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ABSTRACT 

 

Affective prosody is defined as the paralingustic cues in the voice that convey emotions 

(Banse & Scherer, 1996). Before they are able to accurately label prosodies, infants and young 

children perceive and discriminate among them. It is likely that physical properties of the 

emotional environment, including affective prosodies, influence childrenôs developmental 

outcomes. Yet little is known about childrenôs neural processing of affective prosody cues as the 

majority of the neuroimaging studies examining the neural correlates of affective prosody 

processing has been conducted with adults, with the exception of a small body of literature on 

infants. Seeking to address this gap, this dissertation investigated neural processing of affective 

prosody in 6-to-10-year old children. It was hypothesized that affective prosody would be 

associated with effective connectivity among neural regions identified by two prominent 

neuroscience models.  Furthermore, it was hypothesized that affective prosody would modulate 

effective connectivity. To investigate these questions data from a study utilizing functional 

magnetic resonance imaging were examined using effective connectivity analyses and graph 

theory measures.  Results partially supported the hypotheses. At the group level, effective 

connectivity was observed only among regions identified by one of the neuroscience models. 

However, analyses revealed heterogeneity in effective connectivity at the individual level 

indicating that all regions were implicated in and functionally connected when children 

processed different prosodies. Moreover, analyses of graph theory metrics indicated that there 

were no differences in effective connectivity at the global network level, however there were 

differences in properties of specific nodes when children processed angry prosody relative to 

neutral prosody. These findings and implications for future studies are discussed.      
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INTRODUCTION  

The human voice is a salient feature of the auditory environment (Belin, Fecteau, & 

Bédard, 2004). Among other things, voices convey information about the emotional state of a 

speaker through nonlinguistic characteristics of speech referred to as affective prosody (Banse & 

Scherer, 1996). Accurately perceiving and interpreting these affective cues in the voice are 

critical for successful social interactions (Adolphs, 2002).  

Prior to understanding the semantic content of utterances, infants appear to perceive 

differences in affective prosody (Fernald, 1993; Walker-Andrews & Grolnick, 1983) and by 12 

months of age they appear to use prosodic cues to guide their actions (Vaish & Striano, 2004). 

As they age, behavioral research indicates that childrenôs abilities to accurately discriminate 

among basic affective prosodies improves, though the evidence is mixed regarding when and 

how these changes occur (Nelson & Russell, 2011; Sauter, Panattoni, & Happi, 2013). Despite 

this mixed evidence, results from behavioral studies indicate that early in life humans perceive 

and differentiate between prosodies and that differentiating between these vocal cues appears to 

be meaningful for children prior to their abilities to label them.  

It is likely that physical properties of the emotional environment, including expression of 

affective prosody, contributes to childrenôs development. Indeed, at the behavioral level, studies 

have shown that exposure to heightened anger is associated with childrenôs behavioral 

adjustment (Cummings & Davies, 2002). And even before behavioral outcomes are observed, 

exposure to an atypical emotional environment appears to influence childrenôs neural functioning 

(Graham, Fisher, & Pfeifer, 2013; Shackman, Shackman, & Pollak, 2007). For example, one 

study found that hearing very angry relative to neutral prosody was associated with greater 

activation in rostral anterior cingulate cortex (ACC), caudate nucleus, and hypothalamus in 
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sleeping infants but only in infants from homes with higher levels of maternal-rated interparental 

conflict (Graham et al., 2013).  

Despite preliminary evidence suggesting that the early environment may influence 

patterns of neural activation in response to affective prosody in young children, little is known 

about childrenôs neural processing of these cues as the majority of neuroimaging studies, with 

the exception of few infant studies, have been conducted with adults. As a result, there exists a 

notable gap in our understanding of neural processing of affective prosody between infancy and 

adulthood. Ultimately, documentation of neural processing of affective prosody will increase our 

understanding of how childrenôs early affective environments shape and influence neural 

processing of these cues. Thus, studies investigating the neural networks that support processing 

of affective prosody are necessary. To that end, the present study investigated affective prosody 

processing in typically developing 6-to 10-year old children. Two prominent neuroscience 

models guided this study.  The first model described affective prosody processing in speech as 

part of a larger language processing research program (Schirmer & Kotz, 2006) whereas the 

second model identified neural regions and networks that play a key role in the processing of 

social information (Adolphs, 1999).  It was proposed that regions identified by both models 

would be active when children heard affective prosody as these models were conceptualized as 

complementary, rather than competing.  

Finally, there is a growing emphasis in neuroscience away from 1:1 mapping of cortical 

regions to specific psychological functions and towards the investigation of patterns of 

connectivity among neural regions (Cicchetti & Dawson, 2002). Thus, the present study 

investigated effective connectivity, defined as the influence that one neural region exerts over 

another (Friston, 2011), when children heard various prosodies. Given mixed evidence regarding 
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whether or not specific affective prosodies differentially modulate neural activation and/or 

connectivity (Lindquist et al., 2010; Vytal & Hamann, 2010), this study assessed whether 

hearing angry, happy, and neutral prosodies was related to differential modulation in effective 

connectivity.  

Affective prosody and the early emotional environment   

What is affective prosody? Defined as the suprasegmental features of speech that 

convey emotional states (Banse & Scherer, 1996; Schirmer & Kotz, 2006; Scherer, 1989) 

affective prosody cues include the tempo, pitch, quality, and amplitude of the voice (Banse & 

Scherer, 1996). Emotional states influence phonatory and articulatory muscles in the throat and 

mouth resulting in distinct acoustic patterns (Scherer, 1989). For example, anger is related to 

increases in vocal pitch and intensity whereas sadness is related to decreases in pitch and 

intensity (Scherer, 1989).  In addition to conveying information about felt emotional states, 

affective prosody cues can also provide information about emotional states that feigned (Banse 

& Scherer, 1996). Moreover, these cues can capture attention and communicate information 

about the emotional state of a speaker even when an individual is not visually attending to a 

speaker (Shackman & Pollak, 2005) or is the intended recipient of such speech (e.g. a child hears 

a parent speaking in an angry voice to a sibling).  

Childrenôs early exposure to voices and affective prosody. That affective prosody 

need not be directed at an individual is an important factor when considering a childôs early 

emotional environment. Exposure to emotional expressions begins in the family (Dunsmore & 

Halberstadt, 1997: Montague & Walker-Andrews, 2002). Even before birth, a human fetus hears 

voices as the inner ear begins to transduce sound during the second trimester (for review see 

Saffran, Werker, & Werner, 2006). Studies of fetal heartbeat reactivity have shown that fetuses 
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recognize and prefer their motherôs voice to an unfamiliar femaleôs voice suggesting that they are 

familiar with this voice after recurrent exposures (DeCasper, Lecanuet, Busnel, Granier-Deferre, 

& Maugeais, 1994; Kisilevsky et al., 2003; Kisilevsky et al., 2009). After birth, behavioral 

studies show that neonates recognize and prefer the voices of their mother and father (DeCasper 

& Fifer, 1980; Ockleford, Vince, Layton, & Reader, 1988) as well as their own language relative 

to a nonnative language (Moon, Cooper & Fifer, 1993). These postnatal preferences are 

theorized to result from sensitivity to the prosodic characteristics of speech that they have heard 

repeatedly (Aguert, Laval, Lacroix, Gil, & Bigot, 2013).   

Across childhood, the voice is an important communicative tool for parents (Vaish & 

Striano, 2001). In infancy, parents use affective prosody cues to direct an infantôs attention and 

to communicate interest (Fernald, 1985; Fernald & Simon, 1984). Following infancy, the 

toddlerhood period is characterized by children asserting themselves in ways that at times 

conflict with parental rules or are unsafe for the child resulting in the need for parents to set 

limits and discipline their newly autonomous children (Brownell & Kopp, 2007).  These 

instances may result in parentôs use of prosodic cues (e.g. angry tone or raised voice) as a tool to 

admonish children with the hope that this prevents the behavior in the future.  

Though research on how parents use affective prosody as an associative tool for children 

is limited, it is evident that early in life infants and children are exposed to significant amounts of 

prosodic information. However these studies also reveal that infants and toddlers begin to use 

these prosodic cues to guide their own behaviors, we now present these results and discuss 

factors that may influence childrenôs abilities to correctly identify these cues.   

Childrenôs behavioral responses to and knowledge of affective prosody. By five 

months of age, infants appear to differentially respond to paralinguistic cues in mothersô infant-
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directed speech, as evidenced by infantsô displays of positive affect in response to approvals and 

more negative affect in response to prohibitions (Fernald, 1993). And by 12 months of age, 

infants appear to use nonverbal affective cues ï facial and/or vocal ï to guide their behavior 

(Feinman & Lewis, 1983; Walden & Ogan, 1988). For example, one study found that maternal 

fearful vocal expressions were more likely to inhibit 12-month-oldsô exploration of an 

ambiguous toy than did mothersô happy vocal and facial expressions. Moreover, maternal vocal 

fear was conveyed in meaningless utterances indicating that prosody, even without semantic 

information, influenced the degree to which infants approached the toy (Mumme et al., 1996). 

Additionally, in a series of studies, Repacholi and colleagues demonstrated that 18-month-olds 

were more hesitant to touch an object when an experimenter expressed negative vocal and facial 

emotions and words, particularly when they knew the experimenter could see them (Repacholi & 

Meltzoff, 2007; Repacholi, Meltzoff, & Olsen, 2008). Taken together, these results indicate that 

before they are able to speak, infants and toddlers differentiate among affective prosody cues and 

use these cues to inform their behaviors.  

While behavioral studies show that very young children perceive and use differences in 

prosody to guide and inhibit behaviors, children are not able to reliably label different affective 

prosodies. Instead, this skill continues to improve as children age (Aguert et al., 2013; Baltaxe, 

1991; Morton & Trehub, 2001; Sauter et al., 2013) though the evidence remains mixed regarding 

when children accurately label prosodies and how task conditions and demands influence these 

skills. It has been suggested that age-related improvements in these skills reflect decreasing 

reliance on semantic cues (Aguert et al., 2013; Morton & Trehub, 2001) as by age 10 children 

can accurately judge a speakerôs emotional state from paralinguistic cues even in the presence of 

incongruent emotional speech (Friend, 2000). 
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Addressing these findings, it has been proposed that semantic information may dominate 

childrenôs judgements about emotional communication. Consequently, as children are acquiring 

receptive language, it may be more difficult to integrate conflicting pieces of information (Friend 

& Bryant, 2000). This difficulty is likely related to childrenôs executive functioning, defined as 

the higher order cognitive abilities that assist in goal-directed behaviors such as selective 

attention and mental flexibility (Zelazo et al., 2003). This theory helps to explain why children 

show difficulties interpreting conflicting affective cues while, paradoxically, studies have 

demonstrated that preschoolers accurately discriminate among basic affective prosodies in less 

demanding tasks, such as when speech that has been low-pass filtered or is spoken in a foreign 

language, (Baltaxe, 1991; Morton, Trehub, & Zelazo, 2003) and in the context of semantically 

neutral speech (Morton & Trehub, 2001).    

