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ABSTRACT 

The small-scale processes (e.g., convective cells and gravity waves) that are often not fully 

resolved and represented by our forecast models, will affect processes at well-resolved scales and 

increase the uncertainties in our predictions. This thesis examines the scale interactions in 

predictability experiments using convection-permitting high-resolution ensembles of both global 

and regional scales, in order to study the intrinsic and practical predictability limit of in our 

numerical weather forecast. 

The first part of this dissertation is aimed at testing Zhang, Snyder and Rotunno’s three-stage 

error growth hypothesis focusing on the role of moist convection in the upscale error growth 

behavior. In the dry experiment free of moist convection, error growth is controlled primarily by 

baroclinic instability, hence forecast accuracy is inversely proportional to the amplitude of the 

baroclinically unstable initial condition error.  Therefore, the accuracy of the prediction can be 

continuously improved without limit through reducing the initial error. On the contrary, in a moist 

environment with strong convective instability, rapid upscale growth arises from moist 

convection. As a result, the forecast error becomes increasingly less sensitive to the scale and 

amplitude of the initial perturbations. These diminishing returns from more accurate initial 

conditions may ultimately impose a finite-time barrier to the forecast accuracy. Moreover, the 

inclusion of strong moist convection changes the mesoscale (wavelength smaller than 500 km) 

kinetic energy spectrum slope from −3 to approximately −5/3 in our simulations, which is 

consistent with observations. Since the error spectrum will adjust toward the slope of the 

background flow, this change in slope of the background flow in our simulations due to moist 

convection further highlights the importance of moist convection to both the intrinsic and 

practical limits of atmospheric predictability, especially at meso- and convective scales. 
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Building upon the finding of the kinetic energy slope, in part two of this dissertation, it is 

further demonstrated that convective systems, triggered in a horizontally homogeneous 

environment, are able to generate a background mesoscale kinetic energy spectrum with a slope 

close to -5/3. To investigate the processes that are responsible for generating the -5/3 slope, 

spectral kinetic energy budget analysis is performed. The analyses show that the buoyancy 

production generated by moist convection, while mainly injecting energy in the upper 

troposphere at small scales, could also contribute to larger scales. The injected energy is then 

transported by energy fluxes (due to gravity waves and/or convection) both upward and 

downward. Nonlinear interactions, associated with the velocity advection term, finally helps build 

the approximate “-5/3” slope through upscale/downscale propagation of the energy at all levels. 

The last part of the dissertation focuses on the influence of the upscale error growth to the 

operational forecast and the predictability gap between our operational forecast and the intrinsic 

prediction limit using the European Centre for Medium-Range Weather Forecasts (ECMWF) 

state-of-the-art ensemble. We find that from a global perspective, on average, the practical 

predictability limit of the mid-latitude weather by the current state-of- the-art global models from 

leading numerical weather prediction centers is about 10 days while the ultimate intrinsic limit is 

estimated to be less than 2 weeks. In other words, even with a perfect model, reducing the initial 

condition uncertainties to an order of magnitude smaller than the realistic current level of 

uncertainty will at most extend the deterministic forecast lead times by 3-4 days for mid-

latitude day-to-day synoptic weather; much smaller room in improving the forecast lead times 

will be for smaller scale phenomena. 
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Chapter 1 
 

Introduction 

1.1 Space and time scales of atmospheric motions  

The beauty of earth’s atmosphere is that it possesses a large variety of different spatial and 

temporal scales.  The horizontal length scales of the atmosphere can vary more than 10 orders of 

magnitude from the smallest Kolmogorov microscales (1 millimeter or smaller) to earth’s 

circumference (~ 40000 km). The temporal scales of the atmosphere are often correlated with the 

spatial scales in the sense that phenomena having short time scales also tend to have small spatial 

scales, which is illustrated by the schematic shown in Fig. 1-1. As shown in Fig. 1-1, the 

horizontal scale of the atmosphere can be further divided into different categories based on 

dynamical distinctions between different scales.  

On the large-scale end of the atmospheric spectrum, atmospheric motions with spatial scales 

larger than a few thousand kilometers are often referred to as the synoptic scale. The term 

“synoptic” originally comes from the synoptic chart used in middle 19th century, which could 

only resolve large-scale weather systems due to really coarse resolution of observational platform 

at that time. Typical examples of synoptic-scale processes are mid-latitudinal high and low 

pressure systems. These mid-latitude systems are mainly driven by baroclinic instability, which 

arises from the existence of a meridional temperature gradient and is most likely realized by 

disturbances with a wavelength of a few thousand kilometers. Due to the fact that synoptic-scale 

processes have a much larger horizontal scale than the vertical depth of the atmosphere (~10 km), 

these processes could be treated as quasi two-dimensional (Charney 1948).  
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The small-scale end of Fig. 1-1 is the micro-scale, where the horizontal scale is smaller than 

a few kilometers and the time scale is shorter than a few hours. Atmospheric motions at micro 

scales are fully turbulent and three-dimensional. Turbulent planetary boundary layer processes 

and strong small-scale convections like tornadoes happen at these scales. Micro-scales also 

contain viscous dissipation process that reduces the kinetic energy of the atmosphere.  

The scale range between the synoptic scale and the microscale is the mesoscale, which 

includes phenomena like thunderstorms, hurricanes, gravity waves, etc.  Compared to the 

convective- and baroclinic instabilities on the micro- and synoptic scales respectively, there is no 

dominant instability in the mesoscale, which means mesoscale flow could be affected by a variety 

of different processes depending on different local states of the atmosphere at different times. 

1.2 Scale interaction processes  

 The challenge of understanding our atmosphere not only arise from the variety of dynamical 

scales and processes mentioned above. All of these processes with different scales furthermore 

interact with each other in a very non-linear way and exchange energy.  Neglect and/or 

misrepresentation of some of the processes might lead to systematic biases of other processes we 

really care about. For each weather phenomenon of specific space and time scale, there are two 

possible routes for it to be affected by other systems with different scales.  In the first route 

energy could come from larger scales, referred to as downscale energy propagation. In the second 

route energy might also propagate from smaller scale phenomenon, so called upscale energy 

propagation.  
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1.2.a Downscale energy propagation 

The concept of downscale energy propagation can be illustrated by considering a simple 

flow system where an initial large-scale weak disturbance is imposed on a slowly varying mean 

flow (Vallis 2006). As the large-scale disturbance, composed with eddies and shear and such like, 

grows under the impact of the mean flow, there will be a secondary instability in the flow (e.g., 

shear instability) and a smaller eddy will develop. Initially, the smaller eddy may grow under 

linear instability such as the idealized Kelvin-Helmholtz instability. Once the smaller eddy 

reaches certain finite amplitude, the eddy itself may become unstable and foster an even smaller 

eddy, and so on. During this process, energy is transferred to smaller and smaller scales in a 

cascade-like process (Fig. 1-2).  Finally, eddies are small enough so that they feel the effects of 

viscosity and are dissipated into heat.  

Downscale energy propagation means that local small scale phenomena gets energy from 

larger scale and could be controlled the large-scale environment.  Hence, we might be able to 

derive some information of the small-scale feathers if the large-scale environment is known. This 

provide advantages for us to make predictions of some local scale extreme events from coarse 

resolution global model under climate change scenario. This is also called downscaling process. 

As introduced on the National Center for Atmospheric Research (NCAR) website, “the two main 

approaches to downscaling climate information are dynamical and statistical. Dynamical 

downscaling requires running high-resolution climate models on a regional subdomain, using 

observational data or lower-resolution climate model output as boundary conditions.  These 

models use physical principles to reproduce local climates, but are computationally intensive.  

Statistical downscaling is a two-step process consisting of i) the development of statistical 

relationships between local climate variables and large-scale predictors, and ii) the application of 
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such relationships to the output of global climate model experiments to simulate local climate 

characteristics in the future”. 

1.2.b Upscale energy propagation 

While downscale energy propagation is important and sometimes dominant for local scale 

weather systems, upscale energy propagation also exists and plays a significant role. Assume we 

add a force to the atmosphere at small scales, eddies will first show up at this small scale.  

However, due to the nonlinear nature of the atmosphere, these small-scale eddies will interact 

with next larger scale and energize eddies at this larger scale. This larger scale eddies will then 

grow and interact with next larger scale. This is similar with that sketched in Fig. 1-2, except that 

the energy is inversely cascaded from small scale to large scale. 

Examples for upscale energy propagation like self-organization of the convective cells is 

currently a hot topic of ongoing research. The upscale growth of the error energy also causes an 

intrinsic predictability to our atmosphere, which is our topic of the next section. 

1.3 Intrinsic predictability arisen from upscale error growth   

 Current numerical weather forecast (NWP) is done by integrating the discretized 

primitive Navier–Stokes equation sets (numerical model) from the estimated initial conditions 

based on observations. Apart from the imperfect initial condition and the imperfect model that 

cause our prediction to fail, there exist an intrinsic predictability time in the chaotic atmosphere. 

The idea of intrinsic predictability, or the “butterfly effect”, is first proposed by Lorenz (1969).  It 

refers to the limit of prediction if the initial state is known nearly perfectly with a nearly perfect 

forecast model (Zhang et al. 2007). This intrinsic predictability arises from the inverse cascade 
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process explained above, since even the smallest amplitude small-scale error (butterfly flapping 

its wings) will propagate upscale and contaminate the whole system after a certain time, similar to 

the sketched upscale energy propagation process in Fig. 1-2.  

 Following the classical homogeneous turbulence approach, an estimate of the time 

needed for the small-scale error to contaminate the system can be derived as follows. Assume 

errors on a small scale will most contaminate the motion on the next larger scale in a time scale 

comparable to the eddy turnover time at that scale, defined by  

  𝑇 𝑘 	~	 𝜐(𝑘)𝑘 	+, = 𝐸(𝑘)𝑘3 	+,/0																																								(1.1) 

where	𝑘 is the horizontal wavenumber, 𝜐(𝑘) is the velocity at this horizontal scale, and 𝐸(𝑘) is 

the background kinetic energy spectrum. In general, errors initially confined to a scale	2𝑘 will 

contaminate the scale 𝑘 after time 𝑇(𝑘) in Eq. 1.1. Thus, the total time needed for errors to 

propagate from the small scale 𝑘F to the large scale 𝑘G is then estimated as  

𝑇	~ 	
𝑇 𝑘 		
𝑘

HI

HJ
𝑑𝑘 = 	

𝐸(𝑘)𝑘3 	+,/0		
𝑘

HI

HJ
𝑑𝑘																						(1.2) 

Assume the kinetic energy spectrum of the background flow satisfy the power law form 𝐸~	𝑘+L, 

We have,  

𝑇	~
𝑙𝑛

𝑘F
𝑘G

,											𝑛 = 3

2
𝑛 − 3

𝑘F
L+3 /0 − 𝑘G

L+3 /0 ,							𝑛 ≠ 3
 

If we can reduce our initial error to smaller and smaller scales (𝑘F → ∞), 𝑇 → ∞ for 𝑛 ≥ 3, 

which means the small-scale error will never contaminate the large scale. However, for 𝑛 < 3, 𝑇 

remains finite no matter how we confine the initial error. This implies the existence of the 

intrinsic predictability.  

 The intimate relationship between the slope of the kinetic energy spectrum and upscale 

error propagation is verified by idealized study (Rotunno and Snyder 2008). In reality, 
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observational measurements indicate an energy spectrum varying as 𝑘+3, or a −3 energy 

spectrum at synoptic scales with a transition to a −5/3 spectrum within the mesoscale (<500 km) 

(Nastrom and Gage 1985). Charney’s theory of geostrophic turbulence (Charney 1971) is the 

generally accepted explanation of the synoptic-scale −3 spectrum. However, there is no general 

agreement on the mechanism(s) behind the mesoscale −5/3 spectrum. Given the strong 

implications of the -5/3 spectrum slope to the upscale error growth, possible factor(s) behind this 

spectrum is worth investigating.   

 Although the abovementioned concept of the intrinsic predictability has been proposed 

for decades and been widely accepted, it’s not clear how these ideas apply in the real atmosphere.  

It is also questionable whether the homogeneous turbulence theory is valid to describe the 

physical processes behind the error growth behavior in the real atmosphere. In particular, several 

recent idealized and real-case numerical studies on atmospheric error growth indicate that 

moisture plays a critical role in the upscale process and errors grow much faster in the presence of 

convective instability and associated diabatic heating (e.g., Zhang et al. 2002, 2003; Tan et al. 

2004).  Using idealized high-resolution simulations, Zhang et al. (2007) first proposed the 

following three-stage model to illustrate the physical processes associated with the upscale error 

growth in moist baroclinic waves (Fig. 1-3). Initially, the errors grow from small-scale convective 

instability and then quickly [O (1 h)] saturate at the convective scales. In the second stage, the 

character of the errors changes from that of unbalanced convective-scale motions to one more 

closely related to balanced large-scale motions through geostrophic adjustment process. Balanced 

component of the errors is retained, while the unbalanced part is radiated away in the form of 

gravity waves. In the final stage, the large-scale (mostly balanced) components of the errors grow 

with the background baroclinic instability. 

 This three-stage conceptual model is demonstrated to be effective in explaining the 

atmospheric predictability of a real-case study by Selz and Craig (2015). In their high-resolution 
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simulation of a warm-season weather event over Europe, Selz and Craig (2015) showed that 60 h 

after perturbing their operational forecast model with negligible initial small-scale error, the 

large-scale 500-hPa geopotential height error induced by upscale error growth was about half the 

spread of the European Centre for Medium-Range Weather Forecasts (ECMWF) 6-h ensemble 

forecast. 

1.4 motivation and thesis outline   

 We have introduced in this chapter the chaotic atmosphere, composed of phenomena of 

different scales interacting with each other. This strong nonlinear interaction, especially the 

upscale error propagation, leads to an intrinsic predictability time for the atmospheric. This idea is 

widely accepted, yet the physical processes in the atmosphere behind this upscale error growth 

are not well understood. While the three-stage model proposed by Zhang et al. (2007) is verified 

by some case studies, it is mostly conceptual and pays less attention on the practical (operational) 

side of the error growth processes. There also have been arguments on the application of this 

conceptual model. Recently, Durran and Gingrich (2014) argued that the initial relatively small 

large-scale error is more important than the upscale growth process of small-scale error proposed 

in Zhang et al. (2007). Hence, both the intrinsic and practical aspects of atmospheric 

predictability and the mechanisms behind that need to be investigated. 

 The arguably best way to address these issues is running realistic models that could 

resolves all these different scales, from convective instability at a few kilometers to baroclinic 

instability at thousands of kilometers and even larger. This is computationally intensive. Previous 

studies on error growth is limited to either regional model with convection-permitting resolution 

(e.g., Zhang et al. 2007; Selz and Craig 2015) or global simulations with coarse resolution not 

able to allow convection (Tribbia and Baumhefner 2004). With advances in computing capability, 
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the use of high-resolution convection-permitting models in near-hemispheric or even the global 

domain is becoming feasible in recent days (Mapes et al. 2008; Bretherton and Khairoutdinov 

2015). This thesis plan to explore the technical advancement and use convection-permitting high-

resolution ensembles of both global and reginal scales, in order to study the intrinsic and practical 

predictability limit of in our numerical weather forecast. Chapter 2 further verifies three-stage 

error growth hypothesis in Zhang et al (2007) under varying degrees of convective instabilities. 

Our results emphasize the role of moist convection in the upscale error growth behavior. Chapter 

3 further investigates why moisture is important in the upscale growth of the error by examining 

how moist convection and the gravity waves help builds the shallower -5/3 spectrum. This 

chapter has mainly been conducted during the authors’ visit at the National Center for 

Atmospheric Research (NCAR) which was supported by the Advanced Study Program (ASP). 

Chapter 4 of the dissertation focus on the influence of the upscale error growth to the operational 

forecast and the predictability gap between our operational forecast and the intrinsic prediction 

limit for mid-latitude weather systems. In the last chapter of the thesis, our summarized results 

and the implications are discussed. Future possible studies are also suggested based on our 

finding. 
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Chapter Figures   

 
 

 
  

 
 

Figure 1-1: Schematic of atmospheric processes classified according to their horizontal spatial- 
and temporal scales. Dashed lines indicate a constant characteristic velocity scale (10 m s-1) and 
characteristic time scale imposed by the Coriolis parameter f and the Brunt-Väisälä frequency N: 
mid-latitudinal mesoscales motion ranges from the period of a pure buoyancy oscillation 2π/N (∼ 
10 mins) to inertial oscillations 2π/f (∼ 17 h) [Adapted from Markowski and Richardson, 2010, p. 
4].  
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Figure 1-2: Schematic of the energy cascade process. Energy is transferred to different scales 
during this process. The arrows indicate the directions of energy flow. In reality eddies are 
embedded within each other [adapted from Vallis, 2006, p.343].  

inverse cascade
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Figure 1-3: Schematic of the three-stage conceptual error growth model proposed by Zhang et.al, 
(2007). The color shading in the lower panel is the difference total energy at 3h, 18h, 36h, 
respectively, while the grey shading shows the precipitation region in the moist baroclinic wave 
simulation. More details can be found in chapter 2. 
 

 

 



 

 

12 

Chapter 2 
 

Intrinsic versus practical limits of atmospheric predictability 

2.1 Introduction 

Current-generation numerical weather prediction (NWP) models now are capable of 

routinely capturing the evolution of large-scale synoptic weather systems but remain challenged 

in forecasting meso- and convective-scale weather phenomena such as squall lines and tornadic 

thunderstorms. It is of great interest to assess the predictability of these mesoscale severe weather 

systems, what their predictability limits are and how to improve our forecasts, particularly with 

respect to the amount and spatial distribution of the associated precipitation (Zhang et al. 2007). 

There are two types of predictability problems (Lorenz 1996, Melhauser and Zhang 2012): (1) 

practical predictability refers to the limit on atmospheric prediction using current optimal analysis 

procedures to derive the initial state with the best available atmospheric forecast model (Lorenz 

1982), and (2) intrinsic predictability refers to the limit of prediction if the initial state is known 

nearly perfectly with an nearly perfect forecast model (Lorenz 1969; Zhang et al. 2007; Rotunno 

and Snyder 2008).  

Practical predictability is limited by realistic uncertainties in the forecast model and initial 

conditions. These uncertainties can include the adequacy of observations (e.g., accuracy, spatial 

and temporal coverage, and usability), data assimilation procedures, and deficiencies in the 

forecast models (e.g., Lorenz 1996, Melhauser and Zhang 2012). The intrinsic predictability 

emphasizes that there will be a finite intrinsic limit of predictability for the atmosphere (as in any 

chaotic dynamic systems) even if the initial condition and forecast model are nearly perfect (e.g., 

Lorenz 1969; Zhang et al. 2003, 2007). This intrinsic predictability is demonstrated by the rapid 
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“upscale growth” of the forecast error. For a flow with a slope shallower than -3, idealized model 

studies show that this flow has a faster eddy turnover time at smaller scales. Thus the growth rate 

of errors initially peaks at small scales and then, as the small-scale errors saturate, this peak shifts 

to larger scales with a smaller growth rate (Lorenz 1969; Rotunno and Snyder 2008). This type of 

“upscale growth” behavior is further demonstrated in Morss et al. (2009) with a quasi-geostrophic 

model. The error growth behavior could also vary largely at different times or in different regions 

of interest, which leads to a flow-dependent predictability skill (Morss et al. 2009; Bei and Zhang 

2014). In addition, using the NCAR community climate model (version 3), Tribbia and 

Baumhefner (2004) confirms that upscale propagation of small-scale initial error is able to 

perturb the baroclinically unstable modes and results in the loss of predictability at global scales 

(refer also to Mapes et al. 2008). 

