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ABSTRACT

Affective prosody is defined as the paralisga cues in the voice that convey emotions
(Banse & Scherer, 199@efore they are able to accurately label prosodies, infants and young
children perceive andiscriminate among thent.is likely that physical properties of the
emotional environment,anl udi ng affective prosodies, infl ue
outcomes. Yet I|ittle is known about chil dreno
majority of the neuroimaging studies examining the neural correlates of affective prosody
proaessing has been conducted with adults, with the exception of a small body of literature on
infants.Seeking to address this gajpistdissertatiomnvestigatecheural processing of affective
prosody in éto-10-year old children. It was hypothesized thdeetive prosody would be
associated witleffectiveconnectivityamongneural regions identified by two prominent
neuroscience models-urthermore, it was hypothesized that affective prosody would modulate
effective connectivityTo investigate these quasts datdrom a studyutilizing functional
magnetic resonance imaging were examined using effective connectivity analyses and graph
theory measures. Results partially supported the hypothsi group level, effective
connectivity was observed ordynong regions identified by one of the neuroscience models.
However, analyses revealed heterogeneity in effective connectivity at the individual level
indicating that all regions were implicated in and functionally connected when children
processed differg prosodies. Moreover, analyses of graph theory metrics indicated that there
were no differences in effective connectivity at the global network level, howererwere
differences in properties of specific nodes when children processed angry prdatdy te@

neutral prosody. These findings and implications for future studies are discussed.
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INTRODUCTION

The human voice is a salient feature of the auditory environmenn(Bekteau, &

Bédard, 2004). Among other things, voices convey information about the emotional state of a
speakethrough nonlinguistic characteristics of speech referred to as affective p(@sothe &
Scherer, 1996). Accurately perceiving and interpgethese affectiveuesin the voice are

critical for successful social interactiof@dolphs, 2002

Prior to understanding the semantic content of utterances, iafmsr tgerceive
differences in affective prosody (Fernald, 1993; Wakedrews &Grolnick, 1983 andby 12
months of agéheyappear to use prosodicesto guide their actions (Vaish & Striano, 2004).
Astheyage, behavioral research indicates thdt i | dliliges @ accurately discriminate
amongbasic affective prosodies impraeghough the evidence is mixed regarding when and
how these changes occur (Nelson & Russell, 2011; Sauter, Panattoni, & HappiD&&pe
this mixed evidence, results from behavioral studies indicate that early in life humans perceive
and differentiag betweerprosodiesand thatdifferentiating between these vocal caggpears to
be meaningful for children prior to their abilities to label them.

It is likely that physical properties of the emotional environment, including expression of
affective prosdy, contributestochllr ends dev el o p behavibral ledelnstudiesd , a't
have shown that exposure to heightenedanger associ ated with childrer
adjustmentCummings & Davies, 20Q02And even before behavioral outcomaseobserved
exposure t@n atypicakemotional environmerdppears to influenoe h i | d r e fudconinge ur al
(Graham, Fisher, & Pfeifer, 201Shackman, Shackman, & Pollak, 2D(7or examplepne
study found that hearing very angry relative to neyratodywas @&sociated witlgreater

activation inrostralanterior cingulate cortex (ACCgaudatewucleus and hypothalamus



sleeping infantdut only in infantdrom homes with higher levels of matermated interparental
conflict (Graham et al., 2033

Despite peliminary evidence suggesting that the early environment may influence
patterns of neural activation in response to affective prosogyung childrenlittle is known
aboutc hi | drends neur al p rnjorgyoeurmighagmdtudeshvatls e c u e s
the exception of few infant studidsgavebeen conducted with adultss a resultfhere exista
notable gap in our understanding of neural processing of affective prosody between infancy and
adulthood. Ultimately, dcumentatiorof neural processg of affective prosodvill increaseour
understanding of how childrenbés early affecti
processing of these cud@us, sudies investigatinghe neurahetworksthat support processing
of affective prosodyre neessaryTo that end, the present study investigattective prosody
processingn typically developings-to 10-year old childrenTwo prominent neuroscience
modelsguidedthis study. The first model descrilakaffective prosody processiig speech as
part of a larger language processing research proahirmer & Kotz, 2006yvhereashe
second modatlentified neuralregions and networkbat play a key role in the processing of
social information(Adolphs, 1999).It was proposed that regiorentified byboth models
would be activavhen children heardffectiveprosodyas these models were conceptualized as
complementaryrather than competing

Finally, there is agrowing emphasis ineuroscience away from 1:1 mapping of cortical
regions to specitipsychologicafunctionsandtowardsthe investigation opatterns of
connectivityamong neuralegions (Cichetti & Dawson, 2002 Thus,the present study
investigated effective connectivjtgefined as the influence that one neural region ergds

arother(Friston, 2011)when children heard various prosodi@s.en mixed evidenceegarding



whetheror notspecific affective prosodiatifferentially modulateneuralactivationandbr
connectivity (Cindquist et al., 2010; Vytal & Hamann, 201€his stuy assessedhether
hearing angry, happy, and neutral prosodies was relatéftamentialmodulation in effective
connectivity.
Affective prosodyand the earlyemotional environment

What is affective prosody? Defined as the suprasegmental featurepeésh that
convey emotional states (Banse & Scherer, 1996; Schirmer & Kotz, 2006; Scherer, 1989)
affective prosody cueasclude the tempo, pitch, quality, and amplitude of the voice (Banse &
Scherer, 1996 Emotional states influengghonatory and articulary muscles in the throat and
mouth resulting in distinct acoustic patterns (Scherer, 188@)exampleangeris related to
increases in vocal pitch and intensity whereas sadness is related to decreases in pitch and
intensity (Scherer, 1989)n addition to conveying information about felt emotional states,
affective prosody cues can also provide information about emotional states that (Bignsel
& Scherer, 1996 Moreover, hesecues can capture attention and communicate information
about the emodinal state of a speaker even when an individual is not visually atteldang
speaker (Shackman & Pdila2005) or is the intended recipient of such speech (e.g. a child hears
a parent speaking in an angry voice to a sibling).

Chil dr ends eamvoideyanckakqutivespuosodyl hat affective prosody
need not be directed at an individisahn important factovh en consi dearly ng a chi
emotional environmenExposure to emotional expressions begins in the failynémore &
Halberstadt, 1997/Montague & WalkeiAndrews, 2002)Even beforebirth, a human fetubeas
voices as the inner ear begins to transduce sound during the second trimester (for review see

Saffran, Werker, & Werner, 2006). Studies of fetal heartbeat reactivity have shovetubas



recognize and prefer their motshggestingthavtioeyaree t o
familiar with this voice after recurrent exposu(BeCasper, Lecanuddusne] GranierDeferre,
& Maugeais,1994;Kisilevsky et al., 2003; Kisile\sy et al., 2009)After birth, behavioral
studies show that neonates recognize and prefer the voices of their mother and father (DeCasper
& Fifer, 1980; Ockleford, Vince, Layton, & Reader, 1988) as well as their own language relative
to a nonnative languagMoon, Cooper & Fifer, 1993These postnatal preferencee
theorized taesult from sensitivity to the prosodic characteristics of speech that thehdwee
repeatedly (Aguert, Laval, Lacroix, Gil, & Bigot, 2013).
Acrosschildhood the voice is ammportant communicative tool for parents (Vaish &
Striano, 2001)In infancy, parents use affective prosody cuestor ect an i nf ant 6s
to communicate interest (Fernald, 1985; Fernald & Simon,)1#84owing infancy, the
toddlerhood periots characterized by children asserting themselvesys thaiat times
conflict with parental rules or are unsafe for the child resulting in the need for parents to set
limits and discipline their newly autonomous children (Brownell & Kopp, 2007). These
instances mayesulti n parent 6s use of prosodic cues (e.g
admonish childremvith the hope that this prevents the behavior in the future.
Thoughresearch on how parents use affective prosody as an assotoatifor children
is limited, it is evident that arly in life infants and childreare exposed to significant amounts of
prosodic informationHoweverthese studies also reveal that infants and toddlers begin to use
these prosodic cues toige their own behaors, we nowpresent these results and discuss
factors that may i nfcormreadyndemnifythdse cues.r ends abi |l i ti
Chi | dr ends behavandknavedge daffgrtivenpsosody.By fove

months of age, infants appear to differehtigl r espond t o paralinguistic



directed speech, as evidenced by f a nt s 0 poditives gffdctanyrespormsé to approvals and

more negative affect in response to prohibitions (Fernald, 1888)by 12 monthf age

infants appeato use nonverbal affective cuie$acial and/or vocai to guide their behavior

(Feinman & Lewis, 1983)Valden & Ogan, 1988For example, one study found that maternal

fearful vocal expressions were more likely to inhibitrh@ntho | d s 6 ex pn or ati on of
ambi guous toy than did mothersd happy vocal a
fear was conveyed in meaningless utterances indicating that prosody, even without semantic
information, influenced the degree to which infants approached ti{#toymeet al.,1996.

Additionally, in a series dadtudies, Repacholi and colleagues demonstrated thabh&rolds

were more hesitant to touch an object when an experimenter expressed negative vocal and facial
emotionsand wordsparticularly when theknew the experimenter could see them (Repacholi &
Meltzoff, 2007; Repacholi, Meltzoff, & Olsen, 2008)aken togetherhese resultgdicate that

before they are able to speak, infants and toddlers differentiate among affective prosody cues and
use theseues to inform their behaviors.

While behavioral studieshowthat very young children perceive and use differences in
prosody to guide and inhibit behaviors, children are not able to reliably label different affective
prosodiesinstead, this skill comiues to improve as children a@gfeguert et al., 2013; Baltaxe,

1991; Morton & Trehub, 2001; Sauter et al., 20th®ughthe evidence remains mixed regarding
whenchildren accurately label prosodies and how task conditions and demands influence these
skills. It has been suggested that-agkated improvements in these skills reflect decreasing
reliance on semantic cues (Aguert et al., 2013; Morton & Trehub, 2001) as by age 10 children
canaccurately u d g e a emgiona Kapdnord maralinguistic cuesvenin the presence of

incongruent emotional speedfriend, 200).



