
The Pennsylvania State University

The Graduate School

College of Engineering

A LOW POWER AND AREA EFFICIENT CMOS IMPLEMENTATION OF

MULTILAYER FEEDFORWARD ARTIFICIAL NEURAL NETWORK

A Thesis in

Electrical Engineering

by

Mayuresh P Patki

 2017 Mayuresh P Patki

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2017

The thesis of Mayuresh P Patki was reviewed and approved* by the following:

Seth Wolpert

Associate Professor of Electrical Engineering

Thesis Advisor

Scott Von Tonningen

Senior Lecturer in Electrical Engineering

Wolfram Bettermann

Lecturer in Physics

Mohammed Reza Tofighi

Professor of Electrical Engineering

Graduate Program Coordinator

 *Signatures are on file in the Graduate School

iii

ABSTRACT

With several advancements in medical science being carried out over the past few

decades, there has been a constant need to process information artificially, the way it is

processed inside the human body. This inherent attribute of Artificial Intelligence (AI) is

achieved in practice using Artificial Neural Networks (ANNs). ANNs have been around

since 1943 and used since then for artificial information processing and neural computation.

This thesis focuses on the hardware implementation of an artificial neural network using

CMOS technology. The design is carried out in the analog domain to exploit certain

advantages of analog integrated circuit design, such as, high efficiency, in terms of area and

power, and ease of computation. The neural architecture designed is a multilayer feedforward

neural network to solve the XOR classification problem, which serves as a benchmark for

several complex classification problems that are not linearly separable. Each component

circuit of the network, such as the synapse circuit that performs the multiplication operation

and the non-linear activation function circuit that acts as squashing function, is designed

using MOSFETs operating in the sub-threshold (weak inversion) region.

The schematic designs are carried out using Cadence OrCAD Capture version 16.6 EDA

software and simulated using PSPICE version 16.6, an in-built simulation tool within OrCAD

capture. The layout of the individual components and the overall schematic is also done using

Electric VLSI Design software version 9.06 on a 200 nm design scale. A consistency check is

carried out to ensure equivalency of layout with the schematic, for a potential scope towards

chip fabrication using Metal Oxide Semiconductor Implementation Service (MOSIS)

foundry. The layout of the proposed neural architecture is found to occupy an area of 0.065

𝑚𝑚2, indicating design compactness to a moderate level.

iv

TABLE OF CONTENTS

List of Figures ... vi

List of Tables ... ix

Acknowledgements ... x

Chapter 1 Introduction ... 1

 1.1 Research Motivation .. 1

 1.2 The need for VLSI Implementation... 2

 1.3 Analog versus Digital .. 3

 1.4 Thesis Structure ... 4

Chapter 2 Literature Review ... 5

 2.1 Background .. 5

 2.2 History of Neural Networks ... 7

Chapter 3 Neural Networks Theory .. 10

 3.1 Neural Computation and Machine Learning ... 10

 3.1.1 Computation in Biological and Artifical Domain .. 10

 3.1.2 Basics of Machine Learning .. 14

 3.1.2.1 Supervised Learning ... 15

 3.1.2.2 Unsupervised Learning ... 15

 3.2 Electronic Circuits for Neural Networks ... 16

 3.2.1 Synapse Circuit .. 17

 3.2.2 Activation Function Circuit ... 19

 3.2.3 Neuron Circuit ... 21

Chapter 4 Weight Storage and Network Training ... 22

 4.1 Weight Storage Mechanisms ... 22

 4.1.1 Floating Gate Synaptic Storage ... 22

 4.1.2 Hybrid SRAM based Storage .. 26

 4.1.3 Memristor based Storage ... 29

 4.2 Training Algorithms in Neural Networks .. 32

 4.2.1 The Backpropagation Algorithm ... 33

 4.2.2 The Levenberg-Marquadt Algorithm... 35

v

Chapter 5 Design Implementation ... 38

 5.1 Synapse Circuit ... 39

 5.2 Activation Function Circuit .. 42

 5.3 Single Layer Neuron Circuit .. 44

 5.4 Multilayer Feedforward Neural Network Implementation 47

 5.4.1 Example Application: Solving the XOR problem .. 48

Chapter 6 Results and Discussions .. 56

 6.1 Simulation Results of Synapse and Activation Function Circuit 56

 6.1.1 Synapse Circuit Simulation ... 57

 6.1.2 Activation Function Circuit Simulation .. 59

 6.2 Results for Instantaneous Power Dissipation .. 61

 6.2.1 Synapse Element ... 62

 6.2.2 Activation Function Element ... 64

 6.2.3 Single Layer Neuron Circuit ... 66

 6.2.4 Multilayer Neuron Circuit ... 67

 6.3 Results from XOR network training .. 68

Chapter 7 Conclusion and Future Research Work .. 71

 7.1 Conclusion .. 71

 7.2 Future Research Work .. 72

Appendix ... 73

A. Circuit Netlists .. 73

B. MATLAB Code for XOR Classification Problem.. 82

C. Multilayer Neural Network Design using Cadence OrCAD for XOR Classification 86

References ... 89

vi

LIST OF FIGURES

Figure 2-1 Basic Structure of a Feedforward Neural Network ... 6

Figure 2-2 Basic McCulloch and Pitts Neuron Model .. 7

Figure 2-3 Single Layer Perceptron Model ... 8

Figure 3-1 (a) Basic Structure of a Biological Nerve Cell .. 11

Figure 3-1 (b) Plot of membrane potential vs time and action potential (spikes) 11

Figure 3-2 A two-layer artificial neural network depicting input and output layers

 and various mathematical operations carried out in the network…................ 13

Figure 3-3 CMOS Gilbert Multiplier Cell. .. 18

Figure 3-4 Hyperbolic Tangent Activation Function with Regions of Operation 19

Figure 3-5 Implementation of Activation Function using CMOS Differential Amplifier. 20

Figure 4-1 Basic Structure of a Floating Gate pFET Transistor .. 23

Figure 4-2 Basic Structure of a Floating Gate (FG) transistor with waveforms for input

 gate voltage, weight updation and drain current……………………………...24

Figure 4-3 (a) A 6T SRAM Cell.. 27

Figure 4-3 (b) A 8T SRAM Cell ... 27

Figure 4-4 Synaptic Weight Storage using a 6T SRAM .. 28

Figure 4-5 Memristor Bridge Circuit Configuration ... 30

Figure 4-6 Memristor synaptic circuit showing the configuration for converting

output voltage of memristor bridge into an output current using a differential

amplifier .. 31

Figure 5-1 Design of the Synapse Circuit using Cadence OrCAD...................................... 39

Figure 5-2 (a) Schematic of Synapse Circuit... 40

Figure 5-2 (b) Layout of Synapse Circuit .. 41

Figure 5-3 Network Consistency Check Result for the Synapse circuit 41

Figure 5-4 CMOS Differential Amplifier used as a non-linear Activation circuit deigned

using Cadence OrCAD .. 42

vii

Figure 5-5 (a) Schematic of the Activation circuit .. 43

Figure 5-5 (b) Layout of the Activation circuit ... 43

Figure 5-6 Network Consistency Check Result for the Activation Function circuit 44

Figure 5-7 Block Diagram of a Single Layer Neuron Cell .. 44

Figure 5-8 Circuit Design of Single Layer Neuron Circuit using Cadence OrCAD 45

Figure 5-9 (a) Schematic of Single Layer Neuron .. 46

Figure 5-9 (b) Layout of Single Layer Neuron ... 46

Figure 5-10 Network Consistency Check Result for Single Layer Neuron Circuit 47

Figure 5-11 Multilayer Neural Structure with One Hidden Layer 49

Figure 5-12 Plot of input data points for XOR classification .. 50

Figure 5-13 One possible solution of XOR classification .. 51

Figure 5-14 Block Diagram of the XOR Multilayer Feedforward Network 52

Figure 5-15 Schematic of the Proposed Multilayer Network using

 Cadence OrCAD .. 53

Figure 5-16 (a) Schematic of Multilayer Neural Network

 to solve the XOR problem .. 54

Figure 5-16 (b) Layout of Multilayer Neural Network

 to solve the XOR problem .. 54

Figure 5-17 Network Consistency Check Result for the

 Multilayer Neural Network.. 55

Figure 6-1 Simulation Profile of the Synapse Circuit using Cadence OrCAD 57

Figure 6-2 Simulation Result of the Synapse Circuit using PSpice A/D 58

Figure 6-3 Simulation Profile of the Activation Function Circuit using Cadence

OrCAD .. 59

Figure 6-4 DC Sweep Analysis Result of the Activation Function Circuit using PSpice

A/D ... 60

Figure 6-5 Transient Analysis Result of the Activation Function Circuit using PSpice

A/D ... 61

viii

Figure 6-6 Instantaneous Power Dissipation Waveforms from

 Synapse Element using PSpice .. 62-63

Figure 6-7 Instantaneous Power Dissipation Result from

 Activation Function Element using PSpice .. 65

Figure 6-8 Instantaneous Power Dissipation Result from Single Layer

 Neuron Circuit using PSpice .. 66

Figure 6-9 Instantaneous Power Dissipation Result from

 Multilayer Neuron Circuit using PSpice ... 67

Figure 6-10 Result of XOR training based on test case from table 6-4 69

Figure 6-11 Plot of Network Error versus Number of Epochs .. 70

ix

LIST OF TABLES

Table 5-1 (a) Truth Table of XOR in Unipolar ... 50

Table 5-1 (b) Truth Table of XOR in Bipolar ... 50

Table 6-1 Summarized Results of Power Dissipation from Synapse Circuit 64

Table 6-2 Summarized Results of Power Dissipation from Activation

 Function Circuit ... 65

Table 6-3 Summarized Results of Power Dissipation from Multilayer

 Neuron Circuit ... 68

Table 6-4 Test Case Parameters for XOR Classification ... 68

Table 6-5 Network Output vs Target Output for the XOR Problem 69

x

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Seth Wolpert, my thesis advisor,

for his continued support and guidance throughout the learning process of this thesis. His

constant encouragement and timely mentoring helped me in conducting research and writing

the thesis. Dr. Wolpert was available, whenever I required his advice in moving forward with

the research work and helped me clear any doubts I had, during the process.

I would also like to thank my thesis committee members, Dr. Scott von Tonningen and Dr.

Wolfram Bettermann for their continued encouragement, insightful comments and timely

feedback, while reviewing my research work. Their valuable suggestions helped me a long

way in improving the content of my thesis, making it more informative.

1

 Chapter 1

 Introduction

1.1 Research Motivation

 Much time and effort is being given to the research and implementation of artificial

neural networks for reliable information processing and generating accurate results. The

primary difficulty faced by designers in typical neural network implementations is striking a

good balance between silicon area overhead, power consumption and speed of operation,

before going into the actual fabrication of a neural network chip. The main issue while

implementing any neural architecture is that the design can either be area efficient or power

efficient or speed efficient, but not all three at the same time [1]. The operating speed is

decided by the number of components on a chip and is not much of a problem for designs

having moderate level of complexity. However, area occupancy and power consumption are

the major deciding factors that need to be taken care of in any Integrated Circuit (IC) design,

irrespective of the associated complexity level.

Analog implementations of artificial neural networks are known to have higher efficiency in

terms of power consumption and with some careful design techniques, the implementations

can be made area efficient as well. The motivation for the research done in this thesis stems

from the requirement to have a multilayer neural network implementation that is area

efficient and has low power dissipation, at both, the individual component level and the

overall design level.

2

1.2 The need for VLSI Implementation

 Almost all integrated circuits in use today are fabricated using Very Large Scale

Integration (VLSI) technology. VLSI is presently the technology of choice owing to several

advantages it offers, such as, low cost, high speed implementation and minimization in terms

of chip area and power consumption. In almost all applications today, there is a constant

requirement to have multi-objective optimization that implies achieving the desired

functionality with a minimum hardware resource utilization [2]. Implementation of neural

networks in hardware using VLSI technology faces a challenge, given that the design

constraints for biological systems implemented in silicon media are not the same as those in

biological medium. So, it becomes necessary that the overall architectural framework be

researched upon before forging ahead and designing electronic structures for individual

neural network components. Moreover, it is both practical and feasible to have silicon media

impose restrictions on the learning capabilities of neural networks for having more effective

computations.

Traditional neural network systems have separate resource allocations for memory and

processors used for computing information. VLSI implementation allows one to have a local

memory for storing the operating data, resulting in a more compact design. This phenomenon

is also known as ‘Computation in Memory’ [3]. Parallel computation using neural networks

has received much attention since past several years, owing to the multiple benefits it has to

offer, like simultaneous weight adaptions and more tolerance in terms of individual

component failure. Another cited benefit is the algorithmic speed up obtained through weight

vector multiplication operations performed in parallel [3]. VLSI implementation takes

advantage of this inherent parallelism and leads to a more efficient design.

3

1.3 Analog versus Digital

 Considerable amount of research is being carried out in neural network implementations

using analog and digital array processors on the same chip in order to exploit the benefits of

parallel computing. There are, however, certain advantages and disadvantages involved with

such implementations that need to be taken into account, before deciding on the technology

to go for. The choice is based mainly on the application where the neural network will

potentially be employed. For high end applications where a lot of hardware designing is

involved, programmability and flexibility of the implemented design are of a major concern.

