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Abstract

In this work, a methodology is presented and implemented for the automated design
and optimization of airfoil sections. The airfoil optimization is conducted using
the CMA-ES genetic algorithm with constraints applied to the airfoil’s area and
pitching moment coe�cient. The design variables are formed through a class shape
transformation with orthogonal basis modes, allowing for decreased levels of multi-
collinearity in higher-order design spaces, while still maintaining the completeness
of lower-order spaces. A Python framework is developed to automate the generation
of airfoil performance tables using the RANS CFD solver OVERFLOW 2.2i allow-
ing the optimization methodology to be extended to rotorcraft applications. An
empirical maximum lift coe�cient criteria is developed and incorporated into the
table generation process to overcome inaccuracies associated with stall prediction
in CFD-based methods. The methodology presented is used to perform a single
point shape optimization on the tip airfoil of a UH-60A baseline rotor. The new tip
section shows substantial improvements in forward-flight performance in exchange
for a small reduction in the rotor’s stall margin. The airfoil optimization and table
generation routine shows to be e�ective for the single design point investigated.
This holds promise that the technology developed can later be successfully extended
to higher-fidelity automated routines.
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Chapter 1 |
Introduction

The design and optimization of airfoils has long been a subject of research in the
rotorcraft industry. Proper choice in airfoils for rotorcraft blades is central to
the performance of the vehicle. However, the extreme operating environment of
rotorcraft blades has historically made this a di�cult process. The performance of
early rotorcraft was hampered by high pitching moments resulting from the wide
variations in angles-of-attack experienced by rotorcraft blade sections. Limitations
in construction techniques and building materials with poor torsional sti�ness during
the 1940’s restricted early rotorcraft to the almost universal usage of symmetric
airfoils [2] such as the NACA0012 whose center of pressure location is often less
sensitive to changes in angles-of-attack.

In the 1950-60s, advances in manufacturing techniques coupled with devel-
opments in computational methods lead to the use of cambered airfoil sections
allowing for improved lift-to-drag ratios [2]. The performance of these airfoils,
however, was still limited by conflicting design requirements between blade sections.
In forward flight, retreating blade sections experience low-speed flow and large
angles-of-attack, which favors thicker airfoils with high maximum lift coe�cients at
low Mach numbers to mitigate stall. In contrast, the onset of compressibility e�ects
at the advancing blade tip acts as a primary drag source in high-speed forward
flight, favoring blades with thin profiles and high drag divergence Mach numbers.
Figure 1.1 shows examples of typical rotor flow distributions in forward flight; on
the right side of 1.1b, a high-speed region exists at the advancing blade tip while
in Figure 1.1a, a region of high angles-of-attack is visible on the retreating blade.
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�
(a) angle-of-attack

�
(b) Mach number

Figure 1.1: Examples of rotor disk flow distributions in forward flight, µ = 0.45

Additional improvements in manufacturing techniques during the 1970’s helped
to alleviate problems caused by conflicting design requirements by allowing for
the use of multiple airfoil sections across the blade. The UH-60A, for example,
initially employed a single SC1095 airfoil section over the length of the blade;
however, during testing it was revealed that the rotor was unable to meet the
Army’s maneuverability requirements. A leading-edge cap was added to the SC1095
to overcome this. The new airfoil’s mean chordline was rotated nose-down by 1
deg and a higher maximum lift coe�cient. The modified airfoil was named the
SC1094R8 and was implemented between 47% - 85% of the rotor radius [1].

Figure 1.2: SC1095 and SC1094R8 airfoil sections (Ref. [1])
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Other attempts to overcome these conflicting design requirements have been
made through the use of coaxial vehicles such as the X2 [10]. This vehicle is capable
of advance ratios of up to 0.5 with as much as 50% of the retreating blade operating
in reverse flow. By balancing the left and right-side lift production between the
two rotors, the vehicle can obtain significantly higher airspeeds as the vehicle’s
controllability is less impacted by the large roll moments generated resulting from
loss of lift on the retreating blade. The vehicle’s performance, however, is still
subject to high power requirements and large vibrations caused by wave drag at
the advancing blade tips.

Most current generation aircraft employ multiple airfoils across the length of their
rotor blades. The design of these sections, however, is often expensive to perform
manually. Some of this burden can be reduced by implementing automated routines
into the design process. However, extending these routines to rotorcraft airfoil design
is less straightforward than for fixed-wing aircraft. Rotorcraft have large operational
envelopes which requires performance evaluations be made across multiple flight
conditions. This generally prohibits the use of high-fidelity Reynolds-averaged
Navier-Stokes (RANS) frameworks such as HELIOS [11], as these methods are often
too computationally expensive to be used for early-stage design routines [12–14].

An alternative, design-oriented approach is taken by comprehensive analysis
tools such as RCAS [15] and CAMRAD II [16]. Rather than simulate the entire
flow volume around the rotor, these tools generally avoid resolving all near-surface
flow detail for each trim condition and rotor configuration. Instead, reduced-
order aerodynamic models, such as lifting-line theory, are used to estimate the
three-dimensional flowfield at the rotor. These methods are then supplemented
by quasi-steady, two-dimensional airfoil lookup tables containing pre-computed
airfoil data at a range of Mach numbers and angles-of-attack. Unsteady e�ects
are incorporated through empirical corrections, and structural dynamics are often
included as well through reduced-order beam bending models. Comprehensive
analysis tools currently act as a major workhorse of the rotorcraft industry, and
with proper tuning su�cient engineering accuracy can be achieved [17].

The use of pre-calculated tables in comprehensive analysis tools decouples the
airfoil flow physics from the induced-inflow environment of the rotor, providing
significant time savings allowing for much larger numbers of rotor configurations to
be evaluated for given computing resources. As such, many studies have been carried

3



out using comprehensive analysis tools for a variety of multi-disciplinary objectives
[18–22]. Commonly, these optimization methods alter taper, twist, or control device
deployment; however, the integration of automated airfoil optimization into these
routines is often computationally cumbersome. At each design iteration, data tables
must be re-generated for the new airfoil, and the table generation process itself
is often non-trivial and expensive. Mayda and van Dam (Ref. [23]) laid out a
successful methodology for generating airfoil performance tables using the implicit
thin-layer Navier-Stokes solver ARC2D [24]. However, CFD tends to over-predict
the airfoil maximum sectional lift coe�cient, a behavior which has been noted by
Refs. [7, 25,26] and others. This deficiency, if left uncorrected, creates a weakness
that can be readily exploited by the optimization routine. The optimizer may
attempt to reduce the rotor profile power by decreasing solidity and driving blades
towards thinner planforms than the aircraft’s stall margin would physically allow,
if cl,max been accurately predicted. This ultimately results in an under-performing
rotor that fails to meet expectations.

A variety of automated shape optimization strategies have been developed over
the last four decades to automate the design of these airfoil sections. Genetic
algorithms (GA) generally require more function evaluations. However, they
have recently grown in popularity [27, 28] due to their robustness and ease of
implementation. Genetic algorithms are stochastic methods which attempt to
simulate natural selection in a population of candidate solutions generated at each
design iteration. Genetic algorithms evaluate the fitness of each candidate solution
and update the optimization path depending on the best performing individuals
of the generation. By averaging search paths over multiple candidate designs, GA
optimizations have a reduced susceptibility to objective function discontinuities and
can better avoid premature convergence at local minima [29]. Because the fitness of
each candidate is evaluated independently, these algorithms have a straightforward
parallelization strategy, thus making them well suited for computational fluid
dynamics problems where design point evaluations can often take long periods of
time.

The e�ciency and e�ectiveness of such methods, however, is subject to the design
variables being optimized. For airfoil shape optimization problems, these design
variables take the form of an airfoil parameterization method, where the airfoil
surface is defined by a set of prescribed functions. A multitude of ways to define these
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functions have been developed, including the popular Hicks-Henne sine functions [30],
PARSEC [31], and orthogonal mode decomposition [5,32,33]. In addition, several
surveys of parameterization methods have also been conducted [34–36]. Of the
developed methods, the class shape transformation (CST) developed by Kulfan [6]
has become a popular choice for automated design routines due to its ability to
represent a large number of airfoils using relatively few design variables. The
Bernstein polynomial basis modes originally employed by Kulfan, however, are
not orthogonal and can be prone to issues in higher-dimensional design spaces.
A study by Vassberg et al. [37] analyzed the extension of airfoil optimization
techniques to higher-order design spaces using the degree raising property of
Bernstein polynomials, they noted an initial decrease in optimization performance,
despite the lower-order design space being exactly contained in the higher-order-
space. Although they were able to overcome this by extending the bounds of the
design variables, this presents an undesirable coupling between the number of design
variables and the optimization surface topology.

1.1 Goals and Research Approach
The overarching goal of this work is to develop an airfoil shape optimization method
and extend it to rotorcraft applications. The airfoil optimization was driven by
the CMA-ES algorithm with constraints applied to the airfoil cross-sectional area
and pitching-moment coe�cient through an augmented Lagrange penalty function.
The airfoil was parameterized using a CST-based method. A set of orthogonal
polynomials was chosen to represent the basis modes to mitigate cross-talk between
design variables and maintain e�ciency in higher-order design spaces.

The optimization was then extended to rotorcraft by the inclusion of an au-
tomated performance table generation method. This was accomplished through
Python framework which was used to drive the Reynolds-averaged Navier-Stokes
computational fluid dynamics code OVERFLOW. In order to account for the
over-prediction of the maximum sectional lift coe�cient, an empirical cl,max crite-
ria was developed, and a lift coe�cient correction routine was implemented as a
post-processing step.

The methodology developed is applied to a UH-60A planform to serve as the
baseline rotor due to the large volume of experimental and computational data
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available. The optimized airfoil performance was investigated through the use
of a blade-element momentum theory (BEMT) based rotor analysis code. To
demonstrate the e�ectiveness of the tool for airfoil design, a design point was chosen
to minimize the change in trim state while still producing substantial performance
gains. In forward flight, the rotor tip acts primarily as a drag source while often
producing negative lift [28]. By optimizing the tip airfoil to minimize drag at a
constant lift coe�cient, the optimization methodology was capable of reducing the
power required for forward flight with minimal impact on hover performance.

In summary, the objectives of this thesis are as follows:

• Implement a constrained airfoil shape optimization method

• Develop a parameterization method with reduced cross-talk between basis
modes

• Implement an automated airfoil performance table generation method

• Develop and implement a maximum lift criterion

• Demonstrate the e�ectiveness of the tool developed on a representative
baseline rotor
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Chapter 2 |
Background

In this chapter, the relevant aerodynamic theory to simulate a helicopter main
rotor in forward flight is developed using blade-element momentum theory (BEMT).
The equations formed here create the basis for the helicopter performance code
ROTOR, which is used to investigate the optimized airfoil and lift coe�cient
correction influence on rotor performance. The second section introduces the
governing equations of fluid dynamics, the Navier-Stokes equations, which form
the basis for the OVERFLOW computational fluid dynamics (CFD) code used to
drive the airfoil table generation and the optimization routine. Finally, a variety of
airfoil parameterization methods are introduced. These methods are essential to
airfoil optimization as they define the design variables being optimized.

2.1 Rotorcraft Aeromechanics

2.1.1 Momentum theory

The earliest developments in rotorcraft aerodynamics were made by Rankine in 1865,
who developed momentum theory for marine propeller applications. In momentum
theory, the rotor is treated as a disk with uniform inflow that produces thrust by
discontinuously compressing the fluid passing through it. Consider a rotor in axial
flow (eg. hover or climb), as shown in Figure 2.1.
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Figure 2.1: Momentum theory control volume for a hovering rotor (Ref [2])

If the pressure jump across the rotor disk is uniform, then the thrust T produced
by the rotor is

T = (p
2

≠ p
1

)A (2.1)

where A is the rotor area, p
1

and p
2

are the pressures at positions 1 and 2,
respectively. The power required in axial flow can be expressed as the work per
unit time applied to the fluid traveling through the rotor

P = T (vi) (2.2)

Unlike the pressure, the velocity does not jump discontinuously across the disk.
Assuming a uniform inflow distribution and applying a mass balance on either side
of the rotor disk it can be shown that

ṁ
1

= flvi1A1

ṁ
2

= flvi2A2

A
1

= A
2

) vi1 = vi2

To find the velocity at the rotor disk in hover (vh), a conservation of momentum
balance between the thrust on the rotor and the change in momentum of fluid in
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the far rotor wake is first applied as:

T = ṁw (2.3)

Similarly, applying a conservation of energy balance between the rotor thrust and
the change in energy of the fluid at the rotor disk yields

Tvh = 1
2ṁw2 (2.4)

Combining Equations (2.3) and (2.4), the flow induced at the rotor disk in hover is
related to the velocity in the far wake through

vh = 1
2w (2.5)

Next, Bernoulli’s equation is applied twice; first between the far upstream flow and
the rotor disk upper surface, and secondly between the locations below the rotor
disk and in the far wake such that

pŒ = p
1

+ 1
2flvh

p
2

+ 1
2flvh = pŒ + 1

2flw2

T

A
= p

2

≠ p
1

= 1
2flw2

Substituting Eq. (2.5) yields the velocity induced at the rotor disk for a hovering
rotor

vh =
Û

T

2flA
(2.6)

Finally, the power required for a hovering rotor becomes

P = vhT =
ı̂ıÙT 3/2

2flA
(2.7)

In axial flow, there is an additional velocity component at the rotor disk vc. This
addition modifies the power required through

P = T (vc + vi) (2.8)
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where the induced velocity can be found through similar applications of Bernoulli’s
equation and control volume analysis. Additionally, in forward flight, the inflow
velocity becomes skewed, and the ideal power required becomes

P = T (VŒ sin – + vi) (2.9)

The inflow distribution, however, becomes nonuniform, and its prediction is not
provided through pure momentum theory. Additionally, momentum theory does
not provide any insight as to how the forces are generated by the airfoil sections
along the blade. Instead, a modified version of momentum theory, blade-element
momentum theory (BEMT) will be used in this work.

