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Abstract

Big datasets are now becoming a standard quantity in large-scale data analysis;
they involve social and information network, and scientific mesh computations.
These datasets are commonly stored and processed across multiple machines due
to limited capabilities (such as memory and CPU) of single machines. However,
many available analysis tools are still lacking in terms of an ability to fully utilize
existing distributed-memory architectures. As these datasets are usually processed
and analyzed in the form of graphs or meshes, we propose scalable and efficient
approaches for graph and mesh computations for distributed-memory systems
in this dissertation. Although graph and mesh computations are closely related
regarding their parallelization approaches, some of their unique characteristics still
need to be addressed separately. Thus, we organize the dissertation into two parts.
The first part is for distributed graph computations, and the second part is for
distributed mesh computations.

In the first part of the dissertation, we focus on graph computations. First, we
study a problem of Single-Source Shortest Path (SSSP) by analyzing and evaluating
three well-known SSSP algorithms, i.e, Dijkstra’s, Bellman-Ford, and ∆-stepping
algorithms. We implement these algorithms to run on distributed-memory systems
based on a bulk synchronous parallel model. Their performances are evaluated
and compared. Next, we propose our SSSP algorithm by combining advantages
of these SSSP algorithms and utilizing a two-dimensional (2D) graph layout for
our graph data structures. Then, we extend our study of the 2D graph data
structures and optimization approaches to other well-known graph algorithms
including breadth-first search, approximate diameter, connected components, and
PageRank on various real-world graphs. Our objective is to implement an efficient
graph framework for distributed-memory systems that works efficiently for many
graph algorithms on various graph types. Finally, we propose graph coloring
algorithms that are scalable and can be efficiently used for both graph and mesh
applications.

In the second part of the dissertation, we focus on parallel mesh computations
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on distributed-memory systems. First, we propose a domain decomposition method
for 2D parallel mesh generation based on the MeTis partitioner with angle improve-
ments. Our method is fast and gives good subdomain quality in terms of subdomain
angles and mesh quality. Next, we propose a general-purpose parallel mesh warping
method based on a parallel formulation of a sequential, log barrier-based mesh
warping algorithm called LBWARP. Our parallel algorithm utilizes a modified
distributed graph data structure with a vertex ghosting technique resulting in an
efficient mesh warping algorithm which employs minimal communication. Since
the algorithm needs to solve a sparse linear system with three right-hand sides (for
3D meshes), i.e., are each for the final x-, y- and z-coordinates in the deformed
meshes, we also provide three parallel sparse linear solvers that support multiple
right-hand sides for users to choose from based on the size of the problem and the
number of available cores. These solvers further improve the overall performance of
the algorithm, especially when a sequence of multiple deformations is required.
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Chapter 1 |
Introduction

Big datasets are now increasingly common in large-scale data analysis due to the
rapid growth of research related to social and informational networks (such as
online social networks, electronic communications, and e-commerce) and scientific
mesh computations that often involve large-scale and/or high-accuracy simulations.
Examples of large data relating online and web services includes the reports of over
1.71 billion monthly active Facebook users (June 2016) [124], 188 million monthly
visitors on Amazon’s websites (September 2015) [123], and 75 million subscribers
for Netflix (January 2016) [125]. For high-accuracy scientific simulations, there
have been recent reports and research on large-scale mesh simulations, such as the
M8 earthquake simulation involving 436 billion mesh vertices [33], aerodynamic
wing design simulations involving 92 billion mesh elements [101], and computational
fluid dynamic simulations involving 78 billion mesh elements [126].

As most large data is heterogeneous in nature, it is commonly represented in
the form of a graph with relations depicted among entities. Facebook’s friend
graph, for example, is a graph in which each vertex represents a user, and each edge
represents a friend relation between two vertices. These graph representations help
one to visualize and understand the structures of large data. Furthermore, more
detailed information and knowledge can be extracted using graph analytics, such
as recommendations (e.g., friend recommendations in Facebook and product/movie
recommendations in Amazon), prediction and decision (e.g., threat determination
in CyberSecurity and medicine), and optimization (e.g., optimal routes for traffic
network and optimal layouts for electronics).

As for meshes, they have been commonly used in computer modeling and simu-
lation in order to discretize the geometric domain of interest. In some applications,
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especially for engineering applications for which meshes are required to accurately
represent the geometric domain, they can become very complex in terms of the
number of elements and the element types. For example, a simulation of the
aerodynamics of a car or an airplane requires very detailed and good quality meshes
especially on/near the boundary surfaces, interesting features, high curvature areas
and time-dependent areas of the model. Normally not only is the vehicle represented
by a mesh, but the air around it also needs to be represented by a mesh to capture
the dynamic flow during the simulation when a finite element method is employed.

With tremendous size of the data, relating graphs and meshes also becomes
more complicated, and overwhelms the capacity of single processor machines.
Thus, processing and storing this information is more practical with high per-
formance computing systems, such as multicore and multithreaded architectures
and distributed-memory systems. However, distributed-memory systems are more
appealing due to higher potential for the scalability, i.e., they can provide very
large number of cores and memory. Furthermore, the emerging cloud computing
in the past few years provided by Amazon, Google, and Salesforce.com gives an
opportunity to the public to be able to access abundant computing resources and
services. Some services provided by the cloud can be viewed as a specialized form
of distributed-memory systems, such as Amazon EC2. Although the hardware and
networking are not up to the standard of many distributed-memory HPC systems,
Amazon EC2 is more cost efficient for many users and researchers.

For distributed memory systems, each processor has its own local memory which
is not shared among other processors. Thus, each processor can only process the
data on its own memory. Accessing non-local data requires explicit communication,
usually in the form of messages. Since each processor has its own memory, when the
number of processors increases, the size of the memory also increases. Furthermore,
memory accessing is less likely a bottleneck, as the memory space can only be
accessed by the owning processor. This architecture is also widely used because it
is very cost effective, as it can be built from commodity processors and networking.

There are several difficulties and challenges associated with utilizing such systems
to their full potential. First, algorithms need to be re-implemented specifically
for distributed-memory machines since sequential algorithms do not efficiently run
on distributed setups, as they do not utilize all available processors. One of the
main differences between the two environments is the presence of interprocessor

2



communication and data sharing. While single machines do not require any
communication in processing their data, it is one of major considerations for
distributed-memory systems. Furthermore, real-world, large-scale data is difficult
to process. Even though computational techniques are important for parallel graph
computations, data structures are also equally important as they affect the overall
performance. For example, different graph types can lead to totally different results
on the same algorithm, specifically for the real-world graphs due to their highly
irregular structures as most graph algorithms are data-driven. Furthermore, many
real-world graphs usually have highly skewed power-law degree distributions that
are challenging to process efficiently in large-scale parallel environments. These
lead to difficulties in parallelizing graph computations since these graphs are hard
to partition efficiently [1] and distribute evenly, and thus, result in performance
degradation from poor load-balancing and data locality issues. In contrast to
parallel mesh processing which is usually computationally-intensive, one needs to
determine the tradeoff between data duplication and communication needed to
achieve the optimal performance.

Several researchers have focused on efficiently implementing parallel graph and
mesh frameworks for distributed-memory systems. Parallel Boost Graph [55] is
among the early attempts that extend the well-known (sequential) Boost Graph
Library. However, the focus of the implementation is on generic programming that
provides high flexibility and customization to support various graph data structures
and algorithms. As a result, the framework does not scale well for large distributed
systems. Distributed GraphLab [79] is a distributed graph framework based on an
asynchronous parallel shared-memory framework, i.e., GraphLab [80]. Distributed
GraphLab provides a graph abstraction similar to GraphLab by introducing ghost
vertices, which are nonlocal vertices at the partition boundary, and distributed
read/write lock systems. Another variant of Distributed GraphLab, PowerGraph,
is an extension framework that is more efficient when processing power law graphs,
(i.e., graphs that contain few vertices with very high degree while the majority of
vertices have very low degree, which leads to a severe load imbalance). The idea of
PowerGraph is to utilize a vertex-cut technique to handle high degree vertices.

In this dissertation, we focus on large-scale graph and mesh computations for
distributed-memory systems. We parallelize and optimize not only the algorithms,
but also the underlying data structures and representations which can easily extend
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to other similar algorithms. Distributed computations for graphs and meshes
share several key considerations, such as the concept of data distribution, inter-
processor communication, and efficient concurrent computation. An overview of
these considerations is given in Chapter 2. Even though graphs and meshes are
related to some extent, they are still quite different in terms of structures and
characteristics. Thus, the dissertation is organized in two major parts, one for graph
computations (Chapters 3-6), and the other for mesh computations (Chapter 7-8).

In Chapter 3, performance analysis and evaluation of three well-known single-
source shortest path (SSSP) algorithms are discussed. These algorithms include
Dial’s algorithm (i.e., a Dijkstra variation that is more suitable for parallel imple-
mentation), Bellman-Ford, and ∆-stepping, on distributed-memory systems. We
implement the distributed versions of these three algorithms based on the bulk
synchronous parallel model. The analysis results include weak and strong scaling
and the effect of weight distributions of a graph. Furthermore, we give more detailed
results of the ∆-stepping algorithm since it performs the best among those three.
We show the impact of ∆ values on the algorithm performance. Finally, we provide
some performance comparisons of ∆-stepping to some well-known graph libraries
on single-core and single-node (16 core) environments.

In Chapter 4, we generalize the concept of the 2D layout for graph computations
and apply to other graph algorithms such as breadth-first search, approximate diam-
eter, connected components, Bellman-Ford and PageRank. We show performance
results and analysis of algorithms on various large-scale graphs. The performance
results between the algorithms with the 1D and 2D graph layouts are given. Finally,
we compare the performance results of our implementations with those in other
graph frameworks.

In Chapter 5, we implement novel SSSP algorithms based on the analysis from
Chapter 3 combined with the 2D graph layout from Chapter 4. Even though SSSP
algorithms with the 2D graph layout involves more communication steps than SSSP
algorithms that use the common vertex distribution approach (or the 1D graph
layout), the communication dimension is decreased, and additional communication
usually has low overhead. Furthermore, adjacencies of high-degree vertices are now
distributed across multiple processors. Thus, overall load balancing is improved.
More detailed discussion and analysis are provided in this chapter.

In Chapter 6, we combine some advantages of some recent graph coloring
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algorithms with the 2D graph layout to further improve the overall performance of
the algorithms. We implement distributed graph coloring algorithms using similar
approaches as the graph algorithms implemented in Chapter 5. Finally, we evaluate
the effect of 2D graph layout on various types of graphs and meshes.

In Chapter 7, we introduce a domain decomposition technique for 2D parallel
mesh generation. Our algorithm is based on mesh partitioning using MeTis. It
is very fast and gives good subdomain quality in terms of the subdomain angles
which are guaranteed to be greater than 60◦. Meshes generated on our subdomains
provide good mesh quality, i.e., comparable to a static geometric medial axis domain
decomposition algorithm called MADD which is more computationally-intensive.

In Chapter 8, we propose a general-purpose parallel mesh warping algorithm for
distributed-memory machines. Our algorithm is based on a parallel formulation of a
serial, log barrier-based mesh warping algorithm called LBWARP. Most steps of our
algorithm can be implemented using an embarrassingly parallel approach that can
be achieved from our data distribution combined with a vertex ghosting technique.
Thus, our algorithm has a very low communication overhead and demonstrates
good strong scalability. We also provide three parallel sparse linear solvers that
support multiple right-hand sides for users to choose from based on the size of the
problem and the number of available cores. We show that these solvers can further
increase the overall performance of the algorithm.

The outline of the dissertation is shown in Fig 1.1. It presents the two parts of
the dissertation and their chapters. The arrows in the chart indicate the dependency
between chapters.
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Figure 1.1. The dissertation outline.
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Chapter 2 |
Considerations in Parallel Com-
putations on Distributed-Memory
Systems

The key aim for parallel computations is to solve usually large or time-consuming
problems as fast and as efficiently as possible in order to minimize the compute
cost and to achieve optimal throughput. The parallelization process usually starts
with decomposing a large problem into smaller subproblems or tasks, and then
processing them simultaneously on multiple processors while making sure that a
final result is the same as the result obtained from processing the original problem
with a single processor. Ideally, the performance goal of parallel computations
is to run a code p times faster on p processors than when running the code in
serial. However, due to various factors during the parallelization process, it is nearly
impossible to achieve this ideal performance. One of the main reasons is due to the
overhead during the parallelization from the decomposition, communication, and
synchronization. Moreover, there are also some difficulties as many problems are
nontrivial to parallelize due to their irregularity, nonlocality of data, and subtask
dependencies. In this chapter, we discuss some considerations that are crucial for
performing parallel computations on distributed-memory systems.
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2.1 Data Structure Decomposition
One of the most important questions for parallel computations is how the problem
is partitioned into multiple subproblems that can then be distributed and processed
simultaneously. Domain decomposition is the first step for parallel computations
and is very challenging; it is also the most important step. Since the parallel
performance is subject to the worst performance among processors, one of the
decomposition objectives is to partition the problem into subproblems that require
approximately the same amount of computation and communication. However, it
is not easy to achieve this goal, as there are numerous factors that can affect the
parallel performance.
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Figure 2.1. (a) A directed graph and (b) its equivalent adjacency list.

A common partitioning approach that is used in most distributed graph algo-
rithms is to partition the graph vertices equally. This approach is usually done by
applying methods based on hash partitioning of the vertex ID or other partition-
ing algorithms [69] that minimize the number of edges between partitions. The
partitioned vertices are then distributed along with their outgoing edges to their
corresponding partitions. For example, consider a directed graph and its equivalent
adjacency list shown in Fig. 2.1 (a) and (b), respectively. To decompose the graph
into four partitions, the decomposition starts with partitioning vertices using their
ID. Thus, two vertices are assigned for each partition. After that, all outgoing
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edges of the vertices are distributed to the same partition. Fig. 2.2 shows the final
partition of the same graph and its distributed adjacency list after applying the
decomposition. This partitioning approach is widely used in many well-known graph
algorithms [10,24,84,93], libraries [45,55,115] and frameworks [27,51,70,79,136].
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Figure 2.2. (a) A four-partition of the directed graph from Fig. 2.1 and (b) its distributed
adjacency list.

2.2 Communication and Synchronization
Communication and synchronization are two of the major considerations in parallel
computations, as most parallel programs require processors to share data with
others to progress through the computations and to make sure that all processors
are in the same state. Within distributed-memory systems, communication among
processors requires explicit messages and initialization between the sender and the
receiver. This inter-processor communication creates overhead, as machine resources
are also utilized for initiating and sending/receiving messages. Synchronization is
required at the end of the communication to guarantee the communication succeeds.
It also helps determine the global state of the program.

Many graph algorithms [10,24,84,93] often aggregate messages before initiating
communication to decrease communication start-up time that can be significant if
the number of messages is large. Message aggregation is often done within each
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iteration by combining small messages that need to be sent to the same processor
into one larger message. For example, in Fig. 2.2, if the algorithm is required
to send some vertex information from each vertex to its adjacent vertices, the
processor that owns vertices 2 and 3 needs to send three messages to the processor
that owns vertices 4 and 5. However, with the aggregation, only one message
aggregated from the three separate messages is sent in this step. Furthermore,
collective communication (e.g., all-to-all, all-gather, etcetera) is often used in
parallel algorithms to simplify the algorithm. Thus, it improves maintainability of
the program while also increasing the performance of parallel algorithms.

Normally, there are two synchronization models used by distributed compu-
tations, i.e., synchronous and asynchronous processing. With synchronous pro-
gramming, all processors work on the same (local) task either on computation or
communication and wait (or are blocked by a barrier) until all processors finish
before they can move onto the next task. This parallel model has been used in
many algorithms, not only does it simplify the algorithms, but it also guarantees
sequential program execution. However, sometimes, this model can lead to a serious
bottleneck from the synchronization overhead, e.g., most processors are idle while
waiting for the few others to finish their tasks. To avoid this issue, asynchronous
processing is introduced. This model removes the blocking barriers so that each
processor can start the next task without waiting for others to finish. However,
the performance of algorithms can be varied based on the algorithmic data de-
pendency, architecture and the data structures used in the implementations. This
asynchronous model is usually referred to as overlapping the communication with
the computation in the context of distributed computations [51,79,134].

2.3 Load Balancing and Mapping
Load balancing is also one of the important factors that greatly affect the perfor-
mance of parallel algorithms since the slowest processor often determines the overall
performance. Balancing the workload, communication and memory requirement
can reduce the overhead of the parallel computations and increase the algorithm’s
scalability. Load balancing is closely related to partitioning, as good load balancing
can be achieved from an efficient partition of the problem that yields equal workload
and/or minimizes the communication among processors. However, some problems
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may not be able to be partitioned effectively; thus, alternative techniques which
yield good load balancing are required. Normally, mapping of the partitions to
processors is statically assigned at the beginning of the computation without further
adjustment. Thus, if the partitions of the problem are not well-partitioned, the
performance of the algorithm can be affected from load imbalancing. To han-
dle load imbalancing issues, many researchers have proposed various partitioning
and/or reordering methods such as randomization, minimum edge-cut [68, 127]
and matrix-based reordering [5, 104]. Other techniques that involve dynamically
assigning partitions among idle processors have also been introduced [70].

2.4 Other Considerations
There are many other considerations that can affect the overall performance of
parallel distributed computations and depend on the characteristics of the problem
itself. Usually, the performance of the parallel algorithms depends on the tradeoff
between computation and communication. This concept involves the granularity
of the parallel algorithms. Fine-grain parallelism which has low computation to
communication ratio can give near optimal load balance, but it is also possible to
create very high communication and synchronization overhead in this manner. In
contrast, coarse-grain parallelism, which has high computation to communication
ratio can minimize the communication and synchronization overhead, but good
load balancing may be hard to achieve.

Replication is another parallel processing approach that can significantly affect
the parallel algorithm’s performance. It is an approach that allows some additional
duplicated data that is not local to the processor but is required for local com-
putation to be stored in the processor. This approach can be advantageous for
algorithms that have high communication cost to exchange information among
processors such as algorithms with high data dependency among different partitions.
Thus, replicating this nonlocal data can help minimize or avoid a large portion
of communication and hence significantly reduce the communication overhead.
Fig. 2.3 shows a local view of each partition from Fig. 2.2 when adding replication.
The solid circles indicate the actual vertices that belong to the partition, while
the dotted circles indicate the nonlocal vertices replicated in the partition. By
replicating these nonlocal vertices, the processor that owns vertices 2 and 3 now
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Figure 2.3. A local view of each partition when adding replicated vertices that are
adjacent to the local vertices. The solid circles indicate the actual vertices that belong
to the partition while the dotted circles indicate the non-local vertices replicated in the
partition.

requires three times as much space. This is a tradeoff that can occur when using a
replication technique. This approach is well-suited for many parallel mesh optimiza-
tion algorithms that require accessing positions of neighbor vertices. Since most
communication is due to accessing current positions of neighbor vertices residing
on different processors, providing local copies of nonlocal information can avoid
or reduce such communication. Although overall performance can be considerably
improved, it comes with the tradeoff of managing and maintaining redundant data.
This technique is sometimes called ghosting or local caching and has been applied
in many parallel algorithms [20,87,107].
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Chapter 3 |
Performance Analysis of Single-
Source Shortest Path Algorithms
on Distributed-Memory Systems

Single-source shortest path (SSSP) is a key computation arising in large-scale
network analysis, and it is a possible candidate to be included in the Graph500
benchmark [54]. This classical graph analytic problem has been studied for decades
because of its widely used applications in many research areas such as communication
and transportation, electrical engineering, the World Wide Web and social networks.

Parallel algorithms for SSSP have been studied on various types of architec-
tures. Madduri et al. [84] present an experimental study of parallel algorithms
for solving SSSP for large-scale directed graphs with non-negative edge weights
on a multithreaded parallel architecture, Cray MTA-2. The algorithms are based
on Meyer and Sander’s ∆-Stepping algorithm [88] which is a variant of Dijkstra’s
algorithm [39] that provides more parallelism by introducing a ∆ parameter to
control a tradeoff between work efficiency and concurrency. Crobak et al. [32] study
parallel SSSP on a similar architecture by implementing a parallel version of Tho-
rup’s algorithm which is theoretically suited for shared-memory systems. However,
their results are only comparable to [84]. Other well-know SSSP implementations
that efficiently utilize shared memory multicore processors are as part of Galois

The work of this chapter has been published in:
[94] T. Panitanarak and K. Madduri, "Performance analysis of single-source shortest path algo-
rithms on distributed-memory systems," Proceedings of the 6th SIAM Workshop on Combinatorial
Scientific Computing, July 2014, pp. 60-63.
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project [71, 90]. They implement parallel versions of modified chaotic iteration
and modified Bellman-Ford algorithms on their Galois framework. For distributed-
memory systems, Edmonds et al. implement parallel SSSP algorithms that are
based on Dijkstra’s and ∆-stepping algorithms. However, these implementations are
not efficient in terms of execution time as they are parts of Parallel Boost Graph Li-
brary [40,41] which more focuses on a generic programming paradigm. More recent
research includes an implementation of SSSP on GPUs and distributed-memory
systems. Davidson et al. [35] show good results of their SSSP based on ∆-stepping
for GPUs. Chakaravarthy et al. [24] introduce a highly optimized version of ∆-
stepping that improve overall scalability of the algorithm on distributed-memory
systems.

Our Contributions
We have implemented parallel versions of three well-known SSSP algorithms,

Dial’s algorithm [38], Bellman-Ford and ∆-stepping [84,88], for graphs with positive
integer edge weights. The weights can be either uniformly or normally distributed.
The main contributions of this chapter are as follows:

• A performance analysis of three well-known SSSP algorithms, Dial’s algorithm,
Bellman-Ford and ∆-stepping on distributed-memory systems, running on
up to 2048 cores (128 nodes).

• A demonstration of how weight distributions affect the algorithm performance.

• A demonstration of how the values of ∆ parameter affect the performance of
the ∆-stepping algorithm.

3.1 Single Source Shortest Path Algorithms
Let G = (V,E,w) be a weighted undirected graph with n = |V | vertices, m = |E|
edges and integer weights w(e) > 0 for all e ∈ E. Define s ∈ V to be a source
vertex and d(v) to be a tentative distance from s to v (initially set to ∞) for every
v ∈ V . The SSSP problem is to find δ(v) ≤ d(v) for all v ∈ V . Note that d(s) = 0
and d(v) =∞ for any v that are not reachable from s.

Relaxation is an operation to update d(v) using in many well-known SSSP
algorithms such as Dijkstra’s algorithm and Bellman-Ford. The operation updates
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d(v) using a previously updated d(u) for each (u, v) ∈ E. An edge relaxation of
(u, v) is defined as d(v) = min{d(v), d(u) + w(u, v)}. A vertex relaxation of u is a
set of edge relaxations of all out-going edges of u. A vertex v is marked as active
if it is not settled and its d(v) is previously updated. Thus, a variation of SSSP
algorithms is generally based on different relaxation approaches.

The classical Dijkstra’s algorithm relaxes vertices in ascending order of all active
vertices based on their tentative distances. Any active vertex that has the lowest
tentative distance is relaxed first and is marked as settled after one relaxation.
(Thus, the first active vertex to be relaxed is s.) To keep track of the relaxation
order of all active vertices, the algorithm uses a priority queue that stores and
orders the vertices based on their current tentative distances. A vertex is added to
the queue only if it is visited for the first time. A vertex that has the lowest distance
is always on top of the queue waiting to be processed first before it is removed
from the queue. The algorithm terminates when the queue is empty. Although this
priority queue provides optimal work efficiency for the algorithm, it also limits the
concurrency as only one vertex can be relaxed at a time. Another variant of the
Dijkstra’s algorithm for integer-weighted graphs that is more suitable for parallel
implementation is called Dial’s algorithm. It uses a bucket data structure instead
of the priority queue to avoid the overhead from maintaining the queue while still
giving the same work performance as the Dijkstra’s algorithm (i.e., each vertex
is relaxed only once). Each bucket has a unit size and holds all active vertices
that have the same tentative distance as a bucket number. The bucket k contains
all active vertices v with d(v) = k. The algorithm processes each bucket in order
starting from the lowest to the highest bucket numbers. Any vertex in each bucket
has an equal priority and can be processed simultaneously. The present of the
buckets is the main parallelism of the algorithm.

Another well-known SSSP algorithm, Bellman-Ford, allows vertices to be relaxed
in any order. Thus, there is no guarantee if a vertex is settled after it is relaxed.
Generally, the algorithm uses a first-in-first-out (FIFO) queue to maintain the
vertex relaxation order since there is no actual priority of vertices. A vertex is
added to the queue when its tentative distance is updated and is removed from
the queue after it is relaxed. Thus, any vertex can be added to the queue multiple
times whenever its tentative distance is updated. The algorithm terminates when
the queue is empty. Since the order of relaxations does not affect the correctness
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of the algorithm, the algorithm can provide high concurrency from simultaneous
relaxations.

While Dijkstra’s algorithm yields the best work efficiency since each vertex is
relaxed only once, it has very low algorithm concurrency. Only vertices with the
shortest distance can be relaxed at a time to preserve the algorithm correctness. In
contrast, Bellman-Ford requires more works from (possibly) multiple relaxations
of each vertex. However, it gives the best algorithm concurrency since any vertex
in the queue can be relaxed at the same time. Thus, the algorithm allows a
large number of simultaneous relaxations while the algorithm’s correctness is still
preserved.

