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ABSTRACT 

It has been shown that a significant amount of platelets is wasted due to their short life after 

collection, just 5 days. Most of the previous work develop inventory policies based on a known 

demand pattern over a finite time horizon. Further, they assume that the entire platelet units 

received by the hospitals from the blood center are fresh (with all 3 days of transfusable life 

remaining). However, in practice, nearly 50% of the incoming platelets have one day shelf life. 

This research develops inventory models for the hospitals and the blood center under realistic 

settings (demand uncertainty, platelets with varying shelf life, finite supply at the blood center) 

with the objective of minimizing platelet shortage and wastage (due to outdating). 

In this dissertation, single objective deterministic inventory model is first developed to 

determine the number of platelet units to order and time between orders at the hospital. The model 

is extended to multiple objective inventory models at the hospital. The deterministic models are 

later extended stochastic programming models under demand uncertainty for hospital inventory 

management. Finally, inventory management along the entire blood supply chain is studied and 

platelet ordering policies are developed under demand uncertainty. 

Due to the computational complexity of the stochastic programming model developed for 

hospital inventory management, three heuristic rules are proposed for determining the platelet 

ordering policy at the hospital. The performance of these three ordering policies is compared 

against that of the traditional periodic review order-up-to policy, using real-life data obtained from 

a medical center. The shelf life of arriving platelets, coefficient of variation of demand and cost 

parameters are varied, and their impact is analyzed on the performance measures and the best rule 

with respect to each setting is determined. Based on the hospital setting and cost prioritization, the 

decision maker can decide the best performing rule. 

A new variant of the genetic algorithm, called modified stochastic genetic algorithm 

(MSGA) is proposed for determining the order-up-to level and re-order points at the various stages 

of the blood supply chain consisting of a blood center, which serves several hospitals. The 

performance of the MSGA algorithm is tested against an existing genetic algorithm. Using actual 

platelet demand data, it is shown that the MSGA algorithm performs well and can be easily scaled 

up to solve for larger supply chain problems. The proposed MSGA methodology is generic and 
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can also be applied to determine ordering policies for other perishable supply chains, such as food 

or drug supply chains. 

Keywords: Platelet wastage, stochastic integer programming, heuristic ordering policies, 

blood supply chain, genetic algorithm. 
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Chapter 1 : Introduction 

Supply chain is defined as a series of coordinated stages that are situated at various 

locations to ensure the procurement of raw materials, production of the semi-finished and finished 

goods and distribution of the products to customers. The different stages of the supply chain 

include supplier, manufacturer, distributor, retailer and customers who are physically distinct and 

geographically separated (Ravindran and Warsing, 2013). Some companies include fewer 

members of the supply chain and some companies include more. These entities are generally 

independent and operate under different constraints and objectives. An efficient supply chain will 

result in the delivery of the right quantity at the right time at the right place.  

1.1 Supply Chain for Perishable Items 

Supply chains delivering perishable products, such as blood, food, medicines, drugs and 

flowers, are unique with specific challenges in comparison to that of non-perishable items due to 

the finite product shelf life (Nagurney et al., 2011). The product’s shelf life is defined by Donselaar 

et al., (2006) as the “lifetime of the product that is measured in days, counting from the day it is 

produced until the product becomes unacceptable for consumption or obsolete”. Therefore 

perishable item supply chain will definitely result in higher wastage of products compared to that 

of non-perishable item supply chain. Donselaar et al., (2006) have also suggested that items which 

have a shelf life of 30 days or less can be categorized as perishable items. Hence, blood, food, 

medicines, drugs and flowers are perishable items and thereby leading to a significant wastage if 

not utilized within that duration (Parfitt et al., 2010).  

In particular, blood supply chain deals with the delivery of different components of blood, 

(Red Blood Cells (RBC), White Blood Cells (WBC) and platelets suspended in liquid substance 

called plasma) from the donor to the hospitals and surgery centers for patient treatment as shown 

in Figure 1.1. Note that often the blood center and blood bank are the same. 

1.2 Blood Supply Chain 

Each component of blood has its own function/purpose in humans and therefore is essential 

to maintain appropriate inventory of these at all times.  

(a) The RBC carries oxygen from the lungs to all parts of the body and is needed during 

surgeries and anemia of chronic disease. 
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(b) The WBC helps in defending the body against infections and used to prevent life 

threatening bleeding premature infants.  

(c) Platelets are mainly used for arresting bleeding when there are any wounds and are 

needed during surgery to ensure coagulation of blood. In addition, platelets are used for treating 

cancer patients and during organ transplant.  

(d) Plasma helps in the treatment of burns (Belien and Force, 2012). 

 

 

 

Figure 1.1: Members of the Blood Supply Chain 

1.2.1 A Brief Overview of Blood Collection and Distribution Process 

There are multiple suppliers for blood products in the United States. The U.S. Food and 

Drug Administration (FDA) has developed regulations for the blood collection and distribution 

process. 

The American Red Cross (ARC) is the largest supplier of blood products. It has several 

blood collection sites across the US. ARC distributes about 50% of the blood supplies. The other 

50% is collected and processed by community blood centers. Community blood centers are 

independent non-profits, and are typically members of America’s Blood Centers (ABC). The FDA 

regulates all the blood centers in the US. ARC divisions at particular regions organize blood 

donation programs and set up blood collection sites. A regionalized blood banking system for the 

ARC in the USA is shown in Figure 1.2 (Nagurney et al., 2011). 

Hospital and 

Surgery Center 
(Retailer) 

Patient 

(Customer) 

Donor 

(Supplier) 
Blood Center 

(Manufacturer) 

Blood Bank 

(Distributor) 
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Figure 1.2: Flow of Blood along Blood Supply Chain (Nagurney et al., 2011) 

The flow of blood along the supply chain takes place as follows: 

• The whole blood is collected at several collection sites from various donors and is then sent to 

blood centers. Blood that is drawn from the donor is in whole form (Belien and Force, 2012). 

Every donor has to satisfy the FDA requirements. Each unit of blood that is collected from the 

donor is kept track (including the donor information) and these records are maintained 

indefinitely. 

• The blood center separates the blood into three major blood components: RBC, plasma and 

platelets. The average unit of donated whole blood is 450 to 550 milliliters, which is used to 

provide one unit of RBC and one unit of plasma. Note that the plasma derived from whole 

blood is collected from male donors only. However, platelets drawn from five donors are 

pooled together to make a single unit of platelet.  

• From the blood centers, the blood is sent to the component labs for testing for any infection 

such as HIV, Hepatitis A, Hepatitis B, Hepatitis C, West Nile Virus, etc (American Red Cross, 

2013). As of 2013, ARC has 5 testing labs across the US. There are 36 blood regions that share 

the testing labs. The small sample that is tested at the lab is discarded irrespective of the results 
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of the test. From the sample testing if the blood is observed to be contaminated, the 

corresponding blood unit is discarded at the storage facility. The testing procedure however 

incurs an operational cost (Nagurney et al., 2011). 

• The blood bank places orders to the blood center and thereafter blood at the storage facility is 

delivered to the requesting blood bank in validated, temperature controlled carriers. 

• Several hospitals and surgery centers which are the demand points place orders to the blood 

bank for the various blood components, depending upon their needs to serve their patients. 

Hospitals have contract only with a single blood center and cannot procure blood products 

from different suppliers. For example, Mount Nittany Medical Center in State College, PA 

procures blood from ARC. However, Penn State Hershey Medical Center and Geisinger 

Medical Centers in Pennsylvania have their own collection centers and do not procure blood 

from any other blood centers. However, all collection centers are operated under the ARC or 

an ABC community blood center. 

Blood centers assume that all the units of blood that are obtained by the hospitals are used 

by them. In other words, blood centers do not keep track of whether blood units procured by the 

hospitals are being utilized or not. It is the responsibility of the hospitals to have the record of the 

transfused and unutilized blood units. 

The process of moving the blood components down the supply chain involves several costs 

(Ghandforoush and Sen, 2010):  

• Cost of testing platelets for any infection 

• Outdating cost 

• Transportation cost 

• Cost of separation of platelet rich plasma from RBC  

• Shortage cost 

• Blood components carrying cost  

1.2.2 Apheresis Platelet Supply Chain 

Platelets in particular, can be collected from the donor through a process called platelet 

apheresis by which blood is drawn and only platelets are extracted from the donor’s blood and the 

remaining blood components are injected back into the donor’s body. Though this method is 

expensive, the frequency of platelet donation is increased to once in every 2 weeks (i.e., 24 times 
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a year) instead of once in every 56 days, which is approximately 6 times a year (American Red 

Cross, 2013). From the donor site, apheresis platelets are sent to the blood center for testing and 

then shipped to the blood banks, and hospitals as in regular blood supply chain. A return feedback 

is provided from the hospital floor. For example, a feedback mentioning that there is no hole in 

the bag, unit procured is transfused, etc. European countries have adopted a patented production 

process for platelets, which utilizes a platelet additive solution instead of plasma for platelet 

storage, but the US FDA has not licensed this production process in America. 

1.3 Forecasting Demand of Blood at BSC 

Forecasting demand for blood components at the blood supply chain is very essential 

because advanced information can increase blood collection efforts during the lead time if more 

blood is required and blood collection can be limited if less units are projected (Frankurter et al., 

1974). In the research paper by Boyle et al., (2008), it was said that “forecasting is an important 

aid in many areas of hospital management, including elective surgery scheduling, bed 

management, and staff resourcing”. In specific, forecasting of platelet is very essential because 

proper forecasting can reduce shortage and outdating of platelets at the blood supply chain. 

 The main challenge involved in blood supply chain is the shortage of blood products due 

to limited donor population resulting in low service level from the blood centers and blood banks. 

In the paper by Frankfurter et al., (1974), the authors mentioned that during midsummer and end 

of year holiday season, donors do not prefer to donate and due to the short shelf life of blood, 

shortages occur. Also, during Easter and Christmas (which is referred to as “production breaks”), 

blood centers do not operate and hence supply of blood from the blood center is affected. Ordering 

policies of platelets for those special periods was studied in detail by Haijema et al., (2009). 

Therefore, adequate forecasting is required for planning future blood collection efforts to avoid 

outdating as well as stock-outs of blood units (Pereira, 2004).    

1.4 Motivation for this Research 

The study of blood collection and distribution process is very essential because  

• There is a significant wastage of blood along the blood supply chain (i.e., from the time of 

collection of blood from the donor to the time of providing blood to the patient). It has been 

reported (Nagurney et al., 2011) that in 2006, “the national estimate for the number of units 

of whole blood and all components outdated by blood centers and hospitals was 1,276,000 
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out of 15,688,000 units”. In other words, approximately 8% of the total units collected 

were wasted. 