Affective prosody processing at the neural level. Overall, there is significant evidence 

from the behavioral literature to suggest that early in life, children perceive, differentiate among, 

and use basic affective prosody cues.  Furthermore, this work reveals that over time what 

improves as a result of cognitive maturation are childrenôs abilities to correctly interpret affective 

prosody cues when they are spoken with conflicting and/or ambiguous semantic content. It 

follows then that at the neural level, before children are able to articulate the label or meaning of 

affective prosody, these cues are differentiated. Thus, hearing different affective prosodies 

should be related to differences in neural activation or interregional connectivity in young 

children. And, in fact, there is evidence to support this hypothesis as neuroimaging studies have 

demonstrated that as early as 7-months of age, differences in patterns of neural activation are 

observable when infants hear different prosodies (Blasi et al., 2011; Grossman, Striano, & 

Friederici, 2005).  
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In addition to findings from neuroimaging studies suggesting that early in life affective 

prosodies are differentiated at the neural level, there is preliminary evidence that the early 

emotional environment may influence this processing. It is well-documented that early 

experiences influence human development across multiple levels of functioning (Fox & Rutter, 

2010) through continuous interactions between genes and the environment as experiences 

facilitate, maintain, and/or induce changes in achieved anatomical, physiological and behavioral 

states (Gottlieb, 1992).  Across different homes, children are exposed to variability in emotional 

expression as parents differ in their levels of warmth and hostility as well as in the level of 

conflict in the marital relationship (Cummings, Davies, & Simpson, 1994; Katz & Gottman, 

2009; Morris et al., 2002; Reuben et al., 2015). At the behavioral level, exposure to marital 

conflict is associated with differences in behavioral responses to angry incidents in the home in 

children as young as 1 to 2-years of age (Cummings, Zahn-Waxler, Radke-Yarrow, 1981).  And 

as already mentioned, a neuroimaging study with infants found that exposure to interparental 

fighting was associated with differences in infantsô processing of very angry voices (Graham et 

al., 2013). Though replication of findings are necessary, this study suggested that the emotional 

environment was associated with differences in neural processing of angry prosody early in 

development.  

 In sum, there is evidence that exposure to atypical emotional environments influence 

childrenôs development across multiple levels. Yet if and how exposure to atypical affective 

prosody (e.g. high levels of anger) is related to these differences has not been isolated within 

studies examining the influence of the early environment on childrenôs development. Though not 

a study of the environmentsô influence on affective prosody processing, the present study sought 

to begin addressing this question by examining response patterns in a neural network that was 
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active when typically-developing children heard angry, happy, and neutral prosodies. This work 

was guided by two leading neuroscience models discussed below.  

Cognitive and social neuroscience models of neural processing of affective information   

The two leading models that have organized affective prosody processing research 

emerged from the fields of cognitive neuroscience and social neuroscience. As each model 

provided key insights into the neural regions and network that are active when humans perceive 

and process affective prosody they were conceptualized as complementary. The strengths and 

limitations of each model as well as their implications for our understanding of affective prosody 

processing are discussed below.  

Cognitive neuroscience model. The cognitive neuroscience model was proposed by 

Schirmer and Kotz (2006) to integrate conflicting findings from neuroimaging studies of 

lateralization in vocal emotional processing. This model proposed that affective prosody 

processing occurs across three stages. First, a stimulus is perceived and acoustic cues are 

processed in bilateral auditory cortex.  Second, acoustic cues that convey emotional information 

are processed along a pathway from bilateral superior temporal gyrus (STG) to superior temporal 

sulcus (STS). Third, higher-order cognitive processing of emotional information occurs in 

inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC). It is in the final stage of the cognitive 

neuroscience model, in these higher order processing regions, that emotions in the voice and 

verbal information are integrated thereby enabling evaluative judgments about emotional 

information and congruous/incongruous information (Schirmer & Kotz, 2006).  

Significant support for the cognitive neuroscience model exists in the neuroimaging 

literature. Cognitive neuroscience research using fMRI, which has mainly involved adult 

participants, has established that regions in the temporal cortex, including STG, STS, and the 



9 
 

medial temporal gyrus (MTG) are sensitive to the human voice (Belin, Zatorre, Lafaille, Ahad, & 

Pike, 2000; Mitchell, Elliot, Barry, Cruttenden, & Woodruff, 2003; Wildgruber , Ethofer, 

Kreifelts, & Grandjean, 2008). Further, multiple studies have found affective prosody processing 

engages a fronto-temporal network that includes frontal regions such as IFG and OFC (Bach, 

Grandjean, Sander, Hardener, Strik, & Seifritz, 2008; Buchanan et al., 2000; Frühholz & 

Grandjean, 2012; Ethofer et al., 2006a; Leitman et al., 2010; Wildgruber et al., 2008).  

There is also evidence that neural regions identified by the cognitive neuroscience model 

are active when infants hear affective prosodies. Infant studies have used various neuroimaging 

methods, including MRI, electroencephalography (EEG), and near infrared spectroscopy (NIRS), 

and have provided evidence for a specialization for voice processing in frontal and temporal 

regions similar to those seen in adults in infants as young as 7 month of age (Blasi et al., 2011; 

Grossman, Oberecker, Koch, & Friederici, 2010).  Results from these studies also suggest that 

these regions differentiate among affective prosodies early in life (Blasi et al., 2011; Cheng, Lee, 

Chen, Wang, & Decety, 2012; Grossman et al., 2005). For example, using event related 

potentials (ERP), Grossman and colleagues (2005) found that 7-month-old infants showed 

positive slow waves over temporal electrodes for both happy and angry prosodies but not for 

neutral. And an MRI study found that sad vocalizations compared to neutral modulated 

activation in OFC and insula in 3- through 7-month-olds (Blasi et al., 2011).   

In addition to those regions identified by the cognitive neuroscience model, adult 

neuroimaging studies have also shown that perceiving and processing affective prosody is 

associated with significant activation in subcortical regions including the basal ganglia (e.g. 

putamen, caudate nucleus, nucleus accumbens; Bach et al., 2008; Morris, Scott & Dolan, 1999), 

ACC, insula (Bach et al., 2008; Johnstone et al., 2006), cuneus and precuneus (Leitman et al., 
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2010; Mitchell et al., 2003; Sander et al., 2005). Furthermore, these studies reveal the complexity 

of this processing as activation in response to affective prosody is modulated by task demands 

(Bach et al., 2008; Frühholz, Ceravolo, & Grandjean, 2011; Mitchell et al., 2003; Sander et al., 

2005), stimuli salience (Leitman et al., 2010), emotional intensity (Ethofer et al., 2006a), and the 

number of stimulus presentations (Wiethoff, Wildgruber, Grodd, & Ethofer, 2009). Finally, 

variations in activation are not solely structure-specific. A meta-analysis revealed a widespread 

network of superior temporal cortex regions that were responsive to affective prosody but found 

that stimulus factors including attentional focus, valence, and paraverbal versus nonverbal 

expressions influenced functional connections among temporal and frontal regions (Frühholz & 

Grandjean, 2012). 

In sum, there is ample support that perceiving and processing affective prosody is related 

to activation in temporal and frontal regions identified by the cognitive neuroscience model.  

However, evidence also suggests that there are additional regions in the underlying neural 

architecture that supports this processing. Furthermore, though the cognitive neuroscience model 

proposes that lower order regions encode information and project to higher order processing 

regions, there is no articulation of if and how various affective prosodies may modulate 

connection presence, strength, or direction. Based on these limitations, a social neuroscience 

model was also reviewed. It was proposed that this additional model would augment the 

understanding of affective prosody processing provided by the first model.  

Social neuroscience model. The social neuroscience model was originally proposed as a 

discrete set of brain structures whose activity enabled humans to make inferences about the 

intensions, thoughts, and feelings of others (Adolphs, 2009; Brothers, 1990). Originally, this 

model included STG, OFC, the amygdala, the temporal poles, and the temporo-parietal junction 
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(TPJ) (Brothers, 1990). Since then, neuroimaging studies have identified additional neural 

regions that support social cognitive processes including ventromedial prefrontal cortex 

(vmPFC), paracingulate cortex, insula, and the fusiform face area (FFA). As a result, the social 

brain model now proposes that this widespread network of cortical and subcortical regions 

interact to enable a diverse set of social cognitive processes including characterizing, 

understanding, and flexibly responding to social cues (Adolphs, 1999; Blakemore, 2008; 

Kennedy & Adolphs, 2012; Lieberman, 2007).  

Research stimulated by this model guided the present study in two ways. First, this model 

identified neural regions that likely support childrenôs processing of affective prosody and that 

were not included in the cognitive neuroscience model. One area of research that contributed to 

the theory that specific neural regions are critical for social cognition has been the study of how 

brain lesions are related to deficits in social and emotional tasks (Adolphs, 1999). These studies 

have shown that lesions in the right insula, and right frontal and temporal pole cortices are 

associated with lower recognition scores on emotional prosody rating tasks (Adolphs, Damasio, 

& Tranel, 2002), that lesions in bilateral amygdalae are associated with impaired recognition of 

anger and fearful prosody (Scott et al., 1997), that lesions in the basal ganglia and insula are most 

frequently seen in aprosodic syndromes (Cancelliere & Kertesz, 1990), and that lesions in left 

basal ganglia are associated with impaired evaluation of emotional prosody (Paulmann, Pell, & 

Kotz, 2008). Finally, patients with ventromedial prefrontal cortex (vmPFC) damage show 

difficulties interpreting complex social information (Beer et al., 2003), reductions in empathy for 

others (Shamay-Tsoory, Tomer, Berger, & Aharon-Peretz, 2005), and deficits in theory of mind 

tasks (Leopold et al., 2012; Shamay-Tsoory et al., 2005). This last finding is particularly relevant 

to the current study as theory of mind refers to the abilities that enable representations of oneôs 
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own and anotherôs mental state and in predicting the emotions and behaviors of others (Adolphs, 

2009; Frith & Frith, 2001).  In sum, lesion studies have provided evidence that social brain 

regions including the insula, temporal poles, basal ganglia, and vmPFC are important for 

accurately interpreting emotional cues and states. Thus it is highly probable then that these 

regions are important for accurately interpreting affective prosody cues.  

