information. The chain of communication is further 
divided horizontally into an encoding, transmission, and decoding (representation) 
processes. Clearly the efforts in vocal expression research are applied to 
operationalizing the presented phenomenon, but the terminology within the model 
must first be explained.  
 
The speaker is represented by the letter C in the top left portion of the model. Given 
an emotional state, this person will encode their speech with acoustic cues in a way 
that is ecologically valid or accurate to the specific emotional state. From the 
perspective of the listener at letter A, these cues (D) are labeled as distal as they 
are distant from the listener. The acoustic signal then moves from the source to the 
receiver through a transmission pathway which will modify the sound by way of a 
transfer function. Both the acoustic transfer function of the transmission pathway 
and the psychophysiological biases of the receiver contribute to the perception of 
these cues, which are given the term proximal percepts. Finally, the listener 
attributes these modified cues in a cumulative manner to decode the emotional 
information they perceive.  
 
If the goal is indeed to understand how an emotion moves between people, both the 
encoding and decoding process require attention. While the neurological inception of 
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emotion in the brain remains outside the scope of this paper, comparison of the 
acoustic changes of the voice to subjective ratings offers a feasible path forward. The 
simplest experimental architecture would compare measured airborne vibrations 
propagating from a source that has assumed multiple emotionally charged states. 
The ecological validity of a few of these extracted acoustic cues would then be tested 
through listener judgements. Ideally, the first step of this process would use an 
infinite number of acoustic cues, however this is far beyond practical to the 
computational power of today. Instead, the proposed set can be limited to 
parameters unique to humans and indicative of physiological change. It is only 
through a comprehensive understanding of the way humans produce sound that the 
acoustic predictors of emotion may be determined in a practical manner. The 
following section will attempt to characterize the general principles of voice 
production before covering the acoustical descriptors specific to human emotion. 

2.2 The Human Voice 

2.2.1 Anatomy and Definitions 

The human speech production system is comprised of several physical mechanisms 
cooperating in harmony. Exchange of distinguishable semantic information is made 
possible through the manipulation of these mechanisms; the glottis excites the air 
in the vocal tract, the mouth and tongue move to form vowels, and the lips create 
constrictions necessary for many consonants and so forth. Combined, these effects 
encode audible information ranging from the content of the language to the 
emotional state of the speaker.  
 

 
Figure 2.3  This is a time series of a male speaking the word "Pennsylvania." 
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From the surface, the measured signal produced by this dynamic system suggests 
content rich in temporal and tonal complexity as depicted in Figure 2.3. Performing 
acoustical analysis without prior knowledge of the system responsible for this signal 
would yield very little understanding of the state of the source, and may often 
mislead the researcher tasked with deciphering the encoded content. 
Understanding the nature of the human speech production system and each 
mechanism’s contribution informs and refines such analyses towards a more 
profitable end.  
 
Although the entire body contributes in some form to the production of speech, the 
vast majority of the acoustical work is confined to the vocal tract. The vocal tract 
has several dimensional and functional features that contribute to the overall 
function of the voice. Figure 2.4 is an illustration of the vocal tract, which begins at 
the glottis and terminates at the mouth. A key gender-specific dimensional 
difference of the vocal tract is its length, which ranges on average from 14.0 cm for 
women to 17.5 cm for men [11]. The length of the vocal tract is divided largely into 
two primary volumes: the pharynx (located above the vocal cords), and the mouth 
cavity. Located below the pharynx and just between the vocal cords is the glottis, 
which is the fundamental source of acoustical energy in the system. At the top of 
the pharynx is the velum, which divides the mouth cavity from the nasal cavity. 
Located at the end of tract are the tongue and the lips. The importance of the 
tongue mirrors that of the glottis: the tongue moves with exceptional dexterity and 
range of motion, and acts as the dominant manipulator of airflow in the vocal tract.  
 
During the process of speech production, humans employ a mixture of independent 
and dependent control over the responsible muscular network. Muscles that govern 
diaphragm contraction, vocal cord tension, velum position, oral cavity shape, and 
formation of the lips can all be operated independently of one another.  Much of this 
system, however, is hardwired to work under predetermined shapes and motions 
that are physically necessary for sound production; the lungs supply air pressure 
continuously until the utterance is finished, and the velum and mouth provide the 
open termination necessary for both pressure release and acoustic radiation.  The 
interdependent nature of this system is emphasized here because it is the 
cooperative effort of these mechanisms that determines many fundamental 
characteristics of speech such as the movement of the glottis.  
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Figure 2.4  Cross-section view of the human vocal tract. The arrow indicates the location of the glottis 
(From Fig. 3.3 Rabiner & Schafer 2011). 

2.2.2 Mechanisms of Excitation and Transformation  

The most common form of glottal excitation in humans resembles the functionality 
of a relaxation oscillator [11]. The diaphragm applies increasing subglottal pressure 
until the pressure exceeds the tension exercised in the vocal cords; thus the cords 
break open. By virtue of the Bernoulli Effect, the resulting high-velocity stream of 
air between the cords creates a low-pressure region, which, with the help of the cord 
tension, pulls the glottis to a closed state. A generic example of one such glottal 
pulse is illustrated in Figure 2.5.  

 
Figure 2.5  Time series of Rosenberg’s glottal pulse model (From Fig. 5.21 Rabiner & Schafer 2011). 

This process repeats as long as there is sufficient pressure from the diaphragm, 
tension in the vocal cords, and space for the air to exit the vocal tract. The 
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importance of the pressure release at the end of the vocal tract is easily 
demonstrated by holding the nose and mouth closed while attempting to “hum.” 
Thus, the movement of air together with the manipulated tension in the vocal cords 
enables the oscillatory motion of the vocal cords. The rate at which the glottis opens 
and closes defines the fundamental frequency of a vocalized speech segment and is 
more commonly known as the glottal pulse rate.  For the purposes of consistency to 
the related works in vocal expression, the notation F0 will be used to represent 
pitch. Average F0 values for men and women are 120 [Hz] and 210 [Hz] 
respectively.  
 
The origin of acoustic energy in speech is not limited to the impulsive excitation by 
the glottis; constrictions and sharp edges anywhere along the vocal tract offer 
additional modes of sound production. The physical basis for this phenomenon is 
most easily explained in terms of turbulence. Assuming incompressible flow, the 
equation of continuity given in ( 2.1 ) forms the relationship between fluid velocity 
in two different diameter pipes as depicted in Figure 2.6.  
 

	 !"#"$" = !&#&$& ( 2.1 ) 
  

 

 
Figure 2.6  Pipe of two different diameters (From Fig. 5.31 Rabiner & Schafer 2011) 

 
Given the assumption of incompressible flow, the density is not affected by the 
change in velocity or area. Thus, the fluid velocities and areas can be related by  
( 2.2 ).  
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Here it is seen that the ratio of the fluid velocities is proportional to the ratio of 
square of the diameters. Consequently, if D1 is twice the size of D2, the velocity v2 
will increase by a factor of four. This relationship is especially important when 
predicting onset of turbulence with Reynold’s number (Re) given in ( 2.3 ). 
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Here, r is the fluid density in [kg/m3], Vp is the velocity in [m/s], Dp is the diameter 
of a circular pipe in [m]. For fluid flow in a pipe, a Reynold’s number less than 2300 
is considered laminar, while Re between 2300 and 4000 is transient, and Re greater 
than 4000 is considered turbulent. The higher the Reynold’s number is, the greater 
the amount of turbulence in the flow [12]. Considering the numerator of ( 2.3 ), if 
the diameter decreases by a factor of two from one section to the next, the velocity of 
the fluid in the smaller section of pipe goes up by a factor of four. In the context, 
typical trachea diameters for men and women are 26 mm and 22 mm respectively 
[13], and typical breathing velocities range from 0.79 to 3.16 [m/s] [14]. For an 
average women breathing at rest, the Reynold’s number in the trachea is 
approximately 1161, and is therefore considered laminar. If the glottis above the 
trachea closes to just 11 mm in diameter, the velocity increases by a factor of four, 
and Re increases to 2323. Halving the diameter again to 5.5 mm, the Reynold’s 
number jumps to 4647 which is well within the turbulent region. As a direct result 
of its chaotic nature, turbulent flow created by a simple constriction generates 
acoustic energy in the form of broadband noise.  Constrictions at the glottis enable 
whispering, while constrictions at the teeth and lips give rise to consonants.   
 
The impulsive and noise-like modes of excitation provide a wealth of spectral 
content, which the vocal tract selectively filters. If modeled as a constant area tube 
with one end open and the other closed, a 14 cm vocal tract would have resonances 
with decreasing amplitude starting at 612.5 [Hz], followed by harmonics at odd-
integer multiples. For the average women speaking with an F0 of 210 [Hz], the first 
tube resonance occurs at nearly three times the glottal pulse rate. The effect of this 
tube resonance is illustrated in Figure 2.7. More accurate conformity of the pipe 
model to the human vocal tract is accomplished by allowing the cross-sectional area 
of the pipe to change with distance from the glottis. Subsequently, modifications of 
the area along the vocal tract form the physical filters that transform initial 
impulse and broadband excitation to intelligible parts of speech. 
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Figure 2.7  Magnitude spectrum of the vocal tract's frequency response (red) overlaid on top of a 
spectrum of a glottal pulse train (gray). 

Figure 2.8 depicts a simple model of the voice that employs the mechanisms 
delineated in the following procedure: 
 

1. The diaphragm pushes air from the lungs up through the trachea to the 
larynx. 

2. Muscles in the larynx pull the vocal cords tense, which creates a build-up of 
pressure below the vocal cords. 

3. When the pressure below the vocal cords exceeds their tension, air is released 
upwards into the vocal tract. 

4. By virtue of the Bernoulli Effect, the high velocity of the air between the 
vocal cords decreases the pressure at the site, which pulls the cords back 
together. This closing motion is also assisted by the restorative tension in the 
cords supplied by the larynx. 

5. Repeated pulses of air moving up through the vocal tract are spectrally 
contoured by the mouth cavity and the nasal cavity.  

6. The combined work of the tongue, lips, and velum determine the effective size 
and shape of these cavities by directing flow or filling the volume.  
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Figure 2.8  Schematic of the voice production mechanism (After Flanagan et al. 1970 IEEE) 

2.2.3 Phonetic Descriptions of Speech 

As the discussion moves towards translating mouth positions to spoken language, a 
code is needed or describing human phonetic capabilities, and a set of vocabulary for 
identifying units of speech. The most basic unit of speech that will be considered in 
the presented work is an utterance, which is defined as “an uninterrupted chain of 
spoken or written language” [15]. As the focus of this work is on expressive speech, 
there will be cases where an utterance may have brief moments of silence.   Created 
by the Advanced Research Projects Agency (ARPA) the ARPAbet describes every 
phoneme, or unit of spoken sound, in American English in two letter combinations 
as detailed in Table 2.1. For example, the vowels in the words “bot” and “bee” are 
represented by /AA/ and /IY/ respectively.  
 

Table 2.1  Monothongs of the American ARPAbet (Wikipedia). 

 
 
It is the differences in the physical state of the vocal tract that give rise to perceived 
distinctions between /AA/ and /IY/. In the case of /AA/, the lips form a broad circle 
while the jaw is lowered and the tongue retracted to the back of the mouth as 
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illustrated in Figure 2.9. By contrast, /IY/ is produced by pulling the lips closer to 
the teeth in a grin while the tongue is raised up to the roof of the mouth.   

   
 

 

 
 

 

Figure 2.9  Mouth positions for the vowel /AA/ (top left), /IY/ (bottom left), and their corresponding 
magnitude spectra (figures to the left are from Fig. 3.18 Rabiner & Schafer 2011). 

The effect of these physical differences between /AA/ and /IY/ as illustrated in 
Figure 2.9 is evident in the amplitude and placement of the harmonics or 
“formants” in their spectra. In /IY/, the lowest formant occurs at a lower frequency 
than in /AA/, however the second and third formants in /IY/ are much higher than 
those of /AA/. Lowering the jaw as in the case of /AA/ reduces the volume behind the 
tongue and subsequently increases the frequency of the first formant. The change in 
oral cavity in /AA/ has a similar effect; the larger volume lowers the frequency of the 
second formant in contrast with /IY/.  

 

2.3 Physical mechanisms modulated by emotion 

2.3.1 Scherer’s 1986 Predictions  

Facial patterns and their relationship to theories on the expression of emotion are 
numerous and well-studied [16] [17] [18] [19].  Only one modern theory on vocal 
expression of emotion presents a rigorous argument for how the mind, the body, and 
the voice coordinate an acoustic signal. Broadly speaking, Scherer hypothesized 
that emotions which are known to manifest physically in the body must also have 
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some effect on the way we speak [6].  Such physiological symptoms range from 
stress-induced muscular tension to increased salivation that results from a feeling 
of pleasantness.  This section will briefly detail the connection between emotions 
and the body along with some predicted acoustic markers specific to each case.  
 
Although not completely aligned with discrete emotion theory, Scherer supports the 
idea that emotions are “a series of interrelated adaptive changes in several 
organismic subsystems following antecedent events evaluated to be of major 
relevance to an organism’s goals” [6]. In Scherer’s proposed “Component Process 
Theory”, the organism performs a continuous series of cognitive stimulus evaluation 
checks (SECs) to determine the appropriate emotion to express. Evaluated in 
hierarchical order, the SECs include a novelty check, intrinsic pleasantness check, 
goal/need significance check, coping potential check, and finally a norm/self-
compatibility check.  
 
Scherer holds that the outcome of each successive SEC moving from top to bottom 
along Table 2.2 produces a specific physiological change through either the somatic 
nervous system (SNS) or the autonomic nervous system (ANS). These two nervous 
systems differ both in the physical mechanisms they govern and the speed with 
which they respond to stimuli. The SNS is responsible for motor control and 
responds quickly to both involuntary (tonic) responses to stimuli and voluntary 
(phasic) attempts to possibly control the organism’s expression. For example, this 
system would be responsible for tensing the vocal cords and shortening of the vocal 
tract when a stressful stimulus is presented, therefore raising the F0 and formants 
of the speaker. The facial muscles involved with smiling are also under the control 
of the SNS, which has been shown to increase the formants F2 and F3 [20]. The 
ANS, on the other hand, is responsible for slowly changing, involuntary responses to 
stimuli. Systems under the control of the ANS include respiration and salivation, 
which can have a significant effect on both the subglottal pressure and damping 
within the vocal tract.  
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Table 2.2  Scherer's Component Patterning Theory (from Table 4 Scherer 1986). 

 
 
 
With these governing principles in mind, Scherer drafted predictions of specific 
acoustic cues that would result from the emotional state of the organism, 
summarized in Table 2.3. While there are a multitude of emotions that humans can 
express, just the emotions studied in the present work (anger, happinessi, and 
                                            
i Note: The intended meaning and target expression of happiness in this thesis more 
closely aligns with Scherer’s definitions for joy.   
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sadness) plus an additional two (disgust, fear) have been provided. The remaining 
information can be found in the appendix. This list of predictions, while based on 
many assumptions, is the first attempt of its kind to connect emotion theory to 
acoustic symptom through a system of neurophysiological interactions.   As a result, 
most of these acoustic cues have become the basis by which successive studies have 
made objective comparisons of emotional expression. The following section will 
detail definitions and functional relationships of these cues to human expression of 
emotion. 
 
Table 2.3  Predictions for changes in acoustic cues affected by emotion (Adapted from Scherer, 1986). 

	
Emotion	

Acoustic	Cue	 JOY	 DISG	 SAD	 FEAR	 RAGE	
F0	

     Mean	 ≥	 >	 <>	 ≥≥	 <>	
Range	 ≥	

	
≤	 ≥≥	 ≥≥	

Variability	 ≥	
	

≤	 ≥≥	 ≥≥	
Contour	 >	

	
≤	 >>	 =	

Intensity	
     Mean	 ≥	 >	 ≤≤	 >	 ≥≥	

Range	 >	
	

<	 >	 >	
Variability	 >	

	
<	 >	 >	

Voice	Quality	
     Frequency	Range	 >	 >	 >	 >>	 >	

HF.	Energy	 <>	 >	 <>	 ≥≥	 >>	
Spectral	Noise	

  
>	

  F1	mean	 <	 >	 >	 >	 >	
F2	mean	

 
<	 <	 <	 <	

F1			bandwidth	 <>	 <<	 <>	 <<	 <<	
Formant	precision	 >	 >	 ≤	 >	 >	
Duration	

     Speech	Rate	 ≥	
	

≤	 ≥≥	 ≥	
Transition	Time	 <	

	
>	 <	 <	

 

2.3.2 Low-level Descriptors (acoustic cues) of emotional speech 

Humans encode an enormity of time-varying information during expressive speech. 
The framework for classifying emotional speech conveniently summarizes the raw 
information by order of measurement and analysis. The workflow begins with the 
recording of an utterance, e.g. a meaningful unit of speech that contains at least one 
or two spoken words. Within a recorded utterance, the first order of acoustical 
analysis is conducted either frame-by-frame or over then length of the utterance. 
Such first order calculations are described as low-level descriptors (LLD), which are 
subdivided into four categories: pitch, voice quality, duration, and intensity [21].  
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Intonation and stress are largely the result of three main components: pitch, 
loudness, and duration. Although these primary components of prosody do help 
characterize much of what is perceived from an utterance, the category of voice 
quality is included to account for timbre, harshness, and other perceived 
characteristics of speech that would be otherwise ignored.  

Workflow and Definitions 

As stated earlier, acoustic LLDs pertaining to emotion are largely grouped into four 
categories: pitch (F0), duration, intensity, and voice quality. Table 2.4 lists the key 
parameters by category and their respective perceptive definitions.  The category of 
voice quality is intended to encompass the characteristics of speech that reflect the 
physical state of the speaker apart from duration, intensity, and pitch. Jitter, 
shimmer, and the harmonics-to-noise ratio are often included in the category of voice 
quality, while a fourth category called the long-term average spectrum is created to 
include cues like high-frequency energy and formant frequencies [21]. Given that the 
long-term average spectrum contributes to the perception of voice quality in many 
cases, this thesis will restrict the number of overall categories to four, and subdivide 
voice quality into spectral and short-term variability as is shown in Table 2.5.  
 
Functionals applied to the LLDs make up the second order of analysis by way of 
simple statistical calculations, regression, and higher level modeling. Some 
examples of functionals include taking the mean of the pitch over the utterance, the 
standard deviation of the intensity, or the average absolute slope of the HNR.  
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Table 2.4 Definitions of acoustic cues and perceived correlate on vocal expression (From Table 6 
Juslin & Laukka 2003). 
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Table 2.5 Modern categorization of voice quality features (From Table II Goudbeek & Scherer 2010). 

 
 

Duration 

LLDs that fall into the duration category characterize the length of speech 
characteristics on a macroscopic scale. Of common interest and utility is 
determining the duration of the utterances within a speech episode. This type of 
measurement requires an accurate and repeatable tool for calculating the endpoints 
of an utterance. One such method employs a combination of exponential averaging a 
sampled time series and selecting amplitudes above a certain value as is shown in 
Figure 2.10.  
 
 

 
Figure 2.10  The word "Pennsylvania" spoken by a male adult. Original timeseries is in grey, the 
exponentially averaged time series is in blue. 

  

 “Penn  syl   - van - ia” 
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With the endpoints determined, other features can be known such as the length of 
the silences between the utterances, and the ratio of the silent and utterance 
durations. 
 
On a finer scale, duration features also include measures relating to voiced and 
unvoiced classification of speech. A region of speech is considered “voiced” if the 
glottis is active and exciting the vocal tract impulsively. All other regions of non-
silent speech where the glottis is not active are therefore considered “unvoiced”. 
Examples of unvoiced parts of speech include /F/, /TH/, /S/, and /SH/. It should also 
be noted that whispered speech is also classified as “unvoiced”. Classification of 
voiced and unvoiced speech leads to LLDs such as the length and relative 
proportions of these regions.  
 
The last characteristic that will be considered in the presented work in the duration 
category presents a computational challenge in the absence of prior knowledge of 
the spoken content. The syllabic rate, defined as the number of syllables per second, 
is often calculated by dividing the total number of syllables within an utterance by 
the duration of that utterance. Syllables are vowels, diphthongs, or consonants, that 
often occur before or after consonants [11]. In the context of phonetics, syllables 
serve as the building blocks for the construction of words. These building blocks 
largely determine the relative temporal location of stress or emphasis within a 
word. Unfortunately, the task of coding speech computationally is complicated by 
slurs and various cases of imprecise articulation that are often manifest by 
emotional expression.  A simple solution to this problem is to count the syllables 
phonetically from the written text if the language content is known and divide the 
manual count by the computed duration.             
 
The consensus from most studies in vocal expression relevant to the presented work 
maintain that emotion modulates duration LLDs primarily on the basis of arousal 
[22]. When spoken in a highly aroused state, utterances tend to exhibit shorter total 
durations and increased syllabic rates. In corresponding fashion, lower arousal 
generally produces speech with decreased durations and syllabic rates.  

Intensity 

The body of work on affective prosody features the word “intensity” in the context of 
a subjective and objective measure. In the subjective domain-specifically in the 
context of emotion, the term “intensity” refers to the strength or magnitude of the 
emotion as it is perceived by the listener or encoded by the speaker.  To avoid 
confusion, this term will be qualified as emotional intensity. In this section 
however, the term “intensity” refers to a category of LLDs related to the physical 
loudness of speech. It is an unfortunate reality that the intended use of the word 
intensity in many of the related works does not match the actual definition of 
acoustic intensity. Measurement of acoustic intensity, given in watts per meter 
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squared, requires either a two microphone array or a sensor that can measure 
pressure and particle velocity simultaneously. The majority of the aforementioned 
studies actually refer to sound pressure level (SPL) in decibels (dB), which 
thankfully can be measured with a single element transducer.   
 
In much the same way that duration changes with emotional arousal, differences in 
intensity have been found to correlate mostly with arousal. The trend between 
emotions for average values and variability of intensity are the same.  Anger and 
happiness are marked by increases in this category while sadness tends to exhibit 
lower values.  

Pitch (F0) 

A primary component in the intonation of speech, the F0 (pitch) represents the third 
and final categorical variable in the traditional definition of prosody. As discussed 
earlier, F0 is the frequency of opening and closing of the glottis, reported in Hertz 
[Hz]. Few studies have measured F0 using electroglottography (EGG), but technical 
difficulties concerning partial or lack of glottal contact makes acoustic measurement 
by way of a microphone more feasible [23].  

Across languages and cultures, humans modulate their F0 during both expressive 
and non-expressive speech [24]. According to the review by Juslin & Laukka, there 
appears to be strong consensus on the way F0 changes globally and locally between 
affects [22]. From the utterance level, average F0 values increase for both anger and 
happiness, while sadness is usually characterized by lower F0 values compared to a 
neutral expression. In addition to average levels, consensus was found that anger 
and happiness both demonstrated increased variability and upward directed 
contours, while the opposite found concluded for sadness. 

It was only recently that an attempt was made to quantify what has been described 
qualitatively as an upwards or downwards-directed contour using polynomial 
parameterization [25]. Results from Busso et al. suggest that while many of the 
standard statistical quantities like mean, maximum, and range provided the 
greatest discrimination power, curvature features consistently boosted their model’s 
performance.  

The agility and precision with which singers identify the pitch of a voice starkly 
contrasts the complexity and often erroneous estimations of many modern audio 
pitch tracking computer programs. Indeed, such a statement begs a minimum of 
two interpretations: 1. that technology in its current state lacks the sophistication 
to accomplish the seemingly elementary task at hand, or 2. pitch estimation itself 
still presents a computationally formidable problem, one that the human hearing 
system evolved to solve long ago. Comparative substantiation for either perspective, 
unfortunately, remains a topic of discussion for future biological acousticians. The 
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following section will instead detail the difficulty of pitch estimation with regards to 
real and measureable acoustical characteristics that color the pitch-based patterns 
of speech we have grown to recognize today. 
 
The importance of accurately measuring the fundamental frequency (F0) of 
vocalized speech is perhaps best exemplified with a qualitative example. Generally 
speaking, news reporters and all persons concerned with conveying unbiasedness or 
neutrality attempt to vocalize in a manner free of positive or negative inflection 
[25]. Neutral utterances predominantly feature flat pitch (F0) contours, and only 
deviate from a neutral reference when linguistic clarity necessitates, e.g. an upward 
inflection when posing a question. Cold, calculated, and machine-like apathy can be 
conveyed by draining an utterance of its intonation, while perception of neutrality is 
easily broken by digitally expanding the range of F0 [26]. From a broader 
perspective, pitch estimation enables services ranging from speaker identification 
systems and hearing aids to “auto-tune” plugins found in many Digital Audio 
Workstations (DAW). Given its essential role in verbal and artistic expression, pitch 
estimation tops the list of important contributions to speech processing. 
 
Functionals applied to pitch 
 
Assuming the estimated pitch (F0) accurately represents the physical ground truth, 
the following section presents a comparison of pitch trends found in emotionally 
expressive speech. For the purposes of comparison to the present work, the affective 
states will be limited to anger, happiness, and sadness.  
 
Extensive review of studies on vocal expression from 1930 to 1985 sheds light on 
unfortunately broad trends in pitch modulation as a function of emotion [6]. 
Subjective testing with a panel of judges forms a practical groundwork for 
validating these findings [27]. With a team of twelve professional actors, Banse et 
al. created an extensive corpus containing recordings of nonsense phrases spoken in 
fourteen emotional states. A recognition study including twelve different judges was 
run on this corpus and the acoustic features extracted. Given the “remarkable 
consistency” of the findings upon which the predictions were made [6], results found 
by Banse et al. differed significantly for many of the emotion categories. Many of 
the disparities appear split by arousal level. Regarding the results for mean F0 in 
Figure 2.11, Elation, Hot Anger, and Despair all differ significantly from prediction 
while their lower arousal level counterparts (Happiness, Cold Anger, and Sadness) 
roughly agree with prediction. The effect of arousal level positively modulating the 
mean F0 agrees with the results of [28].  
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Figure 2.11  Predictions and results for changes in mean F0 as a function of emotion (From Fig. 1 
Banse & Scherer 1996). 

Voice quality  

In order to give machines the tools necessary to quantify the emotional content of 
speech, qualitative characteristics must be translated into calculable terms. While 
adjectives such as breathy, sharp, shaky, and resonant all represent audible 
qualities that denote an underlying physical state of the speech production system, 
their digital analogs are often only tangentially correlated.   
 
Formants 
 
Formants offer a strong link between the measured spectra and the state of the 
vocal tract [29]. Humans constantly use formants to differentiate vowels; without 
the harmonic weighting of just three formants spoken language as it functions 
today would be impossible. Figure 2.12 illustrates the differences in the spectra for 
two similar vowels /IY/ and /IH/. The vowel /IH/ involves a constriction in the back 
of the throat which resembles a stressed version of the vowel /IY/. The stressed voice 
(dotted line) displays an upward deviation in the first peak’s location (F1) in 
addition to a narrowing of that very peak. Here, the higher resonance suggests a 
shortening of the vocal tract, and the sharper width indicates an increase in the 
impedance of the walls of the vocal tract.  
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Figure 2.12  This is a plot of the ideal magnitude spectra for the vowel /IY/ (solid line) and a stressed 
version which resembles the vowel /IH/ (dashed line).  

 
Unfortunately such observations in the frequency domain can be caused by more 
than one change in the physical state of the vocal tract. To complicate matters 
further, simultaneously occurring reformations at different places along the vocal 
tract have the potential to nullify any acoustically observable outcome.  The shape 
the face makes while smiling can raise formant frequencies, but a relaxed and 
longer vocal tract due to appraisal of pleasantness could work in the opposing 
fashion [20].    
 
Harmonicity 
 
The harmonics-to-noise ratio (e.i. harmonicity, HNR) is an acoustic measure defined 
by Boersma (1993). HNR is the ratio of the energy of the periodic components to the 
noise of a signal [30]. Given the relatively recent advent of this specific algorithm, a 
smaller number of studies have incorporated HNR as compared to F0. Trends found 
from previous studies agree with what one might expect in comparing HNR values 
of angry, happy, and sad speech. Other studies have found that hot anger had very 
low HNR values compared to joy [31]. 
 
Jitter  
 
The perturbations of F0 create both a signal processing challenge as well as yet 
another piece of identifiable information. While mathematical functions such as the 
standard deviation and mean slope offer a macroscopic measure of the variability of 
F0, shorter time frame analysis is often helpful. Jitter is a measure of the variance 
of the F0 taken from point to calculated point throughout the F0 contour.   
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Due to limitations in the accuracy of earlier algorithms, only a handful of recent 
studies have been able to include jitter as a LLD of interest. Juslin (2003) found 
overall that anger and happiness increased the amount of jitter, while sadness 
decreased the jitter. 
   
Shimmer  
 
The measure of the short-time variability of the intensity of a speech signal is 
known as shimmer. This is calculated as the average absolute difference between 
the amplitudes of consecutive periods, divided by the average amplitude. Values are 
reported in percentages.  As in the case of jitter, only recent studies in vocal 
expression have included shimmer as a basis of comparison. There appears to be 
some limited consensus with the observation that shimmer increases in the 
following order: sadness, happiness, anger.  
 