• Components of blood are used for saving human lives.  

There is more wastage of blood due to high inventory levels maintained at the hospitals and at the 

blood banks. The reasons behind maintaining high inventory levels are as follows: 

• Blood components have a very short shelf life. Moreover, blood after being collected is 

first being tested for any infection and only the uncontaminated blood is available for 

patient use. The process of testing takes about 2 days. RBC’s have a shelf life of 21-42 

days. Platelets have a shelf life of 5-7 days and plasma has a shelf life of a year (American 

Red Cross, 2013). Among these components, platelets have the least shelf life. Moreover, 

after being tested at the labs (culture/ bacterial testing), they have a remaining shelf life of 

only 3-5 days. Due to the very short shelf lives of platelets, hospitals maintain high 

inventory to compensate for the outdated platelets. 

• The supply and demand of blood products are stochastic. Therefore, blood centers collect 

more blood than required to compensate for the extreme demand scenarios thereby 

resulting in outdating. 

• Critical patients may need numerous blood transfusions prior to recovery. However, the 

number of units of the specific blood component needed for each treatment cannot be pre-

determined. For example, platelets are mainly used for cancer patients during 

chemotherapy. During chemotherapy, patients ate transfused with platelets if the platelet 

count drops below 10,000 platelets/uL of blood. However, it is not possible to determine 

whether a patient will be requiring platelets during each chemotherapy treatment. 

Therefore, the supply of blood components must be continuously maintained depending 

upon the treatment type (BJC Healthcare, 1997). 

It is necessary to minimize platelets wastage at hospitals for the following reasons. 

• Over the past 10 years, demand for blood has increased but the supply of blood is not 

increasing enough to meet the demand (Landers, 2001). Moreover, increased FDA 

regulations reduce the number of eligible donors. 

• Blood products are perishable and hence donated blood cannot be stored and used for 

future demand. 
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• Shortage of blood can even lead to the death of a person. 

• Outdating of blood is also not acceptable because less than 38% of the population is 

eligible for donating blood and only 5% of the eligible blood donors actually donate blood 

(American Red Cross, 2013; LifeStream, 2009). Also, depending upon the type of blood 

donation, time between donations is a constraint and very frequent donations by the same 

person are not possible. 

• Hospitals experience a surgical delay of 50 days due to shortage of blood. Sometimes even 

a delay of 120 days has been observed due to blood shortage. Therefore, reduction of 

wastage can minimize the delay in performing the surgery (Frankfurter et al., 1974).  

• Cost of procurement and testing is quite high. In 2011, the average cost of purchasing one 

unit of RBC by hospitals from its suppliers was $210.74 (Schrijvers, 2011) and the average 

cost of purchasing one unit of platelet by hospitals from its suppliers was $533.90 (Toner 

et al., 2011). 

In summary, platelets have the least shelf life and hence the highest wastage (15% to 20% 

of the total units collected are outdated). Demands for blood platelet are uncertain. Platelet 

transfusions are given to patients undergoing chemotherapy for leukemia, multiple myeloma, those 

with aplastic anemia, AIDS, hypersplenism, sepsis, and those in need of bone marrow transplant, 

radiation treatment and organ transplant. (American Association of Blood Banks, 2005; Zhou et 

al., 2011).  

1.5 Research Plan 

 Consider the blood supply chain given in Figure 1.1. In most blood supply chains, blood 

centers interact directly with the hospitals without the need for blood banks. However, in some 

cases, blood banks exist and act as distributors. The following are the key decisions made in the 

blood supply chain, particularly with respect to platelets: 

• Strategic Decisions at the Blood Centers: 

a. Number and location of blood centers 

b. Number and location of blood banks (if required) 

c. Blood center capacity levels 

• Strategic Decision at the Hospitals: 

a. Determining the blood center with which each hospital has to establish a tie-up 

http://theoncologist.alphamedpress.org/search?author1=Dirk+Schrijvers&sortspec=date&submit=Submit
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• Tactical Decisions at the Blood Centers: 

a. Forecast of platelet demand for a given planning horizon  

b. Inventory policies for platelet management 

c. Schedule of blood drives to ensure that the platelets reach the hospitals on time to 

minimize outdating cost and inventory holding cost. 

 

• Tactical Decisions at the Hospitals: 

a. Forecast of platelet demand for a given planning horizon at the hospital.  

b. Inventory policies for platelet management 

c. Inventory capacity for platelets 

 

• Operational Decisions at the Blood Centers: 

a. Units of blood the drives must collect each day 

b. Determine the best routes for vehicles such that the total cost of transportation of 

platelets is reduced 

c. Determine the amount of platelets, of each shelf life, to be shipped to the hospitals each 

day 

d. Units of platelets to be stored each day 

e. Staffing decisions at the donor drives 

  

• Operational Decisions at the Hospitals: 

a. Number of platelet units to order each day 

b. Units of platelet to keep in inventory each day 

 

The models proposed in this dissertation will address the following decisions related to the design 

and management of blood supply chains: 

• Strategic Decisions: 

a. Blood center capacity levels 

b. Inventory capacity for platelets at hospitals 

• Tactical Decisions: 

a. Forecast of platelet demand for a given planning horizon at the blood supply chain 
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b. Inventory policies for platelet management at the blood center 

c. Schedule of blood drives to ensure that the platelets reach the hospitals on time to 

minimize outdating cost and inventory holding cost 

d. Inventory policies for platelet management at the hospitals 

• Operational Decisions: 

a. Units of blood the drives must collect each day at the blood centers 

b. Quantity of platelets, of each shelf life, to be shipped to the hospitals each day 

c. Units of platelet to keep in inventory each day at the blood center 

d. Units of platelet to keep in inventory each day at the hospitals 

e. Units of platelet to order to the blood center by the hospital each day 

 

1.6 Outline of the Proposal 

The proposal is organized as follows. A review of the literature about blood supply chain 

and inventory management is presented in Chapter 2. The single objective mixed integer 

programming model for hospital inventory management is discussed in Chapter 3. In Chapter 4, 

three multiple objective models for hospital inventory management are developed and the results 

are compared. In Chapter 5, several ordering policies for hospital inventory management in 

proposed. In Chapter 6, ordering policies for the entire blood supply chain in discussed. The 

conclusions and potential future work are discussed in Chapter 7.  
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Chapter 2 : Literature Review 

2.1 Inventory Policy for Perishable Items 

Fries (1975) determined the optimal inventory policy for perishable items depending upon 

the shelf life of the products. Two cases were analyzed. In the first case, the shelf life of the product 

is considered one day (i.e., no inventory is carried from one time period to the next) with no 

backordering, then the inventory at each period is independent of the other and therefore, the 

problem becomes a “newsboy problem”. In the second case, where the shelf life is more than a 

day and no backordering, dynamic programming was developed to determine the optimal 

inventory ordering policy. The results were obtained for both finite and infinite horizon problem.   

Nahmias (1975a) also adopted a dynamic programming approach to develop an inventory 

model to reduce wastage and shortage of perishable items. In the work by Nahmias (1975b), a 

heuristic was proposed for determining ordering policy instead of dynamic programming 

approach. The author also suggested that if the shelf life of the product is greater than 1 day, then 

the dynamic programming problem becomes computationally difficult as well as the 

implementation of the policy becomes tedious. The results of heuristic approach were compared 

to that of the optimal policy developed by Nahmias (1975a).  

Goyal and Giri (2001) provided a literature review of perishable items. The authors 

classified the research done in perishable items since 1990 into the following three categories: (1) 

Inventory models with fixed lifetime (see Schmidt and Nahmias 1985; Nandakumar and Morton, 

1993; Liu and Lian, 1999; Perry, 1997), (2) Inventory models with random lifetime (see Kalpakam 

and Sapna, 1994; Kalpakam and Sapna, 1995; Kalpakam and Sapna, 1996; Liu and Shi, 1999), (3) 

Inventory models in which items decay depending upon the utility function. For fixed life time, 

Schmidt and Nahmias (1985) assumed fixed lead time and developed a continuous review policy. 

Later, Berk and Gürler (2008) developed (s,Q) policy assuming fixed lead time and constant life 

time. Kalpakam and Shanthi (2001) analyzed the scenario in which life time is exponential. Goyal 

and Giri (2001) also suggested that demand plays an extremely important role in developing the 

perishable inventory model and classified the research done in the past based on the type of demand 

such as deterministic demand (see Haringa, 1995; Haringa, 1996; Xu and Wang 1992; Yan and 

Cheng, 1998) and stochastic demand (see Dave, 1991; Kim, 1995; Kalpakam and Sapna, 1996). 

Deterministic demand was further classified as uniform demand, time varying demand, stock and 
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price dependent demand. Stochastic demand was classified as known and arbitrary probability 

distributions.    

The research paper by Broekmeulen and van Donselaar (2009) took into account the age 

distribution of the inventory and developed a replenishment policy with stochastic demand and 

fixed lifetime. The results were compared to the base policy adopted from Tekin et al. (2001) and 

concluded that considering age distribution of the inventory reduced the wastage of perishable 

items to 8.2% for FIFO withdrawal and 11.0% for LIFO withdrawal.    

A multi-item inventory model with the limited floor space availability for perishable items 

is discussed by Ghosh et al. (2015). The demand for each item in the paper was assumed to be 

stock dependent and the developed model was solved analytically to obtain the optimal solution.  

2.2 Review of Literature on Forecasting 

Forecasting of blood components is essential since the demand is increasing and the supply 

is not increasing enough to meet the demand. Forecasting of perishable items is difficult because 

of the limited shelf life. Forecasting techniques are seldom applied in the supermarkets to forecast 

perishable commodities (Donselaar et al., 2006). However, in their paper, it was also mentioned 

that proper forecasting techniques should be used and the approach based on individual perspective 

was incorrect.    

In particular, forecasting demand for blood components in the blood supply chain is very 

essential because advanced information can increase blood collection efforts if more blood is 

required and blood collection can be limited, if less units are needed (Frankurter et al., 1974). In 

their paper, regression technique was used to forecast demand of red blood cells for two weeks 

considering the number of units collected and units expired. The results of the paper indicated that 

forecasting the short term demand for blood had a significant impact on controlling the inventory 

levels at the blood centers. In the paper by Pereira (2004), three forecasting techniques - 

autoregressive integrated moving average (ARIMA), the Holt-Winter’s exponential smoothing 

method and neural-network based method, were applied to forecast the demand for blood at a 

hospital in Spain. Ten years of data were used to develop the three models. The models were 

validated using three years of data and the results indicated that the Holt-Winter’s exponential 

smoothing model performed the best.  