In such cases, digital implementation is preferred, since it provides good amount of flexibility

when it comes to making minor changes in the existing design. Such changes can be easily

accomplished through software modifications [3]. However, there are certain problems

encountered with digital VLSI implementation of neural networks in applications involving

moderate designs. Digital weight storage involves the use of buses that complicate the

existing hardware. Multiplication and summation operations in digital domain require several

transistors on board. Moreover, the realization of a non-linear activation function is difficult

using digital logic. Finally, when it comes to interfacing digital logic with existing analog

circuitry, Digital to Analog Converters (DACs) are required. This requires extra hardware

that could otherwise be devoted to computation. So, for moderate designs, analog

implementation is by far, the most preferred choice.

Analog circuits are more compact in terms of chip area and circuit complexity. Analog

multiplication, summation and non-linear function implementation can be realized using only

a handful of transistors [3]. Since analog outputs are in terms of either voltage or current,

buses are not required for data storage. With least amount of area, analog circuits perform

efficient computations at minimal power consumption and higher speed of operation. In the

4

proposed design, we go for an ‘All Analog’ implementation with a view to achieve

optimization in terms of area and power, and also since the design is of a moderate scaling.

1.4 Thesis Structure

 The thesis structure has been divided into the following chapters. Chapter 2 outlines the

literature review done in the field of neural computation. Chapter 3 provides a brief

comparison of how neural networks function, both in biological and artificial domain and

details the various electronic circuits that are required for hardware implementation of neural

networks. Chapter 4 details the different mechanisms for synaptic weight storage and the

commonly used algorithms for neural network training. Chapter 5 shows the implementation

of the proposed design in a step by step manner. Chapter 6 demonstrates the results obtained

on simulating the design using various software packages, for individual functionality, power

dissipation and solution to the XOR classification problem. Finally, chapter 7 provides a

general conclusion on the research carried out in the thesis with a briefing on the future

research work.

5

 Chapter 2

 Literature Review

2.1 Background

 Significant advancements in the field of medical science during the last several decades

have led to a constant need to have certain alternative solutions be implemented for

computing and processing biological information. Biological systems excel far more in

cognitive abilities than most of the supercomputers available today. However, alternate

methodologies still turn out to be the need of the hour to have some sort of redundancy, when

it comes to real time information processing. The requirement is to have quick and efficient

solution(s) that should be able to generate correct results. Reliability, counted only on the

effectiveness of medical instruments can turn out to be catastrophic, if multiple device

failures and/or instrumental errors are involved. It can also lead to increased costs when it

comes to rectifying those failures, let alone the time spent in doing so.

Since past several decades, researchers and engineers from all over the globe have come up

with several novel ideas to implement biological information in an artificial and reliable

manner. This led to the development of ‘Artificial Intelligence (AI)’ in the ever emerging

field of neural computation [4]. AI involves computing and processing biological information

using artificial methodologies. These methods are in no way, a replacement to existing

biological systems and processes, but are meant to make them more versatile. One way to

6

implement this idea is by using electronic hardware structures known as ‘Artificial Neural

Networks (ANNs)’. They are basically, information computing and processing systems,

wherein multiple electronic hardware blocks come together in unison to process the available

data and generate relevant results. In simple terms, they are electronic counterparts of

biological systems. Fig. 2.1 shows the structure of a simple feedforward artificial neural

network [1].

Fig. 2.1 Basic Structure of a Feedforward Neural Network [1]

Fig. 2.1 is an example of a feedforward neural network which is used in a wide variety of

neural network applications. The network consists of inputs, synaptic weights (not shown in

the figure) that get multiplied with the inputs, hidden layer and outputs that are generated

after the weighted inputs are passed through an activation function. The activation function

used is non-linear and is generally, the hyperbolic tangent or the sigmoid function. Most of

the approaches employ feedforward implementation, since the algorithmic design associated

with the feedback implementation is considerably more difficult to implement [1]. While this

is a very basic form of a structure, several complex structures with more number of input and

output layers as well as hidden layers can be realized in practice [4].

7

2.2 History of Neural Networks

 From a historical perspective, the origin of artificial neural networks can be traced back

to the McCulloch and Pitts neuron model developed by Warren McCulloch and Walter Pitts

in 1943 [5]. This model formed the basis of neural computing and the evolution of several

other neural network models. The neuron model to a basic level, consisted of two inputs and

one output as shown in fig 2.2. For the neuron to fire, both the inputs were required to be in

their active state. The weights for each input were assumed to be equal and the neuron would

fire only when the weighted inputs summed to have a value above a certain pre-defined

threshold level. The output of the neuron was considered to be binary; an output of one

implied firing of a neuron and output of zero implied the neuron to be in its inactive state [6].

Fig. 2.2 Basic McCulloch and Pitts Neuron Model

In an attempt to model the various electrochemical processes that take place in the human

brain, the ‘Perceptron’ was developed by Rosenblatt in 1958 [7]. The perceptron is a very

simple mathematical model of a neuron and generally has multiple inputs and a single output.

Rosenblatt tried to randomly interconnect the perceptrons and used random weights through a

trial and error procedure to achieve learning. He proved that if there are two classes of data

that are linearly separable, the perceptron algorithm converges and positions itself to form a

8

decision surface in the form of a straight line or a plane separating the two classes. Fig. 2.3

shows a single layer perceptron model [7].

Fig. 2.3 Single Layer Perceptron Model [7]

The weighted sum of n inputs with an optional bias term was passed through a hard limiter

(activation function) with a certain threshold level to get the desired output. While Rosenblatt

used trial and error to perform weight modifications, Oliver Selfridge in 1958, used a

direction vector to make the weight adjustments [8]. If adjusting the weights through a

randomly chosen direction vector did not make the performance any better, the weights were

returned to their original value and a new direction vector was chosen.

While the methods proposed by both Rosenblatt and Selfridge for network learning were trial

and error based, there was no proper mathematical technique available at that time to train the

perceptron. Widrow and Hoff in 1960 came up with a mathematical method for updating the

weights [9]. Assuming the existence of the desired response, they implemented a gradient

search method for minimizing the square of the error function. This method was later known

as the Least Mean Squared (LMS) algorithm [9]. The LMS algorithm not only provided a

reliable method for network training, but also significantly reduced the overall computation

9

time compared to the trial and error method. Immediately following the invention of the LMS

algorithm, perceptrons became widely used in several applications and were known to solve

any kind of computational problem. In 1969, Minsky and Papert in a book on perceptrons

[10] pointed out, that single layer perceptrons with ‘n’ nodes can only solve linearly

separable problems, also known as two-separable problems. The single layer perceptron was

inefficient in solving n-separable problems against what was previously believed [10].

In 1974, Werbos came up with a novel idea to solve this issue [11]. The training algorithm he

used involved, propagating errors backward into the multilayer perceptron network. The

technique was named as the ‘Backpropagation Algorithm’. The weight adaptions were

carried out starting from the output layer and working backwards to the input layer [11]. The

commonly used neuron activation function was the sigmoid function, against the signum

function used with the single layer perceptron. The main advantage of using the sigmoid

function instead of the signum function is that, the former is differentiable. The

backpropagation algorithm was essentially, a generalization of the LMS algorithm developed

by Widrow-Hoff [9] and was later separately rediscovered by Parker in 1985 [12] and

Rummelhart and McClelland in 1986 [35]. The algorithm was able to solve non-linearly

separable problems by training perceptrons in a multilayer configuration. The year 1986 saw

the ushering of modern day neural networks and significantly increased the amount of

research conducted in neural computing that is prevalent even today.

10

 Chapter 3

 Neural Networks Theory

3.1 Neural Computation and Machine Learning

 Developing on the concept of artificial intelligence introduced in chapter 1, the

requirement is to have neural computation done using artificial electronic circuitry that in a

way should generate results analogous to those with the biological systems. In order to

understand the analogous nature between the two, it is beneficial to understand the way in

which a network of highly interconnected biological nerve cells compute and process

information.

3.1.1 Computation in Biological and Artificial domain

 Human brain consists of a very dense network of nerve cells, also called ‘neurons’ that

occupy an area of about 1.5 square meters owing to their nested architecture [13]. The

cerebral cortex of the human brain consists of about 10000 neurons per cubic millimeter that

are massively interconnected and receive information from other neurons. This kind of a

nested structure gives the human brain its unique and incomparable computational power. Fig

3.1(a) shows the basic structure of a biological nerve cell [13].

11

 (a) (b)

Fig. 3.1. (a) Basic structure of a Biological Nerve Cell [13]

 (b) Plot of membrane potential vs time and action potential (spikes) [13]

The body of a nerve cell is called ‘soma’ that is about 10 to 50 microns in length. The input

information to the neuron is given by ‘dendrites’ connected to the soma. The information

output is through ‘axon’ that branches into several axonal structures, known as ‘axonic trees’

and couples to the dendrites of other neurons for information transfer. The information

transfer takes place through ‘synapses’ that act as coupling elements for axons and dendrites

[13]. The synapses act as information processing elements that take information from the

axon of a particular neuron, make the necessary modifications to the input information in

terms of its strength and pass the modified information down to the neuron located at the end

of the synapse. Every nerve cell has a membrane potential and a membrane capacitance

associated with it. If the pre-synaptic input is weighed so as to be stronger than the membrane

potential, the accounting synapse is said to be ‘excitatory’ in nature; if weighed to be weaker

than the membrane potential, then it is considered as ‘inhibitory’ in nature. Neurons

12

communicate with each other through action potentials that are short spikes of about 1 ms in

duration, generated in the soma and which travel to the axon as shown in fig 3.1(b) [13].

These are meant to modify the post-synaptic potential of a particular synapse that adds to the

membrane potential. The cumulative effect is to have the neuron fire, when a particular

threshold voltage is reached. Firing of a neuron implies transfer of information to several

other interconnected neurons in a repetitive manner.

Modelling a biological neuron in hardware is accomplished using several electronic circuits

each designed to serve a specific purpose [14] [15]. The input information is modelled in

terms of voltage signals to form a vector of voltage values. A synapse circuit is used to

multiply the input data with stored weight values (again a vector), add them up and provide

the result to a circuit that implements the activation function required to generate the output

[15]. The synapse circuit together with the circuit implementing the activation function forms

the neuron circuit. Details about the design and operation of these circuits will be discussed

in section 3.2. The output is generated subject to a certain pre-defined threshold value, in a

manner similar to the biological neuron. In some cases, an optional bias term is added to the

weighted sum of inputs so as to make the overall input stronger (excitatory) or weaker

(inhibitory).

The introductory chapter briefly explained the basic structure of an artificial neural network

but did not manifest the various mathematical operations that take place within the network.

Fig 3.2 shows a two-layer neural network depicting the mathematical operations that are

carried out to process the input information [3].

13

Fig. 3.2 A two-layer artificial neural network depicting input and output layers and various

 mathematical operations carried out in the network [3]

It can be seen that the inputs from the first layer are connected to every other neuron and

those neurons in turn, are connected to several other neurons to form a nested architecture,

just as in the case of biological systems. A basic synapse circuit should be able to store the

weight values, perform a multiplication of its input with the corresponding weight value and

then perform a weight adaption in response to certain learning criteria and fed-back error

signal. This computation is expressed mathematically as [3]:

 𝑦𝑖 = 𝑊𝑖𝑗𝑥𝑗 [2.1]

where 𝑦𝑖 is the 𝑖𝑡ℎ output that forms the input to the activation function, 𝑥𝑗 is the 𝑗𝑡ℎ input

and 𝑊𝑖𝑗 is the weight stored at position (i, j). The result of this computation is passed through

a non-linear activation function to generate the 𝑖𝑡ℎ output (actual neuron output) given by [3]:

 𝑜𝑢𝑡𝑖 = tanh(𝑎(𝑦𝑖 − 𝜃𝑖)) [2.2]

Where, 𝜃𝑖 is the threshold value and ‘a’ is the gain factor.

14

The outputs are generally currents since they can be easily added using Kirchhoff’s Current

Law (KCL). Voltages are preferred for inputs since they are easy to propagate through the

network. The synapse circuit performs some adaptions on the stored weight values based on

the fed-back error signal, that is a result of the difference between the actual output and the

desired output. These weight adaptions are governed by certain learning rules that enable the

network to learn from its previously computed values. Before going further into various

aspects of neural network learning and the training algorithms used to perform weight

adaptions, it is worthwhile to concisely discuss an important concept of machine learning in

the field of artificial intelligence.

3.1.2 Basics of Machine Learning

 Machine Learning is a mechanism through which a computer learns to perform a

specific set of actions depending on a pre-determined set of inputs and previously computed

results based on those inputs, without the need for explicit programming. It is a process of

iteratively learning from data using certain learning algorithms [16]. Artificial neural

networks take advantage of this process to make synaptic weight modifications, that further

enable the network to perform efficient computations using the least amount of time. This

essentially leads to feedback computation in neural networks. While feedforward

computation evaluates the output using equations [2.1] and [2.2] above, feedback

computation computes and propagates the error back into the system, achieved as a result of

the difference between the actual and the desired output. The task is then to minimize the

error down to zero. Two of the commonly used machine learning algorithms for doing so are

supervised learning and unsupervised learning, discussed next.

15

3.1.2.1 Supervised Learning

 In supervised learning, the system knows the correct output(s) for a specific set of

input data [17]. The learning algorithm is given a set of correct outputs for a corresponding

set of inputs and the algorithm is expected to make the necessary adaptions, by comparing the

actual output with the desired output to minimize the resulting error. Linear regression and

Classification are some techniques that are based on supervised learning. Linear regression,

in its simplest form, involves predicting a specific value based on a pre-defined set of data

values relating the input and output parameters [17].

Regression is also used to estimate the relationship between a dependent variable and one or

more independent variables [17]. A few examples employing linear regression technique are

to predict the property prices from some database that relates the cost with property area;

estimating the likelihood of insurance claim filing by a person, based on the claims filed

earlier by the same person. While regression is used primarily for estimation, a typical

classification problem involves classifying a set of data points into two or more categories.