In addition to identifying neural regions that likely support affective prosody processing 

in children, a major contribution of research stimulated by the social neuroscience model, 

particularly for the present study, has been the focus on investigating how individual differences 

in neural connectivity are associated with deficits in social cognition. This work has primarily 

been conducted with individuals with Autism Spectrum Disorder (ASD), a neurodevelopmental 

disorder associated with deficits in social communication and cognition (Adolphs, 1999). It has 

been theorized that atypical neural connectivity is associated with social cognitive deficits 

observed in individuals with ASD. Interestingly, results from these studies have been mixed with 

evidence of both functional hyperconnectivity across multiple brain subsystems (Delmonte, 

Gallagher, OôHanlon, McGrath, & Balsters, 2013; Supekar et al., 2013) and selective decreases 

in connectivity among limbic-related brain regions (e.g. vmPFC, left amygdala, regions within 

temporal cortex (Gotts et al., 2012; DiMartino et al., 2009). Though more work is necessary to 

further clarify the ontogeny of these aberrant neural systems in individuals with ASD, this 

research program provides evidence that atypical interregional connectivity among social brain 

regions are associated with social cognitive deficits. Thus, it is likely that typical variability in 

connectivity among these regions supports processing of social and emotional cues; this fact, in 

conjunction with study findings discussed, highlights the importance of documenting both 

typical and atypical development of neural networks.     
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In sum, research stimulated by the social neuroscience model provided insight into 

cortical and subcortical neural regions that are likely involved in the processing of affective 

prosody. Moreover, research stimulated by this model, which has increasingly focused on 

documenting typical and atypical development of neural systems, has increased our 

understanding of how differences in functioning in these systems is related to social cognitive 

deficits.  As a result of the contributions of the cognitive and social neuroscience models, these 

models were not conceptualized as competing, but, rather as complementary. To that end, the 

present study predicted that hearing angry, happy, and neutral prosodies would be related to 

activation within regions identified by both of these models. Additionally, it was also expected 

that hearing affective prosody would be associated with functional coupling among these 

regions. To test this theory, connectivity analyses were conducted as these methods allow for 

characterization of the functional relations between regions within a network. These methods, 

and the specific hypothesis about the affective prosody processing network, are now discussed. 

Connectivity analyses for fMRI data  

It is well documented that the brain is a dynamic system comprised of segregated cortical 

regions that are anatomically and functionally connected (Rubinov & Sporns, 2010; Smith, 2012; 

Van Den Heuvel & Pol, 2010). Advances in data analytic techniques for neuroimaging data 

within the past two decades have improved our abilities to study multiple levels of connectivity 

thereby permitting us to answer questions about the topology of brain networks (Minati, Varotto, 

DôIncerti, Panziva, & Chan, 2013; Sporns, 2011). Briefly, there exist three different types of 

connectivity (structural, functional, and effective) and though these terms have at times been 

used interchangeably in the neuroimaging literature, they provide unique information about 

neural architecture and function (Friston, 2011). Structural connectivity refers to the anatomical 
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connections (axons) between segregated brain regions (Rubinov & Sporns, 2010; Sporns, 2011) 

whereas functional connectivity refers to the temporal co-activation of cortically segregated 

regions (Friston, 1994; Friston, 2011; Poldrack et al., 2011). Based on Hebbian learning theory 

(Hebb, 1949), which has been simplified to the idiom ñneurons that fire together, wire togetherò 

(Keysers & Perrett, 2004), functional connectivity methods infer dependencies based on 

correlations between changes in the blood oxygenation level-dependent (BOLD) signal in 

discrete neural regions obtained from fMRI data (Friston, 2011; Jolles, Van Buchem, Crone, & 

Rombouts, 2011). 

 Functional connections among neural regions give rise to and support complex thoughts 

and behaviors (Friston, 2011; Goldenberg & Galván, 2015; Stephan, Li, Iglesias, & Friston, 

2015). These connections, though constrained by anatomical connectivity, are dynamic and 

variable (Sporns, 2012) and are ñchanging on time scales of milliseconds and in ways that reflect 

changing patterns of endogenous or stimulus-driven processing (Sporns, 2011, p. 2). Yet 

functional connectivity is limited in that it does not characterize the causal influence of activation 

in one region on another (Poldrack et al., 2011). To address this limitation, analytic methods 

were created to examine effective connectivity, which refers to the direct and indirect influences 

that one neural region exerts over another (Goldenberg & Galván, 2015; Rubinov & Sporns, 

2010). Both dynamic and task-dependent, effective connectivity reveals the changing functional 

architecture among regions in a network as a result of experimental manipulations (Friston, 

2011; Goldenberg & Galván, 2015). 

 Effective connectivity methods. Multiple data analytic approaches for studying effective 

connectivity exist. One of the most frequently used methods, dynamic causal modeling (DCM), 

was developed to be a biologically plausible model for fMRI data (Scherf, 2015). This method 
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compares numerous models within the same data using Bayesian model comparison (Friston, 

2011). DCM is limited, however, as it is a confirmatory approach that restricts the number of 

nodes that can be included within a model (Smith, 2012) and that requires that connections 

within the network are specified a priori to model selection (Poldrack et al., 2011).  Furthermore, 

DCM does not provide information about contemporaneous connections between regions as this 

method was designed to model lagged connections (Friston, Harrison, & Penny, 2003; Smith, 

2012).  

 Other effective connectivity methods, such as path analyses approaches like structural 

equation modeling (SEM), address these limitations. SEM models contemporaneous relations 

among BOLD signals as well as the directional relations between regions; however, this method 

is not exhaustive and therefore does not search for all possible network connections (Gates, 

Molenaar, Hilary, & Slobounov, 2011). Furthermore, SEM assumes statistical independence of 

observations, an assumption that cannot be made with fMRI time-series data (Kim, Zhu, Chang, 

Bentler, & Ernst, 2007). To address the issue of dependence in time-series data unified SEM 

(uSEM) was developed. This method is a two-step algorithm that analyzes multivariate times-

series data for individual subjects and models both contemporaneous and longitudinal relations 

among regions (Kim et al., 2007). Longitudinal relations were defined as connections that exist 

between brain regions at different time points (Kim et al., 2007). To further develop this method, 

the extended unified SEM method was proposed (euSEM; Gates et al., 2011). EuSEM added to 

uSEMôs ability to model lagged and contemporaneous connections in fMRI data by estimating 

the effect of experimental manipulations on the BOLD signal and connectivity among regions 

(Gates et al., 2011).   
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Most recently, Gates and colleagues proposed the Group Iterative Multiple Model 

Estimation (GIMME) method. GIMME is a data driven analytic approach that estimates both 

uSEM and euSEM. This approach models lagged and contemporaneous directional connections 

without a priori specifications about these components at both the group and individual subject 

levels (Gates & Molenaar, 2012). This is accomplished across multiple steps. In the first step, the 

best fitting group model is identified. Beginning with a null model, an iterative procedure adds 

and removes parameters. Based on Lagrange modification indices, pathways are freed at the 

group level if they improve model fit for a specified number of subjects (Gates & Molenaar, 

2012; Hilary, Medaglia, Gates, Molenaar, & Good, 2014).  All potential pathways are examined 

and evaluated for whether or not they improve the model fit for the majority of subjects and 

pruned it they do not. Once the best fitting group model is identified, individual models are 

conducted for each subject. Beginning with the group model, pathways are freed and significant 

and nonsignificant pathways for that subject are opened or trimmed respectively (Gates & 

Molenaar, 2012). 

Effective connectivity with children. The GIMME approach is particularly well-suited 

for neuroimaging studies with children as it examines connectivity at both the group and 

individual subject level. Across the lifespan, both gray and white matter densities in the brain 

undergo extensive and heterogeneous changes as a result of processes such as synapse formation, 

pruning, and myelination and neuronal migration (Belsky & de Haan, 2011; Collin & Van Den 

Heuvel, 2013; Giedd et al., 1999; Sowell et al., 2003). Across development interregional neural 

systems become increasingly complex as a result of interactions between biological and 

environmental factors (Goldenberg & Galván, 2015; Menon, 2013).  
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Changes in network complexity occur at the structural level, however both functional and 

effective connectivity also show age-related changes. In a seminal study of the development of 

neural networks, Supekar and colleagues (2009) showed that though the global functional 

architecture of childrenôs brain and many of the gross measures of network topology were 

similar to those in adults by the time children were 7 years of age, children showed ñsignificantly 

weaker connectivity between paralimbic, association, and limbic areasò compared to adults 

(Supekar et al., 2009, p. 9). A subsequent study found that three prominent independent 

functional networks were identifiable in children as young as two years of age but that children 

showed weaker functional connectivity among regions. Furthermore, across development into 

young adulthood there were considerable changes in connectivity strength and node distribution 

(for review see Menon, 2013). Similar to findings of functional connectivity, studies 

investigating effective connectivity have also shown differences in children and adults. For 

example, Hwang and colleagues (2010) found that effective connectivity strength was greater in 

adults relative to children in a network believed to underlie inhibitory control. Moreover, two 

separate studies found evidence suggesting a continuous neural tuning of effective connectivity 

in the core face processing network (He et al., 2015; Kadosh, Kadosh, Dick, & Johnson, 2016). 

These results reveal a developmental reconfiguration and refinement of neural networks which 

likely reflects the continuous interactions and contributions of both brain maturation and 

experiences (Cicchetti & Dawson, 2002; Gottlieb & Halpern, 2002).  

In sum, there is evidence to suggest that there may exist differences in the functional 

properties of the network that supports affective prosody processing not only across development 

but within a sample of children of different ages.  Indeed, one of the studies described above 

found significant variability in 3- to 6-year olds effective connectivity in the face processing 
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network resulting in the best fitting model only characterizing 47% of their sample (He et al., 

2015). Unfortunately the extant neuroimaging literature on affective prosody processing has been 

conducted primarily with adults. Though the present study did not evaluate developmental 

changes in connectivity as data were only collected from children, this study took two important 

steps in furthering our understanding of normative variability in connectivity during affective 

prosody processing in children. First, informed by previous findings of heterogeneity in 

connectivity across children, this study utilized a method that is sensitive to individual 

differences. By modeling effective connectivity at the group and individual subject levels, the 

GIMME method permitted the documentation of normative variability in connectivity in the 

neural network examined. Secondly, the present study investigated connectivity in a sample of 

typically developing children. Neuroimaging studies with typically children have the potential to 

provide a fuller understanding of the full range of typical variability in neural processing and 

connectivity (Cuthbert & Insel, 2012). Ultimately fuller documentation of this variability and the 

development of the functional architecture of the brain can improve our understanding of when 

and how pathological processes develop (Cuthbert & Insel, 2012).  

Neural differentiation among affective prosodies  

Finally, there exists an ongoing debate in the emotion processing and neuroimaging 

literatures as to whether or not different emotions have discrete physiological and neural 

correlates (Vytal & Hamann, 2010). On one side of this argument, it has been proposed that 

basic emotions are produced by activity within specific neural regions (Ekman, 1999) or similar 

underlying neural networks (Izard, 2009).  In contrast, the psychological constructionist 

approach argues that different emotional states, cognition, and perceptions are ñnot respected by 

the brainò but, rather, that they emerge from the meaning that individuals make out of sensory 
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information based on their environment and previous experiences (Lindquist et al., 2010). The 

evidence is contradictory as to whether or not different emotions are processed in discrete neural 

locations.  For example, one meta-analysis found that experiencing and processing different 

emotions (fear, anger, sadness, disgust, and happiness) was correlated with significant activation 

in specific neural regions (Vytal & Hamann, 2010). The authors argued that these findings 

supported Ekmanôs discrete emotion theory. However, these findings may have been impacted 

by the inclusion of studies with a wide range of emotional tasks and experimental paradigms 

(e.g. viewing facial expressions & emotional pictures, hearing emotional voices; Vytal & 

Hamann, 2010). In contrast, another meta-analysis found no evidence for the discrete emotion 

theory, rather findings suggested that there existed a set of neural regions that were important for 

and interacted with one another to engender emotions, cognitions, and perception (Lindquist et 

al., 2010).  