12 

 

2.3 Blood Products Supply Chain 

 In recent years, minimizing wastage and shortage of blood products have gained a lot of 

attention. For example, various inventory models were developed and tested with the major focus 

on regional blood banks (Haijema, 2007; Haijema, 2009; van Dijk, 2009; Jabbarzadeh et al., 2014) 

and hospitals (Gunpinar and Centeno, 2015). The management of blood and blood products is a 

challenging task in blood centers and hospitals due to FDA regulations. Blood is drawn from 

donors and not many persons from the eligible donor population actually donate blood; in addition, 

the issue of infections and contaminations among donors limits the eligible donor population. The 

problem of supply side of blood assumes greater dimension given that hospitals need to rely on 

the neighborhood population, transport facilities in case of blood or blood products obtained from 

blood banks located elsewhere and the short response time to get blood in case of emergencies 

(Blake et al., 2010). The authors have suggested that minimization of the shortage and outdating 

cost is not necessarily the correct objective function especially for platelets ordering and inventory 

management.  

There are different costs associated with the blood inventory system such as purchasing 

cost, holding cost, shortage cost, outdating cost, etc. Outdating costs are associated with the blood 

or blood products that have to be discarded because they have expired. Shortage costs are 

encountered when an alternate source of supply is to be found resulting in an increased cost of 

procurement; for example, an emergency supply from another hospital or a different blood bank 

is sought in case of shortage of on-hand blood or blood products. Since the shortage cost is rather 

difficult to quantify, it is a normal practice to treat the ratio of shortage cost to the outdating cost 

as some value, say, five (see van Dijk et al., 2009). All these aspects make the operational issues 

such as the collection of blood at hospitals and blood banks, blood allocation to hospitals from 

blood centers and blood banks, blood delivery to hospitals and determination of optimal order 

policy for blood products at blood banks and hospitals rather challenging and quite complex to 

analyze, especially given the fact that the entire blood management system need to be examined 

as a whole supply chain system and not just as a system of isolated sub-systems (Pierskalla, 2004; 

Belien and Force, 2012).  
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2.3.1 Taxonomy of Supply Chain Management of Blood Products 

Belien and Force (2012) presented taxonomy of supply chain management of blood 

products in terms of the following:  

i. Type of blood product (e.g. whole blood, plasma, frozen blood and blood platelets) 

ii. Solution method (simulation, queuing model, mathematical programming techniques such 

as linear, integer and stochastic dynamic programming, heuristics and statistical analyses 

such as exponential smoothing for forecasting and regression analysis to determine which 

factors would affect outdating of blood products) 

iii. Hierarchical level (individual hospital level, blood center or bank level, and supply chain 

level involving location, transportation logistics and order issue policies) 

iv. Type of problem (inbound problems pertaining to inventory allocation to centralized blood 

banks and hospitals, and outbound problems in terms of delivery to hospitals) 

v. Types of approach (stochastic and deterministic settings) 

vi. Exact and heuristic methods; performance measures (involving service level, and costs of 

transportation, shortage and outdating) 

vii. Implementation issues in real-life including participation and coordination of different 

hospitals in the blood inventory management 

2.3.2 Blood Product Management: Hierarchy of Levels 

It is possible that the blood products supply could be managed at different levels: at an 

individual hospital level; at a regional level with a blood bank serving a host of hospitals; and at a 

State level or inter-regional level with a set of regional blood banks or blood center. According to 

Prastacos (1984), operational level decision issues are related to scheduling and coordinating in 

terms of ordering, collections, processing and issuing; tactical issues are related to the 

determination of inventory levels, collection levels, issuing policies and processing policies; and 

strategic issues are related to design of blood bank and hospital network, location of the blood 

bank and hospitals, and policies related to sourcing of blood and blood products. Prastacos also 

observed: “since the demand and usage of blood are stochastic, a fundamental part of every 

hospital’s effort for improved blood inventory management is understanding the statistical pattern 



14 

 

of demand and usage of blood (through statistical analysis of collected data) in order to forecast 

these patterns better. These patterns are determined by the behavior of three random variables for 

each blood type: the number of daily requisitions arriving at the hospital blood bank; the size of a 

requisition and the actual usage (number of units) of a requisition”. Once these patterns are 

analyzed, hospitals place orders and the ordering policy of a hospital answers the following 

questions: when to place an order and how much to order.  

Analytical approaches make some assumptions such as the complete usage of all demanded 

items (i.e., both demand and usage are identical random variables) and most analytical research 

assume the demand to follow Poisson distribution and hence with such assumptions, closed form 

results are obtained. However, these assumptions limit the applicability of analytical techniques 

and in such cases, simulation and heuristics are used. For example, Cohen and Pierskalla (1979) 

assumed unit costs to shortages and outdates, and used search techniques and simulation to derive 

inventory levels as functions of all hospital parameters that affect shortages and outdating. An 

important aspect in blood inventory system is the cross matching policy. This policy is a testing 

procedure according to which units of blood are selected from inventory, and then allotted to 

patients. Note that blood products are perishable and not all units are eventually transfused. 

Assuming all crossmatched units are consumed, Pierskalla and Roach (1981) showed that issuing 

the oldest units first (FIFO) minimizes the average units short and outdated.  

2.3.3 Strategic, Tactical and Operational Decisions in Blood Supply Chains 

 Strategic, tactical and operational decisions in blood supply chains have been discussed in 

the literature. The strategic decision on relocating an ARC blood collection facility in Virginia was 

studied by Jacobs (1996). The benefits of the proposed relocation facility and the existing facility 

were compared using an integer programming model and the authors concluded that it was best 

for the ARC not to relocate its facility. The tactical decision on scheduling the blood collection 

and distribution process was also studied by Jacobs (1996). A similar study was conducted by 

Hemmelmayr et al. (2009). The authors considered a local blood bank at Austria and proposed 

solutions to cost effectively organize delivery of blood products to Austrian hospitals. They also 

helped the blood bank to make a strategic decision of switching from a vendee-managed inventory 

set up to a vendor-managed inventory system by considering the potential benefits. Integer 

programming approach was used to evaluate the performance. Ghandforoush and Sen (2010) 

presented a decision support system (DSS) for blood mobile scheduling for a regional blood center 
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to minimize blood wastage. The model results suggested that the proposed DSS better meets the 

daily demand than the existing assignment method. 

 Brodheim and Pierskalla (1980) discuss that one of the problems faced by the regional 

blood bank is to allocate blood or blood products to different hospitals considering the various 

costs, such as transportation costs, outdate costs and shortage costs. There are centralized systems 

that help a regional blood center to allocate the resources across the hospitals with the overall 

objective of minimizing the costs (such as the transport costs from the center to the hospitals, 

emergency deliveries from the center to the hospitals and outdate costs at the hospitals), with 

hospitals usually not storing blood or blood products. There are also decentralized systems, where 

the problem is to determine the inventory levels for the regional center, with provisions for 

allocation of blood from the regional center to the hospitals and for re-allocation of excess blood 

from the center to the hospitals, with storage of blood being allowed in the hospitals. Sahin et al. 

(2007) focused on restructuring blood services to improve both their effectiveness and efficiency. 

The location-allocation decision problems were discussed and the impact of regionalization of 

blood services was studied by developing a mathematical programming model. 

2.3.4 Multi-objective Blood Inventory Management 

Most real-life problems deal with multiple objectives that are conflicting in nature; for 

example, typically conflicting goals that are considered involve keeping a certain level of 

inventory for a high service level, minimize outdating, shortage and collection costs. Goal 

programming approach is commonly used by setting goals for such objectives (Kendall and Lee, 

1980; Prastacos, 1984). In the paper by Kendall and Lee (1980), goal constraints were related to 

blood availability, blood outdating, average age of inventory and total cost. The model was applied 

to American National Red Cross in the Midwest. The results indicated that the total unused blood 

was reduced from 14.9% to 9.2% without increasing the shortage.   

2.3.5 Inventory Management of Blood Products 

According to Hesse (2004), the problem with blood platelets is that they have a very short 

shelf life (generally 3 days) compared to other blood products, and hence the analysis of platelet 

inventory system is extremely complex. Jennings (1973) discussed in detail the inventory 

management problem at the hospital as well at the regional level. It was mentioned in the paper 

that the inventory control of blood was very difficult due to the stochastic nature of the demand 
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and supply and due to the process of “crossmatching”. The author observed that for a single 

hospital, as the inventory level increases, the shortage and outdating increased as shown in Figure 

2.1, where S represented the order-up-to level. For example, when S = 22 units, the shortage was 

less than 4% but the outdating was more than 12%; whereas, when S = 10 units, the shortage was 

more than 24% but the outdating was less than 8%. Therefore, it would be necessary to tradeoff 

between shortage and outdating.  

 

Figure 2.1: Shortage-outdating operating curve (Jennings, 1973) 

Jennings (1973) also analyzed the effect of hospitals collaborating with each other and 

sharing RBC. He developed an inventory model investigating the potential costs and benefits of 

improved control of inventories of whole blood. He concluded that both shortage and outdating 

decreased as the number of hospitals in the multi-collaboration network increased. 

As for blood platelet inventory management, techniques such as simulation, mathematical 

programming and dynamic programming are widely used. Most commonly considered problem is 

related to order policy determination and its parameters. The research on perishable inventory 

management has been done for more than five decades, and the early overview research articles 

are due to Nahmias (1982) and Prastacos (1984). Dynamic programming formulations were 

developed by Pierskalla and Roach (1972) and Haijema et al. (2007). Pierskalla and Roach (1972) 

concluded that FIFO policy is optimal for blood due to its short shelf life whereas Haijema et al. 

(2007) considered both FIFO and LIFO issuing policy. 

In Haijema et al. (2007), it was assumed that order-up-to policies evaluated by simulation 

or by a Markov chain analysis had zero lead time. The authors came up with a combined Markov 



17 

 

dynamic programming (MDP) and simulation approach, and applied it to a real-life regional blood 

bank problem. A double-level order-up-to rule, called, 2D rule, was proposed, with one level 

corresponding to relatively new or young platelets and another related to the total inventory.  