Long-Term Average Spectrum 
 
Although the voice exhibits the properties of a dynamic and very quickly changing 
system, features measured over a longer time scale are often of interest. In this 
case, the time scale specifically refers to an analysis window with a length an order 
of magnitude greater than the traditionally accepted time frame over which the 
vocal tract is approximately time-invariant. In contrast to the estimation of F0, the 
long-term average spectrum (LTAS) is calculated over a window length of 1-10 s in 
contrast to 20 ms.  As previously discussed in the calculation of intensity, longer 
window lengths afford greater contributions of lower frequencies to these spectral 
measures. The LTAS provides an additional set of spectral information on which 
functional operations can be applied. These operations include calculation of the 
energy above and below center frequencies such as 500 Hz and 1000 Hz [32]. Other 
such measures include the Hammarberg Index, which is defined as the difference in 
the peak energy within the 0-2000 Hz and the 2000-5000 Hz band [33].ii   
 

2.3.3 Summary of Patterns from Previous Studies 

An extensive review of 104 studies of vocal expression identified several salient 
trends in acoustic cues pertaining to specific emotion categories [22]. Comparison of 
each study’s results is complicated by the lack of consistency in the types of 
emotions that were included, the acoustic cues considered, and the baselines used 
as reference values for each acoustic cue. While some used cue values specific to 
neutral portrayals, others simply normalized the acoustic descriptor values across 
                                            
ii Modifications to the cutoff frequency of 2000 Hz has been recommended in order to 
accommodate speakers with vastly different vocal ranges [40].    
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each emotion category as one group. As a result, absolute differentiation between 
findings was substituted for each author’s broader interpretation of acoustic cue 
modulation between emotion category. Table 2.6 provides a brief summary of the 
consensus as of 2003.  
 
It can be seen here that the last five cues specific to vocal expression of emotion 
have been studied the least since 2003. From a physiological perspective, these cues 
offer a great deal of information regarding the shape of the vocal tract as it may 
have changed from a resting position. Additionally, Scherer’s predictions of stress, 
activation, and power more often included aforementioned physical changes which 
may be detected acoustically. Although it is known that several of these cues predict 
to some extent general changes in emotional state, there is still a need for speaker-
dependent normalization [34].  
 

2.4 Previous studies in Vocal Expression of Emotion 

2.4.1 Types of Studies 

There are a variety of ways to examine the communication of emotion between 
humans. Encoding studies look at the way people produce changes in their vocal 
patterns during expressive speech. These studies require a large set of speakers in 
order to account for personal differences in how each speaker conveys emotion. 
Measurement of the acoustic output of the speaker is a simple task. Obvious ethical 
concerns of inducing real emotion rightfully limit the assumption of total accuracy 
of the speaker’s performance.  And so participant inclusion favors those who are 
naturally or trained in acting apart from their true emotional state. Ideally, some 
objective validation of these portrayals would involve some form of non-invasive 
neuroimaging like functional Magnetic Resonance Imaging (fMRI).  Unfortunately, 
requirements of minimal physical motion within the scanner render this task 
practically unfeasible.  Therefore, researchers depend on self-reported feedback 
from the speaker to qualify their performance accuracy.      
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Table 2.6 Patterns of Acoustic Cues Used to Express Discrete Emotions in Studies of Vocal Expression 
(Adapted from Juslin & Laukka 2003). 

		 Speech	Rate	 Proportion	of	Pauses	 High-Frequency	Energy	
Emotion	 Category	 #	Studies	 Category	 #	Studies	 Category	 #	Studies	
Anger	 Fast	 28	 Large	 0	 High	 22	

	 Medium	 3	 Medium	 0	 Medium	 0	
	 Slow	 4	 Small	 8	 Low	 0	

Happiness	 Fast	 22	 Large	 1	 High	 13	
	 Medium	 5	 Medium	 2	 Medium	 3	
	 Slow	 6	 Small	 3	 Low	 1	

Sadness	 Fast	 1	 Large	 11	 High	 0	
	 Medium	 5	 Medium	 0	 Medium	 0	
	 Slow	 30	 Small	 1	 Low	 19	
		 Voice	Intensity	 Voice	Intensity	(var)	 	  

Emotion	 Category	 #	Studies	 Category	 #	Studies	 	  
Anger	 High	 28	 High	 9	 	  

 Medium	 3	 Medium	 1	 	  
 Low	 4	 Low	 2	 	  

Happiness	 High	 22	 High	 9	 	  
 Medium	 5	 Medium	 3	 	  
 Low	 6	 Low	 2	 	  

Sadness	 High	 1	 High	 2	 	  
 Medium	 5	 Medium	 1	 	  
 Low	 30	 Low	 8	 	  
		 F0	(M)	 F0	(var)	 F0	Contours	

Emotion	 Category	 #	Studies	 Category	 #	Studies	 Category	 #	Studies	
Anger	 High	 33	 High	 27	 Up	 6	

	 Medium	 4	 Medium	 4	 Down	 2	
	 Low	 5	 Low	 4	 -	 -	

Happiness	 High	 34	 High	 33	 Up	 7	
	 Medium	 2	 Medium	 2	 Down	 0	
	 Low	 2	 Low	 1	 -	 -	

Sadness	 High	 4	 High	 2	 Up	 0	
	 Medium	 1	 Medium	 1	 Down	 11	
	 Low	 40	 Low	 31	 -	 -	
		 Voice	Onsets	 Micostructural	Regularity	 	  

Emotion	 Category	 #	Studies	 Category	 #	Studies	 	  
Anger	 Fast	 1	 Regular	 0	 	  

 Slow	 1	 Irregular	 3	 	  
Happiness	 Fast	 2	 Regular	 2	 	  

 Slow	 0	 Irregular	 0	 	  
Sadness	 Fast	 1	 Regular	 0	 	  

 Slow	 1	 Irregular	 4	 	  
		 Precision	of	Articulation	 Formant	1	(M)	 Formant	1	(bandwidth)	

Emotion	 Category	 #	Studies	 Category	 #	Studies	 Category	 #	Studies	
Anger	 High	 7	 High	 6	 Narrow	 4	

	 Medium	 0	 Medium	 0	 Wide	 0	
	 Low	 0	 Low	 0	 -	 -	

Happiness	 High	 3	 High	 5	 Narrow	 2	
	 Medium	 2	 Medium	 1	 Wide	 1	
	 Low	 0	 Low	 0	 -	 -	

Sadness	 High	 0	 High	 1	 Narrow	 0	
	 Medium	 0	 Medium	 0	 Wide	 3	
	 Low	 6	 Low	 5	 -	 -	
		 Jitter	 Glottal	Waveform	 	  

Emotion	 Category	 #	Studies	 Category	 #	Studies	 	  
Anger	 High	 6	 Steep	 6	 	  

 Low	 1	 Rounded	 0	 	  
Happiness	 High	 5	 Steep	 2	 	  

 Low	 3	 Rounded	 0	 	  
Sadness	 High	 1	 Steep	 0	 	  

 Low	 5	 Rounded	 4	 	  
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Decoding studies begin with a set of stimuli with some emotional content and 
specifically examine listeners’ responses to the stimuli.  Such work necessitates the 
use of numerous listeners so that within-decoder judgement biases can be 
mitigated.  Each listener must then listen to and rate each and every stimuli in 
order for the researcher to determine any statistically significant effects between 
emotional portrayals.  Unlike speaking, listening necessitates little-to-no physical 
motion, so the use of fMRI as a validation tool is mainly resource-limited rather 
than by methodology.  In summary, both decoding and encoding studies are needed 
to fully characterize the chain of communication.  Furthermore, each direction of 
inquiry requires the generation or access to a corpus of stimuli.  The selection and 
generation methods vary considerably throughout the literature, and will here be 
discussed in further detail.  

2.4.2 Types of Stimuli 

All studies in vocal expression of emotion require some kind of set of stimuli to work 
on.  Schuller et al. categorizes speech databases at the highest level by the “type of 
speech”, followed by the “type of scenario” [21].  Speech type refers to whether the 
speakers were instructed to express a specific emotion (“prompted”), or if the speech 
was recorded without specific direction for the desired emotion. The creation of 
prompted speech databases usually involves recording several actors speaking a 
small set of generic scripted words or sentences with several types of affects.  As 
Schuller notes, the increase in control over emotion category and textual content 
costs prompted speech the authenticity of origin and contextual realism.  
Examples of such corpora include the Munich corpus [27], the Danish Emotional 
Speech Database (DES) [35], Emotional Prosody Speech and Transcripts acted 
database [36], the Berlin Emotional Speech Database (BES) [37], the Geneva 
Multimodal Emotion Portrayals (GEMEP) [38], Montreal Affective Voices (MAV) 
[39]. 
 
Conversely, the natural gains of non-prompted speech are often hampered by 
excessive emotional and contextual specificity. Even more challenging are the legal 
concerns regarding personal privacy in the context of obtaining purely candid 
recordings. Methods in obtaining non-prompted speech vary from human-to-human 
interaction to creative implementations of robot-human interaction. For more 
information and examples see Schuller et al. 2011. The main message here is that 
although non-prompted speech provides a window into a diverse and authentic 
world of realistic speech, prompted speech is more practically obtained and 
controlled.  
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2.4.3 Scripts and the effects of language 

In addition to declaring the target emotion, studies in prompted speech must 
consider the scripted content to be spoken. Several forces govern the debate over 
this requirement.  

a. The script shouldn’t produce bias in the speaker’s portrayal or listener’s 
perception of the emotion 

b. The script should also be representative of realistic, naturally occurring 
speech.  

To this end, researchers have devised creative approaches to the construction of 
scripts expressed in a variety of emotional styles. Table 2.7 gives a small sampling 
of the text given to past participants in vocal expression studies. 
 

Table 2.7  A selection of vocal expression studies and a corresponding example script. 

Author(s)	 Year	 Native	
Languages	 Script	Description	 Script	Example	

Scherer	et	al.	 2015 	 French	 2	sentences	of	scrambled	nonsense	
syllables	 "Ne	kal	ibam	soud	molen!"	

Liu	&	Pell	 2012	 Mandarin	 35	pseudo	sentences,	semantically	
meaningless	but	with	real	words.	

"���������"	(like	
"The	fector	jabbored	the	
tozz")	

Patel	et	al.	 2011	 French	 Sustained	vowel	/a/,	they	used	10	versions	
per	emotion	 "aaa….a!"	

Lima	&	Castro	 2011	 Portuguese	 16	sentences	&	16	reorganized	pseudo	
sentences.	

"O	quadro	está	na	parede"	
(The	painting	is	on	the	wall)	
vs.	"O	juadre	está	na	pafêne"	

Castro	&	Lima	 2010	 Portuguese	 16	short	sentences	and	pseudo	sentences	 "The	painting	is	on	the	wall."	

Pell	et	al.	 2009	
English,	

German,	Hindi,	
Arabic	

Pseudo	sentences,	all	content	words	
replaced	with	sound	strings.	

"The	dirms	are	in	the	
cindabal."	

Belin	et	al.	 2008	 French	 Short	interjections	using	the	vowel	/a/.	 "ah!"	

Bänziger	&	
Scherer	 2005	 German	 2	meaningless	sequences	of	syllables,	

derived	from	various	European	languages.	
"Ha	̈t	san	dig	prong	nju	ven	
tsi."	

Juslin	&	Laukka	 2001	 English,	
Swedish	

2	sentences,	1	statement	+	1	question	in	
either	English	or	Swedish.	

"Klockan	a	̈r	elva",	"Is	it	
eleven	o'clock?"	

Engberg	et	al.	 1997	 Danish	 "yes",	"no",	nine	sentences	(4	questions),	
two	passages	of	fluent	speech.	

"Jeg	er	ikke	sulten."	(I	am	not	
hungry)	

Banse	&	Scherer	 1996	 German	 2	sentences	of	scrambled	nonsense	
phonemes	from	Indo-European	languages	 "Hat	sundig	pron	you	venzy."	

 
While it is hardly a comprehensive list, the trends found in the table do represent 
much of the language used in the literature today. Often employed are generic 
sentences that talk about the time of day, or the existence of a painting somewhere 
in a room. Generally speaking, strong and evocative language is avoided. This 
observation follows reason: introducing a keyword or subject of conversation typical 
of emotional feeling presents a pathway for bias to confound the perception or 
expression of emotion. 
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A key question remains to be answered: does language have a significant effect on 
the perception of emotion or do humans rely entirely on paralanguage? One of the 
first studies to attempt to answer this question compared the subjective perception 
of speech consisting of matched and mismatched language-affect pairs [40]. 
Mehrabian & Weiner found that tone more greatly influenced the perception of 
attitude than the language content of their stimuli. Their study, however, 
considered a listener’s general perception of positivity in the speaker’s expression 
rather than recognition or quality judgements towards a specific emotion.  More 
recent work by Morton & Trehub reinforced these findings, noting a significant age-
dependence to human’s focus on paralanguage [41].  Although paralanguage 
dominated adults’ focus on emotion classification, conflicting language-affect 
content unequivocally increased the response latency, and “unusualness” of these 
utterances was unanimously reported in participating adults.  If priority goes to the 
manner and not the message of the speaker, it would seem wise to approach the 
chain of communication from an acoustical perspective.  
 
To examine the effect of a single variable in any experiment, one should ideally 
control for all other possible confounding variables while varying the characteristic 
of interest. Unfortunately, speech is rich with an incredible amount of information, 
so care must be taken in selecting the parts of the signal which are believed to 
convey emotion.  Validation of each variables’ contribution to the perception of 
emotion in speech can be done with a decoding study, where changes in perception 
are compared to independent changes in select acoustic properties of a filtered 
speech signal. When considering just the extracted pitch and intensity of a set of 
recordings, Lieberman & Michaels reported a reduction in correct identification 
from 85% (before filtering) to 47% [42]. Although higher than chance (12.5%) it is 
clear that a large fraction of the information necessary for the perception of emotion 
had been removed. Ladd et al. synthetically modulated pitch, intensity, and lastly 
included two versions of voice quality as produced by the speaker [26]. While 
differences in speaker type and text did not interact with the independently 
manipulated acoustic variables, both still significantly affected listener judgements 
throughout all three experiments.   
 
More recently, Castro & Lima created a database of emotional speech in Portuguese 
in an effort to examine the effect of language on the perception of emotion [43]. 
Although their results support the general comparative utility of pseudosentences 
to sentences in terms of recognition rates, happy expressions were still significantly 
recognized better as full sentences. Additionally, response times between sentences 
and pseudosentences were not significantly different for expressions of happiness, 
fear, surprise, or no affect. The most promising result in favor of scrambled 
language content is the similarity of intensity ratings between sentences and 
pseudosentences across all expressions. Although a significant step forward in 
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determining a more optimal code for prompted speech, the aforementioned scripts 
still lack contextually realistic content.  
 

2.5 Contributions of this thesis 

2.5.1 Limitations of previous work 

Previous work seems to originate from three primary fields: linguists/speech 
pathologists interested in psychology, psychologists interested in acoustics, and 
acousticians interested in psychology. Unfortunately for the psychologists and 
acousticians, the speech pathologists hold the keys to the castle on this one. One of 
the concluding remarks from a comprehensive machine learning study that 
included the data of 64 emotional speech data collections since 2006 stated that 
“pitch, the formants, the short-term energy, the MFCCs, the cross-section areas, 
and the Teager energy operator-based features” are the areas of interest moving 
forward with emotion recognition [34]. Surprisingly enough, many of these overlap 
with traditional prosodic cues such as pitch and intensity (energy). Most of these 
features have a concrete basis for prediction and a theoretical function, and features 
like formants and cross-section areas directly correlate with one-another.  
	
Schuller begins his concluding remarks on the state of the art in emotion 
recognition: “Obtaining more realistic data will still be the most important issue in 
the foreseeable future.” [21]. It is easy to see why the state of emotional speech 
databases have had such limited positive impact: the conflicting interests of control 
versus realism have produced stimuli that is little of either. Although preference 
clearly goes to the collection of vast quantities of non-prompted speech, the lack of 
control over lexical content raises the variability of both subjective ratings and 
acoustic information [44]. Diminished counts of ‘exemplar’ emotional vocalizations 
in everyday communications further drain the pool of ideal candidates to feed into 
machine learning models.  
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3 Creation of the Speech Corpus 

3.1 Objectives 
Before any further elaboration, the general and specific objectives must first be 
stated. Three affects have been included for examination: anger, happiness, and 
sadness.  Each encoder (speaker) will be instructed to speak a provided piece of text 
with each of those three affects. A fourth version will also be produced with as little 
expression of emotion as possible, resulting in a total of four styles of expression for 
each script. With four topics and two versions of wording for each topic, the speaker 
will be asked to apply the four styles of expression to each of the eight (8) scripts. So 
in summary, the participant will produce four (4) affects over eight (8) scripts for a 
total of thirty-two (32) stimuli samples.  The labels for each of these stimuli versions 
is given in Table 3.1.   
 

Table 3.1   Summary of the scripts obtained separated by  script topic, version, and affect. 

		 		 Affect	
Script	Topic	 Version	 Anger	 Happiness	 Neutral	 Sadness	
Dinner	 a	 ang-din-a	 hap-din-a	 neu-din-a	 sad-din-a	
		 b	 ang-din-b	 hap-din-b	 neu-din-b	 sad-din-b	
Checkbook	 a	 ang-chk-a	 hap-chk-a	 neu-chk-a	 sad-chk-a	
		 b	 ang-chk-b	 hap-chk-b	 neu-chk-b	 sad-chk-b	
Help	 a	 ang-hlp-a	 hap-hlp-a	 neu-hlp-a	 sad-hlp-a	
		 b	 ang-hlp-b	 hap-hlp-b	 neu-hlp-b	 sad-hlp-b	
Talk	 a	 ang-tlk-a	 hap-tlk-a	 neu-tlk-a	 sad-tlk-a	

		 b	 ang-tlk-b	 hap-tlk-b	 neu-tlk-b	 sad-tlk-b	
 

3.1.1 Participant selection 

PEEP required the inclusion of mother and child pairs. Mothers would speak in an 
expressive style typical of anger, happiness and sadness, thus “encoding” emotion 
into their speech. The children were to listen to these recordings of emotional 
expressions, and fMRI scans made of their brains during this time. The children 
therefore assumed the role of the “decoder” in the communication of emotion. Each 
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child would also listen to recordings of an unfamiliar mother, thus enabling 
analytical comparisons of speaker familiarity on brain activity. The primary 
characteristics of the participants affecting inclusion and use in PEEP were the age 
of the child and the fluency of the mother.  
 
Ideally, researchers would prefer to examine how neural processing of vocal emotion 
changes from birth to adulthood. Scanning the brain for functional differences 
(fMRI) requires the head to be nearly motionless for several minutes at a time- a 
task that can be quite challenging for individuals in an early stage of motor control 
development. As a result, the success rate for scans on younger children is typically 
reduced. Some studies have had moderate success with children aged 8-10. But the 
transition in focus between language content and paralanguage occurs at a slightly 
earlier age. Thus the target age of the children in the present study is 7-9 years old. 
Child participants that had previously participated in an earlier study (PEEP I) 
would be excluded.  Children that were included in PEEP II took the diagnostic 
assessment of nonverbal accuracy (DANVA) test [45]. The DANVA test measures an 
individual’s ability to recognize emotion from a set of facial expressions and 
recordings of emotional speech.    
 
Because natural speech is the focus of this study, only mothers that are fluent in 
English will be included. Although many cues specific to affective prosody are often 
universal across language, stimuli from mothers who have a strong foreign accent 
will not be used as the “unfamiliar” mother. The reason for this is that the question 
of familiarity could be more directly influenced by a child’s perception of their 
country of origin or native language than subtler differences not caused by an 
accent. 
 
Practical concerns regarding the testing methods and schedule limited the radius 
within which participants were recruited. As this study is examining mothers and 
children, the researchers were more than likely to deal with entire families when 
booking appointments. Additionally, differences in privacy laws between states 
could complicate the storage and use of the recorded stimuli. To these ends, 
participating families were primarily recruited from towns and cities close to State 
College, Pennsylvania. A fortunate benefit of this effort is the decreased likelihood 
of recruiting participants that speak with vastly different interstate or international 
accents.  
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3.2 Stimuli Development 

3.2.1 Emotions Considered 

The main objective for much of the functional analysis was to look at the effects of 
affect (emotion vs. no emotion), valence (positive vs. negative) and arousal (active 
vs. passive) dimensional differences. The first point of analysis thus requires a set of 
stimuli with affective prosody and without (neutral, expressionless).  To compare 
the effects of valence which is illustrated in Figure 3.1 as the horizontal axis, both 
positive and negative emotions needed to be included. Emotions like anger 
(negative) and happiness (positive) enable this type of contrast. The arousal 
dimension is depicted as the vertical axis of Figure 3.1, and differentiates emotions 
on the basis of activity level.  As both anger and happiness are on the higher end of 
the arousal dimension, a more passive emotion like sadness could provide a suitable 
contrast. In total participants were to produce vocal expressions of anger, 
happiness, and sadness. A non-expressive version of each stimulus would be 
obtained as a control.  

 
Figure 3.1  Dimensional representation of emotion (From Fig. 2 Cowie and Corneilus 2003). 

3.2.2 Verbal content 

The scripts were constructed to serve several objectives of the psychological study 
“Processing of the Emotional Environment Project” (PEEP).  Its primary aim is to 
study children’s neural processing of affective prosody using natural speech samples 
spoken in four prosodies: angry, happy, sad and neutral (linguistic prosody only).  
Most neuroimaging research on affective prosody has been conducted with adults, 
and the speech content of the stimuli is masked in one of several ways (e.g., using 
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nonsense or foreign words [Banse & Scherer 1996, Castro & Lima 2010, Abrams, 
etc].  By removing semantic content, most studies mitigate interference from word 
meaning and isolate affective prosody.  That benefit, however, renders the 
expression contextually unrealistic, and may be less personally meaningful than the 
human voice’s natural speech.  Thus, to both the encoder (participant being 
recorded) and the decoder (participant hearing the recordings), this cost lessens 
ecological validity and the import of affective prosody for real human functioning 
and relationships. Thus to study children’s neural processing of emotion in the 
voice, PEEP used natural speech samples in different prosodies.  To this end, the 
scripts were designed to be credible when spoken with happy, angry, sad, or neutral 
prosody.  The scripts were designed to be similar to one side of phone conversations 
between adults. Those conversations usually consist of real and meaningful content 
as is illustrated by the scripts used by Shifflett-Simpson and Cummings in 1996 
[46].  Through consultation with psychologists Mark Cummings and Patrick Davies, 
the PEEP scripts were designed to be meaningful and understandable to young 
children while allowing affective prosody to vary.  The final scripts comprise 
statements, questions, and colloquial interjections spoken in a logical sequence of 
utterances that preserve the original topics of conversation provided by Shifflett-
Simpson and Cummings.  In addition to striving for greater ecological validity than 
nonsensical or semantically-meaningless words, the scripts were also designed to 
sound like one side of a phone conversations between two people.  The following is 
one of the resulting scripts: 
 

“Oh, hi, it’s you.” 
“When will you be home?” 
“Dinner won’t be ready then.” 
“Okay, I’ll fix dinner.” 
 

In this example the subject of the conversation is dinner, and the speaker learns 
that the existing dinner plan does not accommodate the schedule of the person with 
whom the speaker is speaking.  The speaker realizes the situation and agrees to 
make dinner.    
 
In total, the scripts feature four different conversations. For the sake of clarity, each 
of the four topics is identified by 3-letter codes: dinner (din), talk (tlk), checkbook 
(chk), help (hlp). Each topic had 2 script versions, labeled as “a” or “b”. The complete 
set of eight scripts (4 topics X 2 phrasings) is shown in Table 3.2.  
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Table 3.2  Complete set of eight scripts by topic and phrasing version. 

Topic	 Version	 Text	

Checkbook	
(chk)	

a	 “Where	is	the	checkbook?	It’s	gone,	I	can’t	find	it.	I	
don’t	have	it.	Do	you	have	it?”	

b	 “Do	you	have	the	checkbook?	You	had	it	last.	It’s	just	
not	here.	I’ll	look	for	it.”	

Dinner		
(din)	

a	 “Oh,	hi,	it’s	you.	When	will	you	be	home?	Dinner	
won’t	be	ready	then.	Okay,	I’ll	fix	dinner.”	

b	 “I’m	fixing	dinner.	It	will	take	an	hour.	I	have	a	lot	to	
do.	I’ll	see	you	later.”	

Help		
(hlp)	

a	 “Hi,	I	hoped	you’d	call.	You’re	running	late?	I	will	need	
some	help.	Can	you	change	your	plans?”	

b	 “I	could	use	your	help.	There’s	so	much	to	do.	Can	you	
change	your	plans?	See	you	when	you	get	here.”	

Talk		
(tlk)	

a	 “Oh,	you’re	tired?	Sorry	to	hear	that.	We	should	talk.	
About	lots	of	things.”	

b	 “Can	you	talk	now?	About	lots	of	things.	Money,	the	
weekend.	Okay,	we	won’t	talk	now.”	

 

3.3 Development of the Stimuli Recording Process 
A number of constraints were considered when developing the protocol to obtain 
stimuli for the study. As is often the case in the design of systems, resources in work 
force, space, and time drove the iterative system design towards an optimal level. A 
total of three people were present throughout the recording process: a study 
participant (the mother being recorded), a vocal coach, and a recording engineer. 
The primary role of the recording engineer (author of this thesis) was to digitally 
capture the vocal expressions of the subject and ensuring the highest degree of 
audio quality possible.  

3.3.1 Recording Location 

All stimuli measurements took place at the Pennsylvania State University, 
University Park Campus in the Moore Building, Room 214. The floor plan was 
divided up into three smaller rooms: 1. meeting room, 2. recording room, and 3. 
control room pictured in Figure 3.2. The control room is located on the left side of 
Figure 3.3, and the recording room is pictured in the middle.  
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Figure 3.2  Floorplan of the testing location, Moore Building, Room 214. 

 
Acoustical Considerations   
 
The acoustical quality of the recordings was assured from the evaluation and 
optimization of reverberation, isolation, and noise levels. Each of these evaluations 
was aimed at ensuring that only the sound of the participant would be recorded as 
they encoded emotion into their speech patterns. An environment with low 
reverberation is ideal because fewer, lower amplitude reflections from surrounding 
surfaces will contaminate the direct sound from the participant speaking into the 
microphone.  The recording room was relatively dry. This was likely due to the wall 
and ceiling treatments, which feature perforated metal instead of tile or plaster. 
The mid-frequency average reverberation time of the room was measured using a 
Brüel & Kæjr 22560 sound level meter at T30 = 70 ms (400Hz-1.25kHz).  
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Figure 3.3  On the left is a picture of the three rooms: 1. Meeting Room (foreground), 2. Recording 
Room (background right), 3. Control Room (background left). The picture on the right shows the gap 
between the walls of the connected rooms. 

 
 
Isolation from exterior environmental noises was of great importance. Without 
proper isolation, conducted vibrations or conversations from surrounding offices 
could travel into the diaphragm of the microphone and corrupt the signal of 
interest. Separating and acoustically isolating the location of the recording engineer 
and the source of the stimulus helps ensure that the sound engineer monitors only 
the sound that is entering the recording device. Proper monitoring is critical to 
protecting the quality of the measurement; the sound engineer and the microphone 
“hear” sound in vastly different ways. Between the microphone’s frequency 
response, directivity, and physical placement with respect to the encoder, the signal 
leaving the microphone has already been altered several times. For example, bumps 
and vibrations conducted into the microphone element via its rigid stand may not be 
audible to the sound engineer without listening to the recorded signal.  The most 
accurate place to monitor the signal as it is being recorded was either at the sound 
card or from the live playback via the Digital Audio Workstation (DAW) in a 
separate room from the signal source. It was therefore necessary to create a 
pathway for the signal to travel from the microphone to the audio recorder.  
 
The physical treatment of both the recording room and control room met the goals 
for strong isolation. There are a set of double-doors separating the meeting and 
recording rooms, and just a single hinged door separating the meeting and control 
rooms. Each of these doors is approximately 6 inches thick, and is manufactured by 
the Suttle Corporation (Lawrenceville, IL) as illustrated in Figure 3.3. Between the 
control room and the recording room are air gaps created by rubber spacers on the 
exterior sides of the floors and walls. Although sound isolation was not measured 
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directly, loud conversations from either the control or recording rooms were 
virtually silent with the doors to both rooms closed. Solutions to make it easier to 
communicate between the rooms are investigated in later text.  
 
