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Abstract

Four general classes of statistics in hypothesis testing and corresponding measures
are those based on reproducing kernels or distances. Among the most popular
criteria for independence between two random vectors X and Y are the distance
covariance (dCov) and the Hilbert-Schmidt independence criterion (HSIC). Among
the most popular criteria for equal distributions of two random vectors X and Y
are the Maximum Mean Discrepancy (MMD) and an energy distance (eD) criterion.
Copula versions of these criteria are introduced. The estimators of the proposed
criteria belong in the class of rank transform statistics and share the important
property of being invariant under monotone transformations of each variable. The
asymptotic theory is established under alternative hypothesis for the first two
proposed statistics, and under null hypothesis for all the four proposed statistics, in
which general distributions are allowed by employing mid-ranks. Dealing with the
non-differentiability of the Euclidean norm, in combination with mid-ranks, presents
methodological and notation challenges which are dealt with by novel arguments.
Conservative tests, as well as linear time statistics for the first two proposed methods
are also developed. Simulation studies suggest superior performance of the proposed
statistics for certain classes of distributions.
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Chapter 1 |
Introduction and Literature Re-
view

1.1 Measures of Association
The measures of associations have been a major topic in the fields of statistics. In
this section, several typical measures of associations are introduced.

1.1.1 Pearson Correlation Coefficient

Pearson correlation coefficient is the simplest measure of association, which measures
the linear association between two random variables. For two random variables X
and Y , the Pearson correlation coefficient of X and Y is defined as

ρPearson(X, Y ) = cov(X, Y )√
var(X)var(Y )

. (1.1)

It is well-defined if both var(X) and var(Y ) are finite. The value of a Pear-
son correlation coefficient ρPearson(X, Y ) is always between -1 and 1, inclusively.
ρPearson(X, Y ) = −1 or 1 implies that X and Y are totally positively or negatively
linearly correlated, in which case aX + bY = 0 with probability 1 for some a, b ∈ R.
When ρPearson(X, Y ) = 0, X and Y are called uncorrelated, which means that X
and Y do not have linear association. A Pearson correlation coefficient is easy to
calculated, and it is invariant under non-degenerate linear transformations on X
and on Y . In general, Pearson correlation coefficient cannot be used as a criterion
of independence between two random variables, because two uncorrelated random
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variables are not necessarily independent. For example, X and Y are uncorrelated
but dependent in each of the following four cases:

1. X ∼ Uniform(−1, 1) and Y = X2.

2. X ∼ Uniform(0, 4π) and Y = cos(X).

3. (X, Y ) is uniformly distributed on the edges of the unit square in a two-
dimensional space. To be specific, let U1, U2 be two independent Uniform(0,
1) random variables, X = U1I(U2 < 0.5) + I(U2 > 0.75) and Y = U1I(U2 >

0.5) + I(U2 < 0.25).

4. (X, Y ) is uniformly distributed on the unit circle in a two-dimensional space.
To be specific, let U be a Uniform(0, 1) random variable, X = cos(2πU) and
Y = sin(2πU).

The shape of the distributions in the above four cases are shown in Figure 1.1.

Figure 1.1. The illustration of the distributions in four different cases. In each case,
the Pearson correlation coefficient of X and Y are 0, but X and Y are not independent.

Despite the fact that independent random variables may be uncorrelated, if the
joint distribution of the two random variables is a multivariate normal distribution,
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Pearson correlation coefficient can be used as an independence criterion, because
in this case the two random variable are independent if and only if they are
uncorrelated. In this sense Pearson correlation coefficient is considered a parametric
approach for testing independence of two random variables.

Given i.i.d. observations (X1, Y1), . . . , (Xn, Yn) from (X, Y ), the Pearson corre-
lation coefficient can be estimated by the sample Pearson correlation coefficient,
which is defined as

ρ̂Pearson(X, Y ) = σ̂X,Y
σ̂X σ̂Y

,

where
X̄ = 1

n

n∑
i=1

Xi, Ȳ = 1
n

n∑
i=1

Yi,

σ̂2
X = 1

n

n∑
i=1

(Xi − X̄)2, σ̂2
Y = 1

n

n∑
i=1

(Yi − Ȳ )2,

σ̂X,Y = 1
n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) .

It can be shown that ρ̂Pearson(X, Y ) is a consistent estimator for ρPearson(X, Y )) and
it is asymptotically normal.

1.1.2 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient (proposed in [24] and [25]) is one of the
most commonly used measure of association between two random variables. It
measures the proportion of the association between two random variables that can
be described by monotone functions. Given i.i.d. observations (X1, Y1), . . . , (Xn, Yn)
from (X, Y ), denote the rank statistics of X1, . . . , Xn by RX1 , . . . , RXn , and the
rank statistics of Y1, . . . , Yn by RY1 , . . . , RYn . Then the sample Spearman’s rank
correlation coefficient is defined as

ρ̂Spearman(X, Y ) = σ̂RX ,RY
σ̂RX σ̂RY

,

where
R̄X = 1

n

n∑
i=1

RXi , R̄Y = 1
n

n∑
i=1

RYi ,
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σ̂2
RX

= 1
n

n∑
i=1

(RXi − R̄X)2, σ̂2
RY

= 1
n

n∑
i=1

(RYi − R̄Y )2,

σ̂RX ,RY = 1
n

n∑
i=1

(RXi − R̄X)(RYi − R̄Y ).

The sample Spearman’s rank correlation coefficient takes its extreme possible values
-1 or 1 if and only if the observations of one random variable is a perfect monotone
function of the observations of the other random variable with probability 1. In [16]
it was shown that under mild conditions,

√
n[ρ̂Spearman(X, Y )−E(ρ̂Spearman(X, Y ))]

is asymptotically normal.
Nevertheless, Spearman’s rank correlation coefficient cannot be used as a criteria

of independence in general. For each case of the distribution of (X, Y ) in Figure
1.1, it can be verified that E(ρ̂Spearman(X, Y )) = 0.

1.1.3 RV coefficient

RV coefficient proposed in [6] is a measure of linear association between two random
vectors. For two random vectors X and Y, the RV coefficient of X and Y is defined
as

ρRV (X,Y) = tr(ΣXYΣYX)√
tr(ΣXX)tr(ΣYY)

, (1.2)

where tr(·) is the trace function, and

ΣXX = E[(X− E(X))(X− E(X))T ],

ΣYY = E[(Y − E(Y))(Y − E(Y))T ],

ΣXY = E[(X− E(X))(Y − E(Y))T ].

The RV coefficient of X and Y is well-defined if all components of ΣXX and ΣYY are
finite. RV coefficient can be derived in the following sense. The linear association
between two random vectors X ∈ Rp and Y ∈ Rq can be expressed mathematically
by the following bivariate mapping:

Clinear : Rp × Rq → R, (a,b) 7→ cov(aTX,bTY) = aTΣXYb.

Thus under the natural basis of Rp and Rp, the bivariate mapping Clinear can be
represented by the matrix ΣXY. The Hilbert-Schmidt norm of the matrix ΣXY,
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‖ΣXY‖HS, is zero if and only if the operator Clinear is a zero operator, if and only
if X and Y do not have linear association. Therefore, ‖ΣXY‖2

HS can be used as a
criterion for the linear association between two random vectors X and Y. Note
that

‖ΣXY‖2
HS = tr(ΣXYΣYX).

Thus the definition of RV coefficient in (1.2) is the “standardized” version of
‖Clinear‖2

HS. If X and Y are “standardized” such that tr(ΣXX) = tr(ΣYY) = 1, the
RV coefficient of X and Y is essentially the sum of the eigenvalues of the matrix
ΣXYΣYX. In this sense, RV coefficient can be considered a multivariate general-
ization of Pearson correlation coefficient because the latter is the “standardized”
version of the covariance. In fact, when X and Y are both random variables, the
RV coefficient defined in (1.2) is reduced to the square of the Pearson correlation
coefficient defined in (1.1).

Similar to Pearson correlation coefficient, RV coefficient cannot be used as a
criterion of independence because ΣXY = 0 does not imply the independence of X
and Y, unless (X,Y) is normally distributed.

1.1.4 Canonical Correlation Coefficients

Canonical correlation analysis was first proposed by [17]. For any two random
vectors X and Y, canonical correlation analysis studies the Pearson correlation
ρPearson(aTX,bTY) of any linear function of X and any linear function of Y.
Specifically, the first pair of canonical correlation vectors, (a1,b1), is obtained by
solving

max ρPearson(aTX,bTY) = aTΣXYb√
aTΣXXa · bTΣYYb

. (1.3)

The ith (i = 2, . . . ,min{p, q}) pair of canonical correlation vectors (ai,bi) is
obtained by solving (1.3) under the constraints that aTi X is uncorrelated with aTj X
for j = 1, . . . , i− 1, and that bTi Y is uncorrelated with bTj Y for j = 1, . . . , i− 1.
The ith canonical correlation coefficients (i = 1, . . . ,min{p, q}) is defined as the
maximum value obtained in solving the ith optimization problem above. To be
specific,

ρcanonical,i = ρPearson(aTi X,bTi Y) = aTi ΣXYbi√
aTi ΣXXai · bTi ΣYYbi

.
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It can be shown that the canonical correlation coefficients are the square root of the
first min{p, q} eigenvalues of the matrix Σ−1/2

XX ΣXYΣ−1
YYΣYXΣ−1/2

XX . This matrix is
reduced to ΣXYΣYX when the covariance matrices of X and of Y are both identity
matrices. It is the same matrix mentioned in Section 1.1.3. Unlike RV coefficient
that combines all eigenvalues into one scalar, canonical correlation analysis studies
the individual eigenvalues.

Similar to RV coefficient, canonical correlation coefficients cannot be used as a
criteria of independence because ΣXY = 0 does not imply the independence of X
and Y, unless (X,Y) is normally distributed. In that case, ρcanonical,1 is used as
the criterion of independence of X and Y.

1.2 Criteria of Independence
The question of independence between two variables, or two groups of variables,
arises frequently in such diverse areas as psychology, marketing, environmental
sciences, astronomy, “-omics” studies; concrete applications can be found in several
of the cited papers. All the coefficients introduced in Section 1.1 are widely used
for answering univariate and multidimensional association questions.

It is well known, however, that none of the aforementioned association measures
implies independence. [8] introduced the maximal correlation coefficient between
two random variables X, Y as

ρM(X, Y ) = sup
f,g

Corr(f(X), g(Y )),

where f, g range over all Borel functions with f(X) and g(Y ) square integrable.
Clearly, ρM(X, Y ) = 0 if and only if X and Y are independent; moreover, [21]
showed that ρM satisfies all of his axioms for nonparametric measures of dependence.
Except in some rare cases, however, the maximal correlation is difficult to calculate;
see [20] and references therein. [3] introduced the F-correlation as the maximal
correlation when f and g range over a vector space F of functions (f and g can
also range over different function spaces),

ρF = sup
f,g∈F

Corr(f(X), g(Y ))

6



and showed that if F is the reproducing kernel Hilbert space (RKHS) corresponding
to a Gaussian kernel on R, ρF = 0 if and only if X and Y are independent; extension
of this result to higher dimensions is not discussed. An estimator of ρF based on
RKHS techniques and regularization is presented and applied for implementing
kernel independent component analysis. [13] introduced the similar concept of
constrained covariance as

COCO(X, Y ) = sup
f∈F, g∈G

Cov(f(X), g(Y )),

where F and G are subspaces of function spaces F and G, and showed that if F and
G are RKHSs corresponding to universal kernels on compact domains, and F and G
are the unit balls in the corresponding RKHSs, then COCO(X, Y ) = 0 if and only
if the random vectors X and Y are independent. As [3] demonstrated, COCO can
be recast as a generalized eigenvalue problem which can be easily estimated using
RKHS methods; see also Lemma 1 in [13]. In particular, COCO can be estimated
without the use of regularization, and thus it is a more convenient statistic for
testing for independence.

[11] introduced the Hilbert-Schmidt independence criterion (HSIC) which is an
empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator
on RKHS with universal kernels. HSIC can be thought of as using the entire
spectrum of the cross-covariance operator whereas COCO uses only the largest
eigenvalue. Thus, HSIC characterizes the independence of two random vectors
under the same conditions that COCO does. The assumption of bounded support
can be eliminated with the use of characteristic kernels; see [26], [9] and references
therein. The bias and rates of convergence of the HSIC statistic are studied in [11],
and its asymptotic normality was derived in [12] both under the null and under the
alternative hypothesis.

Using a different approach to the problem of independence testing, [30] intro-
duced the distance covariance (dCov) as a measure of discrepancy between the joint
characteristic function of (X,Y) and the product of their marginal characteristic
functions for a specific weight function. The general (population version) form of
this statistic is

V2(X,Y;w) =
∫
Rp+q
|φX,Y(s, t)− φX(s)φY(t)|2w(s, t)dsdt, (1.4)

7



where φX is the characteristic function of the p-dimensional vector X, φY is
the characteristic function of the q dimensional vector Y, φX,Y is their joint
characteristic function, and w is a weight function. Not every choice of the weight
function leads to a measure of dependence. Moreover, empirical characteristic
functions may have large noise in the higher frequencies which could have a negative
effect on the estimate of V2(X,Y;w). [30] proposed the weight function

w(s, t) = [CpCq‖t‖1+p
p ‖s‖1+q

q ]−1, (1.5)

where ‖ · ‖d denotes the Euclidean norm for Rd, and Cd = π(1+d)/2/Γ((1 + d)/2).
The discrepancy measure V2(X,Y;w) with the weight function in (1.5), which will
be denoted simply as V2(X,Y), is the definition of dCov. In their Theorem 3, [30]
show that under the assumption of finite first moments dCov characterizes the
independence of X and Y. The asymptotic null distribution of the empirical version
of dCov is also obtained there. [29] established the interesting and surprising result
that dCov equals the Brownian covariance of X and Y. A connection between
HSIC and dCov was established in [22] where it was shown that a generalized
version of dCov is a special case of HSIC for a particular choice of kernel.

HSIC and dCov are both criteria of dependence, while Pearson correlation
coefficient and Spearman’s rank correlation coefficient cannot only measure certain
types of dependence. To illustrate the differences between these four methods,
data are simulated from Case 4 in Figure 1.1, with different sample sizes. The
p-values from the four methods are listed in Table 1.1. It shows that neither
Pearson correlation coefficient nor Spearman’s rank correlation fails to measure
the dependence between the two random variables, while HSIC and dCov indeed
measure such dependence.

Table 1.1. P-values of testing for association in four different cases of distributions with
four different methods

Sample Size Pearson Spearman HSIC dCov
25 0.8419 0.9136 0.2727 0.5994
50 0.9535 0.8498 0.0076 0.1278
75 0.9496 0.9420 0.0033 0.1178
100 0.9938 0.9494 0.0001 0.0814
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1.3 Some Backgrounds of Kernel Methods
Kernel methods has become popular to use linear algorithm to analyze non-linear
problems. In this section, some backgrounds of kernel methods will be introduced.

1.3.1 Reproducing Kernel Hilbert Space (RKHS)

In this section, the reproducing kernel Hilbert space (RKHS) will be defined through
a positive definite kernel.

Definition 1.3.1. Let X be a non-empty set in Rd. A symmetric function k :
X × X → R is called a positive definite kernel if

n∑
i,j=1

aiajk(xi,xj) ≥ 0

for any n ∈ N and ai ∈ R, xi ∈ X for i = 1 . . . , n.

The examples of positive definite kernel include

1. Linear kernel: k(x1,x2) = 〈x1,x2〉 for x1,x2 ∈ Rd, where d ∈ N.

2. Gaussian kernel: k(x1,x2) = e−
‖x1−x2‖

2

2σ2 for x1,x2 ∈ Rd, where σ > 0, d ∈ N.

3. k(x1,x2) = e〈x1,x2〉 for x1,x2 ∈ Rd, where d ∈ N.

4. V. Vovk’s infinite polynomial kernel: k(x1,x2) = (1− 〈x1,x2〉)−α for x1,x2 ∈
X = {x ∈ Rd : |α〈x,x〉| < 1}, where α > 0 and d ∈ N.

Given a positive definite kernel k, an RKHS H can be constructed as follows. First
define a class of function on X as

H1 =
{

n∑
i=1

aik(·,xi) : n ∈ N, ai ∈ R,xi ∈ X for i = 1, . . . , n
}
.

Define a dot product 〈·, ·〉H1 on H1 as

〈
n∑
i=1

aik(·,xi),
n′∑
j=1

a′jk(·,x′j)
〉
H1

=
n∑
i=1

n′∑
j=1

aia
′
jk(xi,x′j).
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for any n, n′ ∈ N, ai ∈ R, xi ∈ X , i = 1, . . . , n, a′j ∈ R, x′j ∈ X , j = 1, . . . , n. It
can be verify that 〈·, ·〉H1 is well-defined, and is indeed a dot product. Thus H1 is a
inner product space. Complete the space H1 to obtain a Hilbert space H equipped
with an inner product 〈·, ·〉. Then H is called an RKHS induced by the kernel k. In
this case, k is called a reproducing kernel of H because of the following reproducing
property

∀x ∈ X , k(x, ·) ∈ F , and ∀f ∈ F , 〈f(·), k(x, ·)〉F = f(x)

In [2] it is shown that a Hilbert space H is a RKHS if and only if there exists
a unique positive definite kernel k : X × X → R such that ∀x ∈ X , k(x, ·) ∈ F ,
and ∀f ∈ F , 〈f(·), k(x, ·)〉F = f(x). This enables us to define a RKHS through
defining the reproducing kernel k. In practice, a positive definite kernel is easier to
construct than an RKHS in general.

As a special case of the reproducing property, if φx ∈ F is defined as φx = k(·,x)
for any x ∈ X ,

〈φx1 , φx2〉 = k(x1,x2).

φx : X → F is called feature map because of this property.

1.3.2 Universal Kernels

In some applications of kernel methods, an RKHS is constructed so that it is dense
in C(X ), the space of all real-value continuous random variables. The reproducing
kernel of such RKHS is called universal kernels, as defined in [27].

Definition 1.3.2. A positive definite kernel k defined on a non-empty compact set
X ⊂ Rd is called a universal kernel if the induced RKHS H satisfies the following
property: for any f ∈ C(X ) and ε > 0, there exists g ∈ H such that ‖f − g‖∞ < ε.

A RKHS induced by a universal kernel enables us to approximate any continuous
function on X by using an element in the RKHS. The Gaussian kernel is an example
of universal kernel on any compact subset of its domain; see [27] for additional
examples.
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1.3.3 Mean Element and Cross-Covariance Operators

A continuous kernel induces a separable RKHS; see [18] or Theorem 7 in [14]. We
will only consider continuous kernels because separability implies the existence of a
countable orthonormal basis. Let ui, i ≥ 1 and vj, j ≥ 1, be orthonormal bases for
F and G, respectively. A linear operator C : G → F for which

‖C‖HS =
√∑

i,j

〈C(vj),ui〉2F , (1.6)

is finite is called a Hilbert-Schmidt operator. When finite, the expression in (1.6)
does not depend on the choice of orthonormal bases and is called the HS-norm.
The set of Hilbert-Schmidt operators is a separable Hilbert space with the HS-norm
being the corresponding norm.

Let X ∈ X ⊂ Rp be a random vector, and F be a class of functions on X which
is an RKHS induced by a reproducing kernel k. Consider E[f(X)] as a functional
of f ∈ F . It is a linear functional, so it may be expressed as the inner-product
with an element in F . The mean element of X on F is defined to be an element
µ[X] in F such that

〈µ[X], f〉F = E[f(X)], ∀ f ∈ F .

Under the assumption that E[
√
k(X,X)] < ∞, µ[X] uniquely exists, with the

explicit expression (See Theorem 1 in [26])

µ[X] = E[k(·,X)]

Now also let Y ∈ Y ⊂ Rq be a random vector, and G be a class of functions
on Y which is an RKHS induced by a reproducing kernel l. The mean element of
Y on G is µ[Y] = E[k(·,Y)]. Consider cov[f(X), g(Y)] as a bivariate function of
(f, g) ∈ F ×G. It is a bilinear function, so it may be expressed in a quadratic form.
The cross-covariance operator from G to F , CXY : G → F is an linear operator
such that

〈f, CXYg〉F = cov[f(X), g(Y)], ∀ f ∈ F , g ∈ G. (1.7)

Under the assumption that E[k(X,X)] <∞ and E[l(Y,Y)] <∞, such an oper-
ator exists and is unique (see Theorem 1 in [7]); under some additional moment
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requirements, see (3.1), CXY is also a HS operator. If X = Y and F = G, CXX

is called covariance operator. To give an explicit form of CXY, define the tensor
operator f ⊗ g : G → F for any f ∈ F and g ∈ G as

(f ⊗ g)(h) = f〈g, h〉G, ∀h ∈ G.

