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Abstract

This work concerns design and prediction of properties of carbon and hydrogen
materials on the basis of computer simulations. After an overview of the theory
behind computational methods used in actual calculations, pure carbon systems
are discussed, starting with the traditional carbon materials graphite and diamond
and continuing with the novel structures such as nanotubes and nanoporous car-
bon. For nanoporous carbon we show how non-hexagonal rings introduce electronic
aromatic radicals corresponding to additional bands which narrow the band gap.
The main part of the thesis contains investigation of interaction between carbon
tubular systems and hydrogen. First, physisorption and chemisorption of hydro-
gen on tubes are discussed. We found that more curved regions of carbon surface
have stronger Van der Waals interaction with hydrogen, leading to an increase in
physisorption. In chemisorption, if hydrogen is allowed to access the both sides
of the carbon surface, the hydrogen cluster becomes favorable after some initial
size, due to a collective stabilization of successive adjacent chemisorbed hydro-
gen atoms mediated by cooperative alternate distortions in the underlying carbon
sheet. Afterwards, we show how chemisorption can be used to change mechani-
cal and electronic properties of nanotubes. We present our two original carbon-
hydrogen tubular structures, the sp3-only tubes and the eye tubes. Small sp3

tubes are very strong mechanically and insulators electronically, while eye tubes
are related to the graphitic ribbons, with unique electronic band structures and
a magnetic ground state. The zig-zag eye tubes have band gap sensitive to the
applied electric field, while the armchair eye tubes have two very close long flat
bands around the Fermi level potentially interesting for terahertz applications. In
addition, we propose how those structures could in principle be realized in exper-
iment.
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Chapter 1

Introduction

This chapter presents an (incomplete) overview of the theoretical basis behind the

calculational methods presented latter. Its main purpose is to introduce ideas and

notation used latter in this work.

1.1 Basic Formulas

The atom seen as a nucleus surrounded by electrons is already quite a complicated

object for practical calculations. As always in science, it is important to make a

model which captures only important effects and abstracts the rest of the system.

The first layer of abstraction in materials modeling is to divide an atom into valence

electrons, which contribute to the chemical bonding and the core electrons, which

are too deep in the atom for any significant role in the materials chemistry (except

for the requirement that the valence states must be orthogonal to the core states).

The nucleus and core electrons are then described as ionic core, a rigid object

influencing the valence electrons through its net charge. In addition to simplifying

calculation, the core concept also increases the accuracy, since tiny energetic effects

are more visible on the energy scale of 101 Rydbergs (as for valence electrons), than

on 103 Rydbergs (as a typical energy of all electrons in an atom). This division,

however, is more problematic for heavier atoms, where the distinction between core

and valence electrons is not as sharp and depends on the environment.
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In this (non-relativistic) picture the Hamiltonian of matter is given by:

H = TI + Te + VII + VIe + U, (1.1)

where TI is the kinetic energy of ionic cores, Te is the kinetic energy of the valence

electrons and VII, VIe and U are the ion-ion, ion-electron and electron-electron

Coulomb interaction terms.

The Hamiltonian (1.1) incorporates two subsystems with very different time

scales. Since ionic cores are much (thousands of times) heavier than electrons,

the electronic subsystem evolves so much faster than ions that for the electronic

dynamics ions are practically fixed in space. While ions move, the electronic sub-

system almost instantly conforms to its ground (equilibrium) state along the ionic

path. The resulting equilibrium electronic configuration for the current position

of ions then produces an effective potential affecting ionic dynamics.

In the formalism, this observation is formulated as the Born-Oppenheimer (adi-

abatic) approximation, i.e. the assumption that the eigenstates of (1.1) can be

found by focusing on the electronic eigenproblem with ionic positions as parame-

ters. First, the ground state for the electronic subsystem Eel(RI) should be found

as the lowest eigenstate of the Hamiltonian He(RI) = Te + U + VIe(RI), which

depends on the ionic positions as parameters. Once Eel(RI) is known, the ground

state of the system with ions at rest can be found by minimizing

E(RI) = VII(RI) + Eel(RI) (1.2)

with respect to the set of ionic positions RI.

The main complication in this prescription (called also the relaxation proce-

dure) comes from the fact that it contains two interdependent self-consistent prob-

lems (Figure 1.1): the electronic subsystem is described by an integro-differential

(Schrödinger) equation, which itself must be solved self-consistently for each step

in the outer ionic relaxation loop.
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?
Electronic subsystem

eigenproblem

?

�
Electronic
self-consistent loop

♦

Effective potential
construction

?
Ions move

♦

Ionic relaxation
self-consistent loop

Figure 1.1. Essential steps in the relaxation procedure.

1.2 Periodic Systems

In analysis of physical systems it is always helpful to make an effort to understand

and properly implement the symmetry. First of all, electrons have intrinsic sym-

metry of indistinguishable fermionic particles, which is reflected in the formalism

as the requirement that the total wavefunction must be antisymmetric with re-

spect to permutations of electronic coordinates. The full system’s wavefunction is,

however, never used in actual calculations, since set of electrons is, as any other

many-body interacting system, too complicated to be dealt with directly. Theo-

retical physics in a large measure is an art of the proper reduction of complicated

unsolvable systems to one or two particle (the only two analytically solvable) mod-

els. In order to produce a good model, this reduction process should preserve

important properties of the starting system — before others, its symmetry. The

next chapter discusses one particular highly succesful way to reduce the interacting

electron system to a single particle problem. Let us at this moment assume that

it has been already done and focus on consequences of additional symmetries the

single particle (model) system might have.

In this work various translationally periodic systems will be discussed. They

are completely determined by the unit cell and the set of primitive translations.

Quantitative description of this intuitive understanding is based on group theory.

Among other results, theory (more details are given in the Appendix 5) shows that
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the best basis to use in describing a periodic (one particle) system is a collection of

plane waves exp(−ı~k · ~r), where the wave vector ~k belongs to the (first) Brillouin

zone (BZ) of the lattice. As a consequence of periodic symmetry, wave vectors

do not change in the system’s evolution (they are good quantum numbers) and

they label eigenstates of the periodic system. However, the wave numbers are not

enough to count all eigenstates. There is in fact an infinite dimensional subspace

of states for each wave vector and an additional quantum number n should be

introduced to index the eigenbasis in that space. All energies (eigenvalues) for the

same n and all possible ~k form an energy band as an energy surface (function)

above the BZ. Each eigenstate ϕ~kn(~r) of a periodic system must have periodic

amplitude and changes only phase from one to the other unit cell for amount

~k · (~a1 − ~a2), where ~aj is position of the cell j (Bloch theorem).

A periodic system can be more than just translationally symmetric. The full

symmetry of the crystal can always be shown as some kind of product between

the translational group and some point group1. This additional symmetry, if used

properly, helps to further reduce the necessary calculations.

Periodic calculations involve integrations of the functions over the crystal. If

the functions involved are periodic, the integration can be carried out substantially

more easily in ~k-space (“inverse space”), where it translates to a sum of the Fourier

coefficients.

A more complicated problem is how to deal with integrations in the inverse

space. For example, the total electronic energy of the crystal is given by E =
∑

n

∫

f(~k)En(~k)d3~k, where f(~k) is the occupation factor and En(~k) is the band

energy. Here summation is over the bands and integration is over the Brillouin

zone. Since calculation of values like En(~k) is very expensive, an approximate

method has been developed [2], which replaces integration over the Brillouin zone

with summation over a special set of ~k points, chosen such that the result is

as accurate as possible. Monkhorst and Pack [2] showed that the best set of

points is an equally spaced lattice ~kprs = u1
~b1 + u2

~b2 + u3
~b3, where coefficients are

uj ∈ {(2r − qj − 1)/2qj|r = 1, 2, . . . , qj} and qj is the number of special points

along direction ~bj.

1All elements of the point group leave at least one point intact when they act in the space.



Chapter 2

Methods

In the past several decades, as available computer power increased, a broad range of

methods for numerical studies of materials has been developed, each of them good

for specific uses. In this work we are concerned with the total energy and electronic

properties of carbon-hydrogen systems. Both carbon and hydrogen are small,

relatively simple atoms and can be (under some conditions) reasonably modeled

with almost any quantum based computational method. Depending on the size of

the system, investigated property and targeted accuracy, in actual calculations we

used tight binding and density functional based methods.

2.1 Tight Binding Method

The tight binding method solves the double self-consistent problem difficulty men-

tioned in section 1.1 in a simplest possible way, completely avoiding self-consistent

electronic calculation. Instead, the electronic wavefunctions are approximated as

linear combinations of atomic orbitals (LCAO method):

ψi(~r) =
∑

ν

Cνi ϕν(~r − ~Rν), (2.1)

where index ν goes through all included atomic orbitals on all atomic sites in

the system, Cνi are to-be-determined linear combination coefficients and ~Rν is

atomic site position for orbital ν. In order to have better numerical convergence,

contracted atomic orbitals ϕν are usually used [4], which have the correct shape,
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but decay faster than the exact wavefunctions.

The Schrödinger equation then takes a matrix form

(H − εiS)Ci = 0, (2.2)

where Ci is a vector of coefficients from (2.1) and S is the overlap matrix with

elements Sµν =
∫

dr ϕ∗
µ(~r − ~Rµ)ϕν(~r − ~Rν). Detailed analysis [3] shows that

for transferability of tight binding parameters (their ability to describe atoms in

different enviroments) it is essential to have non-orthogonal (S 6= 1) atomic orbital

set. Despite the severe approximation (2.1), the hamiltonian matrix elements

Hµν =

∫

dr ϕ∗
µ(~r − ~Rµ)H ϕν(~r − ~Rν) (2.3)

are still very hard to calculate, since they include up to three-center integrals

(which happens when the orbitals and the electronic-ion potential term in (1.1)

are all centered on different atoms).

Slater and Koster [5] developed a way to fit the hamiltonian matrix elements

(2.3) with the two-center-only form. If more accurate density functional theory is

used for the fit, the explicit expression is [4]:

Hµν =

{

εµδµν , if µ = ν
∫

dr ϕ∗
µ(~r − ~Rµ) (T + V

(µ)
KS + V

(ν)
KS )ϕν(~r − ~Rν), if µ 6= ν

(2.4)

where εµ is the on-site energy and V
(µ)
KS is the Kohn-Sham potential (discussed in

detail in next section) for atomic orbital µ (index µ uniquely defines the host atom

for that orbital).

Once the generalized eigenproblem (2.2) is solved, resulting in a set of energies

εi, the energy of the system can be found as

Etotal =
∑

i

εif(εi) + F, (2.5)

where f(εi) is the electron population of the level εi and F is a short-ranged ionic

repulsive correction term, which also can be fit using density functional calcula-

tion [4].
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The prescription presented here is called the non-orthogonal density functional-

based tight binding method. Since the LCAO description of the electronic sub-

system is very rigid, the tight binding method has a lower accuracy than most of

the other quantum-based methods (for example, the total energy error is usually

within 10-15%), but is also the least demanding and can be applied on massive

systems containing thousands of atoms. In addition to that, the abstraction of

the electronic subsystem, as it is done in the tight-binding, can actually lead to a

better understanding of the relevant physics, if it is not related to the fine details

of the electronic structure. In the case of simple small atoms (the first row in the

periodic table), this approach with carefully chosen atomic orbitals gives also rea-

sonably accurate results. Carbon, hydrogen, oxygen and nitrogen are all first row

elements, so many of the organic compounds can be satisfactorily well described

in the frame of the tight binding method.

2.2 Density Functional Theory

In order to make more reliable description of materials, one must develop a precise

model of the electronic subsystem. In the usual quantum mechanical picture, basic

objects are wavefunctions and operators in the functional space. Neither is suitable

for detailed description of many-body systems. For example, a crude estimate for

a system of N = 100 interacting electrons gives a hopeless number of 10150 [6]

parameters needed to develop a modestly precise (with relative error of the order

of 10−1) variational wavefunction. This “exponential wall” shows that the problem

is not in our current technical (computing) capabilities, but within the approach

itself1.

Regarding operators in the functional space, they all contain much more infor-

mation than we need to describe our specific system. For example, the hamiltonian

has an infinite number of eigenstates, but we usually need to describe a system

only in its ground state and maybe its first several excited states.

The density functional theory (DFT) is an alternative description of a system

1In his Nobel lecture W. Kohn comments on this problem using words of his teacher, J. H.
Van Vleck [6]: “In general the many-electron wave function Ψ(r1, . . . , rN ) for a system of N

electrons is not a legitimate scientific concept, when N ≥ No, where No ≈ 103.”
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of bound interacting electrons, where instead of wavefunctions and operators, the

basic objects are the ground state probability density and appropriate functionals.

This approach is possible due to two fundamental theorems proven by P. Hohenberg

and W. Kohn [7]:

• For any bound system of interacting electrons in some external potential

Vext(~r), the ground state density n(~r) determines this potential uniquely (up

to an additive constant).

• For any particular external potential Vext(~r), the exact ground state density

and the exact ground state energy are the global minimum coordinates of

the energy seen as functional of density (such functional exists due to the

first theorem).

As a consequence of the first theorem, because any system of interacting elec-

trons is uniquely defined by the number of particles and the external potential, the

ground state density completely determines everything about the system, includ-

ing hamiltonian and all excited states. That assures that the variational energy

functional is always well defined in the second theorem.

The proof of these two theorems by reduction to a contradiction is very simple,

but not constructive. In order to make a practical method out of the density

functional theory, Kohn and Sham [8] started from the basic ground state energy

variational principle. Their construction shall be presented here in a more elegant

and general way due to Levy [9].

As the variational principle says, the ground state energy and the ground state

wavefunction are coordinates of the global minimum of the functional 〈Ψ | H | Ψ 〉
over all normalized wavefunctions Ψ. Since every trial wavefunction Ψ̃ corresponds

to only one density ñ, the variational search can be carried on in two steps: first

by finding infimum2

E[ñ] = inf
α
〈Ψα

ñ | H | Ψα
ñ 〉, (2.6)

over all wavefunctions Ψα
ñ, which produce the same density ñ and then finding

minimum of those infimums, i.e. minimizing the functional E[ñ], which is already

2There is a subtle difference between infimum and minimum. Infimum exists for any set,
what is not true for minimum. However, if minimum exists (as we know in this case), then it is
also always the infimum of a set. Since the Levy’s construction introduces subsets of auxiliary
wavefunctions, in general it is safer to use infimum in definition of E[n].
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defined as result of (constrained) minimization. The external potential doesn’t

depend on ñ, so that the ground state is

Eo = min
ñ
E[ñ] = min

ñ

{
∫

Vext(~r) ñ(~r) d3~r + F [ñ]

}

, (2.7)

where F [ñ] = infα〈Ψα
ñ | (Te +U) | Ψα

ñ 〉 (Te and U are defined in 1.1) is a universal

functional, an intrinsic characteristic of interacting electrons, which doesn’t depend

on the environment.