Zhang et al. (2007) proposed a multi-stage conceptual model for atmospheric predictability 

through diagnosing error growth between "identical twin" convection-permitting simulations of 

idealized moist baroclinic waves:  (1) the initial convective growth stage which begins with 

convective instability followed by rapid error saturation (~O(1h)), (2) the intermediate adjustment 

stage during which error projects to balanced field (~O(2π/f)), and (3) the large-scale growth 

stage where error grows with lager-scale baroclinic instability. This three-stage conceptual model 

is demonstrated to be effective in explaining the atmospheric predictability of a real-case study by 

Selz and Craig (2015a). In the high-resolution simulation of a warm-season weather event over 

Europe, Selz and Craig (2015a) showed that 60 h after perturbing their operational forecast model 

with negligible initial small-scale error, the large-scale 500-hpa geopotential height error induced 

by upscale error growth was about half the spread of the European Centre for Medium-Range 

Weather Forecasts (ECMWF) 6-h ensemble forecast.  This result suggests that the upscale error 

growth plays a non-negligible role in limiting the operational forecast skill and need to be fully 

considered in numerical weather models.  Rodwell et al. (2013) also related poor forecasts over 
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Europe to high convective activities over North America a couple of days ahead, indicating that 

large uncertainties introduced by convection will amplify in scale and amplitude during the 

propagation over the Atlantic. In addition to mid-latitude weather systems, the three-stage model 

is also found useful in explaining the predictability of tropical cyclones. In the study of four 

Indian Ocean cyclones, Taraphdar et al. (2014) found that the growth and saturation of error starts 

from small convective scales to intermediate mesoscale vortex or inertial gravity waves scales 

and ultimately influences the larger scale (TC system scale).  

Recently, Durran and Gingrich (2014) argued that the initial large-scale error is more 

important than the upscale growth process of small-scale error proposed in Zhang et al. (2007). 

However, there are two concerns in the Durran and Gingrich (2014) study. First, their results are 

based on two winter storm cases during which convective instability is relatively weak. As 

atmospheric predictability is flow-dependent, the result may well be different under different 

baroclinic and convective instability as shown in Tan et al. (2004). Second, Durran and Gingrich 

(2014) did not explicitly examine the intrinsic predictability of the two weather events in their 

study since initial condition uncertainties in these two events, given by a particular initialization 

and data assimilation system of their model, are likely large in both in scale and amplitude (i.e., 

practical predictability of Lorenz 1982, 1996). The intrinsic predictability, on the other hand, 

refers to the limit of atmospheric predictability given infinitesimally small-scale, small-amplitude 

initial condition errors (Lorenz 1969; Zhang et al. 2007). 

As an extension of Zhang et al. (2007), this study explores both the intrinsic and practical 

aspects of atmospheric predictability through convection-permitting simulations of idealized 

moist baroclinic jet-front systems with initial condition uncertainties at different scales and 

amplitudes. We will show that, for atmospheric predictability at the mesoscales, the role of moist 

convection and the upscale error growth starting from convective scales is critical for both the 

intrinsic and practical predictability. Section 2 introduces the model and method used in the 
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study. An overview of the simulated moist baroclinic systems is given in section 3. Section 4 

explores the error evolution with initial perturbations of different scales. Their sensitivities to 

different amplitudes of initial perturbations are given in Section 5. The dynamics of the error 

growth are explored in more details in Section 6, with concluding remarks in Section 7. 

2.2 Methodology 

2.2.a Model configuration 

The Advanced Research version of the Weather Research and Forecast model (WRF-ARW 

version 3.5.1, here after WRF; Skamarock et al. 2008) is employed in this study following the 

configurations of Wei and Zhang (2014). The flow is confined to a periodic channel on an f-plane 

(f = 10-4), with a period of 4000 km in the zonal (x) direction and walls-separated 8000km in the 

meridional (y) direction. There are 100 vertical layers with a model top at 20 km, which means 

roughly 200 m grid spacing in the vertical (z) direction. The horizontal grid spacing is 10 km, 

which is on the very edge of convection-permitting resolutions and is likely to lead to some 

underestimation in the upscale error growth. With higher resolutions, the amplitude of the 

forecast error might change (Zhang et al. 2003, 2007). For example, Selz and Craig (2015b) 

found a factor of 3 amplitude differences in the 60-h DTE error between a 2.8-km and a 7-km 

"convection-permitting" simulation. Nevertheless, it is expected that a faster error growth with a 

higher resolution would follow similar physical processes (moist instability and convection) that 

may limit intrinsic predictability at the mesoscales and beyond.  

The moist processes are parameterized using the Lin et al. (1983) microphysics scheme.  

Planetary boundary layer scheme of Hong and Pan (1996) is adopted here to handle the vertical 

diffusion in the simulation. The Monin-Obukhov similarity theory is used to parameterize the 
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surface layer flux of heat and moisture. We also apply the Rayleigh damping scheme described in 

Klemp et al. (2008) to the vertical velocity in the upper-most 5 km of the model domain to 

minimize artificial wave reflections from the model top. To simplify the interpretation of the 

results, no cumulus parameterization is used and no radiation is considered.  

2.2.b Initial conditions for the baroclinic wave simulations 

 The initial jet profile is shown in Fig. 2-1. We use the same jet profile as that used in 

Zhang et al. (2007), which is derived through a simple 2D Potential Vorticity (PV) inversion 

(Davis and Emanuel 1991) method in the y-z plane. The prescribed PV distribution has constant 

value in both the troposphere [0.4 potential vorticity units (PVU, where 1 PVU = 10-6 K m2 s-1 

kg-1)] and stratosphere (4.0 PVU). The value of 1.5 PVU is used to define the location of 

tropopause, indicated by the thick black line in Fig. 2-1. More details of the jet profile can be 

found in Zhang et al. (2007) and Zhang (2004). This jet profile is then expanded along the x 

direction homogeneously. It’s worth noting that, when using this jet as the initial condition, it 

went through an adjustment process and caused an artificial oscillation in the simulation, likely 

due to the interpolation across strong gradients. To remove this unwanted oscillation, we first run 

this jet profile for 35 hours (around two times the inertial period) and then time-average all the 

variables, and run this time-averaged field again. This procedure is repeated several times until 

the amplitude of the oscillated horizontal wind is reduced to the order of 0.001 m/s.  

The initial relative humidity profile is prescribed with slightly smaller values than that in 

Zhang et al. (2007) (see Appendix A). Figure 2-1 also shows the water vapor mixing ratio, which 

is very close to the observed values in the mid-latitudes. This moisture profile will be noted as 

MOIST from now on. To test the sensitivity of error growth to varying convective instabilities, 

two extra runs are also conducted, where the relative humidity is reduced to 50 percent of the 
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original value or the diabatic heating is turned off completely, referred as RH50 and DRY, 

respectively.  

The fastest growing mode of the jet with small amplitude (0.1 K for θ) is used to initiate the 

baroclinic wave cycle. This mode is computed using a method similar to that employed in 

Plougonven and Snyder (2007): first, we introduce a Gaussian noise to the jet and integrate the 

model for three days; the perturbation field is then rescaled to that of a smaller amplitude which is 

added back to perturb the original jet again. This cycle is repeated 5 times for a total of 15-day 

simulation after which the normal mode of the perturbation fields is extracted to be the fastest 

growing mode.  

2.2.c Initial perturbations (errors) of the “identical twin experiments” 

Two types of perturbations are added to test the sensitivity of the short-range forecast error 

to initial error distribution. Type one error is Gaussian white noise used in Zhang et al. (2007). 

This random noise with zero mean and a standard deviation of 0.2 K was added to the potential 

temperature fields (hereafter denoted as NOISE perturbation). Type two error is simply the 

filtered fastest growing normal baroclinically unstable mode (amplitude 0.1 K for θ) in which 

only the long wavelength part (large scale, wavelength > 1000 km) is retained. Note all the 

prognostic variables are perturbed accordingly to minimize initial imbalance. We will use 

“LARGE” to represent this perturbation in the following sections.  

Various experiments are conducted to test all kinds of sensitivities related to the initial 

perturbation distribution and amplitude. A full list of all the experiments is listed in Table 2-1. 
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2.3 Overview of the baroclinic wave simulations 

Before presenting our results on how the errors grow, a brief overview of the simulated 

baroclinic wave system is given here. Under the initial jet profile described above, the 

development and life cycle of the baroclinic wave follow a cyclonic behavior similar to the 

“LC2” type defined in Thorncroft et al. (1993). Also note here, due to use of periodic boundary 

conditions in the zonal direction, the downstream development for both the baroclinic wave and 

error propagation could not be easily identified in the current study.  

Figure 2-2 shows the simulated 500-hPa vertical vorticity of the baroclinic wave at day 5-8 

under different moisture settings (that lead to different convective instability). A simple 

exponential amplification of the fastest growing baroclinic mode dominates the evolution before 

day 5 (96 hour). After day 8 (168 hour), barotropic processes become important and the decay of 

the baroclinic wave starts to prevail (Simmons and Hoskins 1978). Consistent with previous 

studies on the LC2-type life cycle of baroclinic waves, the forward-tilted and broadening troughs 

are very clear in all three experiments. During the period between day 5 and day 8, the large-scale 

vorticity structure is very similar in all the experiments, except that, in the moist runs, moist 

convection generates lots of local small-scale vorticity in the precipitation region. It is worth 

pointing that, moist convection not only adds small-scale structures to the vorticity field but also 

promotes faster and stronger development of the large-scale flow.  For example, the baroclinic 

trough becomes deeper and more curved in the MOIST run than in the DRY run. This can be 

more quantitatively illustrated by the time series of eddy kinetic energy (EKE) plotted in Fig. 2-

3a. The EKE is defined as (Waite and Snyder 2013): 

EKE = ,
0
ρ u′0 + υ′0 + w′0 dV ρdV                                                      (2.1)        

where 𝑢`, 𝜐`, and 𝑤′ are the perturbation fields after removing the zonal mean wind. Before 

day 5, the EKE of the DRY run and the MOIST run are very close. After the precipitation starts 
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to form, the EKE of the MOIST run begins to grow at a higher growth rate. At day 8, the EKE of 

the MOIST and the RH50 runs are 52% and 24% higher than that of the DRY run, respectively. 

To ensure this higher EKE is not solely due to increment of the small-scale wave activity, the 

large-scale filtered EKE (wavelength > 1000 km) is also shown. Again, the moist large-scale 

EKE is 51% higher than its counterpart in the dry run. Thus, it is very clear that EKE is 

dominated by its longer-wavelength baroclinic component. The meso- and small-scale 

components contribute less than 3% of the total EKE. 

The precipitation rate of MOIST and RH50 is also shown in Fig. 2-3b. As we expected, 

precipitation in the MOIST run starts earlier and has larger value throughout the simulation than 

RH50, due to a stronger convective instability in MOIST. 

2.4 Intrinsic predictability: forecast sensitivity to small-amplitude initial-condition errors 

Considering the evolution of the baroclinic waves and the time when the precipitation starts, 

we choose to add the perturbations at 108 hour (12 hour after day 5) of the control baroclinic 

wave simulations described in the previous section. Two types of small-amplitude initial 

perturbations described in section 2 are added, the growth and evolution of which will be the 

focus of this section. As in Tan et al. (2004) and Zhang et al. (2007), the metric for examining the 

error is defined using the difference total energy (DTE):  

𝐷𝑇𝐸	 = 	 ,
0

𝛿𝑢 0 + 𝛿𝜐 0 + 𝜅 𝛿𝑇 0                                                               (2.2)	

where 𝛿𝑢, 𝛿𝜐, and 𝛿𝑇 are the difference winds and temperature fields, 𝜅 = 𝐶e 𝑇f, 𝐶e is the 

specific heat capacity. 𝑇f is the reference temperature of 270 K. 
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2.4.a Error growth from small-amplitude Gaussian white noises (NOISE) 

Under the dry environment without convective instability, the initial perturbations grow 

solely through baroclinic instability. Since only a negligible part of the initial Gaussian white 

noise is projected onto the large-scale baroclinic mode, the overall growth in DTE from pure 

white noise is also weak in the DRY experiment. Instead, there is a noticeable decay of the initial 

error due to numerical model diffusion during the 36-h forecast period, as is shown in Fig. 2-4. 

With the inclusion of moisture (and convective instability), however, the error growth 

behavior is drastically different (Fig. 2-4). Figure 2-5 shows filtered large-scale difference sea 

level pressure overlaid with the simulation precipitation in the unperturbed simulation. As is 

expected, the evolution of initial error generally follows the three-stage model proposed by Zhang 

et al. (2007). In the first few hours, the error mainly grows through convective instability and is 

confined to the precipitation region.  At later times, the error starts to project to large-scale 

balanced field while the unbalanced components of the error energy propagate away from the 

area of moist convection in the form of gravity waves and/or density currents, a hint of which can 

be seen in Fig. 2-5 (e.g., 18h, on the edge of DTE field). The balanced components of the 

perturbations (error energy) eventually grow through large-scale baroclinic instability (see Zhang 

et al. 2007 for more details). 

As for the vertical distribution of the error, Fig. 2-6 shows the contoured frequency by 

altitude diagram (CFAD, Yuter and Houze 1995) of the DTE in the MOIST_NOISE experiment. 

The largest DTE lies at 8-10 km, the same location where the strongest wind (jet stream) lies in 

the background flow. Note that within less than 1 h, some strong DTE already shows up at around 

9 km, implying a rapid conversion (and growth) from the error potential energy (only potential 

temperature is perturbed) to the error kinetic energy. 
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2.4.b Error growth for small-amplitude perturbations at the scale of fastest growing mode 
(LARGE) 

The same analysis (as for the NOISE perturbation described above) is conducted for the 

LARGE case (Fig.2-4, 2-7) that is perturbed with small-amplitude initial condition error at scales 

of the fastest baroclinic growing mode (wavelength > 1000 km). The evolution of DTE under dry 

environment follows an exponential growth with a growth rate similar to the growth of EKE in 

the control simulation. However, with the inclusion of moisture and convective instability, though 

initially the error growth at large scales shows some signature of the dry experiment (difference 

sea level pressure in Fig. 2-7), the total error growth is more similar to the MOIST_NOISE case 

consistent with the three-stage error growth conceptual model of Zhang et al. (2007) as also 

described above (Fig. 2-4, 2-7), which is in strong contrast to the DRY_LARGE experiment 

without moisture. Note the final large-scale forecast error at 36 h in MOIST_LARGE experiment 

is even smaller than that of the MOIST_NOISE case. This evidence further verifies that the 

upscale error growth from convective scale dominates over the baroclinic error growth in this 

experiment when the initial error amplitude is small, albeit large in scale. 

It is worth noting that, the baroclinic growth of the error nearly stalls after 30 h in the 

DRY_LARGE experiment due to the decrease of the baroclinic instability of the background 

large-scale flow (not shown). However, in the MOIST_LARGE experiment, the forecast error 

rapidly increases (especially in the large scale) due to precipitation at that time (Fig. 2-7). The 

increase of domain integrated large scale DTE at later forecast time (after 30h) thus comes 

primarily through upscale propagation of error at smaller scales. 
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2.4.c Experiments with initial perturbations added at different times of the baroclinic life 
cycle 

To further examine the robustness of the error growth characteristics discussed above, 

additional experiments are performed with initial perturbations added at different times of the 

baroclinic life cycle. In previous experiments, the initial perturbation is added at day 5 at 12 h 

(108 h) of the control simulations, we refer to these two experiments with different perturbations 

as N_H12 and L_H12, respectively. We have also run similar experiments six hours earlier/later 

at 06h / 18 h of day 5, which are noted here as N_H06, L_H06, N_H18, and L_H18, respectively. 

Thus, for each type of perturbation under the moist environment, we have 3 different perturbed 

runs. The list of all the experiments can also be found in Table 1. 

Fig. 2-8 shows the evolution of the domain integrated DTE for all the three experiments for 

each type of perturbations. We can find that the DTE between short-range forecasts (e.g., at 12 h) 

is positively correlated to the precipitation rate. For example, the DTEs at 12h in the H12 

experiments are noticeably larger than that of the H06 experiments due to stronger precipitation at 

later times (Fig. 2-3). After 20 h, the relationship between precipitation and the error growth is 

not as clear. Although the H12 and H18 experiments still have larger DTE compared to the H06 

experiment, the difference between the H12 and H18 experiments becomes very small. 

Nevertheless, the error growth process in all the three experiments at different times is similar. 

We will thus focus on the H12 experiment for the analysis for MOIST_NOISE and 

MOIST_LARGE experiments if not stated otherwise. 

Moreover, the error growth for both types of initial perturbations (MOIST_LARGE and 

MOIST_NOISE) is overall consistent with each other, all of which can be broadly described by 

the three-stage conceptual model of Zhang et al. (2007).  In particular, the large-scale initial error 

in MOIST_LARGE acts primarily to perturb small scales in the region of moist convection, 

which makes little or no physical differences if the model is perturbed with the Gaussian white 
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noises (NOISE). Additional experiments where we kept the LARGE perturbations only in the 

vicinity of moist convection (a circle with a radius of 200 km centered at the initial precipitation 

center) are also conducted (i.e., the initial error scale is reduced by at least an order of 

magnitude), the simulated DTEs are again quantitatively similar to the MOIST_NOISE and 

MOIST_LARGE experiments (except for the large-scale component of the DTE, not shown 

here). This high insensitivity of the upscale error growth to amplitude and structure of the 

perturbations is also demonstrated by Hohenegger and Schär (2007). In essence, the error energy 

for larger scales for the MOIST_LARGE experiments are not necessarily cascaded downscale (as 

found in Durran and Gingrich 2014) but more likely grows from smaller scale errors conditioned 

by the large-scale differences at the region of convective instability.  

To summarize, consistent with previous studies of Zhang et al. (2007) and Selz and Craig 

(2015a), the experiments discussed in this section further support the three-stage conceptual 

model of Zhang et al. (2007), and strongly suggest that atmospheric predictability in the 

mesoscale might be intrinsically limited due to chaotic dynamics of moist convection despite 

being perturbed only by small-amplitude (unobservable) initial perturbations regardless of the 

initial-error scales. 

2.5 Intrinsic versus practical predictability: Sensitivity to initial error amplitude 

Given that in the current-generation numerical weather prediction systems, the initial 

condition errors can be both considerably large in scale and amplitude (as in Durran and Gingrich 

2014), this section examines the connections and differences between intrinsic and practical 

limits of atmospheric predictability through further exploring the error growth dynamics of the 

moist baroclinic jet-front systems with different initial-perturbation amplitudes (for both types of 

initial perturbations: LARGE and NOISE). These experiments are listed in table 1. More 
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specifically, the initial amplitude of the perturbations in experiments LARGE10 (LARGE100) is 

increased such that the initial domain integrated DTE is 10 (100) times larger than that of 

LARGE (for both DRY and MOIST scenarios). The initial amplitude of the perturbations in 

experiment MOIST_NOISE/10 on the other hand is reduced such that the initial domain 

integrated DTE is 1/10 that of MOIST_NOISE. 

To help us better understand the error growth behavior at different scales, following Zhang 

et al. (2007) and with two-dimensional spectral decomposition, the domain-integrated DTEs for 

three characteristic horizontal wavelength ranges (S: smaller-scale, L < 200 km; M: intermediate-

scale, 200 km < L < 1000 km; L: larger-scale L > 1000 km) will be examined.    