To maximize the signal-to-noise ratio at the microphone end of the signal chain, 
modifications were made to both the microphone placement and microphone 
directivity selected.  The loudest source of noise in the recording room was 
determined to be the ceiling vent diffuser, which was located at the corner closest to 
the door.  Using a Brüel & Kæjr 2250 sound level meter, the A-weighted equivalent 
noise level was measured to be 34.2 dBA (re: 20 µPa) at 0.5 meters from the air 
diffuser. The maximum difference in noise level was found at the opposing corner of 
the room at 24.8 dBA (re: 20 µPa).  This was determined to be the optimal location 
for the microphone as shown in Figure 3.4. Further noise suppression was achieved 
by setting the microphone to a cardioid directivity, and aligning the null region 
towards the noise source at the opposite corner of the room.  
 

 

 
Figure 3.4  Panorama view of the recording room. From left to right: participant's chair, microphone, 
vocal coach's chair, door, air vent (top), monitor (bottom), and viewing window. 

3.3.2 Design of the Signal Chain 

Chefs often claim that a meal is only as good as its ingredients. This philosophy is 
paralleled in the design of the signal chain. In this case, the “meal” is the digital 
recording, and the ingredients are the sounds propagating from the subject. As it is 
the emotional qualities of the subject’s vocalizations that determine the better 
product, personal comfort and care of the participant take an equal, if not higher 
priority over the acoustical treatment.  The source of interest is not a reciprocating 
machine with an on/off button, but a human subject who is being placed under a 
“microscope” and asked to emote in a personally accurate manner.  From the 
microphone placement to the patch cables nested in the control room, every 
modification supported the principle goal of measuring the best possible affective 
prosody. The next section of text will briefly cover the evolution of the measurement 
system with respect to modifications targeted at augmenting higher-level 
functionality. 
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Initially, the most basic requirements for the measurement system were that a 
pathway exist for sound to be recorded and monitored, and a pathway exist for the 
sound engineer to communicate with the vocal coach. With all doors firmly closed, 
the only practical means of communication without the aid of synthetic 
amplification or transduction is simply hand gestures communicated visually 
through a window measuring roughly 2’X2’, pictured in Figure 3.5. These initial 
requirements were met by the first version of the measurement system depicted in 
a schematic in Figure 3.6. 
 
 

 
Figure 3.5  This is a picture of the window connecting the control room and the recording room. 

The signal path of the stimuli moves in one direction from the recording room to the 
control room. Traveling initially as propagating acoustical energy from subject to 
the microphone, the energy is then transduced into an electrical signal represented 
by the solid red line. Once delivered to the sound card (an M-Audio M-Track USB 
interface), the sound engineer can then monitor the penultimate recording over a 
set of headphones just as the signal is saved to the computer’s memory. Lastly, 
walkie-talkies provided a simple mechanism for two-way communication between 
the sound engineer and the vocal coach.  
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Figure 3.6 Original signal chain. Blue lines indicate acoustic transmission, solid red lines indicate 
wired electrical signal transmission, and dotted red lines indicate wireless signal transmission. 

  
Although conveniently simple as a first step, experience gained from pilot tests 
revealed several areas where technical modifications would significantly benefit the 
process. During piloting, it was determined that a standard set of exemplar 
recordings be created for the subjects to listen to on request.  As the only pair of 
listening devices was located in the control room, the subject would have to move 
from their seat in the recording room to the control room. This process could alter 
the distance between the microphone and the subject in the middle of a recording, 
which may boost or lower the amplitude beyond the previous amplitude range. This 
configuration applied too much logistical pressure on the vocal coach, who was 
tasked with both communicating directly with the subject, holding the walkie-
talkie, as well as taking notes quickly in real time.  A hands-free alternative to the 
walkie-talkie would mitigate the dropping of equipment and return focus to 
coaching the subject.  A higher quality set of speakers than the walkie-talkies had 
would also boost the clarity of communication between the sound engineer and the 
other room.  The headphones used by the sound engineer, although comfortable at 
first, would have to be worn for recording sessions lasting almost two hours. If the 
recording room were to be equipped with a proper set of speakers then the control 
room could easily receive the same treatment to the cumulative comfort level of all.  
Figure 3.7 illustrates how each of these issues were solved through technical means.  
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Figure 3.7  System setup #2, featuring a set of monitors in both rooms for example stimuli playback. 

A set of monitors in the recording room provided a convenient pathway for the 
subject to hear their own recorded takes in addition to the standard set of 
exemplars stored on the laptop.  A secondary microphone in the control room largely 
nullified the use of the walkie-talkies, which could then be used as backups to the 
new system. The problem of the speed of communication remained. Although there 
is a path between the sound engineer and the monitors in the recording room, the 
steps required to initiate the communication without corrupting the recording were 
multitudinous and often difficult to access quickly. It was concluded that a simple 
physical button could replace many of these software hurdles when the sound 
engineer wished to communicate with the other room.  
 
The third and final iteration of the measurement system provided support in all of 
areas where improvements were needed and was chosen as the best of the options 
presented. The one difference between setup #2 and setup #3 (see Figure 3.8) is the 
introduction of the “Push-to-Talk” box.   
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Figure 3.8  Measurement setup #3 features monitors in both rooms as well as an easy-access "Push-to-
Talk" box in the control room. 

This box features two XLR inputs, two XLR outputs, and a large button between 
each input-output pair (see Figure 3.9).  The green button wired such that a 
connected microphone is normally muted until the button is pressed. Conversely, 
the red button is wired to mute a connected microphone when it is pressed.  With 
this simple device, the sound engineer could leave their microphone channel open in 
the DAW software, and simply press the green button to talk when necessary.  With 
an open loop between the recording room microphone and monitors via the control 
room’s microphone and monitors, the red button could then be pressed to eliminate 
any potential feedback. See Appendix A for details on the circuitry. The initial 
complications of wiring the system correctly on the control room side were far 
outweighed by the hands-free and speedy communication that resulted between 
both rooms.  
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Figure 3.9  This is a picture of the "Push-to-Talk" box. This device features two input-output pairs 
each accompanied by a button that mutes (red) or unmutes (green) the connection to the microphone. 

Source Considerations and Equipment  
 
Several characteristics of the sound sources (the mothers speaking) that were 
recorded required attention when finalizing an equipment list. The dynamic range 
was predicted to vary between soft speech (30-40 dB) to shouting (80-95 dB). 
Accordingly, the selected microphone should be capable of recording sounds at 
amplitudes within that range. With an expected range of meaningful frequency 
between 100-8000 Hz, the microphone’s cardioid response in this range shouldn’t 
deviate significantly. An Audio-Technica AT-2050 large diaphragm condenser 
microphone was selected as a candidate due to its practical accessibility and 
relatively good adherence to the prescribed technical requirements. The magnitude 
frequency response of the microphone as provided by the manufacturer is shown in 
Figure 3.10. From this response plot it can be seen that the largest deviation occurs 
at roughly 4kHz with a peak of less than 5 dB. Included in the purchase of the 
microphone was a shock mount that would suspend the microphone’s body with a 
system of stretchable cords as depicted in Figure 3.11. This mount would introduce 
an impedance mismatch between the stand and the body, therefore attenuating 
possible structural vibrations from the floor. More technical specifications can be 
found in Appendix B. 
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Figure 3.10  Directivity and magnitude frequency response of the Audio-Technica AT-2050. From 
www.audio-technica.com. 

 

 
Figure 3.11  This is a picture of the condenser microphone seated within a shock mount. The shock 
mount protects vibrations from the attached stand (bottom right) from transmitting into the 
transducer element. 

 
Also of necessity was an external sound card by which the sound engineer could 
increase or decrease the gain of the input microphone’s signal with respect to the 
recorded output signal. An M-Audio M-Track was selected on the basis of its 
functionality and financial accessibility. This interface consists of two input 
channels and two output channels. Each input channel supports +48v bias voltage 
necessary for the selected condenser microphone, and each output channel could be 
routed to the control room and recording room independently. Lastly, this device 
was capable of recording at 48kHz, which is many times higher than the range of 
interest. Each sample could also be measured with 24-bit depth resolution.  For 
more information on the M-Track interface, see Appendix B.  
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Because it was not known exactly how much frequency or amplitude resolution 
some of the future signal processing might benefit from, a sample rate of 48kHz and 
bit-depth of 24 bits per sample were chosen. At the very least, this sample rate more 
than accommodates the sampling of measured frequencies beyond the range of 
human hearing. Given a commonly accepted upper limit of 20kHz [47], the Nyquist 
criterion holds that aliasing from frequencies below his upper limit can only be 
avoided by sampling at the Nyquist Rate, which is twice this frequency or 40kHz 
and above [11]. The chosen maximum sample rate of 48 kHz accommodates this 
criterion with room to spare.  A low-pass filter provides protection from aliasing 
from frequencies above 24 kHz. Although just the major components of the 
measurement system have here been described, a comprehensive list of equipment 
is provided in Appendix B.   

3.4 Recording Procedure Development 
 
With people, equipment, and a set of objectives declared, the next steps for the 
project were to integrate, apply, and refine the cooperative effort where necessary. 
This section will delineate the basic structure of the stimuli collection process, 
followed by a short summary of the feedback received from piloting and 
modifications that were made to optimize the process.  

3.4.1 General experimental format 

The task for each participant (speaker) in its most fundamental form was to 
produce 32 exemplar recordings of speech with a style of vocalization representative 
of the way they produce each affect.  
 
The general procedure was conducted as follows: 

a. The participant arrives at the testing location, the Moore Building Room 214, 
in University Park, PA. The participant and the project coordinator then 
review and sign the informed consent forms.  

b. The vocal coach then presents a behind-the-scenes interview excerpt from the 
movie “Inside-Out (2015),” in which each voice actor demonstrates multiple 
versions how they speak when attempting to embody their respective 
character roles named “Joy”, “Sadness”, and “Anger” [48].  

c. The participant is then given the booklet containing each of the eight scripts 
to practice speaking before entering the recording room. 

d. After 2-3 minutes of reading and practicing on their own, the participant is 
seated in the recording room in front of the microphone.  
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e. The vocal coach proceeds to rehearse the scripts with the participant. During 
this time, the sound engineer adjusts the gain of the sound card to 
accommodate the loudness of the participant. This gain is recorded on the 
script order sheet for future reference. 

f. The measurement order is organized by affect, and randomized over script 
(see Appendix C). Beginning with the neutral vocal style, the participant is 
presented with each of the eight scripts in a randomized order.  

g. The participant speaks each script for a minimum of three takes: one practice 
take to familiarize the speaker with the text, and two takes with full effort.  

h. Feedback is given by the vocal coach and audio engineer after each take 
regarding naturalness or pronunciation.   

i. After speaking each of these eight scripts without emotion, a new randomized 
order of scripts is presented to the participant to be spoken with an angry 
affect. This process repeats through the sad and happy affect.iii 

 
A critical question remains unanswered: how do the test administrators, the vocal 
coach and audio engineer, determine that a particular sample stimulus is good 
enough to move on to the recording of the next stimulus? Several factors influenced 
the provisional criteria for assessing the quality of each participant’s vocal 
expression.  At a fundamental level, the characteristics of the target expression had 
to be defined with respect to the participant’s ability to act, and the intended use of 
the stimulus for the rest of the study. In the first place, PEEP sought stimuli that 
demonstrated affective prosody that was ecologically valid to each participant i.e. 
the expression of anger should sound and feel natural and accurate to how they 
would normally vocalize anger.  Secondly, the stimuli from one participant would be 
presented to both their own child as well as the child of another participant. 
Consequently, each decoder (child participant) would eventually listen to the 
stimulus of a familiar voice (their mother) and an unfamiliar voice (different 
mother). This stimulus presentation design reflects a key objective of the fMRI 
analysis, which is to examine how familiarity alters children’s processing of 
affective prosody from mothers. Thus, the affect should be held constant and 
recognizable between each mother’s expression without significantly altering 
qualities unique to each mother’s voice.  
 
Given these many requirements to achieve high quality stimuli, additional 
procedural tools were used to assess the quality of the recordings. During the 
measurement process, it was determined that objective assessment of each stimulus 
would both prolong the procedure beyond practical means and potentially (and 
synthetically) fit every encoder’s expressions to potentially foreign prosodic 

                                            
iii By holding the affect constant and changing the script, participating speakers are 
given more time to search and refine ways to act out an emotional state according to 
memory and feeling that they may not be experiencing at the very moment of 
making the recordings.   
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patterns.  To this end, the test administrators would offer general direction to 
express a given emotion by incorporating cues over which there is broad consensus 
within the literature [3] [22] [24] [27] [43].  For anger, subjects were encouraged to 
be louder, more abrupt, and direct their pitch downwards during phrases where 
such motion was typical. For happiness, it was recommended for subjects to raise 
their average pitch level, direct their pitch in an upwards motion, and speak 
quickly. During expressions of sadness, each participant was encouraged to be 
quiet, to not raise their pitch, and to lengthen the duration of their phrases.   

3.4.2 Results of Piloting the Recording Procedure 

This procedure was piloted from start to finish for eleven (11) female participants 
(mean age ≅ 32 years) in an effort to detect where improvements could be made. 
Several valuable lessons were learned throughout this process and each influenced 
the quality and efficiency of the procedure in some way.  While some participants 
were quite capable of acting out emotions apart from the emotional state they may 
have been experiencing, several others required substantial assistance in vocalizing 
anything apart from a neutral tone of voice.  Table 3.3 provides a summary of the 
number of recording takes that were needed to obtain acceptable stimuli during the 
piloting phase, where number of takes are the total number of attempted portrayals 
excluding practice readings. Besides the first entry, counts exceeding 64 (2 trials * 
32 stimuli versions) takes indicate additional measurement attempts.  Generally 
speaking, the number of takes and the duration of the session correlated with 
participant’s difficulty producing quality affective expressions. The rows highlighted 
in gray are for this pilot study. As points of reference, information from two other 
recording sessions were included for the principal investigator and the vocal coach.  
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Table 3.3  Summary of the results from piloting the stimuli recording procedure. Rows highlighted in 
gray indicate sessions where excessive guidance was given. The thick box border surrounds entries 
from participants that are mothers. 

Visit	Date	 Original	ID	 Mother?	 Duration	(min)	 #	Takes	 Notes	

7/23/15	 9999	 Yes	 32	 32	 Is	the	Principal	Investigator.	Only	
recorded	8	takes	per	affect.	

9/24/15	 9998	 No	 45	 69	 Is	the	Project	Coordinator.		

10/22/15	 9997	 No	 88	 119	 Undergraduate	Research	Assistant	

*10/23/15	 9996	 No	 68	 105	 Undergraduate	Research	Assistant	

10/29/15	 9995	 No	 78	 74	 Undergraduate	Research	Assistant	

10/30/15	 9994	 No	 49	 100	 Undergraduate	Research	Assistant	

11/9/15	 9993	 No	 50	 69	 Graduate	Research	Assistant	(not	part	
of	project)	

2/24/16	 900	 Yes	 46	 76	 1st	pilot	participant	with	child.		

2/27/16	 901	 Yes	 65	 70	
Co-investigator.	Voice	was	very	tired.	
Constructive	conversation	lengthened	
recording	duration.	

2/27/16	 902	 Yes	 59	 69	 -	

3/4/16	 903	 Yes	 48	 67	 -	

	 	 	 	 	 *	began	monitoring	number	of	takes.	
	 	

Unfortunately, the exceptional quality and ease of the initial participants (9999-
9998) drove the expectation for acting quality higher than was perhaps necessary 
for the remaining participants (9997-9994). This meant that for underperforming 
pilot participants, a far greater number of takes were recorded for each stimulus 
version therefore extending the measurement session well beyond expected lengths. 
This realization necessitated the introduction of a cap on the number of takes each 
each script and affect could receive, thus limiting the cumulative fatigue the 
participant and test administrators may experience.  Additionally, each take 
received undue scrutiny, often drawing the vocal coach and sound engineer to 
micro-manage until the optimal vocalization was achieved.  The effect of this was 
evident in the excessive patterning of expression and reduction of individuality that 
resulted. Thus, greater emphasis was given to seeking the participant’s natural 
expression of emotion rather than strict abidance to stereotypical examples.  
 

3.4.3 Voice coaching 

Although there are many widely accepted global patterns of affective prosody [3] 
[22] [24], spontaneous and more unguided expressions are of greater need in a field 
inundated in prompted speech [21].  The current process of subjectively evaluating 
the quality of each stimulus overemphasized conformity to predetermined scientific 
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trends.  While the product of these methods displayed close adherence to previous 
cues found in the literature [3] [22] [27], the body of work as a whole still lacked 
diversity in emphasis placement, pitch stylization and other basic characteristics of 
expressive speech.  
 
To address this issue, a less direct approach to vocal coaching was formulated. 
Before each affective category, the vocal coach would define the specific type of 
affect in terms of groups of narrower emotions. For example, the anger category was 
more specifically defined as a highly aroused hot anger or rage as opposed to cold 
anger or annoyance.  Happiness was equated with elation or joy rather than 
contentment or placidity. Sadness was defined more specifically as a depressed, 
sullen state rather than desperation.   The vocal coach would then ask the 
participant to recall a scenario in their life during which they most strongly felt the 
particular emotion to be expressed. Additionally, the participant was encouraged to 
assume a facial expression in accordance with the emotion e.g. smiling for 
happiness, brow furrowed for anger, upward slanted eyebrows and a frown for 
sadness.  Next, the participant read through the script while attempting to convey 
the target affect as accurately and intensely as possible.  
 
If the resulting speech contained any lexical or semantic errors with respect to the 
script, or was pronounced differently from typical American English, then the vocal 
coach or the sound engineer would offer the appropriate correction. Subsequently, 
the vocal coach would ask the participant how natural and accurate they felt about 
their most recent portrayal of emotion, and what stylistic changes might benefit 
future attempts. If a participant was experiencing considerable difficulty acting out 
in any way whatsoever, the vocal coach would then offer examples of adjectives and 
adverbs to describe typical vocal cues without directly prescribing the cue itself. A 
list of the affect categories and their corresponding perceptual descriptors is 
provided in Table 3.4.  
 

Table 3.4  Target affects or expressive style with their respective descriptors. 

 Target	Affect	
 Anger	 Happiness	 Sadness	 No	Expression	

Descriptors	

sharp	 melodic	 subdued	 removed	
biting	 sing-song	 low-energy	 complacent	
harsh	 chirpy	 exasperated	 apathetic	
abrupt	 sprightly	 lethargic	 robotic	
frontal	 chipper	 depressed	 flat	
raised	 liltingly	 exhausted	 factual	

demanding	 quick	 hopeless	 news-report	
coarse	 	hopeful	 breathy	 		

 
A close examination of these lists reveal descriptors pertaining to environment, 
linguistic content, physical feeling, and audible perceptions of a given affect or 
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expressive style. Words such as demanding, delighted, hopeless, and apathetic 
describe a particular framework for delivery or reception of information within a 
conversation. For example, a question posed in a hopeful (happiness category) might 
be delivered as more of a demand when angry.  Descriptors like sharp, melodic, 
breathyiv, and flat have a more direct meaning for a particular style of speaking 
[can you add a ref here?].  The information in Table 3.4 was included in the final 
version of the script order data collection sheet, which is provided in Appendix C.  
 
Additional piloting with mothers from the State College area (900-903) showed 
marked improvement not only in the length of the appointments but the ease with 
which more descriptive instructions were followed.  Overall, active measurement 
sessions lasted for 45-75 minutes, and the average number of takes was reduced to 
less than 80.  The next section will detail additional requirements related to the 
presentation of the stimuli to the decoders and the steps followed to meet those 
demands.  

3.5 Stimuli Post-Processing 

3.5.1 fMRI requirements 

The neuroimaging procedural design and environment created a variety challenges 
that either directly or indirectly shaped the characteristics of the set of stimuli.  
Organized in what is known as a block-related design, the fMRI testing procedure 
had participants listen to each stimulus in exactly ten second length blocks as 
depicted in Table 3.5. This put an upper limit on the cumulative length for each of 
the four utterances within a stimulus.  
 
Table 3.5  This is the order in which the stimuli were  presented to the decoder in the MRI scanner. 
Note that each volume or scan sample takes 2 seconds. The blocks where speech is presented are 
exactly 10 seconds in length. 

Time	(s)	 0-4	 4-14	 14-20	 20-30	 30-36	 36-46	 46-52	 52-62	 62-68	 68-74	

#	Volumes	 2	 5	 3	 5	 3	 5	 3	 5	 3	 5	

Stimulus	

Si
le
nc
e	

Speech	

Si
le
nc
e	

Speech	

Si
le
nc
e	

Speech	

Si
le
nc
e	

Speech	

Si
le
nc
e	

Speech	

Encoder	 Unfamiliar	 Mom	 Unfamiliar	 Unfamiliar	 Mom	

Affect	 Neutral	 Sad	 Angry	 Happy	 Sad	

Script	 1a	 2a	 1a	 3a	 1a	

 

                                            
iv The word “breathy” was further qualified as more of a way to relax the voice and 
avoid tensing the vocal cords as could occur in expressions of desperation and 
anxiety.    
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Perhaps the greatest adversary to speech perception, however, was the noise level 
within the scanner. Measured at more than 95 dBA within the bore of the scanner 
with a peak frequency of 1.2 kHz, the operational noise level of the scanner is above 
the permissible exposure limit for an 8 hour day. OSHA’s exchange rate of 5 dBA 
indicates that hearing loss may occur at 4 hours of exposure for scanner noise at 95 
dBA [49]. Such high noise levels necessitated the wearing of hearing protection 
while in the scanner, which provided an estimated 25-30 dB noise reduction [50].  

3.5.2 Stimuli extraction 

To avoid losing any quality stimuli as a result of neglecting to initiate the recording, 
the measurements were saved as four continuous waveforms, each corresponding to 
one affect. Individual takes from each of these long waveforms were assessed for 
noise intrusion and relative prosodic quality, then extracted into smaller waveforms 
ranging from 6-15 seconds in duration. Within each extracted waveform, regions 
where loud breathing and various pops and clicks (usually from saliva bubbles 
bursting in the mouth) that were not semantically meaningful were manually 
silenced within the Digital Audio Workstation (DAW) [51]. Although laborious at a 
first glance, the manual editing actually reduced the work and time spent in later 
processing steps. The upper plot of Figure 3.12 gives the original waveform in blue, 
with the manually selected clicks and pops highlighted in red. These sections would 
have likely been erroneously retained with an automated process. The lower plot of 
Figure 3.12 represents the speech signals as they were processed for endpoint 
detection. Amplitudes of either the blue (vocaic energy) or red (consonants) below 
the threshold (dashed line -45 dB) would be considered part of the utterances.  The 
text of the scripts is provided above the waveforms as reference. From the lower plot 
of Figure 3.12 on the word “you”, it appears that a short, low-amplitude sound 
occurred followed by a loud sustained sound. This indicates that the mouth made a 
small popping sound shortly before the start of the vowel.   
 
Acoustically, the noise of the unwanted pops and clicks look very similar to 
meaningful consonants like the “t” in “last.” To avoid loss of meaningful content, all 
utterance endpoints were assessed through a listening test. Often preserved were 
small, yet subtle sounds that were actually unvoiced fricatives or breaths located at 
the end of certain words. The refined waveforms were then exported into separate 
files and loaded into the MatLab environment [52].  
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Figure 3.12  This is a plot of a waveform that contains breaths and various pops and clicks. The 
features that were removed are highlighted in red, as they had no meaningful content. 

3.5.3 Signal Processing for parsing and normalizing 

Parsing 
Once the stimuli were loaded into the MATLAB environment, several steps were 
taken to ensure that each stimulus could be presented and heard according to the 
requirements of the MRI environment. The first objective was to determine bounds 
(in samples) of each of the four utterances. Next, 200 ms and 100 ms of silence were 
padded to the beginning of the first utterance and end of the last utterance. Finally, 
equal lengths of silence (3 total) would be created between the four utterances such 
that the total length of the waveform was exactly 10 seconds * 48kHz or 480,000 
samples. Although a script was written to automatically detect the sample bounds 
of each utterance, the relative size of the inter- and intra-utterance silences was not 
consistent enough for the algorithm to handle, as shown in Figure 3.13.  
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Figure 3.13  The upper plot is a waveform that has a mid-utterance silence and a between utterance 
silence that caused an error in the program. The lower plot is the output of the algorithm, which has 
severed one utterance at the location of the long silence (highlighted in red). 

Although solutions to this problem are sure to exist, the benefit of speedy 
automation did not appear to outweigh the cost of stimuli corruption and time 
allocated to the pursuit. Thus, a small amount of manual input was added to the 
script whereby the user would click on the between-utterance silent regions of a 
plotted waveform (see Figure 3.14 ) and enter these coordinates into the rest of the 
program. From this location seed, the algorithm expanded the beginning and end 
point of the silent region sample by sample, until the amplitude of the waveform at 
both bounds exceeded a predetermined threshold. The splicing code can be made 
available upon request. With the bounds of each utterance known, their relative 
amplitudes could then be compared and adjusted as a final step.  
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Figure 3.14   The upper plot illustrates a waveform where the user has identified a point within the 
three silent regions.  The lower plot shows the output of the algorithm, which has added the 
appropriate amount of space between each utterance. 

 
Normalization 
 
As previously mentioned, the loudness of the environment surrounding the listener 
severely limited the usable dynamic range of any presented signal. The best-case 
scenario would be one in which each stimulus could be presented at amplitudes 
relative to the original sound pressure waves incident on the microphone element. 
This would require an effective dynamic range of almost 60 dB (30-90 dB), and a 
noise floor lower than 30 dB at the inner ear of the listener. To combat this noise, 
earmuffs (Restek citation) (30 dB nominal noise reduction) were worn over foam-
padded in-ear headphones (Sensimetrics, 10-40 dB noise reduction). Previous work 
has shown that the effective noise reduction from the combined use of earmuffs and 
foam plugs ranges from 40 dB to 50 dB for experienced subjects depending on the fit 
between the plug and the ear canal [53]. Even the optimal 45 dB estimate is 
nominal, and does not factor in conducted vibration from the structure of the MRI to 
the ear, which is sure to diminish the noise reduction further.   
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Figure 3.15 illustrates the danger in calibrating each stimulus to its amplitude at 
the site of the microphone. The amplitudes of each waveform were calibrated using 
a custom calibration curve that relates the gain setting at the time of the 
measurement to RMS pressure of a piston phone (1 kHz, 1 Pa RMS). When both the 
sad and angry versions of the stimulus are scaled to their appropriate amplitudes, 
their relative magnitudes are immediately apparent as in Figure 3.15. Here, the 
louder angry version has been scaled to a loud but safe presentation level of 75 dBA. 
The waveform for the sad version has been scaled proportionately by the ratio of the 
relative levels between the two portrayals. Please note that the RMS level of the 
sadness portrayal hovers almost 5 dB below the at-ear noise level after the most 
optimal case of noise reduction.  One could argue that proportionate scaling could 
ameliorate the disparity in level, but even then, the effects of frequency masking 
due to differences in the signal-to-noise-ratio (SNR) would still exist. See Appendix 
D for the calibration curve.  
 

 
    (a)     (b) 
Figure 3.15  A comparison of dynamic range of the two affects sad and angry: (a) a waveform of an 
utterance measured as the speaker expressed sadness quietly, (b). a waveform of the same encoder 
speaking the same script and utterance with an angry affect. Each have a 45 dB noise reference line. 

 
 
Figure 3.16 illustrates some of the relative dynamic range between the utterances 
in an angry affect. From left to right, each utterance’s RMS amplitude is -30.5, -
23.0, -19.5, -24.8 dB. The greatest difference is the 11 dB between the first 
utterance and the third utterance. A 11 dB difference here indicates that the third 
utterance is more than three times (3.55) the RMS amplitude of the first utterance. 
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Perceptually, listeners would rate the third utterance as more than twice as loud as 
the first. So some amount of within-stimulus normalization across each utterance is 
needed to ensure that the noise from the scanner does not overpower utterances of 
lower amplitudes.  

 

Figure 3.16  Time series of an unprocessed stimulus. The spoken text is given above the waveform and 
the corresponding A-weighted RMS amplitude of the utterance is given below the waveform. 

 
Several methods of amplitude adjustment were considered, each with their own set 
of advantages and disadvantages. Figure 3.17 shows two methods of normalizing 
each utterance. The first method simply scaled each utterance so that their absolute 
maximum value was 1. This maximum value is necessary for playback over most 
sound cards, otherwise clipping will occur. The second method scales each utterance 
so that they all have the same A-weighted RMS amplitude as the utterance with the 
smallest RMS value. In the improbable case that a resulting peak amplitude is 
greater than one, each utterance is then multiplied by a constant scale factor to 
return this peak value to one.  
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Figure 3.17  The upper two plots show the original waveform for the same script, “Dinner a”, spoken 
in both the sad (left) and angry (right) affects, respectively. Along the bottom row (left to right) are the 
normalizing methods using absolute peak, RMS, and A-weighted RMS values per utterance. A-
weighted RMS values (dB re: 1) are given above each utterance. 

