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Abstract

This dissertation furnishes a framework addressing the challenges of designing
online algorithms for optimal periodic control (OPC). The proposed framework
aims to expand the use of the OPC discipline, moving beyond the traditional offline
optimization of periodic control trajectories for plants with known dynamics, and
instead focusing on the online and stable periodic optimal control of plants whose
dynamics are not fully known a priori. More specifically, the design objective of this
online framework is to discover, achieve, and maintain the best cyclic performance
level of a given engineering system, despite the potential open-loop instabilities of
the underlying dynamics and unknown plant model parameters.

This dissertation is motivated by the exciting applications of the OPC theory in
nature and engineering. This research area has been studied for nearly 6 decades.
The literature has developed mathematical tests for properness: a condition under
which there is a periodic trajectory that in average outperforms the best equilibrium
point of a given dynamic system. Necessary and sufficient conditions have also been
developed to analyze the optimality of a candidate periodic trajectory. Further-
more, researchers have proposed direct and indirect algorithms for the numerical
computation of the OPC problem solutions. However, a common limitation of the
existing OPC research lies in the fact that traditional OPC has been applied to the
offline optimization of trajectories for systems with known dynamics. This stands
in contrast both to the goal of this dissertation and to several examples of OPC
practices that are observed in nature.

This dissertation seeks to address the above limitations by proposing an adap-
tive framework that enables engineering systems to achieve robust online periodic
optimal control. The steps leading to the development of the online framework
are illustrated/validated on an insect flight model, a benchmark drug delivery
application problem from the OPC literature, and a vehicle suspension example.
The first two of these application problems are known to benefit from OPC, while
the oscillatory behavior is enforced on the last application through a periodic road
roughness profile. The work of this dissertation builds on established techniques
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in control theory including variational calculus methods, direct optimal control,
indirect adaptive control, Floquet stability, Lyapunov stability, and feedback lin-
earization. However, it combines these tools in a manner that will result in a novel
framework for achieving robust online periodic optimality.

The development of algorithms in this dissertation follows a progressive trend
towards the end framework. This is also reflected through the organization of the
dissertation as explained below.

• Chapter 2 introduces a properness test from the OPC literature to determine
whether periodic operations can offer any advantage over the best steady-state
performance. The application of this tool is demonstrated on a flapping flight
model of the fruit fly.

• Chapter 3 incorporates variational calculus methods to discover the structure
of the solution trajectory of the periodic drug delivery application, once OPC
properness is established. Also, a discretization approach based on the
discovered structure is shown to reduce the computational requirements of
solving the OPC problem offline.

• Chapter 4 develops an adaptive controller to achieve online OPC for the
drug delivery application in the presence of unknown plant parameters. This
controller is dependent on the innate open-loop stability of the drug absorption
dynamics and the local convergence of the closed loop scheme is shown using
Floquet analysis.

• Chapter 5 designs a novel adaptive tracking algorithm grounded in principles
of feedback linearization theory. A Lyapunov stability analysis establishes
global convergence to a target trajectory dependent on unknown plant param-
eters. A numerical active vehicle suspension example is employed to showcase
the performance of the algorithm.

• Chapter 6 finally presents the online OPC framework of this dissertation
with the adaptive tracking controller of Chapter 5 incorporated at its heart.
The performance of the closed-loop scheme is demonstrated on the benchmark
drug delivery application.

The proposed online OPC framework (i) provides an online estimate of the
uncertain plant parameters, (ii) efficiently solves for and employs a family of
precalculated optimal periodic solutions indexed by the plant parameter estimates,
and (iii) offers an input adaptation mechanism which enables asymptotic and stable
tracking of a dynamically-changing target trajectory constructed from this family
of optimal solutions. These tasks collectively are shown to enable stable and global
convergence of the closed loop system towards its optimal periodic path.
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Chapter 1 |
Introduction

1.1 Motivation
This dissertation aims to address the challenge of designing robust algorithms for
online optimal periodic control (OPC) by proposing an online framework grounded
in the principles of optimal control, adaptive control, and feedback linearization
theory. The presented framework intends to expand the application horizon of
the OPC discipline, moving beyond the traditional offline optimization of periodic
control trajectories for plants with known dynamics, and instead focusing on the
online periodic optimal control of plants whose dynamics and disturbances are not
fully known a priori. The developed algorithms will be validated on a benchmark
application problem from the OPC literature that is known to benefit from OPC,
but requires the ability to adapt to varying plant models.

Optimal periodic control theory has various exciting applications in nature
and engineering. The optimal control of certain chemical processes is periodic,
for instance: a fact that has been recognized for decades and motivated some of
the earliest contributions to OPC [1–6]. The optimal harvesting of ecosystems
with periodic dynamics, such as fisheries, has also been examined using the tools
of OPC [7–10]. In hypersonic flight, the speed for maximum engine efficiency
is usually different from the speed for minimum drag. Consequently, periodic
optimal flight has been shown to improve overall airplane fuel efficiency compared
to steady flight [11–15]. Fuel economy in vehicle cruise has also been studied as
an OPC problem [16]. The “pulse and glide” cruising strategies for improving fuel
economy for cars with continuously varying [17] and step-gear [18] transmission
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systems are among other important engineering applications of OPC. The tools of
optimal periodic control have been used for finding energy-minimizing, open-loop
stable periodic gait trajectories for a walking robot [19–21]. These tools have
additionally been employed in studying economic systems [22, 23], and maximizing
energy harvesting in airborne wind turbines [24,25]. Optimal periodic control has
also been used for designing the acceleration, braking, and gear shift policy for a
test automobile to maximize the average speed with which it is able to periodically
traverse a test track [26]. Finally, the idea of glider dynamic soaring and exploitation
of wind gradients for nearly powerless flight has gained the attention of researchers
as an application of the OPC theory [27]. This idea is inspired by the study of
flight of birds such as albatross [28].

1.2 Literature Review
A formal statement of a deterministic time-invariant optimal periodic control
problem is usually given as follows.

maxx,u,T
{
J = 1

T

∫ T
0 L(x, u) dt

}

subject to:
x(0) = x(T ) (Periodicity Constraint)
ẋ = f(x, u) (System Dynamics)
g(x, u) ≤ 0 (Input/State Constraints)∫ T
0 h(x, u) dt ≤ 0 (Integral Constraints)

(1.1)

where u is a piecewise continuous function of time, f is Lipschitz continuous in x and
continuous in u, and L is the instantaneous performance index (a.k.a Lagrangian)
for the problem.

The existing literature on periodic optimal control has studied the solution
characteristics of, and developed solution algorithms for different variations of
the above OPC problem. The literature spans over 6 decades and includes three
historical phases of investigation and discovery [29–46]:
Phase 1–Optimality Conditions and Properness: Much of the OPC litera-
ture builds on Bailey and Horn’s pioneering examination of chemical production
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processes [2]. They showed that periodic cycling of some chemical reaction’s temper-
ature gives a performance superior to the best constant temperature treatment [2].
Bailey and Horn’s work motivates two intertwined directions of study in the litera-
ture. First, researchers use the calculus of variations to prove the existence and
uniqueness of solutions to different benchmark periodic optimal control problems,
and derive necessary and sufficient conditions for their optimality [29–33]. Second,
researchers also examine the conditions for “properness” in periodic optimal con-
trol [34–36]. A periodic optimal control problem is proper if its periodic solution is
superior to its optimal steady state (OSS) solution. A subset of proper problems is
the set of locally proper problems, where there exists a weak variation of OSS that
improves the performance. Seminal work by Bittanti et al. presents the π test for
whether or not a periodic optimal control problem is locally proper [34]. Further
work by Bernstein and Gilbert establishes regularity conditions that must be met
in order for the π test to be valid [35,36].
Phase 2–Offline Solution of Periodic Optimal Control Problems: By the
mid-1980s, the community’s understanding of (i) the necessary/sufficient conditions
for periodic control optimality and (ii) the conditions under which a OPC problem
is proper had matured [29–36]. However, there was still a gap in the literature:
given a proper periodic optimal control problem, how does one solve this problem
computationally?

The literature provides several approaches for solving periodic optimal control
problems numerically. One can classify these approaches into direct versus indirect
methods. Direct methods for solving optimal control problems proceed by dis-
cretizing the problems’ underlying feedback gains and/or time-varying signals (e.g.,
state variables, co-state variables, input variables, etc.). This makes it possible to
reformulate the optimal control problems as nonlinear programs, then solve them
using the classical tools of nonlinear programming. Varga and Pieters’ research
provides one optimization approach: they use a gradient-based search to directly
optimize the time-dependent feedback gains in a periodic optimal output feedback
problem [37]. Chen et al.’s work provides another example of direct optimization:
they parameterize the input trajectory over a sinusoidal and a piecewise-constant
function basis, and solve the problem numerically using analytically found Ja-
cobians of the objective and cost functions [38]. In an indirect optimal control
method, one typically begins by deriving necessary conditions for control optimality
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using a tool such as the Pontryagin Maximum Principle (PMP). This furnishes
a “two-point boundary value” problem that one then solves to obtain candidate
optimal trajectories. Evans et al., for instance, derive necessary and sufficient
conditions for periodic optimal control, then solve the resulting two-point boundary
value problem using an asymptotic series approach [39]. Similarly, Speyer and
Evans develop a shooting method that uses some of the optimality conditions to
construct and traverse through a one-parameter family of closed orbits in search
of the optimal solution [40]. Val Noorden et al.’s work provides another example
of indirect optimization, where they utilized an efficient Newton-Picard shooting
method to obtain closed state and adjoint trajectories. A gradient descent rule
is then used to modify the input trajectory and climb these orbits towards the
optimal solution [41].
Phase 3–Online Solution of Periodic Optimal Control Problems: The
above literature on the computational solution of OPC problems is important,
but suffers from at least two weaknesses. First, the computational burden of
solving OPC problems can be prohibitive, particularly for systems with many
state and input variables. Second, the optimal control policies furnished by most
of the above methods are open-loop, and lack the robustness to modeling errors
that one would ideally seek in a periodic optimal controller. Only recently has
the literature begun tackling these two challenges. Specifically, recent research
by Varigonda et al. exploits differential flatness to reduce the computational
complexity of OPC significantly, for the first time [42,43]. Varigonda et al.’s work
focuses on offline control optimization, but it has inspired more recent research on
online periodic optimal control by Guay et al. [44, 45]. In this work, Guay et al.
consider a differentially flat dynamic system whose periodic optimal control is
desired [44,45]. Like Varigonda et al., they find flat system outputs and discretize
these outputs trajectories using truncated Fourier series to enable direct control
policy optimization. However, their work departs from Varigonda et al.’s in its use of
extremum-seeking control to optimize the Fourier basis function weights online [44,
45]. More recent work by Höffner et al. extends this research by construction and
parameterization of a Hamiltonian reference model. The parameterized limit cycle
of the Hamiltonian model is then optimized using an extremum-seeking algorithm
and back-stepping is employed to ensure that the resulting periodic trajectory is
tracked in a stable manner [46]. Finally, Azzato and Krawczyk employ stochastic
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dynamic programming to develop feedback laws a priori to optimize the ensemble
average performance in a stochastic OPC problem [47]

The fact that researchers are beginning to explore online OPC strategies un-
derscores the importance of the proposed work. However, a common limitation of
existing OPC research lies in the fact that traditional OPC has been applied to
offline optimization of trajectories for systems with known dynamics and distur-
bances. This stands in contrast both to the research objective of this dissertation
and to several examples of OPC that are observed in nature. The existing OPC
literature is specifically weak in terms of its potential for applicability to online
optimization problems.There are at least five manifestations of this weakness:

• Most existing OPC work focuses on offline optimization using indirect op-
timal control (e.g., Pontryagin methods), and fails to offer a framework for
implementing the resulting solutions online.

• The few papers that do explore online OPC consistently use direct optimal
control methods: they express the optimal state and input trajectories in
terms of Fourier series, then optimize the coefficients of these series using
nonlinear programming. While this strategy certainly has its appeal, it misses
an opportunity to exploit indirect methods (e.g., Pontryagin methods) to
guide the choice of control policy discretization.

• Existing online OPC methods typically assume the optimal control policies’
time periods to be known. This is reasonable in the context of problems where
plant dynamics and disturbances are themselves periodic, with known time
periods (e.g., periodic treatment of diabetes). However, this assumption is not
reasonable for problems where the period of the optimal control policy is not
known a priori, and may change based on plant and disturbance parameters
(e.g., periodic energy-harvesting flight).

• The majority of the existing online OPC literature assumes that the underlying
plant dynamics are known exactly, and offers no guarantees of the robust
achievement of optimal periodic orbits in the presence of plant modeling
uncertainties. In the very few bodies of work that do consider stochasticity,
the controllers do not attempt to estimate and adapt to the unknown dynamics
of the plants.
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• Most existing online OPC algorithms assume open-loop stable plant dynamics.
In these works, with the application of the optimal periodic periodic input
trajectory, the optimal solution orbits are essentially considered to be limit
cycles with a global region of attraction. This assumption is however rarely
met in nonlinear dynamic systems, where adaption of the control parameters
can instigate instability issues.

1.3 Contributions
Inspired by the need in several engineering applications to execute periodic optimal
control in the presence of changing conditions, the overarching goal of this disser-
tation is to offer a computationally efficient framework that enables achievement
of robust online periodic optimal control. The algorithms developed in this disser-
tation build on established tools in control theory including variational calculus
methods, direct optimal control, indirect adaptive control, Floquet stability, Lya-
punov stability, and feedback linearization. However, these tools are combined in a
manner that will result in a novel framework for achieving robust online periodic
optimality.

This dissertation first incorporates the π test for assessing the relative efficiency
of revolving and flapping wings in insect hovering flight models. While the OPC
literature already includes numerous examples to which the π test has been applied,
the novelty of the work mostly stems from its exciting application problem. Tackling
an OPC problem before establishing its properness is a futile effort. Hence, this
contribution also acts as stepping stone and constitutes a foundation for the main
body of this dissertation. The insect flight literature already offers extensive
experimental [48–51] and simulation-based [52–55] comparative studies on the
effectiveness of the insect flapping flight and rotary flight as the standard engineering
mechanism for controlled hovering flight. A collective conclusion from all the
above studies is that the potential advantages of flapping flight is influenced by
many factors such as insect size, wing morphology, kinematic flight constraints,
aerodynamic efficiency metrics, etc. This, combined with the design complexities of
experimental setups and computational power requirements of numerical approaches,
has hindered the advancement of bio-inspired micro air vehicles. We address
this issue by proposing the application of the π test from the OPC theory as
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a simple tool to analyze the impact of local periodic perturbations around an
optimized rotary flight trajectory. While this test does not quantify the extent of
improvement achievable via flapping flight, its result can be used to identify the
salient aerodynamic effects and influential flight parameters for a given study, thus
reducing the subsequent experimentations and/or computational efforts needed.
We also solve for the optimal lift-power Pareto fronts of the two flight regimes,
confirming the results predicted by the π test.

This dissertation next examines the shaping of nicotine’s delivery to maximize
its long-term cardio-accelerating effects. This application problem has been exten-
sively examined in the existing OPC literature [44–46,56,57]. Previous research:
(i) furnishes a pharmacokinetic-pharmacodynamic (PKPD) model of this drug’s
metabolism [58]; (ii) shows that the drug delivery problem is proper, meaning that
its optimal solution is periodic [56]; (iii) shows that the underlying PKPD model is
differentially flat [56]; and (iv) exploits differential flatness to solve the problem
by optimizing the coefficients of a truncated Fourier expansion of the flat output
trajectory [56]. The work in this article provides insight into the structure of the
theoretical solution to this offline OPC problem. First, we argue for the existence
of a bijection between feasible periodic input and state trajectories of the problem.
Second, we exploit Pontryagin’s maximum principle to show that the optimal
periodic solution has a bang-singular-bang structure. Building on these insights,
our work also proposes two efficient discretization methods for offline solution of
this OPC problem. One method uses nonlinear programming to optimize the states
at which the optimal solution transitions between the different solution arcs. The
second method approximates the control input trajectory as piecewise constant,
and optimizes the discrete values of the input sequence.

While the existing solution methods [44–46,56,57] depend on the exact knowledge
of the drug’s model, the human body’s metabolism varies from one patient to
another, affecting the shape of the maximum efficacy trajectory. This creates a
need for online solution methods for the drug delivery problem, which can handle
unknown plant parameters. Our work addresses this issue by developing a self-
tuning regulation scheme that assumes the structure of the system dynamics is
known, but takes parameter uncertainty into account. The uncertain parameters
are estimated using gradient based methods and the estimates are used to adapt
the shape of the input according to a bank of optimal solution trajectories. The
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controller converges very quickly, and its local convergence to the optimal solution
is shown using Floquet stability analysis. While simulation results demonstrate
the effectiveness of this controller in achieving online OPC, it lacks any active
tracking mechanism and its convergence heavily relies on the asymptotic stability
of the Linear, Time-Invariant (LTI) dynamics of the drug delivery. An approach for
generalization of the scheme to the class of convergent nonlinear dynamic systems
is also outlined. However, the asymptotic stability property remains a critical to
the stability of the controller.

In an attempt to relax the above open-loop stability requirement, the dissertation
next develops an adaptive control synthesis technique for tracking output target
trajectories which are potentially dependent on unknown parameters in the plant
model. The proposed tracking algorithm is designed for a class of state feedback
linearizable systems, for which the strict uncertainty matching condition is met. The
literature already offers well-established regulation and tracking algorithms which
exploit feedback linearization techniques and account for parametric uncertainties
in the plant dynamics. These algorithms either rely on static feedback based on
the certainty equivalence principle [59–62], or employ dynamic feedback rules based
on back-stepping techniques [63–67]. However, all these algorithms assume that
the given reference output trajectory and/or the desired reference model dynamics
are independent of the uncertain plant model parameters. This assumption limits
the performance of the existing adaptive feedback linearizing controllers in a
large number of important practical examples. The proposed adaptive tracking
algorithm, in contrast, allows for the appearance of unknown plant parameters in
the reference output trajectory (or the reference dynamic model). The algorithm
presented is shown to always achieve bounded and asymptotic tracking of an
estimate of the target trajectory. Additionally, when the signals used in the
algorithm’s estimation law are persistently exciting, Lyapunov analysis guaranties
asymptotic convergence to the true target trajectory. The performance of the
proposed algorithm is demonstrated by employing it in a numerical simulation of
an active vehicle suspension system.

Lastly, this dissertation proposes an online adaptive control framework for
tracking optimal periodic trajectories of feedback linearizable plants with unknown
parameters. As explained earlier, the existing online OPC algorithms either assume
perfectly known plant models and ensure robust tracking of the optimal solution,
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or allow for the appearance of unknown parameters in the plant model, but rely on
the plant’s open-loop stability for implementation of the optimal solution. This
dissertation, in contrast, develops an adaptive feedback linearizing algorithm to
simultaneously estimate and track the optimal orbit solving the OPC problem.
Inheriting the stability properties of the adaptive tracking algorithm, the system
trajectories under this framework always remain bounded and asymptotically
approach the periodic solution corresponding to an estimate of the unknown
plant parameter vector. Furthermore, when the regressor vector of the parameter
estimation law is persistently exciting, global convergence to the true periodic
solution trajectory is guaranteed. The dissertation also includes a numerical
implementation of the proposed framework on the benchmark periodic drug delivery
application.

The above contributions follow a progressive trend towards the ultimate goal of
this dissertation: an adaptive framework for online and stable OPC in the presence
of plant parameter uncertainties. This is also reflected through the organization of
the remainder of the dissertation as described below.

• Chapter 2 introduces a properness test from the OPC literature to determine
whether periodic operations can offer any advantage over the best steady-state
performance. The application of this tool is demonstrated on a flapping flight
model of the fruit fly.

• Chapter 3 incorporates variational calculus methods to discover the structure
of the solution trajectory of the periodic drug delivery application, once OPC
properness is established. Also, a discretization approach based on the
discovered structure is shown to reduce the computational requirements of
solving the OPC problem offline.

• Chapter 4 develops an adaptive controller to achieve online OPC for the
drug delivery application in the presence of unknown plant parameters. This
controller is dependent on the innate open-loop stability of the drug absorption
dynamics and the local convergence of the closed loop scheme is shown using
Floquet analysis.

• Chapter 5 designs a novel adaptive tracking algorithm rooted in the princi-
ples of feedback linearization theory. A Lyapunov stability analysis establishes
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global convergence to a target trajectory dependent on unknown plant parame-
ters assuming persistence of excitation. A numerical active vehicle suspension
example is employed to showcase the performance of the developed tracking
algorithm.

• Chapter 6 presents the online OPC framework of this dissertation with
the adaptive tracking controller of Chapter 5 incorporated at its heart. The
performance of the closed-loop scheme is demonstrated on the benchmark
drug delivery application problem.

The remainder of this dissertation highlights the contribution of this work to
the OPC literature in the order specified above. Finally, Chapter 7 provides a
summary of these contributions and some concluding remarks.
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Chapter 2 |
Rotary vs. Flapping Flight: An
Application Study for Optimal
Periodic Control Theory

2.1 Introduction
This chapter proposes the application of the π test from the OPC literature as
a systematic procedure for comparing the aerodynamic efficiency of rotary wings
(as the steady-state hovering mechanism) and flapping wings (as the unsteady
periodic hovering mechanism) in insect flight models. At their extremely small
size compared to commercial aircrafts, flying insects experience air flow regimes
with low Reynolds numbers. This results in a significant enhancement of viscous
effects and reduction of the aerodynamic efficiencies to the extent of rendering
the steady-state means of lift generation insufficient for sustained hovering flight.
Consequently, the bio-inspired insect flapping flight has recently gained a great
amount of interest in the design of Micro Air Vehicles (MAVs) capable of controlled
hovering flight.