Under the DRY environment, the forecast errors for LARGE type perturbations have a clear 

dependence on the amplitude of initial large-scale error that we added (Fig. 2-9). For example, the 

final domain integrated DTE of DRY_LARGE10 (DRY_LARGE100) at 36 h is approximately 

10 (100) times larger than the final DTE of DRY_LARGE. Moreover, this quasi-linear 

relationship holds true not only for the total DTE but also for DTE at different scales (Fig. 2-9). 

This set of DRY sensitivity experiments with LARGE type initial perturbations demonstrates that 

error growth in dry baroclinic waves is primarily controlled by the exponentially growth of the 

baroclinic mode due to the background baroclinic instability. 

Under moist condition, to elucidate of the limit of intrinsic predictability, we further reduce 

the initial domain integrated DTE of experiment MOIST_NOISE with the Gaussian white noise 

to one-tenth of its original value and mark this experiment as MOIST_NOISE/10. The forecast 

error in terms of DTE at 36 h for MOIST_NOISE/10 is almost the same as that of 

MOIST_NOISE, a strong indication of nonlinear error growth at the small scales. Further 

examination shows that, although starting at a smaller initial value, the small-scale error in the 

MOIST_NOISE/10 case grows much faster at the first few hours and catches up quickly with that 

in MOIST_NOISE. After the error at small scales saturated for both sets of experiments, the 
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upscale error growth is similar in both MOIST_NOISE and MOIST_NOISE/10. This is also 

consistent with Hohenegger and Schär (2007). The strong nonlinear error growth at the small 

scales, and the insensitivity to the initial error amplitude in these MOIST experiments further 

demonstrates that atmospheric predictability can be intrinsically limited under the influence of 

moist convection, which means that our forecast accuracy will be limited no matter how small 

the initial error amplitude is. 

Nevertheless, given that the initial condition errors in the weather prediction models at 

present are certainly not infinitesimally small either in scale and amplitude (as discussed in 

Durran and Gingrich 2014), our attention is now turned to the limit of practical predictability 

through changing the (large-scale) initial perturbation amplitude in the MOIST_LARGE 

experiments. If we increase the initial DTE by a factor of 10 (MOIST_LARGE10), the final DTE 

at 36 h is only slightly larger (~ 1.5 times) than in the MOIST_LARGE experiment. The final 

DTE of MOIST_LARGE10 is also very close to that of the NOISE experiment, including a close 

match for all of the three characteristic scale ranges (L, M, and S scales, Fig. 2-9). A further 

examination of the DTE evolution at the three characteristic scale ranges for MOIST_LARGE10 

shows that, at the earlier simulation times before 20 h, the large-scale error generally follows the 

baroclinic growth in the DRY_LARGE case, while the small-scale error growth is similar to that 

of the MOIST_NOISE case. At later times, when the large-scale baroclinic growth slows down 

considerably (Fig. 2-9b, whereas the error begins to saturated at smaller scales), the error growth 

at the larger scales begins to come primarily from the upscale propagation of intermediate- and 

small-scale errors.   

For the MOIST_LARGE100 experiment where the initial DTE is increased to 100 times that 

of MOIST_LARGE (with the maximum difference wind speed being around 2 m/s, comparable 

with the ensemble spread of current operational model), the error growth at the large scales now 

is similar to the DRY_LARGE100 experiment, although at later times (after 20 hour) the large-
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scale error in MOIST_LARGE100 is slightly larger than that of DRY_LARGE100 likely due to 

upscale error growth from smaller scales in the MOIST_LARGE100 experiment. The total DTE 

at 36 h in MOIST_LARGE100 is more than twice higher than that of DRY_LARGE100, 

primarily due to a much more energetic small and intermediate scale error under the influence of 

moist convection. The error growth in the MOIST_LARGE100 experiment evolves more like that 

in Durran and Gingrich (2014), in the sense that the short-range large-scale error growth is hardly 

affected by the upscale growth of smaller scale errors. In other words, if the initial condition error 

is large in scale and considerably large in amplitude, as in the case of practical predictability, the 

considerably large-amplitude initial condition error at the large scales is likely to be the most 

influential to the forecast quality. In this case, we can improve our forecast results through 

reducing the initial condition error at the large scales, consistent with the findings of the recent 

study of Durran and Gingrich (2014), as well as Zhang et al. (2002), Bei and Zhang (2007), and 

many other authors.  

However, even though Durran and Gingrich (2014) did not explore explicitly the growth of 

smaller-scale small-amplitude error as in the case of intrinsic predictability, they argued that the 

"butterfly effect" (nonlinear upscale error growth from small scales) could be easily overwhelmed 

by the growth from a relatively small-amplitude large-scale initial error. Their conclusion is not 

supported by our sensitivity experiments presented above.  As in both of the MOIST_LARGE 

and MOIST_NOISE experiments (as well as MOIST_NOISE/10), regardless of the scales of the 

initial-condition error, if the amplitude of the initial perturbations is small, the short-range 

forecast is dominated by the upscale error growth from the small scales (the so-called butterfly 

effect), not necessarily cascading from large scale initial condition error.  

Moreover, the drastic difference of the error growth and the final DTE amplitude between 

our DRY and MOIST experiments further illustrates the fundamental role of moist convection in 

limiting the intrinsic predictability. Sensitivity of the error growth to initial perturbations at 
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different stages of the moist baroclinic life cycle also suggests that the stronger the convective 

instability, the faster error saturation at the smaller scales, and the more rapid upscale transfer of 

error to larger scales, as is shown in Seiz and Craig (2015a). The sensitivity of error growth to the 

degree of convective instability can be further verified through the RH50 experiments perturbed 

with initial error of both LARGE and NOISE (Fig. 2-10), in which the background relative 

humidity of the initial baroclinic wave is reduced to 50% of the control moist experiment. Not 

surprisingly, with reduced moisture and convective instability, convection and precipitation in 

RH50 are much delayed and weaker. Consequently, the forecast error in these RH50 experiments 

is much smaller than that in the corresponding MOIST experiments.  

2.6 Error growth dynamics across different scales 

In the previous two sections, we have shown the distinction between intrinsic and practical 

predictability. We have also demonstrated that the upscale error growth from small scales under 

the influence of moist convection may critically limit the intrinsic predictability of the 

atmosphere at all scales. However, it remains uncertain whether the upscale error growth is still 

relevant under the practical predictability scenario where the initial error at the large scales is 

considerably large. We will investigate in more detail these questions in this section through 

diagnosing error growth and transfer across scales. 

Figure 2-11 shows the evolution of power spectra for the domain integrated difference total 

energy (DTE), which gives us a better sense of how the error grows at different scales. The 

spectral energy density of the full model state (24h-36h after perturbation) in control experiments 

is also plotted and multiplied by a factor of 2 (which does not change the slope), so that it 

represents the saturation level for the DTE. It is interesting to note that with the inclusion of 

moisture, the slope for the full model state transited from a steep -3 to a shallower close to -5/3 
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power law at a wavelength around 400 km. This transition is indeed consistent with the 

observational study of Nastrom and Gate (1985). As for the growth of the DTE, a clear cascading 

process could be found under the DRY environment and the power spectra of the DTE grow at 

nearly the same rate at all scales. The DTE does not saturate until very late in the 

DRY_LARGE100 experiment. However, under the MOIST environment, the DTE at small scales 

quickly saturate after the perturbation is added regardless of the initial amplitude of the 

perturbation (refer to MOIST_LARGE, MOIST_LARGE100).  

For the practical predictability scenario with considerably large initial condition error at the 

large scale (MOIST_LARGE100), the upscale growth of error from smaller scales becomes less 

evident. Similar to the real-data case of Durran and Gingrich (2014), the error shows a more 

uniformed growth over all the scales (especially for larger scales, see Fig. 2-11d).  This is also 

similar to the DRY_LARGE100 experiment (Fig. 2-11b), except that in the MOIST_LARGE100 

case, the spectral slope of for small-scale error with a wavelength smaller than 400 km flattens to 

approximately -5/3 rather than -3. To further examine if the upscale growth plays a role in the 

change of the error spectral slope, a budget analysis for DKE at the three characteristic scale 

ranges (L, M and S) is performed. The equation for DKE budget at large scale can be written as: 

                    

𝜕
𝜕𝑡

𝐷𝐾𝐸 i = −𝜌 𝛿𝑢 i𝛿 𝒖 ∙ 𝛁𝒉𝑢 + 𝑤
𝜕𝑢
𝜕𝑧 i

− 𝜌 𝛿𝜐 i𝛿 𝒖 ∙ 𝛁𝒉𝜐 + 𝑤
𝜕𝜐
𝜕𝑧 i
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+ 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 i																						(2.3) 

where . The derivation for this equation can be found at 

Appendix B). For intermediate and small scales, the equations are essentially the same except that 

the subscripts of the terms are changed to M or S. The two terms in the first bracket on the right-

hand side of this equation is the nonlinear advection term (referred as ADV), which is responsible 
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for the redistribution of the error across different scales. The terms in the second bracket is the 

pressure term, which mainly represents the conversion between difference potential energy and 

difference kinetic energy (See Appendix C).  

The results of the DKE budget analysis for three different scales are given in Fig. 2-12. 

Under the dry environment, there is a clear downscale error transfer for DRY_LARGE100 

(upper-most panel of Fig. 2-12), where the peak of large-scale error growth shows first, followed 

then by the peak of the medium scale, the peak of small-scale error growth comes last. Also 

worth pointing out that, for this downscale error transfer, the ADV term leads the pressure term 

and dominates the error growth for the medium and the small scales, consistent with the 

hypothesis that error first propagates to smaller scales through the nonlinear advection term.  

The MOIST_NOISE and MOIST_LARGE experiments, on the other hand, demonstrate an 

apparent upscale error growth picture as seen from the budget analysis. The error growth first 

starts at the small scales, and then gradually expands to the medium and the large scales. The 

pressure term and the ADV term contribute equally at all the scales. The ADV term is actually 

enhanced by the pressure term (through the buoyancy flux). If we turn off the latent heating, not 

only the pressure term but also the ADV terms will immediately drop to near zero.  

For the MOIST_LARGE100 experiment, both the downscale and upscale error growth 

processes are present. At the large scale, the error grows similarly to the corresponding dry 

experiment in the first 20 hours, while at the small scale, the upscale growth is apparent, with the 

pressure term and ADV term contributing equally to the growth. For the intermediate scale in this 

case, due to the influence of downscale propagation of the large-scale initial error, the ADV term 

plays a slightly bigger role than the pressure term. Nonetheless, the pressure term is also very 

important for the intermediate scale error growth, especially at later simulation times when the 

background baroclinic growth is weakened. The upscale propagation effect can be convincingly 

demonstrated through the error growth budget for the large scale after 20 h: the growth of DKE 
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for the large scale in the MOIST_lARGE100 case continues while the growth at the large scale 

diminishes in the corresponding DRY_LARGE100 experiment due to weakening of the 

background baroclinic growth. 

Moreover, with the energy spectra flattened to a slope close to -5/3 in the moist environment, 

the mesoscale energy spectra (wavelength < 400 km) increase dramatically in the MOIST case, 

the forecast short-range error (36 h) for intermediate and small scales in the MOIST_LARGE 

experiment is more than three times larger than that in the corresponding DRY_LARGE100 

experiment (Fig. 2-9). Thus the dominant error source for the mesoscale is due to convection. 

Failure to predict the location and/or the strength of the convection characters would likely lead 

to a more inaccurate mesoscale forecast. Hence the weak sensitivity of the convective cells to 

initial perturbation and the upscale growth not only leads to less intrinsically predictability but 

likely also plays a substantial role in limiting the practical predictability at mesoscale. To further 

verify this, the power spectrum of the latent heating forcing difference, which shows the scale of 

moist forcing (buoyance production), is plotted in Fig. 2-13 for both the MOIST_NOISE and the 

MOIST_LARGE100 experiments. This forcing at different scales can be defined as in Equation 7 

of Waite and Snyder (2013) 

 𝐹 𝒌 = ,
0
𝛿 𝜃∗ 𝒌 𝛿 𝐻 𝒌 + 𝑐. 𝑐.                                                      (2.4) 

Where H is the potential temperature tendency due to moist physics and c.c denotes complex 

conjugate. A 12-h time-average is used in Fig. 2-13, where the semi-log axis is considered to 

preserve the area. The latent heating forcing shows no significant difference between the 

MOIST_NOISE and the MOIST_LARGE100 experiments. At first, this forcing acts mainly on 

the small scales (wavelength ~ 100 km). Later, it expands to larger scales, with the peak spectral 

power of the forcing remaining at the meso- and smaller scales. The similarity of these two 

experiments further suggests that experiment MOIST_LARGE100 (under the practical 



 

 

31 

predictability scenario) does not bring more (additional) forcing through buoyancy production 

than MOIST_NOISE (under the intrinsic predictability scenario). In other words, the primary role 

of the initial large-scale perturbation in this MOIST_LARGE100 experiment is through direct 

projection of the initial difference to trigger the error growth, saturation and upscale transfer of 

small-scale moist convection that is similar to the MOIST_NOISE experiment, not necessarily 

through the downscale error cascade from the initial large-scale perturbation.  

2.7 Concluding remarks 

Through a series of “identical twin experiments” with Weather Research and Forecast 

(WRF) model by adding initial condition errors of different scales and amplitudes, this study 

explores the limits of both intrinsic and practical predictability and the multi-scale error growth 

dynamics of the baroclinic jet-front systems with varying degree of convective instabilities.  

In the dry experiments free of moist convection (and the "fakedry" experiments that suppress 

convection through turnoff of diabatic heating), only the baroclinic growth of the large-scale 

perturbation can be found in the 36-h short-range forecast. The forecast error under the dry 

environment has a quasi-linear dependence on the amplitude of the initial large-scale 

perturbation. This suggests that the forecast accuracy can be continuously improved through 

reducing the initial condition and thus predictability for the dry baroclinic waves can be 

continuously improved without an apparent limit at the synoptic time scales if the forecast model 

and the initial conditions are nearly perfect (though other sources of smaller scale instabilities 

such as boundary layer turbulence and shear instability that are not studied here may also trigger 

upscale error growth that may eventually limit the intrinsic predictability). 

The limits of both intrinsic and practical predictability are found to be drastically different 

under the moist environment with strong convective instability. The rapid upscale error growth 
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from moist convection will lead to the forecast error being increasingly less sensitive to the scale 

and amplitude of the initial perturbations when the initial error amplitude is sufficiently small, as 

characterized in the multi-stage error growth conceptual model of Zhang et al. (2007).  Due to the 

strong nonlinear upscale error growth from moist convection, there will be diminishing returns 

(increasing smaller improvements) in the forecast accuracy through further reducing the initial 

condition error, a key indicator of limit of intrinsic predictability (Lorenz 1969; Rotunno and 

Snyder 2008; Palmer et al. 2014). In other words, the distance between the practical and intrinsic 

predictability limits become smaller and smaller as the initial condition accuracy continues to 

improve. On the other hand, when the initial perturbations are sufficiently large in scale and 

amplitude, as for most current-day operational models, the baroclinic growth of large-scale finite-

amplitude initial error will play a more dominant role in the forecast accuracy at all scales for 

both dry and moist baroclinc waves. The forecast accuracy can be further improved (and thus the 

limit of practical predictability can be extended) through reduction of initial condition errors, 

especially those at larger scales. Even in this case, the upscale error growth from convective 

instability under the moist environment could still be crucial for predictability of mesoscale 

processes. In addition, as is pointed out in Rodwell et al. (2013), the upscale error growth might 

also become relevant for larger scales at longer forecast lead times, although its importance may 

be flow dependent. Furthermore, an insufficiently simulated upscale error growth may well be 

one of the reasons for the underdispersion issue in nowadays ensemble predictions. All of these 

studies imply the practical importance of the butterfly effect --- the rapid upscale error growth 

from moist convection that has an intrinsic predictability limit. 

It is also worth noting here that, if we consider the life cycle of the baroclinic wave, the 

results showed above will have dependence on the development stage of the baroclinic system. 

For example, to focus on the convective instability, the forecast experiments in this paper start 

from day 5 when the baroclinic system has been already in a mature stage and tended to cease an 
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exponential growth as shown in Fig. 2-2. Hence, the period during which the baroclinic wave 

grows exponentially is quite short of O(1) day (Fig. 2-3), as evident in the error growth shown in 

Fig. 2-9, which indicates that the large-scale error ceases the exponential growth after about one 

day for the DRY_LARGE experiment. As shown in Zhu and Thorpe (2006), the large-scale error 

usually sustains exponential growth during a period of at least 77 hours when the basic state is 

specified by an initial developing stage of the baroclinic system. Hence, we might underestimate 

the error growth of large-scale motions associated with the inherent baroclinic instability in the 

current study. The underestimation might be related to the result on the relative importance of 

convective instability and the subsequent upscale error growth. Similar caveat is also noted in 

Palmer et al. (2014) by conducting forecasts experiments based on the surface quasi-geostrophic 

equation from different initial conditions. They remarked on the intermittent characteristic of the 

butterfly effect and the flow-dependent nature of the large-scale forecast sensitivity to small-scale 

initial error. Thus, the crucial role of convective instability in the large-scale error growth 

discussed in the current study might also depend strongly on the prescribed initial flow 

conditions. 

The connection and difference between practical and intrinsic predictability was also 

succinctly illustrated in the schematic diagram of Fig. 18 in Melhauser and Zhang (2012), which 

is abstracted from the mesoscale predictability study of a strong warm-season bow echo and 

squall line event. We believe this conceptual diagram can be generalized to the current study of 

idealized moist baroclinic waves, as well as to our studies of winter snowstorms (Zhang et al. 

2002, 2003), spring-time tornadic thunderstorms (Zhang et al. 2015, 2016), warm-season flooding 

(Zhang et al. 2006; Bei and Zhang 2007) as well as hurricanes and tropical cyclones (Zhang and 

Sippel 2009; Zhang and Tao 2013; Tao and Zhang 2014, 2015). 