Addressing these findingd,has beeproposed that semantic information may dominate
chil drendés judgement s aGomseguently,@shildrenareazduiring o mmu n i
receptve languageit may be more difficulto integrate confliehg pieces of information (Friend
& Bryant,2000)Thi s di fficulty is |ikely raaefinadaed to <c
the higher order cognitive abilities that assist in gbedctal behaviorsuch aselective
attentionandmental flexibility (Zelazo et al., 2003 his theory help$o explain why children
show difficulties interpreting conflicting affective cues while, paradoxicatlydies have
demonstrated that preschoolers aately discriminate among basic eftive prosodies in less
demandingasks, such ashenspeechhat has been loyass filtered or is spoken a foreign
language(Baltaxe, 1991; Morton, Trehub, & Zelazo, 20@8) in the context of semantically
neutralspeechiorton & Trehub, 2001)

Affective prosody processing at the neural leveDverall, there isignificantevidence
from the behavioral literature to suggest that early in life, childezoeive, differentiate among,
and use basic affective prosocues. Furthemore, this work revealhatover timewhat
i mproves as a result of cognitive maturation
prosody cues when they apoken withconflicting andor ambiguousemantic contentt
follows then that at the neural level, before children are able to articulate the label or meaning of
affective prosody, these cues are ddfgiated Thus,hearing differenaffectiveprosodies
should be related wifferences imeuralactivation or interrgional connectivityn young
children.And, in fact, there igvidenceo supporthis hypothesigs neuroimaging studies have
demonstrated that as early7amonths of agedlifferences in patterns of neural activation are
observable when infants hediff erent prosodies (Blasi et al., 20Q3rossman, Striano, &

Friederici, 200%.



In addition to findings from neuroimaging studies suggesting that early in life affective
prosodies are differentiated at the neural level, there is preliminary evidence &etyhe
emotional environment may influence this processing. It is@adLlmentedhat early
experiences influence human development across multiple levels of functioning (Fox & Rutter,
2010) through continuous interactions between genes and the envit@smwxperiences
facilitate, maintain, and/or induce changes in achieved anatomical, physiokgitehavioral
states (Gottlieb, 1992). Across different homes, children are exposgadability in emotional
expression as parents differ in their lesvef warmth and hostility as well as in the level of
conflict in the marital relationship (Cummings, Davies, & Simpson, 1994; Katz & Gottman,
2009; Morris et al., 2002; Reuben et al., 20B&)the behavioral level, exposure to marital
conflict is associa&d with differences in behaviornasponses to angry incidentstire homean
children as young asto 2years of age (Cummings, Zakviaxler, RadkeYarrow, 1981).And
as already mentioned, a neuroimaging study with infants founéxpasure to interpantal
fighting was associ at e dessimg dvdryangry voices(Gramasee s 1 n i
al., 2013) Though replication of findings are necessary, this study suggested that the emotional
environment was associated with differences in neuaggssing of angry prosody early in
development.

In sum, there is evidence that exposure to atygicadtionalenvironmentsnfluence
chil dr e n 6 sacrdsanulaple teypelséeniftand how exposure to atypical affective
prosody (e.g. high levels anger) is related to these differences has not been isolated within
studiesexaminingthe influenceof he ear |l y envi r onmentThooghnot hi | dr
a study of the environmentso6 influenceghton aff

to begin addressing this question by examimagponse patterns in a neural network that was



active whertypically-developingchildren heard angry, happy, and neutral prosodies. work
was guided by two leading neuroscience models discussed below.
Cognitive and socialneuroscienceanodels of neural processing of affective information

The two leading models that have organized affective prosody processing research
emerged from the fields of cognitive neuroscience and social neurosésneach mdel
provided key insights into the neural regions and network that are active when humans perceive
and process affective prosody they were conceptualized as complementary. The strengths and
limitations of each model as well as their implications for awtenistanding of affective prosody
processing ardiscussed below

Cognitive neuroscience radel. The cognitive neuroscience model was proposed by
Schirmer and Kotz (2006) to integrate conflicting findings from neuroimaging studies of
lateralization in vodeemotional processing. This model proposed that affective prosody
processing occurs across three stages. First, a stimulus is perceived and acoustic cues are
processed in bilateral auditory cortex. Second, acoustic cues that convey emotional information
are processed along a pathway from bilateral superior temporal gyrus (STG) to superior temporal
sulcus (STS). Third, higherder cognitive processing of emotional information occurs in
inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC). It ighe final stage of the cognitive
neuroscience model, in these higher order processing regions, that emotions in the voice and
verbal information are integrated thereby enabling evaluative judgments about emotional
information and congruous/incongruous im@tion Schirmer & Kotz, 2006).

Significant support for the cognitive neuroscience model exists in the neuroimaging
literature.Cognitive neuroscience research using fMRI, which has mainly involved adult

participants, has established that regions inahgporal cortex, includin§TG, STSand the



medial temporal gyrus (MTG) are sensitive to the human voice (Belin, Zatorre, Lafaille, Ahad, &
Pike, 2000; Mitchell, Elliot, Barry, Cruttenden, & Woodruff, 2003; Wildgruber , Ethofer,

Kreifelts, & Grandjean, 2UB). Further, multiple studies have found affective prosody processing
engages a fronttemporal network that includes frontal regions such as IFG and OFC (Bach,
Grandjean, Sander, Hardener, Strik, & Seifritz, 2008; Buchanan et al., 2088pEr &

Grandgan, 2012; Ethofer et al., 2006a; Leitman et al., 2010; Wildgruber et al., 2008).

There is also evidence that neural regions identified by the cognitive neuroscience model
are active when infants hear affective prosodies. Infant studies have used rvawi@isiaging
methods, including MR, electroencephalography (EEG), and near infrared spectroscopy (NIRS),
and have provided evidence for a specialization for voice processing in frontal and temporal
regions similar to those seen in adults in infants asg@s 7 month of age (Blasi et al., 2011;
Grossman, Oberecker, Koch, & Friederici, 201Rgsults from these studiatsosuggest that
these regions differentiate amoaffective prosodiegarly in life(Blasi et al., 2011; Cheng, Lee,
Chen, Wang, & Decgt 2012; Grossman et al., 2005). For example, using event related
potential{ ERP), Grossman and colleagues (2005) found tmadfithold infants showed
positive slow waves over temporal electrodes for both happy and angry prosodiesftwut not
neutral. A an MRI study found that sad vocalizations compared to neutral modulated
activation in OFC and insula in 8arough 7montholds (Blasi et al., 2011).

In addition to those regions identified by the cognitive neuroscience model, adult
neuroimaging studgehave also shown thperceiving and processirafective prosody is
associated with significant activation in subcortical regiankidingthebasal ganglia (e.g.
putamen, caudataucleus nucleus accumbens; Bach et al., 2008; Morris, Scott & Dola®);199

ACC, insula (Bach et al., 2008; Johnstone et al., 2006), cuneus and precuneus (Leitman et al.,
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2010; Mitchell et al., 2003; Sander et al., 2005). Furthermore, these studies reveal the complexity
of this processing as activation in response to affeptiosody is modulated by task demands
(Bach et al., 2008; Fruhholz, Ceravolo, & Grandjean, 2011; Mitchell et al., 2003; Sander et al.,
2005), stimuli salience (Leitman et al., 2010), emotional intensity (Ethofer et alg)2808 the
numberof stimulus pesentationgWiethoff, Wildgruber, Grodd, & Ethofer, 200%Finally,
variations in activation are neblelystructurespecific. A metaanalysis revealed a widespread
network ofsuperior temporal cortenegions thatvereresponsive to affective prosodytifaund
thatstimulus factors including attentional focus, valence, and paraverbal versus nonverbal
expressions influenced functional connectian®ngtemporal and frontal regions (Fruhholz &
Grandjean, 2012).

In sum, there is ample support tipatrceivirg and processingffective prosodys related
to activation in temporal and frontal regions identified by the cognitive neuroscience model.
However,evidence also suggests tlfagre are additional regions in the underlying neural
architecture that suppsrthis processind=urthemore though thecognitive neuroscienamodel
proposes that lower order regions encode information and project to higheprawkssing
regions, there is narticulation of if and how various affective prosodies may modulate
connectionpresencestrength or drection.Based on thedéenitations a social neuroscience
model was also reviewett was proposed that this additional model vdoaligment the
understanding of affective prosody processing provided biffrtenodel

Social neuroscience modelThe social neuroscience model veaiginally proposed as a
discrete set dbrain structuresvhose activity enabled humans to make inferences about the
intensions, thoughts, and feelings of others (Adolphs, 2009; Brothers, 19@Mally, this

modelincluded STG, OFC, the amygdale temporal poles, and the tempparietal junction
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(TPJ)(Brothers, 1990)Since then, neuroimaging studies have identified additional neural
regions that support social cognitive processes inauddntranedial prefrontal cortex
(vmPFC) paracingulate cortexnsula, and the fusiform face area (FFA$.a resultthe social
brain model now proposes that this widespread network of cortical and subcortical regions
interact to enable a diverse sesotial cognitive processexluding characterizing,
understanding, and flexibly responding to social cAe®iphs, 1999; Blakemore, 2008;
Kennedy & Adolphs, 201%4.ieberman, 200y

Research stimated by this model guided the present stundiyvo ways.First, this model
identified neural regionthatlikely supportc hi | dr ends processandthagy of aff
were not included in the cognitive neuroscience mddeé area of research that contributed to
the theory thaspecificneural regions areritical for social cognition has been the study of how
brain lesions are related to deficits in social and emotional tasks (Adolphs, T888y. studies
haveshownthat lesions in theight insula, and right frontal and temporal pole cortices are
associted with lower recognition scores on emotional prosody rating tasks (Adolphs, Damasio,
& Tranel, 2002), that lesions in bilateral amygdalae are associated with impaired recognition of
anger and fearful prosody (Scott et al., 1997), that lesions in thiegagdia and insula are most
frequently seen in aprosodic syndromes (Cancelliere & Kertesz,,880jhat lesions in left
basal ganglia are associated with impaired evaluation of emotional pi@=adgnann, Pell, &
Kotz, 2008).Finally, patients with entromedial prefrontal cortex (vmPFC) damage show
difficulties interpreting complex social information (Beer et al., 2003), reductions in empathy for
others ShamayTsoory, Tomer, Berger, & AharelReretz 2009, anddeficits in theory of mind
tasks (Leoplu et al., 2012; Shamalsoory et al.2005) Thislast findingis particularlyrelevant

tothe currentstudg s t heory of mind refers to the abili
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own and anotherds ment al s t ahawdorsafrothers (Adolghs, e d i c t

2009; Frith & Frith, 2001).In sum, lesion studidsaveprovided evidence that social brain
regions including the insula, temporal poles, basal ganglia, and vmPFC are important for
accurately interpreting emotional cues andestd hus t is highly probabléhenthat these

regions aremportantfor accuratelynterpretingaffective prosodygues.