Evidence from the affective prosody processing literature is also complex as studies have 

found evidence that various affective prosodies are related to increases in activation in specific 

neural regions and differences in network connectivity patterns. For example, greater activation 

in middle STS (Grandjean et al., 2005) and bilateral STG, insula, OFC, IFG, and the amygdala 

has been observed for angry relative to neutral prosody (Ethofer et al., 2009). However, 

activation in OFC was more pronounced during the first exposure indicating that this region may 

actually be modulated by novel emotional stimuli (Ethofer et al., 2009).  Yet another study found 

increased activation in the OFC when subjects were attending to angry prosody explicitly; 

increased activation in the right amygdala and bilateral mSTC were seen for angry>neutral 

irrespective of attention (Sander et al., 2005).  With respect to happy prosody, greater activation 

has been observed in right mid STG for happy>neutral and in aMTG, pMTG, and rIFG for 
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happy>angry prosody (Johnstone et al., 2006). Similarly, a study using event related potential 

(ERP) found that the N3 amplitude was greater in frontal electrode sites in adults for happy 

compared to angry suggesting greater effortful processing of happy prosody (Iredale, Rushby, 

McDonald, Dimovska-DiMarco, & Swift, 2013).   

At the network level, studies of effective connectivity during affective prosody 

processing in adults exist. Using DCM, the first study showed that the best-fitting model of the 

network that supported judging affective prosody was one in which right posterior temporal 

cortex served as the input region and projected activation to bilateral inferior frontal cortex 

(Ethofer et al., 2006b). A follow up study revealed that activity in the mid STG was modulated 

by hearing affective prosody and that an emotional voice area could be identified within this 

region (Ethofer et al., 2011). Using the PPI approach, this study found that hearing affective 

prosody enhanced the connections of this emotional voice area with a network of regions 

including bilateral posterior thalamus, left middle frontal gyrus, right putamen, and right 

cerebellum suggesting that relative to neutral voices (Ethofer et al., 2011).  

Taken together, there is evidence that hearing emotional voices may enhance functional 

coupling between a widely distributed network of neural regions. Building on this work, the 

present study investigated effective connectivity during affective prosody processing in a 

network of regions identified by the two neuroscience models explicated above. This work was 

largely exploratory due to the limited number of studies that have examined connectivity in the 

affective prosody processing literature, however, based on findings from the study conducted by 

Ethofer and colleagues (2011) and the behavioral literature reviewed suggesting that children 

differentiate among affective prosodies, it was hypothesized that the three prosodies that children 

heard (happy, angry, and neutral) would differentially modulate effective connectivity.  
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The present study. The present sought to address a gap in the neuroimaging literature as, 

to date, there exist no studies of childrenôs affective prosody processing. This dissertation had 

two specific aims. Using the Group Iterative Multiple Model Estimation (GIMME) approach, the 

first aim was to investigate effective connectivity within a network of cortical and subcortical 

neural regions when typically developing 6-to-10 year old children heard happy, angry, and 

neutral prosodies. It was hypothesized that this network would include neural regions identified 

by a cognitive neuroscience model and a social neuroscience model as it was proposed that these 

are complementary rather than competing models. The GIMME analytic method for modeling 

effective connectivity was utilized in the present study as this method permits examination of 

effective connectivity at both the group and individual subject level and may thus be sensitive to 

individual differences in connectivity across children.  

The second aim of this dissertation was to examine whether different affective prosodies 

(e.g. angry, happy, neutral) significantly modulated effective connectivity within this identified 

network. Differences in effective connectivity were quantified both by testing for significant 

differences in the strength of connections between neural regions and in differences in global and 

nodal network properties across affective prosody conditions. There is conflicting evidence from 

the neuroscience literature regarding whether or not processing different affective prosodies 

should result in differences in neural activation or connectivity.  However, evidence from 

behavioral studies reveals that as early as infancy, children are differentiating among and using 

affective cues to inform their behaviors. There is therefore a basis to hypothesize that at the 

neural level hearing different affective prosodies may modulate effective connectivity. Thus this 

study was built on solid theoretical foundation and was exploratory in nature.     
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METHOD  

Participants 

 Data for this dissertation were taken from the Processing Emotions in the Environment 

Project (PEEP). Families with a child between the ages of 6y, 0m to 10y, 11m were identified 

through a community database maintained by The Pennsylvania State University Child Study 

Center.  Additional criteria for inclusion (not recruiting) were that the children spoke and 

understood English, and had no condition that would preclude them participating in a scanning 

visit. Exclusionary criteria included the presence of medical devices that would make scanning 

unsafe and/or that the child did not understand English. As a result of this recruitment strategy, 

40 families initially enrolled in the study. Of these, imaging data were collected from 32 children 

as three children declined to participate, three stopped participating during scanning, and two 

were excluded due to screening procedures.  

Of the 32 children who participated in scanning, data from five children could not be 

used due to experimenter error. As a result, 27 children provided neuroimaging data. There were 

no significant differences in age, t(38) = -.107, p = .92, or gender t(38) = 1.47, p = .15, between 

children who provided imaging data and those who did not.   

The average age of the 27 children (15 female) who completed a scanning visit was 

95.00m (SD = 15.57, range = 72 ï 123m). Children were identified by their mothers as 

Caucasian (n=23, 85.20%) or biracial (n=4, 14.80%). Average family income was $83,407.41 

(SD = $39,252.89, range = $8,000 - $160,000).  

Due to motion greater than 3mm during scanning, data from 12 of the 27 children from 

whom imaging data were collected had to be removed. As a result, data analyses were conducted 

on fMRI data from 15 children.  The average age of the 15 children who provided usable data 
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was 95.20m (SD = 14.99, range = 73-123m).  There were no significant age, t(25) = .073, p = 

.94, gender, t(25) = 1.29, p = .21, or family income differences, t(25) = 1.59, p = .12, between 

children included in analyses and those removed due to motion.  

Procedures 

This study was approved by the Penn State Institutional Review Board (IRB#34090). 

Families completed three visits. The first and last visits occurred at the familyôs home. The 

scanning visit took place at the Penn State Social Life and Engineering Sciences Center (SLEIC).  

Visit 1. After written consent and assent were obtained, children participated in an 

orientation designed to familiarize them with MRI scanning procedures. Children then completed 

a standardized assessment of receptive and expressive language. Mothers completed 

questionnaires about their childôs temperament.  

Over the course of data collection, a training protocol was developed to improve the rate 

of MRI data acquisition. The new protocol was conducted during the first visit. Children 

practiced lying still in a play tunnel that approximated the size of the MRI bore as they listened 

to MRI scanning sounds. Children completed progressively longer timed-trials. Staff provided 

verbal feedback and positive reinforcement during trials.  

Visit 2. At SLEIC, all children participated in a mock scanner session prior to scanning. 

This session was altered during the study to include the presentation of scanner sounds and 

timed-trials similar to those that children completed during the home visit. Children were then 

accompanied into the MRI room by a familiar staff member and the MRI technician.  

Prior to scanning children were informed that they would hear someone speaking while 

in the scanner. On in the scanner, staff checked in with children throughout the scanning session.  

Functional data were collected during a passive listening task.      
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Visit 3. As parents completed additional questionnaires, children rated the affective 

intensity of the stimuli. Initially, children were asked open-ended questions about each script 

(e.g. ñHow do you think this person is feeling?ò), however, this generated a wide range of 

responses. This task was therefore altered to constrain childrenôs answers. Children were 

provided with two sets of emotional faces that ranged from neutral to very angry (1-4) and 

neutral to very happy (1-4). They were asked to rate the degree to which each script was both 

angry and happy.     

Scripts were recorded by a professional sound engineer at The Pennsylvania State 

University Public Broadcasting radio station (WPSU). Visual inspection of spectrographic data 

indicated that scripts spoken in one prosody had similar acoustic profiles and that scripts spoken 

in different prosodies had different acoustic profiles. To control for differences in loudness 

across prosodies scripts were Root Mean Square (RMS) normalized using Sound Forge 10. 

Silence was interspersed between each 2s utterance so that each script was 15s in duration.   

Functional affective prosody listening task. A block design was used in this study. 

Eight distinct run orders were generated. Each run contained 12 blocks (4 scripts spoken in 3 

prosodies) with one additional neural script added at the end of the run end to ensure that a run 

did not conclude with an angry voice. Blocks were pseudorandomized and separated by 15s of 

silence. As a result, each run lasted 6 minutes and 54s. Two functional runs were collected from 

each child. 

MRI data acquisition. Neuroimaging data were collected using a Siemens 3T 

Magnetom Trio using a 12 channel head coil. Total scan time was 24 min, 43 sec. An anatomical 

MPRAGE was first acquired followed by two functional scans and a resting state scan. Subjects 

001-003 completed one functional run; following these visits all subjects completed two 
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functional runs. Anatomical images were acquired using a 3D-MPRAGE pulse sequence with 

160 slices collected (TR/TE/TI= 1640, 2.01, 820 ms; voxel size = 1mm3, FOV = 256). EPI were 

acquired aligned with AC-PC in descending order (TR/TE = 3000, 20ms, FOV = 200, flip angel 

= 80, voxel size = 2.5 mm3).  

Raw fMRI data were preprocessed using BrainVoyager QX v2.3 (Brain Innovation, 

Masstricht, The Netherlands). Anatomical MPRAGE images were normalized and transformed 

using AC-PC alignment. PreporFunctional images were 3-D motion corrected, spatially 

smoothed (5mm) and temporal filtering of low-frequencies (GLM Fourier basis 5 cycle). 

Resulting translational motion parameters were examined and subjects with movement greater 

than 2.9mm in any of the six axes were excluded from subsequent analyses.  

Measures  

The following assessment measure was not included in analyses of fMRI data. These 

measures were used to characterize the study sample and determine study eligibility.  

Language assessment. During the first home visit children completed four subtests of 

the Clinical Evaluation of Language Fundamentals, 4th edition (CELF-4; Semel et al., 2003).  

The CELF-4 is a well validated measure of childrenôs language abilities and test-retest reliability 

measures ranging from .88 to .92 for composite scores based on a standardization population 

(Semel et al., 2003). Standard procedures were followed to generate a Core Language Score 

(CLS) for each child. CLS standard scores are based on norms for children of similar age, with a 

mean of 100 and a standard deviation of 15. Scores ranging from 86-114 are in the Average 

range, and scores ranged from 116-130 are in the Above Average range. Based on their 

performance on selected subtests of the CELF, two children were not included in subsequent 

analyses. In both of these instances parents were provided feedback about their childrenôs 
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performance. As a group childrenôs performances were characterized as Average (n = 15; M = 

111.73, SD = 8.98). Similarly, for the 10 children included in the final analyses below, the mean 

CLS score fell within the Average range (M = 113.5, SD = 7.53).  