A five-step approach was proposed by van Dijk et al. (2009), where MDP was combined 

with computer simulation. It included the formulation of a MDP, followed by the downsizing of 

the problem to reduce the complexity of dynamic programming formulation. After that, a 

description of the process simulation and an assessment of the most frequent order-up-to levels 

were discussed. Order up-to rules reduced the outdating of platelet units from 15% - 20% to just 

1%. While the work by van Dijk et al. (2009) used a multi-step procedure, combining dynamic 

programming and simulation, by selecting the order-up-to rule for each day, Blake (2009) noted 

that the work by van Dijk et al. (2009) ignored the age distribution of stock, and hence the work 

was rather restrictive. As an extension to that research, a SDP-Simulation approach was modeled, 

including special periods (Haijema et al., 2009). Special periods included irregular production 

breaks during Christmas and Easter since there was no collection of blood from the donors during 

Christmas, New Year and Easter. This model was applied to a Dutch Blood Bank. Then, it was 

observed that the average annual shortage was virtually nonexistent (reduced to .04%), and 

outdating was reduced from 15% - 20% to 0.11%.  

A recent work by Haijema (2013) dealt with a new class of stock-level dependent order 

policy, called (s, S, q, Q) policy, which was basically a periodic review (s, S) policy restricted by 

a minimum (q) and maximum (Q). In other words, the policy followed a periodic ordering strategy 

per weekday with the inclusion of upper and lower level order quantities. Optimal parameter values 

were determined by dynamic programming and simulation. The results were compared to that of 

an (s,S) policy and it was illustrated that the total cost reduced by 7.2%. 

In addition to the classical costs for inventory holding, outdating, and shortage, Civelek el 

al. (2015) included substitution (mismatch) costs and proposed a heuristic to minimize the 

expected total cost over an infinite time horizon. The problem was modelled as a Markov Decision 

Process (MDP), and the inventory policy was compared to other policies in the literature. 

In the work by Gunpinar and Centeno (2015), stochastic and deterministic models were 

developed considering uncertain demand rates, demand for two types of patients, and crossmatch-



18 

 

to-transfusion ratio. Their results indicated that wastage rates decreased by 87% on average, 

shortages and total cost were reduced by 91.43% and 20.7% respectively.  

A summary of the blood inventory models discussed in the literature is given in Table 2.1. 

Table 2.1: Summary of Blood Inventory Models 

Article 

Type of 

Blood 

Product 

Solution 

Method 

Hierarchic

al Level 
Performance Measure 

Planning 

Horizon 

Jennings 

(1973) 
RBC Simulation 

Blood 

Centers and 

Hospital 

Shortage, Outdating Finite 

Kendall and 

Lee (1980) 
RBC 

Goal 

Programming 
Hospital 

Fresh blood availability, 

average age of inventory, 

outdating, shortage 

Finite 

Pierskalla 

and Roach 

(1981) 

RBC 
Stochastic 

Modeling 

Hospital 

Blood Bank 
Outdating, shortage Finite 

Hesse (2004) Platelets Simulation 
Blood 

Center 

Outdated units

Order placed
 Infinite 

Haijema et 

al. (2005) 
Platelets SDP 

Blood 

Center 
Shortage, outdating Finite 

Haijema et 

al. (2007) 
Platelets SDP 

Blood 

Center 
Shortage, outdating Finite 

Blake et al. 

(2010) 
Platelets Heuristics Hospital Shortage, outdating Infinite 

Haijema et 

al. (2013) 
Platelets SDP 

Blood 

Center 

Shortage, outdating, 

ordering 
Finite 

Gunpinar et 

al. (2015) 
RBC 

Stochastic 

Modeling 
Hospitals 

Shortage, outdating, 

purchasing 
Finite 

Proposed 

Research 
Platelets 

Integer 

Programming, 

Goal 

Programming, 

Stochastic 

Programming 

and Simulation 

Blood 

Supply 

Chain 

Shortage, wastage, 

purchasing, ordering, 

transportation 

Finite and 

Infinite 
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2.4 Shortcomings of Previous Research on Blood Inventory Management 

1. In the research work on inventory management of perishable items and blood in specific 

done thus far, reducing platelet wastage is seldom considered due to the extremely short shelf life 

of platelets. Most of the papers that are dealing with platelet inventory control assume the shortage 

cost is five times the outdating cost. However, shortage cost cannot be quantified in reality. 

Moreover, better inventory models can be developed if conflicting criteria such as outdating and 

shortage, holding cost and ordering cost are included.  

2. According to Dillon et al. (2017), most research on blood inventory management assume 

that the demand is deterministic. However, Jennings (1973) highlighted the necessity to consider 

blood demand uncertainties since 50% of the total blood requested by the physicians are not 

transfused due to uncertainty. Therefore, in this dissertation, stochastic programming models 

under demand uncertainty is developed.  

3. In the research work done in the platelet inventory management, it is mostly assumed 

that the platelets arriving at the hospital are fresh, with 3 days of shelf life. However, it is not 

necessarily true in real-life. Based on our interaction with the technicians and pathologist at 

regional medical centers, the platelets that arrive have different shelf lives. Therefore, in this 

paper, this assumption made in the literature is relaxed and arriving platelets will have varying 

shelf lives. In addition, the impact of shelf life on the wastage and shortage is also analyzed. The 

methods developed in this paper can act as a decision support system to any hospital management, 

and the most suitable ordering policy can be chosen based on the hospital size, demand variation 

and cost prioritization. 

Therefore, this dissertation develops finite and infinite time horizon inventory models capturing 

the above mentioned gaps in performance measures. 
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Table 2.2: Performance Measures Considered in Recent Publication 

Article 

Performance Measures 

Shortage Outdating Ordering Purchasing 
Transportation 

Cost 

Jennings (1973) ✓ ✓    

Kendall and Lee 

(1980) 
✓ ✓    

Pierskalla and 

Roach (1981) 
✓ ✓    

Hesse (2004) ✓     

Haijema et al. 

(2005) 
✓ ✓ ✓ ✓ ✓ 

Haijema et al. 

(2007) 
✓ ✓ ✓ ✓ ✓ 

Blake et al. (2010) ✓ ✓    

Haijema et al. 

(2013) 
✓ ✓ ✓ ✓ ✓ 

Gunpinar et al. 

(2015) 
✓ ✓  ✓ ✓ 

Proposed Research ✓ ✓ ✓ ✓ ✓ 
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Chapter 3 : Single Objective Model for Hospital Inventory Management 

In this chapter, a finite time horizon inventory (FTHI) model is presented to determine the 

optimal order quantity and time to order platelets such that wastage and shortages are reduced. A 

mixed-integer linear programming (MILP) model is developed and the forecasted platelet demand 

for the planning horizon based on the historical data is given as an input to the model. A case-

study obtained from the literature (Tetteh., 2008) is presented in Section 3.2. This case study uses 

the daily platelet demand data for 122 days from a New York hospital.  

The overview of the MILP model is given in Figure 3.1. 

 

 

 

 

 

 

    Figure 3.1: Overview of the Finite Time Horizon Inventory Model 

3.1 Finite Time Horizon Inventory (FTHI) Model Description 

3.1.1 Assumptions 

1. Lead time for order processing is assumed to be negligible 

2. All platelets that arrive at hospital from the blood center are fresh and have a remaining shelf 

life of 3 days 

3. Model is for a single blood type 

4. FIFO issuing policy is practiced at the hospital, namely, the platelets with the shortest shelf 

life are used first. That is, demand is first fulfilled with platelets with remaining shelf life of 1 

day, followed by platelets with remaining shelf life of 2 days, followed by platelets with 

remaining shelf life of 3 day.   

Finite Time Horizon Inventory Model 
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3.1.2 Model Parameters (known data) 

𝐶𝐹 Fixed cost of procuring platelets 

𝐶𝑃 Platelet purchasing cost per unit 

𝐶𝐻 Daily inventory cost of holding platelets per unit (based on beginning 

inventory)  

𝐶𝐸 Cost of expired platelet per unit 

𝐶𝑆 Cost of shortage per unit 

𝐷𝑡 Platelet demand at the beginning of day t 

𝐿 Constant lead time (𝐿 ≤ 2 days)  

𝑅𝑃 Review period in days 

𝑆1 Initial inventory with shelf life of 1 day (𝐼1,1) 

𝑆2 Initial inventory with shelf life of 2 days (𝐼1,2) 

𝑇 Time horizon in days (i.e., 𝑡=1, 2, 3, …, 𝑇) 

3.1.3 Decision Variables (unknown): 

𝑄𝑡 Quantity of platelet units ordered at the end of day 𝑡 

𝑥𝑡 
Platelet units received from the blood center at the beginning of day 𝑡 

with shelf life of 3 days 

𝐷𝑡
1 Remaining demand for day 𝑡 after using platelets with shelf life of 1 day 

𝐷𝑡
2 Remaining demand for day 𝑡 after using platelets up to shelf life of 2 days 

𝐷𝑡
3 Remaining demand for day 𝑡 after using platelets up to shelf life of 3 days  

𝐼𝑡,1 On-hand inventory at the beginning of day 𝑡 with residual shelf life of 1 

day 

𝐼𝑡,2 On-hand inventory at the beginning of day 𝑡 with residual shelf life of 2 

days 

𝐼𝑡,1
′  Remaining platelet units after satisfying 𝐷𝑡 with shelf life of 1 day  

𝐼𝑡,2
′  Remaining platelet units after satisfying 𝐷𝑡

1 with shelf life of 2 days 

𝐼𝑡,3
′  Remaining platelet units after satisfying 𝐷𝑡

2with shelf life of 3 days 
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𝑆𝑡 Number of platelet units short on day 𝑡 

𝐸𝑡 Number of units expired at the end of day 𝑡 

 1 if platelet units are ordered by hospital on day 𝑡   

𝛿𝑡  

 0 otherwise                                                                              

3.1.4 Sequence of Events in Platelet Inventory Management 

1. Hospital receives platelet units, 𝑥𝑡, from the blood center  

2. Hospital receives platelet demand, 𝐷𝑡 

3. If the demand at the hospital is greater than the on-hand inventory (i.e., if 𝐷𝑡 > (𝐼𝑡,1 + 𝐼𝑡,2 + 

𝑥𝑡)), the demand is partially fulfilled with the available on-hand inventory and the on-hand 

inventory is updated to 0. The unfulfilled demand units incur shortage cost. 