The unsteady lift force mechanisms exploited by flying insects has been investi-
gated by many researchers [48,68,69]. The literature also offers extensive studies on
the identification, characterization, and even optimal harvesting of these unsteady
phenomena, which offers the possibility of performance improvement via flapping
flight used by various insects. The research contributions in this regard can be
categorized into experimental and numerical studies.
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• The experimental works involve direct measurements of instantaneous aero-
dynamic forces on actual insect wings or aerodynamically-scaled robotic
wings. For instance, Dickinson et al.’s setup consists of a scaled robotic
wing submerged inside an oil tank to represent aerodynamics of the fruit
fly [48]. Using a two-dimensional force sensor mounted at the base of the
wing, they characterize delayed stall, rotational circulation, and wake capture
as three major unsteady mechanism enhancing aerodynamic performance in
flapping flight. The same setup is used in [49] to shape the flight kinematics
for maximization of average lift force through these unsteady effects. Lentink
and Dickinson, however, show that a sinusoidally flapping fruit-fly wing has
significantly lower efficiency compared with a steady revolving wing motion in
the range of Reynolds number (Re) between 110 and 14000 [50]. Additionally,
Mayo and Leishman surveyed several types of MAV concepts and compared
them against the hovering flight of avian and entomological fliers using power
loading and effective disk loading as performance metrics [51]. They concluded
that conventional rotor systems have higher hovering efficiencies relative to
the existing bio-mimetic flapping fliers, but are similar or less efficient than
birds and insects capable of hovering flight.

• The numerical contributions to the literature in contrast rely on simplified
empirical models or complex first-principle models for their analysis. Berman
and Wang, for example, investigate hovering flight of the fruit fly, bumblebee,
and hawkmoth using a quasi-steady two dimensional model obtained for a
free falling plate model from blade element theory [52]. They minimize the
mass-specific power consumption for these insects assuming an elliptical wing
geometry with sinusoidal and hyperbolic stroke and pitch angle trajectories.
Nabawi and Crowther also use a quasi-steady hovering flight model to max-
imize the average lift force and minimize the power consumption in insect
flapping flights. They show that for their model flapping wing becomes most
efficient when it approaches the rotary wing motion [53]. In another example,
Pesavento and Wang employ solve the Navier-Stokes (NS) equations and
show that an optimized two-dimensional flapping wing motion can save up to
27% of the power required for the optimal steady flight by taking advantage
of wing-wake interactions near stroke reversal [54]. Zheng et al. take a
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multi-fidelity modeling approach towards this problem [55]. They use NS
simulation results of a hovering hawkmoth to calibrate a quasi-steady model
based on blade element theory. This simple empirical model is next used to
optimize aerodynamic efficiency assuming sinusoidal stroke angle and wing
elevation angle profiles and a hyperbolic expression for the pitch angle. These
actual performance of these optimized trajectories is then analyzed using
the high-fidelity NS model. Another work by the same researchers also uses
the NS-based hovering hawkmoth model and show that the flapping wing
configuration is only efficient for low Reynolds number kinematics (Re < 300),
while the exact cross-point highly depends on the definition of the Reynolds
number and the dimensionless force and power coefficients [70].

The above examples and many other contributions to the literature collectively
suggest that there are many factors affecting the effectiveness of flapping and
rotary wing motions including insect size, wing geometry and structural flexibility,
kinematic constraints, and the definition of flight fitness metric. Under different
circumstances, the result of comparative studies on aerodynamic efficiencies of the
two flight maneuvers are different and sometimes even conflicting. This, combined
with the challenges associated with the design of experimental setups that allow
for instantaneous measurement of aerodynamic forces, or the heavy computational
needs of accurate flow simulations and optimization schemes of the numerical
approaches are among the major challenges encountered in bio-inspired MAV design
realm. The work of this chapter aims to address these challenges by proposing the
application of the π test developed by Bittanti et al. in [34]. The π test is a simple
tool from the OPC theory that can be used to analyze the effect of local periodic
perturbations around an optimal steady-state solution. While the application of
this test does not predict the extent of improvement which can be achieved via
flapping flight, its result can be used to identify the most relevant aerodynamic
effects and influential flight parameters for a given application study. This helps
substantially reduce the subsequent experimentations and/or computational efforts
needed for determining the optimal flapping flight kinematics.

Broadly speaking, the problem of building a robust online periodic optimal
controller boils down to these questions. First, is the optimal control problem at
hand proper, in the sense that it can benefit from periodic control? Second, what
is the structure of the optimal periodic controller? Third, how does one implement
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this periodic optimal controller online in a stable manner in the presence of plant
parameters/model uncertainties? The content of this chapter can be viewed as a
review of the literature’s existing answer to the first of these three questions with a
specific focus on an exciting application problem that has not been examined using
the π criterion before.

The remainder of this chapter proceeds as follows. Section 2.2 presents the π
test from the OPC literature and describes how it can be used as a standard tool for
comparing optimality of flapping and rotary flight configurations for a given insect
model. In Section 2.3, a quasi-steady aerodynamic flight model of the fruit fly is
introduced and lift generation and power consumption are selected as optimality
metrics. Next, the Pareto front of optimal rotary flight solutions is found and the
π test is applied at points across the set of optimal solutions (Section 2.4). Lastly,
Section 2.5 formulates and solves the optimal flapping flight problem and compares
its set of optimal solutions against the steady-state Pareto front of the rotary flight.

2.2 Properness and the π Test
This section formulates a standard OPC problem typically encountered in insect
flight optimization problems, defines properness in the context of OPC theory,
introduces the π test for assessing local properness of a problem, and finally explains
how this test can be used as a tool to systematically compare the optimality of
rotary and flapping flights for a given insect flight model.

An OPC problem concerns with shaping the periodic operation of a dynamic
system for maximizing a time-averaged performance index and can be formulated
as follows:

max~x,~u,T
{
J = 1

T

∫ T
0 L(~x, ~u) dt

}

subject to:
~̇x = f(~x, ~u) (System Dynaimcs)
~x(0) = ~x(T ), T ≥ 0 (Periodicity Constraint)
1
T

∫ T
0 hi(~x, ~u) = 0, 1 ≤ i ≤ p (Equality Constraints)

1
T

∫ T
0 gi(~x, ~u) ≤ 0, 1 ≤ j ≤ q (Inequality Constraints)

(2.1)
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where ~u ∈ Rm, ~x ∈ Rn represent the control input and state vectors of the dynamic
system, respectively. Note that the time period of the system, T , is also among the
optimization variables.

The solutions to f(~x, ~u) = ~0 constitute the set of equilibria of the system
and are by definition periodic. Therefore, the elements of this set of steady state
solutions are feasible to the above OPC problem, when they satisfy the integral
equality/inequality constraints of Eq. (2.1) . Denote by OSS = (~xoss, ~uoss) the
member that maximizes the performance index within this feasible set of steady
state solutions and let Joss represent its corresponding objective function value.
Also, let Jopc be the optimal objective function value of the OPC problem and
hence Joss ≤ Jopc. The above OPC problem is said to be proper, when there is
a feasible periodic trajectory with an average performance level superior to that
of the OSS (i.e., Joss < Jopc). Moreover, when it is also possible to improve the
performance through feasible “weak” variations around the OSS solution, the OPC
problem is called locally proper [34].

The literature offers different tools for analyzing optimality of the OSS solution,
before solving an OPC problem. For instance, Bailey and Horn use a relaxed
steady state analysis to derive a condition for superiority of a rapidly switching
control input over the OSS solution [29]. Hudon et al. focus on nonsingular
OPC problems from a geometric perspective and utilize the Pontryagin Maximum
Principle (PMP) and Morse theory to develop necessary conditions for existence of
extremal homoclinic orbits [57]. Bittanti et al. derive the π test as a necessary and
sufficient condition for existence of a weak perturbation around an interior OSS
solution which improves the time-averaged performance [34]. Bernstein and Gilbert
derive additional constraint qualification conditions for the results of the π test to
hold true [35]. Later on, Colonius generalizes the π test results to OPC problems
with active state constraints [71].

In light of the OPC problem stated in Eq. (2.1), this chapter focuses on the
original derivation of the π test as developed by Bittanti et al. in [34]. As explained
above this test can determine the local properness of this OPC problem and proceeds
as follows. First, the scalar-valued Hamiltonian function for Eq. (2.1) is defined as:

H(~x, ~u,~λ, ~µ) = L(~x, ~u) + ~λTf(~x, ~u) +
p∑
i=1

µihi(~x, ~u) (2.2)
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where ~λ ∈ Rn~µ ∈ Rp are the vector of constant Lagrange multipliers for adjoining
the state equations and the average equality constraints, respectively. Then, the
following set of equations must be met at the OSS solution [34].

Hx(~xoss, ~uoss, ~λ, ~µ) +
q∑
j=1

νjgjx(~xoss, ~uoss) = 0

Hu(~xoss, ~uoss, ~λ, ~µ) +
q∑
j=1

νjgju(~xoss, ~uoss) = 0
(2.3)

where for any νj, j ∈ {1, · · · , q} represent the Lagrange multipliers of the inequality
constraints and must satisfy the complimentary slackness conditions given below:

gj(~xoss, ~uoss) = 0, νi ≤ 0

gj(~xoss, ~uoss) < 0, νi = 0
(2.4)

Also, x and u as subindices denote partial differentiation with respect to ~x and ~u,
respectively. Next, the frequency-dependent Π ∈ Cn×n matrix of the OPC problem
is defined as follows:

Π(ω) = GT (−jω)PG(jω) +QTG(jω) +G(−jω)TQ+R (2.5)

where j2 = −1 and the constant matrices of the above equation are calculated
according to the following:

P = Hxx(~xoss, ~uoss, ~λ, ~µ)

Q = Hxu(~xoss, ~uoss, ~λ, ~µ)

R = Huu(~xoss, ~uoss, ~λ, ~µ)

(2.6)

and G(s) = (sI −A)−1B is the transfer function of the system dynamics linearized
around the OSS with:

A = fx(~xoss, ~uoss)

B = fu(~xoss, ~uoss)
(2.7)

Now, the OPC problem stated in Eq. (2.1) is locally proper, if and only if, there
exists a frequency ωp > 0 for which Π(ωp) is not a negative definite matrix. Roughly
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speaking, Π(ω) is the Hessian matrix of the performance index at the OSS for weak
sinusoidal periodic variations of period T = 2π/ω in the uoss. Hence, when the
OPC problem is not locally proper, the OSS solution is a maximum and the Hessian
matrix Π(ω) is negative definite for any given positive perturbation frequency.

Note that when the linearized state matrix A has a pole of the form s = jωN on
the imaginary axis, the expression for the Π matrix in Eq. (2.5) becomes undefined
at ω = ωN . A periodic perturbation at the system’s natural frequency induces
resonance behavior and violates the periodicity condition. Therefore, such variations
of the control input are not permissible and the π test is still applicable to those
problems.

The shaping of insect flight trajectory for optimization of a desired flight metric
such as average lift force or consumed power can be posed as an OPC problem. The
OSS solution to this OPC problem is the optimum within the set of rotary flight
trajectories with fixed angle of attack and stroke velocity. The properness of this
OPC problem determines whether flapping flight can outperform the best rotary
flight pattern. If a simple application of the π test establishes that the problem
is indeed proper, then the more difficult OPC problem can be solved to show the
degree to which performance improvement is possible via flapping. The π test
can additionally be used as an extra step in assessing the validity of insect flight
models. For instance, when experiments show that flapping flight is superior why
the π test does not, it may suggest that some significant mechanisms governing the
interactions between the wings and the surrounding fluid have not been captured
by the model at hand.

2.3 Flapping Flight Model
Similar to any other submersed object, the fluid flow around an insect wing can be
adequately described by the incompressible Navier-Stokes equations [72]. Due to
the difficulties associated with solving full Navier-Stokes equations for the highly
complicated insect flapping maneuver, however, flight models based on quasi-
steady assumptions are of significant practical utility in the literature [72]. These
models typically use parameterized analytic expressions to capture various force
generation and body-fluid interaction mechanisms. The models then use data from
computational fluid dynamics analysis [73, 74], or experiments on actual insect
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Figure 2.1. Schematic geometry of the fruit fly wing. The cord length (c) is characterized
as a function of the spanwise distance from the root of the wing (r).

wings [75–77] or dynamically-scaled robotic flapping wings [48,49,78,79], to find
the set of model parameter values which provide the best match.

This chapter uses a semi-empirical, quasi-steady aerodynamic flight model for
Drosophila melanogaster (commonly known as the fruit fly) adapted from [80]
and [81]. Instantaneous forces on a single insect wing, in this model, is determined
through a combination of the blade element theory for inviscid flows and empirical
formulations assuming a rigid and thin wing structure [48, 49, 80]. The insect
model used in this chapter is constrained to a two-dimensional wing motion in
the stroke plane and wing elevation effects are ignored. The net instantaneous
aerodynamic force acting on each wing can be divided into four different components
as follows [80].

Finst = Ftrans + Fa + Frot + Fwc (2.8)

In the above equation, Ftrans is the steady-state force generated as a consequence
of the linear translation of the wing in the surrounding fluid; Fa is the additional
force required for the acceleration of the virtual fluid mass moving with the wing;
Frot is the force component due to wing rotations and is also known as the Kramer
effect; and finally Fwc is the component capturing the wing-wake interactions, or
more specifically, the force generated by the flotation of the wing on the wake(s)
created during previous half-strokes.

The Fa, Frot, and Fwc terms are the force elements representing the unsteady
effects in the model. Under the quasi-steady assumption, the added-mass force
component Fa and the rotational force Frot are both expressed as a “memoryless”
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function of the current wing kinematics. In contrast, Fwc is highly dynamic and
depends on the entire wing kinematics and fluid flow history. Although, wake capture
is of critical importance for insect flight, the literature is yet to derive an accurate,
quasi-steady or unsteady formulation of this force component. Therefore, this force
component is omitted from our analysis, which leads to an underestimation of the
unsteady forces in the resulting quasi-steady aerodynamic model. Consequently,
the problem of optimal shaping of the flapping flight of the fruit fly studied in this
chapter is conservative in exploitation of the unsteady effects. Yet, our results in
Section 2.4 and 2.4 indicate that flapping flight outperforms the best rotary flight
for this insect.

The above aerodynamic forces have a strong dependency on the specific shape
of the insect wing. Figure 2.1 provides a schematic representation of the wing
geometry used for the derivation. The wing morphology is characterized according
to a beta distribution from [81] expressing dimensionless chord length as a function
dimensionless distance from the root of the wing. Table 2.1 lists the numerical
values used as the physical parameters of the flapping flight model. The values
of different dimensionless moments of area for the assumed wing geometry are
listed in Table 2.2. The remainder of this section provides expressions relating the
individual quasi-steady force components to the flight kinematics and the wing
geometry. These expressions are then used to calculate the instantaneous lift force
generated and power consumed during the wing’s flapping motion.

Table 2.1. Physical parameter values of the flapping flight model
Parameter Value Description

R 2.02 [mm] wingspan
c̄ 0.1 mean chord length
ĉrot 0.25 normalized distance of RA from LE
ρ 0.6 air density
v 16.97 [µm2/s] air density
mb 1.1 [µg] air kinematic viscosity
Plim 40 [W/kg] body mass specific power
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Table 2.2. Dimensionless wing geometry parameters
Parameter Value∫ 1
0 ĉ(r̂)2 dr̂ 1.14∫ 1
0 r̂ĉ(r̂)2 dr̂ 0.65∫ 1
0 r̂

2ĉ(r̂) dr̂ 0.39∫ 1
0 ĉ(r̂)3 dr̂ 1.36∫ 1
0 ĉ(r̂)4 dr̂ 1.58∫ 1
0 r̂ĉ(r̂)3 dr̂ 0.79∫ 1
0 r̂

2ĉ(r̂)2 dr̂ 0.42∫ 1
0 r̂

3ĉ(r̂) dr̂ 0.26

2.3.1 Translational Force

The quasi-steady estimate for the translational lift and drag can be obtained
through simple empirical expressions for a thin airfoil integrated over the wing span
as follows.

Ftrans,L = 1
2CL(α)ρR3c̄φ̇|φ̇|

∫ 1

0
r̂2ĉ(r̂)dr̂ (2.9)

Ftrans,D = 1
2CD(α)ρR3c̄φ̇|φ̇|

∫ 1

0
r̂2ĉ(r̂)dr̂ (2.10)

where ρ denotes the density of the fluid medium (air), R is the wingspan, c̄ is the
mean chord length, and φ, α are the stroke and pitch angles, respectively. Also,
r̂ = r/R is defined as the dimensionless wing position and ĉ(r̂) = c(r)/c̄ is the
dimensionless chord length.

The lift and drag coefficients, CL and CD, for Drospholia are adopted from [80]
and are represented as:

CL = 1.8 sin(2α) (2.11)

CD = 1.9− 1.5 cos(2α) (2.12)

2.3.2 Added-Mass Force

The added-mass term for each infinitesimal blade element is estimated using the
potential flow theory [82]. For a two-dimensional wing motion, this term can be
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Figure 2.2. Different components of the added-mass force acting on an infinitesimal
blade element. The red circle denotes the wing’s RA.

integrated over the wingspan to obtain the overall force generated due this effect.
Consider a disc of fluid attached to an infinitesimal wing element as sketched in
Fig. 2.2, where the Rotation Axis (RA) of the wing is located at a distance equal to
c̄× ĉrot from its Leading Edge (LE). The mass center of this fluid disc experiences
three different acceleration components due to its translational and rotational
motions as sketched in Fig. 2.2. The translational acceleration of the wing and the
angular acceleration of the wing around its RA results in two differential inertial
force components acting normal to the wing. By integrating these differential
forces over the wing span, the normal component of the added-mass force can be
computed as:

Fa,n = ρ
π

4R
2c̄2

(
φ̈ sin(α) + φ̇α̇ cos(α)

)∫ 1

0
r̂ĉ2(r̂)dr̂

+ ρ
π

4Rc̄
3(0.5− ĉrot)α̈

∫ 1

0
ĉ3dr̂ (2.13)

where ĉrot is assumed to be constant across the wing span. The centripetal accel-
eration of the fluid disc mass center around its axis of rotation leads to another
added-mass force component tangential to the wing surface. The total tangential
force due to this effect can be expressed as the following integral.

Fa,t = ρ
π

4Rc̄
3(0.5− ĉrot)α̇2

∫ 1

0
ĉ3dr̂ (2.14)
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The formulation of the added-mass force in [80] is essentially equivalent to
Eq. (2.13) and lacks the tangential component of Eq. (2.14). However, the added-
mass effect always produce a conservative force and the net work done by this
force must be path-independent and zero over a full flapping cycle. Eq. (2.13),
alone, does not amount to a conservative inertial force and leads to an erroneous
work expression that is path-dependent. Section 2.3.6 shows that by including the
tangential force component of Eq. (2.14) the net added-mass-related momentum
exchange between the wing and the fluid is guaranteed to be zero over a full flapping
cycle. Lee et al.’s model also includes an expression similar to Eq. (2.14) as a
second rotational force component [74].

2.3.3 Rotational Force or Kramer Effect

For derivation of this force component, it is assumed that Kutta-Jukowski theory
holds for high angle of attack flows experienced in insect flights. Using a theoretical
approach, Sane et al. estimate the rotational lift coefficient and experimentally
validate the resulting expression [80]. The magnitude of this force component is
obtained as:

Frot = (0.75− ĉrot) ρR2c̄2|φ̇|α̇
∫ 1

0
r̂ĉ2(r̂)dr̂ (2.15)

Assuming that the wing thickness is negligible, this rotational force component acts
normal to the wing area [80].

2.3.4 Rotational Damping Effect

None of the force components formulated above create any damping effects, when
the wing rotates at constant velocity without any translational motion. Whitney
and Wood in [81] derive a damping torque expression assuming a linear dynamic
pressure profile caused due to the rotation of the wing around AR. This rotational
damping torque is given by:

Mrd = −1
2ρCrdc̄

4RŶrdα̇|α̇| (2.16)

where Crd is the rotational damping coefficient, Ŷrd is the nondimensional effective
moment arm averaged over the wingspan, and the negative sign is used to denote
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that this moment always opposes the rotational motion. A rotational damping
coefficient of Crd = 5.0 is reported to achieve a good agreement with experimental
results in [81]. Also, numerical integration over the geometry of the wing yields
Ŷrd = 0.17.

2.3.5 Total Instantaneous Lift Force

The individual force components derived above may be projected onto the direction
normal to the stroke plane to provide the total lift force generated for any given
set of wing kinematic trajectories. Taking the orientation of each force component
into account, the total lift force expression reads as follows:

FL = Ftrans,L + cos(α) (Fa,n + Frot)− sin(α)Fa,t (2.17)

where the individual force component are substituted from Eq.(2.9)-(2.15). For
notational convenience, we reformulate the above equation by lumping the physical
parameters together and introducing a set of lift force coefficients as shown below:

FL = Kt sin(2α)φ̇|φ̇|+Ka3 sin(α)α̇2

+ cos(α)
(
Ka1(φ̈ sin(α) + φ̇α̇ cos(α)) +Ka2α̈ +Kr|φ̇|α̇

) (2.18)

where subindices t, a, and r stand for translational, added-mass, and rotational,
respectively. For hovering flight, the magnitude of the lift force needs to overcome
the insect’s weight. Therefore, the average net lift force over each flapping cycle
and for each wing must not fall below FLmin = 0.5mbg, where g is the gravitational
acceleration and mb is the insect’s mass from Table 2.2.

2.3.6 Total Instantaneous Power Consumption

The power needed for generating a given flapping flight trajectory can be calcu-
lated for each infinitesimal blade element by taking the inner product of the net
aerodynamic force acting on the element and the velocity of its center of action
(approximated to coincide with the center of the element). In other words, the
power needed to implement a given flight trajectory can be derived as:
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PW =
∫ R

0
d~Finst(r).~V (r) dr (2.19)

where ~V is the element’s center velocity vector. Again, for notational convenience,
we lump the model’s physical parameters together, introduce some power coefficients
(e.g., Tt1 , Tt2 etc.), and obtain the following formulation for power consumption.