One example of a neural classification problem is to classify a cancerous tumor as either

benign or malignant depending on the previously generated data set, after testing a few

patients having either of the two forms of cancerous tumor [17] [18].

3.1.2.2 Unsupervised Learning

 Contrary to supervised learning, in unsupervised learning, the system does not know

the correct output(s) for the specified input parameters [18]. The responsibility of estimating

the relation between input and output values is given to the learning algorithm. The learning

algorithm tries to figure out some common structure or a pattern by exploring the available

16

database, that may give a fairly accurate estimation of the relation between the input and

output parameters. A common example where unsupervised leaning is used is in cluster

analysis, that finds the hidden attributes in a cluster or a collection of data points [18]. Other

examples of unsupervised learning are in understanding genomics of an individual, based on

a DNA micro-grade data that decides whether a particular group of individuals have a

specific gene or not [18]. The algorithm is also used in social networking sites such as

Facebook, Twitter to categorize individuals, based on a clustering algorithm and some

analysis of their activities on these sites [18].

3.2 Electronic Circuits for Neural Networks

 Implementation of an artificial neural network in hardware is accomplished by designing

individual electronic circuits, each designed to serve a specific purpose. The three basic

operations required are multiplication, summation and a non-linear activation function acting

on the summed up values. The circuits for providing these operations are designed, keeping

in mind the optimization in terms of area, power and operating speed. The three basic circuits

used are the synapse circuit, circuit for implementing the activation function and the neuron

circuit that are discussed in the next few sub-sections.

17

3.2.1 Synapse Circuit

 The synapse is an important element in artificial neural networks [19]. The basic role of

a synapse element is to multiply the input signals with stored weight values and later adapt

those values through some learning algorithm. Owing to the criticality of the synapse

structure in neural network implementations, it is viable at this point to state five basic

synapse properties as mentioned below [19]:

1. The synapse should be able to store the weight values permanently in absence of any

learning algorithm.

2. The synapse should be able to compute an output current in response to the

multiplication of input voltage with the stored weight value.

3. The synapse should be able to adapt the stored weight values when a certain learning

algorithm is applied to train the network.

4. The synapse circuit should consume minimum area on chip so as to maximize the

number of synapse elements in a given area.

5. The synapse circuit should dissipate minimum amount of power.

Ideal scenario is to have efficient synapse circuit implementations satisfying all of the above

criteria. In practice, it requires rigorous efforts and detailed discussions for meeting most of

the conditions listed above. One of the major bottlenecks in synapse circuit implementation is

in performing the multiplication operation of input voltage signals with stored weight values

and producing an output current signifying the result of the operation. Since input voltages

transform into an output current, a multiplier circuit serving as a transconductance element,

18

needs to be implemented. One such circuit is the Gilbert Multiplier Cell shown in fig. 3.3

[20].

Fig. 3.3 CMOS Gilbert Multiplier Cell [20]

The Gilbert Multiplier Cell is used to convert the product of two voltages applied at the input

into a proportional output current. Synapses can be implemented using this multiplier cell to

generate an output current in response to the multiplication of input voltages with the

corresponding weight values. For design simplicity, all transistors are assumed to be biased

in the saturation region and the device sizes and parameters are matched, so that the

transconductance values for all of them are equal. After some mathematical operations shown

in [20] [21], the expression for the output current is:

 𝐼𝑜 = √2𝐾𝑎𝐾𝑏𝑉𝑥𝑉𝑦 [2.3]

19

In order to maintain a good amount of linearity between output current and input voltages,

both 𝑉𝑥 𝑎𝑛𝑑 𝑉𝑦 should be kept small.

3.2.2 Activation Function Circuit

 In most applications, artificial neural networks use a non-linear activation function to

act on their weighted sum of input patterns and produce a corresponding output pattern. The

activation functions generally used are the hyperbolic tangent or sigmoid functions,

implemented using CMOS circuits operating in the subthreshold region. The reason behind

using a non-linear activation function in neural network implementation is to take advantage

of the inherent non-linearities of CMOS circuits [22]. These non-linearities are governed by a

non-linear relation between currents and voltages, primarily in the saturation region of

MOSFETs. Fig. 3.4 shows the plot of a typical hyperbolic tangent activation function with

three operating regions clearly defined [23].

Fig. 3.4 Hyperbolic Tangent Activation Function with Regions of Operation [23]

20

 In the pass region, the input is approximately equal to the output, hence can be

approximated by a straight line from the origin. In region 3 which is the saturation region,

there is less output variation in response to the input, so the linear relation no longer holds.

The processing region, labelled as region 2, acts as a transition region between the pass and

the saturation region. In this thesis, the proposed design of the activation function circuit uses

the CMOS differential amplifier stage [21]. A differential amplifier is used to amplify or

accentuate the difference between two input voltage signals and reject the average or

common mode values of those signals. Fig. 3.5 shows the differential amplifier design for

implementing the activation function [21].

Fig. 3.5 Implementation of Activation Function using CMOS Differential Amplifier [21]

The transistors are again biased to be in the saturation region to take advantage of the square

law relation that exists between the current and voltage in that region. The biasing also

requires addition of drain currents of the transistors to be exactly equal to 𝐼𝑠𝑠. In practice, this

21

is very difficult to achieve. A feedback circuit employing a current mirror combination is

used for this purpose [21]. The transistors M3 and M4 shown in fig 3.5 above, act as current

mirrors with transistor M3 connected as a diode (gate connected to the drain) and driving

transistor M4. If both M3 and M4 have the same 𝛽, then the drain current of M3 gets

matched to that of M4. When a differential voltage is applied between the gates of M1 and

M2, half of it gets applied to gate-source of M1 and the other half to gate source of M2. This

increases the drain current 𝐼𝐷1 and decreases 𝐼𝐷2 by an equal amount ∆𝐼. This increase in 𝐼𝐷1

gets mirrored across to increase 𝐼𝐷4 through the current mirror combination. The net result of

∆𝐼 increase in 𝐼𝐷4 and ∆𝐼 decrease in 𝐼𝐷2 is to have the output sink a resultant current of 2∆𝐼.

An advantage of this kind of design is that the differential output is converted into a single

ended output, without the need for any extra circuitry. This saves a lot of chip area when it

comes to the actual hardware implementation [21].

3.2.3 Neuron Circuit

 The synapse circuit in combination with the activation function circuit forms the neuron

circuit. The neuron circuit is used to compute the overall network output based on the input

given to the activation function circuit. For multiple input patterns and layers, the neuron

circuits can be implemented in parallel thereby taking advantage of the inherent parallelism

offered by neural networks for computation. Since all the circuits are wired in parallel,

computing operations can be carried out simultaneously and the errors can also be propagated

backwards, all at one go. This saves a lot of computation time, unlike with series

implementations and results in an enhanced overall system performance [24].

22

 Chapter 4

Weight Storage and Network Training

4.1 Weight Storage Mechanisms

 Section 3.2.1 of chapter 3 outlined the importance of the synapse element for information

processing in neural networks. This section aims at discussing the various mechanisms

through which a synapse can store weight values and retain them for computation. A synapse

circuit cannot be deemed as efficient if it is not able to store the weight values and hold them

for longer periods of time [19,20]. Researchers have invested a lot of time and efforts into

analyzing and implementing techniques for efficient synaptic weight storage

[3,24,25,27,28,30,31]. The following sub-sections discuss three mechanisms of synaptic

weight storage, among many others. The section starts by explaining the long utilized

concept of Floating Gate Storage and then goes on further to explain the more recently

researched techniques of weight storage, such as the Hybrid SRAM based Storage and the

Memristor based Storage, respectively.

4.1.1 Floating Gate Synaptic Storage

 The weight storage mechanism discussed in this sub-section is governed by the

mechanism of non-volatile charge storage in a floating gate transistor. A floating gate

transistor basically involves a transistor polysilicon gate surrounded by a high quality

23

insulator, such as silicon dioxide (SiO2) as shown in Fig 4.1 [3]. Owing to the excellent

insulating capabilities of SiO2 layer, the floating gate is able to retain the stored charge for

longer periods of time, thereby providing long term analog memory. Signals on the transistor

gate terminal capacitively couple into the channel by means of the floating gate. The floating

gate charges are added through the process of hot electron injection and removed by means

of electron tunneling [3].

Fig. 4.1 Basic Structure of a Floating Gate pFET Transistor [3]

The concept of floating gate charge storage is used by a Single Transistor Learning Synapse

(STLS) that stores the synaptic weights in a non-volatile manner and also performs weight

updation [24]. Since past couple of decades, STLS has found several applications in circuit

implementations involving continuous time analog signals for both supervised and

unsupervised learning techniques. The STLS computes a Post-Synaptic Current (PSC) in

24

response to the input given by the pre-synaptic computation block. The input is typically, a

triangular wave generated at the gate of the transistor. The STLS then manifests a

bidirectional weight adaption mechanism, based on the time difference between the pre and

post-synaptic spike times [24]. This relation between weight updation and spike timing led to

the mechanism of Spike Timing Dependent Plasticity (STDP). The arrival of pre-synaptic

spike before the post-synaptic one leads to an increase in the synaptic weight. Conversely, the

arrival of pre-synaptic spike after the post-synaptic causes the synaptic weight to decrease.

The former mechanism is also called ‘Long Term Potentiation’ and the latter, ‘Long Term

Depression’. Fig 4.2 shows the non-volatile storage circuit for the STLS and the

corresponding plots for gate voltage, weight updation and drain current [25].

Fig. 4.2 Basic Structure of a Floating Gate (FG) transistor with waveforms for input gate

 voltage, weight updation and drain current [25]

25

From an analytical perspective, it is assumed that the source and drain of the floating gate

transistor are tied to 𝑉𝑑𝑑. The synaptic current as a result of the input given to the gate

terminal is given by [25]:

 𝐼𝑠𝑦𝑛 ∝ 𝑡𝑒
−𝑡

𝜏𝑟𝑖𝑠𝑒⁄ [4.1]

The proportionality constant in the equation above determines the strength of the synapse.

The rise time is usually of the order of 0.1 ms. The gate voltage is a triangular waveform with

nearly zero drain current at the highest gate voltage. For the saturated floating gate pFET

structure shown in fig 4.1, the drain current as a function of gate voltage is given by [25]:

 𝐼𝑑 = 𝐼𝑏𝑖𝑎𝑠𝑤𝑒−∆𝑉𝑔 𝑉𝑔𝑐⁄ [4.2]

where, 𝐼𝑏𝑖𝑎𝑠 is the bias current at the quiescent operating point, ∆𝑉𝑔 is the change in gate

voltage and 𝑉𝑔𝑐 is a constant, based on the capacitive coupling between the gate and surface

channel potential. The synaptic weight is related to the floating gate voltage through the

relation [25]:

 w ∝ 𝑒−𝑉𝑓𝑔 [4.3]

This relation determines the amount of weight stored by the floating gate structure. This

stored weight value is proportional to the post synaptic potential, so it is necessary to have

the pre-synaptic circuitry generate a waveform by equating [4.2] and [4.3] resulting in a

solution for ∆𝑉𝑔.

The weight updation is based on the injection and tunneling currents and these currents in

turn, have an exponential dependency on the tunneling and floating gate voltages. A

detailed discussion entailing models for injection and tunneling currents is given in [26].

The general weight update equation is given as:

 ∆𝑤 ∝ 𝐼𝑖𝑛𝑗 − 𝐼𝑡𝑢𝑛 [4.4]

26

When injection current dominates over the tunneling current, there is an increase in the

synaptic weight (long term potentiation) and a decrease (long term depression), when

tunneling current takes over the injection current.

4.1.2 Hybrid SRAM based Storage

 Among the novel weight storage mechanisms, Static Random Access Memory (SRAM)

based synaptic weight storage is discussed in this sub-section [27,28,29]. SRAMs are one of

the preferred choices for weight storage, owing to their faster processing speed, robustness

and ease of fabrication. In a typical multilayer artificial neural network involving dense

interconnections among neurons, the synapses outnumber the neurons by several orders of

magnitude. There is a substantial contribution from on-chip synaptic memory to the overall

power consumption, in a typical CMOS VLSI implementation of ANNs. In such cases,

SRAMs can be used to store the synaptic weights. Fig. 4.3 shows the basic structure of a 6T

and 8T SRAM [27].

27

Fig. 4.3 (a) A 6T SRAM Cell. (b) A 8T SRAM Cell [27]

For the 6T SRAM, the pass transistors are connected to the wordline and also to a pair of

cross coupled inverters. Read operation is enabled by turning ON the wordline with both the

bitlines in their respective HIGH state. Write operation is enabled by pulling any one bitline

LOW with wordline still in the ON state. The SRAM goes into its IDLE state and holds onto

the stored values when the wordline is turned OFF. The 8T SRAM is essentially similar in

operation to the 6T SRAM, but with a difference, that the additional transistors from the read

stack enable the structure to have an independent control for both read and write

mechanisms. Although this advantage comes with an additional hardware cost, through

proper designing and floorplanning techniques, the area overhead can be efficiently

minimized. The basic configuration of synaptic weight storage using a 6T SRAM cell is

shown Fig. 4.4 below [28].