The ∆-stepping algorithm [88] compromises between these two extremes by
introducing an integer parameter ∆ ≥ 1 to control a tradeoff between work efficiency
and concurrency. At any iteration k ≥ 0, the ∆-stepping algorithm relaxes all active
vertices that have tentative distances in [k∆, (k + 1)∆− 1]. With 1 < ∆ <∞, the
algorithm yields better concurrency than the Dijkstra’s algorithm and lower work
redundancy than the Bellman-Ford algorithm. To keep track of active vertices that
need to be relaxed in each iteration, the algorithm uses a bucket data structure. All
active vertices with the same distant ranges are put in the same bucket. The bucket
k contains all vertices that have the tentative distance in range [k∆, (k + 1)∆− 1].
The algorithm also provides an additional optimization by using two processing
phases in each iteration. The first phase is called light phase. In this phase,
only edges of active vertices that have edge weights less than ∆ (e.g., light edges)
are relaxed. The reason is that these edge relaxations can result in insertions of
some vertices to the current bucket and lead to additional relaxations of those
vertices. Thus, this light phase forces these insertions to happen early on so that
any redundant work from multiple re-updates of tentative distances is minimized.
The relaxations in this phase is similar to those of Bellman-Ford in the sense that
some vertices could be relaxed multiple times. The second phase is called heavy
phase. This phase involves relaxing all edges of all active vertices with edge weights
larger than ∆ (e.g., heavy edges). These edge relaxations guarantee that no vertex
is added to the current bucket. Thus, all active vertices are relaxed only once and
can be marked as settled (similar to the relaxation in the Dijkstra’s algorithm).
The ∆-stepping algorithm can be viewed as a general case of SSSP algorithms with
the relaxation approach. The work efficiency and concurrency of the algorithm can
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be adjusted using ∆. The algorithm with ∆ = 1 is equivalent to the Dijkstra’s
algorithm, while the algorithm with ∆ =∞ yields the Bellman-Ford algorithm.

3.2 Distributed-memory SSSP Implementations
We implement optimized parallel versions of three well-known algorithms, Dial’s
algorithm, Bellman-Ford and ∆-stepping, for distributed-memory systems. The
implementations are based on a bulk synchronous parallel model. This model
agglomerates all major computation and communication to occur at the same time
in their own separated bulks in each iteration or phase, and all relaxations are done
locally and simultaneously. All three algorithms are easily adapted to this model
with few modifications.

We use a distributed compressed sparse row (CSR) graph representation for its
simplicity and ability to easily access vertex adjacencies which is the main graph
query used in the algorithm. The distributed CSR distributes n/p consecutive
vertices of the graph to p processors in the same order of the original non-distributed
graph where n and p are the total numbers of vertices and processors, respectively.
Each processor also stores information of outgoing edges and their corresponding
edge weights of all local vertices. The tentative distance array is also partitioned
and distributed in a similar manner.

For the Dial’s algorithm, its main parallelism is from simultaneous relaxations
in each bucket. Without loss of generality, we implement the bucket structure using
a regular queue where, in iteration k, the algorithm generates a queue containing
vertex u such that d(u) = k where d(u) is a tentative distance from s to u. For
all vertices u in the queue, the algorithm looks up for each adjacent vertex v of
u, computes dtv = d(u) + w(u, v) where w(u, v) is a weight of an edge uv, and
adds a value pair (v, dtv) to a corresponding send buffer. Once finished, these
(v, dtv) pairs are distributed to processors that own v by using an Alltoallv collective
communication. Then, each processor can process on its receive buffer in parallel
since all (v, dtv) can be used to update d(v) locally.

Bellman-Ford is a label-correcting algorithm that does not require a priority
queue. We implement a modified version that uses a regular queue to keep track
all active vertices. In each iteration, only edges of active vertices are relaxed
instead of relaxing all graph edges as in a traditional Bellman-Ford algorithm. This
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approach also gives a flexibility to terminate the algorithm early when the queue
is empty. Thus, the parallel implementation is similar to our Dial’s algorithm
implementation. However, the algorithm needs to find all u in which their d(u) are
previously updated but not settled in each iteration. Note that we can roughly
identify whether vertex u is settled by checking if its d(u) is less than the shortest
distant of any vertex in the previous iteration.

Algorithm 1 Parallel ∆-stepping
Input: G = (V,E), a source vertex s and the weight function w : E → R
Output: δ(v), v ∈ V , the shortest path from s→ v

1: n_local← n/p
2: for 0 ≤ v ≤ n_local do
3: d[v]←∞
4: end for
5: curr_bucket← 0
6: if FindOwner(s) = rank then
7: s_local← mod(s, n_local)
8: AddV ertex(s_local, B[curr_bucket])

9: d[s_local] = 0
10: end if
11: while curr_bucket ≤ num_buckets do
12: ProcessLightPhase(G, d,B,H)
13: ProcessHeavyPhase(G, d,B,H)
14: curr_bucket← curr_bucket+ 1
15: end while
16: Reduce(δ, d)

Algorithm 2 ProcessLightPhase used in Alg. 1
Input: G,B, d, S

1: S ← ∅
2: while B[curr_bucket] 6= ∅ do
3: send_buf ← ∅
4: for each u ∈ B[curr_bucket] do
5: for each (u, v) ∈ light_edges do
6: pv ← FindOwner(v)
7: dtv ← d[u] + w(u, v)
8: AddRequest((v, dtv), send_bufpv)

9: end for
10: AddV ertex(u, S)
11: end for
12: B[curr_bucket]← ∅
13: recv_buf ← ∅
14: Alltoallv(recv_buf, send_buf)
15: Relax(recv_buf)
16: end while

Algorithm 3 ProcessHeavyPhase used in Alg. 1
Input: G,B, d, S

1: send_buf ← ∅
2: for each u ∈ S do
3: for each (u, v) ∈ heavy_edges do
4: pv ← FindOwner(v)
5: dtv ← d[u] + w(u, v)
6: AddRequest((v, dtv), send_bufpv)

7: end for
8: end for
9: recv_buf ← ∅
10: Alltoallv(recv_buf, send_buf)
11: Relax(recv_buf)

The ∆-stepping provides a parameter ∆ that gives a user an ability to control
a bucket size. The unit-size bucket results in an algorithm equivalent to the Dial’s
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Algorithm 4 Relax used in Algs. 2 and 3
Input: recv_buf
1: for each (v, dtv) ∈ recv_buf do
2: v_local← mod(v, n_local)
3: if d[v_local] > dtv then
4: if d[v_local]) 6=∞ then
5: RemoveV ertex(v_local, B[bd[v_local]/∆c])
6: end if
7: AddV ertex(v_local, B[bdtv/∆c])
8: end if
9: end for

algorithm which provides the best work efficiency but gives the worst concurrency.
The infinity-size bucket results in an algorithm equivalent to the Bellman-Ford
algorithm which yields the best concurrency but gives the worst work efficiency.
Practically, the ∆-stepping algorithm combines relaxation approaches of both Dial’s
and Bellman-Ford algorithms. Within each bucket, all relaxations in the light
phase are similar to those of the Bellman-Ford algorithm while all relaxations in
the heavy phase are similar to those of the Dial’s algorithm. Thus, we implement
our ∆-stepping by generalizing relaxation approaches of these two algorithms.
Similar to [84], there are some optimizations to the data structure and algorithms
in our implementations. The following list shows the optimizations that have been
introduced in our ∆-stepping implementations.

• An array of buckets B is implemented as a dynamic array. Each bucket
is allocated only if there is a vertex being added to the bucket which can
be resized when needed. Each bucket can also be de-allocated at the end
of its corresponding light phase and the memory can be reused for other
bucket allocations since there will be no more insertion into that bucket.
Moreover, we implement two auxiliary arrays of size n/p to provide constant
time insertions and deletions of vertices for each bucket. One is an array that
maps a vertex to its current bucket, and the other is an array that maps a
vertex to its current position in its current bucket.

• A timed semi-sort step is introduced as a pre-processing step of the algorithm.
It reorders adjacencies of each vertex in an ascending order based on their
corresponding edge weights. Then, a heavy edge pointer pointing to the first
adjacency v of a vertex u that has w(u, v) ≥ ∆ is generated for all adjacency
of u. These pointers will be used to determine light and heavy edges in the
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algorithm, and give an instant time accessing these two types of edges.

• A unique adjacency array of all local vertices is created. Each element in
the array is a tuple of a unique adjacency and its current tentative distance.
This array is used to keep track the most recent updates of distances of all
(unique) adjacencies. Thus, it helps filtering out unnecessary update requests
that have larger distances than the current distances of adjacent vertices.

The complete algorithm for the parallel ∆-stepping algorithm is shown in Alg. 1.
The algorithm terminates when all non-empty buckets are processed as shown in
line 11. Als. 2 and 3 show the two main processing phases of the algorithm, light
and heavy phases, respectively. Note that num_buckets is dynamically updated
during the relaxation step (Alg. 4) when some vertices are added to B.

3.3 Results and Discussion

3.3.1 Experimental Setup

We collect the experimental performance results of our parallel SSSP implementa-
tions on the TACC Stampede cluster [121]. More specifically, all of our experiments
were run using a 10 Peta FLOPS Dell Linux Cluster which consists of more than
6,400 Dell PowerEdge server nodes. Each node is equipped with 2 Intel Xeon E5
Sandy Bridge processors (8 cores per processor) and an Intel Xeon Phi Coprocessor.
Note that we only used the Intel Xeon E5 processors in the this study. For the
inter-node communication, we use the MPI message-passing library (mvapich2
version 1.9a2). Particularly, the collective communication routines, MPI_Alltoall,
MPI_Alltoallv and MPI_Allreduce, are the main MPI operations used in the
implementations.

We experiment on synthetic graphs generated from the Graph500 reference
implementation v1.2 [54]. The graph generator is based on the R-MAT random
graph model [25] with parameters similar to those used in the default Graph500
benchmark, i.e., parameters a, b, c and d are set to 0.59, 0.19, 0.19 and 0.05,
respectively, and the edge count to vertex ratio is set to 16. The generated
graphs have skewed degree distributions with a very low graph diameter. The
corresponding edge weights are generated using the Random123 library [100]. For

20



ease of references, we categorize the generated graphs used in the experiments
into three groups. First, the graphs with uniformly distributed integer weights in
the range of [1, 23] (R-MAT-U3). Secondly, the graphs with uniformly distributed
integer weights in the range of [1, 210] (R-MAT-U10). Lastly, the graphs with
normally distributed integer weights in the range of [1, 210] (R-MAT-N10).

3.3.2 Strong Scaling

We run the parallel Dial’s, Bellman-Ford and ∆-stepping algorithms using 128, 256,
512, 1024 and 2048 cores (one core per MPI task) on three different graph groups.
All graphs are generated using the graph scale of 27 (e.g., graphs consisting of 227

vertices). The results are shown in Fig. 3.1. Figures on the left illustrate strong
scaling of the three parallel algorithms. Figures on the right show the percentage
of time spent in all communication steps. Note that for the ∆-stepping algorithm,
we use the best performance from the values of ∆ between 16 to 1024.

Among the graph groups, all algorithms give the best performance when running
on R-MAT-U3. The Dial’s algorithm gives 4× and 5× better performance than it
does on R-MAT-U10 and R-MAT-N10 at 128 cores, respectively. It also gives good
strong scaling on R-MAT-U3. However, when the number of cores increases, the
algorithm’s performance significantly decreases on both R-MAT-U10 and R-MAT-
N10. On the other hand, the Bellman-Ford algorithm performs slightly better on
R-MAT-U3 than it does on R-MAT-N10, but more than 2× faster than the time
spending on R-MAT-U10. The ∆-stepping algorithm gives a result similar to the
Bellman-Ford algorithm in which, on R-MAT-U3, it runs a little bit faster than it
does on R-MAT-N10, but the execution time can be up to 2× faster when running
on R-MAT-U10. The reason is that the algorithms require very low number of
iterations or phases to settle all reachable vertices in R-MAT-U3 since the numbers
of iterations in Dial’s and ∆-stepping algorithms are related to edge lengths or
distances from s. (Especially, for the Dial’s algorithm that the number of iterations
and the longest distance are the same. It can run at most DC iterations where D
and C are a graph diameter and the maximum weight of all edges in the graph,
respectively.) For the ∆-stepping algorithm, the maximum number of iterations is
actually the highest number of active buckets which is DC/∆. Increasing ∆ can
decrease the number of iterations (or heavy phases) while it also possibly increases
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(d) Communication time, R-MAT-U10

Figure 3.1. Strong scaling: Overall execution time (on the left column) and percentage
of time spent in all communication steps (on the right column) for Dial’s, Bellman-Ford
and ∆-stepping algorithms on the synthetic graphs with the edge scale of 27, and uniformly
and normally distributed weights.

the number of relaxations for each vertex (or the number of light phases). A value
of ∆ that gives the best performance is a compromise between the number of these
light and heavy phases. Furthermore, the results from R-MAT-U3 also show the
highest concurrency from a high possibility that many edges have the same weights
which increase the number of vertices in the queues or buckets. This also applies
to R-MAT-N10. However, only the Bellman-Ford and ∆-stepping algorithms can
give the good results on this graph collection because they can get to the mass
of the graph very fast by using large-sized buckets (e.g., the infinite size or a
large-enough size in the Bellman-Ford and ∆-stepping algorithms, respectively).
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Figure 3.1. Strong scaling: Overall execution time (on the left column) and percentage
of time spent in all communication steps (on the right column) for Dial’s, Bellman-Ford
and ∆-stepping algorithms on the synthetic graphs with the edge scale of 27, and uniformly
and normally distributed weights. (cont.).

The Dial’s algorithm, on the other hand, has a unit size bucket, and this leads to
more number of iterations (and more execution time) before it can get to the mass
of the large-weighted graph as we can see in the results on both R-MAT-U10 and
R-MAT-N10.

Per the communication overhead, all algorithms usually show more percentages
of the communication when increasing the number of cores. However, the Bellman-
Ford algorithm shows an interesting trend as the percentage decreases on R-MAT-
U10 and R-MAT-N10 when running on 1024 and 2048 cores. It also has low
deviation of the communication percentage in which most communication is under
60%. The algorithm also shows very good scaling even if very large number of cores
(e.g., 1024 and 2048) is used. The percentage of communication from the Dial’s
algorithm is the highest among all algorithms in all cases. The communication
percentage is 90% or more on R-MAT-U10 and R-MAT-N10 when using more than
256 cores. This characteristic can be expected since the Dial’s algorithm has high
communication requests from very large number of iterations on the graphs with
large weights. For the ∆-stepping algorithm, it has the lowest communication ratio
among all algorithms on all graph groups when running on 256 cores or lower. The
communication is usually less than 40% except when using 512 cores on R-MAT-U8
and R-MAT-U1024 that the communication percentage can be up to 48%. This
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low communication overhead is from the optimized data structure that helps filter
out unnecessary requests. The optimization not only reduces the communication
overhead but also decreases the computation overhead. However, when the large
number of cores (1024 and 2048 cores) is used, the data structure is less efficient as
we can see from rapidly increasing of the communication percentage on R-MAT-U3
and R-MAT-N10.

3.3.3 Weak Scaling

We collect a weak scaling performance of Dial’s, Bellman-Ford and ∆-stepping
algorithms on R-MAT graphs with 224 vertices per computing node (16 cores) range
from 7 to 128 nodes or from 128 to 2048 cores with one core per MPI task. We
experiment on the same graph collection as in the strong scaling experiment namely
R-MAT-U3, R-MAT-U10 and R-MAT-N10. The results are shown in Fig. 3.2.
Figures on the left illustrate weak scaling of the three parallel algorithms while
figures on the right show the percentage of time spent in all communication steps.

Similar to the strong scaling experiment, all algorithms usually yield better
performance on R-MAT-U3. The Dial’s algorithm, again, gives 4× and 5× better
performance on R-MAT-U3 than it does on R-MAT-U10 and R-MAT-N10 when
using 124 cores, respectively. Although the algorithm does not scale well on
R-MAT-U10 and R-MAT-N10, it still gives good scaling results on R-MAT-U3.
The performance is also close to BFS up to 512 cores, and its running time is
even 1.25× faster than the running time of the ∆-stepping algorithm on 1024
cores. When running on 2048 cores, the algorithm execution time is only about
1.25× times slower than the running time of BFS and ∆-stepping algorithms,
and around 1.25× faster than the execution time of the Bellman-Ford algorithm.
The Bellman-Ford algorithm provides the best performance on R-MAT-U3. Even
though the algorithm gives very close results at 128 and 2048 cores when comparing
to the results obtained from running on R-MAT-N10, it yields lower execution
time between 256 and 1024 cores, especially, at 1024 cores, it runs about 1.5×
faster on R-MAT-U3. When comparing the results when running on R-MAT-U3
and R-MAT-U10, the Bellman-Ford algorithm performs more than 2.5× faster on
R-MAT-U3 in all cases. Interestingly, for the ∆-stepping algorithm, it gives better
execution time on R-MAT-N10 although the performance is not much difference
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Figure 3.2. Weak scaling: Overall execution time (on the left column) and percentage
of time spent in all communication steps (on the right column) for Dial’s, Bellman-Ford
and ∆-stepping algorithm on synthetic graphs with uniformly and normally distributed
weights (with 227 vertices per 128 cores).

when running on R-MAT-U3 where the results are more fluctuated. Note that
on R-MAT-N10, the ∆-stepping algorithm performs better than BFS due to the
optimized data structure that only presents in the former algorithm.

For the weak scaling experiment, the percentage of time spent in all commu-
nication steps of all algorithms is less than the strong scaling results, especially,
in Dial’s and ∆-stepping algorithms. The Dial’s algorithm now shows 60% lower
communication percentage on R-MAT-U3 with the exception of 65% when running
on 2048 cores. It also gives less than 90% communication percentage in most
cases on R-MAT-U10 and R-MAT-N10. For the Bellman-Ford algorithm, the
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Figure 3.2. Weak scaling: Overall execution time (on the left column) and percentage
of time spent in all communication steps (on the right column) for Dial’s, Bellman-Ford
and ∆-stepping algorithm on synthetic graphs with uniformly and normally distributed
weights (with 227 vertices per 128 cores) (cont.).

communication percentage is still less than 60% in most cases, and also shows
some decreasing trends as in the strong scaling experiment. These trends can be
observed when running on R-MAT-U10 and R-MAT-N10 using 2048 cores. For the
∆-stepping algorithm, the communication shows huge differences between the strong
and weak scaling experiments. The algorithm is now has the lowest communication
percentage among all algorithms in all cases. All results comprise of less than 50%
communication percentage, and show some decreasing trends on R-MAT-U3 and
R-MAT-U10 running on 2048 cores. For the ∆-stepping algorithm, it also has less
than 40% communication percentage in most cases on R-MAT-N10. This shows
that the ∆-stepping algorithm also has very good weak scaling.

3.3.4 Impact of ∆ on the ∆-Stepping Algorithm’s Performance

The results of strong and weak scaling in the previous sections of the parallel ∆-
stepping algorithm are obtained based on the ∆ values that give the best execution
time. Even though the algorithm yields the best performance among the three
algorithms in all cases, it is very sensitive to the choice of ∆. To show the effect of
∆ values on various numbers of cores and the problem sizes, we run the parallel
∆-stepping algorithm on the same setup as in strong scaling experiments with both
uniform and normal weight distributions using various ∆ among 16, 32, 64, 128,
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256, 512 and 1024. The results are shown in Fig. 3.3.
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(b) Normal weight distribution

Figure 3.3. The impact of ∆ on (a) uniformly distributed and (b) normally distributed
weight graphs.

From the figures, with different ∆ values, the algorithm performance is sig-
nificantly vary. The difference between shortest and longest times spent in the
algorithm can be twice as fast or more than 10× faster. On both uniformly and
normally distributed weight graphs (R-MAT-U10 and R-MAT-N10), the timing
results can be increasing when the number of cores are increased if ∆ is fixed
to 16 or 32. In some cases, fixing ∆ to some values can decrease the execution
time when increasing the number of cores; however, at some points, the running
time can increase when the number of cores increases. These can be observed on
the algorithm with ∆ = 256 running on R-MAT-U10 and R-MAT-N10 that the
execution time keeps reducing until 512 cores and then increasing afterward.

As we can see, there is no constant value of ∆ that gives most effective results
and can be applied in all conditions. However, from the observation, we can
conclude that, for uniformly-distributed weighted graphs, a smaller ∆ tends to give
better performance on a small number of cores while a larger ∆ has a tendency
to yield better performance on a larger number of cores. For normally-distributed
weighted graphs, a larger ∆ usually gives better performance since it helps to get to
a mass of the graphs faster so that the algorithm can utilize an existing concurrency
of the graph data.

The best value of ∆ for a given problem is a balance execution between light and
heavy phases. As we known, the value of ∆ directly affects the number of buckets in
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the ∆-stepping algorithm. The larger ∆, the less number of buckets. This variation
of a bucket size is also directly affecting the execution in both light and heavy
phases. From our experiment, a smaller ∆ tends to lead to more communication
overhead due to the algorithm requires more heavy phases which usually leads to a
large communication ratio in each iteration. Conversely, once a larger ∆ is used, a
time spent during light phases is dominated, specifically, from handling substantial
vertex reinsertions although theses light phases usually have less communication
overhead.

3.3.5 Compare ∆-stepping Performance to Previous Works

Graph #vertices #edges
R-MAT-UXX21 2,097,152 33,554,432
R-MAT-UXX22 4,194,304 67,108,864
*USA-road-d.W 6,262,104 15,248,146
*USA-road-d.CTR 14,081,816 34,292,496
*USA-road-d.USA 23,947,347 58,333,344

Table 3.1. The number of vertices and edges of the graphs used in the comparison
experiments. The graphs marked with (*) are obtained from the challenge benchmarks
of The Ninth DIMACS Implementation Challenge.

Graph BFS(1) BFS(16) iGr Gal(1) Gal(16) PB(1) PB(16) DS(1) DS(16)
R-MAT-U121 1.87 0.14 3.97 5.74 0.21 110.94 * 2.05 0.15
R-MAT-U1021 1.87 0.14 4.92 5.87 0.74 111.26 * 2.43 0.22
R-MAT-U122 4.10 0.28 8.98 8.26 0.48 223.60 * 4.54 0.31
R-MAT-U1022 4.10 0.28 11.47 9.13 1.75 224.04 * 5.38 0.39
USA-road-d.W 0.64 0.21 5.13 2.02 0.67 36.34 21.07 1.01 1.29
USA-road-d.CTR 1.72 0.38 14.31 5.53 1.53 84.92 42.55 3.74 2.01
USA-road-d.USA 2.32 0.75 24.57 7.91 2.49 139.32 67.03 4.39 3.19

Table 3.2. The table shows the execution time of our ∆-Stepping (DS) implementation,
the Dijkstra’s algorithm on iGraph (iGr), the chaotic iteration on Galois (Gal), and the
∆-stepping on PBGL (PB), on various graphs (see Tab. 3.1). For the implementations
that can run in both serial and parallel modes, (1) indicates the serial execution time,
and (16) indicates the parallel execution time on 16 cores.

We compare the performance of our ∆-Stepping (DS) implementation to some
previous SSSP implementations, the Dijkstra’s algorithm from iGraph library (iGr),
the chaotic iteration algorithm from Galois project (Gal), and the ∆-stepping on
Parallel Boost Graph library (PB), on various graphs shown in Tab. 3.1. We also
include our simple breath-first search results as a reference timing. The execution
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time for each algorithm is given in Tab. 3.2. Note that the result timing of PB
on R-MAT graphs with 16 cores is not available due to some memory issue when
we tried to run these experiments. The best timing results for serial and parallel
execution are shown with bold fonts and highlighted in red and blue, respectively.

For single-core results, DS(1) shows the fastest execution time in all cases. It
gives more than 2×, 1.5×, and 40× faster than iGr, Gal(1), PB(1) on R-MAT
graphs, respectively. Its performance is also close to BFS(1) execution time on this
graph collection. For the road network graphs, DS(1) runs more than 4×, 1.5×,
and 25× faster than iGr, Gal(1), PB(1), respectively.

For single-node (16 cores) results, DS(16) performs the best in all cases of the
R-MAT graphs with more than 1.4× faster than Gal(16). On the other hand, the
shared-memory Gal(16) implementation shows the best results in all cases on the
road network graphs, and around 1.3× better than the distributed-memory DS(16)
implementation. Although the road network graphs have less vertices and edges
than the R-MAT graphs, they usually have much larger graph diameters and edge
weights. On these graphs, the ∆-stepping algorithm does not perform well since the
algorithm suffers from computational load balancing and low graph concurrency.