Data Analysis 

fMRI Data . Raw fMRI data were preprocessed using BrainVoyager QX v2.3 (Brain 

Innovation, Maastricht, The Netherlands). Functional images were 3-D motion corrected, 

spatially smoothed (5mm FWMHW) and temporally filtered for low-frequencies up to 5 cycles. 

Participants with motion greater than 2.9mm in any of the six directions for any TR were 

excluded from subsequent analyses. Data from functional runs of two participants were 

recovered by removing TRs in which high motion occurred and then re-preprocessed.  

Data from at least one functional run were available for 15 children as three children 

provided only Run1 data and two children provided only Run2 data. Of these 15 children, data 

from both functional runs were available for 10 children. For each participant and run, the time 

series images for each brain volume were analyzed for emotion differences in a fixed-factor 

GLM. Each emotion was defined as a separate predictor and modeled with a box-car function 

adjusted for the delay in hemodynamic response. Time series images were spatially normalized 

into Talairach space, which is common practice in pediatric neuroimaging research. 

Creating Regions of Interest. To determine the set of regions that were active when 

while children processed emotional voices, we computed a whole-brain voxel-wise mixed-model 

ANOVA including emotion as a fixed factor and subject as a random factor using only the 

images from run 1 (n=13). The network of regions was defined by the balanced contrast [(Happy 

+ Angry + Neutral) - 3*Silence]. The group level map was corrected at the whole brain level for 

false positive activations using the False Discovery Rate procedure with a q < .10 (Genovese, 
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Lazar, & Nichols, 2002). Table 1 shows the size and Talairach coordinates for each of the group-

defined ROIs.  

Group level region of interest (ROI) analyses. Individual participant regions of interest 

were defined in a two-step process.  First, broad regions of interest were extracted from the 

significant activation within the group level map based on brain structure and functional anatomy 

reported in the adult literature (Buchanan et al., Talairach, 1988). Second, to optimize the signal 

within each of these regions for each individual participant in each run, the peak positive voxel 

within this region (separately for each run) was identified. If the peak positive value was a 

negative t value, as was the case for 54 ROIs across subjects, across runs, the values for each 

voxel from the original ROI were extracted and sorted using Excel. Using the corrected peak 

values, individual ROIs were defined as a 6mm sphere of activation centered on these peak 

voxels.   

Correcting ROIs. Each individually-defined 6mm ROIs was visually examined to assess 

1) if there existed overlapping voxels among different ROIs and 2) if voxels had been placed on 

skull. Overlapping ROIs are problematic as they result in the same voxels being included for 

different ROIs thereby including the same information in two ROIs time-series data. This issue 

results in poor model estimation (Smith et al., 2011).  Twenty-two overlapping regions were 

identified ranging in size from 1 to 609 voxels. Of note, a 6mm ROI has 925 voxels. Based on 

these findings, individual ROIs were re-defined as a 4mm sphere around the peak positive voxel.  

After the 4mm sphere ROIs were created, ROIs were again assessed for overlapping 

voxels. For those overlapping regions found, multiple steps were taken to correct this issue. First, 

a new ROI that included the overlapping region was created and both the centroid of the 

overlapping region and the number of overlapping voxels were documented (see Table 2). The 
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sizes of the overlapping regions ranged from 2 to 125 voxels. A decision regarding which ROI 

the overlapping voxels would be given to was made based on brain structure and ROI 

coordinates reported in fMRI studies of affective prosody processing in adults. Using Matlab, 

overlapping voxels were identified and then removed from the original volume-of-interest (VOI) 

files. Time-series data were then extracted from each corrected ROI, for each run, for each 

subject. 

ROIs were also examined to determine if any voxels were on the subjectsô skull. To 

correct this issue, the peak voxel text file for that ROI was extracted. Voxels were sorted by their 

t values to identify the highest positive t value. The voxel coordinates that corresponded with the 

highest t value that would move the entire sphere to an acceptable placement on the brain was 

identified (see Table 3). As a final step, all ROIs were redefined by placing 4mm spheres around 

the corrected peak values. Time-series data were extracted from each ROI, for each run, for each 

subject.  

Effective connectivity analyses. Using the extracted time-series data, task-related 

regressors were calculated for each condition (happy, angry, and neutral). This strategy is 

informed by the PPI approach. To calculate the regressor, the raw time course vectors for each 

condition were obtained. Raw time course vectors for all regions, for all subjects, across each 

condition were then mean-centered using custom MATLAB scripts. The centered time-series 

data were deconvolved using a double gamma function to estimate the hemodynamic response 

function (HRF) in AFNI (Gold et al., 1998). The deconvolved time-series data were then 

multiplied by a condition vector coded for the condition of interest (e.g. happy = 1, all other = 0). 

The resulting time course vector therefore only included time-series data for the specific 
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condition of interest. Finally, the condition-specific time-series data were reconvolved with the 

HRF. 

 The final reconvolved time-series data for each affective prosody (Angry, Happy, and 

Neutral) were then separately submitted to the GIMME program. As discussed earlier, GIMME 

first conducts an iterative procedure that identifies common pathways at the group level (Gates & 

Molenaar, 2012). Based on modification indices, if a pathway significantly improves the model 

fit for a specified number of subjects this pathway is freed for all subjects. Originally, the 

modification index was set to 75%. However, when these analyses were conducted, GIMME was 

unable to identify common group level paths and had difficulties converging on a common group 

map for any of the prosody conditions. Based on recommendations made by Smith and 

colleagues (2011) the modification index was then reduced to 51%. As a result, if a pathway 

significantly improved the model fit for six subjects this pathway was freed for all subjects. This 

change was sensitive to the fact that when data from Run1 and Run2 were combined, each 

prosody condition had approximately 2 minutes of time-series data.  

Once the common group model was identified GIMME continued in a semi-confirmatory 

manner by beginning a search for individual subject level maps. Beginning with the group map, 

GIMME iteratively evaluated if opening additional pathways improved model fit for the 

individual subject (Gates & Molenaar, 2012). Five indices for the individual subject level models 

were produced. These included root mean square error of approximation [RMSEA], non-normed 

fit index [NNFI], comparative fit index [CFI], and standardized root mean-square residual 

[SRMR]; Gates & Molenaar, 2012). Fit indices and acceptable fit can be found in Brown (2006). 

The fifth index produced by GIMME is the result of a chi-square test, however a nonsignificant 

chi-square does not reveal if a model is the best or true fit (Poldrack et a., 2011) and this statistic 
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has extreme limitations, the first of which is that it is extremely sensitive to sample size (Hooper, 

Coughlan, & Mullen, 2008). Following the direction of Gates and Molenaar (2012), model fit 

was evaluated based on whether or not the criteria for two of the four (RMSEA, NNFI, CFI, & 

SRMR) fit indices were met. When a models failed to meet two of these four indices it indicated 

that there were no additional pathways that when freed would improve model fit for that specific 

subject (Gates & Molenaar, 2012).    

Testing differences in effective connectivity.  Models of effective connectivity are 

expressed as path diagrams in which brain regions (nodes) are linked by connections (edges; 

Poldrack et al., 2011). Differences in connectivity strength were first tested on identical 

pathways identified in the group-level maps across the prosody conditions used paired-samples t-

tests and repeated-measures one-way analyses of variance (ANOVA). Graph theory metrics were 

then estimated to derive multiple measures of network organization at the global and node levels 

(Sporns, Chialvo, Kaiser, & Hilgetag, 2004). These measures characterize functional 

segregation, defined as the ability of densely interconnected nodes to engage in specialized 

processing and functional integration defined as the combination of specialized information 

across these interconnected regions (Rubinov & Sporns, 2010). The present study investigated 

five measures of global network organization. These included: 1) global efficiency, which 

estimates distances between remote nodes in a network as  the inverse of the shortest path length, 

2) network density, which conveys the number of edges in the graph that is proportional to the 

possible number of edges, 3) the clustering coefficient, which represents the number of possible 

connections between closely spaced nodes as a proportion of the possible number of connections, 

4) the shortest path length, which is a commonly used measure  of the average length between all 

pairs of nodes in a network and 5) centrality, which refers to the overall cohesion of connections 
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and communication with a network as it measures distances among various nodes in a graph 

(Bullmore & Sporns, 2009; Rubinov & Sporns, 2010).  

We investigated four indices of node connectivity. These included: 1) the clustering 

coefficient, 2) the total strength of the node, which quantified the number of pathways in and out 

of that node, 3) modularity, which represents the number of clearly delineated and non-

overlapping groups of nodes and 4) the centrality of a node, which conveys how many of the 

shortest pathways between all nodes pass through pairs of this node (Rubinov & Sporns, 2010).   

Graph theory metrics were conducted in MATLAB. To test if there were significant 

differences in these global network or node metrics, we conducted repeated-measures one way 

analysis of variance (ANOVA) with a Bonferroni correction.   

RESULTS 

Behavioral ratings of speech stimuli    

In the final home visit, children rated the happy scripts as significantly more happy than 

angry, t(14) = 8.00, p < .001 and the angry stimuli as significantly more angry than happy, t(14) 

= 8.83, p < .001.  As the children engaged in passive listening during the scanning, these findings 

support the view that the children were capable of perceiving differences in affective prosody 

during scanning. 

Group and individual level ROI analyses  

Whole brain voxel-wise analyses on Run1 revealed that children exhibited significant 

activation in response to human speech [(Happy + Angry + Neutral) - 3*Silence] in regions 

identified by both the cognitive and social cognitive neuroscience models. These regions 

included bilateral posterior and anterior auditory cortex, bilateral STG, bilateral caudate, bilateral 

IFG, bilateral OFC, left vmPFC, and left insula (see Figure 1).   
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Effective connectivity analyses   

Connectivity analyses with run1 data. Initially, only the reconvolved time series data 

extracted from the 14 corrected, individually-defined ROIs from Run1 were submitted to the 

GIMME program (n=13). The decision to exclude subjects with only Run2 data (n=2) reflected 

findings that multiple ROIs showed significant adaptation in the BOLD signal across Run1 and 

Run2 for different prosodies and variability in adaptation across ROIs across prosodies may have 

included findings. Additionally, the fifth neutral block of time series data for the Neutral 

condition was removed so that the amount of time series data was constant across conditions.  

When time-series data from the 14 ROIs were submitted to GIMME, the program was 

unable to identify any common group level pathways for any of the prosody conditions and 

multiple subjects across each condition failed to meet fit indices criteria. Thus a decision was 

made to reduce the number of ROIs based on findings from adaptation analyses. As adaptation in 

neural activation indicates that a region is ñtuned to the processing of a specific stimulus 

attributeò (Bestelmeyer, Maurage, Rouger, Latinus, & Belin, 2014, p. 8098) only regions that 

were sensitive to affective prosody (i.e. that showed significant adaptation) were included in the 

connectivity analyses. To investigate adaptation in the BOLD response, the averaged beta 

weights for each ROI, for each prosody, were submitted to Wilcoxon signed-ranked tests.  