28

Fig. 4.4 Synaptic Weight Storage using a 6T SRAM [28]

The NPEs are the Neural Processing Elements, modelled as ANNs for core neural

computations. The controller coordinates the sequence of operations that take place between

the NPEs and synaptic memory. This configuration involving only a single 6T SRAM works

well under normal supply voltage conditions. At scaled supply voltage conditions, however,

the 6T SRAM is more prone to bitcell failures [29]. This further warrants to have an efficient

weight storage mechanism at scaled supply voltage conditions. So, a more proven approach

is to use a combination of 6T and 8T SRAM cells for weight storage. For typical neural

network applications, such as handwritten digit recognition, the Least Significant Bits (LSBs)

of the input training datasets are less prone to bitcell failures and manifest an intrinsic error

resiliency. The Most Significant Bits (MSBs) on the other hand, are more prone to bitcell

failures at scaled supply voltages. The classification accuracy of the neural network can be

impaired if MSBs of the synapses are corrupted. A more efficient approach is to have the

LSBs of synaptic weights stored in 6T SRAMs and MSBs stored in more robust 8T SRAMs,

29

resulting in a hybrid SRAM configuration for synaptic weight storage. This ensures correct

classification accuracy and enhances the overall capability of the system.

4.1.3 Memristor based Storage

 Traditional weight storage mechanisms consist of passive devices, like resistors and

capacitors and active structures, like floating gate transistors. They suffer from issues arising

due to permanent fabrication of resistors (making them invariant to change once fabricated),

shorter weight retention time of capacitors and higher synaptic non-linearity of floating gate

transistors. SRAM based storage discussed in the previous sub-section, has the drawback of

significant static and dynamic power dissipation. This sub-section discusses a more recent

approach for weight storage that involves the use of memristors. A memristor is a

programmable resistor that retains charge in a non-volatile manner depending on the voltage

applied across it or the current going through it [30]. Its existence was first postulated by

Leon Chua in 1971, as the fourth basic element of electronic circuits after resistor, inductor

and capacitor. The idea was then generalized to a whole new class of dynamic systems called

memristive devices.

As the voltage is varied across the memristor to change its memristance, after a certain point

in time, the memristor ‘memorizes’ that memristance value and holds on to that value even in

the absence of an applied voltage. Renewed interest among researchers for memristors and

memristive devices can be attributed to the fact, that memristors behave in much the same

manner as biological synapses do [30] [31]. Additionally, memristors are nanocomponents

and can be fabricated using VLSI technology at a very small silicon area overhead.

Memristors are used to not only store weight values, but also perform a multiplication

30

operation of stored weights with the input voltage values. Fig. 4.5 shows the basic neural

synapse configuration built using four identical memristors arranged in a classical

Wheatstone bridge like fashion [32].

Fig. 4.5 Memristor Bridge Circuit Configuration [32]

M1, M2, M3 and M4 are the memristors arranged in a manner, similar to a Wheatstone’s

bridge that uses resistors; 𝑣𝑖𝑛 is the input voltage and 𝑣𝑜𝑢𝑡 is the output voltage. The voltage

at points A and B can be obtained by applying the potential divider formula. It may also be

noted that the voltage across memristor M2, is the voltage at node A with respect to ground

and that across memristor M4, is voltage at node B with respect to ground. The output

voltage is then simply the difference of potentials at nodes A and B. When a positive input

voltage is applied, the memristance of M1 and M4 decreases, while that of M2 and M3

increases [32]. This results in potential at node A being higher than that at node B, thus

giving a positive 𝑣𝑜𝑢𝑡 alongwith a subsequent increase in synaptic weight. On the contrary,

application of negative 𝑣𝑖𝑛 results in a reverse scenario with potential at node B being higher

than that at node A. The effect is to have a negative 𝑣𝑜𝑢𝑡 implying a synaptic weight

31

decrease. A balanced condition occurs when the voltages at nodes A and B are equal, in

which case, the output voltage is zero resulting in a zero synaptic weight [32] [33]. In

multilayer neural networks where one input connects to several other inputs, it is both

convenient and feasible to have output currents rather than output voltages, so that KCL can

be directly applied at a particular node to get the resultant current from that node. The output

from above memristor bridge circuit can be converted into an output current using a

differential amplifier, that basically functions as a voltage to current converter. Fig. 4.6

shows the circuit configuration [33].

Fig. 4.6 Memristor synaptic circuit showing the configuration for converting output voltage

of memristor bridge into an output current using a differential amplifier [33]

The weighing operation is performed normally by the memristor bridge. The differential

amplifier with active load acts as a current source and also serves as an activation unit. The

output current from the differential amplifier then feeds into other network layers, such as the

32

hidden layer, if available, or can just be compared with the target output current to evaluate

the resultant error. When the desired final output is voltage instead of current, it can be

achieved by connecting a resistor across the output terminals of the differential amplifier.

Since the output current is usually of the order of several milliamperes, resistor values

typically in the range of 100 to 500 kilo-ohms are used.

4.2 Training Algorithms in Neural Networks

 In multilayer artificial neural networks, a given set of inputs is expected to produce a

desired set of output(s) with an aim to meet or closely approximate the pre-determined target

output. Such networks, usually consist of an input layer, one or more hidden layers and an

output layer. Information flow is directed in a feed forward manner from the input layer to

the hidden layer and then to the output layer. When the information produced at the output

does not meet the target specifications, some mechanism is necessary to take care of the

difference between the computed and the target value. This difference, in its simplest terms,

is called an error; the network is expected to learn from this error and further train itself in a

consistent manner until the error goes down to a minimum. This process of network learning

or network training is governed by several learning algorithms. In this section, two of the

most widely used learning algorithms are discussed.

33

4.2.1 The Backpropagation Algorithm

 The backpropagation algorithm, originally proposed by Rumelhart and McClelland in

1986 [34] is a very widely and commonly used algorithm for neural network training. It is an

example of supervised learning algorithm that was discussed in section 3.1.2.1. The network

knows the target output and performs an adaption mechanism on its own output to drive the

resultant error to a minimum. The process involves computing the network output by passing

the weighted inputs through a non-linear activation function and then propagating the

acquired error signal backwards into the network to perform a weight updation procedure.

This backward propagation of error has given this algorithm its nomenclature. The training

process generally takes place in an iterative manner through the evaluation of negative

gradient of Mean Square Error (MSE) function to calculate new weight parameters [35].

There are two phases associated with backpropagation, one is the ‘feedforward’ phase and

the other is the backward propagation, also known as ‘feedback’ phase. In the feedforward

phase, a pattern of input data is presented to the input layer that gets multiplied with the

stored weight values and passes forward to the hidden layer after mapping to a non-linear

activation function. A similar process occurs from the hidden layer to the output layer. In this

way, the input information is transferred from layer to layer until a pattern gets generated at

the output. The output being a function of the net input is calculated as [36]:

 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑛𝑒𝑡𝑖) [4.5]

 𝑛𝑒𝑡𝑖 = ∑ 𝑊𝑖𝑗𝑂𝑗𝑖 + 𝜃𝑖 [4.6]

where, 𝑊𝑖𝑗 is the weight vector between nodes 𝑖 𝑎𝑛𝑑 𝑗, 𝑂𝑗 is the output of node 𝑗 and 𝜃𝑖 is the

bias of node 𝑖. The computed 𝑛𝑒𝑡𝑖 is then passed through an activation function that is

generally, a sigmoid function given by [36]:

34

 𝑓(𝑛𝑒𝑡𝑖) =
1

1+𝑒−𝑛𝑒𝑡𝑖
 [4.7]

In the backward propagation phase, the generated output is compared to the target output to

calculate the error, if any. The error signal depends on the type of error function used. A

commonly used error function is the sigmoid function expressed as [36]:

 𝐸 =
1

2
∑ (𝑡𝑘𝑗 − 𝑜𝑘𝑗)

2
𝑘 [4.8]

The error signal then propagates backward into the network structure to adjust the weight

parameters and compute new weight values for subsequent iterations. The process then

repeats until convergence is achieved. Furthermore, for backpropagation to be effective, it is

important that the activation function be differentiable.

Although very widely used in several neural network applications, the backpropagation

algorithm is stymied from a few drawbacks, such as slow convergence, possibility of getting

trapped into a local minima and learning rate adjustment. The convergence speed is primarily

attributed to the kind of activation function used to calculate the output. The first derivative

of the activation function is usually the major source of poor convergence. In order to speed

up the convergence process, researchers have proposed a variety of techniques like the one

proposed in [37]. It utilizes an arc-tangent activation function for mapping from the input

layer to the hidden layer and sigmoid activation function for mapping from the hidden layer

to the output layer.

The problem of local minima occurs when the output approaches either extremes of 0 or +/-

1. In that case, the derivative of the activation function is almost zero, which leads to a very

small weight change, owing to a very small backpropagated error signal. This can cause the

network to give an incorrect output without any significant weight change and further

slowdown the convergence process. To avoid the problem of local minima, several

35

mechanisms have been proposed in [38] that involve using two learning rate parameters

instead of one to improve the convergence. This not only helps avoid getting trapped into a

local minimum, but also speeds up the overall training process, thereby ensuring efficient

error minimization through backpropagation.

4.2.2 The Levenberg-Marquardt Algorithm

 Another commonly used technique for neural network training is the Levenberg-

Marquardt (LM) algorithm, originally published by Kenneth Levenberg in 1944 and later

optimized and rediscovered by Donald Marquardt in 1960 [39]. The algorithm is one of the

most efficient method for neural network training and is widely used for solving problems

involving non-linear least square functions. It attempts to find the minimum of a multivariate

objective function, expressed as a sum of squares of non-linear real valued functions [39].

The LM algorithm can be thought of as an approximation to the classical Gauss-Newton

algorithm that involves minimizing least square functions using a Hessian matrix, a square

matrix consisting of partial second order derivatives of a scalar valued function. The

algorithm can be considered as a combination of gradient descent (principle of

backpropagation) and Gauss-Newton method. The algorithm works without actually

calculating the Hessian matrix, but rather calculates the gradient vector and the Jacobian

matrix. The computation of the Jacobian matrix is an important step in this algorithm [39].

If we have a function 𝑓(𝑥), that we want to minimize with respect to some parameter value x

and if we consider a sum of squared error function 𝐸(𝑥) given by [40] [41]:

 𝐸(𝑥) = ∑ 𝑒𝑖
2(𝑥)𝑁

𝑖=1 [4.9]

36

 then, according to Newton’s method:

 ∆𝑥 = −[∇2𝐸(𝑥)]−1∇𝐸(𝑥) [4.10]

where, ∇2𝐸(𝑥) is the Hessian matrix and ∇𝐸(𝑥) is the gradient vector governed respectively,

by the following equations [40] [41]:

 ∇𝐸(𝑥) = 𝐽𝑇(𝑥)𝑒(𝑥) [4.11]

and ∇2𝐸(𝑥) = 𝐽𝑇(𝑥)𝐽(𝑥) + 𝑆(𝑥) [4.12]

Where 𝐽(𝑥) is the Jacobian matrix that consists of partial derivatives of error values 𝑒(𝑥)

with respect to 𝑥 and is given by [40] [41]:

[

𝜕𝑒1(𝑥)

𝜕𝑥1

𝜕𝑒1(𝑥)

𝜕𝑥2
𝜕𝑒2(𝑥)

𝜕𝑥1

𝜕𝑒2(𝑥)

𝜕𝑥2

⋯
𝜕𝑒1(𝑥)

𝜕𝑥𝑛
𝜕𝑒2(𝑥)

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑒𝑁(𝑥)

𝜕𝑥1

𝜕𝑒𝑁(𝑥)

𝜕𝑥2
⋯

𝜕𝑒𝑁(𝑥)

𝜕𝑥𝑛]

 [4.13]

Gauss-Newton method considers 𝑆(𝑥) to be approximately equal to zero, so equation 4.10,

after substitution becomes:

 ∆𝑥 = −[𝐽𝑇(𝑥)𝐽(𝑥)]−1𝐽𝑇(𝑥)𝑒(𝑥) [4.14]

Now, the LM algorithm is essentially, a modification to the above equation. The process of

modifying the diagonal elements of 𝐽𝑇(𝑥)𝐽(𝑥) matrix is called damping and the equation

above consists of a damping term 𝜇 which is always positive. With damping term added,

equation 4.14 modifies to become [40] [41]:

 ∆𝑥 = −[𝐽𝑇(𝑥)𝐽(𝑥) + 𝜇𝐼]−1𝐽𝑇(𝑥)𝑒(𝑥) [4.15]

For very small positive values of 𝜇, the term 𝜇𝐼 in the above equation can be ignored and the

algorithm becomes Gauss-Newton. Larger values of 𝜇 make the algorithm function as

Gradient Descent. The algorithm is thus capable of alternating between a slow descent

37

approach, when sum of squares function is far from a pre-defined minimum value and a fast

convergence approach, when the value is in close vicinity to the minimum [42].

Once ∆𝑥 is computed, the new sum of squares is calculated using 𝑥 + ∆𝑥. If this new

function is greater than the original sum of squares function given by 𝐸(𝑥) in equation 4.9,

then the damping term 𝜇 is increased by a parameter 𝛽, else reduced by 𝛽 and the process

repeats iteratively. Convergence criterion for the algorithm is reached, when the norm of

∇𝐸(𝑥) evaluates to be less than some pre-determined value or when sum of squares function

is minimized to some specified value.

38

Chapter 5

 Design Implementation

This chapter begins by showing the transistor level hardware implementation of the synapse

and the activation function circuit using CMOS technology. Subsequently, the

implementation of a single layer of neuron circuit which is simply an interconnection of a

single synapse and activation function element, has been shown. The last section manifests

the implementation of the feedforward multilayer network for solving the XOR classification

problem.