2.1.2 Blade-Element and Momentum Theory

In blade-element momentum theory, the rotor is decomposed into a set of discrete
radial dr and azimuth stations dÂ. At each station, force and moment calculations
are made by looking up pre-computed sectional force and moment coe�cients from
airfoil performance tables. Figure 2.2 shows a diagram of the forces and moments
acting on a discrete blade-element

dr

dL

dD

dT

dQ

–

„

◊

Figure 2.2: Blade-element diagram

where ◊ is the geometric pitch angle relative to the rotor plane, – is the e�ective
local angle of attack, and „ is the relative angle between the rotor plane and the
local flow. The sectional forces along the blade can be then written as

dL = 1
2flc(r)U(r, „)2cl(–, U)dr (2.10)

dD = 1
2flc(r)U(r, „)2cd(–, U)dr (2.11)
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The net forces and moments can be calculated by integrating across the radius and
around the azimuth

T = 1
2fi

⁄
2fi

0

⁄ R

0

(dL cos „ + dD sin „)drdÂ (2.12)

Q = 1
2fi

⁄
2fi

0

⁄ R

0

(dL sin „ + dD cos „)rdrdÂ (2.13)

The air density fl is a function of altitude and temperature, and the local chord c(r)
is a geometric parameter depending on the blade planform. The calculations of the
local flow velocity U , the sectional lift coe�cient cl, and sectional drag coe�cient
cd are more complicated to resolve as they depend on the physical motion of the
blade; their formulations will be discussed in the following subsections.

2.1.2.1 Local Flow Velocity

As the rotor moves through the air, the relative angle between the blade velocity
and the freestream velocity results in a nonuniform velocity across the rotor. On the
retreating side, sections where the freestream and blade velocities are in the same
direction have a lower e�ective local velocity. Here a reverse flow region develops
centered at 3fi/2. On the advancing side, the rotor and freestream velocities are
in opposite directions, which increases the local velocity and creates a high-speed
region at the rotor tip (See Figure 1.1b). The tangential velocity for a rotor in
forward flight becomes

UT (r, Â) = �r + VŒ sin Â (2.14)

and the radial or crossflow component flow component becomes

UR(r, Â) = µ�R cos Â (2.15)

Blade Motion
The asymmetric flow caused by the blade and freestream relative velocities

causes an unsteady loading across the blade. Helicopters commonly employ a hinge
allowing for out-of-plane motion to compensate for this, which induces a cyclic
flapping motion (Figure 2.3) as the blade travels around the azimuth. This hinge
is commonly o�set by a non-dimensional distance e. A diagram of the flapping
motion is given in Figure 2.3 where — is the flapping angle.
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—, —̇

eR
R

dm
⁄i

�2rdm

dl

Figure 2.3: Rotor flapping motion (Ref. [2])

This flapping motion will induce two new additional sources of velocity per-
pendicular to the rotor plane. The first of these is a direct result of the flapping
motion —̇, while the second is a result of the relative angle between the flapping
blade and the freestream velocity. The out-of-plane velocity becomes

UP (r, Â) = �R⁄i(r, Â) cos —(Â)
¸ ˚˙ ˝

inflow velocity

+ r—̇(Â)
¸ ˚˙ ˝

flapping motion

+ µ�R—(Â) cos(Â)
¸ ˚˙ ˝

relative angle

(2.16)

To determine the new local velocity, the flapping motion must be resolved. To
accomplish this, a force and moment balance can be taken about the flapping hinge.
The centrifugal force acts as a restoring force about the hinge.

FC =
⁄ R

eR
�2r(r ≠ eR)—(Â)dm(r)dr

=
Ë
�2

⁄ R

eR
r(r ≠ eR)dm(r)dr

È
—(Â) (2.17)

The blade inertial force acts about the hinge, resisting changes in motion through

FI =
⁄ R

eR
m(y ≠ eR)2 ¨—(Â)dr

= —̈(Â)
⁄ R

eR
m(y ≠ eR)2dr

= Ib—̈(Â) (2.18)

Lift acts as the perturbing force about the hinge.

FL =
⁄ R

eR
L(r ≠ eR)dr (2.19)

12



Combining the equation of motion for the flapping blade becomes

Ib—̈(Â) +
Ë
�2

⁄ R

eR
r(r ≠ eR)dm(r)dr

È
—(Â) =

⁄ R

eR
L(r ≠ eR)dr (2.20)

Assuming periodicity, a substitution can be made to remove the time dependency
of the di�erential

d—

dt
= dÂ

dt

d—

dÂ
= �d—

dÂ

d2—

dt2

=
1dÂ

dt

2
2 d2—2

dÂ2

+ d—

dÂ

d2Â

dt2

�2Ib
d2—2

dÂ2

+ �2

Ë ⁄ R

eR
r(r ≠ eR)dm(r)dr

È
— = 1

s
R

eR

L(r ≠ eR)dr

Finally, the equation of motion for a rigid flapping rotor in forward flight becomes

Ib
d2—2

dÂ2

+ IbÊ
2— = 1

�2

⁄ R

eR
L(r ≠ eR)dr (2.21)

Inflow Velocity
The asymmetric flow causes the induced velocity at the rotor disk to become

asymmetric as well, meaning that the uniform inflow assumption used in momentum
theory no longer holds. Unlike for momentum theory in hover, the induced velocity
cannot be determined a priori as it depends on the rotor wake. The rotor wake
is di�cult to resolve as it depends on the blade motion, as well as the thrust
distribution and trim state. To overcome this, BEMT uses a semi-empirical
estimate of the rotor inflow distribution based on adaptations from momentum
theory. Multiple inflow models have been proposed [38]. A commonly used model
is the linear inflow model first proposed by Glauert [39]

⁄i(r, Â) = ⁄
0

(1 + kxr cos Â) (2.22)

where kx is commonly chosen to be a static 1.2; however, in practice it should
depend on the advance ratio. Here ⁄

0

is the non-dimensional inflow velocity for a
hovering rotor

⁄
0

= vi
0

�R
= vi

v
tip

(2.23)
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2.1.2.2 Local Angle of Attack

The flapping motion induces a perpendicular velocity that changes the local angle
of attack along the blade. The local angle of attack becomes a function of both
radial and azimuth location according to

–(r, Â) = ◊ ≠ „

= ◊ ≠ arctan UT (r, Â)
UP (r, Â) (2.24)

where

UT (r, Â) = �r + VŒ sin Â

UP (r, Â) = �R⁄i(r, Â) cos —(Â) + r ˙—(Â) + µ�R—(Â) cos(Â)

The pitch angle ◊ changes radially due to blade twist ◊t and around the azimuth
due to the lateral cyclic control input ◊

1c and the longitudinal cyclic ◊
1s according

to

◊(r, Â) = ◊
0

+ ◊t(r) + ◊
1c cos Â + ◊

1s sin Â (2.25)

where ◊
0

is the collective control input. This represents a common control configu-
ration; however higher-harmonic pitch control inputs are also possible.

For the control configuration given in Equation (2.25), the collective control
input acts to increase the pitch on all blades simultaneously, while ◊

1c and ◊
1s act

to increase the blade pitch on a 1/rev basis with maximums at 0 deg and 90 deg
respectively. For forward flight, increasingly negative inputs of ◊

1s are used to tilt
the rotor disk forward. A positive input of ◊

1c is also required to balance the blades
laterally due to the asymmetry produced by the forward motion.

2.1.2.3 Force and Moment Coe�cients

At each station, force and moment calculations are made by looking up pre-
calculated sectional force and moment coe�cients through the use of airfoil perfor-
mance tables. The range of flow speeds experienced by the airfoil sections requires
that these tables contain flow solutions for Mach numbers ranging from 0.0 to
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1.0 . In addition, angles-of-attack from -180 deg to 180 deg must be included to
capture the reverse flow region on the retreating blade. Ideally these tables would
be generated experimentally however the high costs prohibit this approach. Instead,
this data is often generated computationally using a CFD solver or splined in from
existing data tables such as the NACA 0012.

Generating usable data tables requires that an appropriate solver is used. The
solver must be capable of characterizing the range of flow conditions experienced
by the rotor. Varying flow speeds across the rotor disk necessitate a solver capable
of accurately resolving both incompressible and compressible flow regimes. In
addition, the large angles-of-attack range experienced by the rotor requires a solver
able to accurately resolve viscous and turbulence e�ects, particularly in the stall
and post-stall regimes. The choice of solver and table generation procedure will be
further covered in the next chapter.

2.2 Governing Equations
The Navier-Stokes equations are mass, momentum and energy conservation equa-
tions that describe the behavior of a fluid flowfield. This section derives the
conservation form of the Navier-Stokes equations that are used by the CFD solver
to calculate airfoil sectional properties.

2.2.1 Conservation of Mass

Considering a control volume V with a surface S and unit normal vector n̨.

Figure 2.4: Control volume diagram (Ref. [3])
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The time rate of change of mass inside the control volume can be expressed as

d

dt

⁄

V
fldV = 0 (2.26)

Applying the Reynolds Transport Theorem, the equation can be split into its
volume and surface integrals

d

dt

⁄

V
fldV =

⁄

V

ˆfl

ˆt
+

⁄

S
(uini)fldA (2.27)

Applying the divergence theorem, the two integrals can be combined into a single
volume integral ⁄

V

Ëˆfl

ˆt
+ Ò · (flų)

È
dV = 0 (2.28)

If the integral is equal to zero, then the integrand must also be equal to zero. Then
the conservative form of the mass conservation equation becomes

ˆfl

ˆt
+ ˆ

ˆxi

(flui) = 0 (2.29)

2.2.2 Conservation of Momentum

From Newton’s second law, a fluid element’s time rate of change of momentum can
be expressed as a sum of the external forces acting on it

d

dt

⁄

V
fluidV =

⁄

S
TidS +

⁄

V
flBidV (2.30)

where Ti are surface forces per unit area and Bi are the body forces per unit volume
acting on the fluid element. The surface forces in the i direction can be decomposed
into its isotropic portion p”ki and deviatoric component ·ki

Tij = ‡kini = (≠p”ki + ·ki)ni (2.31)

where ·ki is the viscous stress tensor. Following Stokes’ hypothesis gives

·ij = µ
Ëˆuk

ˆxi

+ ˆui

ˆxk

È
≠ 2µ

3
ˆuj

ˆxj

”ij (2.32)
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By applying the divergence theorem to Equation (2.30), the surface force contribu-
tion can be arranged to

⁄

S
TidS =

⁄

V

ˆ

ˆxi

(≠p”ki + ·ki)dV (2.33)

Following the same methodology from the mass conservation, the time rate of
change in momentum can be transformed into a volume integral as well. The
momentum conservation equation becomes

ˆflu

ˆt
+ ˆ

ˆxi

(flukui + p”ki ≠ ·ki) = flBi (2.34)

2.2.3 Conservation of Energy

The time rate of change of total energy inside a fluid volume is a sum of the energy
flux into the element, the rate of work done on the element by external forces T̨i

and B̨i, and the heat flux qi through the surface S. The conservation of energy
equation becomes

d

dt

⁄

V
fl(e + u2

2 )dV =
⁄

S
T̨iuidS +

⁄

V
flB̨iukdV ≠

⁄

S
qinidS (2.35)

By similar application of the Reynolds transport theorem and the divergence
theorem as before, the conservation of energy equation can be rearranged to

ˆ(flE)
ˆt

+ ˆ

ˆxi

(flEui + (p”ki ≠ ·ki)ui ≠ qi) = flB̨iui (2.36)

2.2.4 Equation of State

Using an ideal, calorically perfect gas, the pressure is commonly found through the
equation of state

p = (“ ≠ 1)[E ≠ 1
2(uiui)] (2.37)

where E is the total energy
E = (e + u2

2 ) (2.38)
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and here “ is the ratio of specific heats, e is the internal energy, and h is the specific
enthalpy

“ = cp

cv

(2.39)

e = cvT (2.40)

h = cpT (2.41)

2.2.5 The Navier-Stokes Equations

Combining the equations for conservation of mass, momentum and energy, the
three-dimensional Navier-Stokes equations in conservative form can be written as

ˆq̨

ˆt
+ ˆ

ˆxi

F̨i = 0 (2.42)

where q is the vector of conserved quantities

q̨ =

S

WWWWWWWWWU

fl

flu
1

flu
2

flu
2

E

T

XXXXXXXXXV

(2.43)

The flux vector Fi can be decomposed into the convective and viscous flux vectors
through F̨i = f̨ c

i ≠ f̨ v
i where

f̨ c
i =

S

WWWWWWWWWU

flui

fluiu1

+ p”i1

fluiu2

+ p”i2

fluiu3

+ p”i3

(Efl + p)ui

T

XXXXXXXXXV

f̨ v
i =

S

WWWWWWWWWU

0
·i1

·i2

·i3

ui·ki + qi

T

XXXXXXXXXV

(2.44)

Extension of the Navier-Stokes equations to include turbulence e�ects in RANS
approaches requires an additional equation to model the Reynolds stress tensor ·ki

and close the system of equations.
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2.3 Airfoil Shape Parameterization
Airfoil parametrization is a key part of optimization as it allows for the mathematical
description of an airfoil geometry through a set of design variables. In this way, the
airfoil parameterization plays an important part in defining the cost surface of the
optimization problem. The following sections aim to introduce common methods
of forming these design variables.

2.3.1 Local Parameterization

Local parameterization methods use singular control points to form the design
variables [40]. These methods do not require a fixed set of shape parameters which
allows them to be easily extended to a wide range of applications. These points can
be individual discrete surface points; however, this may introduce high-frequency
noise. Instead, semi-discrete approaches are commonly taken where a set of control
points are distributed over the airfoil surface with a smoothing function defined
through them, so that movement of an individual surface point has an area of e�ect
(Figure 2.5).

