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Abstract

It is known that machine learning owes multiple achievements to deep learning.
However, do we know for certain when we need deeper models? Did deep learning
improve artificial intelligence through the use of techniques other than what the
multilayer perceptron (MLP) requires? This work is a careful effort to explore the
definition of deep learning by formulating the following question: \When does deep
learning help and when does it hurt?." In the search for an Occam’s Razor -inspired
analysis, this work performs multiple experiments on the MLP in order to illustrate
when a shallow network is sufficient and when it is not and what metrics can be
extracted from the raw data set in order to estimate the needed model complexity
before training. A secondary purpose for this thesis is to attempt to overcome
the limitations of the back propagation (BP) algorithm by using a derivative-
free technique called Simulated Annealing (SA) in order to test the claims that
this existing heuristic method is capable of outperforming BP in performance and
plasticity. Regarding the model parsimony question, the results show that, among
the metrics tested, the percentage variance in the first principal component (PCA-
1%) influenced the classification performance of the MLP in the following way:
The higher PCA-1% was, the shallower the MLP needed to be in order to avoid
over-complicating the learning model for non-image data sets. On the other hand,
Simulated Annealing achieved performances similar to an average back propagation
performance for a MSE tolerance of about 4 times the tolerances needed in back
propagation. However, the number of required iterations for an exploratory search
like this were determined to be unpredictable and very large for lower tolerances.
Moreover, the performance shown by SA was not as consistent as that of BP.
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Chapter 1
Introduction

The human brain has about 86 billion neurons! These cells communicate with

each other in very mysterious ways. Their connectivity paths form massive net-

works within the brain. In terms of computation, multiple authors [2] [3] prefer

to think of a neural network as a black box that receives a certain arrangement of

input patterns (training phase) and “spits out” an output that depends on how it

learned the training patterns (testing phase) through a non-linear approximation

that can virtually mimic most algebraic functions [4] [5]. Currently, the term neu-

ral network comprises multiple techniques. The multilayer perceptron (MLP) is

the most common technique for pattern recognition, however, convolutional neural

networks (CNN) have acquired importance in the field of image recognition. Apart

from MLPs and CNNs, neural networks also include associative learning, through

the use of Hopfield networks [4] and many other interesting architectures.

1.1 Artificial Neural Networks

An artificial neural network (ANN) is a numerical and algebraic construct that

models a reductionist version of the human brain. The current simplified model of

the human brain is that of a large network of selectively connected nodes [6]. These

nodes or neurons fire electric pulse responses in order to activate certain regions

in the body. The electric pulses are called action potential [7]. Inspired on these

concepts, the neural network was originated as an extension of the perceptron [4],

which was an earlier version of this construct. The learning capabilities of a neural
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network are multiple. Neural networks are used for classification, regression, image

detection and overall pattern recognition.

A neural network learns from examples by adjusting the value of the strength of

the paths between neurons, called weights (wij , where i is the number of neurons

in the past layer, j is the number of neurons in the current layer). Each weight

represents how relevant a specific synapse is in the solution of the given task. The

most common method for obtaining the optimum weights is called the back prop-

agation algorithm (BP) [4] [8], which is a gradient descent optimization algorithm.

The solution to the optimum weights is non-unique, meaning that multiple combi-

nations of weights may produce effective results. In the case of a neural network,

the gradient is obtained by a chain rule applied to the cost function, which in most

cases is the mean squared error. To prove that the neural network learned the task

successfully, new examples are input to measure how accurate the network predicts

the desired output. The notation used in this work is that of Haykin, S. [4].

Figure 1.1: Visual representation of a feed forward neural network (FNN).

In Figure 1.1, n is the number of descriptors or features that describe the data.

For example, in the Iris flower data set, n would be four because it is described

using sepal width in cm, sepal length in cm, petal width in cm and petal length

in cm [9]. n is usually considered finite for most learning algorithms. However, in

certain applications of feature engineering (such as Principal Component Analysis),

n can be theoretically infinite [8] (a very tough concept to imagine). In this work,

m will always be equals to K , the class size, for classification problems because
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of the algebraic advantage of having equidistant distributions in the output space.

For regression problems, m will always be the number of response variables that

are expected as the output in this work.

Figure 1.1 is a visual representation of a simple multilayered perceptron model.

This is a quick example to describe how the MLP works: An input is presented

to the network belonging to a set Rn , then this input is multiplied by the initial

weights for each path and then summed; after the summation, the bias (‘b’ in

Figure 1.1) is added. This summation arrives at the next node and each node j in

layer k will pass the resulting value to the activation function � j . This operation

is repeated until the algorithm arrives at the output nodes, passes the information

through their activation function one last time and provides the resulting values.

Each node in a neural network is a close analogy to a neuron that takes information

and fires an electrical pulse. Therefore, the activation function in each node of an

ANN has a resemblance to the action potential of a real neuron. For each epoch,

there will be a difference between the desired outputs and what the neural network

obtained. This is when the resulting error “propagates” in a backward manner as

explained subsequently.

In the output layer, the error is computed in each iteration of the training set. This

error is defined as Equation 1.1 depicts, where j is the index that goes through the

output neurons in this case. In this expression, dj (n) describes the desired value of

each node of the output layer and yj (n) describes the calculated output using the

arrangement of weights that result in the current iteration. The index n represents

the current iteration or epoch.

ej (n) = dj (n)− yj (n) (1.1)

An average of the output errors is then computed as shown in Equations 1.2

and 1.3 [4]. The factor of 1/2 in Equation 1.2 is present because of mathematical

convenience: When computing the gradients of the cost function, the derivative

of a squared value is encountered (MSE); the 1
2

will make the gradient not carry

a factor of 2 throughout the rest of the algorithm. Equation 1.3 symbolizes the

averaging of these output layer errors throughout all the training examples. This

is what this work refers to as mean squared error (MSE), where N is the number
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of instances whose errors are averaged.

E j (n) =
1

2
e2

j (n) (1.2)

EMSE =
1

N

NX
n=1

En(n) (1.3)

Before the steps to propagate the error backwards are explained, it is impor-

tant to describe in more detail the weighted sum that was mentioned previously.

Equations 1.4 to 1.6 describe what every node in a hidden or output layer receives

and what they output. Generally speaking, every node receives as an input a lin-

ear combination of the outputs form the previous nodes and performs a non-linear

transformation of that sum. The term vj (n) in Equation 1.4 shows how the infor-

mation passes forward through said linear combination. j is the index that goes

through the neurons in each layer k. Then, as seen in Equation 1.4, each node will

pass vj (n) to a function called � j .

� j follows certain criteria:

• It is bound between two values. This means that the activation function

cannot be a function that grows without limits. These values can be [0;1],

[-0.5;0.5], etc.

• It is non-linear.

• It needs to be carefully selected. Most authors select the activation function

using empirical skills acquired with time. Different tasks call for different

bounds of the activation function. Usually, the functions chosen are Sigmoid,

ReLU, tanh, threshold, etc (see Appendix A.3).