Define the feature maps φx = k(·,x) for any x ∈ X and ψx = l(·,y) for any y ∈ Y .
Then we have

cov[f(X), g(Y)] = E[f(X)g(Y)]− E[f(X)]E[g(Y)]

= E[〈f, φX〉F〈g, ψY〉G]− 〈f, µX〉F〈g, µY〉G
= E[〈f, φX〈ψY, g〉G〉F ]− 〈f, µX〈µY, g〉G〉F
= E[〈f, (φX ⊗ ψY)g〉F ]− 〈f, (µX ⊗ µY)g〉F
= 〈f, {E[φX ⊗ ψY]− (µX ⊗ µY)} g〉F .

Thus the explicit form of CXY is

CXY = E[φX ⊗ ψY]− µX ⊗ µY. (1.8)

1.4 V-statistics
All the criteria of association and independence can be estimated using samples,
and the corresponding statistics belong to a class of statistics called V-statistics.
This section will describe basic V-statistics results that will be used later.

1.4.1 Definition

Let z ∈ Z ⊂ Rd be a random vector, and Z1, . . . ,Zn be independent replicates of Z.
A statistic Vn is called a V-statistic of degree c if it has the following representation

Vn = 1
nc

n∑
i1,...,ic=1

h(Zi1 , . . . ,Zic),

where c ∈ N and h : X c → R. h is called the kernel of the V-statistics Vn. Any
V-statistic Vn can also be written as a V-statistic with a symmetric kernel. To be

12



specific,
Vn = 1

nc

n∑
i1,...,ic=1

h̃(Zi1 , . . . ,Zic),

where
h̃(z1, . . . , zc) = 1

(n)c
∑

(i1,...,ic)∈Icn

h(zi1 , . . . , zic),

for any z1, . . . , zc ∈ Z, Icn denotes the set of all permutations of {1, . . . , n} and (n)c
denotes the number of elements in Icn. h̃ is called symmetric because it is invariant
under any permutation of the c arguments. By defining

T (G) =
∫
· · ·

∫
h̃(z1, . . . , zc)

c∏
j=1

dG(zj),

where G : Zd → R, the expression in (1.4.1) can also be expressed as

Vn = T (Fn) =
∫
· · ·

∫
h̃(z1, . . . , zc)

c∏
j=1

dFn(zj) =
n∑

i1,...,ic=1
h̃(Zi1 , . . . ,Zic),

where Fn is the empirical distribution function of Z.
In many cases, the expression

T (F ) =
∫
· · ·

∫
h̃(z1, . . . , zc)

c∏
j=1

dF (zj) = E[h̃(Zi1 , . . . ,Zic)]

is the parameter of interest when it is finite, where F is the distribution function
of F , and the V-statistic T (Fn) is an estimator for T (F ).

1.4.2 Asymptotic Distribution of T (Fn)

Using the notations in Section 1.4.1, suppose that T (F ) is finite. Then

T (Fn)− T (F )

=
∫
· · ·

∫
h̃(z1, . . . , zc)

 c∏
j=1

dFn(zj)−
c∏
j=1

dF (zj)


=
∫
· · ·

∫
h̃(z1, . . . , zc)


c∏
j=1
{[dFn(zj)− dF (zj)] + dF (zj)} −

c∏
j=1

dF (zj)


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=
c∑

k=1

(
c

k

)∫
· · ·

∫
h̃(z1, . . . , zc)


k∏
j=1

[dFn(zj)− dF (zj)]
c∏

i=k+1
dF (zi)


=

c∑
k=1

(
c

k

)∫
· · ·

∫
h̃(k)(z1, . . . , zk)

k∏
j=1

[dFn(zj)− dF (zj)], (1.9)

where
h̃(k)(z1, . . . , zk) = E[h̃(Z1, . . . ,Zc)|Z1 = z1, . . . ,Zk = zk]. (1.10)

is the kth projection of the symmetric kernel h̃. Its existence is guaranteed by the fact
that T (F ) is finite. By Lemma B in Section 6.3.2 in [23], if E{[h̃(Zi1 , . . . ,Zic)]2} <
∞ for all 1 ≤ i1, . . . , ic ≤ m,

E


∫ · · · ∫ h̃(k)(z1, . . . , zk)

k∏
j=1

[dFn(zj)− dF (zj)]
2
 = O(n−k) (1.11)

for k = 1, . . . , c. Therefore, all terms in (1.9) for which k > 1 are OP (n−1). Thus

T (Fn)− T (F ) = c
∫
h̃(1)(z1)[dFn(z1)− dF (z1)] +OP (n−1)

= c

n

n∑
i=1

{
h̃(1)(Z)− E[h̃(1)(Z)]

}
+OP (n−1).

The asymptotic normality of T (Fn) follows from Central Limit Theorem. This
result is summarized in the following lemma.

Lemma 1.4.1. Let {Zi} be a sequence of random vectors in Rd on the distribution
FZ. Consider the V-statistic of order c,

Vn = 1
nc

n∑
i1,...,ic=1

h̃(Zi1 , . . . ,Zic)

where h̃ is symmetric. Let h̃(1)(z1) = E(h̃(Zi1 , . . . ,Zic)|Z1 = z1). Assume that
E{[h̃(Zi1 , . . . ,Zic)]2} <∞ for all 1 ≤ i1, . . . , ic ≤ m. Then

Vn − E(h̃(Z1, . . . ,Zc)) = c

n

n∑
i=1

{
h̃(1)(Z)− E[h̃(1)(Z)]

}
+OP (n−1) ,

and thus
√
n[Vn − E(h̃(Z1, . . . ,Zc))] D→ N(0, c2var(h̃(1)(Z))) .
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1.4.3 Asymptotic Distribution of T (Fn) When h̃(1) = 0

Suppose that h̃(1) = 0, which is usually called the first order degenerate case. From
(1.9) and (1.11),

T (Fn)− T (F )

=
(
c

2

)∫∫
h̃(2)(z1, z2)

2∏
j=1

[dFn(zj)− dF (zj)] +OP (n−3/2)

=
(
c

2

)∫∫
[h̃(2)(z1, z2)− h̃(1)(z1)− h̃(1)(z2) + E(h̃)]

2∏
j=1

dFn(zj) +OP (n−3/2)

= c(c− 1)
2

1
n2

n∑
i1,i2=1

[
h̃(2)(Zi1 ,Zi2)− h̃(1)(Zi1)− h̃(1)(Zi2) + E(h̃)

]
+OP (n−3/2)

= c(c− 1)
2

1
n2

n∑
i1,i2=1

h̃(2)(Zi1 ,Zi2) +OP (n−3/2).

Therefore, it suffices to analyze the asymptotic distribution of 1
n2
∑n
i1,i2=1 h2(Zi1 ,Zi2),

which can be obtained by Lemma B in Section 6.4.1 in [23]. This leads us to the
follow lemma.

Lemma 1.4.2. Let {Zi} be a sequence of random vectors in Rd on the distribution
FZ. Consider the V-statistic of order c,

Vn = 1
nc

n∑
i1,...,ic=1

h̃(Zi1 , . . . ,Zic)

where h̃ is symmetric. Let h(k)(z1, · · · , zk) = E(Zi1 , . . . ,Zic |Z1 = z1, . . . ,Zk = zk)
for k = 1, 2. Assume that h(1) = 0, E{[h̃(Zi1 , . . . ,Zic)]2} < ∞ for all 1 ≤
i1, . . . , ic ≤ m. Denote by {µi} the eigenvalues of the operator A defined on
L2(Rd, FZ) by

(Ag)(z) =
∫ ∞
−∞

h2(F ; z, z′)g(z′)dFZ(z′), z ∈ Rd, g ∈ L2(Rd, FZ)

Then

Vn − E(h̃(Z1, . . . ,Zc)) = c(c− 1)
2

1
n2

n∑
i1,i2=1

h̃(2)(Zi1 ,Zi2) +OP (n−3/2) ,
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and thus
n[Vn − E(h̃(Z1, . . . ,Zc))] D→

∞∑
i=1

µkχ
2
1k ,

where {χ2
1k} are independent χ2

1 random variables.
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Chapter 2 |
Copula Version of dCov (Cd-
Cov)

2.1 Notations
The notations introduced in this section will be used for the rest of this dissertation.

For any random variable X, and independent replicates X1, . . . , Xn, let its
mid-cdf FX and empirical mid-cdf F̂X be defined as

FX(x) = 1
2
[
F+
X (x) + F−X (x)

]
, F̂X(x) = 1

2n

n∑
i=1

[I(Xi ≤ x) + I(Xi < x)] (2.1)

for any x ∈ R, where F+
X (x) = P (X ≤ x) and F−X (x) = P (X < x).

For any random vector X = (X1, . . . , Xd), and independent replicates X1, . . . ,Xn,
let FX and F̂X be defined as

FX(x) = (FX1(x1), . . . , FXd(xd)), F̂X(x) = (F̂X1(x1), . . . , F̂Xd(xd)) (2.2)

for any x = (x1, . . . , xd) ∈ Rd. Moreover, if we define

~Iw1(w2) =
(
I(w11 ≤ w21) + I(w11 < w21)

2 , . . . ,
I(w1d ≤ w2d) + I(w1d < w2d)

2

)
.

(2.3)
for any two vectors w1 = (w11, . . . , w1d) ∈ Rd and w2 = (w21, . . . , w2d) ∈ Rd, then
we have the representation F̂X(x) = n−1∑

i
~Ixi(x).

For vectors wi = (wi,1, . . . , wi,d), i ≥ 1, and any m-dimensional multi-index
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β = (β1, . . . , βm) ∈ Nm, define wβ to be the md-dimensional vector

wβ = (wβ1 , . . . ,wβm). (2.4)

For example if m = 4, w(1,2,3,4) and w(1,1,3,4) denote the 4d-dimensional vectors
(w1,w2,w3,w4) and (w1,w1,w3,w4), respectively. For any two functions f1, f2

such that f1 : Rp×Rp → R, f2 : Rq×Rq → R, define the function hf1,f2 : R4(p+q) →
R by

hf1,f2(w(1,2,3,4)) = f1(u1,u2)[f2(v3,v4)− 2f2(v1,v3) + f2(v1,v2)], (2.5)

where wi = (ui,vi), i ∈ {1, . . . , 4}, with ui ∈ Rp, vi ∈ Rq. Next, for any function
GZ : Rp+q → Rp+q, let GX and GY be the first p components and last q components
of GZ, respectively, and define

f1(x1,x2; GX) = f1(GX(x1),GX(x2)),

f2(y1,y2; GY) = f2(GY(y1),GY(y2)),

hf1,f2(z(1,2,3,4); GZ) = hf1,f2(GZ(z1),GZ(z2),GZ(z3),GZ(z4)), (2.6)

for any zi = (xi,yi),xi ∈ Rp,yi ∈ Rq, i ∈ N4.
Consider the (p + q)-dimensional random vector Z = (X,Y), where X =

(X1, . . . , Xp) ∈ X and Y = (Y1, . . . , Yq) ∈ Y. Using the notation in (2.2), the
copula transformation of Z is

FZ(Z) = (FX1(X1), . . . , FXp(Xp), FY1(Y1), . . . , FYq(Yq)) = (FX(X),FY(Y)).

Define

γf1,f2(X,Y; GZ) = E
[
hf1,f2(Z(1,2,3,4); GZ)

]
. (2.7)

From now on, let Zj = (Xj,Yj), j = 1, . . . , n, be n independent copies of
Z = (X,Y). For simplicity, we will use the following notations in all that follows:

Ui = FX(Xi), Vi = FY(Yi), Wi = (Ui,Vi) (2.8)

Ûi = F̂X(Xi), V̂i = F̂Y(Yi), Ŵi = (Ûi, V̂i) (2.9)
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Uij = FX(Xi)− FX(Xj), Vij = FY(Yi)− FY(Yj) (2.10)

Ûij = F̂X(Xi)− F̂X(Xj), V̂ij = F̂Y(Yi)− F̂Y(Yj) . (2.11)

The V-statistic corresponding to the function defined in (2.7) is defined as

γ̂f1,f2(X,Y; GZ) = 1
n4

n∑
i,j,q,r=1

hf1,f2(Z(i,j,q,r); GZ) (2.12)

We will now introduce some compact notation for writing the expression of the
multivariate Taylor expansion with Lagrange remainder given in [1]. Let f : Rd → R
have continuous Mth-order derivatives. For any w = (w1, . . . , wd) ∈ Rd, any
m ≤ M , and any m-dimensional multi-index α = (α1, . . . , αm) ∈ Nm

d , where for
any d ∈ N we denote Nd = {1, . . . , d}, define

|α| = m, w(α) =
|α|∏
i=1

wαi , D(α)f(w) = ∂|α|f(w)
∂wα1 · · · ∂wαm

.

Note that in the above notation, w(α) = wα, for any α ∈ Nd. Then,

f(w2)−f(w1) =
M−1∑
m=1

1
m!

∑
α∈Nm

d

D(α)f(w)(w2−w1)(α)+ 1
M !

∑
α∈NM

d

D(α)f(w̃)(w2−w1)(α)

(2.13)
for some w̃ in the line segment

[w1,w2] = {(1− λ)w1 + λw2 : λ ∈ [0, 1]}

determined by w1, w2. The usefulness of (2.13) for our purposes can be seen by
applying it to expand hf1,f2(Z(i,j,r,s); F̂Z)− hf1,f2(Z(i,j,r,s); FZ); see the notation in
(2.6). Assuming that hf1,f2 is Mth-order continuously differentiable on [0, 1]4(p+q),
then for any i, j, r, s ∈ Nn,

hf1,f2(Ŵ(i,j,r,s))− hf1,f2(W(i,j,r,s))

= n−(M−1)
n∑

t1,...,tM−1=1

M−1∑
m=1

1
m! ·

∑
α∈Nm4(p+q)

D(α)hf1,f2(W(i,j,r,s))

·
m∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
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+ 1
M !

∑
α∈NM4(p+q)

D(α)hf1,f2(W̃(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
. (2.14)

See Lemma A.1.1 for a detailed derivation of this equality, but for now note that
the first term on the right hand side of (2.14) is a V-statistics of order M − 1, and
that the summation over the observations results from the empirical distribution
functions involved in the definition (2.9) of Ŵi. Using the form of the Taylor
expansion in (2.13) is critical for bringing out the summation over the observations
and the formation of the V-statistic.

Finally, for a vector w = (w1, . . . , wd) ∈ Rd, |w|∞ = max{|w1|, . . . , |wd|}, for
a vector valued function G, ‖G‖∞ = supw |GZ(w)|∞, Imn will denote the set of
all m-permutations (i1, . . . , im) of the numbers 1, . . . , n, and (n)m will denote the
number of such permutations..

2.2 Copula dCov Criterion and Test Statistics
Let dp and dq be the Euclidean distance in Rp and Rq, respectively. To be specific,

dp(u1,u2) = |u1 − u2|p , dq(v1,v2) = |v1 − v2|q , (2.15)

where |·|d is the Euclidean norm in Rd.
If f1, f2, and GZ in (2.7) are replaced by dp and dq, and FZ, respectively,

γdp,dq(X,Y; FZ) is the dCov discrepancy measure V2(FX(X),FY(Y)) defined in
(1.4) with the weight function in (1.5).

The copula dCov independence criterion (CdCov) states that

γdp,dq(X,Y; FZ) = 0 ⇐⇒ X ⊥⊥ Y. (2.16)

The equivalence in (2.16) follows the following lemma.

Lemma 2.2.1. For any random variable X with F = FX as defined in (2.1), the
equality F−1(F (X)) = X holds with probability one, where F−1(s) = inf{x : F (x) ≥
s}, for any s ∈ [0, 1].

Proof. Since F−1(F (X)) ≤ X always holds, we will show that P ({F−1(F (X)) <
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X}) = 0. Let A = {x : ∃x̃ < x s.t. F (x̃) = F (x)}, and notice that

{X ∈ A} = {ω : ∃x̃ < X(ω) s.t. F (x̃) = F (X(ω))} = {ω : F−1(F (X(ω)) < X(ω)}

Thus it suffices to show that P (X ∈ A) = 0. This will follow by showing first
that the image of A under F , Λ = F (A), is countable, expressing the set A as
A = ⋃

λ∈ΛEλ, where Eλ = {x ∈ A : F (x) = λ}, and showing that P (X ∈ Eλ) = 0
for all λ ∈ Λ. For any λ ∈ Λ, there exists x ∈ A such that F (x) = λ. Because
x ∈ A, there exists x̃ < x such that F (x̃) = λ. Thus the open interval (x̃, x) ⊂ Eλ

because F is non-decreasing, which implies that Eλ consists of at least one rational
number. Since Eλ’s are disjoint, Λ is countable. Next, to show that P (X ∈ Eλ) = 0,
for any λ ∈ Λ, note that Eλ is an interval because F is non-decreasing. Since the
value of F is constant on the interval Eλ, it can be shown that P (X ∈ Eλ) = 0
regardless of whether Eλ is open, closed or half-open.

Replacing f1, f2, and GZ in (2.12) by dp, dq, and F̂Z, respectively, leads to the
proposed CdCov test statistic

γ̂dp,dq(X,Y; F̂Z) = 1
n4

n∑
i,j,r,s=1

hdp,dq(Z(i,j,r,s); F̂Z). (2.17)

In order to compute the observed value of the test statistic, the mid-rank of
all the observations for each component of X and Y can be used. Suppose that
W1, . . . ,Wn are n observations from a random variable W , and F̂W be defined as
in (2.1). Let WR

1 , . . . ,W
R
n be the mid-ranks of W1, . . . ,Wn by assigning each set of

tied observations the average of the ranks. Then F̂W (Wi) can be expressed by a
linear function of WR

i ,

F̂W (Wi) = WR
i

n
− 1

2n. (2.18)

Denote Xi = (Xi,1, . . . , Xi,p) and Yi = (Yi,1, . . . , Yi,q) for i = 1, . . . , n. The steps of
the algorithm to compute the CdCov test statistic is as follows.

1. For each j = 1, . . . , p, let XR
1,j, . . . , X

R
n,j be the mid-ranks of X1,j, . . . , Xn,j.

Let XF
i,j = XR

i,j

n
− 1

2n for i = 1, . . . , n.

2. For each j = 1, . . . , q, let Y R
1,j, . . . , Y

R
n,j be the mid-ranks of Y1,j, . . . , Yn,j. Let

Y F
i,j = Y Ri,j

n
− 1

2n for i = 1, . . . , n.
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3. For each i = 1, . . . , n, write XF
i = (XF

i,1, . . . , X
F
i,p).

4. For each i = 1, . . . , n, write YF
i = (Y F

i,1, . . . , Y
F
i,q).

5. Construct the distance matrix A = (dp(XF
i ,XF

j ))i,j=1,...,n for XF
1 , . . . ,XF

n .

6. Construct the distance matrix B = (dq(YF
i ,YF

j ))i,j=1,...,n for YF
1 , . . . ,YF

n .

7. Define H = In − 1n1Tn , where In is the n-dimensional identity matrix, and 1n
is the n-dimensional vector with all components being 1. Then

γ̂dp,dq(X,Y; F̂Z) = 1
n2 tr(HAHB) (2.19)

This algorithm costs O(n2).
A permutation approach can be used to construct a test for independence

between X and Y. To be specific, a few more steps will be added after the above
algorithm as follows.

8. Set the number of permutations N (for example, N = 1000)

9. For r = 1, . . . , N ,

(a) Generate a random permutation (s1, . . . , sn) of 1, . . . , n.

(b) Apply the above permutation to both columns and rows of B to obtain
Br. To be specific, denote B = (bij)i,j=1,...n. Then Br = (bsisj)i,j=1,...n.

(c) Compute
γ̂r = 1

n2 tr(HAHBr) (2.20)

10. The estimated p-value is the proportion of γ̂1, . . . , γ̂N that is less than
γ̂dp,dq(X,Y; F̂Z).

p-value = 1
N

N∑
r=1

I(γ̂r < γ̂dp,dq(X,Y; F̂Z))

These three steps cost O(Nn2).
The copula version of a linear-time version of the above test statistic is introduced

in Section 2.5, which reduces the cost of the algorithm.
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2.3 Asymptotic Theory for the CdCov Test Statistic

The asymptotic theory of γ̂dp,dq(X,Y; F̂Z), defined in (2.17), depends on whether
X ⊥⊥ Y or not. The result for the dependent case are given in Theorem 2.3.1, while
the independent case is treated in Theorem 2.3.2.

With hf1,f2(z(1,2,3,4); GZ) as defined in (2.6), (2.5), set

h̃f1,f2(z(1,2,3,4); GZ) = 1
4!