Section 3.2 of chapter 3 discussed various electronic circuits required for the implementation

of a multilayer feedforward neural network in the silicon domain. Synapse and Activation

Function circuits form the basic building blocks in the CMOS design of artificial neural

networks. This chapter demonstrates the actual implementation of the synapse and activation

function elements, first as a standalone entity to verify the individual functionality, and then

as a part of a multilayer network implementation.

The circuits shown in the upcoming sections are designed using Cadence OrCAD Capture

version 16.6, and the simulation is performed using Cadence PSpice A/D. The layout of the

circuits is accomplished using Electric VLSI Design System version 9.06 with MOCMOS

technology on a 200 nm design scale. A Network Consistency Check (NCC), also known as

39

Layout Vs Schematic (LVS) check, is performed at the individual circuit and overall

structural level to verify the design functionality from a fabrication standpoint.

5.1 Synapse Circuit

 The synapse circuit for realizing analog multiplication is implemented using 11

MOSFETs arranged to form a Gilbert Multiplier Cell, that performs a four quadrant

multiplication operation. All MOSFETs are biased to operate in the sub-threshold regime and

provide a square law relation between the current and the voltage. Fig. 5.1 shows the design

of the synapse circuit using Cadence OrCAD Capture version 16.6.

Fig. 5.1 Design of the Synapse Circuit using Cadence OrCAD

40

Since the synapse circuit computes output in the form of a current, a high value resistor,

typically 100k, is added to get an equivalent voltage output.

Fig. 5.2 depicts the schematic and layout of the synapse circuit done using Electric VLSI

Design software. All transistors have a width of 3 microns and length of 2 microns. The

layout is made as compact as possible and is found to occupy an area of 80 x 85 sq. microns.

 (a)

41

 (b)

Fig. 5.2 (a) Schematic of Synapse Circuit. (b) Layout of Synapse Circuit

Using Electric VLSI Design software

NCC is then performed to verify the consistency of the circuit in terms of layout and

schematic and the result is depicted in Fig. 5.3 below.

Fig. 5.3 Network Consistency Check Result for the Synapse circuit

42

The circuit passes the initial LVS check in terms of circuit exports (nets or ports), overall

network topology and transistor sizes.

5.2 Activation Function Circuit

 The mechanism for providing the non-linear activation is implemented using a CMOS

differential amplifier circuit, designed using enhancement mode MOSFETs functioning in

the sub-threshold region of operation. Fig. 5.4 below shows the schematic of the circuit

designed in Cadence OrCAD.

Fig. 5.4. CMOS Differential Amplifier used as a non-linear Activation Circuit designed using

Cadence OrCAD

The same circuit is designed in a slightly different way using Electric VLSI Design software,

wherein all the enhancement mode MOSFETs are replaced by standard MOSEFTs. All

transistors are designed to operate in the sub-threshold region and have a length of 3 microns

43

and width of 2 microns. Fig. 5.5 shows the schematic and layout of the activation function

circuit. The layout occupies an area of 49 x 52 microns.

(a)

(b)

Fig. 5.5 (a) Schematic of the Activation circuit. (b) Layout of the Activation circuit.

using Electric VLSI Design software

44

NCC is then performed similar to that done for the synapse circuit and the results are shown

in Fig. 5.6.

Fig. 5.6 Network Consistency Check Result for the Activation Function circuit

The circuit passes the LVS check in terms of circuit exports (nets or ports), overall topology

and transistor sizes.

5.3 Single Layer Neuron Circuit

 The single layer neuron circuit is simply an interconnection of the standalone synapse

and activation function circuits that were discussed in the previous two sub-sections. Fig. 5.7

shows the block diagram of a typical single layer neuron cell. The synapse circuit block

computes the multiplication result of input voltage and weight value and the activation

function circuit acts on the resulting product to generate the output.

Fig. 5.7 Block Diagram of a Single Layer Neuron Cell

45

The CMOS implementation of the single layer neuron cell is shown in Fig. 5.8 below. Since

the synapse and activation circuits compute the output in the form of a current, two resistors,

each with a value of 100k ohms are added to provide a voltage output.

Fig. 5.8 Circuit Design of Single Layer Neuron Circuit using Cadence OrCAD

The Op-Amp shown in figure 5.8, acts as an inverting buffer and computes a simple negation

of the voltage applied at its input. The resulting output is fed to transistor M15. The goal is to

feed complementary voltages to the gates of transistors M14 and M15. When the network is

required to operate in the digital domain with binary inputs, the op-amp can be replaced by a

simple CMOS inverter circuit.

Fig. 5.9 depicts the schematic and layout design in Electric VLSI Design software. Each

transistor has a length of 3 microns and width of 2 microns. The layout is found to occupy an

area of 132 x 85 sq. microns.

46

(a)

(b)

Fig. 5.9 (a) Schematic of Single Layer Neuron. (b) Layout of Single Layer Neuron

using Electric VLSI Design software

47

NCC is performed as before to ensure that the design meets all the constraints and the result

is shown in fig. 5.10. The circuit as per expectations satisfies the NCC in terms of circuit

exports, overall network topology and transistor sizes.

Fig. 5.10 Network Consistency Check Result for Single Layer Neuron Circuit

5.4 Multilayer Feedforward Neural Network Implementation

 The idea behind the design of a single layer neuron circuit from the previous section can

now be extended, to design a structure consisting of multiple layers and having more

capability compared to that of a single layer circuit. The network operates in the feedforward

mode, meaning that the inputs applied to the network on multiplication with the weight

values, wash through the network, layer to layer, until the final output is obtained. The neural

architecture designed in this section attempts to solve the XOR classification problem,

explained next, having the feature of non-linear separability when the input data is plotted in

the x-y plane. The network is comprised of four synapse elements and two activation

function elements that form the input layer, another two synapse elements and one activation

function element that forms the hidden layer and finally, the output of the latter activation

function is taken to be the overall network output forming the output layer. A MATLAB code

48

is developed to train the neural network using the backpropagation algorithm explained in

section 4.2.1, to have the network output approximately equal to the XOR output with a

certain level of user defined error tolerance.

5.4.1 Example Application: Solving the XOR Classification Problem

 The fundamental limitation with single layer neural networks specifically designed to

function as classifiers is that, they can only be used to classify problems having a linearly

separable nature. The idea of linear separability stems from the basic working principle of

McCulloch and Pitts Neuron discussed in section 2.2. Since the output of the neuron can

either be zero or one, it can be classified to be in one of the two categories at any given time

and input conditions. If the neuron output is recorded for different input and weight values

and then plotted in the input plane, a line, or in some cases a plane, can be drawn to correctly

classify the output that will always lie on any one side of the line or plane.

A single layer neural network with ‘n’ input layers and one output layer can correctly classify

problems having linearly separable behavior. Digital logic operations such as AND, OR,

NOT and other simple pattern classification problems based on these can be easily realized

with single layer networks. However, for complex classification applications based on XOR

and XNOR operations, single layer networks turn out to be ineffective. To strike a good

analogy, consider the need to implement an XOR function in digital logic with two inputs A

and B and further assume a hypothetical scenario where a standard XOR gate is not available.

In such a case, one way to implement XOR is to have two AND gates to get 𝐴𝐵̅ and 𝐴̅𝐵 and

then have an OR gate to logically add them together, thereby realizing an XOR function. The

49

two AND gates form the first layer and the OR gate forms the second layer, giving a two-

layer implementation.

Similarly, with neural networks, the requirement is to have a multilayer structure as shown in

fig. 5.11 [43] with at least one hidden layer capable of correctly classifying the patterns

presented at its input.

Fig. 5.11 Multilayer Neural Structure with One Hidden Layer [43]

Since XOR forms the basis of several other complex classification problems like face

recognition, handwritten digit recognition, etc., the multilayer network designed in this

section works towards solving the XOR problem. Table 5-1 shows the truth table for an XOR

function with two inputs 𝑥1 and 𝑥2 in both unipolar and bipolar mode.

50

 Table 5-1 Truth table of XOR

(a) Unipolar (b) Bipolar

Considering unipolar mode of operation, let the like inputs be encoded as class B and unlike

inputs as class A. The plot of these two classes of data points in the 𝑥1𝑥2 plane is shown in

fig. 5.12 [44]

Fig. 5.12 Plot of input data points for XOR classification [44]

𝑥1 𝑥2 Y

0 0 0

0 1 1

1 0 1

1 1 0

𝑥1 𝑥2 Y

-1 -1 -1

-1 1 1

1 -1 1

1 1 -1

51

It can be seen that no single line of separation can be drawn to classify these points

accurately to lie in one of the two classes. There should be atleast two lines or any other

planar structures to classify them. With two layer networks, the first layer is used to perform

a non-linear mapping of the input data making it linearly separable. The second layer does a

logical OR of the linearly mapped data, thereby ensuring proper classification. The output

neuron realizes a hyperplane in the transformed input space that classifies data points into

two sets or classes. Fig. 5.13 shows one possible way of classifying data points from fig. 5.12

[44].

Fig. 5.13 One possible solution of XOR classification [44]

𝑔1(𝑥) and 𝑔2(𝑥) are any two functions that divide the input plane into two parts. The portion

below 𝑔1(𝑥) and above 𝑔2(𝑥) corresponds to class B and the portion in between corresponds

52

to class A. This XOR classification process can also be generalized by having clusters of

data, encoding them to be in two classes and then using a multilayer neural network to

properly classify them. One key advantage of using multilayer networks is that the presence

of the hidden layer leads to efficient error minimization, providing network output very close

to the target one. The multilayer network can be designed to have more than one hidden layer

depending on the amount data that requires classification. Multiple hidden layers enable

quicker error minimization and faster convergence, albeit at the cost of increased component

count and overall structural complexity.

Fig. 5.14 shows the block diagram of the overall network proposed in this work to serve the

example application.

Fig. 5.14 Block Diagram of the XOR Multilayer Feedforward Network

X1 and X2 are the inputs that get multiplied with the weights (assigned randomly) and then

pass through the activation function block labelled as ‘Sigmoid’ in the figure above. b11, b12

and b13 are the optional bias inputs that make the synapse output stronger or weaker. The

‘Add’ block essentially adds the synaptic outputs from the hidden layer with the bias term

53

b13, to calculate the overall network output after the squashing function acts on it. On basis

of the block diagram shown above, the schematic design is carried out in Cadence OrCAD

and Electric VLSI Design software just as in the case of previously designed circuits. Fig.

5.15 depicts the schematic of the network in Cadence OrCAD.

Fig. 5.15 Schematic of the Proposed Multilayer Network in Cadence OrCAD

The two synapse elements on the extreme left (top and bottom) are encoded as input X1 and

the two elements adjacent to them as class X2. Fig. 5.16 shows the schematic and layout of

the network designed using Electric VLSI Design software. The same schematic is shown in

appendix C as three separated parts rotated horizontally for more clarity. For all transistors,

the aspect ratio is kept constant to 1.5 (width of 3 microns and length of 2 microns) with

operation in the sub-threshold region to ensure consistency with the designs done in the

previous sections. The layout for the overall network is found to occupy an area of 0.065 sq.

mm.