Figure 2.5: Semi-discrete local parameterization (Ref. [4])

2.3.2 Geometric

In order to make design variables more intuitive, other parameterization methods
such as PARSEC [31] describe an airfoil through a set of real geometric airfoil
parameters as design variables. In PARSEC, the design variables are a set of 11
basic airfoil geometric parameters (Figure 2.6).
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Figure 2.6: PARSEC geometric parameters

These parameters are used to define a set of polynomial coe�cients that describe
the airfoil surface through

z =
nÿ

i=1

aiX
i≠0.5 (2.45)

where the polynomial coe�cients ai and bi are found by solving two systems of
linear equations, see below.
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ą = [Xup]≠1z̨up
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b̨ = [Xlo]≠1z̨lo

2.3.3 Analytic

For fully autonomous optimization, purely analytic methods are commonly used,
these methods o�er a wide range of fidelity depending on the number of design
variables specified. These methods can be constructive like PARSEC where an
airfoil surface is assembled through a linear combination of shape functions, „i,
that are defined over the airfoil’s chord

’(›, ai) =
ÿ

ai„i(›) (2.48)

where › = x/c and ’ = z/c are the non-dimensional chordwise and vertical
directions, respectively. Similarly, deformative methods can be used where a set of
basis functions is used to perturb an existing baseline airfoil geometry through

’(›, ai) = ’
baseline

+
nÿ

i=0

ai„i(›) (2.49)

An advantage of deformative methods is that that they can be made to start
from within the feasible domain by choosing a baseline airfoil that satisfies design
constraints.

2.3.3.1 Hicks-Henne Bump Functions

A very popular set of deformative basis functions are the Hicks-Henne bump
functions [30] defined as

„i = sint
i(fi›mi) (2.50)

mi = ln(0.5)/ln(xM
i

) (2.51)

Here, ti acts to control the width of the bump function, while xM
i

controls the
bumps location. A set of bump functions can be seen in Figure 2.7. In order to
keep the parameterization linear with respect to the design variables, Wu et al. [41]
held fixed xM

i

and ti, only using the coe�cients ai as design variables (Equations
(2.52), (2.53)).
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Figure 2.7: Hicks-Henne basis bump modes

ti = 4 (2.52)

xM
i

= 1
2

Ë
1 ≠ cos( ifi

n + 1)
È

(2.53)

2.3.3.2 Bernstein Polynomials

The Bernstein polynomials are commonly used for a variety of deformative and
constructive purposes due to having a number of useful properties on the interval
[0;1] defined as

Bi,n(›) =
nÿ

i=0

A
›

i

B

(›)i(1 ≠ ›)n≠i (2.54)

The set of 4th-order Bernstein polynomials is shown in Figure 2.8.
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Figure 2.8: Bernstein polynomial basis modes

The degree raising property of Bernstein polynomials permits that a Bernstein
polynomial of degree n ≠ 1 can be expressed exactly by a linear combination of
polynomials of degree n through the relation

Bi,n≠1

(›) = Bi
n

(›) + Bi+1,n(›) (2.55)

allowing for the exact recovery of lower-order spaces. Desideri et al. [42] used
this degree elevation as a basis for their multi-level parameterization. In addition,
Vassberg et al. [37] used this property in their investigation of higher-order design
spaces and showed that higher-order design spaces were guaranteed to permit a
better airfoil as lower-order design spaces are exactly contained in higher-order
spaces.

2.3.3.3 Orthogonal Mode Decomposition

A more novel approach to developing the basis modes is through the use of proper
orthogonal decomposition [5, 32, 33]. In this method, a training set of airfoils is
decomposed into a set of orthogonal modes equal to the number of airfoils in the
training set. The dominant modes across the training set are then selected to form
the parameterization basis modes. An example of the mode shapes generated using
this approach is shown in Figure 2.9, where several libraries of training airfoils were
analyzed. This allows for large numbers of airfoils to be represented by the modes;
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however, the completeness of such a parameterization is also subject to the training
set used.

Figure 2.9: Dominant mode shapes from orthogonal mode decomposition (Ref. [5])

2.3.4 Class Shape Transformation

The Class Shape Transformation (CST) was developed by Kulfan [6] and allows one
to overcome challenges posed by the infinite slope at the leading edge by enforcing
geometric constraints onto the basis modes „ through the introduction of a class
transformation CN1

N2

. The transformation is of the form

’upper = CN1

N2

(›)„(›) + (›)�’upper (2.56)
’lower = CN1

N2

(›)„(›) + (›)�’lower (2.57)

where �’ is the non-dimensional trailing-edge thickness. This addition causes ’ = 0
at › = 1 ,removing the trailing-edge discontinuity and allowing convergence with
the airfoil shape through the Stone-Weierstrass theorem. The class transformation
is defined as

CN1

N2

= (›)N1(1 ≠ ›)N2 (2.58)

where N1 and N2 define the shape of the leading edge and trailing edge of the
airfoil, respectively. For a round leading edge and a sharp-trailing edge airfoil,
such as the NACA 4-digit airfoils, values of N1 = 0.5 and N2 = 1 are appropriate.
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The class shape allows the shape functions to overcome the di�culty posed by the
infinite slope at the leading-edge. Di�erent class functions and their associated
modification on the unitary function can be seen in Figure 2.10.

Figure 2.10: CST influence on unit function [6]

This allows for a wider range of shapes to be described by a single set of basis
modes as the geometric constraint enforcement isn’t a direct result of the mode
shapes themselves. This also results in a reduction of the number of design variables
required to su�ciently resolve the space, which is further investigated in Chapter 4.
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Chapter 3 |
Computational Methods

In this work, performance calculations were made through the use of a main
rotor (MR) analysis code known as ROTOR. ROTOR is based on a blade-element
momentum theory model that uses tabular airfoil performance tables to estimate
trim and performance calculations for forward-flight analysis. This code began as
an autogyro performance code originally known as HELI (Ref. [43]) and was later
extend to rotorcraft by Hartwich [44], before finally being modified by Kinzel [45] to
include a trimming algorithm. ROTOR is used to evaluate the optimized design’s
performance, as well as analyze the influence of the lift coe�cient correction.

The operating environment of rotorcraft airfoils necessitates a computational
method capable of accurately capturing viscous e�ects, as well as incompressible and
compressible flow for Mach numbers into the transonic regime. For this reason, the
data table generation and airfoil optimization were conducted using OVERFLOW
2.2i [46].

OVERFLOW is developed and maintained by NASA. It is an implicit, structured,
three-dimensional, RANS CFD code, capable of running on overset grids. Although
lower-fidelity methods such as XFOIL [47] or MSES [48] are attractive, XFOIL is
a potential-flow panel method with an integral boundary layer and is unable to
resolve compressible flow fields required for rotorcraft applications. MSES is an
Euler solver coupled with an integral boundary-layer method. While very e�cient
in its operation, MSES can be prone to robustness and convergence issues which
require manual intervention.

CFD-based methods, however, are limited in their ability to accurately predict
an airfoil’s maximum lift coe�cient, despite the maximum lift coe�cient being
a critical parameter in airfoil design. CFD solvers have di�culty predicting the

26



onset and growth of separated flow. Coder and Maughmer [25] analyzed the
ability of several CFD solvers for single-element airfoils and noted the tendency for
CFD to over-predict cl,max. Rumsey and Ying [26] compiled results from several
researchers and analyzed the ability of CFD to predict high-lift flows for multi-
element airfoils and high-lift devices. These flaws are readily exploited during
design and optimization loops and can ultimately result in an aircraft that fails to
meet design criteria, if not properly corrected. To overcome this, a semi-empirical
lift-coe�cient correction routine is implemented, described in Section 3.3.4.

3.1 ROTOR Performance Evaluation Tool
ROTOR makes trim and performance calculations at a specified gross weight and
forward airspeed based on the helicopter main rotor aerodynamics laid out in the
previous chapter. The section lift and drag coe�cients used are derived from an
airfoil performance table, the generation of which is outlined in the next section.
For this work, the rotor was discretized into 100 radial stations and 150 azimuth
elements. To account for tip losses, ROTOR employs a 97% e�ective rotor radius
where lift generated beyond r/R Ø 0.97 is neglected.

The blade motion is described by the flapping equation for a rotor in forward
flight

Ib
d2—2

dÂ2

+ IbÊ
2— = 1

�2

⁄
0.97R

R
0

L(r ≠ eR)dr (3.1)

where R
0

is the root cut-out and e is the rotor-blade hinge o�set. The main rotor
is trimmed by iterative adjustment of the collective ◊

1c, lateral cyclic pitch ◊
1

, and
longitudinal cyclic pitch ◊

1s until the aircraft is in steady level flight i.e.

Fx = Drag
Fy = 0
Fz = Weight

where Fx is in the flight direction, Fy is to the aircraft’s right, and Fz is in the
vertical direction.
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3.1.1 Aircraft Parameters

The ROTOR code was applied to a UH-60A blade planform to serve as a baseline
for analysis due to the large amount of experimental data available. The UH-60A
main rotor is comprised of two di�erent airfoils, the SC1094-R8 and the SC1095
with two main transition points. The first transition takes place at approximately
0.47R and the second takes place at approximately 0.85R. The blade also has 20
deg tip sweep which begins at approximately .92R.

Figure 3.1: UH-60A Blade composition (Ref. [1])

The UH-60A blade includes a twist of approximately -16 deg which can be seen
in Figure 3.2. There is a ± 1-degree di�erence in the twist between transition
sections as the SC1094R8 mean chordline is rotated by 1 deg relative to the SC1095.

Figure 3.2: UH-60A blade twist (Ref. [1])

The gross weight of the UH-60A varies between 12000 and 24000 lbs. For this
model, a weight of 16,000 lbs was chosen to correspond to the utility configuration
UH60A used during collection of flight test data by [8]. Table 3.1 gives the
dimensional parameters used in this work.
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MR speed (rad/sec) 27.0
MR radius (ft) 26.83
MR chord (ft) 1.73

MR weight (lbs) (Ref. [49]) 207.8
Density Altitude (ft2) 5,250

Gross Weight (lbs) 16,000
Equivalent flat plate area (ft2) 28.14

Table 3.1: UH-60A Parameters used in ROTOR

3.2 OVERFLOW CFD Code
OVERFLOW solves the Navier-Stokes equations in generalized curvilinear coordi-
nates which are represented as

ˆq̨

ˆt
+ ˆĘ

ˆ›
+ ˆF̨

ˆ÷
+ ˆG̨

ˆ’
= 0 (3.2)

where q̨ is the conserved variable vector and E, F, G are the flux vectors containing
the convective and viscous fluxes.

For many cases, the solver can be used in non time-accurate mode. However, in
the stall/post-stall regime, the flow becomes unsteady and a dual-time stepping
method is used. The time-accurate implementation along with low-mach precon-
ditioning is further described by Pandya et al. in Ref. [50]. For time accuracy,
dual-time stepping can be employed by recasting the equations as

�ˆq̨

ˆ·
+ ˆq̨

ˆt
+ ˆĘ

ˆ›
+ ˆF̨

ˆ÷
+ ˆG̨

ˆ’
= 0 (3.3)

where · is a pseudo-time variable added to improve convergence, and � is a
preconditioning vector added to overcome numerical sti�ness at low Mach numbers.
At each physical time step n, the solution is driven to steady state in · by iterating
over the non-physical time step m, i.e. ˆq̨n+1

ˆ·
= 0 or qm+1,n+1 = qn+1 + error.

The linearized, unfactored, Euler implicit form of Equation (3.2) with dual-time
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stepping is given as

Ë
I + �·

SD

(”xiA + ”÷B + ”’C)
¸ ˚˙ ˝

LHS

È
�qn+1,m+1

= ≠ 1 + ◊

SD�t
(qn+1,m ≠ qn) ≠ ◊�·

SD�t
�qn + �·

SD

RHSn+1,m

¸ ˚˙ ˝
RHS

(3.4)

where

A = ˆĘ

ˆq̨
, B = ˆF̨

ˆq̨
, C = ˆG̨

ˆq̨
(3.5)

RHSn = ˆĘn

ˆ›
+ ˆF̨ n

ˆ÷
+ ˆG̨n

ˆ’
(3.6)

(3.7)

3.2.1 Implicit Factorization

Solving Equation (3.4) requires inversion of the left-hand-side (LHS). The LHS
matrix is often sparse and di�cult to invert e�ciently. As such, several approximate
factorization techniques are implemented in OVERFLOW to reduce the compu-
tational expense of this inversion. The commonly used ARC3D solver (ILHS=0)
Beam-Warming Alternating Direction Implicit (ADI) scheme [51] factors Equation
(3.4) into a block tridiagonal form for more e�cient solving. This comes at the
expense of an additional factorization error. The Pulliam and Chaussee [52] penta-
diagonal solver (ILHS=2) further decouples the system of equations into a scalar
pentadiagonal matrix. This avoids the successive inversions of the block tridiagonal
matrix, producing a very computationally and memory e�cient discretization.
Unfortunately, numerical experimentation revealed, the scalar-pentadiagonal solver
was deemed too unstable for automation purposes given the high angle-of-attack
solutions that must be evaluated.

For most of this work, the diagonalized diagonally-dominant ADI scheme
(D3ADI) developed by Klopfer, et al. [53] was used. This method is an extension of
the Diagonally Dominant ADI (DDADI) scheme of Bardina and Lombard [54]. The
DDADI scheme is diagonalized by applying the Pulliam-Chaussee methodology.
With the addition of Huang sub-iterations [55], the factorization error is removed,
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providing a reasonable trade-o� between robustness and speed (Ref. [56]).
For cases that repeatedly produce negative pressures and densities, the unfac-

tored SSOR [57] solver (ILHS=6) is employed. By solving an unfactored system,
the factorization error can be avoided and great robustness can be achieved. The
updated �qn+1 is obtained by iteratively inverting the LHS at each time step
through the combination of backwards and forwards successive over relaxation
sweeps. In exchange, 2.2 ú min(jd, kd, ld) times more memory is required than a
tridiagonal ADI solver (Ref. [57]), and this solver is significantly more robust than
other factored methods.

A summary of relative LHS timings is given in Table 3.2. These timings were
evaluated on a 51x51x651 grid and are sensitive to processor and grid size, where 1
is the fastest relative time. A full list of solver options is available in Ref. [46].