Of the two methods presented, normalizing each utterance by its A-weighted RMS 
amplitude more closely approximates the perception of equivalent loudness across 
utterance and affect. Regarding the peak normalizing method, the sad utterances 
were scaled up to 10 dB higher than the angry utterances because of their smaller 
range of amplitudes. The second method ensures that each utterance within each 
stimulus can be presented to the decoder at safe and equal loudness.  
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3.6 Results 
Participant Information 
 
Data collection was conducted over the course of 15.5 months from February 24, 
2016 to July 10, 2017. Of the seventy-two (72) people that were recruited, fifty-five 
(55) completed all experimental tasks and produced a full set of stimuli. Forty-three 
(n=43) of this remaining group of participants granted permission for their voice 
recordings to be shared for public presentation and scientific use on the online 
repository Databrary [54]. This set of participants will be the primary focus for the 
presented work as future analyses on any stimulus depends on the status of each 
participant’s permission to do so. The mean age of the participants as of the day 
their stimuli was created was 38 years and 9 months, and the standard deviation of 
their ages is 4 years and 9 months. All participants except one were fluent in 
English as a first language and were residents of State College, PA or the 
surrounding counties. Twenty-nine participants reported at least some amount of 
musical training, and eleven reported having had acting training as of the 
measurement date.  
 
Summary of Corpus contents 
 
In total, the corpus consists of 43 encoders’ portrayals of four affective or non-
affective states for eight scripts, each containing four individual phrases. The 
corpus itself has been archived as it was presented to the decoders in the PEEP 
study, i.e. each 10 second stimulus file contains all four normalized utterances 
spaced apart in time as previously discussed. Consequently, there are 1376 of the 10 
second stimuli (344 per expressive style), or 5504 utterances (1376 per expressive 
style). The cumulative length of the corpus is 3 hours 49 minutes and 20 seconds, 
every sample of which was recorded at a 48 kHz sample rate and 24 bits per 
sample. The sample rate chosen permits frequency analysis up to 20 kHz and the 
bit depth provides a signal-to-quantization-noise ratio of 144.49 dB 
(20*log10(2^24)).  The gain setting was recorded for each measurement in addition 
to qualitative notes regarding the subjective perception of the portrayal or 
environmental noises detected.  
 

3.7 Discussion 
Many valuable lessons were learned in the process of developing the procedure to 
obtain high quality recordings from the participants. Piloting the recording sessions 
was an essential step in refining the directions given to the participants. The initial 
responses from the pilot phase provided a frame of reference to base quality control 
for successive participation. The most essential pieces of information needed were 
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the degree to which the vocal coach and sound engineer should work with the 
participant to extract the highest quality emotion portrayals.  
 
The procedure faced many limitations that previous studies specific to vocal 
expression did not. For example, Banse and Scherer (1996) included only 
professional actors, and gave each actor an unlimited amount of time and number of 
attempts to achieve what they felt was their greatest portrayal. These actors also 
memorized their scripts in order to further naturalize their speech. These factors 
were likely to increase the accuracy of the vocalizations as they relate to the 
intended emotion of the participant due to the experience each subject has in acting 
apart from their true emotional state. None of these details were could have been 
practically implemented because of the population distribution that was sampled 
and the time constraints necessary to prevent exhaustion. 
 
Of particular importance to the recording process for this study was the degree of 
specificity in defining the prompted emotions in both a psychological manner and 
acoustical manner. Anger was defined as a highly aroused negative emotion that 
more closely equates to rage, happiness was specified as a highly aroused and 
positive emotion, such as elation, and sadness was defined as an emotion of very low 
arousal and of negative valence [6]. Participants did not report having any 
confusion regarding these specific labels. Many, if not most, studies in vocal 
expression of emotion do not provide specific instructions on how to achieve the 
appropriate acoustical form for each emotion [27] [55], although some give direction 
or suggestions for fine-tuning pronunciation or “naturalness” [43]. The presented 
works had to walk a fine line between support for prototypical expression and 
noninvasiveness. Expressions were to be prototypical enough for the decoders 
(listeners) to at least recognize the affect, yet remain as ecologically valid as 
possible. Finding the balance of providing feedback and examples for participants to 
use and modify their own expressions required attention to individual acting 
abilities. Where there was a conflict between typical changes in pitch or emphasis 
compared to the natural movements of the participant’s voice, priority was given to 
their natural inclination. In some cases, however, participants were quick to 
emulate examples rather than reflect their own way of producing an affect. 
Although great care was taken to ensure that their expressions reportedly felt 
natural to the participant, there is always the possibility that the measurement 
process interfered with the stimuli recorded.  
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4 Acoustic Analysis of the Encoding Process 

4.1 Objectives 
The primary focus of this chapter is to answer the first two questions posed in 
Chapter 2 regarding this new corpus of emotional speech. These are:  

i. Does the presented speech corpus exhibit acoustic cues that agree with the 
literature?  

ii. Do the acoustic cues known to carry emotional information correlate 
independently of semantic content? 

There are, however, a multitude of steps to move from 1,760 audio recordings of 55 
people to a clean statistical summary of their acoustical properties. So for each of 
the acoustic cues that will be considered, there are 1,760 opportunities for 
assumptions and oversight to elicit erroneous conclusions. A thorough and yet 
(hopefully) concise account of the methods and algorithms used to process the 
stimuli database will thus be given. 

4.2 Analysis Pipeline 
The presented analysis attempts to reduce a large and harmonically rich signal 
down to a collection of statistically representative values, each representing an 
acoustical perspective.  The need for single value representation stems from 
categorical subjective validation; for each label or rating given by a listener, there 
must be one acoustic value to compare to. Each stimulus goes through a set of 
processes that can be broken down into a hierarchical order. Figure 4.1 illustrates 
the general categorization of both the feature type (rows) by process type (columns).  
Signal information moves through this table from left to right. The left column lists 
various common linguistic and acoustic Low-Level-Descriptors (LLDs). These 
include contours that represent F0, intensity, formants etc. 
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Figure 4.1  Analysis pipeline for processing emotional speech. Stimuli is processed into low-level-
descriptors (e.g. F0 contours), upon which functionals can be subsequently applied (e.g. min, max, 
mean, range) (From Fig. 1 Schuller et al. 2011). 

 
The relative wealth of work on traditionally accepted prosodic features such as 
pitch, duration, and intensity features shifted focus away from more modern 
acoustic features (e.g. Cepstrum, Linear Prediction) [21]. A reduced set of LLDs can 
then enter a second phase of processing whereby functionals are applied. 
Functionals consist of any operation that is subsequently applied to the raw LLD 
contours. These consist of normalizing, filtering, as well as simple statistical 
operations such as finding the mean or range of a given contour.  The end result of 
these processes is a set of values for each feature (e.g. Mean of F0, Standard 
Deviation of Formant 1) that characterize a given stimulus. From here, these values 
can be compared to those found in the literature or subjective ratings from a 
listener.   
 

4.3 Calculating the Low-Level Descriptors (LLDs)  

4.3.1 Source considerations 

As previously discussed in Chapter 2, the physics and natural tendencies of the 
source and the receiver necessitate certain spectro-temporal bounds on future 
analyses. The typical range of frequencies and sound pressure levels (SPL) of both 
speech and music is illustrated in Figure 4.2.  
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Figure 4.2  Frequency and amplitudes of music and speech. The bottom contour is the threshold of 
human hearing, and the top (dotted) line indicates where hearing damage can occur (From Fig. 4.13 
Rabiner & Schafer 2011). 

Of particular importance in this figure is the range of frequencies that speech 
typically inhabits, which is between 100 Hz and 7 kHz. The bottom solid line 
indicates the threshold of human hearing for the quietest sounds a person can hear. 
These values are typically 30-70 dB lower than amplitudes of typical speech. Loud, 
emotionally aroused speech may occur at levels slightly higher than normal (80 dB). 
This increase in loudness affects the relative sensitivity of the human ear to various 
frequencies as is illustrated in Figure 4.3. Tones at 125 Hz and 82 dB SPL would be 
heard at roughly 70 phons, which is approximately the same amplitude that an 8 
kHz tone would be heard at 82 dB SPL.      
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Figure 4.3  Equal loudness curves for pure tones (Adapted from Fig 4.14 Rabiner & Schafer 2011, 
data source: international standard ISO226). 

To account for this expanded range of frequencies, a more conservative upper limit 
of 8 kHz is used [11].  By the Nyquist criterion, a sample rate of at least 16 kHz 
should be used for recording or playback of the stimuli. If there is ever a need to 
reference or compare a stimulus to a model of the vocal tract, there needs to be a 
certain time over which one can assume that both systems have a constant physical 
state.  For the human vocal tract, this period of time ranges from 10 to 40 ms in 
length [11].  With these basic details about the voice in mind, a more refined and 
targeted acoustical analysis was performed.     
 
The following sections have been organized in terms of commonly studied prosodic 
features. These include duration, intensity, pitch, and voice quality. The later 
sections will cover features born of modern advancements in DSP algorithms and 
available computational resources. 

4.3.2 Duration 

LLDs that fall into the duration category represent the most global and objectively 
simple characteristics of speech. These features also connect the linguistics of a 
speech episode to a variety of acoustic measures. As these features concern lengths 
of time or counting of units of speech, they tend to be processed at the speech 
episode and utterance level. Prosodic features are suprasegmental by definition; 
therefore, the units of analysis tend to characterize acoustic cues over the length of 
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an utterance and not just a phoneme. Examples of these features include utterance 
duration and silence duration. A detailed explanation of how silent and non-silent 
regions of the stimuli were determined can be found in Chapter 3, section 3.5.2.  
The proportion of pauses (silences) in a speech episode can be calculated by: 
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 ( 4.1 ) 
  
At the utterance level, the stimulus can be classified as voiced or unvoiced. This 
simply differentiates the signal into regions where the glottis is actively generating 
a pulsed excitation at the base of the vocal tract (voiced) or if it is otherwise 
motionless (unvoiced).  This secondary classification affords other LLDs such as 
duration or number of voiced segments and the duration or number of unvoiced 
segments.  Determining where voiced regions are present is a simple matter of 
calculating the pitch of the voice in a given frame of analysis, and comparing the 
strength of the peak correlation to a predetermined threshold. Details on this 
procedure are provided in subsequent sections.  It is still possible to visualize much 
of what the pitch algorithm attempts to categorize through the use of spectrograms. 
Figure 4.4 illustrates how a person does not excite their vocal tract with their vocal 
cords when speaking /s/ or /h/.  The regions of the spectrogram where both of these 
fricatives occur are absent of frequency content close to where F0 could occur.    
 

 
Time (s) 

Figure 4.4  This is a spectrogram of subject 001 speaking "Sorry to hear that" in a happy affect. Both 
the "S" and "h" are aligned with broadband noise and have little low frequency contribution from 
the source. 

 
The duration of the voiced regions in this case are roughly 1.08 s, and the duration 
of the unvoiced regions are 0.19 s.  One can employ some basic knowledge of 
language and linguistics to extract more suprasegmental cues in this utterance.  
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Again referring to Figure 4.4, the number of words and the number of syllables 
within each word can be compared to the duration of the utterance. The utterance 
“Sorry to hear that,” consists of four spoken words. The word rate is given in ( 4.2 ). 
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The word “sorry” has two syllables, while “to”, “hear”, and “that” only have one 
syllable. Their total results in five syllables, and the syllable rate can then be 
calculated as in ( 4.3 ).  
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Previous studies have found that speech rate increases in expressions of anger and 
happiness, and decreases for sadness.  

Intensity  

Intensity features reflect the energy and the perceived loudness of the acoustic 
signal. Although it is possible to calibrate these features so that an absolute 
pressure or intensity can be reported, relative values to microphone voltage are 
more often reported [21] [27] [55] .v  
 
Measured with a microphone, the effective loudness of speech signal can be 
characterized on a long and short-term basis.  Regarding the former case, the Root-
Mean-Square energy of a signal is calculated as: 
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Where N is the total number of samples within the analysis frame, and x is the 
signal. If a value more representative of the perceptual energy is desired, the signal 
can be A-weighted prior to computing the RMS. The intensity calculations that were 
used in the acoustic analysis for comparisons between emotional expressions were 
performed at the utterance level and divided into both an original “raw” group and a 
normalized group. These groupings were made in order to differentiate between 
                                            
v The normalization discussed in Chapter 3 still allows for within-utterance 
intensity analysis. Analysis of the signal intensity as encoded (not as presented) 
requires adjusting levels to their pre-gain adjusted level.  



 68 

analysis of relative amplitudes as produced by each encoder at the time of the 
recording and the amplitudes of the stimuli as they were presented to the listeners 
(see Chapter 5 for details).  
 
Regarding estimates for the original amplitudes, both the gain settings on the M-
Audio M-Track sound card and a calibration curve were necessary for pre-scaling. 
As was described in Chapter 3, gain settings for each stimulus were documented as 
part of the recording process on a scale from 0-100 in increments of 5. As it was not 
known whether the tick marks on the gain dial were linearly related, a calibration 
curve was created from which the documented gain indices could later refer to. This 
calibration curve was created by sending a 1 VRMS sinusoid at 1 kHz into the line 
input of the sound card, and recording the ratio between the input RMS amplitude 
and the RMS amplitude of the recorded sinusoid (see Appendix D). Three values for 
each tick mark were recorded and their average served as the reference for that 
index. A scaling factor for each stimulus was created by using finding the point on 
the calibration curve referenced by the recorded gain setting. Linear interpolation 
was used as necessary to determine values that were between tick marks.  
 
To calculate the estimated proportional amplitude of a stimulus at the time of the 
recording, the signal was first divided by its corresponding scale factor and then A-
weighted by using the following pre-computed filter coefficients and the MatLab 
filter function: 
 

b = [1.184072  -2.368144  1.184072] 
a = [1.000000  -1.893870  0.895160] 

 
These values were generated for a sample rate of 48 kilosamples per second, and 
are representative of an approximation of the A-weighting curve at the following 
characteristic frequency values given by the (exact) ANSI standard S1.4-1983:  
 

f1 = 20.598997 Hz ; f2 = 107.65265 Hz ; f3 = 737.86223 Hz; f4 = 12194.22 Hz 
 
The intensity was then calculated as the sound pressure level in dB with reference 
to unity: 
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Where xA is the A-weighted time series with or without the scaling factor. The time-
dependent intensity contour was calculated in similar fashion to the operation of 
sound-level meters. This was accomplished by exponentially averaging the square of 
the A-weighted time series with a time constant of 35 ms. This is the ANSI 
standard for the impulse setting on sound level meters, and is much shorter than 
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the fast time constant setting of 125 ms. Exponential averaging was done using the 
MatLab filter function, and the coefficients B = [0 α] , A = [1 α-1] where α is given 
by: 
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 ( 4.6 ) 

  
 
Where Tc is the time constant for sound level meters at the impulse setting (35 ms). 
The intensity contour was then calculated at every point along the time series as: 
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Where the subscript I indicates that the standard ANSI time constant for impulsive 
sounds was used. The emulation of the sound level meter at a considerably faster 
time constant than the fast setting was done in order to maximize the compatibility 
of the results with other studies that have used a similar set process. The speech 
processing software PRAAT is frequently used to perform short-term calculations 
that make up an intensity contour [56]. PRAAT’s calculation for the intensity 
contour starts by convolving the squared time series with a Gaussian window that 
is 32 ms in length (as a default). PRAAT then computes the intensity in dB with 
reference to 20 µPa, assuming that the time series has already been converted to 
Pascals. Using this calculation method would have artificially inflated the values 
reported. It was determined that the best course of action was to use a standardized 
ANSI sound level estimation method with a standard time constant that was 
similar to that of many other studies in speech processing.  It should be noted that 
when mean values were specifically of interest, Equation ( 4.5 ) was used, while 
values for the standard deviation used Equation ( 4.7 ).   

4.3.3 Pitch (F0) 

F0, also known as the pitch or fundamental frequency of speech is one of the most 
widely studied prosodic feature in speech communication [21].  F0 is useful for both 
linguistic and affective prosody.  Questions in American English are often posed 
with an upward inflection towards the end of the sentence. In fact, sentences need 
not be complete or grammatically correct for one to successfully communicate a 
simple question if the F0 contour follows the traditional upward trend (e.g. 
“dinner?”).  Additionally, people often read off a list of items by starting at a lower 
frequency and ending at a higher frequency for each item. Although the emotional 
content is of more interest to the presented work, it is worth being aware of F0’s 
linguistic functions as they may interfere with future contour-dependent analyses.   
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This section defines F0 in the context of the voice production system. Such an 
approach is intended to clarify the intent, strengths, and weaknesses of F0 
estimation algorithms operating on a physical source.  
 
Recall the glottis from the physical model of the speech production from Section 
2.2.2. F0 is defined as the rate of the opening and closing of the glottis and is given 
in Hertz (Hz). The nature of the excitation source along with the spectral 
modifications inherent caused by the vocal tract are contrasted between Figure 4.5 
(a - c). The motion of the glottis and its spectral contributions are best represented 
as a train of impulses, not a pure sinusoid. Frequency-domain pitch estimation of a 
pure sinusoid offers little computational burden (Figure 4.5 (a)), while tracing zero-
crossings or peak spacing in the time domain of (Figure 4.5 (b)) and (Figure 4.5 (a)) 
renders equal ease for the task at hand. A quintessential speech processing problem 
arises when vocal tract resonances amplify harmonics above the fundamental in 
Figure 4.5 (c). Such obstacles have been hurdled in a variety of ways, and each 
method carries with it advantages and disadvantages. 
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(a) 

 
(b) 

 
(c) 

Figure 4.5 (a) a sinusoid and its corresponding magnitude spectrum. (b) an impulse train and its 
magnitude spectrum. (c) a synthetic vowel at 200 Hz and its corresponding spectrum (From Fig. 
10.16, 10.17, 10.18 Rabiner & Schafer 2011).  

 
The first attempts at pitch extraction battled valiantly against computational 
limitations of the mid-twentieth century. Time-domain methods of categorizing 
speech waveform amplitudes produced a dense forest of logic trees, the fruits of 
which rarely outperformed peak extraction by the naked eye (Gold, 1962).  Auto-
correlation by way of the short-time Fourier Transform (STFT) redefined the search 
for F0 in terms of time delays. While more computationally taxing, this method 
advanced the effort into a form currently implemented in modern digital hardware 
[11]. The following section will present a method that builds upon the auto-
correlation procedure for estimating F0. 
 
The autocorrelation function gives a measure of the periodicity of a signal. In the 
time domain, the auto-correlation function works by shifting a signal down the 
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length of an identical copy, and integrating their product with respect to time. 
Given a signal x, the autocorrelation function is defined by ( 4.8 ).  
 

	 (kk l =
1
g

V 5 V l + 5 ?5
h

]
 ( 4.8 ) 

 
 
A powerful property of this function, as noted by Rabiner is that pitch estimation by 
way of peak detection is independent of the “time origin of the periodic signal.” 
Figure 4.6 illustrates a perfect sinusoid (a) and it’s associated autocorrelation (b) 
 
 

 
Figure 4.6  These four plots represent a. sinusoidal signal b. the autocorrelation of the sinusoid c. a 
signal of random noise and d. the autocorrelation of the random noise signal. 

 
Qualitatively, a sinusoid will have a sinusoidal autocorrelation because of periodic 
alignment as depicted in Figure 4.6 (a). The peaks of the auto-correlation occur at 
time shifts equal to the period of the sinusoid (b). Conversely, signals comprised of 
random noise as shown in Figure 4.6 (c) result in a near delta function at zero time 
shift and much smaller peaks with increasing time shift (d).  For a signal with 
multiple sinusoidal components, the peaks located at larger time shifts correspond 
to the lower frequency components, while the peaks at shorter time shifts 
correspond to the higher frequency components.   
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As mentioned previously, the vocal tract colors the otherwise flat spectrum of an 
impulse train. The autocorrelation function is affected analogously: peaks in the 
autocorrelation corresponding to higher harmonics (shorter lag times) are often 
amplified above the peak at the lag time of the fundamental frequency. Rabiner 
proposed first low-pass filtering the speech signal with a cut-off frequency of 900 
Hz, then center-clipping the resulting waveform at a variable threshold so that just 
the tips of the largest peaks are included in the analysis. While effective in many 
cases, this algorithm relies heavily on speaker conformity, especially when 
considering expressive speech. Several phonetically described formants fall below 
900 Hz for both males and females, while expressive vocalized squeals push beyond 
900 Hz. Regardless of the situational shortfalls, this algorithm removes potentially 
useful information within the autocorrelation such as the relative energy of the 
periodic components. Boersma (1993) addresses these very issues with a 
surprisingly simple modification.   
 
Considered by many to be the standard reference for pitch estimation, PRAAT 
software provides a multitude of speech processing tools with explanations for how 
each object operates [56]. Both Boersma and Rabiner use autocorrelation as the 
primary tool for estimating the pitch, but where they differ is in their respective 
solutions to “spectral flattening,” or more specifically emphasizing lower frequencies 
over the formants as previously discussed.  The proposed algorithm aims to 
accurately estimate both the excitation frequency of the glottis and the relative 
amplitude  of this periodic component with respect to the rest of the signal [57]. 
Thus, filtering and center-clipping methods were not considered. Instead, Boersma 
proposes dividing the windowed autocorrelation of the voiced segment of speech ra(t) 
by the autocorrelation of the window itself rw (t ). This process boosts the 
amplitudes of peaks in the autocorrelation at longer lag times proportionately to the 
taper of the window.  
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Figure 4.7  This is a graphical representation of the process of weighting the autocorrelation function. 
Source: Boersma (1993). 

 
Peaks above a threshold correlation value and within a range of time lags are 
preserved, and the process is repeated to the end of the speech signal. Figure 4.8 
gives an example matrix of pitch estimations through which a path finder can be 
applied to determine a physically reasonable pitch contour. Here, lower frequencies 
are preferred while octave jumps beyond physical normality are ignored.  
 

 
Figure 4.8  This is a screenshot of all of the candidates for the eventual F0 contour output by Praat. 
Praat's algorithm determines the best possible path based off of the magnitude of the numbers along 
the contour and jump distances. 

 
The PRAAT “To Pitch (ac)…” was provided the following parameters for the 
autocorrelation method algorithm: a time step between analysis frames of 2 ms, a 
minimum possible F0 value of 75 Hz to extend expected range slightly lower than 

Time (s) 
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most female voices, a Gaussian analysis window of 6 times the maximum possible 
pitch period, a F0 ceiling of 900 Hz, the maximum number of F0 candidates to 15, a 
silence threshold of 0.01, a voicing threshold of 60% of the maximum possible 
autocorrelation, an octave cost of 0.01, an octave-jump cost of 0.35, and degree of 
disfavoring voice/unvoiced transitions of 14% relative to the maximum 
autocorrelation. Additionally, the algorithm was set to remove octave jumps that 
were likely made of error, and to not conduct any smoothing along the resulting F0 
contour.  
 

4.3.4 Voice quality 

The voice quality category includes features that are less frequently associated with 
the classic prosodic cues of duration, intensity, and F0 [58]. As such, the conceptual 
categorization of specific LLDs within this category have also changed over time. 
For example, short-term deviations in F0 and intensity have been grouped 
separately from voice quality (and with F0 and intensity) [3] [59], while others have 
left these cues as their own category altogether [21] [58] [60]. The long-term average 
spectrum has often received its own category [3] [21] [27] apart from voice quality 
as well.  For the sake of simplicity, every acoustic cue that does not fall strictly into 
the category of duration, intensity, and F0 as they have classically been organized 
shall be grouped as a voice quality cue [61].  
 
Broadly speaking, acoustic cues that fall into the voice quality category reflect the 
differences in the style of excitation and amplification of the voice production 
system [60].  The proposed categorization of long and short-term spectrotemporal 
quantities has created a vast range of objective perspectives on the voice which will 
be further subdivided in the following text. Short term deviations in F0 and 
intensity like jitter and shimmer will also be grouped with harmonics-to-noise ratio. 
 
Long-Term-Average Spectrum   
 
Features that belong to this subcategory illustrate various characteristics of the 
Long-Term-Average Spectum (LTAS). Computed over the entire utterance, the 
Discrete Fourier Tranform (DFT) is defined as [11]: 
 

	 n o = V(8))
pqrstu

v

YZ"

[\]

 ( 4.9 ) 

 
where x(n) is real, N is the length of the signal in samples, n = t/T (current 
time/total time) is the sample index, and the frequency bin index m is an integer 
multiple of the frequency resolution (df = fs/N) and is defined from 0 to N/2 +1.  
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The Alpha ratio provides a dimensionless measure for the proportion of energy 
above and below a specified cutoff frequency. This quantity is defined as the ratio of 
the summed energy from 50 Hz -1000 Hz to the summed energy between 1000 Hz - 
5000 Hz [62]. This quantity is calculated as follows: 
 

	 Lw =
n(o)Txy

Tz{

n(o)Tzy
Txy|"

 ( 4.10) 

 
where mi is the frequency bin that corresponds to the range of frequencies provided 
in the summations.  
 
The Hammarberg index is another dimensionless ratio of spectral energy in the 
LTAS. Instead of summing the total energy above and below a cutoff frequency, the 
Hammarberg index is computed by dividing the point of maximum amplitude 
between 0-2 kHz by the point of maximum amplitude between 2 – 5 kHz [33]: 
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 ( 4.11) 

 
  
Similar to the alpha ratio, the ratio of high frequency to low frequency energy has 
also been examined [55] [59] [63].  Juslin et al. (2001) defines Shf500 as the ratio of 
the total energy of the spectrum above 500 Hz to the total energy below 500 Hz:  
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 ( 4.12) 

 
where M is the highest frequency bin in which X(m) is defined. Previous studies 
have used similar metric definitions except with the numerator and denominator 
reversed [27] [61]. Correcting for this is a simple matter of inverting the result to 
match the desired definition. It should be noted that many of the aforementioned 
parameters such as alpha and Shf500 are proportional to the slope of the spectrum if 
the frequency range is included. Officially, the Spectral Slope is defined as the slope 
of the linear regression line of the LTAS between 1-5 kHz [64].  
 
  
The center of gravity of the spectrum treats the spectrum like a distributed mass. If 
the frequency vector of a spectrum is treated like a measure of distance, the 
amplitude of the spectrum then becomes the relative quantity of mass at each 
frequency bin. The frequency at which the spectrum is balanced is calculated as: 
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Formants 
 
Of the LLDs addressed up to this point, few are as directly representative of the 
physical state of the vocal tract as the formants. Formants are the resonance 
frequencies of the vocal tract tube [11]. Changes in the length, wall conditions, and 
area function of vocal tract modify the positions, amplitudes, and bandwidths of the 
formants. As previously stated, this coloration of the speech spectra enables 
acoustical differentiation between types of vowels. The relationship between vowel 
type has been well documented [65], and a small sample of the findings is provided 
in Figure 4.9.   
 

 
Figure 4.9  Vowels of American English and their corresponding formant frequency and amplitude. 
Source: Peterson and Barney (1952) 

Consider for a moment the values for F1 between IH and EH. For women, a small 
change in the pronunciation of IH to a more open EH results in an average delta of 
200 Hz. The same can be seen for F1 between AA and AO (850 Hz to 590 Hz). So 
although vowels traditionally prescribe a relatively consistent harmonic structure 
in spoken vowels, small deviations from normal pronunciation present a viable 
pathway towards emotion discrimination. In similar fashion, results from previous 
studies suggest that formants are in fact modulated by emotion [27] [55] [66] [67].   
  
The task of calculating the formant frequencies and amplitudes is still quite 
laborious and prone to error. Rather than steer the text of this written work into the 
weeds of linear predictive coding (LPC), details on the Burg algorithm can be found 
from the reference section [68]. The parameters input to the formant estimating 
function include: 6500 Hz for the maximum possible frequency of the highest 
formant, the maximum number of formants equal to five, a time step between 
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analysis frames of 5 ms, the analysis window equal to 25 ms, and finally the pre-
emphasis frequency set to 50 Hz. The pre-emphasis parameter indicates the cutoff 
frequency of the high-pass filter applied to the signal, which is intended to correct 
for low frequency weighting that occurs during the processing. 
 
 
Short Term Variability 
 
Acoustic cues related to short-term variability include Jitter, Shimmer, and the 
Harmonics-to-Noise Ratio (HNR). All three of these parameters are offered by 
PRAAT [56]. PRAAT offers several methods for calculating jitter, ranging from 
absolute estimations (local, absolute) to five-point period perturbation quotients 
(ppq5).  The default calculation is the relative local method “(local)” and is defined 
as the average absolute difference between consecutive periods, divided by the 
average period. The local relative method is the version used here. As this 
parameter compares F0 values to one-another, the F0 contour must first be 
calculated (see previous section on F0 for details). Once the F0 contour is known, 
the absolute jitter values are first calculated by: 
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 ( 4.14 ) 

   
where T is the inverse of F0 or the pitch period, and Ti  is  duration of the ith period, 
measured in seconds. Because F0 values across an utterance may be missing due to 
noise or weakness in the estimation, only pitch period values within a physically 
reasonable range are considered. The minimum or period floor has been set to 0.1 
ms or 10kHz, and the maximum period or period ceiling has been set to 10 ms or 
100 Hz. For male speakers, this period ceiling should likely be increased to 
accommodate lower voices.  Next, the mean period is calculated as: 
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 ( 4.15 ) 

Finally, the relative jitter is given by: 
 

	 I0âäãã,b = å655)3 = 	
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 ( 4.16 ) 

 
 
where jitter ranges between 0% and 200%. The Multi-Dimensional Voice Program 
(MDVP) reports that values of 1.04% from this method are a threshold for pathology 
[69]. Shimmer also measures short-term deviations of a speech signal. Instead of 
temporal deviations of the provided period, shimmer determines the relative or 
absolute deviations in amplitude.  The chosen method for calculating shimmer is 



 79 

the relative local option “(local)”. The equations for calculating shimmer are exactly 
the same as ( 4.8 )( 4.14 )( 4.15 ), but with absolute amplitude in place of the period 
T. Values for shimmer are given in percent, and the MDVP uses 3.810% [69].  
 