PW = Pt + Pa + Prd + Pr (2.20)

where
Pt = (Tt1 − Tt2 cos(2α))φ̇2|φ̇| (2.21)

Pa = Ta1φ̇ sin(α)
(
φ̈ sin(α) + φ̇α̇ cos(α)

)
+ sin(α)(Ta2φ̇α̈ + Ta3φ̈α̇)

+ Ta4 cos(α)φ̇α̇2 + Ta5α̇α̈
(2.22)

Prd = Trdα̇
2|α̇| (2.23)

Pr = Tr sin(α)α̇φ̇|φ̇| (2.24)

In the power expression due to the added-mass effects, Ta2 = Ta3 = Ta4. Hence,
the right hand side of Eq. (2.22) can be reformulated as the time-derivative of a
potential function given by:

Ψ(φ, α, α̇) = Ta1

2 (φ̇ sinα)2 + Ta2φ̇α̇ sinα + Ta5

2 α̇2 (2.25)

Therefore, the work done by the added-mass force over the time interval [0, T ]
equals Ψ(T )−Ψ(0) and is path-independent.

The insect’s wing muscles are limited in the amount of power they can deliver
for extended periods of time. In this chapter, the average power consumed by each
wing of the fruit fly over a cycle is not to exceed PWmax = 0.5mbPlim, where Plim
is the insect’s body mass specific power rate from Table 2.2. Section 2.4 takes the
average of these lift and power expressions over one flapping cycle and use them to
formulate an OPC problem for comparing the optimality of rotary and flapping
flights.
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2.4 Optimal Rotary Flight: The OSS Solution
From the aerodynamic energy efficiency perspective, an optimal flapping flight
trajectory is one that generates the maximum average lift force under certain power
constraint, or one consuming the minimum amount of energy over a full cycle
given certain lift requirement. The lift force and the associated aerodynamic power
have been reported in the literature as the most common metric for comparing
the relative performance of the rotary and flapping flight configurations [55]. In
mathematical terms, the objective is to maximize FL and minimize PW among
the set of all periodic pitch and stroke angle trajectories respecting the average lift
and power constraints. Rotary flight with a constant pitch angle and a constant
stroke velocity is the steady state solution of this optimization problem. In this
section, we first use the lift and power expressions derived in Section 2.3 and solve
a bi-objective flight optimization problem under the steady-state assumption. Next,
we use the π test to analyze the local optimality of the resulting rotary flight
trajectories within the larger class of all periodic flapping flight trajectories.

2.4.1 OPC Problem Formulation

Maximization of lift force and minimization of power consumption are two conflicting
objectives in nature. As a consequence, there is not a single flight trajectory
that outperforms all others in both the objectives. There rather exist a set of
nondominated optimal solutions, which offer a trade-off between these conflicting
objectives. The optimization literature refers to this set as the“Pareto front” of the
problem, and the members of the set are known as “Pareto-optimal” solutions.

The power-lift Pareto front of the flapping flight problem of this chapter is the
solution set to the following problem:

maxφ,α,T{ 1
T

∫ T
0 FLdt,− 1

T

∫ T
0 PW dt}

subject to:
1
T

∫ T
0 FLdt ≥ 0.5mbg

1
T

∫ T
0 PW dt ≤ 0.5mbPlim

(2.26)

where φ, α and their first two time-derivatives are T−periodic for some T > 0.
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Moreover, FL and PW are static functions of φ̇, φ̈, α, α̇, α̈ as given by Eq. (2.18)
and Eq. (2.20)-(2.24).

2.4.2 OSS Solutions

This section first finds the steady-state, power-lift Pareto front of the flapping
flight problem given by Eq. (2.26). Each point across this front is representative of
a nondominated rotary flight trajectory. The translational lift and drag are the
only force elements present in rotary flight. Moreover, we scalarize the bi-objective
optimization problem by maximizing a convex combination of the conflicting
objectives as follows:

Joss(γ) = max
φ̇oss,αoss

{(1− γ)Ftrans,L − γPt} (2.27)

where γ ∈ (0, 1) is the scalarization parameter determining the relative importance
of each objective.

The following state-space representation governs the relationship between the
kinematic flight variables of the model.

~̇x =


0 0 0
0 0 0
0 1 0

 ~x+


1 0
0 1
0 0

 ~u (2.28)

with x1 = φ̇, x2 = α̇, x3 = α and u1 = φ̈, u2 = α̈. Note that at any equilibrium
point of the above equation x1 = φ̇ and x3 = α are both constant. Therefore,
any steady-state solution is indeed a rotary flight trajectory and vice versa. By
differentiating Eq. (2.27) with respect to φ̇oss and αoss, one concludes that the
optimal stroke velocity is always a solution to the following equation:

0.5 cos(2αoss)2 − 1.9 cos(2αoss) + 1 = 0 (2.29)

Therefore, αoss ≈ 0.43rad (25.4◦) regardless of the scalarization parameter γ. In
contrast, the optimal stroke velocity is a function of γ according to the following
equation.

φ̇oss = Kt(1− γ)
Tt2 tan(2αoss)γ

(2.30)
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Figure 2.3 shows the variations of the optimal stroke velocity with γ. By substitution
of the OSS solution in the translational lift and power expressions, one can construct
the steady-state, power-lift Pareto front depicted in Fig. 2.4. By imposing the
minimum lift and maximum power limits of Eq. (2.26), the allowable range of the
scalarization parameter is obtained as 0.226 ≤ γ ≤ 0.281. The infeasible regions in
Fig. 2.3 and 2.4 are highlighted with gray. Additionally, the power-lift Pareto front
is traced from the left to the right as γ increases.

2.4.3 π Test Results

The Hamiltonian function for the problem is calculated as:

H(~x, ~u,~λ, γ) = (1− γ)FL− γPW + λ1u1 + λ2u2 + λ3z2 (2.31)

The vector of Lagrange multipliers ~λ may be obtained as a function of γ by solving
the system of optimality equations given in (2.3). However, due to the linearity
of the system dynamics, the Π matrix as a second-order perturbation test is not
affected by ~λ for this problem. Also, the transfer function of these linear system

Figure 2.3. Optimal revolution frequency in rotary flight.
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Figure 2.4. Optimal power-lift Pareto front in rotary flight.

dynamics is readily calculated as:

G(s) =


1
s

0
0 1

s

0 1
s2

 (2.32)

The second-order partial derivatives of the Hamiltonian function are a convex
combination of the Hessian matrices of the total lift force from Eq. (2.18) and net
consumed power from Eq. (2.20)-(2.24). It is easy to verify that the resulting Q
matrix is of the following structure:

Q = Hxu =


Q11 Q12

0 0
Q31 Q32

 (2.33)

and also that R = Huu = 02×2. From Eq. (2.5), the complex-valued symmetric
Π(ω) matrix is therefore calculated as:

Π(ω, γ) =
 P11

ω2
(P12−Q31)ω−j(P13−Q12ω2)

ω3

(P12−Q31)ω+j(P13−Q12ω2)
ω3

(P22−2Q32)ω2+P33
ω4

 (2.34)

28



where Pij, Qij are the elements of the P,Q matrices expressed as a function of the
flight kinematics at the OSS and lift and power coefficients. Table A.1 in Appendix
A provides a summary of all these expressions.

Hence, the characteristic equation of the Π(ω) matrix becomes the following:

ω6s2 + β1(ω)s+ β2(ω) = 0 (2.35)

with

β1(ω, γ) = (2Q32 − P11 − P22)ω4 − P33ω
2

β2(ω, γ) = −Q2
12ω

4 +
(
P11P12 − 2P11Q32 + 2P13Q12 − (P12 −Q31)2

)
ω2

+ P11P33 − P 2
13

(2.36)

Note that β2(ω, γ), the constant term of the above quadratic characteristic equation,
is a second-order polynomial in ω2 with a negative number (i.e., −Q2

12) multiplying
its highest power term. As a result, for any given value of γ, there exists a
perturbation frequency ωp(λ) large enough to make β2(ω, γ) a negative number.
Hence, the characteristic equation of Π(ω, γ) will have a positive root for this
potentially large ωp(λ) value. This means that the flapping flight is always superior
to rotary flight and the OPC problem is always proper regardless of the scalarization
parameter value.

A numerical computation of the Hessian matrices shows that β1(ω, γ) is always
positive for the insect flight model of this chapter. Moreover, any sinusoidal
perturbation faster than the positive root of β2(ω, γ) makes this coefficient negative.
Consequently, this positive root yields a critical perturbation frequency, ωcr(γ),
above which Π(ω ≥ ωcr, γ) is not negative-definite.

To clarify this point further, pick an ωp ≥ ωcr. Then, the π test result guaran-
tees that (i) Π(ωp, γ) has an eigenvector ~V ∗p such that ~V ∗p TΠ(ωp, γ)~Vp < 0 where *
denotes the convex conjugate operator, and (ii) there exists a weak input pertur-
bation of the form δ~u = ε(~Vpejωpt + ~V ∗p e

−jωpt) with ε > 0 leading to a differential
improvement over the OSS solution (i.e., δJ > 0). Figure 2.5 depicts the variations
of ωcr with γ.
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Figure 2.5. Minimum perturbation frequency for properness.

Define the Reynolds number for an optimal rotary flight trajectory as follows:

Re = Rφ̇oss
v

(2.37)

where v is the kinematic viscosity of air given in Table 2.1. Then, it can be seen
that the dimensionless minimum perturbation frequency defined as ω̂cr = ωcr/φ̇oss

depends linearly on the stroke velocity which is proportional to the Reynolds
number. The value of ω̂cr can be thought of as the minimum number of wing flaps
per one full wing rotation, needed to surpass the best rotary flight performance.
The following equation illustrates this linear relationship and essentially summarizes
the entire plot of Fig. (2.5) by a single dimensionless equation.

ω̂cr = 4.91Re (2.38)

Also, the feasible range of the scalarization parameter maps to a feasible range for
the flow Reynolds number. This permissible range is specified by 108 ≤ Re ≤ 215,
where a higher Reynolds number means higher lift generation at the expense of
more power consumption.
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2.5 Flight Trajectory Optimization
Having established that the periodic flight problem is proper, this section relaxes the
steady-state assumption of Section 2.4 and solves for a set of nondominated flapping
flight trajectories that optimize the two conflicting objectives of the problem. A
comparison of the steady-state and dynamic Pareto fronts reveals the degree to
which improvement is achieved via flapping wing flight.

The hinge structure attaching an insect wing to the thorax allows for only
a limited range of stroke and pitch angels, as a freely rotating joint introduces
a physical barrier for the vascular and the nervous system [55]. Therefore, the
following bound constraints are additionally imposed on the optimal control problem
statement in Eq. (2.26) to reflect this limitation.

0 ≤ φ(t) ≤ π

0 ≤ α(t) ≤ π
(2.39)

for every t ∈ [0, T ].
We now transcribe optimal flapping flight problem using the Legendre Pseu-

dospectral Method (LPM) presented in [83]. This transcription method introduces
the change of time variable τ = 2t/T − 1, so that the new time variable varies
between -1 and 1. Next, the temporal stroke and pitch trajectories are approximated
with an N th-order polynomial as follows:

φ(τ) =
N∑
k=0

φ(τk)Lk(τ)

α(τ) =
N∑
k=0

α(τk)Lk(τ)
(2.40)

where τk, Lk with k ∈ [0, N ] are the Legendre-Gauss-Lobatto (LGL) points, and the
N th-order Lagrange interpolating polynomials defined by the LGL points, respec-
tively [83]. By assuming a polynomial shape for the pitch and stroke trajectories, the
infinite-dimensional optimal control problem is approximated by a finite-dimensional
Nonlinear Programming (NLP) problem in terms of the time period T and values
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of the independent variables at the discretization points φ(τk), α(τk).
Due to the polynomial expansion of Eq. (2.40), the time derivative of the stroke

and pitch angle are also lower-order polynomials in time. The values of these time
derivatives at the discretization points is simply obtained by premultiplying the
LPM differentiation matrix D(N+1)×(N+1) by the angle values at these points [83].
The average lift and power forces are also calculated as weighted summation of
the lift and power at the discretization points with weights (wk, k = 0, · · · , N)
computed according to the LGL quadrature rule [83]. As an example, with this
transcription, the stroke acceleration at the first discretization point is computed
as φ̈(t = T

2 (τ0 + 1)) ≈ T
2 [1, 0, · · · , 0]D2[φ(τ0) · · ·φ(τN)]T , and the average lift force

over one flapping cycle is estimated as 1
T

∫ T
0 FL(t)dt ≈ 1

2
∑N
k=0 FL(τ = τk). More

details on the LPM transcription of optimal control problems can be found in
reference [83].

The LPM method directly includes the endpoints of the time interval as the
discretization points, which significantly facilitates the enforcement of the periodicity
condition. The transcribed flapping flight optimization problem may now be written
as follows:

max
~φ0:N ,~α0:N ,T

{1
2

N∑
k=0

FL(τ = τk),−
1
2

N∑
k=0

PW (τ = τk)} (2.41)

where ~φ0:N = [φ(τ0) · · ·φ(τN)]T , ~α0:N = [α(τ0) · · ·α(τN)]T and the NLP is subject
to the following constraints.

1. Periodicity Constraints:

[1, 0, · · · , 0]~z = [0, · · · , 0, 1]~z

[1, 0, · · · , 0]D~z = [0, · · · , 0, 1]D~z

[1, 0, · · · , 0]D2~z = [0, · · · , 0, 1]D2~z

(2.42)

where D is the LPM differentiation matrix and ~z should be replaced with
~φ0:N , ~α0:N to ensure the periodicity of stroke and pitch trajectories and their
first two time derivatives.
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Figure 2.6. Steady state vs. dynamic Pareto front.

2. Average Constraints:

N∑
k=0

FL(τ = τk) ≥ mbg

N∑
k=0

PW (τ = τk) ≤ mbPlim

(2.43)

3. Bound Constraints:

0 ≤ ~φ0:N ≤ π

0 ≤ ~φ0:N ≤ π
(2.44)

The dimension of the problem is further reduced by using the periodicity
constraints in Eq. (2.42), to solve for the last three discretized values of the φ, α
trajectories in terms of their first N + 1 − 3 discretized values. Therefore, the
resulting NLP problem includes only a total of 2×(N−2)+1 optimization variables.

Concavity is necessary for properness of an OPC problem [22]. As a result,
gradient-based NLP solvers may get trapped at a local extremum, specifically when
initialized at the OSS solution. To ensure global optimality of the solution, this
chapter uses a differential evolution algorithm for solving the optimal flapping flight
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problem. This solution method also allows us to conveniently treat the problem
as a genuine bi-objective optimization problem, therefore eliminating the need for
scalarization of the two objectives.

The transcribed flapping flight problem was numerically solved with N = 5 and
a population of 250 members, 20% of which was initialized using OSS solutions
uniformly distributed across the stead-state Pareto front. Figure 2.6 illustrates the
optimization search results after 50 generations of the initial population with blue
stars. The corresponding Pareto front is seen to be superior to that of the rotary
flight as predicted by the π test. Figure 2.7 shows the periodic stroke and pitch
angle trajectories for a select optimized solution marked by a blue triangle on the
Pareto front of Fig. 2.6. The small red circles in Fig. 2.7 represent the optimized
values at the discretization points. Finally, Fig. 2.8 provides a visualization for the
optimal flapping and revolving wing flight regimes. Each bar in this figure depicts

Figure 2.7. Optimal flapping flight stroke and pitch trajectories.
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Figure 2.8. Optimal flight patterns for flapping and revolving wings. The green dots
and red dots denote the wing’s leading edge.

a side view of the positioning of the wing tip at a given moment in time. The green
dots at the top endpoints of these bars denote the leading edge. The time span
between the consecutive snapshots of the wing locations is fixed. Therefore, the
spacing between the bars is a representative of the rate of change of stroke and
pitch angles. As seen from Fig.2.7 and 2.8, in contrast to the rotary flight, the
stroke velocity and the wing’s angle of attack change very dynamically during the
course of each flapping cycle. The wing travels with low angle of attack values and
relatively fast speed during mid-stroke to minimize the drag forces. Then, stroke
reversal occurs at a rapid pitch rate to decrease the angle of attack for the next
half-stroke.
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2.6 Conclusions
This chapter introduces a framework for analyzing the relative optimality of flapping
and revolving wing motions in insect flight models. Due to the small scale of flying
insects, the viscous effects are substantially amplified, reducing the aerodynamic
efficiency of steady-state rotary flight. The flapping flight however exploits addi-
tional unsteady lift generation mechanisms by dynamically interacting with the
surrounding air flow. The flapping flight optimization problem is posed in this
chapter as an OPC problem whose steady-state solution is the best rotary flight
configuration. The π test is then incorporated to assess the impact of periodic
perturbations around this optimal steady-state solution. An application of the π
test to a quasi-steady fruit fly model shows that best flapping trajectory always out-
performs the optimal revolving wing flight. The chapter concludes with obtaining
the unsteady optimal lift-power Pareto front using a pseudospectral transcription
of the optimal flapping flight. The superiority of this Pareto front compared to
its steady-state counterpart for rotary flight confirms the predictions of the π test
results.
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Chapter 3 |
On the Structure of the Opti-
mal Solution to a Periodic Drug
Delivery Problem1

3.1 Introduction
This chapter examines the problem of optimizing a drug’s delivery schedule in
order to maximize its time-averaged efficacy. The particular drug considered
here is nicotine, and the optimization goal is to exploit its long term cardio-
accelerating effect as much as possible. This problem is introduced to the literature
by Varigonda et al. [56], building on a Pharmacokinetic/Pharmakodynamic (PKPD)
model of nicotine’s metabolism by Porchet et al. [58]. Varigonda et al. show that
this is an interesting optimal control problem because it is “proper”, meaning that
its optimal periodic solution is superior to the best achievable steady-state solution.

Properness of the above drug delivery problem has an important physical
explanation. The human body accumulates a tolerance or resistance to nicotine
over time. When nicotine is administered at a fixed rate, this tolerance builds up,
and the drug loses its long-term efficacy. Periodic drug delivery can avoid this
tolerance buildup issue as follows: one begins by administering the drug aggressively
in order to maximize its benefits while resistance is low. As resistance builds up,
the subject is weaned off the drug partly because additional drug administration is

1The work of this chapter has been published in journal of Dynamic Systems, Measurement
and Control, 2017 [84].
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not effective, and partly in order to attenuate the buildup of drug resistance. Once
drug resistance has been attenuated, the aggressive administration of the drug
resumes. This results in a periodic delivery strategy superior to the best achievable
steady-state strategy.

The problem of drug resistance is very common in pharmacology: a fact that
suggests the work in this chapter may be of value to delivery problems for drugs other
than nicotine. The nicotine drug delivery problem has already been extensively
studied in the scientific literature. Specifically, Porchet et al.’s PKPD model
captures the dynamics of drug resistance by (i) treating nicotine as an agonist,
(ii) modeling tolerance as the result of a hypothetical antagonist with first-order
dynamics whose buildup depends on nicotine concentration, and (iii) modeling
drug efficacy as a function that grows with agonist concentration but diminishes
with antagonist concentration.

Varigonda et al.’s work uses this model to formulate the optimal drug delivery
problem as an application for OPC theory. Using the π test, Varigonda et al.
show that this problem is proper. They also explain that the underlying PKPD
dynamics are differentially flat with the agonist’s concentration serving as a flat
output. Building on these insights, Varigonda et al. find the optimal solution to
this problem by expressing the temporal trajectory of the flat output as a truncated
Fourier series and optimizing the coefficients of this series.

More recent research examines the online solution of this drug delivery problem.
The focus, in this research, is on developing algorithms capable of improving
a parameterized drug delivery trajectory using gradient descent update rules.
Guay et al. solve this problem by using extremum-seeking control to adjust the
trajectory of the flat output online [45]. Höffner et al. propose an alternative online
solution where the optimal drug delivery trajectory is related to the limit cycle
of a Hamiltonian oscillator. Höffner et al.’s algorithm optimizes the parameters
of this limit cycle, then uses back-stepping control to track this limit cycle in a
stable manner [46]. Hudon et al. solve this problem assuming a time-switching
input trajectory alternating between full and no treatment periods [85]. They
then use a gradient-descent based model predictive control algorithm to find the
optimal duration of the no treatment periods. Finally, the work in Chapter 4
focuses on discovering the optimal drug delivery trajectory adaptively, for patients
whose underlying PKPD dynamics may not be exactly known a priori and the
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corresponding publications can be found in [86,87].
In all of the above research, one fundamental weakness is visible: while it is

clear that the optimal drug delivery trajectory is periodic, no further information
is available regarding the structure of this periodic trajectory. This motivates the
contributions of this chapter. Specifically, this chapter first argues that optimizing
just the control input trajectory as a function of time uniquely determines the opti-
mal state trajectory. Secondly, the chapter utilizes PMP to show that the optimal
solution to Varigonda’s periodic drug delivery problem follows a bang-singular-bang
structure. We build on these two insights to develop two numerical algorithms
for solving Varigonda’s optimal drug delivery problem. The first algorithm uses
nonlinear programming to determine the points in the PKPD model’s state space
where the optimal solution transitions between different solution arcs (bang, sin-
gular, bang). The second algorithm uses direct transcription of the control input
trajectory. Specifically, it approximates the optimal control input as a piecewise-
constant function, and optimizes the different discrete values of this function. Both
of these new algorithms find the optimal trajectory more efficiently than the existing
approach in the literature. However, the primary benefit of this chapter is not
computational, but rather conceptual. In particular, this chapter represents the
first work in the literature to utilize variational calculus tools to elucidate the
structure of the optimal solution to the periodic drug delivery problem.

Broadly speaking, the chapter illustrates the use of indirect optimal control
methods to elucidate the structure of a periodic optimal controller. This is an
important stepping stone towards the remainder of this dissertation, where the goal
is to examine the online implementation of optimal periodic control policies.