The universal functional F [ñ] contains kinetic energy and internal potential,

i.e. all the complexity of the wavefunction and operators in the usual quantum

picture are encapsuled in F [ñ]. This complexity comes not only from potential

operators, but also from the wavefunction of interacting electrons, so that the

kinetic term T [ñ] = FU=0[ñ] = 〈Ψα
ñ | T | Ψα

ñ 〉 is also in general a very complicated

object. It becomes simple sum of kinetic energies of particles only if Ψα
ñ is a

Slater determinant of one-particle states, as for non-interacting particles. In that

case, the true non-interacting ground state is always a Slater determinant and the

variational search can be constrained from the beginning to Slater determinants

only.

In the next, crucial, step let’s take a pragmatic approach and extract from the

universal functional everything we know how to deal with:

F [ñ] = Ts[ñ] +
1

2

∫ ∫

ñ(~r)ñ(~r′)

‖~r − ~r′‖ d
3~rd3~r′ + Exc[ñ], (2.8)

where:

• Ts[ñ] is functional which maps ñ into kinetic energy of the system of non-

interacting particles with the density ñ. The first HK theorem guarantees3

that this functional is well defined. Also, it is worth noting that the kinetic

energy functionals T [ñ] = FU=0[ñ] and Ts[ñ] are different objects: they have

the same kinetic operator in their definition, but they are sandwiched with

different wavefunctions. Since we are dealing with functionals, it is perfectly

valid to extract from F [ñ] part which represents functional for some other, in

3Under assumption of so-called V-representability of the given density, which seems to be
valid for all physically meaningful systems.
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this case non-interacting system, as far as the functional argument (density)

is the same.

• The term with integral is the Hartree part of the electronic interaction, which

is the only part of the universal functional F [ñ] with a known explicit ex-

pression in terms of density.

• Exc[ñ] is called the exchange correlation functional and it contains everything

that is left in F [ñ] besides the above two functionals. It contains remains of

both kinetic and potential parts. The exact form of the exchange correlation

functional is unknown and it must be approximated on the basis of the

physics of the system in question. The key to the success of DFT is the fact

that Exc[ñ] is (for a wide range of systems) much smaller than the other two

parts of the universal functional.

Using (2.8) the expression for energy (2.7) can be rewritten in a non-interacting

system form:

Eo = min
ñ

{

Ts[ñ] +

∫

Veff(~r)ñ(~r)d3~r

}

, (2.9)

where Veff is kernel of the functional
∫

Vext(~r)ñ(~r)d3~r+ 1
2

∫ ∫ ñ(~r)ñ(~r′)
‖~r−~r′‖

d3~rd3~r′+Exc[ñ].

However, we know how to find the ground state density of the non-interacting

system: it is enough to find eigenstates ϕj of the one-particle hamiltonian

H1 = −1

2
∇2 + Veff (2.10)

and the ground state density is given by no =
∑

j |ϕj|2. According to the con-

struction, this is also the ground state density of the fully interacting system.

In this way the above Kohn-Sham construction leads to the ground state density

of an interacting electron system solving an auxiliary one-particle hamiltonian

eigenproblem with an effective external potential.

By applying the functional derivative, a more explicit formula for Veff can be

established as Veff(~r) = Vext(~r) +
∫ no(~r′)

‖~r−~r′‖
d3~r′ + Vxc(~r), where Vxc = δ

δñ
Exc[ñ]

∣

∣

ñ=no

.

Since Veff is expressed in terms of the ground state density no, the one-particle

hamiltonian eigenproblem needs to be solved self-consistently.

Strictly speaking, the eigenstates of the auxiliary hamiltonian (also called



11

Kohn-Sham orbitals) separately have no physical meaning. However, since they

are density-optimized one particle states, they usually well resemble chemically

acceptable molecular orbital shapes for different levels in molecules and bands in

crystals and are widely used for charge density analyses.

Similarly, the eigenvalues of the auxiliary hamiltonian (Kohn-Sham orbital en-

ergies) have no physical meaning except that the energy of the highest occupied

Kohn-Sham orbital is equal to the ionization energy of the system. Despite that, it

is empirically proven that the auxiliary non-interacting spectrum resembles to some

extent the energy levels of interacting electrons and it is particularly common to

consider DFT band plots in discussion of periodic structure electronic properties.

2.2.1 Local Density Approximation

The only missing piece in the Kohn-Sham construction is the exchange-correlation

functional Exc[n]. The general form of this functional is not known, but its ex-

treme case, when the function n(~r) is uniform, can be calculated. When n is a

constant, the exchange-correlation functional becomes a function Exc(n) describing

the uniform electron gas exchange-correlation energy. Even in this simplest case,

the energy function Exc(n) can be found only numerically, on the basis of a Monte

Carlo simulation4.

In the general case, density n is a function of the position ~r and the functional

Exc[n] has an unknown form, but the uniform electron gas result can still be used

as part of the local density approximation (LDA) of the exchange-correlation func-

tional as ELDA
xc [n] =

∫

exc(n(~r))n(~r)d3~r, where exc(n(~r)) is the uniform electron

gas exchange-correlation energy per particle.

More careful analysis [11] shows that for the actual calculations some global

properties (angular average and sum rules) of the exchange-correlation functional

are more important than its detailed shape. Since the uniform electron gas is a

real (although quite idealized) system of interacting electrons, the LDA based on

it satisfies all these requirements. That explains why although the uniform gas is

a very simplified model of the general electronic system, in practice LDA gives for

4More precisely, the exchange part has an analytical form, but that is not true for the cor-
relation part, first numerically calculated by Ceperley [10] using Monte Carlo method. As an
alternative, the correlation part can be calculated using Feynman diagrams summation.
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a wide range of systems quite accurate results.

The LDA gives very accurate results for the geometry: it predicts bond lengths

and bond angles usually within around 1% relative error to the experiment. The

LDA energy error is on the order of 5-10% and this approximation systematically

overbinds the atoms. For periodic systems, LDA gives bands usually with correct

shapes, but distances between them are systematically underestimated. Some

materials are even predicted to be metals, while they are semiconductors (one

example is germanium).

In more complicated cases, like magnetic or heavy fermion systems, LDA (and

local spin density approximation (LSDA), the version with unpaired spins) becomes

qualitatively inaccurate. For example, LSDA predicts that the iron has a non-

magnetic fcc lattice ground state, in contrast to the experimental magnetic bcc Fe

ground state.

Having in mind all these shortcomings, a number of other DFT methods have

been developed, most notably the generalized gradient approximation (GGA) [11].

However, LDA remains the method of choice for many materials, especially if they

contain only simple atoms, such as carbon and hydrogen, as in our case.

2.2.2 Pseudopotentials

As discussed in the Introduction, one simplification in the description of materials

comes from the division of atoms into core and valence electrons. In addition to

that, DFT gives a way to reduce system to one particle hamiltonian (2.10) eigen-

problem. Despite all these simplifications, the valence wavefunctions are still too

complicated in the core region for practical calculations. Fortunately, there is room

for further approximation, allowed by the fact that for chemical properties only

the part of electronic wavefunction outside of the core electron region is important.

Hence, without losing chemical accuracy, it is possible to replace the true valence

wavefunction with a better behaving pseudowavefunction, which is the same as the

true wavefunction outside the core and smoother in the core region. The smooth-

ness of the pseudowavefunction is especially important in periodic systems, since

a smoother function requires fewer plane waves in the basis.

One way to construct the pseudowavefunction | ψ̃v 〉 is to subtract a linear
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combination of core states
∑

c α
v
c | φc 〉 from the true valence wavefunction | ψv 〉.

Then the difference | ψv 〉− | ψ̃v 〉 =
∑

c α
v
c | φc 〉 vanishes outside the core, since

the core wavefunctions are essentially non zero only inside the core radius.

Using the fact that all core and valence states are mutually orthogonal (as a

consequence of the Hamiltonian hermiticity):

0 = 〈φc | ψv 〉 = 〈φc | ψ̃v 〉 + αv
c ⇒ αv

c = −〈φc | ψ̃v 〉 (2.11)

and the fact that the true valence state | ψv 〉 =| ψ̃v 〉+
∑

c α
v
c | φc 〉 is an eigenstate

of the Kohn-Sham Hamiltonian (2.10):

H1 | ψv 〉 = Ev | ψv 〉 ⇒ H1 | ψ̃v 〉 +
∑

c

αv
c(Ec − Ev) | φc 〉 = Ev | ψ̃v 〉, (2.12)

we have:
(

H1 +
∑

c

(Ev − Ec) | φc 〉〈φc |
)

| ψ̃v 〉 = Ev | ψ̃v 〉. (2.13)

That means, although | ψ̃v 〉 is not an eigenstate for the original Hamiltonian, it

is an eigenstate of a modified Hamiltonian with the pseudopotential Vps = V +
∑

c(Ev − Ec) | φc 〉〈φc | instead of the original potential V . Since the valence

energy Ev (also called the local energy for the pseudopotential) is always bigger

than the core energy Ec, the core sum is always repulsive and partially cancels

the attractive potential V (this fact is called cancellation theorem), such that

Vps has much smaller magnitude than the original V , producing much smoother

eigenfunction | ψ̃v 〉.
As an interesting consequence of the effectively weak pseudopotential in crys-

tals, the valence bands are almost free-electron-like, resolving the paradox [3] that

for many crystals the valence bands are almost parabolic, although the valence

wavefunctions cannot be similar to the plane waves.

The above pseudopotential reformulation of the Schrödinger equation for va-

lence states offers a freedom to choose in actual calculations the numerically best-

behaving form of the wavefunction among linear combinations of the valence and

all core states.
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Norm-Conserving Pseudopotentials

Beside smoothness, a good pseudowavefunction should also be transferable, i.e. it

should be an accurate approximation of the true valence wavefunction regardless

of the atomic environment. It can be shown [3] that this property is best satisfied

if the net charges inside the core region of the true and pseudowavefunction are

the same:
∫

‖~r‖<Rc

|ψ̃v|2d3~r = Q =

∫

‖~r‖<Rc

|ψv|2d3~r. (2.14)

The pseudopotential associated with such a pseudowavefunction is called the norm-

conserving pseudopotential.

The norm-conservation property also implies orthonormality of the valence

states, which simplifies actual calculations. This method has been developed fur-

ther by numerically inverting the Schrödinger equation [12] in order to find the

pseudopotential starting from a chosen pseudowavefunction and by approximating

the pseudopotential in the form of a sum of suitable factors (“separable form”)

[13], so that it requires fewer integrations in the actual calculation.

The generation of the pseudopotentials, however, remains a bit of art on its

own. The process starts by solving the all-electron Schrödinger equation for the

atom alone. Then it should be decided which states are in the core and what is

the right cutoff radius for the valence wavefunctions. The cutoff radius should

be between last node and maximum of the the true wavefunction, not too big (it

harms transferability) and not too small (the pseudowavefunction is then not so

smooth). Often there is no one best choice. Rather, it depends on the environment

in which atom model will be used.

Ultrasoft Pseudopotentials

In order to make smoother pseudowavefunctions, one should release the norm

conservation constraint. In order to keep good transferability properties of the

resulting charge conservation violating pseudopotential, Vanderbilt [14] and Blöchl

[15] introduced the charge correction term in the Hamiltonian, defined by the

matrix

∆Qvv′ =

∫

‖~r‖<Rc

(ψ∗
vψv′ − ψ̃∗

vψ̃v′)d
3~r, (2.15)
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where ψv is either the true valence wavefunction or a norm-conserving pseudowave-

function and ψ̃v is the ultrasoft pseudowavefunction. This additional Hamiltonian

term describes rapidly varying part of the electron density around each ion core,

leaving the ultrasoft wavefunction free of the norm-conservation requirement. At

the same time, this formalism allows more than one local energy per quantum

state, which additionally increases transferability.

As a drawback, the pseudopotential generation is more complicated and the

resulting ultrasoft pseudowavefunctions are not orthogonal, so that a generalized

eigenproblem similar to (2.2) of the Hamiltonian (modified with charge correction

term) must be solved.

The ultrasoft pseudopotentials require no more than 50-100 plane waves per

atom, even for the difficult cases, allowing ab-initio treatment of periodic systems

with several hundreds of atoms in the unit cell.

The ultrasoft formalism was also important as a pointer in the right direction

for further development of the electronic calculation methods. It is a direct pre-

decessor of the projector augmented waves (PAW) method [16], which keeps the

all-electron wavefunction in the calculations. In the case of carbon and hydrogen,

the ultrasoft pseudopotentials give sufficiently accurate results, while the formalism

can be applied to much bigger systems than the norm-conserving pseudopotentials.

At the same time calculations are faster and simpler than more precise methods

such as PAW.



Chapter 3

Pure-Carbon Systems

Carbon is an atom with six electrons, four of them contributing to the chemical

bonding. The atom’s ground state has a filled 2s orbital and two occupied 2p

orbitals. However, the energy difference between the ground state and the excited

state, in which all four electrons are unpaired and have the same energy, is small,

as shown in Figure 3.1. This is because the excited atom also has a quite stable

structure with all subshells half-filled. During chemical reactions the energy re-

leased in the making of chemical bonds is already large enough to raise carbon to

this excited state. As a result, a carbon atom can make four bonds with atoms

around it. In that case bonds tend to be in a tetrahedron-like star orientation,

which is called sp3 hybridized state.

The carbon atomic radius is small enough that when two carbon atoms make

a bond, they are close enough to have a significant overlap not only between

orbitals pointing toward each other (they make σ bond), but also between the

other p orbitals. This overlap is so big that electrons in p orbitals can make strong

↑ ↓
2s

↑
2p1

↑
2p2 2p3

↑ ↑ ↑ ↑
sp3-hybridized orbitals

6E
-

Figure 3.1. The carbon atom valence energy levels in the ground state (left) and the
excited state (right).
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Figure 3.2. Partial charge density on the basis of LDA calculation for the highest
occupied orbital of one carbon atom (left) and for two carbon atoms at a separation as
in graphene (1.41 Å).
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Figure 3.3. Relaxed configurations for steps in successive dehydrogenization of cyclo-
hexane (left) to benzene (right). Double bonds are indicated with symbol π in cyclohex-
ene structures.

additional π bond (Figure 3.2): while the C-C σ bond has1 3.5 eV binding energy,

the C-C π bond has around 2.6 eV. Hence, carbon can also make stable bondings

with only two or three neighbors, pairing extra electrons in π bonds with other

atoms.