The predictability behavior is closely linked to the flow’s kinetic energy spectrum. As 

mentioned in the introduction, previous studies have already shown the existence of a 
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predictability limit with a shallower than -3 slope (Rotunno and Snyder 2008). Under the moist 

environment with the inclusion of strong moist instability, the slope of the background kinetic 

energy spectrum decreases from -3 to -5/3. This transition of the spectral slope emphasizes the 

importance of convection to both the intrinsic and practical limit of mesoscale predictability 

within the moist baroclinic jet-fronts systems.  However, the exact reason(s) for this transition is 

beyond the scope of the current study. This change may be due to the strong turbulent motions 

that are induced by moist convection that becomes more homogeneous and isotropic, and/or 

much stronger gravity waves induced by convection (as shown in Wei and Zhang 2014). Past 

theoretical studies suggest that both three-dimensional turbulent motion and the linear gravity 

waves could have a slope of -5/3 (e.g., Vallis 2006). However, neither of these two hypotheses is 

ready to explain the transition scale at a horizontal wavelength around 500 km, which is found in 

our simulations as well as in observational studies (e.g., Nastrom and Gage 1985). Recently, 

Callies et al. (2014) utilized a modified Helmholtz decomposition method to process the 

observation data by the flight through which they claimed that the small-scale fluctuations are 

dominated by gravity wave activity. If this is the case, since linear inertia gravity waves do not 

propagate error upscale in the same way as the vortical turbulent flows discussed by Lorenz 

(1969), the forecast times of weather systems could potentially be extended considerably. We 

plan to conduct further research on this topic. Nonetheless, the change of the kinetic energy 

spectrum slope is clearly due to moist convection and emphasizes the importance of convection 

on the limit of mesoscale predictability. 
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Chapter Figures and Tables 

 

 

Figure 2-1.  Vertical cross section of the initial jet for zonal wind (red, every 10 m s-1, >30 m s-1 
light green shaded), potential temperature (grey, every 5 K), the tropopause denoted by dark line 
where the potential vorticity equals 1.5 PVU, and initial water vapor mixing ratio (shaded every 2 
g kg-1). 
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Figure 2-2. Horizontal snapshots of the 500-hPa relative vorticity (10-4 s-1) from day 5 to 8 for the 
control experiments of DRY, RH50 and MOIST, respectively. The distance between the tick 
marks in the axes is 1000 km. Regions within 1500 km of the southern and northern boundaries 
of the model domain are omitted. 
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Figure 2-3.  a) Time series of the simulated eddy kinetic energy per unit mass from different 
experiments. Dash line shows the long-wave end of the eddy kinetic energy (wavelength > 1000 
km). b) Time series of the domain-averaged precipitation rate (mm every 12 h, averaged over 3-h 
intervals). The stars in both plots imply the time when the initial perturbations are added. 
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Figure 2-4. Time series of the domain integrated difference total energy (DTE) for the NOISE 
(dashed) and LARGE (solid) experiments under DRY (gold) and MOIST (cyan) environment, 
respectively. 
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Figure 2-5. Snapshots of column maxima of DTE (m2 s-2) for the MOIST_NOISE experiment 
valid at 3, 6, 12, 18, 24, and 36 h after the initial perturbations are added. The contours show the 
long-wave filtered sea-level pressure difference (wavelength > 1000 km, every 5 Pa, red contour 
implies positive values, whereas blue contour means negative). Grey shaded regions indicate 
where the precipitation rate is larger than 0.1 mm per hour.  
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Figure 2-6. Vertical distribution of DTE for the MOIST_NOISE experiment, shaded parts show 
the frequency (number of points) of DTE at a particular height. 
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Figure 2-7. Same as Figure 2-5, but for the MOIST_LARGE experiment. 
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Figure 2-8. Evolution of domain integrated DTE for various MOIST_NOISE and 
MOIST_LARGE experiments perturbed at slightly different times (see text for more details).  
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Figure 2-9.  Evolution of domain integrated DTE for different wavelength ranges (L scale: 
wavelength > 1000 km; M scale: 1000 km > wavelength > 200 km; S scale: 200 km > 
wavelength) in different experiments of various initial amplitudes. The number behind each 
experiment name implies the change of initial error amplitude compared with its corresponding 
experiment (table 1).  
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Figure 2-10.  Evolution of domain integrated DTE under different moisture environment. RH50 
here means the initial Relative Humidity (RH) is reduced by half to that of the moist case. 
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Figure 2-11. Evolution of spectra of the DTE every 6h after different initial perturbations are 
added for a) DRY_LARGE, b) DRY_LARGE100, c) MOIST_LARGE, and d) 
MOIST_LARGE100 experiment. Dotted lines show the spectra of the full state background flow 
in the control experiment, averaged between 24h and 36h after the perturbation. The red and blue 
lines show the reference line for -3 and -5/3 power law, respectively. 
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Figure 2-12. Time series of budget calculation for the sources and sinks of the difference kinetic 
energy (dDKE/dt, kg m2 s-3, Equation 2.3, values are integrated over the domain) at different 
wavelengths within DRY_LARGE100, MOIST_NOISE, MOIST_LARGE, and 
MOIST_LARGE100 experiment, respectively. The cyan line represents the contribution of the 
advection term; the red line here represents the contribution of the pressure term, while the black 
line is the actual increment of DKE after diffusion and damping.  Note that the DRY_LARGE100 
experiment has different vertical scales from the others. 
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Figure 2-13. Difference buoyancy production spectra for experiments a) MOIST_NOISE, and b) 
MOIST_LARGE100 environment. Black dash line, cyan line, and red line show time average 
over 1-12 h, 13-24 h, and 25-36 h, respectively. The buoyancy production is multiplied by the 
wavenumber in order to preserves the area on a log-linear plot. 
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Chapter Tables 

 

 

Perturbation 
Type 

DRY MOIST RH50 FAKEDRY 

LARGE 

DRY_LARGE MOIST_LARGE; 
(L_H06, L_ H12, L_H18) 

RH50_LARGE FAKEDRY 
_LARGE DRY_LARGE10 MOIST_LARGE10 

DRY_LARGE100 MOIST_LARGE100 

NOISE DRY_NOISE 

MOIST_NOISE; 
(N_H06, N_H12, N_H18) 

RH50_NOISE FAKEDRY 
_NOISE 

MOIST_NOISE/10 

 

Table 2-1. All the experiments conducted in this chapter.  
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Chapter 3 

Contributions of moist convection and internal gravity waves to building the 

atmospheric “-5/3” kinetic energy spectra 

3.1 Introduction 

The energy spectrum of the atmosphere and its underlying physical mechanisms remain 

active research topics despite decades of observations and scientific research. Long-range 

passenger aircraft have collected velocity and temperature measurements since 1970s. These 

measurements indicate an energy spectrum varying as 𝑘	+3 (𝑘 is wavenumber) or a “−3” energy 

spectrum at synoptic scales with a transition to a “−5/3” spectrum within the mesoscale (<500 

km) (Nastrom and Gage 1985). Charney’s theory of geostrophic turbulence (Charney 1971) is the 

generally accepted explanation of the synoptic scale -3 spectrum. However, there is no general 

agreement on the mechanism(s) behind the mesoscale -5/3 spectrum. Many hypotheses for 

explaining the spectrum at the mesoscale have been proposed, including, but not limited to, an 

inverse two-dimensional (2D) cascade of small-scale energy produced perhaps by convection 

(Lilly 1983), production of inertia-gravity waves (e.g., VanZandt 1982; Koshyk et al. 1999), the 

signature of stratified turbulence at scales where rotational constraints become less important 

(Lindborg 2006), and the nature of surface quasi-geostrophy (SQG) due to the development of 

fronts at the edge of synoptic-scale cyclones and anticyclones at the top of the troposphere 

(Tulloch and Smith 2006).  

The above-mentioned mechanisms for the -3 and -5/3 spectra are based on idealized models. 

Several full-physics models have successfully captured the observed transition of the spectrum 

slope from -3 to -5/3 (e.g., Skamarock 2004; Hamilton et al. 2008; Skamarock et al. 2014), yet 
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only limited discussion has been given to explain the mechanism(s) behind it. None of these 

earlier studies looked into the details of the growth process of the mesoscale energy spectrum. 

Recently, Waite and Snyder (2013) found that moist processes could energize the mesoscale and 

thus help the transition of the slope. A similar full-physics idealized baroclinic wave simulation in 

Sun and Zhang (2016) also found this distinct transition of the simulated kinetic energy spectrum 

at a scale of ~400 km in their moist experiment. Interestingly the dry experiment in their study 

maintains the steep -3 slope all the way to the mesoscale in the upper troposphere. This result 

emphasizes the critical role of moist convection in the creation of the shallower -5/3 slope. 

Compared to the dry experiment, moist convection generates many gravity-wave-like signals at 

the upper levels of the troposphere (Wei and Zhang 2014, 2015; Wei et al. 2016), which might be 

responsible for the spectrum transition from -3 to -5/3 at those levels.  More recently, Durran and 

Weyn (2016) shows that a -5/3 spectrum evolves and reaches to scales comparable to 

observations in their simulations of convective cloud systems.  

 Motivated by these recent findings, this study aims to investigate the mechanisms 

responsible for the -5/3 slope in Durran and Weyn (2016), especially the contributions of moist 

convection and internal gravity waves generated by convective systems. This study confirms their 

finding of an approximate -5/3 spectrum and provides new information for each specific height 

level. The remainder of the paper is organized as follows; Section 2 introduces the model setup 

for our simulation. Section 3 gives a brief overview of the simulation and analyzes the evolution 

of the mesoscale energy spectrum through a spectral energy budget. Further discussion and 

concluding remarks are given in section 4. 
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3.2 Methodology 

The Weather Research and Forecast (WRF, version 3.6.1, Skamarock et al. 2008) model is 

used in an idealized mode for this study. The domain size of the simulation is 800km×800km, 

with a horizontal grid spacing of 2km. The model top is fixed at 20 km. In order to get an 

accurate calculation of kinetic-energy spectra budget, we have 200 layers in the vertical direction. 

The vertical grid spacing is approximately 100 m, although the vertical layers are not equally 

spaced in the WRF model. Coriolis forces are neglected, unless otherwise stated. Periodic lateral 

boundary conditions are implemented here to facilitate the spectral analysis. To further simplify 

both the model and the interpretation, we use a free-slip bottom boundary condition in the 

simulation. No PBL or surface scheme is used in the current simulation. Also, no cumulus or 

radiation parameterization are used. Near the upper boundary, an absorbing layer as described by 

Klemp et al. (2008) is applied for the uppermost 5 km of the model domain to reduce artificial 

reflection of gravity waves. This sponge layer has proved successful in the idealized squall line 

simulation done by Klemp et al. (2008). The Morrison scheme is used for the microphysics 

parameterization (Morrison et al. 2009). 

Figure 3-1 shows our initial sounding profile for the simulations. It is based on Weisman and 

Klemp (1982), except that we fix the mixing ratio below 1 km at 14 𝑔	𝑘𝑔+, and cap the RH at 

75% for any level above 1.4 km. A unidirectional horizontally uniform background wind profile 

is specified in which the zonal winds linearly increase from −10	𝑚	𝑠+, at the surface to 

10	𝑚	𝑠+, at a height of 5 km and remain 10	𝑚	𝑠+, at higher levels (Fig. 3-2a).  

Seven localized warm bubbles with positive temperature anomaly of 3 K are put into the 

initial condition to initiate convection. These warm bubbles are aligned from north to south at the 

domain center, with a horizontal radius of 10 km and a vertical radius of 1.5 km. Their centers lie 

at 1.5 km above the surface, with a horizontal distance of 20km away from each other. The warm 
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bubbles, each evolving into a convective cell, then interact with each other under the wind shear. 

The evolution of these cells will be briefly introduced in the next section. A 20-member ensemble 

is produced through perturbing the water vapor mixing ratio at lowest 1-km boundary layer with a 

Gaussian white noise of 0.5 g kg-1 to reduce case dependency in the statistics. All the simulations 

are integrated for 6 hours, with fields output every 30 seconds. The output fields are interpolated 

to constant height levels with a vertical interval of 50m to facilitate the calculation of the spectra. 

3.3 Results 

3.3.a Overview of the simulation 

Before we start the spectral analysis, we would like to first take a look at the evolution of our 

simulation. Figure 3-3 visualizes the development of the convective cells in one member of our 

ensemble. Initially (0-2 h), each warm bubble evolves into a convective cell of similar scale, with 

a strong embedded updraft. After 2 hours, the convective cells start to interact with each other 

under the vertical wind shear. While the convective cells in the middle of the line get weaker, the 

cells at both ends of the line become stronger and “eat” all the other cells gradually.  At the end of 

the 6-hour simulation, two supercell like systems form at both ends of the line. Slightly different 

from our expectations, these cells do not organize into a squall line in almost all the ensemble 

members. This is likely due to the relatively deep vertical wind shear in our simulation. Another 

possible reason is that the initial line of warm bubbles is perpendicular to the wind shear 

direction.  Sensitivity runs of adding the warm bubbles at different zonal locations and/or adding 

vertical shear in the meridional direction are more favorable of the formation of a squall line. As a 

result of this weak organization of the convective cells, the cold pools are also relatively weak in 

our simulation. The grey shading in Fig. 3-3 depicts the anomaly virtual potential temperature 
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less than -0.5 °C. Compared to Skamarock et al. (1994), both the range and absolute value of the 

cold-pool temperatures are smaller, which implies a weaker convective system in our simulation. 

Despite these differences between our simulated convective system and previous studies, their 

effects on the spectrum are not critical, as we will show later in further sensitivity experiments.  

Strong gravity waves can be generated by these convection cells. Figure 3-4a shows a south-

north cross-section over the domain center at 2 h for the same ensemble member as shown in Fig. 

3-3. The location of each convective cell can be identified by the 25 dbz reflectivity line. The 

region with vertical velocity greater than 0.1 m/s is shaded in cyan, while the potential 

temperature is plotted using gray lines. Clear gravity-wave signals generated by the convective 

cells can be found at levels above 12 km (lower stratosphere), where the vertical velocity and the 

potential temperature show a quadrature phase relationship. In the troposphere, due to turbulent 

motions induced by the convection cells, linear gravity-wave signals cannot be easily identified. 

This result is further supported by the profile of the domain averaged vertical heat transport (𝑤’𝑇’, 

Fig. 3-4b). Since linear non-growing gravity waves which have a quadrature relationship between 

w and T do not transfer heat, we see negligible transport at levels above 12 km; whereas for the 

troposphere, there is considerable heat transfer due to convection. Figure 3-4c also shows the 

domain-averaged vertical energy flux (𝑤’𝑝’). According to linear gravity-wave theory, upward 

(downward) propagation of the gravity waves leads to positive (negative) vertical energy 

transport. We will discuss in more detail the energy transport in the spectrum-analysis part of this 

study.   

The convective cells and the gravity waves they generate have a downgradient effect on the 

mean flow (Fig. 3-2b). We see a slight increase of the mean zonal wind (~ 0.1	𝑚	𝑠+,) in the 0-5-

km layer; above 5 km, the mean zonal wind decreases a small amount (~ 0.1	𝑚	𝑠+,). This 

downgradient effect leads to the loss of mean kinetic energy, which will be discussed later. The 

mean meridional wind is also plotted in Fig. 3-2c. With the symmetric model setting we used, the 
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mean meridional wind should be zero. Our calculation shows a noisy mean-𝜐 wind signal with an 

amplitude of 0.001	𝑚	𝑠+, (two orders of magnitude smaller than mean zonal wind change) due to 

numerical error. The accuracy of our calculation demonstrates that the change of the mean zonal 

wind (~0.1	𝑚	𝑠+,), thus the lost of the mean kinetic energy, is due to mixing induced by 

convection and gravity waves. 

3.3.b Kinetic energy spectra 

The spectrum of the kinetic energy is calculated using the 2D discrete cosine transform 

(DCT) method (Denis et al, 2002; Peng et al, 2014) at each vertical level. More details on this 

method can be found in the Appendix. For a 2D field with periodic boundary conditions, the DCT 

is equivalent to the discrete Fourier transform, yet it is more generally applicable to non-periodic 

domains. We use a curly bracket here to denote the DCT spectral coefficients of a field q as 

{q(k)}, where 𝐤	 ≡ 	 (𝑘𝑥, 𝑘𝑦)	is the horizontal wave vector. The dependence of spectral quantities 

on z and t is suppressed for clarity. 

By neglecting the density perturbation, we can approximate the total horizontal kinetic 

energy per unit volume for each specific height level as: 

𝐸z =
1
2
𝜌 𝐮 ∙ 𝐮 	𝑑𝑥𝑑𝑦 =

1
2
𝜌 𝑢0 + 𝜐0 	𝑑𝑥𝑑𝑦															(3.1) 

where u is the horizontal wind vector, 𝜌 is the horizontal averaged density (function of 

height only).  The kinetic energy spectrum 𝐸(𝑘z) , can then be defined by  

𝐸z =
1
2
𝜌 𝑢0 + 𝜐0 	𝑑𝑥𝑑𝑦 =

1
2
𝜌 𝑢(𝒌) ∙ 𝑢 𝒌 + 𝜐(𝒌) ∙ 𝜐(𝒌) 		𝑑𝑘|𝑑𝑘}

= 𝐸 𝑘z 	𝑑 𝑘z 																																																(3.2) 
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where the horizontal wavenumber 𝑘z is defined as 𝑘z0 = 𝑘|0 + 𝑘}0. The kinetic-energy 

spectrum 𝐸 𝑘z  is obtained by taking the sum over wavenumber bands 𝑘z −
∆H
0
< 𝑘z ≤ 𝑘z +

∆H
0

.  

Note that these definitions are all based on a 2D plane, thus we will conduct the calculation at 

each specified height. 

The derived mean kinetic energy spectra, averaged over all 20 ensemble members every 2 

hours and over all the levels between 0 and 15 km, is shown in Fig. 3-5. Since the resolution of 

the simulation is 2km, signals with a wavelength shorter than 15 km (grey shaded area) are not 

well resolved by the model. The slope of the spectrum in this region falls off quickly due to 

implicit dissipation in the model. Any results within this range should be treated with caution. We 

will focus here on the well-resolved range (wavelengths > 15 km).  For the first 2 hours, the 

energy spectrum clearly shows a peak at a scale around 20 km, which is the scale of the warm 

bubble and the convective cells. Note that the spectral decomposition of an isolated feature 

projects onto all scales and most prominently onto the largest scales, thus the initial large-scale 

signal in the spectrum analysis is mainly due to the projection of energy associated with the 

limited extent of the convective cells. After 2 hours, the growth of the spectrum extends to larger 

scales. For the time period between 4-6 h, the energy spectrum approaches a quasi -5/3 slope for 

scales shorter than 100 km. Although there are slightly different evolutions of the convective cells 

in the 20 members, the evolution of the kinetic energy spectrum is insensitive to the details of the 

convective cells. All the 20 members have formed the quasi -5/3 slope as in the ensemble mean 

result after 6 hours of integration. This is consistent with Durran and Weyn (2016), which shows 

that the kinetic energy spectrum with a slope close to -5/3 could indeed be built solely from 

convection.  Further examinations with a smaller time interval (not shown) indicate that the 

kinetic energy spectrum at scales smaller than 100 km becomes quasi-steady after 5h when it 

reaches the “-5/3” slope. We also did one experiment with slightly different model settings in 
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which the simulation was integrated for eight hours. The supercells in that experiment maintain 

themselves and bring the spectrum at larger scale (> 100km) closer to the -5/3 reference line, 

though the change is much slower. The growth process of the quasi -5/3 slope for scales < 100 

km in our ensemble experiments is the focus of this study.  

The kinetic energy spectrum can also be further decomposed into horizontally rotational and 

divergent parts, 𝐸� 𝑘z  and 𝐸� 𝑘z , which are given by  

 

where 𝛇 and 𝛔 are the vertical vorticity and horizontal divergence, respectively. Figure 3-6 

shows the result after the decomposition. Unlike previous studies involving baroclinic waves and 

moist convection (e.g., Waite and Snyder 2013), the divergent energy spectrum in the present 

physical situation is not the only component responsible for the shallower -5/3 slope. At the end 

of the simulation (4-6 h), the rotational kinetic energy also has a quasi -5/3 slope within the 

wavelength range of 15-100 km. The magnitude of the rotational kinetic energy within the -5/3 

slope range (15-100 km) is even slightly larger than that of the divergent kinetic energy. A closer 

look shows that the ratio of the divergent to the rotational kinetic energy increase with height. In 

the troposphere, the amplitude of the rotational kinetic energy is stronger, due to the mesoscale 

convective vortices produced by the convective systems (Davis and Weisman 1994). While in the 

lower stratosphere, the divergent kinetic energy dominates over the rotational kinetic energy, as 

gravity waves are the primary signals there. Analysis of observational datasets in previous studies 

led to different conclusions with regard to the ratio of divergent to rotational kinetic energy. 