∑
(i1,...,i4)∈I4

4

hf1,f2(z(i1,i2,i3,i4); GZ),

h̃
(1)
f1,f2(z; GZ) = E

[
h̃f1,f2(Z(1,2,3,4); GZ)|Z1 = z

]
. (2.21)

Next, let

Bijrs =

 min
a1,a2∈{i,j,r,s}

a1<a2

min
{
|Ua1a2|p , |Va1a2|q

}
> 0

 , (2.22)

where Ua1a2 , Va1a2 are defined in (2.10), and define

ηdp,dq(Z(i,j,r,s,t)) =
∑

α∈N4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
~IZ(t,t,t,t)(Z(i,j,r,s))−W(i,j,r,s)

](α)
IBijrs ,

η̃dp,dq(Z(1,2,3,4,5)) = 1
5!

∑
(i1,...,i5)∈I5

5

η̃dp,dq(Z(i1,i2,i3,i4,i5)),

η̃
(1)
dp,dq

(z) = E
[
η̃dp,dq(Z(1,2,3,4,5))|Z1 = z

]
. (2.23)

Note that ηdp,dq is the kernel of the V-statistics obtained in the Taylor expansion in
(2.14) forM = 2, with an indicator random variable applied to avoid non-differential
points.

Theorem 2.3.1. Assume that γdp,dq(X,Y; FZ) 6= 0. Then, under no further
assumptions,

γ̂dp,dq(X,Y; F̂Z)− γ̂dp,dq(X,Y; FZ) = 5
n

n∑
i=1

η̃
(1)
dp,dq

(Zi) + oP (n−1/2) , (2.24)

where γ̂dp,dq(X,Y; FZ) is defined by replacing f1, f2, and GZ in (2.12) with dp, dq,
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and FZ, respectively, and η̃(1)
dp,dq

defined in (2.23). Moreover,

√
n
{
γ̂dp,dq(X,Y; F̂Z)− γdp,dq(X,Y; FZ)

}
D→ N(0, σ2

dp,dq) , (2.25)

where σ2
dp,dq = Var

[
4h̃(1)

dp,dq
(Z; FZ) + 5η̃(1)

dp,dq
(Z)

]
, with h̃

(1)
dp,dq

defined by replacing
f1, f2 with dp, dq in (2.21).

We remark that Theorem 2.3.1 continues to hold also under γdp,dq(X,Y; FZ) = 0,
in which case h̃(1)

dp,dq
(Z; FZ) and η̃(1)

dp,dq
(Z) are both zero; see Lemma A.1.4.

Consider now the independent case, so γdp,dq(X,Y; FZ) = 0, and set

ζdp,dq(Z(i,j,r,s,t1,t2))

= 1
2!

∑
α∈N2

4(p+q)

D(α)hdp,dq(W(i,j,r,s))
2∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
IBijrs ,

(2.26)

where Bijrs is defined in (2.22). Note that ηdp,dq(Z(i,j,r,s,t1)) + ζdp,dq(Z(i,j,r,s,t1,t2)),
where ηdp,dq is defined in (2.23), is the kernel of the V-statistics obtained in the
Taylor expansion in (2.14) for M = 3, with an indicator random variable applied
to avoid non-differential points. With hf1,f2(z(1,2,3,4); GZ) as defined in (2.6), (2.5),
define

ζdp,dq ,T otal(Z(i,j,r,s,t1,t2)) = hdp,dq(Z(i,j,r,s); FZ) + ηdp,dq(Z(i,j,r,s,t1)) + ζdp,dq(Z(i,j,r,s,t1,t2)),

(2.27)

ζ̃dp,dq ,T otal(Z(1,...,6)) = 1
6!

∑
(i1,...,i6)∈I6

6

ζdp,dq ,T otal(Z(i1,...,i6)), (2.28)

ζ̃
(1)
dp,dq ,T otal

(z1) = E(ζ̃dp,dq ,T otal(Z(1,...,6))|Z1 = z1), (2.29)

ζ̃
(2)
dp,dq ,T otal

(z1, z2) = E(ζ̃dp,dq ,T otal(Z(1,...,6))|Z1 = z1,Z2 = z2). (2.30)

Theorem 2.3.2. Assume that γdp,dq(X,Y; FZ) = 0. Then, under no further
assumptions,

γ̂dp,dq(X,Y; F̂Z) = 15
n2

n∑
i,j=1

ζ̃
(2)
dp,dq ,T otal

(Zi,Zj) + oP (n−1). (2.31)
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Moreover, if {µi} denote the eigenvalues of the operator A defined on L2(Rp+q, PZ)
by

(Ag)(z) =
∫ ∞
−∞

15ζ̃(2)
dp,dq ,T otal

(z, z′)g(z′)dPZ(z′), z ∈ Rp+q, g ∈ L2(Rp+q, PZ),
(2.32)

then
nγ̂dp,dq(X,Y; F̂Z) D→

∞∑
i=1

µiχ
2
1i (2.33)

where {χ2
1i} are independent χ2

1 random variables.

2.4 Conservative Test with the CdCov Test Statistic
This section presents a result in the spirit of Theorem 6 of [30]. Set µsum = ∑∞

i=1 µi

and

µ̂sum = 1
n4

n∑
i,j=1

dp(F̂X(Xi), F̂X(Xj))
n∑

i,j=1
dq(F̂Y(Yi), F̂Y(Yj)) (2.34)

Theorem 2.4.1. If X ⊥⊥ Y, with no additional assumptions,

nγ̂dp,dq(X,Y; F̂Z)
µ̂sum

D→ T (2.35)

where T = ∑∞
i=1

µi
µsum

χ2
1i and has mean E(T ) = 1.

By similar arguments as in Theorem 6 of [30], a conservative test with significance
level α ∈ (0, 0.215] can be constructed in which the independence of X and Y is
rejected when

nγ̂dp,dq(X,Y; F̂Z)
µ̂sum

≥
[
Φ−1(1− α/2)

]2
s

where Φ is the cdf of the standard normal distribution. This conservative test
has asymptotic significant level at most α, and it costs much less time than the
permutation approach. However, it can be quite conservative for some distributions.
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2.5 Copula Version of Linear-Time Statistics
This section presents another estimator for γdp,dq(X,Y; FZ) for which the compu-
tation time will be much shorter.

Suppose that n = 4m, m ∈ N. The copula versions of the linear-time statistic
for estimating γdp,dq(X,Y; FZ) is defined as

γ̂dp,dq ,linear(X,Y; F̂Z) = 1
m

m∑
i=1

hdp,dq(Z(4i−3,4i−2,4i−1,4i); F̂Z). (2.36)

As shown in the proof of Theorem 3.2.1,

γ̂dp,dq ,linear(X,Y; F̂Z)− γ̂dp,dq ,linear(X,Y; FZ)

= 1
m

m∑
i=1

[
hdp,dq(Z(4i−3,4i−2,4i−1,4i); F̂Z)− hdp,dq(Z(4i−3,4i−2,4i−1,4i); FZ)

]
= 1
m

m∑
i=1

1
n

n∑
s=1

ηdp,dq(Z(4i−3,4i−2,4i−1,4i,s)) +OP (n−1)

= 1
m

m∑
i=1

1
4m

m∑
j=1

4∑
r=1

ηdp,dq(Z(4i−3,4i−2,4i−1,4i,4(j−1)+r)) +OP (n−1)

= 1
m2

m∑
i,j=1

ηdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j)) +OP (n−1),

where

ηdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j)) = 1
4

4∑
r=1

ηdp,dq(Z(4i−3,4i−2,4i−1,4i,4(j−1)+r)).

Therefore,

γ̂dp,dq ,linear(X,Y; F̂Z) = 1
m2

m∑
i,j=1

ζdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j)) +OP (n−1),

where

ζdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j))

= hdp,dq(Z(4i−3,4i−2,4i−1,4i); FZ) + ηdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j)) +OP (n−1).
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Thus if we define

ζ̃dp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j))

= 1
2
[
ζdp,dq ,linear(Z(4i−3,4i−2,4i−1,4i,4j−3,4j−2,4j−1,4j))

+ζdp,dq ,linear(Z(4j−3,4j−2,4j−1,4j,4i−3,4i−2,4i−1,4i))
]
,

and

ζ̃
(1)
dp,dq ,linear

(Z(1,...,4)) = E
[
ζ̃dp,dq ,linear(Z(1,...,8))|Z(1,...,4)

]
,

then we obtain the asymptotic distribution of γ̂dp,dq ,linear(X,Y; F̂Z),

√
n
[
γ̂dp,dq ,linear(X,Y; F̂Z)− γdp,dq(X,Y; FZ)

]
D→ N(0, σ2

dp,dq ,linear) ,

where

σ2
dp,dq ,linear = var

(
ζ̃

(1)
dp,dq ,linear

(Z(1,...,4))
)
.

This version of estimator γ̂dp,dq ,linear(X,Y; F̂Z) is “linear" in the sense that the
computation cost is O(n) given the ranks of the observations. With a ranking
method that costs O(n log n), a permutation test using γ̂dp,dq ,linear(X,Y; F̂Z) costs
O(Nn+ n log n) where N is the number of permutations.

2.A Appendix: Proofs of Theorems

2.A.1 Proof of Theorem 2.3.1

Let δn = n−1/4, define

Aijrs =

 min
a1,a2∈{i,j,r,s}

a1<a2

min
{
|Ua1a2|p ,

∣∣∣Ûa1a2

∣∣∣
p
, |Va1a2|q ,

∣∣∣V̂a1a2

∣∣∣
q

}
≥ δn

 , (2.37)

and write

∆γ1 := γ̂dp,dq(X,Y; F̂Z)− γ̂dp,dq(X,Y; FZ) = ∆γ2 +R2, (2.38)

27



where

∆γ2 = 1
n4

n∑
i,j,r,s=1

[
hdp,dq(Z(i,j,r,s); F̂Z)− hdp,dq(Z(i,j,r,s); FZ)

]
IAijrs ,

R2 = 1
n4

n∑
i,j,r,s=1

[
hdp,dq(Z(i,j,r,s); F̂Z)− hdp,dq(Z(i,j,r,s); FZ)

]
IAcijrs . (2.39)

Using Lemma A.1.3 it can be shown that R2 = op(n−1/2). See Section A.2.1 for
details. Thus,

∆γ1 = ∆γ2 + oP (n−1/2). (2.40)

Next, using the Taylor expansion in (2.14) for M = 2, we write

∆γ2 = ∆γ3 +R3,

where

∆γ3 = 1
n5

n∑
i,j,r,s,t=1

∑
α∈N4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
~IZ(t,t,t,t)(Z(i,j,r,s))−W(i,j,r,s)

](α)
IAijrs

R3 = 1
n4

n∑
i,j,r,s=1

1
2

∑
α∈N2

4(p+q)

D(α)hdp,dq(W̃(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
IAijrs (2.41)

for some W̃(i,j,r,s) ∈ [W(i,j,r,s),Ŵ(i,j,r,s)]. Using Lemma A.1.2 it can be shown that
R3 = oP (n−1/2). See Section A.2.2 for details. Thus,

∆γ2 = ∆γ3 + oP (n−1/2). (2.42)

Finally, write
∆γ3 = 1

n5

n∑
i,j,r,s,t=1

ηdp,dq(Z(i,j,r,s,t))−R4, (2.43)

where, ηdp,dq is defined in (2.23) and

R4 = 1
n5

n∑
i,j,r,s,t=1

∑
α∈N4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
~IZ(t,t,t,t)(Z(i,j,r,s))−W(i,j,r,s)

](α)
(IBijrs − IAijrs),(2.44)

where Bijrs is defined in (2.22). It can be shown that R4 = oP (n−1/2); see Section
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A.2.2 for details. Thus,

∆γ3 = 1
n5

n∑
i,j,r,s,t=1

ηdp,dq(Z(i,j,r,s,t)) + oP (n−1/2). (2.45)

Combining (2.45), (2.42), (2.40) and (2.38) we have

γ̂dp,dq(X,Y; F̂Z)− γ̂dp,dq(X,Y; FZ) = 1
n5

n∑
i,j,r,s,t=1

ηdp,dq(Z(i,j,r,s,t)) + oP (n−1/2) .

(2.46)
By Lemma A.1.5,

γ̂dp,dq(X,Y; FZ)− γdp,dq(X,Y; FZ) = 4
n

n∑
i=1

h̃
(1)
dp,dq

(Zi; FZ) +OP (n−1), (2.47)

while by a similar V-statistics result we have

1
n5

n∑
i,j,r,s,t=1

ηdp,dq(Z(i,j,r,s,t)) = 5
n

n∑
i=1

η̃
(1)
dp,dq

(Zi) +OP (n−1). (2.48)

Relations (2.46) and (2.48) imply that (2.24) holds. Relations (2.46), (2.47) and
(2.48) yield

γ̂dp,dq(X,Y; F̂Z)− γdp,dq(X,Y; FZ) = 1
n

n∑
i=1

[
4h̃(1)

dp,dq
(Zi; FZ) + 5η̃(1)

dp,dq
(Zi)

]
+ oP (n−1/2)

and thus (2.25) follows by the CLT.

2.A.2 Proof of Theorem 2.3.2

Let Aijrs be as defined in (2.37) , but now set δn = n−1/8. Moreover, let ∆γ1 be as
defined in (2.38), and write it again as ∆γ1 = ∆γ2 +R2, where ∆γ2 and R2 are as
given in (2.39). Using the independence assumption and Lemma A.1.3 it can be
shown that R2 = oP (n−1). See Section A.3.1 for a detailed derivation. Thus,

∆γ1 = ∆γ2 + oP (n−1). (2.49)
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Using the Taylor expansion in (2.14) for M = 3, we write

∆γ2 = ∆γ3 +R3,

where now ∆γ3 and R3 are defined by

∆γ3 = 1
n6

n∑
i,j,r,s,t1,t2=1

2∑
m=1

1
m! ·

∑
α∈Nm4(p+q)

D(α)hdp,dq(W(i,j,r,s)) · (2.50)

m∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
IAijrs

R3 = 1
n4

n∑
i,j,r,s=1

1
6

∑
α∈N3

4(p+q)

D(α)hdp,dq(W̃(i,j,r,s)) (2.51)

[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
IAijrs (2.52)

for some W̃(i,j,r,s) ∈ [W(i,j,r,s),Ŵ(i,j,r,s)]. It can be shown that R3 = oP (n−1). See
Section A.3.2 for details. Thus,

∆γ2 = ∆γ3 + oP (n−1). (2.53)

Finally, write

∆γ3 = ∆γ4 −R4,

where

∆γ4 = 1
n6

n∑
i,j,r,s,t1,t2=1

2∑
m=1

1
m! ·

∑
α∈Nm4(p+q)

D(α)hdp,dq(W(i,j,r,s)) ·
m∏
c=1

(2.54)

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
IBijrs

R4 = ∆γ4 −∆γ3 , (2.55)

where Bijrs is defined in (2.22). In Section A.3.3 it is shown that

R4 = oP (n−1) . (2.56)
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Combining the above results, we have

∆γ1 = ∆γ2 + oP (n−1/2) = ∆γ3 + oP (n−1/2) = ∆γ4 + oP (n−1/2)

which means that

γ̂dp,dq(X,Y; F̂Z)− γ̂dp,dq(X,Y; FZ) = ∆γ4 + oP (n−1/2). (2.57)

Thus by the definition of ∆γ4 in (2.54), and recalling the definition of γ̂dp,dq(X,Y; FZ)
given in Theorem 2.3.1, relation (2.57) yields

γ̂dp,dq(X,Y; F̂Z) = 1
n6

n∑
i,j,r,s,t1,t2=1

ζdp,dq ,T otal(Z(i,j,r,s,t1,t2)) + oP (n−1)

= 1
n6

n∑
i,j,r,s,t1,t2=1

ζ̃dp,dq ,T otal(Z(i,j,r,s,t1,t2)) + oP (n−1) , (2.58)

where ζdp,dq ,T otal is defined in (2.27), and ζ̃dp,dq ,T otal is defined in (2.28). Let ζ̃(1)
dp,dq ,T otal

and ζ̃(2)
dp,dq ,T otal

be defined in (2.29) and (2.30), respectively. In Lemma A.1.4 it is
shown that ζ̃(1)

dp,dq ,T otal
= 0 so that, by Lemma 1.4.2,

1
n6

n∑
i,j,r,s,t1,t2=1

ζ̃dp,dq ,T otal(Z(i,j,r,s,t1,t2)) = 15
n2

n∑
i1,i2=1

ζ̃
(2)
dp,dq ,T otal

(Zi1 ,Zi2) +OP (n−3/2) .

(2.59)
Relations (2.58) and (2.59) yield (2.31). By a generalization of Theorem B in
Section 6.4.1 in [23] to vector valued observations, we have

n · 15
n2

n∑
i1,i2=1

ζ̃
(2)
dp,dq ,T otal

(Zi1 ,Zi2) D→
∞∑
i=1

µiχ
2
1i . (2.60)

Then (2.33) follows from (2.31) and (2.60).

2.A.3 Proof of Theorems 2.4.1

Proof of Theorem 2.4.1. By Theorem 2.3.2 and Slutsky’s Theorem, it suffices to
show that, under X ⊥⊥ Y, µ̂sum P→ µsum. From Page 1087 in [5], it follows that the
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eigenvalues {µi} obtained from (2.32) satisfy

∞∑
i=1

µi = E
[
15ζ̃(2)

dp,dq ,T otal
(Z,Z)

]
, (2.61)

where ζ̃(2)
dp,dq ,T otal

is defined in (2.30). Thus, by the consistency of V-statistics and
the definition of µ̂sum in (2.34), µ̂sum P→ µsum will follow by showing that, under
X ⊥⊥ Y,

E
[
15ζ̃(2)

dp,dq ,T otal
(Z,Z)

]
= E[dp(U1,U2)]E[dq(V1,V2)]. (2.62)

To show (2.62), start by re-expressing ζ̃(2)
dp,dq ,T otal

(z, z) as

ζ̃
(2)
dp,dq ,T otal

(z, z) = E

 1
6!

∑
(i1,...,i6)∈I6

6

ζdp,dq ,T otal(Z(i1,...,i6))

∣∣∣∣∣∣Z1 = z,Z2 = z


= 1

(6)2

∑
(i1,i2)∈I2

6

E

ζdp,dq ,T otal(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 .(2.63)
Next, from the definition of ζdp,dq ,T otal in (2.27), and considering the definition of
ζdp,dq in (2.26), we can write

ζdp,dq ,T otal =
6∑
j=1

ζdp,dq ,j , (2.64)

where ζdp,dq ,1 and ζdp,dq ,2 correspond to the first order partial derivatives in (2.26),
ζdp,dq ,3, ζdp,dq ,4 and ζdp,dq ,5 correspond to second order partial derivatives in (2.26),
and ζdp,dq ,6 corresponds to hdp,dq ; see Section A.4.1 for the exact expressions of
ζdp,dq ,j, j = 1, . . . , 5.

From (2.63) and (2.64) we have

ζ̃
(2)
dp,dq ,T otal

(z, z) =
6∑
j=1

1
(6)2

∑
(i1,i2)∈I2

6

E

ζdp,dq ,j(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 . (2.65)
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In Section A.4.1 it is shown that the first five terms in (2.65) are zero, i.e., that

∑
(i1,i2)∈I2

6

E

ζdp,dq ,j(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 = 0, j = 1, . . . , 5. (2.66)

Moreover, in Section A.4.2 it is shown that the last term in (2.65) is

1
(6)2

∑
(i1,i2)∈I2

6

E

ζdp,dq ,6(Z1, . . . ,Z6)

∣∣∣∣∣∣Zi1 = z,Zi2 = z


= 1

15 {dp(u,u)− 2E[dp(u,U1)] + E[dp(U1,U2)]}

· {dq(v,v)− 2E[dq(v,V1)] + E[dq(V1,V2)]} (2.67)

Hence from (2.65) and (2.66), we have

15ζ̃(2)
dp,dq ,T otal

(z, z) = {dp(u,u)− 2E[dp(u,U1)] + E[dp(U1,U2)]}

· {dq(v,v)− 2E[dq(v,V1)] + E[dq(V1,V2)]}

from which (2.62) is easily seen to follow under X ⊥⊥ Y. Finally E(T ) = 1 follows
trivially.
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Chapter 3 |
Copula Version of HSIC (CHSIC)

3.1 Copula Version of HSIC (CHSIC)
Let CXY be the cross-covariance operator defined in (1.7). Clearly, CXY depends on
the spaces F and G, and it contains information of covariances between f(X) and
g(Y) for any f ∈ F and g ∈ G. In particular, if CXY = 0, all these covariances are
zero. Equivalently, ‖CXY‖HS = 0 implies that these covariances are zero. However,
‖CXY‖HS = 0 does not necessarily imply independence. Assume now that X and Y
are compact. In [11] it is shown that if F is dense in the space Cb(X ) of continuous
functions on X in the sup-norm metric, and similarly G is dense in Cb(Y), then
‖CXY‖ = 0 characterizes the independence of X and Y. This is followed by the
assumption that the kernel k is universal. From now on we will assume that the
kernels k and l are universal kernels. [11] define the Hilbert-Schmidt Independence
Criterion (HSIC) as the squared HS-norm of the associated cross-covariance operator
CXY:

HSIC = ‖CXY‖2
HS,

and, using the explicit form of CXY given in (1.8), they show that

‖CXY‖2
HS = EX,X′,Y,Y′ [k(X,X′)l(Y,Y′)] + EX,X′ [k(X,X′)]EY,Y′ [l(Y,Y′)]

−2EX,Y[EX′ [k(X,X′)]EY′ [l(Y,Y′)]], (3.1)

where (X′,Y′) is an independent copy of (X,Y). In particular, the finiteness of
the above integrals implies that the HS-norm of CXY exists.
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If f1, f2, and GZ in (2.7) are replaced by k and l, and FZ, respectively,
γk,l(X,Y; FZ) is the HSIC (3.1) for the vectors FX(X), FY(Y).