In addition to identifying neural regions that likely support affective prosody processing

in children,a major contribution of resezh stimulated by the social neuroscience model,
particularly for the present study, has b#esfocus on investigating how individual differences
in neural connectivity are associated with deficits in social cognition. This work has primarily
been condued with individuals withAutism Spectrum Border (ASD), a neurodevelopmental
disorder associated with deficits in social communicadioth cognition (Adolphs, 1999} has
beentheorizedthatatypical neuratonnectivityis associated with social cogn deficits
observed in individuals with ASDnterestingly, esults from thes studies have been mixeath
evidence obothfunctional hyperconnectivitgcross multiple brain subsyste(@xImonte,
Gall agher, OO6Hanl on, Mc Getalt2013) a’d s8extivesdeaeenses,
in connectivityamong limbierelated brain regions (e.g. vmPFC, left amygdala, regions within
temporal cortex (Gotts et al., 2QI2iMartino et al., 20092)Though more work is necessary to
furtherclarify the ontogenyf these aberrant neural systems in individuals with ASD, this
research program provides evidence that atypical interregional conneanatygsocial brain
regions are associat@dth social cognitive deficitsThus, it is likely that typical variabilitin
connectivityamong these regions supports processing of social and emati@sakhis fact, in
conjunction with study findings discussed, highlights the importance of documenting both

typical and atypical development of neural networks.

201
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In sum, esearch stimulated lilge social neuroscieneceodel provided insight into
cortical and subcortical neural regions that are likely involved iptbeessing of affective
prosody. Moreover, research stimulated by this madeichhas increasingly focusecsho
documenting typical and atypical development of newstlesns, has increased our
understanding of how differences in functioning in these systems is related to social cognitive
deficits. As a result of the contributions of the cognitive and sociabseience modelshese
modelswere not conceptualized as competing, but, rather as complemdrdadhat end, the
present study predicted that hearing angry, happy, and neutral prosodies would be related to
activation within regions identified lyoth ofthese modelsAdditionally, it was also expected
that hearing affective prosody would be associated with functional coupling among these
regions. To test this theoryprnectivity analyses wermnducted athese methods allow for
characterization ahe functional relations between regions within a netwdtiese methods,
and the specific hypothesis about the affective prosody processing network, are now discussed.
Connectivity analyses for fMRI data

It is well documented that the brain is a dynamic systemprised of segregated cortical
regions that are anatomilygand functionally connecte@Rubinov & Sporns, 2010; Smith, 2012;
Van Den Heuvel & Pol, 2010Advances in data analytic techniques for neuroimaging data
within the past two decades have imgd our abilities testudymultiple levels of connectivity
thereby permitting us to answer questions about the topology of brain networks (Minati, Varotto,
D6l ncerti, Panziva, & Ch anexisttareeldiferent$ypesofns, 201
connetivity (structural, functional, and effective) and thoughase terms have at times been
used interchangeably in the neuroimaging literature, they provide unique information about

neural architecture and function (Friston, 2011). Structural connec&éysrto the anatomical
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connections (axons) betwesagregatetirain regiongRubinov & Sporns, 2010; Span2011)
whereadunctional connectivityefers to the temporal eactivation ofcortically segregated
regions (Friston, 1994; Friston, 2011; Poldratal., 2011)Based on Hebbian learning theory
(Hebb, 1949), which has been simplified to
(Keysers & Perrett, 2004fjunctional connectivity methods infer dependencies based on
correlations betweerhanges in the blood oxygenation ledelpendent (BOLD) signal in
discrete neural regions obtained from fMRI data (Friston, 2011; Jolles, Van Buchem, Crone, &
Rombouts, 2011).

Functional connections among neural regions give rise to and support compigixtsho
and behaviors (Friston, 2011; Goldenberg & Galvan, 2015; Stephan, Li, Iglesias, & Friston,
2015).These connections, thoughnstrained by anatomical connectividyedynamic and
variable (Sprns, 2012pand ardl ¢ h a rogtime srales of millisecals and in ways that reflect
changing patterns of endogenous or stimiaigen processing (Sporns, 20112p.Yet
functional connectivitys limited in that it does natharacterizéhe causal influence of activation
in one region on another (Poldrackaét 2011).To address this limitation, analytic methods
were created to examine effective connectivity, wheflersto the direct and indirect influense
that one neural region exedser another@oldenberg & Galvan, 201Rubinov & Sporns,
2010) Both dynamic and tasdlependent, effective connectivity revetde changing functional
architecture among regions in a network assallt of experimental manipulations (Friston,
2011;Goldenberg & Galvan, 2015

Effective connectivity methods Multiple dai analytic approaches for studying effective
connectivity exist. One of the most frequently used methods, dynamic causal modeling (DCM),

was developed to be a biologically plausible model for fMRI data (Scherf, 2015). This method

t
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compares numerous modelghin the same data using Bayesian model comparison (Friston,
2011).DCM is limited, howeveras it is a confirmatory approatmat restricts the number of
nodes that can be included within a model (Smith, 2012) and that requires that connections
within the network arepecifieda priori to model selection (Poldrack et al., 2011). Furthermore,
DCM does not provide information about contemporaneous connections between regions as this
method was designed to model lagged connections (Friston, Harrison, § P668; Smith,
2012).

Other effective connectivity methods, such as path analyses approaches like structural
equation modeling (SEM), address these limitati&&V modelscontemporaneous relations
among BOLD signalas well aghe directional relationsetween regions; however, tmeethod
is not exhaustive and therefore does not search for all possible network connections (Gates,
Molenaar, Hilary, & Slobounov, 2011). Furthermore, SEM assumes statistical independence of
observations, an assumptionttbannot be made with fMRI timgeries data (Kim, Zhu, Chang,
Bentler, & Ernst, 2007)To address the issue of dependence in-8erees data unified SEM
(uSEM)was developedrlhis method is a twetepalgorithm hat analyzes multivariate times
seres datadr individual subjects and moddisth contemporaneous and longitudinal relations
among regiongKim et al., 2007). Longitudinal relations were defined as connections that exist
between brain regions at different time points (Kim et al., 2007). To futthelopthis method
the extended unified SEM method was proposed (euSEM; Gates et al., 2011). EUSEM added to
USEM6s ability to model | agged and contempor a
the effectof experimental manipulations on the BOLDrsadjandconnectivityamong regions

(Gates et al., 2011).
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Most recently, Gates and colleagues proposetbep Iterative Multiple Model
Estimation (GIMME)method GIMME is a data driven analytic approach that estimates both
USEM and euSEM. This approactodels lagged and contemporaneous directional connections
withouta priori specifications about these componaitboth the group and individual subject
levels (Gates & Molenaar, 2012). This is accomplished across multiple steps. In the first step, the
best fitting group model is identified. Beginning with a null model, an iterative procedure adds
and removes parameteBased on Lagrange modification indices, pathways are freed at the
group level if they improve model fit for a specified number of subjéBates & Molenaar,
2012; Hilary, Medaglia, Gates, Molenaar, & Good, 2014). All potential pathways are examined
and evaluated for whether or not they improve the model fit for the majority of subjects and
pruned it they do not. Once the best fittingugranodel is identified, individual models are
conducted for each subject. Beginning with the group model, pathways are freed and significant
and nonsignificant pathways for that subject are opened or trimmed respectively (Gates &
Molenaar, 2012).

Effective connectivity with children. The GIMME approach is particularly wesLited
for neuroimaging studies with childrasit examinesonnectivity at both the group and
individual subject levelAcross thdifespan, both gray and white matter densities inbtfaén
undergo extensive and heterogeneous changes as a result of prewessessynapse formation,
pruning, and myelination and neuronal migration (Belsky & de Haan, 2011; Collin & Van Den
Heuvel, 2013; Giedd et al., 1999; Sowell et al., 20B8)oss @&velopment interregional neural
systemsecomencreasinglycomplex as a result of interactions between biological and

environmental factors (Goldenberg & Gaty 2015; Menon, 2(8).
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Changes in network complexibccur at the structural level, howeverléianctional and
effective connectivity also show agelated changes$n aseminal studyf the development of
neural networksSupekagand colleague@009)showedthatthoughthe global functional
architecture ot h i | dnaie and many of the grosseasures of network topology were
similarto those in adult®y the time children were 7 years of ageiJdren showedi s i gni fi cant
weaker connectivity between peompatedomadulisc, assoc
(Supekar et al., 2009, 9). A subsequent study found that three prominent independent
functional networks were identifiable in children as young as two years of age but that children
showed weaker functional connectiviaynong regiond=urthermore, across development into
young adulthod therewere considerable changescionnectivity strength and node distribution
(for review seeMenon, 2013)Similar to findings of functional connectivity, studies
investigating effective connectivity have also shown differences in children and &dults.
exampleHwang and colleagues (2010) found that effective connectivity strength was greater in
adults relative to children in a network believed to underlie inhibitory control. Moreover, two
separate studies found evidence suggesting a continuoustoeurg of effective connectivity
in the core face processing network (He et al., 2015; Kadosh, Kadosh, Dick, & Johnson, 2016).
These resulteeveal a developmental reconfiguration and refinement of neural netwbiis
likely reflects the continuous itactions and contributions of both brain maturation and
experiences (Cicchetti & Dawson, 2002; Gottlieb & Halpern, 2002).

In sum, there is evidence to suggest that there may exist differences in the functional
properties of the network that supports effifiee prosody processimpt only across development
but within a sample of children of different agésdeed,one of the studies described above

found significant variability in 3to 6-year olds effective connectivity in the face processing
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network reslting in the best fitting model only characterizing 47% of their sample (He et al.,
2015).Unfortunatelythe extant neuroimaging literature on affective prosody processing has been
conducted primarily with adult3hough the present study did not evaludgeelopmental
changes in connectivity as data were only collected from children, this study took two important
steps in furthering our understanding of normative variability in connectluiiyng affective
prosody processinig children First,informedby previous findings of heterogeneity in
connectivity across children, this stuatylized a method thas sensitive to individual
differences. By modeling effective connectivity at the group and individual suéyets, the
GIMME method permittedhe ccumentation of normative variability in connectivity in the
neural network examined. Secondlye present studyvestigated connectivity in a sampe
typically developing childrerNeuroimaging studies with typically children have the potential to
provide afuller understanding of the full range of typical variability in neural procesasiolg
connectivity(Cuthbert & Insel, 2012) Ultimately fuller documentation of this variability and the
development of the functional architecture of the brain camawgpour understanding of when
and how pathological processes develop (Cuthbert & Insel, 2012).
Neural differentiation among affective prosodies

Finally, there exists an ongoing debate in the emotion processing and neuroimaging
literatures aso whetheror not different emotions have discrete physiological and neural
correlates (Vytal & Hamann, 2010). On one side of this argument, it has been proposed that
basic emotions are produced by activity within specific neural regigkmgn, 1999pr similar
undelying neural networks (Izard, 2009). In contrast, the psychological constructionist
approach argues that different emotional stat

t he br ai nthatthayemergerfrant the eneaning that indivitkienake out of sensory
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information based on their environment and previous experiences (Lindquist et g)., 2@&L0
evidence is contradictory as to whether or not different emotions are processed in discrete neural
locations. For example, one metnalyss found that experiencinand processindifferent

emotions (fear, anger, sadness, disgust, and happiness) was correlated with significant activation
in specific neural regions (Vytal & Hamann, 2010). The authors attpa¢dhese findings
supportedEmardb s di screte emotion theory. However,
by the inclusion of studies with a wide range of emotional tasks and experimental paradigms
(e.g. viewing facial expressions & emotional pictures, hearing emotional voices; Vytal &

Hamann, 2010)n contrast, another metmalysisfound no evidence for the discrete emotion

theory, rather findings suggested that there existed a set of neural regions that were important for
and interacted with one another to engender emotions, cagnidad perception (Lindquist et

al., 2010).