Results from the adaptation analyses indicated that there were different but overlapping 

regions for which the signal was modulated by Happy and Angry prosodies. Angry prosody 

modulated activity in right anterior auditory cortex, Z = -2.19, p = .028, right posterior auditory 

cortex, Z = -2.50, p = .013, left STG, Z = -2.40, p = .017, right caudate, Z = -2.09, p = .037, left 

OFC, Z = -2.80, p = .005, right OFC = Z = -2.80, p = .005, whereas Happy prosody modulated 

activation in right anterior auditory cortex, Z = -1.99, p = .047, right OFC, Z = -2.40, p = .017, 
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left IFG, Z = -2.50, p = .013, right IFG, Z = -1.99, p = .047, left insula, Z = -2.40, p = .007, and 

left vmPFC, Z = -2.19, p = .028.  

To reduce the number of ROIs in the connectivity analyses, right STG and left posterior 

auditory cortex were initially removed as these regions did not show significant adaptation to 

either Happy or Angry prosodies. Unfortunately, trimming the number of ROIs did not enhance 

the GIMME programôs ability to detect common group pathways for the Angry and Happy 

conditions, and the model failed to converge at the group level for the Neutral condition. Thus 

data from two additional ROIs, left anterior auditory cortex and left caudate, were removed as 

both of these regions only showed marginally significant adaptation to Angry prosody (p < .08) 

but did not show adaptation to Happy or Neutral prosodies.  

Data from the 10 remaining ROIs were submitted to GIMME program, however, no 

common group pathways were identified and individual subject maps failed to meet fit criteria. 

Finally, the modification index was reduced from 75% to 51% based on suggestions made by 

Smith and colleagues (2011) when conducting connectivity analyses with smaller amounts of 

time-series data. Once again, the model failed to converge at the group level across prosody 

conditions.  

Connectivity analyses with run1 & run2 data. To avoid trimming the number of ROIs 

further, time-series data from Run2 was included in these analyses. Including Run2 increased 

subjectsô data from four blocks to eight for each prosody condition thereby increasing GIMMEôs 

ability to detect effects. The fifth Neutral condition block was excluded again to ensure that the 

three conditions had an equivalent number of time-series data blocks. Only subjects for whom 

both Run1 and Run2 data were available were included in these analyses thus decreasing the 

number of subjects from 13 to 10.  
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The same steps described above were taken to investigate effective connectivity in the 

combined Run1 and Run2 time-series data. Time-series data from 14 ROIs and then 12 ROIs 

were submitted to the GIMME program for each prosody condition. Across prosody conditions 

these maps failed to converge for multiple subjects. When the time-series data from 10 ROIs 

(right anterior and right posterior auditory cortex, left STG, bilateral OFC, bilateral IFG, right 

caudate, left insula, & left vmPFC) were submitted to the GIMME program, multiple common 

pathways were identified at the group level across the three prosody conditions. The effective 

connectivity group maps for the Angry, Happy, and Neutral conditions are presented in Figure 2.  

At the group level, hearing different affective prosodies was associated with effective 

connectivity between regions identified by the cognitive neuroscience model including auditory 

cortex, left STG, OFC, and IFG. All conditions (Angry, Happy, & Neutral) include pathways in 

which right anterior auditory cortex exerted an effect on left STG and in which right OFC 

exerted an effect on left OFC. Furthermore, when children heard Happy and Angry prosody, 

right IFG exerted an effect on right OFC, however, the direction of influence was reversed when 

children heard neutral prosody. Similarly, left OFC exerted an effect on left IFG when children 

heard Happy and Angry prosodies, yet the opposite effect was observed when children heard 

Neutral prosodies. Interestingly, there were no common lagged connections at the group level. 

Moreover, the cognitive neuroscience model predicts that information is directed from STG to 

frontal regions for higher order processing. However, in the present study only when children 

heard Happy prosody was the STG functionally connected to left IFG and the direction of this 

connection was opposite of what the model would predict.  

At the individual subject level, criteria for at least two of the four fit indices were met for 

each subject, across each prosody condition. Individual subject maps for the Angry, Happy, and 
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Neutral conditions are presented in Figures 3, 4, and 5 respectively. Visual inspection of these 

models shows heterogeneity in effective connectivity across the prosody conditions as well as 

across subjects within the same condition. To illustrate the within condition heterogeneity Figure 

6 shows the Angry, Happy, and Neutral maps from three randomly selected subjects.  

In sum, individual subject-level connective maps indicate that hearing different prosodies 

was associated with contemporaneous and lagged connections among cortical and subcortical 

regions identified by both the cognitive and social neuroscience models. However, due to the 

heterogeneity in the presence and direction of connections across subjects, pathways were not 

identified at the group level as the requisite number of children (6 in the case of the 51% 

modification index) did not have the same pathways.  

Testing differences in effective connectivity across prosody conditions. To test for 

differences in the strength of the common pathways in the group maps across the three prosody 

conditions, the beta weights and standard errors from the individual subject maps were submitted 

to repeated measures t-tests and one way analyses of variance (ANOVA) were conducted. These 

tests revealed no significant differences in path strength across any of the prosody conditions.   

To investigate if there were significant differences in network topology across affective 

prosody conditions, graph theory metrics were calculated using MATLAB (2012). These global 

network level statistics were then submitted to repeated-measures ANOVA. Mauchlyôs test 

indicated that the assumption of sphericity was not violated in any tests conducted. Tests 

revealed no statistically significant differences in global efficiency, density, centrality, 

modularity, or clustering across the group maps for the Angry, Happy, and Neutral conditions.  

Tests were then conducted for individual nodes (ROIs). A significant effect of prosody 

was observed for right OFC centrality, F(2,18) = 5.019, p=.019. Post hoc tests using the 
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Bonferroni correction revealed that right OFC was more centralized in the Angry condition 

(M=15.48, SD=3.30) compared to the Neutral (M=4.72, SD =2.10) condition.  Similarly, results 

were obtained for right posterior auditory cortex, F(2,18) = 4.278, p = .03. Post hoc tests using 

the Bonferroni correction revealed that this region was more central in the Angry (M=11.54, 

SD=3.56) relative to the Neutral (M=2.65, SD =1.98) condition. These results indicate that more 

short pathways passed through these regions in the Angry condition compared to the Neutral 

condition. Similarly, right OFC had a significantly higher clustering coefficient, F(2,18) = 6.09, 

p = .01) in the Angry condition (M=.18, SD = .05) compared to the Neutral condition (M = .049, 

SD = .02), indicating that there were more connections between right OFC and its neighboring 

nodes in the Angry condition. Only one region, the right posterior auditory cortex, showed a 

statistically significant effect of prosody on diversity, F(2,18) = 3.76, p < .043. However, post 

hoc tests using the Bonferroni correction failed to reach statistical significance for each of the 

three contrasts. Finally, the total strength of each of the nodes was tested. A significant effect of 

prosody was found for left STG, F(2,18) = 7.10, p = .005. Post hoc analyses revealed that this 

region had significantly fewer connections directed in and out in the Angry Condition (M = 2.40, 

SD = .34) than in both the Happy (M = 3.80, SD = .33) and Neutral (M = 3.60, SD = .40) 

conditions. In contrast, and similar to results for clustering and centrality, right posterior auditory 

cortex had significantly higher total strength, F(2,18) = 4.64, p = .02 in the Angry (M = 4.20, SD 

= .47) relative to the Neutral (M = 2.80, SD = .29) condition.        

Effective connectivity in a combined affect condition. To increase GIMMEôs power to 

detect effects within the data, time series data from the Happy and Angry conditions were 

combined into a Combined Affect condition (CAC). Thus the number of blocks of data increased 

from 8 to 16 (8 Happy & 8 Angry). Of note, due to motion in Run2, one subject only had nine 
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blocks of time series data for the Neutral condition as the final block was clipped from the 

analyses to remove TRs that included motion>3mm. The data was clipped prior to preprocessing 

and the additional TRs were removed during the convolution and reconvolution steps so that 

additional 0s were not included in the time-series data in this step.  

The previously described model with 10 ROIs was submitted to GIMME with the 

modification index set at 51%. GIMME identified 12 common pathways in the group map (see 

Figure 7). Effective connectivity was observed between cortical and subcortical regions 

identified by both neuroscience models and each ROI had at least one pathway directed in or out 

of the region.  Furthermore, as predicted by the cognitive neuroscience model, connectivity was 

observed within the auditory correct and left STG exerted an effect on right OFC. Interestingly, 

left IFG exerted an effect on left STG. All connections were contemporaneous.  

As previously found in the separate prosody conditions, subject level maps showed 

heterogeneity in the direction and number of pathways in regions identified by both models. 

Figure 8 shows the individual subject effective connectivity maps for the Combined Affect 

condition.  

Finally, when time-series data from the Neutral condition were submitted to the GIMME 

program eight common pathways at the group level were identified. These pathways were the 

same as identified in earlier analyses of effective connectivity with fewer Neutral time-series 

blocks. However, with the addition of the two additional blocks of data, GIMME identified a 

pathway in which left STG influenced right OFC and a pathway from right posterior auditory 

cortex to left vmPFC. Interestingly, the direction of influence of left OFC and left IFC was 

reversed in these analyses. Results at the individual subject level were similar to those reported 

for the Neutral condition with fewer time-series blocks (see Figure 9). Heterogeneity across 
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subjects was observed in both lagged and contemporaneous connections and these pathways 

were observed across all regions included within the network.  Of note, at the individual subject 

level, GIMME was unable to identify a map that met criteria for two of the four fit indices for 

one subject.  As a result, graph theory measures were conducted and tested for differences for 

global network properties but not for nodal properties.  

Testing differences in effective connectivity across conditions.  Paired samples t-tests 

revealed no significant differences in the strength of the six connections that were present in both 

the Combined Affective and Neutral conditions. Once again, graph theory measures were 

calculated in MATLAB and paired samples t-tests were conducted to test for significant 

differences in global and nodal properties across the two conditions. Statistically significant 

differences were observed between the Combined Affect and Neutral conditions at the global 

network level, but not for individual nodes. Specifically, global efficiency for the Combined 

Affect condition was significantly higher (M = .49, SD = .04) than for the Neutral condition (M 

= .40, SD = .07; t(9) = 4.26, p = .002).  Similarly, Centrality was significantly higher for the 

Affective Prosody condition (M = 130.50, SD = 33.03) than for the Neutral condition (M = 

79.50, SD = 33.03; t(9) = 4.01, p = .003).  

DISCUSSION 

 The human voice is a salient feature of the auditory environment. Through paralinguistic 

cues the voice can convey important about a speakerôs emotional state (Belin et al., 2004).  

Behavioral studies of young children reveal that children perceive differences in affective 

prosody cues at a young age, yet how they process these cues at the neural level has received 

limited attention. As a result, there exists a gap in our knowledge of the neural processing of 

affective prosody in children as well as how the early emotional environment influences this 
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processing.  To address this gap, the present study investigated effective connectivity in a neural 

network in 6-to-10-year-old children when they heard angry, happy, and neutral prosodies. It was 

hypothesized that hearing affective prosody would engage a network of cortical and subcortical 

regions identified by two leading neuroscience models of emotional voice processing and social 

stimuli processing respectively.  