4. If the demand at the hospital is less than the on-hand inventory (i.e., 𝐷𝑡 < (𝐼𝑡,1 + 𝐼𝑡,2 + 𝑥𝑡)), 

then there are 3 possible cases:  

o Case (i): If 𝐷𝑡 < 𝐼𝑡,1, then the unutilized platelet units with remaining shelf life of 1 

day (𝐼𝑡,1 − 𝐷𝑡) are thrown away at the end of the day and incur outdating cost. The 

remaining platelets (after discarding the outdated units) are carried over to the next day 

and the on-hand inventory is updated. 

o Case (ii): If 𝐼𝑡,1 ≤  𝐷𝑡 < 𝐼𝑡,1 + 𝐼𝑡,2, then there are no unutilized platelet units with 

remaining shelf life of 1 day and hence no outdating cost is incurred. The remaining 

platelets are carried over to the next day and the on-hand inventory is updated. 

o Case (iii): If  𝐼𝑡,1 + 𝐼𝑡,2 ≤  𝐷𝑡 < 𝐼𝑡,1 + 𝐼𝑡,2 + 𝑥𝑡, then there are no unutilized platelet units 

with remaining shelf life of 1 day and 2 days, and hence no outdating cost is incurred. 

The remaining platelets are carried over to the next day and the on-hand inventory is 

updated.  

5. Hospital determines platelet order quantity (𝑄𝑡) at the end of day 𝑡   
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3.1.5 Formulation of Finite Time Horizon Inventory Model 

Model Objective 

Equation (3.1) represents the objective function, which is to minimize the total cost 

comprising of fixed cost of procurement, variable purchasing cost, holding cost, shortage cost and 

outdating cost. 

Minimize TC = ∑ [𝐶𝐹 ∗ 𝛿𝑡 + 𝐶𝑃 ∗ 𝑄𝑡 + 𝐶𝐻 ∗ (𝐼𝑡,1 + 𝐼𝑡,2) + 𝐶𝑆 ∗ 𝑆𝑡 + 𝐶𝐸 ∗ 𝐸𝑡]𝑇
𝑡=1        (3.1) 

Model Constraints: 

(1) Platelet Units Ordered 

Equation (3.2) ensures that 𝛿𝑡 takes the value 1 if platelet units are ordered from the blood 

center by the hospital on day 𝑡 and 0 otherwise. Platelets must be ordered only during the review 

periods and not during the other days which is taken care by Equation (3.3).  

𝑄𝑡 ≤ 𝑀𝛿𝑡     for t =1, 1+RP, 1+2RP, +…      (3.2) 

𝑄𝑡 = 0                         for all other 𝑡                                (3.3) 

Equations (3.2) and (3.3) guarantee that 𝑄𝑡 is defined only for those time period 𝑡 when 

platelets can be ordered. For example, if the review period 𝑅𝑃 = 2 days, then platelets can only be 

ordered on day 1, 3, 5, 7,… 

(2) Platelet Units Received 

Equations (3.4) and (3.5) are used to calculate the total units received by hospital at the 

beginning of day 𝑡 (𝑥𝑡), which must be equal to the order quantity placed before the lead time 

(𝑄𝑡−𝐿).    

𝑥𝑡 = 𝑄𝑡−𝐿                                                                     ∀𝑡 > 𝐿               (3.4) 

𝑥𝑡 = 0  or known constants                                  ∀𝑡 ≤ 𝐿                  (3.5) 

(3) Demand Constraints 

If the demand, 𝐷𝑡, is greater than platelet units with shelf life of 1 day, 𝐼𝑡,1, then the left-

over demand upon consumption of 𝐼𝑡,1 is 𝐷𝑡
1 and is given by 𝐷𝑡

1 = 𝐷𝑡 − 𝐼𝑡,1. Also, 𝐼𝑡,1
′ = 0. On the 

other hand if the demand, 𝐷𝑡, is less than platelet units with shelf life of 1 day, 𝐼𝑡,1, then the left-

over demand, 𝐷𝑡
1 is 0 and the remaining platelet units after satisfying the demand is given by 𝐼𝑡,1

′ = 

𝐼𝑡,1 − 𝐷𝑡. Equation (3.6) is used to calculate 𝐷𝑡
1 and 𝐼𝑡,1

′ . Note that both 𝐷𝑡
1 and 𝐼𝑡,1

′  cannot be 

positive simultaneously.   

𝐷𝑡 − 𝐼𝑡,1 = 𝐷𝑡
1 − 𝐼𝑡,1

′     ∀𝑡         (3.6) 
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If the left-over demand, 𝐷𝑡
1, is positive, then it is completely or partially fulfilled by platelet 

units with shelf life of 2 days, 𝐼𝑡,2. If 𝐷𝑡
1 is greater than 𝐼𝑡,2, then the left-over demand, 𝐷𝑡

2, is given 

by 𝐷𝑡
2 = 𝐷𝑡

1 − 𝐼𝑡,2. If 𝐷𝑡
1 is less than 𝐼𝑡,2, then the left-over demand, 𝐷𝑡

2, is 0 and the remaining 

platelet units after satisfying 𝐷𝑡
1 is given by 𝐼𝑡,2

′  = 𝐼𝑡,2 − 𝐷𝑡
1. Equation (3.7) is used to calculate 𝐷𝑡

2 

and 𝐼𝑡,2
′ . Note that both 𝐷𝑡

2 and 𝐼𝑡,2
′  cannot be positive simultaneously.     

𝐷𝑡
1 − 𝐼𝑡,2 = 𝐷𝑡

2 − 𝐼𝑡,2
′     ∀𝑡         (3.7) 

If 𝐷𝑡
2 is positive, then it is completely or partially fulfilled by platelet units with shelf life 

of 3 days, 𝑥𝑡. If 𝐷𝑡
2 is greater than 𝑥𝑡, then the left-over demand, 𝐷𝑡

3, is given by 𝐷𝑡
3 = 𝐷𝑡

2 − 𝑥𝑡. 

𝐷𝑡
3 is the platelet shortage at end of day 𝑡. If 𝐷𝑡

2 is less than 𝑥𝑡, then no shortage is incurred and 

remaining platelet units after satisfying 𝐷𝑡
2 is given by 𝐼𝑡,3

′  = 𝑥𝑡 − 𝐷𝑡
2. Equation (3.8) is used to 

calculate 𝐷𝑡
3 and 𝐼𝑡,3

′ . Note that both 𝐷𝑡
3 and 𝐼𝑡,3

′  cannot be positive simultaneously. 

𝐷𝑡
2 − 𝑥𝑡 = 𝐷𝑡

3 − 𝐼𝑡,3
′     ∀𝑡         (3.8) 

(4) Inventory Updates 

At the end of the day 𝑡, the inventory is updated for the next day using Equations (3.9) and 

(3.10). 

𝐼𝑡+1,1 = 𝐼𝑡,2
′      ∀𝑡                    (3.9) 

𝐼𝑡+1,2 = 𝐼𝑡,3
′      ∀𝑡                  (3.10) 

(5) Expired Platelets 

Unutilized platelet units with remaining shelf life of 1 day, 𝐼𝑡,1
′ , are discarded at the end of 

the day and given using Equation (3.11).  

𝐸𝑡 = 𝐼𝑡,1
′      ∀𝑡                  (3.11) 

(6) Platelet Shortages 

The unfulfilled demand units, 𝐷𝑡
3, is considered as shortage in day 𝑡 and is calculated using 

Equation (3.12). 

𝑆𝑡 = 𝐷𝑡
3     ∀𝑡                  (3.12) 

(7) Initial Inventory of Platelets 

Equations (3.13) and (3.14) gives the initial conditions at time 𝑡 = 1. 

𝐼1,1 = 𝑆1              (3.13) 

𝐼1,2 = 𝑆2                                                  (3.14) 
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(8) Non-negativity 

Constraints (3.15 – 3.16) force non-negativity and binary restrictions in the model. 

𝐷𝑡
1, 𝐷𝑡

2, 𝐷𝑡
3, 𝐸𝑡 , 𝐼𝑡,1

′ , 𝐼𝑡,2
′ , 𝐼𝑡,3

′ , 𝐼𝑡,1, 𝐼𝑡,2, 𝑄𝑡 , 𝑆𝑡 , 𝑥𝑡 ≥ 0          ∀𝑡 = 1,2,3, … , 𝑇          (3.15) 

𝛿𝑡 ∈ (0,1)                                                                                ∀𝑡 = 1,2,3, … , 𝑇            (3.16) 

Figure 3.2 illustrates the possible outcomes (Eqns 3.6 – 3.12) between platelet demand and 

availability at time 𝑡. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flowchart of the finite time horizon model 

3.1.6 Finite Time Horizon Model - Illustrative Example 

For a given 𝑡, let the platelets inventory be as follows. 

𝐼𝑡,1 = 16 

𝐼𝑡,2 = 9 

𝑥𝑡 = 20 

Thus, the on-hand inventory on day 𝑡 is 16 + 9 + 20 = 45.  

Y

es 

N Y 

N

o 

Y

es 

Y N 

Y

es 

N

o Y 

𝐼𝑡,3
′ = 𝑥𝑡 − 𝐷𝑡
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Case 1: 0 < 𝐷𝑡 ≤ 𝐼𝑡,1 

Let 𝐷𝑡 = 15  

From Equation (3.6),          

15 − 16 = 𝐷𝑡
1 − 𝐼𝑡,1

′                     

Therefore, 𝐼𝑡,1
′  = 1 and 𝐷𝑡

1 = 0 

From Equation (3.7),   

0 − 9 = 𝐷𝑡
2 − 𝐼𝑡,2

′  

Therefore, 𝐼𝑡,2
′ = 9 and 𝐷𝑡

2 = 0 

From Equation (3.8),  

0 − 20 = 𝐷𝑡
3 − 𝐼𝑡,3

′                    

Therefore, 𝐼𝑡,3
′ = 20 and 𝐷𝑡

3 = 0 

Total expired units is 𝐸𝑡 = 1 (Eq. 3.11)  

Total units shortage is 𝑆𝑡 = 0 (Eq. 3.12)     