3.4 Conclusions and Future Work
In this chapter, we present the experimental study of three parallel SSSP algorithms,
Dial’s, Bellman-Ford and ∆-stepping algorithms, running on the Stampede cluster.
The experiments are conducted using synthetic graphs generated using Graph500
with uniformly and normally distributed edge weights. We report both strong and
weak scaling including the communication percentages spent in the algorithms. In
most cases, the ∆-stepping algorithm yields the best performance, and gives the
results that are relatively close to the results from our simple BFS implementation.
On the other hand, the Dial’s and Bellman-Ford algorithm can give good results
depending on the input graphs. The Bellman-Ford algorithm usually performs
better than the Dial’s algorithm on graphs with large edge weights. The algorithm
also gives the lowest increment of the communication percentages which results
in very good scaling of the algorithm. For graphs with large edge weights, both
Bellman-Ford and ∆-stepping algortihms run faster the the Dial’s algorithm on
the same size problems with normally distributed edge weights while the Dial’s
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algorithm gives better results on the graphs with uniformly distributed edge weights.
We are planning on introducing more optimizations for our SSSP implemen-

tations to make the algorithms more efficient and scalable. One approach is to
alternately run multiple algorithms on the same problem. For example, new SSSP
algorithm starts with the ∆-Stepping algorithm following by the Bellman-Ford algo-
rithm when some criteria is met. This is from our observation that the ∆-Stepping
algorithm usually performs better in early iterations when most of vertices are not
settled, while the Bellman-Ford algorithm gives better results in later iterations
when more than half of all vertices are settled. Another optimization approach is
to implement an efficient, automatic ∆ predetermination that always yields the
optimal performance for any combination of problem sizes and number of cores
used. Furthermore, we also plan to implement a hybrid parallel algorithm that can
efficiently utilize both shared- and distributed-memory systems to further reduce
the communication cost in the algorithm which is currently a major bottleneck
when running on the systems with very large number of cores.
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Chapter 4 |
Scalable Distributed Graph Al-
gorithms

Many graph processing frameworks have been actively developed and updated over
the past few years to support large-scale graph data which is commonly in a size of
billions of vertices and trillions of edges. Examples of these frameworks include
GraphLab/PowerGraph [51,79], GPS [106], GraphX [136], Trinity [110] and many
others [85,130] to name a few. However, they are usually outperformed by stand-
alone implementations of specific graph algorithms such as the distributed breadth-
first search and single-source shortest paths [10, 19,24,26] since by focusing on one
specific algorithm, ones can fine-tune and optimize both algorithm’s communication
and computation in more detail.

Normally, it is difficult to optimize a graph framework to perform as close as
being done for a specific algorithm since a framework optimization is usually about
improving primitive graph operations and inter-processor communication. Most
optimizations are done at the level of underlying graph models or data structures,
and usually do not directly reflect the performance of any specific graph algorithm
since different graph algorithms have different communication and computation
patterns. Moreover, many real-world graphs are commonly unstructured in nature,
and this irregularity makes the optimization even harder for graph algorithms.

Most distributed graph computations utilize distributed adjacency lists of
vertices which are usually presented by a compressed sparse row format (CSR)
to decrease the memory requirement. This representation can be viewed as a
one-dimensional (1D) layout of a vertex adjacency matrix of a graph since it is
based on row-wise partitioning of the matrix. This approach gives a natural view
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of each vertex and its out-going edges which is sufficient for graph traversal in
most graph algorithms. While this approach works well in general, there are
two major flaws that can degrade an overall performance. First, the 1D layout
has high communication overhead because the information of adjacent vertices of
one vertex is distributed among all processors. Any communication involving an
update to these vertices requires all processors to participate which is usually in the
form of a high-traffic all-to-all collective communication. Secondly, the 1D layout
partitions a graph based only on the number of vertices. While each processors gets
approximately the same number of distributed vertices of the graph, there is no
guarantee that the numbers of edges in each partition are equally distributed. This
can lead to load balancing issues for graph algorithms that require edge traversal
since some processors might be assigned a much larger number of edges than the
others. This problem is more pronounce, especially, in power-law real-world graphs
in which the graphs contain very few high-degree vertices, while the majority of
vertices have very low degree.

There are many approaches that have been developed to overcome the load
balancing issues for a graph with high degree vertices. A vertex cut technique is an
approach that has been used in many graph frameworks and algorithms [24,136].
For any high degree vertex, it is broken down into multiple vertices connecting
to each other with special edges based on graph applications. For example, these
edge weights of the cut vertices are set to zero for shortest path algorithms. While
this method can improve load balancing of distributed edges, it also adds an extra
complexity for an additional structure to keep track of vertices that have been
cut. Another approach that can improve the inter-processor communication and
edge load balancing is to partition a graph by distributing both vertices and edges
equally. We consider a two-dimensional (2D) graph layout that is commonly used in
matrix algebra, and in a previous study in [19] for a breadth-first search algorithm.
This approach distributes a graph based on both row and column partitioning
of the graph adjacency matrix (as also known as block partitioning). Now, edges
of each vertex can be distributed to more than one processor. Thus, it improves
load balancing of distributed edges. Furthermore, the communication space of the
all-to-all communication also reduces since the number of unique adjacent vertices
of each partition decreases. However, additional all-gather and point-to-point
communication phases are required to maintain the completeness of the graph
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traversal. We discuss this 2D layout for graph algorithms later on in the chapter.
Since this 2D layout applies to the underlying graph data structures without fine-
tuning any specific graph algorithm, it can be applied to many distributed graph
algorithms efficiently and effectively, and can be implemented as a framework for
distributed graph computations. Our major contributions of this chapter are shown
as follows:

• We extend the use of the 2D layout as the underlying distributed graph data
structure by combining it with various optimizations that can improve the
performance of many parallel graph algorithms.

• We give detailed analysis and comparison of communication and computation
between two distributed graph data structures, the traditional 1D and novel
2D graph layouts.

• We evaluate the performance of well-known graph algorithms with the 2D
layout on some large-scale real-world graphs.

4.1 Overviews
In this section, we give an overview of the 2D layout and how it can be applied to
graph computations. We also give a brief overview of a bulk-synchronous parallel
model that is applied in our graph algorithms.

4.1.1 Two-Dimensional (2D) Graph Layout

Let G = (V,E) be an undirected graph with n = |V | vertices and m = |E| edges.
Two of the most common graph representations are an adjacency list and adjacency
matrix of the graph vertices. A vertex v ∈ V is adjacent to a vertex u ∈ V if
there is an edge from u to v or uv ∈ E. A set of vertices that are adjacent to u
can be written by adj(u). The adjacency list is the list of all adj(v) for all v ∈ V .
An example of the graph adjacency list is shown in Fig. 4.1(a). The adjacency
matrix is an n× n matrix that its element (i, j) = 1 if ij ∈ E, otherwise, (i, j) = 0.
Fig. 4.1(b) shows an example of the adjacency matrix. Note that we use an x
instead of 1 and a blank space instead of 0 for the purpose of visualization only.
The advantages of these two representations are that they are easy to manage and
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(a) A graph and its adjacency list

(b) 1D graph layout (c) 2D graph layout

Figure 4.1. An example of (a) a simple graph and its adjacency list, and (b) its 1D and
(c) 2D graph layouts for four partitions, respectively.

maintain, and can be extended to a distributed graph representation effortlessly as
also shown in Fig. 4.1(b) with the red dashed lines. A distributed adjacency list
is simply a partition of the original adjacency list while a distributed adjacency
matrix is a row partitioning of the original adjacency matrix. As the partition
involves only one dimension of the matrix, we refer this partitioning approach as a
one-dimensional (1D) layout. However, the obvious drawback of this layout is that
only graph vertices are equally partitioned. There is no guarantee that graph edges
are equally distributed and can result in an unbalanced edge distribution. As shown
in our example, after applying the 1D layout, the partition that owns vertices 3 and
4 contains 3 edges while the partition that owns vertices 5 and 6 contains 7 edges.
This problem is more pronounced when there are very few vertices that have more
adjacencies than others. This graph characteristic is often found in scale-free graphs
that arise from many real-world networks. One approach to resolve this issue is to
partition the adjacency matrix along both row and column as shown in Fig. 4.1(c)
with the red dashed lines. While it still does not guarantee to distribute the edges
equally among partitions, it provides a better edge distribution since edges of each
vertex are now distributed among multiple partitions that are in the same partition
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rows, instead of residing in only one partition as in the 1D layout. Since this
method partitions the adjacency matrix in a two-dimensional manner (along both
row and column), we refer this partitioning method as a two-dimensional (2D)
layout.

4.1.2 Bulk Synchronous Parallel for Graph Computations

A Bulk Synchronous Parallel (BPS) model is a model for parallel algorithms with
a message passing abstraction. Algorithms based on the BSP model are usually
simple to implement and maintain while providing low latency cost of inter-processor
communication, even though a fine-grained parallelism of algorithms is more difficult
to be exploited.

BSP executes in a sequence of supersteps. Each superstep consists of three
main components, concurrent computation, communication and synchronization.
In the concurrent computation step, each processor performs local computation
simultaneously using available data that it owns. In the communication step, all
processors exchange information via explicit messages so that non-local information
required by each processor will be made available for the requesting processor. The
communication routines are usually in the forms of collective communication such
as all-to-all and all-gather communication. Finally, in the synchronization step,
each processor updates its local information and wait for all processors (at each
synchronization barrier) to finish their work before progressing on the next superstep.
A termination can be done when there are no information to be exchanged, and all
processors finish their work.

Most graph algorithms are iterative. In each iteration, the algorithms involve
traversing through a set of edges and update data of vertices which the edges point
to. For distributed graphs, completing all edge traversals requires communication
among processors because adjacencies of local vertices can be resided on other
processors. To apply BSP to graph algorithms, each iteration of the algorithms is
considered a superstep. The algorithm operations are organized and combined into
bulks of local computation, global communication and barrier synchronization as
shown in Fig. 4.2. However, it is more practical to model iterative graph algorithms
into four phases (still based on BSP) as they can be directly translated to an
implementation. These four phases are; local discovery where each processor issues
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Figure 4.2. Bulk-synchronous parallel.

communication requests; edge traversal where data is exchanged among processors;
local update where the transfered data is used to update the local data; and
termination check where all processors check for global termination.

4.2 Graph Algorithms
In this section, we briefly give an overview of five graph algorithms, breadth-first
search, approximate diameter, PageRank, connected components and Bellman-Ford
single-source shortest path. These are selected graph algorithm candidates that are
used to evaluate our graph framework with the 2D graph layout.

4.2.1 Breadth-First Search

Breadth-first search (BFS) is an algorithm for solving a graph traversal problem
by visiting all vertices that are reachable from a particular vertex called a source
vertex s ∈ V . Usually, the algorithm also returns a label (or level) of each vertex
indicating how far each vertex is from s. We define a label of v as d(v). Initially,
d(v) is set to infinity (as for unreachable from s) for all v ∈ V .

BFS starts at the source vertex s by setting d(s) = 0, marking s as visited and
adding s to a queue called frontier. Next, for each vertex u in the frontier, all v
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where uv ∈ E are examined such that if v is not yet visited, then d(v) is set to
d(u) + 1, and v is marked as visited and is added to the frontier. Otherwise, there
is no update on v. Note that v is not added to the frontier if it is already visited.
Once all adjacent vertices of u are processed, u is removed from the frontier. The
algorithm terminates when there is no more vertex in the frontier, and returns d(v)
for all vertices v.

4.2.2 Approximate Diameter

A diameter, D, of a graph is the longest distance of shortest paths between any two
vertices in the graph. It is trivial that D is the largest d(v) obtained from running
BFS on every single vertex. Although this method sounds simple, it suffers from
very high complexity and is not practical for large graphs.

Many approximation methods have been proposed to give an estimate diameter,
D̂, of a graph. One well-known, simple approximation that gives an estimate
diameter D̂ where D/2 ≤ D̂ ≤ D (also referred as a 2-approximation) can be
calculated by running BFS on an arbitrary vertex s to find the current largest
d(vs). To tighten the approximation, ones can run BFS repeatedly from a new
source vertex s ← vs until the largest d(vs) does not improve, and returns the
current largest d(vs) as D̂. In this chapter, we implement our parallel approximate
diameter based on this approximation approach.

4.2.3 Connected Components

A connected component of a graph is a subgraph in which any two vertices are
connected to each other by paths. The connected components problem is to identify
all connected components of the graph.

The connected components can be computed in linear time in terms of the
numbers of vertices and edges of the graph by using BFS, a depth-first search
(DFS) or a minimum label propagation (MLB). For the method with BFS or DFS,
the idea is to find all graph component using either BFS or DFS on any source
vertex that has not yet been visited. Thus, the number of BFS or DFS runs is
proportional to the number of components of a graph. For the method with MLB,
the idea is to give each vertex a unique label or value, normally, using its vertex
ID, and propagate a lowest label to cover an entire component of a graph. Thus,
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the number of graph components is the number of labels left.
In this chapter, we consider the MLB algorithm to find all connected components

of a graph. First, an initial label of each vertex is set to its vertex ID, and all
vertices are marked active. Then, all active vertices send their labels to their
neighbors, and update their labels to the lowest label which they received. If the
current label is already the lowest, the vertex marks itself inactive; otherwise, it
marks itself active. The algorithm terminates when all vertices are inactive, and
returns the number of unique labels left as the number of all connected components
of the graph.

4.2.4 PageRank

PageRank [18] is a ranking method proposed by Page et al. to rank Web pages
based on numbers and ranks of other Web pages that link to them. Instead of
merely counting the number of Web pages of incoming links (or incoming edges),
PageRank, first, weights each edge based on the rank of which the edge is from,
and computes a new rank from these weighted edges. Thus, by this ranking system,
a rank computed from a few incoming edges of high-ranked pages may be higher
than a rank computed from many incoming edges of low-ranked pages.

Let u ∈ V be a Web page of a Web graph G, Bu be the set of pages that point
to u or Bu = {v|(v, u) ∈ E for all v ∈ V }, and Fu be the set of pages that u points
to or Fu = {v|(u, v) ∈ E for all v ∈ V }. Let du = |Fu| be the degree of outgoing
edges of u. Then, a simplified version of a rank of u can be defined as

PR(u) =
∑

v∈Bu

PR(v)
dv

(4.1)

From Eq. (4.1), each page divides its rank evenly by the number of its outgoing
edges, and distributes the results to all adjacencies of the outgoing edges. The new
rank of each page is the sum of these numbers. The process iterates until the rank
is converged. With a present of damping factor (α), the equation turns to

PR(u) = (1− α) 1
n

+ α
∑

v∈Bu

PR(v)
dv

(4.2)

where α is a value between 0 to 1, but generally, it is set to 0.85. Our imple-
mentation of PageRank uses Eq. (4.2).
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4.2.5 Modified Bellman-Ford Single-Source Shortest Path

Bellman-Ford is an algorithm for solving a single-source shortest path (SSSP)
problem by finding the shortest distant from a particular vertex (or source vertex)
s to each vertex v in the graph. In this chapter, we consider a graph with positive
integer edge weights w. That is, for all uv ∈ E, w(uv) ∈ I+. The algorithm returns
a shortest distance of each vertex v to s, d(v), for all v ∈ V . Similar to BFS, d(v)
is initially set to infinity.

There are various versions of Bellman-Ford algorithms. In this chapter, we con-
sider a modified Bellman-Ford algorithm described as follows. First, the algorithm
starts at a source vertex s by setting d(s) = 0, and adding s to a queue. Next, for
each u in the queue, all v’s where uv ∈ E are examined such that if d(v) > d(u),
d(v) is set to d(u), and v is added to the queue. Note that the algorithm also
maintains the queue in the way that it only contains unique vertices to avoid
redundant computations. Once all v’s are processed, u is remove from the queue.
The algorithm terminates when there is no vertex in the queue, and returns d(v)
for all v ∈ V .

4.3 Distributed Graph Algorithms with 2D Layout
In this section, we describe how the 2D layout can be used as an underlying
distributed graph data structure, and how it affects communication and computation
of distributed graph computations. We also show our parallel implementations
of the five selected graph algorithms, BFS, approximate diameter, PageRank,
connected components and Bellman-Ford, which are previously described in Section
4.2. All of our implementations are based on the BSP model.

4.3.1 2D Layout and Its Communication

The 2D graph layout partitions vertices by distributing n/p consecutive vertices to
each partition where n is the number of vertices in the graph, and p = pr× pc is the
number of partitions where pr and pc are partition rows and columns, respectively.
Consider the equivalent n×n adjacency matrix of the graph, the 2D layout partitions
the matrix into blocks of n/pr × n/pc submatrices. Thus, a number of adjacencies
(or edges) that each partition has is actually the number of nonzero of its assigned
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submatrix. Unlike the 1D layout that all adjacencies of each vertex always belong to
the same partition, the 2D layout allows adjacencies of one vertex to be distributed
among partition columns that are in the same partition rows (see Fig. 4.1 in Section
4.1.1). For example, if some adjacencies of a vertex v are in a partition p2,0, the
rest of the adjacencies are distributed among partitions p2,k where k = 1, ..., c− 1.
In most cases, the 2D layout usually provides better edge load balancing than the
1D layout, specifically, for scale-free or power-law graphs. Note that the 1D layout
is basically a special case of the 2D layout when the number of partition columns
is one.

In terms of communication, since our implementations are based on the BSP
model, communication is synchronous. The purpose of communication in each BSP
superstep is to exchange the information that is generated from the concurrent
computation among participating processors so that after the exchange, non-local
information is locally available for each processor to use in the next update and
synchronization steps. Note that we assume that each partition is assigned to
one processor. The 1D layout requires an all-to-all communication to exchange
the information, and it needs all processors to take part in. In the 2D layout,
the all-to-all communication only occurs along the processor columns. Although
an additional transpose (i.e., a specific point-to-point communication) is required
before the exchanged information is locally available, the 2D layout still has less
communication overhead than the overhead from the 1D layout as discussed in [19].

4.3.2 Parallel Implementations

The template of our 2D graph algorithms is shown in Alg. 5. It consists of five
phases, three for local computations and two for communication. These local
computations are init() where necessary data structures and parameters for each
algorithms are initiated, discovery() where edge traversals to all adjacencies of
active vertices are performed, and update() where local information such as vertex
data, iteration/phase parameters and a list of active vertices are updated. The
communication phases include allgatherv() where each processor gathers the data
from all active vertices along its processor rows, and alltoall_trans where data
exchanging operations consisted of all-to-all communication along processor columns
and send/receive transpose between two processors are occurred. In most cases, the
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communication phases are the same for any graph algorithm. Next, we describe
how each algorithm is implemented based on the template.

Algorithm 5 Push-model graph algorithm templete
1: init(V ERTEX_DATA,QUEUE)
2: while QUEUE 6= ∅ do
3: allgatherv(QUEUE)
4: BUFFER← discovery(V ERTEX_DATA,QUEUE)
5: alltoallv_trans(BUFFER)
6: (V ERTEX_DATA,QUEUE)← update(BUFFER)
7: end while

Breadth-First Search. The init() involves initializing an integer array d to
infinity (or unreachable), and processing the source vertex by setting its BFS level
to zero and putting it to a queue of active vertices or frontier. Note that d is used
for storing the BFS levels of all local vertices. The discovery() processes each
active vertex u in the queue. The processing includes generating pairs (v, dv) where
v ∈ adj(u) for all u and dv = d(u) + 1, and putting these pairs to a send buffer.
Finally, the update() updates the level array d locally using a receive buffer such
that if d(v) > dv, d(v) = dv. It also determines new active vertices (which are the
vertices that have never been updated before), and adds them to the queue. The
algorithm terminates when no processor has any active vertex in the queues.

Approximate Diameter. Our algorithm repeatedly runs BFS until the longest
length to any v ∈ V from any new source vertex does not improve, and returns
this length as the approximate diameter. Thus, we can implement the algorithm
by just reusing our BFS implementation. The algorithm only needs to keep track
of any new vertex that gives the longest BFS path, and uses it as a new source vertex.

Connected Components. We implement an MLB algorithm to find the con-
nected components of the graph. The init() initializes each vertex u to be active,
and sets its label d(u) using its vertex ID. The discovery() generates pairs (v, dv)
where v ∈ adj(u) for all active vertices u in the queue and dv = d(u), and puts
these pairs to a send buffer. The update() updates the label of each v from the
buffer of pairs (v, dv). If d(v) > dv, d(v) = dv. Otherwise, v is marked inactive.
The algorithm progresses until there is no active vertex. The number of components
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of the graph is the number of vertices that their labels never been updated.

PageRank. The init() initializes an array d to 1.5/n which is now a PageRank
array of local vertices. For the PageRank algorithm, all vertices are participated
in computation in every iteration. Thus, every vertex is active, and there is no
need to maintain a queue of active vertices. The all-gather communication is now
gathering PageRank values along processor rows. The discovery() generates pairs
(v, dv) where v ∈ adj(u) for all local vertices u and dv = d(u)/degree(u), and puts
these pairs to a send buffer. The update() sums up all dv for each v, stores it to
d(v), and computes d(v) = 1.5/n+8.5×d(v). The loop termination is also replaced
by checking whether overall RageRank is converged (i.e., there is no significant
improvement in the PageRank values).

Modified Bellman-Ford SSSP. Similar to BFS, the init() initializes an array d
to infinity, and updates the source vertex by setting its tentative distance to zero
and putting it to a queue of active vertices. Note that d is now storing tentative
distance of all local vertices, The discovery(), again, generates pairs (v, dv) where
v ∈ adj(u) for all active vertices u in the queue and dv = d(u) + w(u, v), and puts
these pairs to a send buffer. The update() updates a tentative distance of each
v from the buffer of pairs (v, dv). If d(v) > dv, d(v) = dv. However, adding a
new active vertex to the queue needs some extra work as it can cause redundancy.
Only v that its d(v) is recently updated is added to the queue, since this recently
updated v will carry out its update to all of its adjacencies.

4.3.3 Optimizations

To further improve the performance of the graph algorithms with the 2D layout.
We introduce several optimizations that helps avoid unnecessary work that can
occur during communication and computation phases.

Ghost vertices. The technique of applying ghost vertices has been used in many
distributed graph algorithms. The idea of the method is to locally cache any non-
local vertex information that are adjacent to all local vertices. Thus, some vertices
may have more than one copies across the processors. Although this technique
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Figure 4.3. The performance of BFS with the 2D graph layout and ghost vertices on
synthetic graphs generated using Graph500 with scale 27.

introduces more data redundancy to the graph data structure, some communication
can be avoided as, in many cases, non-local vertex information can be retrieved
from these ghost vertices. For example, BFS and SSSP algorithms can check their
ghost vertices before sending the new distances of those vertices to the processors
who own them. If the ghost vertices already have lower distances, the current
distance can be discarded. Fig. 4.3 shows an example of the algorithm performance
when the 2D graph layout and ghosting technique are used. The figures show a
significant improvement of (a) TEPS and (b) communication ratio (e.g., lower
all-to-all communication) of BFS on synthetic graphs generated using Graph500
with the edge scale of 27.

Optimized transpose. After involving the all-to-all communication along the
processor columns in the 2D layout, the information are grouped so that each group
belong to one processor. Even though this information is not yet to be local, it
can be processed before transposing, to further reduce the size of messages. The
idea is that this information can be aggregated to the size n/p which can be much
smaller than the unprocessed information so that a high communication overhead
can be avoid during the transposition (e.g., for PageRank, the size of unprocessed
messages is proportional to the number of distributed edges which is much larger
than n/p). We call this an optimized transpose, and it takes place before the
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Figure 4.4. The performance of RageRank with the 2D graph layout and optimized
transpose on synthetic graphs generated using Graph500 with scale 27.

transpose communication. This optimization is applied in every iteration of the
PageRank algorithm since after the all-to-all communication, the message size is
always much larger than n/p. However, in other algorithms, the optimization only
triggers when the information after the all-to-all exchange is at least twice the size
of n/p. Fig. 4.4 shows an example of the algorithm performance when applying
the 2D graph layout and optimized transpose. The results are from the PageRank
algorithm running on synthetic graphs generated using Graph500 with scale 27.
There is 2x performance improvement in terms of TEPS (see Fig. 4.4(a)), and much
lower all-gather and transpose communication ratio (see Fig. 4.4(b)).

4.4 Results and Discussion

4.4.1 Experimental Setup

Our experiments are run on StarCluster [122], a virtual cluster on top of Amazon
Web Service (AWS) Elastic Compute Cloud (EC2) [7]. The cluster occupies with
the MPICH2 complier version 1.4.1. We emulate using 32 instances of AWS EC2
m3.2xlarge which each consists of 8 cores of Intel Xeon E2-2670 v2 (Ivy Bridge)
processors and 30 GB of memory.

The five algorithms used in our experiments, as mentioned in previous sections,
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are breadth-first search (BFS), approximate diameter (APD), connected compo-
nents (CNC), PageRank (PRK) and SSSP modified Bellman-Ford (MBF). In the
experiments, both synthetic and real-world graphs are used. For synthetic graphs,
they are generated from the Graph500 reference implementation [54]. The graph
generator is based on the R-MAT random graph model with the parameters similar
to those use in the default Graph500 benchmark (i.e. parameter a, b, c, and d are
set to 0.59, 0.19, 0.19 and 0.05, respectively). We use graphs with scale 27 (i.e., 227

vertices) and edge factor 16 (i.e., an average of 16 edges per vertex). For real-world
graphs, we obtain two graphs from Standford Large Network Dataset Collection
(SNAP) [119], it-2004 and sk-2005, which have approximately 41 million vertices
and 1.1 billion edges, and approximately 50 million vertices and 1.9 billion edges,
respectively. For the weighted graphs, we randomly generate the edge weights
uniformly in [1 512] using Random123 library [100], and assign to the already
existing graphs.

4.4.2 Performance of 2D Graph Layout

We show the performance of the five algorithms with the 2D graph layout with one,
four and eight columns (labeled as p× 1, (p/4)× 4, and (p/8)× 8, respectively) on
64, 128, and 256 MPI tasks. The results are shown in Fig. 4.5 in TEPS (i.e., the
number of graph edges traversed per second). In all cases, increasing the number
of columns from 1 to 8 improves the algorithm performance. The improvement can
easily be seen on all algorithms when running on g500-s27. This graph also gives
the best algorithm scalability comparing to other real-world graphs. For BFS, the
performance of the algorithms with the 2D layout (with 4 columns) can be from
1.2× to close to 2× when comparing with the algorithms with the 1D layout. Both
BFS and APD give very similar results since APD is basically the multiple runs
of BFS. However, APD has lower scalability as it requires more synchronization
between BFS runs. CNC, on the other hand, gives lightly lower performance than
both BFS and APD as the algorithm involves more vertices during communication
phases. However, the algorithm still gives good strong scalability on all graph types
while APD shows some performance degradation on it-2004 and sk-2005. PRK show
low performance on all graph types as it has high complexity in both computation
(from computing PageRank values) and communication (from full traversing of
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every vertices in each iteration). However, it gives very good strong scalability as the
algorithm has high computation overhead (which is suited for parallel computing)
compared to other algorithms. MBF gives the worst performance of all algorithms
since the algorithm does not scale well on distributed machines as it has high
redundant computation and communication.