It is important to mention that the learning can happen in two different ways:

batch and on-line learning [8]. On-line learning is when the update of the weights

is performed after presenting only one sample at the time and back-propagating

the error. In contrast, batch learning performs the update of the weights after

presenting the classifier all the possible training data points. It is proven [4] that
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on-line learning performs better than batch learning. However, in Chapter 5, the

algorithm used requires batch learning to better perform the Simulated Annealing

(SA). This work uses on-line learning for all the back propagation problems and

batch learning for the heuristic method applied in Chapter 5.

Different activation functions will be needed depending on the usage of neural

networks. In this derivation, only the Sigmoid function is being used, defined by

Equation 1.6 in order to show how the activation function comes into play when

the gradient descent algorithm is accommodated to the neural network model.

Equation 1.4 represents the weighted sum of the inputs that each hidden or output

node receives.

vj (n) =
mX

i =0

wij (n)yi (n) (1.4)

where m is the total number of neurons in the previous layer and i is the

index that goes through the number of neurons in the previous layer. n is, in the

subsequent cases, what indicates the current iteration run for the algorithm. b in

Figure 1.1 is the bias applied to the given layer, which is not visible in Equation

1.4 due to the fact that it is counted as “y0” in Haykin’s [4] notation. Equation

1.5 is the output computed by the neuron from its activation function.

yj (n) = � j (vj (n)) (1.5)

� j (vj (n)) =
1

1 + exp(−avj (n))
(1.6)

To get the gradient of the error, the chain rule of differentiation is needed as

shown in Equation 1.7.

@E(n)

@wji (n)
=

@E(n)

@ej (n)

@ej (n)

@yj (n)

@yj (n)

@vj (n)

@vj (n)

@wji (n)
(1.7)

In Appendix A.1, the intermediate steps to get to Equation 1.8 are shown.

Following the calculation of the error derivative with respect to the weights, one

computes the required change in weight. For that, a constant � was added. This

constant is called the learning rate and it controls the speed of the error descent
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and also the coarseness or finesse of the weight changes. The smaller it is, the

longer it will take to complete the gradient descent. However, if the learning rate

(� ) is not small enough, the convergence might happen before the desired tolerance

and the error will fluctuate around a certain value. This will happen because at a

low enough error, one needs to make infinitesimally small changes in weights for

the guaranteed convergence to happen. Those cases will be treated in Chapters 4

and 5. In this case, � corresponds to a hyper-parameter that needs a validation

method in order for it to be found.

When the data set is of “simple” classification (see Chapter 3) and is not a large

data set, a higher value for � will be appropriate, otherwise, the error will decay

very slowly compared to the sufficient training time to complete the task. Equa-

tions 1.8 and 1.9 represent how the weights are changed during back propagation

(BP).

@E(n)

@wji (n)
= −ej (n)� 0j (vj (n))yi (n) (1.8)

∆wji (n) = −�
@E(n)

@wji (n)
= �� j (n)yi (n) (1.9)

As seen in Equation 1.9, � j (n) determines how much increment or decrease the

values of the weights will have in a given epoch n. This factor is determined using

the expression in Equation 1.10, where � 0j (vj (n)) is the derivative of the activation

function � j (·). In this equation, k indicates a dummy index, that goes from last

layer to first.

� j (n) =

8<: ej (n)� 0j (vj (n)); if j is an output neuron

� 0j (vj (n))
P

k � k(n)wkj ; if j is a hidden neuron
(1.10)

The stopping criterion for this algorithm varies depending on the researcher.

Some researchers stop back propagation when the weights stop changing, others

stop after a defined number of iterations and others stop when a certain tolerance

for the MSE is reached. In this work, the latter stopping criterion will be used for

all the experiments.
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1.2 Definitions

Before the experiments develop, it is important to conceptualize certain terms that

make this discussion possible. The meaning of these terms may vary depending on

the researcher. These are performance, error and validation.

When teaching a learning algorithm to complete a task, every researcher has a

different manner to measure the efficacy of the algorithm at completing said task.

Most researchers split the data into training, testing and validation subsets in or-

der to avoid over-fitting (see Section 1.2) and to study how the learner completes

the task depending on whether the machine has seen the example before or not.

However, there are multiple quantifiable ways to measure that efficacy, those mea-

surements are known as performance. Some researchers measure the performance

by exposing the trained learner to new examples; then they report both the train-

ing and testing set mean squared errors (MSE). Others do the same but report a

percentage obtained from a confusion matrix (see Section 1.2), which is called the

classi�cation accuracy or classification performance. These are both valid and re-

liable ways of reporting results. This work reports the classification performances

of the neural network only on the testing set because it is more valuable than the

training set performance. Therefore, when the term performance is mentioned in

this work, it is referring to the classification accuracy on the testing set taken from

the confusion matrices. Other measurements of performance, such as CPU time

and convergence “speed”, will be used in this work as well for comparative studies,

but that will not be the primary metric for performance in this discussion.

Figure 1.2 below is an example of a confusion matrix obtained used MATLAB’s

plotconfusion function [10]. Confusion matrices are often used for classification

learners also called classi�ers. On one axis it has the output class and in the other

it has the target class. Every cell (i; j ) in the confusion matrix that contains a

value X can be read as the following:

\There were X cases in which the algorithm predicted that a certain data point

belonged to class i when it was actually from class j."

It is then intuitive to think that the goal of a classifier is to have as many outputs

that match the target, this is why this work is aiming to have a confusion matrix
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as diagonally dominant as possible. It is important to mention that the confusion

matrix is not always symmetric as seen in Figure 1.3.

Figure 1.2: Confusion matrix for a sample case of a data test set with 3 classes.

The size of the confusion matrix depends on the class size of the data. Class

size, K , refers to the number of patterns that the classifier is trying to learn. For

example, in the Iris case [9], the classifier is given three different kinds of flowers

(Iris-setosa, Iris-versicolor, and Iris-virginica [9]); so, for that dataset, the class

size is three. After the test set results are collected onto a confusion matrix (a

K ×K matrix), the accuracy at each individual class is computed by dividing the

percentage of test data points that fell in the diagonal versus all the data points

that fell in that row or column. Each column represents what was desired and each

row represents what was output from the classifier. Therefore, the percentages in

the last column in Figure 1.2 can be read as how much of what was output fell

in the desired class. Likewise, the percentages in the last row can be interpreted

as how many of the data points that fell in that class were correct, this is an

extension of the sensitivity and specificity terms now for multi-class problems. The

overall classification accuracy (cell (K +1; K +1)) is measured by the percentage of

diagonal values to all the values and the overall classification error is the percentage

of non-diagonal terms versus the total instances tested. The percentages at the
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end of the rows and columns (“precisions”) for each row and column is obtained

by computing the ratio of diagonal to off-diagonal terms that fell in that row or

column. Confusion matrices often reflect what is wrong with an implementation

even when the classification accuracy is low because it allows the user to visualize

whether the classifier is learning certain classes better than others.

Figure 1.3: Confusion matrix for a sample case of a data test set with 10 classes.