Evidence from the affective prosody processing literature is also complex as studies have
found evidence that various affective prosodies are related to increases in activation in specific
neural regions and ffierences in network connectivity patterns. For exangeater activation
in middle STS (Grandjean et al., 2005) and bilateral STG, insula, OFC, IFG, and the amygdala
has been observed for angry relative to neutral prosody (Ethofer28GH., However
activation in OFC was more pronounced during the first exposure indicating that this region may
actually be modulated byovelemotional stimuli (Ethofer et aR009. Yet another study found
increased activation in the OFC when subjects were attetwanggry prosody explicitly;
increased activation in the right amygdala and bilateral mSTC were seen for angry>neutral
irrespective of attention (Sander et al., 2005). With respect to happy prosody, greater activation

has been observed in right mid STé& happy>neutral and in aMTG, pMTG, and rIFG for
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happy>angry prosody (Johnstone et al., 2006). Similarly, a study using event related potential
(ERP) found that the N3 amplitude was greater in frontal electrode sites in adults for happy
compared to angryggesting greater effortful processing of happy prosody (Iredale, Rushby,
McDonald, Dimovsk&DiMarco, & Swift, 2013).

At the network level, studies of effective connectivity during affective prosody
processingn adultsexist Using DCM, the first studghowed that the befitting model of the
network that supported judging affective prosody was one in whichgagtérior temporal
cortex served as the input region and projected activation to bilateral inferior frontal cortex
(Ethofer et al., 2006b)A follow up study revealed that activity in the mid STG was modulated
by hearing affective prasly and that an emotional voice area could be identified within this
region(Ethofer et al., 201). Using the PPI approach, this study found that hearing affective
prosody enhanced the connections of this emotional voice area with a network of regions
includingbilateral posterior thalamus, left middle frontal gyrus, right putamen, and right
cerebellum suggesting that relative to neutral vo{Edisofer et al., 2011

Taken together, there is evidence that hearing emotional voices may enhance functional
coupling between a widely distributed network of neural regions. Building on this work, the
present study investigated effective connectivity during affective pygsmtessing in a
network of regions identified by the two neuroscience models explicated above. This work was
largely exploratory due to the limited number of studies that have examined connectivity in the
affective prosody processing literature, howebased on findings from the study conducted by
Ethofer and colleagues (2011) and the behavioral literature reviewed suggesting that children
differentiate among affective prosodies, it was hypothesizedhbahregrosodieghat children

heard (happy,r&gry, and neutralvould differentially modulate effective connectivity.
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The present study.The presensought toaddress gap inthe neuroimaging literature as,
to datethereexisnost udi es of chil drends affecnhadve pr os
two specific aims. Using the Group Iterative Multiple Model Estimation (GIMME) approach, the
first aim was to investigate effective connectivity within a network of cortical and subcortical
neural regpns when typically developingt®-10 year old ciidren heard happy, angry, and
neutral prosodies. It was hypothesized that this network would include neural regions identified
by a cognitiveneuroscience modahdasocial neuroscience modasit was proposed that these
are complementary rather thamgoeeting models. The GIMMEnalytic method fomodeling
effective connectivity wastilized in the present study as this method permits examination of
effective connectivity at both the group and individual subject level and may thus be sensitive to
individual differences in connectivity across children.

The second aim of this dissertation was to examine whether different affective prosodies
(e.g. angry, happy, neutral) significantly modulated effective connectivity within this identified
network. Differenes in effective connectivity were quantified both by testing for significant
differences in the strength of connections between neural regions and in differences in global and
nodal network properties across affective prosody conditions. There is cogfeeidence from
the neuroscience literature regardwgether or not processing different affective prosodies
should result in differences in neural activation or connectiitgwever, evidence from
behavioral studies reveals that as early as infarmilgren are differentiating among and using
affective cues to inform their behaviors. There is therefore a basis to hypothesize that at the
neural level hearing different affective prosodies meglulateeffective connectivityThus this

study was built orsolid theoretical foundation and was exploratory in nature.
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METHOD
Participants

Data for this dissertation were taken from the Processing Emotions in the Environment
Project (PEEP). Families with a child between the ajéy, Om to 10y, 11mvere dentified
through a community database maintained by The Pennsylvania State University Child Study
Center. Additional criteria for inclusion (not recruiting) were that the children spoke and
understood English, and had no condition that would preclude plaeticipating in a scanning
visit. Exclusionary criteria included the presence of medical devices that would make scanning
unsafe and/or that the child did not understand Enghista result of this recruitment strategy,

40 families initially enrolledn the study. Of these, imaging data were collected 82children
asthree children declined to participate, three stopped participating during scanning, and two
were excluded due to screening procedures.

Of the 32 children who participated in scannidata from five children could not be
used due to experimenter error. As a result, 27 children provided neuroimaging data. There were
no significant differences in agg38) =-.107,p = .92, or gende#(38) = 1.47p = .15, between
children who providedmaging data and those who did not.

The average age of the 27 children (15 female) who completed a scanning visit was
95.00m 6D =15.57, range = 7R 123m). Children were identified by their mothers as
Caucasian (n=23, 85.20%) or biracial (n=4, 14.808skrage family income was $83,407.41
(SD =$39,252.89, range = $8,008160,000).

Due to motion greater than 3mm during scanning, data from 12 of the 27 children from
whom imaging data were collected had to be removed. As a result, data analysesdigct2do

on fMRI data from 15 children. The average age of the 15 children who provided usable data
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was 95.20m{D=14.99, range = #323m). There were no significant agie5) = .073p =
.94, gendert(25) = 1.29p = .21, or family income differencgg25) = 1.59p = .12, between
children included in analyses and those removed due to motion.
Procedures
This study was approved by the Penn State Institutional Review Board (IRB#34090).
Families completed three visits. The first and last visits oacdurrat t he f ami |l ydés ho
scanning visit took place at the Penn State Social Life and Engineering Sciences Center (SLEIC).
Visit 1L After written consent and assent were obtained, children participated in an
orientationdesigned tdamiliarize them withMIRI scanning procedure€hildren then completed
a standardized assessment of receptive and expressive larigo#ges completed
guestionnaires about their childds temper amen
Over the course of data collection, a training protocol was developegrovienthe rate
of MRI data acquisition. The new protoaeas conducted during the first visit. Children
practicedying still in a play tunnel that approximated the size of the MRI bore as they listened
to MRI scanning sounds. Children completed progre$gionger timeetrials. Staff provided
verbal feedback and positive reinforcement during trials.
Visit 2. At SLEIC, all children participated in a moskannesessiorprior to scanning
This session was altered during the study to include the presartégcanner sounds and
timedtrials similar to those that children completed during the home visit. Children were then
accompanied into the MRI room by a familiar staff member and the MRI technician.
Prior toscanning hildren were informed that they wiol hear someone speakiwpile
in the scanneiOn in the scanner, staff checked in with children throughout the scanning session.

Functional data were collected during a passive listening task.
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Visit 3. As parents completed additional questionnack#dren rated the affective
intensity of the stimuli. Initially, children were asked ogmrded questions about each script
(e. g. AHow do you think this person is feelin
responses. This task was thereforealte d t o constrain childrenbds a
provided with two sets of emotional faces that ranged from neutral to very angrafd
neutral to very happy €4). They were asked to rate the degree to which each script was both
angry and happy.

Scripts were recorded by a professional sound engineer at The Pennsylvania State
University Public Broadcasting radio station (WPSU). Visual inspection of spectrographic data
indicated that scripts spoken in one prosody had similar acoustic profilésaasdripts spoken
in different prosodies had different acoustic profiles.control for differences in loudness
across prosodiesgptswere Root Mean Square (RMS) normalized using Sound Adxge
Silence was interspersed between each 2s utteranicatsath script was 15s in duration.

Functional affective prosody listening taskA block design was used in this study.
Eightdistinctrun orders were generated. Each run contal@dalocks(4 scripts spoken in 3
prosodies) witlone additional neuraktspt addedattheend of therun end tceensurethat a run
did not conclude witlan angry voiceBlocks were pseudorandomized and separated by 15s of
silence As a result, ach run lasted 6 minutes and 54s. Two functional runs were collected from
each chidl.

MRI data acquisition. Neuroimaging data were collected using a Siemens 3T
Magnetom Trio using a 12 channel head coil. Total scan time was 24 min, 43 sec. An anatomical
MPRAGE was first acquired followed by two functional scans and a resting stat&abgtts

001-003 completed one functional run; following these visits all subjects completed two
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functional runs. Anatomical images were acquired using-8MBRAGE pulse sequence with
160 slices collected (TR/TE/TI= 1640, 2.01, 820 ms; voxel size =*1F@V = 256). EP| were
acquired aligned with A@C in descending order (TR/TE = 3000, 20ms, FOV = 200, flip angel
= 80, voxel size = 2.5 mi

Raw fMRI data were preprocessed using BrainVoyager QX v2.3 (Brain Innovation,
Masstricht, The Netherlands). Anataal MPRAGE images were normalized and transformed
using AGPC alignment. PreporFunctional images wei® Biotion corrected, spatially
smoothed (5mm) and temporal filtering of ldkequencies (GLM Fourier basis 5 cycle).
Resulting translational motion paratars were examined and subjects with movement greater
than 2.9mm in any of the six axes were excluded from subsequent analyses.
Measures

The following assessment measwa&snot included in analyses of fMRI dafBhese
measures were uséalcharacterizéhe studysample and determine study eligibility.

Language assessmenDuring the first home visit children completed four subtests of
the Clinical Evaluation of Language Fundamentdlsedition (CELF4; Semel et al., 2003
The CELF4 is a wellvalidatedme asur e of chi |l dr e n Gretestiraiabiityt a g e
measures ranging from .88 to .92 for composite scores based on a standardization population
(Semel et al., 2003ptandard procedures were followed to generate a Core Language Score
(CLS) for each child. CLS standard scores are based on norms for children of similar age, with a
mean of 100 and a standard deviation of 15. Scores ranging frdt¥8&re in the Average
range, and scores ranged from 11B® are in the Above Average rangased on their
performance on selected subtests of the CELF, two children were not included in subsequent

analyses. I n both of these instances parents
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performanceAs a group chil dr en éeizepas Aferage nacdscE s wer e
111.73, SD= 8.98). Similarly, for the 10 children included in the final analyses below, the mean

CLS score fell within the Average range €VL13.5, SD = 7.53).