The copula HS independence criterion (CHSIC) states

γk,l(X,Y; FZ) = 0 ⇐⇒ X ⊥⊥ Y. (3.2)

The equivalence in (3.2) follows Lemma 2.2.1.
Replacing f1, f2, and GZ in (2.12) by universal kernels k, l, and F̂Z, respectively,

leads to the proposed CHSIC test statistic

γ̂k,l(X,Y; F̂Z) = 1
n4

n∑
i,j,r,s=1

hk,j(Z(i,j,r,s); F̂Z). (3.3)

In order to compute the observed value of the test statistic, the mid-rank of all
the observations for each component of X and Y can be used as in 2.18. Denote
Xi = (Xi,1, . . . , Xi,p) and Yi = (Yi,1, . . . , Yi,q) for i = 1, . . . , n. The steps of the
algorithm to compute the CHSIC test statistic is as follows.

1. For each j = 1, . . . , p, let XR
1,j, . . . , X

R
n,j be the mid-ranks of X1,j, . . . , Xn,j.

Let XF
i,j = XR

i,j

n
− 1

2n for i = 1, . . . , n.

2. For each j = 1, . . . , q, let Y R
1,j, . . . , Y

R
n,j be the mid-ranks of Y1,j, . . . , Yn,j. Let

Y F
i,j = Y Ri,j

n
− 1

2n for i = 1, . . . , n.

3. For each i = 1, . . . , n, write XF
i = (XF

i,1, . . . , X
F
i,p).

4. For each i = 1, . . . , n, write YF
i = (Y F

i,1, . . . , Y
F
i,q).

5. Construct the Gram matrix K = (k(XF
i ,XF

j ))i,j=1,...,n for XF
1 , . . . ,XF

n .

6. Construct the Gram matrix L = (l(YF
i ,YF

j ))i,j=1,...,n for YF
1 , . . . ,YF

n .

7. Define H = In − 1n1Tn , where In is the n-dimensional identity matrix, and 1n
is the n-dimensional vector with all components being 1. Then

γ̂dp,dq(X,Y; F̂Z) = 1
n2 tr(HKHL) (3.4)

This algorithm is very similar to the algorithm to compute the CdCov test statistic.
It costs O(n2).
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A permutation approach can be used to construct a test for independence
between X and Y. To be specific, a few more steps will be added after the above
algorithm as follows.

8. Set the number of permutations N (for example, N = 1000)

9. For r = 1, . . . , N ,

(a) Generate a random permutation (s1, . . . , sn) of 1, . . . , n.

(b) Apply the above permutation to both columns and rows of L to obtain
Lr. To be specific, denote L = (lij)i,j=1,...n. Then Lr = (lsisj)i,j=1,...n.

(c) Compute
γ̂r = 1

n2 tr(HKHLr) (3.5)

10. The estimated p-value is the proportion of γ̂1, . . . , γ̂N that is less than
γ̂k,l(X,Y; F̂Z).

p-value = 1
n

n∑
r=1

I(γ̂k,l(X,Y; F̂Z) < γ̂r)

These three steps cost O(Nn2).
The copula version of a linear-time version of the above test statistic iss intro-

duced in Section 2.5, which reduces the cost of the algorithm.

8. Set the number of permutations N (for example, N = 1000)

9. For r = 1, . . . , N ,

(a) Generate a random permutation (s1, . . . , sn) of 1, . . . , n.

(b) Apply the above permutation to both columns and rows of B to obtain
Br. To be specific, denote B = (bij)i,j=1,...n. Then Br = (bsisj)i,j=1,...n.

(c) Compute
γ̂r = 1

n2 tr(HAHBr) (3.6)

(d) The estimated p-value is the proportion of γ̂1, . . . , γ̂N that is less than
γ̂dp,dq(X,Y; F̂Z).

p-value = 1
N

N∑
r=1

I(γ̂r < γ̂dp,dq(X,Y; F̂Z))
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These two steps cost O(Nn2).
The copula version of a linear-time version of the above test statistics are

introduced in Section 2.5, which reduce the cost of the algorithm.

3.2 Asymptotic Theory for the CHSIC Test Statistic

The asymptotic theory of γ̂k,l(X,Y; F̂Z), defined in (3.3), is given in Theorem 3.2.1
for the dependent case, and in Theorem 3.2.2 for the independent case.

Consider first the dependent case and define

ηk,l(Z(i,j,r,s,t)) =
∑

α∈N4(p+q)

D(α)hk,l(W(i,j,r,s))
[
~IZ(t,t,t,t)(Z(i,j,r,s))−W(i,j,r,s)

](α)
,

η̃k,l(Z(1,2,3,4,5)) = 1
5!

∑
(i1,...,i5)∈I5

5

η̃k,l(Z(i1,i2,i3,i4,i5)),

η̃
(1)
k,l (z) = E

[
η̃k,l(Z(1,2,3,4,5))|Z1 = z

]
. (3.7)

Thus, ηk,l is the kernel of the V-statistic obtained in (2.14) for M = 2.

Theorem 3.2.1. Suppose that all second-order partial derivatives of k and l exist
on (0, 1)2p and (0, 1)2q, respectively, and they are all bounded by M2. Then

γ̂k,l(X,Y; F̂Z)− γ̂k,l(X,Y; FZ) = 5
n

n∑
i=1

η̃
(1)
k,l (Zi) +OP (n−1), (3.8)

where γ̂k,l(X,Y; FZ) is defined by replacing f1, f2, and GZ in (2.12) by k, l, and
FZ, respectively, and η̃(1)

k,l is defined in (3.7). Moreover,

√
n
{
γ̂k,l(X,Y; F̂Z)− γk,l(X,Y; FZ)

}
D→ N(0, σ2

k,l) , (3.9)

where σ2
k,l = var

[
4h̃(1)

k,l (Z; FZ) + 5η̃(1)
k,l (Z)

]
, with h̃(1)

k,l defined by replacing f1, f2 with
k, l in (2.21).

Consider now the independence case, so γk,l(X,Y; FZ) = 0, and set

ζk,l(Z(i,j,r,s,t1,t2)) = 1
2!

∑
α∈N2

4(p+q)

D(α)hk,l(W(i,j,r,s))
2∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
.
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Thus, ηk,l(Z(i,j,r,s,t1)) + ζk,l(Z(i,j,r,s,t1,t2)), where ηk,l is defined in (3.7), is the kernel
of the V-statistic obtained in the Taylor expansion in (2.14) for M = 3. With
hf1,f2(z(1,2,3,4); GZ) as defined in (2.6), (2.5), define

ζk,l,Total(Z(i,j,r,s,t1,t2)) = hk,l(Z(i,j,r,s); FZ) + ηk,l(Z(i,j,r,s,t1)) + ζk,l(Z(i,j,r,s,t1,t2)),(3.10)

ζ̃k,l,Total(Z(1,...,6)) = 1
6!

∑
(i1,...,i6)∈I6

6

ζk,l,Total(Z(i1,...,i6)), (3.11)

ζ̃
(1)
k,l,Total(z1) = E(ζ̃k,l,Total(Z(1,...,6))|Z1 = z1) (3.12)

ζ̃
(2)
k,l,Total(z1, z2) = E(ζ̃k,l,Total(Z(1,...,6))|Z1 = z1,Z2 = z2). (3.13)

Theorem 3.2.2. Suppose that all third-order partial derivatives of k and l exist on
(0, 1)2p and (0, 1)2q, respectively, and they are all bounded by M3. Then, if X ⊥⊥ Y,

γ̂k,l(X,Y; F̂Z) = 1
n2

n∑
i,j=1

ζ̃
(2)
k,l,Total(Zi,Zj) +OP (n−3/2) . (3.14)

Moreover, if {λi} are the eigenvalues of the operator A defined on L2(Rp+q, PZ) by

(Ag)(z) =
∫ ∞
−∞

15ζ̃(2)
k,l,Total(z, z′)g(z′)dPZ(z′), z ∈ Rp+q, g ∈ L2(Rp+q, PZ) (3.15)

we have
nγ̂k,l(X,Y; F̂Z) D→

∞∑
i=1

λiχ
2
1i (3.16)

where {χ2
1i} are independent χ2

1 random variables.

3.3 Conservative Test with the CHSIC Statistic
This section presents a result in the spirit of Theorem 6 of [30]. Set λsum = ∑∞

i=1 λi

and

λ̂sum =

 1
n

n∑
i=1

k(F̂X(Xi), F̂X(Xi))−
1
n2

n∑
i,j=1

k(F̂X(Xi), F̂X(Xj))


·

 1
n

n∑
i=1

l(F̂Y(Yi), F̂Y(Yi))−
1
n2

n∑
i,j=1

l(F̂Y(Yi), F̂Y(Yj))

 . (3.17)

Theorem 3.3.1. Suppose that all assumptions in Theorem 3.2.2 are satisfied. If
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X ⊥⊥ Y, then
nγ̂k,l(X,Y; F̂Z)

λ̂sum

D→ T (3.18)

where T = ∑∞
i=1

λi
λsum

χ2
1i and has mean E(T ) = 1.

By similar arguments as in Theorem 6 of [30], a conservative test with significance
level α ∈ (0, 0.215] can be constructed in which the independence of X and Y is
rejected when

nγ̂k,l(X,Y; F̂Z)
λ̂sum

≥
[
Φ−1(1− α/2)

]2
where Φ is the cdf of the standard normal distribution. This conservative test
has asymptotic significant level at most α, and it costs much less time than the
permutation approach. However, it can be quite conservative for some distributions.

3.4 Copula Versions of Linear-Time Statistic
This section presents another estimator for γk,l(X,Y; FZ) for which the computation
time will be much shorter.

Suppose that n = 4m, m ∈ N. Similar to Section 2.5, the copula versions of the
linear-time statistic for estimating γk,l(X,Y; FZ) is defined as

γ̂k,l,linear(X,Y; F̂Z) = 1
m

m∑
i=1

hk,l(Z(4i−3,4i−2,4i−1,4i); F̂Z). (3.19)

By the same arguments as in Section 2.5, it can be shown that

√
n
[
γ̂k,l,linear(X,Y; F̂Z)− γk,l(X,Y; FZ)

]
is asymptotic normal.

This version of estimator γ̂k,l,linear(X,Y; F̂Z) is “linear" in the sense that the
computation cost is O(n) given the ranks of the observations. With a ranking
method that costs O(n log n), a permutation test using γ̂k,l,linear(X,Y; F̂Z) costs
O(Nn+ n log n) where N is the number of permutations.
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3.5 Simulation Studies
In this section, the performance of the four methods CdCov, CHSIC, dCov and
HSIC are evaluated and compared.

3.5.1 Simulation 1

In Simulation 1, the significance levels of the four methods are studied. The setting
is as follows:

• p = 6, q = 4. All 10 components of Z = (X,Y) are i.i.d. with one of the
following 4 distributions:

standard normal, standard exponential, standard lognormal and t2.

• The sample size n equals one of the following:

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200.

• For each combination of the above parameters, the simulation is repeated
2000 times.

• The Gaussian kernels are used. The permutation approach is used to compute
the p-values. The number of permutation is N = 1000.

• The null hypothesis is rejected when the computed p-value is less than 0.05.

The results are summarized in Figure 3.1. Given the distribution of Z and the
sample size, the value of each dot in the figure is the proportion of simulations in
which the null hypothesis that X and Y are independent is rejected, which estimate
the significant level of the test. As expected, all these values are close to 0.05 .

3.5.2 Simulation 2

In Simulation 2, the powers of the four methods are studied. The setting is as
follows:

• p = 6, q = 4. Let Z = (X,Y) = Σ1/2W. W is a 10-dimensional random
vector whose components are i.i.d. with one of the following 4 distributions:
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Figure 3.1. Summarized results in Simulation 1

standard normal, standard exponential, standard lognormal and t2.

Σ is a 10×10 matrix with diagonal elements being 1 and off-diagonal elements
being ρ, where ρ equals one of the following:

0.05, 0.1 .

• The sample size n equals one of the following:

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200.

• For each combination of the above parameters, the simulation is repeated
2000 times.

• The Gaussian kernels are used. The permutation approach is used to compute
the p-values. The number of permutation is N = 1000.

• The null hypothesis is rejected when the computed p-value is less than 0.05.

The results are summarized in Figure 3.2 and Figure 3.3. Given the distribution
of Z and the sample size, the value of each dot in the figure is the proportion of
simulations in which the null hypothesis that X and Y are independent is rejected,
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Figure 3.2. Summarized results in Simulation 2 (Part 1)
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Figure 3.3. Summarized results in Simulation 2 (Part 2)
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which estimate the power of the test. As expected, the powers increase as n
increases. In the case of normal distribution, the performance of different methods
are similar. In the other cases, the powers of CdCov and CHSIC are much higher
than dCov and HSIC.

3.5.3 Simulation 3

In Simulation 3, the effect of the choice of the kernels on CHSIC is studied. The
setting is as follows:

• p = 6, q = 4. Let Z = (X,Y) = Σ1/2W. W is a 10-dimensional vector whose
components are i.i.d. standard exponential distribution.

Σ is a 10×10 matrix with diagonal elements being 1 and off-diagonal elements
being ρ = 0.05 .

• The sample size n equals one of the following:

10, 20, 40, 80, 160, 320.

• For each combination of the above parameters, the simulation is repeated
1000 times.

• One of the following kernels is used:

kernels 2, 3 and 4 in Section 1.3.1

• The permutation approach is used to compute the p-values. The number of
permutation is N = 1000.

• The null hypothesis is rejected when the computed p-value is less than 0.05.

The results are summarized in Figure 3.4. The value of each dot in the figure
is the proportion of simulations in which the null hypothesis that X and Y are
independent is rejected, which estimates the power of the test. In these results, the
choice of kernels does not have significant effect on the power of the test.
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Figure 3.4. Summarized results in Simulation 3

3.A Appendix: Proof of Theorems

3.A.1 Proof of Theorem 3.2.1

Using the Taylor expansion in (2.14) for M = 2, write

γ̂k,l(X,Y; F̂Z)− γ̂k,l(X,Y; FZ) = ∆γ2 +R2, (3.20)

where

∆γ2 = 1
n5

n∑
i,j,r,s,t1=1

∑
α∈N4(p+q)

D(α)hk,l(W(i,j,r,s))
[
~IZ(t1,t1,t1,t1)(Z(i,j,r,s))−W(i,j,r,s)

](α)
,

R2 = 1
n4

n∑
i,j,r,s=1

1
2

∑
α∈N2

4(p+q)

D(α)hk,l(W̃(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
(3.21)

for some W̃(i,j,r,s) ∈ [W(i,j,r,s),Ŵ(i,j,r,s)]. Since for any |α| = 2, ‖D(α)hk,l(·)‖∞ ≤ C,
for some finite constant C that depends on the bounds of k, l as well as the bounds

44



of their first and second order derivatives,

|R2| ≤
1
n4

n∑
i,j,r,s=1

1
2

∑
α∈N2

4(p+q)

|D(α)hk,l(W̃(i,j,r,s))| · ‖F̂Z − FZ‖2
∞ ≤

1
2[4(p+ q)]2C‖F̂Z − FZ‖2

∞

which is OP (n−1). Thus

γ̂k,l(X,Y; F̂Z)− γ̂k,l(X,Y; FZ) = ∆γ2 +OP (n−1). (3.22)

By Lemma A.1.5,

γ̂k,l(X,Y; FZ)− γk,l(X,Y; FZ) = 4
n

n∑
i=1

h̃
(1)
k,l (Zi; FZ) +OP (n−1). (3.23)

By the definition of ∆γ2 and a similar V-statistics result,

∆γ2 = 1
n5

n∑
i,j,r,s,t=1

ηk,l(Z(i,j,r,s,t)) = 5
n

n∑
i=1

η̃
(1)
k,l (Zi) +OP (n−1). (3.24)

Relations (3.22) and (3.24) imply that (3.8) holds. Relations (3.22), (3.23) and
(3.24) yield

γ̂k,l(X,Y; F̂Z)− γk,l(X,Y; FZ) = 1
n

n∑
i=1

[
4h̃(1)

k,l (Zi; FZ) + 5η̃(1)
k,l (Zi)

]
+OP (n−1)

and thus (3.9) follows by the CLT.

3.A.2 Proof of Theorem 3.2.2

Using the Taylor expansion in (2.14) forM = 3, the difference ∆γ1 = γ̂k,l(X,Y; F̂Z)−
γ̂k,l(X,Y; FZ) can be written as

∆γ1 = ∆γ2 +R2, (3.25)

where

∆γ2 = 1
n6

n∑
i,j,r,s,t1,t2=1

2∑
m=1

1
m! ·

∑
α∈Nm4(p+q)

D(α)hk,l(W(i,j,r,s))
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·
m∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
R2 = 1

n4

n∑
i,j,r,s=1

1
6

∑
α∈N3

4(p+q)

D(α)hk,l(W̃(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
(3.26)

for some W̃(i,j,r,s) ∈ [W(i,j,r,s),Ŵ(i,j,r,s)]. Since |D(α)hk,l(W̃(i,j,r,s))| ≤ M3 for any
|α| = 3,

|R2| ≤
1
n4

n∑
i,j,r,s=1

1
6

∑
α∈N3

4(p+q)

|D(α)hk,l(W̃(i,j,r,s))| · ‖F̂Z − FZ‖3
∞

≤ Cp,qM3‖F̂Z − FZ‖3
∞ = OP (n−3/2)

which means that

γ̂k,l(X,Y; F̂Z)− γ̂k,l(X,Y; FZ) = ∆γ2 +OP (n−3/2) (3.27)

Thus by the definition of ∆γ2 in (3.26), and recalling the definition of γ̂k,l(X,Y; FZ)
given in Theorem 3.2.1,

γ̂k,l(X,Y; F̂Z) = 1
n6

n∑
i,j,r,s,t1,t2=1

ζk,l,Total(Z(i,j,r,s,t1,t2)) +OP (n−3/2)

= 1
n6

n∑
i,j,r,s,t1,t2=1

ζ̃k,l,Total(Z(i,j,r,s,t1,t2)) +OP (n−3/2) (3.28)

where ζk,l,Total is defined in (3.10), and ζ̃dp,dq ,T otal is defined in (3.11). Let ζ̃(1)
k,l,Total

and ζ̃
(2)
k,l,Total be defined in (3.12) and (3.13), respectively. In Lemma A.1.4 it is

shown that ζ̃(1)
k,l,Total = 0 so that, by Lemma 1.4.2,

1
n6

n∑
i,j,r,s,t1,t2=1

ζ̃k,l,Total(Z(i,j,r,s,t1,t2)) = 15
n6

n∑
i1,i2=1

ζ̃
(2)
k,l,Total(Zi1 ,Zi2) +OP (n−3/2).

(3.29)
Relations (3.28) and (3.29) yield (3.14). By a generalization of Theorem B in
Section 6.4.1 in [23] to random vector observations, we have

n · 1
n2

n∑
i1,i2=1

15ζ̃(2)
dp,dq ,T otal

(Zi1 ,Zi2) D→
∞∑
i=1

µiχ
2
1i (3.30)
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Then (2.33) follows from (3.14) and (3.30).

3.A.3 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 proceeds by similar arguments as of 2.4.1 and is omitted.
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Chapter 4 |
Copula Version of Criteria in
Two-Sample Problem

4.1 Introduction
In this chapter, we suppose that X = Y , the two random vectors are defined on the
same domain, and X and Y are independent. In the two-sample problem, our goal
is to test whether X and Y have the same distribution. The e-distance criterion
and maximum mean discrepancy are two criteria for two-sample problem, which
will be introduced in this section after the introduction of some notations.