Over-�tting is a phenomenon where the learning algorithm performs signifi-

cantly better for examples it has already seen as opposed to new examples. The

intent is to be able to identify patterns in data that the algorithm has not seen be-

fore. For this reason, it is common practice to divide the data into training, testing

and validation. This practice, also called validation [8], is useful for checking how

the neural network learned the task using new data points and to quantify the per-

formance of the neural network beyond the training and the testing sets, but with

an additional subset that will provide more information about the actual efficacy

of the neural network at the given task. Some researchers use the validation subset
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in order to adjust some hyper-parameters, such as the momentum constant (a), the

learning rate (� ) and the number of sufficient hidden layers (#H ). In this work,

however, a predetermined set of hyper-parameters appropriate for each problem

will be chosen based on experience. Over-fitting can be caused for many different

reasons. Among the common reasons are:

• The learning algorithm is presented an unreasonable amount of training sam-

ples such that said algorithm is trained to perform better in the training set

(data already seen), than in the testing set.

• The complexity of the model is too high and the learner over-complicated

the model to adjust a solution for the training set. This happens when the

number of nodes per hidden layer is excessively high or when one uses more

hidden layers than the problem requires.

• The final result for the weights vector after training resulted to have values

for the weights that were excessively high or favor certain paths significantly

more than it favors other more important paths.

Many more reasons can add to those depending on the training algorithm used.

It is important to mention that over-fitting in no way compromises the training

process of the learner. One realizes that over-fitting happened after the test or

validation set error is produced. In Figure 1.4 it is shown what happens when the

model over-specializes in order to fit the training set.

In Figure 1.4, the model was over-trained by not initializing the weights to

a starting point in every pass of the validation. This made the neural network

decrease in performance for the case where the Ionospheric data set usually per-

forms best: for a higher number of hidden layers. Figure 1.4 represents the mean

squared error after training versus the number of hidden layers, which in this work

represents the complexity of the model produced by the neural network.

The solution vector for each layer in a neural network will be the weights wi;j

that determine the importance of certain synapses over others. This solution is

non-unique in nature, this is the reason why the combination of the values of the

synapses is what determines the performance, not the specific values of the weights.
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Figure 1.4: Example of over-fitting for the Ionosphere data shown in Experiment
2, Chapter 4.

1.2.1 Separability

This term will be constantly revisited during the development of this discussion.

Separability is the property of a data set that determines how easy or difficult it is

to discriminate between classes from the raw data. Let us illustrate the following

example: Imagine you are trying to have a computer differentiate between fruits

based on appearance (e.g. shape, size, color, etc.). Now imagine the examples you

give the computer are pictures of peaches, nectarines and bananas (3 classes, K =

3). The computer will have an easier time separating the bananas from the rest of

the fruits than separating peaches from nectarines since the colors and shapes are

similar. Therefore, the data points will fall in overlapping regions if your features

are color, size, shape, etc. There might be more representative qualities, like surface

roughness, proneness to get diseases, that will ease the discrimination between

classes; however, you happen to not have it at hand because extracting data is

expensive and time-consuming. This is an example of separability. Figure 1.5

illustrates this hypothetical situation with randomly generated data on MATLAB.

The purpose of learning algorithms for classification is to produce a frontier

that determines where one class rules over the rest of the classes. This frontier is
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Figure 1.5: Simplified example of separability of data with intuitive decision bound-
aries.

called the decision boundary. For a classification to be effective, there must be a

clear “region of dominance” for at least a subset of the features in which one can

determine whether a given data point belongs to a class or does not. In our example

in Figure 1.5, it is intuitive to want to separate the data as shown in that figure with

the solid curves. However, for classifiers, this information is not trivial, it usually

depends on the distribution, mean and spread of the data and also the nature of

the classifier (e.g. one-versus-rest, one-versus-one, clustering, linear discriminants,

etc). This example does not illustrate what happens when there is an ambiguous

area between the classes and such. However, if a classifier were to draw a decision

boundary as depicted in Figure 1.5, the performance might be affected by the

relatively large number of data points that are located in the ‘peaches’ region

and belong to the ‘nectarines’ region. When designing a classification model, it is

dangerous to try to make the function more complex in order to fit all the data

points. Trying to do that will develop over-fitting, as depicted in Section 1.2. A

good learning algorithm is capable of finding a projection of the data set where

it is separable. Once the learner finds this subspace of separability, it adjusts the

model to be more sensitive at those regions and separation is done. However, real
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world data sets are not as easy to separate and one might need pre-processing and

feature engineering in order to produce an artificial region in which a learner can

make the separation. This work uses raw data without any feature transformation

for all the experiments on Chapters 4 and 5.

1.2.2 Data

The experiments will be performed with four classification tasks and one regression

task. For classification, the experiments used the following: Iris, the MNIST

data set of handwritten text recognition, Ionospheric data, and the Pima Indian

Diabetes data set. For regression, this work used a Particle Swarm Spacecraft

Path data set generated by Basu, K. [11] in the Pennsylvania State University.

Pima, Iris, Airfoil and the Ionospheric data sets were obtained from the UC Irvine

Machine Learning Repository [12]. MNIST was obtained at [13]. Here is a short

description of each of the data sets used.

• Iris. This is one of the most famous data sets to test an implementation of

any algorithm. Because of its simplicity, it is regarded as a “toy” data set.

It is easily separable as seen in Figure A.1. The number of features in that

data set is 4 and the number of classes is K = 3. The classes are Iris-setosa,

Iris-versicolor and Iris-virginica. The total number of examples for Iris is

150.

• MNIST. This is a large data set comprising normalized image data of hand-

written characters. There are 784 features in it (28×28 pixels, 10 classes,

K = 10), which are the digits from 0 to 9. In total, MNIST has 70,000

examples. Figure 1.6 is an example of the raw data that the neural net-

work receives when it is training MNIST. In this case, all the images were

normalized to be of size 28×28 pixels for all cases.

Figure 1.6: Example of 40 data points in the MNIST data set.

• Ionosphere. The idea of this data set [14] is that the classifier inputs radar

signals and outputs a decision between ‘good’ and ‘bad’ depending on the free
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electrons that the input signals show. Good signals represent some formation

in the ionosphere; bad signals, the opposite. It has 34 features and 2 classes

(K = 2) and 351 instances in total.

• Pima Indians Diabetes. This data set studied in [15] was extracted in

order to predict whether or not a woman has diabetes given some medical

information. The data set consists of 8 features and the class size is K = 2

(“yes” or “no”). Something interesting about Pima is that there are multi-

ple missing fields that make the classification more difficult. Pima has 768

instances in total.

• Spacecraft Path Generated Data. This is a data set generated by a

Particle Swarm Optimization code built in [11] as a means to optimize a

spacecraft’s path under certain constraints. The problem to solve here is

that testing a trained neural network on this data would take less time than

trying to run the Particle Swarm Optimization Code for each instance. This

would be a regression problem, therefore, the discussion about class size is

not necessary. However, the number of features is 3 and the number of

desired outputs is 19. In this work, the problem will be reversed so the

number of inputs will be 19 and the number of outputs will be 3 in order

to show the regression problem applied to this data set. The number of

examples will increase in the far future, this work will be experimenting with

only 34 examples. The results obtained from this data set will be purely

demonstrative but not conclusive to any experimental inference.