Callies et al. (2014) conclude that the divergent component of the kinetic energy is slightly 

stronger for the mesoscale energy spectrum. On the contrary, other studies find that the rotational 
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kinetic energy is more important (Cho et al. 1999; Lindborg 2015). Difference in data analysis 

and dataset might be responsible for different conclusions (Bierdel et al. 2016). Further study is 

clearly needed to reach agreement on this.   

Figure 3-7 shows the kinetic energy spectrum averaged over 0-4 km, 6-10 km, and 12-15 km 

(lower troposphere, upper troposphere, and lower stratosphere, respectively). The kinetic energy 

is stronger in the troposphere than it is in the stratosphere due to decreasing density with height. 

What is more interesting is that, although it differs slightly1, an approximate -5/3 slope in the 

wavelength range 15~100 km does show up at all levels throughout the atmosphere towards the 

end of our simulation (Fig. 3-7). The upper troposphere, where aircraft measurements lie, is not 

the only level that has a spectrum slope of -5/3; the lower troposphere and the lower stratosphere 

also have such a slope. The present model thus offers an alternative to the surface quasi-

geostrophic hypothesis in Tulloch and Smith (2006). Since no surface scheme or boundary layer 

scheme is adopted in our simulation, the creation of the kinetic spectrum is clearly due to the 

convection systems (diabatic heating, which has a maximum in the upper troposphere and a close 

to zero value near the surface and above the tropopause).  Any boundary process plays at most a 

secondary role since no PBL or surface scheme is used in our simulations.  

3.3.c Spectral budget analysis 

More insight can be gained into the dynamics of the horizontal kinetic energy spectrum by 

examining processes contributing to the evolution of the spectrum. The tendency of the kinetic 

energy spectrum is shown in Fig. 3-5b. The derived tendency term is multiplied by wavenumber 

k in order to preserve the area in this log-linear plot.  Even after this multiplication, for an energy 

                                                        
1 The calculated linear-fit slope varies from -1.61 to -2.05 for wavelength between 16  and 100 km at different 

height levels during 4-6 h of our simulations. The steeper slope of -2 mainly lies in the stratosphere, especially where 
the gravity-wave signal is relatively weak. For the constant-Coriolis experiment shown in Fig.3-11, the slope range is 
much smaller (-1.64 ~ -1.72) due to more organized convection. 
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spectrum with a -5/3 power-law slope, it can be proven that the tendency term will decrease with 

decreasing scale, as is shown by the black line for the range of wavelengths smaller than 100 km. 

To be clear on the sources and sinks for the energy spectrum 𝐸(𝒌), we compute the budget 

equation for 𝐸(𝒌): 

𝜕𝐸(𝒌)
𝜕𝑡

= 𝐴 𝒌 + 𝑃 𝒌 + 𝐷 𝒌 ,																(3.5) 

where the 𝐴(𝒌) term is the energy transfer due to advection,  

𝐴 𝒌 = 	−𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖	 + 𝑤
𝜕𝒖
𝜕𝑧

, (3.6) 

the 𝑃(𝒌) term is the spectral tendency due to the horizontal pressure gradient.  If we adopt 

the Exner function form of the pressure gradient force, 𝑃(𝒌) can be written as: 

𝑃 𝒌 = −𝜌 𝒖 ∙ 𝐶e𝜃"𝛁𝒉𝜋` ,																						(3. 7) 

where 𝐶e is the heat capacity at constant pressure,  𝜃"is the virtual potential temperature, and 

𝜋` is the anomaly Exner function. The quantity 𝐷(𝒌) in equation 5) is simply the dissipation.  

As the nonlinear term in the momentum equation, advection is responsible for all the 

interactions across different scales. The 𝐴(𝒌) term in spectral budget equation acts to redistribute 

energy between different scales. However, the level-by-level transfer caused by 𝐴(𝒌) is not 

strictly conservative; that is, its sum over all wavenumber 𝑘 is not zero. In addition to the 

conservative exchange of kinetic energy between different wavenumbers, 𝐴(𝒌) has a contribution 

from the divergence of vertical kinetic energy flux. To resolve this issue, the 𝐴(𝒌) term can be 

further decomposed as: 

𝐴 𝒌 = −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
1
2
𝜌 𝒖 ∙ 𝑤

𝜕𝒖
𝜕𝑧

+
1
2
𝜌
𝜕𝒖
𝜕𝑧

∙ 𝑤𝒖

� H

 

−
1
2
𝜕 𝜌 𝒖 ∙ 𝑤𝒖

𝜕𝑧
����f��L��	8�	��f����G	�L�f�}	�G�|

,																																																										(3.8)	
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  proof of this decomposition is given in the Appendix. By separating the vertical energy flux 

term out, 𝑇(𝒌) is the strictly conservative term we need, i.e., the sum of 𝑇(𝒌) over wavenumber k 

is zero (Appendix, Eq.(E5)). 

 Similarly, 𝑃(𝒌) also includes a contribution due to the divergence of the vertical energy 

flux. As derived in the Appendix, the 𝑃(𝒌) term can be rewritten as; 

𝑃 𝒌 		~		 𝐶e
𝜕
𝜕𝑧

𝜌𝜃 𝑤 ∙ 𝜋`

����f��L��	8�	��f����G	�L�f�}	�G�|�F

+ 					𝐶e𝜌𝜃 𝑤 ∙
𝜕𝜋`

𝜕𝑧
�(H)

,									(3.9) 

where 𝐵(𝒌) is the buoyancy flux, which reflects the conversion between potential and 

kinetic energy. Combining the two flux terms in 8) and 9), equation 5) becomes 

𝜕𝐸(𝒌)
𝜕𝑡

= 𝑇 𝒌 + 𝐵 𝒌 + 𝐹𝑙𝑢𝑥 𝒌 + 𝐷 𝒌 																																																	(3.10) 

Figure 3-8 shows the contribution of all the terms in (5) and (10) as a function of horizontal 

wavenumber 𝑘z summed over each wavenumber band. The dissipation term (Fig. 3-8c) has a 

negative contribution and mainly acts at small scales, as expected. When integrated over all the 

vertical levels, the flux term should go to zero; our calculation shows very small negatives (Fig. 

3-8f). The reason is that the calculation is done over the levels below 15 km and there is still a 

very small portion of the energy propagating to higher levels (Fig. 3-4c). Nonetheless, this 

contribution is tiny. Given that the 𝐴 𝒌  term could be written as the sum of the  𝑇 𝒌  term and a 

flux term, as shown in equation (9), we found an almost identical shape between 𝐴 𝒌  term and 

𝑇 𝒌  term when integrated over the whole domain (0-15 km, Fig 3-8a,d). The same argument can 

be applied to the 𝑃(𝒌) term (Fig. 3-8b) and the 𝐵(𝒌) term (Fig. 3-8e). Moreover, the consistency 

between these terms also imply the anelastic approximation used to decompose these terms is 

valid. Also note that some of the terms shown here and in the following figures have peaks in the 

not-well resolved gray shaded spectral bands where subgrid mixing can be important. Our 

experiment with a different diffusion scheme gives similar results which makes us more confident 
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in the present finding. Nonetheless, as mentioned earlier, results in this region of wavenumber 

space should be interpreted with caution. 

The sum of 𝑇(𝒌) over the wavenumbers shown on Fig. 3-8d (wavelength < 800 km) is 

greater than zero. Since the sum of  𝑇(𝒌) over all wavenumbers adds to zero, there must be a loss 

of energy from the mean flow (i.e., 𝑇(𝟎) is negative). This loss was implied by the downgradient 

mixing process shown in Fig. 3-2b. If we check the 6-h average of the 𝑇(𝒌) term (black line), 

positive values of 𝑇(𝒌) are found mainly in small scales, whereas 𝑇(𝒌) is close to 0 at scales 

greater than 100 km. This result seems to indicate that the small-scale features could directly 

withdraw energy from the mean flow, not necessarily through a cascade effect2 from the large 

scales.  

Compared to the 𝑇(𝒌) term (Fig. 3-8d), a more important source for 𝐸(𝒌) is the buoyancy 

production 𝐵(𝒌) term (Fig. 3-8e, conversion from potential energy). For the whole domain, 𝐵(𝒌) 

is positive at almost all the scales, with a peak at the small convective scales and a plateau at 

larger scales. A closer look at the 𝐵(𝒌) term at different time periods tells us that this plateau is 

closely related to the convective organization. Initially (0-2h), 𝐵(𝒌) has a secondary maximum at 

around 100 km, which is roughly the length of the warm bubble line we added in the initial 

condition.  At later times (3-4 h), this secondary maximum shifts towards larger scales due to the 

elongation of the convective systems in the meridional direction. At the end of the simulation, 

only two strong supercell-like systems remain, thus 𝐵(𝒌) is slightly smaller and the location of 

the secondary maximum of 𝐵(𝒌) also shifts towards the scale of the supercells.  

The 𝐸(𝒌) budget analysis for different levels is given in Fig. 3-9, averaged over 0-4 km, 6-

10 km, and 12-15 km, respectively. Since the kinetic energy spectra at these levels generally 

follow a similar quasi −5/3 power law (Fig. 3-7), the tendency of the spectra averaged every 2 
                                                        
2 In  classical turbulence theory, an energy cascade often refers to the transfer of energy from larger scales of 

motion to smaller scales –also called a direct energy cascade. If T(k) is negative at relative larger scales and positive at 
small scales, this is consistent with the cascade picture. Otherwise it is not. 
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hours at these different levels also follows a similar shape to that in Fig. 3-5b. The dissipation 

term 𝐷(𝒌) (not plotted) also maintains its shape in Fig. 3-8c for each height level. Attention here 

will be focused on the 𝑇(𝒌), 𝐵(𝒌) and 𝐹𝑙𝑢𝑥(𝒌) terms where significant differences between the 

vertical levels are found. 

Figure 3-9e shows that in the upper troposphere, the diabatic heating is the strongest which 

is reflected in 𝐵(𝒌) reaching its largest amplitude with a peak at the small convective scales and a 

plateau at larger scales consistent with the domain-averaged profile in Fig. 3-8.  However, the 

strong positive contribution of 𝐵(𝒌) is largely cancelled by the 𝐹𝑙𝑢𝑥(𝒌) term at this level (Fig. 3-

9f).  From Fig. 3-4c, we know that there is an increasing upward vertical energy transport in the 

upper troposphere (thus a positive value for the divergence of the energy flux), which explains the 

negative contribution of the 𝐹𝑙𝑢𝑥(𝒌) term; the energy withdrawn by the energy flux term at this 

level is deposited into both the lower troposphere and the lower stratosphere. 

In the lower troposphere, the buoyancy production has a smaller effect (Fig. 3-9b). It is 

positive at scales larger than 50 km, likely due to the formation of the cold pools that contain 

organized downdrafts and negative potential temperature anomalies due to evaporative cooling. 

The negative 𝐵(𝒌) at small scales is linked to the lifting parcels that overcoming the convective 

inhibition (CIN). The total contribution of the 𝐵(𝒌) term integrated over all wavenumbers is 

largely cancelled by these two processes and may be even slightly negative at some levels (Fig. 3-

4c). The input energy flux by the 𝐹𝑙𝑢𝑥(𝒌) term (Fig. 3-9c) is the primary contributor for the 

lower troposphere, it is positive at all but the smallest (convective) scales. Note here both 𝐵(𝒌) 

and 𝐹𝑙𝑢𝑥(𝒌) have little or negative contribution at small/convective scales, in the meantime we 

know 𝐷(𝒌) also has a strong negative contribution at small scales, hence, to generate a -5/3 

spectrum, 𝑇(𝒌) must balance all the negative contribution at small scales and remove some extra 

forcing at larger scales, as is shown in Fig. 3-9a. The shape of 𝑇(𝒌) in the lower troposphere 

suggests a downscale-cascade scenario; however, this downscale “cascade” is still considerably 
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different from that of the classic three-dimensional turbulence theory since the forcing of 𝐵(𝒌) 

and 𝐹𝑙𝑢𝑥(𝒌) acts at all the scales, and unlike the classical turbulence theory, there is not a well-

defined inertial subrange here. As also suggested by Waite and Snyder (2009), it is possible that 

the mesoscale kinetic energy spectrum does not arise from a cascade process.  

Figure 3-9i shows that in the lower stratosphere, convection-generated gravity waves inject a 

significant amount of energy mainly into small scales through the 𝐹𝑙𝑢𝑥(𝒌) term. This term serves 

as the dominant source for the kinetic energy in this region. The 𝐵(𝒌) term has zero contribution 

everywhere except for the small convective scales where it is slightly negative likely due to some 

overshooting air parcels. The 𝑇(𝒌) term (Fig. 3-9g) acts to redistribute the injected energy into 

different scales to maintain the approximate -5/3 spectrum. Since the injected energy is mostly at 

small scales, we can find negative contribution of the 𝑇(𝒌) term at small scales and slight 

positive contribution of 𝑇(𝒌) term at relative large scales (16 ~100 km). 

In summary, although all the levels yield an approximate -5/3 spectrum slope, the underlying 

physical processes behind them are substantially different. Both the downscale process [e.g. 𝑇(𝒌) 

at the lower troposphere] and the upscale process [e.g. 𝑇(𝒌) at the lower stratosphere] appear to 

exist at the same time. The vertical energy flux terms are also critical for each specific level, 

implying a strong connection between the energy spectrum slopes at different vertical levels. 

3.3.d sensitivity experiments 

In the above simulations, we use an ensemble of 20 members to reduce the case dependency 

of our results. Yet, all these members use the same model setup and physics schemes. To ensure 

that our results are robust, various sensitivity runs are also conducted. Figure 3-10 shows the 

kinetic energy spectrum for the DOUBLE experiment, where the horizontal size of the domain is 

doubled to 1600km×1600km. Similar approximate -5/3 spectrum shows up again for this 
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experiment. Moreover, additional experiments containing different model setups (e.g. different 

boundary conditions, reduced vertical layers, different shear profiles) all give similar -5/3 

spectrum (not shown), implying that the -5/3 spectrum generated by the convective systems is not 

sensitive to the model setup.  

The stratified turbulence theory proposed by Lindborg (2006) requires that vertical scales of 

𝑈/𝑁 (𝑈 is the horizontal wind, while 𝑁 is the Brunt–Väisälä frequency, 𝑈/𝑁 is around 1 km in 

the troposphere) be well resolved to drive the −5/3 mesoscale energy spectrum. In our simulation 

with only 40 vertical layers (a vertical grid spacing of ~500 m), the quasi -5/3 spectrum is 

still very clear. As we mentioned above, with the strong 𝐵(𝒌)/𝐹𝑙𝑢𝑥(𝒌) terms at all scales, it is 

likely that the turbulent motion due to convective systems is different from what a classic 

turbulent theory would expect. The vertical resolution requirement for resolving the stratified 

turbulence proposed by Lindborg (2006) is not satisfied in our simulation. Note here, this does 

not mean that theories invoking stratified turbulence to explain the mesoscale spectrum and 

transition are invalid (Skamarock et al. 2014).  

As for the impact of different model physics, microphysics is the only parameterization 

scheme used here and we do not expect significant differences for the kinetic energy spectrum if 

other microphysics schemes were adopted. Hence, instead of changing any of the physics scheme, 

a constant Coriolis parameter (f = 1.0e-4 s-1) is added to the model, which would affect the 

organization of the convective cells (Skamarock et al. 1994). Consistent with Skamarock et al. 

(1994), the evolution of the convective cells with Coriolis effect exhibits significant asymmetries. 

At later hours of the simulation, the convective cells at the southern part of the domain center 

become much stronger than that in the control no-Coriolis simulations, while convective cells in 

the northern part decay. This asymmetry leads to a systematic reorientation and the convective 

system moves towards the right of the wind shear. Due to this asymmetry, the convective cells, 
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especially at the southern flank, tend to be more organized and form a quasi-squall-line structure, 

the intensity of the system is also stronger than that of the no-Coriolis experiment. 

Figure 3-11 shows the kinetic energy spectrum for the experiment with the Coriolis effect. 

Compared with the no-Coriolis experiment, the energy spectrum is stronger, especially for the 

later times of the simulation when the -5/3 spectrum extends to a scale of 400 km at the upper 

troposphere.  The 𝐸(𝒌) budget analysis better explains the difference (Fig. 3-12). The results in 

the first 4 hours (blue lines) are qualitatively and even quantitatively similar to the no-Coriolis 

experiment. After 4 hours (red and yellow lines), due to the formation of the squall line on the 

southern flank, the buoyancy production 𝐵(𝒌) term becomes much stronger in the upper 

troposphere (Fig. 3-12e), which also causes the enhancement of the	𝐹𝑙𝑢𝑥(𝒌) term (Fig. 3-12f) 

and adjustment of the 𝑇(𝒌) term (Fig. 3-12d). The 𝑇(𝒌) term shows some negatives at relatively 

smaller scales and is positive at larger scales in the upper troposphere (Fig. 3-12d), which implies 

some kind of upscale propagation of the kinetic energy. In the lower troposphere, the stronger 

convective systems with Coriolis effects also bring a peak of 𝐵(𝒌) term at scale around 50 km 

(Fig. 3-12b), which leads to a negative 𝑇(𝒌) contribution at this scale (Fig. 3-12a). Significant 

differences with the no-Coriolis experiment also exist in the lower stratosphere, where stronger 

gravity waves generated by enhanced convection gives much stronger 𝐹𝑙𝑢𝑥(𝒌) term (Fig. 3-12i) 

at small scales, leading to an enhanced upscale propagation by the 𝑇(𝒌) term (Fig. 3-12g). The 

positive contribution of 𝑇(𝒌) term at relatively large scales (25–200 km wavelengths) is much 

more evident in this layer compared to the no-Coriolis experiment. 

3.4 Discussion and Concluding Remarks 

Using an ensemble of high-resolution cloud-model simulations, this study explores the 

kinetic energy spectrum of organized convective systems under vertical wind shear.  Our results 
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further confirm a recent finding by Durran and Weyn (2016) showing that convective systems 

alone could generate a background mesoscale kinetic energy spectrum with a slope proportional 

to the -5/3 power of the wave number. Building upon this result, the present study gives a picture 

of the growth processes of the -5/3 spectrum in this physical situation. At each specific height 

level, the physical processes actively contribute to the formation of the kinetic energy spectrum 

are: 1) conversion from available potential energy to kinetic energy (buoyancy production or 

𝐵(𝒌) term), which primarily lies in the mid-upper troposphere, with a peak at small convective 

scales and a plateau at larger scales; 2) divergence of the vertical energy flux (𝐹𝑙𝑢𝑥(𝒌) term) 

which withdraws the energy generated by buoyancy in the upper troposphere and deposits it into 

both the lower stratosphere and the lower troposphere; and 3) filling out of the energy spectrum 

through nonlinear interactions (𝑇(𝒌) term) among different scales. 

Sensitivity experiments of varying domain size or boundary conditions all give similar 

approximate -5/3 spectrum in our simulations. Thus our results are very robust in terms of 

different model settings. The -5/3 spectrum is also not affected by the organization of the 

convective systems. In the experiment with a constant nonzero Coriolis parameter, the interaction 

between different convective cells is greatly altered especially at later times of the simulation. 

Thus the forcing terms of the kinetic energy spectrum (e.g., 𝐵(𝒌) term) also change accordingly. 

Yet the kinetic energy maintains the approximate -5/3 spectrum through adjustment of the 

nonlinear interaction (𝑇(𝒌) term). 