As discussed in section 1.2., the speech production system works to both filter the 
spectrum of the impulse train and contribute broadband noise into the speech 
signal. As a result, speech contains a combination of periodic components and 
broadband noise. Anger often moves the voice to produce stronger fricatives by 
tightening up the constrictions in the vocal tract that create vortex shedding or by 
increasing Reynold’s number.  
 
The noise present in speech is rarely ever constant. Consonants located throughout 
an utterance produce varying degrees of broadband noise depending on the state of 
voicing, placement in a word, and even state of physical stress. Bitter conversations 
uttered through gritted teeth muffle the periodic contributions from the 
fundamental and formant frequencies while tightened constrictions at the oral 
cavity produce additional noise.  
 
Boersma’s algorithm for the Harmonics-To-Noise Ratio (HNR) refines the accuracy 
in determining the strength of a signal’s periodic content relative to the power of the 
noise component.  The basis for the analysis is the normalized autocorrelation in ( 
4.17 ). 
 

	 3ké l =
3k(l)
3k(0)

 ( 4.17 ) 
 
Where the numerator is the autocorrelation of the signal and the denominator is the 
value of the autocorrelation at zero time-lag. By definition, the value in the 
denominator is the mean square of the signal, and it represents the power 
contributions from both the noise N(t) and periodic components H(t). The power of 
the strongest periodic component of the signal is defined in Equation ( 4.18 ). This 
value is taken at the time-lag equal to one period and then normalized by the value 
of the autocorrelation at zero time-lag.   
 

	 3ké lT/k =
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=
3è(0)
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 ( 4.18 ) 
 
Normalization has limited the range of possible values from 0 to 1. With this in 
mind, subtracting the normalized periodic peak value from one results in a measure 
of the noise power in the signal ( 4.19 ).  
 

	 êU( = 1 − 3ké lT/k =
3Y(0)
3k(0)

 ( 4.19 ) 
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Although this equation neglects the contributions of other periodic components in 
the signal, the lack of filtering and short-term viability of the analysis provides a 
repeatable and speaker-independent metric.  

Modern Advancements 

The LLDs covered so far reflect but a small portion of the advancements made in 
both digital signal processing and computational statistics. A combination of linear 
predictive coding and cepstral analysis has boosted the accuracy of digital 
representations of speech to the point where telephone companies can fully 
reconstruct speech signals from a small set of features [11]. The mel frequency 
cepstral coefficients (MFCC) and their first derivative provide enough information 
to conduct system identification and perceptually meaningful and smooth 
reconstruction of the original signal. Although robust to noise and certainly useful 
for automatic speech recognition, application of these features requires 
exceptionally advanced time-alignment and statistical modeling to be useful beyond 
signal reconstruction. Recent work by Zhou et al. (2001) found that MFCCs perform 
poorly in emotion classification.  
 
The trend of more modern studies in automatic emotion classification is the use of 
machine learning techniques such as artificial neural networks (ANN), linear 
discriminant analysis (LDA), and hidden Markov models (HMM) on acoustic (and 
sometimes semantic) data sets [34] [44] [58].   
 

4.4 Results  
 
The manner of recording the stimuli limited the length of the possible utterances to 
a cumulative sum of 10 seconds per measured stimulus. This limitation also affects 
the possible range and variance of utterance lengths as observed from the script-
level. Within each script, however, words with varying numbers of syllables, lists, 
questions, and more could potentially influence various duration LLDs. This 
compelled the LLD extraction to be conducted on the utterance level for all of the 
stimuli. This produced a total of 7040 values for each LLD (55 encoders X 4 affects 
X 8 scripts X 4 utterances). Table 4.1 gives a statistical summary of each LLD with 
a functional typically used to describe a salient emotional cue.  
 
The average utterance length (Tutt) was 1.29 seconds with a standard deviation of 
less than 30% of the mean. The average duration of the voiced segments was 0.82 
seconds (σ = 0.26), which makes up about 64% of the total utterances. This indicates 
that the vast majority of the utterances are comprised of speech where the glottis is 
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actively exciting the vocal tract. The closest LLD to the description of speech rate is 
the number of syllables per second (Fsyll), which had a mean value of 4 Syl./s (σ = 
1.06). It should be noted that syllabic rate and script may correlate as this quantity 
was calculated by dividing the integer number of phonetic units per utterance by 
the length of the utterance.  
 
Although the word intensity has been used to describe an acoustic phenomena in 
previous works, here the term sound level (LAI,M) will be used in order to avoid 
confusion in future analyses of the subjective intensities.  The subscript “A” 
indicates that the digital signals were A-weighted prior to integration. Strictly 
speaking, the functionals denoted by “M” or “SD” in the subscript for LAI,M do not 
apply to the same contour of values. LAI,M was calculated by integrating the A-
weighted, gain adjusted digital signal, and dividing by the duration of the signal in 
seconds. LAI,R and LAI,SD took the range and standard deviation respectively of an 
exponentially averaged sound level contour. This calculation of this contour follows 
the standards for sound level meters set to an impulse time constant of 35 ms and 
A-weighted spectra.  The signals fed to this process were adjusted to match the 
relative amplitude before the gain was applied to the signal entering the sound 
card. So although the absolute values of the LAI,M are not an accurate 
representation of the sound pressure level of the encoder, the relative differences 
are still viable. All sound level standard deviations were within roughly 35% of 
their respective means.  
	
F0 LLDs exhibited slightly more variance than the duration or intensity cues in 
Table 4.1. F0R (µ =173 Hz) and F0SD (µ = 46 Hz) had standard deviations of 
approximately 80% of their respective means. This suggests that more information 
may be present in these features than others. 
	
The alpha ratio Sα (µ = 6.45 dB, σ = 6.06 dB) had variance near 90% of its mean, as 
did the ratio of high frequency energy above 500 Hz to the energy below 500 Hz 
(Shf500). The generally large amount of variance in the spectral ratios necessitate 
closer examination. 
	
Regarding the formant-based LLDs, F1M (µ = 513.08 Hz, σ = 74.9 Hz), F1SD (µ = 
169.52 Hz, σ = 33.36 Hz), and F1bw,M (µ = 172.5 Hz, σ = 58.21 Hz) all fell within 
typical ranges for female speakers. The values for the second formant F2M (µ = 
2012.16 Hz, σ = 176.89 Hz), F2SD (µ = 499.99 Hz, σ = 83.3 Hz), and F2bw,M (µ = 
307.64 Hz, σ = 47.89 Hz) have lower variance than expected. The standard deviation 
of F2M across the stimuli is only 9% of the mean. This may be indicative of excessive 
outlier reduction and a loss of information due to the extraction methods.  F1prec,M (µ 
= 1092%, σ = 925%), the absolute percent difference of the first formant frequency’s 
deviation from the neutral affect counterpart exhibited variance across the corpus 
on the order of 85%. F2prec,M (µ = 484%, σ = 430%) followed similarly.  
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Short-term voice quality features like the harmonics-to-noise ratio HNRM  (µ = 7.49 
dB, σ = 3.29 dB) indicate that the stimuli was in fact comprised of significantly 
periodic content. The mean autocorrelation Rx,M (µ = -164.01 dB, σ = 19.46 dB) 
showed very little deviation across the body of stimuli. Jitter (F0jitt,M , µ  = 2.65%, σ = 
1.16%) and shimmer (LAI,shimm, µ = 8.0%, σ = 2.47 %) exhibited relatively high values 
according to the PRAAT reference of 1.04% and 3.810% for voice pathology 
respectively.  
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Table 4.1  Statistical summary of LLD-functional pairs. All values are calculated across all encoders, 
affects, scripts, and utterances. 

f(LLD)	 Units	 Mean	 Min	 Max	 SD	

Tutt s	 1.29	 0.44	 3.24	 0.35	
Tvo s	 0.82	 0.10	 2.52	 0.26	
Ppaus s/s	 35.18	 0.23	 87.24	 14.61	
Fsyll Syl./s	 4.00	 1.10	 9.00	 1.06	
LAI,M dB	re:	1	 -29.14	 -49.64	 -5.54	 7.60	
LAI,R dB	re:	1	 33.78	 10.59	 107.20	 11.75	
LAI,SD dB	re:	1	 7.30	 2.32	 33.25	 2.48	
F0M Hz	 229.23	 101.96	 597.01	 68.78	
F0R Hz	 173.05	 3.87	 792.37	 136.64	
F0SD Hz	 46.25	 1.35	 246.46	 38.07	
Sα dB	re:	1	 6.45	 -12.56	 25.33	 6.06	
Shamm dB	re:	1	 18.72	 -3.22	 42.52	 7.73	
Shf500 dB	re:	1	 1.29	 0.09	 11.30	 1.15	
Shf1k dB	re:	1	 0.60	 0.05	 4.25	 0.44	

Scog dB/Hz	 1004.77	 194.28	 6246.53	 581.30	

Sslope Hz	 -0.004	 -0.013	 0.006	 0.002	
F1M Hz	 513.08	 253.80	 779.69	 74.90	
F1SD Hz	 169.52	 25.22	 273.62	 33.36	
F1bw,M Hz	 172.50	 5.14	 427.61	 58.21	
F2M Hz	 2012.16	 1395.97	 2473.71	 176.89	
F2SD Hz	 499.99	 156.78	 798.32	 83.30	
F2bw,M Hz	 307.64	 82.73	 494.85	 47.89	
F1prec,M %	 1092.18	 0.29	 9753.28	 925.41	
F2prec,M %	 484.44	 0.77	 4326.91	 430.31	
HNRM  dB	re:	1	 7.49	 -0.53	 22.04	 3.29	
Rx,M dB	re:	1	 -164.01	 -318.72	 -67.17	 19.46	
F0jitt,M %	 2.65	 0.45	 10.41	 1.16	
LA,shim %	 8.00	 2.41	 31.66	 2.47	

Note:	Tutt = duration of the utterances (s), Tvo = duration of the voiced sections (s), Ppaus = proportion of 
pauses, Fsyll = syllabic rate (Syl./s),  LAF,M = mean intensity (dB), LAF,R = range of intensity, LAF,SD = 
standard deviation of intensity, F0M = mean fundamental frequency, F0R = range of fundamental 
frequency, F0SD = standard deviation of fundamental frequency, Salpha = spectrum alpha ratio, ShaMM 
= spectrum Hammarberg Index, Shf500 = spectrum high frequency energy  ratio (fc = 500 Hz), Shf1k = 
spectrum high frequency energy  ratio (fc = 1 kHz), Scog = spectrum center of gravity, Sslope = spectral 
slope, F1M = mean first formant frequency (Hz), F1SD = standard deviation of the first formant 
frequency, F1bw,M = mean bandwidth of first formant, F1prec,M = first formant frequency precision, 
HNRM = mean harmonics-to-noise ratio,  Rx,M = mean autocorrelation, F0jitt,M = mean jitter of the 
fundamental frequency, LA,shiM = mean shimmer of the intensity.  
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The next stage of the analysis aims to identify how each of the LLDs correlate with 
one another. Before running between-LLD correlations, values for each LLD were 
normalized to each speaker’s mean value and standard deviation. This maneuver 
follows the recommendations made by Banse & Scherer (1996) who note that 
speaker-specific baseline values for many of the acoustic cues may mask emotion’s 
differential effect. Table 4.2 gives Pearson’s linear correlation coefficient for each 
LLD after normalizing to within subject mean and variance across all four affect.   
 
Beginning from the left column labeled “1”, as expected, Tutt was most highly 
correlated with Tvo (r = 0.94 , p < 0.05) and Ppaus (r = 0.83, p < 0.05). The overall 
trend in the matrix results show high correlations for the same LLDs with different 
functionals applied to them such as F0R and F0SD (r = 0.87, p < 0.05). Spectral 
measures such as Sα and Shf1k (r= -0.68, p < 0.05) also correlated as expected. This is 
likely due to the similarity of their precise definitions as ratios of summed spectral 
energy (the numerator and denominator of Sα and Shf1k are similar if reversed). 
HNRM and F0M were moderately correlated (r = 0.26, p < 0.001). The sorted sum of 
the absolute values in this matrix (excluding duration quantities) Sα , Shamm, F1M, 
LAF,SD, F2M, and F0M, as the top six most highly correlated LLDs with the set.  
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The predictions made by Scherer (1986) indicate the direction that an LLD is likely 
to move in relative to its value in an unemotional state. Magnitude of changes in 
each LLD have also been provided where applicable. These predictions provide a 
preliminary set of references to compare the general acoustical trends of the speech 
corpus. Because Scherer’s definitions are more broad than many of the exact 
definitions of each LLD equation, some comparisons between prediction and LLD 
will require some minor interpretation. Scherer’s predictions indicate changes in 
acoustics resulting from the range of applicable stimulus evaluation checks (SEC) 
[6]. As a reminder, the hierarchical performance of these five SECs is the essential 
basis for emotional differentiation according to Scherer (see Table 4.3). The “novelty 
check” is the first SEC that the encoder will perform. Here, the encoder determines 
whether any patterns of external or internal stimuli have changed in a noticeable or 
abrupt manner. Next, the encoder performs an “Internal pleasantness check” to 
determine if this stimulus is enjoyable or not. The three following SECs include: 
“Goal/need significance”, “Coping potential”, and “Norm/self compatibility” checks of 
the stimulus. 
 
Referred to as anger, happiness, and sadness, these three emotional states as 
intended are most similar to equivalent to Scherer’s definitions of rage or hot anger, 
elation or joy, and sadness or dejection. Stimuli producing an angry emotional state 
(as hypothesized by Scherer) would be interpreted as very novel, [pleasant = open], 
extremely significant and obstructing of the encoder’s goals, and in immediate need 
of a behavioral response. Additionally, the stimulus would be evaluated as having a 
high coping potential, and that the cause of the stimulus incompatible with both 
societal and personal norms.  
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Table 4.3 Summary of the stimulus evaluation checks in their order of processing (adapted from 
Scherer 1986). 

Category	 SEC	 Anger	 Happiness	 Sadness	
1	 Novelty	 high	 high	 low	
2	 Pleasantness	 open	 high	 low	
3.1	 Relevance	 high	 high	 high	
3.2	 Expectation	 discrepant	 discrepant	 discrepant	
3.3	 Conduciveness	 obstruct	 high	 obstruct	
3.4	 Urgency	 high	 low	 low	
4.1	 Control	 high	 -	 none	
4.2	 Power	 high	 -	 -	
4.3	 Adjustment	 high	 medium	 medium	
5.1	 External	 low	 high	 -	
5.2	 Internal	 low	 high	 -	

 
 
Scherer continues to define groupings of these SECs in terms valence, activation, 
and power dimensions. The term “Hedonic Valence” refers to the generally positive 
or negative nature of the pleasantness SEC (#2) and the conduciveness SEC (#3.3).  
The “Activation” grouping refers to the combined influence of the outcomes from the 
relevance (see Table 4.4), expectation (3.2), and urgency (3.4), subchecks. These are 
thought to influence the dominance of the sympathetic nervous system (ergotropic 
arousal).  Recall that the sympathetic nervous system is a branch of the autonomic 
nervous system (ANS) that determines when to expend lots of energy depending in 
an emergency.  Lastly, the power group refers to the fourth SEC or “Coping 
potential.”  
 

Table 4.4  Groupings for the SECs by valence, activation, and power. Adapted from Scherer (1986). 

Emotion	 Hedonic	Valence	 Activation	 Power	
Anger	 narrow	 very	tense	 extremely	full	

Happiness	 wide	 medium-tense	 medium-full	
Sadness	 narrow	 lax	 thin	

 
The scope of this study is limited to three emotions. This merits a hierarchical 
organization in favor of emotion rather than LLD category.  Based on the overall 
outcomes of the valence, activation, and power SEC groupings, anger would be 
characterized by a narrow, very tense, and extremely full voice. Figure 4.10 
illustrates the specific source of many of these outcomes in sequential order.  
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Figure 4.10  Chronological flow of SECs and the hypothesized voice type each outcome may produce. 

A narrow voice would be characterized by faucal and pharyngeal constriction, a 
tensing of the tract walls, shortening of the vocal tract and corners of the mouth 
retracted downward. These physical changes would increase the high frequency 
energy, while increasing the frequency of the first formant and sharpening the first 
formant bandwidth. The second and third formant would likely decrease in 
frequency. A tense voice would likely consist of increased tension in the entire 
system: constrictions of the upper larynx and pharynx, and tensing of the muscles 
surrounding the larynx. A decrease in salivation would likely occur. These changes 
would likely raise the F0 of the glottis, further boost both high frequency energy, 
decrease the bandwidth of the first formant, and possibly increase jitter and 
shimmer.  Finally, the fullness of the angry voice would work to further relax the 
vocal apparatus, deepen the amount of respiration, and move the phonation register 
toward the chest. This would lower the F0 and boost the overall loudness of the 
voice. 
 
 
Table 4.5 gives the predicted and observed changes in LLDs from a non-expressive 
state to anger. Of the measured acoustic cues with available predictions, nine 
followed the predicted direction of change, and three changed in the opposite 
direction. Nine out of the twelve or 75% of the results for anger agreed with 
predictions. The prediction for F0M indicates that increases or decreases should be 
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expected depending on which voice type dominates the expression. For anger, the 
opposing effects may be the power SEC decreasing F0 and SECs within the 
activation category that increase F0 (see	Figure 4.10).		
 
Table 4.5  Comparison of predictions and outcomes for differences in LLDs between a non-expressive 
state and anger. + indicates an increase, - indicates a decrease, and = indicates no change. 

	  
Emotion	

	  
Anger	(rage)	

Category	 Acoustic	Cue	 Prediction	 Result	 Agreement	 Symbol	
F0	 Perturbation	 +	 -	 no	 F0jitt,M	

	
Mean	 ±	 +	 -	 F0M	

	
Range	 +	+	 +	 yes	 F0R	

		 Variability	 +	+	 +	 yes	 F0SD	

Intensity	 Mean	 +	+	 +	 yes	 LAI,M	

	
Range	 +	 +	 yes	 LAI,R	

		 Variability	 +	 +	 yes	 LAI,SD	

Voice	Quality	 High-Frequency	Energy	 +	+	 +	 yes	 Shf1k	

	
Spectral	Noise	

	
+	

	

(HNRM)-1	

	
F1	mean	 +	 +	 yes	 F1M	

	
F2	mean	 -	 +	 no	 F2M	

	
F1	bandwidth	 -	-	 -	 yes	 F1bw,M	

		 Formant	precision	 +	 +	 yes	 F1prec,M	

Duration	 Speech	Rate	 +	 -	 no	 Fsyll	
 
The results for anger align well with predictions for LLDs in the intensity category, 
however differences can be seen in the F0 category, voice quality, and duration 
category LLDs.  Anger produced significantly lower F0 perturbations (F0jitt,M), 
higher F0M than neutral expressions, and both the second formant mean frequency 
(F1M) and speech rate (Fsyll) moved in opposite directions from predicted. Scherer’s 
predictions for the movement of the second and third formant frequencies is largely 
dependent on a combination of facial expressions and laryngeal constrictions. Many 
possible factors such as the text of the words spoken could have influenced F2M to 
increase consistently from neutral. The decrease in speech rate from a non-
expressive state to anger was an unexpected result and one that opposes the 
general consensus of the literature to date [10] [22]. Further discussion of these 
findings is provided in the following sections. 
 
Table 4.6 gives the predicted change in LLD for expressions of happiness and the 
observed delta. Nine out of the twelve or 75% of the results for happiness agreed 
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with predictions. Strong agreement was found for all F0 and intensity LLDs except 
for F0 perturbations (F0jitt,M), which were lower than predicted. Only the formant 
precision (F1prec,M) results agreed with predicted changes with unambiguous 
directions. As seen in anger, happiness was also marked by significantly lower 
speech rates than the non-expressive state. This too counters the consensus found 
in the literature.  
 
Table 4.6  Comparison of predictions and outcomes for differences in LLDs between a non-expressive 
state and happiness. + indicates an increase, - indicates a decrease, and = indicates no change. 

	  
Emotion	

	  
Happiness	(joy)	

Category	 Acoustic	Cue	 Prediction	 Result	 Agreement	 Symbol	
F0	 Perturbation	 +	 -	 no	 F0jitt,M 

	
Mean	 +	 +	 yes	 F0M 

	
Range	 +	 +	 yes	 F0R 

		 Variability	 +	 +	 yes	 F0SD 
Intensity	 Mean	 +	 +	 yes	 LAI,M 

	
Range	 +	 +	 yes	 LAI,R 

		 Variability	 +	 +	 yes	 LAI,SD 
Voice	Quality	 High-Frequency	Energy	 ±	 +	 yes	 Shf1k 

	
Spectral	Noise	

	
+	

	
(HNRM )-1 

	
F1	mean	 -	 +	 no	 F1M 

	
F2	mean	

	
=	

	
F2M 

	
F1	bandwidth	 ±	 -	 Yes	 F1bw,M 

		 Formant	precision	 +	 +	 Yes	 F1prec,M 
Duration	 Speech	Rate	 +	 -	 No	 Fsyll 
	
Fewer rows of agreement between predicted and observed trends for sadness are 
found in Table 4.7. Just three out of the fourteen or 21% of the results for sadness 
agreed with predictions. None of the F0 LLD predictions aligned perfectly with the 
observed trends. Sadness had statistically equivalent values for F0M compared to 
neutral. Where the range and variation of the F0 values were predicted to decrease, 
the opposite was also observed.  The voice quality category and duration categories 
in Table 4.7 indicate some limited agreement however. High frequency energy 
(Shf1k) decreased and the mean of the first formant’s bandwidth (F1bw,M) increased 
as predicted.  
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Table 4.7  Comparison of predictions and outcomes for differences in LLDs between a non-expressive 
state and sadness. + indicates an increase, - indicates a decrease, and = indicates no change. 

	  
Emotion	

	  
Sadness	(dejection)	

Category	 Acoustic	Cue	 Prediction	 Result	 Agreement	 Symbol	
F0	 Perturbation	 +	 -	 no	 F0jitt,M	

	
Mean	 ±	 =	 no	 F0M	

	
Range	 -	 +	 no	 F0R	

		 Variability	 -	 +	 no	 F0SD	

Intensity	 Mean	 -	-	 =	 no	 LAI,M	

	
Range	 -	 +	 no	 LAI,R	

		 Variability	 -	 +	 no	 LAI,SD	

Voice	Quality	 High-Frequency	Energy	 ±	 -	 yes	 HF1000	

	
Spectral	Noise	 +	 -	 no	 (HNRM )-1	

	
F1	mean	 +	 -	 no	 F1M	

	
F2	mean	 -	 =	 no	 F2M	

	
F1	bandwidth	 ±	 +	 yes	 F1bw,M	

		 Formant	precision	 -	 +	 No	 F1prec,M	

Duration	 Speech	Rate	 -	 -	 yes	 Fsyll	
	
Formant precision has been defined as “the degree to which formant frequencies 
attain values prescribed by phonological system of a language.” The prediction for a 
low arousal and negatively valenced emotion is for this “degree” to decrease rather 
than increase. Previous studies have also measured the precision of articulation, or 
the absolute difference between the first formant frequency and its value in a non-
expressive state [22].  Higher values of this metric indicate an increase in 
articulatory effort and are therefore more precise. By this definition, only the 
frequency values of the first formants for anger, happiness and sadness can be 
compared with one-another. In this case, happiness exhibited the greatest precision 
of articulation for the first formant, followed by anger and sadness (statistically 
equal). The second formant’s precision trended differently with the greatest 
precision given to anger, followed by happiness and sadness. F2prec,M values for 
happiness and sadness were statistically equivalent. When comparing formant 
bandwidths it should be noted that the first and second formant’s bandwidths are 
significantly affected by wall loss and the rounded quality of the glottal pulses [11].  
The results very clearly show that sadness has significantly broader bandwidths 
compared to any other expression, which may be indicative more relaxation in the 
vocal tract compared to the neutral affect.   
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LLDs in the duration category exhibit significant trends that oppose Scherer’s 
predictions. Defined as the “number of speech segments per time unit,” “Speech 
Rate” can be compared to both the syllabic rate and the inverse of the utterance 
length. The results for syllabic rate indicate statistically significant differences 
between all four modes of expression.  Expressions of both anger and happiness 
exhibited much lower speech rates than the neutral expressions. It is unclear why 
emotions that typically fit into a highly aroused dimension would be marked by 
such trends.  
 
The difference between the presented results and the consensus of the related 
works on speech rate may also be caused by the inconsistency of the reference 
frame. Juslin & Laukka (2003) made very clear the difficulty with which fair 
comparison can be conducted between studies take the average LLD value 
exclusively across emotional expressions versus studies that report deviations from 
a neutral affect. Such a difference would account for nearly all of the gross 
deviations for sadness if the neutral expressions were excluded. F0M, LAI,M, LAI,SD all 
share relatively low values compared the means of the emotional expressions but 
higher than the non-emotional expressions.   
 
Banse & Scherer (1996) also tested these predictions in a study with twelve 
professional German speaking actors (6 male, 6 female). Fourteen emotions were 
studied, and the stimuli consisted of scrambled phonemes of Indo-European origin. 
The values presented in Table 4.8 are extracted from Banse & Scherer’s labels for 
HAn (hot anger), Sad, and Ela (elation) in the columns “B & S (1996)”. Adjacent to 
these columns are those for the presented work “PEEP (2017).” Note that it appears 
as though the definition used for the Shamm were difference rather than a ratio of 
spectral power. The later values of PEEP (2017) have been adjusted to reflect this 
proportional difference and sign. Mean-squared-error (MSE) terms were calculated 
between the mean values given and not the standard deviations.  Smaller MSE 
values indicate better agreement between these sets of values. Results were more 
consistent for happiness (MSE = 0.24) than anger (MSE = 0.37) or sadness (MSE = 
0.47).  
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Table 4.8 Means of the normalized LLDs from Banse and Scherer (1996) and the present study. 
Neutral LLDs for PEEP (2017) were included in the normalization to better represent 25% of the 
corpus. 

	 Anger	 Happiness	 Sadness	
Cue	 B	&	S	(1996)	 PEEP	(2017)		 B	&	S	(1996)	 PEEP	(2017)		 B	&	S	(1996)	 PEEP	(2017)		
Tvo -0.45	±	0.66	 0.04	 -0.34	 0.02	 1.25	 0.56	

LAI,M 1.19	 0.98	 1.05	 0.58	 -1.16	 -0.80	
F0M 1.13	 0.01	 1.24	 1.39	 -0.32	 -0.69	
F0SD 0.50	 0.11	 0.21	 1.28	 0.43	 -0.64	
Shamm 1.13	 0.41	 0.58	 0.44	 -0.43	 0.62	
Shf500 -0.55	 -0.79	 -0.29	 -0.29	 1.23	 0.67	
Shf1k -1.34	 -0.77	 -0.05	 -0.38	 0.90	 0.71	
	 MSE:	 0.37	 MSE:	 0.24	 MSE:	 0.47	

 
The analysis up to this point has only examined general, surface level trends found 
in the acoustics of the speech corpus. Still keeping to the utterance level as a unit of 
analysis, this section will shed light on how the full list of acoustic cues particularly 
in the voice quality category compare to previous work.  A review by Juslin & 
Laukka (2003) compiled a broad list of acoustic cues in 77 studies of vocal 
expression. Although predisposed to the objective use of figures and tables, trends 
were also given in terms of each author’s overall categorization of the cues as 
affected by the emotions considered (“high”, “medium”, ”low”). Unfortunately, this 
does not solve the issue of reference frame, however the body of work does lay 
significant groundwork for creating general consensus apart from predictions over a 
larger number of LLDs. 
 