For any functions f such that f : R2p×R2p → R, define the function gf : R4p →
R by

gf (u1,u2,v1,v2) = f(u1,u2) + f(v1,v2)− 2f(u1,v1) (4.1)

where ui,vi ∈ Rp, i = 1, 2. Next, for any function G : Rp → Rp, define

gf (x1,x2,y1,y2; G) = gf (G(x1),G(x2),G(y1),G(y2))

= f(G(x1),G(x2)) + f(G(y1),G(y1))− 2f(G(x1),G(y1))

for any zi = (xi,yi),xi,yi ∈ Rp, i = 1, 2. Define

ξf (X,Y; G) = E [gf (X,X′,Y,Y′; G)] . (4.2)

where (X′,Y′) is an independent copy of (X,Y).
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The maximum mean discrepancy (MMD) criterion was introduced by [10].
Suppose that k is a universal kernel on X . Then the MMD of X and Y can bes
defined by using the notation in (4.2) as

ξk(X,Y; id) = E[k(X,X′)] + E[k(Y,Y′)]− 2E[k(X,Y)] (4.3)

assuming that all expectations are finite, where (X′,Y′) is an independent copy of
(X,Y). In [10] it is shown that ξk(X,Y; id) is always non-negative, and

ξk(X,Y; id) = 0 ⇐⇒ X D= Y. (4.4)

The e-distance (energy distance) criterion was introduced by [28] and [4]. Sup-
pose that X and Y have finite first moments. Then the e-distance of X and Y can
be defined by using the notation in (4.2) as

−ξdp(X,Y; id) = 2E[dp(X,Y)]− E[dp(X,X′)]− E[dq(Y,Y′)] (4.5)

where (X′,Y′) is an independent copy of (X,Y). In [4] it is shown that−ξdp(X,Y; id)
is always non-negative, and

−ξdp(X,Y; id) = 0 ⇐⇒ X D= Y. (4.6)

4.2 Copula Copula MMD (CMMD) and E-Distance
Criterion (CeD)
Lemma 2.2.1 can be generalized to the following lemma.

Lemma 4.2.1. Let X be a random variable with cdf FX , H : R → R be a
bounded non-decreasing function, and G : R → [0, 1] be a function such that
G = (1− λ)FX + λH for some λ ∈ (0, 1). Then G−1(G(X)) = X with probability
1, where G−1(s) = inf{x : G(x) ≥ s}.

For any λ ∈ (0, 1), define Gλ = (1− λ)FX + λFY. Then by Lemma 4.2.1, the
following two statements are equivalent.

Gλ(X) D= Gλ(Y) ⇐⇒ X D= Y. (4.7)
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The copula MMD criterion (CMMD) states that

ξk(X,Y; Gλ) = 0 ⇐⇒ X D= Y. (4.8)

The copula e-distance criterion (CeD) states that

−ξf (X,Y; Gλ) = 0 ⇐⇒ X D= Y. (4.9)

From now on, let Xj, j = 1, . . . ,m, be m independent copies of X, and Yj, j =
1, . . . , n, be n independent copies of Y. The generalized V-statistic corresponding
to the function defined in (4.2) is defined as

ξ̂f (X,Y; G) = 1
m2n2

m∑
i,j=1

n∑
r,s=1

gf (Xi,Xj,Yr,Ys; G) (4.10)

Under the null hypothesis, Gλ = FX = FY for any λ ∈ (0, 1). Denote this
common function by F. Typically, F is estimated by the pooled empirical function
F̂ = m

m+nF̂X + n
m+nF̂Y, which is a weighted average of the two empirical functions

from Xi, i = 1, . . . ,m and Yj, j = 1, . . . , n, respectively.
Replacing f and G in (4.10) by a universal kernel k and F̂, respectively, leads

to the proposed CMMD test statistic

ξ̂k(X,Y; F̂) = 1
n2

n∑
i,j=1

gk(Xi,Xj,Yr,Ys; F̂). (4.11)

Replacing f and G in (4.10) by dp and F̂, respectively, leads to the proposed
CeD test statistic

−ξ̂dp(X,Y; F̂) = − 1
n2

n∑
i,j=1

gdp(Xi,Xj,Yr,Ys; F̂), (4.12)

In order to compute the observed value of the CMMD test statistic, the pooled
mid-rank of all the observations for each component of X and Y can be used as in
(2.18). Denote Xi = (Xi,1, . . . , Xi,p) for i = 1, . . . ,m and Yj = (Yj,1, . . . , Yj,p) for
j = 1, . . . , n. The steps of the algorithm to compute the CMMD test statistic is as
follows.

1. For each r = 1, . . . , p, let XR
1,r, . . . , X

R
m,r, Y

R
1,r, . . . , Y

R
n,r be the mid-ranks of
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X1,r, . . . , Xm,r, Y1,r, . . . , Yn,r. Let XF
i,r = XR

i,r

m+n −
1

2(m+n) for i = 1, . . . ,m and

Y F
j,r = Y Rj,r

m+n −
1

2(m+n) for j = 1, . . . , n.

2. For each i = 1, . . . ,m, write XF
i = (XF

i,1, . . . , X
F
i,p).

3. For each j = 1, . . . , n, write YF
j = (Y F

j,1, . . . , Y
F
j,p).

4. Construct three kernel matrices:

KXX = (k(XF
i ,XF

j ))i,j=1,...,m,

KXY = (k(XF
i ,YF

j ))i=1,...,m;j=1,...,n,

KYY = (k(YF
i ,YF

j ))i,j=1,...,n,

which are combined to a (m+ n)× (m+ n) pooled kernel matrices:

K =
KXX KXY

KT
XY KYY

 (4.13)

5. Let k̄XX be the average of all elements in KXX, k̄XY be the average of all
elements in KXY, and k̄YY be the average of all elements in KYY. Then

ξ̂k(X,Y; F̂) = k̄XX + k̄YY − 2k̄XY. (4.14)

This algorithm costs O((m+ n)2).
A permutation approach can be used to construct a test for independence

between X and Y. To be specific, a few more steps will be added after the above
algorithm as follows.

5. Set the number of permutations N (for example, N = 1000)

6. For r = 1, . . . , N ,

(a) Generate a random permutation (s1, . . . , sm+n) of 1, . . . ,m+ n.

(b) Apply the above permutation to both columns and rows of K to ob-
tain Kr. To be specific, denote K = (kij)i,j=1,...m+n. Then Kr =
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(ksisj)i,j=1,...m+n. Decompose Kr into four matrices as

Kr =
Kr,XX Kr,XY

Kr,YX Kr,YY

 (4.15)

where vKr,XX, Kr,XY, Kr,YX and Kr,YY are m×m, m× n, n×m and
n× n matrices, respectively.

(c) Let k̄r,XX be the average of all elements in Kr,XX, k̄r,XY be the average
of all elements in Kr,XY, and k̄r,YY be the average of all elements in
Kr,YY. Compute

γ̂r = k̄r,XX + k̄r,YY − 2k̄r,XY . (4.16)

7. The estimated p-value is the proportion of γ̂1, . . . , γ̂N that is less than
ξ̂k(X,Y; F̂).

p-value = 1
N

N∑
r=1

I(γ̂r < ξ̂k(X,Y; F̂))

These three steps cost O(N(m+ n)2).
The steps of the algorithm to compute the CeD test statistic and conduct the

permutation test are almost the same as CMMD test statistic with k replaced by
dp.

4.3 Asymptotic Theory for the CMMD Test Statistic
and CeD Test Statistic
In this section, the asymptotic results for the CMMD test statistic and CeD test
statistic under the null hypothesis are given in Theorem 4.3.1 and 4.3.2.

For simplicity, let Ui = F(Xi) for i = 1, . . . ,m, and let Vj = F(Yj) for
j = 1, . . . , n. The first theorem is about the CMMD test statistic, in which a
universal kernel k is used. Define

ψk,1(Xi,Xj,Xt1 ,Yr,Ys)

52



=
∑
α∈N4p

D(α)gk(Ui,Uj,Vr,Vs)(~I(Xt1 ,Xt1 ,Xt1 ,Xt1 )(Xi,Xj,Yr,Ys)− (Ui,Uj,Vr,Vs))(α) ,

(4.17)

ψk,1,T otal(Xi,Xj,Xt1 ,Yr,Ys) = ψk,1(Xi,Xj,Xt1 ,Yr,Ys) + gk(Xi,Xj,Yr,Ys; F) ,
(4.18)

ψ̃k,1,T otal(X1,X2,X3,Y1,Y2) = 1
6

∑
(i1,i2,i3)∈I3

3

∑
(j1,j2)∈I2

2

ψk,1,T otal(Xi1 ,Xi2 ,Xi3 ,Yj1 ,Yj2) ,

(4.19)

ψ̃
(1,0)
k,1,T otal(x) = E

[
ψ̃k,1,T otal(X1,X2,X3,Y1,Y2)|X1 = x

]
, (4.20)

and

ψ̃
(0,1)
k,1,T otal(y) = E

[
ψ̃k,1,T otal(X1,X2,X3,Y1,Y2)|Y1 = y

]
. (4.21)

Theorem 4.3.1. Suppose that all second-order partial derivatives of k exist on
(0, 1)2p, all bounded by M2, and that m,n → ∞ in such a way that n

m+n → λ,
λ ∈ (0, 1). Then, if X D= Y,

(m+ n)−1/2
[
ξ̂k(X,Y; F̂)− ξk(X,Y; F)

]
D→ N(0, σ2

k) (4.22)

where

σ2
k = 9var

[
ψ̃

(0,1)
k,1,T otal(X)

]
+ 12cov

[
ψ̃

(0,1)
k,1,T otal(X), ψ̃(1,0)

k,1,T otal(X)
]

+ λ3 + (1− λ)3

λ(1− λ) var
[
ψ̃

(1,0)
k,1,T otal(X)

]

The second theorem is about the CeD test statistic, in which the Euclidean
distance dp is used. Let Cijrs be defined as

Cijrs =
{

min
{
|Ui −Uj|p , |Vr −Vs|p , |Ui −Vr|p , (4.23)

|Ui −Vs|p , |Uj −Vr|p , |Uj −Vs|p
}
> 0

}
, (4.24)
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Define

ψdp,1(Xi,Xj,Xt1 ,Yr,Ys)

=
∑
α∈N4p

D(α)gdp(Ui,Uj,Vr,Vs) (4.25)

· (~I(Xt1 ,Xt1 ,Xt1 ,Xt1 )(Xi,Xj,Yr,Ys)− (Ui,Uj,Vr,Vs))(α)ICijrs , (4.26)

ψdp,1,T otal(Xi,Xj,Xt1 ,Yr,Ys) = ψdp,1(Xi,Xj,Xt1 ,Yr,Ys) + gdp(Xi,Xj,Yr,Ys; F) ,
(4.27)

ψ̃dp,1,T otal(X1,X2,X3,Y1,Y2) = 1
6

∑
(i1,i2,i3)∈I3

3

∑
(j1,j2)∈I2

2

ψdp,1,T otal(Xi1 ,Xi2 ,Xi3 ,Yj1 ,Yj2) ,

(4.28)

ψ̃
(1,0)
dp,1,T otal(x) = E

[
ψ̃dp,1,T otal(X1,X2,X3,Y1,Y2)|X1 = x

]
, (4.29)

and

ψ̃
(0,1)
dp,1,T otal(y) = E

[
ψ̃dp,1,T otal(X1,X2,X3,Y1,Y2)|Y1 = y

]
. (4.30)

Theorem 4.3.2. Suppose that m,n→∞ in such a way that n
m+n → λ, λ ∈ (0, 1).

Then, if X D= Y,

(m+ n)−1/2
[
ξ̂dp(X,Y; F̂)− ξdp(X,Y; F)

]
D→ N(0, σ2

dps)

where

σ2
dp = 9var

[
ψ̃

(0,1)
dp,1,T otal(X)

]
+ 12cov

[
ψ̃

(0,1)
dp,1,T otal(X), ψ̃(1,0)

dp,1,T otal(X)
]

+ λ3 + (1− λ)3

λ(1− λ) var
[
ψ̃

(1,0)
dp,1,T otal(X)

]
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4.4 Simulation Studies
In this section, the performance of the four methods CMMD, Ced, MMD and eD
are evaluated and compared.

4.4.1 Simulation 4

In Simulation 4, the significance levels of the four methods are studied. The setting
is as follows:

• p = 5. Let X = Σ1/2W1 and Y = Σ1/2W2. W1 and W2 are 5-dimensional
independent random vectors whose components are i.i.d. with one of the
following 4 distributions:

standard normal, standard exponential, standard lognormal and t2.

Σ is a 5× 5 matrix with diagonal elements being 1 and off-diagonal elements
being 0.1.

• The sample size m for X equals one of the following:

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.

The sample size for Y is n = 2m.

• For each combination of the above parameters, the simulation is repeated
1000 times.

• The Gaussian kernels are used. The permutation approach is used to compute
the p-values. The number of permutation is N = 1000.

• The null hypothesis is rejected when the computed p-value is less than 0.05.

The results are summarized in Figure 4.1. Given the distributions of X and Y, and
the sample size, the value of each dot in the figure is the proportion of simulations
in which the null hypothesis that X and Y have the same distribution is rejected,
which estimate the significant level of the test. As expected, all these values are
close to 0.05 .
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Figure 4.1. Summarized results in Simulation 4

4.4.2 Simulation 5

In Simulation 5, the powers of the four methods are studied. The setting is as
follows:

• p = 5. Let X = Σ1/2
1 W1 and Y = Σ1/2

2 W2. W1 and W2 are independent
5-dimensional random vectors whose components are i.i.d. with one of the
following 4 distributions:

standard normal, standard exponential, standard lognormal and t2.

Σ1 and Σ2 are both 5 × 5 matrices with diagonal elements being 1 and
off-diagonal elements being 0.1 (for Σ1) and ρ (for Σ2), respectively, where ρ
equals one of the following:

0.5, 0.9 .

• The sample size m for X equals one of the following:

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.

The sample size for Y is n = 2m.
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• For each combination of the above parameters, the simulation is repeated
1000 times.

• The Gaussian kernels are used. The permutation approach is used to compute
the p-values. The number of permutation is N = 1000.

• The null hypothesis is rejected when the computed p-value is less than 0.05.
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Figure 4.2. Summarized results in Simulation 5 (Part 1)

The results are summarized in Figure 4.2 and Figure 4.3. Given the distributions
of X and Y, and the sample size, the value of each dot in the figure is the proportion
of simulations in which the null hypothesis that X and Y have the same distribution
is rejected, which estimates the power of the test. As expected, the powers increase
as n increases. In all the cases, the powers of CMMD and MMD are much higher
than CeD and eD. Among CMMD and MMD, the power of the former is higher
than the latter. Among CeD and eD, the power of the former is higher than the
latter.
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Figure 4.3. Summarized results in Simulation 5 (Part 2)

4.A Appendix: Proof of Theorems

4.A.1 Proof of Theorem 4.3.1

For simplicity, let Ûi = F̂(Xi) for i = 1, . . . ,m, and let V̂j = F̂(Yj) for j = 1, . . . , n.
Notice that for any x ∈ Rp,

F̂(x) = m

m+ n
F̂X(x) + n

m+ n
F̂Y(x) = m

m+ n

1
m

m∑
i=1

~IXi
(x) + n

m+ n

1
n

n∑
i=1

~IYi
(x) .

Therefore, by similar derivation as in (2.14),

gk(Xi,Xj,Yr,Ys; F̂)− gk(Xi,Xj,Yr,Ys; F)

=
∑
α∈N4p

D(α)gk(Ui,Uj,Vr,Vs)((Ûi, Ûj, V̂r, V̂s)− (Ui,Uj,Vr,Vs))(α)

+ 1
2
∑

α∈N2
4p

D(α)gk(Ũi, Ũj, Ṽr, Ṽs)((Ûi, Ûj, V̂r, V̂s)− (Ui,Uj,Vr,Vs))(α)
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= m

m+ n

1
m

m∑
t1=1

∑
α∈N4p

D(α)gk(Ui,Uj,Vr,Vs)

· (~I(Xt1 ,Xt1 ,Xt1 ,Xt1 )(Xi,Xj,Yr,Ys)− (Ui,Uj,Vr,Vs))(α)

+ n

m+ n

1
n

m∑
t2=1

∑
α∈N4p

D(α)gk(Ui,Uj,Vr,Vs)

· (~I(Yt2 ,Yt2 ,Yt2 ,Yt2 )(Xi,Xj,Yr,Ys)− (Ui,Uj,Vr,Vs))(α)

+ 1
2
∑

α∈N2
4p

D(α)gk(Ũi, Ũj, Ṽr, Ṽs)((Ûi, Ûj, V̂r, V̂s)− (Ui,Uj,Vr,Vs))(α)

= m

m+ n

1
m

m∑
t1=1

ψk,1(Ui,Uj,Ut1 ,Vr,Vs) + n

m+ n

1
n

m∑
t2=1

ψk,2(Ui,Uj,Vr,Vs,Ut2)

+ r1(Ui,Uj,Vr,Vs; F̂) ,

where ψk,1 is defined in (4.17), and

ψk,2(Ui,Uj,Vr,Vs,Vt2)

=
∑
α∈N4p

D(α)gk(Ui,Uj,Vr,Vs)(~I(Yt2 ,Yt2 ,Yt2 ,Yt2 )(Xi,Xj,Yr,Ys)− (Ui,Uj,Vr,Vs))(α) ,

(4.31)

r1(Ui,Uj,Vr,Vs; F̂)

= 1
2
∑

α∈N2
4p

D(α)gk(Ũi, Ũj, Ṽr, Ṽs)((Ûi, Ûj, V̂r, V̂s)− (Ui,Uj,Vr,Vs))(α) .

(4.32)

Because for any |α| = 2, ‖D(α)hk,l(·)‖∞ ≤ C, for some finite constant C that
depends on the bounds of k as well as the bounds of their first and second order
derivatives, we have∣∣∣∣∣∣ 1

m2n2

m∑
i,j=1

n∑
r,s=1

r1(Ui,Uj,Vr,Vs; F̂)

∣∣∣∣∣∣
≤ 1
m2n2

m∑
i,j=1

n∑
r,s=1

1
2
∑

α∈N2
4p

|D(α)gk(Ũi, Ũj, Ṽr, Ṽs)| · ‖F̂− F‖2
∞

≤ 1
2(4p)2C‖F̂− F‖2

∞ .

59



Hence

ξ̂k(X,Y; F̂)− ξ̂k(X,Y; F)

= m

m+ n

1
m3n2

m∑
i,j,t1=1

n∑
r,s=1

ψk,1(Xi,Xj,Xt1 ,Yr,Ys)

+ n

m+ n

1
m2n3

m∑
i,j=1

n∑
r,s,t2=1

ψk,2(Xi,Xj,Yr,Ys,Yt2) +OP ((m+ n)−1) .

On the other hand, by analyzing the conditionals expectation of each term given
Xi,Xj,Yr,Ys, it can be shown that

E
[
ξ̂k(X,Y; F̂)

]
= E

[
ξ̂k(X,Y; F)

]
+OP ((m+n)−1) = ξk(X, Y ; F)+OP ((m+n)−1)

(4.33)
Hence

ξ̂k(X,Y; F̂)

= m

m+ n

1
m3n2

m∑
i,j,t1=1

n∑
r,s=1

[ψk,1(Xi,Xj,Xt1 ,Yr,Ys) + gk(Xi,Xj,Yr,Ys; F)]

+ n

m+ n

1
m2n3

m∑
i,j=1

n∑
r,s,t2=1

[ψk,2(Xi,Xj,Yr,Ys,Yt2) + gk(Xi,Xj,Yr,Ys; ssF)]

+OP ((m+ n)−1)

= m

m+ n

1
m3n2

m∑
i,j,t1=1

n∑
r,s=1

ψk,1,total(Xi,Xj,Xt1 ,Yr,Ys)

+ n

m+ n

1
m2n3

m∑
i,j=1

n∑
r,s,t2=1

ψk,2,T otal(Xi,Xj,Yr,Ys,Yt2)

+OP ((m+ n)−1)

= m

m+ n
V1 + n

m+ n
V2 +OP ((m+ n)−1) , (4.34)

where ψk,1,total is defined in (4.19),

ψk,2,T otal(Xi,Xj,Xt1 ,Yr,Ys) = ψk,2(Xi,Xj,Xt1 ,Yr,Ys) + gk(Xi,Xj,Yr,Ys; F) ,
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and

V1 = 1
m3n2

m∑
i,j,t1=1

n∑
r,s=1

ψk,1,total(Xi,Xj,Xt1 ,Yr,Ys)

V2 = 1
m2n3

m∑
i,j=1

n∑
r,s,t2=1

ψk,2,T otal(Xi,Xj,Yr,Ys,Yt2) .