Case 2: 𝐼𝑡,1 < 𝐷𝑡 ≤ 𝐼𝑡,1 + 𝐼𝑡,2 

Let 𝐷𝑡 = 20, then, 𝐷𝑡
1 = 4, 𝐷𝑡

2 = 0, 𝐷𝑡
3 = 0, 𝐼𝑡,1

′  = 0, 𝐼𝑡,2
′ = 5, 𝐼𝑡,3

′ = 20, 𝐸𝑡 = 0 and 𝑆𝑡 = 0 

Case 3: 𝐼𝑡,1+𝐼𝑡,2 < 𝐷𝑡 ≤ 𝐼𝑡,1+𝐼𝑡,2 + 𝑥𝑡 

Let 𝐷𝑡 = 35, then, 𝐷𝑡
1 = 19, 𝐷𝑡

2 = 10, 𝐷𝑡
3 = 0, 𝐼𝑡,1

′  = 0, 𝐼𝑡,2
′ = 0, 𝐼𝑡,3

′ = 10, 𝐸𝑡 = 0 and 𝑆𝑡 = 0 

Case 4: 𝐷𝑡 > 𝐼𝑡,1+𝐼𝑡,2 + 𝑥𝑡 (i. e. , 𝐷𝑡 > on-hand inventory) 

Let 𝐷𝑡 = 55, then, 𝐷𝑡
1 = 39, 𝐷𝑡

2 = 30, 𝐷𝑡
3 = 10, 𝐼𝑡,1

′  = 0, 𝐼𝑡,2
′ = 0, 𝐼𝑡,3

′ = 0, 𝐸𝑡 = 0 and 𝑆𝑡 = 10 

3.1.7 Finite Time Horizon Model Summary 

Minimize TC = ∑ [𝐶𝐹 ∗ 𝛿𝑡 + 𝐶𝑃 ∗ 𝑄𝑡 + 𝐶𝐻 ∗ (𝐼𝑡,1 + 𝐼𝑡,2) + 𝐶𝑆 ∗ 𝑆𝑡 + 𝐶𝐸 ∗ 𝐸𝑡]𝑇
𝑡=1     

𝑄𝑡 ≤ 𝑀𝛿𝑡                         for t =1, 1+RP, 1+2RP, +…  

𝑄𝑡 = 0                                               for all other 𝑡       

𝑥𝑡 = 𝑄𝑡−𝐿          ∀𝑡 > 𝐿  

𝑥𝑡 = 0 or known constants      ∀𝑡 ≤ 𝐿  

𝐷𝑡 − 𝐼𝑡,1 = 𝐷𝑡
1 − 𝐼𝑡,1

′         ∀𝑡  

𝐷𝑡
1 − 𝐼𝑡,2 = 𝐷𝑡

2 − 𝐼𝑡,2
′        ∀𝑡     

𝐷𝑡
2 − 𝑥𝑡 = 𝐷𝑡

3 − 𝐼𝑡,3
′        ∀𝑡         

𝐼𝑡+1,1 = 𝐼𝑡,2
′        ∀𝑡                 



28 

 

𝐼𝑡+1,2 = 𝐼𝑡,3
′        ∀𝑡     

𝐸𝑡 = 𝐼𝑡,1
′        ∀𝑡                

𝑆𝑡 = 𝐷𝑡
3       ∀𝑡   

𝐼1,1 = 𝑆1                

𝐼1,2 = 𝑆2                                                    

𝐷𝑡
1, 𝐷𝑡

2, 𝐷𝑡
3, 𝐸𝑡 , 𝐼𝑡,1

′ , 𝐼𝑡,2
′ , 𝐼𝑡,3

′ , 𝐼𝑡,1, 𝐼𝑡,2, 𝑄𝑡 , 𝑆𝑡 , 𝑥𝑡 ≥ 0   ∀𝑡    

𝛿𝑡 ∈ (0,1)         ∀𝑡                

The optimization model is a mixed integer linear programming model. An optimal solution 

will provide the best ordering policy to minimize cost over the planning horizon. 

3.2 Case Study-1 

The platelet demand data is obtained from Tetteh (2008) in which the daily demand data 

of platelets at a hospital in New York for 122 days are available. Demand data indicate that there 

exist seasonality and hence seasonality is incorporated while forecasting the demand. 

3.2.1 Forecasting Platelet Demand 

Forecasting demand for blood components in the blood supply chain is very essential 

because advanced information can increase blood collection efforts if more blood is required and 

blood collection can be limited if less units are needed (Frankurter et al., 1974). Therefore, 

adequately forecasting the demand for platelet can reduce outdating as well as stock-outs of blood 

units.  

From the time series demand data, it is observed that there exist daily variations in the 

demand pattern. Hence seasonality is incorporated in the constant level forecasting method by 

calculating the seasonality indices for each day of the week.  

3.2.1.1 Steps in Forecasting Platelet Demand 

Step 1: Calculation of the Seasonality Index 

Seasonality index for day 𝑖 =
average demand during day 𝑖

overall average of demand for all days
 

For example: day 1 average = 193.6923 and overall average = 184.8352 

Seasonality index for day 1 =
193.6923

184.8352
=1.047919 
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Step 2:  Computation of Deseasonalized Demand Data 

Deseasonlaized demand is obtained by dividing the actual demand data by the respective 

seasonality index.  

For example: actual demand on day 1 is 174 units and seasonality index is 1.047919 

Deseasonalized demand for day 1 =
174

1.047919
= 166.0433451 ≈ 166 units 

Step 3: Forecasting Demand using Exponential Smoothing Method 

Exponential smoothing method is the most popular forecasting method in practice and it is 

basically a weighted averaging method with weights decreasing exponentially on older demands.  

The forecast for period (𝑛 + 1) is given by 

𝐹𝑛+1 = 𝛼𝐷𝑛 + (1 − 𝛼)𝐹𝑛 

where 𝐷𝑛 is the actual demand for period 𝑛 

𝐹𝑛 is the forecasted demand for period 𝑛 

𝛼 is called the smoothing constant 

𝛼 is generally chosen between 0.1 and 0.4. We varied α from 0.1 to 0.4 in increments of 

0.1 to determine the forecast for the planning horizon. Then the models was validated using the 

three techniques mentioned in Section 3.3.1.2 and the best value of 𝛼 that reduces the errors will 

be used to forecast the future demand. 

Initial condition: 𝐹1is assumed to be equal to 𝐷1  

For example, Let 𝐷𝑛 = 166 units, 𝐹𝑛=173 units and 𝛼 = 0.1, then  

𝐹𝑛+1 = 0.1 ∙ 166 + (0.9) ∙ 173 ≈ 172 units 

Step 4: Converting the Deseasonalized Forecast to Actual Forecast 

The actual forecast is computed by multiplying the deseasonalized forecast by the respective 

seasonality index. 

Actual forecast for day 1 = 172 ∙ 1.047919 ≈ 180 units 

Appendix contains the seasonality indices and the forecasted demand data. 

3.2.1.2 Selection and Validation of the Forecasting Method (Ravindran and Warsing, 2013): 

Three different measures of forecast errors, MAD, MSE and BIAS, are used for 

determining the smoothing constant (α) and validating the method. 
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1. Mean Absolute Deviation (MAD) 

MAD =
1

n
∑ |𝑒𝑡|

𝑛

𝑡=1

 

2. Mean Squared Error (MSE) 

MSE =
1

n
∑ 𝑒𝑡

2

𝑛

𝑡=1

 

3. BIAS 

BIAS = ∑ 𝑒𝑡

𝑛

𝑡=1

 

These forecast errors are used to obtain the best value of parameter 𝛼. If a specific 𝛼 value 

yields the best result for all the three measures, then the corresponding value of 𝛼 is used to forecast 

the platelet demand. Otherwise, an average of the two best 𝛼 values will be used for forecasting.  

 Among the 122 days of platelet demand data that were obtained from the literature, 92 days 

are used to forecast and the remaining 30 days are used for validation. The results of the forecasting 

errors (i.e., the values of MAD, MSE and BIAS) are shown in Table 3.1. 

Table 3.1: Results of forecasting errors for varying value of α 

 BIAS MAD MSE 

α = 0.1 -233.84 22.16 790.75 

α = 0.2 -139.06 22.42 829.98 

α = 0.3 -99.07 22.85 882.58 

α = 0.4 -77.45 23.62 942.56 

3.2.1.3 Selection of the Best Method for Forecasting Demand 

From Table 3.1, the exponential smoothing method for α = 0.1 yields the least MAD and 

MSE. For α = 0.4, the least BIAS is achieved. Therefore, the average of the forecasted values of α 

= 0.1 and α = 0.4 is used as the platelet demand for the next 30 days. The forecasted demand for 

the next 30 days is shown in Table 3.2.   
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Table 3.2: Forecasted demand for 30 days 

 Week 1 Week 2 Week 3 Week 4 Week 5 

Day 1 198 198 198 198 198 

Day 2 216 216 216 216 216 

Day 3 202 202 202 202  

Day 4 187 187 187 187  

Day 5 186 186 186 186  

Day 6 169 169 169 169  

Day 7 161 161 161 161  

 

 Using the forecasted platelet demand, finite time horizon model is developed to determine 

how much to order and when to order the platelets. 

3.2.2 Performance Measures Used in the Inventory Model 

To illustrate the performance of the proposed finite time horizon inventory model, four 

performance measures are used: Wastage As a Percentage of Procurement (WAPP), Holding As a 

Percentage of Procurement (HAPP), Shortage As a Percentage of Demand (SAPD), and Total Cost 

(TC).  

• Wastage As a Percentage of Procurement (WAPP) = 
Units outdated

Units procured
 x 100 

• Holding As a Percentage of Procurement (HAPP) = 
Units in inventory

Units procured
 x 100 

• Shortage As a Percentage of Demand (SAPD) = 
Shortage Units

Total demand
 x 100 

• Total Cost (TC) = fixed cost of procurement + variable purchasing cost + holding cost + 

shortage cost + expiration cost 

3.2.2.1 Numerical Example to Show Performance Measures Calculation in Finite Time Horizon 

Model 

For the purpose of illustration, the following are the values of the known and unknown data that 

are considered for the base model. 

• Time horizon (𝑇): 30 days 

• Lead time (𝐿): 0 day  

• Review period (𝑅𝑃): 1 day 
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In this example, the following cost ratios are considered*.  

Fixed Cost of 

Procuring Platelets 

Platelet 

Purchasing Cost 

Holding 

Cost 

Cost of Expired 

Platelets 

Shortage 

Cost 

1 1 1 1 2 

*These are the initial relative cost values assumed for the base model. Note that the relative costs 

are all equal, except for the shortage cost which is assumed to be twice as much as the other costs. 

Impacts of varying these values will be discussed in Section 3.2.3 under Sensitivity Analysis. 

Assumption 

It is assumed that the orders for new platelets are placed at the end of the day. Hence, the initial 

inventory is set to 198 units to avoid shortage during day 1 (note that the demand for day 1 is 198 

units). 