Different types of data have different properties. Regardless of their size, some

data sets are more difficult to learn than others. To illustrate this, the example of

the Pima Indian Diabetes data set is more adequate. Figure 1.7 is the scatter of

the raw Pima data set projections in different 2-D and 3-D settings, also generated

using MATLAB. Pima has 8 features, meaning that it has 8 dimensions. Figure

1.7 shows that there are some arrangements of the features in which a separation is

more feasible than others. Because it is very difficult to visualize an 8-dimensional

feature space, the separability is often visualized as projections or sub-spaces of

the feature space.
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Figure 1.7: Pima Indian data set projections in multiple dimensions.

1.3 The implementation

In order to perform studies on neural networks of varying architectures, it was

convenient to not use any of the existing toolboxes and packages. The reason for

this is that the available toolboxes make changes in certain parts of the algorithm

in order to always provide a result. This fact compromises the ability to make a

fair comparison between architectures and performances.

In this work, two C++ routines and multiple MATLAB plotting routines were de-

veloped from scratch. The C++ routines were created using the description of [4]

on the back propagation algorithm and [16] for simulated annealing. The resulting

code is capable of receiving any data set from any size, splitting the data set into

training/testing/validation and have the user input the desired architecture of the

neural network. Therefore, it is a highly versatile neural network code.

This required the use of Object Oriented Programming (OOP) to simplify the rep-

resentation of the different aspects of the algorithms. The following is a description

of the most important classes and methods used in this code (not all of them):
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• Classes.

– NN. NN is the enclosing class and parent of the Layer class. It defines

the neural network and initializes certain variables such as the number

of total layers and the error.

– Layer. Layer is the first child class of NN. This is the operational

part of the code. In Layer, there is a std::vector or “array of objects”

called “list”1. “list” is the array that contains objects within each layer.

For example, the number of neurons in the previous layer (n, in this

case) and in the current layer (m) are defined in list. Each layer has

an n, m, w[·][·], delta[·], b, where b is the bias, and delta is the local

gradient corresponding to the nodes on that layer and w[·][·] is the set

of weights from the previous layer to the current layer, therefore it is

of size n ×m. For example, if one wanted to know how many neurons

layer 2 has (counting 0 as the ‘input layer’, so this would be the second

hidden layer), one would have to call list[2].m. Same with the rest of

the objects.

• Methods and functions.

– Layer::initWeights/NN::initLayers. Methods that are called beginning

in “init” means assigning values to the object. For example, after the

user inputs the architecture of the neural network that he/she desires,

NN::initLayers is called so the neural network assigns the size in other

child classes.

– FwdPass. This might be the most called function. It performs the

weighted sum of the information from previous layers using an elegant

operator (+) defined somewhere else in the code under Layer.

– BackProp/simAnnealing. This part of the code is the most active one.

It is where the operations are made in class Layer so we converge the

method into a desired NN.error and solutions for the weights.

1The name \list" was chosen arbitrarily, this is not a reference to linked lists. \list" happened
one day and stayed through the code building until the end, when it was too late to change it.
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– divideTrainTest/testingCV. Those functions are for pre-processing and

post-processing. divideTrainTest determines which samples will be sent

out as training, validation or testing while making sure to not repeat

the same samples in two different categories. testingCV only computes

the validation error in each pass of cross-validation.

– createPointsTest. This function exports a text file that contains the

results of the neural network in the left columns and the desired results

in the right columns in order to open that text file in MATLAB and get

the confusion matrices using plotconfusion [10].

– main(). Unfortunately, the code has some rough edges because of the

difficulty of a task like this and the lack of programming skills at the be-

ginning of this project. Therefore, the main routine of the code has more

declarations and function calls than it would be desired. An alternative

version of this code was generated in order to store the training/test-

ing/validation into text files too and there were less declarations in the

main(). However, this attempt was discarded because of the memory

issues that something like that may cause for large data sets.

In summary, the implementations on this work both for back propagation and

simulated annealing ask the user to input the data set desired and the number

of hidden layers, and nodes per hidden layers desired. Figure 1.8 is an example

of a typical run of this code. Figure 1.8a is an example of how the user sets up

the configuration of the neural network. The number of input and output neurons

need to be known (n and m). Figure 1.8b provides some information after the

training was performed, however, the results are stored in text files in the working

folder of the code.

(a) (b)

Figure 1.8: Example of the implementation functioning.
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In Figure 1.8b, the first line tells the training MSE and the validation MSE.

When there is no validation set (for example, in the Simulated Annealing exper-

iments), the output is “nan” in the third column of the first line. The last three

lines provide information about the CPU time taken to perform the experiments.

1.4 Assumptions and Hypotheses

The main assumption in this work is that neural network complexity also depends

on the number of hidden layers, not only the number of nodes per hidden layer.

This work sustains the hypothesis that the needed complexity of the MLP model

depends on the complexity of the data set. This is why multiple metrics for data

set complexity in Chapter 3 are to be contrasted with the experiments in Chapter

4. Regarding the measurements tested, this work sustains that if a data set is not

easily separable using PCA (see Section 2.4), it will be more difficult to model the

same raw data set using a neural network than the rest of the cases.

Regarding derivative-free algorithms for training neural networks, Chapter 5 dis-

plays the results of multiple comparative experiments between SA and BP. This

work sustains that regardless of whether or not Simulated Annealing can substi-

tute back propagation for any task, it is a good alternative for the cases where

back propagation shows limitations. However, because of the difficulty to tune the

hyper-parameters for Simulated Annealing, this method is at a great disadvantage

compared to back propagation.



Chapter 2
Literature Review: Finding a

Meaning for Deep Learning

This chapter introduces the existing work done with the intention to put pieces

together in our search for the answer to our question: When does deep learning

help and when does it hurt? This section goes over topics such as what is deep

learning; Do Deep Neural Networks Need to be Deep? [17] and finally we discuss

other researchers’ approach to data complexity and parsimony.

2.1 Introduction

It is known that deep neural networks perform better than their shallower counter-

parts in complex pattern recognition, computer vision and regression problems [18].

It is also known that their discovery represented an expansion of the capabilities

of neural networks and artificial intelligence. However, despite many efforts to

describe it, we still do not have a specific metric to determine the depth of the

model that each type of data deserves.

In order to understand the importance of deep neural networks we need to close our

definition of what a deep neural network is. A good way to start is by formulating

the following questions:

• What is deep learning? What are deep neural networks? What is the differ-

ence between deep and shallow networks?
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• How to select the appropriate neural network model?

• How can we measure the complexity of a dataset?

• What can we refer to as model complexity of an MLP?

• Can the multilayer perceptron (MLP) be modified so it overcomes the limi-

tations of gradient-descent optimization?

2.2 What is deep learning?

Deep learning is a term with a growing usage in popular science and culture.