BW F3D Diag LU-SGS D3ADI (Upwind) SSOR SSOR
(Central) (Upwind)
ILHS=0 ILHS=1 ILHS=2 ILHS=3 ILHS=4 ILHS=5 ILHS=6 ILHS=7

3.94 5.31 1.27 1.00 3.41 4.08 9.38 9.85

Table 3.2: Relative Solver timings (Ref. [9])

3.2.2 Spatial Discretization

For this work, the RHS was discretized using a Roe upwind scheme [58] with a
3rd-order MUSCL reconstruction (IRHS=4, FSO=3). This choice allows for the
use of low-Mach preconditioning while maintaining both numerical accuracy and
robustness. In addition, when using the SSOR or D3ADI LHS, the solver is able to
converge without the need for artificial dissipation (DIS2=0.0, DIS4=0.0). The
Roe upwind scheme defines the interface flux through

Fi+1/2

= 1
2(F L

i+1/2

+ F R
i+1/2

) ≠ 1
2 |Ā|i+1/2

(QR
i+1/2

≠ QL
i+1/2

) (3.8)

Higher-order accuracy is obtained through the application of an MUSCL in-
terpolation scheme to reconstruct the left (L) and right (R) fluxes. Several flux
limiters are available to switch the algorithm to first order in regions of strong
gradients, allowing for better shock capturing and preventing overshoots. For this

31



work, a 3rd-order MUSCL reconstruction scheme (FSO=3) with the Koren limiter
(ILIMIT=1) was used.

3.2.3 Turbulence Closure

Closure was obtained using the one-equation linear eddy-viscosity model of Spalart-
Allmaras [59].

D‹̃

Dt
= cb1

S̃‹̃(1 ≠ ft2) ≠
Ë
cw1

f
2

≠ cb1

Ÿ2

ft2

È1 ‹̃

d

2
2

+
1
‡

Ë ˆ

ˆxj

1
(‹ + ‹̃) ˆ‹̃

ˆxj

2
+ cb2

1 ˆ‹̃

ˆxj

2
2

È (3.9)

To account for the influence of laminar-turbulent transition, the Amplification Factor
Transport transition (AFT) model of Coder and Maughmer [60] was employed as
well.

ˆ(flñ)
ˆt

+ ˆ(flujñ)
ˆxi

= fl�FcritFgrowth
dñ

dR”2

+ ˆ

ˆxj

Ë
(µ + µt

‡n

) ˆñ

ˆxj

È
(3.10)

3.2.4 Grid Generation

The grids used in this work were generated in accordance with Best Practices in
Overset Grid Generation (Ref. [61]). Two types of grids were used in this work.
For airfoils with a sharp trailing edge, a C-grid was used. For finite-thickness
trailing-edge airfoils, an O-grid topology was employed. Surface grids were first
generated using an in-house algorithm using natural spline interpolation with a
clustering of points near the leading edge and trailing edge of the airfoil. For
C-grids, a wake cut was made using the Chimera Grid Tools (CGT) [62] utility
WKCUT.

The volume grids were generated using CGT through the hyperbolic grid
generation tool HYPGEN. An exponential stretching function was employed in the
wall normal direction. Initial and ending spaces were chosen along with the number
of points to maintain a stretching ratio of less than 1.2 to avoid large jumps in grid
spacing. The stretching ratio is the ratio between the current and the previous grid
increment

max [�sj, �sj+1

]
min [�sj, �sj+1

] (3.11)
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The first o�-body grid point was chosen to maintain a y+ value of approximately 1
to improve viscous drag measurements. The first o�-body-grid point is estimated
through

y = y+

Re
Ò

cf/2
(3.12)

where cf is the approximate skin friction coe�cient for a turbulent flat plate given
by

cf ¥ 0.455
ln2(0.06Rex)

(3.13)

with a reference length of 10% of an airfoil chord. A total of 129 grid points were
used in the wall normal direction, and a total of 259 points were used on the airfoil
surface. For C-grids, a total of 98 grid points were placed in the wake. For O-grid
topologies, 20 grid points were placed on the airfoil trailing edge.

(a) leading-edge (b) C-grid (c) trailing-edge

Figure 3.3: C-grid around RAE 2822 airfoil

(a) leading-edge (b) C-grid (c) trailing-edge

Figure 3.4: O-grid around SC1095 airfoil
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3.3 Performance Table Generation
A Python framework named overPy was developed to conduct the performance
table generation. Python programming was used to handle the high-level logic,
while the procedural computation and OVERFLOW output file interfaces were
programmed using FORTRAN. The third-party Python library Numpy was used
as well. NumPy contains a set of e�cient numerical tools for Python, as well as a
module F2Py which allows for the generation of a Python interface with FORTRAN
compiled shared object files. This allows for Python functions to interface with
FORTRAN subroutines as though they were native objects eliminating the need
for reading and writing of intermediate text files to exchange information between
subroutines.

The automation routines were used to link various utilities to perform the
preprocessing, job submission, and postprocessing of OVERFLOW jobs. This
methodology allows for the development of a more complex set of run logic than
available purely through the OVERFLOW solver.

3.3.1 Preprocessing

In the preprocessing routine, a directory tree is generated to manage each case.
The required files for an OVERFLOW run are then scattered to each directory.
The input files include

• Suitable grid file

• Input file for OVERFLOW

• Queue manager job script

• Input file for a FOMOCO preprocessing utility

Examples of these input files can be found in Appendix A. Calculation of force and
moments also require initialization of integration surfaces before starting OVER-
FLOW. For this work, the pre-/post-processing tool USURP [63] was used; however,
alternatives can be used provided they produce the required panel_weights.dat
files. The preprocessing procedure is as follows

34



Start

Build File system
M<Mach 1>/

<Alpha 1>/
<Alpha 2>/
...
<Alpha N>/

M<Mach 2>/
<Alpha 1>/
...
<Alpha N>/

...
M<Mach N>/

Scatter input Files
M<Mach>/<Alpha>/

grid
FOMOCO input
namelist
job file

Run FOMOCO
Preprocessing utility

Run case

Figure 3.5: Airfoil performance table preprocessing routine

3.3.2 Run Process

The run routine navigates to each case directory and submits the job script to
the queue manager via the qsub command. A user-specified maximum number of
concurrent jobs are managed at any given time. Cases are cycled to avoid overloading
the queue manager with job submissions. To determine a job’s completion, the
queue manager is pinged periodically using the qstat command for each submitted
job until the job can no longer be located.

After job completion, output files are verified and a set of logic is employed to
improve convergence and recover from unsuccessful runs. If a negative pressure or
density is found in the output file, then the run is deemed unsuccessful. To attempt
a recovery, an angle-of-attack sequencing (ASEQ) routine is first employed. By
reducing the airfoil’s angle until convergence is achieved and then re-sequencing to
the original angle, often times convergence can be achieved within a few degrees.

After a successful run, a restart routine is employed to improve convergence.
The force and moment coe�cient history is read from the fomoco.out file. If the
lift, drag, or moment standard deviations exceed a set of tolerances, the case is
restarted in an attempt to improve convergence. The default convergence tolerances
chosen are 1 ◊ 10≠4, 1 ◊ 10≠5, and 1 ◊ 10≠5 for the lift, drag, and pitching moment
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coe�cients standard deviations, respectively.
Finally, if the ASEQ routine is unable to succeed or if the case fails during a

restart, a final failure routine is employed. An alternative set of more robust, albeit
slower, NAMELIST options are then employed in hopes of gaining convergence. A
flow chart of the run routine can be seen in Figure 3.6
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Run Case

Stop

Run
Successful

Reduce angle

Run
successful

Increase angleMax
attempts
reached

Run
Successful

Returned
to original

angle

Check force and
moment history

STDEV
converged

Max
attempts
reached

Restart case

Run
successful

Alternative
namelist
options

available

Restore namelist
to original and set
alternative options

start

ASEQ RESTART

FAILURE

no

no

no

yes

yes

no

yes

yes

no

no

yes

yes

yes
yes

yes

no

no

no

Figure 3.6: Airfoil performance table run routine
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3.3.3 Postprocessing

During the postprocessing routine lift, drag, and moment coe�cients are read from
the force and moment history file fomoco.out. Each case directory is cross-validated
with the flow solution file (q.save) to make sure that the correct Mach number
and angle-of-attack values are represented. C81 tables require the computation of
incompressible flow solutions (Mach=0.0). OVERFLOW is incapable of running
this condition, the incompressible Mach behaviors are estimated using the Prandtl-
Glauert correction with the lowest available Mach as a reference.

cl
M

0

= cl
M

min

Ò
1 ≠ M2

min (3.14)

cd
M

0

= cd
M

min

Ò
1 ≠ M2

min (3.15)

cm
M

0

= cm
M

min

Ò
1 ≠ M2

min (3.16)

To o�oad some of the computational expense, experimentally generated NACA0012
data are used to supplement CFD generated results for high angles-of-attack
(|–| Ø 30 deg) [64]. At these angles-of-attack, the assumption of two-dimensional
CFD begins to break down as three-dimensional e�ects begin to take place. In
addition, the airfoil shape begins to have less influence on the flow characteristics as
it begins to behave more similar to a wall than an airfoil. Smith et al. [65] showed
that this behavior in the deep-stall regime was similar between airfoils regardless
of camber.

Finally, a lift-coe�cient correction routine is implemented, the specifics of which
are discussed in the next chapter. The post-processing procedure is as follows:

Start check q.save

Gather FOMOCO

fomoco.out

Y
___]

___[

cl
cd
cm

Prandtl-Glauert rule
for Mach 0.0

Merge NACA0012
data

Correct cl and –write C81

Figure 3.7: Airfoil performance table postprocessing routine
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3.3.4 Lift Coe�cient Correction

The inability for CFD to accurately predict the maximum lift coe�cient creates a
flaw that may be exploited by optimization loops potentially producing unrealizable
performance results. A cl,max criterion and correction routine were then implemented
to overcome this.

3.3.4.1 Stall Criterion

Several maximum lift critera have been proposed that are traditionally based on
boundary-layer development on the upper surface. A.M.O Smith [66] proposed a
maximum lift coe�cient criterion based on the maximum pressure coe�cient and
Mach number. Smith proposed placing a limit on the leading-edge suction peak of

cp,max = 1
0.7M2

Œ
{[(1 + 0.2M2

Œ)/1.2]3.5 ≠ 1} (3.17)

Valarezo and Chin [7] proposed a surface pressure criterion for high-lift systems
that included both Mach number and Reynolds number influences. The criterion is
based on the pressure di�erence between the suction peak near the leading-edge
and the trailing-edge pressure.

Figure 3.8: Pressure di�erence rule for maximum lift (Ref. [7])

A multitude of other methods for maximum lift prediction have been proposed;
however, these methods often depend on the evaluation method used. In order
to develop a stall criterion that will work across a variety of methods, a stall
criterion based explicitly on boundary-layer properties was implemented. The
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boundary-layer properties of interest are the displacement thickness ”
1

and the
momentum thickness ”

2

.

”
1

=
⁄ Œ

0

(1 ≠ flu

fleUe

)dz (3.18)

”
2

=
⁄ Œ

0

flu

fleUe

(1 ≠ u

Ue

)dz (3.19)

These quantities were calculated using OVERFLOW generated flow solutions
using the methodology described by Coder and Maughmer in Ref. [67]. A baseline
set of airfoil cases for which high-quality experimental data are available were
evaluated at lift coe�cients equal to the experimentally observed maximum lift
coe�cients.

The behavior of the displacement-thickness Reynolds number (Re”
1

), momentum-
thickness Reynolds number (Re”

2

), upper-surface drag contribution, and the upper-
surface velocity ratio between the suction peak and trailing-edge for the base case
of airfoils are plotted in Figures 3.9 through 3.11, respectively, for varying chord
Reynolds number.

Figure 3.9: Predicted upper-surface, trailing-edge Re”
2

at cl,max
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Figure 3.10: Predicted upper-surface, trailing-edge Re”
1

at cl,max

Figure 3.11: Predicted velocity recovery ratio at cl,max

Of these quantities, the momentum-thickness Reynolds number shows the
strongest correlation with Reynolds number. The displacement-thickness Reynolds
number and the upper-surface profile drag show the presence of two behavioral
branches, which is an undesirable non-uniqueness in an empirical correlation. The
upper-surface velocity ratio shows scatter; however, there appears to be a distinct
upper limit to the velocity ratio that may be achieved for maximum lift at a given
Reynolds number confirming Valarezo and Chin’s observations.

The maximum lift criterion is then chosen as the sectional lift coe�cient for
which the upper-surface, trailing-edge momentum-thickness Reynolds number first
satisfies

Re”
2

,T E = 8760 Re

1 ◊ 106

(3.20)

The momentum thickness at the trailing-edge is reflective of the momentum
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losses in the boundary layer, and the underlying physics of the correction reflects
the notion that a boundary layer can only recover so much pressure in a given
distance before it separates.