X11+

TD = 4m

TF = 1E-12
PW = 4m
PER = 8m

V1 = 100m

TR = 1E-12

V2 = 500m

X11-

TD = 4m

TF = 1E-12
PW = 4m
PER = 8m

V1 = 500m

TR = 1E-12

V2 = 100m

W11+

TD = 2m

TF = 1E-12
PW = 1m
PER = 8m

V1 = 20m

TR = 1E-12

V2 = 60m

W11-

TD = 2m

TF = 1E-12
PW = 1m
PER = 8m

V1 = 60m

TR = 1E-12

V2 = 20m

X12+

TD = 4m

TF = 1E-12
PW = 4m
PER = 8m

V1 = 100m

TR = 1E-12

V2 = 500m

X12-

TD = 4m

TF = 1E-12
PW = 4m
PER = 8m

V1 = 500m

TR = 1E-12

V2 = 100m

W12+

TD = 2m

TF = 1E-12
PW = 1m
PER = 8m

V1 = 30m

TR = 1E-12

V2 = 70m

W12-

TD = 2m

TF = 1E-12
PW = 1m
PER = 8m

V1 = 70m

TR = 1E-12

V2 = 30m

X21+

TD = 2m

TF = 1E-12
PW = 2m
PER = 4m

V1 = 100m

TR = 1E-12

V2 = 500m

X21-

TD = 2m

TF = 1E-12
PW = 2m
PER = 4m

V1 = 500m

TR = 1E-12

V2 = 100m

X22+

TD = 2m

TF = 1E-12
PW = 2m
PER = 4m

V1 = 100m

TR = 1E-12

V2 = 500m

X22-

TD = 2m

TF = 1E-12
PW = 2m
PER = 4m

V1 = 500m

TR = 1E-12

V2 = 100m

0

Rout
100k

M77

MbreakN

M78

MbreakN

M79

MbreakN

M80

MbreakP

M81

MbreakP

Vref 1

1.5Vdc

R3

100k

0

M1

MbreakN

M2

MbreakN

M3

MbreakN

M4

MbreakN

M5

MbreakN

M6

MbreakN
W21+

TD = 2m

TF = 1E-12
PW = 1m
PER = 4m

V1 = 15m

TR = 1E-12

V2 = 65m

M7

MbreakN

M8

MbreakN

M9

MbreakP

W21-

TD = 2m

TF = 1E-12
PW = 1m
PER = 4m

V1 = 65m

TR = 1E-12

V2 = 15m

M10

MbreakP

M11

MbreakP

W22+

TD = 1m

TF = 1E-12
PW = 1m
PER = 4m

V1 = 35m

TR = 1E-12

V2 = 75m

W22-

TD = 1m

TF = 1E-12
PW = 1m
PER = 4m

V1 = 75m

TR = 1E-12

V2 = 35m

Vdd2.5Vdc

0

0

0

0

0

M12

MbreakN

M13

MbreakN

M14

MbreakN

M15

MbreakN

M16

MbreakN

M17

MbreakN

M18

MbreakN

M19

MbreakN

M20

MbreakP

M21

MbreakP

M22

MbreakP

Vss-2.5Vdc

0

0

0 0

0

W31+

TD = 2m

TF = 1E-12
PW = 2m
PER = 10m

V1 = 10m

TR = 1E-12

V2 = 50m

W32+

TD = 2m

TF = 1E-12
PW = 1.5m
PER = 10m

V1 = 40m

TR = 1E-12

V2 = 80m

W31-

TD = 2m

TF = 1E-12
PW = 2m
PER = 10m

V1 = 50m

TR = 1E-12

V2 = 10m

M23

MbreakN

M24

MbreakN

W32-

TD = 2m

TF = 1E-12
PW = 1.5m
PER = 10m

V1 = 80m

TR = 1E-12

V2 = 40m

M25

MbreakN

M26

MbreakN

M27

MbreakN

M28

MbreakN

M29

MbreakN

M30

MbreakN

M31

MbreakP

M32

MbreakP

M33

MbreakP

0

0

0

0

R2

100k

0

R1

100k

0

0

0

0

M34

MbreakN

M35

MbreakN

M36

MbreakN

M37

MbreakN

M38

MbreakN

M39

MbreakN

M40

MbreakN

M41

MbreakN

M42

MbreakP

M43

MbreakP

M44

MbreakP

0

0 0

0

R5
100k

0

M45

MbreakN

M46

MbreakN

M47

MbreakN

M48

MbreakN

M49

MbreakN

M50

MbreakN

M51

MbreakN

M52

MbreakN

M53

MbreakP

M54

MbreakP

M55

MbreakP

0

M56

MbreakN

M57

MbreakN

M58

MbreakN

M59

MbreakN

M60

MbreakN

M61

MbreakN

M62

MbreakN

M63

MbreakN

M64

MbreakP

M65

MbreakP

M66

MbreakP

M82

MbreakN

M83

MbreakN

M84

MbreakN

M85

MbreakN

M86

MbreakN

M87

MbreakP

M88

MbreakP

M89

MbreakP

M90

MbreakP

M91

MbreakP

0

00

M67

MbreakN

M68

MbreakN

M69

MbreakN

M70

MbreakP

M71

MbreakP

Vref 2

1.5Vdc

R4

100k

0

M72

MbreakN

M73

MbreakN

M74

MbreakN

M75

MbreakP

M76

MbreakP

Vref 3

1.5Vdc

54

 (a)

(b)

Fig. 5.16 (a) Schematic of Multilayer Neural Network to solve the XOR problem

using Electric VLSI Design software

(b) Layout of Multilayer Neural Network to solve the XOR problem

 using Electric VLSI Design software

55

A final NCC is performed to verify the equivalency of schematic and layout and also to

ensure that all design constraints are being satisfied, with a potential scope towards

fabrication. Fig. 5.17 depicts the results of this check.

Fig. 5.17 Network Consistency Check Result for the Multilayer Neural Network

56

 Chapter 6

 Results and Discussions

This chapter outlines the results obtained on simulating the designs implemented in the

previous chapter. The chapter begins by displaying the simulation results of the synapse and

the activation function circuit respectively. The subsequent section depicts the results of

instantaneous power dissipation from the synapse element, activation function element,

single layer circuit and the multilayer network designed. The final section shows the results

obtained on training the multilayer network for XOR classification using MATLAB.

 6.1 Simulation Results of Synapse and Activation Function Circuit

 This section shows the results obtained on simulating the synapse and activation function

circuit using Cadence OrCAD PSpice A/D in conjunction with Cadence OrCAD Capture.

Firstly, the simulation settings for both the circuits are shown, and then the results are

outlined. In OrCAD design, it is important to adjust the design settings in the simulation

profile, prior to running PSpice simulations. The profile gives a general idea about the

various types of analysis that can be conducted and the parametric values on basis of which

the simulation is run. This enables the software to create a netlist header structure for the

schematic at hand after checking for design errors, if any. If the existing design has errors,

netlist is not generated and the errors are outlined in a separate simulation output file.

57

6.1.1 Synapse Circuit Simulation

Fig. 6.1 shows the simulation profile setup for the synapse circuit. This profile is common to

all circuit schematics designed using Cadence OrCAD capture and the user has the flexibility

to input parametric values as desired. The main features on the selection of Analysis type

have been labelled as shown:

Fig. 6.1 Simulation Profile of the Synapse Circuit using Cadence OrCAD

The analysis type is selected to be Time Domain (transient) to have the simulation run in real

time. The simulation is made to run until a stop time of 100 ms with 10 ms time interval. The

input voltage applied to the synapse circuit is a sine wave with 50 Hz frequency and 2 V peak

58

to peak. The weights are applied in the form of a sine wave as well, with 100 Hz frequency

and 1 V peak to peak.

Fig. 6.2 shows the result obtained on simulating the circuit with above parameters. The input

voltage is shown in ‘red’, weight voltage in ‘blue’ and synapse output in ‘green’.

Fig. 6.2 Simulation Result of the Synapse Circuit using PSpice A/D

A four quadrant multiplication of input voltage and weight values is obtained as the synapse

output. The output values are not an exact multiplication of inputs and weights, but have a

scaling factor associated with them. This is because the output voltage is proportional to the

product of input and weight values and that scaling factor approximates proportionality with

equality. The output of the synapse element then feeds as an input to the activation function

circuit.

59

6.1.2 Activation Function Circuit Simulation

Fig. 6.3 shows the simulation profile for the activation function circuit. The analysis type

selected is DC sweep which is a full rail to rail sweep starting at 0 V and going to 5V.

 Fig. 6.3 Simulation Profile of the Activation Function Circuit using Cadence OrCAD

The result is a sigmoid (S-shaped) curve with maximum value of approximately 1V. Fig. 6.4

shows the simulation plot of the activation function circuit.

60

 Fig 6.4 DC Sweep Analysis Result of the Activation Function Circuit using PSpice A/D

The activation function circuit shown in fig. 5.4 is then modified to have both positive and

negative biasing (2.5V magnitude) and sine wave inputs are given to the gates of transistors

M1 and M2. The sine wave has a frequency of 50 Hz with a peak to peak amplitude of 200

mV. Input given to M2 is complementary of that given to M1. A transient analysis is

performed with the simulation profile of fig. 6.1 and the result is shown in fig. 6.5 below. It

can be seen that differential amplification is provided in response to the applied sine wave

input at the same frequency.

61

Fig 6.5 Transient Analysis Result of the Activation Function Circuit using PSpice A/D

The input voltage is plotted in ‘red’ and the circuit output in ‘green’

6.2 Results for Instantaneous Power Dissipation

 This section demonstrates the results of the instantaneous power dissipation, first from

the synapse and the activation function element, and then from the single and multilayer

neuron circuit. The analysis is performed specifically at the design level and the requirement

is to have as low power dissipation as possible, from each circuit and also the overall

network. In the schematic designed for every element using Cadence OrCAD, power probes

are connected on the PSpice component whose power dissipation analysis is desired and a

transient simulation is run. For the synapse and activation function element, a detailed

component by component analysis is done. For the single layer circuit, the primary interest is

in knowing the amount of dissipation that occurs when the synapse and the activation

62

function circuit are connected together. With the multilayer circuit, the analysis is performed

in a typical layer to layer interconnection scenario to quantify the effects of ‘loading’, when

multiple synapse and activation function elements connect together.

6.2.1 Synapse Element

 The synapse circuit shown in fig. 5.1 is analyzed for power dissipation by connecting

probes on each component in the circuit and a transient simulation is run to view the power

waveforms. Fig. 6.6 shows the result of power dissipation from every component in the

synapse element.

(a) Waveforms for transistors M1, M2, M3, M4

63

(b) Waveforms for transistors M5, M6, M7

(c) Waveforms for transistors M9, M10, R1

 Fig. 6.6 Instantaneous Power Dissipation Waveforms from Synapse Element using PSpice

64

Table 6-1 below summarizes the results for minimum and maximum power dissipation from

the waveforms shown above.

 Table 6-1 Summarized Results of Power Dissipation from Synapse Circuit

Element Power Dissipation (uW)

Min. Max.

M1 0 63.78

M2 0 28.76

M3 0 63.91

M4 0 30.67

M5 17.68 52.82

M6 17.42 52.83

M7 20.68 44

M9 24.65 102.01

M10 19.10 78.35

R1 (Output) 0 31.33

It can be seen that the power dissipation from the synapse element is in the sub-uW range. It

is interesting to note that the power dissipation is zero at the output resistor when zero inputs

are fed to the circuit.

6.2.2 Activation Function Element

 The analysis is now performed on the activation function circuit, similar to that done for

the synapse element. The results are as shown in fig. 6.7.

65

Fig. 6.7 Instantaneous Power Dissipation Result from Activation Function Element using

PSpice

Table 6-2 outlines the summary of results for minimum and maximum dissipation based on

the above waveforms.

Table 6-2 Summarized Results of Power Dissipation from Activation Function Circuit

Element Power Dissipation (uW)

Min. Max.

M1 64.75 82.31

M2 33.35 62.77

M3 41.06 46.89

M4 37.17 67.61

M5 46.66 76.35

R1 (Output) 0 12.10

66

It can be seen that the power dissipation for the activation function element is in the range of

33 uW to 82 uW. Similar to the synapse circuit, power dissipation is zero when the input

voltage is zero.

6.2.3 Single Layer Neuron Circuit

 With a component level analysis done in the previous two sub-sections, this section

analyzes the effect of a simple connection of the synapse and activation function element. A

wattage probe is connected on the output side of the activation function circuit and a transient

simulation is run as before. The result is shown in fig. 6.8 below.

Fig. 6.8 Instantaneous Power Dissipation Result from Single Layer Neuron Circuit using

PSpice

67

6.2.4 Multilayer Neuron Circuit

 In this section, the attempt is to analyze the power dissipation when the neural structure

under consideration has an interconnection of the synapse and activation function elements.

For the multilayer structure shown in fig. 5.15, power dissipation is analyzed, respectively

from input to the hidden layer, hidden to the output layer and finally at the overall network

output. Fig. 6.9 shows the result.

Fig. 6.9 Instantaneous Power Dissipation Result from Multilayer Neuron Circuit using

PSpice

Table 6-3 below summarizes the results for minimum, maximum and average power

dissipation from the waveforms shown above. It can be seen that the power dissipation values

are in the range of 21 uW to 40 uW. Also, there is very little dissipation when transitioning

from input layer to the output layer through the hidden layer.

68

Table 6-3 Summarized Results of Power Dissipation from Multilayer Neuron Circuit

Layer Power Dissipation (uW)

Min. Max.

Input to Hidden 21.70 34.41

Hidden to Output 2.61 3.07

Output 40.24 40.43

6.3 Results from XOR network training

 The multilayer neural network designed in section 5.4 (fig. 5.14) to solve the XOR

problem is trained using the back propagation algorithm in MATLAB. The detailed code

developed in MATLAB is given in appendix B at the end. A training pattern emulating the

XOR truth table is presented to the network at the input and the network is found to correctly

generate the output close to the target one, with a small amount of error. Table 6-4 shows a

sample test case for training.

 Table 6-4 Test Case Parameters for XOR Classification

Parameter Value

Training Input [0 0; 0 1; 1 0; 1 1]

Target Output [0; 1; 1; 0]

Learning Rate 0.5

Error Tolerance <= 0.001

69

The code runs on this data and the network converges in 4065 epochs. Fig 6.10 shows the

result of XOR training based on the input parameters mentioned above.

Fig. 6.10 Result of XOR training based on the test case from table 6-4

Table 6-5 shows the comparison of network output with the target one, in response to the

applied training input pattern. The network output obtained is close to the target one with a

certain error.

Table 6-5 Network Output vs Target Output for the XOR Problem

Training Input Pattern Network Output Target Output

0 0 0.0322 0

0 1 0.9651 1

1 0 0.9642 1

1 1 0.0447 0

70

The user has the flexibility to change any or all of these parameters, depending on the

problem requirement. Generally, the learning rate is chosen to be between 0.2 and 0.9 and the

error tolerance is of the order of 10−3. If the learning rate is taken to be less than or equal to

0.1, an arrangement is made in the code to increase the maximum number of epochs. This is

because with lesser learning rate, the network converges slowly and hence requires more

epochs.

Further, the network error is recorded for each epoch and after the convergence is achieved,

the error is plotted against the number of epochs. This gives the user an understanding of how

many iterations it takes for the error to go down to a minimum, given a particular value of

learning rate constant and error tolerance. Fig. 6.11 shows the plot of error versus number of

epochs based on the result obtained.

Fig. 6.11 Plot of Network Error versus Number of Epochs

71

 Chapter 7

 Conclusion and Future Research Work

7.1 Conclusion

 The main objective of the research done in this thesis was to enable the readers to have a

general understanding about the fundamentals of artificial neural networks, the way they can

be implemented in hardware using CMOS technology and trained using one of the several

learning algorithms, commonly used in the field of neural computation. The transistor level

implementation of artificial neural networks is primarily governed by proper designing of the

synapse and the activation function elements and interconnecting them to form complex

neural structures. These structures can then be used to cater, either a specific application or a

broad range of applications.