From recommendation engines like Netflix [19], Amazon [20] and YouTube [21], to

multiple tracking mechanisms, deep learning has become a very important part of

our everyday lives and its usage is constantly improved. This constant evolution is

the reason why we are experiencing a soft, gradual, advancement of the technologies

that make use of AI, such as Siri [22] and Alexa [23].

According to Parloff [24], deep learning can be defined as \the subset of machine

learning composed of algorithms that permit software to train itself to perform

tasks [...] by exposing multilayered neural networks to vast amounts of data."

Schmidhuber [25] defines learning in this context as a process of finding weights

that make a neural network exhibit the desired behavior. He then proposes that the

distinguishing factor between deep learners and shallow learners is the complexity

of their parameters. Goodfellow [26], on the other hand, defines it as the solution

of the pattern recognition problem by using complex representations in terms of

other, simpler representations. However, throughout these definitions, it is not

clear if deep learning is about the algorithms and techniques implemented around

the deep neural networks or if the mere application of a deep multilayer perceptron

is enough for the learning method to be called deep. Also, in a definition like [24],

it is implied that the size of the data comes into play in the definition of deep

learning. This conflicts with a definition like [25], where it says that it depends on

the complexity of the parameters. This work assumes that the definition of deep

learning is closer to [26], where the model complexity is the result of combining

simpler models.
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According to Schmidhuber [25], what differs a deep neural network from a shallow

one is the depth of the problem, illustrated with the concept of Credit Assignment

Paths (CAP), called synapses throughout this work. In his notation, let N =

(u1; u2; :::) be the number of nodes in a neural network; then, H ⊆ N × N would

be the set of all the possible connections between nodes; each layer k would be

the set of all nodes u ∈ N such that there are k − 1 previous layers or edge paths

for a FNN and Z + 1 for a recurrent neural network (RNN), where Z is the total

amount of layers excluding the input “layer” and including the output layer. In

a single epoch each layer is being affected by a set x t(t = 1; :::; T), which is the

input for each layer (e.g. the input layer for the first hidden layer or the activation

of the previous layer for any other hidden layer). The Credit Assignment Paths

are then, in Schmidhuber’s definition, chains of possible causal links between the

x t events of two different layers (e.g. the set of weights in a typical feed-forward

neural network).

Suppose we have weights for a link between a layer that has p neurons and a layer

that has q neurons and 1 ≤ p < q ≤ T [25]. Then, a learning algorithm applied to

those two layers is free to change wp;q weights in order to pass to another epoch.

If a CAP has the form N = (:::; k; t; :::; q) where k and t have modifiable weights

(wv(k;t )), then the length of (t; :::; q) is called the CAP’s depth, which is 0 if there

are no modifiable weights between those two. Why is this relevant to us? Because

how “difficult” a problem is does not have anything to do with the size of the data

but the data itself defines how many modifiable weights are enough to solve said

problem. This is the equivalent to saying that certain problems, though “easier”,

require a minimum number of nodes and hidden layers that might be higher than

the minimum required for a more “difficult” problem, but might be solvable with

less hidden layers, or in the words of [25], with less CAP’s depth. The Occam’s

Razor [27] principle explains the need to find the most parsimonious model to

explain or solve a given data. In our case, the expense of adding hidden layers

might be the reason why we seek for this answer.

Yann LeCunn and Yoshua Bengio [28], argue that the fascinating feature of deep

architectures is the generalization power in non-local ways. This means that deep

architectures are capable of making a representation that does not depend only on



22

immediate neighbors and solving more complex tasks, but it also makes separations

and learning in complicated feature sub-spaces with higher levels of abstraction.

Let us go back to the “peaches, nectarines and bananas” example, what LeCunn’s

idea means is that maybe there is a feature that might seem irrelevant, let us say

the time it took for people to buy the fruit in the supermarket, that suddenly has

a greater discriminatory power between the fruits. A deeper model might be able

to adapt itself in a way that when faced a “nectarine vs. peach” data point, it

goes to that feature or feature subspace and distinguishes between the peaches and

the nectarines. Deep neural networks have the power of understanding the feature

hierarchy better than shallower networks.

There is, so far, no explicit definition as of which model depth will make a neural

network stop being shallow and start being deep. Therefore, this work assumes

that there is no threshold or frontier of number of hidden layers that makes a model

deep and that this threshold is defined by the type of problem to be learned.

2.3 How do we measure the complexity of a data

set?

Now that we covered the complexity of the learning model through the concept

of CAPs [25], it is appropriate to discuss the complexity of the data itself. Before

studying this section, let us go over the notion of principal curves, introduced as

a PhD thesis by Hastie, T. [29] in 1989. Principal curves were inspired in the

Principal Component Analysis (PCA) famous at the time. PCA is a method of

reducing dimensionality on the feature space of a data set by creating 1-D lines in

the hyper-space in order to “summarize” or “merge” some of the feature subsets

allowing the feature space to be infinitely dimensional [8], see Section 2.4. This

analysis is very convenient when you have a highly dimensional feature space but

some features are either redundant or non-discriminating. Principal curves then,

according to [29] are \smooth and one-dimensional curves that pass through the

middle of a p-dimensional data set, providing a non-linear summary of the data."

This means that as PCA does a linear summary of the data by placing a line

or a hyper-plane, principal curves allow us to produce “hyper-curves” that pass
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through the means of the data set (if the data set is complete) and make the data

able to be summarized in a non-linear way. From these “hyper-curves” or principal

curves, we can then form principal graphs.

According to [30], the complexity of a data set can be classified into three cate-

gories: geometrical, structural and construction complexity.

2.3.1 Geometrical complexity

According to [30], the geometrical complexity represents how different the data

is from a canonical configuration, also called “principal” configuration. A simple

canon for data would be linear/non-linear for example. In [31], the authors suggest

the use of harmonicity for geometrical complexity. To measure the harmonicity we

use the principal curves discussed above, which according to [32], can be referred

to as data approximators of controllable complexity. By controllable, they mean

that the principal curves make use of a low complexity learning algorithm. Using

the algorithm of [29], we obtain the principal curves by finding local minima of the

distance function D 2() between the expected value of the observations that project

into f(·) and X, which is a random vector in Rn . The mean of all the samples is

x̄.

Data: Results from Principal Component Analysis (PCA)
Result: Principal curve coordinates
1. Initialize f (0) (� ) = x̄ + � a; where a is the first linear principal component.
2. Set � (0) (x) = � f ( 0 ) (x) ;

j=0 ;
while ∆D 2 > Tolerance do

j=j+1 ;

3. Set f ( j )(·) = E(X|� f ( j � 1 ) (X ) = ·) ;

4. Define � ( j )(x) = � f ( j ) (x)∀x ∈ dataset; transform � j so that f ( j ) is a
unit vector;

5. Evaluate D 2(dataset;f j ) = E� ( j ) E[‖X− f(� ( j )X)‖2|� ( j )(X)];
6. Calculate the change in D 2(dataset;f j ) ,
∆D 2 = |D 2(dataset;f j )− D 2(dataset;f j �1)|;

end
Algorithm 2: Algorithm for obtaining the Principal Curves given the results
from PCA from [29].
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An example of the principal curves is illustrated as Figure 2.1. The curves are

projections of the principal components of the data set. These curves have the

function f(·).
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Figure 2.1: Principal curve plot of the Tree data set produced by the code in [1].