3.3.4.2 Correction Implementation

The lift coe�cient criteria implemented acts as a mapping between the original
coe�cient space cl(–) and the corrected coe�cient space cÕ

l(–Õ). A similar mapping
was implemented by Coder in Ref. [68]; however, in the present work, additional
care was given to preserve zero-lift angle-of-attack (–

0

) as well as the lift curve
slope (dC

l

d
–

), where CFD has been shown to accurately predict these values for
quasi-steady airfoils by Smith et al. [69], and the same trend was also observed in
the present work. The correction is applied through a linear mapping that acts as
a constant scaling centered about –

0

.

cÕ
l = Ÿcl

–Õ = Ÿ(– ≠ –
0

) + –
0

where the correction factor Ÿ is defined as

Ÿ = cl,max,experimental

cl,max,CF D

An example of this mapping is shown in Figure 3.12 where dc
l

d
–

and –
0

are main-
tained exactly throughout the mapping, while the linear departure angle and stall
characteristics are scaled by the correction factor Ÿ.
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Figure 3.12: Influence of lift coe�cient correction on raw CFD results, SC1095,
Re = 6 ◊ 106, MŒ = 0.4

Further Enhancement
A piece-wise stall criterion was also introduced to correct both the positive stall
and negative stall independently. Rather than only using the upper surface stall,
the same criterion can be implemented on the negative stall regime by integrating
the momentum thickness Reynolds number on the lower surface. The final form of
the correction becomes

cÕ
l =

Y
]

[
Ÿ

1

cl if cl Ø 0
Ÿ

2

cl if cl < 0
(3.21)

–Õ =
Y
]

[
Ÿ

1

(– ≠ –
0

) + –
0

if cl Ø 0
Ÿ

2

(– ≠ –
0

) + –
0

if cl < 0
(3.22)

where

Ÿ
1

= cl,max,experimental

cl,max,CF D

(3.23)

Ÿ
2

= cl,min,experimental

cl,min,CF D

(3.24)

Should the correction fail and Ÿ
1

> 1, or Ÿ
2

> 1, then the original, uncorrected
table values are used.
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Chapter 4 |
Airfoil Optimization

4.1 Design Variables
The design variables in this work, were constructed through a CST-based approach,
although Kulfan [6] originally suggested the use of Bernstein polynomials basis
modes. The Bernstein polynomials su�er from multicollinearity issues which are
investigated in the next section. Instead, a set of orthogonal basis modes are
used, namely the Legendre polynomials. Although Farouki [70] developed a set
of Bernstein-to-Legendre basis transformations with decent conditioning of the
transformation matrix for use in finit- element schemes, the original Legendre
polynomials themselves are used in this work, defined by Rodrigues’ formula as

Pn(÷) = 1
2n

ÿ

r

(≠1)r (2n ≠ 3r)!
r!(n ≠ r)(n ≠ 2r)!÷

n≠2r (4.1)

The Legendre polynomials satisfy the orthogonality condition
⁄

1

≠1

Pm(÷)Pn(÷)d÷ = 2
2n + 1”mn (4.2)

The first 4 Legendre modes are shown in Figure 4.1
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Figure 4.1: Legendre polynomial modes

The parameterization was implemented as a deformative method by first "un-
wrapping" the baseline airfoil about the leading edge and evaluating the Legendre
polynomials on the interval [-1;1]. This unwrapped domain is denoted ÷ in this work
where the original, non-dimensional, chordwise space is denoted ›. The basis modes
were wrapped to the original interval and the CST was applied in the original airfoil
domain of [0;1]. Figure 4.2 shows the first four Legendre modes in the unwrapped
domain with the inclusion of the CST.

Figure 4.2: Unwrapped RAE 2822 compared with parameterization basis modes

As a result of the unwrapping, the even-numbered Legendre modes are symmetric
about the leading edge, causing them to influence thickness. Similarly, odd-
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numbered Legendre modes are antisymmetric about the leading edge, causing
them to influence camber. This can be visualized in Figure 4.3 where the airfoil is
transformed back to the original domain

Figure 4.3: Wrapped airfoil parameterization

The even-numbered modes are mirrored across the x-axis, while the camber
modes overlap each other. In addition, CST forces the thickness modes to maintain
the infinite slope required at the leading edge for a round-nosed airfoil. Defining
the parameterization in this method allows for a single set of modes to define the
upper and lower surfaces. In summary, the deformative parameterization used in
this work, including the unwrapping is

’upper = ’upper,base + CN1

N2

(›)
nÿ

i=1

aiPi(÷) + (÷)�’upper (4.3)

’lower = ’upper,base + CN1

N2

(›)
nÿ

i=1

aiPi(÷) + (÷)�’lower (4.4)
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4.1.1 Multicollinearity

Multicollinearity is a result of the increasing similarity between basis mode shapes
as their order increases. In a mathematical sense, this causes the design-matrix to
become sparse and ill-conditioned as non-unique solutions begin to develop. In an
optimization sense, this results in a damping of the design space where large changes
in design variables may result in small net geometric perturbations. This makes it
di�cult for the optimizer to e�ciently navigate the design space as the optimization
path length becomes highly dependent on the number of design variables.

When investigating the extension of Bernstein polynomial parameterizations to
higher-orders, Vassberg et al. [37] noted an initial decrease in performance, despite
the lower-order design space being exactly contained in the higher-order-space.
While they were able to overcome this by extending the bounds of the design space,
this suggests that the problem may be a result of multicollinearity between the
basis modes of the Bernstein polynomials.

As an extreme case, consider the monomial basis a
0

+ a
1

x + a
2

x2 + ...anxn≠1.
This basis produces a highly correlated set of design variables. Looking at Figure
4.4, as the order increases the basis mode shapes become increasingly similar
until eventually, there is very little di�erence between individual modes and linear
independence is lost.

Figure 4.4: Monomial basis modes

One of the most common measures of multicollinearity is the condition index or
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condition number, developed by Belsey [71], defined by

c =
Û

⁄max

⁄min

(4.5)

where the ⁄max and ⁄min are the largest and smallest eigenvalues, respectively. The
condition number gives insight as to the invertability of a matrix. In this case,
the matrix being measured is the design or regressor matrix that defines the least
squares regression problem, evaluating the shape functions on the interval [0;1] at
m discrete points. A high condition number means that large perturbations in
the design coe�cients are required to produce small perturbations in the resultant
geometry and vice versa here

[z] = [X ]̨a (4.6)
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where for CST-based methods

Xi,j = CN1

N2

(›j)Si(›j) (4.8)

A summary of shape functions used for this analysis can be found in Table 4.1.
For comparison, the shifted Legendre Polynomials Pn = Pn(2› ≠ 1) were used to
be orthogonal on the interval [0, 1] rather than their standard [-1;1]. When using
CST methods, N1 and N2 were chosen to be 0.5 and 1, respectively.

Bernstein Polynomials Xi(›j) =
nq

i=0

1
n
i

2
(›j)i(1 ≠ ›j)n≠i

Hicks-Henne Bumps
Xi(›j) = sin4(fi›m

i

j )
mi = ln(0.5)

ln(

1

2

Ë
1≠cos(

ifi

n+1

)

È
)

Legendre Polynomials Xi(›j) = 1

2

ii!
di

d›i

(›2

j ≠ 1)i

Table 4.1: Summary of parameterization investigation methods

The following figure compares the condition values of several analytic parame-
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terization methods over the interval [0,1]. A total 250 points were generated across
the interval.

Figure 4.5: Condition value comparison

Generally, a condition value of 30 is considered to have high degrees of mul-
ticollinearity while condition values over 100 are considered severe [72]. On the
extreme end, condition values of up to 10,000 are numerically manageable. Beyond
that point, the design matrix becomes too sparse to invert normally and a pseudo
inverse must be calculated instead. For the Hicks-Henne and Bernstein polynomial
shape functions, this puts a numerical limit on the maximum number of design
variables near 30. The Legendre polynomial design matrices remained invertible
even up to 50 design variables.

Looking at Figure 4.6 it can be seen that although the class transformation
adds a considerable amount of multicollinearity to the Legendre polynomials, it
greatly reduces the error in approximating the upper surface of the RAE2822 airfoil
by allowing the Legendre basis modes to overcome di�culties posed by the infinite
leading edge slope. Although this does increase the condition number greatly, it
acts to damp solutions that would likely be unsuccessful anyway. It also reduces
the overall number of design variables required to su�ciently resolve the design
space.
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Figure 4.6: RAE2822 Upper Surface Error

The Bernstein polynomials begin to exhibit fluctuations at higher-order design
spaces. This is a result of the increasing condition number making inversion of the
design matrix di�cult and unstable, despite using a More-Penrose pseudo inverse
to perform the calculation.

4.1.2 Completeness

Another important property of airfoil parameterization is the completeness of the
design space. A parameterization method should be able to represent a large
number of airfoils. To analyze this, the UIUC airfoil database [73] was analyzed
using each of the parameterization methods from before. The resulting L

2

error
norm was calculated for each airfoil. The solid lines in Figure 4.7 show the averaged
log

10

(L
2

error norm).
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Figure 4.7: Parameter comparison average log
10

of L
2

error norm

To remove any issues from variance in airfoil point distribution, each airfoil was
smoothed with a cubic spline and interpolated with 150 points on each surface
using a cosine distribution. The upper and lower surfaces were fit independently,
approximately 500 airfoils of 1500 in the UIUC database were randomly selected
and analyzed.

The Legendre-CST parameterization performs very closely to the Bernstein
polynomial-CST approach but without the large levels of multicollinearity that are
present in the Bernstein polynomials. Both methods do a fair job at covering the
design space with as few as 5-10 design variables. This completeness evaluation
was applied on the interval [0;1] and therefore only represents the ability of the
parameterization to fit the upper and lower surfaces independently, i.e. twice the
number of design variables are required to fit both surfaces.

The actual parameterization is applied on the interval [-1;1] so an additional
completeness test was carried out on that interval. Comparing the ability of the
Legendre polynomials and the shifted Bernstein polynomials to parameterize an
entire airfoil, the same point distribution as before was used with a total of 300
points on the combined upper and lower surfaces.
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Figure 4.8: Unwrapped parameterization comparison average log
10

of L
2

error norm

An investigation of the error locations across the chordwise direction yields that
the CST reduces the residual regression across the entire chord with a particularly
large decrease in error at the leading edge (Figure 4.9). For this comparison, 10
design variables were used to fit the same 500 randomly selected airfoils from the
UIUC airfoil database, and the vertical axis again averages the log

10

normalized
residual errors.
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Figure 4.9: Unwrapped parameterization surface residual comparison

4.2 Optimization Method

4.2.1 Covariance Matrix Adaptation

The optimization algorithm used to perform the shape optimization was the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [29,74,75]. This method
was designed as a black box optimization approach for large non-linear problems.
It handles ill-conditioning better than gradient-based methods. In addition, it is
easily parallelized and well suited for problems with small sample populations. This
makes it a good choice for academic CFD problems with limited computational
power as the objective functions take a long time to evaluate. It also allows for
the optimization of nosier objective functions as it does not rely on the explicit
computation of the objective function’s gradients.

As the name suggests, the Covariance Matrix Adaptation algorithm attempts
to find a global optimum by successively updating the covariance matrix at each
design iteration. This covariance matrix is used to generate candidate solutions
based on multivariate normal distributions. Given a mean design vector y(k)

mean,
search points are sampled as a normal distribution with variance (‡(k))2C(k) of
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population size ‘

y
(k)

i ≥ N (y(k)

mean, (‡(k))2C(k)) (4.9)

where y(k)

mean is the current favorite solution vector at iteration k, and C is the
covariance matrix which governs the shape of the distribution ellipsoid. The
candidate solutions are then evaluated by the loss function L(y). The solutions are
weighted, and only the best ‹ solutions are chosen to influence the new search path.
Here

y(k+1)

mean =
‹ÿ

i=1

wiyi

where

L(y
1

) < L(y
2

) < L(y
3

)...L(y‘)
‹ Æ ‘

The covariance matrix is updated as a weighted combination of the old covariance
matrix, the optimum search path (rank 1 update), and the weighted sum of the best
‹ candidate solutions (rank ‹ update). The evolution path is updated according to

p(k+1)

c = (1 ≠ cc)p(k)

c +
Ò

cc(2 ≠ cc)‹eff
y(k+1)

mean ≠ y(k)

mean

‡
(4.10)

where

‹eff = 1
q‹

i=1

w2

i

(4.11)

and (y(k+1)

mean ≠ y(k)

mean)/‡(k) defines the new evolution path in the direction of the new
ymean, and

Ò
cc(2 ≠ cc)‹eff is a normalization factor. If cc = 1 and ‹eff = 1, the

path reduces to pc = (y(k+1)

mean ≠ y(k)

mean)/‡(k) which is simply the di�erence between
the last and updated ymean, scaled by the path step size ‡(k). The covariance matrix
is updated according to

C(k+1) = (1 ≠ c
1

≠ c‹)C(k) + c
1

p(k+1)

c (p(k+1)

c )T

+c‹

‹ÿ

i=1

wi
(y(k+1)

i ≠ ymean)
‡(k)

(y(k+1)

i ≠ ymean)T

‡(k)

(4.12)
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where c
1

and c‹ are scaling parameters that control how much the rank-one and
rank-‹ updates will influence the updated covariance matrix, respectively. The
rank-one update is driven by the updated evolution path, while the rank ‹ update
is a result of the best ‹ solutions.

Although not necessary, CMA-ES includes a step-size control method for whose
evolution path p‡ is updated independently of the covariance matrix with the intent
of increasing the step size ‡ when cumulative steps are in similar directions and
decreasing steps when the search paths are in opposite directions.

p‡ = (1 ≠ c‡) +
Ò

1 ≠ (1 ≠ c‡)2

Ô
‹w(C(k))≠1/2

y(k+1)

mean ≠ y(k)

mean

‡(k)

(4.13)

The key operator here is C≠1/2 which acts as a whitening transformation for the
updated path decorrelating (y(k+1)

mean ≠y(k)

mean). This transforms the update path vector
from a sampled vector in the distribution N (0, C) to a vector in the distribution
N (0, I) through the relation

yi ≥ymean + ‡N (0, C) (4.14)
≥ymean + ‡C1/2N (0, I) (4.15)

C≠1/2yi ≥C≠1/2ymean + ‡N (0, I) (4.16)
(4.17)

Therefore, the step-size evolution path exists in the decorrelated space

p‡ ≥ N (0, I) (4.18)

Finally, the step size is updated according to

‡(k+1) = ‡(k) exp
Ë c‡

d‡

||p‡||
E||N (0, I)|| ≠ 1

È
(4.19)

where E||N (0, I)|| is the expectation of the distribution N (0, I). This equation
acts to scale p‡ ≥ N (0, I) with its expected value. When ||p‡|| is larger than the
normal expectation, the step size ‡ is increased and when it is less, it is decreased.
Therefore, when p(k+1)

‡ and p(k)

‡ are in similar directions, the paths cumulate and the
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step size increases. When they are in opposite directions the paths annihilate and
the step size decreases. Fairly straightforward to implement, the CMA-ES algorithm
provides a vehicle to the search the design space, particularly for nonlinear objective
functions.