Data Analysis

fMRI Data . Raw fMRI data were preprocessedngsBrainVoyager QX v2.3 (Brain
Innovation, Maastricht, The Netherlands). Functional images wBren®tion corrected,
spatially smoothed (5mm FWMHW) and temporally filtered fordmeguencies up to 5 cycles.
Participants with motion greater than 2.9mnamy of the six directions for any TR were
excluded from subsequent analyses. Data from functional runs of two participants were
recovered by removing TRs in which high motion occurred and thpreprocessed.

Data from at least one functional run weraitable for 15 children as three children
provided only Runl data and two children provided only Run2 data. Of these 15 children, data
from both functional runs were available for 10 childiféor each participant and run, the time
series images for eaclndin volume were analyzed for emotion differences in a fiaetbr
GLM. Each emotion was defined as a separate predictor and modeled witlcar haxction
adjusted for the delay in hemodynamic response. Time series images were spatially normalized
into Talairach space, which is common practice in pediatric neuroimaging research.

Creating Regions of InteresTo determine the set of regions that wacdve when
while children procegslemotional voices, we computed a wholain voxelwise mixedmodel
ANOVA including emotion as a fixed factor and subject as a random factor using only the
images from run 1 (n=13). The network of regions was defined by the balanced contrast [(Happy
+ Angry + Neutral} 3*Silence]. The group level map was corrected at thelevhrain level for

false positive activations using the False Discovery Rate procedure gwthl®d (Genovese,



27

Lazar, & Nichols, 2002)Table 1 shows the size and Talairach coordinates for each of the group
defined ROlIs.

Group level region of intereqiROI) analysesindividual participant regions of interest
were defined in a twstep process. First, broad regions of interest were extracted from the
significant activation within thgroup level map based on brain structure and functional anatomy
repoted in the adult literaturdBichanan et alTalairach, 1988 Second, to optimize the signal
within each of these regions for each individual participant in each run, the peak positive voxel
within this region (separately for each run) was identifiethdfpeak positive value was a
negativet value, as was the case for 54 ROIs across subjects, across runs, the values for each
voxel from the original ROI were extracted and sorted using Excel. Using the corrected peak
values, individual ROIs were defined a 6mm sphere of activation centered on these peak
voxels.

Correcting ROIsEach individuallydefined 6mm ROIs was visually examined to assess
1) if there existeaverlapping voxels among different RQisd 2) if voxels had been placed on
skull. Overlgping ROIs are problematic as they result in the same voxels being included for
different ROlsthereby including the same information in two ROIs tiseeies datarlhis issue
results in poor model estimation (Smith et al., 20IWenty-two overlapping rgions were
identifiedrangingin size from 1 to 609 voxel©f note,a 6mm ROI has 925 voxels. Based on
these findings, individual ROIs were-defined as a 4mm sphere around the ppesktivevoxel.

After the 4mm sphere ROIs were created, ROIs were agagssed for overlapping
voxels.For those overlapping regions foundjltiple steps were taken to correct this issue. First,
a new ROI that included the overlapping region was created and both the centroid of the

overlapping region and the number of dapping voxels were documented (see Tapld he



28

sizes of the overlapping regions ranged from 2 to 125 voxels. A decision regarding which ROI
the overlapping voxels would be given to was made based on brain structure and ROI
coordinates reported in fMRtigdies of affecire prosody processing in adultésing Matlab,
overlapping voxels were identified and then removed from the origohaineof-interest (VOI)
files. Time-series data werthenextracted from eactorrectedROI, for each run, for each

subject.

ROl's were also examined to determine i f an
correct this issue, the peak voxel text file for that ROl was extracted. Voxels were sorted by their
t values to identify the highest positivealue. The voxel coordates thatorrespondedvith the
highestt value that would move the entire sphere to an acceptable placement on the brain was
identified (see Tabl8). As a final step, all ROIs were redefinedigcing 4mm spheres around
the correctegheak values. Timeeries data were extracted from each R&i,gach run, for each
subject.

Effective connectivity analysesUsing the extracted tirmgeriesdatg taskrelated
regressors were calculated for each condition (happy, angry, and neutral). This strategy is
informed by the PPI approach. To calculate the regressor, the raw time course vectors for each
condition were obtainedRkaw time course vectors for all regions, for all subjects, across each
condition were then measentered using custom MATLAB scripts. The @rtl timeseries
data weraleconvolved using a double gamma function to estimate the hemodynamic response
function (HRF) in AFNI (Gold et al., 1998). The deconvolved tseees data were then
multiplied by a condition vector coded for the condition oéiast (e.g. happy = 1, all other = 0).

The resulting time course vector therefore only includted-seriesdata for the specific
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condition of interest. Finally, the conditi@pecifictime-seriesdata were reconvolved with the
HRF.

The final reconvolvedime-series data for each affective pros¢dngry, Happy, and
Neutral)were therseparatelsubmitted to the GIMME program. As discussadlier, GIMME
first conducts an iterative procedure that identifies common pathways at the groyo&esl &
Molenaar, 2012)Based omodificationindices, if a pathway significantly improves the model
fit for a specified number of subjects this pathway is freed for all subjects. Originally, the
modification index was set to 75%owever, when these analyses weredtmted, GIMME was
unable to identify common group level paths and had difficulties converging on a common group
map for any of the prosody conditionsaad®d on recommendations made by Smith and
colleagues (2011) the modification index wiasn reducetb 51%. As a result, if a pathway
significantly improved the model fit for six subjects this pathway was freed for all subjects. This
changewas sensitive to the fact that when data from Runl and Run2 were congaicked,
prosody conditiorhad approximately 2 mutes oftime-seriesdata.

Once the common group model was identified GIMME continued in asenfirmatory
manner by beginning a search for individual subject Imags Beginning with the group map,
GIMME iteratively evaluated if opening additionadthways improvednodel fit for the
individual subjec{Gates & Molenaar, 2012). Five indices for the individual subject level models
wereproduced These includedoot mean square error of approximation [RMSEA],-nonmed
fit index [NNFI], comparative fiindex [CFI], and standardized root mesguare residual
[SRMR]; Gates & Molenaar, 2012). Fit indices and acceptable fit can be found in Brown (2006).
The fifth indexproduced by GIMMEs the result of a cksquare test, however a nonsignificant

chi-squaredoes not reveal if a model is the best or true fit (Poldrack et a., 2011) and this statistic
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has extreme limitations, the first of which is that it is extremely sensitive to sample size (Hooper,
Coughlan, & Mullen, 2008)-ollowing the direction of Gateend Molenaar (2012), model fit

was evaluated based on whether or not the criteria for two of the four (RMSEA, NNFI, CFI, &
SRMR) fit indices were met. When a models failed to meet two of these four indices it indicated
that there were no additional pathwakat when freed would improve model fit for that specific
subject(Gates & Molenaar, 2012).

Testing differences in effective connectivitjodels of effective connectivity are
expressed as path diagrams in which brain regions (nodes) are linkethiegtoans (edges;
Poldrack et al., 2011Differences in connectivity strength were first tested on identical
pathways identified in the grotlpvel maps across the prosody conditions used paasipled-
tests and repeatedeasures onway analyses of veance (ANOVA). Gaph theory metricaere
then estimatetb derive multiple measures of network organizatiothagglobalandnodelevels
(Sporns, Chialvo, Kaiser, & Hilgetag, 200Fhese measures characterize functional
segregationgdefined aghe abilty of densely interconnected nodes to engage in specialized
processing and functional integratidefined aghe combination of specialized information
across thesmterconnectedegions (Rubinov & Sporns, 2010)h& present study investigated
five measues ofglobalnetwork organizationThese includedl) global efficiency which
estimates distances between remote nodes@tworkas the inverse of the shortest path length
2) networkdensity, which conveys the number of edges in the graph thatpsrpomal to the
possible number of edge®) the clustering coefficient, which represents the number of possible
connections between closely spdicedes as a proportion of the possible number of connections
4) the shortest path lengtiwhich is a commady used measure of the average length between all

pairs of nodes in a netwodnd 5) centralitywhich refers to the overall cohesion of connections
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and communication with a network as it measures distances among various nodes in a graph
(Bullmore & Sporrs, 2009 Rubinov & Sporns, 2010

We investigatediour indices of node connectivity. These includedthl clustering
coefficient,2) thetotal strength of the node, whigantifiedthe number of pathways in and out
of that node3) modularity, which rpresents the number of clearly delineated and non
overlapping groups of nodes andtd¢ centralityof a node, which conveys how many of the
shortest pathways between all nodes pass through pairs of this node (Rubinov & Sporns, 2010).

Graph theory metre&were condued in MATLAB. To test if there were significant
differences in these global network or node metrics, we conducted repesdisdres one way
analysis of variance (ANOVA) with a Bonferroni correction.

RESULTS

Behavioral ratings of speech stinali

In the final home visit, ltildren rated the happy scripts as significantly more happy than
angry,t(14) = 8.00p < .00L andthe angry stimuli as significantly more angry than hapiiy)
= 8.83,p<.00L. As the children engaged in passive listgyduring the scanninghese findings
support the view that the children were capable of perceiving differences in affective prosody
during scanning.
Group and individual level ROl analyses

Whole brain voxelise analyses on Runl revealed that childrdnbited significant
activation in response to human speech [(Happy + Angry + NeuB#&bilence] in regions
identified by both the cognitive and social cognitive neuroscience models. rEgeses
included bilateral posterior and anterior auditory cqrtelateral STG, bilateral caudate, bilateral

IFG, bilateralOFC, left vmPFC, and left insula (s€gure 1).
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Effective connectivity analyses

Connectivity analyses with runl datalnitially, only the reconvolved time series data
extracted from the ldorrected, individualihdefined ROIs from Runl were submitted to the
GIMME program (n=13)The decision to exclude subjects with only Run2 data (n=2) reflected
findings that multiple ROIs showed significant adaptation in the BOLD signal across Runl and
Rur2 for different prosodies and variability in adaptation across ROIs across prosodies may have
included findingsAdditionally, the fifth neutral block of time series data for the Neutral
condition was removed so that the amount of time series data wasnt@atoss conditions.

When timeseries data from the 14 ROIs were submitted to GIMME program was
unable to identify any common group level pathways for any of the prosody conditions and
multiple subjects across each condition failed to meet fit@sdcriteriaThus a decision was
made to reduce the number of ROIs based on findings from adaptation analysksptasan in
neur al activation indicates that a region is
attributeodo ( BeRdugel lmnyse& Belin,M@ld, p. 8GP&ly regions that
were sensitive to affective prosody (i.e. that showed significant adaptation) were included in the
connectivity analyses. To investigate adaptation in the BOLD response, the averaged beta
weightsfor each ROI, for each prosody, were submitted to Wilcoxon stgaekkd tests.