The remainder of the chapter is organized as follows. Section 3.2 presents the
optimal drug delivery problem as given in [56]. Section 3.3 investigates the structure
of the feasible set of the problem and proves the existence of a bijection between
the sets of feasible input and state trajectories of the problem. In Section 3.4,
PMP is utilized to derive the necessary conditions of optimality and as a result the
optimal solution subarcs of the problem are found. Section 3.5 uses the insights
gained in the previous sections and presents two numerical solution methods. Lastly,
in Section 3.6, the optimal solutions obtained using each method are given and
compared to the existing solution in the literature.
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3.2 Problem Formulation
This section restates the optimal periodic drug delivery problem presented in [56].
Because of the periodicity constraint of the problem, it is labeled as an OPC
problem. The drug delivery model used in this problem is a compartment model.
The PK portion of this model is mathematically formulated as follows.

 ċ = −c+ u

ȧ = ka(c− a)
(3.1)

where c and a denote the drug’s and antagonist’s concentrations, respectively.
Furthermore, u represents nicotine’s infusion rate and ka = 0.1 is a constant
determining the relative elimination rate of the two reactions. In addition, the PD
effect of the drug on the body is modeled by

E(c, a) = c

(1 + c)(1 + a/a∗) (3.2)

where E is the drug efficacy, a quantity related to the heart rate, and a∗ = 1 is a
measure of how much the antagonist affects the body compared to the drug.

An ideal treatment regimen always maintains the number of heart beats within
the target heart rate range for patients. This target range maps into a desired
interval, [E1, E2], for the dimensionless drug efficacy variable in this model. All
efficacy levels in this range are equally desirable. Therefore, a metric needs to be
defined that scores an administration schedule solely based on the time duration
for which the induced effects is in the desired range. The smoothed membership
function depicted in Fig. 3.2 is selected for this reason. This function returns a
value of approximately 1 when efficacy level is within the desired range and 0 when
it is outside of it.

I(E) = (E/E1)γ
(1 + (E/E1)γ)(1 + (E/E2)2γ) (3.3)

where γ is a constant that controls the function’s steepness at the boundaries of
the desired interval for E. As γ gets large I approaches to the indicator function
of the desired efficacy interval. In defining the indicator function, the numerical
values of γ = 10, E1 = 0.3, E2 = 0.6 are used in [56].

The performance index, J , for any given periodic treatment cycle of period T ,
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Figure 3.1. State-Space paths taken by application of u∗ in Eq. 3.22 for different starting
points.

is defined as the time average of the membership function in Eq. (3.3) over the
time interval [0, T ].

J(I, T ) = 1
T

∫ T

0
I

(
E
(
a(t), c(t)

))
dt (3.4)

With the model presented in Eq. (3.1) and the performance index defined by
Eq. (3.4), the optimal drug delivery problem is formulated as follows.

max
a,c,u,T

{
J = 1

T

∫ T
0 I(t) dt

}
subject to:
a(0) = a(T ), c(0) = c(T ) (Periodicity Constraints)
0 ≤ u ≤ umax (Input Constraints)
a(t) ≥ 0, c(t) ≥ 0 ∀t ∈ [0, T ] (State Constraints)

(3.5)

and the dynamic constraints of Eq. (3.5). The nonnegativity constraints on the
input and states of the above problem exist to limit the solution space to include
only physically meaningful trajectories. Also, umax is the maximum allowable drug
dosage beyond which there are toxication hazards.
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3.3 Structure of the Feasible Set
This section presents our first set of insights regarding the solution structure for the
above periodic optimal control problem. The section focuses on T-periodic state
and input trajectories for the drug delivery problem. We say that the drug infusion
trajectory, u(t), is T-periodic if u(t) = u(t + T )∀t. Similarly, a state trajectory,
x(t), is T-periodic if x(t) = x(t + T )∀T . Our goal is to answer the following
questions: does every T-periodic input trajectory correspond to a unique T-periodic
state trajectory, and vice versa? In other words, is the mapping between the set of all
T-periodic input and state trajectories bijective? The section also presents conditions
on the T-periodic input trajectory which, if satisfied, automatically guarantee that
the corresponding T-periodic state trajectory meets the nonnegativity constraints
in Eq. (5). The insights in this section are important because they make it possible
to solve the periodic optimal control problem at hand by simply optimizing a
nonnegative period control input trajectory u(t). Not all systems have a bijective
relationship between the sets of T-periodic input and state trajectories. For example,
a dynamic system where one of the state variables is a pure integral of the input
variable will have an infinite number of T-periodic state trajectories corresponding
to any given T-periodic input trajectory, and therefore the relationship between
these two sets of trajectories will not be bijective.

The analysis in this section proceeds as follows. First, we argue that the state
periodicity constraint establishes a bijective mapping between the sets of periodic
inputs and closed state trajectories of a general LTI system. The section next
proves that meeting the input constraints of the periodic drug delivery problem
also ensures satisfaction of the state constraints of the problem. These two facts
together imply that a search among the feasible input set of the problem is sufficient
for finding the optimal solution.

Consider the following LTI system:

ẋ = [A]x+ [B]u (3.6)

where [B] is full column rank. Let u be an arbitrary piecewise continuous T−periodic
input trajectory. Also, by xu denote a periodic solution to the system corresponding
to u. Finally, define the set of imaginary numbers R = {λ : λ = 2kπi

T
, k ∈ Z}. Then
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the following statements hold.

Statement 1. xu, if it exists, is T−periodic as long as [A] does not have any
imaginary eigenvalues belonging to Λ.

Statement 2. xu exists and is uniquely determined from solving Eq. (3.6) with
the initial condition

xu(0) = (I − e[A]T )−1
∫ T

0
e[A](T−t)[B]u(t) dt, (3.7)

if and only if, [A] does not have any imaginary eigenvalues belonging to Λ.

Statement 3. u is the one and only piecewise continuous periodic input trajectory
that generates xu and can be back-calculated as:

u = ([B]T [B])−1[B]T (ẋu − [A]xu) (3.8)

Proofs of the above statements are provided in Appendix B. The statements
imply the existence of a one-to-one correspondence between the sets of piecewise
continuous periodic input trajectories and periodic state trajectories for a large
subset of LTI systems. From Eq. (3.1), it is clear that the drug delivery model is
one example of such systems. Note that this bijective mapping does not generally
exist for nonlinear dynamic systems. Pavlov et al. define convergent systems,
as dynamic systems which “forget” their initial condition (see [88] for a formal
definition). Each T−periodic input trajectory of a nonlinear convergent systems
also maps to a unique T−periodic state trajectory [88]. However, the converse is
not necessarily true.

Reconsidering the OPC problem given in Eq. (3.5), we can further argue that
the feasible periodic input and state trajectories of the model are also bijectively
mapped to each other. Note that the state matrix of the drug delivery is Metzler
(see [89] for a definition), and the input matrix is element-wise nonnegative. As
a result, the model is a monotone control system and the convolution integral in
Eq. (3.7) is element-wise nonnegative for any nonnegative periodic input [90]. In
addition, the Metzler state matrix of the model is triangular and strictly Hurwitz.
Therefore, (I − e[A]T )−1 and consequently xu(0) are seen to be nonnegative. It
follows then from the monotonocity of the system that the periodic xu(t) trajectory
will always remain in the nonngative quadrant. Hence, with a nonnegative periodic
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nicotine injection policy, the corresponding periodic agonist’s and antagonist’s
concentration trajectories are guaranteed to remain nonnegative.

3.4 Structure of the Optimal Solution Trajectory
This section draws our second sets of insights by characterizing the shape of the
problem’s solution arcs through through exploiting PMP. The analysis derives
necessary conditions for optimality of a candidate solution and also determines the
different pieces of the optimal input trajectory.

First-Order Necessary Conditions

First, the Hamiltonian function of the problem is constructed by adjoining the
dynamic constraints of Eq. 3.1 to the Lagrangian of the problem (i.e., integrand of
the performance index I). This is done through introducing continuous Lagrange
multiplier functions λ1(.), λ2(.). These functions are required to have piecewise
continuous derivatives.

H(a, c, λ1, λ2, u) = I
(
E(a, c)

)
+ λ1(−a+ u) + kaλ2(a− c) (3.9)

Now, using scalar real Lagrange multipliers µ1, µ2 for adjoining the periodicity
constraints, the augmented performance index becomes

J̄ = 1
T

∫ T

0
H(a, c, λ1, λ2, u) dt+ µ1(a(T )− a(0)) + µ2(c(T )− c(0)) (3.10)

Variational calculus performs an arbitrary differential perturbation away from
the extremal path, but in the feasible set of the problem, and calculates the
associated variation in the augmented performance index. For an extremal path,
the first-order variations must be zero. Restricting the domain of perturbation
to the feasible set of the problem becomes a challenge when state constraints are
present. However, as shown in Section 3.3, the nonnegativity state constraints of
the periodic drug delivery problem are never violated and can be safely dropped.
Setting the first-order variations equal to zero leads to the following set of equations,
wherein variables with asterisks represent elements of the optimal trajectory.
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• Costate Equations:

λ̇∗1 = − ∂H

∂a

∣∣∣∣∣
a∗,c∗

= λ∗1 − kaλ∗2 −
∂I

∂a

∣∣∣∣∣
a∗,c∗

λ̇∗2 = − ∂H

∂c

∣∣∣∣∣
a∗,c∗

= kaλ2 −
∂I

∂c

∣∣∣∣∣
a∗,c∗

(3.11)

• Dual Periodicity Conditions:

λ∗1(T ) = λ∗1(0) = µ∗1T
∗

λ∗2(T ) = λ∗2(0) = µ∗2T
∗

(3.12)

• Transversality Conditions for T:

H(t = T ∗)− J(a∗, c∗, u∗, T ∗) = 0 (3.13)

• Input Transversality Conditions:

u∗(t) = argmax
u ∈ U

H(a∗(t), c∗(t), λ∗1(t), λ∗2(t), u)

=

umax if λ∗1(t) > 0

0 if λ∗1(t) < 0

(3.14)

where U = [0, umax] is the set of all admissible control input values.
Speyer and Evans derive the first-order necessary conditions for more general

OPC problems in [31]. Therefore, this chapter leaves out the details of derivation
and refers interested readers to their work. If λ∗1(t), the coefficient of u in the
Hamiltonian, ever becomes zero, Eq. (3.14) fails to yield the optimal input. This is
a well known difficulty with the application of PMP to the problems, where the
Hamiltonian linearly depends on the control input and its occurrence suggests the
possibility of existence of what is known as a singular arc.

If the input’s coefficient, Hu, in Eq. (3.14) is only momentarily zero, this
potentially causes a discontinuity in the optimal input trajectory and is not an
issue. A singular arc, in contrast, is created when Hu is zero over a time interval of
nonzero measure, and that is the key point to solving singular arc problems.
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Along a singular arc Hu is congruent to zero. Therefore, we keep differentiating
Hu with respect to time and setting the result equal to zero, until u explicitly
appears in the expression. For most singular arc problems, this occurs after finitely
many differentiations. In that case, it is shown that u shows up for the first time in
an even-order derivative [91]. Half the number of the required differentiation times
is, therefore, an integer number and is used to classify different types of singular
arcs [92].

Carrying out this process for the optimal drug delivery problem, u first appears
in the second time-derivative of Hu as shown below.

0 = Ḧu = −ka
∂I

∂a
− ka

∂I

∂c
+ ∂2I

∂a2 (−a+ u) + ka
∂2I

∂a∂c
(a− c) (3.15)

As a result, by adopting the convention in [92], the associated singular arc is of
first order.

Second-Order Necessary Conditions

As opposed to the first-order conditions which are unable to distinguish a maximum
from a minimum or a saddle point, second-order conditions concern with local
convexity of the objective function about a candidate trajectory. The optimal
control literature is rather rich in second order necessary and sufficient conditions
of optimality in the case of singular problems [91–94] as well as nonsingular
problems [95–98]. But such conditions, for problems where the optimal trajectory
contains both singular and nonsingular subarcs, are yet to be developed.

One can, however, apply the necessary second-order conditions to the individual
subarcs separately. In a maximization problem and along a nonsingular maximal
arc, the Legendre-Clebsch (LC) [97] condition requires

∂2H

∂u2 ≤ 0 (3.16)

Since Hu is linear in u for the optimal drug delivery problem, this condition is
automatically satisfied as an equality. Equivalent of the LC conditions for “totally
singular” problems is known as the Generalized Legendre-Clebsch (GLC) condition
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and is given below [91].

(−1)q ∂
∂u

(
dqHu

dtq

)
≤ 0 (3.17)

where q is the order of the singular arc. This condition for the optimal drug delivery
problem boils down to the following inequality.

∂2I

∂a2 ≤ 0 (3.18)

Note that the expression in Eq. (3.18) is the coefficient of u in Eq. (3.15). Now,
two scenarios are possible:

1. The GLC condition is met strictly. Then Eq. (3.15) can be solved for u to
give

utrans =
(
ka
∂2I

∂a2

)−1[
∂I

∂a
+ ∂I

∂c
+ ∂2I

∂a∂c
(c− a)

]
+ a (3.19)

2. Eq. (3.18) holds as an equality. Then, the singular subarc is the solution to
the following differential equation system.


∂2I
∂a2 = 0
∂I
∂a

+ ∂I
∂c

+ ∂2I
∂a∂c

(c− a) = 0
(3.20)

Denote the solution of this system of equations by the pair (a∗, c∗). Then the
agonist’s dynamic in Eq .(3.1) can be used to find the optimal control over
the subarc as follows.

utrans(t) = dc∗(t)
dt

+ c∗(t) (3.21)

The expressions found for utrans are essentially nonlinear state-feedback laws for
the optimal control of the plant in transitioning from one boundary optimum to
another. With having utrans characterized, Eq. (3.14) is updated as follows.

u∗(t) =


umax if λ∗1(t) > 0

utrans(a∗(t), c∗(t)) if λ∗1(t) = 0

0 if λ∗1(t) < 0

(3.22)
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A control policy of this type is sometimes referred to as bang-singular-bang
control. As the name suggests, there are two parts to such an optimal control law:
1) a bang-bang portion: where the control input instantaneously switches from one
extreme to another, 2) a singular portion: where there is a smoother transition
between the extreme values and along a singular arc.

3.5 Two Numerical Solution Methods
Using the insights obtained on the structure of the feasible set and the optimal
solution trajectory, this section proposes two numerical solution approaches. The
first approach is an indirect optimization method, where the necessary conditions
of optimality are used to construct the optimal solution trajectory of the problem.
The second approach, in contrast, transcribes the problem into an NLP and obtains
a direct numerical solution to the transcribed problem.

3.5.1 PMP Based Solution

From the PMP results obtained in the previous section, if an optimal periodic
administration schedule exists it has to satisfy Eq. (3.11)-(3.13) and Eq. (3.22).
This section utilizes these necessary optimality conditions to outline an indirect
numerical algorithm for solving our OPC problem.

In theory, the optimality conditions derived in the last section completely
specify the optimal solution of the problem. However, the direct use of these
optimality conditions to compute the optimal solution trajectory presents at least
three challenges. First, it is difficult to determine the specific initial values of the
state and co-state variables that would lead to a periodic optimal solution. Second,
solving a periodic optimal control problem can also be difficult if the optimal period
is unknown a priori. Third, it is possible that a numerical solution algorithm may
accidentally “skip” the singular arc portion of an optimal control trajectory, even
with very fine time discretization levels.

Instead of the direct use of the necessity conditions, we first investigate Eq. (3.22)
more carefully to gain more intuition on the structure of the solution. As seen in
Eq. (3.22), u∗ is a piecewise continuous function composed of three different pieces.
Each piece maps into a family of paths in state-space when used to solve Eq. (3.1)
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Figure 3.2. State-Space paths taken by application of u∗ in Eq. 3.22 for different starting
points.

for different starting points. Fig. 3.5.1 depicts a few paths in each family to aid
with the visualization of the problem for the same numeric values of ka, a∗, γ, and
umax as those used in [56].

In theory, the optimal solution trajectory can consist of an arbitrary sequence
of bang, singular, and bang sections. In this chapter, we conjecture that the
trajectory consists of only 3 segments (bang, singular, bang). Given this assumed
sequence of three segments, one can determine the optimal control trajectory fully
by optimizing the values of state variables at which the transitions between the
three solution segments occur. Periodicity constraints simplify this optimization
problem by making it possible to characterize the solution trajectory fully in terms
of the starting coordinates of the singular arc segment and the time duration of the
singular arc. The problem of optimizing these three variables is a simple NLP, and
we tackle it using MATLAB’s fmincon optimizer. The results of this optimization
process agree with the second solution approach presented in this chapter, namely,
the direct optimization of a piecewise-constant input trajectory. This provides
numerical evidence supporting our conjecture that the optimal solution trajectory
does, indeed, consist of only three segments (bang, singular, bang). In situations
where the above conjecture does not hold, the problem of determining the optimal
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solution trajectory involves finding (i) the sequence of solution segments and (ii)
the transition points between the segments. This is a mixed-integer programming
(MIP) problem that can be solved using standard MIP solvers, building on the
fundamental insights in this chapter.

3.5.2 Piecewise Constant Input Solution

The second solution algorithm uses the insights obtained on the optimal solution’s
structure to propose a direct optimization technique. In these methods, trajec-
tories of the system are expanded and parameterized over a proper set of basis
functions. This simplification transcribes the dynamic optimization problem
into an NLP in terms of the parameters used in the expansion of the system’s
trajectories.

In contrast to Varigonda et al. [56]’s indirect solution, here we parameterize the
input trajectory rather than a flat output’s trajectory. As discussed in Section 3.3,
this is possible because there a is bijection between the feasible input set and the
set of feasible state trajectories of the problem. Moreover, we choose the set of
periodic piecewise constant functions over the Fourier basis for parameterization.
The rationale behind this preference is discovery of the discontinuous nature of
optimal input trajectory and the fact that it contains constant portions.

Note that the optimal solution of the transcribed problem is an approximation of
the true optimal solution and suboptimal to the original problem. The discretization
of the input space reduces the original infinite dimensional optimal control problem
to an NLP in terms of the height and duration of each constant piece. As the
number of pieces over one period increases, the corresponding solution approaches
to the true optimal solution. However, for practicality matters, we need to restrict
the number of pieces to a finite number. A feasible input trajectory belonging to
this parameterization class is shown in Fig. 3.3 over the length of one period.

Paying attention to the following points can greatly simplify the solution of this
NLP:

• Looking at the optimal control law obtained in Section 3.4, it is natural to
assume that the optimal input trajectory includes a portion of value zero.

• Constrain the height of the first piece of the input trajectory to be positive
and the last one to be zero. This prevents needless recalculation of the
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Figure 3.3. A periodic piecewise constant function feasible to the transcribed optimiza-
tion problem.

performance index for candidate solutions that are just shifted in time.

3.6 Numerical Results
This section employs the two solution methods presented in Section 3.5 to numeri-
cally solve the periodic drug delivery problem. The best steady state solution for
this problem occurs when a = c = u =

√
a∗ = 1 and results in an objective function

value of JSS = 0.139. Varigonda et al. parameterize the flat output’s trajectory
using the first 20 harmonics of the Fourier expansion. Solving the corresponding 42
variable optimization problem, they obtain an optimal value of JOPC = 0.3537.

3.6.1 Results of the Variational Calculus Based Method

First, the auxiliary optimization problem presented in Section 3.5.1 is formulated
and solved. The solution offers a candidate optimal trajectory to the periodic drug
delivery problem with a performance index of JOPC = 0.3627. This is slightly
(∼ 2.5%) higher than the optimal value obtained in [56].

Fig. 3.4a plots the path taken by the system in the state space. Next, using
Eq. (3.11) the corresponding path in the adjoint state space is found and shown in
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Figure 3.4. (a) and (b) are the optimal phase plots in the state space and adjoint space.
(c) is the optimal input trajectories of the drug delivery problem.

Fig. 3.4b. Also, the input trajectory related to the solution of the auxiliary problem,
ũ, is directly calculated from the optimal state trajectories. The input predicted by
our PMP results, ucv, is obtained as a function of λ1 using Eq. (3.14). As shown
in Fig. 3.4c, these two input trajectories coincide. Finally, the time length of the
solution of the auxiliary problem is found to be T = 18.28. Plugging this value
into the right-hand side of Eq. (3.13) gives a negligible error of 0.001. Therefore,
the optimal solution of the auxiliary problem meets all the necessary optimality
conditions derived for the original OPC problem.

3.6.2 Results of Piecewise Constant Input Method

Following the description of the method given in Section 3.5.2, we formulate
the transcribed optimization problem for periodic piecewise constant functions.
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Figure 3.5. (a) A suboptimal piecewise constant input trajectory and (b) its correspond-
ing phase plot for the drug delivery problem.

Furthermore, we limit our optimization search to input trajectories having at most
five pieces in each period. Five is the smallest number of pieces required to yield
an objective value (JOPC = 0.3601) superior to what was achieved in [56]. Lastly,
Fig. 3.5b illustrates the path taken by the solution in the system’s state space.
The proximity of the optimal trajectories from the two methods suggests that the
analytical solution found by the first method is indeed the true optimal solution of
the problem.

3.6.3 Sensitivity Analysis

While this chapter focuses on the structure of the optimal drug delivery trajectory,
research is also needed on implementation of the solution. Our work in Chapter
4 and Chapter 6 develops indirect adaptive control schemes to deal with plant
model uncertainties in solving OPC problems (the corresponding publication can
be founds in [86, 87, 99]). This section analyzes the sensitivity of the maximum
average efficacy in presence of inaccurate model parameters, however, design of an
adaptive drug administration policy is beyond the scope of this work.