4.2.2 Constraint handling

Constraint handling in genetic algorithms is still an area of active research. Several
novel approaches have been implemented with respect to CMA-based algorithms
[76, 77]; however, these approaches can often be objective function dependent.
Consider the constrained optimization problem

minimize
y

f(y)

subject to hi(y) = 0, i = 1, . . . , m.

gj(y) Ø 0, i = 1, . . . , m.

where y is the vector of design variables. In death penalty methods, a point that
lies outside of the feasible domain is ignored entirely. Unfortunately, this method is
particularly ine�cient for CFD problems as objective functions take a long time to
evaluate as no information of the violation is relayed back to search algorithm. In
restoration methods [78], a point (y) that does not satisfy constraints is projected
back to a point in the space (ỹ) by estimating the constraint sensitivities to the
design variables, through the linear approximation

gj ¥ gj(y) + Ògj(ỹ ≠ y) (4.20)

This, however, might interfere with the CMA algorithm and force it to move tangent
to the constraint boundary. To allow the algorithm to more freely navigate, a
penalty method was implemented. In penalty methods, a loss function is used
where a term is added to the objective function to include a penalty as a result of
violating constraints.

L(y) = f(y) + P (y)
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4.2.2.1 Penalty Functions

One of the most common penalty functions is the quadratic penalty function

P (y) = 1
2µp

ÿ
h(y)2 + 1

2µp

ÿ
g

(

y)≠2 (4.21)

Here, decreasing the penalty parameter µp increases the penalty severity, and
in dynamic methods µp can be driven to 0 with each iteration, thereby driving
the constraint to zero as well. However, this is known to cause the Hessian
Ò2

yyL to become ill conditioned. In addition, the inequality constraint can create
a discontinuity in the event that gj(y) = 0. Many penalty functions have been
developed as it remains one of the most popular methods of constrained optimization;
however, one common deficiency of penalty based methods is the reliance on heuristic
hyperparameters to ensure convergence, particularly with regard to the penalty
parameter [79].

4.2.2.2 Augmented Lagrange Approach

To overcome this strong dependence between the penalty parameter and constraint
enforcement, several successful methods based on the augmented Lagrangian ap-
proach have been implemented by [80, 81]. Consider the equality constrained
optimization problem

minimize
y

f(y)

subject to hi(y) = 0, i = 1, . . . , m.

In the penalty constraint method, µp needed to be driven to zero to ensure
that the constraints are enforced at convergence. However, this had the adverse
result of causing the objective function to become ill-conditioned. Powell [82] and
Hestenes [83] independently developed the augmented Lagrange approach method to
overcome these issues. In the augmented Lagrange approach, the objective function
is modified to avoid the need to drive µp to zero thus removing the constraints
dependence on µp. The Lagrangian for the equality constrained problem is defined
as

L(y, ⁄) = f(y) + ⁄ih(y) (4.22)
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The Hestenes-Powell augmented Lagrangian for a quadratic penalty function is

L(y, ⁄) = f(y) + ⁄ih(y) + 1
2µp

ÿ
h(y)2 (4.23)

Here, the di�erence between the two is the addition of the penalty term. In the
augmented Lagrange approach, the multiplier is chosen to help advance the solution
to the optimal by estimating the optimal Lagrange multiplier at each iteration.
Powell [82] showed that a good estimate for this value is

⁄(k+1) = h(y)(k)

µ
(k)

p

(4.24)

For the inequality constrained optimization problem, the problem can be reformu-
lated as an equality constraint with the addition of the slack variable si.

s
(k)

j = max{gj(y(k)) ≠ µ(k)

p ⁄
(k)

j , 0} (4.25)

The problem can be then reformulated as a combination of equality constraints
from

gj(y) Ø 0

to

gj(y) ≠ sj = 0

The updated Lagrange multiplier estimate ⁄i for the inequality constrained problem
becomes

⁄
(k+1)

j = max{⁄
(k)

j ≠ gj(y(k))
(k)

, 0} (4.26)

4.3 Computational Approach
For the airfoil optimization problem, two inequality constraints have been applied.
The airfoil area was constrained to prevent the airfoil from growing increasingly
slimmer. A constraint on the pitching moment was applied as to avoid compromising
the pitching moment in an e�ort to maintain the lift coe�cient. The augmented
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loss function becomes

L(y(k)) = cd(y(k))+⁄m(M(y(k)) ≠ s(k)

m ) + 1
2µp

(M(y(k)) ≠ s(k)

m )2+

⁄a(A(y(k)) ≠ s(k)

a ) + 1
2µp

(A(y(k)) ≠ s(k)

a )2

(4.27)

where M(y(k)) and A(y(k)) are the pitching moment and area constraints

M(y(k)) = (c(k=1)

d /cm
targ

)(cm
targ

≠ cm(y(k))) (4.28)
A(y) = (c(k=1)

d /areatarg)(area(y(k)) ≠ areatarg) (4.29)

The terms c
(k=1)

d /areatarg and c
(k=1)

d /cm
targ

are added to scale the constraints to the
same magnitude as cd(y(k)) as well as keep the pitching moment constraint positive.
The Lagrange multiplier estimates for the pitching moment and area constraints
are initialized to 0 and their updates respectively are defined by

⁄(k+1)

m = max{⁄(k)

m ≠ M(y(k))
µ

(k)

p

, 0} (4.30)

⁄(k+1)

a = max{⁄(k)

a ≠ A(x)
µ

(k)

p

, 0} (4.31)

The relaxation variables for the area and pitching moment constraints sa and sm

are defined as

s(k)

m = max{M(y(k)) ≠ µp⁄(k)

m , 0} (4.32)
s(k)

a = max{A(y(k)) ≠ µp⁄(k)

a , 0} (4.33)

An initial value of the penalty parameter µp was chosen to keep the penalties at
the same order of magnitude as the objective function. Because M and A are small

µ(k=1)

p = 1
2

Ò
A(y(k=1))2 + M(y(k=1))2 (4.34)

At each iteration, the penalty function is estimated at the new ymean by esti-
mating the sensitivities and projecting the constraint violations at the new point
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through an estimate of the constraint sensitivities to the design variables.

dNi = y(k)

mean1̨T
‘ ≠ [y(k)

1

, y
(k)

2

· · · y(k)

‘ ]
dGj = [gj(y(k)

1

), gj(y(k)

2

)...gj(y(k)

‘ )] ≠ gj(y(k)

mean)̨1‘

dGj

dN
= (NT N)≠1NG

gj(y(k+1)

mean ) ¥ g(y(k)

mean) + [y(k+1)

mean ≠ y(k)

mean]dGj

dN

Here 1̨‘ is a vector of 1’s of length ‘. If the penalty is below a tolerance ·k, then
the multipliers ⁄a and ⁄m are re-evaluated to advance the solution. If the penalty
is above the tolerance, then the penalty parameter µp is decreased to coerce the
solution back into the feasible region. Either way, · is increased at each iteration.

The algorithm used for combining the CMA, CST, and augmented Lagrange
approach is inspired by the Evolian algorithm of Myung and Kim [84] and is as
follows:

Algorithm 1 CMA, Augmented Lagrange
1: Initalize parameters
2: while Not converged do
3: Generate sample population of design vectors y

1

, y
2

...y‘

4: for Each candidate yi do
5: evaluate L(yi)
6: end for
7: Sort population by L(y)
8: Weight and recombine y(k+1)

mean

9: Estimate constraint sensitivities
10: Project for new constraint violations at ymeank+1

11: if P (y(k+1)

mean ) < · then
12: Update ⁄

(k+1)

j

13: else
14: Decrease µ(k+1)

p

15: end if
16: Update evolution paths p‡, pc

17: Adapt covariance matrix C(k+1)

18: Update step size ‡(k+1)

19: end while
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Chapter 5 |
Results and Discussion

5.1 Baseline Rotor
The baseline rotor considered in this work was that of a UH-60A operating at
a gross weight of 16,000 lbs at a density altitude of 5250 ft. These conditions
correspond to a weight coe�cient of Cw = 0.0116 on the baseline rotor. To verify
the model, calculations made using ROTOR were compared with steady level flight
experimental data contained in Ref. [8]. The control positions required to trim the
rotor and the power required across a range of forward airspeeds are represented in
Figures 5.1 and 5.2, respectively, where the solid lines represent the calculations
made by ROTOR, and the unconnected points represent the experimental data in
Ref. [8].

At low advance ratios, there is a significant discrepancy between the model
and experimental results. This is in part due to di�culty in trimming the aircraft
at these airspeeds during the experimental data collection (Ref. [8]). Also, no
influences from rotor downwash on the airframe were included in the model. It
should also be noted that all solutions were run quasi-steady. No dynamic stall
model was used in this work, which can cause inaccuracies at high advance ratios.
Nevertheless, ROTOR supplies a reasonably accurate platform to comparatively
analyze the performance of the lift coe�cient correction and optimization routines.

To perform the calculations, airfoil performance tables were first generated
for the SC1095 and SC1094R8 airfoils using OVERFLOW 2.2i, following the
methodology laid out in Chapter 4. High angle-of-attack points were supplemented
by experimentally generated NACA0012 data as illustrated in Figures 5.3 - 5.5 for
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the SC1095 airfoil, where the gray regions highlight the supplemented NACA0012
data. Low angle-of-attack regime details for the SC1095 and SC1094R8 are shown
in Figures 5.6 - 5.8. All tables were constructed using a Reynolds number of 6 ◊ 106.

Figure 5.1: UH60 control inputs with varying airspeed, (Ref. [8]), Cw = 0.0116

Figure 5.2: UH60 main rotor power vs airspeed, (Ref. [8]), Cw = 0.0116
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Figure 5.3: Performance table lift coe�cient SC1095, Re = 6 ◊ 106

Figure 5.4: drag coe�cient SC1095 C81 table, Re = 6 ◊ 106
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Figure 5.5: Performance table pitching moment coe�cient SC1095, Re = 6 ◊ 106

(a) SC1095 (b) SC1094R8

Figure 5.6: Performance table lift curve slopes, Re = 6 ◊ 106
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(a) SC1095 (b) SC1094R8

Figure 5.7: Performance table drag coe�cient, Re = 6 ◊ 106

(a) SC1095 (b) SC1094R8

Figure 5.8: Performance table pitching moment coe�cient, Re = 6 ◊ 106

5.1.1 Lift Coe�cient Correction

To more accurately predict the maximum sectional lift coe�cient, a lift coe�cient
correction was applied to the performance tables using the methodology developed
in Chapter 3. The positive and negative stall regions were corrected independently
by evaluating the momentum thickness Reynolds number (Re”

2

) on the upper
and lower surfaces, respectively. Figures 5.9 and 5.10 show the trailing-edge Re”

2
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distribution across a range of angles-of-attack for the SC1095 upper and lower
surfaces. The momentum thickness Reynolds number generally increases past the
empirical criterion to a peak which roughly coincides with the CFD predicted stall.
As the separated region rapidly grows in the CFD solution, the airfoil stalls and
Re”

2

decreases as the airfoil moves into the post-stall regime. The momentum
thickness Reynolds number does not monotonically increase; which means that
it cannot be used on an isolated flow solution to determine if an airfoil should
be in the post-stall regime. Instead, the correction methodology must be used
contextually and is restricted as a post-processing step.

Figure 5.9: SC1095 lower surface trailing-edge Re”
2

, Re = 6 ◊ 106
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Figure 5.10: SC1095 upper surface trailing-edge Re”
2

, Re=6 ◊ 106

The corrected lift coe�cients are compared against experimental results from
Ref. [1] in Figure 5.11. The correction appears to be most e�ective at lower Mach
numbers (from 0.2 to 0.5). Perhaps most notable is that the the corrected low Mach
number solutions (Mach < 0.3) show an initial increase in maximum lift coe�cient
with increasing Mach number, following the same trend for the SC1094R8 as the
experimental data (Figure 5.11a), whereas the raw CFD values incorrectly over
predict the low-Mach number cl,max.

The CFD predictions are better able to predict cl,max in the transonic regime, as
stall becomes increasingly driven by compressibility e�ects and shockwave formation,
which mitigates the errors of RANS turbulence modeling.
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(a) SC1094R8 (b) SC1095

Figure 5.11: cl
max

correction comparison Re = 6 ◊ 106 (Ref. [1])

The raw lift slope and zero-lift angle for both the SC1095 and SC1094R8 agree
well with the experimental data collected by Ref. [1] (Figures 5.12 and 5.13),
which confirms the assumption that these values should remain unchanged through
the correction mapping. It should be noted, though, that high Mach number
experimental data are error-prone for two-dimensional cases as shock reflections
develop in the test section. Although the drag coe�cients were not modified in
this work, it can be seen in Figures 5.14 and 5.15 that the zero-lift drag coe�cients
(cd

0

) also agree reasonably well with experimental results.
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(a) SC1094R8

dCl
d– (b) SC1094R8 –0

Figure 5.12: SC1094R8 polar parameter comparison, Re = 6 ◊ 106 (Ref. [1])

(a) SC1095

dCl
d– (b) SC1095 –0

Figure 5.13: SC1095 polar parameter comparison, Re = 6 ◊ 106 (Ref. [1])
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Figure 5.14: SC1095 cd
0

comparison, Re = 6 ◊ 106 (Ref. [1])

Figure 5.15: SC1094R8 cd
0

comparison, Re = 6 ◊ 106 (Ref. [1])

5.1.1.1 Corrected Airfoil Performance

The influence of the lift coe�cient correction on rotor performance was investi-
gated. At the baseline gross weight, the correction has little impact on the overall
performance of the rotor as it operates mostly below the stall margin of the airfoils.
ROTOR was used to compute the Mach number and angle-of-attack combinations
experienced by the rotor for advance ratios of 0 Æ µ Æ 0.4. The ROTOR computed
values are compared against the stall boundary for the SC1095 and SC1094R8
airfoils as computed with OVERFLOW in Figures 5.16 and 5.17. These values
were calculated at 150 evenly spaced azimuth stations.