Resultsfrom the adaptation analyseslicated that there were different but overlapping
regions for which the signal was modeldty Happy and Angry prosodiésgry prosody
modulated activity in right anterior auditory cort@xs -2.19,p = .028, right posterior auditory
cortex,Z =-2.50,p=.013, left STGZ =-2.40,p = .017, right caudate, =-2.09,p = .037, left
OFC,Z=-2.80,p = .005, right OFC Z =-2.80,p = .005,whereaHappy prosody modulated

activation in right anterior auditory cortex=-1.99,p = .047, right OFCZ =-2.40,p = .017,
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left IFG,Z =-2.50,p=.013, right IFGZ =-1.99,p = .047, left insulaZ = -2.40,p = .007, and
left vmPFC,Z=-2.19,p = .028.

To reduce the number of ROIs in the connectivity analyses, right STG and left posterior
auditory cortex were initially removed as these regions did not show significant adaptation to
either Happy or Angry prosodiednfortunately, trimminghe number of ROIs did not enhance
the GIMME progrands ability to detect ommon group pathways for the Angry and Happy
conditions, and the model failed to converge at the group level for the Neutral corichtisn.
data from two additional ROI&ft anteror auditory cortexand left caudate, were removed as
bothof these regions only showed marginally significant adaptation to Angry prased{)
but did not show adaptatido Happy or Neutral prosodies.

Data from the 10 remaining ROIs were submit@&GtMME program however no
common group pathwaygereidentified and individual subject maps failed to meet fit criteria.
Finally, the modification index was reduced from 75% to 51% based on suggestions made by
Smith and colleagues (201d4jhenconductingconnectivity analyses with smaller amounts of
time-series dataOnce again, the model failed to converge at the group level across prosody
conditions.

Connectivity analyses with runl & run2 data.To avoid trimming the number of ROIs
further, time-seriesdata from Run2vas included in these analyséxludingRun2 increased
subjectsd data from four bl therdogncreéasingeli MMIEO sf o r
ability to detect effectsThe fifth Neutral condition block was excludadainto ensurehat the
three conditions had an equivalent number of t#®mees data blocks. Only subjects for whom
both Runl and Run2 data were available were included in these arhlysdecreasing the

number of subjects from 13 t0.10
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The same steps describedabd were taken tmvestigateeffective connectivity in the
combinedRunl and Run2 timeeries data. ine-series data from 14 RO#nd then 12 ROIs
were submitted tthe GIMME programfor each prosody conditioAcrossprosody conditions
these maps failetb converge for multiple subjects. When the tisegies data from 10 ROIs
(right anterior and right posterior auditory cortex, left STG, bilateral OFC, bilateral IFG, right
caudate, left insula, & left ymPFC) were submitted to the GIMME program, mulbpienon
pathways were identified at the group level across the three prosody conditions. The effective
connectivity group maps for the Angry, Happy, and Neutral conditions are meseRigure?2.

At the group level, hearing different affective prosodies associated with effective
connectivity between regions identified by the cognitive neuroscience model including auditory
cortex, left STG, OFCand IFG All conditions (Angry, Happy, & Neutralpcludepathwaygin
whichright anterior auditory cortegxerted an effect oleft STG andn which right OFC
exerted an effect on left OFC. Furthermore, when children heard Happy and Angry prosody,
right IFG exerted an effect on right OFC, however, the direction of influence was reversed when
children heard netal prosody. Similarly, left OFC exerted an effect on left IFG when children
heard Happy and Angry prosodies, yet the opposite effect was observed when children heard
Neutral prosodiednterestingly, there were no common lagged connections at the gralp le
Moreover, the cognitive neuroscience model predicts that information is directed from STG to
frontal regions for higher order processing. However, in the present study only when children
heard Happy prosody was the STG functionally connected td-&fahd the direction of this
connection was opposite of what the model would predict.

At the individual subject level, criteria for at least two of the four fit indices were met for

each subject, across each prosody conditrahvidual subject maps fahe Angry, Happy, and
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Neutral conditions are presented in Figue4, and5 respectivelyVisual inspection of these
models shows heterogeneity in effective connectivity across the prosody conditions as well as
across subjects within the same conditibmillustratethe within condition heterogeneigigure

6 shows the Angry, Happy, and Neutral maps from thmedomlyselectedsubjects.

In sum, individual subjedevel connective maps indicate that hearing different prosodies
was associated with contporaneous and lagged connections among cortical and subcortical
regions identified by both the cognitive and social neuroscience models. However, due to the
heterogeneity in the presence and direction of connections across subjects, patreans
idenified at the group level as the requisite number of children (6 in the case of the 51%
modification index)did not have the same pathways.

Testing differences in effective connectivity across prosody conditionBo testfor
differences in the strength tife common pathways in the group maps across the three prosody
conditions the beta weights and standard errors from the individual subject maps were submitted
to repeated measuresests and one way analyses of variance (ANOVA) were conducted. These
test revealed no significant differences in path strength across any of the prosody conditions.

To investigate if there were significant differences in network topology across affective
prosody conditions, graph theory metrics were calculated using MATRAB2). These global
network level statistica/ere then submitted to repeatexte asur es ANOVA. Mauchly
indicated thathe assumption of sphericityas notviolated in any tests conductekksts
revealed no statistically significadifferences in gloal efficiency, density, centrality,
modularity,or clustering across the group maps for the Angry, Happy, and Neutral conditions.

Tests were then conducted for individual nodes (R@Isjgnificant effect of prosody

was observed for right OFC centralif(2,18) = 5.019p=.019. Post hoc tests using the
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Bonferroni correction revealed that right OFC was more centralized in the Angry condition
(M=15.48, SD=3.30) compared to the Neutral (M=4.72, SD =2.10) condition. Symiksults
were obtained for righposterior auditory cortex, F(2,18) = 4.2p3; .03. Post hoc tests using
the Bonferroni correction revealed that this region was more central in the Angry (M=11.54,
SD=3.56) relative to the Neutral (M=2.65, SD =1.98) condition. These results indizatedte
short pathways passed through these regions in the Angry condition compared to the Neutral
condition. Similarly, right OFC had a significantijgher clustering coefficienE(2,18) = 6.09,
p = .01) in the Angry condition (M=.18, SD = .05) compatethe Neutral condition (M = .049,
SD =.02), indicating that there were more connections between right OFC and its neighboring
nodes in the Angry condition. Only one region, the right posterior auditory cortex, showed a
statistically significant effeadf prosody on diversity, F(2,18) = 3.46< .043. However, post
hoc tests using the Bonferroni correction failed to reach statistical significance for each of the
three contrasts. Finally, the total strength of each of the nodes was tested. A sigefiiecamif
prosody was found for left STG, F(2,18) = 7.@G; .005. Post hoc analyses revealed that this
region had significantly fewer connections directed in and out in the Angry Condition (M = 2.40,
SD = .34) than in both the Happy (M = 3.80, SD = &3) Neutral (M = 3.60, SD = .40)
conditions. In contrast, and similar to results for clustering and centrality, right posterior auditory
cortex had significantly higher total strength, F(2,18) = 464,02 in the Angry (M = 4.20, SD
= .47) relative tohte Neutral (M = 2.80, SD = .29) condition.

Effective connectivity in a combined affect conditionTo increas&s| MME &6 s power
detect effects within the data, time series data from the Happy and Angry conditions were
combined into a Combined Affecondition (CAC). Thus the number of blocks of data increased

from 8 to 16(8 Happy & 8 Angry). Of note, due to motion in Run2, one subject only had nine

t
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blocks of time series data for the Neutral condition as the final block was clipped from the
analysesd remove TRs that included motion>3mm. The data was clipped prior to preprocessing
and the additional TRs were removed during the convolution and reconvolution steps so that
additional Os were not included in the tiseries data in this step.

The previosly described model with 10 ROIs was submitted to GIMME with the
modificationindex set at 51%. GIMME identified 12 common pathways in the group(seap
Figure 7) Effective ®nnectivity was observed betweewnrtical and subcortical regions
identified bybothneuroscience models and each ROI had at least one pathway directed in or out
of the region.Furthermore, as predicted by the cognitive neuroscience model, connectivity was
observed within the auditory correct and left STG exerted an effect on fghtl@terestingly,
left IFG exerted an effect on left STG. All connections were contemporaneous.

As previously found in the separate prosody conditions, subject level maps showed
heterogeneity in the direction and number of pathways in regions idetyfiedth models.

Figure 8 shows the individual subject effective connectivity maps for the Combined Affect
condition.

Finally, when tme-series data from the Neutral condition were submittede&GIMME
programeight common pathways at the group levelevdentified. These pathways were the
same as identified in earlier analyses of effective connectivity with fewer Neutradines
blocks. However, with the addition of the two additional blocks of data, GIMME identified a
pathway in which left STG ihfienced right OFC and a pathwiagm right posterior auditory
cortex to left vmPFC. Interestingly, the direction of influence of left OFC and left IFC was
reversed in these analys&esults at the individual subject level were similar to those reported

for the Neutral condition with fewer tirageries blockg¢see Figure 9)Heterogeneity across
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subjects was observed in both lagged and contemporaneous connections and these pathways
were observed across all regions included within the network. Of note,iadlithdual subject

level, GIMME was unable to identify a map that met criteria for two of the four fit indices for
one subjectAsa result, graph theory measures were conducted and tested for differences for
global network propertielsut not for nodal pperties.

Testing differences in effective connectivity across conditioRsired samplestests
revealed no significant differences in the strength of the six connections that were prbe#nt in
the Combined Hective and Neutral conditionsOnce agin, gaph theoryneasuresvere
calculated in MATLAB and paired samplegests were conducted to test for significant
differencedn global and nodal properties across the two conditidiasisgcally significant
differences were observed between@uerbined Affectand Neutral conditions #teglobal
network level, but not for individual nodes. Specificallipll efficiency for theCombined
Affect condition was significantly higher (M = .49, SD = .04) than for the Neutral condition (M
= .40, SD = .07t(9) = 4.26p = .002). Similarly, Centrality was significantly higher for the
Affective Prosody condition (M = 130.50, SD = 33.03) than for the Neutral condition (M =
79.50, SD = 33.03(9) = 4.01,p=.003).

DISCUSSION

The human voice is a saliesafture of the auditory environmeitihroughparalinguistic
cuesthevoicecamonv ey i mpor t aseamotianalctate¢ (Bedin esgh,2@4) e r 6
Behavioral studies of young children reveal that chilgrerceivedifferencedn affective
prosody cuesat a young ageyet how they process thesges at the neural level has received
limited attentionAs a result, therexistsa gap in our knowledge of the neural processing of

affective prosody in children as well as hthve earlyemotional environmentfluenceghis
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processing.To address this gathe present studyvestigatedeffective connectivityn a neural
network in 6to-10-yearold children whertheyheard angry, happy, and neutral prosodies. It was
hypothesized thdtearing affective prosodyould engage a network of cortical and subcortical
regions identified by two leading neuroscience mode&nustional voice processing and social
stimuli processing respectively.