The case with three bonds is called the sp2 hybridized state. Three sp2 bonds

are in one plane, with equal angles between them. The fourth electron remains

equally distributed above and below that plane, paired in a π bond with such an

electron from a neighboring atom. The π bonds across the structure tend to be

in resonance with each other, reinforcing the planar network. This reinforcement

significantly changes properties of the carbon structure. For example, if in cyclo-

hexane (a ring with 6 single-bonded carbon atoms, Figure 3.3) one or two single

11 eV/molecule = 23.045kcal/mol or 1 kcal/mol = 43.4meV/molecule.
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Figure 3.4. Partial charge density on the basis of LDA calculation for the highest
occupied orbital of the CH3 radical, when carbon is pushed above the plane. Arrows
show the response of the electronic density when the bonds bend.

bonds are replaced with the double bonds (in a successive dehydrogenization), the

double bonds behave much like in hexene or any other alkene. However, when

the third double bond is introduced in the ring, a radical change in the electron

distribution occurs. The carbon atoms now lie in a plane, as a contrast to the

cyclohexane and cyclohexene structures. All carbon-carbon bonds and all carbon-

hydrogen bonds become identical in length and reactivity. The resulting structure

is much more stable: halogens and hydrogen cannot be added to it as easily as

before, nor it is easily oxidized. This qualitatively new ring structure is called

benzene and is often represented by a circle rather than alternating single and

double bonded hexagon sides. Benzene is the simplest of the aromatic hydrocar-

bons, which have the π bonding electrons rearranged in benzene-like rings instead

of alternating single and double bonds.

Pure sp2 or sp3 carbon states form when the strains imposed by the surround-

ing carbon super-structure are minimal. However, in materials with additional

nanometer-scale structural constraints, (such as a requirement to maintain a tubu-

lar circumferential integrity in nanotubes), the resulting contraint forces can im-

pose bonding geometries that deviate significantly from the ideal sp2 and sp3 bond

angles. In that situation the π electrons redistribute, concentrating more outside

the bent regions (from the positive curvature side, Figure 3.4).

A double bond is always stronger than a single bond, which is reflected in
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the equilibrium distances between atoms. For carbon, the single bond distance

is 1.54 Å (for example, in diamond), while the carbon double bond in C2H6 has

a length of just 1.33 Å. Bending weakens bonds and increases distance between

atoms.

Although under special conditions, other atoms (for example, silicon) can make

double bonds, those additional bonds are almost always less stable than in carbon.

One exception is nitrogen, which has very strong triple bond in the N2 molecule.

Carbon’s ability to make multiple bonds leads to the uniquely rich carbon chem-

istry and makes this element the central brick in the building of life.

3.1 Traditional Carbon Structures

Until the 1980’s, carbon was known to exist in only two allotropes: graphite and

diamond. Graphite is the most stable carbon structure. It exists in two forms, as

planar and rhombohedral graphite [59]. Only the planar form is considered here.

The sp2 hybridized carbon connects in graphite hexagonal planes using three of

its valence electrons to make in-plane σ bonds. The remaining p electrons (one per

atom) form highly delocalized π pairs which resonate between atoms. Therefore,

the in-plane bonds are stronger than the single carbon bond (in-plane distance

between atoms is 1.42 Å instead of 1.54 Å in diamond). Neighboring planes are far

apart (3.35 Å) and only weakly bound due to the overlap of the π electrons and

the Van der Waals interaction.

The density functional theory within local density approximation (LDA DFT)

cannot describe properly the weak interlayer interaction in graphite (it predicts an

unphysically large distance between layers), but it can be applied to one isolated

hexagonal sheet of graphite (graphene). The graphene structure is important since

it can be considered as a basis for nanotubes and similar carbon structures.

The graphene DFT band structure is shown in Figure 3.5. Graphene is a zero

gap semiconductor, with bands touching at the corners of the hexagonal Brillouin

zone (the K points). The density of states at the Fermi level is zero, so graphene

is a weak metal (semimetal). Due to a weak interaction between layers, graphite

has practically the same in-plane band structure as graphene and a semigap along

the c axes, normal to the hexagonal planes.
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Figure 3.5. On the left: LDA bands and Brillouin zone structure for graphene. On the
right: the partial charge density (equisurface for 0.01 electrons per Å3) for the Fermi
state at K.

Diamond structurally has a higher energy per atom than graphite. However,

the energy barrier for its graphitization is very high. Thus, diamond is kinetically

a very stable structure2.

There are two allotropic modifications of diamond, Figure 3.6. A common form

is cubic diamond, which has an fcc lattice with two atoms in the unit cell. The

other form is hexagonal diamond, which has been found only in some meteorite

impact sites. Both varieties have been also synthetized in the labaratory.

As a consequence of single carbon covalent bonding in a tetrahedron structure,

diamond is very hard and a very good insulator. Experimentally, the band gap is

5.47 eV and the Young’s modulus is 1.1TPa. Being a relatively simple insulating

crystal, diamond was a system of choice for early DFT calculations [20]. The LDA

underestimates the band gap, obtaining 4.07 eV for cubic and 3.16 eV for hexagonal

diamond, Figure 3.6. According to the LDA, the hexagonal form is 27meV/atom

less stable than the cubic, which is itself 144meV/atom less stable than graphene.

For the further discussion it is interesting to note that both diamond allotropes

have tube-like “tunnels” (Figure 3.6): in cubic diamond, they are similar to (2,2)

2The diamond story is particularly fascinating. Being one of the most famous stones on Earth,
it is less known that diamond is also the oldest mineral available to humans. On the basis of
the isotopes analysis it has been proven that diamonds are more than 3 billion years old, some
of them even up to 5 billion years, older than our own solar system [18]. Most of the natural
diamonds we have literally fall from the stars. Although in the Earth’s inner core diamonds are
also formed, those layers are deep enough that they very rarely find their way to the surface.
Almost all available natural diamonds either came as part of meteorites or were formed at the
moment of a meteorite impact. Even more intriguing, there is evidence that some white dwarf
stars are themselves mostly diamonds [19].
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Figure 3.6. Structure, Brillouin zone and LDA bands for cubic (on left) and hexagonal
(on right) diamond. The structural images show that the tunnels are similar to the small
nanotubes: (3,0) for cubic diamond and (2,2) for hexagonal diamond.

tubes, while in hexagonal diamond they are like (3,0) tubes.

3.2 Novel Carbon Structures

In the last 25 years a series of discoveries [21] showed that carbon can also make

stable molecules (fullerenes) and polymers (nanotubes). Moreover, in addition to

the earlier known two dimensional graphite and three dimensional diamond forms,

carbon can also exist as a disordered sponge-like nanoporous carbon.

3.2.1 Nanotubes

A nanotube is a graphene ribbon rolled in a cylinder with the free edge atoms

rebonded in a continous hexagonal network. Physical properties of such a nanotube

depend on the carbon hexagons’ orientation relative to the tube’s axis. Nanotube

nomenclature acknowledges this fact by assigning to each tube two integers (m,n),

which give the orientation of the corresponding ribbon in the graphene plane,

Figure 3.7.

Each carbon atom in a tube still has three neighbors as in graphene, but the

bonds are slightly off the plane, following the curvature of cylindrical surface. The
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C = 5a1 + 2a2 

(5, 2) tube 

a1  

a2  

Figure 3.7. Rolling of a nanotube. An unit cell of (5,2) tube is showed unrolled
outlined with dashed lines. Unique atoms in the corresponding ribbon are showed as
spheres. In agreement with the nanotube’s nomenclature, the circumference of the tube
corresponds to the vector ~C = 5~a1 + 2~a2 normal to the axis of the ribbon. Vectors ~a1

and ~a2 are basis vectors for the translational symmetry of the hexagonal graphene plane,
‖~a1‖ = ‖~a2‖ = 1.42 Å ·

√
3.

resulting strain on sp2 bonds makes tubes less stable than graphene. This effect is

stronger in smaller diameter tubes, so that the smallest tubes (less than about 4 Å

in diameter) are not even metastable alone [22]. From the other side, tubes with

very big radii are unable to keep a circular cross section and they collapse to two

connected graphene ribbons.

Nanotubes are very diverse electronically. Some of them are metals, the others

are semiconductors. The simplest way to understand variations in electronic prop-

erties of the tubes is to examine what wrapping does to the graphene bands from

Figure 3.5. The band folding theory is outlined in Figure 3.8. Only graphene states

which can map to themselves around the tube circumference survive the wrapping.

That means, the tube states can have only the graphene k-vectors which have com-

ponent k⊥ normal to the tube axis such that k⊥ 2π R = 2π j, i.e. k⊥ = j/R, where

j is an integer and R is the tube radius. Thus, in the simplest approximation,

one dimensional nanotube bands are slices of the two dimensional graphene bands

along a series of equidistant lines. If any of these lines passes through the K point
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Figure 3.8. The band folding technique forms nanotube bands (shown on right) as
combined projection of graphene band slices (lines on the surface), taken across the
graphene BZ (hexagon below) along the allowed lines in k-space.

in the graphene BZ, the tube is metallic. A careful calculation [21] shows that this

metallic crossing occurs if the tube is of the type (m,n) with m−n = 3d, where d

is an integer. For example, armchair (n, n) and (3d, 0) zig-zag tubes are metallic,

while (3d− 1, 0) and (3d+ 1, 0) zig-zag tubes are semiconducting.

Figure 3.9 shows results of LDA calculations for several zig-zag and armchair

tubes. The density of states is small around the Fermi level in the metallic tubes.

For (3d, 0) tubes the Fermi level wavefunction has 2d nodes evenly distributed

around the circumference, arranged in lines down the tube. Figure 3.9 shows also

that as a consequence of the curvature, π electrons are pushed more toward the

outside of the tube.

More precise calculations and experiments show that all metallic tubes except

armchair actually have a small curvature-induced gap [23]. For example, “metallic”

zig-zag tubes show gaps of up to 80meV. Since tubes are almost always found in

bundles, they interact with each other and in that environment the armchair tubes

can also show a small gap.
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Figure 3.9. Band structure, density of states and partial charge densities for the (7, 0),
(8, 0) and (9, 0) zig-zag and the (6, 6) armchair tube. Due to the calculation method
DOS is smeared by 0.1 eV, so it doesn’t vanish sharply at the gap nor it has Van Hove
singularities. To show the features, DOS is normalized on each graph and absolute
DOS values between tubes might be different. The insets are partial charge densities
(equisurfaces for 0.003 Å−3) from LDA calculations for lowest unoccupied (above) and
highest occupied (below) states at the Gamma point. All armchair tubes have similar
charge density, while there are three types of zig-zag tubes, two semiconducting and one
(3d, 0) metallic.

3.2.2 Nanoporous Carbon

Nanoporous carbon (NPC) is a solid microscopically sponge-like material composed

mostly of sp2 hybridized carbon. It has a highly disordered structure with pore sizes

around 5-10 Å [24, 25]. This material is quite stable: only after annealing at around

1200◦C will its structure start changing, forming graphene-like nanodomains [25].

In equilibrium, the curvature strain is distributed as much as possible equally

across sp2 carbon bonds in NPC. Hence, the idealized structure belongs to the

mathematical class of minimal surfaces3 (like a soap film on a distorted frame). The

3Minimal surfaces have mean curvature everywhere zero. Any sufficiently small patch cut
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Figure 3.10. 2× 2× 2 unit cells and LDA band plots of a series of d-schwarzite carbon
structures.

most suitable NPC model for calculations is therefore one of the three dimensional

periodic minimal surfaces4 first investigated by H. Schwarz [28]. The schwarzites

can be tiled with hexagons and heptagons [30] resulting in a highly symmetric

sp2-only carbon structure.

We have analysed a series of d-schwarzite carbon structures (“d” stands for

“diamond-like”, since d-schwarzite has diamond-like space group symmetry) as

shown in Figure 3.10. Each of these structures has full tetrahedron point group

symmetry [29]. Each successive member of the series is a magnified version of

the preceding one, constructed by replacing each atom with a hexagon. This

expansion procedure keeps the same number of non-hexagons per unit cell, so that

each structure has 24 heptagons per unit cell and the rest are hexagons.

The smallest structure has 56 carbon atoms per unit cell arranged in 24 hep-

from a minimal surface has the least area of all surface patches with the same boundary [26].
Their representations can be found in many physical and chemical systems [27].

4“A triply periodic minimal surface is infinitely extending, has one of the crystallographic
space groups as its symmetry group and, if it has no self-intersections, it partitions space into
two labyrinthine regions. Its topology is characterised by two interpenetrating networks – its
’labyrinth graphs’” [26].
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tagons5, without any hexagons. The second has one hexagon between each hep-

tagon, the next has two hexagons between heptagons, etc. Each successive struc-

ture has three times as many atoms as the previous one. The pore diameters also

increase: 5.4 Å for C56, 6.9 Å for C168, 15.6 Å for C504.

As the unit cell grows in this series, the local curvature decreases. That allows

us to isolate effects of global and local geometry on the electronic subsystem.

The bottom part of Figure 3.10 shows bands of this schwarzite series. While

our ultrasoft DFT calculations are in agreement with earlier (mostly tight-binding)

results [30, 33, 34], there are still no experimental data to compare with, due to the

lack of technology which would allow better control of the produced NPC structure.

In one of pioneering works on NPC [35] Bursill’s group obtained evidence that the

NPC band gap is around 2.5 eV.

As Figure 3.10 shows, the smallest (C56) structure is an overlapping band

metal. It can be viewed on the same lines as the pentaheptite [36]. Both of

these structures have a network of connected heptagons (pentaheptite also has

pentagons). Each heptagon introduces one trivalent carbon radical in the otherwise

aromatic structure. Radicals consist of π electrons unable to lock in an aromatic

resonance [37], leading to the metallic behavior of the overall structure. Chemically

speaking, a graphene-like structure has no such radicals, if a global bonding scheme

can be found with each tetravalent carbon atom connected to three neighbors by

two single and one double bond. Failure to find such a global bonding scheme leads

to the introduction of radicals due to a frustration in the electronic system. These

radicals are localized in the heptagonal rings where they are formed. However, if

heptagons have common edges in the structure, the radicals can overlap leading

to a metallic behavior of the overall structure.