4.4.3 Communication Analysis

One of the advantages of the 2D graph layout is that it reduces communication
space and the number of messages of the all-to-all communication which has high
communication overhead. This improvement can be seen in all cases in Fig. 4.6. All
algorithms except PageRank require less than 50% of the all-to-all communication
when the 2D layout is used comparing to the communication of the 1D layout.
BFS, APD and MBF show very similar results in terms of communication ratio.
The overall communication increases when increasing the number of processors.
However, it decreases when the number of processor columns changing from 4 to 8.
For CNC, the communication ratio is mostly higher than those of BFS, APD and
MBF since CNC is an algorithm with a fan-in approach that involves more vertices
and leads to more communication overhead. The high communication from PRK
can be expected as the algorithm has the highest communication comparing to
others (i.e., full vertex traversals in every iteration). However, the 2D layout can
be used to lower the all-to-all communication.

4.5 Conclusions and Future Work
We propose a distributed graph framework based on BSP with the 2D layout.
Since our framework is synchronous, it is easy to apply to various iterative graph
algorithms. With the use of the 2D layout, communication space and the number
of messages are reduced. Furthermore, the edge distribution is also improved over
the traditional 1D layout. Although the 2D layout adds some extra communication
from all-gather and transpose communication, overall communication overhead of
the algorithms is reduced resulting in a better algorithm scalability.

We show the performance of the 2D graph layout framework on five graph
algorithms, breadth-first search, approximate diameter, connected components,
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Figure 4.5. The performance of distributed graph algorithms with the 2D graph layout.

PageRank and modified Bellman-Ford SSSP, on a number of synthetic and real-
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Figure 4.5. (Cont.) The performance of distributed graph algorithms with the 2D
graph layout.

world graphs. Our experiment shows that the 2D graph algorithms give better
performance than the 1D graph algorithms in all cases. The use of the 2D layout also
significantly decreases the all-to-all communication which is the main communication
overhead in parallel graph algorithms.

Currently, we only apply a simple distribution such that one partition is assigned
to one processor. However, there are many approaches to map the 2D graph
partitions to processors that can give various advantages. One method that we
consider to apply in the future is to assign multiple partitions to one processors to
increase the throughput of graph algorithms using the framework. With this over-
partitioning method, it is possible to achieve better load balancing by overlapping
some parts of computation and communication of the algorithm. The other mapping
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Figure 4.6. The breakdown communication of distributed graph algorithms with the
2D graph layout.

method is to assign a partition to each processor in some other ways instead of in
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Figure 4.6. (Cont.) The breakdown communication of distributed graph algorithms
with the 2D graph layout.

order as it can possibly give better overall communication results. We also consider
implement our framework to support shared-memory machines to further improve
overall communication on those architectures.
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Chapter 5 |
Parallel Single Source Shortest
Path Algorithms

With the advance of online social networks, World Wide Web, e-commerce and
electronic communication in the last several years, data relating to these applications
has become exponentially larger. These data are usually analyzed using graphs
modeling relations among data entities. However, processing these graphs is
challenging not only from a tremendous size of the graphs that is usually in terms
of billions of vertices and trillions of edges, but also from graph characteristics
such as sparsity, irregularity and scale-free degree distributions that are difficult to
manage.

Large-scale graphs are commonly stored and processed across multiple machines
or in distributed environments due to a limited capability of a single machine
(i.e., limited availability of memory to process an entire graph). However, current
graph analyzing tools which have been optimized and used on sequential systems
cannot directly be used on these distributed systems without scalability issues.
Thus, novel graph processing and analysis are required, and efficient parallel graph
computations are mandatory to handle these large-scale graphs effectively.

Single-Source Shortest Path (SSSP) is a well-known graph computation that
has been studied for more than half a century. It is one of the most common graph
analytical analysis for many graph applications such as networks, communication,
transportation, electronics and so on. There are many algorithms that have been
proposed such as the well-known Dijkstra’s algorithm [39] and Bellman-Ford [11,44].
However, these algorithms are designed for serial machines, and do not efficiently
work for parallel environments. As a result, many researchers have been studied
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and proposed parallel SSSP algorithms or implemented SSSP as parts of their
parallel graph frameworks. Some well-known graph libraries and frameworks include
the Parallel Boost Graph Libray [55], GraphLab [79, 80] and PowerGraph [51],
Galois [45] and ScaleGraph [36]. More recent frameworks have been proposed
based on Hadoop sytems [133] such as Cyclops [27], GraphX [136] and Mizan [70].
For standalone implementations of SSSP, most recent implementations usually
are for GPU parallel systems such as [35, 131, 138]. However, high performance
GPU architectures are still not widely available and they also require good CPUs
to speed up the overall performance. Other environments that SSSP have been
developed up on are shared-memory architectures. These SSSP implementations
include [84,99,115].

In this chapter, we focus on designing and implementing efficient SSSP al-
gorithms for distributed-memory systems since there are only few SSSP imple-
mentations for this type of architectures. We aware of a recent SSSP study of
Chakaravarthy et al. [24] that is proposed for massively parallel systems, IBM Blue
Gene/Q (Mira). Their SSSP implementations have applied various optimizations
and techniques to achieve very good performance such as direction optimization
(or a push-pull approach), pruning, vertex cut and hybridization. However, many
techniques used are specifically for SSSP algorithms or a limited variety of graph
algorithms. In our case of SSSP implementations, most of our techniques are more
flexible and can be extended to other graph algorithms while still achieving good
performance. We also experiment on various graph types and distributed-memory
environments to see how well our algorithms perform in various conditions. Our
main contributions include:

• Novel SSSP algorithms that combine advantages of various well-known SSSP
algorithms.

• A utilization of a two-dimensional graph layout to reduce communication
overhead and improve load balancing of SSSP algorithms.

• A distributed cache-like optimization that filters out unnecessary SSSP up-
dates and communication to further increase the overall performance of the
algorithms.

• A detailed evaluation of the SSSP algorithms on various large-scale graphs
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and environments.

5.1 Case Study: SSSP Algorithm Performance
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Figure 5.1. The numbers of phases and relaxations of the ∆-stepping algorithm with
different ∆.

Let G = (V,E) be a graph with n = |V | vertices and m = |E| directed edges
with non-negative weights. (For the case of undirected edges, it can be viewed
as directed edges pointing in both directions.) In general, the input to SSSP is a
source vertex, s ∈ V . SSSP finds the shortest paths between s and each v ∈ V .
Most SSSP algorithms usually are based on two classical approaches, label-setting
and label-correcting. For the label-setting, each vertex is relaxed only once, and is
marked as settled after its relaxation. The relaxation order is a key of this approach
to maintain the algorithm validation. The Dijkstra’s algorithm [39] belongs to this
category with the use of a priority queue that keeps all active vertices in the queue
in ascending order based on their distances from s. The algorithm is work-efficient,
but provides very limited concurrency to exploit. The label-correcting approach is,
on the other hand, more amenable to parallelization while it is not work-optimal.
Each vertex may be relaxed multiple times and in any order since there is no priority
given to the relaxation order of active vertices. The Bellman-Ford algorithm [11]
is an example of this approach. The algorithm relaxes n vertices in n iterations,
and each vertex may be relaxed more than once. The ∆-stepping algorithm [88]
is a special SSSP algorithm that utilizes both label-setting and label-correcting
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approaches to compromise between work-efficiency and concurrency in the algorithm
with the use of a ∆ parameter and ∆-size buckets. The relaxation of vertices in each
bucket is based on label-correcting while the bucket itself is based on label-setting.
Thus, adjusting the size of ∆ determines the tradeoff between work-efficiency and
concurrency.

Fig. 5.1 shows (a) numbers of phases and (b) numbers of edge relaxations with
different ∆ values on a synthetic graph generated using Graph500 with scale 27
(g500-s27) and a real-world graph (it-2004). The performance of the Dijkstra’s
algorithm and Bellman-Ford are shown with ∆ equal to 1 and Infty, respectively,
as they are equivalent algorithms. Increasing ∆ results in decreasing the number of
phases as buckets with larger ∆ can hold and relax more vertices than smaller ∆
buckets. Thus, the larger ∆, the more concurrency. However, increasing ∆ also
yields higher numbers of relaxations as it increases a chance of each vertex to be
relax multiple times. Thus, the larger ∆, the less work efficiency. Note that it-2004
requires higher numbers of phases to process because it has a larger graph diameter
than g500-s27.
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Figure 5.2. The execution time of the Dijkstra’s, Bellman-Ford and ∆-stepping algo-
rithms on a synthetic graph generated using Graph500 with scale 27 (g500-s27) and a
real-world graph (it-2004).

The performance of the three distributed algorithms, Dijkstra’s, Bellman-Ford
and ∆-stepping algorithms, with different ∆ on the g500-s27 and it-2004 graphs is
shown in Fig. 5.2. For g500-s27, Bellman-Ford provides high algorithm concurrency,
and it gives better performance scalability when the numbers of processors increase.
In contrast, the Dijkstra’s algorithm shows very poor performance scalability since
it has very low algorithm concurrency. Fortunately, ∆-stepping can combine the
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advantages of both Dijkstra’s and Bellman-Ford algorithms resulting in much better
performance and scalability of the algorithm. For it-2004 that has a high graph
diameter, both Dijkstra’s and Bellman-Ford algorithms give very poor performance.
On the other hand, ∆-stepping still shows much better performance than the other
two algorithms even though ∆-stepping does not show good scaling for this graph.
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Figure 5.3. The numbers of relaxations on the first 100 phases of the ∆-stepping
algorithm with ∆ = 32.

Fig. 5.3 shows the numbers of relaxations on the first 100 phases of ∆-stepping
algorithm with ∆ = 32 on g500-s27 and it-2004. Note that g500-s27 and it-2004
require 123 and 954 phases to complete the full SSSP execution, respectively. The
results from both graphs show that the first half of the algorithm execution is
dominated by light phase relaxations while the later half is dominated by heavy
phase relaxations. During early phases, most vertices of the graphs are still unsettled,
and this results in more work in light phases. At some points when a large portion
of vertices are settled, more work is shifted to heavy phases as the number of
insertions of unsettled vertices to current buckets decreases.
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5.2 Novel Parallel SSSP Implementations

5.2.1 General Parallel SSSP for Distributed-Memory Systems

Our SSSP implementation is based on a bulk-synchronous ∆-stepping algorithm for
distributed-memory implemented in [94]. The algorithm composes of three main
steps, a local discovery, an all-to-all exchange and a local update for both light and
heavy phases. In the local discovery step, each processor looks up to all adjacencies
v of its local vertices u in the current bucket, and generates corresponding tentative
distances dtv = d(u) + w(u, v) of those adjacencies. Note that, in the light phase,
only adjacencies from light edges are considered, while, in the heavy phase, only
adjacencies from heavy edges are processed. For each edge uv, a pair (v, dtv) is
generated, and is added to a queue called QRequest. The all-to-all exchange step
distributes these pairs in QRequest to make them local to processors so that each
processor can use these information to update a local tentative distance list in the
local update step. An edge relaxation is part of the local update step that involves
updating vertex tentative distances and adding/removing vertices to/from buckets
based on their current distances.

There are some additional optimizations to the data structure and algorithm.
The full list of the optimizations is shown in [94].

5.2.2 Parallel SSSP with 2D graph layout

We consider a two-dimensional (2D) graph layout previously studied in [19] for
breadth-first search. This approach optimizes the underlying graph data structures,
and gives an order of magnitude improvement over general distributed graph
frameworks without fine-tuning any specific graph algorithm. Thus, it can be
applied to any distributed graph algorithm efficiently and effectively, and can be
implemented as an efficient framework for distributed graph computations. The
idea of this approach is to partition a sparse adjacency matrix of a graph into grid
blocks of pr rows and pc columns, and to force each inter-processor communication
to occur only on one dimension (either row or column) at a time. Thus, it reduces
the inter-processor communication space. If we partition a sparse adjacency matrix
of a graph with n vertices into p = pr × pc partitions, with the traditional 1D
layout, each set of n/p consecutive rows of the matrix is assigned to one partition
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(see Fig. 5.4(a)). Alternatively, we can partition the adjacency matrix into grid
blocks, and assign each block to one partition or processor (see Fig. 5.4(b)). With
p = pr × pc processors, the communication space can be reduced from pr × pc to pr

for the all-to-all communication. Furthermore, this approach provides better load
balancing of edges of a graph than the 1D layout approach as any dense row of
a high degree vertex can now be distributed across multiple processors instead of
only one processor as in the 1D layout.

(a) With 1D layout (b) With 2D layout

Figure 5.4. The graph distributions by partitioning the equivalent adjacency matrix of
the graph.

To apply the 2D graph layout to the ∆-stepping algorithm, each of the three steps
needs to be modified according to the changes in the vertex and edge distributions.
While the vertices are distributed in similar manner as in the 1D graph layout,
edges are now distributed differently. Previously in the 1D layout, all outgoing
edges of local vertices are assigned to one processor. However, with the 2D layout,
these edges are now distributed among row processors that have the same row rank.
Fig. 5.5(a) illustrates the partitioning of vertices and edges for the 2D layout.

In the local discovery step, there is no need to modify the original routine. The
only work that needs to be done is by adding a pre-processing phase that merges all
current buckets along the processor rows by using a row-wise all-gather operation.
The goal is to gather all active vertices that belong to the same processor rows
since edge information of one vertex is distributed to all processors in the same
processor rows. Thus, each processor requires to know all active vertices that are
in the current bucket of their neighbor processor rows before the discovery step
can take place. After the current bucket is merged (see Fig. 5.5(b)), each processor
can now simultaneously work on generating pairs (v, dtv) of its local active vertices
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(a) Local active vertices (b) All-gatherv (c) Local discovery

(d) All-to-all exchange (e) Transposition (f) Local update

Figure 5.5. The main SSSP steps when applying the 2D layout.

(see Fig. 5.5(c)).
In the all-to-all exchange step, the purpose of this step is to distribute the

generated pairs (v, dtv) to the processors that are responsible to maintain those
data relating to vertices v. In our implementation, we use two sub-communications,
a column-wise all-to-all exchange and a send-receive transposition. The column-
wise all-to-all puts all information pairs that belong to the same owner onto one
processor. Fig. 5.5(d) shows a result of this all-to-all exchange operation. After that,
each processor sends and receives these pair lists to the actual owner processors.
The latter communication can be viewed as a matrix transposition as shown in
Fig. 5.5(e).

In the local update step, the original routine can be kept the same, but the
data structure of the buckets needs to be changed. In the 2D layout, local tentative
distances of each processor only correspond to a block of adjacencies and does
not include all adjacencies of one vertex. Instead of only storing active vertices
in buckets, both vertices and their current tentative distances need to be stored
in the buckets so that each processor knows the distance information without
initiating any other communication when the buckets are merged in the next local
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discovery step. Fig. 5.5(f) illustrates this local update step. Since all pairs (v, dtv)
are local, each processor can update the tentative distances of their local vertices
simultaneously.

Algorithm 6 Distributed SSSP with the 2D Graph Layout
1: for local u do
2: d[u] =∞
3: end for
4: current = 0
5: if onwer(s) = rank then
6: d[s] = 0
7: end if
8: if onwerRow(s) = rankRow then
9: add pair (s, 0) to Bucket[current]
10: end if
11: while Bucket 6= ∅ do {Globally check}
12: while Bucket[current] 6= ∅ do {Globally check}
13: for pair (u, du) in Bucket[current] do
14: for light edge (u, v) do
15: dtv = du+ w(u, v)
16: add pair (v, dtv) to QRequest
17: end for
18: add pair (u, du) to QHeavy
19: end for
20: Alltoallv (row-wise) and Transpose of QRequest
21: for pair (v, dtv) in QRequest do
22: Relax(v, dtv)
23: end for
24: Allgatherv (column-wise) of Bucket[current]
25: end while
26: for pair (u, du) in QHeavy do
27: for heavy edge (u, v) do
28: dtv = du+ w(u, v)
29: add pair (v, dtv) to QRequest
30: end for
31: end for
32: Alltoallv (row-wise) and Transpose of QRequest
33: for pair (v, dtv) in QRequest do
34: Relax(v, dtv)
35: end for
36: current = current + 1 {Move to next bucket}
37: Allgatherv (column-wise) of Bucket[current]
38: end while

Our complete SSSP algorithm with the 2D graph layout is shown in Alg. 6.
The processing of light and heavy phases is shown in lines 9-18 and lines 19-27,
respectively. Alg. 7 shows the relaxation procedure used in Alg. 6 (lines 22 and 34).
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Algorithm 7 Vertex Relaxation for Distributed SSSP
Relax(v, dtv)
if d[v] > dtv then
old = d[v]/∆, new = dtv/∆
Remove pair (v, d[v]) from Bucket[old]
Add pair (v, dtv) to Bucket[new]
d[v] = dtv

end if

5.2.3 Other Optimizations

To further improve the algorithm performance, we apply other three optimizations,
a cache-like optimization, a heuristic ∆ increment and a direction optimization.
The detailed explanation is as follows.

Cache-like Optimization: We maintain a tentative distance list of all unique
adjacencies of the local vertices as a local cache. This list holds the recent values
of tentative distances of all unique adjacent vertices. When a new tentative dis-
tance is generated (during the discovery step), this newly generated distance is
compared to the local copy in the list. If the new distance is shorter, it will be
processed in the regular manner by adding the generated pair to the QRequest,
and the local copy in the list is updated to this value. However, if the new dis-
tance is longer, it will be discarded since the remote processors will eventually
discard the value during the relaxation anyway. Thus, with a small tradeoff of
additional data structures and computations, this approach can significantly avoid
unnecessary work that involves both communication and computation in later steps.

Heuristic ∆ Increment: The idea of this optimization is from an observation
of the ∆-stepping algorithm that the algorithm provides a good performance in
early iterations when a small ∆ is used since it can avoid a large portion of re-
dundant work during processing light phases. Meanwhile, with a larger ∆, the
algorithm provides a good performance in later iterations since most vertices of
the graph are settled so that a portion of redundant work is low. Thus, more
algorithm concurrency provides more benefit. In other words, a small ∆ results in
low overhead during light phases, but leads to high overhead during heavy phases.
On the other hand, a large ∆ decreases work in heavy phases, but increases work in
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light phases. The algorithm with ∆ that can be adjusted when needed can provide
better algorithm performance. Thus, from this observation, instead of using a fixed
value of ∆, our heuristic optimization processes by starting with a small value of
∆. Once some thresholds are met, the value of ∆ is then increased (usually to ∞)
to speed up the later iterations.

Direction Optimization: This optimization is a heuristic approach first intro-
duced in [10] for breadth-first search (BFS). Conventional BFS algorithms usually
proceed in an top-down approach such that, in every iteration, each vertex in a
frontier checks all of its neighbors whether they are not yet visited, adds them to
the frontier, and then marks them as visited. The algorithm terminates whenever
there is no vertex in the frontier. The algorithm performance is based on the total
number of adjacent vertices of all vertices in this frontier. The more adjacencies,
the more work that needs to be done. Furthermore, if there are some high degree
vertices that need to be processed in later iterations, most work will be discarded
since most adjacencies of those vertices are already settled. From this observation,
the bottom-up approach can come to play for efficiently processing of vertices in the
frontier. Instead of using the top-down approach, it can be done in the reverse direc-
tion. To avoid processing large numbers of adjacent vertices, the algorithm checks
unvisited vertices and marks them visited if their neighbors are in the frontier. With
a heuristic determination, the algorithm can alternately switch between top-down
and bottom-up approaches to achieve an optimal performance. Since the discovery
step in SSSP is done in similar manner as BFS, Chakaravarthy et. al. [24] adapts
a similar technique called a push-pull heuristic to their ∆-stepping-based SSSP
algorithms. The algorithms proceed with a push (similar to the top-down approach)
by default during the early stages of the execution. If the forward communication
volume of the current bucket is greater than the request communication volume
of all later buckets combined, the algorithms switch to the pull approach. This
push-pull heuristic considerably improves an overall performance of the algorithm.
The main reason of the improvement is because of the lower communication volume,
thus, the consequent computation also decreases.
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5.2.4 Summary of implementations

In summary, we implement five SSSP algorithms:

1. SP1a: The SSSP algorithm based on ∆-stepping with the cache-like opti-
mization

2. SP1b: SP1a with the direction optimization (push-pull heuristic)

3. SP2a: SP1a with the 2D graph layout

4. SP2b: SP2a with the ∆ increment heuristic

The main difference among the algorithms is the level of optimizations that
varies from 1D to 2D graph layouts and some heuristic approaches introduced in
each algorithm.

5.3 Performance Results and Analysis

5.3.1 Experimental Setup

Our experiments are run on a virtual cluster using StarCluster [122] with the
MPICH2 complier version 1.4.1 on top of Amazon Web Service (AWS) Elastic
Compute Cloud (EC2) [7]. We use 32 instances of AWS EC2 m3.2xlarge. Each
instance consists of 8 cores of high frequency Intel Xeon E5-2670 v2 (Ivy Bridge)
processors with 30 GB of memory. We also experiment on a smaller computing
cluster, CyberStar [34], which is available for our use at The Pennsylvania State
University. The CyberStar cluster consists of 192 Dell PowerEdge R610 severs.
Each provides two quad-core Intel Nehalem processors running at 2.66 GHz with
24 GB of RAM. On this system, the codes are complied using OpenMPI version
4.8.2. We use up to 128 cores of the CyberStar cluster. Note that the reason of
most of our experiments are done on Amazon EC2 is because of the availability of
numbers of processors that we can use (up to 256). Although CyberStar provides
a better performance for high performance computing, the numbers of processors
that we can use is very limited (up to 128).

The graphs that we use in our experiments are listed in Tab. 5.1. The g500-s27 is
a synthetic graph generated from the Graph500 reference implementation [54]. The
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Table 5.1. The list of graphs that are use in our experiments.
Graph Vertices Edges Reference
g500-s27 134 M 2.1 B [54]
it-2004 41 M 1.1 B [15]
sk-2005 50 M 1.9 B [15]
friendster 65 M 1.8 B [137]
orkut 3 M 117 M [137]
livejournal 4 M 68 M [137]

graph generator is based on the R-MAT random graph model with the parameters
similar to those use in the default Graph500 benchmark (i.e., parameter a, b, c
and d are set to 0.59, 0.19, 0.19 and 0.05, respectively). In this experiment, we
use the graph scale of 27 (i.e., 227 vertices) with edge factor of 16 (i.e., an average
of 16 degrees per vertex). The other six graphs are real-world graphs that are
obtained from Standford Large Network Dataset Collection (SNAP) [119] and The
University of Florida Sparse Matrix Collection [120]. The edge weights of all graphs
are randomly, uniformly generated in [1 512] using Random123 library [100].

We fix the value of ∆ to 32 for all algorithms. Please note that this ∆ might not
be the optimal value in all test cases, but, in our initial experiments on the systems,
it gives good performance most of the time. To get the optimal performance in all
cases is a challenging problem since since ∆ needs to be changed accordingly to
the systems (such as CPU, network bandwidth and latency) and the graph (such
as size, type of distribution and number of partitions). For more discussion about
the ∆ value that can affect the performance of the ∆-stepping algorithm, please
see [94].

5.3.2 Algorithm and Communication cost Analysis

The 2D layout improves the performance of the SSSP algorithms by decreasing the
(all-to-all) communication space and improving load balancing. In this subsection,
we further look into the performance of the algorithms with the 2D layout on
different numbers of columns.

In the 2D layout, when the number of columns increases, it further decreases
the all-to-all communication overhead, and improves the edge distribution among
partitions. Consider processing a graph with n vertices and m edges using p =
r × c processors. The all-to-all and all-gather communication spaces are usually
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Figure 5.6. The number of (a,b) requesting and (c,d) sending vertices to be relaxed
during the highest relaxation phase of the ∆-stepping algorithm with the 2D layout on
g500-s27 and it-2004 using different combinations of processor rows and columns on 256
MPI tasks.

proportional to r and c, respectively. The maximum number of messages for each
all-to-all communication is m/c while the maximum number of messages for each all-
gather is n/r. In each phase, processor pi,j requires to interact with processors pk,j

for the all-to-all communication where 1 ≤ k ≤ r, and with processors pi,l for the all-
gather communication where 1 ≤ l ≤ c. By setting r = 1 and c = p, the algorithms
do not need any all-to-all communication, but the all-gather communication now
requires all processors to participate.