For the above data set, the MILP model had the following features: 

• Total number of decision variables: 390 (out of which 30 are binary variables)  

• Total number of constraints: 392 

• The mathematical model discussed in Section 3.1.5 is programmed using C++ and solved 

using IBM CPLEX®12.4.0.0 optimizer. 

• Solution time is approximately 23 seconds 

Optimal Solution 

In this example, shortage cost is twice the holding cost and all other cost components are given 

equal importance. In order to reduce wastage and inventory cost, no units are held in inventory. At 

the end of each day, platelet units are ordered depending upon the next day’s demand. Therefore, 

there exist no shortage and outdating cost. Except for the cost incurred for holding the initial 

inventory (i.e., 198 units), no other holding cost is incurred in the model. For this example, the 

optimal solution is given below:  

• Total number of units expired (∑ 𝐸𝑡
30
𝑡=1 ): 0 

• Total number of units shortage (∑ 𝑆𝑡
30
𝑡=1 ): 0 

• Total number of units in inventory (∑ (𝐼𝑡,1 + 𝐼𝑡,2)30
𝑡=1 ): 198 

• Total number of units purchased (∑ 𝑄𝑡
30
𝑡=1 ): 5492 

• Total demand (∑ 𝐷𝑡
30
𝑡=1 ): 5690 
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• Total number of times shipments were made from the blood center to hospital (∑ 𝛿𝑡
30
𝑡=1 ): 

29 

Then, 

• Wastage As a Percentage of Procurement (WAPP) = 
0

5492
x 100 = 0% 

• Holding As a Percentage of Procurement (HAPP) = 
198

5492
 x 100 = 3.605% 

• Shortage As a Percentage of Demand (SAPD) = 
0

5690
 x 100 = 0% 

• Total Cost (TC) = ∑ [𝐶𝐹 ∗ 𝛿𝑡 + 𝐶𝑃 ∗ 𝑄𝑡 + 𝐶𝐻 ∗ (𝐼𝑡,1 + 𝐼𝑡,2) + 𝐶𝑆 ∗ 𝑆𝑡 + 𝐶𝐸 ∗ 𝐸𝑡]30
𝑡=1    

                          = 1*30 + 1*5492 + 1*198 + 2*0 + 1*0 = $ 5720 

3.2.3 Sensitivity Analysis of the Finite Time Horizon Policy 

The different cost scenarios that are considered for the sensitivity analysis are given in 

Table 3.3. Cost scenario 1 is the base model discussed in Section 3.2.2. The cost ratios are varied 

and the changes in the performance measures are analyzed. 

Table 3.3: Cost Scenarios 

Cost 

scenario 
Fixed Cost 

Variable 

Cost 

Holding 

Cost 

Expiration 

Cost 

Shortage 

Cost 

1 1 1 1 1 2 

2 1 1 1 1 5 

3 4 1 1 1 5 

 

In cost scenario 1, shortage cost is two times the holding cost and the ratio of each of the 

other cost component to the holding cost is 1. In cost scenario 2, shortage cost is five times the 

holding cost and all the other cost components are same as in cost scenario 1. Therefore, it is 

expected that under scenario 2, the total units shortage will be less compared to cost scenario 1. In 

cost scenario 3, shortage is five times the holding cost and also fixed cost is set four times the 

holding cost. It is expected that the total units shortage will be less and also frequency of placing 

orders will be less compared to cost scenario 1.  

For each cost scenario, the lead time and review period are varied and the changes in 

WAPP, HAPP, SAPD and TC are analyzed. The summary of the possible combinations of lead 

time and review period is given in Table 3.4. Because of the 3-day shelf life of platelets, lead time 

of 3 days is not considered. 
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Table 3.4: Combinations of lead time and review period (in days) 

Lead time (𝐿) 0 1 2 

Review Period (𝑅𝑃) 1,2 1,2 2 

3.2.3.1 Effect of Varying Lead Time and Review Period on WAPP 

Recall that WAPP is defined as follows: 

Wastage As a Percentage of Procurement (WAPP) = 
Units outdated

Units procured
x 100 

It is observed that WAPP is 0 for all different combinations of lead time and review period 

for all the cost scenarios. In other words, varying cost parameters has no impact on WAPP. This 

is true because, when the review period is 1 day, platelets can be frequently ordered. This results 

in reduced number of units being held in inventory. When the review period is 2 days and lead 

time is 0 or 1 day, platelets held in inventory are exactly equal to the demand during the lead time 

plus review period. Hence, there is no wastage. However, when the review period is 2 days and 

lead time is 2 days, it is not possible to reduce shortage during the lead time plus review period 

(L+RP = 4 days) because of the very short shelf life of new platelets (1 day). Therefore, demand 

during the lead time plus review period cannot be satisfied, resulting in no wastage. 

3.2.3.2 Effect of Varying Lead Time and Review Period on HAPP 

Recall that HAPP is defined as follows: 

Holding As a Percentage of Procurement (HAPP) = 
Units in inventory

Units procured
 x 100 

Table 3.5: Sensitivity Analysis - Effect of lead time and review period on HAPP 

 RP=1, L=0 RP=1, L=1 RP=2, L=0 RP=2, L=1 RP=2, L=2 

Cost scenario 1 3.61% 3.61% 29.81% 7.51% 7.51% 

Cost scenario 2 3.61% 3.61% 51.64% 61.94% 7.51% 

Cost scenario 3 3.61% 3.61% 51.64% 61.94% 7.51% 

 

Table 3.5 illustrates the changes in HAPP values when the lead time and review period are 

varied for different cost scenarios. When the review period is 1 day and lead time is 0 and 1 day, 

it is observed that HAPP is the same for all the three cost scenarios due to frequent orders. There 

exist only initial inventory carrying cost and hence reduced HAPP. However, when the review 
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period is 2 days and lead time is 0 day, 1 day and 2 days, HAPP varies across the cost scenarios as 

shown in Figure 3.3.  

It is observed that, when the review period is 2 days and lead time is 0 or 1 day, HAPP is 

greater for cost scenarios 2 and 3. For cost scenarios 2 and 3, shortage is five times the holding 

cost. As the lead time increases, in order to avoid shortage of platelets during the lead time plus 

review period, there are more platelet units held in inventory, thereby leading to an increase in 

inventory. For cost scenario 1, when the review period is 2 days, in order to satisfy the demand 

during lead time plus review period, there should be excess units held in inventory. But in cost 

scenario 1, shortage cost is only two times the holding cost; hence, a tradeoff is made between 

shortage and holding platelets for two days (since RP is two days). When the review period is 2 

days and lead time is 2 days, HAPP remains the same across all three cost scenarios for the 

following reasons. When the lead time is 2 days, the platelets that are arriving at the hospital have 

a remaining shelf life of 1 day only. Therefore, platelets arriving at the hospital on day t can only 

satisfy the demand till the end of day t; hence, shortage of platelets cannot be avoided during the 

lead time plus review period. Even though cost scenarios 2 and 3 give more priority to reduce 

shortage, it is not possible to reduce shortage during the lead time plus review period (L+RP = 4 

days) because of the very short shelf life of the new platelets of just 1 day. 

 

 

Figure 3.3: HAPP when review period is 2 days, with varying lead times 

3.2.3.3 Effect of Varying Lead Time and Review Period on SAPD 

Recall that SAPD is defined as follows: 

Shortage As a Percentage of Demand (SAPD) = 
Shortage Units
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 x 100 
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Table 3.6: Sensitivity Analysis - Effect of lead time and review period on SAPD 

 RP=1, L=0 RP=1, L=1 RP=2, L=0 RP=2, L=1 RP=2, L=2 

Cost scenario 1 0.00% 0.00% 30.02% 50.16% 50.16% 

Cost scenario 2 0.00% 0.00% 0.00% 0.00% 50.16% 

Cost scenario 3 0.00% 0.00% 0.00% 0.00% 50.16% 

Table 3.6 shows the changes in the SAPD values when the lead time and review period are 

varied for different cost scenarios. When the review period is 1 day and lead time is 0 and 1 day, 

it is observed that SAPD is 0 for all the three cost scenarios, because orders can be placed 

frequently, thereby reducing shortage cost. However, when the review period is 2 days and lead 

time is 0 day, 1 day and 2 days, SAPD varies across the cost scenarios as shown in Figure 3.4. 

It is observed that when the review period is 2 days and lead time is 0 or 1 day, SAPD is 0 

for cost scenarios 2 and 3, because in those scenarios, shortage cost is five times the holding cost 

and hence SAPD is 0. However, SAPD is not 0 for cost scenario 1, when the review period is 2 

days. In order to satisfy the demand during lead time plus review period, there should be excess 

units held in inventory incurring holding cost. But in cost scenario 1, since shortage cost is only 

two times the holding cost, a tradeoff is made between shortage and holding platelets for two days 

(since RP is two days). When the review period is 2 days and lead time is 2 days, SAPD remains 

the same across the three cost scenarios because when lead time is 2 days, the platelets that are 

arriving at the hospital have a remaining shelf life of 1 day only. Therefore, it is not possible to 

reduce shortage during the lead time plus review period (L+RP = 4 days) because of the very short 

shelf life of new platelets of 1 day.  

   

Figure 3.4: SAPD when review period is 2 days, with varying lead times 
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3.2.3.4 Effect of Varying Lead Time and Review Period on Total Cost (TC) 

Assuming that the holding cost is $1/unit, the total cost is given as follows. 

Total Cost (TC) = fixed cost of procurement + variable purchasing cost + holding cost + 

shortage cost + expiration cost 

Table 3.7: Sensitivity Analysis - Effect of lead time and review period on Total Cost 

  RP=1, L=0 RP=1, L=1 RP=2, L=0 RP=2, L=1 RP=2, L=2 

Cost scenario 1 $ 191 $ 191 $ 278 $ 285 $ 285 

Cost scenario 2 $ 191 $ 191 $ 278 $ 287 $ 571 

Cost scenario 3 $ 194 $ 195 $ 280 $ 287 $ 572 

Table 3.7 shows the changes in total cost when the lead time and review period are varied 

for different cost scenarios. When the review period is 1 day and lead time is 0 or 1 day, the total 

cost is higher for cost scenario 3. In cost scenario 3, fixed cost of procurement is higher compared 

to cost scenarios 1 and 2. Therefore, even though the same number of units are purchased as in the 

previous two cases, cost scenario 3 incurs higher fixed cost and hence the total cost increases. It is 

observed that when the review period is 2 days and lead time is 0 or 1 day, the total cost is almost 

the same for all the three cost scenarios as shown in Table 3.7 and Figure 3.5. However, when 

review period is 2 days and lead time is 2 days, the total cost is significantly less for cost scenario 

1, compared to cost scenarios 2 or 3, because in the latter scenarios, shortage cost is five times the 

inventory holding cost. When L+RP = 4 days and the shelf life of platelets arriving at hospital is 

only 1 day, shortages are occurring, resulting in more shortage cost and higher total cost. 