The other interesting point from Figure 3.10 is that the band gap increases with

the structure size (the gap is 0.72 eV for C168 and 0.75 eV for C504), as opposed

to the decrease of the nanotube band gap with increasing radius. This also can be

understood on the basis of the heptagonal radicals: the bigger schwarzite structures

still have the same number (24) of carbon radicals, but they are spread over a larger

number of regular hexagons, so the curvature effect prevails and the gap opens.

5On the basis of graph theory [31], 12 heptagons correspond to one hole in a regular graph
with three-fold vertices.
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Figure 3.11. LDA band plots of C504 d-schwarzite carbon structure with two and five
Stone-Wales defects. SW atoms are emphasized as bigger points in the structural image.
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Figure 3.12. LDA band plots of C504 d-schwarzite carbon structure with two chemi-
sorbed hydrogens on the same places where SW defects are in Figure 3.11.
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Further, we introduced several distant Stone-Wales (SW) defects [38] in the

C504 schwarzite structure, Figure 3.11. The SW defect is a π/2 carbon-carbon

bond rotation. It replaces four adjacent hexagons with two heptagons and two

pentagons, introducing two more carbon radicals in the structure. These radicals

introduce new bands in the upper part of the gap, so that the gap goes from 0.75 eV

down to 0.48 eV for two SW defects and 0.37 eV for five SW defects. Producing

more heptagons, SW defects narrow the gap and increase metallicity of the system.

We also compared the effect of SW defects with the hydrogen chemisorption in

the C504 schwarzite, Figure 3.12. This is particularly interesting since NPC always

contains impurities affecting its properties. Similar to the SW defects, hydrogen

introduces additional bands in the gap. Since hydrogen also brings electrons to

the system, the Fermi level is raised to an energy between new bands.

The schwarzite calculations presented here illustrate the power of the ultrasoft

pseudopotential DFT method, which is the only first-principle method capable of

handling such large systems on currently available computers.



Chapter 4

Carbon-Hydrogen Systems

It is interesting how the simplicity of the hydrogen atom also contributes to the

complexity of its behavior, which makes hydrogen very different from other ele-

ments. Hydrogen can give its only electron and behave as a metal, but also, being

one electron short of a closed outer shell, it can produce strong covalent bondings.

In elemental form it always exist as a diatomic molecule. Since hydrogen is the

simplest atom, the molecule has an exceptionally small bond length of 0.73 Å [39]

and is quite stable (the experimental binding energy is 4.52 eV [17], while the DFT

estimate is 6.6 eV). It survives to surprisingly high densities in the condensed phase,

up to more than 300GPa [40] but also spontaneously dissociates in the presence

of some metallic atoms. The electron wavefunction extent in H2 is smallest among

molecules and hence its van der Waals potential is very weak. For example, the

physisorption of H2 on a graphene surface has a shallow well of 0.08 eV, and an

equilibrium distance between H2 and the graphene surface around 2.7 Å, according

to DFT calculations [41].

From the practical side, hydrogen has great energy potential. It has the highest

combustion energy on a weight basis among all known fuels. Unlike carbon-based

fuels, hydrogen produces no harmful by-products upon combustion. Only clean

water is exhausted when hydrogen is combined with oxygen in a fuel cell, generating

electricity. Since hydrogen can be produced by the electrolysis of water, it seems

as a perfect renewable energy cycle. In practice, however, there are many still

unresolved problems in all stages of this loop.

Currently, the technology for powering vehicles (i.e., fuel cells) is significantly
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more advanced than that for storing the fuel (hydrogen). One figure of merit

for hydrogen storage is the weight percent (wt %) hydrogen stored relative to

the weight of the storage medium. The US Department of Energy has recently

estimated that approximately 6-7wt% storage is a benchmark for a viable ground

transportation technology [42]. Hydrogen storage in a lightweight carbon material

would therefore be particularly attractive1.

The nanoporous carbon materials like those mentioned in the previous chapter

have very high experimental specific surface areas of As ∼ 1000 − 3000m2/g [43].

Despite that, NPC has not shown promise for hydrogen storage [42, 44].

Several recent experiments have reported substantially increased uptake of hy-

drogen into carbon nanotubes and related structures. The detailed character of

the reports is variable, with claims of anomolously high uptake/release of hy-

drogen at low pressures, high pressures, low temperatures, or high temperatures.

The reported uptakes range from single-digit weight percent excess adsorption

[45, 46, 47, 49, 51] up to values well in excess of 10% [48, 50]. The highest values,

which are unconfirmed (and controversial, [52]), would present a stark challenge to

our current understanding of molecular interactions. The more moderate results,

which have been verified by gravimetric comparisons of H2 and D2 adsorption [53],

are still in excess of that expected from standard physisorption.

The unsettled experimental situation suggests that a systematic characteriza-

tion of the carbon substrate may provide crucial insights. A careful experimental

study [54] shows that the wt% hydrogen adsorption depends sensitively on the

post-synthesis treatment of the materials. In a companion molecular modeling

study presented in the next section we model this process, from post-synthesis

treatment to adsorption, through a multistep simulation. First we model anneal-

ing of damaged tubes through tight-binding molecular dynamics. We then extract

characteristic subunits from these structures for subsequent density functional and

diffusion quantum monte carlo analysis of molecular adsorption. The results sug-

gest that microscopic surface roughening caused by post-synthesis purification and

annealing can help explain enhanced molecular adsorption at anomalously low

pressures. The variable and heterogenous nature of this roughening could help

1Hydrogen interaction with carbon materials plays an important role in a wide range of other
problems, from interstellar science [61, 62] to fusion technology [63].
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reconcile disparate experimental results, at least at the lower end of the range of

anomalously enhanced uptake. This mechanism also implies a well-defined maxi-

mal uptake attainable under moderate conditions.

As experiment shows [47], in the high pressure hydrogen storage on carbon

nanotubes there is some residual hydrogen during the desorption cycle that could

be released only upon heating to temperatures above 400 K. Another experiment

[51] revealed a first order phase transition under high H2 pressure, similar to the

hydride phase observed in metal-hydrogen systems. These are all indications that

a chemisorption process also plays a role in the hydrogen adsorption on carbon na-

notubes. A graphene sheet is well-known to be highly stable against chemisorption

of a single hydrogen atom, since a puckered sp3 hybridized site heavily distorts the

surrounding sp2 framework. However, as we show in section 4.2, successive adja-

cent chemisorbed hydrogen atoms can engage in a collective stabilization mediated

by cooperative alternate puckering in the underlying carbon sheet [55]. After sev-

eral chemisorbed atoms, the binding energy for further adsorption changes sign

and becomes favorable. This process requires access to both sides of the graphene

sheet. Therefore it is suppressed on a graphite surface, but may be accessible in

carbon nanotubes, if the initial kinetic barrier to creating the nucleation island can

be overcome.

Hydrogen chemisorption can be also used to engineer new carbon-based materi-

als with unique structural and electronic properties. In section 4.3 we describe how

sp2 carbon, three-fold coordinated to other carbons, can be replaced by sp3 carbon,

also three-fold carbon coordinated, to produce extremely small-radius (∼ 0.4nm)

carbon nanowires with minimal bond-angle distortion. Such systems would be ex-

tremely small-diameter, robust and rigid one-dimensional atomic structures [56].

Following an analogous naming convention for ordinary carbon-nanotubes, the

most stable sp3 tubes are the (3,0) and the (2,2) tubes, which we examine in

detail. These high symmetric systems have a large bandgap typical of saturated

hydrocarbons and a huge rigidity.

Finally, in section 4.4 we show how conversion of two diametrically opposite

rows of atoms on a carbon nanotube into sp3 hybridization through hydrogen

chemisorption have huge effects on the nanotubes electronic structure [57]. Partic-

ularly, the armchair tubes undergo an effective separation into two weakly interact-



32

ing metallic wires, resulting in a pair of very narrow bands near the Fermi energy.

Although this system has an even number of electrons, energies of electronic states

near the Fermi level are so close that the ground state stabilizes in a magnetic state

with two top valence bands half filled with the same spin electrons. If the system

is doped with electrons or holes, or spin flip is allowed, these tubes could be very

active terahertz materials with an exceptionally high joint density of states, as well

as a high polarizability. We propose that in experiment a uniaxial compression of

a nanotube transverse to the axis could enable adsorption preferentially in the

required pattern.

4.1 Hydrogen Physisorption on Tubes

Arc-grown nanotube samples are typically purified via aggressive acid or oxida-

tive treatment. This treatment selectively destroys the less resistant carbon and

metallic impurities, but also eats away at the walls of the tubes themselves. The

treatment produces a wide distribution of holes and defects in the tube walls

which can yield a “dog-chewed” morphology. A recent experiment by the Penn

State group [54] suggests that a high temperature post-treatment anneal is critical

to optimizing the hydrogen adsorption at low pressures. During this anneal the

nanotube partially heals the holes that were created by the acid treatment. Due to

limited carbon mobility and structural constraints arising from intact subregions

of the tubes which maintain circumference integrity, only incomplete healing is

possible and the resulting surface is of necessity irregular on a nanometer scale.

Such structures exhibit two important new structural features. First, the tiny

(and strongly hydrogen-binding) interstitial channels of the pristine bundle open

into wider intertube galleries. Second, atom transport during the healing pro-

cess must of geometric necessity produce many pentagonal and heptagonal carbon

rings; pentagon rings are particularly favored as they most efficiently saturate the

dangling bonds at the edges of the holes. Both the enlarged interstitial galleries

and the roughened tube surfaces can significantly increase the low-pressure binding

of molecular hydrogen, as described below.

The trigonal interstitial channels within intact (i.e. defect-free) nanotube bun-

dles of typical tube diameter (circa 1.4 nm) are very strongly binding for hydrogen,
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with binding energies roughly two to three times that of a graphene sheet (as would

be expected from a simple coordination number estimate). Unfortunately, these

sites comprise very little free volume; most of the outer surface of the tubes interior

to a bundle is wasted. However, the interstitial region is so small in intact bundles

only because perfectly cylindrical structures of uniform diameter can pack very

efficiently. The irregularities in tube shape resulting from partial healing of dam-

aged tubes can open up a much greater volume of high-coordination (and therefore

highly binding) interstitial sites. Hydrogen within these enlarged interstitial gal-

leries will be coordinated to either one, two, or three adjacent graphitic sheets,

depending on the local geometry. Therefore the enhancement in the hydrogen

binding energy above that of a free graphene surface (circa 0.05 to 0.07 eV) will

range upward from one-fold to roughly three-fold, within the range necessary to

account for cryogenic adsorption at the observed low pressures.

A roughened graphitic surface may exhibit a more subtle enhancement in ad-

sorption arising from pervasive distortions in local bonding. We model adsorption

onto disordered graphene-like structures by generating candidate structures and

studying the subtle differences in hydrogen-binding energy to their surfaces. Fig-

ure 4.1a shows the result of a tight-binding molecular dynamics [4, 58] simulation of

a defective (8,8) nanotube. Ten percent of the atoms were first removed in random

patches from a pristine (8,8) structure. The system was then annealed at 2500K

(artificially high) for 0.5 ps and then cooled to the local equilibrium structure over

1.5 ps using a time increment of 0.5 fs and a canonical-ensemble Nosé-Hoover ther-

mostat with a mass of 50000 a.u.

The tube has found a very efficient means to self-bind, returning to a state

near its global structural ground state and healing most of its holes by introducing

irregularities, mostly five and seven rings. A cross-sectional view shows strong

deviations from circularity. We characterize the distortion from local planarity

by the deficit of the summed local C–C–C bond angles from 360◦, as shown in

Figure 4.1. The most curved regions correspond to the sites where the anneal

produces fused pentagons. They have the summed bond angle deficit of 15 degrees,

comparable to those obtained in fullerenes of fewer than 60 carbons. Figure 4.1b

depicts a bundle of seven such tubes to demonstrate how the roughening of the

tube surfaces enlarge the interstitial channels. These seven tubes were relaxed
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Figure 4.1. (a) The starting structure, an (8,8) tube with 10% atoms removed and
computed nanotube structure with rough walls obtained from simulation of a rapid
high-temperature anneal of a damaged tube, as described in the text. Darker carbon
atoms exhibit larger deviations from planarity, showing that the distortions propagate
outward from pentagonal rings. The darkest region has summed bond angle deficit of
15 degrees on a site between two fused pentagons. A patch with two fused pentagons
extracted from such a nanotube is shown in (b), provided courtesy of Jeffrey Grossman,
with the relaxed position of a hydrogen molecule above the most distorted carbon atom.
The seven-tube bundle shown in cross section in (c) is built from the same tube, but
each replica has a random orientation and was allowed to relax to an intertube separation
dictated by a standard intertube van der Waals interaction.

as individual rigid objects into a bundle geometry via intertube Van der Waals

interactions. We believe that the relaxation of the internal coordinates within a

tube would have increased the interfacial contact area only slightly.

The experimental purification can range widely in aggressiveness and the anneal

can likewise cover a wide range of temperatures and timescales, so the microstruc-
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ture is expected to vary widely from experiment to experiment as treatment and

anneal conditions are changed. In addition, the molecular dynamics can address

the system evolution only over short time scales (even when the temperature is

artificially elevated, as is often done to speed the dynamics). Thus, the structure

resulting from our molecular simulation should be viewed as illustrative rather

than definitive. However, we consider the molecular dynamics simulations to pro-

duce particular examples of physically realizable local structural motifs that are

attainable experimentally in varying concentrations depending on the particular

experimental history of the sample.

Since tight binding models cannot describe the subtle mixture of dispersion and

hybridization involved in the interaction of molecular hydrogen with a heavily dis-

torted carbon substrate, we extract characteristic local regions from the molecular

dynamics and input them to LDA DFT and diffusion Monte Carlo (DMC) cal-

culations of hydrogen physisorption (this was done in colaboration with Peihong

Zhang for LDA calculations and Jeffrey Grossman for DMC calculations). The

outer edges of these extracted patches are terminated with hydrogen to eliminate

unsaturated bonds, but the outer regions of the structure, away from the adsorbed

hydrogen, are maintained rigid to preserve the overall roughness. Since the exper-

imental structure is highly disordered, we have studied a range of relevant local

structure motifs: (1) a 20-atom section showed on Figure 4.1b with two fused pen-

tagon rings extracted from a disordered tube such as Figure 4.1a and capped at the

edges by hydrogen atoms, (2) a 16-carbon atom planar molecule comprising four

fused hexagonal rings (denoted “6666”), and (3) a series of distorted 14-carbon

aromatic molecules composed of two hexagons and two pentagons fused (“5665”).