By Theorem 2.5.2 in [15], the projection of (m+ n)−1/2(V1 − E(V1)) is
(m+ n)−1/2(E(V1,p − E(V1)), where V1,p can be written ass

V1,p =
m∑
i=1

p11(Xi) +
n∑
j=1

p12(Yj) . (4.35)

The function p11 in (4.35) is defined by

p11(x) = E[V1|X1 = x]

= E

 1
m3n2

m∑
i,j,t1=1

n∑
r,s=1

ψk,1,total(Xi,Xj,Xt1 ,Yr,Ys)
∣∣∣∣∣X1 = x


= 1
m3

m∑
i,j,t1=1

E

[
ψ̃k,1,total(Xi,Xj,Xt1 ,Y1,Y2)

∣∣∣∣∣X1 = x
]

= 1
m3

[
3(m− 1)2ψ̃

(1,0)
k,1,T otal(x) + 3(m− 2)ψ̃(2,0)

k,1,T otal(x,x) + ψ̃
(3,0)
k,1,T otal(x,x,x)

]
,

where ψ(1,0)
k,1,T otal is defined in (4.20), and

ψ
(2,0)
k,1,T otal(x1,x2) = E

[
ψ̃k,1,T otal(X1,X2,X3,Y1,Y2)|X1 = x1,X2 = x2

]

ψ
(3,0)
k,1,T otal(x1,x2,x3) = E

[
ψ̃k,1,T otal(X1,X2,X3,Y1,Y2)|X1 = x1,X2 = x2,X3 = x3

]
and similarly

p12(y) = E[V |Y1 = y] = 1
n2

[
2(n− 1)ψ̃(0,1)

k,1,T otal(y) + ψ̃
(0,2)
k,1,T otal(y,y)

]
.

where ψ(0,1)
k,1,T otal is defined in (4.21), and

ψ
(0,2)
k,1,T otal(y1,y2) = E

[
ψ̃k,1,T otal(X1,X2,X3,Y1,Y2)|Y1 = y1,Y2 = y2

]
.
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By a generalization of Theorem 3 on Page 40 in [19] to the case of V-statistics, it
can be shown that

var(V1)− var(V1,p) = O((m+ n)−2) .

Again by Theorem 2.5.2 in [15],

var(V1 − V1,p) = var(V1)− var(V1,p) = O((m+ n)−2) .

Therefore,

V1 = V1,p +OP ((m+ n)−1)

=
m∑
i=1

p11(Xi) +
n∑
j=1

p12(Yj) +OP ((m+ n)−1)

= 3(m− 1)2

m3

m∑
i=1

ψ̃
(1,0)
k,1,T otal(Xi) + 2(n− 1)

n2

n∑
j=1

ψ̃
(0,1)
k,1,T otal(Yj) +OP ((m+ n)−1) .

By the same arguments, we have

V2 = 2(m− 1)
m2

m∑
i=1

ψ̃
(1,0)
k,2,T otal(Xi) + 3(n− 1)2

n3

n∑
j=1

ψ̃
(0,1)
k,2,T otal(Yj) +OP ((m+ n)−1) ,

where ψ(1,0)
k,2,T otal and ψ

(0,1)
k,2,T otal is defined in similar forms as in (4.20) and (4.21).

Thus from (4.34), noticing that n
m+n = λ + o(1), V1 = O((m + n)−1/2) and V2 =

O((m+ n)−1/2), we have

ξ̂k(X,Y; F̂)

= m

m+ n
V1 + n

m+ n
V2 +OP ((m+ n)−1)

= (1− λ)V1 + λV2 + oP ((m+ n)−1/2)

= (1− λ)
 3
m

m∑
i=1

ψ̃
(1,0)
k,1,T otal(Xi) + 2

n

n∑
j=1

ψ̃
(0,1)
k,1,T otal(Yj)


+ λ

 2
m

m∑
i=1

ψ̃
(1,0)
k,2,T otal(Xi) + 3

n

n∑
j=1

ψ̃
(0,1)
k,2,T otal(Yj)

+ oP ((m+ n)−1/2)

= 1
m

m∑
i=1

[
3(1− λ)ψ̃(1,0)

k,1,T otal(Xi) + 2λψ̃(1,0)
k,2,T otal(Xi)

]
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+ 1
n

n∑
j=1

[
2(1− λ)ψ̃(0,1)

k,1,T otal(Yj) + 3λψ̃(0,1)
k,2,T otal(Yj)

]
+ oP ((m+ n)−1/2) (4.36)

By central limit theorem,

√
m · 1

m

m∑
i=1

[
3(1− λ)ψ̃(1,0)

k,1,T otal(Xi) + 2λψ̃(1,0)
k,2,T otal(Xi)

]
D→ N(0, σ2

1)

√
n · 1

n

n∑
j=1

[
2(1− λ)ψ̃(0,1)

k,1,T otal(Yj) + 3λψ̃(0,1)
k,2,T otal(Yj)

]
D→ N(0, σ2

2)

where

σ2
1 = var

[
3(1− λ)ψ̃(1,0)

k,1,T otal(X) + 2λψ̃(1,0)
k,2,T otal(X)

]
= var

[
3(1− λ)ψ̃(1,0)

k,1,T otal(X) + 2λψ̃(0,1)
k,1,T otal(X)

]

σ2
2 = var

[
2(1− λ)ψ̃(0,1)

k,1,T otal(Y) + 3λψ̃(0,1)
k,2,T otal(Y)

]
= var

[
2(1− λ)ψ̃(0,1)

k,1,T otal(X) + 3λψ̃(1,0)
k,1,T otal(X)

]
The above two equalities follow the symmetry of gk and the fact that X D= Y. Thus
by the independence of X1, . . . ,Xm,Y1, . . . ,Yn, (4.33) and (4.36), (4.22) follows
with

σ2
k = 1

1− λσ
2
1 + 1

λ
σ2

2

= 9var
[
ψ̃

(0,1)
k,1,T otal(X)

]
+ 12cov

[
ψ̃

(0,1)
k,1,T otal(X), ψ̃(1,0)

k,1,T otal(X)
]

+ λ3 + (1− λ)3

λ(1− λ) var
[
ψ̃

(1,0)
k,1,T otal(X)

]

4.A.2 Proof of Theorem 4.3.2

The proof of Theorem 4.3.2 proceeds by similar arguments as of Theorem 4.3.1,
with similar techniques used in the proof of Theorem 2.3.1 to avoid distances that
are too close to 0, which is omitted.
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Chapter 5 |
Conclusions and Future Work

5.1 Conclusions
This dissertation focuses on copula version of RKHS-based and distance-based
criteria for testing of independence or two-sample problem.

In Chapter 2, the copula version of distance covariance criterion (CdCov) is
introduced with the corresponding test statistics proposed. CdCov is obtained by
applying marginal mid-cdf on each variable to obtain a copula distribution, and the
corresponding test statistics can be calculated using mid-ranks for each variable. It
is shown that without any assumptions, the test statistic is asymptotically normal
under the alternative hypothesis, and it is asymptotically distributed as mixed
chi-squares distribution under the null hypothesis. To compute the p-value, the
permutation test and a conservative test are introduced. The copula version of a
linear-time statistic which costs less in time is also introduced.

In Chapter 3, the copula version of HSIC (CHSIC) is introduced with the
corresponding test statistics proposed. CHSIC is obtained by applying marginal
cdf on each variable to obtain a copula distribution, and the corresponding test
statistics can be calculated using mid-ranks for each variable. It is shown that with
proper kernels and no assumptions on the true distribution, the test statistic is
asymptotically normal under the alternative hypothesis, and it is asymptotically
distributed as mixed chi-squares distribution under the null hypothesis. To compute
the p-value, the permutation test and a conservative test are introduced. The copula
version of a linear-time statistic which costs less in time is also introduced.

In Chapter 4, the copula version of e-distance and MMD are introduced with
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the corresponding test statistics proposed. The criteria are obtained by applying
a pooled marginal cdf on each variable to obtain a copula distribution, and the
corresponding test statistics can be calculated using pooled mid-ranks for each
variable. It is shown that with a proper kernel for CMMD and no assumptions for
CeD, the two test statistics are asymptotically normal under the null hypothesis.
To compute the p-value, the permutation tests are introduced.

5.2 Future Work
There are several possible future extensions of the work in this dissertation.

Since CdCov and CHSIC can serve as independence criteria of two random
vectors, they can be applied to statistical procedures that utilize such criteria,
including but not limit to variable selection, feature screening and discriminant
analysis. The asymptotic properties of such statistical procedure with CdCov or
CHSIC can be studied, and their performance may be superior to the original dCov
and HSIC due to the fact that the original random vectors are all converted to
copula distribution.

A universal kernel is used in CHSIC and CMMD, which in practice can be
chosen from several candidate classes of functions. Notice that the distribution
of the random vectors become copula distributions after the marginal mid-cdf
transformations, and that when calculating the test statistic only the values of the
kernel at finite many points are used given the sample size. Thus it may be possible
that a criterion on the choice of the kernel can be formulated, and the best choice
of the kernel can be chosen accordingly.

There is obvious similarity in the analysis of the asymptotic properties for the
test statistics introduced in this dissertation. These test statistics are essentially
obtained by a two-step process. The first step is replacing the expectation by
empirical average, and the second step is replacing the marginal distribution by
empirical marginal distributions. As a result, the test statistics are equivalent to
a V-statistic asymptotically. It is possible that the copula transformation can be
applied to a broader class of estimators, and the analysis can be generalized to a
broader class of test statistics.
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Appendix A|
Detailed Proofs

A.1 Some Lemmas
Lemma A.1.1. Suppose that hf1,f2 is M th-order continuously differentiable on
[0, 1]4(p+q), M ∈ N+. Then for any i, j, r, s ∈ Nn, (2.14) holds.

Proof. Set Rem = (M !)−1∑
α∈NM4(p+q)

D(α)hf1,f2(W̃(i,j,r,s))
(
Ŵ(i,j,r,s) −W(i,j,r,s)

)(α)
.

By (2.13),

hf1,f2(Ŵ(i,j,r,s))− hf1,f2(W(i,j,r,s))

=
M−1∑
m=1

1
m!

∑
α∈Nm4(p+q)

D(α)hf1,f2(W(i,j,r,s))
(
Ŵ(i,j,r,s) −W(i,j,r,s)

)(α)
+ Rem

=
M−1∑
m=1

1
m!

∑
α∈Nm4(p+q)

D(α)hf1,f2(W(i,j,r,s))
[
n−1

n∑
t=1

~IZ(t,t,t,t)(Z(i,j,r,s))−W(i,j,r,s)

](α)

+ Rem

=
M−1∑
m=1

1
m!

∑
α∈Nm4(p+q)

D(α)hf1,f2(W(i,j,r,s)) · n−m
n∑

t1,...,tm=1

m∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc)
+ Rem

= n−(M−1)
n∑

t1,...,tM−1=1

M−1∑
m=1

1
m! ·

∑
α∈Nm4(p+q)

D(α)hf1,f2(W(i,j,r,s)) (A.1)

·
m∏
c=1

[
~IZ(tc,tc,tc,tc)(Z(i,j,r,s))−W(i,j,r,s)

](αc) + Rem ,
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where the last equality follows by the identity

n−m
n∑

t1,...,tm=1
gm(t1, . . . , tm) = n−(M−1)

n∑
t1,...,tM−1=1

gm(t1, . . . , tm)

which holds for any m < M , and any function gm that depends on m and t1, . . . , tm.

Lemma A.1.2. If u1 = (u11, . . . , u1r) and u2 = (u21, . . . , u2r) are two vectors in
Rr such that u1iu2i > 0 for any i = 1, . . . , r, then for any ũ in the line segment
[u1,u2],

|ũ|r ≥
1√
2

min {|u1|r , |u2|r} (A.2)

Proof. If the three points u1, u2 and 0 fall on a straight line in Rr, because
u1iu2i > 0 for any i = 1, . . . , p, there exists λ > 0 such that u2 = λu1. Assume
without loss of generality that |u1|r ≤ |u2|r, so λ ≥ 1. Then for any ũ ∈ [u1,u2],
there exists λ̃ ∈ [1, λ] such that ũ = λ̃u1. Thus

|ũ|r = λ̃ |u1|r ≥ |u1|r ≥
1√
2

min {|u1|r , |u2|r} (A.3)

and (A.2) is proved in this case. For the rest of the proof, we assume that the
three vertices u1, u2 and 0 do not fall on a straight line in Rr. This also implies
that r ≥ 2. Consider the triangle with the three vertices u1, u2 and 0. Because
uT1 u2 = ∑

i u1iu2i > 0, the angle of the triangle at 0 is acute. We consider two cases
depending on whether the triangle is acute or not.

If the triangle is not acute, then either the angle at u1 or u2 is not acute.
Because ũ is at the segment [u1,u2], the length of ũ must be between the lengths
of u1 and u2. Thus |ũ|p ≥ min{|u1|p , |u2|p}.

If the triangle is acute, the minimum value of |ũ| is h, the length of the altitude
of the triangle towards the base [u1,u2]. Without loss of generality, suppose that
|u1|p ≤ |u2|p. Then θ1 ≥ θ2, where θi is the angle of the triangle at the vertex ui,
i = 1, 2. Because the triangle is acute, θ1 + θ2 ≥ 90◦, and thus θ1 ≥ 45◦. By the
law of sines, |ũ|p ≥ h = |u1|p sin θ1 ≥ 1√

2 |u1|p = 1√
2 min{|u1|p , |u2|p}.

In both cases, |ũ|p ≥ 1√
2 min{|u1|p , |u2|p}. Thus (A.2) is proved.
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Lemma A.1.3. Suppose X1, . . . , Xn are i.i.d. copies of a random variable X, and
let the distribution function FX of X, and the empirical distribution function F̂X ,
be as defined in (2.1). Then for n ≥ 2 and δ > 0,

P (0 < |FX(X2)− FX(X1)| < δ) ≤ 4δ (A.4)

P (0 < |F̂X(X2)− F̂X(X1)| < δ) ≤ 4δ n

n− 1 (A.5)

Proof. Let U1, . . . , Un be i.i.d. Uniform(0,1) random variables. We will use the
representation Xi = F−1

X (Ui), where F−1
X is the quantile function of X. Let

pX(x) = P (X = x), and write

P (0 < FX(X2)− FX(X1) < δ)

= P
(
X1 < X2, 0 < 1

2pX(X1) + (F−X (X2)− F+
X (X1)) + 1

2pX(X2) < δ
)

= P (X1 < X2, 0 < pX(X1) + 2(F−X (X2)− F+
X (X1)) + pX(X2) < 2δ)

≤ P (X1 < X2, pX(X1) + (F−X (X2)− F+
X (X1)) + pX(X2) < 2δ)

= P (X1 < X2, F
+
X (X2)− F−X (X1) < 2δ)

= P (F−1
X (U1) < F−1

X (U2), F+
X (F−1

X (U2))− F−X (F−1
X (U1)) < 2δ) . (A.6)

By the properties of the quantile function, F−X (F−1
X (u)) ≤ u ≤ F+

X (F−1
X (u)), ∀ u ∈

[0, 1], so that
F+
X (F−1

X (U2))− F−X (F−1
X (U1)) ≥ U2 − U1 . (A.7)

From (A.6), (A.7) and the fact that F−1
X is non-decreasing, we have

P (0 < FX(X2)− FX(X1) < δ)

≤ P (0 < U2 − U1 < 2δ) = E[P (0 < U2 − U1 < 2δ|U1)]

= E[P (U1 < U2 < U1 + 2δ|U1)] ≤ E[2δ] = 2δ .

By symmetry, we have P (0 < FX(X1)− FX(X2) < δ) ≤ 2δ, and thus (A.4) holds.
To show (A.5) note that when x1 < x2,

F̂X(x2)− F̂X(x1) = 1
2n

n∑
i=1

I(Xi = x2) + 1
n

n∑
i=1

I(x1 < Xi < x2) + 1
2n

n∑
i=1

I(Xi = x1)
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≥ 1
2n

n∑
i=1

I(x1 ≤ Xi ≤ x2) .

Therefore,

P (0 < F̂X(X2)− F̂X(X1) < δ) = P (X1 < X2, F̂X(X2)− F̂X(X1) < δ)

≤ P

(
X1 < X2,

1
2n

n∑
i=1

I(X1 ≤ Xi ≤ X2) < δ

)

= P

(
F−1
X (U1) < F−1

X (U2), 1
n

n∑
i=1

I(F−1
X (U1) ≤ F−1

X (Ui) ≤ F−1
X (U2)) < 2δ

)

≤ P

(
U1 < U2,

1
n

n∑
i=1

I(U1 ≤ Ui ≤ U2) < 2δ
)

= P

(
U1 < U2,

1
n

n∑
i=1

I(Ui ≤ U2)− 1
n

n∑
i=1

I(Ui < U1) < 2δ
)

≤ P
(
U1 < U2,

1
n

(R2 −R1) < 2δ
)

= P (0 < R2 −R1 < 2nδ) ,

where R1, . . . , Rn are the rank statistics of U1, . . . , Un. By the same argument,

P (0 < F̂X(X1)− F̂X(X2) < δ) ≤ P (0 < R1 −R2 < 2nδ) . (A.8)

Therefore,

P (0 < |F̂X(X2)− F̂X(X1)| < δ)

= P (0 < F̂X(X2)− F̂X(X1) < δ) + P (0 < F̂X(X1)− F̂X(X2) < δ)

≤ P (0 < R2 −R1 < 2nδ) + P (0 < R1 −R2 < 2nδ)

= P (|R2 −R1| < 2nδ) = E[P (|R2 −R1| < 2nδ|R1)]

= E[P (R1 − 2nδ < R2 < R1 + 2nδ|R1)]

≤ E

[
4nδ · 1

n− 1

∣∣∣∣∣R1

]
= 4δ n

n− 1 ,

where the last inequality follows from the fact that conditioning on R1, the
distribution of R2 is uniform in the finite set consisting of the n − 1 elements
{1, 2, . . . , n} − {R1}, and the fact that the number of integers that are contained
in the interval (R1 − 2nδ,R1 + 2nδ) and unequal to R1 is no more than 4nδ. Thus,

69



(A.5) is proved.

Lemma A.1.4. Let h̃(1)
dp,dq

(z; FZ), η̃(1)
dp,dq

(z) and ζ̃(1)
dp,dq ,T otal

(z) be defined in (2.21),
(2.23) and (2.30), respectively. If X ⊥⊥ Y then

a) h̃(1)
dp,dq

(z; FZ) = 0,

b) η̃(1)
dp,dq

(z) = 0, and

c) ζ̃(1)
dp,dq ,T otal

(z) = 0.

Proof. a) Write h̃(1)
dp,dq

(z; FZ) = J1 − 2J2 + J3, where

J1 =
4∑
s=1

E [k(X1,X2; FX)l(Y3,Y4; FY)|Zs = z]

= 2 {E[k(x,X2; FX)l(Y3,Y4); FY)] + E[k(X1,X2; FX)l(y,Y4); FY)]}

= 2E[k(x,X1; FX)]E[l(Y1,Y2); FY)] + 2E[k(X1,X2; FX)]E[l(y,Y1); FY)],

J2 =
4∑
s=1

E [k(X1,X2; FX)l(Y1,Y3; FY)|Zs = z]

= E[k(x,X2; FX)l(y,Y3; FY)] + E[k(X1,x; FX)l(Y1,Y3; FY)]

+ E[k(X1,X2)l(Y1,y; FY)]

= E[k(x,X1; FX)]E[l(y,Y1; FY)] + E[k(X1,x; FX)]E[l(Y1,Y2; FY)]

+ E[k(X1,X2; FX)]E[l(Y1,y; FY)],

J3 =
4∑
s=1

E [k(X1,X2; FX)l(Y1,Y2; FY)|Zs = z]

= 2E[k(x,X1; FX)l(y,Y1; FY)] = 2E[k(x,X1; FX)]E[l(y,Y1; FY)].

Since J1 − 2J2 + J3 = 0, part a) is shown.
b) Let ηdp,dq , η̃dp,dq and η̃

(1)
dp,dq

be as defined in (2.23). Write

ηdp,dq =
2∑
j=1

ηdp,dq ,j ,

where

ηdp,dq ,1(Z(1,...,5)) =
∑
α∈N2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))
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·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,

ηdp,dq ,2(Z(1,...,5)) = dp(U1,U2)
∑
α∈N4q

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 .

Thus,

5η̃(1)
dp,dq

(z) = E

 1
5!