The implementation that will be used to visualize the geometrical complexity

of the data will be that of [1], an open-source MATLAB routine that is intended

to output the principal curves using Algorithm 2.

What is looked for in a principal curve is the number of bifurcations as well as the

harmonicity of those bifurcation. What that means is that the angles at which

the ramifications of the data set are distributed ought to show certain patterns.

For example, in Figure 2.1, when you look at the center of the figure, where there

is a line with two nodes where the bifurcations start, each of those nodes have

ramifications that appear harmonic.

2.3.2 Structural and construction complexity

According to [30], the structural complexity refers to as how many bifurcations

and nodes a principal curve defines when learning the data. The idea is that the
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more bifurcations the curves have, the more complex the data is. This parameter,

however, will not be measured in this work. This measurement is not as relevant

because it provides more information about the simplicity of the unsupervised

representation model than the complexity of the data set per se, which is what is

looked for in Chapter 3.

Zinovyev, A., et al [30] defines the construction complexity as the minimum number

of elementary graph transformations that were needed to produce the principal

trees or curves. This will also not be relevant in this work because the construction

complexity depends on the nature of the model.

2.4 Principal Component Analysis (PCA)

This work suggests that the results from Principal Component Analysis (PCA)

provide a broad notion of the complexity of a data set. PCA is one of the most

powerful tools to perform feature transformations. According to Bishop [8], PCA

is a transformation applied to a data set that can be obtained from two different

approaches:

• An orthogonal projection of the data onto a subspace of reduced dimension-

ality, also called the principal subspace where the variance in the projected

data is maximum.

• A projection that is the solution to the problem of finding the line with

minimum mean squared error from the data points.

Both, the maximum-variance and the minimum error will result in the principal

components of the data set. Figure 2.2 illustrates how every feature of a data set

reflects onto a principal component and the PCA projections in the new axes.

Figure 2.2 contains plenty of information. To break it down, the first aspect

to notice is that the x and y axes are the first and the second principal com-

ponents [33]. PCA outputs the principal components in order of ‘discriminatory

ability’. This means that the algorithm organizes the transformed features in or-

der of relevance by sorting the PCA coefficients in order of eigenvalues as seen in
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(a) Iris in its principal subspace. (b) Pima in its principal subspace.

Figure 2.2: Projections of raw feature dimensions onto the first two principal
components using MATLAB.

Algorithm 4. The straight lines in the plot are the original features projected in

the first two principal components, their length reflects the magnitude in which

they project onto the first two principal components. The algorithm to perform

PCA is simple for finite raw dimensions. The version that will be shown is the

maximum-variance formulation, which is the most common way to obtain the prin-

cipal components. An important aspect reflected in Figure 2.2 is that if we look

at the projections of the raw data for Iris and Pima (Figures A.1 and 1.7), there

are classes that may be indistinguishable in the raw data projection onto the raw

dimensions, but when looked from the principal components perspective, these

classes are ‘easier’ to separate as seen in Figure 2.2a.

PCA-1 (first principal component) is usually the component with highest per-

cent variability. This means that if the data set it seen from the first few principal

components, the differences between classes are more evident. Equation 2.1 shows

how to compute the percentage variance in the first principal component or in any

given principal component:

PCA− 1% =
� 1P D
d � d

∗ 100 (2.1)

And it represents how much the first principal component is “contributing” to

the separation of data.
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Data: Raw data (N×D )
Result: Principal component, PCA coe�cients and scores

1. Get the mean vector �x = 1
N � N

n=1 xn ;

2. Get the variance of the projected data and equate it touT
1 Su1 :

1
N � N

n=1 {uT
1 xn − uT

1 �x }2 = uT
1 Su1 where S is the covariance matrix de�ned by:

S = 1
N � N

n=1 (xn − �x )(xn − �x )T .

3. Perform a constrained maximization (‖u1‖2 = 1) using Lagrange multipliers to
obtain the following problem: Su1 = � 1u1 ;

4. Solve the eigenvalue problem to obtain� 1 and organize the dimensions from
largest eigenvalue to smallest eigenvalue. The resulting eigenvectors will be the
principal components and the user is free to choose as many (M ) as they �nd
convenient.

Algorithm 4: Algorithm for obtaining the Principal Curves given the results
from PCA from [8].

2.4.1 Pearson Correlation

In this work, the Pearson correlation coefficient will be tested within data points

of the same class as a candidate measurement for complexity. This is an extension

of the Intra-class Correlation Coe�cient [34] since the labels of the data sets are

known (problems are supervised). The correlation is a metric for the \agreement

with expectation of normal variance [35]." The formula to describe is depicted in

Equation 2.2 [36].

� X ;Y =
cov(X; Y)

� X � Y

(2.2)

Where X and Y are two random variables, in our case, they are features for

samples within the same class. cov(·; ·) is the covariance matrix for a given class.

The covariance matrix will always be of size D × D , given that D is the number

of features in the cases evaluated in this work. � is the variance of two different

features.
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2.5 Generalized Convergence Theorem

The Perceptron Convergence Theorem provides a theoretical guarantee that given

that a data set can be linearly separable, the perceptron algorithm (early version of

the back propagation algorithm [4]) would always converge. In summary, what the

Perceptron Convergence Theorem implies is that if convergence is guaranteed for a

learning rate of � = 1, then it should be guaranteed for any learning rate between

0 and 1 given that the data set is linearly separable. To summarize the proof of

this theorem, this explanation uses the notation and word choices of Haykin [4].

Let � = 1 and the initial guess for the weights vector is w0 = {0} with the condition

that wT (n)x(n) < 0 and that x(n) are observations that belong to a class K 1. For

each step (n + 1), one needs to iteratively achieve w(n + 1) = w(n) + x(n). The

theorem says that if � is the minimum of wT (n)x(n); n is the number of iterations

or epoch and � is the maximum magnitude of the x(n) vector that belongs to class

K 1, then there is a finite number of iterations nmax needed to converge the back

propagation algorithm.

nmax =
� ‖w0‖2

� 2
(2.3)

This might not be a general proof that a single layer neural network trained

with the perceptron algorithm is capable of approximating any function. However,

it is a very powerful theoretical guarantee that once we find a linearly separable

region in the feature space, the convergence of the MLP is guaranteed.

What happens in a multi-class problem? Is there an extension of the Perceptron

Convergence Theorem in multi-class problems applied to a neural network? Ac-

cording to Bruck J. [37], the guaranteed convergence of a neural network can be

proven through the unification of these two theorems:

• When operating on a serial mode, a neural network will always converge on

a steady state (no cycles in the state space).

• When operating on a fully parallel mode, a neural network will converge to

a cycle.