The parameters used in the PD portion of the drug delivery model and the
exponent γ in the definition of the indicator function are all constants defined in
earlier research. In contrast, the one parameter of the PK portion, ka, depends on
the specific metabolism of the body and varies from one patient to another. In
order to assess the robustness of the solution to uncertainty in ka, we perform a
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Figure 3.6. Sensitivity of the optimal (a) input trajectory, (b) phase plot, and (c)
objective value to to uncertainty in ka.

sensitivity analysis with respect to the variations in this parameter. Using the first
solution method the problem is re-solved for cases where ka is half and double its
nominal value. Fig. 3.6a compares the optimal input trajectories corresponding to
the three trajectories. These input trajectories are next applied to the nominal
model (i.e., ka = 0.1) and Fig. 3.6b illustrates the response trajectories in the state
space. Fig. 3.6c depicts variations of the objective value as a function of ka as it
varies from 0.05 to 0.2. It is clearly seen that although the system trajectories are
rather dramatically affected by uncertainty in ka, the decrease in effectiveness of
the drug is very small.
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Figure 3.7. Variations of efficacy in the optimal (a) PMP based solution and (b) constant
piecewise solution of the drug delivery problem. Gray shaded area is the desired range.

3.6.4 Discussion on Results

The simulation results show that a significant improvement is achieved by relaxing
the steady state assumption and solving the drug delivery problem as an OPC
problem. Fig. 3.7 shows how drug efficacy changes with time during one period for
each solution method. These results can also be used to explain more intuitively why
the OPC problem is proper. Fig. 3.8 depicts the surface of problem’s Lagrangian
function over the state space, as well as, the trajectory that the optimal solution
traverses on this surface. The set of all the equilibrium points of the drug delivery
model is also depicted. This set is the bisector of the first quadrant in the state
space (i.e., the ray a = c, a ≥ 0, c ≥ 0). If the surface attained a maximum over
this set, then the optimal steady state solution would be also the optimal periodic
solution. However, as was predicted by π test, that is not the case and the optimal
solution trajectory has to pass through both convex and concave regions of the
Lagrangian’s surface.

3.7 Conclusion
This chapter investigates the structure of the optimal solution to a periodic drug
delivery problem. Although the literature already offers different solutions to
this problem using direct transcription methods, the structure of the solution has
remained unstudied. This chapter contributes to the literature by revealing this
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Figure 3.8. Lagrangian function of the drug delivery problem.

structure and employing it in two novel solution methods. First, PMP is employed
to reveal that the optimal solution trajectory has a bang-singular-bang structure.
Then an NLP problem is formulated to find the optimal transition points between
the subarcs of the solution trajectory. Second, the chapter shows there exists a
one-to-one correspondence between the feasible input and state trajectories of the
problem. Exploiting this relationship the input trajectory is proposed for direct
parameterization in a direct solution method. Not only are the two methods
computationally more efficient than the literature’s existing solution, but also they
both show a slight improvement over the existing optimal value. However, we see
the most important contribution of the chapter in revealing the optimal solution’s
structure. Finally, through a sensitivity analysis it is seen that the optimal solution
found is also robust to parametric uncertainty.
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Chapter 4 |
Online Shaping of a Drug’s Pe-
riodic Administration Trajectory
for Efficacy Maximization1

4.1 Introduction
Having solved the offline problem in Chapter 3, the present chapter examines the
problem of online optimization of nicotine’s delivery schedule for maximization of its
long term cardio-accelerating effects. One common shortcoming, apparent in both
the existing offline and online solution methods [45,46,56,85] to this problem, is
the reliance of algorithms on exact knowledge of the drug’s PKPD model. However,
the human body’s metabolism in reaction to the nicotine injection varies from one
subject to another. This affects the shape of the maximal periodic efficacy trajectory
and necessitates use of algorithms capable of handling modeling uncertainties. This
chapter focuses on discovering the optimal drug delivery trajectory adaptively, for
patients whose underlying PKPD dynamics may not be exactly known a priori.
We employ a model-reference, self-tuning adaptive control scheme to identify the
uncertain parameters of the drug’s model and use the estimates obtained for
adaptation of the control policy. The chapter employs Floquet analysis to show
that the overall closed loop system is asymptotically convergent in a neighborhood
of the optimal periodic solution of the problem.

1The work of this chapter has been presented in the American Control Conference, 2015 [86]
and published in IEEE Transactions on Control Systems Technology, 2017 [87].
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The remainder of this chapter proceeds as follows. First, the optimal drug
delivery problem is presented again together with an approximate offline solution
suitable for online adaptations (Section 4.2). Next, the chapter describes the
structure of the self-tuning control scheme and proves its convergence to the optimal
solution cycle (Section 4.3). Lastly, Section 4.5 demonstrates the performance of
the closed loop control schemes in a numerical simulation, and also compares the
results to the existing solutions of the problem in the literature.

4.2 Deterministic Drug Delivery Problem
In this section, a quick review of the nicotine delivery problem is given for ease of
access. The problem statement is then followed by an approximate offline solution
method suitable for an online implementation.

4.2.1 Drug Delivery Model

The drug delivery problem, as stated by Varigonda in [56], considers the effect of
the drug nicotine on the body. The problem uses a PKPD compartment model to
capture the drug dynamics. This model is based on Porchet et al.’s [58] experimental
work, but is adapted and nondimensionalized for control purposes. In the model, the
concentration of the drug, c, causes build up in the concentration of an antagonist,
a, which represents drug tolerance. The dynamics are modeled by

ċ = −c+ u

ȧ = ka(c− a)
(4.1)

where u is the drug infusion rate and ka is a rate constant for antagonist elimination.
The effect on the body is modeled by

E(c, a) = c

(1 + c)(1 + a/a∗) (4.2)

where E is the drug efficacy and a∗ is a measure of how much the antagonist
diminishes the effect of the drug.

The goal of a successful drug delivery schedule is to maintain the drug efficacy
level in a desired range, [E1, E2]. In this work, as in [45,46,56,85], ka = 0.1, a∗ = 1,
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Figure 4.1. The concentration and efficacy trajectories corresponding to the best
constant infusion rate (i.e. u = 1).

E1 = 0.3, E2 = 0.6.
At steady state, the maximum of the efficacy function in Eq. (4.2) is achieved

when u = a = c = 1. This results in an efficacy level of E = 0.25, which is still
not in the desired range. The reason for ineffectiveness of constant drug infusion
rates can be seen from in Eq. (4.1) and Eq. (4.2). The presence of nicotine in the
blood causes the body to build up a tolerance, which lessens the effect of the drug.
Initially, the high drug concentration leads to high efficacy, but soon after, the
antagonist builds and counteracts the effect. As a result, the drug is not in the
effective range in the long run. Fig. 4.1 confirms this argument by depicting the
state and efficacy trajectories of the model for the best time-independent delivery
case.
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4.2.2 OPC Problem Formulation

Allowing the drug (and the tolerance) concentration time to diminish before injecting
additional drug can lead to higher efficacy in the long term. Consequently, a
periodic injection pattern can be more effective than the best constant injection
rate. Optimal periodic control is used to improve drug efficacy in an average sense:
although it is impossible to stay in the target range for all time, it is desirable to
stay in the target range for as large a fraction of time as possible.

In order to mathematically formulate the optimal periodic drug delivery problem,
the smooth indicator function of Chapter 3 is again used to determine if the drug
efficacy lies within the desired range, [E1, E2]. As explained in Chapter 3, the
indicator function, I, is approximately 1 when within the range and 0 when outside
the range and is modeled by

I(E) = (E/E1)γ
(1 + (E/E1)γ)(1 + (E/E2)2γ) (4.3)

where γ is a constant that controls the function’s steepness at the boundary of
the desired efficacy range. Similar to [45, 46, 56, 85], we set γ = 10. Fig. 3.2
demonstrates this smooth indicator function and compares it against the ideal
non-smooth indicator function of the desired efficacy range.

Finally, the objective function, J , is defined as the indicator function averaged
over the period, T :

J(I, T ) = 1
T

∫ T

0
I(τ)dτ (4.4)

The optimal periodic drug delivery problem can now be formulated as follows.

max
a,c,u,T

{
J = 1

T

∫ T
0 I(t) dt

}
subject to:
a(0) = a(T ), c(0) = c(T ) (Periodicity Constraints)
0 ≤ u ≤ umax (Input Constraints)

(4.5)

and the drug delivery dynamics given by Eq. (4.1). The nonnegativity requirement
on the input is imposed to limit the solution space to include only physically
meaningful trajectories. Additionally, the injection rate is bounded above by the
maximum allowable drug dosage umax = 10. As was discussed in analyzing the
structure of the problem’s feasible set in Chapter 3, the nonnegative input constraint
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automatically restricts the state trajectories of the drug delivery model to the first
quadrant. Therefore, the state nonnegativity constraint is redundant and has been
dropped in the above OPC problem formulation.

4.2.3 Offline Periodic Solution

As discussed before, a constant infusion rate regimen is not very effective and in
the best case results in a constant efficacy level of E = 0.25. This corresponds to
an objective value of JOSS = 0.14 as the best steady state solution of the problem.
In Varigonda et al.’s work, they solve the OPC problem presented in Eq. (4.5)
by parameterizing the antagonist’s concentration trajectory, using the first 20
harmonics of the Fourier expansion. The input and agonist’s trajectories are then
obtained in terms of the transcribed flat output’s (i.e. antagonist’s) trajectory. The
choice of the parameterization basis makes all the system trajectories periodic by
construction. Finally, they solve a constrained NLP problem to find the optimal
values of all the 42 parameters in their expansion, and obtain an optimal objective
value of JOPC = 0.3537.

The solution method that this chapter proposes is different in its choice of the
transcription trajectory and also the way the problem’s constraints are handled. It is
important to mention that we do not intend to re-solve an already solved problem;
the motivation is rather to develop a solution method that is more conducive
for online applications. Instead of the antagonist’s trajectory, here we directly
parameterize the input trajectory. Note that the knowledge of the input trajectory
alone is not enough to completely specify the model’s state trajectory. However,
for any choice of the input trajectory, the state periodicity constraint in Eq. (3.5)
must be met. This helps us uniquely determine the proper initial state vector for
any candidate input trajectory using the following expression.

xu(0) = (I − e[A]T )−1
∫ T

0
e[A](T−t)[B]u(t) dt (4.6)

where [A] and [B] are, respectively, the state and input matrix of the model from
Eq. (4.1); I is the 2-by-2 identity matrix; and e[A]t is the state transition matrix of
the system.

Moreover, instead of assuming “hard” constraints, we employ the interior point
method as a “soft” constraint-handling technique, to transform the problem into an
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unconstrained one. Similar to [45, 46, 85], shifted log-barrier functions are added as
fictitious costs to the original objective function defined in Eq. (4.4). As a result,
the area where the constraints are violated gets penalized and the area where the
constraints are met is only minimally affected. The resulting “augmented" objective
function is given by Eq. (4.7):

φ̄(I, u, t) = I(t) + ρ1 log (u(t) + ε1) + ρ2 log (10 + ε2 − u(t)),

J̄ = 1
T

∫ T

0
φ̄(I, u, t) dt

(4.7)

where ρ1, ρ2, ε1, and ε2, the tuning constants of the log-barrier functions, are small
positive real numbers.

Using only the first n harmonics of the Fourier basis functions, the input
trajectory is parameterized as follows.

u = α0 +
n∑
k=1

[
αk cos(k2π

T
t) + βk sin(k2π

T
t)
]

(4.8)

Maximizing the unconstrained objective function in Eq. (4.7) with the input
transcription given above and n = 4, we find a solution trajectory with an original
objective value of JOPC = 0.33. Fig. 4.2 illustrates the input, state, and the
efficacy trajectories of this optimal solution. The difference in the objective value
between the literature’s solution and ours ensues from the smaller size of our
optimization problem, and the fact that the interior point method with constant
tuning parameters is not a “constraint-hugging” algorithm. Both these issues can
be alleviated through extending the input expansion by use of more harmonics
and choosing smaller weights for the log-barrier functions. However, the current
formulation of the problem is simple enough for use in an online framework and we
are tolerant of the small sacrifice in the optimality of its solution.

As explained before, the nicotine model given by Eq. (4.1) is not universal, and
the parameters of the model depends on the specific metabolism of the human body.
In the following two sections, we propose two algorithms to find and implement
the solution of the periodic drug delivery problem online, each of which designed
to handle different levels of uncertainty. These two algorithms build on the offline
solution method developed in this section.
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Figure 4.2. Solution trajectories of the offline drug delivery problem: (a) shows the opti-
mal phase plot, (b) and (c) show the optima input and efficacy trajectories, respectively.

4.3 A Self-Tuning Optimal Periodic Controller
This section presents the first of two controllers for optimizing the drug’s delivery
trajectory online. The Self-Tuning Optimal Periodic (STOP) controller uses some
information about the structure of the drug delivery model, but it is flexible in that
it allows for parametric uncertainty. Fig. 4.3 schematically depicts the structure of
the overall control scheme and how it interacts with the plant under control. This
controller is essentially an indirect self-tuning regulator that forces the system to
cycle along the optimal periodic trajectory computed online. The controller consists
of three parts: (i) an estimator block that analyzes the model’s input/output
data and gives an approximation of the uncertain parameter(s) in the model; (ii)
an adjustment mechanism which is a continuous mapping between the different
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Figure 4.3. Structure of a self-tuning control scheme for optimal periodic control
problems.

realizations of the uncertain parameters of the model and the corresponding sets of
optimal control parameters (i.e., Fourier coefficients and time period of the input);
and (iii) a harmonic oscillator that adjusts the input trajectory to incorporate
the change in the control parameters and applies the input to the model. As the
drug delivery system runs, the estimator develops more accurate estimates of the
unknown model parameters. Then, it implements the drug infusion trajectory
(found offline a priori) that corresponds to these estimates.

The aforementioned control scheme exploits three ideas that, when integrated
together, result in steering the model to its optimal solution trajectory. This
section first lays out these ideas and uses them to clarify the structure of the
controller. Next, it employs linearization and Floquet theory to rigorously proves
local convergence of the overall scheme to the optimal solution.

4.3.1 Details of the Closed-Loop Control Scheme

There are three ideas we exploit in the design of the STOP controller: (i) esti-
mation of the uncertain parameters from analyzing the input-to-output response,
(ii) continuous dependence of control parameters on the uncertain parameters, and

64



(iii) global asymptotic stability of the limit cycle corresponding to any admissible
set of control parameters.

(i) Estimation of the uncertain model parameters: The parameters used
in the PD portion of the drug delivery model, as well as those used in the definition
of the desired efficacy range and its indicator function, are known parameters. ast,
the one parameter of the PK portion, ka, depends on the specific metabolism of
the body. This parameter determines the relative decay rate of the antagonist
compared to the drug concentration and directly shows up in the dynamics of the
model. Here, we assume there is uncertainty in the value of ka, and formulate an
estimation problem to find this unknown value. For notational convenience, we
denote by θ the estimate of the unknown parameter ka, and use θ∗ to represent its
actual value (i.e. θ∗ = ka). Furthermore, we assume both the agonist and antagonist
concentrations (i.e. a, c) are measured. Since only a is affected by ka, we introduce â
as its estimate with dynamics similar to the real antagonist concentration dynamics:

˙̂a = θ(c− â) (4.9)

Next, we define the error between the measured and estimated antagonist concen-
tration trajectories by e = â − a and use the following gradient-descent rule to
update θ:

θ̇ = −Γ
2
∂e2

∂θ
= −Γ∂e

∂θ
e (4.10)

where Γ is the estimation gain and a positive constant.
Note that θ = θ∗ is an equilibrium point of the above equation, since it is the

minimizer of the error squared term, e2. Moreover, notice that the real antagonist
concentration is independent of the estimated parameter and therefore ∂e

∂θ
= ∂â

∂θ
.

The derivative of â with respect to θ is itself a time-varying variable. Let y = ∂â
∂θ

denote this derivative, and differentiate both sides of Eq. (4.9) with respect to θ to
obtain the following expression.

ẏ = c− â− θy (4.11)

Equations (4.9), (4.10), and (4.11) together specify the dynamics of the estimator
block in Fig. 4.3. As the estimator runs and processes more data, θ continuously
varies according to these equation. The most recent value of this estimated variable
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can then be used to adapt the control action feeding to the model.
(ii) Continuity of control parameters: The adjustment mechanism and

harmonic controller blocks in Fiq. 4.3 work together to realize an intuitive control
law: implement the optimal trajectory corresponding to the best available estimate
of θ∗. Following this rule requires solving the offline drug delivery problem for
different realizations of θ and essentially creating a map between these values and
the corresponding sets of optimal control parameters.

Fig. 4.4a and 4.4b illustrate this relationship for select control parameters. The
optimal control parameters were obtained from solving the offline drug delivery
problem with ρ1 = ρ2 = ε1 = ε2 = 0.01, and for a range of ka values including its
nominal value. The optimization was carried out using the MATLAB interface
of the NLP solver SNOPT [100, 101], where the analytic first-order derivatives
of the input constraints and the objective function were provided. The control
parameters in between the optimized values are found using the natural cubic spline
interpolation method.

As seen from Fig. 4.4a and 4.4b, the optimized map of control parameters as a
function of the unknown plant parameters is a continuous and smooth spline. If
the estimate of θ∗ converges to its actual value, then from the continuity argument
above, the control parameters also converge to their optimal values. This, in turn,
leads to the convergence of our estimate of the optimal control action u(G(θ∗)) to
the actual optimal input trajectory for the model.

(iii) Global asymptotic stability of the model: The drug delivery model
as presented in Eq. (4.1) has a strictly Hurwitz state matrix. Then, from the linear
control theory, for any choice of the control parameters the model has a stable limit
cycle and this limit cycle is globally attractive with an exponential convergence
rate. Hence, if the accuracy in estimation of the uncertain parameters improves and
the control input approaches to its optimal trajectory, then the states of the model
will also follow the steps of the input and eventually converge to their optimal
trajectory.

4.3.2 Local Convergence of the Overall Scheme

The rough convergence argument made above is entirely contingent upon conver-
gence of the estimation parameter. Here, we rigorously analyze the convergence of
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Figure 4.4. Continuous dependence of select control parameters on the uncertain model
parameter, ka.

the closed-loop system and its relation to the choice of the estimation gain Γ.
First, the closed-loop system can be reformulated as an autonomous one by

introducing additional state variables that generate the periodic input function. To
this purpose, we use the pair (x2k−1, x2k) to construct the kth− harmonic, which
then enables us to represent the input signal as follows:

 ẋ2k−1 = −kωx2k

ẋ2k = kωx2k−1
, k = 1, . . . , n

u = α0 +∑n
k=1 [αkx2k−1 + βkx2k]

(4.12)

where ω = 2π
T

is the oscillation frequency of the input.
We augment the state vector of the drug delivery model with the state variables

used in the estimator (Eq. 4.9-4.11) and input dynamics (Eq. 4.12) to obtain an
autonomous representation of the closed-loop dynamics. Let z be this augmented
vector defined as z =

[
e θ x1 x2 · · · x2n−1 x2n c a y

]T
. It will be seen

that the specific ordering of the state variables and use of e instead of â simplifies
the analysis. Furthermore, use z̄ to denote the values of z along the optimal solution
trajectory. Finally, define the deviations of the states from the optimal trajectory
as δz = z − z̄. Then, linearization of the system around the optimal trajectories
determines the perturbation dynamics as follows.
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δ̇z = P (t)δz (4.13)

where P (t) is the following T−periodic function:

P =



−θ∗ c̄− ā 0 0 · · · 0 0 0 0 0
−Γȳ 0 0 0 · · · 0 0 0 0 0

0 −ω̇x̄2 0 −ω · · · 0 0 0 0 0
0 ω̇x̄1 ω 0 · · · 0 0 0 0 0
... ... ... ... . . . ... ... ... ... ...
0 −nω̇x̄2n 0 0 · · · 0 −nω 0 0 0
0 nω̇x̄2n−1 0 0 · · · nω 0 0 0 0
0 s α1 β1 · · · α2n−1 β2n−1 −1 0 0
0 0 0 0 · · · 0 0 θ∗ −θ∗ 0
−1 −ȳ 0 0 · · · 0 0 1 −1 −θ∗


Also, the notation (.)′ is used to denote the differentiation with respect to θ, and

s = α′0 +
n∑
k=1

[α′kx2k−1 + β′kx2k]

As was explained before and also illustrated in Fig. 4.4a and 4.4b, all the control
parameters are differentiable functions of the uncertain parameter. Consequently,
s is well-defined and the above linearization is valid.

Floquet theory can be employed to analyze the stability properties of the
autonomous and periodic perturbation dynamics. According to this theory, the
stability of an autonomous Linear Time-Varying (LTV) system with a periodic state
matrix is closely tied to the eigenvalues of its “monodromy” matrix. This matrix is
defined as the principal fundamental matrix solution of the system evaluated at the
time period of the state matrix, t = T . The eigenvalues of the matrix are known
as the characteristic multipliers. The theory states that: (i) for an asymptotically
stable system, all the eigenvalues fall inside the unit circle in the complex plane;
(ii) if any of the eigenvalues has a magnitude greater than unity, then the system
becomes unstable; and (iii) when there is only one eigenvalue of magnitude of one
and the rest are inside the unit circle, the system has a periodic solution.

Lemma 1. Let A(t) be a T−periodic, lower block triangular matrix with the square
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A11 and A22 matrices as the diagonal blocks. Then, the set of the characteristic
multipliers of the LTV system ẋ = A(t)x equals the union of the characteristic
multipliers of the two subsystems ẋ1 = A11(t)x1 and ẋ2 = A22(t)x2.

Proof. Let φ(t) be the principal fundamental matrix solution of ẋ = A(t)x. There-
fore, from the definition φ̇(t) = A(t)φ(t), φ(0) = I, where I is the identity matrix of
proper dimension. Assume the lower block triangular matrix A to be partitioned

as A =
A11 0
A21 A22

. Let φ =
φ11 φ12

φ21 φ22

 be a partitioning of φ with the same

configuration as A. It then follows that φ̇12 = A11(t)φ12 and φ12(0) = 0. As the zero
matrix is a solution to this initial value problem, φ12(t) = 0 and φ is a block lower
triangular matrix as well. Furthermore, it follows from φ12 = 0 that φ̇11 = A11(t)φ11

and φ̇22 = A22(t)φ22, which completes the proof.