In order to compare to these trends, a one-way repeated measures ANOVA was 
performed on the LLDs with emotion (anger, happiness, and sadness), script (1-8), 
and utterance (1-4) as effects [add stat reference]. The analysis was repeated over 
encoder (1-55), which effectively incorporates the covariance structure of each 
encoder’s LLD vector such that preliminary within-subject normalization was not 
necessary. That being said, the salience of acoustical changes that can be easily 
compared to analytically do not include a neutral affect. A perfectly normal and 
emotionless expression treatment within the effect of emotion can be thought of as a 
relatively dissimilar variable. Anger, happiness, and sadness all offer the presence 
of emotion, whereas “the neutral” expressions offer by definition zero emotion at all. 
So running analyses where the emotion type is of concern may risk definitional 
dissonance when one treatment such as anger is compared to no emotion 
whatsoever.  
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It was concluded that the optimal approach to ensuring a relatable and comparable 
analysis of variance was to normalize the LLD vectors across (not within) all 
encoders with the non-affective (neutral) expressions included, then enter just the 
matrices for expressions of anger, happiness and sadness into the repeated 
measures ANOVA design. A mixed procedure ANOVA was conducted on the LLDs 
using the statistical software SAS, which included Type 3 tests of mixed effects [70]. 
For each LLD, the mixed procedure process was performed using a compound 
symmetry covariance structure, encoder as a subject effect, and a Kenward-Roger 
method for the fixed effect squared error and degrees of freedom. The type three 
tests of fixed effects reported the significance of each of the hypothesis tests for the 
fixed effects (emotion, script, utterance) and their interactions. F statistics and their 
corresponding p-values for each of these tests are provided in Table 4.9. 
 
The LLDs with the greatest F-statistics from Table 4.9 are as follows: F0M, LAI,M, Sα, 
Shamm, F0SD, F0R, HNRM, Shf1k, Shf500, and F1M (p < 0.0001). The effect of script was 
significant across all LLDs except for LAI,M, the most significant being voice 
duration Tvo, F2M, and Fsyll. Generally speaking, cues in the time-sensitive category 
tended to be more sensitive to script effects.  This result was expected given the 
limited range of values that the utterances could have. While LAI,M ranked near the 
top of the most significant cues to emotion, it was the least significant for script 
effects. The effect of utterance was less pronounced on the LLDs overall. This 
observation is probably indicative of the weak relative meaning of the utterance 
number as it was chronologically recorded. Areas of significance in this set of 
analyses could suggest that specific utterances within each script caused greater 
change in the LLDs, or that encoders favored the second or third phrase as spoken.  
With 5280 degrees of freedom, these results are almost sure to be significant even 
with 99.999% confidence level. Also, the significance reported does not necessarily 
apply to all emotions equally. To get at the specific level differences within each 
affect, Tukey least-squares means comparisons were run between modes of 
expression. Here, the neutral affect has been included as a comparison, even though 
it was not entered into the initial mixed data procedure.  
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Table 4.9  Results from the repeated measures ANOVA for each of the 28 LLDs and their functionals. 

	
Variablevi	

	
Emotion	(E)	 Script	(S)	 Utterance	(U)	

f(LLD)	 F	 χ2  F	 χ2  F	 χ2  
Tutt 1038.48***	 2076.96	 161.88***	 1133.15	 20.52***	 61.57	
Tvo 431.69***	 863.37	 347.46***	 2432.21	 11.98***	 35.95	
Ppaus 210.26***	 420.53	 247.***	 1728.97	 39.58***	 118.73	

Fsyll 1060.39***	 2120.78	 331.37***	 2319.56	 298.92***	 896.76	

LAI,M 4897.98***	 9795.96	 2.59	 18.12	 7.53***	 22.58	

LAI,R 92.89***	 185.77	 18.03***	 126.23	 3.19	 9.56	
LAI,SD 277.46***	 554.91	 43.6***	 305.23	 9.25***	 27.76	

F0M 6330.59***	 12661.20	 36.45***	 255.12	 17.13***	 51.38	

F0R 3179.91***	 6359.83	 25.71***	 179.96	 14.58***	 43.73	

F0SD 4126.6***	 8253.20	 40.51***	 283.54	 11.33***	 33.98	

Salpha 4764.97***	 9529.94	 193.23***	 1352.60	 89.99***	 269.97	

Shamm 4733.41***	 9466.82	 59.52***	 416.66	 109.02***	 327.05	

Shf500 1872.39***	 3744.79	 148.1***	 1036.73	 5.66*	 16.99	

Shf1k 2020.81***	 4041.61	 119.14***	 833.95	 39.53***	 118.58	
Scog 598.63***	 1197.26	 35.28***	 246.93	 58.47***	 175.42	
Sslope 469.16***	 938.32	 257.29***	 1801.06	 118.98***	 356.93	

F1M 1075.84***	 2151.68	 109.69***	 767.82	 83.64***	 250.93	

F1SD 190.3***	 380.60	 26.23***	 183.60	 63.44***	 190.32	

F1bw,M 117.05***	 234.09	 31.35***	 219.45	 79.92***	 239.76	

F2M 237.73***	 475.47	 346.59***	 2426.14	 57.16***	 171.49	

F2SD 118.48***	 236.97	 223.41***	 1563.89	 76.91***	 230.74	

F2bw,M 401.52***	 803.04	 44.01***	 308.06	 28.2***	 84.60	

F1prec,M 25.37***	 50.74	 5.75***	 40.28	 22.83***	 68.50	

F2prec,M 60.62***	 121.24	 15.07***	 105.50	 2.38	 7.13	

HNRM  2464.61***	 4929.22	 169.46***	 1186.23	 42.21***	 126.63	
Rx,M 682.43***	 1364.86	 22.39***	 156.76	 19.26***	 57.79	
F0jitt,M 406.11***	 812.22	 63.45***	 444.18	 12.78***	 38.33	

LA,shim 189.05***	 378.10	 27.99***	 195.95	 1.54	 4.61	

                                            
vi F statistics with three stars next to them are significant to p < 0.0001. These results indicate a highly 
significant effect of emotion type (without the no expression values).	Tutt = duration of the utterances (s), Tvo = 
duration of the voiced sections (s), Ppaus = proportion of pauses, Fsyll = syllabic rate (Syl./s),  LAI,M = mean 
intensity (dB), LAI,R = range of intensity, LAI,SD = standard deviation of intensity, F0M = mean fundamental 
frequency, F0R = range of fundamental frequency, F0SD = standard deviation of fundamental frequency, Salpha = 
spectrum alpha ratio, ShaMM = spectrum Hammarberg Index, Shf500 = spectrum high frequency energy  ratio (fc = 
500 Hz), Shf1k = spectrum high frequency energy  ratio (fc = 1 kHz), Scog = spectrum center of gravity, Sslope = 
spectral slope, F1M = mean first formant frequency (Hz), F1SD = standard deviation of the first formant frequency, 
F1bw,M = mean bandwidth of first formant, F1prec,M = first formant frequency precision, HNRM = mean harmonics-
to-noise ratio,  Rx,M = mean autocorrelation, F0jitt,M = mean jitter of the fundamental frequency, LA,shimM = mean 
shimmer of the intensity. 
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Figure 4.11 represents the Tukey least-squares means comparisons performed on 
four of the LLD categories. The mean values and standard errors have been 
adjusted to agree with the compound-symmetry structure of the repeated measures 
model. All differences in the means of the populations were significant except for 
Neutral X Sadness for LAI,M and F0M, which is evident in the upper left and right 
plots of Figure 4.11. The remaining means comparisons are located in Appendix G. 
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Figure 4.11  Mean estimates and standard errors for the LLDs between all modes of expression 
including neutral. (a) mean intensity (b) syllabic rate, (c) mean F0, (d) mean F1, All values are zscores 
taken across all encoders (not within). 

These results largely support trends both predicted by Scherer (1986) and 
consensus determined by Juslin & Laukka (2003). Generally speaking, anger and 
happiness had significantly greater intensity and F0 values than did sadness. 
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Compared across the three emotions, syllabic rate trended was predicted if neutral 
is ignored, although recent studies have found similar results [24].  Predictions and 
consensus for the first formant differ. Scherer predicts that happiness should see a 
lowering of the first formant, while Juslin and Laukka determined that five other 
studies have found the opposite trend.  
 
In addition to a mixed data model, a general linear two-way ANOVA was performed 
on the data. This analysis was done in an effort to extract more concrete numerical 
characteristics that speak to the degree to which variance is explained by certain 
LLDs. This procedure mirrors much of the work by Juslin and Laukka (2001), 
except instead of splitting the design across emotion and intensity, the factors used 
here were emotion, script, and utterance. The obvious disadvantages of this method 
are the linear assumptions of the spacing of emotions. The LLDs targeted for this 
next step were focused on those shared by Juslin and Laukka (2001). The results for 
this analysis are provided in Table 4.10.  
 
Table 4.10  Linear ANOVA results from PEEP and Juslin & Laukka (2001). From left to right are 
columns for the acoustic cue label, F-statistic, effect size, and p-value. 

 

	
PEEP	(2017)	

	
J	&	L	(2001)	

	
Emotion	(E)	

	
Emotion	(E)	

cue	 F	 η2	 p	 cue	 F	 p	 η2	
Ppaus 87.17	 0.03	 ***	 Pause	Prop	 3.36	 *	 0.22	
Fsyll 353.52	 0.12	 ***	 Speech	Rate	 17.73	 ***	 0.6	
LAI,M 2818.06	 0.52	 ***	 VoInt	(M)	 25.93	 ***	 0.68	
LAI,SD 203.65	 0.07	 ***	 VoInt	(SD)	 16.82	 ***	 0.58	
F0M 4083.77	 0.61	 ***	 F0	(M)	 14.02	 ***	 0.54	
F0SD 3393.09	 0.56	 ***	 F0	(SD)	 14.27	 ***	 0.54	
Shf500 1010.89	 0.28	 ***	 HF	500	 26.63	 ***	 0.69	
Shf1k 1060.69	 0.29	 ***	 Hf	1000	 8.84	 ***	 0.42	
F1M 482.16	 0.16	 ***	 F1	 8.73	 ***	 0.42	

F1bw,M 81.35	 0.03	 ***	 F1bw	 7.99	 ***	 0.4	
F1prec,M 20.91	 0.01	 ***	 F1prec	 7.43	 ***	 0.38	

F2M 83.16	 0.03	 ***	 F2	 0.35	
	

0.3	
F2bw,M 263.79	 0.09	 ***	 F2bw	 0.15	

	
0.01	

F0jitt,M 235.75	 0.08	 ***	 Jitter	 0.98	
	

0.08	
 
Although the sample sizes are very different, there appears to be come agreement 
between the variance explained by the LLDs (η2). Values for mean sound level LAI,M 
(η2 = 0.52, p < 0.0001 ; η2 = 0.68, p < 0.001 ), F0M (η2 = 0.61, p < 0.0001 ; η2 = 0.54, 
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p < 0.001), F0SD (η2 = 0.56, p < 0.0001 ; η2 = 0.54, p < 0.001)  all appear to be 
significant and responsible for some portion of the variance created by emotion. The 
areas of greatest divergence seem to be between the duration quantities such as Fsyll 
and Speech Rate, where the results meet just 20% of the variance explained by 
Juslin & Laukka  (η2 = 0.12, p < 0.0001) vs. (η2 = 0.6, p < 0.001). While still 
significant, cues such as F1bw,M and F1prec,M were much lower in effect size than F1bw 
and F1prec. This could be due to the difference in how this cue was calculated. 
According to Juslin & Laukka, a single frequency value was used to set what was 
considered to be the “neutral” formant frequency based on a lossless tube model of a 
certain length. Presently, F1prec,M was calculated as a difference between the 
formant frequencies of an actual attempt at speaking without emotion.	

4.5 Discussion 
Conclusive remarks regarding the fundamental questions of this chapter rely on a 
frame of reference that appears to change depending on the study. Results of the 
acoustic analysis were compared to Scherer’s (1986) predictions based on a 
framework of honest, yet inconclusive hypotheticals. It was found that absolute 
deviations of acoustic parameters shared very little in common with predictions for 
displays of sadness, particularly in the case of sound level, F0, and formant 
frequency movements. Overall, the error between predictions and the results 
largely followed the valence dimension. The biases of the formants towards upper or 
lower frequencies only once matched for the case of F1M in anger. There are many 
possible reasons for this variance including, but not limited to, consistency in the 
facial features of the encoder, phonetic differences of the scripts, and possibly the 
history of the encoder as it influences phonetic stylization of specific words. The 
only way to rule out effects of the personal phonetic stylization would be to sample 
expressions wide and far enough to average out individual differences.  This has 
been the attempt in the present work, however the set of scripts only contains 20-30 
unique words in the English language– many of which may not appear in common 
vernacular. 
 
The primary question of whether the acoustics of the corpus align with those of 
previous works requires conditional answers. At best, comparative consensus offers 
a vague quality assurance tool.   
 

i. Does the presented speech corpus exhibit acoustic cues that agree with the 
literature?  

ii. Do the acoustic cues known to carry emotional information correlate 
independently of semantic content? 

 
Answering the first question requires a frame of reference for comparison. The 
effect of emotion on a specific LLD value can assessed as a difference from a non-
expressive state or from a different emotional state.  Unfortunately, much of the 
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consensus reported in the literature lacks a firm reference frame as is noted by 
Juslin and Laukka (2003), and so assumptions must be made to qualify a response. 
LLD deltas were assumed to be calculated in reference to the total set of emotions 
studied in the case of Juslin and Laukka (2003) or with the neutral version as a 
reference value. 
 
Compared between emotions it appears that the corpus has strong agreement with 
the literature in almost all cases. When compared to a neutral or non-expressive 
state, many of the trends oppose those found in the literature, specifically for 
duration LLDs. Table 4.11 gives a comparison of general rends found by Juslin and 
Laukka (2003) and the results of the acoustic analysis. Areas where results agreed 
with the Juslin and Laukka literature review are highlighted in gray. Direction of 
change for the columns labeled PEEP (2017) are strictly referencing differences 
from neutral. Columns labeled J & L (2003) are the relative labels given by Juslin 
and Laukka (2003) and are representative of categorical observations, not 
necessarily referencing a difference from neutral.  Regarding Fsyll, relative to one-
another the results agree with the consensus, however in absolute terms, both 
anger and happiness had slower syllabic rates than the neutral reference. The 
proportion of pauses (Ppaus) did not deviate significantly for portrayals of anger. 
Sadness trended against the consensus of the literature by decreasing rather than 
increasing from the neutral portrayals. Compared to LLDs for neutral portrayals, 
LLDs for anger and happiness changed in directions supported by the literature. 
Although F0jitt did move in the opposite direction from previous studies, this LLD 
had the least number of contributors in the review. Overall, 22/33 LLDs or 67% of 
the results were in favor of the consensus determined by Juslin and Laukka (2003). 
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Table 4.11 Comparison of trends in LLDs between the results of the acoustic analysis and consensus 
from the review by Juslin & Laukka (2003). 

		 Fsyll (Syl./s) Ppaus (s/s) 
Emotion	 J	&	L	(2003)	 PEEP	(2017)	 J	&	L	(2003)	 PEEP	(2017)	
Anger	 Fast	 Slower	 Low	 Same	

Happiness	 Fast	 Slow	 Low	 Lower	
Sadness	 Slow	 Slowest	 High	 Low	

		 LAI,M (dB) LAI,SD (dB) 
Emotion	 J	&	L	(2003)	 PEEP	(2017)	 J	&	L	(2003)	 PEEP	(2017)	
Anger	 High	 Higher	 High	 Higher	

Happiness	 High	 High	 High	 High	
Sadness	 Low	 Same	 Low	 High	

		 F0M (Hz) F0SD (Hz) 
Emotion	 J	&	L	(2003)	 PEEP	(2017)	 J	&	L	(2003)	 PEEP	(2017)	
Anger	 High	 High	 High	 Higher	

Happiness	 High	 Higher	 High	 Highest	
Sadness	 Low	 Same	 Low	 High	

		 Shf1k (dB) F1prec,M (%) 
Emotion	 J	&	L	(2003)	 PEEP	(2017)	 J	&	L	(2003)	 PEEP	(2017)	
Anger	 High	 Higher	 High	 Low*	

Happiness	 High	 High	 High	 High	
Sadness	 Low	 Low	 Low	 Low	

		 F1M (Hz) F1bw,M (Hz) 
Emotion	 J	&	L	(2003)	 PEEP	(2017)	 J	&	L	(2003)	 PEEP	(2017)	
Anger	 High	 High	 Low	 Low	

Happiness	 High	 Higher	 Low	 Lower	
Sadness	 Low	 Low	 High	 High	

	 		 F0jitt,M (%)  
 Emotion	 J	&	L	(2003)	 PEEP	(2017)	 	
 Anger	 High	 Lower	 	
 Happiness	 High	 Lowest	 	
 Sadness	 Low	 Low	 	

 
 
Regarding the effect of semantic content, the results indicate that the main effects 
of script and the interactions of utterance and script were significant in contributing 
to the variance among the emotion categories. One can look to the interaction of 
intended emotion (E) and script (S) on the variance, or the interactions of emotion, 
script and utterance (U) given in Table 4.12. The interaction of intended emotion 
and script caused significant differences in all but two out of the twenty-eight LLDs 
(LAI,R and F2prec,M ). The interactions between emotion, script, and utterance was 
significant for 100% of the LLDs included in the analysis. These results indicate 
that the type of script affected the acoustical properties of the portrayals of different 
emotions. Furthermore, the utterance within the script also significantly altered the 
acoustics of the speech corpus. Although these interactions appear to be significant, 
the degree to which they affect the total variance remains to be seen. As a coarse 
form of comparison, the average F-statistics for the main effects and interactions 
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can be compared. The main effect of emotion had an average F-statistic of 1502.7, 
which is an order of magnitude greater than main effect of script (F = 112.6), 
emotion x script (F = 8.9), and emotion x script x utterance (F = 7.3). As a result, 
one can further qualify the conclusions of this chapter.  The results indicate that 
although the trends in acoustics were significantly affected by the semantic content 
of the scripts, the magnitude of these appear to be small. 
 
Table 4.12 Repeated measures ANOVA results for the interactions between intended emotion, script, 
and utterance. 

	
E	x	S	 E	x	S	x	U	

	
F	 p	 χ2 F	 p	 χ2	

Tutt 6.87	 ***	 96.16	 4.97	 ***	 208.64	
Tvo 7.01	 ***	 98.1	 6.1	 ***	 256.25	
Ppaus 7.39	 ***	 103.5	 5.36	 ***	 225.24	
Fsyll 3.54	 ***	 49.61	 2.98	 ***	 125.13	
LAI,M 6.05	 ***	 84.71	 3.68	 ***	 154.54	
LAI,R 1.72	 		 24.07	 1.96	 *			 82.27	
LAI,SD 2.94	 *			 41.22	 4.45	 ***	 187.03	
F0M 17.54	 ***	 245.58	 7.19	 ***	 301.85	
F0R 12.14	 ***	 169.91	 2.88	 ***	 120.99	
F0SD 16.39	 ***	 229.49	 4.55	 ***	 191.16	
Sα  13.12	 ***	 183.71	 11.29	 ***	 473.99	
Shamm 10.41	 ***	 145.74	 15.51	 ***	 651.49	
Shf500 21.02	 ***	 294.33	 17.88	 ***	 750.8	
Shf1k 17.81	 ***	 249.29	 12.78	 ***	 536.6	
Scog 2.53	 *			 35.36	 9.28	 ***	 389.94	
Sslope 10.38	 ***	 145.26	 9.36	 ***	 393.19	
F1M 11.29	 ***	 158.07	 11.44	 ***	 480.38	
F1SD 7.72	 ***	 108.13	 11.18	 ***	 469.4	
F1bw,M 11.68	 ***	 163.48	 19.26	 ***	 808.97	
F2M 3.18	 ***	 44.58	 6.59	 ***	 276.98	
F2SD 11.01	 ***	 154.15	 3.54	 ***	 148.53	
F2bw,M 7.58	 ***	 106.06	 4.32	 ***	 181.37	
F1prec,M 3.37	 ***	 47.21	 4.79	 ***	 201.36	
F2prec,M 2.15	 		 30.07	 2.23	 ***	 93.64	
HNRM  15.19	 ***	 212.67	 7.81	 ***	 328.01	
Rx,M 3.19	 ***	 44.59	 2.69	 ***	 112.98	
F0jitt,M 10.29	 ***	 144.02	 4.77	 ***	 200.33	
LA,shim 6.56	 ***	 91.83	 5.27	 ***	 221.2	
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5 Subjective Evaluation of the Corpus 

5.1 Background and Objectives 
The encoding process has been briefly examined in Chapter 4.  Stimuli, acoustics 
cues, and the trends between them have been obtained, but that’s only one side of 
the story. Recall the model of Brunskwikian lens model of emotion communication 
from Chapter 2:  at the moment only the objective distal cues have been obtained 
[6]. The assumption up to this point is that these distal cues perfectly correlate with 
the state of the encoder. It is possible that the stimuli lack ecological validity, and it 
is also equally possible that the acoustic trends have been confounded by the 
transmission of information throughout the digital sequence of processing. It may 
also be the case that the right set of acoustic features has not been analyzed. 
Studying the decoding process can help direct and validate acoustic analysis [55]. 
Decoding studies aim to assess many qualities of the emotion content in speech such 
as the perceived emotional intensity, the authenticity of the portrayal, clarity, and 
purity. By and large, the vast majority of decoding studies use a set of listeners to 
determine which stimulus is most easily discriminated or recognized, in addition to 
various qualities that DSP cannot otherwise quantify [3] [22].  

5.1.1 Present Goals  

The main goals of this study were to: 
1. Assess how well the encoded emotions in the corpus match the perception of 

emotion in a recognition task.  
2. Assess the perception of emotional intensity, and determine what acoustical 

cues correlate with the perception of emotional intensity.  
3. Assess how presentation of emotional stimuli in and out of context affects the 

perception of emotion.  
 
To meet these goals, this test was divided into three main tasks: a recognition task, 
an intensity task, and an open response composition task. 
  
Recognition 
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The primary aim of the recognition task is to determine whether the intended 
emotion of the encoders (talkers) matches the general attribution of decoders 
(participants). A total of 30 participants were recruited to investigate how well each 
recorded stimulus performs in a recognition task. High recognition rates were 
expected for this set of stimuli given the small list of four “basic” or modal emotions 
portrayed (anger, happiness, sadness, and no expression). It is also possible that 
nearly every treatment (e.g. encoder, script, emotion) varies independently of the 
classification response. In addition to assessing a general indication of agreement or 
disagreement, the relative magnitude of changes in the classification performance 
will be examined. Measuring the duration of time that a decoder takes to perform 
the classification task will be particularly helpful in the case of small variance in 
the recognition rates. Differences in response times would likely indicate a change 
in task difficulty, and these values could potentially serve as continuous regressors 
in future analyses. 
 
Intensity 
 
Although recognition rates and perceived emotional intensity may certainly 
correlate the qualitative perception of the strength of the emotional portrayal will 
be considered as a separate subjective variable of interest. The reason for this 
separation partly stems from the possibility of confusing that which promotes a 
strong feeling (e.g. an emotional response) and what may simply aid in the 
identification of an acted emotion. It was therefore of interest to obtain intensity 
ratings from the decoders as a separate task.  Scherer (2003) notes that decoding 
studies often report recognition rates while their methods actually test 
discrimination from a set of fixed responses.  This has been acknowledged and an 
effort to account for forced-choice bias from the discrimination task will be made.  
 
Contextual Significance 
 
The stimuli were encoded originally in clusters of four chronologically ordered 
utterances.  Each successive utterance follows fairly logically from its predecessor in 
the form of a “halfalogue”, or one side of an over-heard phone conversation. 
Randomizing the order of utterance presentation eliminates the construction of a 
meaningful storyline and the cumulative connection to the conversation is 
minimized. Presenting the utterances that make up each script in the order that 
they were written and encoded offers way of comparing how contextual synthesis 
affects the decoding process.    
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5.2 Methods 

5.2.1 Selection of stimuli 

The stimuli were selected entirely from the corpus of speech recorded for PEEP. 
Because this study was technically separate from PEEP, only the participants from 
PEEP that had provided consent to share their stimuli on the Databrary website 
could be selected [71], which was 42 out of the 55 original number of mothers 
recorded All of the 42 participants were native English speakers and they each 
generated four prosodic versions (3 emotional, 1 no expression) of eight scripts, with 
four utterances per script (42 X 4 X 8 X 4 = 5376 possible stimuli). Ideally, all of 
5376 utterances, or even 1344 script clusters would be played back to a large pool of 
listeners, but the limits of human focus and exhaustion demanded some form of 
stimulus sampling. The target testing time was 1.5 hours maximum to avoid 
participant fatigue and also keep the testing to a single session per participant. Of 
this total time, a maximum of approximate 60 minutes was set for evaluating the 
stimuli with the rest of the time for paperwork.   
 
As it was not known yet which prosody would be perceived, all three emotions 
(anger, happiness, sadness) and non-expressive versions were selected. This left a 
total of 336 stimuli for each prosody to choose from:  
 

	
5376	utterances

corpus
∗

1	script
4	utterances ∗ 4	prosodies

=
336	scripts	&	encoders

1	prosody
	 ( 5.1 ) 

 
At 10 seconds each in length, this leaves 56 minutes of listening per prosody. If the 
target testing time were to be less than 1.5 hours per listener, a selection of one or 
both of these remaining pools needed to be made. To make claims regarding the 
effect of language and context, at least two scripts were necessary. If these claims 
were to be generalized or if encoder abnormalities accounted for, at least two 
encoders would be needed as well.  
 
Further practical measures regarding the testing time influenced the process of 
stimuli selection. Because response times were being collected for the 
discrimination task, it was determined that the subjective intensity ratings should 
be collected as a separate line of successive questions rather than combine the two. 
The composition task aimed at investigating contextual effects of the utterances as 
encoded with an open response format. It was expected that participants would take 
significantly longer with this task due to its format. The number of stimuli selected 
for this last task would be proportional to the discrimination task by a factor of one 
quarter, but the total length of stimuli presented would be no less. Leaving a half 
hour for questionnaires, consent forms, and tutorials before each task, a more 
realistic target would be roughly twenty minutes for the discrimination task, twenty 
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minutes for the intensity task, and twenty minutes for the composition task. With 
added time between questions and delays from response times, finding an optimal 
set of encoders and scripts to represent the corpus was still necessary.  
 
A combination of acoustic analysis and piloting the study was employed to 
determine the appropriate combinations of encoders and scripts. First, the corpus 
was analyzed and encoders ranked in terms of the magnitude of variance in their 
LLDs between prosodies. The matrix of LLD values was first normalized across all 
encoders for each cue to eliminate the effects of the range of LLD values skewing 
the analysis. The results of this analysis are illustrated in Figure 5.1. The two 
encoders with the greatest summed variance are 024, followed by 015. These two 
are markedly higher than the rest of the encoders by almost two standard 
deviations, and were selected as candidates for inclusion in the study. 
  

 
Figure 5.1  The summed standard deviation of the LLDs between emotion categories for each encoder, 
sorted in descending order, i.e. from encoders who produced recordings with the largest amount of 
variance between prosodies to those who had the least amount of variance. 

Next, scripts were analyzed for their effects on the variance of the LLDs for each 
encoder. For each script, the standard deviation over prosody across all encoders 
was ranked in similar fashion the encoder analysis.  Figure 5.2 gives the ranking of 
each script’s total contribution to the variance across emotion. “chk-a” and “din-a” 
have the greatest total variance across emotion for all encoders. These two scripts 
were contributed to the pool of candidates for subjective validation. 
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Figure 5.2  This is a bar plot of the summed standard deviation of LLD values over emotion across all 
encoders, ranked by script. 

It should be noted that in comparison to the encoder rankings, the range of summed 
variance for the eight scripts are all within three standard deviations. This result 
suggests that all of the scripts contribute relatively evenly to the encoding process, 
any therefore differences across script may not matter after all.  The results of the 
one-way ANOVA given in Table 5.1 for the cues with the highest effect sizes suggest 
that script may not have as great of an impact on the perception of emotion. 
Regarding the largest effect sizes for emotion, F0M has an effect size η2 = 0.61, 
whereas script effects on F0M are more than an order of magnitude less (η2 = 0.03, p 
< 0.0001). The same is true for F0SD (η2 = 0.56, p < 0.0001) and LAI,M (η2 = 0.52, p < 
0.0001) in comparison to the script effects (η2 = 0.04, p < 0.0001) and (η2 = 0. 002, p 
= 0.166).   
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Table 5.1  F-statistics and effect sizes for linear one way ANOVA tests for the effects of emotion and 
script for the top 5 effects for emotion. Note the relatively low F-statistics and effect sizes for script in 
comparison to emotion. 

	
Emotion	 Script	

cue	 F	 η2	 p	 F	 η2	 p	

LAI,M 2818.06	 0.52	 ***	 1.49	 0.002	 0.166	
F0M 4083.77	 0.61	 ***	 23.51	 0.03	 ***	
F0SD 3393.09	 0.56	 ***	 33.31	 0.04	 ***	
Shf500 1010.89	 0.28	 ***	 79.96	 0.10	 ***	

Shf1k 1060.69	 0.29	 ***	 62.53	 0.08	 ***	

F1M 482.16	 0.16	 ***	 49.16	 0.06	 ***	
 
Regardless, the top three encoders were selected (024, 015, and 050) plus a 
sampling of encoders with lower acoustic scores. The top script “chk-a” along with a 
sample from the middle “din-b”, “tlk-a” were selected for rounds of piloting with 
members of the research team. Scripts such as “din-a” and “tlk-b” were not 
considered due to the nature of their content. “din-a” features several commas and 
colloquial interjections that frequently corrected in the recording process: 
 
“Oh, hi, it’s you. When will you be home? Dinner won’t be ready then. Okay, I’ll fix 
dinner.” 
	