The atomic coordinates within the 20-atom extracted patch are maintained at the

positions assumed when embedded in the larger system. The 6666 molecule was

fully relaxed; the 5665 series covered a range of deviations from planarity to inves-

tigate the heterogeneity of a roughened tube. In each case, we place a hydrogen

molecule above the center of the patch and allow the adsorbate to relax. (We

also tested several different starting positions for the hydrogen molecule to more

thoroughly explore possible resting positions.) The specific value of the binding

energy obtained is a complex function of the local bond angles, ring structure, and

external strain. The 6666 system, which models a flat undistorted graphitic sheet,
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shows a binding energy within LDA of 0.072 eV, consistent with previous results

for adsorption on graphitic sheets [30]. Both the 5665 series and the extracted

patch show substantially increased adsorption energies: from 0.087 to 0.092 eV for

the 5665 series and 0.095 eV for the extracted patch.

To obtain an accurate measure of the actual enhancement, these preliminary

values must be corrected for the well-known LDA overbinding of weakly bound

molecular systems. To this end, we have computed accurate first-principles DMC

energetics for a system of three fused pentagons, obtaining 0.09 and 0.07(1) eV in

LDA and DMC, respectively. The characteristic LDA overbinding in this case is

moderate (approximately 20meV), which lends confidence to the overall picture.

With application of an approximately 20meV overbinding correction, the adjusted

binding energies range from approximately 52meV (in DMC-corrected 6666) to

approximately 75meV (in the DMC-corrected 20-atom patch from the disordered

tube). The computed enhancement in binding energy due to surface roughening

is found to be quite substantial, i.e. 40-50%. The local roughening seems to affect

the hydrogen binding through a complex interplay of aromaticity, bond distortion

and local coordination.

These results reveal an intimate connection between an enhanced adsorption

and structural metastability due to distortions arising from nanometer-scale struc-

tural constraints. A larger adsorption energy may occur in structures wherein the

carbon substrate is unable to fully accrue the energetic advantages of self-binding.

Our calculations suggest that the aggressive HNO3 treatment pushes the material

far from structural equilibrium by creating large holes in the tube walls. Partial

healing during the subsequent anneal then spreads this disequilibrium more evenly

throughout the structure and could yield a substrate with enhanced physisorption

at low pressure, if the roughening is sufficiently pervasive. Note that the physisorp-

tion energy increases even though the carbon coordination of a hydrogen molecule

decreases due to the local convexity of the carbon sheet. This bodes well for hy-

drogen storage, since higher binding at lower coordination to the substrate implies

a greater overall efficiency in creating favorable adsorption sites within the struc-

ture. Other disorder-induced effects, as improved access to the high-coordination

concave interior surfaces contribute to even bigger H2 adsorption.
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4.2 Hydrogen Chemisorption on Tubes

The similar energies of different hybridized states of carbon lead to its versatile

chemical behavior. Graphite and nanotubes, as two elemental forms of carbon,

demonstrate this flexibility through their ability to make new chemical bonds with

chemisorbed atoms while preserving the original carbon hexagonal net. One im-

portant case in which this happens is hydrogen chemisorption. A review of re-

cent chemisorption calculations can be found in [60]. Nanotubes with ordered

outside chemisorbed hydrogen is considered in [65, 66]. In [67] a combined classi-

cal/quantum mechanical study is presented, where only tube region around chemi-

sorbing site is treated quantum mechanicaly. Hydrogen chemisorbed from inside

and outside of the tube was analysed in [68]. Here we focus on the strong variations

of the energy of chemisorption as a function of the hydrogen coverage.

Although catalysts such as Pt on graphite can dissociate H2 molecules and

place atomic hydrogen in contact with graphite, a defect-free graphene basal plane

is highly resistant to chemical attack by free hydrogen atoms. Not only is the

kinetic barrier to hydrogen chemisorption generally large, but an isolated hydro-

gen atom sp3 bonded to a graphene plane is also energetically unfavorable com-

pared to the clean graphene sheet plus the same hydrogen in the (molecular) gas

phase [62]. However, the binding of an isolated hydrogen atom onto a clean and

defect-free graphite basal plane does not provide a complete picture of the path-

ways towards a fully hydrogenated carbon sheet. An sp3 coordinated carbon atom

within a graphene layer imposes a strong pattern of buckling on the surrounding

atoms; the buckling patterns from nearby sp3 atoms can overlap and possibly re-

inforce. Such a collective stabilization, favoring successive hydrogen addition, is

distinct from the well-known effects of broken aromaticity in hydrogenating small

molecules. For example, in the conversion of benzene to cyclohexane, the first

hydrogen attachment is most costly, since it breaks the π ring conjugation; later

hydrogens are easier to attach. In a small molecule like benzene, the bond an-

gles can adjust relatively freely to accommodate nearby sp2 and sp3 atoms. In

contrast, an extended graphene sheet imposes strong elastic constraints that cre-

ate a frustrated sp3-like buckling around a single chemisorbed hydrogen. How-

ever, if chemical attachment is possible on both sides of the graphene layer, then
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these local bucklings can reinforce each other. This cooperative sheet-mediated

absorbate-adsorbate interaction can change the sign of the adsorption energetics,

making further chemisorption energetically favorable. For comparison, note that

graphite surface has been flourinated, converting the sp2 network largely to sp3,

since the F2 molecule is highly reactive, as experiments on graphite [72] and on

tubes [69, 70, 71] as well as calculations [65] show.

Unlike hydrogen physisorption (section 4.1), which involves subtle many-body

van der Waals effects, hydrogen chemisorption can be well described by standard

semiempirical and density functional methods. However, in order to accurately

describe collective effects, large systems must be simulated. Therefore, we first

employ a focussed set of density functional theory (DFT) calculations to validate

further use of more computationally efficient empirical tight-binding total-energy

methods [4] for a much larger set of complex multi-adsorbate geometries.

The total energies for each configuration with chemisorbed hydrogen are com-

pared to those of a suitable reference structure, namely a pure-carbon pure-sp2

structure plus the same hydrogen atoms in isolated hydrogen molecules:

∆E = E − E0 −
NH

2
EH2

, (4.1)

where NH is the number of attached hydrogens, E is the total energy of the config-

uration in question, E0 is the energy of the pristine pure-sp2 pure-carbon system

and EH2
is the energy of a single hydrogen molecule. Negative ∆E corresponds to

energetically favorable adsorption. It can be divided by NH to obtain a binding en-

ergy per hydrogen atom. Vibrational entropy will favor hydrogen geometries with

weaker bonds, but this effect should not disrupt the overall energetic trend towards

cooperative adsorption. Since we focus on relative energetics, we do not consider

vibrational entropies or pressure-dependent gas-phase entropic terms. This treat-

ment differs from previous studies [66, 73], in that we compare the bound system

to a clean substrate plus molecular rather than atomic hydrogen.

An isolated chemisorbed hydrogen induces a local distortion of the surrounding

carbon atoms, creating an intermediate sp2/sp3 bonding character on neighboring

atoms. This distortion induces a slight dangling bond character in its immediate

neighborhood and affects the energetics and kinetics for adsorption of additional
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hydrogen. The most favorable site for successive hydrogen addition should gen-

erally be immediately adjacent to the existing cluster, at the point with maximal

bonding distortion. The number of possible arrangements of nearby adsorbed hy-

drogens grows roughly exponentially as the number of hydrogen atoms increases.

Therefore, instead of exhaustively analyzing all possible configurations for a given

NH , we start from NH = 1 and construct successively larger clusters by following

the lowest-energy pathway for successive hydrogen addition. For small or linear

clusters this strategy requires evaluation of ∼ NH structures, since roughly half of

the possible cluster edge sites are equivalent. For big compact clusters, evaluation

of ∼
√
NH structures is enough at each stage, since every site near the perimeter

of the NH configuration must be tested to determine the most favorable NH + 1

configuration.

We examine three different stages with successively higher hydrogen densities:

(1) the beginnings of chemisorption, wherein a small number of hydrogen atoms

attach to a graphene surface in a local cluster, (2) the extension of an adsorbed state

along a tube axis, using high-symmetry configurations to simplify interpretation

and (3) the hydrogenation of the last few remaining sp2 carbon atoms in an almost

fully hydrogenated sheet-like carbon structure.

To examine the initiation of chemisorption onto an (8,8) carbon nanotube, we

use VASP [74] package to make a series of local density approximation (LDA)

density functional theory (DFT) calculations with ultrasoft pseudopotentials and

a 300 eV plane wave energy cutoff. We use a supercell containing 3 unit cells

of the (8,8) tube (with total 96 carbon atoms) to adequately isolate the clusters

of attached hydrogens in each repeated unit. Since the chemisorbed patches are

well separated, the simulations use only the Γ (~k = 0) point. The supercell has

dimensions of 21 Å× 21 Å×az, where az ≈ 7.3 Å varies between structures, since

the system is fully relaxed along the z direction. The ionic relaxation has been

carried on up to the point when the relative total energy change is less than 1.0·10−4

per unit cell.

The tight binding calculations for the same supercell structures have been made

within a nonorthogonal tight-binding scheme [4] implemented in program Tro-

cadero [75]. In this calculation a structure has been considered relaxed when the

relative total energy change becomes lower than 0.2 · 10−4. In every case, the
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Figure 4.2. LDA DFT results for the energy ∆E of the hydrogen chemisorption on the
(8,8) tube, following the minimal energy path described in the main text.

structure is fully relaxed into the local energetic minimum.

Figure 4.2 shows relative total energies ∆E for a growing hydrogen cluster with

atoms attached to both sides of an (8,8) nanotube, calculated using spin polarized

LDA DFT. The smallest chemisorbed clusters are unstable, but at NH = 4 the

chemisorbed state becomes energetically favorable. This behavior manifests as

a collective reinforcement of the buckled sp3 network. As a consequence of the

wall curvature, the cluster grows further with hydrogen arranged in an armchair

circumferential row, with more hydrogens on the outside than on the inside surface

(Figures 4.4 and 4.5).

Unlike most chemisorbed or physisorbed systems, which have a relatively weak

density-dependent binding energy, the binding energy for hydrogen chemisorption

in this case is highly density-dependent and even changes sign. The explanation

for this distinction is two-fold. First, carbon is nearly isoenergetic in two very

different bonding geometries, so that the chemisorption process is accompanied by

a large change in local bond angles. Second, the graphene substrate is a single

two-dimensional atomic layer, rather than the surface of a three-dimensional solid.

This very thin substrate is then susceptible to buckling distortions perpendicular

to the plane and, unlike bulk graphite, atoms can attach to both sides.

Next we calculate the same series of structures using the tight binding total
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Figure 4.3. Tight binding total energy difference ∆E of hydrogen chemisorption fol-
lowing the minimal energy path, as described in the main text. Configurations with
negative ∆E are more stable than a corresponding clean carbon structure plus molecu-
lar hydrogen.

Figure 4.4. Sequences of hydrogen atoms chemisorbed by following a minimal energy
path for the (8,8) and (12,0) tubes and graphene. Gray disks represent atoms chemi-
sorbed inside the tube or below the sheet. Arrows show the path of successive hydrogen
addition. Hydrogen atoms with explicit index numbers are discontinuities in the path.
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Figure 4.5. The final configurations of a sequence of hydrogen atoms chemisorbed by
following a minimal energy path. (a) On the smaller-diameter (12,0) tube, the strain on
the clean part of the tube induces a new row ((b), side view) to start before the first
row circles the belly of the tube. (c) In the (8,8) tube, the cluster again grows as a
ring around the circumference. (d) In the graphene sheet, hydrogen atoms arrange in
a double zig-zag row. The edge-on view for the graphene sheet emphasizes the sp3-like
vertical distortions away from the perfectly planar sp2 starting structure. Schematic top
views of the same structures are shown in Figure 4.4.

energy approximation. The result (black diamonds on Figure 4.3) shows the same

trend as the DFT result, Figure 4.2, but shifted upwards and with a somewhat

smaller slope (possibly due to an underestimate of longer-range energetic contribu-

tions from broken aromaticity). Both curves have peaks and valleys with similar

locations, except on the beginning of the chemisorption process, where tight bind-

ing underestimates the graphene resistance to the first hydrogenization and then

show a rather slow change in the cluster stability, predicting the first stable clus-

ter only after 9 hydrogens. In addition, the tight-binding-based minimal energy

sequence yields the same shape for the optimal sixteen-atom hydrogen cluster: an

armchair row around the tube. This comparison shows the tight binding total

energy method is reasonably accurate for carbon in the vicinity of sp2 and sp3

bonding geometries, and so should be able to describe the main features of co-

operative interactions between nearby adsorbates, especially in advanced cluster

growing.

Since tight binding gives the correct trend for the total energy of hydrogen

chemisorption, we next use it in a comparative study of hydrogen chemisorption
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onto three different systems: the tripled unit cell (8,8) nanotube already mentioned,

a doubled unit cell (12,0) tube, also with 96 carbon atoms, and a flat defect-free

single graphene sheet with 384 carbon atoms (but roughly the same unit cell volume

as for the tubes). The flat graphene sheet, when compared to the tube systems,

reveals the effects of wall curvature and bond orientation relative to the principal

axes of curvature. In each case, we assume that atomic hydrogen has access to

both sides of the carbon surface, as would be the case for a nanotube with open

ends or sidewalls [76].

Figure 4.3 shows the tight binding energies ∆E for growing clusters. The

smallest chemisorbed clusters are again unfavorable, but at NH ≈ 6 − 10 the

chemisorbed state becomes energetically favorable on all three structures. The

minimal stable cluster is smaller when the curvature of the underlying carbon net

is bigger, since sp3 bonding angles for outwardly-attached atoms are more easily

fit onto a curved surface and the system can adjust the relative numbers of inside

and outside hydrogen atoms.

In each case, the patches of hydrogen are most stable as a double row of ad-

sorbed atoms [67] (see Figures 4.4 and 4.5). For the flat sheet, this double row

follows the so-called zig-zag direction of the graphene lattice. As a consequence of

wall curvature, both nanotubes favor hydrogen arranged along a circumferential

path, even though the (n,0) and (n,n) tubes have quite different bond orientations

relative to the tube axis. The small diameter of the (12,0) tube cannot easily

support an sp3 state with equal numbers of hydrogens on the outside and inside:

the inside hydrogens are less compatible with the overall wall curvature. There-

fore, a second row starts before the first row is complete, similar to what happens

for intermediate sized pure-sp3 tubes [56]. For larger radii the curvature is less

important and hydrogen atoms can complete a ring before the next row begins.