Apply the results of the above lemma to Eq. (4.13) two times. It is inferred
that the characteristic multipliers of the linearized system are the collection of the
characteristic multipliers of three autonomous linear systems with the following
state matrices:

P1(t) =
−θ∗ c̄− ā
−Γȳ 0

 , P3 =


−1 0 0
θ∗ −θ∗ 0
1 −1 −θ∗



P2 =


0 −ω · · · 0 0
ω 0 · · · 0 0
0 0 · · · 0 −nω
0 0 · · · nω 0


Let φ1, φ2, φ3 be the principal fundamental matrix solutions corresponding to the

state matrices P1, P2, P3, respectively. Using the result of Lemma 1 once again for
the lower triangular matrix P3, the eigenvalues of φ3(T ) are simply the exponentials
of the diagonal elements times the time period, namely {e−T , e−θ∗T , e−θ

∗T}. These
eigenvalues clearly all fall inside the unit circle. Additionally, viewing φ2 as the
state transition matrix of the T− periodic subsystem ẋ = P2x, it must hold that
φ2(T ) = I2n. Therefore, φ2(T ) has 2n eigenvalues of 1.

Using the identity matrix I2 as the initial condition, we numerically integrate
φ̇1 = P1(t)φ1 from 0 to T to obtain its monodromy matrix. It is seen that for
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Γ ≤ Γmax = 0.05, the two Γ−dependent characteristic multipliers will also have
magnitudes less than one. Note that the formal statement of the Floquet theorem is
inconclusive in the case of existence of several characteristic multipliers of magnitude
one. However, because of the lower block triangular structure of the matrix P (t),
we assert that the solution to Eq. (4.13) is indeed periodic for Γ ≤ Γmax. With
proper choice of Γ, the parameter estimate θ and the estimation error e are jointly
convergent, regardless of the other state variables. After e vanishes, the input
dynamics resemble a pure oscillator. Therefore, the multiple eigenvalues of unity
cause a bounded and persistence oscillatory behavior. This oscillatory input in turn
causes the open-loop stable drug delivery model to approach a limit cycle. Lastly,
the oscillation in the states of the drug delivery model induces an oscillation in the
evolution of y.

The above argument suggests that whereas the motion along some modes of the
system vanish, there are perturbations in other directions that oscillate indefinitely.
More specifically, this analysis tells us that for small enough estimation gains: (i) if
the system is initiated from a point close but not on the optimal solution cycle,
it will asymptotically converge to it; and (ii) if the system is initiated somewhere
on the optimal solution cycle but with a phase shift, then the system stays on
the cycle, but the phase shift remains unchanged. Needless to say, this phase
shift is immaterial and does not affect the objective value of the problem. Hence,
this proves that the closed-loop system is locally asymptotically convergent to the
optimal solution cycle.

4.4 Note on Generalization of the Scheme to Other
Problems
This section briefly discusses how the proposed controllers can be employed for
solving OPC problems other than the drug delivery problem. Both the presented
control architectures rely on the assumption of open loop stability of the plant’s
limit cycles. In other words, for each piecewise continuous periodic input trajectory,
the stable LTI drug delivery model “forgets" its initial condition and eventually
converges to a corresponding limit cycle. The drug delivery model is just an example
of a much larger class of dynamical systems known as “Convergent Systems" that
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show this property (see [88]).
Assuming that the estimator block in the STOP controller has asymptotically

stable dynamics, [88] outlines the conditions under which the bidirectional inter-
connection of the estimator’s and plant’s dynamics is itself a convergent system.
However, a rigorous proof of stability of the algorithm for a broader class of
convergent nonlinear systems is beyond the scope of this work.

4.5 Simulation Results
This section shows the results of each of the two online OPC strategies when applied
the drug delivery problem. In the STOP control scheme, the parameter ka, from
Eq. (4.1), is treated as unknown. To maintain consistency with the offline solution
obtained in Section 4.2.3, we use n = 4.

4.5.1 STOP Control Results

For the simulation of the performance of this controller, we assume that the patient
has not been exposed to the drug for a long time. Therefore, the drug and antogonist
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Figure 4.5. Estimated time constant of the antagonistic reaction ka for different
estimation gain values.
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Figure 4.6. Convergence of (a) drug infusion rate, (b) drug concentration, (c) antagonist
concentration, and (d) drug efficacy trajectories to their associated optimum in the
self-tuning regulation scheme.

concentration as well as y are all initially set to zero. In addition, the initial guess
for the uncertain parameter, ka, is chosen to be 50% greater than its nominal value
(i.e. θ∗ = 0.1, θ(0) = 0.15).

Fig. 4.5 shows the convergence of the estimated parameter for 3 different
stabilizing (i.e. less than Γmax) values of the estimation gain. As seen in this
figure, with increasing this gain the convergence rate also increases. However,
this adversely affects the stability of the estimation dynamics resulting in the
underdamped behavior for the case with Γ = 0.013. Fig. 4.6 depicts all the other
trajectories of the closed-loop system when Γ = 0.013 is selected. Notice that the
initial estimate of the unknown parameter is far from the truth and the initial
position of the system far from its optimal orbit. However, within only a few cycles,
all the trajectories shown in Fig. 4.6 converge to their optimum given in Fig. 4.2.

In Fig. 4.6d, the average drug’s efficacy in the second cycle seems to be higher
than its optimal value. Nevertheless, this acute response to the drug is caused by
the initial absence of the antagonist. The behavior is only temporary and impossible
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Figure 4.7. Convergence of state trajectory of the system to its optimal periodic
trajectory in the self-tuning regulation scheme.

to maintain over time.
Fig. 4.7 shows the phase plot of the system as the state trajectories converge to

the optimal periodic solution of the problem. This convergence to the optimum
trajectory corresponds to the increasing accuracy of the estimation of ka. As shown
in Fig. 4.5, the system latches on to the correct ka value quickly. As the estimate
of ka evolves, increasingly optimal input trajectories are implemented.

4.5.2 Comparison with the Literature

Both algorithms converge to near optimal solutions. The self-tuning regulation
solution results in an average objective function of J = 0.33, and the ES solution
results in an average value of J = 0.31. The values achieved in this work (without
assuming an accurate model of the plant) are comparable to the values obtained
elsewhere in the literature, as shown in Table 4.1. As explained before, slightly
higher values of the objective function could have been achieved if more Fourier
expansion terms and smaller constraint penalty weights were used.
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Table 4.1. Different solutions of the drug delivery problem

Method Avg. No. of No. of
Obj. Fn. Cycles Parameters

Self-tuning optimal periodic regulator 0.33 4 10
Offline solution using parameterization
of flat output

[56] 0.35 — 42

Online solution using parameterization
of flat output

[45] 0.35 1 22

Online solution using model predictive
control

[85] 0.2 15 1

Online solution using parameterization
of Hamiltonian system

[46] 0.19 4 3

4.6 Discussion and Conclusions
This chapter presented an online OPC method for optimization of nicotine’s periodic
delivery schedule. First, an offline solution method is proposed that discretizes
the nicotine’s infusion trajectory as a truncated Fourier series, and then optimizes
the time period and Fourier coefficients online. Building on the offline solution, an
online method proposed that employs a model-reference, gradient-descent based
rule to estimate parameters, and then uses the estimates to adapt the shape of
the optimal trajectory. When applied to the drug delivery problem, the optimal
objective function value (J = 0.33) and the convergence time are comparable
to other deterministic schemes in the literature (see Table 4.1). This method is
applicable to problems where an uncertain parameter within the plant is included
but the structure of the plant is known.
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Chapter 5 |
An Adaptive Control Algorithm
for Tracking Parametric Refer-
ence Trajectories in Feedback
Linearizable Systems1

5.1 Introduction
This chapter proposes an adaptive feedback linearizing (FBL) control algorithm
for tracking reference trajectories dependent on uncertain plant model parameters.
This chapter is motivated by the need for online controllers that can achieve periodic
optimality in the presence of uncertain and potentially unstable open-loop plant
dynamics. This represents a significant step forward from the online periodic
optimal control approach of Chapter 4, which assumes open-loop plant stability.
Our goal in this chapter is to solve a robust online tracking problem for a reference
trajectory that may or may not be periodic. The application of the resulting
approach to periodic optimal control is explored in Chapter 6.

The convergence and boundedness of the closed-loop dynamics generated by our
tracking controller are studied in the presence of persistently exciting estimation
regressors and assuming linear parameterization of the plant model. By allowing
the target trajectory to be not fully deterministic a priori, our control algorithm
creates an opportunity for undertaking challenging applications such as adaptive

1The work of this chapter has been submitted to Automatica and is currently in review [99].
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model reference control where the reference model inherits some uncertain plant
models or self-tuning optimal controller design.

Over the past four decades, many researchers have exploited feedback linearza-
tion for solving regulation and tracking problems in the presence of plant model
uncertainties. The work in this area can be divided into two categories. The first
body of work relies on the “certainty equivalence principle”. These controllers
involve a static state/output feedback rule which simplifies to the deterministic
FBL rule when the plant model parameters are all known. Sastry and Isidori, for
instance, use an augmented error scheme together with a gradient-type identifica-
tion algorithm to propose a parameter adaptive control algorithm for minimum
phase nonlinear systems [59]. They prove closed-loop convergence under Lipschitz
continuity assumptions on the nonlinearities for systems of varying relative degrees.
Taylor et al. focus on the regulation problem and assume the “uncertainty matching
condition” is met, but consider asymptotically stable unmodeled dynamics in addi-
tion to parametric uncertainties [60]. They also provide an estimate of the region of
attraction for the overall system, when the singular perturbation parameter of the
parasitic dynamics is small enough. Kanellakopoulos et al. derive the “extended
matching condition” and develop an adaptive regulation scheme suitable for a
broader class of parametric uncertainties [61]. Mrino et al. propose the tracking
counterpart of the aforementioned algorithm by designing a nonlinear filter which
converts the reference output signal to a reference state vector trajectory for the
feedback linearized system [62].

The second category of parameter adaptive FBL controllers, in contrasts, develop
a dynamic feedback rule using back-stepping techniques. The design procedure for
these dynamic FBL controllers is usually more involved, but they can offer better
transient behavior, handle a larger class of modeling uncertainties, and provide more
robustness to unmodeled uncertainties. The seminal work by Kanellakopoulos et
al. presents a dynamic-feedback-based approach for adaptive tracking of nonlinear
systems transformable into the parametric-pure feedback form (a.k.a. triangular
form) [63]. This work significantly broadens the class of permissible parametric
uncertainties without imposing any growth condition on the allowable type of
nonlinearities. Shortly after, Krstić et al. address the overparameterization issue
of this scheme by introducing tuning functions [64]. Marino and Tomei study the
problem of existence of adaptive FBL controllers robust to unknown disturbances
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under the assumption of “strict triangularity condition”. They allow the uncertain
plant parameters to be time-varying and also enter the dynamics in a nonlinear
fashion [65]. The work by Polycarpou and Ioannou design an adaptive stabilizing
controller for systems in “semi-strict-feedback form” which are affected by unknown
nonlinearties with partially known bounds. Assuming the triangular bounds on the
nonlinearities, they prove the system trajectories are globally uniformly ultimately
bounded [66]. Yao and Tomizukaia offer an alternative approach for design of adap-
tive robust controllers for systems transformable to the semi-strict-feedback form.
Assuming known bounds on the uncertain plant parameters and using a smooth
projection algorithm, their method modifies the control scheme in [64], derives
an adjustable upper bound for the tracking error, and guarantees exponentially
decaying transient behavior [67].

While the existing body of literature on adaptive feedback linearization is quite
mature, there is an implicit restricting assumption present in all of the above
algorithms when they are applied to tracking applications. The reference trajectory
in tracking problems must be fully known and independent of the uncertain plant
model parameters. The work in this chapter relaxes this assumption and accounts
for the appearance of uncertain parameters in the target trajectory. Our scheme
falls into the first category of parameter adaptive FBL controllers discussed above
and requires the structure of the parameter uncertainties to be consistent with the
strict matching condition.

The reminder of this chapter is organized as follows. Section 5.2 gives a quick
overview of exact and adaptive feedback linearization as some basic knowledge
is required for development of the chapter main’s contribution. This section also
explains the modeling uncertainty types considered in this dissertation. Section 5.3,
next, provides a formal statement of the adaptive tracking problem for which
our FBL control algorithm is designed. Subsequently, Section 5.4 covers the
control synthesis and stability analysis. The chapter concludes with numerically
demonstrating the performance of the control algorithm for an active vehicle
suspension example in Section 5.5.
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5.2 Background
There are many nonlinear dynamic systems which are “feedback equivalent” to
controllable linear systems. Through a change of coordinates and use of state/output
feedback, dynamic systems belonging to this class can be converted to a chain of
integrators. In this section, we provide a quick background of feedback linearization
theory. First, this section shows how using feedback one can exactly remove
nonlinear dynamics, when a feedback linearizable plant model is fully known. The
section goes over adaptive feedback linearization next, and discusses the type of
structural uncertainties considered in the analysis of this chapter.

5.2.1 Exact Feedback Linearization

Feedback linearization is a very powerful tool in nonlinear systems theory, as it
allows for systematic design of controllers for the entire class of feedback linearizable
systems. A complete characterization of this class of dynamic systems is therefore
very critical. Necessary and sufficient conditions for existence of local and global
FBL transformations and control laws can be found in [102–105].

Consider a time-invariant input-affine nonlinear system given by:

~̇z = F (~z) +G(~z)~u (5.1)

where ~z ∈ Rn, ~u ∈ Rm and F and G are smooth vector fields with F (~0) = ~0 and
G(~0) 6= ~0. For the sake of simplicity, this chapter focuses on the single-input systems
(i.e., m = 1), but the analysis can be generalized to multi-input examples as well.
Geometric control theory and Lie algebra can be employed to derive conditions for
existence of a transformation and a feedback control law linearizing Eq. (5.1).

To outline the necessary and sufficient conditions for feedback linearizability,
we need to first introduce some notations. The Lie bracket of two vector fields is
itself a vector field defined as follows.

[F,G] = ∂F

∂~z
G− ∂G

∂~z
F (5.2)
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Moreover, the adjoint action adkFG is a repeated Lie bracket operation defined as:

adkFG = [F , adk−1
F G] (5.3)

for any integer k ≥ 1 with the convention that ad0
FG = G. Furthermore, define the

distribution Dk(~z) :=span{G, adFG, · · · , adk−1
F G}.

The input-affine system (5.1) is feedback equivalent to nth order controllable
LTI systems if and only if the following two conditions are met.

(i) Accessibility Condition: Dn is of dimension n.

(ii) Feedback Linearizability Condition: Dn−1 is closed under the Lie bracket
operation (i.e. [F,G] ∈ Dn−1 ∀F,G ∈ Dn−1).

Refer to [105] for the multi-input (i.e. m > 1) version of the above differential
geometry conditions. In the case of LTI systems, accessibility and controllability are
equivalent concepts and Condition (i) simplifies to having a full rank controllability
test matrix. Additionally, Condition (ii) is trivially satisfied for an LTI system, as
the Lie bracket of any two constant vector field is zero.

Satisfaction of Conditions (i) and (ii) guarantees the existence of a diffeomor-
phism ~x = T (~z) which transforms the system (5.1) into the following form.

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f(~x) + g(~x)u
(5.4)

with f(~0) = 0 and g(~0) 6= 0 [102, 105, 106]. Eq. (5.4) can be thought of as the
controllable canonical form of the nonlinear system (5.1). The above system can
now be easily converted to a chain of n integrators through selecting u according
to the following feedback law.

u = g(~x)−1(−f(~x) + v) (5.5)

with v as the new free control variable.
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5.2.2 Adaptive Feedback Linearization

The feedback linearization procedure outlined in Section 5.2.1 relies on the exact
cancellation of the plant model’s nonlinearities. Adaptive feedback linearization
techniques, in contrast, asymptotically eliminate the unknown nonlinearities in
the plant dynamics by identifying the plant model and adapting the FBL rule
accordingly.

Consistent to the majority of the adaptive literature, the work in this chapter
allows parametric uncertainties to enter into the plant model, but restricts them to
appear only in a linear fashion. In other words, it is assumed that the vector field
F , and G in Eq. (5.1) are of the form:

F = F0 +
p∑
i=1

θ∗iFi

G = G0 +
p∑
i=1

θ∗iGi

(5.6)

where Fi’s and Gi’s, i = 0, · · · , p, are smooth and known vector fields and ~θ∗ ∈ Rp

is the vector of constant unknown plant parameters.
When F ,G meet the feedback linearizability conditions outlined in Section 5.2,

there exists a ~θ∗−dependent diffeomorphism ~x = T (~z, ~θ∗) that transforms the
system into the standard feedback linearization form as follows:

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f0(~x) + ~f1(~x)T~θ∗ +
(
g0(~x) + ~g1(~x)T~θ∗

)
u

(5.7)

Since the controller utilizes feedback for linearization, the knowledge of the state
vector ~x in the above representation is essential. The following two conditions
explain two different possibilities in this regard.

(iii) Measurability of Linearized State Vector: the state vector of the sys-
tem in its standard feedback linearization form can be directly measured.

(iv) Strict Uncertainty Matching Condition: Fi, Gi ∈ D0 =span{G0}, for
i = 1, · · · , p and the original state vector ~z is measurable.
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For many mechanical systems, for instance, the state vector ~x consists of some
generalized coordinates of motion and can be physically measured. Condition (iii),
in contrast, ensures that the diffeomorphism T is independent of ~θ∗ and therefore
~x can be indirectly calculated from the measurement of the system’s original state
vector, ~z [60, 61]. In simple words, Condition (iv) means that the input signal is
directly present in those state equations which include parametric uncertainties.

5.3 Problem Statement
This chapter tackles the adaptive tracking problem for uncertain dynamic systems
defined by Eq. (5.1) and (5.6). We assume the conditions (i),(ii) and either (iii)
or (iv) are met. These assumptions collectively allow us to work directly with
the standard representation of the system as given in (5.7). Moreover, the given
parametric target trajectory is assumed to be Cn in time and C1 in the uncertain
parameter vector, where Ck is the space of functions with continuous first k
derivatives.

Note that using the smooth FBL transformation T , the input and the original
state vector can all be expressed purely as a function of x1 and its first n time-
derivatives. Therefore, any tracking objective for the original system dynamics
can be translated into tracking a corresponding target trajectory for x1 in the x
coordinates.

In summary, for the purpose of controller design, the adaptive tracking problem
can be restated in the following simplified form: find a control law and an adaptation
law such that the output of the system

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f0(~x) + ~f1(~x)T~θ∗ +
(
g0(~x) + ~g1(~x)T~θ∗

)
u

y = x1

(5.8)

is enforced to track a given reference signal yr(t, ~θ∗), where yr is Cn in t and C1 in
~θ∗.
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5.4 Controller Design and Stability Analysis
This section first presents our adaptive tracking algorithm designed for the sys-
tem (5.8). This algorithm uses an estimate of the uncertain plant parameters
to adapt an FBL control law. Next, Lyapunov stability analysis is employed to
prove the system’s output always asymptotically tracks an estimate of the reference
output signal. The section concludes with showing that meeting a persistence of
excitation condition leads to convergence to the true target output trajectory.

5.4.1 Adaptive Control Scheme

Let us denote by ~θ an estimate of the uncertain plant parameter vector ~θ∗. Moreover,
introduce a tracking error vector ~e whose components are defined as follows:

e1 = y − yr(t, ~θ)
...

en = y(n) − ∂n−1yr(t, ~θ)
∂tn−1

(5.9)

where y(n) represents the nth time-derivative of the output signal, y. Using Eq. (5.7),
the time dynamics of this error signal are obtained as:

ė1 = e2 −
∂yr(t, ~θ)
∂~θ

T

~̇θ

ė2 = e3 −
∂2yr(t, ~θ)
∂t∂~θ

T

~̇θ

...

ėn = f0(~x) + ~f1(~x)T~θ∗ +
(
g0(~x) + ~g1(~x)T~θ∗

)
u− ∂nyr(t, ~θ)

∂tn
− ∂nyr(t, ~θ)

∂tn−1∂~θ

T

~̇θ

(5.10)

Note that, due to the smoothness requirements on yr, system (5.10) is well-
defined. Now, select the real numbers α1, · · · , αn such that H(s) = sn + α1s

n−1 +
· · · + αn is a Hurwitz polynomial and let A be the state matrix of 1/H(s) in its
“controllable canonical form”. Furthermore, choose an arbitrary positive definite
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matrix Q ∈ Rn×n and let P > 0 be the solution to the Lyapunov equation given
below.

ATP + PA = −Q (5.11)

The adaptive FBL control law can now be expressed as follows.

u =
(
g0(~x) + ~g1(~x)T~s

)−1
∂nyr(t, ~θ)

∂tn
− αne1 − · · · − α1en − f0(~x)− ~f1(~x)T~s


(5.12)

where ~s is defined as:

~s(~e, ~θ) = ~θ − Γ
[
∂yr

∂~θ

∂2yr

∂t∂~θ
· · · ∂nyr

∂tn−1∂~θ

]
P~e (5.13)

with Γ > 0 as the estimation gain used to update the parameter estimate vector
according to the following adaptation law.

~̇θ = Γ
(
~f1(~x) + ~g1(~x)u

)
[0 · · · 0 1]P~e (5.14)

Note that without the parametric uncertainties in the plant model (i.e., ~f1 = ~g1 = ~0),
Eq. (5.12) simplifies to an exact FBL tracking control law for the system in (5.4).
Also, the roots of H(s), in that case, become the tracking poles for the system.
Figure 5.1 is a control flow diagram depicting the interactions between the controls
architecture designed above and the plant.

5.4.2 Lyapunov stability analysis

We show that our choice of the control and estimation law given by Eq. (5.12)-(5.14)
makes the error dynamics in Eq. (5.10) asymptotically stable. Let us first introduce
~φ = ~θ − ~θ∗ as the estimation error vector. Also, for notational convenience, define
the following two matrices.