Although the picture that deep convection is able to generate the -5/3 spectrum resembles 

Lilly’s hypothesis, the building up process of the spectrum is not the 2D inverse cascade as 

proposed by Lilly (1983). For each specific level, the divergence of vertical energy flux is critical, 

which means there are strong connections between different levels, and it is therefore a three-

dimensional process. Moreover, buoyancy production and vertical flux of energy act at all the 

scales and so the dynamics cannot be described as an inertial-subrange cascade, as also pointed 
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out by Waite and Snyder (2009). In addition, the filling out of the energy spectrum by nonlinear 

interactions varies greatly between different vertical levels. It goes through a downscale 

propagation from the lower troposphere to an upscale-like propagation in the lower stratosphere. 

Both downscale and upscale processes happen at the same time but at different levels. We rarely 

find any true cascade signal in the simulations (consistent with Durran and Weyn 2016). Small-

scale convection can even directly interact with the mean flow.  

While convection is the ultimate source for the kinetic energy spectrum in our simulations, at 

high altitudes where the aircraft observations lie, it is the convection-generated gravity waves that 

are the primary contributors to 𝐸(𝒌). Since moist convection is not the only source for the gravity 

waves, one can see why Waite and Snyder (2009) found a -5/3 spectrum in the lower troposphere 

of their dry simulation since gravity waves are generated in association with a large-amplitude 

baroclinic wave. Nonetheless, moist convection is much more efficient and powerful in 

generating the gravity waves (Waite and Snyder 2013; Wei and Zhang 2014; Sun and Zhang 

2016). Hence a quasi-steady -5/3 spectrum could be built within hours after strong convection is 

initiated as in our experiments. 

A better understanding of the creation of the atmospheric energy spectrum is beneficial for 

the study of the atmospheric predictability. It has been proposed that the error growth behavior is 

closely related to the energy spectrum of the basic flow within which the errors grow (Lorenz 

1969; Rotunno and Snyder 2008).  For a flow with energy spectra of power law behavior (𝑘+e	), 

studies find that if the slope 𝑝	 < 	3, the error-doubling time decreases with scale and the upscale 

spreading of initially small-scale error provides an effective limit to the predictability of such 

flows. This upscale error propagation scenario has been verified by numerous studies using full 

physics models and simulations (e.g., Zhang et al. 2007; Selz and Craig 2015; Sun and Zhang 

2016). However, if 𝑝	 ≥ 	3, it is concluded that there is no such limit. The implication of different 
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physical processes behind the simulated -5/3 spectrum for the atmospheric predictability is the 

subject of our future study. 

We also want to emphasize that convection is not the only explanation for the observed -5/3 

spectrum. We cannot rule out all the other hypotheses that have been proposed to explain the 

spectrum, although we have shown that some of them are not necessary in a moist environment.  

It is still an open question of how important convection is in the observed -5/3 spectrum of the 

real atmosphere. Moreover, although the current study clarifies the sources of 𝐸(𝒌) in these 

simulations of mesoscale convective systems, the authors have been unable to develop a simple 

explanation for why a -5/3 slope develops in the mesoscale range. 
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Chapter Figures 

 

 

 

Figure 3-1.  The Skew-T diagram of thermodynamic sounding profile used for all simulations 
presented herein. The sounding has a CAPE value of ~2000 J kg-1 and a surface mixing ratio of 
14 g kg-1. 
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Figure 3-2.     Vertical profiles of (a) zonal mean wind, and the changes from the initial mean 
averaged over each horizontal plane and all 20 ensemble members for (b) zonal and (c) 
meridional winds. 
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Figure 3-3.    Time evolution of simulated convective cells in one of the ensemble members. The 
isosurface of vertical velocity (w = 10 m s-1, purple), radar reflectivity (25 dBZ, brown) and 
surface cold pool contours (𝜃" anomaly < -0.5°C, gray) are plotted every hour. 
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Figure 3-4.  (a) South-north cross-section at the domain center for the same member as in Fig. 3-
3, showing the gravity-wave signals and convective activity (w > 0. 1 m s-1, cyan shaded;   dBZ > 
25, black line;  potential temperature, gray); the vertical profiles of (b) heat fluxes (𝑤’𝑇’, 𝑚 ∙
𝐾	𝑠+, and (c) energy fluxes (𝑤’𝑝’, 𝑚 ∙ ℎ𝑝𝑎	𝑠+,), averaged over all 20 members and displayed 
every 2 h.   
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Figure 3-5.  (a) Time evolution of the kinetic energy spectrum (𝑚0𝑠+0𝑘𝑔	𝑚+3), averaged 
between 0-15 km over every 2 hour period for all the 20 ensemble members; (b) k*dE(k)/dt term 
(10+6𝑚0𝑠+3𝑘𝑔	𝑚+3) derived from (a). The tendency terms in (b) are multiplied by wavenumber 
k in order to preserves the area in a log-linear plot; black line shows time average over 0~6 h. 

  

400 200 100  50  25  16

k-5/3

wavelength (km)

wavenumber
101 102

10-4

10-3

10-2

10-1

0-2h
2-4h
4-6h

400 200 100  50  25  16
wavelength (km)

wavenumber
101 102

-8

-6

-4

-2

0

2

4

6

8
0-2h
2-4h
4-6h
0-6h

! " #! " /#%

&) ()



73 

 

 

 

 

 

Figure 3-6.  Ensemble mean rotational (red) and divergent (blue) kinetic energy spectrum 
(𝑚0𝑠+0𝑘𝑔	𝑚+3) averaged between 4-6 h. The definition of rotational and divergent kinetic 
energy spectrum is given in the text. 
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Figure 3-7.     Kinetic energy spectrum (𝑚0𝑠+0𝑘𝑔	𝑚+3) as in Fig. 3-5a but for averages over 
different height levels for (a) lower troposphere (0-4 km); (b) upper troposphere (6-10 km); and 
(c) lower stratosphere (12-15 km). 
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Figure 3-8.  (a-c) kinetic energy spectrum budget terms (10+6𝑚0𝑠+3𝑘𝑔	𝑚+3) in equation (6) and 
(d-f) decomposition of advection and pressure terms in equation (11) averaged over 0-15 km for 
all the ensemble members.  Refer to the text for details on equations (6) and (11).  
  

400 200 100  50  25  16

k*A(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-10

-5

0

5

10

15

20
400 200 100  50  25  16

k*P(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-10

-5

0

5

10

15

20
400 200 100  50  25  16

k*D(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-20

-15

-10

-5

0

5

10
0-2h
2-4h
4-6h
0-6h

400 200 100  50  25  16

k*B(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-10

-5

0

5

10

15

20
400 200 100  50  25  16

k*Flux(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-15

-10

-5

0

5

10

15

!) #) $)

%) &) ')400 200 100  50  25  16

k*T(k)

[0-15km]

wavelength (km)

wavenumber
101 102

-10

-5

0

5

10

15

20



76 

 

 

 

 

Figure 3-9.  Kinetic energy spectrum budget (10+6𝑚0𝑠+3𝑘𝑔	𝑚+3) analysis similar to that in Fig. 
3-8 but at different height levels for (a-c) lower troposphere (0-4 km), (d-f) upper troposphere (6-
10 km) and (g-i) lower stratosphere (12-15 km). 
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Figure 3-10.  Kinetic energy spectrum (𝑚0𝑠+0𝑘𝑔	𝑚+3) same as Fig. 3-5a, but for experiment 
with the domain size doubled. 
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Figure 3-11.  Kinetic energy spectrum (𝑚0𝑠+0𝑘𝑔	𝑚+3) same as Fig. 3-5a and Fig. 3-7, but for 
experiment with constant Coriolis parameter added to the model (f = 10-4 s-1). 
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Figure 3-12.  Same as in Fig. 3-9, but for the experiment with constant Coriolis parameter. 
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Chapter 4 
 

Error Growth and Ultimate Predictability limit for Mid-Latitude Weather 
Systems Revealed from High-resolution Global Ensembles 

4.1 Introduction 

The predictability of the atmosphere, as any chaotic dynamic systems, is intrinsically limited 

due to the so-called “butterfly effect” (e.g., Lorenz 1969; Palmer et al. 2014). This effect shows 

that even the smallest amplitude small-scale error will amplify and grow upscale with time, 

eventually rendering accurate weather prediction feasible only for a finite length of time.  

Estimates of the finite time during which accurate predictions can be made is noted to be 

intimately connected with the eddy turnover times in a turbulent fluid, and these are determined 

by the slope of the background energy spectrum of the fluid. For a flow with energy spectra of 

power law behavior (k-p), studies find that if the slope p < 3, the error-doubling time decreases 

with scale and the upscale spreading of initially small-scale error provides an effective limit to the 

predictability of such flows; if p ≥ 3, it’s concluded that there is no such limit (Lorenz 1969; 

Rotunno and Snyder 2008). Observational measurements indicate that the energy spectra in the 

atmosphere show a distinct transition from a slope of -3 at synoptic scales to a shallower -5/3 

slope at mesoscales (~500 km or smaller, Nastrom and Gage 1985). Recent study using full-

physics idealized baroclinic wave simulations (Sun and Zhang 2016) using the Weather Research 

and Forecasting (WRF) model also found the observed transition of the kinetic energy spectrum 

slope at a scale of ~400 km in the moist experiment. Interestingly the dry simulation in their 

experiments with exactly the same initial conditon maintains a steeper -3 slope all the way to the 
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mesoscales. This indicate that convection might be responsible for the transition of the energy 

spectrum and plays a critical role in the upscale spreading of the error (Sun et al. 2017). 

There have been considerable evidences and studies showing that convection is important in 

the growth of the forecast error (e.g., Zhang et al. 2003). Zhang et al. (2007) proposed a 

multistage conceptual model for error growth behavior in the moist baroclinc waves of mid-

latitude: 1) the initial convective growth stage, which begins with convective instability followed 

by rapid error saturation [~O (1) h]; 2) the intermediate adjustment stage, during which error 

projects to balanced field [~O(2π/f)]; and 3) the large-scale growth stage where error grows with 

larger-scale baroclinic instability. This three-stage conceptual model is demonstrated to be 

effective in explaining the atmospheric predictability of a real-case study by Selz and Craig 

(2015). They showed that 60 h after perturbing their operational forecast model with negligible 

initial small-scale error, the large-scale 500-hPa geopotential height error induced by upscale 

error growth was about half the spread of the ECMWF  6-h ensemble forecast. Further studies 

also show that this intrinsic growth of the error is not sensitive to the scale of the initial 

perturbation added (Sun and Zhang 2016; Hohenegger and Schär 2007).  Moreover, moist 

convection not only is important for local error growth (e.g., Zhang et al. 2003), but also has 

implications downstream (Langland et al. 2002; Stensrud 1996; Tribbia and Baumhefner 2004). 

Rodwell et al. (2013) related poor forecasts over Europe to high convective Bactivities over 

North America a couple of days ahead, indicating that large uncertainties introduced by 

convection will propagate over the storm track region and might have a global effect.  

Due to computational limitation, previous studies on error growth is limited to either 

regional model with convection-permitting resolution (e.g., Zhang et al. 2007; Selz and Craig 

2015) or global simulations with coarse resolution not able to allow convection (Tribbia and 

Baumhefner 2004). The simulation time is often limited, usually much shorter than 10 days, 

which is the estimated current practical limit for the mid-latitude weather events based on the 
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anomaly correlation coefficient (Bauer et. al, 2015). The use of regional model has caveats given 

that the error could not grow naturally at lateral boundary of the model; while coarse resolution 

global models often fails to reproduce the convective process, which is crucial to the error 

propagation process as discussed above. With advances in computational capability, the use of 

high-resolution convection-permitting models in near-hemispheric or even the global domain is 

becoming feasible in recent days (Mapes et al. 2008; Bretherton and Khairoutdinov 2015). As the 

ECMWF launches their new model cycle with highest-ever horizontal grid spacing of 9km, we 

are entering a new era in which global atmospheric models start to resolve the cumulus 

convection process. As an extension of previous studies, this study explores this 9km high-

resolution ECMWF ensembles to study the intrinsic predictability of the synoptic-scale weather 

systems from a global perspective, with a focus on the error growth from convective to planetary 

scales.  

Section 2 of this study introduces more details on the newly updated ECMWF model and the 

ensemble perturbations we adopted. Predictability results and the error saturation time is 

presented in section 3. Section 4 investigates further more on the propagation of the errors to 

better understand the dynamical process. Discussion and concluding remarks are given in section 

5 and section 6, respectively. 

4.2 Methodology 

4.2.a Model 

         The results presented herein explores the most recent upgrade (cycle 41r2) of ECMWF, the 

highest-resolution (~9km) ever global operational model. More details of this model upgrade can 

be found on the official website of ECMWF 
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(http://www.ecmwf.int/search/elibrary/part?solrsort=sort_label%20asc&title=part&secondary_titl

e=41r1&f[0]=ts_biblio_year%3A2016). Different from previous versions, this new ECMWF 

model implements a cubic octahedral reduced Gaussian grid (with spectral truncation denoted by 

TCO1279) instead of the linear reduced Gaussian grid. With this cubic reduced Gaussian grid, the 

shortest resolved wave is represented by four rather than two grid points. The octahedral grid is 

also globally more uniform than the linear reduced Gaussian grid. In the vertical, ECMWF model 

has 137 levels. This corresponds to over 900 million grid points in total after this resolution 

upgrade. In addition to resolution increase, the realism of the kinetic energy spectrum is also 

significantly improved with more energy in the smaller scales due to a reduction of the diffusion 

and removal of the dealiasing filter, enabled by the change to using a cubic truncation for the 

spectral dynamics.  The semi-Lagrangian departure point iterations used to solve the primitive 

equations are also increased in the new model to remove numerical instabilities. The integration 

time step upgraded accordingly to 450s.  

Updated parameterization schemes that represents our comprehensive understanding of the 

physical processes are used in the model.  Although running at convection-permitting 9km 

resolution, moist convection scheme evolved from Tiedtke (1989) is still used to better simulate 

the convective process. The clouds and microphysics are parametrized with a number of 

prognostic equations based on modification of Tiedtke (1993). The radiation scheme is the 

updated Rapid Radiation Transfer Model (RRTM, Mlawer et al., 1997; Iacono et al., 2008). The 

surface layer turbulence fluxes are computed based on the Monin–Obukhov similarity theory.  

Above the surface layer a K-diffusion turbulence closure is used to represent the turbulent 

diffusion process, except for unstable boundary layers where an Eddy-Diffusivity Mass-Flux 

(EDMF) framework is applied, to represent the non-local boundary layer eddy fluxes (K𝑜hler et 

al., 2011). The land surface scheme is explained in Balsamo et al. (2009) and Balsamo et al. 

(2011). The effects of unresolved orography on the atmospheric flow are parametrized as a sink 
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of momentum (drag), based on the scheme in Beljaars et al. (2004). Non-orographic gravity wave 

drag parameterization proposed by Orr et al. (2010) is also adopted.  

4.2.b Ctrl experiments and perturbations 

For the ctrl experiment, we first run a 20-day integration initialized at 0000 UTC 26 

December 2015 and extending to 0000 UTC 15 January 2016. This experiment is run as a 

historical re-forecast where the ECMWF reanalysis fields at the initial time of the integration is 

used for the initial condition. This time period is quasi-randomly picked as a winter case after 

ECMWF finished their ~9km resolution update. No “forecast bust” is found during this period 

(Lillo and Parsons 2016). To reduce case dependence of this study, we also run two additional 20-

day integrations initialized from 0000 UTC 25 December 2015 and 0000 UTC 24 December 

2015, respectively. All these three experiments give very similar results regarding their error 

growth behavior. We will focus on the 0000 UTC 26 December case unless otherwise specified.  

Ensemble perturbation fields are added to the initial conditions of the ctrl experiments to 

study the error growth behavior. For each ctrl experiment, two sets of perturbations are added. 

The first set of perturbations is derived from the operational Ensemble of Data Assimilations 

(Iaslsen et al., 2010) of ECMWF, representing our current operational uncertainty for the initial 

condition. We note hereafter these perturbed runs as EDA. To explore the intrinsic predictability 

of the weather systems, the second set of perturbations is the same as the first set, except that their 

amplitudes are reduced to 10% of their original values, noted as 0.1EDA.  10 perturbed runs are 

conducted for each set of perturbations.   

As intrinsic predictability implies the upper limit for our weather prediction given the nearly 

perfect model, no perturbation is applied to any model parameter and no stochastic physics 

scheme is adopted. 
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4.3 Growth and saturation of the error 

4.3.a Short-term error growth 

The short-term evolution of the errors in 0.1EDA is very consistent with the error growth 

model proposed by Zhang et al. (2007). Figure 4-1 shows snapshots of the ensemble spread of 

500 hpa meridional wind (shading) in 0.1EDA for the first 3 days. The ensemble spread, as 

illustrative of the errors, shows up in the convectively active regions first. The spread then 

develops quickly in terms of amplitude and evolves along with the convective system. In the 

meantime, the spread also extends both upstream and downstream of the convective system, 

increasing its spatial scale. Three days after the initial minute perturbation is added, the error 

spreads almost across the whole globe instead of be localized in the convective area initially.   

A similar picture can also be found from analysis of the kinetic energy spectrum of the 

perturbation. The kinetic energy spectrum is calculated as in Skamarock (2004) and Durran et al. 

(2013). We have chosen to compute 1D spectrum of the velocity fields along the east-west 

coordinates of the model grid points. Let 𝑢�,�,L and 𝜐�,�,L denote the zonal and meridional velocity 

components for the 𝑛th ensemble member, subtracting the ensemble mean fields first if we are 

calculating the kinetic energy spectra for the perturbations. The Fourier transforms of the velocity 

components 𝑢�,L 𝑘  and 𝜐�,L 𝑘  are then computed along zonal direction for each ensemble 

member and all the meridional 𝑗 indices. Then the kinetic energy spectra density can be written 

as: 

𝐸�,L 𝑘 = 		
Δ𝑥
2𝑁|

𝑢�,L 𝑘 𝑢∗�,L 𝑘 + 𝜐�,L 𝑘 𝜐∗�,L 𝑘 	 																																									(4.1) 

where 𝑁| is the number of grid points along the east-west direction in the model. The 

asterisk denotes the complex conjugate. We can then average 𝐸�,L 𝑘  over 𝑗 and 𝑛 to get the 

kinetic energy spectrum for the full ensemble and the latitude band of interest. One advantage of 



86 

 

this method is that we could fully utilize the periodicity of the global model in the east-west 

direction without further processing the data.  Figure 4-2 shows the kinetic energy spectra for the 

perturbations at 500 hpa averaged over the	408𝑁~608𝑁 in the 0.1EDA every 12 hours after the 

initial minute perturbations are added.  We could see that the evolution of the perturbation kinetic 

energy spectrum in the first 3 days resembles previous result in regional model (Selz and Craig 

2015, their Fig. 4).  Note here the power spectrum of the perturbation seems to grow at all the 

scales simultaneously. This does not invalid the hypothesis proposed by Zhang et al. (2007). 

Recall that the spectral decomposition of a Gaussian function with small characteristic scale 

results in another Gaussian function centered at wavenumber 𝑘 = 0, the largest scale. Thus, the 

growth of the large-scale error is mainly due to the projection of isolated feature of convective 

systems, as described in Selz and Craig (2015). The initial growth rate of the errors at all scales is 

also much higher than expected value of the synoptic-scale dynamics, further implying the 

increase of the power spectrum at large-scale is mainly due to error growth in the convective 

region.  