In this thesis, analog implementation of multilayer neural network using CMOS technology

was studied, with a view to achieve area and power efficiency. A step by step implementation

of a multilayer feedforward neural network was shown. The schematic designs were carried

out using Cadence OrCAD Capture and the layouts were done using the Electric VLSI

Design System. Subsequently, a backpropagation training algorithm was developed in

MATLAB to train the designed network to solve the classical XOR problem. The simulations

were done using PSpice A/D to verify the functionality of the individual schematics and also

to quantify the results of instantaneous maximum and minimum power dissipation, from

72

every circuit element and also the overall design. For the schematics and layouts done using

Electric software, results for the layout vs schematic check were outlined to ensure that all

design rules were satisfied. Further, an attempt was made to make the layouts as compact as

possible, to make the design area efficient. The multilayer feedforward neural network

designed to solve the XOR problem was found to correctly classify sample training input

patterns with an error tolerance of 0.1%.

7.2 Future Research Work

 The research done in this thesis touched down upon the basics of hardware

implementation of an artificial neural network and its training using the backpropagation

algorithm. The domain in which the implementation is carried out is governed by the

application in which the neural network will be employed. From the implementation

standpoint, future research work is envisaged in the area of Mixed Signal (MS)

implementation and its eventual System on Chip (SOC) fabrication. Attempts will be made to

combine the advantages offered by analog and digital implementations to have a certain level

of multi-objective optimization, in terms of area, power and speed of operation. The layouts

done using Electric VLSI Design System give rise to the possibility of circuit fabrication, as a

separate area of research. In the area of neural network training, future work will involve

transistor level implementation of the backpropagation training algorithm using CMOS

technology in the analog domain. Another prospect will involve, implementing the neural

hardware using Field Programmable Gate Arrays (FPGAs) to have faster convergence speed.

73

 Appendix

A. Circuit Netlists

A.1 Synapse Element:

* source SYNAPSECIRCUIT

M_M1 N00237 N00982 N00289 N00289 MbreakN

M_M2 N00249 N00337 N00289 N00289 MbreakN

M_M3 N00237 N00337 N00301 N00301 MbreakN

M_M4 N00249 N00982 N00301 N00301 MbreakN

M_M5 N00289 N001121 N00341 N00341 MbreakN

M_M6 N00301 N001301 N00341 N00341 MbreakN

M_M7 N00341 N00385 N00373 N00373 MbreakN

M_M8 N00365 N00385 N00373 N00373 MbreakN

M_M9 N00237 N00237 N00385 N00385 MbreakP

M_M10 N00249 N00237 N00385 N00385 MbreakP

M_M11 N00365 N00385 N00385 N00385 MbreakP

V_Vdd N00385 0 2.5Vdc

V_Vss N00373 0 -2.5Vdc

V_Vin+ N00982 0 AC 1mV

+SIN 0 2V 50Hz 0 0 0

74

V_Vin- 0 N00337 AC 1mV

+SIN 0 2V 50Hz 0 0 0

V_Vw- 0 N001301 AC 1mV

+SIN 0 1V 100Hz 0 0 0

V_Vw+ N001121 0 AC 1mV

+SIN 0 1V 100Hz 0 0 0

R_R1 0 N00249 100k TC=0,0

A.2 Activation Function Element:

* source AF_DC

V_Vref N04824 0 1Vdc

V_Vdd N04712 0 5Vdc

M_M1 N04686 N04808 N04698 N04698 MbreakN

M_M5 N04694 N04686 N04712 N04712 MbreakP

M_M3 N04698 N04824 0 0 MbreakN

M_M4 N04686 N04686 N04712 N04712 MbreakP

M_M2 N04694 N04814 N04698 N04698 MbreakN

R_R1 0 N04694 100k TC=0,0

V_V1 N04808 0 DC 2Vdc AC 1mVac

V_V2 0 N04814 DC 2Vdc AC 1mVac

75

A.3 Single Layer Neuron:

* source SLNN

M_M11 N03243 N03261 N03261 N03261 MbreakP

R_R1 0 N03135 100k TC=0,0

M_M9 N03099 N03099 N03261 N03261 MbreakP

M_M7 N03221 N03261 N03249 N03249 MbreakN

M_M5 N03171 N029671 N03221 N03221 MbreakN

V_Vin+ N03539 0 AC 1mV

+SIN 0 2V 50Hz 0 0 0

M_M3 N03099 N03215 N03183 N03183 MbreakN

M_M8 N03243 N03261 N03249 N03249 MbreakN

M_M1 N03099 N03539 N03171 N03171 MbreakN

M_M2 N03135 N03215 N03171 N03171 MbreakN

V_Vin- 0 N03215 AC 1mV

+SIN 0 2V 50Hz 0 0 0

V_Vss N03249 0 -2.5Vdc

V_Vw+ N029671 0 AC 1mV

+SIN 0 1V 100Hz 0 0 0

V_Vw- 0 N029911 AC 1mV

+SIN 0 1V 100Hz 0 0 0

M_M6 N03183 N029911 N03221 N03221 MbreakN

V_Vdd N03261 0 2.5Vdc

M_M10 N03135 N03099 N03261 N03261 MbreakP

76

M_M4 N03135 N03539 N03183 N03183 MbreakN

M_M12 N04018 N03135 N04030 N04030 MbreakN

M_M13 N04198 N04170 N04030 N04030 MbreakN

M_M16 N04198 N04018 N03261 N03261 MbreakP

M_M14 N04030 N04194 N03249 N03249 MbreakN

M_M15 N04018 N04018 N03261 N03261 MbreakP

V_Vref N04194 0 1.5Vdc

R_R2 0 N04198 100k TC=0,0

E_U1 N04170 0 VALUE {LIMIT(V(0,N04472)*1E6,-15V,+15V)}

R_R3 N04472 N04170 1k TC=0,0

R_R4 N03135 N04472 1k TC=0,0

A.4 Multilayer Neuron:

source XOR_2

M_M19 N66764 N64064 N64050 N64050 MbreakN

M_M16 N66690 N650060 N66740 N66740 MbreakN

R_R2 0 N66336 100k TC=0,0

M_M45 N69298 N64296 N69408 N69408 MbreakN

M_M44 N68598 N64064 N64064 N64064 MbreakP

M_M7 N66058 N64064 N64050 N64050 MbreakN

M_M23 N67366 N67654 N67474 N67474 MbreakN

V_X11+ N66290 0

+PULSE 100m 500m 4m 1E-12 1E-12 4m 8m

77

M_M72 N64538 N64148 N64550 N64550 MbreakN

M_M46 N64148 N69054 N69408 N69408 MbreakN

M_M79 N65442 N65514 N64050 N64050 MbreakN

V_W31+ N669160 0

+PULSE 10m 50m 2m 1E-12 1E-12 2m 10m

M_M77 N65406 N65928 N65442 N65442 MbreakN

R_R1 0 N65928 100k TC=0,0

M_M43 N66336 N68358 N64064 N64064 MbreakP

R_R5 0 N64148 100k TC=0,0

V_W31- 0 N670441

+PULSE 50m 10m 2m 1E-12 1E-12 2m 10m

M_M61 N64020 N670441 N64030 N64030 MbreakN

M_M55 N69474 N64064 N64064 N64064 MbreakP

M_M65 N64148 N64082 N64064 N64064 MbreakP

R_R3 0 N64134 100k TC=0,0

M_M48 N64148 N64296 N69420 N69420 MbreakN

M_M30 N67548 N64064 N64050 N64050 MbreakN

V_W12- 0 N650501

+PULSE 70m 30m 2m 1E-12 1E-12 1m 8m

M_M4 N65928 N66290 N65976 N65976 MbreakN

R_Rout 0 N75391 100k TC=0,0

M_M27 N67474 N657280 N67524 N67524 MbreakN

V_Vdd N64064 0 2.5Vdc

M_M58 N64082 N64024 N64020 N64020 MbreakN

M_M17 N66702 N650501 N66740 N66740 MbreakN

78

M_M39 N68508 N661641 N68574 N68574 MbreakN

V_X22- 0 N65260

+PULSE 500m 100m 2m 1E-12 1E-12 2m 4m

M_M68 N64296 N73722 N64300 N64300 MbreakN

M_M78 N64134 N73483 N65442 N65442 MbreakN

R_R4 0 N64296 100k TC=0,0

M_M40 N68574 N64064 N64050 N64050 MbreakN

M_M63 N64044 N64064 N64050 N64050 MbreakN

V_X21+ N67654 0

+PULSE 100m 500m 2m 1E-12 1E-12 2m 4m

V_W21- 0 N658481

+PULSE 65m 15m 2m 1E-12 1E-12 1m 4m

M_M70 N64264 N64264 N64064 N64064 MbreakP

M_M20 N66618 N66618 N64064 N64064 MbreakP

M_M42 N68358 N68358 N64064 N64064 MbreakP

M_M69 N64300 N64376 N64050 N64050 MbreakN

M_M53 N69298 N69298 N64064 N64064 MbreakP

M_M25 N67366 N65166 N67486 N67486 MbreakN

M_M67 N64264 N66336 N64300 N64300 MbreakN

M_M28 N67486 N658481 N67524 N67524 MbreakN

V_X12+ N66988 0

+PULSE 100m 500m 4m 1E-12 1E-12 4m 8m

M_M80 N65406 N65406 N64064 N64064 MbreakP

M_M18 N66740 N64064 N64050 N64050 MbreakN

V_W11- 0 N648681

79

+PULSE 60m 20m 2m 1E-12 1E-12 1m 8m

M_M52 N69474 N64064 N64050 N64050 MbreakN

V_Vref2 N64376 0 1.5Vdc

M_M9 N65824 N65824 N64064 N64064 MbreakP

M_M41 N68598 N64064 N64050 N64050 MbreakN

V_W22+ N660240 0

+PULSE 35m 75m 1m 1E-12 1E-12 1m 4m

M_M66 N64044 N64064 N64064 N64064 MbreakP

M_M38 N68492 N660240 N68574 N68574 MbreakN

V_X12- 0 N64980

+PULSE 500m 100m 4m 1E-12 1E-12 4m 8m

M_M29 N67524 N64064 N64050 N64050 MbreakN

V_Vref1 N65514 0 1.5Vdc

M_M81 N64134 N65406 N64064 N64064 MbreakP

V_Vref3 N65264 0 1.5Vdc

M_M54 N64148 N69298 N64064 N64064 MbreakP

M_M64 N64082 N64082 N64064 N64064 MbreakP

M_M2 N65928 N64798 N65964 N65964 MbreakN

M_M5 N65964 N648240 N66058 N66058 MbreakN

V_W32+ N669640 0

+PULSE 40m 80m 2m 1E-12 1E-12 1.5m 10m

M_M75 N64538 N64538 N64064 N64064 MbreakP

M_M57 N64148 N64024 N69922 N69922 MbreakN

V_Vss N64050 0 -2.5Vdc

M_M31 N67366 N67366 N64064 N64064 MbreakP

80

M_M62 N64030 N64064 N64050 N64050 MbreakN

M_M10 N65928 N65824 N64064 N64064 MbreakP

M_M32 N65928 N67366 N64064 N64064 MbreakP

V_W11+ N648240 0

+PULSE 20m 60m 2m 1E-12 1E-12 1m 8m

M_M76 N75391 N64538 N64064 N64064 MbreakP

M_M33 N67548 N64064 N64064 N64064 MbreakP

M_M60 N69922 N669160 N64030 N64030 MbreakN

M_M35 N66336 N65260 N68492 N68492 MbreakN

M_M59 N64148 N64134 N64020 N64020 MbreakN

M_M21 N66336 N66618 N64064 N64064 MbreakP

M_M50 N69420 N75453 N69256 N69256 MbreakN

M_M34 N68358 N68792 N68492 N68492 MbreakN

M_M51 N69256 N64064 N64050 N64050 MbreakN

M_M8 N66082 N64064 N64050 N64050 MbreakN

M_M11 N66082 N64064 N64064 N64064 MbreakP

M_M15 N66336 N66988 N66702 N66702 MbreakN

M_M12 N66618 N66988 N66690 N66690 MbreakN

M_M1 N65824 N66290 N65964 N65964 MbreakN

M_M56 N64082 N64134 N69922 N69922 MbreakN

M_M49 N69408 N669640 N69256 N69256 MbreakN

V_X21- 0 N65166

+PULSE 500m 100m 2m 1E-12 1E-12 2m 4m

M_M36 N68358 N65260 N68508 N68508 MbreakN

V_W22- 0 N661641

81

+PULSE 75m 35m 1m 1E-12 1E-12 1m 4m

M_M71 N64296 N64264 N64064 N64064 MbreakP

M_M3 N65824 N64798 N65976 N65976 MbreakN

M_M73 N75391 N74490 N64550 N64550 MbreakN

V_W21+ N657280 0

+PULSE 15m 65m 2m 1E-12 1E-12 1m 4m

M_M6 N65976 N648681 N66058 N66058 MbreakN

M_M47 N69298 N69054 N69420 N69420 MbreakN

M_M14 N66618 N64980 N66702 N66702 MbreakN

M_M13 N66336 N64980 N66690 N66690 MbreakN

M_M74 N64550 N65264 N64050 N64050 MbreakN

V_X22+ N68792 0

+PULSE 100m 500m 2m 1E-12 1E-12 2m 4m

V_W32- 0 N75453

+PULSE 80m 40m 2m 1E-12 1E-12 1.5m 10m

V_X11- 0 N64798

+PULSE 500m 100m 4m 1E-12 1E-12 4m 8m

M_M26 N65928 N67654 N67486 N67486 MbreakN

M_M37 N66336 N68792 N68508 N68508 MbreakN

M_M22 N66764 N64064 N64064 N64064 MbreakP

M_M24 N65928 N65166 N67474 N67474 MbreakN

V_W12+ N650060 0

+PULSE 30m 70m 2m 1E-12 1E-12 1m 8m

M_M82 N73483 N65928 N64050 N64050 MbreakN

M_M83 N73722 N66336 N64050 N64050 MbreakN

82

M_M84 N69054 N64296 N64050 N64050 MbreakN

M_M85 N74490 N64148 N64050 N64050 MbreakN

M_M86 N64024 N64134 N64050 N64050 MbreakN

M_M87 N73483 N65928 N64064 N64064 MbreakP

M_M88 N64024 N64134 N64064 N64064 MbreakP

M_M89 N69054 N64296 N64064 N64064 MbreakP

M_M90 N74490 N64148 N64064 N64064 MbreakP

M_M91 N73722 N66336 N64064 N64064 MbreakP

B. MATLAB Code for XOR Classification Problem

% This MATLAB Code shows the backpropagation algorithm acting on the

%proposed multilayer feedforward neural network for iteratively

%minimizing the error between the network output and the target XOR

response

close all

clearvars

clc

X = [0 0; 0 1; 1 0; 1 1]; % training input pattern

T = [0; 1; 1; 0]; % target output pattern

% Enter the matrix for storing bias terms

b = input('Enter the bias matrix: ');