29

Bruck J. [37] proved that it is possible to converge a neural network to a steady

state through the use of an energy function, which will converge to a value at a

steady state because it is bounded. If we go through the theorems in [37] we can

conclude that for a general neural network, there is also a theoretical guarantee that

the cost will converge to a decreasing value for a finite number of steps. Baras [5]

demonstrates the guaranteed convergence of back propagation by proving that the

algorithm converges to stationary points for a finite number of iterations and that

it converges for an infinite number of observations as long as the initial values are

close to the stationary points. This means that the initial guesses for the weights

and biases plays an important role in the BP convergence.

2.6 How to select the appropriate neural net-

work model?

Multiple literature discourage the study of the number of hidden layers as the

measurement for neural network complexity. However, there has not been an

experimental study in this matter. On the book called Introduction to Neural

Networks with Java, Heaton, J. [38] determined that very rarely a problem will

require more than one hidden layer to solve but that neural networks that have

two hidden layers are capable of representing functions of any kind of shape. He

also says that there is no practical reason to choose more than two hidden layers

in a problem. He explains that neural networks that have no hidden layers are

only capable of representing linear separable functions; for one hidden layer, the

neural network is capable of approximating any function that maps from one space

to another space and that for two hidden layers, the neural network can represent

any arbitrary function. This author also set some empirical rules about selecting

the correct number of hidden neurons that will be applied in this work. These

rules can me summarized as:

The number of hidden neurons should be about 66% of the features in the input

layer, not more than twice the features in the input layer and more than the

output layer.
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Multiple studies on neural network parsimony have been applied to the MLP

as well as CNNs ( [39] and [40], for example). However, the researchers control the

complexity of the neural network by changing the number of nodes and synapses

for a neural network of fixed number of hidden layers, not changing the number

of layers in the neural network. Masters [41], proposed an empirical formula to

determine the number of nodes in the hidden layers which is the square root of the

number of input nodes times the number of output nodes. According to [25] there

are multiple theorems that prove that a two hidden layer network has enough

representation power to solve most problems. Then, why did deep learning in

neural networks improved the field of pattern recognition? Can the effects of deep

learning in the model representation be experimentally proven?



Chapter 3
Measuring the Complexity of the

Data Sets Used

What is this work referring to as data complexity? Which one is the measurement

that provides the most relevant information about how many hidden layers are

to be used in a neural network? This chapter is intended to provide the values of

multiple measurements for data complexity in order to compare the neural network

model complexity results from Chapter 4. The ease of separation of a data set

depends on either how close together one can group measurements from each class

or how separate the chosen measurements are with respect to other classes.

3.1 Data complexity metrics chosen

The metrics for data complexity that will be tested in this work will be: geomet-

rical complexity, PCA-1 percentage variance and intra-class Pearson correlation

coefficient. The reason to choose those measurements is because, apart from the

principal curve projections, it is important to have also multiple numerical mea-

surements and this will provide further information about which measurement is

the most relevant one.

• Principal curve visualization. This work makes use of the principal curves

as suggested in [30]. However, instead of computing the structural complexity

from those plots, the visualization of the bifurcations in the graphs produced
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from Figures 3.1a-3.1c will be done. This will provide information on the

harmonicity of the data without digging too much into the topology concepts

that the structural complexity brings within. These principal curves were

obtained thanks to the implementation provided in [42].

• PCA-1 percentage variance. The reason why the percentage variance of

the first Principal Component was chosen is because it also gives a good idea

on the separability of the data set. When that percentage is low, it is very

difficult to separate the data set.

• Maximum intra-class Pearson correlation. The intra-class correlation

coefficient is the most statistically sound method to calculate the complexity

of the data set. It provides information about how close together the mem-

bers are to its enclosing class. Due to the fact that the class labels are known

in this problem, the Pearson correlation was obtained for members of each

class.

3.1.1 Principal Curve Visualizations

Figure 3.1a contains the projections of the data points into the first two principal

components obtained during the algorithm used to obtain the principal curves.

According to [30], the structural complexity is defined for this data set with the

barcode 1|6‖22 from the K-means algorithm. This means that this graphs forms a

tree the following way: starting from one significant data point, it first bifurcates

once, then after that bifurcation the other 6 nodes in the following two branches

bifurcate too. The 22 means that there are 22 total significant points in the graph

given by the classifier used in the algorithm (K-means in the case of [30]). This

is not a relevant number for the purposes of this work because this work seeks for

metrics on the data set, not the classifier. In [30], the authors selected a region in

this 2-D plot, not the entire graph.

In Figure 3.1b, the projection of the first principal component on the second

provides information about the complexity of this data set. The Ionospheric data

set projects in the first components. The different classes are scattered in different

sections and bifurcations. The data set is “easy” to train, but requires models
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of higher complexity because of the large amount of bifurcations in the principal

curves.

In Figure 1.7 the raw data projections on the original dimensions were plotted. Now

in Figure 3.1c it shows that in the first principal components, the principal curve is

not as complex as ionospheric data set. This is not necessarily related to the time

it takes to train the model, but the efficiency of the model at performing the task.

It is evident in Figure 3.1c that for data sets that have missing fields, the principal

curve representation might not be ideal in order to obtain the complexity of the

data set. Pima displays principal curves without many bifurcations. However,

despite having 768 instances for 8 features (responding to the 2# features empirical

rule [8]), it is not an ”easy” data set to train. This difficulty will be evident

in Chapter 4, where the parameters needed to be changed for a ‘limiting’ case.

Throughout these principal curve visualization process, this work infers that this

metric is not sufficient for the association with the model complexity for a neural

network.

3.1.2 Principal Component Percentage Variance

The percentage variance resulting from PCA, according to [8], is the ratio between

the diagonal values in the PCA coefficients versus the summation of all the eigen-

values. Table 3.1 reports a summary of all the percentage variances obtained by

performing PCA to the original data sets. The values in Table 3.1 were extracted

by using the eigenvectors obtained during PCA and performing Equation 2.1 to

the MATLAB results from the pca(·) built-in function [33].

Percentage Variance of PCA-1
Iris Pima MNIST Ionospheric SC Path1

92.5% 88.9% 9.7% 31.3% 34.9 %

Table 3.1: Percentage variance on the first principal component (PCA-1).

Unfortunately, for the Spacecraft data set, none of the results displayed in this

work will be conclusive since the data set is currently under generation and only a

sample of it is used in the experiments. The purpose of the PCA-1% in this process

1used only a sample of the data set
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is to use a benchmark feature engineering algorithm in order to extract meaningful

values. PCA is not being used to transform features before the training of any of

the neural network models presented in this work. However, the properties of

the first principal component are very significant when determining the efficacy of

learning algorithms used for a given data set. This work assumes that what PCA

cannot improve, must be a “difficult” problem.

3.1.3 Maximum Pearson Correlation within Classes

Another metric for separability of the data sets used for this work was the maximum

value in the correlation matrix within each class of the data sets. This is an

extension of the Intra-class Correlation Coe�cient [34], since the class labels are

known for these problems. All positive and negative correlation coefficients were

taken into account for this calculation but in the process of obtaining Table 3.2,

coincidentally, all the maximum correlation magnitudes were positive.