This study utilized a data analytic approach that permitted investigsteffective
connectivity at both the group and individual subject le\Résults indicated that there were
significant differences in properties of individual nodes but not in global network properties
across the three prosody conditions. In contrast, wiagapy and Angry prosodies were
combined into one condition, significant differences in global network measures between this
Combined Affect condition and the Neutral condition were obsekedliscuss resultand
implications of these results as wellsiseengths and limitations of the current study.

Effective connectivity during affective prosody processing in children

Effective connectivity during affective prosody processingn the group. At the group
level, hearindhappy, angry, and neutral prosesliwas associatedth effective connectivity
between regiongrimarily identified bythe cognitive neuroscience model (Schirmer & Kotz,
2006).Across all three prosody conditions right anterior auditory cortex exerted an effect on left
STG. The directiof this pathway was consistent with the cognitive neuroscience model
prediction, as well as witprevious studies findingghat anterior auditory cortex is sensitive to
all sounds whereas STG is important.,2009p fAperc
1262) and is sensitive to linguistic features of speech (Binder et al., Faothermore, though

pathways were directed towards and away from bilateral, @¥€gion identified by both
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neuroscience modeltere were no common group level padlysto or from subcorticalegions
identified by the social neuroscience moaey(vmPFC, insula; Adolphs, 1999

One interesting finding was that the group levetonnectivity was not observed
between left STG and inferiérontal regions This wassurprising given predictions from the
cognitive neuroscience model and evidence for this pathway in a previous study using effective
connectivity analysefEthofer et al., 2006b; Schirmer & Kotz, 2006n the contrary, hearing
happy prosody was associateith a pathway directeffom left IFG to left STGAIso notable
were findings of effective connectivity betwelgitateral OFC, from right IFG to right OFC, left
OFC to left IFG, and from left IFG to left OFChough these findings were not unexpected as
IFG has been linked to emotion recognition and emotional empathy (Sfiaoany, 2011;
ShamayTsoory, AharorPeretz, & Perry2009)and tha@ctivity in OFC is associated with
decision making (for review see BecagDamasio, & Damasio) they built on ttagnitive
neuroscience model lproviding evidence ofonnectivityamongthe frontal regionsidentified
by the modelMoreover, it is notable that even though each group map had the same pathways
between regions, the directarpatternf connectivitybetween the OFC and IF@ere more
similar across the two affective prosody conditions (Angry and Hapstjve to the neutral
condition

Effective connectivity at the subject levelThough findings at the group level were
unexpected, at the subject leadllifferent pattern in effective connectivity was evident as
connectivity was observed among cortical and subcortical identified by both neuroscience
models.Specifically, effective connectivity was now present, across the three prosody

conditions betweerall regions of interest including vmPFI&ft insula,and right caudate.
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These resulteevealedhoteworthy heterogeneity across childreefifective connectivity
among these regioms the different prosody conditionghese findingsveresimilar to findings
from studies of the face processing network that show differences in effective connectivity
across childreifHe et al., 2015) and suppedGates and Molenaa2Q126 s concer ns t ha
methods for modeling effective connectivity nfail to accurgely describe connectivity in
individuals.Pooling timeseries data across subjects may lead to conclusions about patterns of
connectivity that are not representative of any one particular subject in aagrthupbeta
weights, directions of connectiora)d network coupling may vary across subjéGates &
Molenaar, 2012; Poldc& et al., 2011)Nonetheless, these findings are indicative that hearing
angry, happy, and neutral prosodies was related to the recruitment of a widespread network of
neural regdons implicated in processing of emotional stimuli in this sample of children.

Modulation of effective connectivity by prosody. A second aim of the present study
was to investigate whether or not hearing different affective prosodies significantlyateatul
global and nodal properties of the network of regions examirtezligh t was hypothesized that
hearingdifferentprosodies woulanodulateeffective connectivityhis aimwas largely
exploratory This was due the fact thanly two adultstudieshad nvestigatedffective
connectivity during affective prosody processagywell as the ongoing debate regarding
whether or noprocessing of emotioris related tadiscrete physiological and neural correlates
(Vytal & Hamann, 2010)Graph theory was used poobe measures of global network and node
properties.

At the networklevel, tests revealed no significant differences in any ofitieenetwork
measuregxaminede.g.global efficiency, density, centralityjpodularity,or the clustering

coefficien). However, athe node level, significant differences in these graph theory measures
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were foundThough interpretations of these findings were naakd hoahey reflect that
hearingangry prosody fative to neutral prosody may involuecreasectonnectivityamong
specific neural regiond.he first finding was that the centrality and clustering coefficient metrics
were significantly larger inight OFC when children heard angry prosody compared to when
they heard neutral prosodwn a previous study OFC shod/iécreased activation in response to
angry relative to neutral prosody (Ethofer et al., 2009). Our results suggehigitagion plays
an importantroleinchide n 6 s dec odi n @snadés wahrhigh cgntrglity ares o d y
considered hubs ofacttviy as t hey are fipowendbu( Pdwetrebuab
2013, p. 798) and therefore are critical for efficient communication within a ne{@ollknore
& Sporns 2009.

Activity in OFC has been related to numerous processes inclegkognizng emotions
and controlling emotional expressions, decision making, and evaluating outcome expectancies
(Hornak, Rolls, & Wade, 1996; Schoenbaum, Roesch, Stalnaker, & Takahashi,Y2808)s
region isan extensively connectedgionthatprojects infomation frommultiple modalities (e.g.
visual, auditory, gustatory) and isthieneei n fian i deal position to pro
neur al regions about t h-Eloweex 2007% m d3Basedrovdur o n me n t
findings, it ispossiblethat right OFC may be especially important for the processing of angry
prosody through its facilitation of communication among other regions.

Additional findings were thaight posterior auditory cortex had significantly higher
centrality and number of taltconnections (total strength) when children heard an angry voice
compared to when they heard a neutral voice. In contrast, the opposite was foaftGiG|
this region had more connections directed out to and in from other regions when children heard

the neutral voice. These findings are interesting given evidence that right auditory cortex is
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implicated in pitch processing in speech and music (Zatorre, 1988; Zatorre, Belin, & Penhune,
2002 Zatore, Evans, Meyer, 1994) and that the left auditoryicalrareas, specifically posterior

left STG, are associated with speech sound processing and speech production (Binder et al.,
2000. Moreover these findings are in line with results from studies of affective prosody
processing in adults conducted by Herand colleagues. These studies found that right

posterior auditory cortex was the input region in an effective connectivity map during affective
prosody processing (2011) and that activation in STG was not influent¢adkogemands
suggestinghat thisregion plays an early role in perceptual analysis (Ethofer et al., 2008).

sum, these results suggest that angry and neutral prosodies may differential modulate effective
connectivity.

Effective connectivityin the combined affectivecondition. Finally, post hoc analyses
were conducted to examine if concatenating tseees data from the two affective prosody
conditions (Angry and Happy) increased our power to detect effeessilts suggested that this
was the case and provided a different pictureffactive connectivity within the neural network
of the same 10 ROIs. In th@ombinel Affect condition, not only were more connections
observed among regionsthe group mapbut effective connectivity was observed between
cortical and subcortical regis identified by theognitive and sociateuroscience models.
Additionally, the pathway discussed earlier from STG to a region in the frontal cortex that was
predicted to be present by the cognitive neuroscience mod@resenin this group map.

Unlike findings when the Angry and Happy conditions were investigated separately,
when @mpared to connectivity in theeatral condition, significant differences were observed in
the global efficiency oéffective connectivity ithe Combined Affect conditionoenpared to the

neutral conditionln graph theory, global efficiency provides information about how effigient
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information is shared among nodes in the netwkire¢khardt,1994). This finding implies that
information is more easily shared among discreggons when the voice contains affective
prosody relative to neutral prosodihough these analyses were condugtest hocand were
exploratory, they reveal that at the group leuatreasing the amount of tinseries did increase
our abilities to detdceffective connectivity among regions identified by the two neuroscience
models thus supporting that processing of affective prosody cues recruit cortical and subcortical
regions.
In sum, results from the present studied indicated that children reemdiespread

network of temporal and frontal regions when processing ahgppy, and neutral prosodies
that was more apparent at the individual subject |é&wgthermore, the use of graplased
analyses revealed differences in node properties for tirg and neutral conditions suggest
that there may be meaningful differences in functional architertuhes networkwhen children
process angry relative to neutral stimuli.
Limitations of the current study

Several limitations of the current studyist be notedr-irst as increasing the amount of time
series data into a combined prosody condition resulted in the identification of additional common
group level pathways, it jgossible that the smaller sample size and the limited blocks of time
series dta for each affective prosody condition impacted our abilities to detect effects within
these data (Button et al., 201Sjnaller sample sizes céower statistical powewhich canin
turndecrease the likelihoatiateffects faind reflect true effects drforlead to overestimation of
the magnitude of effec{8utton et al., 2013). It therefore necessaty interpret and consider
the results found in the present study with caution until they can be replicated or challenged in a

larger sample of childre



45

Understanding the limitations of small amounts of data, the present study did take steps

in ensurehat data were properly corrected for the number of tests that were conducted to
circumvent interpreting results that were not significkirst, whengroup level ROIs were
defined, the groumap was corrected at the whdimin level using th&alse Discovery Rate
procedure ashis method is more sensitive to the number of voxelwise tests statistics that are
performed than standard procedures (Genogtak, 2002). Furthermore, in post hoc analyses,
results were corrected for multiple comparisons and only differences that survived these
corrections were reported.

The present study was largely exploratory and future studies with larger sample sibes wil
necessary to determine if these results are replidabtare studies would benefiom
i mpl ementing protocols that increase research
from children as there are limited appropriate approachesanig@gedata with higimovement.
In the present studsuccessful data acquisition increased significantly with the introduction of
two structured and lengthy training sessions that occurred prior to children entering the scanner.
These sessions included shog children pictures of the scanner, exposing them to the scanner
sounds, and timed trials during which children practiced laying still while staff members
providedin vivofeedback on their performance and positive reinforcement (e.g. stickers). It is
recommended that future studies develop simila
the scanning environment and abilities to stay still for the prolonged period of time necessary to
acquire data. Additional suggestions for training can be fauadbaper by Scherf and
colleaguesZ016;under review).