Figure 4-2 also plots the kinetic energy spectrum for the initial perturbation in EDA as the 

reference line. Since the perturbations in EDA are derived from ensemble of data assimilation 

systems with grid spacing ~18km, the reference line has weaker small-scale (<100km) signals 

compared with the perturbations in our 9km run.  From comparison of the kinetic spectrum, we 

know that it takes a little bit longer than 3 days for the initially minute perturbations in 0.1EDA to 

catch up the initial perturbations in EDA. This has important implications. As our model will 

never be perfect and that we may never reach an initial condition uncertainty as small as in the 

0.1EDA, three days may serve as the upper limit for us to further extend our current operational 

deterministic forecast. 
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4.3.b Medium range error growth and error saturation 

We have shown that, after ~3 days, the minute initial perturbation in 0.1EDA will grow to an 

amplitude that is comparable to our current operational initial condition uncertainty. Yet, the 

errors developed from this cascade-like mechanism might have different physical structure with 

initial perturbations in EDA (our operational forecast system). Hence the medium-term growth of 

the perturbations in 0.1EDA need to be investigated to further verify our notion of the 3 day 

predictability gap. 

Figure 4-3 shows the time evolution of the ensemble variance of 500 hpa horizontal winds 

for both EDA and 0.1EDA experiments.  We can see that the growth of the ensemble spread in 

0.1EDA resembles the error growth of errors in EDA except that it is delayed for 3-4 days. This 

result confirms our findings. According to this diagram, our 6-day forecast in the future might be 

as good as our current 3-day forecast through reducing the initial condition error, which means 

there are still quite some room for improvement of our weather forecast. However, since the error 

growth rate decrease with time, we get diminishing returns through reducing the initial condition 

errors (Sun and Zhang 2016). 

Figure 4-3 also shows that errors in the 0.1EDA grow quasi-exponentially in the medium 

range (day 3 - day 8), consistent with quasi-exponentially growth in the first few days of the EDA 

experiment under baroclinicity. An estimated error doubling time of 2.4 days could be calculated 

if we fit a line for the exponential growth during day 0 to day 5 in the EDA experiment (or day3 

to day 8 in the 0.1EDA experiment). This value agrees well with the estimate done by Lorenz 

(1982) using a totally different method. After day 5 (day 8) in the EDA (0.1EDA) experiment, as 

the errors grow to a large amplitude, the exponential growth of the error begins to slow down. We 

can tell that after day 10 (day 14) in the EDA (0.1 EDA) experiment, the errors appear to saturate. 

The increase of the variance is negligible after. The saturation of the error represents that the 
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amplitude of the error reaches that of the background fluid. As different members of the ensemble 

could give completely different weather scenario, our numerical weather forecast cannot provide 

any useful information after day 10 (day 14) in the EDA (0.1EDA) experiment. 

We can also examine the growth of the perturbations at each different scale by calculating 

the perturbation kinetic energy spectrum based on Equation 1. Figure 4-4 plots the evolution of 

the perturbation kinetic energy spectrum in EDA and 0.1EDA experiments. Consistent with our 

previous findings, after 3 days the errors in 0.1EDA grows to similar amplitudes with the initial 

condition error in the EDA experiment (grey dot line in Fig. 4-4). The kinetic energy spectrum of 

the background flow averaged over this 20-day integration period is also plotted (black dot line), 

representing the saturation level of the errors at different scales. Once again, we find that after 15 

days of integration, the errors in the 0.1EDA experiment saturates at all scales with wavelengths 

smaller than 5000 km, implying the ultimate limit for the prediction of synoptic-scale weather 

systems. It’s also noted that the saturation time decreases with decreasing horizontal scales. For 

example, it only takes roughly one week for the error in 0.1EDA to saturate at a scale of 1000 km. 

In the EDA experiment, the time reduced to 3 or 4 days due to the predictability gap induced by 

larger initial condition error. This partially explains why our current medium-range weather 

forecast suffers for some systems; our initial condition is simply not good enough to produce 

meaningful 5 day forecasts for any system that has a characteristic scale smaller than 1000 km. 

This result is also supported by many previous case studies. Munsell and Zhang (2014) 

investigated the ensemble forecast for the mid-latitude landfall of tropical cyclone Sandy (2012) 

and found that the divergence of the track at longer lead times (4-5 days) could be attributed to 

the uncertainties in the environmental steering flow of the initial fields. As for mesoscale, the 

predictability time scale gets much shorter, Durran et al. (2013) suggested that uncertainties in the 

initial conditions could lead to ensemble spread becomes large enough to include both many 

members likely to produce rain and many likely to produce snow in 36 h. 
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The loss of predictability may be better illustrated by the physical fields. Figure 4-5 shows 

the evolution of the large-scale vorticity (filtered with wavelength > 1500 km) at 850 hpa for 

different ensemble members. This field is often used for tracking the movement of the synoptic 

storms in previous studies (e.g., Chen et al. 2014). At day 3, the differences between different 

members mainly shows up in small and meso-scale (Fig 1c, Fig. 5a), the large-scale vorticity 

center (storm location) is almost identical for all the members and the size for each storm (storm 

intensity) is also the same among different members. Notable differences can be found at day 6 as 

the errors grow with time.  At day 9, different evolutions of storms in different members become 

significant. Storm in one ensemble member may split into two smaller centers while the same 

storm in another ensemble member get intensified. Figure 4-6 also plots the 12-hour accumulated 

precipitation at day 9 for different ensemble members in 0.1EDA. we can see that the 

precipitating region varies dramatically between different members though two main precipitating 

band can be identified. For the same region off the southeast coast of America (red box), 12h 

precipitation change from 0 (no precipitation) to 50mm, nearly the maximum value for the whole 

mid-latitude band during the same period.  At day 12, the locations of the storms become quasi-

chaotic. There is a large spread of the storms within the storm track region. It’s becoming really 

hard to get any useful forecast out of this quasi-randomly distribution of the storms. At day 15, 

the distribution of storms among different members are really chaotic, we have reached the upper 

predictability limit for weather systems.  

However, after day 15 (saturation time for the synoptic eddies), slow growth of the error at 

planetary-wave scale (wavelength > 10000km) still can be found (Fig. 4-4). The error growth at 

the planetary-wave scale after 15 days implies possible interactions between synoptic eddies and 

the quasi-stationary planetary Rossby waves. Different realizations of the synoptic-scale storms in 

different members will feedback to larger scale, leading to slightly different planetary waves for 

different ensembles. The ensemble mean result after 20-day integration resembles the monthly 
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mean fields during the simulation period (Fig. 4-7). These quasi-stationary signals provide 

theoretical bases for long-term sub-seasonal and seasonal forecast, which is beyond the scope of 

this study. 

4.4 Error propagation and associated dynamical processes 

       We have demonstrated the predictability gap between our current operational weather 

forecast and the theoretical upper limit for the mid-latitude synoptic systems in previous section. 

It is helpful to understand more of the physical processes behind error growth so that we might be 

able to reduce the predictability gap and help improve our operational forecast.  

As we discussed earlier (Fig. 4-1), the short-term error growth in 0.1 EDA largely resembles 

the conceptual model proposed by Zhang et al. (2007). There has been lots of discussion on this 

process in earlier studies (e.g., Sun and Zhang 2016, Selz and Craig 2015). We do not plan to go 

further into details here. The error growth of during this period is due to chaotic nature of the 

convective systems, and there is little we could do about that. For those small-scale phenomena 

with short intrinsic predictability limit, the best way is to give probability forecast using multi-

physics or even multi-model ensembles to acknowledge our forecast uncertainties.  

However, luckily or not, our initial condition estimate currently is still not good enough for 

us to worry about the impact of the upscale error growth to operational synoptic scale weather 

forecast. Given the 2.4-days error doubling time estimated in previous section, even if we could 

reduce our initial condition error to half of its current value, the exponential growth of the error 

will need 2.4 days to gain its amplitude back, which is shorter compared to the ~3 day 

predictability gap we found earlier. Thus, the baroclinic growth of the error will continue 

dominate until our initial condition error is reduced slightly less than half of its current value.  
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Hence, in order to improve our current operational forecast, it’s important to know when and 

where should we reduce our initial condition error (Majumdar et al. 2016). Figure 4-8 is the 

hovm𝑜ller diagram for the ensemble spread of meridional wind at 500 hpa in the 0.1EDA 

experiment. For the first few days, as described earlier, errors show up in precipitating regions 

(such as convective systmes around 170W and 30W) and then evolve along with the convective 

systems. The propagation of the error initially reflects the movement of the synoptic storms, with 

a speed close to 15m/s (black dash line in Fig. 4-8). However, in the medium range (3-10 days) 

when the error growth is dominated by baroclinic instability, errors seem to be able to propagate 

at higher speed close to 30m/s as indicated by the red dash line, implying possible downstream 

development.  

The downstream development of the error can be better illustrated by comparing the 

evolution of the errors with the movement of the storms. Figure 4-9 shows the spatial distribution 

of the ensemble spread in the medium range (5-7 days) in 0.1EDA. The large-scale vorticity at 

850 hpa for two different members are also plotted to represent the evolution of the synoptic 

storms. At day 5, the largest error in the mid-latitude is associated with a weakening convective 

storm at 140W (Fig. 4-9a).  This storm then dissipates at day 6, although the dissipation process 

differs within different members (Fig. 4-9b). The ensemble spread also has a maximum at the 

dissipation region. At day 7, after the old storm dies, a new storm develops in central US region, 

with a large ensemble uncertainty.  Hence, instead of moving with the convective system at the 

phase speed, the propagation of the forecast error (ensemble spread) is rather linked to the energy 

propagation of the storm, transported from dying storm to the newly developed ones downstream.  

It has been well known that downstream radiation of energy through the ageostrophic 

geopotential fluxes is important for the development and maintenance of eddy activity (Chang 

and Orlanski 1993). The calculated group velocity of the synoptic eddies is also close to 30m/s 

(Chang et al. 2002), consistent with our hovm𝑜ller diagram for the error propagation here. Need 
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to note here, the moist convection further increases the forecast error and ensemble uncertainty 

during this downstream development process. Strong moist convection in the central US create a 

“hotspot” of the error and fuel its further development (Fig. 9c). Given that error will propagate 

through several highly convectively unstable regions within our interested medium-range, moist 

convection could play a significant role in the development of and maintenance of error 

amplitude.  

As discussed above, the fast propagation of the error in the medium range in 0.1EDA stems 

from the downstream development of the background storms. To further verify this, Fig. 4-10 

plots the hovm𝑜ller diagram for the meridional wind at 300 hpa averaged over 	408𝑁~608𝑁. 

Green contour indicates the region of precipitation, which generally agrees well with the positive 

(polarward) meridional wind. we can see that, for each ensemble member, successive 

downstream development of synoptic features could be identified between 150W to 0 as 

baroclinic wave packets (e.g., black line in Fig. 4-10a). However, as the errors between different 

members grow with time, these baroclinic wave packets may have different amplitude, initiation 

time, and life cycles among different members. Hence the ensemble mean fields does not have 

any wave packets after 9 days of integration (Fig. 4-10b).  

The downstream propagation of the errors has lots of implications to our operational weather 

forecast. If we want to improve weather forecast for certain region, the flow upstream is as 

important as local environment at this local region, if not more so. In some cases, it’s even the 

subsynoptic features upstream that lead to the forecast errors downstream (Lamberson et al. 

2016).  If we could make targeted observation upstream and reduce the initial condition error 

there, similar as the relaxation experiments in Linus et al. (2017), our operational medium-range 

forecast would improve significantly. The challenge is that the targeted sensitivity area varies 

depend on different cases. 
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4.5 Discussions 

With all these almost identical experiments in 0.1EDA, one of our goals is trying to 

investigate the ultimate predictability of synoptic scale mid-latitude weather systems. We 

implicitly assume that the model is perfect when we use the error saturation time in the model to 

estimate the predictability time of the real atmosphere.  While ECMWF is, arguably, the best 

operational model we have right now, 9km is still in the “gray zone” where convective updrafts 

are not well resolved. Given the importance of moist convection in the upscale error propagation 

process in short range and its possible resolution dependence found in other studies (Selz and 

Craig 2015), two additional runs using the next generation global prediction system (NGGPS) at 

3 km is conducted.  

The NGGPS adopts the finite volume cubed-sphere (FV3) dynamical core developed at 

GFDL, with updated GFS physics scheme. The two runs are integrated using exactly the same 

initial condition in the ctrl and ensemble member1 of 0.1EDA, respectively.  Figure 4-11 shows 

the evolution of the perturbation kinetic energy spectrum. The perturbation here is defined as the 

differences between these two runs. The difference spectra will then equal 2 times the full 

background kinetic energy spectrum as expected for a complete phase decorrelation of the modes, 

especially on small scales. Other than this difference by definition, the 3km NGGPS model 

results show surprisingly consistence with the ECMWF model (Fig. 4-4). After ~3 days, the 

differences between these two nearly identical experiments grow to an amplitude comparable 

with the initial condition error of the EDA experiments. The saturation times of the errors at 

different scales also agree well with the 9km ECMWF model. Agreements between these two 

models with very different physics and resolutions further strengthen our confidence on previous 

conclusions. This also implies that both models capture the error growth process in our real 
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atmosphere and it is valid to use these models to estimate the theoretical upper limit for mid-

latitude weather systems.  

The appearing quasi-random choice of 10% for reducing the amplitude might cause concerns 

on the accuracy of the estimate for the ultimate predictability. However, as shown in Sun and 

Zhang (2016), forecast error due to rapid upscale growth from moist convection gets increasingly 

less sensitive to the scale and amplitude of the initial perturbations when the initial-error 

amplitude is getting smaller. 10% of our current initial condition error is already in the zone 

where very limited return could be gained from further reducing the perturbation. The “super-

exponential” growth of the error in the first few hours in 0.1EDA (Fig. 3) also implies this point. 

4.6 Concluding Remarks 

Using updated 9km high-resolution operational global ensemble experiments, this study 

examines both the intrinsic and the practical predictability limit for mid-latitude weather systems. 

We do find that an intrinsic predictability limit of around 2 weeks exist for the synoptic-scale 

storms, which means our current operational weather forecast could at best extend 3-4 days 

beyond current practical 10 day limit.  

The error growth process within our model for nearly perfect initial condition is illustrated in 

Fig. 12. Errors will first be confined in the precipitating regions and grow under convective 

instability. Then these errors spread from convective regions to larger-scale balanced fields after 

2-3 days and start to grow exponentially via baroclinic instability. Correspondingly, the 

propagation of the error switch from moving with the convective storm to faster propagation at 

the group velocity of baroclinic waves. The exponential amplification of the error finally leads to 

its saturation at synoptic-scales after ~2 weeks.  After 2 weeks, there is still some amplification of 
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the error at planetary scales, although really slowly, which means that the planetary quasi-

stationary waves could be affected by the synoptic-scale eddies.   

While we only conduct experiments for several different days, different cases show very 

good consistency (Fig. 4-3). Averaging over the whole mid-latitude band composed by lots of 

storms at the same time also helps reducing the case dependence in the study. Agreement between 

ECWMF and NGGPS model further strengthen our confidence on our results. 

The 3-4 day predictability gap for the synoptic scale weather means that there are still plenty 

of room for the improvement of our weather forecast, which will bring significant socio-

economic benefits. Achieving this additional predictability limit needs coordinated efforts by the 

entire community through reducing the initial condition error with better observations and better 

use of observations with advanced data assimilation and computing techniques. On the other 

hand, the predictability gap will decrease with decreasing scales, as the intrinsic predictability 

time decrease.  Some meso-scale phenomena might have an intrinsic predictability time that’s 

shorter than 3 days. For these meso-scale feathers, reducing the initial condition error does not 

significantly help our forecast given that their intrinsic predictability time is short. Instead, it’s 

more important to reduce the systematic model error if there is one. Also, using multi-physics or 

stochastic physics scheme to better represent the forecast uncertainty is critical (Palmer 2017). 

This study only focus on the mid-latitude here. The error growth process in the tropics would 

be very different. For one thing, there is no baroclinic instability in the tropics region. Hence, all 

the behavior after 3 days in this study does not apply to the tropics region.  Large-scale 

phenomena in the tropical region also tend to have a period that’s much longer than the mid-

latitude (such as the MJO), implying potential longer predictability. Further research on this topic 

is ongoing and will be reported in the near future.  
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Chapter Figures 

 

 

 

Figure 4-1: snapshots of the ensemble spread of 500 hpa meridional wind (shading) in 0.1EDA 
for the first 3 days. Grey contour precipitating aera (24 h precipitation > 1mm). 
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Figure 4-2: Perturbation kinetic energy spectrum at 500 hpa averaged over the	408𝑁~608𝑁 
latitude band in the 0.1EDA with an interval of 12 hours. Black dot line is the kinetic energy 
spectrum for the initial perturbation in EDA, representing our current initial condition 
uncertainty. 
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Figure 4-3: Time evolution of the ensemble variance of 500 hpa horizontal winds for both EDA 
(green) and 0.1EDA (red) experiments. Different symbols represents cases with different initial 
time.  
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Figure 4-4: Time evolution of the perturbation kinetic energy spectrum in a) EDA and b) 0.1EDA 
experiments similar as Figure 4-2. Black dot line is the kinetic energy spectrum of the 
background flow averaged over 20-day integration period, representing the saturation level. 
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Figure 4-5: The evolution of the large-scale vorticity (filtered with wavelength > 1500 km) at 850 
hpa for different ensemble members. Contour value is 𝜁 = 2e-5 here. Different color means 
different ensemble member. 
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Figure 4-6: Distribution of 12 h precipitation for the first four members in 0.1EDA after 9 days.  
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Figure 4-7: Geopotential anomaly (shading, unit: m2 s-2) for a) monthly (from Dec 20th 2015 to 
Jan 19th 2016) averaged fields over integration period, b) 10-member ensemble mean fields after 
20-day integration in 0.1EDA. 
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Figure 4-8: Hovm𝑜ller diagram for the ensemble spread of meridional wind at 500 hpa in the 
0.1EDA experiments. 
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Figure 4-9: The spatial distribution of the ensemble spread (shading) in the medium range (5-7 
days) in 0.1EDA experiments. Contours are large-scale vorticity at 850 hpa for two different 
members. 
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Figure 4-10: The hovm𝑜ller diagram of the meridional winds at 300 hpa averaged over 
	408𝑁~608𝑁 latitude band for a) one member, b) ensemble mean fields. Green contour indicates 
the region of precipitation. 
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Figure 4-11: Time evolution of difference spectra for 500 hpa horizontal winds similar as Figure 
4-2, except for the 3km NGGPS FV3 experiment. The difference spectra are smoothed using 1-2-
1 smoothing method. 
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Figure 4-12: Schematic picture of error growth and transport in mid-latitude weather systems. 
The thin solid lines represent height contours (decreasing toward the top). Green dotted area 
represents the precipitation region. Red circle represents the error maximum (width implies the 
amplitude). The vectors respresent the energy (error) flux.  
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Chapter 5 
 

Summary and Future Work 

5.1 Summary 

In his pioneering 1963 publication Deterministic Nonperiodic Flow, Lorenz concluded the 

atmosphere may have an inevitable limit to predictability, stating: 

“... [atmospheric] prediction of the sufficiently distant future is impossible by any method, 

unless the present conditions are known exactly. In view of the inevitable inaccuracy and 

incompleteness of weather observations, precise very-long range forecasting would seem to be 

non-existent”. 

This thesis, while following Lorenz’s idea, examines the intrinsic and practical predictability 

of our real atmosphere using the most comprehensive model we have right now. The main 

contribution of this thesis is two-fold. First, the underlying dynamics that govern the upscale error 

growth in the atmosphere is studied and the role of moisture is emphasized (chapters 2, 3). 