When running the SSSP algorithms on scale-free graphs, a majority of the
entire computation and communication are usually spent on few phases of the
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algorithms that require to process on very high degree vertices. The Fig. 5.6 shows
the average, minimum and maximum vertices to be (a,b) requested and (c,d) sent
for relaxation during one of these phases that consumes the most time of the
algorithm execution of SP1a, SP1b and SP2a on g500-s27 and it-2004 with 256
partitions. Note that we use the abbreviation SP2a-R×C for the SP2a algorithm
with R and C processor rows and columns, respectively. For example, SP2a-64×4
is the SP2a algorithm with 64 row and 4 column processors (e.g., 256 processors in
total). The improvement of load balancing of the requested vertices for relaxation
can easily be seen in Fig. 5.6(a,b) as the minimum and maximum numbers of
the vertices decrease on both graphs from SP1a to SP1b and SP1a to SP2a. The
improvement from SP1a to SP1b is significant as the optimization is specifically
implemented for this issue (i.e., the overhead during the high-requested phases) by
switching from the push to pull method as the numbers of vertices involved in these
phases are much lower. On the other hand, SP2a still processes the same number of
vertices, but in lower communication space and better load balancing. Not only load
balancing of the communication improves, but the numbers of (average) messages
among inter-processors also reduce as we can see in Figs. 5.6(c,d). However, there
are some limitations of both SP1b and SP2a. For SP1b, the push-pull heuristic may
not trigger in some phases that have high computation and communication if the
costs of both push and pull approaches are not much different. For SP2a, although
increasing numbers of columns can improve load balancing of distributed edges and
decrease (all-to-all) communication in every phase, the all-gather communication
also increases linearly as the number of columns increases. There is no optimal
number of columns that gives the best algorithm performance since it depends on
various factor such as the number of processors, the size of the graph and other
system specifications.

5.3.3 Benefits of 2D SSSP Algorithms

We experiment on six different graphs to see how each algorithm performs under
various circumstances. Fig. 5.7 shows the algorithm performance on AWS EC2 up
to 32 nodes of 8-core m3.2xlarge (or up to 256 MPI tasks). Although SP1b can
significantly reduce computation and communication during the high-requested
phases, its overall performance is similar to SP2a. The SP2b algorithm gives
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the best performance in all cases, and it also gives the best algorithm scalability
when numbers of processors increase. The peak performance of SP2b-32×8 of
approximately 0.45 GTEPS can be observed on g500-s27 with 256 MPI tasks which
is approximately 2× faster than the performance of SP1a on the same setup. The
SP2b algorithm also shows good scaling on large graphs (e.g., g500-s27, it-2004,
sk-2005 and friendster).
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Figure 5.7. The performance of SSSP algorithms on six graphs with up to 256 MPI
tasks.

5.3.4 Communication Cost Analysis

The 2D graph layout helps reducing the communication volume and space, and
improving load balancing. Fig. 5.8 shows the execution time of each algorithm in
terms of computation and communication on six graphs. More than half of the
time for all algorithms is spent on communication as the networks of AWS EC2 is
not optimized for data transferring for high performance parallel computing. The
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improvement of SP1b over SP1a is from the reduction of computation overhead as
numbers of processing vertices in some phases are reduced. On the other hand, SP2a
has lower communication overhead than the overhead of SP1a as the communication
space is decreased from the use of the 2D layout. The SP2b algorithm further
improves the overall performance by introducing more concurrency in the later
phases resulting in lower both computation and communication overhead during
the algorithm executions.
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Figure 5.8. Communication and computation time of SSSP algorithms on 256 MPI
tasks.

Fig. 5.9 shows the communication time break down of all algorithms. We can
see that when the number of processor rows increases, it affects the communication
by decreasing the all-to-all communication, and slightly increasing the all-gather
and transpose communication. In all cases, the SP2b algorithm shows the least
communication overhead with up to 10× faster for the all-to-all communication
and up to 5× faster for the total communication.
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Figure 5.9. Communication breakdown of SSSP algorithms on 32 computing nodes.

5.3.5 Cross-Architecture Performance

The results from the experiments that we have done so far show very limited
performance since they are obtained from the experiments on the virtual cluster,
StarCluster, on top of Amazon EC2 instances. Many devices of instances are not
up to the standard of most high performance computing systems. For example, the
commodity network on EC2 m3.2xlarge that we use has the maximum bandwidth
of only up to 125 MB/s while most standard computing clusters usually equip
with the InfiniBand interconnect that provides up to 10 GB/s. For comparison
purposes, we show the results that can be obtained from an actual high performance
cluster, in this case, the CyberStar cluster. Note that we could not perform the
full experiments on CyberStar due to the limited resources.

We perform a comparison of three SSSP algorithms, SP1a, SP2a-64×2 and
SP2b-64×2 on CyberStar and AWS EC2. The experiments are done with 128 MPI
tasks on both systems (i.e., 16 nodes on CyberStar and 8 nodes on AWS EC2). The
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Figure 5.10. Performance comparison of three SSSP algorithms on CyberStar (left bar)
and AWS EC2 (right bar). The experiments are performed on g500-s24 (224 vertices),
orkut and livejournal graphs with 128 MPI tasks.

algorithms run on g500-s24 (224 vertices), orkut and livejournal graphs, and the
performance is shown in Fig. 5.10. The performance of the three SSSP algorithms
on CyberStar shows much better results than on AWS EC2 as we can see that
the algorithms provide up to 3× the performance on AWS EC2 (Figs. 5.10(a-c)).
Figs. 5.10(d-f) show the break down computation and communication time of the
algorithms, respectively. With the InfiniBand interconnection, communication time
of the SSSP algorithms on CyberStar shows a significant improvement, and takes
only around one-fifth of the communication time on AWS EC2.

5.3.6 Comparison to Other Works

Many parallel graph frameworks have been recently proposed, and have reported
good performance such as GraphX [136], Cyclops [27], Mizan [70] and Scale-
Graph [36]. In this section, we perform a performance comparison of our 2D
SSSP implementations with SSSP implementations in GraphX and Cyclops. Please
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note that GraphX and Cyclops are not MPI-based as we use in our graph imple-
mentations. Despite the differences of frameworks, compilers and inter-processor
communication approaches, the comparison is constructed under the same com-
putational environments i.e., AWS EC2 m4.10xlarge 4 instances in which each
instance comprises of 40 vCPUs and 160GB of RAM, and is tested on sk-2005,
friendster and it-2004 graphs.
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Figure 5.11. The performance comparison of SSSP implementations on various graph
processing frameworks.

The SSSP implementations in both GraphX and Cyclops are based on the
Dijsktra’s algorithm. As a result, our SSSP implementation shows much better
performance in all cases as shown in Fig. 5.11. Our SSSP implementations perform
up to 5× faster than the SSSP implementation on GraphX, and up to 2× faster
than the SSSP implementation on Cyclops.

5.4 Conclusion and Future Work
We propose efficient SSSP algorithms that combine the advantages of Dijkstra’s
and Bellman-Ford algorithms. Our algorithms reduce both communication and
computation overhead from the utilization of the 2D graph layout, the cache-like
optimization and the ∆ increment heuristic. The 2D layout improves the algorithm
performance by decreasing the communication space of the all-to-all communication
from p to r where p = r × c is the number of total processors (assuming that
each processor owns one partition); r and c are the number of processor rows and
columns, respectively. Furthermore, the layout also improves the load balancing of
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distributed graphs, especially, with scale-free graphs that contain few high degree
vertices, since the adjacencies of these vertices are now distributed among multiple
processors. The cached-like optimization avoid unnecessary workloads for both
communication and communication by filtering out all update requests that are
known to be discarded. Finally, by increasing the ∆ values while the algorithms
progress, we can improve the concurrency of the algorithms in the later iterations
without high tradeoff in the work redundancy.

Currently, our algorithms are based on the bulk-synchronous processing for
distributed-memory systems. We plan to extend our algorithms to also support
the shared-memory parallel systems (i.e., the hybrid OpenMP and MPI implemen-
tation) that can further reduce the inter-processor communication of the algorithm.
Another possible approach to improve the algorithm performance is to overlap
the communication and computation by over-partitioning the graph and assigning
multiple partitions to each processor. Thus, the computation and communication
can be overlapped among partitions on the same processor.
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Chapter 6 |
Parallel Approximate Graph Col-
oring Algorithms

One of fundamental concepts in parallel computing is to determine data dependen-
cies in a program. The more dependence among data, the less parallelism of the
programs. These dependencies are usually uncovered by identifying independent
sets of data. Data that belongs to the same set is independent to each other, and
can be processed simultaneously without any race conditions or invalid execution
results.

A commonly used technique to discover such the sets is to use a graph coloring
method. This method is widely used to determine concurrency in many parallel
scientific computing such as some iterative methods for sparse linear systems [65],
preconditioners [61], adaptive mesh refinements [66] and mesh optimizations [13].

Graph coloring is an assignment of colors or labels to elements of a graph based
on some given constraints. These graph elements can be vertices or edges of the
graph, and their corresponding coloring problems are usually referred as vertex and
edge coloring, respectively. In this context, we consider only vertex coloring, and
also refer it as graph coloring throughout the chapter.

One of most common types of vertex coloring is to color graph vertices such that
no two adjacent vertices are given the same color. Let G = (V,E) be an undirected
graph where V and E are sets of vertices and edges of the graph, respectively.
Graph coloring is to assign colors to all v ∈ V such that, for any u, v ∈ V and
uv ∈ E, u and v cannot have the same color. Once all vertices are colored, it can
be viewed as a partition of V into q independent sets where q is the number of
colors used in the coloring process. The minimum number of colors required for a
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given graph is called the chromatic number. However, determining the chromatic
number of a graph is NP-Complete. Thus, graph coloring problems are usually
solved using heuristic approaches to find an approximate solution because of their
NP-Completeness. A general approximate coloring usually processes in the way
that, first, all vertices are ordered by some ordering criterion. Then, each vertex is
picked in order based on its rank, and is given a minimum color that are not used
by their adjacencies. The method progresses until all vertices are colored. This
algorithm is shown in Alg. 8. There are several ordering heuristics that can be used
as discussed in [3,56]. However, the two most well-known, efficient ordering are the
largest-degree-first [132] and smallest-degree-last [86] orderings.

Algorithm 8 Sequential approximate graph coloring algorithm
1: set v.color to no color for all v
2: ordering v based on a given condition
3: for each v from the ordering do
4: color ← min. color not used by neighbors
5: v.color ← color
6: end for

In this Chapter, we propose scalable approximate (vertex) graph coloring algo-
rithms for distributed-memory systems. The algorithms use a heuristic technique
that iteratively colors graph vertices based on their priorities. Our parallel imple-
mentation is based on a bulk synchronous parallel model with the 2D graph layout
that is presented in Chapter 4. Our main contributions are as follows:

• Approximate graph coloring algorithms that are scalable and can be used on
large-scale distributed systems.

• A utilization of the 2D graph layout to reduce communication overhead and
improve load-balancing of approximate graph coloring algorithms.

• A detailed evaluation of the approximate graph coloring algorithms on various
large-scale graphs and distributed-memory machines.

6.1 Parallel Approximate Graph Coloring: Prior Work
Parallel approximate graph coloring has been studied on various types of platforms
such as shared-memory [48], distributed-memory [17, 22, 47], and multicore and
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multithreaded systems [23, 81]. These implementations are based on efficient,
sequential heuristic approaches. However, the major flaw of these algorithms is that
they do not provide much parallelism to be exploited because of data dependencies
in the algorithms; thus, their scalability is limited. As a result, most parallel coloring
algorithms are not actually true formulation of efficient, sequential algorithms (i.e.,
they do not give the same solution) as they need to be modified to provide more
parallelism, especially, for algorithms for distributed-memory systems that vertex
information is scattered among independent memory spaces. Hence, designing
and implementing scalable, efficient approximate graph coloring algorithms for
distributed-memory systems is very challenging.

We consider two recent algorithms for a parallel approximate graph coloring
problem for distributed graphs. The algorithms are shown in Algs. 9 [47] and 10 [22].
Even though both algorithms are based on the bulk synchronous parallel model,
Alg. 9 uses a distributed coloring method that requires less communication as it is
designed for Hadoop distributed systems [133] while Alg. 10 is a parallel coloring
based on the sequential algorithm that attempts to minimize coloring conflicts.

Algorithm 9 BSP Distributed graph coloring algorithm
1: set v.color to no color for all v
2: color ← 0
3: while some v with no color do
4: for all v with no color do
5: generate pairs (v, rank)
6: buffer ← (v, rank)
7: end for
8: comm. exchange buffer
9: for all v with no color do

10: get all (v, rank) from buffer
11: if v.rank > all rank then
12: v.color ← color
13: end if
14: end for
15: color ← color + 1
16: end while

Alg. 9 progresses in an iterative fashion. In each iteration, all active (or
uncolored) vertices send their information to all neighbors. This information
usually relates to the ordering heuristics used in the algorithms such as vertex
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degree and vertex ID. Once all vertices receive the information from their neighbors,
they color themselves with a distinct color (e.g., one color for each iteration)
and mark themselves inactive if they own the maximal of the information. This
information usually includes, but are not limited to, maximum degree or maximum
ID among neighbors. The algorithm terminates once all vertices are inactive (e.g.,
all vertices are colored).

Algorithm 10 SCP Framework
1: set all vertices to no color
2: S ← set of subset partitions of size s
3: while S is not empty do
4: for each U ∈ S do
5: color U with sequential algorithm
6: exchange colors of boundary vertices
7: adjust colors of boundary vertices
8: end for
9: end while

Alg. 10, on the other hand, uses a sequential coloring algorithm on each subgraph
and performs recoloring any boundary vertex that has conflict colors. Given a
partition of a graph, the algorithm progresses by partitioning each subgraph with
a fix size s. Then, the algorithm colors vertices of each subpartition with a serial
coloring algorithm. At the end of each coloring phase, processors exchange the
colors of boundary vertices of subgraphs. If any boundary vertex has a conflict
color, the algorithm determines whether this vertex should be recolored based on its
randomized priority. If the vertex has less priority, it is added to a list for recoloring.
The algorithm repeats these three steps of coloring, exchanging boundary vertex
colors and detecting conflicts on all subpartitions. The algorithm terminates once
all vertices have been colored. Note that the present of subpartitions with size s
on the subgraphs is to minimize the number of color conflicts during the coloring
phase. The smaller the size s, the lower the conflicts. However, the algorithm will
require more iterations to completely recolor all vertices that will lead to more
overhead from synchronization and communication.
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6.2 Parallel Graph Coloring: 2D layout
The 2D graph layout for distributed parallel algorithms has been studied in [19] for
breadth-first search. It provides significant improvement over a traditional (1D)
graph layout in terms of communication space and edge load balancing, especially in
large-scale real-world graphs with scale free distributions such as in social networks.

Our algorithms combine advantages of various graph coloring algorithms and
apply the 2D graph layout to further improve the performance of parallel coloring
algorithms while still providing coloring accuracy close to the sequential coloring
algorithm. Our two approximate coloring algorithms are based on Algs. 9 and 10
which we call SCP2d and BSP2d, respectively. The main improvement of algorithms
with the 2D graph layout is that edges of each vertex can now be distributed to
multiple processors instead of residing on the same processor as in the 1D layout.
This 2D layout can be viewed as block partitioning of adjacency matrix of the graph
(i.e., partitioning the matrix by both row and column) which is commonly used in
matrix algebra.

The main difference between the 1D and 2D graph coloring algorithms is the
communication pattern. In the 2D layout, out-going edges of a vertex are distributed
across multiple processors, or more precisely, this edge information of one vertex are
distributed among processor rows. Thus, to access the complete information of all
vertex adjacencies, an additional all-gather communication (among processors in the
same communication rows) is required. However, the main communication of the
algorithms which is in the form of an all-to-all communication is decreased. In the
1D layout, all processors need to participate in the same all-to-all communication
while, in the 2D layout, the all-to-all communication occurs only among processors
that belong to the same communication columns (or column processors). Thus,
for the 2D layout with p = √p×√p processors, the all-to-all communication only
occurs among groups of √p processors instead of all p processors as in the 1D
layout.
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Table 6.1. The list of graphs and meshes used in our experiments.
Graph Vertices Edges Reference
bmw3_2 227 K 5.5 M [119]
hood 221 K 4.8 M [119]
msdoor 416 K 9.3 M [119]
pwtk 218 K 5.6 M [119]
menger_sponge 6 M 154 M [96]
luer_connector 10 M 253 M [96]
nlpkkt200 16 M 440 M [120]
nlpkkt240 28 M 761 M [120]
g500-s27 134 M 2.1 B [54]
it-2004 41 M 1.1 B [15]
sk-2005 50 M 1.9 B [15]
friendster 65 M 1.8 B [137]

6.3 Performance Results and Analysis

6.3.1 Experimental Setup

Our experiments were run on two settings. First, it is an Intel i7 laptop (8-
core processor) with 16GB of memory. This machine runs experiments that
compare the number of colors from our algorithms with [22]. The other system is
StarCluster [122], a virtual cluster on top of Amazon Web Service (AWS) Elastic
Compute Cloud (EC2) [7]. The cluster occupies with the MPICH2 complier version
1.4.1. We emulate using 32 instances of AWS EC2 m3.2xlarge which each consists
of 8 cores of Intel Xeon E2-2670 v2 (Ivy Bridge) processors and 30 GB of memory.
This system is for the experiments on scalability of the algorithms on large dataset.

In the experiments, the algorithms have been evaluated on real-word graphs
and meshes which are obtained from The University of Florida Sparse Matrix
Collection [120], Stanford Network Analysis Platform [119] and The Laboratory for
Web Algorithmics [15]. The list of complete inputs is shown in Tab. 6.1. Note that
g500-s27 is a synthetic graph generated using Graph500 [54] with vertex and edge
scales of 27 and 16, respectively.
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6.3.2 Performance of Approximate Coloring Algorithms

We compare the accuracy of the two algorithms, i.e., a number of colors which are
returned from the algorithms with the 2D graph layout using one and four processor
columns on small meshes, bmw3_2, hood, msdoor and pwtk. (A lower number
of colors indicates better accuracy.) The result is shown in Tab. 6.2. Note that *
indicates an unavailable result as the algorithms with the 2D layout requires at least
four processors with four processor columns. The numbers of colors from SCP2d
are about half of the results from BSP2d. The reason is that BSP2d is based on a
distributed graph coloring heuristic that uses an entirely different approach from
the sequential coloring algorithm. However, increasing the number of processors
in BSP2d does not change coloring accuracy of the algorithm. In contrast with
SCP2d, when the number of processors increases, the accuracy of the algorithm also
decreases since more partitions introduces more color conflicts along the boundary
vertices.

SCP2d BSP2d
p× 1 (p/4)× 4 p× 1 (p/4)× 4

bmw3_2 p = 1 48 * 84 *
p = 16 57 58 92 92

hood p = 1 42 * 76 *
p = 16 47 48 82 82

msdoor p = 1 42 * 76 *
p = 16 47 48 90 90

pwtk p = 1 48 * 82 *
p = 16 54 54 90 90

Table 6.2. The number of colors that are returned from the BSP2d and SCP2d algorithms
on bmw3_2, hood, msdoor and pwtk graphs with one and four processor columns.

The performance of the SCP2d and BSP2d algorithms in terms of TEPS (i.e.,
edges traversed per second) on StarCluster on large meshes (e.g., menger_sponge,
luer_connector, nlpkkt200 and nlpkkt240) is shown in Tab. 6.3. Please note that the
TEPS in this case is a normalized time per edges. Increasing the number of columns
from 1 to 8 in both 2D algorithms does not improve much performance (e.g., only
up to four and seven percent improvement on SCP2d and BSP2d, respectively) as
the numbers of edges are likely equally distributed even when using the traditional
1D layout. The advantage of the 2D layout that reduces the communication space
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is negligible as it also introduces extra communication in the form of the all-gather
communication. In most cases, BSP2d provides better performance and scalability
over SCP2d, despite BSP2d requires more colors on the same graphs and meshes.

BSP2d SCP2d
p× 1 (p/8)× 8 p× 1 (p/8)× 8

menger_sponge
p = 64 4.23 4.38 3.32 3.38
p = 128 6.53 6.44 4.58 4.68
p = 256 8.60 8.37 5.58 5.64

luer_connector
p = 64 3.78 3.86 3.17 3.22
p = 128 6.10 5.98 4.56 4.62
p = 256 8.01 8.14 5.55 5.72

nlpkkt200
p = 64 3.05 3.07 2.66 2.85
p = 128 4.87 4.82 3.98 4.03
p = 256 6.82 6.65 5.21 5.16

nlpkkt240
p = 64 2.50 2.59 2.20 2.22
p = 128 3.58 3.69 3.09 3.03
p = 256 4.63 4.57 3.90 3.78

Table 6.3. The performance (TEPS ×107) of BSP2d and SCP2d on large meshes.

The performance of the SCP2d and BSP2d algorithms in terms of TEPS on
StarCluster on big social graphs (e.g., g500-s27, it-2004, sk-2005 and friendster) is
shown in Tab. 6.4. Increasing the numbers of columns from 1 to 8, in this case,
improves the performance on both algorithms as the edge distribution of scale-free
graphs on the 2D layout is more balance than the distribution on the 1D layout.
The performance improvement can be up to 10 and 19 percents for SCP2d and
BSP2d, respectively. Furthermore, BSP2d gives better scalability in all cases when
the numbers of processors increases although SCP2d provides better performance
in general in terms of the number of colors.

6.3.3 Communication Cost Analysis

The break down computation and communication costs of the BSP2d and SCP2d
algorithms on selected meshes and graphs are shown in Figs. 6.1 and 6.2, respectively.
The four bars of each plot group indicates the running time of SCP2d with 1 and 8
columns, and BSP2d with 1 and 8 columns, respectively. As the degree distribution
of vertices in meshes is uniform, the 2D layout does not provide any significant
improvement over the 1D layout, and sometimes, the overall execution time also
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BSP2d SCP2d
p× 1 (p/8)× 8 p× 1 (p/8)× 8

g500-s27
p = 64 0.96 1.02 0.79 0.90
p = 128 1.32 1.44 1.18 1.40
p = 256 1.87 2.03 1.82 1.99

it-2004
p = 64 0.35 0.37 0.26 0.29
p = 128 0.53 0.57 0.37 0.44
p = 256 0.75 0.81 0.57 0.68

sk-2005
p = 64 0.57 0.60 0.39 0.44
p = 128 0.87 0.88 0.65 0.75
p = 256 1.13 1.22 1.09 1.17

friendster
p = 64 0.89 0.93 0.63 0.75
p = 128 1.19 1.29 0.92 1.01
p = 256 1.47 1.62 1.33 1.45

Table 6.4. The performance (TEPS ×107) of BSP2d and SCP2d on large graphs.

increases when the number of columns increases from 1 to 8 (see Fig. 6.1(d)). On
the other hand, the results of both algorithms on social graphs reveal a notable
improvement in both computation and communication costs when the number of
columns increases from 1 to 8. This is from the characteristic of social graphs that
has a power law degree distribution (i.e., very few vertices in the graphs contain
higher vertex degree than others). Thus, the 2D layout can provide more balance
of the edge distribution among processors than the distribution of the 1D layout.

6.4 Conclusion and Future Work
We have propose parallel approximate graph coloring algorithms based on [47]
and [22] combining with the 2D graph layout and other optimization techniques.
Our algorithms show improved performance and scalability over the approximate
algorithms with the traditional 1D layout. The main reasons are from better load
balancing and lower communication from the use of the 2D layout. From our
experiment, the BSP2d algorithm provides better performance over the SCP2d
algorithm in terms of the running time in all cases while it has less accuracy (i.e., it
requires more colors) than the SCP2d algorithm. The main reason is that BSP2d
requires less synchronization because there is no need for the algorithm to manage
any color conflict among processors. On the other hand, SCP2d requires higher
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Figure 6.1. The performance of the three algorithms on large meshes, (a)
menger_sponge, (b) luer_connector, (c) nlpkkt200 and (d) nlpkkt240 meshes. The
four bars of each plot group indicates the running time of SCP2d with 1 and 8 columns,
and BSP2d with 1 and 8 columns, respectively.

algorithm synchronization as it needs to resolve color conflicts which gives better
results in terms of coloring accuracy.

Our algorithms are currently focused on distributed-memory systems which
can suffer from the scalability issues when the number of processors increases. We
plan to implement parallel coloring algorithms that can utilize both multicore and
multiprocessor systems to further improve the scalability of the algorithms.
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Figure 6.2. The performance of the three algorithms on large social graphs, (a) g500-
s27, (b) it-2004, (c) sk-2005 and (d) friendster graphs. The four bars of each plot group
indicates the running time of SCP2d with 1 and 8 columns, and BSP2d with 1 and 8
columns, respectively.
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Chapter 7 |
MDEC: MeTiS-Based Domain
Decomposition for Parallel 2D
Mesh Generation

The general domain decomposition problem is to decompose the domain of interest
into several smaller, non-overlapping domains (called subdomains) based upon
some criterion (typically for parallel computation) such as: load balancing, compu-
tation requirements, or data dependency. Relevant domains of interest for domain
decomposition are: sets, vectors, matrices, or geometries. In this chapter, we are
concerned with the decomposition of geometric domains.

Domain decomposition techniques have been employed in parallel numerical
algorithms in order to decompose a large, complex problem into many smaller,
simpler subproblems which can be solved in parallel. Within the context of parallel
numerical algorithms, domain decomposition is typically employed before the main
computation begins. For example, domain decomposition methods are often used
in the numerical solution of partial differential equations by the finite element
method, or other such techniques, in order to decompose the domain into several
subdomains on which the PDE is solved. In this example, geometric domains or
meshes can be partitioned across the processors so that the numerical PDE can
be solved in a distributed manner. Some techniques which have been successfully

The work of this chapter has been published in:
[95] T. Panitanarak and S.M. Shontz, "MDEC: MeTiS-based domain decomposition for parallel
2D mesh generation," Proceedings of the 2011 International Conference on Computational Science,
June 2011, pp. 302-311.
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used for mesh partitioning include: geometric mesh partitioning [50] (which strives
to divide the mesh into equal-sized regions or submeshes with a small number of
interconnecting edges), coordinate bisection [57] (which partitions the vertices of
the mesh after projection onto one of the coordinate axes), spectral bisection [98]
(which partitions the mesh according to the eigenvectors of the Laplacian of its
connectivity graph), and multilevel Kernighan-Lin [58] (which partitions the mesh
into a sequence of successively smaller graphs, uses the spectral method to partition
the smallest graph, and propagates the partition back through the hierarchy; the
Kernighan-Lin method is used to refine the partition). Mesh partitioning remains
an active area of research, as various decompositions of the domain can lead to
different levels of parallelism in the resulting numerical algorithms.