The above presented results suggest that progressive hydrogenation would pro-

ceed in a row by row fashion, as has been found experimentally for fluorinated

systems [69]. Verifying this model in detail is not a simple task, since cluster for-

mation becomes harder to follow step-by-step as the number of hydrogen atoms

increases. Instead, we model further growth by restricting attention to a set of high-

symmetry structures with hydrogen atoms arranged in a series of rings around the

(8,8) and the (12,0) tubes. The small clusters already show that not all hydrogen
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Figure 4.6. Difference in the energies ∆E for (8,8) (squares) and (12,0) (triangles)
tubes with completed rows of chemisorbed hydrogen. Rows alternate from the outside
to the inside of the tube. Four structures (a-d) are detailed in the text.

atoms in one row should be on the same side of the tube, so these structures are

not energetically the most favorable, but they provide a simple view of possible

modes of propagation for an adsorption front along the axis of the tube.

Figure 4.6 shows the energy difference ∆E for successive row-by-row adsorption.

In order to avoid interaction between images, these tight binding calculations use

larger supercells with 192 carbon atoms. The outside (represented in the text

as ↑) and inside (↓) hydrogen rings alternate, following by the unhydrogenated

(−) carbon sp2 rings. Since the atoms in each ring are equivalent, corresponding
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structures can be labeled using their cross sectional shape. The figure contains

models for the first configuration, (↑ −−−−−−−−−−−), containing just one

hydrogen row attached on the outside surface and two later configurations: (↑↓↑↓↑↓
− − − − −−) for the (8,8) tube (with six filled rows) and (↑↓↑↓↑↓↑ − − − − −)

for (12,0) tube (with seven filled rows).

Energies for the higher-symmetry row-by-row filling are higher than those for

the small clusters, as expected. The axial propagation of the chemisorbed state

favors addition of rows in pairs, rather than sequentially row-by-row, since the

distortion of the remaining sp2 part is then minimized and the sp3 atoms interior

to the patch maintain a consistent geometry. The reduction in the total energy

per hydrogen atom after each (↑↓) step is ∆E/NH ≈ −100meV for the (8,8)

tube and ∆E/NH ≈ −180meV for the (12,0) tube. Similar to the initiation

of chemisorbtion, the total energy ∆E decreases and the overall process is self-

propagating in an energetic sense. As a consequence of different carbon bond

orientations, the armchair (8,8) tube prefers configurations with one extra row

on the outside, while the zig-zag (12,0) tube prefers equal numbers of inside and

outside rows. In larger systems, antiphase boundaries between different domains

could introduce frustration into the pattern of buckling at the boundaries.

The linear scaling of the total energy gain with respect to the number of che-

misorbed hydrogens in the row-by-row cluster propagation shows that the energy

gain when two hydrogen belts are added is independent of the cluster size (except

in the beginning of the chemisorption process, i.e. near the origin in Figure 4.6,

which always must belong to the curve). This is possible only if the collective

stabilization of chemisorbed hydrogens has a relatively local character, so that in

the cluster all interior atoms give the same contribution to the cluster energy.

Finally we consider the other extreme of hydrogen chemisorption, a tube com-

pletely filled with hydrogen. This is a complement to the clean tube, being again

a uniform tubular structure, but built with sp3 instead of sp2 carbon. For each

sp2-tube there is its sp3 carbon-hydrogen counterpart (section 4.3). These struc-

tures are significantly more stable than their sp2 twins (plus gaseous hydrogen).

For example, the (8,8) sp3 tube is 140meV per hydrogen atom more stable than

its sp2 counterpart, while the (12,0) tube is preferred by 233meV per hydrogen.

The final steps of adsorption just before attaining complete sp3 coverage perhaps



46

most strongly demonstrate the importance of the collective stabilization. It is sim-

plest to examine this limit by working backwards and considering the removal of

a succession of hydrogen atoms from a saturated tube. The sp3 (8,8) tube with

96 carbon atoms and a single missing hydrogen atom is already ∼1.9 eV (in tight

binding) less stable than the saturated tube. Therefore the reverse reaction, i.e.

the completion of saturation, is highly favorable. The second and third hydrogen

atom can be detached from nearby sites in a several different ways, but they all

have similar total energy cost of about ∼1.5 eV, within the same empirical approx-

imation.

The resistance of a pristine graphite basal plane to attack by atomic hydrogen

has two distinct kinetic barriers: the familiar “local” barrier against changing the

bond hybridization of a specific carbon atom and also a more collective “global”

nucleation barrier, wherein a finite number of adjacent hydrogens must be attached

before the addition of subsequent hydrogens becomes energetically favorable. The

kinetic barrier against this self-reinforcing process is substantial. Methods to over-

come this nucleation barrier could include the creation of defects in the sp2 sheet,

the incorporation of pre-configured small hydrocarbons that built-in the struc-

ture of a seed cluster, or initial fluorination of the sheet, followed by a concerted

exchange of fluorine for hydrogen. Single-walled carbon nanotubes seem a partic-

ularly favorable substrate for this behavior, since both sides of the sp2 surface are

potentially accessible and the wall curvature reduces the size of the critical cluster.

One possible source of the atomic hydrogen needed is a dispersion of nanopartic-

ulate Pt catalyst. The local kinetic barrier against chemisorption is much smaller

for the atomic hydrogen (0.3 eV) than for molecular hydrogen (around 3 eV) [77].

This barrier may decrease further with progressive buckling of the carbon surface,

since potential host carbons adjacent to the current cluster deviate more strongly

towards an incipient sp3 dangling bond structure under the influence of the collec-

tive sheet distortions.

We simulated the chemisorption of hydrogen on bilateral carbon surfaces, al-

lowing hydrogen to access the both sides. In simulations we used DFT and semi-

empirical tight binding methods. We justified the tight binding results comparing

them with DFT in one system and then we used it to compare hydrogen chemisorp-

tion on a typical zig-zag, armchair tube and the graphene sheet. In each of these
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cases hydrogen cluster becomes favorable after some initial size. On tubes it prefers

to grow as a belt, in a row-by-row manner, so we modeled the cluster’s further

extension comparing a series of well ordered structures, with hydrogen atoms ar-

ranged in rows around the tube. This system gains energy if the rows are added in

pairs, one from the bottom and one from the top of the tube. Next, we discussed

the other end of the chemisorption process, the sp3 CH tubes. We found they are

very stable structures. Finally, we discussed possible experimental realizations of

the modeled systems and proposed methods to overcome the cluster nucleation

barrier.

4.3 Carbon-Hydrogen sp3 Tubes

The atomically thin two-dimensional covalent structure of a graphene sheet can

be distorted in the third dimension with a modest energy cost (quadratic in the

mean curvature, with Gaussian curvature taken up in e.g. five or seven-fold rings),

thereby producing topologically distinct low-energy structures such as nanotu-

bes [78] and nanocones [79]. However, in very small-diameter nanotubes (below

1 nm in diameter) the curvature penalty of distortion becomes more severe as the

bond angles deviate far below the ideal 120 degree sp2 angles. Here we describe

how sp2 carbon, three-fold coordinated by other carbons, can be replaced by sp3

carbon, also three-fold carbon-coordinated, to produce extremely small-diameter

(∼ 0.4 nm) highly stable carbon nanowires with minimal bond-angle distortion.

Such systems represent the extreme limit of a small-diameter, rigid one-dimensional

atomic structure2.

The key idea here is to break the tetrahedral symmetry of an sp3-hybridized

carbon precursor by attaching one relatively tightly-bonded group (e.g. hydrogen

or fluorine) and three more weakly bonded groups (or an element like iodine)

as shown in Figure 4.7. Eliminating the weakly bonded groups then produces a

carbon building block with three reactive bonds per carbon, whose mutual angles

match well to a highly curved small-radius cylinder. The precursor molecule could

2Geometrically, one could construct a smaller rigid structure from a triangular atomic motif,
but such a bonding geometry, regardless of the type of atom, is not nearly as stable as carbon
sp3 bonds.
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Figure 4.7. The proposed precursor (could be CHI3) and an illustrative growth config-
uration showing the role of the capping ligand.

also contain multiple carbons (e.g. C2H2X2), so long as each carbon has exactly

one relatively inert ligand.

The resulting carbon structures satisfy Euler’s rules for closed polyhedra in

exactly the same manner as does carbon in more familiar sp2 structures, so long

as one ignores the topologically irrelevant capping ligand on the fourth bond.

Since the stoichiometry of tightly-bound ligands is fixed at one per carbon, it is

impossible to form a capped three-dimensional interlinked hexagonal ring structure

without rearranging these ligands. (In the small-radius tubes that we consider,

energetically unfavorable rings of fewer than five sides are also required to form an

Euler cap.) Therefore, if growth conditions are such that the capping ligands are

tightly bound and immobile, then the system will always have an active growth

edge, whose energy is minimized by restriction to a small-radius one-dimensional

growth axis.

The result is an extended one-dimensional structure formed from pure hexago-

nal rings3. The symmetry analysis developed for the usual nanotubes [80] remains

3Strictly speaking, to guarantee that Euler’s rule is satisfied one must also assume that the
endcap atoms are also three-fold coordinated, but this restriction does not affect the allowed
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Figure 4.8. Adamantane is an alkane with four fused hexagonal rings.

applicable, except now we have two types of atoms, so the tubes are described by

two orbits of the group action. One can even follow an analogous wrapping-index

naming convention as for sp2 carbon nanotubes: the most stable sp3 tubes, and

the ones which we examine in detail, are then the (3,0) and the (2,2) tubes shown

in Figure 4.9. The (3,0) tube is essentially a polymer of a close variant of adaman-

tane [81] shown on Figure 4.8, the most stable hydrocarbon known when measured

as the binding energy per carbon atom.

We have performed density functional total energy calculations in the norm-

conserving pseudopotential approximation for the (2,2) and (3,0) sp3–carbon na-

notubes. As a basis for the representation of the Kohn-Sham equations we used

plane waves with the cutoff energy of 816 eV. To fully exploit the tube symme-

try, we arranged the (2,2) nanotubes in a square lattice and the (3,0) nanotubes

in a hexagonal lattice. The distance between the axes of the adjacent tubes is

held at 10.5 Å so that the interaction between tubes is negligible and we can use

a purely axial k-point grid (of eight points). Atoms are described with Troullier-

Martins pseudopotentials [12] with cutoff radii of 0.619 Å for carbon and 0.360 Å

for hydrogen.

The calculated bond lengths (see Figure 4.9) are similar to C–H and C–C bond

lengths in alkanes (i.e. 1.11 Å and 1.54 Å). The bond angles are close to the ideal

tetrahedron value, 109.5◦, so the material comprises a nearly optimal sp3 bonding

structure with no dangling bonds. Therefore the band structures (Figure 4.10)

have large bandgaps typical of saturated hydrocarbons. These bandgaps greatly

bonding geometries in the body of the tube. See [31] for a more complete discussion of local and
global topological constraints.
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Figure 4.9. The relaxed structures of the (2,2) and (3,0) tubes. The (2,2) tube wire-
frame image shows two unit cells. On sides are space-filling models of the tubular struc-
tures.  

�/a 

E[eV] 

(2, 2) tube 0 

-5 

-
10 

-15 

-20 0 

E[eV] 

(3, 0) tube 0 

-5 

-10 

-15 

-20 
�/a 0 

Figure 4.10. The electronic band-structures of the (2,2) and (3,0) nanotubes, showing
the large bandgap. Residual band folding is visible. The (3,0) tube has weakly dispersive
bands due to the rather long axial carbon-carbon bondlength of 1.62 Å. Horizontal axes
use the same scale in both plots.

exceed those obtainable in sp2 carbon nanotubes, since in that case the semicon-

ducting bandgap arises solely from a nanometer-scale circumferential boundary

condition [82], whereas in sp3-tubes the gap arises from the local sp3 bond satura-

tion. The bands of the (3,0) tube are particularly flat, due to relatively long axially

directed carbon-carbon bond (1.62 Å). Longer distance between axial atoms means

that the interaction along the periodic direction is smaller and thus the energy is
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less dependent on the k-vector. The lower bands of the (2,2) nanotube seem to

evoke the folded bandstructure of a hydrogenated graphene-like sheet. The large

bandgaps and binding energies of these structures (see below) suggest that their

synthesis should be favored so long as capping can be maintained on the final sp3

bond, which should be possible for judicious choice of feedstock molecule (i.e. one

with three weak C–X bonds, such as C–I and one strong C–Y bond, such as C–H)

and growth conditions (i.e. which differentially favor the breaking of C–X above

C–Y).

The ab initio total energies for the (2,2) and (3,0) tubes are very close: the

(2,2) tube is favored by roughly 0.05 eV per carbon atom. The (2,2) tube is also

0.22 eV per carbon atom more stable than benzene, a well-known cyclic hydrocar-

bon of identical 1:1 carbon:hydrogen stoichiometry. To compare with standard

sp2-bonded tubular structures, one must create a reference system comprising a

purely carbon sp2 tube of similar diameter plus the requisite number of isolated H2

molecules. Since sp2 tubes so small in diameter do not exist, we favor the sp2 sys-

tem slightly and compare the sp3 systems to standard (4,0) and (6,0) tubes plus the

appropriate H2’s. Our proposed (2,2) is 1 eV per carbon atom and 0.55 eV per car-

bon atom more stable, respectively, than the (4,0) and (6,0) sp2 variants. (It is also

0.11 eV per carbon atom more stable than the “infinite-radius” limit of a graphene

sheet plus molecular hydrogens). Earlier theoretical considerations [83] and sim-

ulations [84] suggested that the (4,0) tube is the thinnest possible metastable sp2

carbon nanotube. Such thin tubes have just recently been synthesized, but only

inside of multiwall nanotubes [22, 85] or zeolite channels [86], which surround the

tube and stabilize its delicate structure.