Script “tlk-b” was not considered as it features a list of words that also had to be 
corrected during the recording process: 
	
“Can you talk now? About lots of things. Money, the weekend. Okay, we won’t talk 
now.” 
	
The verb “correction” is not intended to imply synthetic modification. The pauses 
introduced by the presence of commas as well as listed words often increased the 
total length of the utterance beyond what was acceptable for ten second 
presentation for PEEP. During these occasions, the speaker would be asked to 
ignore the commas and speak more quickly than previously done, thereby 
artificially modifying the encoder’s original expressive style.  
	
Recognition rates for the pilot tests were not taken, as the group of participants 
were fairly familiar with the kind of stimuli being presented and the acoustic cues 
examined. The goal of the piloting was to determine whether the encoders selected 
by the acoustic analysis were in fact rated highly before a larger study was 
conducted.  Also of interest was the subjective perception of variance in the 
collection of expressions. The stimuli were presented over a set of Sony MDR-7506 
headphones, and the listeners were asked to rate how intense they felt the emotion 
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being expressed was on a scale from 0 (no intensity at all) to 9 (extremely high 
intensity). The results of the piloting largely solidified the results of the acoustic 
analysis. Encoders 015 and 024 on average had the greatest intensity ratings for 
the expressed emotions. When averaged over encoder, the intensity ratings deviated 
by less than 10%, which further substantiates the claim that script may not in fact 
be of consequence. Although the ratings indicated that “chk-a” was given low 
ratings overall, comments from the pilot participants indicated that the variety in 
expression for this particular script was particularly low. Total consistency with the 
intensity ratings would not necessarily benefit future correlation analyses, so a 
range of intensities was permissible as long as the perception of variety amongst 
the sample population was there.  
 
Results from a final round of piloting with a subset of the encoders (015, 024, and 
059) and scripts (“din-b” and “tlk-a”) exhibited an acceptable range and average 
ratings (greater than the 4.5/9) for both script and encoder. Three encoders, two 
scripts, and four prosodies produces twenty-four stimuli for the composition task, 
and ninety-six stimuli (24 x 4 utterances) for the recognition and intensity tasks.  
 

5.2.2 Participant information 

Advertisements for participation were entirely conducted on Penn State’s 
StudyFinder website and through department listservs [72]. Participants were 
required to have hearing thresholds of 15 dB HL or lower for the 250 Hz to 8 kHz 
octave bands which was tested using a Welch Allyn AM282 manual audiometer at 
the time of the appointment. All participants were fluent in English as a first 
language, were at least 18 years of age at the time of the testing, and none reported 
experiencing or having been diagnosed with emotion-related psychological disorders 
(e.g. autism, depression etc.).  
 
The diagnostic analysis of nonverbal accuracy II (DANVA) was administered as a 
final test for inclusion in the study [45]. This exam was used in part to ensure that 
participants all met a baseline for emotion discrimination, and to enable future 
comparisons between the results of this test and those of the PEEP study. DANVA 
is divided into a visual and auditory task. The visual task (called “Adult Faces”) 
presents a photograph of an adult making a certain facial expression. The 
participant is instructed to choose the emotion (anger, happiness, sadness, fear, 
surprise) that they think the subject in the photo is expressing, and a new 
photograph appears. The auditory task (called “Adult Paralanguage”) runs in a 
similar manner; participants are presented a recording of a person speaking in with 
a specific affect and asked to identify from a list of five categories which emotion 
they believe is being expressed. There are 24 questions per task, and each task 
takes approximately three minutes to complete. Inclusion was based on achieving 
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correct response rates (p) significantly higher than chance (p0). This was determined 
through a Z test for proportions with H0 : p = p0 vs. Ha: p > p0 at alpha = 0.05. This 
meant that participants must get at least eleven out of the twenty-four questions 
correct (no more than 13 errors). All participants passed at rates higher than chance. 
Participants that met the inclusion requirements were awarded $10 compensation, 
and were entered into a raffle for $50 with a chance of winning roughly of 1/35. A 
minimum compensation of $5 was provided if the participant did not meet the 
hearing sensitivity requirements. 
 
In similar form to Lima and Castro (2011), the Autism Spectrum Quotient (ASQ) 
was administered as a test for possible presence of social or communication 
abnormalities typically exhibited by individuals on the autism spectrum [73]. This 
test was fairly simple to administer, and comprises 50 questions regarding personal 
preference for social function and related topics. The ASQ is scored in points out of 
50, and the higher the score the more likely the participant may exhibit autism-
related traits. Results differed slightly for males than females (x ̅ = 17.4, σ = 6.58 vs. 
x ̅ = 12.13, σ = 5.74), with six males and two females in the intermediate category 
(+20/50). No participants scored high enough to be considered having high 
functioning autism (HFA).  
 
Thirty people (n=30, 15 male, 15 female) with an average age of 24.4 years from the 
State College area participated in the study. Of these 30, ten reported having some 
acting experience, and 26 reported having some form of musical training. 
Participant occupation included 9 graduate students, 12 undergraduate students, 
and 9 professionals working in the State College area. One additional person 
volunteered for the study, but didn’t met the hearing requirements. All 
participation was voluntary, and written consent was obtained at the beginning of 
each appointment and the testing followed the approved Penn State Human 
Subjects IRB protocol #6980.  
 
Participants were given three main tasks during the experiment. The first and the 
second tasks involved collecting identification rates and subjective perception of 
emotional intensity from the larger pool of short utterances (the individual 
sentences within the two scripts). The third task gave the participants the freedom 
to compose the relative presence of emotions in the 10-second stimuli comprised of 
the four utterances in context. Because of the vast differences in stimuli, the first 
two tasks were labeled Set 1a and Set 1b respectively, and the third task labeled 
Set 2. Participants were given a short tutorial before both Set 1 and Set 2 that 
provided details about the test format, the types of questions, and the preside 
definitions of possible responses. In the tutorial, participants were told that at the 
start of each question a recording of speech would automatically begin playing and 
would be played once. 
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5.2.3 Set 1a – Emotion recognition task and response times 

The purpose of Set 1a was to test whether participants could identify the intended 
emotion of the encoder from a selection of possible responses. Participants were 
instructed to “identify as quickly as possible which emotion the speaker is 
portraying. The speaker may not be expressing an emotion, and you may choose to 
select ‘No Expression.’ You can only submit one answer.” All 96 utterances were 
included in this set and were presented separately.   
 
Participants submitted their responses by pressing the letter on the keyboard 
corresponding to the letter beneath the button on the screen. Figure 5.3 is a 
screenshot of user interface during the presentation of a stimulus. The letters “D”, 
“F”, “J”, and “K”, are positioned comfortably in the middle of the keyboard, and the 
surfaces of the keys for “F” and “J” feature small tactile locators for the left and 
right index fingers respectively. Participants were instructed to keep their left and 
right hands over these four letters at all times during Set 1a.  To mitigate possible 
effects of how the expression labels were ordered relative to one another, each 
participant received a new randomized order (e.g. Happiness | No expression | 
Sadness | Anger) that would remain in that order for the rest of Set 1a. 
Anticipation bias due to timing of the question presentation was also accounted for 
by pseudo-randomizing the time between questions from 200 ms to 600 ms. The 
average delay between questions was 400 ms, and the total duration of the set fixed 
to 13 minutes and 12 seconds.   Response times were also collected, measured from 
the moment the stimuli began to play to the time the response was submitted. If a 
response was not submitted within 4 seconds (the preset duration of each stimulus) 
+ 400 ms, the response was labeled as timed out and the next question presented.   
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Figure 5.3  Graphical user interface for Set 1a – the recognition task. The letters beneath each 
expression category correspond to letters on a standard "QWERTY" keyboard layout. 

5.2.4 Set 1b – Emotional Intensity Ratings for the utterances 

The purpose of Set 1b was to investigate how intensely participants perceived the 
emotions portrayed in the stimuli. Only excerpts from Set 1a that were identified as 
having a prosody (anger, happy, and/or sad), whether correct or not, were included 
in this set. This type of design allowed for separation between question sets while 
minimizing the gross time of engagement in the stimuli. It was decided that there 
was little to be gained in the inquiry of a neutral expression’s intensity when it was 
previously identified as expressionless. Note that in Figure 5.4, only one emotion is 
offered as an option for intensity judgement. This classification was also 
predetermined by the responses of the previous set (Set 1a). In summary, stimuli 
identified as emotional in Set 1a would later be presented in a context of their 
previous response in Set 1b. Participants were not informed of this design as it may 
have affected their responses for Set 1a.   
 
Participants were told that at the beginning of each question a recording of speech 
would begin playing. They were told that they could repeat the recording as many 
times as desired. Participants were instructed to rate on a scale of 0-100 the 
intensity of the speaker’s portrayal of the emotion label offered. The full script of 
the rating scale definitions are as follows “if you think that the speaker is 
expressing very intense emotion, you should give a rating of 100 on the emotion 
intensity scale. If, on the other hand, you think the speaker is expressing emotion 
with no intensity at all, you should give a rating of 0.” After the presentation of each 
stimulus, a horizontal slider would appear on the screen as is shown in Figure 5.4, 
offering a continuous scale to select the desired intensity.  
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Figure 5.4  This is a screenshot of Set 1b after the stimulus had finished playing. 

 
At the end of the tutorial, participants were given a practice set to familiarize 
themselves with the process for both Sets 1a and 1b. This practice set contained 
twenty-four utterances from a different set of encoders and scripts, and lasted less 
than four minutes.  For Set 1a, all 96 utterances from each of the three encoders, 
four prosodies, and three scripts were presented. Participants were given the option 
to take a two-minute break between Set 1a and Set 1b, however none opted to take 
this small break.  
 

5.2.5 Set 2 - Composition and Context of Full Scripts 

For Set 2, participants were told that a speech recording much longer than the 
previous recordings would begin playing at the beginning of each question. Each 
stimulus had to play at least once to the very end before participants could submit a 
response, and each recording could be repeated indefinitely. The instructions were 
to “consider if the speaker is clearly expressing one or more emotions. If one or more 
emotions is detected, then rate how clearly the speaker is expressing each of those 
emotions on their respective scale.” The scale ran from 0 (not at all e.g. Angry) to 
100 (clearly e.g. Angry) as shown in Figure 5.5. They were specifically instructed to 
leave the sliders at 0 (the default position) if they felt that the speaker did not 
express that particular emotion whatsoever. If multiple emotions were detected, 
then each were to be evaluated as independent questions of presence. Participants 
were instructed to write in an emotion in the “other emotion” placeholder if they felt 
that the expressed emotion belonged to a different category that they could identify. 
The hope with this design was to mitigate potential bias caused by the forced choice 
design of Set 1a. In the case where no expression (neutral) was detected, 
participants were instructed to leave all of the sliders at 0.  
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Figure 5.5  This is a screenshot of the training set for Set 1b. 

Upon completion of all three tasks, participants were asked to submit evaluations of 
the testing procedure and impressions of the stimuli apart from the specific 
questions previously posed. Details on the procedural impressions are provided in 
Appendix H. The average test length across all participants as approximately 90 
minutes.  
 

5.2.6 Stimuli Playback 

 
All participants were presented stimuli at a fixed amplitude of 72 dBA re: 20 µPa 
over a pair of Sony MDR-7506 studio monitor headphones. After each practice set, 
participants were asked if the levels were too loud or too quiet as a precaution. 
Gains on the sound card were left unchanged for all participants. Custom filters 
were created for the left and right ear using a Brüel and Kjær Type 4100 Sound 
Quality Head and Torso Simulator.  The filters were 4096 point long finite impulse 
response (FIR) filters built with the MatLab command “fir2.” To increase coherence 
and reduce noise, sine sweeps were averaged over twenty cycles, and their mean 
spectra frequency vectors and magnitudes fed to the function.  The magnitude and 
frequency response of the filters are provided in Figure 5.6.  
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Figure 5.6  These are plots of the magnitude of the frequency response for the filters for each 
headphone ear (top) and the corresponding phase response (bottom). 

5.3 Results 

5.3.1 Set 1a - Recognition 

Average rates for correct responses across prosodies for Set 1a were 92.0%. The 
rates broken down by prosody were 94.9% for anger, 93.2% for happiness, 92.4% for 
sadness and 87.5% for no expression. Response times on average were 1.9 seconds 
from the start of the stimulus to the moment of entry. By prosody they were: 1.783s 
for anger, 1.778s for happiness, 1.953s for sadness, and 2.1s for no expression. 
These rates are all significantly higher than the 60% rate average reported by 
Scherer (2003) for over thirty studies of emotion recognition. He notes that the 60% 
correct response rate is more than five times random chance, which comes out to 
nearly 10%. This implies that the 30 studies on average considered ten emotions 
(1/10 random chance) which is much more than double the number of expressions 
considered here. Still, the baseline correct response rate was 87.5% for no 
expression- a healthy four times random chance. It is safe to say that the listeners 
were significantly capable of discriminating the intended expression from the four 
options given. Effects of emotion on both error rates and response times are given 
after the summary.  
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To understand what may have affected recognition rates or response times, a one-
way repeated measures mixed model ANOVA was performed on the subset of data 
not including the intensity ratings for both the identification rates and response 
times. With the dependent variable set to recognition rate, the main effects of 
encoder (F = 18.77, p < 0.0001), and rated emotion (F = 23.66, p < 0.0001) were both 
significant as is shown in Table 5.2.All tests hypotheses tests were conducted at an 
alpha of 0.05 with a Bonferroni correction that brings the effective alpha to 0.0167. 
Neither script or utterance effects had any significant influence on the 
discrimination rates. Interactions between the main effects did cause significant 
differences in the discrimination rates. Encoder x rated emotion (F = 35.11, p < 
0.0001) had the second highest F-statistic of the ANOVA list. The interactions 
between script and rated emotion nor the interactions between script x utterance x 
rated emotion were significant to the identification rates.  
 
The main effect of script was also not found have a significant effect on the response 
times, as is shown in the fourth row of Table 5.2. The greatest main effect was the 
rated emotion (F = 68.43, p < 0.0001), followed by encoder. Interestingly enough, the 
interaction of script X rated emotion (F = 4.93, p < 0.0001) and script X utterance (F 
= 12.65, p < 0.0001) were both significant. Overall, the ANOVA results for response 
time gave significant effects for 10 out of the 15 main and interaction effects, while 
identification rates only showed significance for 6 out of the 15.  
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Table 5.2  F-statistic and p-values from the one-way repeated measures ANOVA for the main effects 
and interactions for discrimination rates. 

Repeated	Measures	ANOVA	table	for	Correct	Responses	
Effect	 Num	DF	 Den	DF	 χ2	 F	 Pr	>	χ2	 Pr	>	F	

Encoder	(E)	 2	 2755	 37.54	 18.77	 <.0001	 <.0001	
Rated_Emotion	(RE)	 3	 2761	 23.66	 7.89	 <.0001	 <.0001	
E	x	RE	 6	 2760	 35.11	 5.85	 <.0001	 <.0001	

Script	(S)	 1	 2756	 0.42	 0.42	 0.5188	 0.5188	
E	x	S	 2	 2755	 6.32	 3.16	 0.0425	 0.0426	
S	x	RE	 3	 2759	 2.66	 0.89	 0.4467	 0.4469	
E	x	S	x	RE	 6	 2758	 5.87	 0.98	 0.4384	 0.4386	

Utterance	(U)	 3	 2755	 2.37	 0.79	 0.4992	 0.4994	
E	x	U	 6	 2755	 26.23	 4.37	 0.0002	 0.0002	
U	x	RE	 9	 2759	 45.74	 5.08	 <.0001	 <.0001	
E	x	U	x	RE	 18	 2759	 50.29	 2.79	 <.0001	 <.0001	

S	x	U	 3	 2755	 9.27	 3.09	 0.0259	 0.0261	
E	x	S	x	U	 6	 2755	 5.68	 0.95	 0.4596	 0.4598	
S	x	U	x	RE	 9	 2759	 10.27	 1.14	 0.3287	 0.3292	
E	x	S	x	U	x	RE	 18	 2759	 32.4	 1.8	 0.0197	 0.0202	

 
To determine how each of these variables affected the recognition rates, a least-
squares means comparison was performed on the recognition rates. The results of 
these analyses are illustrated in Figure 5.7 (a) and (b). Recognition rates given in 
Figure 5.7 (a) for the effect of rated emotion indicate significant differences between 
many emotion categories. Happiness had the highest overall recognition rate (x ̅ = 
96.20%, σ = 1.16%), followed by anger (x ̅ = 93.47%, σ = 1.14%), sadness (x ̅ = 92.38%, 
σ = 1.15%), and neutral (x ̅ = 89.45%, σ = 1.18%). Recognition rates between 
happiness and anger were not significantly different (p = 0.19).  Significant 
differences were also found between happiness and sadness (p < 0.05), happiness 
and neutral (p < 0.0001), and anger and neutral (p < 0.05). Overall these results 
indicate that recognition rates were significantly affected by the rated emotion. The 
limited significance (and overall high recognition rates) found between just 
happiness and sadness for the emotional portrayals indicates that these differences 
may be limited in extent.  
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(a) 

 
(b) 

Figure 5.7 (a) Recognition rates as a function of the effect of rated emotion and (b) recognition rates as 
a function of the effect of encoder. 

 
Regarding the effect of encoder on the recognition rates in Figure 5.7 (b), encoder 
059 (x ̅ = 88.82%, σ = 1.05%) had significantly lower rates than both encoders 015 (x ̅ 
= 93.86%, σ = 1.06%) and 024 (x̅ = 95.94%, σ = 1.04%) at p < 0.0001. Portrayals from 
encoders 015 and 024 were rated with statistically equivalent accuracy. These 
results affirm the acoustical analysis that was conducted in the stimuli selection; 
024 had the greatest summed variance between emotion portrayals, followed closely 
by 015, and from a much greater distance by 059.     
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Table 5.3  Results for the repeated measures ANOVA with response time as a dependent variable. 

Response	Time	
Effect	 Num	DF	 Den	DF	 χ2		 F		 Pr	>	χ2	 Pr	>	F	

Encoder	(E)	 2	 2755	 47.1	 23.55	 <.0001	 <.0001	

Rated_Emotion	(RE)	 3	 2756	 205.3	 68.43	 <.0001	 <.0001	

E	x	RE	 6	 2756	 15.14	 2.52	 0.0192	 0.0194	

Script	(S)	 1	 2755	 0.36	 0.36	 0.5475	 0.5476	

E	x	S	 2	 2755	 1.56	 0.78	 0.4578	 0.4579	

S	x	RE	 3	 2756	 14.8	 4.93	 0.002	 0.002	

E	x	S	x	RE	 6	 2756	 14.83	 2.47	 0.0216	 0.0218	

Utterance	(U)	 3	 2755	 10.99	 3.66	 0.0118	 0.0119	

E	x	U	 6	 2755	 45.5	 7.58	 <.0001	 <.0001	

U	x	RE	 9	 2756	 36.68	 4.08	 <.0001	 <.0001	

E	x	U	x	RE	 18	 2756	 58.78	 3.27	 <.0001	 <.0001	

S	x	U	 3	 2755	 37.95	 12.65	 <.0001	 <.0001	

E	x	S	x	U	 6	 2755	 17.74	 2.96	 0.0069	 0.007	

S	x	U	x	RE	 9	 2756	 16.96	 1.88	 0.0494	 0.0499	

E	x	S	x	U	x	RE	 18	 2756	 41.93	 2.33	 0.0011	 0.0012	
 
To determine the nature of the relationship between response times and the effects, 
a least-squares means comparison was performed. The results of these analyses are 
illustrated in Figure 5.8. Looking to the effect of response time (rT) in Figure 5.8 (a), 
neutral had the slowest response time (x ̅ = 2.20 s, σ = 0.055 s), followed by sadness 
(x ̅ = 1.93 s, σ = 0.054 s), and anger (x ̅ =1.79 s , σ = 0.054 s). These differences were 
all significant at p < 0.001, except for anger andhappiness which were not 
statistically different. Regarding the effect of encoder in Figure 5.8 (b), encoder 024 
was the most quickly rated overall (x ̅ = 1.79 s, σ = 0.052 s), followed by encoder 059 
(x ̅ = 1.95 s, σ = 0.053 s) and 015 (x̅ = 1.98 s, σ = 0.054 s). Response times for 024 
were significantly lower than both 015 and 059 at p < 0.0001, but rTs for 015 and 
059 were statistically equivalent to each other. It is interesting to note that while 
recognition rates for 015 and 024 were not statistically different, their respective 
response times were significantly different (10%) from one another.  This might be 
explained by average differences in utterance lengths. Future work would benefit 
from a multivariate approach to quantifying these measured differences in response 
times using a range of acoustic variables.   
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(a) 

 
(b) 

Figure 5.8 (a) Average response times as a function of the effect of rated emotion and (b) average 
response times as a function of the effect of encoder. 

5.3.2 Set 1b- Intensity Ratings 

The average intensity rating across all responses was 65.4 out of 100. Anger had the 
greatest intensity rating at 68.7, followed by sadness (66.5), and happiness (65.35). 
No expression was occasionally labeled as emotional (82 times out of 2880 responses 
= 2.85%) but was subsequently rated on average as having the lowest overall 
intensity of 31.5 out of 100. Pearson’s linear correlation coefficient for response time 
(RT) and correct responses was significant (r = -0.16, p < 0.001) as well as RT and 
intensity rating (I) ( r = -0.09, p < 0.001).  Intensity ratings were most significant 
and highly correlated with correct responses (r = 0.36, p < 0.001). The results 
indicate that correctly discriminated stimuli were significantly more likely to be 
given higher intensity ratings. Furthermore, the inverse relationship between RT 
and both correct responses and intensity ratings indicates that stimuli that received 
faster responses (lower RT) were also rated with significantly greater accuracy and 
higher intensity.  
 
To understand what may have affected the perceived emotional intensity of the 
stimuli, a one-way repeated measures mixed model ANOVA was performed on the 
data with intensity ratings as the dependent variable.  Intensity ratings were the 
most significantly affected by the main effects and their interactions (see the bolded 
F-statistics in Table 5.4. Encoder was the greatest main effect (F = 96.95 p < 0.0001) 
followed by script (F = 29.46, p < 0.0001). No significance was found for the main 
effect of utterance.  
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Table 5.4 Results from the repeated measures ANOVA with intensity ratings as the dependent 
variable. F-statistics are given in the column third to the right, and their corresponding p-values are 
provided in the right-most column. 

Intensity	Ratings	

Effect	 Num	DF	 Den	DF	 χ2		 F		 Pr	>	χ2	 Pr	>	F	

Encoder	(E)	 2	 2063	 193.89	 96.95	 <.0001	 <.0001	

Rated_Emotion	(RE)	 2	 2064	 3.27	 1.64	 0.195	 0.1952	

E	x	RE	 4	 2064	 188.23	 47.06	 <.0001	 <.0001	

Script	(S)	 1	 2063	 29.46	 29.46	 <.0001	 <.0001	

E	x	S	 2	 2063	 2.21	 1.11	 0.3306	 0.3308	

S	x	RE	 2	 2063	 18.49	 9.24	 <.0001	 0.0001	

E	x	S	x	RE	 4	 2063	 59.26	 14.81	 <.0001	 <.0001	

Utterance	(U)	 3	 2063	 1.1	 0.37	 0.7768	 0.7768	

E	x	U	 6	 2063	 96.97	 16.16	 <.0001	 <.0001	

U	x	RE	 6	 2064	 15.42	 2.57	 0.0172	 0.0175	

E	x	U	x	RE	 12	 2064	 41.84	 3.49	 <.0001	 <.0001	

S	x	U	 3	 2063	 11.6	 3.87	 0.0089	 0.009	

E	x	S	x	U	 6	 2063	 28.52	 4.75	 <.0001	 <.0001	

S	x	U	x	RE	 6	 2064	 22.58	 3.76	 0.0009	 0.001	

E	x	S	x	U	x	RE	 12	 2064	 58.29	 4.86	 <.0001	 <.0001	
 
To determine how each effect changed the intensity ratings, a least-squares means 
comparison was performed on the intensity ratings. The results of these analyses 
are illustrated in Figure 5.9. The effect of rated emotion on the intensity rating was 
not analyzed here because the repeated measures ANOVA did not show this effect 
to be significant. Regarding the effect of encoder on the intensity ratings in Figure 
5.9 (a), the encoder performance followed this ascending order: 059 < 024 < 015 (p < 
0.0001). Significant differences were found for the effect of script (see Figure 5.9 
(b)), with din-b (x ̅ = 67.40, σ = 1.46) having a higher overall intensity rating than 
tlk-a (x ̅ = 64.12, σ = 1.46) at p < 0.0001. 
 
These results, to a certain extent, affirm some of the acoustic rankings performed 
for the stimuli selection. Both 015 and 024 had higher summed acoustic variance 
between intended emotion portrayals than 059. While there were no significant 
differences between recognition rates for 015 and 024, here there are large 
differences in intensity ratings between the two. Also of note is the large difference 
between intensity ratings for script that was not found in previous subjective 
analyses. Acoustically, tlk-a had a greater summed variance between emotion 
portrayals than din-b – a result that opposes the trend in intensity ratings here. 
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It is possible that these differences could be explained by biases introduced by word 
choice or societal rules and code usage for each listener. For example, some words in 
din-b may favor greater acoustic differentiation between emotion categories 
compared to tlk-a. Scripts containing questions could further structure the acoustic 
markers for emotion, which is the case in tlk-a. Future work would also benefit from 
an utterance-level approach to quantifying these differences.  Given that the first 
utterance in tlk-a has the question “Oh, you’re tired?”, one might expect this 
utterance to have the least amount of acoustic differentiation and possibly intensity 
ratings.  
 

 
(a) 

 
(b) 

Figure 5.9 (a) Average intensity ratings as a function of the effect of encoder and (b) average intensity 
ratings as a function of the effect of script. 

 
Figure 5.10 illustrates how the intensity ratings changed as a function of the 
interaction between rated emotion and script. Within din-b, rated emotion was not 
significantly different across emotion Tlk-a, however, resulted in significantly lower 
intensity ratings between sadness and anger than for din-b. Comparing within 
emotion category, anger was not significantly affected by changing the script, while 
both happiness and sadness intensity ratings were significantly lower for tlk-a 
compared to din-b. 
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Figure 5.10 Average intensity ratings and standard errors as a function of the interaction between 
rated emotion and script. 

5.3.3 Set 2 – Composition and Clarity 

 
Clarity ratings from Set 2 differed slightly from what was observed in Set 1b 
intensity ratings. Happiness had the highest overall clarity (x ̅ = 8.1 , σ = 2.28), 
followed by anger (x ̅ = 7.77 , σ = 2.41), and followed by  sadness (x ̅ =  6.86 σ = 2.85). 
Not only are the means greatest for happiness, but the standard deviations are 
smallest too. For the write-in category, the most frequently submitted responses 
were “annoyed” (n = 15), “tired” (n = 15), “depressed” (n = 5), “excited” (n = 5), 
“bored” (n = 4), “fear” ( n = 4), “overwhelmed” (n = 4), “disgust” ( n = 3), “optimistic” 
(n = 3), and “sarcastic” ( n = 3). Write-in responses for annoyed and tired received 
clarity ratings of (x ̅ = 6.4 , σ = 2.53) and (x ̅ = 7.67 , σ = 2.41), respectively. Eight out 
of these top ten greatest response counts were negatively focused, and two of them 
were more positive. Sarcasm is a layered expression of deceit with an underlying 
message usually of a negative connotation. As such, expressions that were 
considered happy at the surface level yet negative at the ground truth could feasibly 
include both happy and angry intended portrayals.   
 
Comparison of the results of Set 1 and Set 2 required a targeted and clearly defined 
approach. For Set 1a, the independent variable extracted was the total number of 
times each stimulus was identified in one of the three emotion categories. This 
count was converted to a percent of the maximum count, which is 30. This method 
mirrors that of Lima & Castro (2011) and Banse & Scherer (1996). To compare to 
Set 2, within which 18 of the 24 stimuli were intended as carriers of emotion, values 
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across each of the four utterances in Set 1a were averaged. Values for the two 
matricies were averaged across the 30 decoders and plotted by emotion label, 
encoder, and script in Figure 5.11. Pearson’s linear correlation coefficient showed no 
significant linear trend across stimuli for average clarity values from Set 2 and 
percentages from Set 1 (r = 0.26, p = 0.29). t-tests for the mean indicated that on 
average, clarity of emotion in Set 2 (x ̅ = 0.75) was lower than the percentages of Set 
1a (x ̅ = 0.93) with p < 0.0001. It is recognized that the transformation of information 
from the responses of one line of questions may not perfectly withstand semantic 
scrutiny; the goal of this analysis is to simply perform one possible comparison.    
 