For the baseline case (Cw = 0.0116), neither of the airfoils experience angles-

70



of-attack beyond –c
l,max

. Tip sections with the SC1095 airfoil, however, do exceed
the negative stall boundary. This will be further explored during the optimization
routine, as this result implies increasing the negative stall margin at the rotor tip
and can help to increase performance at higher advance ratios.

Figure 5.16: Calculated Mach numbers and angles-of-attack for SC1095,
Re = 6 ◊ 106, 0 Æ µ Æ 0.4, Cw = 0.0116

Figure 5.17: Calculated Mach numbers and angles-of-attack for SC1094R8,
Re = 6 ◊ 106, 0 Æ µ Æ 0.4, Cw = 0.0116
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The influence of the lift coe�cient correction becomes most apparent when
analyzing the performance limitations of the rotor, particularly with regards to the
stall margin. Weight coe�cient versus the power coe�cient data for the UH-60A
baseline rotor in hover is plotted in Figure 5.18. The lift-corrected performance table
exhibits a maximum weight coe�cient of 6.8% lower than that of the uncorrected
table. This deficiency emphasizes the importance of the lift coe�cient correction,
particularly during rotor design. For the baseline case, this corresponds to an
1801-lb maximum take-o� weight deficit between the corrected and uncorrected
performance tables. Designing a rotor with an inaccurate lift coe�cient could lead
to an over-prediction of the rotorcraft’s performance, resulting in a final design
with a lower stall margin than intended.

Figure 5.18: Corrected performance table stall margin comparison in hover

5.2 Optimization
The airfoil shape was optimized using the genetic algorithm methodology described
in Chapter 4. A total of 6 design variables and a population size of 10 was used to
conduct the optimization. An advance ratio of µ = 0.30 was chosen to act as the
design point for the UH-60A baseline rotor. This advance ratio corresponds to a
forward airspeed of approximately 128.6 kts. For this optimization, only changes to
the the tip airfoil (SC1095) were considered between 0.85 Æ r

R
Æ 1.0. In order to
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locate an optimization point that would likely provide the largest decrease in power
required, a line search algorithm was employed to integrate the torque produced
by various Mach number and angle-of-attack combinations over the rotor disk.
Although the actual optimization was essentially a point optimization, the new
airfoil was assumed to have a lower drag coe�cient for points within 0.25 degrees
of the optimization angle, and Mach numbers within 0.025 of the design Mach
number. The target point for airfoil optimization was chosen to be a Mach number
of 0.80 and a lift coe�cient of -0.551, as this epicenter was determined to produce
the majority of the power required by the rotor at the design speed. At the design
speed, this region produces approximately 2.9% of the total rotor torque, however,
the actual a�ected region may be larger or smaller. The highlighted area in Figure
5.19 shows the region assumed to be benefited by the optimization at the design
airspeed.

Figure 5.19: Rotor torque distribution
baseline rotor, Cw = 0.0116, µ = 0.3

5.2.1 Single Point Design Optimization

Two optimizations were performed in order to cross-validate the optimum solution.
The first optimization used the SC1095 airfoil as a starting point. This optimization
acts as an interior method as the starting point was inside of the feasible region, ie.
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the design constraints were satisfied at the starting point. In order to verify the
results, a second optimization starting from a point exterior to the feasible region
was carried out. For the exterior design point, the starting airfoil was inverted so
that the pitching moment coe�cient constraint was not immediately satisfied at
the starting position. This allows for a validation of the resultant airfoil as well as
a validation of the constraint handling technique.

5.2.1.1 Convergence

The exterior point drag convergence experiences a very dramatic drag increase
as it attempts to balance the design constraint enforcement with the objective
function minimization. The interior starting point exhibits a much more monotonic
decrease towards its final optimum, except similar to the exterior starting point,
the drag coe�cient exhibits several oscillations as the design approaches the final
drag coe�cient value.

Figure 5.20: Single design point optimization drag convergence, cl = ≠0.551,
MŒ = 0.8, Re = 6 ◊ 106

This is partially due to the path-length control implemented in the CMA-ES
algorithm. When successive paths are in similar directions, the optimization path
length grows longer; when paths are in opposite directions, the search path length
decreases. This means that when the algorithm initially encounters an optimal
solution, it continues past the solution for a few steps. It then recognizes that the
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solution is getting worse and changes directions until it continues past the solution
again. As the path length decreases the oscillations dampen and the algorithm
begins to converge to a final solution. In a physical sense, this is analogous to the
optimizer having a momentum as it navigates the cost surface. This phenomenon
can be seen by analyzing the standard deviation (ie. path length) of the generated
population over the optimization process in Figure 5.21 where it is shown that
strong oscillations tend to occur near changes in path length size as the algorithm
changes direction on the cost surface.

It was also observed in this work that the early performance of the optimization
is subject to the initial choice of ‡. If this value is too large the routine has a
tendency to exhibit severe oscillations early on as the distribution ellipse only
contains information from a limited number of previous iterations.

It should also be noted that Figure 5.20 only represents the objective function
cd, and does not include the influence from the added penalty. The loss function,
with the inclusion of the penalty function, may exhibit fewer oscillations and appear
to decrease more monotonically than just the objective function. This needs to be
further explored, however, before any conclusion can be drawn.

Figure 5.21: Single design point optimization design variable standard deviation,
cl = ≠0.551, MŒ = 0.8, Re = 6 ◊ 106
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5.2.1.2 Optimized Airfoil Sectional Properties

The interior and exterior starting points appear to be approaching a similar final
shape and drag coe�cient; however, the design spaces are not completely inter-
changeable. Both airfoils have similar leading-edge radii, except that the interior
start pushed some of the thickness to the upper surface, while the exterior start
maintained the thickness on the lower surface. Neither of the starting points
completely converged to ‡ = 0, even though the drag coe�cients appear to have
significantly leveled o�. The interior point does exhibit significantly fewer oscilla-
tions so the performance evaluation will be completed using the airfoil resulting
from the interior optimization. The coordinates of the optimized airfoil are given
in the Appendix.

Figure 5.22: Single design point optimization resultant shape comparison,cl =
≠0.551, MŒ = 0.8, Re = 6 ◊ 106

Table 5.1: Single point optimization results, MŒ = 0.8,Re = 6 ◊ 106

Original Original Interior Exterior
Interior Exterior

Airfoil Area 0.0651 0.0651 0.06815 0.06542
cm 0.02173 0.0681 0.02082 0.0217
cl -0.551 -0.551 -0.551 -0.551
cd 0.0492 0.0415 0.0145 0.0136

The optimization routine attempted to move the low-drag region towards the
design point by changing the camber of the airfoil. The negative lift coe�cient
design point results in an airfoil with a negative camber. The drag polar for the
optimized airfoil at the design Mach number shows that the minimum drag location
has been shifted to a lower lift coe�cient. In addition, by flattening the lower
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surface and decreasing the leading-edge radius, the optimization routine was able to
delay the shock-wave formation and weaken its strength at the design lift coe�cient.
Both of these features can be seen in the surface pressure coe�cient shown in
Figure 5.23 and the Mach contours shown in Figure 5.24. The airfoil experiences a
lower flow acceleration around the leading edge due to its decreased radius. It also
sees the shock wave pushed back from around 0.55c to 0.64c, while the pressure
increase across the shock is also significantly reduced.

Figure 5.23: Single design point optimization surface pressure coe�cient comparison
(Interior Start), Re = 6 ◊ 106, cl = ≠0.551, MŒ = 0.8
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(a) original (b) optimized

Figure 5.24: Single design point optimization Mach number contour comparison
(Interior Start), Re = 6 ◊ 106, cl = ≠0.551

The optimized airfoil presents an almost global improvement in drag at the
design Mach number (Figure 5.25); however, the drag rise is much sharper than
the original airfoil, a quality that may cause large vibrations as the rotor passes
through the region. Also, the optimized airfoil shows slightly higher drag divergence
and shows a lower increase in drag at higher Mach numbers. Figure 5.26 shows the
change in the drag coe�cient at the zero-lift angle-of-attack for the original and
optimized airfoils.
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Figure 5.25: Single design point optimization drag polar comparison (Interior Start),
Re = 6 ◊ 106, MŒ = 0.8

Figure 5.26: Single design point optimization cd
0

comparison (Interior Start),
Re = 6 ◊ 106
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5.2.1.3 Optimized Airfoil Performance

The di�erence in the change in local rotor torque between the optimized and
original airfoils at the design speed is shown in Figure 5.27. Here, the optimized
airfoil was used to replace the outboard 8% of the rotor radius and a negative
value corresponds to a decrease in local torque. The resulting power required at
various airspeeds and gross weights are compared in Figure 5.28. The optimized tip
airfoil did not substantially change the trim state at the design speed, allowing the
airfoil to significantly reduce the torque on the advancing blade with a marginal
performance reduction of the inboard sections.

Figure 5.27: Di�erence in local rotor torque contours (T
optimized

- T
original

)
µ = 0.30, 8% optimized
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Figure 5.28: Single design point optimization blade profile power required, 8%
optimized

The Mach number and angle-of-attack combinations that are experienced by
the rotor tip airfoil are shown in Figure 5.29. At the design Mach number (0.8),
the stall margin has been expanded, and the rotor no longer experiences angles-of-
attack beyond negative stall. This allows the optimized rotor to delay the sharp
drag increase that comes with the stall and post-stall regimes, reducing the power
required in forward flight. The new tip airfoil reduces the required power by 5 ≠ 9%
depending on the gross weight. The ratio of the optimized to baseline power
required is shown in Figure 5.30 for various advance ratios. These values are based
on the rotor power required to overcome the rotor torque and do not include the
power required to overcome air-frame drag, as this is counted as parasitic power
and is not a�ected by rotor changes. Then the total main rotor power is reduced
by approximately 3.6
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Figure 5.29: Calculated Mach numbers and angles-of-attack for tip airfoil section,
Re = 6 ◊ 106, µ = 0.3, Cw = 0.0116

Figure 5.30: Single-point-optimization blade profile power ratio (C
P

optimized

C
P

baseline

)
with varying gross weight

The power required replacing various lengths of the rotor blade with the op-
timized airfoil section is compared in Figure 5.31. Replacing the outboard 5% of
the rotor blade provides very little increase in performance, and this is partially
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due to the twist distribution of the rotor blade. The UH-60A rotor blade sees a
sharp increase in twist (more negative) starting at 0.85R. The twist peaks at 0.92R

and decreases along the rest of the blade (See Figure 3.2). This causes the most
outboard portions of the rotor blade to experience more positive angles-of-attack
than at more inboard tip sections. The blade also has a 20 degree tip sweep that
begins at approximately 0.92R which reduces the e�ective Mach number of the
most outboard blade sections. Both of these factors limit the exposure of the most
outboard tip sections to the design point. Instead, most of the benefit is concen-
trated near 0.90 Æ r

R
Æ 0.95. Using the optimized airfoil on the outboard 15%

provides worse performance compared to the 8% results as the more inboard blade
sections operate at angles beyond the stall margin of the optimized airfoil section
for the Mach numbers experienced. However, at large advance ratios (µ Ø 0.40),
the 15% R results begin to perform better as further inboard sections begin to
experience higher Mach numbers, allowing them to benefit from the new airfoil.

Figure 5.31: Ratio of total power required for steady level forward flight (C
P

optimized

C
P

baseline

)
with optimized airfoil sections of varying length along blade span, Cw = 0.0116

As the gross weight increases, higher collective-pitch values are required to trim
the rotor, causing higher angles-of-attack across the blade, shifting the angle-of-
attack and Mach number pairs in Figure 5.29 upwards. For Mach numbers below
the design Mach number, the tip sections begin to operate beyond the positive
stall boundary, and the optimized rotor performance begins to degrade. This
e�ect can be seen in Figure 5.30 where the Cw = 0.0150 case begins to diverge at
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µ = 0.44 as the optimized rotor begins to stall. This can be further observed in
Figure 5.32 where replacing the last 5%, 8%, and 15% of the blade length with
the optimized airfoil section reduces the maximum weight coe�cient in hover by
0.60%, 2.21%, and 4.24%, respectively. Although the tip region itself is not a major
thrust source in hover, the stall of the blade tip dramatically increases drag and
therefore the power required by the rotor. In addition, the loss of lift at the blade
tip also requires the more inboard sections to operate at higher lift coe�cients to
compensate, which then feeds back and requires even higher collective-pitch inputs
and further aggravates the problem.

Figure 5.32: Single-point-optimization hover stall margin comparison
with optimized airfoil sections of varying length along blade span

5.2.2 Multi design point optimization

The airfoil resulting from the single design point optimization looks atypical. This
could potentially be the result of the optimization routine exploiting weaknesses in
the OVERFLOW solver and turbulence model at these conditions. It could also
potentially be a result of an over-optimization for the design point causing large
performance reductions at o�-design points. In order to soften the design point,
two multi-point clusters were used. A Mach number cluster was employed where
the objective function was computed as a weighted average between three design
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points spanning MŒ = 0.8 ± 0.05 as

cd(y) = 1
4cd

M=0.75

(y) + 1
2cd

MŒ=0.80

(y) + 1
4cd

MŒ=0.85

(y) (5.1)

A similar three-point lift coe�cient cluster was also conducted using a range of 0.1
ie.

cd(y) = 1
4cd

c

l

=≠0.501

(y) + 1
2cd

c

l

=≠0.551

(y) + 1
4cd

c

l

=≠0.601

(y) (5.2)

For both design clusters, the constraints were not averaged across the points.
Instead, they were evaluated at the original design point. Figure 5.33 shows the
drag convergence history of the clusters. The vertical axis represents the weighted
drag coe�cient represented by Equations (5.1) and (5.2). The clusters represent
di�erent design points, meaning that the optimization will converge towards di�erent
objective function minima even if the resulting shapes are very similar. The single
design point optimization and multi-point clusters all converged towards similar
shapes and results are for the most part indistinguishable (Figure 5.34). This
suggests that the resultant shape may be a valid global optimum.