The (2,2) and (3,0) sp3 tubes extend one-dimensional carbon systems to the

smallest possible radii. They are also the beginning of an entire family of sp3

tubes. As the tube diameter increases, it becomes untenable to populate only

the outer surface with capping hydrogens, since bond angle distortions become

severe. However, by inverting some capping ligands onto the inner surface, one

can stabilize these larger structures. Figure 4.11 depicts the stablest geometries

(calculated within a tight binding total energy formalism [4]) for the (8,8) and

(5,0) sp3 tubes. Unrolled, the (8,8) system forms a pleated honeycomb C–H plane

with up-down alternated hydrogens, similar to the pleated structure considered for
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Figure 4.11. The tight-binding relaxed structure of (a) the (8,8) and (b) the (5,0) sp3

tube (three unit cells are showed).

some Si-H systems [87]. The tubes undergo an interesting transition from purely

external capping groups to a mixture of internal and external caps as the radius

increases. For example, within tight binding the (4,0) structure is most stable

with entirely external hydrogen. In contrast, the preferred (5,0) structure has one

row of hydrogen on the inner surface. These inner hydrogens minimize bond angle

distortions by increasing the mean curvature of the remaining surface. Within the

tight binding total energy scheme, the total energies per carbon atom for all of the

sp3 tubes studied are only slightly higher than that of the (2,2) tube (by 0.1 to

0.15 eV) and remain more stable than benzene [88].

It is particularly fascinating to consider the results of partially removing hy-

drogen (e.g. thermally) from an sp3 tube to form a mixed sp2/sp3 hybrid with

novel electronic boundary conditions and the possibility for tuning semiconduct-

ing/metallic properties similar to that described for graphene strips [89] (see also

the next section). Such partial removal may be particularly facile for the tubes in

the transition region of diameter between pure external and mixed internal/exter-

nal capping ligands.

The smallest-diameter (2,2) and (3,0) sp3 tubes are also extremely stiff. A

calculation of Young’s modulus requires as input a meaningful cross-sectional area

perpendicular to the axis of the tube. One must take particular care in defining this

area for very thin tubes. We define the cross-sectional area of the (2,2) and (3,0)

tubes as that corresponding to an equivalent number of carbon atoms in a core

sample through a bulk diamond structure. The reference to a bulk structure of sim-
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ilar bonding geometry minimizes the arbitrariness in defining the “outer surface”

of the tube. Bulk diamond (when calculated here with the same pseudopotential

method) has a volume of 5.536 Å3 per carbon atom. Assigning a similar volume

per atom to the tubular structures4, the appropriate volumes of the (2,2) and (3,0)

unit cells are 17.94 Å3 and 15.94 Å3 respectively. Dividing by the (well-defined)

unit cell lengths, the resulting cross-sectional areas are equivalent to those of disks

with radii of 2.39 Å and 2.25 Å respectively. Such values are quite reasonable,

considering the transverse dimensions of the structures given in Figure 4.9. The

corresponding Young’s moduli are 1.78TPa for the (3,0) tube and 1.53TPa for the

(2,2) tube. These values are substantially larger than those of more familiar sp2

nanotubes: the (4,0) tube, calculated here with a similar method, has a Young’s

modulus of 1.18TPa. Earlier calculations [90] for single sp2 tubes gave 1TPa,

while experimental results [91] cluster around 1.3TPa.

Since cross-sectional areas are really only well-defined in macroscopic systems,

a more direct and fair comparison between sp2 and sp3 carbon tubes is provided

by the following thought experiment: Given a box of N carbon atoms and a

distance L to span with filament(s) of maximal stiffness, should one choose sp2 or

sp3 structures? The suitable quantity of comparison is then the stiffness per unit

linear carbon atom density along the axis. This quantity (in units 10−8 Jm−1) is

3.44 for the (2,2) tube, 2.36 for the (3,0) tube and only 1.59 for a (4,0) sp2 tube

(larger-diameter sp2 nanotubes have only slightly larger values). From both points

of view, these new sp3 structures are more rigid than traditional sp2 tubes, which

were previously believed to be the most rigid structures known.

Carbon nanotubes ultimately depend for their stability on the topological rules

which allow three-fold coordinated atoms to form extended open polyhedra (or

equivalently, closed polyhedra of genus one [31]) of arbitrary length in systems

with exclusively hexagonal faces. We demonstrate here that sp3 bonded carbon

can assume the same topology as sp2, so long as the fourth bond is capped with

a tightly-bound ligand. The resulting structures possess unique properties inac-

cessible in their sp2 cousins: a very large insulating bandgap, high stability at an

extremely small diameter, and Young’s moduli exceeding 1.5TPa.

4The average bond lengths in (2,2) and (3,0) tubes differ only slightly from that in diamond,
so this identification is reasonable, particularly for the (2,2) tube.
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Figure 4.12. Left: Uniaxial compression of a nanotube transverse to its axis in the
presence of hydrogen molecules could facilitate chemisorption onto diametrically opposed
rows by forcing these carbon atoms into an sp3 configuration, as shown on right. The
aperture angle θ of the sp3 junction is used later in the discussion of structural energetics.

4.4 Eye Tubes

In the past several years, the research focus for carbon nanotubes has turned from

the properties of the nanotubes alone towards their modification– for example, by

doping, deformation or incorporation into nanodevices [92]. In particular, chemical

and physical adsorption onto the nanotube surface provides a powerful way to tune

electronic properties. Chemisorption converts sp2 carbon into sp3 carbon, without

destroying the original hexagonal network. This process has been performed with

both hydrogen [93] and fluorine [70]. Previous theoretical studies of hydrogenated

single wall nanotubes at complete or 50% hydrogen coverage [66] generally show

a band gap that increases with coverage, except for some special half-coverage

patterns when the tube becomes a band-crossing metal. Unfortunately, it is un-

clear experimentally how to create uniform (i.e. translationally invariant) patterns

of chemisorption. Graphene nanoribbons [89, 96] show novel edge states with

very low dispersion. These ribbons have been synthesized [97], but the possi-

bility of controling their geometry (especially endings) seems remote [98]. Here

we propose a plausible means to synthesize pairs of weakly coupled high-quality

graphene ribbons by selective chemisorption onto carbon nanotubes. Pressing a

nanotube transverse to its axis forces two diametrically opposed rows of carbon

atoms into high curvature sp3-like configurations, rendering them specially favor-

able chemisorption sites (see Figure 4.12). The pz orbitals of the atoms which bond
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(a)

(b)

Figure 4.13. (courtesy of Paul Lammert) Chemisorption patterns on (a) zig-zag and
(b) armchair nanotubes. Open circles indicate adsorption sites and the absence of an
accessible pz orbital. Heavy bonds symbolize electronic π-hopping in the tight-binding
picture; the light bonds are inactive.

to hydrogen become unavailable to the π-complex; this separates the nanotube into

a pair of ribbons. This violent rearrangement of the π manifold has surprisingly

little effect on the electronic states of (n,0) tubes and actually decreases, rather

than increases, the bandgap. An electronically bifurcated (n,n) tube has pairs of

exceptionally flat and closely spaced bands at the Fermi level. As we will see,

energies of electronic states near the Fermi level are so close that the ground state

stabilizes in a magnetic state with two top valence bands half filled with the same

spin electrons.

The transformation from sp2 to sp3 hybridization gives the tube an eye-like

cross-section, as shown in Figure 4.12. We have performed a series of ab-initio

calculations using the projector augmented wave (PAW) method within general-

ized gradient approximation (GGA) of density functional theory (DFT), as im-

plemented in the VASP package [74], plus selected tight binding calculations to

reveal essential physics. Relaxation was performed using at least 5 k-points along

the axis in the self-consistent loop5.

Straight columns of chemisorbed hydrogen can be realized only on zig-zag and

armchair tube walls, so we focus on these two types of tubes. Figures 4.14 and

4.15 summarize electronic properties of metallic eye tubes. For (3n, 0) tubes, the

original bands (which nearly touch EF at the Γ point) split, producing overlap-

5The plane waves basis energy cutoff was 400 eV. The relaxation energy convergence criterion
for electronic loop was 1.0 · 10−4 and for ionic loop it was set to be 1.0 · 10−3.
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Figure 4.14. PAW GGA band plots with density of states and the electron probability
density plots (density isosurfaces for 0.003 Å−3 are shown) for the highest occupied and
lowest unoccupied states at Γ for (8, 0), (9, 0) and (10, 0) eye tubes. In each case, the
wavefunction has a node on the sp3 carbon.

ping bands in the eye. The (3d − 1, 0) and (3d + 1, 0) zig-zag eye tubes remain

semiconducting with somewhat smaller band gaps compared to the parent clean

tubes. For example, the (8, 0) tube gap decreased from 0.59 eV to 0.48 eV, while

the (10, 0) tube gap went down from 1.04 eV to 0.29 eV after hydrogenization. The

armchair tubes show dramatic changes, with entirely new bands appearing near

the Fermi energy.

Using a generalization of the ribbon theory [89, 96], Paul Lammert reached a

deeper understanding of most of the electronic features of eye tubes. Conceptually,

we can produce an eye tube in two steps. First, chemisorption removes the p

orbitals of hydrogenated carbon atoms from the π-complex near the Fermi energy.

Those atoms therefore become inert as far as the low-energy electronic structure

is concerned, and the tube is severed into two ribbons separated by a pair of thin

stripes (i.e. the hydrogenated atoms), see Figure 4.13(a). Second, the ribbons

are coupled electronically by orbital overlap. This coupling is strengthened by the
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Figure 4.15. Left: PAW GGA spin polarized band structures showing uneven spin
population on the Fermi level (blue and black curves represent two spin polarizations)
for (6, 6) eye tube and its half, a bended (unrelaxed) graphitic ribbon terminated with
hydrogens at positions where carbon atoms are in the eye tube. The electron probability
density plots for combined spin and spin difference shown on the right (density isosurfaces
for 0.003 Å−3 are shown) for the highest occupied and lowest unoccupied states at the
gamma point illustrate electronic bifurcation in the eye tube and close connection to the
ribbon’s edge state. In both cases carbon-carbon bonds in the circumferential direction
lengthen gradually from 1.40 Å at the zig-zag edge to 1.58 Å at the bearded edge, nearly
the same as the change from a double bond to single bond.

flattening of the ribbons which occurs under structural relaxation.

For the zig-zag case, the electronic bands in a single ribbon have a simple rela-

tionship to those of the parent clean (n, 0) nanotube. The bands in the nanotube

are labelled by angular pseudomomentum m, with m and −m degenerate. In a

tight-binding view, one linear combination of m and −m has zero amplitude on

the stripes, and these states form the eigenstates of the ribbon. Conversely, if

the upper uncoupled ribbon carries a particular eigenstate and the lower ribbon

carries its reflection and the amplitude on the stripes is set to zero, the result

is an energy eigenstate of the parent tube. The phase relationship between the

wavefunctions on the two ribbons ensures that the hopping Hamiltonian main-

tains zero amplitude on the stripes. Therefore, the uncoupled ribbons should have
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Figure 4.16. (courtesy of Paul Lammert) Upper panel: tight-binding results for the
near-Fermi-energy bands of the (6, 6) eye tube. The solid line is in zero field, the gray
line for E =1 V/nm x̂, and the dashed line for E =1 V/nm ŷ. The individual band
widths are significantly larger than found in GGA; the band separation is in much better
agreement. Lower panel: minimum direct gap between the bands as a function of field.
The solid lines are for the (6, 6) eyetube and the dashed lines for the (11, 0) eyetube.
The direction of the field is indicated by x or y. Since the tight-binding calculations are
not self consistent, the values of electric field should be interpreted in terms of voltage
drop across the eye.

band structures very similar to that of the parent tube, but lacking the double de-

generacies (and excepting one or two of the parent tube bands which lack partners

under m 7→ −m).

In the second step, the weak coupling between ribbons splits the bands into

bonding and antibonding combinations. The most striking manifestation of this

splitting is the shift of the Fermi level band crossing away from the Γ point in the

(3n, 0) tubes (as an example, (9, 0) eye tube band plot is given on Figure 4.14). The

bands which cross there are doubly degenerate. For (n, 0) eye tubes derived from

semiconducting tubes, the band structures are very similar to those of the parent

tubes, except for the splitting which results in more bands, and consequently a

small decrease of the gap.

Armchair eye tubes are entirely different, as shown in Figure 4.15. The band
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structure near the Fermi energy bears little resemblance to that of the parent

nanotube, with a pair of very narrow bands. Again, we appeal to the ribbon theory

for an explanation in Paul Lammert’s formulation. The ribbon-stripe structure for

these tubes, shown in Figure 4.13(b), has a zig-zag edge on the left, and a bearded

edge [99] on the other side, which is in the same sublattice as the atoms of the

zig-zag edge. As shown in refs. [89, 96], with a zig-zag ribbon edge oriented

along the z-axis, there are zero-energy states localized to the edge for kza > 2π/3

(a = 1.42 Å·
√

3 is the graphene lattice constant); these decay with distance x

from the edge as [2 cos(kza/2)]x/a. If the ribbon has finite width and the opposite

edge is also zig-zag (hence on the other sublattice), then the opposite edge is

only a small perturbation. The members of the same family of functions with

kza < 2π/3 are not approximate eigenstates since they grow with distance from

the edge (2 cos(kza/2) > 1), so that the opposite edge is not a small perturbation.

However, if the opposite edge is bearded, its presence requires no modification of

the wavefunction, because it is on the same sublattice. Thus, this ribbon has an

edge state very near EF for all kz. If kza > 2π/3, it is localized near the zig-

zag edge, and if kza < 2π/3, it is near the bearded edge. Near kza ≈ 2π/3 the

wavefunction is well-distributed over the ribbon, and so loses its edge character.

When two such zig-zag/bearded ribbons are combined into an eye tube, the two

degenerate flat bands contributed by the ribbons develop a bonding/anti-bonding

splitting. The ab initio results in Figures 4.15 are in harmony with these simple

tight-binding predictions. The lower part of Fig 4.15 shows results for a ribbon

plus stripes frozen in the conformation of the relaxed eye tube. (Dangling bonds

are simply capped with hydrogen.) The charge density of the state in the flat band

at Γ, shown at lower inset on right, is concentrated on the bearded edge of the

ribbon.

Band structures on Figure 4.15 also show an unequal spin population in the

armchair tube. This is an unexpected behavior for a carbon-based system with an

even number of electrons. We have confirmed that there is no Peierl’s dimerization

in the system by repeating our calculation for the double unit cell eye tube. This

result shows that the armchair eye tubes have macroscopic magnetic ordering. The

uneven spin population in eye tubes is currently a subject of an ongoing research
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inside our group6. This effect can be again connected to the ribbon edge state.

In ref. [99] a Hubbard model for the flat band wavefunction is constructed, which

shows that the magnetic ordering in a zig-zag ribbon is a consequence of one

bearded edge.