Second, the intrinsic and practical predictability time is estimated for the synoptic-scale weather 

systems (chapter 4). The main findings of our thesis will be summarized in more detail in the 

following. 

In the dry experiment free of moist convection, error growth is controlled primarily by 

baroclinic instability under which forecast accuracy is inversely proportional to the amplitude of 

the baroclinically unstable initial-condition error (thus the prediction can be continuously 

improved without limit through reducing the initial error). Under the moist environment with 

strong convective instability, rapid upscale growth from moist convection leads to the forecast 

error being increasingly less sensitive to the scale and amplitude of the initial perturbations when 
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the initial-error amplitude is getting smaller; these diminishing returns may ultimately impose a 

finite-time barrier to the forecast accuracy (limit of intrinsic predictability and the so-called 

“butterfly effect”). However, if the initial perturbation is sufficiently large in scale and amplitude 

(as for most current-day operational models), the baroclinic growth of large-scale finite-amplitude 

initial error will control the forecast accuracy for both dry and moist baroclinic waves; forecast 

accuracy can be improved (thus the limit of practical predictability can be extended) through the 

reduction of initial-condition errors, especially those at larger scales.  

Regardless of the initial-perturbation scales and amplitude, the error spectrum will adjust 

toward the slope of the background flow. Inclusion of strong moist convection changes the 

mesoscale kinetic energy spectrum slope from −3 to ~−5/3. This change further highlights the 

importance of convection and the relevance of the butterfly effect to both the intrinsic and 

practical limits of atmospheric predictability, especially at meso- and convective scales. This 

shallow -5/3 slope can be identified at almost all height levels from the lower troposphere to the 

lower stratosphere in our simulations of an idealized convective system, implying a strong 

connection between different vertical levels. Our chapter 3 also computes the spectral kinetic 

energy budget for these simulations to further analyze the processes associated with the creation 

of the spectrum. The buoyancy production generated by moist convection, while mainly injecting 

energy in the upper troposphere at small scales, could also contribute at larger scales, possibly as 

a result of the organization of convective cells into mesoscale convective systems. This latter 

injected energy is then transported by energy fluxes (due to gravity waves and/or convection) 

both upward and downward. Nonlinear interactions, associated with the velocity advection term, 

finally help build the approximate −5/3 slope through upscale and/or downscale propagation at all 

levels. 

Through high-resolution deterministic and ensemble sensitivity experiments with state-of- 

the-science global numerical weather prediction models using respectively both realistic, large 
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and hypothetical, minute initial perturbation uncertainties, we estimated the ultimate 

predictability limit of mid-latitude day-to-day weather phenomena such as mid-latitude winter 

storms and summer monsoonal rainstorms. Such a limit is intrinsic to the underlying dynamical 

system and instabilities even if the forecast model and the initial conditions are nearly perfect. 

Minute uncontrollable initial conditions originated from convective and mesoscale instabilities 

can grow upscale that will eventually limit the predictability of various weather at increasingly 

larger scales. More specifically, from a global perspective, on average, the practical predictability 

limit of the midlatitude weather by the current state-of- the-science global models from lead 

numerical weather prediction centers is about 10 days while the ultimate intrinsic limit is likely to 

be within 2 weeks. In other words, even with a perfect model, reducing the initial condition 

uncertainties to an order of magnitude smaller than the realistic current level of uncertainty will at 

most extend the deterministic forecast lead times by 3-4 days for midlatitude day-to-day synoptic 

weather; much smaller room in improving the forecast lead times will be for smaller scale 

phenomena. For the mesoscales within 500 km, the global average limit will be within a couple of 

days, even shorter limit for convective storms. Nevertheless, this 3-4 more days of predictive 

potential for global synoptic day-to- day weather remains an encouraging and impactful goal to 

be achieved that will bring significant socioeconomic benefits. Achieving this additional 

predictability limit needs coordinated efforts by the entire community through designing better 

numerical models performing at higher resolutions, with better observations, and through better 

use of observations with advanced data assimilation and computing techniques. 

5.2 Future work 

This thesis only focus on the mid-latitude here. The error growth process in the tropics 

would be very different. For one thing, there is no baroclinic instability in the tropics region. 
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Hence, baroclinic error growth, which is the key factor of mid-latitude error saturation time, does 

not apply to the tropics region.  Large-scale phenomena in the tropical region also tend to have a 

period that’s much longer than the mid-latitude (such as the MJO), implying potential longer 

predictability. Given we are using global model (chapter 4), the methodology we used could be 

easily extend to the tropics, research on this topic is ongoing and will be reported in the near 

future. 

For the scale interaction part, we mainly focus on the small to meso-scales in this thesis, 

where the upscale error growth process is most evident. Yet we have implied that synoptic eddies 

could also affect the planetary scale waves in chapter 4. It is also well known that the stationary 

waves have a strong control over the distribution of the synoptic storms. Utilizing the global 

simulation, the scale interaction on the large-scale end of the atmosphere and the decomposition 

used in chapter 3 could be easily applied to a global framework, although longer time simulation 

might be necessary, which mean more computational cost. 
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Appendix A 
 

Initial moisture field of baroclinic wave simulations in chapter 2 

The initial moisture field in our model setup is based on Tan et al. 2004, with only 

slightly modification. The x-independent relative humidity profile for the MOIST case is 

given by 

                    (A1) 

           (A2) 

where , = 1, = 0.66, , , , 

, and .  

 For the RH50 case, the relative humidity is further reduced to half of its initial 

value. 
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Appendix B 
 

DKE budget equation for different scale 

The derivation of the DKE budget equation is adapted from Zhang et al. (2007) and 

Peng et al. (2014).  As in Zhang et al. (2007), the difference momentum equations can be 

written as  

       (B1) 

        (B2) 

Note 𝛿𝐷 terms include not only the diffusion, but also the large scale damping effect 

due to planetary boundary layer scheme and the Rayleigh damping effect at the model 

top. 

Multiply Eqns B1 and B2 by  and respectively, then take the sum of 

these two eqns, we get 

𝜕
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here DKE is defined as . 

 In our analysis, we separate the budget into three different scale ranges (large 
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km; small scale or, wavelength < 200 km). Since the DKE budget equations for different 

scales are similar, here we only show the derivations for the large scale (L) budget 

equation. 

 Use a large scale filter for each term in B1) and B2), we have  

    (B4) 

     (B5) 

Again, Multiplying Equations B4 and B5 by  and respectively, we get 

the budget equation for Large scale DKE, Equation 3) in the text; 

𝜕
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Appendix C 
 

Decomposition of the pressure term in the DKE budget equation 

C. 1: cross-scale contribution of the pressure term 

 Unlike the nonlinear advection term, the pressure term in the budget equation 

derived above does not have a contribution across the scale ranges. The proof is listed 

below. We can divide the density into two parts (mean and perturbation), , 

assuming , then  

        C1) 

The first part of the pressure term then becomes  

    C2) 

Thus, the cross-scale contribution of the pressure term should be  

     C3) 

where l and m represent different wavenumbers, A and B are the amplitudes. Note 

that we need to integrate the pressure term over the whole domain to consider its total 

contribution. According to the orthogonality of the Fourier expansion, the integration 

equals zero, which means that the pressure term does not have any cross-scale 

contribution. The nonlinear advection term is the only term that is responsible for the 

redistribution of the energy across different scales. 

ρ = ρ + !ρ

!ρ << ρ

δ
1
ρ
∂ "p
∂x

#

$
%

&

'
( ~ δ

1
ρ
∂ "p
∂x

#

$
%

&

'
( ~

1
ρ

∂ δ "p( )
∂x

−ρδuδ 1
ρ
∂ #p
∂x

$

%
&

'

(
) ~ −ρδu

1
ρ

∂ δ #p( )
∂x

= δu
∂ δ #p( )
∂x

= δuδ ∂ #p
∂x
$

%
&

'

(
)

−ρ δu( )l δ
1
ρ
∂ #p
∂x

$

%
&

'

(
)
m

~ δu( )l δ
∂ #p
∂x
$

%
&

'

(
)
m

→ Asin lx( )Bsin mx( )



 

 

116 

 

C. 2: Decomposition of the pressure term 

 The pressure term can be further decomposed as follows: 

               C4) 

where is the Exner pressure, , , and is 

the specific heat of the dry air at constant pressure. 

 Using integration by part, we have 

       C5) 

Note the first term in the brackets becomes zero after integrating over the whole 

domain due to the idealized boundary conditions in our simulation. 

 Using the pseudo-incompressible Equation for moist air (A11 of Peng et.al 2014) 
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C7) 

 The first term represents the direct influence of the diabatic heating. This term is 

very small. The second term is the convergence of the difference vertical pressure flux, 

which corresponding to the gravity wave flux to the first order. Note if integrated over the 

entire domain then this term should be close to 0. The last term is the difference 

buoyancy flux, which represents the conversion of potential energy to horizontal kinetic 

energy; this is the dominant contribution term in this study. 

 Since the pressure term does not have a cross-scale effect, as is shown in C. 1, the 

decomposition of pressure term for different scale is the same and will not be shown here. 
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Appendix D 
 

Discrete Cosine Transform 

All the spectrum and budget analysis in this article are calculated using discrete cosine 

transform (DCT) method defined as in Denis et al. (2002), which is more reliable than the widely 

used discrete Fourier transform (DFT) method.  A brief introduction of this method is given as 

follows. 

For a two-dimensional field f(i, j) of Ni by Nj  grid points, the direct and inverse DCT are 

respectively defined as, 

𝑓 𝑚, 𝑛 = 𝛽(𝑚)𝛽(𝑛) 𝑓 𝑖, 𝑗 ×𝑐𝑜𝑠
𝜋𝑚 𝑖 + 12

𝑁�
𝑐𝑜𝑠

𝜋𝑛 𝑗 + 12
𝑁�

					𝐷1)

�¡¢£+,

�¡¤

�¡¢¥+,

�¡¤

 

𝑓 𝑖, 𝑗 = 𝛽(𝑚)𝛽(𝑛) 𝑓(𝑚, 𝑛) ×𝑐𝑜𝑠
𝜋𝑚(𝑖 + 12)

𝑁�
𝑐𝑜𝑠

𝜋𝑛(𝑗 + 12)
𝑁�

L¡¢£+,

L¡¤

¦¡¢¥+,

¦¡¤

							𝐷2) 

with 

𝛽 𝑚 =

1
𝑁�
, 								𝑚 = 0

2
𝑁�
, 		𝑚 = 1,2,3, . . 𝑁� − 1

	,								𝛽 𝑛 =

1
𝑁�
, 							𝑛 = 0

2
𝑁�
, 		𝑛 = 1,2,3, . . 𝑁� − 1

 

Let  

𝒆𝒎,𝒏 𝑖, 𝑗 = 𝛽 𝑚 𝛽 𝑛 𝑐𝑜𝑠
𝜋𝑚 𝑖 + 12

𝑁�
𝑐𝑜𝑠

𝜋𝑛 𝑗 + 12
𝑁�

,																																									𝐷3) 

it can be proven that 𝒆𝒎,𝒏 𝑖, 𝑗  is a set of orthogonal basis,  which satisfies 
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𝒆𝒎𝟏,𝒏𝟏 𝑖, 𝑗 ∙ 𝒆𝒎𝟐,𝒏𝟐 𝑖, 𝑗 =
1,			𝑚, = 𝑚0	𝑎𝑛𝑑	𝑛, = 𝑛0
0, 		𝑚, ≠ 𝑚0	𝑜𝑟			𝑛, ≠ 𝑛0

�¡¢£+,

�¡¤

�¡¢¥+,

�¡¤

																								𝐷4) 

Utilizing equation A2 and A4), we have, 

𝑓 𝑖, 𝑗 ∙ 𝑔 𝑖, 𝑗

�¡¢£+,

�¡¤

�¡¢¥+,

�¡¤

 

= 𝒆𝒎,𝒏 𝑖, 𝑗 𝑓 𝑚, 𝑛

L¡¢£+,

L¡¤

¦¡¢¥+,

¦¡¤

∙

�¡¢£+,

�¡¤

�¡¢¥+,

�¡¤

𝒆𝒎,𝒏 𝑖, 𝑗 𝑔 𝑚, 𝑛

L¡¢£+,

L¡¤

¦¡¢¥+,

¦¡¤

 

= 𝑓 𝑚, 𝑛 ∙

L¡¢£+,

L¡¤

¦¡¢¥+,

¦¡¤

𝑔 𝑚, 𝑛  

= 𝑓(𝒌) ∙ 𝑔(𝒌)
𝒌

																																																																																																																									𝐷5) 

Assume 𝑔 𝑖, 𝑗 = 𝑓 𝑖, 𝑗 , equation (D5) then implies that the total variance in the physical 

space equals the total variance in the spectral space. This serves as the foundation of equation (3) 

in the text. The energy spectrum can then be achieved by evaluating the variance of 2D fields as a 

function of different spatial scales. For a square domain, we associate each two-dimensional 

wavenumber pair k(m, n) with a single-scale parameter 	𝑘z0 , so that each element (m, n) on a 

given circle with the origin (m = 0, n = 0) has the same wavenumber. The one-dimensional 

wavenumber spectrum 𝐸 𝑘z  is then obtained by taking the sum of the spectral variance over 

wavenumber bands 𝑘z −
∆H
0
< 𝑘z ≤ 𝑘z +

∆H
0

.   

Also note here, the discrete cosine transform has no imaginary part, thus complex conjugate 

is not involved here, which is different with the discrete Fourier transform. 
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Appendix E 
 

Decomposition of Advection and Pressure Term 

The advection term is defined as, 

𝐴 𝑘 = 	−𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖	 + 𝑤
𝜕𝒖
𝜕𝑧

 

= −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
𝒖 𝛁𝒉 ∙ 𝒖

2
+
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2
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+
𝜕 𝑤𝒖
𝜕𝑧

− 𝒖
𝜕𝑤
𝜕𝑧

													𝐸1) 

Rearranging all the terms in the bracket, we have 

𝐴 𝑘 = −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
1
2
𝜌 𝒖 ∙ 𝑤

𝜕𝒖
𝜕𝑧

 

															+
1
2
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1
2
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𝜕 𝑤𝒖
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										= −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
1
2
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𝜕𝑧

																																																			𝐸2) 

															+
1
2
𝜌 𝒖 ∙ 𝒖 𝛁𝒉 ∙ 𝒖 + 𝒖

𝜕𝑤
𝜕𝑧

 

															−
1
2
𝜕 𝜌 𝒖 ∙ 𝑤𝒖

𝜕𝑧
+
1
2
𝜌
𝜕𝒖
𝜕𝒛

∙ 𝑤𝒖 +
1
2
𝜕𝜌
𝜕𝑧

𝒖 ∙ 𝑤𝒖  

Notice here 
®¯
®°

 and  𝜌 are both constant at each height level. Utilizing the continuity 

equation under anelastic approximation,  

𝛁𝒉 ∙ 𝒖 +
𝜕𝑤
𝜕𝑧

+
𝑤
𝜌
𝜕𝜌
𝜕𝑧

= 0,																																																																											𝐸3) 
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and substituting E3) to the underline terms in E2), we can find that the sum of the two 

underline terms in E2) goes to zero. Thus, we have 

𝐴 𝑘 = −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
1
2
𝜌 𝒖 ∙ 𝑤

𝜕𝒖
𝜕𝑧

+
1
2
𝜌
𝜕𝒖
𝜕𝑧

∙ 𝑤𝒖

� H

 

																				 −
1
2
𝜕 𝜌 𝒖 ∙ 𝑤𝒖

𝜕𝑧
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																																																																									𝐸4) 

Under double periodic boundary condition, the sum of T(k) term in (E4) over all the 

wavenumbers is zero. The proof is as follows. According to Equation (D5), 

𝑇 𝑘 = −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
−
1
2
𝜌 𝒖 ∙ 𝑤

𝜕𝒖
𝜕𝑧

+
1
2
𝜌
𝜕𝒖
𝜕𝑧

∙ 𝑤𝒖
HH

 

= −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
�,�

−
1
2
𝜌 𝒖 ∙ 𝑤

𝜕𝒖
𝜕𝑧

−
𝜕𝒖
𝜕𝑧

∙ 𝑤𝒖
�,�

 

= −𝜌 𝒖 ∙ 𝒖 ∙ 𝛁𝒉𝒖 +
𝒖 𝛁𝒉 ∙ 𝒖

2
�,�

 

= −
𝜌
𝐿0

∇ ∙
1
2
𝒖 𝒖 ∙ 𝒖 𝑑𝑠

F

= −
𝜌
𝐿0

1
2
𝒖 𝒖 ∙ 𝒖 𝒖 ∙ 𝒏𝑑𝑙

G

																											𝐸5) 

where s represents the horizontal domain, l represents the lateral boundaries of s, and n 

denotes the unit vector pointing along the outward normal to l. A double periodic lateral boundary 

condition give a zero result to the integration along the boundary. 

For the pressure term, it is easier to prove the decomposion in Equation (3-9) under the 

Fourier transform framework. Under Fourier transformation, the pressure term is written as:  

𝑃 𝑘 = 	−𝜌𝒖∗ ∙ ℱ 𝐶e𝜃"𝛁z𝜋` + 𝑐. 𝑐 

𝒖 and ℱ(𝐮) here represents the  spectral coefficients of Fourier transform, * or c.c denotes 

complex conjugate.  

𝑃 𝑘 = 	−𝜌𝒖∗ ∙ ℱ 𝐶e𝜃"𝛁z𝜋` + 𝑐. 𝑐 
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											~ − 𝜌𝐶e𝜃𝒖∗ ∙ ℱ 𝛁z𝜋` + 𝑐. 𝑐 

											= −𝜌𝐶e𝜃𝒖∗ ∙ ℱ 𝑖𝒌𝜋` + 𝑐. 𝑐 

											= 𝜌𝐶e𝜃 𝒖 ∙ 𝑖𝒌 ∗𝜋` + 𝑐. 𝑐 

											= 𝜌𝐶e𝜃 ℱ(𝛁𝒉 ∙ 𝒖) ∗𝜋` + 𝑐. 𝑐																						𝐸6) 

Using the improved anelastic approximation (simply using E3 will give similar results, we 

use this improved anelastic approximation to be as accurate as we can), Equation 7 of Durran 

(1989), 

𝛁𝒉 ∙ 𝒖 +
1
𝜌𝜃

𝜕
𝜕𝑧

𝜌𝜃𝑤 =
𝐻

𝐶e𝜌𝜃𝜋
,												𝐸7) 

we have 

P k 		~	𝜌𝐶e𝜃
𝐻

𝐶e𝜌𝜃𝜋
−
1
𝜌𝜃

𝜕
𝜕𝑧

𝜌𝜃𝑤

∗

𝜋` + 𝑐. 𝑐	 

											=
𝐻∗𝜋`

𝜋
− 	𝐶e

𝜕
𝜕𝑧

𝜌𝜃𝑤∗𝜋` + 	𝐶e𝜌𝜃𝑤∗ 𝜕𝜋
`

𝜕𝑧
+ 𝑐. 𝑐 

											~		 𝐶e
𝜕
𝜕𝑧

𝜌𝜃 𝑤 ∙ 𝜋`

����f��L��	8�	��f����G	�L�f�}	�G�|�F

+ 					𝐶e𝜌𝜃 𝑤 ∙
𝜕𝜋`

𝜕𝑧
�(H)

,								𝐸8) 

When using the discrete cosine transform method, the complex conjugate will disappear. We 

also neglect the direct diabatic heating term when showing the results, since it is several orders of 

magnitude smaller than the other two terms. 
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