This study utilized a data analytic approach that permitted investigation of effective 

connectivity at both the group and individual subject levels. Results indicated that there were 

significant differences in properties of individual nodes but not in global network properties 

across the three prosody conditions. In contrast, when Happy and Angry prosodies were 

combined into one condition, significant differences in global network measures between this 

Combined Affect condition and the Neutral condition were observed. We discuss results and 

implications of these results as well as strengths and limitations of the current study.  

Effective connectivity during affective prosody processing in children  

 Effective connectivity during affective prosody processing in the group. At the group 

level, hearing happy, angry, and neutral prosodies was associated with effective connectivity 

between regions primarily identified by the cognitive neuroscience model (Schirmer & Kotz, 

2006). Across all three prosody conditions right anterior auditory cortex exerted an effect on left 

STG. The direction of this pathway was consistent with the cognitive neuroscience model 

prediction, as well as with previous studies findings, that anterior auditory cortex is sensitive to 

all sounds whereas STG is important for ñperceptual analysis of voicesò (Ethofer et al., 2009, p 

1262) and is sensitive to linguistic features of speech (Binder et al., 2000). Furthermore, though 

pathways were directed towards and away from bilateral OFC, a region identified by both 
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neuroscience models, there were no common group level pathways to or from subcortical regions 

identified by the social neuroscience model (e.g. vmPFC, insula; Adolphs, 1999).  

One interesting finding was that at the group level connectivity was not observed 

between left STG and inferior frontal regions. This was surprising given predictions from the 

cognitive neuroscience model and evidence for this pathway in a previous study using effective 

connectivity analyses (Ethofer et al., 2006b; Schirmer & Kotz, 2006). On the contrary, hearing 

happy prosody was associated with a pathway directed from left IFG to left STG. Also notable 

were findings of effective connectivity between bilateral OFC, from right IFG to right OFC, left 

OFC to left IFG, and from left IFG to left OFC. Though these findings were not unexpected as 

IFG has been linked to emotion recognition and emotional empathy (Shamay-Tsoory, 2011; 

Shamay-Tsoory, Aharon-Peretz, & Perry, 2009) and that activity in OFC is associated with 

decision making (for review see Bechara, Damasio, & Damasio) they built on the cognitive 

neuroscience model by providing evidence of connectivity among the frontal regions identified 

by the model. Moreover, it is notable that even though each group map had the same pathways 

between regions, the directional patterns of connectivity between the OFC and IFG were more 

similar across the two affective prosody conditions (Angry and Happy) relative to the neutral 

condition.   

 Effective connectivity at the subject level. Though findings at the group level were 

unexpected, at the subject level a different pattern in effective connectivity was evident as 

connectivity was observed among cortical and subcortical identified by both neuroscience 

models. Specifically, effective connectivity was now present, across the three prosody 

conditions, between all regions of interest including vmPFC, left insula, and right caudate.  
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These results revealed noteworthy heterogeneity across children in effective connectivity 

among these regions in the different prosody conditions. These findings were similar to findings 

from studies of the face processing network that show differences in effective connectivity 

across children (He et al., 2015) and supported Gates and Molenaar (2012)ôs concerns that other 

methods for modeling effective connectivity may fail to accurately describe connectivity in 

individuals. Pooling time-series data across subjects may lead to conclusions about patterns of 

connectivity that are not representative of any one particular subject in a group as the beta 

weights, directions of connections, and network coupling may vary across subjects (Gates & 

Molenaar, 2012; Poldrack et al., 2011). Nonetheless, these findings are indicative that hearing 

angry, happy, and neutral prosodies was related to the recruitment of a widespread network of 

neural regions implicated in processing of emotional stimuli in this sample of children.     

Modulation of effective connectivity by prosody. A second aim of the present study 

was to investigate whether or not hearing different affective prosodies significantly modulated 

global and nodal properties of the network of regions examined. Though it was hypothesized that 

hearing different prosodies would modulate effective connectivity this aim was largely 

exploratory. This was due the fact that only two adult studies had investigated effective 

connectivity during affective prosody processing as well as the ongoing debate regarding 

whether or not processing of emotions is related to discrete physiological and neural correlates 

(Vytal & Hamann, 2010). Graph theory was used to probe measures of global network and node 

properties.  

At the network level, tests revealed no significant differences in any of the five network 

measures examined (e.g. global efficiency, density, centrality, modularity, or the clustering 

coefficient). However, at the node level, significant differences in these graph theory measures 
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were found. Though interpretations of these findings were made post hoc they reflect that 

hearing angry prosody relative to neutral prosody may involve increased connectivity among 

specific neural regions. The first finding was that the centrality and clustering coefficient metrics 

were significantly larger in right OFC when children heard angry prosody compared to when 

they heard neutral prosody. In a previous study OFC showed increased activation in response to 

angry relative to neutral prosody (Ethofer et al., 2009). Our results suggest that this region plays 

an important role in childrenôs decoding of angry prosody as nodes with high centrality are 

considered hubs of activity as they are ñpowerful distributors of informationò (Power et al., 

2013, p. 798) and therefore are critical for efficient communication within a network (Bullmore 

& Sporns, 2009).  

Activity in OFC has been related to numerous processes including recognizing emotions 

and controlling emotional expressions, decision making, and evaluating outcome expectancies 

(Hornak, Rolls, & Wade, 1996; Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009). Yet this 

region is an extensively connected region that projects information from multiple modalities (e.g. 

visual, auditory, gustatory) and is therefore in ñan ideal position to provide information to other 

neural regions about the external environmentò (Rempel-Clowner, 2007, p. 73). Based on our 

findings, it is possible that right OFC may be especially important for the processing of angry 

prosody through its facilitation of communication among other regions.  

Additional findings were that right posterior auditory cortex had significantly higher 

centrality and number of total connections (total strength) when children heard an angry voice 

compared to when they heard a neutral voice. In contrast, the opposite was found for left STG; 

this region had more connections directed out to and in from other regions when children heard 

the neutral voice. These findings are interesting given evidence that right auditory cortex is 
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implicated in pitch processing in speech and music (Zatorre, 1988; Zatorre, Belin, & Penhune, 

2002; Zatorre, Evans, Meyer, 1994) and that the left auditory cortical areas, specifically posterior 

left STG, are associated with speech sound processing and speech production (Binder et al., 

2000). Moreover, these findings are in line with results from studies of affective prosody 

processing in adults conducted by Ethofer and colleagues. These studies found that right 

posterior auditory cortex was the input region in an effective connectivity map during affective 

prosody processing (2011) and that activation in STG was not influenced by task demands 

suggesting that this region plays an early role in perceptual analysis (Ethofer et al., 2008).  In 

sum, these results suggest that angry and neutral prosodies may differential modulate effective 

connectivity.  

Effective connectivity in the combined affective condition. Finally, post hoc analyses 

were conducted to examine if concatenating time-series data from the two affective prosody 

conditions (Angry and Happy) increased our power to detect effects. Results suggested that this 

was the case and provided a different picture of effective connectivity within the neural network 

of the same 10 ROIs. In this Combined Affect condition, not only were more connections 

observed among regions in the group map, but effective connectivity was observed between 

cortical and subcortical regions identified by the cognitive and social neuroscience models. 

Additionally, the pathway discussed earlier from STG to a region in the frontal cortex that was 

predicted to be present by the cognitive neuroscience model was present in this group map.  

Unlike findings when the Angry and Happy conditions were investigated separately, 

when compared to connectivity in the neutral condition, significant differences were observed in 

the global efficiency of effective connectivity in the Combined Affect condition compared to the 

neutral condition. In graph theory, global efficiency provides information about how efficiently 
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information is shared among nodes in the network (Krackhardt, 1994). This finding implies that 

information is more easily shared among discrete regions when the voice contains affective 

prosody relative to neutral prosody. Though these analyses were conducted post hoc and were 

exploratory, they reveal that at the group level, increasing the amount of time-series did increase 

our abilities to detect effective connectivity among regions identified by the two neuroscience 

models thus supporting that processing of affective prosody cues recruit cortical and subcortical 

regions.   

In sum, results from the present studied indicated that children recruit a widespread 

network of temporal and frontal regions when processing angry, happy, and neutral prosodies 

that was more apparent at the individual subject level. Furthermore, the use of graph-based 

analyses revealed differences in node properties for the angry and neutral conditions suggesting 

that there may be meaningful differences in functional architecture in this network when children 

process angry relative to neutral stimuli.  

Limitations of the current study  

Several limitations of the current study must be noted. First as increasing the amount of time 

series data into a combined prosody condition resulted in the identification of additional common 

group level pathways, it is possible that the smaller sample size and the limited blocks of time 

series data for each affective prosody condition impacted our abilities to detect effects within 

these data (Button et al., 2013). Smaller sample sizes can lower statistical power which can in 

turn decrease the likelihood that effects found reflect true effects and/or lead to overestimation of 

the magnitude of effects (Button et al., 2013).  It is therefore necessary to interpret and consider 

the results found in the present study with caution until they can be replicated or challenged in a 

larger sample of children.  
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 Understanding the limitations of small amounts of data, the present study did take steps 

in ensure that data were properly corrected for the number of tests that were conducted to 

circumvent interpreting results that were not significant. First, when group level ROIs were 

defined, the group map was corrected at the whole-brain level using the False Discovery Rate 

procedure as this method is more sensitive to the number of voxelwise tests statistics that are 

performed than standard procedures (Genovese et al., 2002). Furthermore, in post hoc analyses, 

results were corrected for multiple comparisons and only differences that survived these 

corrections were reported.  

The present study was largely exploratory and future studies with larger sample sizes will be 

necessary to determine if these results are replicable. Future studies would benefit from 

implementing protocols that increase researcherôs abilities to successfully collect imaging data 

from children as there are limited appropriate approaches to cleaning data with high movement.  

In the present study successful data acquisition increased significantly with the introduction of 

two structured and lengthy training sessions that occurred prior to children entering the scanner. 

These sessions included showing children pictures of the scanner, exposing them to the scanner 

sounds, and timed trials during which children practiced laying still while staff members 

provided in vivo feedback on their performance and positive reinforcement (e.g. stickers). It is 

recommended that future studies develop similar protocols that increase childrenôs comfort with 

the scanning environment and abilities to stay still for the prolonged period of time necessary to 

acquire data. Additional suggestions for training can be found in a paper by Scherf and 

colleagues (2016; under review).   

A second limitation of the present study was that childrenôs affective environment was not 

measured directly thus we could not investigate if individual differences in connectivity were 
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related to differences in childrenôs environments. New methods have become available that 

permit recording of the auditory affective environment (Mehl & Pennebaker, 2003). For 

example, Electronic Activation Recording (EAR) is a recording device that records snippets of 

sound throughout the day (Mehl & Pennebaker, 2003). This method has primarily been used to 

evaluate the linguistic content of natural conversations, however new programs permit the 

evaluation prosodic cues of the voice. The use of such methods will enhance our understanding 

of childrenôs daily exposure to affective prosody and both typical and atypical variability in 

parentsô use of affective prosody.  