The pair of flat bands near the Fermi energy in armchair eye tubes, half filled in

the undoped tube, could produce unusual and potentially useful optical properties.

An accurate optical transition analysis for these systems requires use of the two-

particle Greens function for electron-hole excitations [100], a method beyond the

GW approximation. It has been shown that this advanced approach is already

essential for an accurate optical spectra calculation in clean tubes [101] and in eye

tubes it is even more important, due to narrowness of the flat bands on the Fermi

level. For now, we have been able to make only a very limited DFT calculation of

the joint density of states, which shows that the eye tubes could have exceptionally

big response in the terahertz range. This is interesting for possible applications,

since tubes are much lighter materials than the common narrow-band materials

as PbTe and SnTe and the absorption peak may be highly tunable by means of

mechanical stress.

The relative weakness of the coupling between the ribbons comprising an eye

tube also makes the band structure highly susceptible to applied static electric

fields, compared to a clean nanotube. Figure 4.16 summarizes the effects of an ex-

ternal field, according to Paul Lammert’s tight-binding [108] calculations (without

spin) applied to the relaxed eye tube structures. The lower panel of Figure 4.16

shows the evolution of the minimal direct gap for the (6,6) and (11,0) eye tubes

with field along either the x or y direction (x is the long direction across the eye).

Compared with a clean tube [104], the gap of the (11, 0) eye tube is closed by

a very modest field along y, because it is necessary only to overcome the weak

coupling between the two ribbons in order to completely polarize the bands. The

polarizability along x is not as large, since the field is now principally along the

ribbons.

In the armchair eye tubes, the twin bands near the Fermi energy consist of edge

states, so that a larger response is expected for a field along x. As measured by the

minimal direct gap, however, this is true only for small fields. The minimal direct

6Our gratitude is due to Prof. Peter Eklund for pointing out the possibility of this effect.
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Figure 4.17. The energy per carbon atom from DFT calculations and the fit of Eq.
(4.2) with coefficients given in text for (n, n) and for (n, 0) eye tubes.

gap saturates for a field along x, whereas it continues to rise roughly linearly for

the field along y. A closer look at the effect of the field on the bands, as shown in

the upper panel of Figure 4.16, reveals the source of the saturation. The k-point

at which the edge states switch from one edge to the other is special. At that k,

there is complete insensitivity to an electric field along x̂, and that point in the

band determines the gap for large enough fields. Since there is no k at which the

upper and lower ribbon states have zero y-component of dipole moment, there is

no such saturation for a field along ŷ.

The structural energetics of eye tubes can also be decomposed into contribu-

tions from sp2-like and sp3-like regions:

Eeye(n) = Nsp3 εsp3 +Nsp2

[

εg + yeff

(

1

Reff

)2
]

. (4.2)

The first term is the energy of sp3 atoms. Each unit cell has Nsp3 = 2 sp3 atoms

in case of (n, n) and Nsp3 = 4 for (n, 0) tubes. The fitted sp3 energy per one

sp3 carbon is εsp3 = −12.04 eV for (n, n) and εsp3 = −12.95 eV for (n, 0) tubes.

The difference comes from a different edge sp2-sp3 bond frustration produced by

different orientations of hexagons on the tube walls. The second term in Eq. (4.2)

comes from the sp2 part of the tube, expressed in terms of the number of sp2 atoms
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per unit cell Nsp2 = 4n − Nsp3, an effective radius of curvature Reff and effective

bending modulus yeff. Reff is larger than the radius R(n) of the parent clean

tube, since the rows of sp3 atoms absorb some of the curvature. It is defined as

Reff(n) = π R(n)/θ(n), with R(n) = aon
√

3/(2π) for (n, 0) and R(n) = 3 aon/(2π)

for (n, n) tubes. The aperture angle θ(n) of the sp3 joint (see Figure 4.12) is only

weakly dependent on n and can be fit by a line over the range of sizes studied:

θ(n) = 1.77 + 0.05n for (n, n) tubes with 4 ≤ n ≤ 12 and θ(n) = 1.90 + 0.01n

for (n, 0) tubes with 6 ≤ n ≤ 15. From calculation on clean tubes we find εg =

−9.99 eV (the graphene energy per atom)7 and yeff = 2.035 Å2eV (the effective

elasticity of graphene sheet). As Figure 4.17 shows, the energy difference between

DFT energy and the fit (4.2) is smaller than 3meV per carbon atom, except for

small eye tubes, for which the continuum elastic approximation is least suited8.

We have presented a systematic study of zig-zag and armchair carbon nanotu-

bes with two diametrically opposed stripes of chemisorbed hydrogen. A qualitative

understanding of many of the salient electronic features is provided on the basis

of the graphene-ribbon theory. Metallicity of (3n, 0) tubes is maintained despite a

substantial structural change after the hydrogen chemisorption. In armchair eye

tubes, a spin polarized population of a pair of very narrow bands near the Fermi

energy (despite an even total number of electrons), raises many interesting funda-

mental and application-related questions, which should be addressed in the future

of this project.

7A separate graphene sheet DFT relaxation with the same parameters, 18x18x1 k-points mesh
and 10 Å between graphene layers gives εg = −10.13 eV per carbon atom.

8For the (4, 4) tube the difference is 5meV and for the (6, 0) tube it is 16meV per carbon
atom.



Chapter 5

Conclusion

This text documents our investigation of carbon systems and their interaction

with hydrogen. It is an illustration of a fruitful connection between applied and

fundamental science. Our work was originally motivated by a practical problem

of hydrogen storage and then gradually shifted toward evaluation of the nature of

hydrogen adsorption in carbon materials, which then resulted in a design of new

materials with very interesting and potentially useful, mechanical and electronic

properties.

We first discussed the pure-carbon systems and among them the nanoporous

carbon schwarzite model, where we showed how hexagonal arrangement of sp2

carbon atoms produces especially stable electronic state of a graphenic sheet. Each

non-hexagonal ring in such system introduces frustration in electronic subsystem

around atoms not able to properly pair all of their electrons.

Next, we discussed the hydrogen adsorption on carbon surfaces in its two lim-

iting cases. In the weak limit, hydrogen physisorbs on the carbon surface in a

molecular form, confined in a shallow potential well of 0.05 to 0.1 eV at a dis-

tance of about 2.6 Å from the carbon surface. In this case hydrogen molecules

interact with carbon atoms through a weak dipole-dipole (Van der Waals) correla-

tion. This interaction is particularly difficult for accurate first principles modeling.

We collaborated with Jeffrey Grossman to make a precise Diffusion Monte Carlo

calculations on a representative patch of preprocessed nanotube surface. These

calculations showed that the local distortions of the sp2 carbon bonds are crucial

for the strength of hydrogen physisorption. We demonstrated how these distor-
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tions can be produced by irregularities (pentagonal and heptagonal rings) in the

carbon hexagonal network or as a consequence of the surface curvature.

In the strong adsorption limit, hydrogen molecules dissociate (usually with help

of some catalyst) to atoms, which then make chemical bonds with the carbon host

atoms on the graphitic surface. In this case the atomic hydrogen is held in a

potential well of 0.5 to 1 eV (relative to the hydrogen molecule) and about 1.1 Å

away from carbon surface. Upon chemisorption the underlying carbon hexagonal

network still retains its topology, but becomes distorted due to a change in the

electronic system. A chemisorbed hydrogen atom forces the carbon host to change

its electronic configuration toward sp3 hybridization, producing a tetrahedron-

like puckering on the carbon surface, which affects the neighboring carbon atoms,

distorting their bonds. As a result, chemisorption of the first few hydrogens is not

energetically favorable. However, as we have shown, if hydrogen is allowed to access

both sides of the carbon surface, then the same puckering effect stabilizes a cluster

of chemisorbed hydrogens after some critical size of about 5-10 atoms (depending

on the surface curvature) and the further chemisorption proceeds as an exothermic

process. We explained this behavior by considering reinforcement of chemisorbed

hydrogens through an orchestrated deformation of the underlying carbon network.

This in turn brought to our attention the potential of chemisorption to change

properties of carbon nanotubes, an idea we have developed in the next two projects.

In one project, we considered sp3 carbon-hydrogen tubes, which can be ob-

tained starting from a usual tube and replacing every carbon atom with a carbon-

hydrogen pair. In experiments, these tubes could be synthesized starting from a

CHX3 precursor, where X is some weakly bonded group or maybe an element like

iodine. Eliminating the weakly bonded groups then produces a carbon building

block with three bonds per carbon atom, as it should be in a tube. Since in the

resulting structures, carbon atoms use all their electrons for sigma bonding, all

sp3 tubes are insulators. Our calculations showed that there is a very stable fam-

ily of sp3 tubular structures all the way down to the smallest possible tube radii.

Moreover, we predicted that the smallest diameter sp3 tubes are among the stiffest

one-dimensional systems known. Since the cross-sectional surface area is not well

defined for such tiny objects, we calculated spring constant per linear atomic den-

sity as a measure of stiffness. In this sense, sp3 tubes are about 40 percent stiffer
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than usual tubes.

In our another project, carbon atoms are partially replaced with carbon-hydro-

gen pairs along two diametrically opposite sides of the tube. Since these pairs

have carbon atoms without pz orbitals, they electronically separate tube into two

sp2 ribbons connected with columns of sp3 atoms. We propose an experiment to

make these tubes through a controlled hydrogen chemisorption where a tube is

compressed transverse to the axis in presence of hydrogen. A tube compressed in

such a way has an increased curvature of two diametrically opposite wall regions

favoring them for chemisorption. Our total energy and electronic calculations

confirmed that these tubes can be understood as two weakly coupled graphitic

ribbons. Armchair tubes, when so divided, acquire a pair of extremely narrow

half-filled bands at the Fermi energy, with corresponding states related to the edge

states in zig-zag ribbons. Although this system has an even number of electrons,

energies of electronic states near the Fermi level are so close that the ground state

stabilizes with two top valence bands half filled with the same spin electrons,

similarly to the Hund’s rule for atomic energy levels. If the system is doped with

electrons or holes, or spin flip is allowed, these tubes could be very active terahertz

materials. A logical next step in this project would be a precise optical spectra

calculation. This kind of calculations, however, requires so advanced methods and

big computer resources that it represents a real challenge at this moment. Looking

back, the same kind of challenge on 1999, when this thesis started, is a matter

of a routine calculation today. This gives us confidence that in the next several

years the eye tubes project will have its natural continuation in theory and quite

possible also in experiment.

The field of carbon-based nanostructures is evolving rapidly with new advances

in experiment and theory, opening unforeseen possibilities. While the science of

nanotubes and related structures has been already quite developed, with thousand

of articles published yearly, technology has yet to follow. One of the main obstacles

for faster exploitation of nanotubes in industry is our poor ability to structurally

control matter on the atomic level. Although today nanotechnology is still the

almost exclusive preserve of the state of the art research laboratories, its way to-

ward future applications can be clearly seen illuminated by predictions based on

computer simulations. As methods of numerical experiment become more accurate
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following advances in algorithms and computer hardware, we can more precisely

and confidently investigate materials which have yet to come. However, for more

precise predictions it is crucial to have programmers able to make better simula-

tions and physicists able to make better programs. From that point of view, the

High Performance Computing Graduate Minor is a step in the right direction as

an educational bridge between the scientific and technical communities.



Translational Symmetry

Each basis β = {ai|i = 1, . . . , N} in N -dimensional space defines a Bravais lattice

{
∑N

l=1Ml~al |Ml ∈ Z} (Z is set of all integer numbers) as a set of all points in

space which map to each other by translations T = {t~a|~a =
∑N

l nl~al, nl ∈ Z}.
These translations are therefore symmetries of the Bravais lattice and they form

an Abelian group T with countably infinitely many elements. As a commutative

group, T has only one dimensional irreducible representations. They are given by

∆~k(t~a) = exp(−ı~k · ~a), where ~k is set of three irreducible indexes.

All operators T~a : f(~x) 7→ f(~x−~a) in the space of functions f : R
3 → R

3, with ~a

being a vector of the Bravais lattice, form a representation D(T) of the translational

group T. For every ~k the set {f~k, ~G(~r) = exp(ı(~k + ~G) · ~r) | (∀l) ~G · ~al ∈ 2πZ} spans

a subspace V~k of functions where D(T) behaves as irreducible representation ∆~k,

since T~a f~k, ~G(~r) = exp(−ı~k · ~a) f~k, ~G(~r) (because exp(ı ~G · ~a) = exp(2πn) = 1).

From the requirement ~G · ~al = 2πn, where n is an integer follows that all vectors

~G form a lattice (called inverse or reciprocal lattice), which consists of integer

linear combinations of the inverse basis {~bl}, defined with the system of equations

~bk ·~al = 2πδkl. All unique irreducible indexes ~k fill one primitive cell of this lattice in

reciprocal space. The Wigner-Seitz cell of that lattice is called the Brillouin zone.

It is especially suitable for manipulations, since it has full point group symmetry

of the crystal and its boundaries are the bisecting planes where Bragg scattering

occurs.

If the system is symmetric with respect to translation t~a, then any measurement

must give the same result before and after translation, which is formally expressed

as a demand that the corresponding hamiltonian H must satisfy H ◦ T~a = T~a ◦H,

i.e. it must commute with the representation of the translation. If H commutes

with all elements of the representation of group T (the system is T-translationally
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symmetric), then each eigenstate φ (eigenvector of H) must be inside one subspace

V~k of the group T, i.e. for each eigenstate φ there is a set of numbers c~k, ~G such

that for some ~k:

φ(~r) =
∑

~G

c~k, ~G f~k, ~G(~r). (1)

Then ~k is a good quantum number (preserved in evolution) and it can be used to

count the eigenstates of the system. Since the system has atoms in the unit cell,

each subspace V~k is nontrivial (it is actually infinite dimensional) and one more

index n should be introduced to distinguish all eigenstates:

φn,~k(~r) =
∑

~G

cn~k, ~G f~k, ~G(~r) =

=
∑

~G

cn~k, ~G exp(ı(~k + ~G) · ~r) = exp(ı~k · ~r)
∑

~G

cn~k, ~G exp(ı ~G · ~r) =

= exp(ı~k · ~r) un~k(~r). (2)

The function un~k(~r) =
∑

~G cn~k, ~G exp(ı ~G·~r) is a symmetric (translationally periodic)

function of the group T. This is an expression of the Bloch theorem, which states

that for a translationally periodic system, any eigenstate is a product of exp(ı~k ·~r)
and a periodic function un~k(~r).
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