Maximum Correlation within Classes
Data Set ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 ĉ7 ĉ8 ĉ9 ĉ10

Iris 0.7468 0.7867 0.8642
MNIST 1 1 1 1 1 1 1 1 1 1
Pima 0.5728 0.4566

Ionosphere 0.6416 0.9793

Table 3.2: Maximum Pearson correlation for each class.

Where ĉi represents the specific class (class 1, class 2...) for each data set.
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(a) Iris

(b) Ionosphere

(c) Pima

Figure 3.1: Principal curves for the data sets used in this work output from [1].



Chapter 4
Experiments on Model Parsimony:

Results and Discussion

This chapter reports a collection of results from the tests performed in different

data sets. The general purpose is to provide a careful experimental perspective

to the parsimony principles discussed in Section 2.6. Instead of testing the model

parsimony taking into account the number of nodes per hidden layer, which is

widely experimented (e.g. [39] [40]) these experiments keep as the independent

variable the number of hidden layers of the neural network in order to determine

if deeper levels of abstraction have something to do with the representation power

of the neural network. The intention is to keep all variables relatively constant

for each data set and only change the complexity of the MLP model. In this

work, the number of hidden layers (#H ) represents the complexity of the model

and the complexity of the data sets will be represented by the metric in Chapter

3 that is most tied with the results in this chapter. The experiments consist of

running an MLP multiple times only changing the number of hidden layers in the

architecture and trying to keep the number of synapses constant. The values for

the hyper-parameters � and a were all kept constant for each data set as well as

the percentages of the data that were used for training, testing and validation.
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4.1 Experiment Design

For each data set, the values of the hyper-parameters were kept constant unless

a limiting case was faced. The independent variable in the experiments was the

number of hidden layers (#H ). The most important controlled variable in the

experiments was the number of synapses. There was no need to cross-validate in

order to pick the most optimal parameters because the selection of� and a are

not relevant in this comparative study. However, a \validation" data subset was

chosen in order to measure the MSE test errors for each epoch in the �rst run of the

algorithm for some data sets. Table 4.1 summarizes the choice of back propagation

parameters throughout the experiments in this chapter.

MLP Parameters chosen for each Data Set

Parameter Iris MNIST Ionosphere Pima SC Path

� 1e � 2 1e � 3 1e � 2 1e � 3 5e � 4
a 1:7159 0:9 0:9 0:9 0:9

# synapses � 70 � 238200 � 1080 � 500 � 2200
Tol 5e � 2 9e � 2 6e � 2 5e � 2=1:9e � 1 5e � 3
� j Sigmoid Sigmoid Sigmoid Sigmoid tanh

Tr/Va/Te 70/10/20 40/20/40 70/10/20 70/10/20 80/00/20

Table 4.1: Parameters used to set up the MLP architectures.

It is important to notice that data sets like Iris will converge faster and more

successfully for shallow networks and larger learning rates (� ). However, since

the intention of the experiment is to keep the back propagation parameters �xed

and only change the number of hidden layers, it was necessary to �x the hyper-

parameters at values that will allow the convergence of deeper models.

In Experiment 1 the synapses were kept constant, all the data sets were tried mul-

tiple times starting from the same initial guesses as the �rst try. In Experiment

2, however, the synapses were kept constant, and the data sets were tried multiple

times, but now the initial guess of each run was the �nal result of the previous

run. This experiment intends to see if over-�tting is a phenomenon that is inde-

pendent on the initial guess for gradient descent. A similar result to Experiment 1

in Experiment 2 would be advantageous for back propagation (BP), decreasing test

set classi�cation rates for all cases in Experiment 2 is non advantageous for back

propagation because it proves that the initial guess determines the representation

power of a model trained using BP. After those two experiments, the following
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question came to light:What if, by making the model more complex (more hidden

layers) the number of synapses needed decreases?For this experiment, the Iono-

sphere data set was learned using �ve hidden layers, then reduced the synapses for

each new run stopping at two neurons per hidden layer. This is called Experiment

3 throughout this work.

4.2 The cost of adding hidden layers

When one looks at the algorithm for back propagation in Chapter 1, is it noticeable

that for each hidden layer, new local gradients need to be calculated. In Equation

1.10, it is seen that the for each hidden layer nodej , the local gradient is computed

by � j = � 0
j (vj (n))

P
k � k(n)wprev;kj , where j is a hidden layer andk goes from the

last hidden layer (second last layer in the MLP) to the �rst hidden layer and

wprev;kj is the weight matrices for upper layers from the previous iteration. Then,

a summation of the weight values in the former iteration is done and the local

gradients in the layers after the current one are used. The complexity of this

operation is easier to visualize in a piece of code extracted from the implementation

that supports this work as illustrated in Figure 4.1.

Figure 4.1: Local gradient computation for hidden layers nodes (� j ) in layer k in
the C++ implementation.

Let us visit the piece of code in Figure 4.1 that performs this operation in the

C++ implementation that supports this work. The part shown in the piece of code
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is only when the local gradients in the hidden layers are computed after obtaining

the local gradient in the output layer. The outer for-loop goes from the second last

layer (output is the last one) to the very �rst hidden layer (in this implementation,

input is counted as layer 0). Then, let us focus on the two nested for loops in the

last part, what it does is that for each individual layer, it assigns the local gradient

to the current layer. Even though the order of the outermost for-loop is of #H ,

each local gradient for hidden layerk ends up having a maximum possible order

of operation ofOk(# H � (N � M )max ), where N is the number of neurons in one

layer andM is the number of neurons in the adjacent next layer from left to right.

For each layer added, then, the possibility of increasing the order of operations

increases. This is why in these experiments decreased the number of neurons

as #H increased in order to keep the synapses fairly constant. By keeping the

synapses relatively constant, the intention is to eliminate the order of operation as

a variable to be considered. However, this variable played a major role in the mean

CPU times required because of the number of times this operation is used when

one increases the number of hidden layers. This is the main reason why training

deep neural networks takes longer than shallow ones. The relationship of CPU

times needed is not linear as Table 4.2 and Figure 4.2 re
ect.

Mean CPU times in Seconds for Experiment 1

# H Iris MNIST Ionosphere Pima SC Path
20 runs 1 run 20 runs 2 runs 20 runs

1 2.2391 11871.1 1.8838 786.2466 0.15494
2 0.9855 39674.2 1.4697 12973.19 0.09105
3 2.9737 44420.2 3.17122 19763.31 0.13312
5 15.6261 261564.0 11.9630 1066.30 0.18954
7 170.158 N/A 164.97 2.37 1 0.40186

Table 4.2: Mean CPU times for training.

Figure 4.2 displays the multiplier in CPU times from the most shallow network

tested: Each CPU time was divided by the required CPU time it took to train an

MLP of 1 hidden layer in the same computer and approximately the same number

of synapses for the cases where the initial guesses were restarted for each run. It

is evident throughout the plots shown in Figure 4.2 that there is no set rule for

the CPU time that will be needed. Iris and Ionosphere are data sets with similar

1Limited case: Tolerance was increased.