A second limitatioroft he present study was that childrer

measuredlirectly thus we could not investigate if individual differencesamnectivitywere
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relatedo di f f erences i n Newméthbds bavedbsecoreeravailablotmme nt s .
permitrecording of the auditory affective environment (Mehl & Pennebaker, 2003). For
example, Electronic Activation Recording (EAR) is a recording device that records sroppet
sound throughout the day (Mehl & Pennebaker, 2003). Thisadéhagprimarily been used to
evaluate the linguistic content of natural conversations, however new programs permit the
evaluation prosodic cues of the voigée use of such methods willleance our undstanding
of ¢ hidalgexposur@ ®© affective prosody and both typical and atypical variability in
parentsd use of affective prosody.
Finally, though not a limitation but rather a caveathef study methods is that children were

not asked to complete a task (e.g. identify or rate valence/intensity) in the sbammather
listened passively to the stimuli was assumed that they were attending to these prosodies and
all children confirmed that they had heaxices;however the lac of a behavioral response in
the scanner may have |l ed to differences in ch
However previous studies have shown that task demands can influence patterns of neural
activation (Ethofer et al, 2009). Furthermgaitee present study wasterestedn investigating
differences imeural processing of affectiygosody that more closely approximated overhearing
these cues in their environmerithus the decision to have children listen passively to the stimuli
refleded this aim.
Implications and future directions of the present study

Despite these limitations, this was the first known study of effective connectivity during
affective prosody processing in childrénstrength of the research desigrthe present atly
was the use of scripts that more closely appr

prosody. In the studies discussed in the introduction, the affective prosody stimuli included
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single words (Ethofer et al., 2011), psewdords (Bach et 3l2008; Grandjean et al., 2005), or
short, one sentences phrases (Johnstone et al., 2006; Leitman et al., 2010). And, as reported,
these studies found that hearing affective prosody was associated with sigagtozatton
within multiple neural regionsHowever, in their daily liveshildren heaand are learning to
interpretaffective posody in the context of speech. Thus the ussologically validstimuli
may have more closely approximated and studie
Secondly, thisstudyerpr esented a first step towards a
neural processing of affective prosody and how the early envirorghapés anohfluences this
processing. AsGotdb (199 2) ¢ aggnesnint ahdyof tleeinselves cannit cause
deel opment any more than sti mullrmesserme)thaqughthet sel f
brain is substantially shaped by genes, this development is impacted by experience such that
Afeach personds brain comes itqou er eefxl peecrti,e natti ale ah
(Belsky & de Haan, 2011, p. 413)s reviewed earlier, the braimdergoesignificant changes
overtime thaincrease our abilities to integrate information #ématfacilitate higher order
cognitions (Collin & van den Heuve2013). And as a result of these changes, exposure to
atypical levels of affective prosody, in particular anger, may have implications both for
chi | dr e nngd affpctive pressdyg as well as neural development. Indeediscussed,
two studies examing these relations found that exposure to éi¢gvels of parental conflict
was related to differences in patterns of neural activation in infamtefpangry > neutral
speech (Graham et al., 2013) and that childhood physical alasselated to 7to 12-yearolds
allocating greater neural resources to processing angry voices (Shaatkaha2007).
A full understanding of the significance o

will necessitate studies of typically developing children widlhnmative levels of affective
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prosody exposure. Information gathered from typical samples will provide a context and baseline
for recognizing what is considered deviant from the norm (Bruck, 1997) and can help inform our
conceptualizations of what differegxin patterns of activation and connectivity signify in these
cases. Ultimately, results such as those found by the two studies above bolstered by additional
evidence that early exposure to anger does indeed lead to significant differences in theafunction
architecture of childrends brains caxposiwe used
to high levels of anger,lassorthatmay be particularly important fdngh-risk parents

Future directions. To further our abilities to understandural network topology, in
addition to the information provided by graph theory metrics, analytic methods are now being
developed that are sensitive to differences in changes in the patterns of effective connectivity in a
network (Elbich, Molenaar, & Scherih prep). The use of such methods may further our
understanding of interregional communication in a network during affective prosody processing
as these methods are more sensitive to patterns of connections and will allow for better

characterization ohie topology of a network.
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TABLES

Tablel

Size andralairach Coordinates of Group Regions ofdrest

Br odma # of
Area X Y z Voxels
L
Anterior Auditory Cortex -43  -26 10 1248
Posterior Auditory Cortex 54 -39 8 865
Superior Temporal Gyrus 61 -22 3 1078
Caudate -8 7 5 171
Inferior Frontal Gyrus 44/45 55 21 14 1065
Orbitofrontal Cortex 47 46 26 -3 528
vmPFC -1 49 -12 59
Insula -35 8 -13 59
R
Anterior Auditory Cortex 43 24 10 1470
Posterior Auditory Cortex 44 -36 6 153
Superior Temporal Gyrus 60 -17 4 568
Caudate 9 6 8 849
Inferior Frontal Gyrus 44/45 45 26 7 1166
Orbitofrontal Cortex 47 47 24 -2 941

Note Regions of interest (ROI) defined based on whole brain groap teap activation for Happy + Angry+

Neutral > silence contrast in Runl. The group map was corrected at the whole brain level using the FDR procedure
atq < .10. The size and location of each ROI are reported. X,Y,Z coordinates in Talairach space. L = left
hemisphere, R = right hemisphere.
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Talairach Coordinates of Individual Regions ofdress Original and Redefined Pealo¥els

. Region of Original Peak New Peak
Subject
Interest Voxel Voxel

1 Right IFG (56, 22, 4) (55,2, 4)
2 Left IFG (-55, 19, 25) (-54, 19, 25)
3 Left IFG (-59, 19, 21) (-52, 17, 24)
4 Left IFG (-55, 25, 9) (-50, 25, 10)
4 Left IFG (-58, 25, 19) (-50, 23, 15)
5 Right OFC (55, 28, 1) (47, 25, 1)
5 Left OFC (-50, 24,-6) (-49, 25,-6)
6 Left IFG (-58, 22, 12) (-56, 22, 12)
6 Left IFG (-58, 29, 0) (-55, 19, 9)
7 Right OFC (55, 25, 0) (50, 31, 1)
8 Left OFC (-50, 29,-3) (-47, 30, 0)
8 Left IFG (-57, 22, 21) (-54, 20, 23)
8 Right IFG (54, 27, 4) (49, 25, 4)
8 Left IFG (-52, 25, 9) (-51, 26, 9)

Note. Table sbwsindividual level ROIs that were redefined because placing a 4mm sphere around the original peak voxel identified from the

groupl ev el

ROI

resul ted

in part

o f Numnbems in fRébjectoolummrefertpindiaidual childrem the h e

repetition ofsubject numbershows children for whom multiple ROIs had to be corredte@.= Inferior frontal gyrus. OFC = Orbitofrontal

cortex.

chil dos
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Table 3.

Description of Sharedaxels amongndividually DefinedRegion of Interestand tre Sze of the
Redefined Nonoverlapping Region of Interests

Subject Overlapping Regions # of Centroid of Region voxels  Size of new

Voxels Overlap Taken From ROI
1 Left OFC & Right IFG 56 (-51, 21, 2.5) OFC 201
1 Right OFC & IFG 94 (55.5, 23, 2.5) OFC 163
2 Right Anterior & PosterioAC 21 (50,-33, 10) PosteriorAC 236
2 Left Anterior & PosteriotAC 2 (-52,34.5,9) PosteriorAC 255
3 Right IFG & OFC 42 (45.5, 31.5,2) OFC 215
4 Right Anterior AC & STG 125 (52,-17,7) PosteriorAC 132
5 Right IFG & OFC 118 (53, 28, 2.50) OFC 139
6 Left Anterior & PosteriotAC 23 (-49,-32,9) PosteriorAC 234
7 Right IFG & OFC 44 (47, 23.5, 2) OFC 213
8 Right IFG & OFC 24 (44, 23.5, 3.5) OFC 233

Note.Table shows ROls that included overlapping voxels, thedditee region that overlapped, and the Talairach coordinates of the centroid of

the overlap. The centroid of the overlapping region was used to inform RRitthe voxels belonged to. The volume of interest file were edited

to remove the overlappingvdxes f r om t he regions indicated in the Ataken fromo col un
voxels were removedlumbers in the subject column refer to individual children, the repetition of subject numbers shows children for whom

multiple ROIs had to be correctell:G = Inferior frontal gyrus. OFC = Orbitofrontal cortex. AC = Auditory cortex. STG = Superior temporal

gyrus.
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FIGURES

Figure 1 Regions of Interests Defined at the Group Level based on Functional Activation in
Runl

Rantauditory L ant auditory
cortex cortex

L vmPFC

R posterior L posterior
auditory cortex auditory cortex

Note.Figure shows Regions of Interests defined at the group level, by functional activation in Run1l for the Happy+Angry+3&ilenale
balanced contrast. Group level map was corrected at whole brain level using the False Discovery Rate Précadyre. 46t ROIs were
mapped onto a representative subjects brain. Z coordinate shows position of each slice with respect to the Talak&h &tfesidr Frontal
Gyrus. OFC = Orbitofrontal Cortex, STG = Superior Temporal Gyrus. STS = Superior fE¢Bpleus.
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Figure2. Group Level Maps of Effective Connectivity during Processing of Angry, Happy, and Neutral Prosodies
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Note Figure showffective connectivity at the group level when children heard amgdy, happy(blue), andheutral(green) prosodyCircles represent
discrete neural regions (nodes) and arrows represent effective connectivity among these regions (edges). Arrows dicBctitentbéthenfluence exerted by
one neural region to anotheAntAC = Right anterior auditgrcortex,rPostAC = Right posterior auditory cortéxG = Inferior Frontal Gyrus, OFC =
Orbitofrontal cortex, IvmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.
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Figure 3. Effective Connectivity during processing of Angry, Hagpyg Neutral Prosodies in
Three Randomly Selected Subjects
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Note.Figure shows effective connectivity during processing of angry (red), happy (blue) and neutral (green)
prosodies for three individual, randomly chosen subjects. Circles represenedisret! regions (nodes) and

arrows represent effective connectivity among these regions (edges). Arrows indicate the direction of the influence
exerted by one neural region to anottzarkly colored lines represent contemporaneous connections, lightly

colored lines indicate lagged connectiom&ntAC = Right anterior auditory cortex, IFG = Inferior Frontal Gyrus,

OFC = Orbitofrontal cortex, vmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.
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Figure 4 Individual Subject Mps of Effective Connectivity during Processing of Angry Prosody
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Note Figure shows effective connectivity maps identified by GIMME during the processing of neutral prosody for each of the 10
subjects. Circles reprasediscrete neural regions (nodes) and arrows represent effective connectivity among these regions (edges).
Arrows indicate the direction of the influence exerted by one neural region to another. Dark red lines indicate conteraporaneo
connections betweemgions, light red lines show lagged connections. rAntAC = Right anterior auditory cortex, IFG = Inferior Frontal
Gyrus, OFC = Orbitofrontal cortex, vmPFC = left ventromedial prefrontal cortex, STG = Superior temporal gyrus.