W (t) =
(
~f1(~x) + ~g1(~x)u

)
[0 · · · 0 1] ∈ Rp×n (5.15)

M(t, ~θ) = W (t)TΓ
[
∂yr

∂~θ

∂2yr

∂t∂~θ
· · · ∂nyr

∂tn−1∂~θ

]
∈ Rn×n (5.16)
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Figure 5.1. Closed-loop block diagram illustrating the interactions between the true
plant and the adaptive feedback linearizing controller.

Substituting the control law from Eq. (5.12) into the error dynamics given in
Eq. (5.10) and after some algebraic simplifications, one obtains the closed loop
tracking and estimation error dynamics to be given by:

~̇φ = ΓWP~e

~̇e = A~e−W T ~φ+ (M −MT )P~e
(5.17)

Now, consider the following positive definite expression as a candidate Lyapunov
function for stabilization of system (5.17).

V (~e, ~φ) = 1
2~e

TP~e+ 1
2
~φTΓ−1~φ (5.18)

Differentiating V with respect to time and using the closed loop dynamics of
Eq. (5.17) yields:

V̇ (~e, ~φ) = −1
2~e

TQ~e ≤ 0 (5.19)

The expression for V̇ in Eq. (5.19) is only negative semidefinite in (~e, ~φ) and further
analysis is needed to determines stability of the closed loop dynamics. Since V is
bounded and nonincreasing limt→∞ V (t) exists. Also, integrating V̇ from 0 to t,
one obtains:

0 ≤ V (t) = V (0) +
∫ t

0
V̇ (τ)dτ ≤ V (0) (5.20)
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Therefore, ~e(t), ~φ(t) ∈ L∞, where Lp, p ∈ [1,∞] is the space of p−integrable
functions. Equation (5.20) can also be rewritten as:

∫ t

0
~eT (τ)Q~e(τ)dτ = 2(V (0)− V (t)) (5.21)

from which it follows ~e(t) ∈ L2 ∩ L∞. Taking the time derivative of Eq. (5.19)
and using Eq. (5.17), one concludes that V̈ is also bounded. It then follows
from the application of Barbalat’s lemma to the Lyapunov candidate function
V that limt→∞ V̇ (t) = 0, and as a result, limt→∞ ~e(t) = 0. This proves that the
system’s output, y(t), asymptotically approaches the estimate of the reference output
trajectory, yr(t, θ). Hence, the control and adaption rules derived in Section 5.4.1
guarantee bounded and asymptotic tracking of an estimate of the parametric target
trajectory.

5.4.3 Convergence to the true reference output

As is typical in the adaptive control literature, the above Lyapunov analysis is
inconclusive about parameter estimation convergence. When the signal used in
the estimation law Eq. (5.17) are persistently exciting, the parameter estimate
vector also converges to its true value. Denote by ‖~et(t)‖ the distance from the true
reference signal, with et(t) := y(t)− yr(t, ~θ∗). Next, use the triangular inequality
for the Euclidean norm to conclude:

0 ≤ ‖~et‖ ≤ ‖~e‖+ ‖δ~yr‖ (5.22)

where δ~yr is an n−dimensional vector representing the difference between the
estimate and true target trajectories and is defined as follows.

δ~yTr =
yr(t, ~θ)− yr(t, ~θ∗), · · · , ∂n−1yr(t, ~θ)

∂tn−1 − ∂n−1yr(t, ~θ∗)
∂tn−1

 (5.23)

However, the smoothness requirement on the target trajectory implies that yr
and its first n time derivatives are all continuous in ~θ. Consequently, δ~yr approaches
zero as ~θ approaches ~θ∗. Finally, taking the limits of the inequalities in (5.22)
as t tends to infinity implies that limt→∞ ~et = ~0. Hence, when the estimation
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regressor vector W defined in Eq. (5.15) is “sufficiently rich", the system’s output
is guaranteed to asymptotically track the true realization of the target reference
trajectory in a bounded fashion.

5.5 Active Vehicle Suspension Example
This section employs the Lyapunov-based adaptive control algorithm developed in
Section 5.4 to design an active vehicle suspension system. Assuming uncertainty
in the damping and stiffness characteristics of the suspension system, we use this
numerical example to explain the implementation details of our control strategy
and showcase its performance. More specifically, the problem’s objective is using
active control to enable percentagewise modification of the damping and stiffness
parameters of the suspension model, without knowing their exact values.

5.5.1 Plant model

We use a quarter-car suspension model to explain the dynamic interaction between
the vehicle’s mass and the road surface. Figure 5.2 gives a graphical representation
of the different components of this model together with the reference coordinate
systems used to fully describe the state of the system. The variable z in this
diagram represents the vehicle’s vertical displacement from its reference positioning
where the nonlinear spring is undeflected. Acting as an exogenous input to the
suspension system, w represents the road surface roughness profile as a function of
time. The following differential equation governs the vertical motion of the vehicle.

Mz̈ + C(ż − ẇ) +K1(z − w)z +K2(z − w)3 +Mg = u (5.24)

where g represents the gravitational acceleration and the suspension spring is
assumed to be stiffening (and therefore nonlinear). Suppose there is uncertainty
associated with our knowledge of the model parameters C,K1, K2 and only their
nominal values are known.

Selecting the displacement and velocity of the mass as the state variables (i.e.,
x1 = z, x2 = ż) puts the system in its standard adaptive feedback linearization
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Figure 5.2. A quarter-car suspension model.

form as follows.

ẋ1 = x2

ẋ2 = −g + θ∗1
Kn,1

M
(w − x1) + θ∗2

Kn,2

M
(w − x1)3 + θ∗3

Cn
M

(ẇ − x2) + 1
M
u

(5.25)

where ~θ∗ = [ K1
Kn,1

, K2
Kn,2

, C
Cn

]T and the subscript n is used to denote the nominal values
of the damping and stiffness parameters. The state vector ~x can be physically
measured for this mechanical system. Table 5.1 lists the quarter-car suspension
model’s true and nominal parameter values in this simulation study.

5.5.2 Reference output trajectory

The reference displacement trajectory for this problem, is the output of a parameter-
dependent reference model. This reference model replicates the the unforced
dynamics plant, but includes additional knobs enabling modification of the damping
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Table 5.1. Numerical values of the vehicle suspension model
Parameter Value Unit

M 1400/4 Kg
g 9.81 m/s2

C 5300 N.s/m
Cn 8000 N.s/m
K1 20000 N/m
Kn,1 10000 N/m
K2 10000 N/m3

Kn,2 8000 N/m3

and stiffness constants. Equation 5.26 gives a state-space representation of this
model.

ẋr,1 = xr,2

ẋr,2 = −g + θ1µ1(w − xr,1) + θ2µ2(w − xr,1)3 + θ3µ3(ẇ − xr,2)

yr(t, ~θ) = xr,1

(5.26)

where ~µ = 1/M [A1Kn,1, A2Kn,2, A3Cn]T and A1, A2, A3 are respectively the ampli-
fication coefficients for the linear spring, stiffening spring, and damping constants.

The vector ~s in the FBL control law of Eq. (5.12) requires computation of the
parameter sensitivities of the reference output trajectory and its time derivative.
Taking partial derivatives of Eq. (5.26) with respect to the uncertain parameter
vector yields:

~̇n1 = ~n2

~̇n2 = −θ1µ1~n1 − 3θ2µ2(w − xr,1)2~n1 − θ3µ3~n2 +


µ1(w − xr,1)
µ2(w − xr,1)3

µ3(ẇ − xr,2)

 (5.27)

with ~n1 = ∂yr
∂~θ
, ~n2 = ∂2yr

∂t∂~θ
. It is evident that the reference trajectory yr(t, ~θ) possesses

the smooth properties required for the stability analysis of Section 5.4.2.
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5.5.3 Selection of control parameters

The vehicle is assumed to have a constant speed of v = 50 mph (≈ 80.47 kph)
over a sinusoidal road profile with an amplitude and period equal to 0.1 ft (≈ 0.03
m) and 20 ft (≈ 6.1 m), respectively. This amounts to base excitations with a
frequency of roughly 23 rad/s affecting the chassis. Setting α1 = α2 = 4 leads to
H(s) = (s+ 2)2, making the “tracking poles" an order of magnitude slower than
the excitation frequency.

As seen from the estimation update law given in Eq. (5.14), the estimation
speed is proportional to the product of the P and Γ matrices. Additionally, from
the definition of the Lyapunov function in Eq. (5.18), the matrices P and Γ−1

determine the relative significance of the tracking error and parameter estimation
error. Therefore, ensuring that P and Γ−1 are of comparable sizes is important.
Moreover, a large size difference between the diagonal elements of Q makes the
condition number κ(P ) smaller, which puts similar emphasis on the elements of
the tracking error vector, ~e. We achieve all these objectives by selecting Q and Γ
as follows:

Q =
1 0

0 10

 ,Γ =


1 0 0
0 1000 0
0 0 1


Solving Eq. (5.11) for P gives κ(P ) ≈ 4, ‖P‖ ≈ 5. Thus, size of P is of the same
order of magnitude as ‖Γ−1‖ = 1. The second diagonal element of Γ is selected to
be much larger than the others, as it gets multiplied by e3

1 in the estimation update
law (5.14). This choice leads to a consistent rate of change for all three estimation
parameters.

5.5.4 Numerical simulation results

The closed-loop response of the suspension model is simulated for the control
parameters selected above. This simulation study uses the nominal values of the
uncertain plant parameters as the initial guess for the estimator. The plant model
itself is initiated from the equilibrium state corresponding to the weight of the
vehicle. The reference model is selected to have a 25% decrease in its linear spring
constant (i.e., A1 = 0.75) and a 100% increase in its stiffening spring constant (i.e.,
A2 = 2). The desired damping constant of the reference model is also double its
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original value (i.e., A3 = 2).
Figure 5.3 shows how the actuation force adapts as a function of time to steer

the car towards its target displacement trajectory. The plotted input trajectory is
normalized by the weight of the vehicle. Figure 5.4 depicts how this forcing function
affects the displacement trajectory and the estimate of the target trajectory and
make them approach the true target displacement trajectory. All the displacement
trajectories are plotted relative to the equilibrium vertical positioning of the car.
Finally, Fig. 5.5 demonstrates the evolution of the uncertain plant parameter
estimates with time. The estimated parameters are normalized by their true value.
Simultaneous scaling of Q and Γ by the same factor leaves the simulation results
almost unchanged. Keeping Q fixed and making Γ smaller, however, can remove the
overshoots in the parameter estimate trajectories at the cost of a longer convergence
time.

5.6 Conclusion
This chapter presents an adaptive tracking algorithm for a class of state feedback
linearizable systems with linear and constant parametric plant model uncertainties.
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Figure 5.3. The input actuation force driving the suspension system to its reference
model. The input force is normalized by the weight of the vehicle.
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Figure 5.4. Convergence of the displacement to its target trajectory. Black is the plant’s
output, whereas light and dark gray represent the estimate and true target displacement
trajectories, respectively.

The literature is abundant with adaptive feedback linearization strategies to design
tracking controller for many nonlinear systems with varying degrees of parametric
and unmodeled uncertainties. However, all the existing methods require that the
target trajectory to be deterministic and fully known a priori. In contrast, the
control algorithm developed in this chapter allows the plant’s target trajectory
to be dependent on the uncertain plant model parameters. Through a Lyapunov
stability analysis, we prove that the controller guarantees bounded and asymptotic
tracking of an estimate of the target trajectory. In the presence of persistence of
excitation for the parameter identification problem, we additionally prove bounded
and asymptotic convergence to the true target trajectory. The performance of
the controller is demonstrated using an active car suspension example. The real
plant model and the reference model share the same set of uncertain parameters
in this example. The chapter concludes with a numerical simulation of the closed-
loop system dynamics and explaining how different control parameters affect the
convergence properties of the algorithm.
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Figure 5.5. Convergence of (a) linear spring constant, (b) stiffening spring constant,
and (c) damping constant estimates to their true values.
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Chapter 6 |
An Adaptive Framework for the
Online Optimal Periodic Con-
trol of Feedback Linearizable Sys-
tems with Unknown Parameters1

6.1 Introduction
This chapter presents a framework for solving Optimal Periodic Control (OPC)
problems for feedback linearizable systems in the presence of unknown plant model
parameters. As discussed in Chapter 1, it is a well-established fact in the literature
that periodic operations of some dynamic systems can offer an improvement in
time-averaged performance over the best steady-state behavior [1–28].

There has also been a substantial amount of work in the literature to develop
offline [37–43,84] as well as online [44–46,85] solution strategies for OPC problems.
However, all these online solution algorithms assume perfect knowledge of the un-
derlying plant model and ensure robust tracking of the optimal solution. The online
OPC controller developed in Chapter 4 and the corresponding publications [86, 87]
allow for the appearance of unknown parameters in the plant model but rely on
the plant’s open-loop stability for implementation of the optimal solution. In other
words, to the best of our knowledge, the problem of developing online control

1The work of this chapter has been submitted to the American Control Conference 2018 and
is currently in review [107].
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policies capable of converging to the true optimal periodic trajectories of open-
loop unstable plants with parameter uncertainties remain relatively less-explored.
The goal of this chapter is to address this shortcoming of the existing solution
algorithms by employing the adaptive tracking algorithm developed in Chapter
5. More specifically, the work in this chapter assumes that the OPC solution is
available for different realizations of uncertain plant parameters, and utilizes an
adaptive feedback linearization technique to simultaneously estimate and track the
parameter-dependent solution of the online OPC problem.

The remainder of this chapter is organized as follows. Section 6.2 formulates the
online OPC problem, explains the basics of our adaptive framework, and outlines
the assumptions required for its successful implementation. The next section goes
over the design of the adaptive tracking algorithm central to this control framework
and discusses the guaranteed convergence of the closed-loop system to its optimal
periodic path (Section 6.3). Lastly, Section 6.4 employs the adaptive framework
of this chapter for solving the periodic drug delivery example and provides some
numerical results.

6.2 Problem Statement
This section presents the OPC problem, for which the online control framework of
this chapter is developed. The section begins with introducing an OPC problem
for general nonlinear plant models which include unknown parameters. Next, some
simplifying assumptions on the plant model and the OPC solution trajectories are
outlined. These assumptions are essential to the development of the closed-loop
control scheme of the next section.

The dynamic systems considered in this chapter are assumed to be time-invariant
and affine in their inputs. We specifically study optimization of the averaged cyclic
performance of plant models given by:

~̇z = F (~z, ~θ∗) +G(~z, ~θ∗)~u (6.1)

where ~z ∈ Rn,~u ∈ Rm, and constant ~θ∗ ∈ Rp are the state, input, and uncertain
parameter vectors, respectively. Additionally, F,G are assumed to be smooth vector
fields of proper dimensions with F (~0∗, ~θ∗) = ~0, G(~0,~0) 6= ~0, which makes the origin
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a parameter-independent equilibrium point of the dynamic system.
Given a smooth performance index functional L, an OPC problem for sys-

tem (6.1) is formulated as follows:

max~z,~u,T
{
J = 1

T

∫ T
0 L(~z, ~u) dt

}

subject to:
Hi(~z, ~u) ≤ 0, i = 1, · · · , q (Path Constraints)
~z(0) = ~z(T ) (Periodicity Constraint)

(6.2)

where T , the time period of the system, is to be optimized and Hi’s are smooth
constraints specifying the feasible region of the optimization problem.

The overarching goal of the adaptive control scheme of this chapter is to drive
the state trajectories of system (6.1) towards, and force them to track, the extremal
periodic path solving the OPC problem in Eq. (6.2). This optimal solution trajectory
is (i) not known a priori, as it depends on the true values of the uncertain plant
parameters, and (ii) not necessarily a globally stable orbit. We simplify the online
control problem by assuming that the solution to Eq. (6.2) is available offline for
any given realization of the unknown plant parameter vector ~θ∗. Therefore, the
specific objective of the adaptive framework of this chapter is the online discovery
and robust implementation of the true optimal solution trajectory among a family
of parameter-dependent solutions.

For simplicity, this chapter focuses on the case of m = 1 (i.e., single-input
dynamic systems), but generalization of the scheme to m ≥ 2 is possible and
achieved by following similar steps. The framework proposed in this chapter
requires further assumptions on both the plant dynamics and the parametric
solution of the OPC problem of (6.2), to guarantee stable tracking of its true
solution. The dynamic system (6.1) must meet the following set of assumptions:

Assumption 1. There exist a continuous and bijective transformation ~x = Tz(~z, ~θ∗)
together with a state feedback law, which converts the nonlinear dynamics of Eq. (6.1)
to a chain of integrators.

The differential geometry literature derives necessary and sufficient conditions
on the vector fields F,G in Eq. (6.1), for which this assumption is guaranteed [102].
Under these conditions, the nonlinear dynamics can be rendered linear through
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state feedback. Specifically, a change of variables induced by the transformation Tz
puts the dynamic system given in Eq. (6.2) into the following form:

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f(~x, ~θ∗) + g(~x, ~θ∗)u
(6.3)

where f, g are scalar-valued functions with f(~0, ~θ∗) = ~0, g(~0,~0) 6= 0. Consequently,
the origin remains unchanged under this mapping (i.e., ~0 = Tz(~0, ~θ∗)).

Assumption 2. The system dynamics are affine in the uncertain plant parameter
vector, i.e., F = F0 + Σp

i=1θ
∗
iFi and G = G0 + Σp

i=1θ
∗
iGi.

It follows from this assumption that the functions f, g are also affine in the
uncertain parameter vector and can be expressed as:

f(~x, ~θ∗) = f0(~x) + ~fT1 (~x)~θ∗

g(~x, ~θ∗) = g0(~x) + ~gT1 (~x)~θ∗
(6.4)

Assumption 3. The strict uncertainty matching condition is met, or equivalently
Fi, Gi ∈span{G0} for i = 1, · · · , p.

As explained in Chapter 5, satisfaction of this assumption ensures that the
feedback linearizing transformation Tz is deterministic and independent of the
unknown plant parameters. This assumption is important, as it allows for calculation
of the new state vector ~x from the original state vector ~z, when ~x in the system’s
linear representation may not be directly available for feedback.

In Eq. (6.1), let ~θ be a variable representing an estimate of the unknown plant
parameter vector ~θ∗. As explained before, this chapter assumes that the OPC
problem formulated in Eq. (2.1) can be solved offline as a function of ~θ. Our
adaptive control scheme additionally requires this parametric solution trajectory to
vary continuously with time and ~θ. More specifically, for a given ~θ, let x1,opc(t, ~θ)
represent the x1 trajectory corresponding to the solution of the OPC problem.
Then, the following assumption must be met.

Assumption 4. x1,opc(t, ~θ) is Cn in t and C1 in ~θ, where Ck is the class of k−times
continuously differentiable functions.
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Figure 6.1. An adaptive control framework for finding, and stable tracking, of solutions
of OPC problems including unknown plant parameters.

The above assumption may admittedly be somewhat restrictive. The solution
to many optimal control problems involves discrete jumps or may show bifurcation
behaviors with some parametric variations. In such cases, an approximate solution
can be used which meets the differentiability requirements of our adaptive control
scheme. In that case, our analysis guarantees convergence to an arbitrary, user-
selected, smooth approximation of the optimal periodic trajectory, rather than
convergence to the true optimal trajectory.

Section 6.3 show how Assumptions 1-4 allow us to accomplish the objective of
this chapter. The adaptive feedback linearization control algorithm from Chapter
5 is exploited to simultaneously estimate ~θ∗ and track its corresponding optimal
solution path computed offline. Figure 6.1 presents a schematic diagram of the
adaptive control framework and demonstrates the interactions of the different
elements of the closed-loop scheme.

6.3 Adaptive Tracking Algorithm
This section aims to develop an adaptive control scheme which (i) provides an
online estimate of the unknown plant parameter vector, and (ii) ensures asymptotic
and stable tracking of the OPC solution corresponding to this parameter estimate.

Assumption 3 of Section 6.2 allows one to use the original and the feedback
linearized state-space representations of the plant model interchangeably. This
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section selects y = x1 as the output of the linearized representation given in
Eq. (6.3). We next employ our previously-developed adaptive output tracking
algorithm from Chapter 5 and [99], with the parametric optimal solution trajectory
x1,opc designated as its reference trajectory yr.

For ease of access, a summary of the design procedure of the adaptive tracking
controller is given as follows. First, define the tracking error vector, ~e, as in the
following.

e1 = y − yr(t, ~θ)
...

en = y(n−1) − ∂n−1yr(t, ~θ)
∂tn−1

(6.5)

where y(n) denotes the nth time-derivative of the output signal, y. Recall that,
from Assumption 4, yr = x1,opc is Cn in time and the error vector of Eq. (6.5) is
well-defined.

Next, select the real numbers p1, · · · , pn such that the transfer function defined
by 1/H(s) with H(s) = sn+p1s

n−1 +· · ·+pn has all its poles in the left half complex
plane. Furthermore, denote by A the state matrix of 1/H(s) in its controllable
canonical state-space representation as shown below.

A =


0 1 · · · 0
... ... . . . ...
0 0 · · · 1
−pn −pn−1 · · · p1

 (6.6)

Additionally, choose an arbitrary positive definite matrix Q ∈ Rn×n, and solve for
the positive definite matrix P ∈ Rn×n satisfying the following Lyapunov equation.

ATP + PA = −Q (6.7)

Now, the parameter estimate vector is updated according to the following
equation.