% Error condition for mismatching input and target matrices

if size(X) ~= size(T)

83

disp('***ERROR: Training Input and Target Output matrices do not match in

size***')

return

end

% Enter the learning rate coefficient

alpha = input('Enter the value of learning rate coefficient: ');

% Set the maximum number of epochs

max_epochs = 10000;

% Condition for learning rate values below 0.1

if alpha <= 0.1

max_epochs = max_epochs*10;

end

% Enter the value of error tolerance

error_tolerance = input('Enter the maximum value of error tolerance: ');

numIL = length(X(:,1)); % Calculate the size of input layer

numOL = length(T(:,1)); % Calculate the size of output layer

numHL = 1; % Set the number of hidden layer

W = 0.05*rand(3,3); % Weight matrix initialized to small random values

current_epoch = 0; % Maintain count for current iteration

% Loop through the maximum iterations

for i = 1:max_epochs

current_epoch = current_epoch + 1;

out = zeros(4,1); % Output matrix initialized to zero for first pass

% Loop through the input layer

for j = 1:numIL

% Calculate the net sum from the first input to the hidden layer

netH1 = b(1,1).*W(1,1) + X(j,1).*W(1,2) + X(j,2).*W(1,3);

% Calculate the ouput value from the first activation function

% block using the sigmoid function

84

out2(1) = 1./(1 + exp(-netH1));

% Calculate the net sum from the second input to the hidden layer

netH2 = b(1,2).*W(2,1) + X(j,1).*W(2,2) + X(j,2).*W(2,3);

% Calculate the ouput value from the second activation function

% block using the sigmoid function

out2(2) = 1./(1 + exp(-netH2));

% Calculate the net sum from the hidden to the output layer

netHO = b(1,3).*W(3,1) + out2(1).*W(3,2) + out2(2).*W(3,3);

% Calculate the overall network output using the sigmoid function

out(j)= 1./(1 + exp(-netHO));

error = T(j) - out(j); % Calcuate the network error

err(i) = (sum((error).^2)).*0.5; % Calcualte the MSE

delta = out(j)*(1 - out(j))*error; % Calculate the output delta error

value

% Progressively compute delta values from the hidden to the output

% layer

del_OH1 = out2(1)*(1-out2(1)).*W(3,2)*delta;

del_OH2 = out2(2)*(1-out2(2)).*W(3,3)*delta;

% Loop through number of output layers minus one

for k = 1:numOL-1

% Condition for updating weights associated with the bias values

if k == 1

W(1,k) = W(1,k) + alpha*b(k,1)*del_OH1;

W(2,k) = W(2,k) + alpha*b(k,2)*del_OH2;

W(3,k) = W(3,k) + alpha*b(k,3)*delta;

else

% Condtion for updating original values of weights using

% learning rate coefficient and previously computed delta values

85

W(1,k) = W(1,k) + alpha.*X(j,1)*del_OH1;

W(2,k) = W(2,k) + alpha.*X(j,2)*del_OH2;

W(3,k) = W(3,k) + alpha.*out2(k-1)*delta;

end

end

end

% Condtion for MSE reaching error tolerance value

if err(i) <= error_tolerance

fprintf('Training converged at epoch: %d\n',i);

break

end

end

% Display the values of network and target output after training converges

disp('The Network Output is: ')

disp(out);

disp('The Target Output is: ')

disp(T);

% Plot the chart for Error vs Number of Epochs

figure(2)

plot(err)

xlabel('Epochs')

ylabel('Error')

title('Error versus Number of Epochs')

86

C. Multilayer Neural Network Design using Cadence OrCAD for XOR Classification

87

88

89

References:

[1] A. Arun, H. Srivastava, S. Mada and M. B. Srinivas, "Analog VLSI Design of Neural Network

Architecture for Implementation of Forward Only Computation", Asia Pacific Conference on

Postgraduate Research in Microelectronics & Electronics (PRIMEASIA), 2012

[2] J. R. Shinde and S. Salankar, "Multi-objective Optimization for VLSI Implementation of

Artificial Neural Network", Current Trends in Technology and Science, ISSN 2279-0535, Volume

04, Issue 03, Apr-May 2015

[3] J. Dugger, "Adaptive Analog VLSI Signal Processing and Neural Networks", Thesis submitted to

the School of Electrical and Computer Engineering, Georgia Institute of Technology, November

2003

[4] N. Chasta, S. Chouhan and Y. Kumar, "Analog VLSI Implementation of Neural Network

Architecture for Signal Processing", International Journal of VLSI design & Communication

Systems (VLSICS) Vol.3, No.2, April 2012

[5] S. Hayman, "THE McCULLOCH-PITTS MODEL", International Joint Conference on Neural

Networks, 1999

[6] L. Zhang and B. Zhang, "A Geometrical Representation of McCulloch–Pitts Neural Model and

Its Applications", IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY

1999

90

[7] “Rosenblatt’s Perceptron”, Catalogue, Pearson Education Canada, Oct 2008, Last accessed May

31, 2017

[8] O. G. Selfridge, Pandemonium: A Paradigm for Learning, Mechanization of Thought Processes:

Proceedings of the Symposium Held at the National Physical Laboratory, November 1958, London:

HMSO, pp. 513-526

[9] B. Widrow and M. A. Lehr, "Adaptive Neural Networks and their Applications", Information

Systems Laboratory, Dept. of Electrical Engineering, Stanford University, California, 1993

[10] M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational Geometry", 1969

[11] P. J. Werbos, "Backpropagation: Past and Future", IEEE International Conference on Neural

Networks, 1988

[12] D. B. Parker, "A Comparison of Algorithms for Neuron like Cells", Proc. Second Annual

Conference on Neural Networks for Computing, Proceedings Vol. 151, 327-332,

American Institute of Physics, New York, 1987

[13] A. Grubl, "VLSI Implementation of a Spiking Neural Network", Dissertation presented to the

Joint Faculties for Natural Sciences and Mathematics, Ruprecht-Karls-Universitat, Heidelberg,

Germany, July 2007

91

[14] M. A. AboEl-soud, R. A. AbdelRassoul, H. H. Soliman and L. M. El-ghanam, "Low-Power

CMOS Circuits for Analog VLSI Programmable Neural Networks, Proceedings of the 15th

International Conference on Microelectronics, 2003

[15] M. Valle, D.D. Caviglia, and G.M. Bisio, "Design of a CMOS ASIC Chip Featuring Analog

Neural Computational Primitives", Procedings of EURO ASIC, 1992

[16] D. Kibler and P. Langley, "Machine learning as an Experimental Science", Proceedings of the

Third European Working Session on Learning, London, UK, 1988

[17] K. Du and M. Swamy, "Neural Networks and Statistical Learning", DOI: 10.1007/978-1-4471-

5571-3, October 2013

[18] H. B. Barlow, "Unsupervised Learning", Neural Computation, Volume: 1, Issue: 3, September

1989

[19] P. Hasler, C. Diorio, B. A. Minch and C. Mead, "Single Transistor Learning Synapse with Long

Term Storage", International Symposium on Circuits and Systems (ISCAS), 1995

[20] P. Patel, "Realization of Logic Gates using CMOS Gilbert Mulitplier Cell", 3rd Internation

Advance Computing Conference (IACC), 2013

92

[21] B. D. Yammenavar, V. R. Gurunaik, R. N. Bevinagidad and V. U. Gandage, "DESIGN AND

ANALOG VLSI IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK", International

Journal of Artificial Intelligence & Applications (IJAIA), Vol.2, No.3, July 2011

[22] K. Leboeuf, A. Namin, R. Muscedere, H. Wu and M. Ahmadi, "High Speed VLSI

Implementation of the Hyperbolic Tangent Sigmoid Function", Proceedings of 3rd International

Conference on Convergence of Hybrid Information Technology, Nov 2008

[23] B. Zamanlooy and M. Mirhassani, "Efficient VLSI Implementation of Neural Networks with

Hyperbolic Tangent Activation Function", IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 1, January 2014

[24] S. Liu and R. Mockel, "Temporally learning floating-gate VLSI synapses", IEEE International

Symposium on Circuits and Systems, 2008

[25] S. Ramakrishnan, P. E. Hasler and C. Gordon, "Floating Gate Synapses with Spike-Time-

Dependent Plasticity", IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS,

Vol. 5, No. 3, JUNE 2011

[26] P. Hasler, B. A. Minch and C. Diorio, "An Auto-zeroing Floating Gate Amplifier", IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol 48, Issue 1, 2001

[27] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W.

Haensch and D. Jamsek, "An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in

93

High-Performance Caches", IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol. 43, No. 4, April

2008

[28] V. Sivakumar and M. Malathi, "PROGRAMMABLE SYNAPTIC MEMORY WITH SPIKING

NEURAL NETWORK IN VLSI", Information Communication and Embedded Systems (ICICES),

International Conference 2014

[29] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, and K. Roy, "Significance Driven Hybrid

8T-6T SRAM for Energy-Efficient Synaptic Storage in Artificial Neural Networks", Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2016

[30] G. Lecerf, J. Tomas and S. Saighi, "Excitatory and Inhibitory Memristive Synapses for Spiking

Neural Networks", IEEE International Symposium on Circuits and Systems (ISCAS), 2013

[31] T. Cabaret, L. Fillaud, B. Jousselme, J. O. Klein and V. Derycke, "Electro-grafted organic

memristors: properties and prospects for artificial neural networks based on STDP", Proceedings of

the 14th IEEE International Conference on Nanotechnology Toronto, Canada, August 18-21, 2014

[32] H. Kim, M. Sah, C. Yang, T. Roska, and L. O. Chua, "Memristor Bridge Synapses",

Proceedings of the IEEE, Vol. 100, No. 6, June 2012

[33] S. P. Adhikari, H. Kim, R. K. Budhathoki, C. Yang and L. O. Chua, "A Circuit-Based Learning

Architecture for Multilayer Neural Networks with Memristor Bridge Synapses", IEEE

94

TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, Vol. 62, No. 1,

January 2015

[34] M. M. Gupta, L. Jin and N. Homma, "Static Neural Networks", John Wiley and Sons, ISBN: 0-

471-21948-7, 2003

[35] J. M. Keller, "Multilayer Neural Networks and Backpropagation", Journal: Fundamentals of

computational intelligence: neural networks, fuzzy systems, and evolutionary computation, John

Wiley & Sons, 2016

[36] An. S. Shafie, I. A. Mohtar, S. Masrom and N. Ahmad, "Backpropagation Neural Network with

New Improved Error Function and Activation Function for Classification Problem", IEEE

Symposium on Humanities, Science and Engineering Research, 2012

[37] C. Yu, Y. Tang and B. Liu, "An adaptive activation function for multilayer feedforward neural

networks", TENCON '02. Proceedings, IEEE Region 10 Conference on Computers,

Communications, Control and Power Engineering, Vol. 1, Year 2002

[38] X.G. Wang, Z. Tang, H. Tamura and M. Ishii, "A Modified Error Function for The

Backpropagation Algorithm", Neuro-computing, Vol. 57, 2004

[39] M. Lourakis, "A Brief Description of the Levenberg-Marquardt Algorithm Implemented by

levmar", Institute of Computer Science Foundation for Research and Technology - Hellas (FORTH),

February 11, 2005

95

[40] M. A. Costa, A. P. Braga, B. Rodrigues de Menezes, "Improved generalization learning with

Sliding Mode Control and the Levenberg-Marquadt Algorithm", Proceedings of the VII Brazilian

Symposium on Neural Networks (SBRN’02), 2002

[41] M. T. Hagan and M. B. Menhaj, "Training Feedforward Networks with the Marquardt

Algorithm", IEEE TRANSACTIONS ON NEURAL NETWORKS, Vol. 5, No. 6, November 1994

[42] P. de Chazal and M. D. McDonnell, "Efficient computation of the Levenberg-Marquardt

algorithm for feedforward networks with linear outputs", International Joint Conference on Neural

Networks (IJCNN), 2016

[43] R. Cancelliere, "Feedforward Neural Networks", Dept. of Computer Science, University of

Turin, Italy

[44] J. Elder, "Multilayer Perceptrons", Computer Science Engineering (CSE) 4404/5327

Introduction to Machine Learning and Pattern Recognition, November 2012