The main contributions of this chapter are as follows:

• A fast domain decomposition for parallel 2D mesh generation that generates
good quality subdomains.

• An analysis of the algorithm that guaranteed good boundary angles.

• A comparison with other domain decompositions for parallel 2D mesh gener-
ation.

7.1 The Domain Decomposition Problem for Parallel
Mesh Generation
Despite the fact that domain decomposition is only applied before the main compu-
tation step (as described in the previous section), decomposition of the geometry for
the purposes of parallel mesh generation is also desired if the size of the geometric
domain is very large or if more accuracy is needed in the numerical solution of the
PDE. The remainder of this chapter focuses on parallel computational techniques
for 2D mesh generation.

Parallel mesh generation starts with decomposing the geometric domain into
many smaller non-overlapping subdomains. The resulting subdomains are then
meshed in parallel. During the mesh generation process, communication between
processors may be required in order to preserve the conformality of the overall
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mesh. However, communication might not be required at all if all the conformal
points are predetermined [30].

A review of various parallel mesh generation algorithms is provided in [30]. In
that chapter, the mesh generation techniques are divided into two categories. The
first category of techniques includes mesh generation algorithms for which each
subdomain is meshed sequentially. The second category includes techniques for
which the degree of coupling between the processors is what defines the degree
of communication between the processors in order to preserve conformity of the
overall mesh.

A recent domain decomposition algorithm specifically designed and used for
parallel mesh generation is the Medial Axis Domain Decomposition (MADD)
algorithm [74]. This algorithm decomposes the geometric domain in a divide-and-
conquer fashion. The MADD algorithm decomposes the geometric domain by first
discretizing the domain boundary. Second, it finds the approximate medial axis
of the geometric domain using centroids of the coarse mesh. (This is a boundary
conforming Delaunay triangulation of the points created in the previous step).
These are actually the nodes of a Voronoi triangulation. Third, it partitions the
graph of the Voronoi nodes into two subsets. Fourth, it uses a subset of the Voronoi
nodes and connects them to the triangle boundary points to make separators (i.e.,
segments of the boundary) to separate the two subdomains. Finally, it recursively
calls the first four steps using the generated subdomains as inputs until the desired
number of subdomains is achieved. For more details on the algorithm, the reader is
referred to [74].

In [74], it was noted that using the background mesh directly for the decompo-
sition can lead to small boundary angles. This is undesirable in that the resulting
subdomains may lead to less-balanced subdomains and to issues with load balanc-
ing within the context of parallel mesh generation. In the next section, we will
discuss this further and will describe a way to resolve the small boundary angles.
Furthermore, we will use our technique as the basis for a domain decomposition
approach for triangular meshes.
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7.2 MeTiS-Based Domain Decomposition (MDEC)
with Guaranteed Good Boundary Angles (i.e., Bound-
ary Angles Greater Than 60◦)
Our MeTiS-based Domain Decomposition (MDEC) procedure begins with the
generation of an initial triangular background mesh on the geometric domain of
interest. Next, the mesh is partitioned into the desired number of subdomains. For
a given edge of a triangular element, if the edge belongs to elements that belong to
different partitions, the edge is used as a separator (i.e., as a segment of the boundary
of the final subdomain). Since the final boundary is constructed from edges of
existing elements, the boundary angles can be as small as the angles of an element.
In order to generate a partition with subdomains containing boundary angles that
are at least 60◦, a background mesh which satisifies the 60◦ angle constraint must
be generated. Unfortunately, it is not practical to mesh the geometric domain with
triangular elements containing boundary angles that are all greater than 60◦, as
most mesh generation algorithms cannot generate such meshes.

Fortunately, background meshes with element angles greater than 30◦ can be
employed, and it is practical for some algorithms to generate a decomposition of
the background mesh into subdomains such that the each subdomain contains
boundary angles that are greater than 60◦. To achieve this, we can perform an
adjustment to the decomposition as follows. First, note that in a decomposition of
the boundary of the background mesh, the boundary angles can either be less than,
equal to, or greater than 60◦, because they can be taken directly from one element
angle (since two edges of a single element can be used as separators or as boundary
segments) or from the summation of two or more element angles, respectively. The
idea of the adjustments is to consider the elements which provide separators with
two edges and make some modifications so as to eliminate the small angles. This is
the idea of our MeTiS-based Domain Decomposition algorithm.

We define a bad triangle to be a triangle that has two edges that are used
as separators and an angle between the two edges that is less than 60◦. As was
described in the previous paragraph, the subdomain boundary is less than 60◦ if
some separators stem from bad triangles. Bad triangles can be classified into three
groups as follows. Case 1 occurs when one edge belonging to a bad triangle is
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an external segment. Case 2 occurs when two of the triangle’s edges are internal
separators of two subdomains. Finally, Case 3 happens when the triangle’s edges
are internal separators of three or more subdomains.

Next, we will describe some techniques for making adjustments (on a case-by-
case basis) to the bad triangles to achieve subdomains with a minimum boundary
angle of at least 60◦. In the next section, we provide a proof that our domain
decomposition technique results in such a decomposition into subdomains.

We now describe the techniques for adjusting the bad triangles in order to yield
a decomposition into subdomains with the desired boundary angle property. The
techniques for improving the small angles in the bad triangles will be performed
according to the type of bad triangle. First, suppose that edges v1v2, and v1v3

are two edges of the bad triangle. For the bad triangle, which can be identified
as belonging to Case 1, assume that v1v2 is an external separator. Then, we can
simply replace v1v2 with v1v3, or we can use v2v3 as an alternative separator instead
of v1v3 if the angle v1v2v3 is greater than 60◦ but less than 120◦ (to avoid creating
another bad triangle). Otherwise, we can add midpoint vm of v1v2 and replace v1v2

with v2vm. The reason for using the midpoint instead of the point vp, where v3vp is
perpendicular to v1v2, is that vp can be off of the line v1v2, and we want to balance
v1vm and vmv2 in order to obtain a good mesh. For a bad triangle in Case 2, we
can easily replace v1v2 and v1v3 with v2v3. Finally, for a bad triangle in Case 3, we
can add the incenter vi of the triangle and can replace v1v2 and v1v3 with v1vi, v2vi,
and v3vi. The reader is referred to Figure 7.1 for an illustration of the adjustments
in each case.

7.3 The MDEC Algorithm and Implementation
We now describe the MDEC algorithm and its implementation.

7.3.1 MDEC Algorithm

The steps of the MDEC algorithm are as follows.

1. Mesh the geometric domain with an angle constraint of 30◦.

2. Convert the mesh to a graph such that one node is placed in the graph to
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Figure 7.1. Adjustment methods for removing the small angles in the bad triangles as
implemented by MDEC: The white nodes represent vertices in the initial coarse mesh,
and the thick lines are the external boundary. Figure 7.1a and Figure 7.1b illustrate the
adjustments made for bad triangles in Case 1 and Case 2. From Figure 7.1c to Figure
7.1d, the adjustment for Case 3 is shown.

represent each triangle and an edge in the graph represents an adjacency
relation between two triangles (i.e., the two triangles are neighbors).

3. Partition the graph in Step 2 into the desired number of subdomains.

4. Insert separators into the partitions in Step 3 to create the initial subdomains
and detect the bad angles in each subdomain (as indicated in Cases 1-3
below).

5. Fix the bad angles (i.e., a boundary angle that is formed using two edges, i.e.,
v1v2 and v1v3, in the same triangle) labeled Cases 1-3.

Case 1 v1v2 form an external boundary of the geometric domain, and v1v3

form an internal boundary between two subdomains.

• If angle v1v2v3 is between 60◦ and 120◦, replace v1v3 with v2v3.
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• Otherwise, add the midpoint vm of v1v2 and replace v1v3 with v3vm.

Case 2 v1v2 and v1v3 form an internal boundary between two subdomains.

• Replace both v1v2 and v1v3 with v2v3.

Case 3 v1v2 and v1v3 form an internal boundary amongst three or more
subdomains.

• Add the incenter vi and replace both v1v2 and v1v3 with viv2 and viv3.

The following theorem demonstrates that the MDEC algorithm guarantees a
mesh with good boundary angles.

Theorem. The MDEC algorithm generates minimum boundary angles
of at least 60◦.

Proof. We consider the angle improvements given for Cases 1-3 above
and show that they guarantee boundary angles greater than 60◦. For
Case 2, it is easy to see that any angle less than 60◦ is eliminated with
the replacement of the 180◦ angle. The angle improvements for Case 1
and Case 3 can be demonstrated as follows.

Consider Case 1. In the case that 60◦ ≤ v1v2v3 < 120◦, when v1v3

is replaced with v2v3, a new angle greater than 60◦ is obtained. In
addition, the formation of a bad triangle that shares v2v3 is avoided. In
the case that v1v2v3 < 60◦ or v1v2v3 ≥ 120◦, v1v3 is replaced by v3vm,
where vm is the midpoint of v1v2. Bad triangle ∆v2v1v3 is split into two
triangles, namely ∆v1vmv3 and ∆v2vmv3. Since 30◦ ≤ vmv1v3 < 60◦,
if 30◦ ≤ vmv2v3 < 60◦, we obtain v1vmv3 ≥ 60◦. Instead, if 120◦ ≤
vmv2v3 < 150◦, we obtain v1vmv3 ≥ 60◦. Similarly, it can be shown that
v2vmv3 ≥ 60◦.

We now consider Case 3. In this case, v1v2 and v1v3 are replaced
by v1vi, v2vi and v3vi, where vi is the incenter of triangle ∆v2v1v3.
The bad triangle ∆v2v1v3 is then split into three triangles, namely
∆v1viv2, ∆v2viv3, and ∆v1viv3. Assume v1viv2 < 60◦. Then, viv1v2 +
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viv2v1 ≥ 120◦. Multiplying both sides of the inequality by two yields:
2(viv1v2 + viv2v1) = 2viv1v2 + 2viv2v1 = v3v1v2 + v3v2v1 ≥ 240◦. This
contradicts the fact that the interior angles of a triangle must sum to
180◦. Thus, v1viv2 ≥ 60◦. This is also true for v2viv3 and for v1viv3.

7.3.2 MDEC Implementation

In our implementation of MDEC, the Triangle [112] and MeTiS [67] software
packages are used. Triangle is used to generate an initial background mesh satisfying
a boundary angle constraint of 30◦ and an area constraint (based on the area of the
geometric domain). MeTiS is used as a graph partitioner for Step 3 of the MDEC
algorithm. To achieve our goal of balancing the area of the resulting subdomains,
the node weight is set to the area of the triangle. To evaluate our decomposition,
PCDM, a parallel 2D constrained Delaunay mesh generation technique introduced
by Chernikov and Chrisochoides in [74] is used to generate parallel meshes on
the subdomains. The objective of PCDM is to reduce communication between
processors that shares an interface by providing asynchronous communication with
aggregation of small messages. In addition, we compare the results of our algorithm
with MADD, as the primary decomposition routine currently used with PCDM is
MADD.

7.4 Numerical Experiments
We perform two numerical experiments in order to test our MDEC domain de-
composition algorithm. First, we use MDEC to decompose our geometric domains
of interest, i.e., the key, A, and pipe models, into 128, 256, 512, 1024 and 2048
subdomains, respectively, and measure the domain decomposition time, the area
of each subdomain, and the minimum boundary angle (i.e., as computed over
all subdomain boundary angles). (The figures of the three models are shown in
Figure 7.2a.) Second, we generate decompositions of the same models into 4, 8,
16, 32, 64, and 128 subdomains, use them as inputs to PCDM, and measure the
mesh generation time and the element quality of the resulting mesh. The second
experiment was performed on the Cyberstar compute cluster [34] available to the
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(a) The three models used in the experiments.

(b) The decomposition from the MDEC algorithm.

(c) The decomposition from the MADD algorithm.

(d) The decomposition from the pMeTiS algorithm

Figure 7.2. (a) The three geometric models used in the experiments: Key, A, and Pipe,
and their decompositions into 16 subdomains as generated by the (b) MDEC, (c) MADD,
and (d) pMeTiS domain decomposition algorithms.
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researchers with 1, 2, 4, 8, and 16 Intel Nahalem processors, respectively. For both
experiments, we compare our results to those obtained for the MADD algorithm [30]
and the MeTiS algorithm (pMeTiS) [67]. It should be noted that pMeTiS performs
a domain decomposition that is identical to the domain decomposition generated
by MDEC if no boundary angles are fixed in the bad triangles.

7.4.1 The Domain Decompositions

Figures 7.2b, 7.2c and 7.2d illustrate the decompositions of the MDEC, MADD,
and pMeTiS algorithms into 16 subdomains, respectively. Tables 7.1, 7.2 and 7.3
show the decomposition time, the minimum boundary angle, and the subdomain
area for decompositions of the geometric models into 128, 256, 512, 1024, and 2048
subdomains using the MDEC, MADD and pMeTiS algorithms on the Key, A, and
Pipe models, respectively.

Since MDEC and pMeTiS can generate the desired number of subdomains
simultaneously instead of employing a divide-and-conquer approach as is the case
for the MADD algorithm, the decomposition times for MDEC and pMeTiS are
lower than the decomposition time for MADD. Our results show that MDEC
requires approximately 87%, 94% and 93% less time than MADD for decomposing
the Key, A, and Pipe models, respectively. The percentages reported above (and
throughout this paragraph) are the averages as computed over all of the subdomains
in the experiment of interest. For example, the above percentages are averages as
computed over 128-2048 subdomains.

In comparison with pMeTiS, MDEC requires approximately 25%, 26% and
17% more time for the domain decomposition than does pMeTiS. However, the
angles of the subdomain boundaries which are generated by MDEC are higher
than those generated by either of the other two algorithms in most cases. MDEC
generates subdomains with boundary angles that are approximately 9% better (in
terms of the number of degrees of the angle) than those generated by MADD and
are approximately 48% better than the angles generated by pMeTiS. In addition,
MDEC decomposes the geometric domain into subdomains with boundary angles
that are guaranteed to be greater than 60◦, whereas there is no such guarantee for
the subdomains generated by MADD or pMeTiS. Note that for a small number of
subdomains, MADD can decompose the geometric domain into subdomains with
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# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.078 60.4844 24.2267 27.5068 26.1094
256 0.109 60.1282 12.1624 13.8609 13.0547
512 0.224 60.0812 5.9584 7.0230 6.5273
1024 0.389 60.0344 3.0483 3.4524 3.2637
2048 0.827 60.0066 1.4978 1.7318 1.6318

(a) MDEC algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.499 55.1059 12.4219 39.0910 26.1094
256 0.857 56.3551 6.2222 18.3606 13.0547
512 1.825 54.6888 2.9356 9.7813 6.5273
1024 3.463 55.1502 1.4366 4.7357 3.2637
2048 6.865 54.1880 0.6954 2.3434 1.6318

(b) MADD algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.046 35.5640 25.3577 26.8671 26.1094
256 0.078 32.7425 12.5834 13.4458 13.0547
512 0.140 33.3454 6.1160 6.2171 6.5273
1024 0.328 31.2630 3.1384 3.3619 3.2637
2048 0.796 31.1219 1.5424 1.6824 1.6318

(c) pMeTiS algorithm
Table 7.1. Decompositions of the Key domain generated by the MDEC, MADD, and
pMeTiS algorithms (showing number of subdomains, decomposition time, minimum angle,
and subdomain area)

boundary angles greater than 60◦. The boundary angles are greater than those
generated by the MeTiS algorithm (see Table 7.3c for 128 subdomains).

In terms of the subdomain area, pMeTiS does the best job of balancing the sub-
domain areas for all geometric domains considered. That is, the difference between
the minimum and maximum subdomain areas is lower than the corresponding
differences for the MDEC and MADD algorithms. The minimum and maximum
subdomain areas are shown in Tables 7.1, 7.2, and 7.3). However, unlike MADD,
MDEC does a very good job of balancing the subdomain area and does nearly
as well as pMeTiS in this regard. Because pMeTiS does not achieve our goal of
generating subdomains with reasonable minimum boundary angles, we no longer
consider it in this chapter.
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# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.021 60.0933 87.3546 175.5632 131.4490
256 0.046 60.0902 44.4354 82.1791 65.7245
512 0.077 60.0379 14.7750 40.9076 32.8622
1024 0.156 60.0290 8.9520 22.5653 16.4311
2048 0.343 60.0105 4.5646 11.1691 8.2156

(a) MDEC algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.343 54.7301 67.7831 193.7770 131.4490
256 0.702 54.4969 37.1646 93.0400 65.7245
512 1.451 54.6933 12.4522 49.6854 32.8622
1024 3.073 54.8099 6.3131 24.4724 16.4311
2048 6.067 54.0625 3.2245 12.4306 8.2156

(b) MADD algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.015 30.7138 96.6917 148.2100 131.4490
256 0.031 30.9247 46.9538 75.1200 65.7245
512 0.062 31.2089 21.2383 36.3605 32.8622
1024 0.125 30.5489 11.1123 18.5072 16.4311
2048 0.249 30.2315 5.4319 9.4990 8.2156

(c) pMeTiS algorithm
Table 7.2. Decompositions of the A domain generated by the MDEC, MADD, and
pMeTiS algorithms (showing number of subdomains, decomposition time, minimum angle,
and subdomain area)

7.4.2 Parallel Mesh Generation

To evaluate and compare the quality of the decompositions from the MDEC and
MADD algorithms, the subdomains generated by the algorithms were given to
PCDM as input. The quality of the decompositions was evaluated based on the
output meshes generated by the PCDM algorithm. In this subsection, we focus
on the results from the Key model, as the results for the other models studied are
very similar.

Figure 7.3 shows the running time of PCDM when using the outputs of the
MDEC and MADD domain decomposition algorithms as inputs to PCDM, respec-
tively. As seen in the figure, both algorithms yield subdomains upon which meshes
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can be generated in parallel in approximately the same amount of time using
PCDM. It is very hard to distinguish which algorithm is better when evaluated in
this sense. The figures also show that increasing the number of processors does not
always decrease the running time. In particular, when the number of processors
exceeds the number of subdomains for either the MDEC or the MADD domain
decomposition algorithms, the amount of time required increases.

By comparing the results for the MDEC and MADD algorithms, as shown in
Figure 7.4, we can see that it is only for the case of eight subdomains that PCDM
can generate a mesh in parallel faster for the subdomains of the MADD algorithm
than for those of the MDEC algorithm. For other numbers of subdomains, the
running times of PCDM for the inputs of both the MADD and MDEC algorithms

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.047 60.0302 80.0668 88.0002 84.4502
256 0.078 60.0030 39.5866 44.1174 42.2251
512 0.156 60.0015 19.7528 22.3155 21.1125
1024 0.312 60.0051 9.8531 11.1607 10.5563
2048 0.749 60.0012 4.9143 5.5810 5.2781

(a) MDEC algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 1.124 61.3000 33.7301 127.5020 84.4502
256 * * * * *
512 2.294 54.5434 9.6054 30.3949 21.1125
1024 4.320 54.0761 5.1874 15.5628 10.5563
2048 7.536 54.0761 1.9638 7.7769 5.2781

(b) MADD algorithm

# of
subdom.

Dec. time
(secs)

Min.
angle (◦)

Subdomain area
Min. Max. Avg.

128 0.031 31.0892 82.0408 86.9324 84.4502
256 0.062 30.6625 39.6250 43.4881 42.2251
512 0.140 30.0303 20.2833 21.7462 21.1125
1024 0.296 30.2154 10.2489 10.8724 10.5563
2048 0.701 30.0723 5.0019 5.4364 5.2781

(c) pMeTiS algorithm
Table 7.3. Decompositions of the Pipe domain generated by the MDEC, MADD, and
pMeTiS algorithms (showing number of subdomains, decomposition time, minimum angle,
and subdomain area). A * denotes algorithmic failure.
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(b) MADD algorithm

Figure 7.3. Triangulation time for 4, 8, 16, 32 and 64 subdomains of the Key model
using the MDEC and MADD algorithms.

are very similar.
We use the element angles of the triangular elements to assess the qualities of the

meshes generated by PCDM using both the MADD and MDEC subdomains as input.
In each case, we normalize the number of triangles and report the percentages of
triangles in each range of angles, as the meshes generated from different subdomains
contain different numbers of triangles. However, all of the meshes generated
by PCDM contain approximately 77 million triangles for the geometric models
considered here. Both the MDEC and MADD decompositions yield similar final
meshes as shown in Figure 7.5. The histograms give the percentages of triangles
in each range of angles for two different subdomain/processor configurations. In
particular, the results shown in Figure 7.5a are for the final meshes generated by
PCDM using the MDEC and MADD subdomains with 1 processor and 4 subdomains.
Similarly, Figure 7.5b shows the results for the final meshes generated with 16
processors and 64 subdomains using the PCDM algorithm. No real difference is
observed between the element qualities of the PCDM meshes generated on the
MDEC and MADD subdomains.

When the numbers of subdomains or processors are increased, the angle quality
of the resulting meshes is very similar. In Figure 7.6a, when the number of
subdomains is increased, the distribution of the angles does not change much. Only
in the 64-subdomain case are there some changes which can be easily seen. In
particular, there is an increase in the number of triangles with angles in the 40-50
degree range. However, this increase in the percentage of triangles is less than 2%.
When the number of processors is increased, all cases give very similar results as
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(e) 64 subdomains

Figure 7.4. Comparison of triangulation times for the PCDM algorithm using the
subdomains from the MDEC and MADD algorithms as input for various numbers of
subdomains on the Key model, respectively.

those shown in Figure 7.6b. From our experiments, we can conclude that the meshes
generated by the PCDM algorithm using the MADD and MDEC subdomains as
input, are similar in terms of mesh generation time and angle quality. Moreover,
the angle quality of elements in the final mesh is not sensitive to changes in the
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Figure 7.5. Percentage of triangles in various angle ranges for various decompositions
of the Key model using the MDEC and MADD algorithms.

numbers of subdomains and processors.
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Figure 7.6. Percentages of triangles in various angle ranges for the decompositions of
the Key model

7.5 Conclusions and Future Work
We described a novel domain decomposition technique called the Metis-based
Domain Decomposition (MDEC) algorithm for use with 2D parallel mesh generation.
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The MDEC algorithm provides a good domain decomposition in terms of the
decomposition time, the boundary angles of the resulting subdomains, and balancing
of the subdomain areas. The MDEC algorithm yields better boundary angles,
subdomain areas, and decomposition times than the MADD algorithm. However,
because the decomposition of the MDEC algorithm is based on a background mesh,
MDEC cannot be used to generate a decomposition with guaranteed good boundary
angles (≥ 60◦) if the background mesh does not provide triangle elements with all
angles ≥ 30◦.

There are several possibilities for future work. First, we plan to develop an
extension of the MDEC algorithm and corresponding theory to handle quadrilateral
background meshes. Second, we note that if the weight of the node used in the
graph partitioned routine is changed, a different domain composition may result.
For example, in this chapter, we set the weight of the node to be the area of
the corresponding triangle, which led to a balancing of the areas of the resulting
subdomains. If, however, the node weights are each set to 1, the triangle density
would be balanced. We plan to study whether or not this particular type of
decomposition will prove useful for balancing the workload of the parallel mesh
generator if the mesh generation is focused on the triangle density in certain areas
of the domain. Finally, we plan to extend the MDEC algorithm to handle 3D
meshes containing tetrahedral and/or hexahedral elements. In this case, there are
two main issues which need to be considered: the choice of angle to focus on (i.e.,
the dihedral angle versus the solid angle) and how to guarantee good boundary
angles.
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Chapter 8 |
A Parallel Log Barrier-Based Mesh
Warping Algorithm for Distributed-
Memory Machines

8.1 Introduction
As computational simulations become more complex and are often multiphysics
and multiscale in nature, it is important that meshes be generated and manipulated
in parallel on either parallel clusters or multicore machines. The SciDAC Inter-
operable Technologies for Advanced Petascale Simulations (ITAPS) Center [63]
is one example of a large project that addresses the needs of petascale mesh
simulations. Furthermore, several parallel mesh generation techniques have been
developed (see [31] for a survey); recent techniques have been developed for par-
allel Delaunay mesh generation (e.g., [6, 28, 29, 46, 89]), parallel advancing front
mesh generation (e.g., [37, 76–78]), and parallel edge subdivision mesh generation
(e.g., [21, 37,92,102,103,135]).

There are several areas of active research involving parallel post processing of
meshes. For example, parallel mesh quality improvement and untangling algorithms
have been developed which employ numerical optimization methods to untangle
the mesh and improve its quality by repositioning the nodes [12, 107]. Parallel
remeshing and mesh adaptation methods have also been proposed which alter the

The work of this chapter has been accepted for publication in:
[96] T. Panitanarak and S.M. Shontz, "A parallel log barrier-based mesh warping algorithm for
distributed memory machines," Accepted to Engineering with Computers, April 2017.
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mesh topology in order to improve its quality; often times this is done in response
to a change in the PDE solution [52,72,82].