The results show that the ordered presentation of each utterance as originally 
created by the encoder weakened the perception of the overall emotional accuracy. 
Although each paired comparison results in higher responses from the out-of-
context presentations, there are several places where the means are less than 5% 
from equal (see Figure 5.11 happiness 015 din-b, 059 din-b, sadness 015 din-b).   
 

 
Figure 5.11 The blue line represents the percentage of time each stimulus was identified in Set 1a as 
having the emotion label given on horizontal axis. The red line is the average response for the clarity 
(Set 2) of the emotion for each of the respective labels. 

 
Figure 5.12 provides a graphical summary of the clarity ratings for each of the four 
intended vocal expressions. The ratings illustrated in Figure 5.12 (a) and (b) 
indicate that the highest clarity was given to the category that matched the 
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intended emotion, which were anger and happiness, respectively. Regarding the 
intended emotion of sadness given in Figure 5.12 (c), the greatest overall clarity 
ratings were awarded to the correct category, but the write-in category received 
higher clarity ratings than was found for the other three intended expressions. This 
observation reaffirms the general trend found in the write-in analysis, where the 
descriptors such as tired, depressed, bored, and overwhelmed were all among the 
most frequently submitted responses. Generally speaking, these results indicate 
that the word “sadness” was the least fitting of the decoder’s perception of the vocal 
expressions portrayed.  
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Intended Expression: Anger 
 

 
(a) 

Intended Expression: Happiness 

 
(b) 

Intended Expression: Sadness 

 
(c) 

Intended Expression: Neutral 

 
(d) 

Figure 5.12 Clarity ratings of the stimuli for the intended emotions (a) anger, (b) happiness, (c) 
sadness, and (d) no expression. 
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5.3.4 Comparisons to Acoustics 

The following analysis aimed to examine how well the acoustics of the stimuli 
explain the results of the subjective listening tests. The presented framework 
follows closely that of Lima & Castro (2011) and Banse & Scherer (1996). Multiple 
regression analyses were performed on the data collected from Set 1, and a set of 
the acoustic variables discussed in Chapter 4. The independent variables were 15 
acoustic cues that had previously demonstrated significant differences between 
emotion categories. The independent variable was the number of times that each 
stimulus had been rated as one of each of the four provided categories (anger, 
happiness, sadness, neutral). This linear regression process was repeated for each of 
the four expression categories and the results are provided in Table 5.5.  
 
Sadness had the lowest error (R2 = 0.711) and correlated with HNRM, F1bw,M, F0SD, 
and Fsyll. Happiness (R2  = 0.642) had a strong positive beta weight for F0SD, and 
anger had an even stronger, but negative relationship with HNRM. These results 
generally indicate that the lower the harmonicity (less periodic the signal), the more 
likely the participants were to identify the stimulus as angry. Stimuli with greater 
variance in F0 were significantly more likely to be identified as happy. The results 
for happiness F0SD agree with Juslin & Laukka (2001). Spectral cues like Shf500 did 
not exhibit significant differences- a result that is not shared by Lima & Castro 
(2011) and Juslin & Laukka (2001). Speech rate was highly significant for both 
sadness (β = -3.10, p < 0.05) and the neutral expressions (β = 5.19, p < 0.01). Also of 
interest is the sign besides each of these beta weights. A higher speech rate seems 
to correlate with neutral expressions, while variance in the recognition of sadness 
appears to share a negative relationship with speech rate. This result is in line with 
the predictions of Scherer (1986), but was not identified as significant by Juslin & 
Laukka (2001) (β = 0.05, p > 0.05).    
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Table 5.5 Beta weights and proportion of variance explained (bottom row) for the four categories of 
expression. Bolded numbers are significant at p < 0.05. 

Cue	 Anger	 Happiness	 Sadness	 Neutral	
Tutt -4.07	 2.04	 6.01	 -3.98	
Tvo 4.53	 -2.68	 -4.89	 3.04	
Ppaus -2.32	 -0.72	 0.09	 2.95	
Fsyll -2.95	 0.85	 -3.10	 5.19	
LAI,M -2.19	 -1.77	 1.50	 2.46	
F0M -0.75	 2.75	 2.38	 -4.38	
F0SD -4.11	 7.19	 -4.47	 1.39	
Salpha -1.44	 0.14	 -0.22	 1.52	
Shf500 2.28	 -0.87	 -0.96	 -0.45	
F1M -2.07	 0.61	 1.65	 -0.19	
F1bw,M 2.16	 -0.44	 1.81	 -3.54	
F2M 2.61	 -1.15	 0.32	 -1.78	
F2bw,M 0.41	 -0.86	 -0.18	 0.63	
HNRM   -8.41	 2.25	 5.88	 0.27	
F0jitt,M -2.23	 -0.22	 1.73	 0.73	
Adj. R2 0.471	 0.642	 0.711	 0.521	

 
The beta weights from the multiple regression analysis of the intensity ratings and 
the recognition rates is provided in Table 5.6. For each intended emotion, rows 
where either intensity or recognition rates correlated with the acoustic cues are 
highlighted in gray. For anger, just 20% of the cue correlations for intensity were 
significant for recognition. Significance was shared for 25% of the significant cues 
for happiness. None of the cues that were found to have a significant effect on 
recognition rates were found to be significantly correlated with the rated emotional 
intensity. These results indicate that overall, the acoustic cues that correlated 
significantly with the recognition of emotion did not necessarily correlate with the 
perception of emotional intensity.  
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Table 5.6 Beta weights from the multiple regression analysis for intensity ratings and recognition 
rates. Bolded text indicates significance at p < 0.05. 

	
Anger	 Happiness	 Sadness	

Cue	 Intensity	 Recognition	 Intensity	 Recognition	 Intensity	 Recognition	

Tvo 32.00	 4.53	 20.63	 -2.68	 11.58	 -4.89	

Ppaus 7.85	 -2.32	 11.95	 -0.72	 2.78	 0.09	

Fsyll 0.06	 -2.95	 3.84	 0.85	 3.95	 -3.10	

F0M 16.07	 -0.75	 2.33	 2.75	 9.52	 2.38	

F0SD -12.82	 -4.11	 5.48	 7.19	 -2.80	 -4.47	

Salpha 4.26	 -1.44	 0.30	 0.14	 -10.78	 -0.22	

F1M -3.53	 -2.07	 1.30	 0.61	 -3.47	 1.65	

F1bw,M -2.88	 2.16	 -0.11	 -0.44	 -1.75	 1.81	
F2M 1.62	 2.61	 1.02	 -1.15	 0.89	 0.32	

F2bw,M -0.18	 0.41	 -2.83	 -0.86	 0.01	 -0.18	

HNRM -12.40	 -8.41	 -2.93	 2.25	 -2.64	 5.88	

F0jitt,M 4.81	 -2.23	 -4.75	 -0.22	 0.98	 1.73	
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6 Summary and Future Work 

This thesis has attempted to detail the theory, methods, and composition of a corpus 
of emotional speech. Theories on the definitions for emotion and how specific 
emotions are differentiated were discussed in Chapter 2. Successive exploration of 
the voice production system established a link between the pressure waves, the 
body, and digital signals. Scherer’s Component Process Theory established a 
reference for the expectations in how emotion might be expressed acoustically and a 
set of predictions made for anger, happiness and sadness [6]. 
 
For the classical category of prosodic cues such as duration, intensity, and pitch, 
Scherer predicted increasing or decreasing trends from a neutral or non-expressive 
state. Duration cues like speech rate (Fsyll) were expected to increase along the 
arousal dimension, which suggests that anger and happiness would cause an 
increase in Fsyll, while sadness would be marked by a decrease in Fsyll. These 
predictions agree with the broad consensus in the literature  [3] [22]. Cues 
belonging to the intensity category were also predicted to rise in level and 
variability for emotions of higher arousal, thus reflecting the same trends as was 
described for duration. General consensus in the literature reflected these predicted 
trends as well.  Predictions for pitch (F0) cues were slightly less unidirectional than 
the previous categories were. Scherer (1986) expected elation (happiness) to cause 
increases in F0M, F0R, F0SD, and the short-term variability of pitch F0jit. Of this list 
of F0 predictions, the mean, range, and standard deviations were found to be 
consistent with the literature, however results from the few studies that included 
F0jit showed decreases for sadness against predicted trends. The voice quality 
category of cues offered a way to differentiate emotions along the valence 
dimension, although fewer of Scherer’s predictions were consistent with the 
consensus determined by Juslin & Laukka (2003). 
 
The development of recording procedures and acoustical optimization of the speech 
corpus was discussed in Chapter 3. Many factors were considered in maximizing the 
quality of the corpus including acoustical treatments to the recording room, 
communication between participating parties, and digital processing of the recorded 
stimuli.  
 
In Chapter 4, the emotional speech corpus was processed and analyzed for markers 
of emotion. The primary goal of this chapter was to assess whether the acoustic cues 
known to correlate with emotion did so for this corpus. The size of the dataset and 
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the number of possible salient cues increased the need for clearly stated cue 
definitions and a well-organized file structure. The results of these analyses were 
compared to theory and the most general consensus found in the literature. The 
lack of a consistent baseline and differences in cue definitions complicated both the 
comparison and conclusions that could be drawn from the analyses. Overall, the 
differences in low-level descriptor (LLD) values between a non-expressive and the 
emotional portrayals matched consensus of previous studies 58% of the time for the 
LLDs that could be compared. The effects of language content were also assessed. 
Although it was found that both script and utterance significantly affected the 
acoustics of the emotional portrayals, the magnitude of their effect was lower by a 
factor of ten.  
 
Objectively speaking, the corpus of emotional speech had been found to comprise 
significant acoustical content, but perception and measurement can be vastly 
different from one another.  To fully assess the accuracy and quality of these 
portrayals of emotion, a listening study was conducted. The main goals of this study 
were to determine if listeners could decode the intended emotion of the speaker, and 
to investigate which acoustic cues correlate with the perception of emotion as a 
category and its intensity. Recognition rates across all emotions were 92% on 
average, which was 3.7 times higher than chance. This result indicates 
unequivocally that the decoders were able to discriminate the intended emotion of 
the encoder as presented acoustically. Results from the analysis of variance indicate 
that semantic content did not affect the recognition rates or the response times in 
the recognition task.  
 

The intensity ratings told a slightly different story. As encoded, it was assumed that 
the intended intensity of the emotion as portrayed was as high as possible or 100% 
of their perception. The average intensity ratings of the decoders was on average 
only 65% for the three emotions of anger, happiness, and sadness. This result was 
significantly lower than the assumed 100% intensity of the encoder. Treated as a 
dependent variable, rated emotional intensity was significantly affected by script, 
the interaction of emotion X script, as well as the interaction of rated emotion X 
script X utterance.  Overall, the results from the intensity analysis indicate that 
semantic content significantly affected the perception of emotional intensity.  In 
addition to classification performance and perception of emotional intensity, 
contextual effects on the perception of emotion was examined. On average, 
participants that listened to each utterance as they would occur in conversational 
speech gave lower clarity ratings than the average recognition rates from the 
previous tasks.  
 
Comparisons to acoustical trends were also made. Of the LLDs that exhibited 
significant differences from the acoustical assessment in Chapter 3, only a handful 
significantly contributed to the classification of emotion. F0SD strongly correlated 
with recognition of happiness, and lower values for HNRM were found to 
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significantly correlate with the recognition of anger. Both of these results match the 
acoustically determined trends. The acoustic trends matched the recognition of 
sadness, which correlated with a decrease in syllabic rate, and an increase in 
HNRM. Sadness was also correlated with a decrease in F0SD, which is opposite the 
direction of the acoustically determined trend.   
 
The wealth of information and the depths to which future analyses can go cannot be 
overstated. Just a fraction of the speech from only three out of the forty-two 
encoders have been assessed in this thesis. As a whole, the corpus here described is 
one of most extensive of its kind with over 3.8 hours of fully transcribed prompted 
emotional speech recorded in a laboratory setting. While many of the independent 
variables investigated were sound to have significant main effects on the dependent 
variable, it can hardly be said that these effects are representative of the entire 
corpus with such a small sample size. This work focused largely on global trends 
that were averaged across utterances or scripts. Future work would greatly benefit 
from an utterance level analysis of variance on the existing data set. Easy targets 
for future work includes analysis of the formants that are specific to vowels in the 
transcripts of the scripts. It is quite possible that much more variance could be 
explained by shifts in the formant structure that are unique to each vowel.  
 
Lastly, the direction of more recent works is tending towards the use of higher level 
computational statistics as the world of machine learning continues to advance [34] 
[58]. This seems like a very natural tool for testing the theories proposed by 
Scherer’s (1986) Component Process Model (see Figure 4.10). Although only binary 
decisions are represented here, a range of underlying activation potentials that are 
characteristic of neural networks remains to be explored.  Such an analysis would 
synthesize one of the more profound advancements in modern technology within a 
framework constructed from psychological theory rather than a black box of 
statistical machines.   
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Appendix A Electrical Circuit Diagram of the Push-
to-Talk Box  

 
The wiring of the “Push-to-Talk” box is given in the schematic below: 

 
The “Push-to-Talk” box consists of the male XLR, button, and female XLR terminals 
for both the dynamic and condenser microphone channels.  
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Appendix B Measurement System Specifications 

 
Audio-Technica AT-2050 technical specifications: 

 

• Three switchable polar patterns: omni, cardioid, figure-of-eight 

• Dual-diaphragm capsule design maintains precise polar pattern 
definition across the full frequency range of the microphone

• Switchable 80 Hz high-pass filter and 10 dB pad

• State-of-the-art surface-mount electronics ensure compliance with 
A-T's stringent consistency and reliability standards

• Dual large diaphragms are gold-vaporized and aged to achieve 
optimum characteristics over years of use

The AT2050 is intended for use in professional applications where
remote power is available. It requires 11V to 52V DC phantom power,
which may be provided by a mixer or console, or by a separate, in-line
source such as the Audio-Technica AT8801 single-channel or
CP8506 four-channel phantom power supplies.

Output from the microphone's XLRM-type connector is low 
impedance (Lo-Z) balanced. The signal appears across Pins 2 and
3; Pin 1 is ground (shield). Output phase is “Pin 2 hot” – positive
acoustic pressure produces positive voltage at Pin 2.

To avoid phase cancellation and poor sound, all mic cables must be
wired consistently: Pin 1-to-Pin 1, etc.

An integral 80 Hz hi-pass filter provides easy switching from a flat
frequency response to a low-end roll-off. The high pass position
reduces the microphone's sensitivity to popping in close vocal use.
It also reduces the pickup of low-frequency ambient noise (such 
as traffic, air-handling systems, etc.), room reverberation and
mechanically-coupled vibrations.

In use, secure the cable to the mic stand or boom, leaving a slack
loop at the mic. This will ensure the most effective shock isolation
and reduce the possibility of accidentally pulling the microphone out
of its mount.

Avoid leaving the microphone in the open sun or in areas where
temperatures exceed 110° F (43° C) for extended periods. Extremely
high humidity should also be avoided.

Audio-Technica U.S., Inc., 1221 Commerce Drive, Stow, Ohio 44224
Audio-Technica Limited, Old Lane, Leeds LS11 8AG England

www.audio-technica.com
P52059    ©2008  Audio-Technica U.S., Inc.    Printed in  Taiwan

AT2050
AT2050 SPECIFICATIONS†

ELEMENT Externally polarized (DC Bias) 
condenser

POLAR PATTERNS Cardioid, Omnidirectional, 
Figure-of-Eight

FREQUENCY RESPONSE 20-20,000 Hz

LOW FREQUENCY ROLL-OFF 80 Hz, 12 dB/octave

OPEN CIRCUIT SENSITIVITY –42 dB (7.9 mV) re 1V at 1 Pa*

IMPEDANCE 120 ohms

MAXIMUM INPUT SOUND LEVEL 149 dB SPL, 1 kHz at 1% T.H.D.;
159 dB SPL with 10 dB pad 
(nominal)

NOISE1 17 dB SPL

DYNAMIC RANGE (typical) 132 dB, 1 kHz at Max SPL

SIGNAL-TO-NOISE RATIO1 77 dB, 1 kHz at 1 Pa*

PHANTOM POWER REQUIREMENTS 11-52V DC, 4.7 mA typical

SWITCHES Pattern selection; Flat, roll-off;
10 dB pad (nominal)

WEIGHT 412 g (14.5 oz)

DIMENSIONS 170.0 mm (6.69") long, 
52.0 mm (2.05") maximum body 
diameter

OUTPUT CONNECTOR Integral 3-pin XLRM-type

ACCESSORIES FURNISHED AT8458 Shock mount for 5/8"-27 
threaded stands; 5/8"-27 to 3/8"-16 
threaded adapter; soft protective 
pouch

†In the interest of standards development, A.T.U.S. offers full details on its test 
methods to other industry professionals on request.

*1 Pascal = 10 dynes/cm2 = 10 microbars = 94 dB SPL
1 Typical, A-weighted, using Audio Precision System One.
Specifications are subject to change without notice.
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M-Audio M-Track technical specifications [74]: 
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Comprehensive Equipment list for the measurement system: 
 

ID#	 Function	 Brand	 Model	
1	 Condenser	Microphone	 Audio-Technica	 AT-2050	
2	 Sound	Card	 M-Audio	 M-Track	
3	 Laptop	Computer	 Lenovo	 Thinkpad	
4	 Headphones	 Audio-Technica	 ATH-M40fs	
5	 Powered	Monitors	 Quickshot	 Sound	Force	680	
6	 Digital	Audio	Workstation	 Adobe	 Audition	
7	 Headphone	Amplifier	 Behringer	 MicroAmp	HA400	
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Appendix C Data Collection Instruments 

 
This is a scaled version of a script order sheet that the test administrators would use to keep track of 
the number of takes and gain setting for each stimulus. 

 

R21	
SCRIPT	ORDER NOTES:

9/18/17

PARTICIPANT:

#S PROSODY SCRIPT #A #	TAKES REP.	# GAIN DESCRIPTORS
Reminders: 1 NEU DIN_B 1 removed
Good	Posture 2 NEU HLP_B 2 complacent
Force	Breaks 3 NEU DIN_A 3 apathetic
Drink	Water 4 NEU CHK_A 4 robotic

5 NEU TLK_B 5 flat
6 NEU TLK_A 6 factual
7 NEU HLP_A 7 news-report
8 NEU CHK_B 8

9 ANG TLK_B 1 Sharp
10 ANG HLP_B 2 biting
11 ANG DIN_A 3 harsh
12 ANG CHK_B 4 abrupt
13 ANG CHK_A 5 frontal
14 ANG TLK_A 6 raised
15 ANG DIN_B 7 demanding
16 ANG HLP_A 8 coarse

17 SAD DIN_B 1 Subdued
18 SAD HLP_B 2 low-energy
19 SAD DIN_A 3 exasperated
20 SAD HLP_A 4 lethargic
21 SAD CHK_B 5 depressed
22 SAD TLK_B 6 exhausted
23 SAD CHK_A 7 spiritless
24 SAD TLK_A 8 breathy

25 HAP HLP_B 1 melodic
26 HAP CHK_B 2 sing-song
27 HAP HLP_A 3 chirpy
28 HAP CHK_A 4 sprightly
29 HAP DIN_A 5 chipper
30 HAP TLK_B 6 liltingly
31 HAP DIN_B 7 quick
32 HAP TLK_A 8
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Appendix D Calibration Curve for the Sound Card 
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Appendix E   Signal Processing Pipeline 

The main objectives for these analyses are to determine the value of each LLD for 
the entire corpus of speech and to statistically compare these values to those found 
in the literature. From the input stimulus file to the output LLD value the handling 
and storage of information was organized in a structured and repeatable manner.  
 
The analysis will focus on the stimuli that has been RMS normalized because the 
acoustical characteristics such as the RMS amplitudes are closer to the values 
during their presentation in PEEP. Having normalized the amplitudes of these 
stimuli, analysis of signal intensities will be limited to utterance-level variation. As 
previous work has indicated that loudness (intensity) is highly correlated with 
arousal, relative level differences between the unedited stimuli will be covered 
briefly.  
 
The signal processing architecture was developed as a coordination between the 
computational software program MatLab [52] and the speech processing program 
PRAAT [56]. Although it was initially desired to unify the handling of data in a 
single software environment, the time saved by allocating analyses far outweighed 
the benefit of reinventing the wheel in code.  Calculations of F0, HNR, formants, 
jitter, and shimmer were performed by PRAAT. The remaining LLDs were 
calculated with custom MatLab scripts and functions.  
 
PRAAT’s design as a scripted language accelerated what would have otherwise been 
a laborious and time-consuming manual procedure.  PRAAT is both a speech 
processing software environment and a program that runs on scripts. In the PRAAT 
environment, stimuli can be manually imported and then processed depending on 
the LLD of interest. Alternatively, scripts written in the PRAAT language can be 
run that automatically imports and processes a stimulus to find one or several 
LLDs. PRAAT can also be opened and called to run a script with any number of 
unique arguments directly from a Unix or Linux system’s command line. It was 
concluded that this last option offered the greatest time efficiency with the smallest 
probability of human error in data manipulation. 
 
For each of the LLDs involving PRAAT, a custom script was written and saved with 
the following naming convention: “extract_LLD.praat”, where “LLD” is replaced 
with F0, HNR, formants, and jitter.  Shimmer was included in the PRAAT script for 
calculating jitter because both calculations apply to the same sets of F0 values. 
Although it is very possible for each of these PRAAT scripts to be unified into one 
script that requires a larger number of arguments, separating each operation into 
separate files made the process of debugging less complicated. A final copy of each 
of these PRAAT scripts is provided in Appendix #.  Although the input arguments to 
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each of these scripts vary slightly, they all request a stimuli directory, filename, and 
either a time step or time interval parameter. 
 
Because the rest of the LLDs were processed in MatLab, calls to the five PRAAT-
based LLD scripts were also made in the MatLab environment. A graphical 
representation of the communication chain between both programs is shown in the 
figure below. Each of the PRAAT LLD scripts was complemented by a unique 
MatLab function controller. The naming convention for these MatLab-PRAAT 
controller functions followed similarly: “get_praat_LLD.m” where LLD “LLD” is 
replaced with F0, HNR, formants, and jitter. Each of these MatLab functions could 
be passed the arguments specific to each of the PRAAT algorithms, as well as 
speech file directories, file names, and temporal parameters as is depicted in the 
figure below. 
 
  

 
This is a visual representation of how a custom MatLab function was designed to call and pass 
arguments to a PRAAT script. Data from the text file generated by PRAAT was then read into MatLab 
for further analysis. 
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Appendix F   Corpus Archival Structure 

As originally saved, the speech corpus contains one folder for each encoder (55 total 
folders). Each of these folders is labeled by the three-digit identification number of 
the encoder as provided by PEEP (e.g. “001”, “002”).  Within every encoder’s folder 
are two subfolders: one labeled “raw”, which contains the unedited stimulus files, 
and one labeled “norm_mono_unfiltered” which contains the single channel RMS 
normalized stimulus files. 
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Appendix G   Least-Squares Means Comparisons 
between LLDs 
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Appendix H   Participant Feedback Survey Results 

Participant Feedback Survey Results 

Survey	Question	 Range	 x̅		 σ	
In	general,	how	difficult	was	it	to	determine	
the	emotion	category	for	the	stimuli?	 (-2,2)	 1.10	 0.69	

In	general,	how	difficult	was	it	to	rate	the	
emotional	intensity	of	the	recordings?	 (-2,2)	 -0.44	 0.93	

How	authentic	were	the	portrayals	of	each	
emotion?	-	Anger	 (0-100)	 78.47	 20.60	

How	authentic	were	the	portrayals	of	each	
emotion?	-	Happiness	 (0-100)	 66.17	 26.25	

How	authentic	were	the	portrayals	of	each	
emotion?	-	Sadness	 (0-100)	 60.07	 29.59	

For	each	emotion	category,	how	frequently	
did	the	scripted	words	interfere	with	the	
task?	-	Anger	

(0-100)	 17.31	 20.29	

For	each	emotion	category,	how	frequently	
did	the	scripted	words	interfere	with	the	
task?	-	Happiness	

(0-100)	 37.97	 31.84	

For	each	emotion	category,	how	frequently	
did	the	scripted	words	interfere	with	the	
task?	-	Sadness	

(0-100)	 18.77	 19.04	

How	would	you	rate	the	length	of	each	of	the	
following?	-	Overall	test	length	 (-2,2)	 -0.26	 0.48	

How	would	you	rate	the	length	of	each	of	the	
following?	-	Question	set	length	 (-2,2)	 -0.29	 0.50	

How	would	you	rate	the	length	of	each	of	the	
following?	-	Speech	Recording	length	 (-2,2)	 0.06	 0.47	

Were	you	fatigued	or	bored	at	any	point	
during	the	test?	-	Fatigued	 (0-100)	 11.18	 14.01	

Were	you	fatigued	or	bored	at	any	point	
during	the	test?	-	Bored	 (0-100)	 13.18	 16.55	

How	would	you	rate	the	quality	of	the	test	for	
each	of	the	following?	-	Audio	quality	 (-2,2)	 1.53	 0.66	

How	would	you	rate	the	quality	of	the	test	for	
each	of	the	following?	-	User	/	Testing	
Interface	

(-2,2)	 1.74	 0.39	

How	would	you	rate	the	quality	of	the	test	for	
each	of	the	following?	-	Testing	Tutorials	 (-2,2)	 1.81	 0.62	
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Comments from the listening study. 

Please	provide	any	other	comments	or	suggestions	you	might	have.	
The	study	was	very	well-designed.	I	believe	in	one	of	the	early	tutorials	it	may	have	
mentioned	to	rank	the	speech	on	a	scale	from	1-10,	but	during	the	actual	test	the	scale	was	
from	1-100.	
It	would	be	beneficial	to	have	male	recordings	as	well	as	female	recordings.	I	think	it	would	
be	interesting	to	see	how	subjects	can	differentiate	emotions	in	male	voices	as	well	as	
female	voices.	
The	some	of	the	"happy"	voices	sounded	overly	exaggerated	and	odd		
Excellent	scheduling	process	for	the	research	study.	Very	clearly	explained	testing	in	
tutorials.	
Peter	is	super	friendly	and	awesome!	This	was	a	very	interesting	study!	
This	was	an	interesting	test	
Very	well	conducted	tests.	UI	was	especially	impressive.	
It	was	fun	to	test	my	ability	to	match	emotions	to	voices.	
I	thought	that	the	speech	could	have	been	more	authentic.		For	example,	in	the	category	of	
sadness,	I	did	not	hear	a	single	person	crying.		It's	very	possible	someone	could	have	been	
crying,	but	I	did	not	pick	up	on	any	sobs.		I	heard	lots	of	sighing	and	soft-spoken	speech,	but	
to	me,	that	just	indicates	distress.		For	anger,	voices	were	raised,	but	again,	it	wasn't	as	
intense	as	it	could	have	been.		If	someone	was	truly	angry	with	someone,	they	might	be	
yelling	at	the	top	of	their	lungs	to	the	other	person,	and	I	didn't	necessarily	hear	that	in	this	
experiment.	I	definitely	did	hear	some	speech	that	sounded	angry	with	raised	pitch,	but	
sometimes,	instead	of	coming	off	as	a	person	being	angry,	it	merely	comes	off	that	the	
person	in	question	was	just	annoyed,	and	has	not	really	reached	an	emotional	intensity	that	I	
would	classify	it	as	anger.		With	happiness,	I	think	the	opposite	is	present.		I	think	that	in	
certain	speech,	I	heard	over	the	top	happiness,	which	I	thought	might	have	been	inauthentic,	
especially	for	the	text	that	they	were	saying,	which	could	have	definitely	interfered	(as	you	
put	above)	with	my	perception	of	how	happy	those	people	really	were	when	saying	those	
lines	of	text.		Other	than	that,	the	testing	system	worked	very	well	with	no	glitches,	and	it	
seemed	to	do	the	job	of	recording	my	answers	pretty	well.	
I	thought	the	excerpts	were	somewhat	short,	but	it	was	still	relatively	easy	to	distinguish	the	
emotions	in	each.	
Very	professional.		
I	think	that	overall	this	was	a	very	good	experience	and	I	don't	have	very	many	critiques.	I	
mentioned	above	that	I	felt	very	slightly	fatigued	but	quite	honestly	it	was	because	I	came	in	
a	bit	tired.	
first	section	is	a	little	bit	long,	hard	to	focus	the	entire	time	
Sometimes	the	recording	were	too	clearly	trying	to	display	an	emotion	(overselling	it).	I	also	
was	unsure	whether	I	was	trying	to	describe	the	emotional	state	that	the	speaker	had	or	if	I	
was	trying	to	describe	the	emotion	that	the	speaker	was	attempting	to	convey,	i.e.	the	
speaker	is	happy	but	trying	to	convey	sadness.	Which	would	I	have	said:	happy	or	sad?	
Easy	test	to	follow	
Excellent	tutorials	and	opportunities	for	practice.	