∑
(i1,...,i5)∈I5

5

ηdp,dq(Z(i1,...,i5))

∣∣∣∣∣∣Z1 = z

 (A.9)

= 1
5
∑
i∈I5

E

ηdp,dq(Z(1,...,5))

∣∣∣∣∣∣Zi = z


=

2∑
j=1

1
5
∑
i∈I5

E

ηdp,dq ,j(Z(1,...,5))

∣∣∣∣∣∣Zi = z

 (A.10)

By (A.9), part b) will follow by showing that

E

ηdp,dq ,j(Z(1,...,5))

∣∣∣∣∣∣Zi = z

 = 0, i = 1, . . . , 5, j = 1, 2. (A.11)

Relation (A.11) will be shown in detail for the case of j = 1. The case of j = 2
follows by similar arguments. Let

C1234 =

 min
a1,a2∈{1,2,3,4}

a1<a2

|Ua1a2 |p > 0

 , D1234 =

 min
a1,a2∈{1,2,3,4}

a1<a2

|Va1a2|q > 0

 ,
so that IB1234 = IC1234ID1234 , and notice that under X ⊥⊥ Y, for any i ∈ I6,

E
[
ηdp,dq ,1(Z(1,...,5))

∣∣∣Zi = z
]

=
∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi = x


· E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Yi = y

 , (A.12)
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If i 6= 5, each summand in (A.12) is 0 because

∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi = x

 = 0 ,

which follows by the fact that

E

~IX(5,5)(X(1,2))−U(1,2)

∣∣∣∣∣∣X1,X2,X3,X4

 = 0 .

If i = 5, each summand in (A.12) is 0 because

E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Y5 = y

 = 0.

Thus part b) is shown.
c) By parts a) and b), and the definition of ζ̃(1)

dp,dq ,T otal
(z), it suffices to show that

ζ̃
(1)
dp,dq

(z) := E(ζ̃dp,dq(Z(1,...,6)|Z1 = z) = 0,

where with ζdp,dq(Z(1,...,6)) as defined in (2.26),

ζ̃dp,dq(Z(1,...,6)) = 1
6!

∑
(i1,...,i6)∈I6

6

ζdp,dq(Z(i1,...,i6)).

Write
ζdp,dq =

3∑
j=1

ζdp,dq ,j , (A.13)

where

ζdp,dq ,1(Z(1,...,6)) = 1
2
∑

α∈N2
2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,

ζdp,dq ,2(Z(1,...,6)) = 1
2dp(U1,U2)

∑
α∈N2

4p

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 ,
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ζdp,dq ,3(Z(1,...,6)) =
∑
α∈N2p

∑
β∈N4q

D(α)dp(U1,U2)D(β) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α) [~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)
](β)

IB1234 .

Note that

ζ̃
(1)
dp,dq

(z) = 1
6
∑
i∈I6

E

ζdp,dq(Z(1,...,6))

∣∣∣∣∣∣Zi = z

 =
3∑
j=1

1
6
∑
i∈I6

E

ζdp,dq ,j(Z(1,...,6))

∣∣∣∣∣∣Zi = z


(A.14)

By (A.14), part c) will follow by showing that

E

ζdp,dq ,j(Z(1,...,6))

∣∣∣∣∣∣Zi = z

 = 0, j = 1, 2, i = 1, . . . , 6. (A.15)

Each of the equations in (A.15) can be shown by an argument similar to that used
for showing (A.11).

Lemma A.1.5. Under the notation and assumptions of Theorem 3.2.1

γ̂k,l(X,Y; FZ)− γk,l(X,Y; FZ) = 4
n

n∑
i=1

h̃
(1)
k,l (Zi; FZ) +OP (n−1). (A.16)

Moreover, if X ⊥⊥ Y,

γ̂k,l(X,Y; FZ) = OP (n−1). (A.17)

Proof. The U-statistic corresponding to γ̂k,l is

γ̂k,l,U(X,Y; FZ) = 1
(n)4

∑
(i,j,q,r)∈I4

n

hk,l(Zi,Zj,Zq,Zr; FZ),

where Imn denotes the set of all m-permutations (i1, . . . , im) of the numbers 1, . . . , n,
and (n)m denotes the number of such permutations. The number of terms in the
difference of n4γ̂k,l(X,Y; FZ) and

(
n
4

)
γ̂k,l,U(X,Y; FZ) is n4 − (n)4 ≤ 2n3. Each

term is bounded by 4M2
0 . Therefore,

|γ̂k,l(X,Y; FZ)− γ̂k,l,U(X,Y; FZ)|
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=

∣∣∣∣∣∣∣∣∣
(

1
n4 −

1
(n)4

) ∑
(i,j,q,r)∈I4

n

hk,l(Zi,Zj,Zq,Zr; FZ) + 1
n4

n∑
i,j,q,r=1

(i,j,q,r)/∈I4
n

hk,l(Zi,Zj,Zq,Zr; FZ)

∣∣∣∣∣∣∣∣∣
≤ (2n−1 + 2n−1)4M2

0 ≤ 8M2
0n
−1. (A.18)

By generalizing the theorem in Section 5.3.2 in [23] to random vector observations,

γ̂k,l,U(X,Y; FZ)− γk,l(X,Y; FZ) = 4
n

n∑
i=1

h
(1)
k,l (Zi; FZ) +OP (n−1) . (A.19)

Thus, (A.16) follows from (A.18) and (A.19). If X ⊥⊥ Y then, by Lemma A.1.4,
h̃

(1)
k,l = 0. Since also γk,l(X,Y; FZ) = 0 under independence, (A.17) follows from

(A.16).

Lemma A.1.6. Suppose that Z is a (p + q)-dimensional random vector, let
Z1, . . . ,Zn are i.i.d. copies of Z, and let FZ, F̂Z be defined as in (2.1). Then
for any α > 0, there exists a finite positive constant Cp,q,α which does not depend
on the distribution of Z, such that

E
(
‖F̂Z − FZ‖α∞

)
≤ Cp,q,α

nα/2
, n = 1, 2, . . . (A.20)

Proof. Write Z = (Z1, . . . , Zp+q), and Zi = (Zi,1, . . . , Zi,p+q) for i = 1, . . . , n. Define

D+
Zi

= sup
z
|F̂+
Zi

(z)−F+
Zi

(z)|, D−Zi = sup
z
|F̂−Zi(z)−F−Zi(z)|, DZi = sup

z
|F̂Zi(z)−FZi(z)|,

for any i = 1, . . . , n, where

F̂+
Zi

(z) = 1
n

n∑
i=1

I(Zi ≤ z), F̂−Zi(z) = 1
n

n∑
i=1

I(Zi < z) .

Then F̂Zi = 1
2(F̂+

Zi
+ F̂−Zi). By the Dvoretzky-Kiefer-Wolfowitz inequality, there

exists a finite positive constant C such that

P (D+
Zi
> d) ≤ Ce−2nd2

, P (D−Zi > d) ≤ Ce−2nd2
, d > 0, n ∈ N.

The second inequality can be shown by considering the random variable −Zi. Note
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that

DZi = sup
z

∣∣∣F̂Zi(z)− FZi(z)
∣∣∣ = sup

x

∣∣∣∣12(F̂+
Zi

(z)− F+
Zi

(z)) + 1
2(F̂−Zi(z)− F−Zi(z))

∣∣∣∣
≤ 1

2 sup
x

∣∣∣F̂+
Zi

(z)− F+
Zi

(z)
∣∣∣+ 1

2 sup
x

∣∣∣F̂−Zi(z)− F−Zi(z)
∣∣∣ = 1

2D
+
n + 1

2D
−
n .

Thus

P (Dn > d) ≤ P (D+
n > d) + P (D−n > d) ≤ 2Ce−2nd2

, d > 0, n ∈ N .

Noting that
‖F̂Z − FZ‖∞ = max

j=1,...,p+q
DZj ,

we have

P
(
‖F̂Z − FZ‖∞ > d

)
≤

p+q∑
j=1

P (DZj > d) ≤ 2(p+ q)Ce−2nd2
.

Therefore,

E
(
‖F̂Z − FZ‖α∞

)
=
∫ ∞

0
P
(
‖F̂Z − FZ‖α∞ > s

)
ds =

∫ ∞
0

P
(
‖F̂Z − FZ‖∞ > s1/α

)
ds

≤
∫ ∞

0
2Ce−2ns2/α

ds =
∫ ∞

0
2C(p+ q)e−td

(
(t/2n)α/2

)
= 2C(p+ q)(α/2)(2n)−α/2

∫ ∞
0

tα/2−1e−tdt

= C(p+ q)αΓ(α/2)
2α/2 · 1

nα/2
.
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A.2 Derivations Needed for the Proof of Theorem
2.3.1

A.2.1 Proof of (2.40)

Let R2 be given by (2.39). We will show that R2 = op(n−1/2). We have

R2 = 1
n4

n∑
i,j,r,s=1

[∣∣∣Ûij

∣∣∣
p

(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)
− |Uij|p

(
|Vrs|q − 2 |Vir|q + |Vij|q

)]
IAcijrs

= 1
n4

n∑
i,j,r,s=1


(∣∣∣Ûij

∣∣∣
p
− |Uij|p

)(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)

+ |Uij|p
[(∣∣∣V̂rs

∣∣∣
q
− |Vrs|q

)
− 2

(∣∣∣V̂ir

∣∣∣
q
− |Vir|q

)
+
(∣∣∣V̂ij

∣∣∣
q
− |Vij|q

)]IAcijrs
≤ 16√pq‖F̂Z − FZ‖∞ ·

1
n4

n∑
i,j,r,s=1

IAcijrs , (A.21)

where the inequality follows by the fact that for any t1, t2 ∈ Nn,∣∣∣∣∣∣∣Ût1t2

∣∣∣
p
− |Ut1t2|p

∣∣∣∣ ≤ ∣∣∣Ût1t2 −Ut1t2

∣∣∣
p

=
∣∣∣F̂X(Xt1)− F̂X(Xt2)− FX(Xt1) + FX(Xt2)

∣∣∣
p

≤ 2√p‖F̂Z − FZ‖∞, (A.22)

and similarly ∣∣∣∣∣∣∣V̂t1t2

∣∣∣
q
− |Vt1t2|q

∣∣∣∣ ≤ 2√q‖F̂Z − FZ‖∞. (A.23)

Next, write

E

 1
n4

n∑
i,j,r,s=1

IAcijrs

 = 1
n4

n∑
i,j,r,s=1

P
(
Acijrs

)

≤ 1
n4

n∑
i,j,r,s=1

∑
a,b∈{i,j,r,s}

a6=b

[
P
(
|Uab|p ≤ δn

)
+ P

(∣∣∣Ûab

∣∣∣
p
≤ δn

)

+P
(
|Vab|p ≤ δn

)
+ P

(∣∣∣V̂ab

∣∣∣
p
≤ δn

)]
≤ 96δn

n

n− 1 , (A.24)
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where the last inequality follows by Lemma A.1.3, while the first inequality follows
by noting that if the Euclidean norm of a vector is less than δn then the absolute
value of each component is less than δn. Since also ‖F̂Z − FZ‖∞ = OP (n−1/2),
R2 = OP (n−1/2δn) = oP (n−1/2) follows from (A.21) and (A.24).

A.2.2 Proof of (2.42) and of (2.45)

Let R3 be defined in (2.41). We will show that R3 = oP (n−1/2). Note that the
form of R3 results the remainder of the Taylor expansion in (2.14) for M = 2. For
the purposes of this proof it is more convenient to express this remainder term in
terms of a reparametrization of the function hdp,dq . For any i, j, r, s ∈ Nn, define
Wij = Wi −Wj, Ŵij = Ŵi − Ŵj, and

Wijrs = (Wij,Wir,Wrs), Ŵijrs = (Ŵij,Ŵir,Ŵrs) .

Because dp and dq are Euclidean norms, hdp,dq(W(i,j,r,s)) is a function of Wijrs, i.e.,

h∗dp,dq(Wij,Wir,Wrs) = hdp,dq(W(i,j,r,s)) , (A.25)

for a suitable function h∗dp,dq . Thus, by a Taylor expansion with M = 2,

hdp,dq(Ŵ(i,j,r,s))− hdp,dq(W(i,j,r,s)) = h∗dp,dq(Ŵijrs)− h∗dp,dq(Wijrs)

=
∑

α∈N3(p+q)

D(α)h∗dp,dq(Wijrs)
[
Ŵijrs −Wijrs

](α)

+ 1
2

∑
α∈N2

3(p+q)

D(α)h∗dp,dq(W̃ijrs)
[
Ŵijrs −Wijrs

](α)
,

for some W̃ijrs = (W̃ij,W̃ir,W̃rs) ∈ [Wij,Ŵij ]× [Wir,Ŵir]× [Wrs,Ŵrs]. It can
be shown by a change of variables that

∑
α∈N3(p+q)

D(α)h∗dp,dq(Wijrs)
[
Ŵijrs −Wijrs

](α)

=
∑

α∈N4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
.
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Thus, an equivalent expression of the remainder term R3 is

R3 = 1
n4

n∑
i,j,r,s=1

1
2

∑
α∈N2

3(p+q)

D(α)h∗dp,dq(W̃ijrs)
[
Ŵijrs −Wijrs

](α)
IAijrs .

It can be shown by straightforward calculus that for any |α| = 2

|D(α)h∗dp,dq(W̃ijrs)| ≤
4(√p+√q + 2)

min
{∣∣∣Ũij

∣∣∣
p
,
∣∣∣Ṽij

∣∣∣
q
,
∣∣∣Ṽir

∣∣∣
q
,
∣∣∣Ṽrs

∣∣∣
q

} ,

where (Ũab, Ṽab) = W̃ab for any a, b ∈ {i, j, r, s}. By Lemma A.1.2,

min
{∣∣∣Ũij

∣∣∣
p
,
∣∣∣Ṽij

∣∣∣
q
,
∣∣∣Ṽir

∣∣∣
q
,
∣∣∣Ṽrs

∣∣∣
q

}
≥ min

a,b∈{i,j,r,s}
a<b

min
{∣∣∣Ũab

∣∣∣
p
,
∣∣∣Ṽab

∣∣∣
q

}

≥ 2−1/2 min
a,b∈{i,j,r,s}

a<b

min
{
|Uab|p ,

∣∣∣Ûab

∣∣∣
p
, |Vab|q ,

∣∣∣V̂ab

∣∣∣
q

}
≥ 2−1/2δn, (A.26)

where the last inequality holds when the event Aijrs occurs. Therefore,

|R3| ≤
1
n4

n∑
i,j,r,s=1

1
2

∑
α∈N2

3(p+q)

|D(α)h∗dp,dq(W̃(i,j,r,s))| · ‖F̂Z − FZ‖2
∞IAijrs

≤ 4[3(p+ q)]2
√

2(√p+√q + 2)δ−1
n ‖F̂Z − FZ‖2

∞ = oP (n−1/2), (A.27)

since δn = n−1/4.
Next, let R4 be defined in (2.44). We will show that R4 = oP (n−1/2). By straight-

forward calculus it can be shown that for any |α| = 1, |D(α)hdp,dq(W̃(i,j,r,s))| ≤
4(√p+√q). Thus

|R4| ≤
1
n4

n∑
i,j,r,s=1

∑
α∈N4(p+q)

|D(α)hdp,dq(W(i,j,r,s))| · ‖F̂Z − FZ‖∞IAcijrs

≤ 16(√p+√q)(p+ q)‖F̂Z − FZ‖∞
1
n4

n∑
i,j,r,s=1

IAcijrs .

From (A.24), 1
n4
∑n
i,j,r,s=1 IAcijrs = OP (δn). On the other hand, ‖F̂Z − FZ‖∞ =

OP (n−1/2). Therefore, R4 = OP (n−1/2δn) = oP (n−1/2) because δn = n−1/4.
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A.3 Derivations Needed for the Proof of Theorem
3.2

A.3.1 Proof of (2.49)

Let R2 be given by (2.39). We will show that, under the assumption of independence,
R2 = op(n−1). Consider

E(R2
2) = 1

n8

n∑
i,j,r,s=1

n∑
i′,j′,r′,s′=1

E

{ [
hdp,dq(Z(i,j,r,s); F̂Z)− hdp,dq(Z(i,j,r,s);FZ)

]

·
[
hdp,dq(Zi′,j′,r′,s′ ; F̂Z)− hdp,dq(Zi′,j′,r′,s′ ;FZ)

]
IAcijrsIAci′j′r′s′

}
.

(A.28)

First it will be shown that the terms in the summation in (A.28) for which
{i, j, r, s} ∩ {i′, j′, r′, s′} = ∅ are all zero. To see this, write each term in the
summation as

E

{[∣∣∣Ûij

∣∣∣
p

(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)
− |Uij|p

(
|Vrs|q − 2 |Vir|q + |Vij|q

)]
[∣∣∣Ûi′j′

∣∣∣
p

(∣∣∣V̂r′s′

∣∣∣
q
− 2

∣∣∣V̂i′r′

∣∣∣
q

+
∣∣∣V̂i′j′

∣∣∣
q

)
− |Ui′j′ |p

(
|Vr′s′|q − 2 |Vi′r′ |q + |Vi′j′|q

)]
IAcijrsIAci′j′r′s′

}

= E

{ ∣∣∣Ûij

∣∣∣
p

∣∣∣Ûi′j′

∣∣∣
p

(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)(∣∣∣V̂r′s′

∣∣∣
q
− 2

∣∣∣V̂i′r′

∣∣∣
q

+
∣∣∣V̂i′j′

∣∣∣
q

)
IAcijrsIAci′j′r′s′

}

− E
{ ∣∣∣Ûij

∣∣∣
p
|Ui′j′ |p

(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

) (
|Vr′s′|q − 2 |Vi′r′ |q + |Vi′j′ |q

)
IAcijrsIAci′j′r′s′

}

− E
{
|Uij|p

∣∣∣Ûi′j′

∣∣∣
p

(
|Vrs|q − 2 |Vir|q + |Vij|q

) (∣∣∣V̂r′s′

∣∣∣
q
− 2

∣∣∣V̂i′r′

∣∣∣
q

+
∣∣∣V̂i′j′

∣∣∣
q

)
IAcijrsIAci′j′r′s′

}

+ E

{
|Uij|p |Ui′j′|p

(
|Vrs|q − 2 |Vir|q + |Vij|q

) (
|Vr′s′|q − 2 |Vi′r′ |q + |Vi′j′ |q

)
IAcijrsIAci′j′r′s′

}
.

(A.29)

If {i, j, r, s} ∩ {i′, j′, r′, s′} = ∅, the first term on the right hand side of (A.29) is

E

{
E

[ ∣∣∣Ûij

∣∣∣
p

∣∣∣Ûi′j′

∣∣∣
p

(∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)(∣∣∣V̂r′s′

∣∣∣
q
− 2

∣∣∣V̂i′r′

∣∣∣
q

+
∣∣∣V̂i′j′

∣∣∣
q

)
IAcijrsIAci′j′r′s′
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∣∣∣∣∣F̂Z,Xi,Xj,Xr,Xs,Zi′ ,Zj′ ,Zr′ ,Zs′

]}

= E

{
E

[ (∣∣∣V̂rs

∣∣∣
q
− 2

∣∣∣V̂ir

∣∣∣
q

+
∣∣∣V̂ij

∣∣∣
q

)
IAcijrs

∣∣∣∣∣F̂Z,Xi,Xj,Xr,Xs,Zi′ ,Zj′ ,Zr′ ,Zs′

]
∣∣∣Ûij

∣∣∣
p

∣∣∣Ûi′j′

∣∣∣
p

(∣∣∣V̂r′s′

∣∣∣
q
− 2

∣∣∣V̂i′r′

∣∣∣
q

+
∣∣∣V̂i′j′

∣∣∣
q

)
IAc

i′j′r′s′

}
= 0,

since, by symmetry, the conditional expectations of
∣∣∣V̂rs

∣∣∣
q
IAcijrs ,

∣∣∣V̂ir

∣∣∣
q
IAcijrs and∣∣∣V̂ij

∣∣∣
q
IAcijrs are equal. That the other terms on the right hand side of (A.29) are

zero if {i, j, r, s} ∩ {i′, j′, r′, s′} = ∅ can be shown by similar arguments. Thus the
number of non-zero terms in (A.28) is at most n4 · 4 · 4n3 = 16n7. Next use (A.22)
and (A.23) to write
∣∣∣∣∣ ∣∣∣Ûij

∣∣∣
p

∣∣∣V̂rs

∣∣∣
q
− |Uij|p |Vrs|q

∣∣∣∣∣ =
∣∣∣Ûij

∣∣∣
p

∣∣∣∣∣ ∣∣∣V̂rs

∣∣∣
q
− |Vrs|q

∣∣∣∣∣+
∣∣∣∣∣ ∣∣∣Ûij

∣∣∣
p
− |Uij|p

∣∣∣∣∣ |Vrs|q

≤ 2√pq‖F̂Z − FZ‖∞

for any i, j, r, s = 1, . . . , n. Moreover,

E
[
IAcijrs

]
≤

∑
a1,a2∈{i,j,r,s}

a1<a2

[
P
(
|Ua1a2|p ≤ δn

)
+ P

(∣∣∣Ûa1a2

∣∣∣
p
≤ δn

)

+P
(
|Va1a2|p ≤ δn

)
+ P

(∣∣∣V̂a1a2

∣∣∣
p
≤ δn

)]
≤ 96δn

n

n− 1 ,

where the last inequality follows by Lemma A.1.3. Therefore, by Cauchy-Schwartz
inequality and the result in (A.20),

E(R2
2) ≤ n−8 · 16n7 · 4pqE

[
‖F̂Z − FZ‖2

∞IAcijrs

]
≤ 64pqn−1

[
E‖F̂Z − FZ‖4

∞

]1/2 [
E
(
IAcijrs

)]1/2
≤ 64pqn−1 · Cp,q

n

√
96δn

n

n− 1 ,
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which shows that R2 = oP (n−1).