However, in regards to parallel mesh warping, only a few algorithms have been
developed for use in computational simulations with deforming domains. For such
applications, the mesh must be updated in parallel at each time step in response to
the deforming boundary of the geometric domain. Parallel algorithms have been
developed which combine mesh warping with topological operations [108,109,111].
Other parallel mesh warping algorithms have been designed for use in computational
fluid dynamics (CFD) applications [49, 129]. More recent research on parallel mesh
warping algorithms includes meshless techniques developed in [42, 83] but still
focuses on CFD applications.

In this chapter, we propose parallel LBWARP, a parallel log barrier-based
mesh warping algorithm for distributed memory systems. Parallel LBWARP is
a parallel formulation of the general-purpose, geometric mesh warping algorithm
named LBWARP which was proposed by Shontz and Vavasis [113]. Even though
LBWARP is computationally intensive when a single deformation is applied, it
is rather efficient when multiple deformations are performed. In this case, the
computational complexity and also the overall run time of the algorithm decreases
significantly. We discuss this advantage of parallel LBWARP in more detail in
the chapter. The remainder of the chapter is organized as follows. In Sections 8.2
and 8.3, we provide overviews of the sequential LBWARP algorithm and sparse
linear solvers used by the LBWARP algorithm, respectively. Then, we describe our
parallelization of the sequential LBWARP method and introduce parallel LBWARP
in Section 8.4. In Section 8.5, an analysis of the run time of the parallel LBWARP
algorithm is discussed. We describe several numerical experiments which were
designed to test the performance of our parallel LBWARP method on 3D domains
and the resulting run times, speedup, and strong and weak scalability results in
Section 8.6. In Sections 8.7, we demonstrate an application of parallel LBWARP
on heart motion problems. In Section 8.8, we summarize our work and discuss
some future research possibilities related to extensions of our parallel algorithm.
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8.2 An Overview of LBWARP
LBWARP is a log barrier-based mesh warping algorithm which was proposed by
Shontz and Vavasis [113]. The algorithm consists of three main steps. The first step
is to generate a set of local weights (or inverse distances) describing the relationship
of each interior node to its neighbors using a log barrier technique. These sets of
weights are computed using an interior point method from nonlinear programming.
Next, the boundary nodes are deformed by applying a transformation given by the
user. Lastly, a system of linear equations is constructed from the sets of weights in
the first step and the new positions of the transformed boundary nodes from the
second step. This linear system is then solved for the final positions of the interior
nodes.

Assume that a 3D mesh has m and n interior and total nodes, respectively. To
compute the weights for interior nodes, a local optimization problem is solved for
the coordinates of each interior node using a log barrier technique. The optimization
problem is as follows

max
wij ,j∈Ni

∑
j∈Ni

log(wij)

subject to wij > 0,∑
j∈Ni

wij = 1,

xi =
∑

j∈Ni

wijxj,

yi =
∑

j∈Ni

wijyj,

and zi =
∑

j∈Ni

wijzj,

(8.1)

where wij is the weight of node j acting on node i, Ni is the set of neighbors of node
i, (i.e., j ∈ Ni if and only if node j is connected to node i), and xi, yi, and zi are the
xyz-coordinates of node i. Since the objective function along with the constraints
forms a strictly convex optimization problem, there exists a unique solution which
can be found using an interior point method provided an initial feasible point
exists [113]. In this chapter, we solve equation (8.1) using the projected Newton
method [14] with an initial feasible point in the interior of the domain as described
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in [113].
Consider the convex combinations of xi, yi, and zi in (8.1), by defining a weight

matrix A where A(i, j) = −wij and A(i, i) = 1. Assuming the interior nodes are
numbered first, and the boundary nodes are numbered last, the matrix A can be
written as [AI AB]. AI is an m×m matrix specifying how each node is connected
to each of its interior neighbors, and AB is an m× (n−m) matrix specifying how
each interior node is connected to each of its boundary neighbors. Similarly, let
x, y, and z be vectors of the x-, y-, and z-coordinates of all of the mesh nodes,
respectively. Thus, we have x = [xI xB]T , y = [yI yB]T , and z = [zI zB]T . Each of
the subvectors xI , yI , and zI contain coordinates of the m interior nodes, and each
of the subvectors xB, yB, and zB contain coordinates of the n−m boundary nodes.
Hence, we can write the resulting linear system in (8.1) as follows

AI [xI yI zI ] = −AB[xB yB zB]. (8.2)

Once the representation of the initial mesh has been determined, a user-specified
boundary deformation can be applied as follows:

[xB yB zB]→ [x̂B ŷB ẑB]. (8.3)

Final positions of the interior nodes in the deformed mesh, i.e., x̂I , ŷI , and ẑI

are then determined by solving the following linear system based on equation (8.2)
and the updates in equation (8.3);

AI [x̂I ŷI ẑI ] = −AB[x̂B ŷB ẑB]. (8.4)

See [113] for more details.
Although the LBWARP algorithm is initially computationally intensive due to

the construction of the weight matrix, once the weight matrix has been computed,
the LBWARP algorithm can reuse this matrix in additional mesh deformations
provided an LU factorization method is used to solve the linear system. In other
words, only the boundary deformation and the linear solution steps are performed
for additional deformations. The complexity is then typically O(m2) for additional
deformations but depends on the number of nonzero elements in AI , i.e., nnz(AI)
per deformation [16].
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8.3 Sparse Linear Solvers with Multiple Right-Hand
Sides
The choice of linear solver which is employed to solve (8.4) affects the runtime of the
warping algorithm. Certainly, the sparsity and structural symmetry of AI should
be taken into account when selecting a linear solver. Note that the complexity of
iterative linear solvers is usually in the form of O(m2). However, since our matrices
are both very sparse and well-conditioned, the solver runtime is closer to O(m) for
these problems.

Moreover, each deformation requires three linear solves, i.e., one for each of the
x-, y- and z-coordinates (for 3D tetrahedral meshes). Each linear solve employs
the same left-hand side matrix but a different right-hand side (RHS) vector. Thus,
a single linear solver which takes into account the above properties and is able to
address the multiple right-hand side problem should be employed.

Both direct and iterative methods can be used to solve (8.4), and both categories
of methods have their advantages and disadvantages. Direct solvers directly support
multiple RHS vectors, but their use can increase the number of nonzero elements in
the matrix during row elimination. Thus, matrix reordering is required to minimize
any nonzero fill-in. On the other hand, iterative solvers do not require reordering
but instead need to be modified to support multiple RHS.

Thus, in this chapter, we consider the use of three different parallel sparse linear
solvers for the solution of (8.4) in parallel LBWARP. Next, we give an overview of
the serial versions of these methods.

Block BiCG (BiConjugate Gradient) [91] is a modified version of the bicon-
jugate gradient (BiCG) method [43] to support multiple RHS. Block BiCG is
essentially identical to the standard BiCG method with the only difference being
that operations are performed with multivectors instead of single vectors. Thus,
both methods are based on the conjugate gradient (CG) method [59] with an
extension to provide a capability for solving nonsymmetric linear systems Ax = b.
As in CG, the method uses search directions,

d(i+1) = r(i+1) + βid
(i)
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to update the residuals, r(i+1), and solution approximations, x(i+1), such that

r(i+1) = r(i) − αiAd
(i) and x(i+1) = x(i) + αid

(i),

where αi = r(i)T

r(i)/d(i)T

Ad(i) and βi = r(i+1)T

r(i+1)/r(i)T

r(i).

To handle nonsymmetric systems, instead of using only one orthogonal sequence of
residuals and conjugate directions as in CG, BiCG uses two mutually orthogonal
sequences (or two sequences of residuals and conjugate directions). In addition to
computing d(i) and r(i), d̃(i) and r̃(i) are also computed similarly by replacing A
with AT . Moreover, the computations of αi and βi are replaced by

αi = r̃(i)T

r(i)/d̃(i)T

Ad(i) and βi = r̃(i+1)T

r(i+1)/r̃(i)T

r(i).

Thus, the cost per iteration of BiCG is approximately twice that of CG. The cost
per iteration of BiCG is approximately the cost of computing two inner products,
five scalar-vector multiplications and additions, and two matrix-vector products or
O(12n+ 2n2), where n is the length of the vector x.

To handle multiple RHS, BiCG can be modified to solve all RHS at once or
to solve the system AX = B where X and B are n × c matrices and c is the
number of right-hand side vectors. To update the approximations to the solution,
the following formulas are now used

D(i+1) = R(i+1) +D(i)B(i), R(i+1) = R(i) − AD(i)A(i),

D̃(i+1) = R̃(i+1) + D̃(i)B(i), R̃(i+1) = R̃(i) − AD̃(i)A(i),

and

X(i+1) = X(i) +D(i)A(i)

where

A(i) = (D̃(i)T

AD(i))−1R̃(i)T

R(i) and B(i) = (R̃(i)T

R(i))−1R̃(i+1)T

R(i+1).

Note that D and R are now n × c matrices, while A and B are c × c matrices.
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As we can see, the complexity of the algorithm has increased, as it requires more
matrix operations. Furthermore, the convergence and stability of the algorithm are
also affected. Thus, additional efforts to maintain these properties are needed such
as deflation, i.e., removing some right-hand sides from the process (see [91,117]).
Since operations on vectors are now performed using matrices, for c right-hand
sides, the complexity of block BiCG is O(12cn+ 2cn2).

Block GMRES (Generalized minimal residual) [118] is a modified version
of GMRES [105] to support multiple RHS using a similar approach as the block
BiCG method. GMRES itself is an extension of the minimal residual (MINRES)
method which can only be used to solve symmetric systems. Similar to MINRES,
it approximates the solution by generating a sequence of orthogonal vectors with
minimal residual. However, without symmetry, all previously generated vectors are
needed and must be retained to construct the approximations as follows:

x(i) = x(0) + y1v
(1) + · · ·+ yiv

(i),

where yk minimizes ‖b− Ax(i)‖ and v(i+1) = w(i)/‖w(i)‖.

For each i, w(i) is initialized with Av(i) and explicitly updated by w(i) = w(i) −
(w(i), v(k))v(k) for k = 1, . . . , i. By defining r(0) = b − Ax(0) and the (k + 1) × k
upper Hessenburg matrix Hk from the Arnoldi’s relation AVk = Vk+1Hk where Vk

is the orthonormal basis of the Krylov subspace Kk(A, r(0)) build by the Arnoldi’s
procedure, we can compute yk = ‖r(0)‖H−1

k e1. The cost of the the kth iteration
of GMRES (without restarting) is approximately the total time of k + 1 inner
products, k + 1 scalar-vector multiplications and additions, and one matrix-vector
product or O(3(k+ 1)n+n2). Consequently, the extension to block GMRES results
in O(3(k + 1)cn+ cn2) complexity.

LU Decomposition is a factorization of a matrix A into LU1, where L and U

are n× n unit lower triangular and upper triangular matrices, respectively. This
factorization can be used to indirectly solve the linear system Ax = b with the
equivalent system LUx = b which can be solved by performing two triangular solves

1The factor LU exists only if A is nonsingular. In the event an element on the diagonal of A
is zero or nearly zero, partial pivoting is required.
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as follows:

Ax = b⇔ LUx = L(Ux) = Ly = b.

More specifically, forward substitution is performed to solve for y from Ly = b, and
then backward substitution is performed to solve for x from Ux = y.

The LU decomposition can be directly applied to any matrix including sparse
matrices. However, a row operation during the decomposition can result in the
generation of additional nonzero elements which were previously zero (called nonzero
fill-in). This increases memory usage and the number of computations in the
algorithm. In this chapter, we use nested dissection, a fill-reducing ordering, in
order to minimize nonzero fill-in which occurs during the LU decomposition. For
a dense n× n matrix, the complexity of a standard LU decomposition is O(2

3n
3).

However, the algorithm can be specialized for matrices based on their sparsity
pattern. This lowers the complexity in practice.

8.4 Parallel LBWARP
In this section, we describe our parallel formation of the LBWARP algorithm;
the resulting method is referred to as parallel LBWARP. The parallel LBWARP
method contains three steps, i.e., weight generation, boundary deformation, and
linear solution.

8.4.1 Parallelization of Weight Generation Step

As described in the previous section, the first step of the LBWARP algorithm is
to use optimization to generate a set of local weights which specifies how a given
interior node is represented as a convex combination of its neighbors. To parallelize
this step, it is important that the interior nodes are equally distributed among
the processors to balance the workload. Assume that p processors are used for
solving m optimization problems corresponding to the m interior nodes. A subset
of dm/pe consecutive interior nodes are assigned to each processor for simplicity
to identify the ownership of the distributed interior nodes. As the computation
during the weight generation step is node-based, we represent a mesh as a graph
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such that each graph node and edge represent the corresponding mesh node and
edge, respectively, and the connectivity among nodes is preserved.

Before the actual computation of the weight matrix begins, the neighbors of
each subset of the interior nodes are pre-computed and sent to the corresponding
processors. There will be redundant copies of nodes among processors, i.e., one
node can be assigned to more than one processor, and the amount of memory
required by each processor varies since the number of neighbors for each subset of
the interior nodes is different. This redundancy in sending boundary nodes will
not scale arbitrarily. Even though mesh partitioning can be used to balance the
distribution, it also introduces additional complexity, and can decrease the overall
performance.

Fig. 8.1 demonstrates our partitioning approach. First, interior nodes are
determined as shown (Fig. 8.1(a)). Then, they are equally distributed to the
processors (Fig. 8.1(b)). After that, the neighbors of each subset of interior nodes
are computed and sent to the corresponding processors (Fig. 8.1(c)). Once all
processors receive their subsets of interior nodes and the subset’s neighboring
nodes, they compute their local weights independently in an embarrassingly parallel
manner using the projected Newton method without communication during the
weight computations.

During the weight generation step, the m×n matrix A = [AI AB] is constructed
by formulating and solvingm local optimization problems. More specifically, solving
a single optimization problem for the ith interior node given by (8.1) yields the
ith row of A. With the parallel approach described above, since each processor
acquires a subset of approximately dm/pe consecutively numbered interior nodes
and all of their neighbors, approximately dm/pe consecutive rows of the matrix A
can be generated simultaneously on p processors without communication. After
the processors finish generating the local weights for their assigned interior nodes,
each processor owns non-overlapping, consecutive rows of the weight matrix A, (i.e.,
processor zero generates rows one through dm/pe, processor two generates rows
dm/pe+ 1 through 2dm/pe, and so on).
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(a) (b) (c)

Figure 8.1. (a) The original mesh before partitioning; the black and white nodes
represent the interior and boundary nodes, respectively. (b) For load-balancing purposes,
first, only interior nodes are partitioned and sent to processors. (c) Then, neighbors of
each subset of interior nodes are computed and sent to the corresponding processors.

8.4.2 Parallelization of Boundary Deformation Step

The next step is to apply the deformation of the boundary nodes in parallel.
This step involves computing the right-hand side of equation (8.4). Since part
of the matrix AB is generated and owned locally by each processor during the
weight generation step, the boundary deformation step can also be performed in an
embarrassingly parallel manner by sending each processor the coordinates of the
boundary nodes, i.e., x̂B, ŷB, and ẑB. Although there is redundancy in all of the
processors owning the entire set of boundary nodes, this allows the processors to
simultaneously compute their respective parts of the right-hand side vector without
communication. This is equivalent to computing a portion of the right-hand side
vector locally on each processor.

8.4.3 Parallelization of Linear Solution Step

The last step is to solve the three linear systems in equation (8.4) for the final
positions of the interior nodes in the deformed mesh, i.e., x̂I , ŷI , and ẑI . The parallel
linear solver which is used in the linear solution step with the distributed matrix
AI should take advantage of its sparsity and also support multiple right-hand side
vectors.

To this end, we consider parallel versions of block BiCG, block GMRES, and
LU decomposition for distributed memory machines for use in the linear solution
step of parallel LBWARP. We refer to them as DistBlBiCG, DistBlGMRES, and
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DistLU, respectively. We chose these three algorithms based on our preliminary
experiments (e.g., the deformation of the Menger sponge mesh shown in Fig. 8.5
from (a) to (b)) with the parallel block GMRES and SuperLU_DIST algorithms [73]
implemented in the Amesos2 and Belos packages [9] for the Trilinos project [128].
Our preliminary results with the Trilinos package demonstrated good speedups
when solving linear systems based on multiple RHS solvers on matrices generated
from the weight generation step. We implement our own linear solvers as we wish
for the mesh and linear algebra calculations to be implemented in the same manner;
this is important for our timing tests. The data suggests our linear solvers are a
bit faster and more scalable, which is an added benefit of implementing the solvers
ourselves.

Distributed block BiCG and distributed block GMRES: Our implementa-
tions of DistBlBiCG and DistBlGMRES are based on [8,91,117,118]. The n× n
sparse matrix is distributed based on a row-wise distribution among the p proces-
sors. Thus, each processor owns a non-overlapping dn/pe consecutive rows of the
original matrix. A RHS vector corresponding to the matrix is also distributed in
a similar manner. Thus, matrices that normally cannot be fit in memory on a
single processor can be processed with this approach. However, there is a trade-off
in terms of processing time since some matrix-matrix and/or matrix-vector oper-
ations typically require off-processor information in the form of message-passing
communication. The two main parallel routines in the main loop of both solvers
are matrix-vector multiplication and vector dot product. For parallel matrix-vector
multiplication, this can be done by distributing the vectors (d or v for DistBlBiCG
or DistBlGMRES, respectively) to all processors according to the rows of matrix
that each processor owns. Then, each processor multiplies the received vector with
its own rows and the result vector is stored. For parallel dot product, each processor
computes the partial result of the inner product from the rows which it owns. After
that, these partial results are summed globally using MPI_Reduce to obtain the
inner product.

We performed a set of preliminary experiments in order to determine whether
or not it was necessary to perform either reordering on AI or preconditioning when
solving the linear system in equation (8.4). We experimented with the use of the
nested dissection (ND) reordering and application of an ILU(0) preconditioner
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on block GMRES using the Belos package. Typical results from our preliminary
experiments can be seen in Fig. 8.2. Although applying the preconditioner increases
the convergence rate (Fig. 8.2(a)), it only reduces the linear solution time when up
to 16 processors are used. For a larger number of processors, (i.e., 32 processors
or more), the overhead of computing the preconditioner becomes more visible, as
the size of our deforming mesh problem is not large enough (i.e., our preliminary
experiments are for a deforming mesh with approximately 6M nodes) for this
strategy to pay off (Fig. 8.2(b)). (For this problem, the linear solution step takes
less than 10% of the overall warping time, which is around 20 seconds.) Given the
relatively low condition number of the weight matrix (i.e., 37 for this problem),
the linear systems can be solved without use of a preconditioner and can still
obtain a good convergence rate. In such cases, it should be clear that is it the
most beneficial to employ block GMRES without either reordering or precondi-
tioning. Thus, we do not use either reordering or preconditioning when solving
the linear systems in equation (8.4) with the DistBlBiCG and DistBlGMRES solvers.
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Figure 8.2. The effect of the nested dissection reordering and ILU(0) preconditioner on
(a) convergence rate and (b) runtime of the block GMRES solver. Note that a log scale
is used for the vertical axis in (b).

Distributed LU: Like other sparse LU factorizations, our DistLU algorithm con-
sists of reordering to reduce fill-in, symbolic factorization, numerical factorization,
and triangular solves. While partial pivoting is essential for general matrices, the
factorization of AI does not require partial pivoting since AI is weakly diagonally
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(a) (b) (c)

(d) (e) (f)

Figure 8.3. A mesh with natural ordering (a), its adjacency matrix (b), and its
elimination tree (c). The same mesh after applying nested dissection reordering (d) and
the corresponding adjacency matrix (e) and elimination tree (f). Note that ’x’ indicates
a nonzero element in the matrix.

dominant. Without partial pivoting, some communication and computation can
be avoided. Also, based on the symmetric structure of AI , the symbolic factor-
ization (which is used to determine the fill-in in the L and U factors) is easier
to compute than for unsymmetric matrices. More specifically, our parallel sparse
LU factorization is similar to SuperLU_DIST [73] introduced by Li et al. but is
simpler in terms of the amount of computation performed and the complexity. We
apply the ND reordering [2] which reduces fill-in for the sparse matrix AI using
MeTiS [69]. The algorithm finds an elimination ordering of the matrix using a
divide and conquer approach. The new elimination ordering can be used to exploit
the matrix columns that can be updated simultaneously, (i.e., they are independent).
The result of the nested dissection algorithm also yields an elimination graph or
task graph of the matrix to use as an elimination order of all of the columns.
Fig. 8.3 illustrates meshes with their natural ordering and after applying a nested
dissection reordering along with their adjacency matrices and elimination trees.
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A mesh with natural ordering (Fig. 8.3(a)), its adjacency matrix and elimination
tree are shown in Figs. 8.3(b) and 8.3(c), respectively. The elimination ordering
is sequential and dependent on the previous nodes. Thus, to be able to perform
elimination of the kth column of the matrix, all columns from one up to (k−1) need
to be eliminated first. Figure 8.3(d) shows the same mesh as above after nested
dissection reordering is applied. Similarly, its adjacency matrix and elimination
tree are shown in Figs. 8.3(e) and 8.3(f), respectively. Now, since nodes 1-4 are
pairwise independent, columns 1-4 of the matrix can be eliminated simultaneously.
Similarly, columns 5-6 can also be eliminated at the same time.

Benefits of parallel linear solvers with multiple RHS support: A compari-
son of the runtimes for the three parallel sparse linear solvers, i.e., the DistBlBiCG,
DistGMRES, and DistLU algorithms, with and without multiple RHS vector sup-
port, is shown in Fig. 8.4. Recall that solving equation (8.4) for the final positions
of the interior nodes in the deformed mesh requires three linear systems to be solved,
i.e., one linear system per nodal coordinate. For systems without multiple RHS
vector support, the linear systems are solved independently. Whereas, the nodal
coordinates are solved for simultaneously when linear solvers with multiple RHS
vector support are employed. Simultaneous linear solves result in reduced runtime
because the overhead during the initialization and some additional operations can
be combined and reused in order to avoid redundant computation.

8.4.4 Parallel LBWARP Algorithm

The complete parallel LBWARP algorithm is shown in Algorithm 11. Assume
that interior nodes are distributed in a row-wise distribution among all processors.
Thus, each processor owns non-overlapping dn/pe interior nodes including their
x, y, and z coordinates, and the completed target boundary coordinates, x̂B, ŷB,
and ẑB. The first step of the algorithm (lines 1-6) is to generate neighbor lists
which will be used in the next step. It involves MPI_Alltoallv communication
to exchange the coordinates of non-local neighbors. After that, each processor can
compute its local weights independently without any communication as shown in
lines 7-14. Since each interior node corresponds to one row in the weight matrix, a
set of local interior nodes at processor p results in the partial weight matrix rows, A.
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Figure 8.4. A comparison of the runtimes for the three parallel sparse linear solvers
when solving with and without multiple RHS vectors: (a) DistBlBiCG, (b) DistBlGMRES,
and (c) DistLU.

The rest of the algorithm focuses on construction and solution of the system (8.2)
for x̂I , ŷI , and ẑI using one of the parallel sparse linear solvers, i.e., DistBlBiCG,
DistBlGMRES, or DistLU.

Lines 15-19 show the boundary deformation step. Each processor has its
own copy of x̂B, ŷB, and ẑB. Thus, the processors simultaneously compute their
respective parts of the right-hand side vectors using equation (8.4). Finally, the
linear systems shown in equation (8.4) can be solved for x̂I , ŷI , and ẑI using one of
the three parallel sparse linear solvers, DistBlBiCG, DistBlGMRES, or DistLU.

114



Algorithm 11 Parallel LBWARP algorithm
1: // Generate neighbor lists
2: for all p processors in parallel do
3: generate neighbor lists of all local interior nodes
4: request coordinates of non-local neighbors using MPI_Alltoallv
5: end for
6: synchronization using MPI_Barrier
7: // Step 1: Generate a weight matrix, A = [AI AB]
8: for all p processors in parallel do
9: for each local node v do
10: solve the optimization at v for the weight matrix row v
11: end for
12: end for
13: synchronization using MPI_Barrier
14: // Step 2: Compute the right-hand side vectors in equations (8.4)
15: for all p processors in parallel do
16: compute bx = −ABx̂B, by = −AB ŷB, bz = −AB ẑB

17: end for
18: synchronization using MPI_Barrier
19: // Step 3: Solve the linear systems (8.4) for x̂I , ŷI , and ẑI

20: solve AI x̂I = bx, AI ŷI = by, AI ẑI = bz using
21: either DistBlBiCG, DistBlGMRES or DistLU

8.5 Parallel Analysis
As described in Section 8.4, parallel LBWARP consists of three main steps, i.e., the
weight generation, the boundary deformation, and linear solution the same as does
LBWARP. We now discuss the performance gain in each these steps of parallel
LBWARP.

Assume that the maximum time to solve a single optimization problem in (8.1)
to determine the weights for interior node i is top. Thus, LBWARP takes at most
mtop total time to compute the sets of weights for the m interior nodes.