~̇θ = Γ
(
~f1(~x) + ~g1(~x)u

)
[0 · · · 0 1]P~e (6.8)

where Γ ∈ Rp×p,Γ > 0 is the estimation gain matrix.
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Lastly, the following equation dictates the adaptive output tracking control
signal.

u =
(
g0(~x) + ~g1(~x)T~s

)−1

.(∂
nyr(t, ~θ)
∂tn

− pne1 − · · · − p1en − f0(~x)− ~f1(~x)T~s)
(6.9)

with ~s defined as:

~s(~e, ~θ) = ~θ − Γ
[
∂yr

∂~θ

∂2yr

∂t∂~θ
· · · ∂nyr

∂tn−1∂~θ

]
P~e (6.10)

Note that when the plant model is fully known (i.e., ~θ = ~θ∗) and the estimator is
turned off (i.e., Γ = 0), we obtain ~s = ~θ∗ and the tracking control signal simplifies
to the following expression:

uθ∗ =
(
g0(~x) + ~g1(~x)T~θ∗

)−1

.(∂
nyr(t, ~θ∗)
∂tn

− pne1 − · · · − p1en − f0(~x)− ~f1(~x)T~θ∗)
(6.11)

It can readily be seen that substituting this control law in the error dynamics
cancels out all the system’s nonlinearities and results in the following homogeneous
LTI dynamics.

~̇e = A~e (6.12)

Hence, the roots of the Laplace-domain polynomial H(s) are indeed the poles of
the tracking error dynamics, when our knowledge of the plant model is perfect.

The Lyapunov analysis of Section 5.4.2 shows that the tracking control law of
Eq. (6.9) and the estimation rule given by Eq. (6.8) collectively make the error
dynamics asymptotically stable. This implies convergence to an estimate of the
optimal periodic trajectory. Moreover, from the discussion in Section 5.4.3, when
the plant parameter also converges to its true value, the system approaches its true
optimal periodic path. This combined with the Lyapunov analysis above guarantees
global convergence of system (6.1) to its true optimal periodic path.
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6.4 Application to the Drug Delivery Problem
This section applies the proposed online adaptive framework to the drug delivery
problem. As a reminder, nicotine affects the body through elevating the heartbeat
rate: an effect which grows with the drug’s concentration, but eventually diminishes
as the body accumulates a tolerance to nicotine over time. The rate of nicotine
absorption in the blood is much faster than the build-up of this tolerance effect.
Because of this time-scale difference, there exist periodic administration trajectories
which on average achieve an efficacy level much higher than the best time-invariant
administration trajectory [56].

Our variational calculus analysis in Chapter 3 showed that the optimal solution
trajectory has a bang-singular-bang structure. Relying on the intrinsic open-loop
stability of the model, Chapter 4 proposed an adaptive controller for implementing
the optimal solution in the presence of parametric uncertainties in the plant model.
Chapter 4 also employed Floquet analysis to show the local closed-loop stability
of the true periodic solution trajectory with this controller. The control scheme
presented in this chapter offers another online method for implementing the solution
of this benchmark OPC problem in the presence of unknown plant parameters.
This implementation method has two main advantages over the existing solutions in
the literature: (i) it does not depend on the open-loop stability of the drug delivery
model; (ii) convergence to the optimal solution is global, assuming persistence of
excitation.

6.4.1 Plant Model and Optimization Objective

This Section uses a slightly modified formulation of the drug concentration dynamics
from [56]:

ċ = kc(u− c)

ȧ = ka(c− a)
(6.13)

where the new parameter kc in this model determines the elimination rate of the
agonist concentration with kc = 1 � ka = 0.1. The dimensionless drug efficacy
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metric capturing the drug’s interaction with the body is again given by:

E(c, a) = c

(1 + c)(1 + a) (6.14)

and the smoothed indicator function for the desired efficacy interval [E1, E2] is:

I(E) = (E/E1)
(1 + (E/E1)10)(1 + (E/E2)20) (6.15)

Similar to the problem statement of Chapter 3 and Chapter 4, the optimal
periodic treatment regimen is the solution to the following optimal control problem.

max
a,c,u,T

{
J = 1

T

∫ T
0 I(t) dt

}

subject to:
a(0) = a(T ), c(0) = c(T ) (Periodicity Constraints)
0 ≤ u ≤ 10 (Input Constraints)
a(t) ≥ 0, c(t) ≥ 0 ∀t ∈ [0, T ] (State Constraints)

(6.16)

and the drug delivery dynamics given in Eq. (6.13).
To showcase the performance of our adaptive optimal control framework for this

problem, suppose that the antagonist elimination rate, kc, is unknown. Note that an
unknown ka violates the uncertainty matching condition and therefore our adaptive
tracking algorithm would require the direct measurement of ~x which may not be
feasible. We demand to find and track the optimal solution of Eq. (6.16), where only
an initial estimate of the plant model parameter kc is available. Choosing x1 = a,
x2 = ȧ = ka(c− a) transforms Eq. (6.13) into the standard feedback linearization
form as follows:

ẋ1 = x2

ẋ2 = −kax2 + θ∗(−kax1 − x2) + θ∗kau

y = x1

(6.17)

with θ∗ = kc. Note that ~x can be calculated from the measurement of the agonist
and antagonist concentrations. Thus, Assumptions 1-3 are all met and the adaptive
scheme of this chapter is applicable. Although the drug delivery model has already
linear dynamics, the adaptive tracking controller of this chapter can be used for any

101



feedback linearizable system. An application of this controller in a model reference
adaptive control scheme for a nonlinear car suspension system can be found in [99].

6.4.2 Parametric Optimal Solutions

As shown in Chapter 3, the optimal drug injection rate solving Eq. (6.13) is
only piecewise-continuous and has a bang-singular-bang structure [84]. Therefore,
Assumption 4 is not met for the true optimal periodic solution path and we instead
use an smooth approximation of the optimal solution trajectory similar to the
analysis of Chapter 4.

The smoothed approximation of the solution to the optimal drug delivery
problem is obtained as follows. First, introduce the change of variable t = Tτ and
incorporate the input constraints using shifted log-barrier penalty functions. This
yields an augmented OPC objective function given by:

J̃ =
∫ 1

0
{I + ρ1 log(ε1 + umax − u) + ρ2 log(ε2 + u)} dτ (6.18)

The state nonnegativity constraints are automatically satisfied when the input
bounds are respected [84]. Next, approximate the periodic x1 trajectory with its
truncated Fourier expansion as follows.

x1,opc(τ, ~θ) ≈ α0(~θ)

+ ΣN
k=1

(
αk(~θ) cos(ωkτ) + βk(~θ) sin(ωkτ)

) (6.19)

where ωk = 2kπ, k = 1, · · · , N . Lastly, use Eq. (6.17) to express the original state
and input trajectories in terms of x1 as follows:

a = x1

c = T

ka
x′1 + x1

u = T 2x′′1 + T (ka + θ)x′1 + θkax1

kaθ

(6.20)

where x′1 and x′′1 represent first and second derivatives with respect to the new time
variable τ . It is clear from Eq. (6.19) and (6.20) that all the system trajectories are
made T−periodic by construction.
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The infinite dimensional OPC problem of Eq. (6.13) has reduced to a 2× (N+1)
dimensional NLP problem in terms of the coefficients and time period of a truncated
Fourier series for the antagonist concentration trajectory. This NLP problem is
solved for a discrete mesh of the interval spanning the likely realizations of the
uncertain plant parameter vector. This bank of optimal solutions constitutes the
desired parameter-dependent target trajectory, yr(t, θ), for our adaptive tracking
algorithm.

6.4.3 Adaptation and Control Laws

From Section 6.3, the tracking error vector is defined as:

e1 = a− yr

e2 = ka(c− a)− ∂yr(t, θ)
∂t

(6.21)

The parameter update rule then becomes:

θ̇ = Γka(u− c)[0 1]P~e (6.22)

and the tracking control law is written as follows:

u =
∂2yr
∂t2
− p2e1 − p1e2 + k2

a(c− a)
ka(θ − Γ[∂yr

∂θ
∂2yr
∂t∂θ

]P~e)
+ c (6.23)

Assuming that the agonist and antagonist concentrations are available for measure-
ment, Eq. (6.22) and (6.23) together must guarantee convergence of the tracking
error dynamics.

6.4.4 Numerical Results and Discussions

Table 6.1 lists all the parameter values used in this study. Similar to the numerical
study of Chapter 3 and 4, the model parameters are all adopted from [56]. The
simulation is performed with zero initial states, assuming that the body has not
been exposed to the drug for a sufficiently long time period. The initial guess of
the uncertain parameter value is set to be %50 larger than its true value.

All the parameters of the shifted log-barrier penalty functions are set equal to
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0.01. With these soft penalty terms, the approximate solution to the OPC problem
of Eq. (6.16) yields an objective value of JOPC = 0.33. This is fairly close to the
true theoretical optimal objective value of JOPC = 0.36 obtained in Chapter 3.
Figure 6.2a and 6.2b depict variations of select optimal parameters of Eq. (6.19) as
a function of the uncertain plant parameter, where the first four harmonics of the
Fourier expansion is used (i.e., N = 4). The optimization was carried out using the
MATLAB’s interface of the NLP solver SNOPT [100,101], for θ values spanning
from 0.5kc to 2kc with a step size equal to %5 of kc. The optimal values are marked
by circles, whereas the solid lines represent the best 5th order polynomials fits.
These smooth polynomials are then used to construct the target optimal antagonist
trajectory for the simulation study.

The selected p1, p2 values from Table 6.1 places both the poles of tracking
error dynamics at −0.5. Faster poles can also be used at the expense of more
aggressive control behavior. From the discussion in Chapter 5, the matrices P
and Γ−1 determine the relative importance of the tracking and estimation errors,
respectively. Also, the estimation convergence speed is proportional to the product
of norms of P and Γ. Selecting Q as the 2-by-2 identity matrix, we solve Eq. (6.7)
for P . The choice of Γ = 2 puts the norms of P and Γ−1 within the same order of
magnitude and achieves fast convergence.

Table 6.1. Numerical parameter values for the drug delivery example
Parameter Value

kc 1
ka 0.1
E1 0.3
E2 0.6
umax 10
~x(0) [0, 0]T
θ(0) 1.5kc
ε1, ε2 0.01
ρ1, ρ2 0.01
p1 1
p2 0.25
Q I2

Γ 2
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Figure 6.2. Continuous dependence of select reference signal’s parameters on the
uncertain model parameter, ka.
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Figure 6.3. Convergence of the uncertain plant parameter estimates to its true value.

Figure 6.3 shows that the unknown parameter estimate quickly converges to its
true value. Figure 6.4 depicts time variations of the control input and adaptation
of its shape as the unknown parameter estimate changes. The drug’s injection rate
approaches its final periodic trajectory after roughly two cycles. The measured
output antagonist concentration trajectory as well as its estimate and true target
optimal trajectories are demonstrated in Fig. 6.5. Despite the %50 error in the
initial guess for the uncertain parameter, it can be seen that the estimate and true
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Figure 6.4. The drug infusion rate steering the system towards its maximal efficacy
trajectory in the presence of parametric modeling uncertainties.
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Figure 6.5. Convergence of antagonist concentration to its true optimal trajectory.
Solid blue is the measured agonist concentration, whereas solid red and dashed black
respectively represent the estimate and true efficacy maximizing trajectories.

reference optimal trajectories start off very close to each other. With the unknown
plant parameter estimate quickly converging, the estimate optimal trajectory soon
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Figure 6.6. Convergence of the drug efficacy to its maximal periodic trajectory. The
gray shaded area represents the desired efficacy range.

approaches its true counterpart. This drives the measured antagonist concentration
to its optimal periodic destination after roughly two cycles. Finally, Fig. 6.6 depicts
convergence of the drug’s efficacy to its optimal periodic path. As seen from this
figure, on the optimal periodic path, the drug’s efficacy remains in its desired
effective range for almost a third of each cycle. The average drug efficacy in the first
cycle seems to be higher than its optimal value. Nevertheless, this acute response
to the drug is caused by the initial absence of the antagonist and the behavior is
only temporary and not sustainable over time.

6.5 Conclusions
This chapter proposes an adaptive control framework designed for online solution
of a large class of OPC problems. The underlying plant models in these OPC
problems are assumed to have feedback linearizable dynamics, which potentially
include some unknown parameters. The exact shape of the optimal periodic
solution of the problem is typically dependent on those unknown plant parameter
and therefore the target optimal periodic path may not be known a priori. A
common practice in optimal control is to find the solution to the nominal formulation
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of an optimal control problem and ensure its robust tracking for the real plant
model. This technique, however, is often not justified in periodic operation regimes.
As insignificant as the loss associated with implementation of the nominal optimal
solution might be, the repetition of the cycle could lead to a substantial accrual
of performance deterioration over time. This creates a critical need for an online
framework capable of discovering the true optimal periodic path of the system and
ensuring its stable tracking in the presence of unknown plant parameters.

The adaptive optimal control algorithm of this chapter addresses this need by
(i) assuming that the optimal solution trajectory is available as a function of the
uncertain plant parameters and (ii) developing an adaptive feedback-linearizing
control algorithm that simultaneously estimates and tracks the optimal solution
trajectory. Through a Lyapunov analysis, we show that the tracking error signal is
always bounded and asymptotically approaches zero. Furthermore, a persistently
exciting estimation regressor signal guarantees global and asymptotic convergence
of the system’s trajectories to their true optimal periodic paths. The chapter
concludes with numerically showcasing the performance of the proposed control
framework in a periodic drug delivery application problem.
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Chapter 7 |
Conclusions

This dissertation presents a framework to achieve periodic optimality for dynamic
systems in the presence of unknown plant models. It is well established in the
literature that periodic operations can improve the average performance beyond
the standard steady-state design paradigm in many engineering systems. However,
the adoption of optimal control methods in practice has been hindered due to the
challenges associated with the online implementation of these algorithms.

The realization of a robust online periodic controller is tied to addressing the
following sequence of questions in the order they are posed: (i) How one can
determine if an engineering application can benefit from periodic operation? (ii)
What is the structure of the optimal periodic controller for a given application
problem and can one use this structure for efficient computation of the optimal
periodic trajectories? (iii) How does one implement these optimal periodic solutions
in a stable manner in the presence of plant parameters/model uncertainties, when
these optimal solutions are not known a priori because if these uncertainties?

This dissertation addresses the above questions in the context of different
application problems from the literature. The end results, based on the answers
to the above questions, is an adaptive optimal periodic controller which accounts
for the existence of unknown plant parameters and offers guaranteed stability
properties. The work in this dissertation is composed of 7 chapters each taking
a further step towards the design of this above online periodic controller. More
specifically, the main body of this dissertation is organized as follows.

• Chapter 1 presents the motivation for the work of this dissertation and the
state-of-art in the OPC literature. The benefits and the shortcoming of the

109



existing bodies of work in the literature are discussed followed by a list of
contributions of this dissertation to address those limitations.

• Chapter 2 introduces a test from the OPC literature in response to the first
research question posed above. Through this test one can determine whether
periodic operations can outperform the best steady-state behavior. The
application of this tool is demonstrated on a flapping flight model of the fruit
fly.

• Chapter 3 addresses the second research question by incorporating variational
calculus methods to discover the structure of the solution trajectory of a
periodic drug delivery application. Two different discretization approaches
based on the discovered structure are presented and shown to reduce the
computational requirements of solving the offline OPC problem.

• Chapter 4 takes the first step towards answering the third research question by
developing an online adaptive OPC controller for the drug delivery application
in the presence of unknown plant parameters. This controller is dependent
on the innate open-loop stability of the drug absorption dynamics. The local
convergence of the closed-loop scheme is shown using Floquet analysis.

• Chapter 5 designs a novel adaptive tracking algorithm grounded in the prin-
ciples of feedback linearization theory as an attempt to relax the stability
requirement of the controller developed in Chapter 4. A Lyapunov stability
analysis establishes global convergence to any smooth target trajectory depen-
dent on unknown plant parameters. A numerical active vehicle suspension
example is employed to showcase the performance of the algorithm.

• Chapter 6 finally presents the online robust OPC framework of this disserta-
tion with the adaptive tracking controller of Chapter 5 incorporated at its
heart. The performance of the closed-loop scheme is demonstrated through a
numerical simulation of the benchmark drug delivery application.
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Appendix A|
The Π matrix as a function of
the flight kinematics and aero-
dynamic coefficients

In this appendix, the Π(ω, λ) matrix introduced in Section 2.4.3 is expressed as an
explicit function of the flight kinematics and the model’s lift and power coefficients.

Table A.1 provides a summary of the components of the P = Hxx and Q = hxu

matrices in terms of the flight model’s variables and parameters, where the pair
of subindices ij denotes the element sitting in ith row and jth column of the

Table A.1. Components of P, Q matrices used in the definition of the Π matrix
Matrix Entry Expression

P11 2(1− γ)Kt sin(2αoss)− 6γ(Tt1 − Tt2 cos(2αoss))φ̇oss
P12, P21 (1− γ)(Ka1 cos(αoss)2 +Kr cos(αoss))− γ(2Tr sin(αoss) + Ta1 sin(2αoss))φ̇oss
P13, P31 4(1− γ)Kt cos(2αoss)φ̇oss − 6γTt2 sin(αoss)φ̇2

oss

P22 −2γTa4 cos(αoss)φ̇oss
P23, P32 −(1− γ)(sin(2αoss) +Kr sin(αoss))φ̇oss − γ(Ta1 cos(2αoss) + Tr cos(αoss))φ̇2

oss

P33 −4(1− γ)Kt sin(2αoss)φ̇2
oss − 4γ cos(2αoss))φ̇3

oss

Q11 −γTa1 sin(αoss)2

Q12 −γTa2 sin(αoss)
Q21 0
Q22 0
Q31 (1− γ)Ka1 cos(2αoss)− γTa1 sin(2αoss)φ̇oss
Q32 −(1− γ)Ka2 sin(αoss)− γTa2 cos(αoss)φ̇oss
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corresponding matrix.
Also, as mentioned in Section 4.2.2, the R = Huu matrix is zero due to the

linearity of the lift and force expressions in φ̈, α̈. The Π matrix is then calculated
by the substitution of P,Q,R, and results in the expression given in Eq. (2.36).

112



Appendix B|
Existence of A Bijective Map
between the Periodic Input and
State Trajectories of an LTI Sys-
tem

This appendix proves the statements made in Section 3.3 regarding the existence
of a bijective map between the periodic input and state trajectories of a given LTI
system. The proofs are presented in the order in which the statements are given as
follows.

Proof of Statement 1: Let xu be a τ−periodic orbit induced by the T−periodic
input u. We first show that τ = nT for some n ∈ N.

xu(t) is a solution to Eq. (3.6) and therefore

ẋu(t) = [A]xu(t) + [B]u(t) ∀t (B.1)

Since xu is τ−periodic one can also show that

ẋu(t) = [A]xu(t) + [B]u(t+ τ) ∀t (B.2)

Subcontracting Eq. (B.2) from Eq. (B.1), one obtains [B](u(t+ τ)− u(t)) = 0 ∀t.
This in turn implies that τ is also a period of u, as the columns of [B] are assumed
to be linearly independent. Therefore, τ = nT for some n ∈ N.

Let us by contradiction assume n ≥ 2. Integrate Eq. (B.1) from t = s+ T to
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s+ nT and use the periodicity property of u to obtain

xu(s+ nT ) =
∫ s+nT

s+T
e[A](s+nT−t)[B]u(t) dt

+ e[A](n−1)Txu(s+ T )

=
n−2∑
k=0

e[A]kT
(∫ s+T

s
e[A](s+T−t)[B]u(t) dt

)

+ e[A](n−1)Txu(s+ T )

(B.3)

Also, integrating Eq. (B.1) from t = s to s+ T gives

xu(s+ T ) =
∫ s+T

s
e[A](s+T−t)[B]u(t) dt+ e[A]Txu(s) (B.4)

Combining Eq. (B.3) and Eq. (B.4) with the fact that xu(s+ nT ) = xu(s+ T )
results in the following equality.

(
n−1∑
k=0

e[A]kT
)

(xu(s+ T )− xu(s)) = 0 (B.5)

Denote by [J] the Jordan form of matrix [A] and define the similarity transformation
matrix [P ] such that [A] = [P ][J ]P−1. Then,

det

(
n−1∑
k=0

e[A]kT
)

= det

(
[P ]

(
n−1∑
k=0

e[J ]kT
)

[P ]−1
)

=
∏
λ∈Λ

(
n−1∑
k=0

ekλT
) (B.6)

Since λ /∈ R, one has eλT 6= 1. Hence, ∑n−1
k=0 e

kλT = 1−enλT
1−eλT 6= 0. Therefore,∑n−1

k=0 e
[A]kT is always a nonsingular matrix and it follows form Eq. (B.5) that

xu(s+ T ) = xu(s),∀s ∈ R (B.7)

This is contradictory with the assumption of n ≥ 2 and hence τ = T .
Proof of Statement 2: Suppose there exists a unique periodic state trajectory,

xu, corresponding to the periodic input trajectory, u. Set s in Eq. (B.4) equal to
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zero and use the result of Statement 1 to obtain the following.

[E]xu(0) =
∫ T

0
e[A](T−t)[B]u(t) dt (B.8)

where [E] = [I]− e[A]T , and [I] is the identity matrix of proper dimension. Since xu
is assumed to be unique, the solution of Eq. (B.8) must be a singleton, implying
that [E] is an invertible matrix.

Conversely, assume [E] is invertible. Then, xu(0) is uniquely determined from
Eq. (B.8) for any given u. The knowledge of xu(0) and u together, leads to the
unique determination of a periodic state trajectory, xu.

Define R = {λ : λ = 2kπi
T
, k ∈ Z}. Now, what is left to show is that the invert-

ibility of [E] is equivalent to saying that the set of eigenvalues of [A] and R are
two disjoint sets. For that, we need to see what the invertibility of [E] imposes on
the configuration of the eigenvalues of [A] in the complex plane. Transforming [A]
into its Jordan form, one obtains:

det([E]) = det
(
[P ]

(
[I]− e[J ]T

)
[P ]−1

)
= det

(
[I]− e[J ]T

) (B.9)

Thus, [E] is singular if and only if [A] has an eigenvalue λ such that eλT = 1.
Finally, it is readily seen that the set R is nothing but the collection of all the roots
of the equation eλT = 1 in the complex plane.

Proof of Statement 3: The input matrix, [B], is assumed to be full column
rank. Therefore, the Eq. (B.1) can be uniquely solved for u and Eq. (3.8) is
obtained.
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