A.3.2 Proof of (2.53)

Let R3 be defined in (2.50). To show that R3 = oP (n−1) we will use the same
reparametrization of the function hdp,dq that was employed in Section A.2.2. Thus,
we define Wij = Wi −Wj, Ŵij = Ŵi − Ŵj, Wijrs = (Wij,Wir,Wrs) and
Ŵijrs = (Ŵij,Ŵir,Ŵrs), and consider the function h∗dp,dq defined in (A.25).

Then by Taylor expansion with M = 3,

h∗dp,dq(Ŵijrs)− h∗dp,dq(Wijrs)

=
2∑

m=1

1
m!

∑
α∈Nm3(p+q)

D(α)h∗dp,dq(Wijrs)
[
Ŵijrs −Wijrs

](α)

+ 1
6

∑
α∈N3

3(p+q)

D(α)h∗dp,dq(W̃ijrs)
[
Ŵijrs −Wijrs

](α)

for some W̃ijrs = (W̃ij,W̃ir,W̃rs) ∈ [Wij,Ŵij ]× [Wir,Ŵir]× [Wrs,Ŵrs]. It can
be shown by a change of variables that

2∑
m=1

1
m!

∑
α∈Nm3(p+q)

D(α)h∗dp,dq(Wijrs)
[
Ŵijrs −Wijrs

](α)

=
2∑

m=1

1
m!

∑
α∈Nm4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
.

Thus, an equivalent expression of the remainder term R3 is

R3 = 1
n4

n∑
i,j,r,s=1

1
6

∑
α∈N3

3(p+q)

D(α)h∗dp,dq(W̃ijrs)
[
Ŵijrs −Wijrs

](α)
IAijrs(A.30)

It can be shown by straightforward calculus that for any |α| = 3

|D(α)h∗dp,dq(W̃ijrs)| ≤
12(√p+√q + 2)(

min
{∣∣∣Ũij

∣∣∣
p
,
∣∣∣Ṽij

∣∣∣
q
,
∣∣∣Ṽir

∣∣∣
q
,
∣∣∣Ṽrs

∣∣∣
q

})2 (A.31)

where (Ũab, Ṽab) = (W̃ab) for any a1, a2 ∈ {i, j, r, s}. Using the inequality in (A.26)
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which holds when the event Aijrs occurs, we have

|R3| ≤
1
n4

n∑
i,j,r,s=1

1
6

∑
α∈N3

3(p+q)

|D(α)hdp,dq(W̃(i,j,r,s))| · ‖F̂Z − FZ‖3
∞IAijrs

≤ 12[3(p+ q)]3
√

2(√p+√q + 2)δ−2
n ‖F̂Z − FZ‖3

∞ = oP (n−1),

since δn = n−1/8.

A.3.3 Proof of (2.56)

Let R4 be given by (2.54), and use the argument in the proof of Lemma A.1.1 to
write

R4 = 1
n4

n∑
i,j,r,s=1

2∑
m=1

1
m!

∑
α∈Nm4(p+q)

D(α)hdp,dq(W(i,j,r,s))
[
Ŵ(i,j,r,s) −W(i,j,r,s)

](α)
(IBijrs−IAijrs) .

(A.32)
It will be convenient to partition the index sets Nm

4(p+q), m = 1, 2, as follows. Define

IX = {(i1 − 1)(p+ q) + i2 : i1 = 1, . . . , 4, i2 = 1, . . . , p} ,

IY = {(i1 − 1)(p+ q) + i2 : i1 = 1, . . . , 4, i2 = p+ 1, . . . , p+ q} ,

and note that

N4(p+q) = IX ∪ IY,

N2
4(p+q) = (IX × IX) ∪ (IX × IY) ∪ (IY × IX) ∪ (IY × IY).

Recalling that hdp,dq(W(i,j,r,s)) = dp(Ui,Uj) (dp(Vr,Vs)− 2dp(Vi,Vr) + dp(Vi,Vj)),
the expression for R4 in (A.32) can be written as

R4 = R41 +R42 +R43 +R44 +R45 , (A.33)

where R41 corresponds to IX and is given by

R41 = 1
n4

n∑
i,j,r,s=1

∑
α∈N2p

D(α)dp(Ui,Uj) (dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj))

·
[
Û(i,j) −U(i,j)

](α)
(IBijrs − IAijrs),
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R42 corresponds to IY and is given by

R42 = 1
n4

n∑
i,j,r,s=1

 ∑
α∈N2q

dp(Ui,Uj)D(α)dq(Vr,Vs)
[
V̂(r,s) −V(r,s)

](α)

−2
∑
α∈N2q

dp(Ui,Uj)D(α)dq(Vi,Vr)
[
V̂(i,r) −V(i,r)

](α)

+
∑
α∈N2q

dp(Ui,Uj)D(α)dq(Vi,Vj)
[
V̂(i,j) −V(i,j)

](α)
(IBijrs − IAijrs),

R43 corresponds to IX × IX and is given by

R43 = 1
n4

n∑
i,j,r,s=1

1
2
∑

α∈N2
2p

D(α)dp(Ui,Uj) (dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj))

·
[
Û(i,j) −U(i,j)

](α)
(IBijrs − IAijrs),

R44 corresponds to IY × IY and is given by

R44 = 1
n4

n∑
i,j,r,s=1

1
2

 ∑
α∈N2

2q

dp(Ui,Uj)D(α)dq(Vr,Vs)
[
V̂(r,s) −V(r,s)

](α)

−2
∑

α∈N2
2q

dp(Ui,Uj)D(α)dq(Vi,Vr)
[
V̂(i,r) −V(i,r)

](α)

+
∑

α∈N2
2q

dp(Ui,Uj)D(α)dq(Vi,Vj)
[
V̂(i,j) −V(i,j)

](α)
(IBijrs − IAijrs),

and R45 corresponds to IX × IY and IY × IX and is given by

R45 = 1
n4

n∑
i,j,r,s=1

∑
α∈N2p

∑
β∈N2q

D(α)dp(Ui,Uj)D(β)dq(Vr,Vs)

·
[
Û(i,j) −U(i,j)

](α) [
V̂(r,s) −V(r,s)

](β)
(IBijrs − IAijrs)

− 2 1
n4

n∑
i,j,r,s=1

∑
α∈N2p

∑
β∈N2q

D(α)dp(Ui,Uj)D(β)dq(Vi,Vr)

·
[
Û(i,j) −U(i,j)

](α) [
V̂(i,r) −V(i,r)

](β)
(IBijrs − IAijrs)

+ 1
n4

n∑
i,j,r,s=1

∑
α∈N2p

∑
β∈N2q

D(α)dp(Ui,Uj)D(β)dq(Vi,Vj)
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·
[
Û(i,j) −U(i,j)

](α) [
V̂(i,j) −V(i,j)

](β)
(IBijrs − IAijrs).

We will show that R41, R42, R43, R44 and R45 are all oP (n−1).
Consider E(R2

41). Under the null hypothesis that X ⊥⊥ Y,

E[R2
41] = 1

n8

n∑
i,j,r,s=1

n∑
i′,j′,r′,s′=1

∑
α∈N2p

∑
α′∈N2p

E

{
D(α)dp(Ui,Uj)D(α′)dp(Ui′ ,Uj′)

[
Û(i,j) −U(i,j)

](α) [
Û(i′,j′) −U(i′,j′)

](α)

(dq(Vr′ ,Vs′)− 2dq(Vi′ ,Vr′) + dq(Vi′ ,Vj′)) (IBi′j′r′s′ − IAi′j′r′s′ )

(dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj)) (IBijrs − IAijrs)
}
. (A.34)

Notice that if {i, j, r, s} ∩ {i′, j′, r′, s′} = ∅, the expectation term in (A.34) is 0
because

E

{
(dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj)) (IBijrs − IAijrs)∣∣∣∣∣F̂Z,Xi,Xj,Xr,Xs,Zi′ ,Zj′ ,Zr′ ,Zs′

}
= 0.

Therefore, the number of non-zero terms is at most n4 · 4n3 · 2p · 2p = 16n7p2. Next
it can be shown by straightforward calculus that for any |α| = 1,

|D(α)dp(Ui,Uj)| ≤ 1.

It follows that each expectation in (A.34) is bounded by

(2√q)2E
[
‖F̂Z − FZ‖2

∞IAcijrs

]
≤ 4q

[
E‖F̂Z − FZ‖4

∞

]1/2 [
E
(
IAcijrs

)]1/2
≤ 4q · Cp,q

n

√
96δn

n

n− 1

and hence we obtain

E(R2
41) ≤ n−8 · 16n7p2 · 4q · Cp,q

n

√
96δn

n

n− 1 .

This shows that R41 = oP (n−1). By the same argument, R42 = oP (n−1) because
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after permutation of the indexes (set (r, s, i, j) instead of (i, j, r, s) for the first
summand, and (i, r, j, s) instead of (i, j, r, s) for the second summand), R42 can be
written as

R42 = 1
n4

n∑
i,j,r,s=1

∑
α∈N2q

D(α)dq(Vi,Vj) (dp(Ur,Us)− 2dp(Ui,Ur) + dp(Ui,Uj))

·
[
V̂(i,j) −V(i,j)

](α)
(IBijrs − IAijrs).

Next, consider E(R2
43). Under the null hypothesis that X ⊥⊥ Y,

E[R2
43] = 1

n8
1
4

n∑
i,j,r,s=1

n∑
i′,j′,r′,s′=1

∑
α∈N2

2p

∑
α′∈N2

2p

E

{
D(α)dp(Ui,Uj)D(α′)dp(Ui′ ,Uj′)

[
Û(i,j) −U(i,j)

](α) [
Û(i′,j′) −U(i′,j′)

](α)

(dq(Vr′ ,Vs′)− 2dq(Vi′ ,Vr′) + dq(Vi′ ,Vj′)) (IBi′j′r′s′ − IAi′j′r′s′ )

(dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj)) (IBijrs − IAijrs)
}
. (A.35)

Notice that if {i, j, r, s} ∩ {i′, j′, r′, s′} = ∅, the expectation term in (A.35) is 0
because

E

{
(dq(Vr,Vs)− 2dq(Vi,Vr) + dq(Vi,Vj)) (IBijrs − IAijrs)∣∣∣∣∣F̂Z,Xi,Xj,Xr,Xs,Zi′ ,Zj′ ,Zr′ ,Zs′

}
= 0.

Therefore, the number of non-zero terms is at most n4 · 4n3 · 2p · 2p = 16n7p2. Next
it can be shown by straightforward calculus that for any |α| = 2,

|D(α)dp(Ui,Uj)| ≤
1
|Uij|

,

Thus each expectation in (A.35) is bounded by

(2√q)2δ−2
n E

[
‖F̂Z − FZ‖4

∞IAcijrs

]
≤ 4qδ−2

n

[
E‖F̂Z − FZ‖8

∞

]1/2 [
E
(
IAcijrs

)]1/2
≤ 4qδ−2

n ·
Cp,q
n2

√
96δn

n

n− 1
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Therefore,

E(R2
43) ≤ 1

n8
1
4 · 16n7p2 · 4qδ−2

n ·
Cp,q
n

√
96δn

n

n− 1 ,

which shows that R43 = oP (n−1). By the same argument, R44 = oP (n−1) because
after permutation of the indexes, R44 can be written as

R44 = 1
n4

n∑
i,j,r,s=1

1
2
∑

α∈N2
2q

D(α)dq(Vi,Vj) (dp(Ur,Us)− 2dp(Ui,Ur) + dp(Ui,Uj))

·
[
V̂(i,j) −V(i,j)

](α)
(IBijrs − IAijrs),

Finally, consider R45.

E|R45| ≤ 3 · 1
n4 · n

4 · (2p)(2q) · E
[
‖F̂Z − FZ‖2

∞IAcijrs

]
≤ 12pqCp,q

n

√
96δn

n

n− 1

which shows that R45 = oP (n−1). This completes the proof.

A.4 Derivations Needed for the Proof of Theorem
2.4.1

A.4.1 Proof of (2.66)

The expressions for the ζdp,dq ,j, j = 1, . . . , 5, functions that appear in (2.66) are

ζdp,dq ,1(Z(1,...,6)) =
∑
α∈N2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,

ζdp,dq ,2(Z(1,...,6)) = dp(U1,U2)
∑
α∈N4q

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 ,

ζdp,dq ,3(Z(1,...,6)) = 1
2
∑

α∈N2
2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,
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ζdp,dq ,4(Z(1,...,6)) = 1
2dp(U1,U2)

∑
α∈N2

4p

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 ,

ζdp,dq ,5(Z(1,...,6)) =
∑
α∈N2p

∑
β∈N4q

D(α)dp(U1,U2)D(β) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α) [~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)
](β)

IB1234 ,

We will only show (2.66) for the case of j = 1 and j = 5; the cases for j = 2, 3 and
4 follow by arguments similar to those for the case j = 1.

Write IB1234 = IC1234ID1234 , where

C1234 =

 min
a1,a2∈{1,2,3,4}

a1<a2

|Ua1a2 |p > 0

 , D1234 =

 min
a1,a2∈{1,2,3,4}

a1<a2

|Va1a2|q > 0

 ,(A.36)
For the case of j = 1, notice that under X ⊥⊥ Y, for any (i1, i2) ∈ I2

6 ,

E
[
ζdp,dq ,1(Z(1,...,6))

∣∣∣Zi1 = z,Zi2 = z
]

=
∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi1 = x,Xi2 = x


· E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Yi1 = y,Yi2 = y

 ,
(A.37)

If 5 /∈ {i1, i2}, each summand in (A.37) is 0 because

∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi1 = x,Xi2 = x

 = 0 ,

(A.38)

which follows by the fact that

E

~IX(5,5)(X(1,2))−U(1,2)

∣∣∣∣∣∣X1,X2,X3,X4,X6

 = 0 .
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If {i1, i2} ∩ {1, 2, 3, 4} = ∅, each summand in (A.37) is 0 because

E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Yi1 = y,Yi2 = y

 = 0.

(A.39)
Therefore, each summand in (A.37) is nonzero only if one of the two indexes i1 and
i2 equals 5 and the other equals 1, 2, 3 or 4. Thus

∑
(i1,i2)∈I2

6

E

ζk,l,1(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 = 2
4∑
i=1

E

ζk,l,1(Z(1,...,6))

∣∣∣∣∣∣Zi = z,Z5 = z


= 2

4∑
i=1

∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi = x,X5 = x


· E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Yi = y


For simplicity, define

Ai =
∑
α∈N2p

E

D(α)dp(U1,U2)
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣∣Xi = x,X5 = x


(A.40)

Bi = E

(dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) ID1234

∣∣∣∣∣∣Yi = y

 (A.41)

Then by symmetry, it is easy to verify that A1 = A2, A3 = A4, B1 = −B2,
B3 = −B4. Therefore,

2
∑

(i1,i2)∈I2
6

E

ζk,l,1(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 = 2
4∑
i=1

AiBi = 0 (A.42)

For the case of j = 5, notice that under X ⊥⊥ Y, for any (i1, i2) ∈ I2
6 ,

E
[
ζdp,dq ,5(Z(1,...,6))

∣∣∣Zi1 = z,Zi2 = z
]

=
∑
α∈N2p

E

{
D(α)dp(U1,U2)

[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣Xi1 = x,Xi2 = x
}

·
∑
β∈N4q

E

{
D(β) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)) (A.43)
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·
[
~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)

](β)
ID1234

∣∣∣∣∣Yi1 = y,Yi2 = y
}
. (A.44)

If 5 /∈ {i1, i2} or 6 /∈ {i1, i2}, each summand in (A.37) is 0 by similar arguments as
those to show (A.38). Therefore, each summand in (A.37) is nonzero only if one of
{i1, i2} = {5, 6}. Thus

∑
(i1,i2)∈I2

6

E

ζk,l,5(Z(1,...,6))

∣∣∣∣∣∣Zi1 = z,Zi2 = z

 = 2E
ζk,l,5(Z(1,...,6))

∣∣∣∣∣∣Z5 = z,Z6 = z


= 2

∑
α∈N2p

E

{
D(α)dp(U1,U2)

[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IC1234

∣∣∣∣∣X5 = x,X6 = x
}

·
∑
β∈N4q

E

{
D(β) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)

](β)
ID1234

∣∣∣∣∣Y5 = y,Y6 = y
}

= 0

because

∑
β∈N4q

E

{
D(β)dq(V3,V4)

[
~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)

](β)
ID1234

∣∣∣∣∣Y5 = y,Y6 = y
}

=
∑
β∈N4q

E

{
D(β)dq(V1,V3)

[
~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)

](β)
ID1234

∣∣∣∣∣Y5 = y,Y6 = y
}

=
∑
β∈N4q

E

{
D(β)dq(V1,V2)

[
~IY(6,6,6,6)(Y(1,2,3,4))−V(1,2,3,4)

](β)
ID1234

∣∣∣∣∣Y5 = y,Y6 = y
}
.

On Wed, May 24, 2017 at 2:49 PM, roycelin3 <roycelin3@gmail.com> wrote:

ζdp,dq ,1(Z(1,...,6))

=
∑
α∈N2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,

ζdp,dq ,2(Z(1,...,6))
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= dp(U1,U2)
∑
α∈N4q

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 ,

ζdp,dq ,3(Z(1,...,6))

= 1
2
∑

α∈N2
2p

D(α)dp(U1,U2) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α)
IB1234 ,

ζdp,dq ,4(Z(1,...,6))

= 1
2dp(U1,U2)

∑
α∈N2

4p

D(α) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)

](α)
IB1234 ,

ζdp,dq ,5(Z(1,...,6))

=
∑
α∈N2p

∑
β∈N4q

D(α)dp(U1,U2)D(β) (dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2))

·
[
~IX(5,5)(X(1,2))−U(1,2)

](α) [~IY(5,5,5,5)(Y(1,2,3,4))−V(1,2,3,4)
](β)

IB1234 ,

A.4.2 Proof of (2.67)

For any (i1, i2) ∈ I2
6 we have that, under X ⊥⊥ Y,

E[ζdp,dq ,5(Z(1,...,6))|Zi1 = z,Zi2 = z]

= E[dp(U1,U2)|Xi1 = x,Xi2 = x]E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y,Yi2 = y]

which is easily seen to be zero if {i1, i2} = {5, 6}. Therefore

1
(6)2

∑
(i1,i2)∈I2

6

E

ζdp,dq ,5(Z1, . . . ,Z6)

∣∣∣∣∣∣Zi1 = z,Zi2 = z


= 1

(6)2
2

4∑
i1=1

6∑
i2=5

{
E[dp(U1,U2)|Xi1 = x,Xi2 = x]
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· E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y,Yi2 = y]
}

+ 1
(6)2

∑
(i1,i2)∈I2

4

{
E[dp(U1,U2)|Xi1 = x,Xi2 = x]

· E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y,Yi2 = y]
}

= 1
(6)2

4
4∑

i1=1

{
E[dp(U1,U2)|Xi1 = x]

· E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y]
}

+ 1
(6)2

∑
(i1,i2)∈I2

4

{
E[dp(U1,U2)|Xi1 = x,Xi2 = x]

· E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y,Yi2 = y]
}

It can be easily seen that the first summation is 0 by writing

4∑
i1=1

{
E[dp(U1,U2)|Xi1 = x]

· E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y]
}

=
4∑

i1=1
AiBi

where for i = 1, . . . , 4 ,

Ai = E[dp(U1,U2)|Xi1 = x],

Bi = E[dq(V3,V4)− 2dq(V1,V3) + dq(V1,V2)|Yi1 = y]

and noting that A1 = A2, A3 = A4 = 0, B1 = −B2.
For the second summation, each term equals to one of the following expression

for different cases:

(i1, i2) = (1, 2) or (2, 1) : dp(u,u) {E[dq(V1,V2)]− 2E[dq(v,V1)] + dq(v,v)}

(i1, i2) = (1, 3) or (3, 1) : E[dp(u,U1)] {2E[dq(v,V1)]− 2dq(v,v)}

(i1, i2) = (1, 4) or (4, 1) : 0

(i1, i2) = (2, 3) or (3, 2) : 0
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(i1, i2) = (2, 4) or (4, 2) : E[dp(u,U1)] {−2E[dq(V1,V2)] + 2E[dq(v,V1)]}

(i1, i2) = (3, 4) or (4, 3) : E[dp(U1,U2)] {E[dq(V1,V2)]− 2E[dq(v,V1)] + dq(v,v)}

The proof of (2.67) follows by adding these expressions.
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