Figure 5.33: Multi-point optimization drag convergence history, cl and Mach number
clusters, Re = 6 ◊ 106

85



Figure 5.34: Multi-point optimization resultant airfoil shape comparison, cl and
Mach number clusters, Re = 6 ◊ 106

Table 5.2: Multi- point optimization results, MŒ = 0.8,Re = 6 ◊ 106

Original Single-point Mach cluster cl cluster
(Interior)

Airfoil area 0.0651 0.0681 0.0658 0.0661
cm 0.0217 0.02082 0.0213 0.02081
cl -0.551 -0.551 -0.551 -0.551
cd 0.04908 0.0145 0.01478 0.0152
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Chapter 6 |
Conclusion

An airfoil shape optimization method was developed and implemented by using
the CMA-ES genetic algorithm to drive the OVERFLOW 2.2i CFD code. The
optimization design variables were prescribed through a CST-based airfoil param-
eterization using the orthogonal Legendre polynomials to form the basis modes.
The optimization was extended to rotorcraft applications by coupling a Python
framework with OVERFLOW to automate the generation of airfoil performance
tables. The generated performance tables were then supplied to a BEMT-based
analysis code known as ROTOR in order to simulate the UH-60A rotor used as the
baseline case in this work.

A multicollinearity investigation of the parameterization method was conducted
using the condition number. The Legendre polynomial basis modes showed signifi-
cantly better conditioning over the original Bernstein polynomials. An additional
completeness study was conducted where the ability of the parameterization to
describe a range of airfoils in the UIUC database was investigated. The Legendre
polynomials performed similarly compared to the original Bernstein polynomials
and were capable of representing a large number of airfoil shapes with a minimal
number of design variables.

The performance tables showed good agreement between the OVERFLOW
predictions and experimental results for the airfoils’ zero-lift angles-of-attack, lift-
curve slopes, and zero-lift drag coe�cients. The maximum lift coe�cient, however,
is known to often be over-predicted by CFD-based methods. To overcome this, a
cl,max criteria was developed based on the momentum thickness Reynolds number at
the airfoil trailing-edge. The criteria was then incorporated into a post-processing
correction routine, which acted as a scaling of cl,max, while maintaining –

0

, dc
l

d–
,
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and the stall characteristics. The criteria proved most accurate at lower Mach
numbers where stall prediction is more dependent on the accuracy of the underlying
turbulence model used in the solver. The influence of the correction routine was
investigated for the baseline rotor. During standard operating conditions, the
lift-corrected table presented little change in performance over the raw CFD results.
However, an investigation of the rotor performance during hover showed that the
lift-corrected table presented a substantial reduction in the rotor’s maximum weight
coe�cient, suggesting that a rotor designed using the raw CFD results could have
a lower stall margin than intended.

The optimization methodology was applied to the baseline rotor’s tip airfoil
(SC1095), with design constraints applied to the airfoil cross-sectional area and
pitching moment coe�cients using an augmented Lagrangian penalty function.
The penalty method was able to enforce the design constraints for both interior
and exterior starting points. Although the design spaces were not completely
interchangeable between the two starting points, the optimizer approached similar
final designs by reducing the leading-edge radius in an attempt to mitigate the
shock wave. The optimizer also shifted the airfoil’s camber, moving the low-drag
region towards the design lift coe�cient. The optimization routine was capable of
substantially reducing the airfoil’s drag at the design condition.

The e�ectiveness of the optimized airfoil was investigated by using the new
airfoil to replace the outboard 5-15% of the baseline rotor radius. At the design
Mach number, the increased stall margin of the new airfoil allowed the rotor to
mitigate the sharp increase in drag produced during the stall and post-stall regimes,
thereby reducing the required power in forward flight. At o�-design Mach numbers,
however, the optimized airfoil exhibited a lower stall margin, causing a reduction
in the rotorcraft’s maximum take-o� weight.

An additional multi-point optimization was conducted using a weighted Mach
number and lift coe�cient three-point cluster. The shape resulting from the interior
single design point optimization and multi-point clusters were nearly indistinguish-
able, suggesting that the resultant airfoil may be a valid global optimum.

Future Work
Although the Multicollinearity of the design matrices was investigated using the
condition index, it would be helpful to additionally demonstrate how the use
of orthogonal polynomials influences the optimization process. The CMA-ES
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algorithm inherently provides a metric for evaluating this, as the algorithm uses a
standard deviation variable to govern the size of the search ellipse when generating
candidate solutions. The orthogonal polynomials should cause the magnitude of the
standard deviation to be relatively insensitive to changes in design space dimensions
when compared to other parameterization methods.

In the future, a drag coe�cient correction should also be implemented into
the table generation routine. The prediction of drag is strongly correlated with
the lift coe�cient, particularly during the stall regime where the airfoil generally
experiences a large drag increase as a result of the formation and growth of the
separation region.

The airfoil optimization and table generation routines presented in this work
showed to be useful for the single design point investigated. This holds promise
that the technology developed can later be extended to multi-point optimization
loops, allowing for the modification of multiple airfoil sections along the blade span.
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Appendix A|
Example Input Files/File Format

A.1 C81 Table Format
Read/Write Format

-------------------------------------- -----------------
AIRFOIL_NAME ML,NL,MD,ND,MM,NM A30,6I2,6I2

M(1) ... ... M(ML) 7X,9F7.0
AL(1) CL(1,1) ... ... CL(1,NL) 10F7.0/(7X,9F7.0)
. . . .
. . . .
. . . .
AL(NL) CL(NL,1) ... ... CL(NL,ML) 10F7.0/(7X,9F7.0)

M(1) ... ... M(MD) 7X,9F7.0
AD(1) CD(1,1) ... ... CD(1,ND) 10F7.0/(7X,9F7.0)
. . . .
. . . .
. . . .
AD(ND) CD(ND,1) ... ... CD(ND,MD) 10F7.0/(7X,9F7.0)

M(1) ... ... M(MM) 7X,9F7.0
AM(1) CM(1,1) ... ... CM(1,NM) 10F7.0/(7X,9F7.0)
. . . .
. . . .
. . . .
AM(NM) CM(NM,1) ... ... CM(NM,MM) 10F7.0/(7X,9F7.0)

AL = Lift coefficient angles of attack
AD = Drag coefficient angles of attack
AM = Pitching moment coefficient angles of attack
ML = Number of lift coefficient Machs
NL = Number of lift coefficient alphas
MD = Number of drag coefficient Machs
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ND = Number of drag coefficient alphas
MM = Number of moment coefficient Machs
NM = Number of moment coefficient alphas

A.2 USURP Input File
0, 500, 500, -1, 0, 0 FSMACH,ALPHA,BETA,REY,GAMINF,TINF
1 NREF
1., 1.0, 0.25, 0., 0. REFL,REFA,XMC,YMC,ZMC

1 NSURF

1, 1 NSUB ,IREFS
1, 3, 1, -1, 1, -1, 1, 1 NG,IBDIR,JS,JE,KS,KE,LS,LE
0 NPRI

1 NCOMP

TARGET
1, 1 NIS,IREFC
1

A.3 HYPGEN Input File
grd.srf INPUT SURFACE GRID
grid.in OUTPUT VOLUME GRID
0 IFORM(0/1)
1, 1, 1 IZSTRT(1/2/-1),NZREG,KLAYER
129, 1e3, 4e-6, 0.0 NPZREG(),ZREG(),DZ0(),DZ1()
10, 10, 2, 2 IBCJA,IBCJB,IBCKA,IBCKB
1, 0.01, 5, 10 IVSPEC(1/2),EPSSS,ITSVOL,NSUB
2, 0.5 IMETH(0/2/3),SMU2
0.0, 0.0 TIMJ,TIMK
1, 0.3, 0.3 IAXIS(1/2),EXAXIS,VOLRES

A.4 OVERFLOW Input File
$GLOBAL

NSTEPS=14000, RESTRT=.F., NSAVE=500, NQT=302, FMG=.T., MULTIG=.T.,
NGLVL=2, FMGCYC=1000
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$END

$FLOINP
REY=6E6, TINF=518.7, ALPHA=0.0, FSMACH=0.4
$END

$VARGAM $END
$GRDNAM

NAME=’AIRFOIL’
$END

$NITERS $END
$METPRM

IRHS=4, ILHS=4, IDISS=4, ILIMIT=3
$END

$TIMACU
DT=0.1, ITIME=1, CFLMIN=5.0
$END

$SMOACU
DIS2=0.00, DIS4=.0, ISPEC=2, SMOO=1.0
$END

$VISINP
CFLT=1.0, VISC=.T.
$END

$BCINP
IBTYP= 5, 21, 47, 10,
IBDIR= 3, 2, -3, 1,
JBCS= 1, 1, 1, 1,
JBCE= -1, -1, -1, 1,
KBCS= 1, 1, 1, 1,
KBCE= -1, 1, -1, -1,
LBCS= 1, 1, -1, 1,
LBCE= 1, -1, -1, -1
$END

$SCEINP $END
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Appendix B|
Extended Results

B.1 Optimized Airfoil Coordinates
Upper Surface Lower Surface
x z x z

1.00000 0.00173 0.00000 0.00000
0.99986 0.00175 0.00021 -0.00097
0.99937 0.00184 0.00095 -0.00208
0.99854 0.00198 0.00220 -0.00319
0.99737 0.00218 0.00375 -0.00445
0.99404 0.00274 0.00780 -0.00733
0.99189 0.00310 0.01037 -0.00877
0.98942 0.00351 0.01332 -0.01017
0.98664 0.00396 0.01662 -0.01152
0.98356 0.00446 0.02026 -0.01278
0.98018 0.00500 0.02423 -0.01397
0.97252 0.00616 0.03308 -0.01627
0.96827 0.00680 0.03793 -0.01739
0.95898 0.00849 0.04850 -0.01941
0.94862 0.01042 0.06019 -0.02102
0.94305 0.01139 0.06642 -0.02170
0.93723 0.01239 0.07290 -0.02231
0.93115 0.01341 0.07962 -0.02286
0.91148 0.01649 0.10115 -0.02437
0.90446 0.01752 0.10876 -0.02487
0.89721 0.01856 0.11658 -0.02539
0.88975 0.01959 0.12460 -0.02591
0.88207 0.02061 0.13282 -0.02644
0.86610 0.02263 0.14982 -0.02751
0.84934 0.02459 0.16754 -0.02862
0.83184 0.02647 0.18594 -0.02976
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0.82282 0.02737 0.19538 -0.03035
0.81364 0.02825 0.20497 -0.03095
0.80429 0.02910 0.21471 -0.03156
0.77531 0.03146 0.24474 -0.03348
0.76536 0.03218 0.25501 -0.03415
0.75527 0.03286 0.26539 -0.03482
0.74506 0.03351 0.27590 -0.03552
0.73472 0.03412 0.28650 -0.03622
0.70300 0.03571 0.31892 -0.03839
0.68134 0.03657 0.34098 -0.03987
0.67037 0.03694 0.35212 -0.04061
0.65932 0.03727 0.36333 -0.04136
0.64818 0.03757 0.37461 -0.04210
0.63697 0.03783 0.38595 -0.04283
0.62570 0.03805 0.39734 -0.04357
0.61436 0.03824 0.40879 -0.04429
0.60297 0.03840 0.42027 -0.04500
0.56850 0.03870 0.45493 -0.04702
0.54534 0.03876 0.47816 -0.04825
0.53372 0.03877 0.48979 -0.04883
0.52209 0.03875 0.50143 -0.04937
0.49878 0.03866 0.52471 -0.05034
0.48713 0.03860 0.53633 -0.05076
0.47548 0.03853 0.54794 -0.05113
0.46384 0.03844 0.55953 -0.05146
0.44061 0.03825 0.58261 -0.05196
0.42903 0.03815 0.59410 -0.05212
0.41748 0.03805 0.60554 -0.05223
0.40597 0.03795 0.61693 -0.05227
0.38308 0.03774 0.63954 -0.05216
0.37172 0.03764 0.65075 -0.05201
0.34917 0.03746 0.67293 -0.05150
0.33800 0.03737 0.68390 -0.05115
0.32690 0.03729 0.69477 -0.05072
0.30496 0.03714 0.71623 -0.04966
0.27275 0.03695 0.74756 -0.04755
0.26223 0.03690 0.75776 -0.04672
0.25182 0.03684 0.76783 -0.04582
0.24152 0.03677 0.77776 -0.04486
0.23136 0.03668 0.78754 -0.04384
0.22132 0.03658 0.79717 -0.04277
0.21142 0.03645 0.80664 -0.04164
0.19205 0.03611 0.82509 -0.03923
0.17330 0.03565 0.84285 -0.03664
0.16417 0.03539 0.85146 -0.03529
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0.15520 0.03510 0.85987 -0.03390
0.14641 0.03479 0.86809 -0.03248
0.13781 0.03447 0.87611 -0.03104
0.12938 0.03412 0.88392 -0.02958
0.12116 0.03375 0.89152 -0.02810
0.11313 0.03333 0.89890 -0.02661
0.09029 0.03177 0.91970 -0.02213
0.08312 0.03112 0.92617 -0.02064
0.07619 0.03041 0.93240 -0.01916
0.06949 0.02962 0.93838 -0.01770
0.06304 0.02875 0.94411 -0.01626
0.04526 0.02553 0.95975 -0.01210
0.03991 0.02421 0.96443 -0.01080
0.03486 0.02277 0.96887 -0.00967
0.03013 0.02119 0.97306 -0.00868
0.02574 0.01949 0.97697 -0.00775
0.02169 0.01770 0.98058 -0.00685
0.01798 0.01584 0.98390 -0.00600
0.01462 0.01394 0.98692 -0.00522
0.00892 0.01020 0.99206 -0.00387
0.00657 0.00841 0.99416 -0.00331
0.00456 0.00669 0.99595 -0.00283
0.00288 0.00509 0.99742 -0.00243
0.00152 0.00362 0.99857 -0.00212
0.00057 0.00224 0.99938 -0.00190
0.00010 0.00099 1.00000 -0.00173
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