Finally, though not a limitation but rather a caveat of the study methods is that children were 

not asked to complete a task (e.g. identify or rate valence/intensity) in the scanner but rather 

listened passively to the stimuli. It was assumed that they were attending to these prosodies and 

all children confirmed that they had heard voices; however the lack of a behavioral response in 

the scanner may have led to differences in childrenôs level of attention towards the stimuli. 

However previous studies have shown that task demands can influence patterns of neural 

activation (Ethofer et al, 2009). Furthermore, the present study was interested in investigating 

differences in neural processing of affective prosody that more closely approximated overhearing 

these cues in their environment.  Thus the decision to have children listen passively to the stimuli 

reflected this aim.   

Implications and future directions of the present study 

Despite these limitations, this was the first known study of effective connectivity during 

affective prosody processing in children. A strength of the research design in the present study 

was the use of scripts that more closely approximated childrenôs everyday exposure to affective 

prosody. In the studies discussed in the introduction, the affective prosody stimuli included 
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single words (Ethofer et al., 2011), pseudo-words (Bach et al., 2008; Grandjean et al., 2005), or 

short, one sentences phrases (Johnstone et al., 2006; Leitman et al., 2010). And, as reported, 

these studies found that hearing affective prosody was associated with significant activation 

within multiple neural regions. However, in their daily lives children hear and are learning to 

interpret affective prosody in the context of speech. Thus the use of ecologically valid stimuli 

may have more closely approximated and studied childrenôs experiences.  

Secondly, this study represented a first step towards a fuller understanding of childrenôs 

neural processing of affective prosody and how the early environment shapes and influences this 

processing. As Gottlieb (1992) cogently stated ñgenes in and of themselves cannot cause 

development any more than stimulation in itself can cause development.ò  In essence, though the 

brain is substantially shaped by genes, this development is impacted by experience such that 

ñeach personôs brain comes to reflect, at least in part, his or her unique experiential historyò 

(Belsky & de Haan, 2011, p. 413). As reviewed earlier, the brain undergoes significant changes 

overtime that increase our abilities to integrate information and that facilitate higher order 

cognitions (Collin & van den Heuvel, 2013). And as a result of these changes, exposure to 

atypical levels of affective prosody, in particular anger, may have implications both for 

childrenôs processing of affective prosody as well as neural development. Indeed, as discussed, 

two studies examining these relations found that exposure to higher levels of parental conflict 

was related to differences in patterns of neural activation in infants for very angry > neutral 

speech (Graham et al., 2013) and that childhood physical abuse was related to 7- to 12-year-olds 

allocating greater neural resources to processing angry voices (Shackman et al., 2007).  

A full understanding of the significance of these differences for childrenôs functioning 

will necessitate studies of typically developing children with normative levels of affective 
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prosody exposure. Information gathered from typical samples will provide a context and baseline 

for recognizing what is considered deviant from the norm (Bruck, 1997) and can help inform our 

conceptualizations of what differences in patterns of activation and connectivity signify in these 

cases. Ultimately, results such as those found by the two studies above bolstered by additional 

evidence that early exposure to anger does indeed lead to significant differences in the functional 

architecture of childrenôs brains can be used to teach about the potential implications of exposure 

to high levels of anger, a lesson that may be particularly important for high-risk parents.  

Future directions. To further our abilities to understand neural network topology, in 

addition to the information provided by graph theory metrics, analytic methods are now being 

developed that are sensitive to differences in changes in the patterns of effective connectivity in a 

network (Elbich, Molenaar, & Scherf, in prep). The use of such methods may further our 

understanding of interregional communication in a network during affective prosody processing 

as these methods are more sensitive to patterns of connections and will allow for better 

characterization of the topology of a network.  
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TABLES 

Table 1 

 

Size and Talairach Coordinates of Group Regions of Interest    

 

 

 

 

 

 

 

 

 

 

 

 

Note. Regions of interest (ROI) defined based on whole brain group level map activation for Happy + Angry+ 

Neutral > silence contrast in Run1. The group map was corrected at the whole brain level using the FDR procedure 

at q < .10. The size and location of each ROI are reported. X,Y,Z coordinates in Talairach space. L = left 

hemisphere, R = right hemisphere.      

 

  Brodmannôs 

Area 

 

X 

 

Y 

 

Z 

# of 

Voxels 

L       

 Anterior Auditory Cortex  -43 -26 10 1248 

 Posterior Auditory Cortex   -54 -39 8 865 

 Superior Temporal Gyrus  -61 -22 3 1078 

 Caudate  -8 7 5 171 

 Inferior Frontal Gyrus 44/45 -55 21 14 1065 

 Orbitofrontal Cortex 47 -46 26 -3 528 

 vmPFC  -1 49 -12 59 

 Insula  -35 8 -13 59 

R       

 Anterior Auditory Cortex  43 -24 10 1470 

 Posterior Auditory Cortex  44 -36 6 153 

 Superior Temporal Gyrus  60 -17 4 568 

 Caudate  9 6 8 849 

 Inferior Frontal Gyrus 44/45 45 26 7 1166 

 Orbitofrontal Cortex 47 47 24 -2 941 
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Table 2.  

Talairach Coordinates of Individual Regions of Interestsô Original and Redefined Peak Voxels  

  

Subject  
Region of 

Interest 

Original Peak 

Voxel 

New Peak 

Voxel 

1 Right IFG (56, 22, 4) (55, 2, 4) 

2 Left IFG (-55, 19, 25) (-54, 19, 25) 

3 Left IFG (-59, 19, 21) (-52, 17, 24) 

4 Left IFG (-55, 25, 9) (-50, 25, 10) 

4 Left IFG (-58, 25, 19) (-50, 23, 15) 

5 Right OFC (55, 28, 1) (47, 25, 1) 

5 Left OFC (-50, 24, -6) (-49, 25, -6) 

6 Left IFG (-58, 22, 12) (-56, 22, 12) 

6 Left IFG (-58, 29, 0) (-55, 19, 9) 

7 Right OFC (55, 25, 0) (50, 31, 1) 

8 Left OFC (-50, 29, -3) (-47, 30, 0) 

8 Left IFG (-57, 22, 21) (-54, 20, 23) 

8 Right IFG (54, 27, 4) (49, 25, 4) 

8 Left IFG (-52, 25, 9) (-51, 26, 9) 

 
Note. Table shows individual level ROIs that were redefined because placing a 4mm sphere around the original peak voxel identified from the 

group-level ROI resulted in part of the ROI being placed on the childôs skull.  Numbers in the subject column refer to individual children, the 

repetition of subject numbers shows children for whom multiple ROIs had to be corrected. IFG = Inferior frontal gyrus. OFC = Orbitofrontal 

cortex.  
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Table 3.  

 

Description of Shared Voxels among Individually Defined Region of Interests and the Size of the 

Redefined Nonoverlapping Region of Interests 

 

Subject  Overlapping Regions 
# of 

Voxels 

Centroid of 

Overlap 

Region voxels 

Taken From 

Size of new 

ROI 

1 Left OFC & Right IFG 56 (-51, 21, 2.5) OFC 201 

1 Right OFC & IFG 94 (55.5, 23, 2.5) OFC 163 

2 Right Anterior & Posterior AC 21 (50, -33, 10) Posterior AC 236 

2 Left Anterior & Posterior AC 2 (-52, 34.5, 9) Posterior AC 255 

3 Right IFG & OFC 42 (45.5, 31.5, 2) OFC 215 

4 Right Anterior AC & STG 125 (52, -17, 7) Posterior AC 132 

5 Right IFG & OFC 118 (53, 28, 2.50) OFC 139 

6 Left Anterior & Posterior AC 23 (-49, -32, 9) Posterior AC 234 

7 Right IFG & OFC 44 (47, 23.5, 2) OFC 213 

8 Right IFG & OFC 24  (44, 23.5, 3.5) OFC 233 

 

Note. Table shows ROIs that included overlapping voxels, the size of the region that overlapped, and the Talairach coordinates of the centroid of 

the overlap. The centroid of the overlapping region was used to inform which ROI the voxels belonged to. The volume of interest file were edited 

to remove the overlapping voxels from the regions indicated in the ñtaken fromò column. Finally, table shows the size of the new ROI after 

voxels were removed. Numbers in the subject column refer to individual children, the repetition of subject numbers shows children for whom 

multiple ROIs had to be corrected. IFG = Inferior frontal gyrus. OFC = Orbitofrontal cortex. AC = Auditory cortex. STG = Superior temporal 

gyrus.  
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FIGURES  

Figure 1. Regions of Interests Defined at the Group Level based on Functional Activation in 

Run1 

    

  

Note. Figure shows Regions of Interests defined at the group level, by functional activation in Run1 for the Happy+Angry+Neutral - 3Silence 

balanced contrast. Group level map was corrected at whole brain level using the False Discovery Rate Procedure with a q < .10. ROIs were 

mapped onto a representative subjects brain. Z coordinate shows position of each slice with respect to the Talairach atlas. IFG = Inferior Frontal 

Gyrus. OFC = Orbitofrontal Cortex, STG = Superior Temporal Gyrus. STS = Superior Temporal Sulcus.   
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Figure 2. Group Level Maps of Effective Connectivity during Processing of Angry, Happy, and Neutral Prosodies 

 

 

 

 

Note. Figure shows effective connectivity at the group level when children heard angry (red), happy (blue), and neutral (green) prosody. Circles represent 

discrete neural regions (nodes) and arrows represent effective connectivity among these regions (edges). Arrows indicate the direction of the influence exerted by 

one neural region to another. rAntAC = Right anterior auditory cortex, rPostAC = Right posterior auditory cortex IFG = Inferior Frontal Gyrus, OFC = 

Orbitofrontal cortex, lvmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.   
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Figure 3. Effective Connectivity during processing of Angry, Happy, and Neutral Prosodies in 

Three Randomly Selected Subjects 

 

 

 

Note. Figure shows effective connectivity during processing of angry (red), happy (blue) and neutral (green) 

prosodies for three individual, randomly chosen subjects. Circles represent discrete neural regions (nodes) and 

arrows represent effective connectivity among these regions (edges). Arrows indicate the direction of the influence 

exerted by one neural region to another. Darkly colored lines represent contemporaneous connections, lightly 

colored lines indicate lagged connections.  rAntAC = Right anterior auditory cortex, IFG = Inferior Frontal Gyrus, 

OFC = Orbitofrontal cortex, lvmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.   
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Figure 4. Individual Subject Maps of Effective Connectivity during Processing of Angry Prosody 

 

         

         

         

 

Note. Figure shows effective connectivity maps identified by GIMME during the processing of neutral prosody for each of the 10 

subjects. Circles represent discrete neural regions (nodes) and arrows represent effective connectivity among these regions (edges). 

Arrows indicate the direction of the influence exerted by one neural region to another. Dark red lines indicate contemporaneous 

connections between regions, light red lines show lagged connections. rAntAC = Right anterior auditory cortex, IFG = Inferior Frontal 

Gyrus, OFC = Orbitofrontal cortex, lvmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.  