In the case of parallel LBWARP, for analysis purposes, assume optimal load
balancing across all available p processors and that each processor is assigned to
work on approximately dm/pe distinct interior nodes. Hence, each processor takes
at most dm/petop time to compute its own set of local weights. Since all processors
can work simultaneously without any communication among them during this step,
the total time to compute all weights is still dm/petop. There is some additional
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computation and communication to generate neighbor lists for the interior nodes
which can be viewed as a conversion from the original mesh representation to
a graph representation. It is easy to see that if the nodes belong to the same
element, they are neighbors of one another. Assume that there are ne elements in
the mesh. For LBWARP, to find all possible neighbor relationships of the interior
nodes, all mesh elements have to be visited. Thus, the total time for the sequential
conversion is netcon where tcon is the maximum time required to inspect a single
mesh element. For parallel LBWARP, if dne/pe elements are distributed among all
p processors, each processor can visit its elements in dne/petcon time. However, a
local neighbor list generated by each processor is not yet complete since each interior
node belongs to multiple mesh elements and those elements may be distributed
to different processors. To obtain the complete neighbor list for a given processor,
each processor needs to gather neighbor lists from other processors which requires
at most (dm/pepd)tcom or mdtcom time where d is the maximum degree of a node
and tcom is the time to send a single message. Thus, the total time required in
the weight generation step is bounded above by mtop + netcon for LBWARP and
dm/petop + dne/petcon + mdtcom for parallel LBWARP. In general, the time used
for distribution and gathering is very small compared to the time for solving the
optimization problems used to generate the weights. Fortunately, since there is
no further communication after all local neighbor lists have been generated in the
weight generation step, this step of parallel LBWARP is very scalable in terms of
both strong and weak scaling.

The boundary deformation step involves parallel matrix-vector multiplication
using each right-hand side vector as shown in equation (8.4).

Since rows of AB have already been distributed among the processors, the
only work that needs to be done is to distribute the vectors x̂B, ŷB and ẑB to
the processors so that the processors can simultaneously compute portions of the
right-hand side vectors based on the part of AB that each one owns. Assuming the
time to compute the right-hand side vectors sequentially is tc, the approximate run
time in parallel is dm/petc.

In the linear solution step, the time required to solve the system depends on the
algorithm used for this step. For iterative solvers, similar to the sequential versions,
the complexity is based on the number of iterations required for convergence
(and the time per iteration) which is approximately O(n2/p) per iteration with
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some communication overhead. For the distributed LU , the complexity is based
on nnz(AI) and the structure of AI , which is approximately M = ∑n

k−1 ckrk,
where ck and rk are the numbers of off-diagonal elements in each column of block
column k and each row of block row k, respectively. Thus, the parallel runtime is
approximately O((nnz(AI)+M)/p+H(p)), where H(p) is communication overhead
of p processors from broadcasting messages.

8.6 Numerical Experiments
In order to test the performance of our parallel LBWARP algorithm, we perform
several numerical experiments on 3D tetrahedral meshes. The implementation of
parallel LBWARP is in C/C++ using the message-passing interface (OpenMPI
version 1.7.3). We use the dense and sparse vector and matrix routines in the Eigen
library [64] where vector or matrix operations are required. All of our experiments
were run on the CyberStar cluster available for our use at The Pennsylvania State
University [34]. More specifically, 192 Dell PowerEdge R610 servers were used.
Each server provides 2 quad-core Intel Nehalem processors running at 2.66 GHz
and 24 GB of RAM. In all of our experiments, we use only one core per server
node in order to reduce the amount of duplicate data storage within the node.
This allows for more efficient memory usage, which is important when performing
parallel mesh warping on large-scale meshes (with tens of millions of elements).
The step in our parallel LBWARP algorithm that requires the most memory is
the neighbor computation step since the algorithm needs to hold both the mesh
structure (read from a file) and the neighbor list (or graph that is generated from the
mesh) and also the memory to hold vertex coordinates during this step. Although
these steps are performed in parallel, the tasks will also need to be distributed to
the appropriate processors. For both DistBlBiCG and DistBlGMRES, the relative
convergence tolerance and the maximum numbers of iterations are set to 10−5 and
103, respectively. The initial guess vector for both algortihms is set to zero. The
GMRES restart iteration is 30.

The 3D domains that we use in our experiments, i.e., Menger sponge and Luer
connector, are shown in Figs. 8.5(a) and (d), respectively. Meshes on these domains
were generated using TetGen [116] and have approximately 6M and 9M nodes,
respectively. (Note that M here is defined as one million.) The deformed boundaries
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(a) (b) (c)

(d) (e)

Figure 8.5. (a) The Menger sponge domain and its two (b and c) deforming boundaries,
and (d) the Luer connector domain and its (e) deforming boundary.

of the Menger sponge are shown in Figs. 8.5(b) and (c), and the deformed boundary
of the Luer connector domains is shown in Fig. 8.5(e). These boundaries are used
in the boundary deformation step of the mesh warping process. For the Menger
sponge mesh, the first deformation (Fig. 8.5(b)) was generated by increasing the
size of all square holes by 50%. Mesh elements were compressed in one dimension
and stretched in the other two dimensions. The latter deformation is much more
pronounced near the hole. The second deformation (Fig. 8.5(c)) was generated by
applying the first deformation, and then counter-clockwise twisting the model by
90 degrees while increasing the height of the model by 30%. In this case, mesh
elements were extremely compressed and twisted, as we can see in the figure. For
the Luer connector mesh, the deformation was generated by increasing the size
of the small tube on the top, extending the gap between the two middle plates,
and rotating the lowest plate by 90 degrees. With these deformations, the mesh
elements around the top are affected by two-dimensional expansion. The mesh
elements around the middle of the model are stretched in one dimension. Finally,
the mesh elements around the bottom are both compressed and distorted. Statistics
for both meshes, such as the numbers of nodes and tetrahedral elements in the
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meshes and the mesh quality (as measured by the mean ratio (MR) mesh quality
metric2) before and after the mesh deformation process are shown in Tables 8.1
and 8.2, respectively. Fig. 8.6 shows the spy plot of AI for a coarse mesh of the
initial Menger sponge model with (a) natural ordering and (b) nested dissection
ordering, respectively. Note that the coarse mesh is used only for the purpose of
visualizing the spy plot of AI . As we can see from the figure, the mesh yields a very
sparse matrix, AI . A spy plot of AI for the initial Luer connector model shows a
similar result.

Table 8.1. The sizes of the Menger sponge and Luer connector meshes.
Mesh # nodes # elements

Menger Sponge 6,025,426 37,723,148
Luer Connector 10,523,992 59,291,516

Table 8.2. The mean ratio (MR) mesh quality of the Menger sponge and Luer connector
meshes.

Mesh Initial Mesh Quality (MR) Final Mesh Quality (MR)
Max. Avg. Min. Max Avg. Min.

Menger Sponge 1.0000 0.7842 0.2196 1.0000 0.3894 0.0177
(twisted) - - - 1.0000 0.2059 0.0102

Luer Connector 1.0000 0.7180 0.1926 1.0000 0.2877 0.0159

Figs. 8.7(a) and (b) show the total runtime and speedup of the parallel LBWARP
algorithm using DistLU for the linear solution step on the Menger sponge and Luer
connector meshes running on different numbers of processors, respectively. (Note a
log scale is used for the vertical axis.) For the Menger sponge mesh, although there
are two different deformations, the total runtime for both deformations is the same
when using DistLU in the linear solution step, as they generate and solve the same
weight matrix. The experiments on the two meshes gave very similar results in
terms of runtime and speedup. They both achieve speedup very close to the ideal

2The MR mesh quality metric is given by

η = 12(3v)2/3∑
0≤i<j≤3 l

2
ij

[75], (8.5)

where v and lij denote the volume and various edge lengths of the tetrahedron, respectively. Note
the ideal mesh quality occurs when η = 1, and 0 denotes a degenerate tetrahedron. The range of
the metric is 0 to 1. Higher values denote better quality.
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(a) Menger sponge: Natural ordering (b) Menger sponge: Nested Dissection or-
dering

Figure 8.6. The spy plots of AI for a coarse mesh on the initial Menger sponge model
with (a) natural ordering and (b) nested dissection reordering, respectively.
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Figure 8.7. (a) The total runtime and (b) speedup of parallel LBWARP using DistLU
on the Menger sponge and Luer connector meshes.

speedup for a small number of processors. This slightly decreases as the number of
processors increases. The runtime for the weight generation step dominates the
overall time as shown in Tables 8.3 and 8.4 resulting in good strong scaling of the
algorithm since this step is the most effective one to parallelize. We observe some
slight performance deterioration due to the overhead in the pre-processing step, i.e.,
computation of the neighbor lists. However, the overall scalability of the algorithm
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Table 8.3. Breakdown of the runtime (in seconds) for parallel LBWARP: neighbor
computation, weight generation, boundary deformation, and linear solution steps using
DistLU on the Menger sponge mesh.

# procs. Neighbor Weight Boundary Linear
Computation Generation Deformation Solution

1 48.74 4311.76 7.43 26.08
2 32.95 2169.22 5.27 16.72
4 21.23 1097.54 3.55 10.98
8 16.12 539.98 2.74 7.68
16 11.59 274.56 1.77 4.95
32 7.56 142.92 1.24 3.69
64 3.78 76.59 0.86 3.12

Table 8.4. Breakdown of the runtime (in seconds) for parallel LBWARP: neighbor
computation, weight generation, boundary deformation, and linear solution steps using
DistLU on the Luer connector mesh.

# procs. Neighbor Weight Boundary Linear
Computation Generation Deformation Solution

1 102.41 10,593.24 13.98 35.93
2 65.20 5,365.32 11.02 23.29
4 44.52 2,679.88 7.51 16.06
8 32.74 1,342.59 5.95 11.32
16 20.21 704.73 4.32 8.63
32 14.82 342.67 3.64 6.64
64 6.18 186.99 2.37 5.75

Table 8.5. Weak scaling results for parallel LBWARP using DistBlBiCG on the Luer
connector mesh.

# procs. Avg. # nodes Avg. # elements Time (s.) Scaling
per proc. per proc. factor

1 203,182.00 1,032,988.00 132.64 1.00
2 196,294.00 1,062,265.50 151.12 0.88
4 218,869.00 957,434.50 168.15 0.79
8 184,865.38 855,358.00 171.63 0.77
16 152,833.00 907,685.44 175.23 0.76
32 163,799.56 966,950.56 180.74 0.73
64 164,437.38 926,430.94 182.31 0.73

is still good up to 64 processors. We have not extended our experiments to more
than 64 processors due to limited processor accessibility on the Cyberstar cluster.

We compare the performance of the three linear solvers, i.e., the DistBlBiCG,
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Figure 8.8. The runtime (in seconds) for the parallel sparse linear solvers for the (a)
Menger sponge, (b) Luer Connector, and (c) twisted Menger sponge meshes.

DistBlGMRES, and DistLU solvers, as shown in Fig. 8.8. The figure shows the
runtime of the linear solution step of the parallel LBWARP algorithm for the (a)
Menger sponge, (b) twisted Menger sponge, and (c) Luer connector meshes. The
DistLU solver gives good performance on a smaller number of processors and on
smaller meshes, (i.e., with 6M nodes for the Menger sponge mesh), with up to 8
processors, as we can see from Fig. 8.8(a) and Fig. 8.8(b). However, for more than 8
processors, the iterative solvers are more scalable, and yield a lower runtime. With
larger meshes, (i.e., with 9M nodes for the Luer connector mesh), both iterative
solves perform better than the direct solver in all cases (see Fig. 8.8(c)). Moreover,
the lower complexity of the DistBlBiCG solver results in the best scalability on the
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largest number of processors in the experiments.
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Figure 8.9. The speedup for the three parallel sparse linear solvers for the Menger
sponge mesh.

The speedups of the three linear solvers when applied to the Menger sponge
mesh are shown in Fig. 8.9. (Since the speedup results look similar for the other
meshes, we only include the result for one mesh.) As can be seen in the figure, the
speedup of these linear solvers is far from ideal. In particular, the linear solution
step does not scale as well as the weight generation step. However, since the
algorithm spends the majority of the runtime in the weight generation step, this
does not affect the performance of the algorithm very much.

The weak scaling results of parallel LBWARP is shown in Tab. 8.5. The results
are obtained from the parallel LBWARP algorithm with the DistBlBiCG solver
on various sizes of Luer connector meshes. In the table, the average numbers of
nodes and elements per processor, timing and weak scaling factor, for the parallel
LBWARP algorithm on up to 64 processors, are given. The ideal successive scaling
factor should all be one. However, in our case, there are some variables that affect
the results. For instance, the average numbers of nodes and elements are not the
same when the number of processors increases. Since the mesh is unstructured, it is
hard to generate the mesh that contains the exact numbers of nodes and elements
as we want. Such weak scaling results are typical for parallel unstructured mesh
computations.
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8.7 Multiple Mesh Deformations in a Heartbeat Sim-
ulation
One of the main advantages of parallel LBWARP is the re-usability of the weight
matrix for additional deformations. Although the overall runtime for parallel
LBWARP is dominated by the weight generation step, the weight matrix is generated
only once and can be used for a series of deformations. This greatly reduces the
computational complexity of the algorithm. Moreover, we can also apply linear
solvers that support multiple RHS problems to further reduce the overall runtime.
This can be done by computing the RHS vectors (from the boundary deformation
step) for all deformations and solving the relevant linear systems simultaneously.
Note this can only be done, however, in cases where all of the boundary deformations
are known at once. In this section, we demonstrate the performance of parallel
LBWARP on multiple mesh deformations with weight matrix re-utilization in a
heartbeat simulation.

Heartbeat simulations have been developed in [4, 60, 62]. Such simulations (and
their corresponding visualizations) may aid clinicians in medical diagonsis/treatment
and may also be used for education. In addition, simulations may aid in obtaining
a deeper understanding of a particular biological phenomenon of the heart and its
ventricular systems. For example, beating heart meshes can be used to simulate the
bioelectricity, biomechanics, and calcium dynamics of the human heart. For this
application, we focus on applying multiple deformations to the initial heart mesh
which are representative of actual heart motion. Note our heart motion simulation
is symbolic and does not correspond to motion obtained from experimental data.

The initial heart domain was obtained from a model in GrabCAD [53], a com-
munity database of CAD models. The initial volume heart mesh has approximately
5M nodes and 30M tetrahedral elements and was generated using TetGen. The
deformed boundaries are deformations of the surface meshes based on the initial
volume heart mesh. After warping the initial mesh to the first deformed boundary,
we consequently perform a series of deformations of the original mesh to other
target boundaries. We demonstrate the use of multiple deformations with parallel
LBWARP. We experiment by computing the deformations from the initial mesh
(Fig. 8.10(a)) to five different deformations. Figs. 8.10(b) and (c) shows the sample
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]
(b) (c)

Figure 8.10. Simulation of the heartbeat cycle. The initial motion of the heart is
shown in (a), whereas (b) and (c) show sample deformations of the heart at two different
timesteps within the cycle.

(a) Natural ordering (b) ND reordering

Figure 8.11. Spy plots of AI for the initial heart mesh with (a) natural ordering and
(b) ND reordering.

motions of these five deformations. Spy plots of AI for the initial heart mesh with
(a) natural ordering and (b) nested dissection reordering are shown in Fig. 8.11.
The mesh quality is shown in Table 8.6 as mneasured by the MR mesh quality
metric. The average MR remains fairly constant throughout the mesh deformation
process; only the maximum MR increases throughout the deformation process.
This was also observed for the cardiology application in [113]. Note the noticeable
decrease in mesh quality is from large deformations of the initial mesh to the target
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geometric domains. Smaller deformation steps could be taken (similar to those by
the methods in [97,114]) if less change in the mesh quality is needed per deformation
step. In our case, we are interested in how well the algorithm performs with large
deformations.

Table 8.6. The mean ratio (MR) mesh quality of the heart meshes.

# Deformation Mesh Quality (MR)
Max. Avg. Min.

0 1.0000 0.6484 0.1745
1 1.0000 0.2746 0.0248
2 1.0000 0.2643 0.0220
3 1.0000 0.3051 0.0207
4 1.0000 0.2786 0.0202
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Figure 8.12. (a) The total runtime and (b) speedup for four deformations of the heart
mesh using DistLU as a solver.

Fig. 8.12 shows the total runtime and speedup of the parallel LBWARP algorithm
for four deformations of the heart mesh using the DistLU algorithm as the linear
solver. As shown in Fig. 8.12(a), reusing AI can significantly reduce the total
runtime of the algorithm. For k deformations, when AI is reused, the algorithm
is close is close to k-times faster than without reuse for sufficiently large k. The
algorithm with and without multiple RHS support for the linear solution step does
not show much difference in runtime. (It is around 5% faster for four deformations
on 64 processors. This is because the linear solution step takes less than three
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percent of the total time.) As shown in Fig. 8.12(b), the speedup of the algorithm
improves when the algorithm reuses AI , whereas the use or non-use of multiple
RHS support does not hardly affect the speedup of the algorithm. Although the
advantage of employing multiple RHS support is much less than the advantage
of reusing AI , the combination of both approaches is rather advantageous when
DistLU is used on large problems.

124 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e 

(i
n 

se
co

nd
s)

 

 

DistBlBiCG
DistBlGMRES
DistLU

101.8

(a) One deformation

124 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e 

(i
n 

se
co

nd
s)

 

 

DistBlBiCG
DistBlGMRES
DistLU

101.8

(b) Four deformantions

Figure 8.13. The runtime for the linear solver step for (a) one deformation and (b) four
deformations.

We also compare the performance of the three parallel sparse linear solvers, i.e.,
DistBlBiCG, DistBlGMRES and DistLU, on the linear solution step of parallel
LBWARP on the heart meshes as shown in Fig. 8.13. Fig 8.13(a) gives a runtime
comparison between the three algorithms for one deformation (i.e., by solving the
linear systems with three RHS). The DistLU algorithm gives the best performance
over both the DistBlBiCG and DistBlGMRES algorithms for lower numbers of
processors, (i.e., up to 32 processors). However, the complexity of the algorithm
does not scale well, and, thus, the DistBlBiCG and DistBlGMRES algorithms give
better performance for larger numbers of processors, (i.e., more than 32 processors).
Since DistBlBiCG has the lowest complexity and also scales well when increasing
the numbers of processors, it shows the best performance on 64 processors. With 64
processors, the performance of DistBlBiBG is approximately 17% and 13% faster
than that of DistBlGMRES and DistLU, respectively.

Despite the higher complexity, the direct solver has the advantage of reusing the
L and U factors and reduces further the overall runtime compared with the parallel
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block iterative solvers when solving multiple RHS problems on small numbers of
processors. Fig 8.13(b) shows the runtimes of the three parallel sparse linear solvers
for four deformations (or by solving the linear system with 12 RHS vectors). The
advantage of reusing the L and U factors for multiple linear solves on up to 32
processors can be seen in this figure. Once the L and U factors of the matrix have
been computed, they can be used to (triangular) solve with additional RHS vectors
in much less time. However, due to the high complexity of the sparse LU algortihm,
it has the worst scalability. For large numbers of processors, we can see that
the DistLU algorithm shows worse performance than the DistBlBiCG algorithm
which has lower complexity and better strong scalability. With 64 processors, the
performance of DistBlBiBG is approximately 13% and 2% faster than those of
DistBlGMRES and DistLU, respectively.

8.8 Conclusions and Future Research
We have proposed a parallel formulation of the LBWARP algorithm in [113] for
warping tetrahedral meshes on distributed memory machines. The algorithm
generates the p distributed neighbor lists from the input mesh in which all interior
nodes are numbered first and the boundary nodes are numbered last and sends each
distributed neighbor list to a processor (assuming there are at least p processors
available). Once the processors receive their neighbor lists, they perform the local
weight generation for nodes in their neighbor list in parallel and without any
communication. After that, the mesh boundary is deformed in parallel. Parallel
LBWARP distributes the entries of the deformed boundary to the corresponding
processors based on the rows of the weight matrix that the processors have generated.
Finally, the linear system, which is based on the weight matrix and the boundary
deformation, is solved for the final coordinates of the interior nodes in the deformed
mesh using one of three parallel sparse linear solvers, i.e., the distributed block
BiCG, distributed block GMRES, and distributed LU algorithms. These solvers
support multiple right-hand side vectors which reduces the overall runtime of the
parallel LBWARP algorithm since it otherwise requires solution of a sparse linear
system with three right-hand side vectors for each deformation of a tetrahedral
mesh.

Our experimental results show good strong scalability and speedup on several
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3D tetrahedral meshes as a result of efficiently parallelizing the most time con-
suming step in the algorithm, i.e., the weight generation step. This step takes
approximately 80-90% of the algorithm’s overall runtime. However, we implement
it in an embarrassingly parallel manner in order to avoid all communication during
this step. Weak scaling results typical of those for unstructured meshes are also
demonstrated. In regards to the performance of the linear solvers, the DistBlBiCG
and DistBlGMRES algorithms generally perform well on a large number of proces-
sors, (i.e., p > 32). On the other hand, the DistLU algorithm performs better on a
small number of processors, (i.e., p ≤ 32) and large numbers of deformations due
to the reuse of the L and U factors. Our experiments only use up to 64 processors
due to the limited computing system. We expect the two iterative algorithms to
outperform the DistLU algorithm when using more than 64 processors or when
warping larger meshes (e.g., meshes with more than ten million nodes), as they
have lower algorithm complexity and memory requirements.

We applied parallel LBWARP to a heartbeat simulation and demonstrated its
performance on a sequence of mesh deformations. For multiple mesh deformations,
once the weight matrix has been computed, the parallel LBWARP algorithm can
reuse this matrix to determine the interior nodes for the other mesh deformations.
That is, only the boundary deformation and linear solution steps are needed which
further reduces the algorithm complexity and runtime. With the use of parallel
sparse linear solvers that support multiple right-hand side vectors, the overall
runtime can be reduced even further.

Possibilities for future research include extension of parallel LBWARP to other
mesh element types such as hexahedral elements on 3D domains. Another possible
avenue for research is the implementation of a parallel hybrid OpenMP/MPI
LBWARP algorithm which can utilize both intra- and inter-node parallelism, as
shared memory architectures are becoming increasingly more common. In regards
to the parallel sparse linear solvers, our current implementations of the DistBlBiCG
and DistBlGMRES algorithms apply row-wise partitioning and distribution of the
weight matrix. It is possible to further improve their performance by applying a
block matrix partition and distribution. Determination of ways to reuse a portion
of the computations performed by these parallel iterative methods when multiple
deformations are applied is also of interest.
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Chapter 9 |
Conclusions and Future Work

This dissertation introduces scalable graph and mesh computations for distributed-
memory systems. We study some state-of-the-art graph algorithms and data
structures, and some domain decomposition and mesh warping techniques. New
algorithms and implementations are developed based on these analyses and evalua-
tions.

In the first part of the dissertation, we propose scalable graph computations
that efficiently utilize distributed-memory machines. We evaluate, analyze, and
compare the performance of various single-source shortest path algorithms that are
implemented for distributed-memory machines. We then improve their performance
by applying a 2D graph layout as an underlying distributed graph data structure.
The algorithms with the 2D graph layout reduce overall communication overhead
and improve load balancing, especially for real-world graphs that have a power
law degree distribution. Some implementation optimizations are also introduced,
such as unique adjacency that act as a local cache to avoid unnecessary communi-
cation and data reduction. This handles most of the duplicate data to lower the
memory requirement and reduces unnecessary communication and computation.
We further extend the study of the 2D graph layout and optimizations on other
well-known graph algorithms, such as breadth-first search, approximate diameter,
connected components, PageRank, and modified Bellman-Ford, and evaluate their
performance on numerous types of graphs including both large-scale real-world and
synthetic Graph500 graphs. Finally, we analyze various approximate graph coloring
algorithms implemented on the 2D graph layout. Most of the algorithms are hard
to parallelize because of data dependencies in the algorithms. Some algorithms
focus on the accuracy over the performance, and vice versa. We show that the 2D
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graph layout can improve the performance of the algorithms while maintaining the
accuracy.

In the second part of the dissertation, we focus on some parallel mesh com-
putations and introduce a domain decomposition algorithm for 2D parallel mesh
generation and a parallel mesh warping algorithm. Our domain decomposition
algorithm is based on the MeTiS partitioner and is combined with heuristics to
improve bad subdomain angles. The algorithm generates subdomains with good
quality comparable to other more complex domain decomposition methods, such
as medial axis domain decomposition. Our algorithm has a much lower subdomain
generation time due to its low complexity. Next, we propose a parallel mesh warping
algorithm, i.e., parallel LBWARP, that is based on a serial log barrier-based mesh
warping technique. The formulation of the parallel algorithm utilizes a modified
distributed adjacency list with ghost vertices as an underlying data structure which
avoids most of the communication in the algorithm. We also provide three parallel
sparse linear solvers, i.e., DistBlockBiCG, DistBlockGMRES, and DistLU, that
support multiple right-hand side vectors. These linear solvers are motivated by
Trilinos solvers. The use of these solvers further reduces the overall execution time
of the parallel LBWARP algorithm since the algorithm requires a solution of the
sparse linear systems with three right-hand sides per deformation (for 3D meshes).
The algorithm provides good performance and strong scalability due to the low
communication overhead.

Although this dissertation highlights many efficient algorithms, data structures,
and techniques for graph and mesh computations, there are still many possibilities
for improvements to be explored. First, all of our parallel implementations are
currently based on the bulk synchronous parallel model which explicitly separates
communication and computation from one another. While it is simple and provides
good performance, it has high synchronization overhead. One approach to further
improve the algorithms’ performance is to overlap communication and computation
which will result in less idle time. Second, the current scope of this dissertation is
only limited to distributed-memory systems. These computing environments require
inter-communication via explicit messages resulting in high communication latency.
In reality, as for current architectures, single processors are usually equipped with
multiple cores that work on the same memory space. Intra-communications can
be done using read/write from/to the shared memory which yield much lower
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latency during communication. We plan to extend our implementations to utilize
this type of architecture and create more scalable efficient hybrid implementations
(i.e., utilizing both MPI and OpenMP). Finally, we plan to make an open source
framework combining all of our graph implementations and an a mesh toolkit for
parallel mesh algorithms so that it can help research communities in parallel graph
and mesh computations.
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