  

Figure 3.5: Total Cost when review period is 2 days, with varying lead times 
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3.2.4. Use of Rolling Horizon Approach 

 This model can be used to assist the hospital management decide on the units purchased 

based on their operational settings. Even though more effort is required in the implementation of 

the FTHI model and the forecasts have to be updated periodically, the model will result in less 

wastage and shortage. 

 In practice, the same order policy may not be used for all the 30 days of the planning 

horizon. Instead a rolling horizon approach may be followed to implement the optimal solution. 

For example, even though the MILP model gives an optimal order policy for 30 days, only the first 

week of the optimal solution is implemented. At the end of the first week, the MILP model is rerun 

for the next 30 days, after updating inventory and demand forecast. The new optimal policy will 

be used for the second week and the process is repeated weekly. Since long term forecasts may 

not be as good as short term forecasts, a rolling horizon policy helps to update forecasts weekly 

and determine the best solution based on the revised forecasts. 
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Chapter 4 : Multiple Objective Models for Hospital Inventory Management 

In the single objective model discussed in Chapter 3, units shortage and outdated were 

assigned cost values and the objective of the model was to minimize the total cost. However, costs 

such as shortage and outdating cannot be quantified in reality. Therefore, in this chapter, a multiple 

criteria mathematical programming (MCMP) model is developed for hospital inventory 

management and is discussed in Section 4.1. The model is solved using 3 MCMP techniques; 

preemptive goal programming, non-preemptive goal programming and weighted objective 

methods and these techniques are discussed in Sections 4.2 and 4.3. The forecasted platelet demand 

from case study-1 in Chapter 3 is used to illustrate the multiple objective models and the results 

are compared and presented in Section 4.4. 

4.1. Multiple Criteria Mathematical Programming (MCMP) Model 

Recall that the following notations were used in Chapter 3 for the single objective finite 

time horizon inventory model. 

Model Parameters (known data) 

𝐶𝐹 Fixed cost of procuring platelets 

𝐶𝑃 Platelet purchasing cost per unit 

𝐶𝐻 Daily inventory cost of holding platelets per unit (based on beginning inventory)  

𝐷𝑡 Platelet demand at the beginning of day t 

𝐿 Constant lead time in days 

𝑅𝑃 Review period in days 

𝑆1 Initial inventory with shelf life of 1 day (𝐼1,1) 

𝑆2 Initial inventory with shelf life of 2 days (𝐼1,2) 

𝑇 Planning horizon in days (i.e., 𝑡=1, 2, 3, …, 𝑇) 

Decision Variables (unknown): 

𝑄𝑡 Quantity of platelet units ordered at the end of day 𝑡 

𝑥𝑡 
Platelet units received from the blood center at the beginning of day 𝑡 with shelf 

life of 3 days 

𝐷𝑡
1 Remaining demand for day 𝑡 after using platelets with shelf life of 1 day 

𝐷𝑡
2 Remaining demand for day 𝑡 after using platelets up to shelf life of 2 days 

𝐷𝑡
3 Remaining demand for day 𝑡 after using platelets up to shelf life of 3 days  
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𝐼𝑡,1 On-hand inventory at the beginning of day 𝑡 with residual shelf life of 1 day 

𝐼𝑡,2 On-hand inventory at the beginning of day 𝑡 with residual shelf life of 2 days 

𝐼𝑡,1
′  Remaining platelet units after satisfying 𝐷𝑡 with shelf life of 1 day  

𝐼𝑡,2
′  Remaining platelet units after satisfying 𝐷𝑡

1 with shelf life of 2 days 

𝐼𝑡,3
′  Remaining platelet units after satisfying 𝐷𝑡

2with shelf life of 3 days 

𝑆𝑡 Number of platelet units short on day 𝑡 

𝐸𝑡 Number of units expired at the end of day 𝑡 

 1 if platelet units are ordered by hospital on day 𝑡   

𝛿𝑡  

 0 otherwise                                                                                  

 

4.1.1. Objective Function 

The single objective model, in Chapter 3, minimized the total cost comprising of fixed cost 

of procurement, variable purchasing cost, holding cost, shortage cost and outdating cost (see 

Equation 3.1). Hence, the objective function included the following decision variables: 

• Number of times platelets have been shipped to the hospital from the blood center 

• Units purchased 

• Units held in inventory 

• Units shortage 

• Units outdated 

For the multiple criteria mathematical programming model, the following three objectives 

are considered. 

Objective 1: Minimize procurement and holding cost (PHC) 

Minimize 𝑍1 = ∑ 𝑃𝐻𝐶𝑡
𝑇
𝑡=1     ∀𝑡        (4.1) 

where procurement and holding cost on day 𝑡 (𝑃𝐻𝐶𝑡) is the sum of the fixed procurement 

cost, platelet purchasing cost and inventory holding cost of platelet units on day 𝑡 and is given by 

Equation 4.2. 

𝑃𝐻𝐶𝑡 = 𝐶𝐹 ∗ 𝛿𝑡 + 𝐶𝑃 ∗ 𝑥𝑡 + 𝐶𝐻 ∗ (𝐼𝑡,1 +  𝐼𝑡,2)  ∀𝑡        (4.2) 

Objective 2: Minimize shortage of platelets 

Minimize 𝑍2 = ∑ 𝑆𝑡
𝑇
𝑡=1     ∀𝑡        (4.3) 
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Objective 3: Minimize expiration of platelets   

Minimize 𝑍3 =  ∑ 𝐸𝑡
𝑇
𝑡=1     ∀𝑡        (4.4) 

It can be observed that when the shortage decreases, the total units purchased increases and 

hence the PHC increases. Similarly, an increase in shortage leads to decrease in purchasing 

platelets and hence decrease in the PHC. Moreover, if more platelets are purchased, then more 

units are held in inventory leading to more platelet wastage. Therefore, it is evident that the three 

criteria are conflicting in nature. 

4.1.2. Model Constraints 

 The model constraints are the same as discussed in Chapter 3 and are reproduced below. 

(1) Platelet Units Ordered 

𝑄𝑡 ≤ 𝑀𝛿𝑡                    for t =1, 1+RP, 1+2RP, +…     (4.5) 

𝑄𝑡 = 0                                          for all other 𝑡           (4.6) 

(2) Platelet Units Received 

𝑥𝑡 = 𝑄𝑡−𝐿        ∀𝑡 > 𝐿         (4.7)  

𝑥𝑡 = 0 or known constants     ∀𝑡 ≤ 𝐿        (4.8) 

(3) Demand Constraints 

𝐷𝑡 − 𝐼𝑡,1 = 𝐷𝑡
1 − 𝐼𝑡,1

′         ∀𝑡        (4.9)  

𝐷𝑡
1 − 𝐼𝑡,2 = 𝐷𝑡

2 − 𝐼𝑡,2
′        ∀𝑡      (4.10)   

𝐷𝑡
2 − 𝑥𝑡 = 𝐷𝑡

3 − 𝐼𝑡,3
′        ∀𝑡         (4.11) 

(4) Inventory Updates 

𝐼𝑡+1,1 = 𝐼𝑡,2
′        ∀𝑡      (4.12) 

𝐼𝑡+1,2 = 𝐼𝑡,3
′        ∀𝑡       (4.13) 

(5) Expired Platelets 

𝐸𝑡 = 𝐼𝑡,1
′        ∀𝑡       (4.14) 

(6) Platelet Shortages 

𝑆𝑡 = 𝐷𝑡
3       ∀𝑡         (4.15) 

(7) Demand Fulfillment Rate 

Equation 4.16 ensures that at least 90% of the daily demand is fulfilled. In other words, total units 

shortage at the end of each day must not exceed 10% of the demand during that day. 

𝑆𝑡 ≤
(1−𝐹𝑅)

100
∗  𝐷𝑡      ∀𝑡      (4.16) 
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Where 𝐹𝑅 is the hospital-specified demand fulfillment rate. 

(8) Initial Inventory of Platelets 

𝐼1,1 = 𝑆1               (4.17)    

𝐼1,2 = 𝑆2             (4.18) 

(9) Non-negativity          

𝐷𝑡
1, 𝐷𝑡

2, 𝐷𝑡
3, 𝐸𝑡 , 𝐼𝑡,1

′ , 𝐼𝑡,2
′ , 𝐼𝑡,3

′ , 𝐼𝑡,1, 𝐼𝑡,2, 𝑄𝑡 , 𝑆𝑡 , 𝑥𝑡, 𝑇𝐶𝑡 ≥ 0      ∀𝑡      (4.19) 

𝛿𝑡 ∈ (0,1)                    ∀𝑡      (4.20) 

4.2. Goal Programming Model 

Goal programming (GP) is a technique used to solve multiple criteria mathematical 

programming (MCMP) models. In goal programming, the objective functions in the MCMP model 

are set as goals. Each goal has a pre-specified preference and target value proposed by the decision 

maker (DM). These target values can be satisfied with acceptable deviations and the objective 

function in the GP model is to minimize these deviations from the target values. Therefore, GP 

approach attempts to obtain a solution that is as close as possible to the targets based on the DM’s 

preferences. 

There are three goals considered in the MCMP model developed for hospital inventory 

management and are as follows. 

• Goal 1 (G1): Cost not to exceed $𝑏1for objective 1, given in Equations 4.1 and 4.2. 

• Goal 2 (G2): Shortage of platelets not to exceed 𝑏2 units for objective 2, given in Equation 4.3 

• Goal 3 (G3): Outdating of platelets not to exceed 𝑏3 units for objective 3, given in Equation 4.4 

The three goal constraints are given below. 

Goal Constraint -1 (G1) 

∑ 𝑃𝐻𝐶𝑡
𝑇
𝑡=1 − 𝑑1

+ + 𝑑1
− = 𝑏1      ∀𝑡     (4.21)  

Goal Constraint -2 (G2) 

∑ 𝑆𝑡
𝑇
𝑡=1 − 𝑑2

+ + 𝑑2
− = 𝑏2       ∀𝑡     (4.22) 

Goal Constraint -3 (G3) 

∑ 𝐸𝑡
𝑇
𝑡=1 − 𝑑3

+ + 𝑑3
− = 𝑏3             ∀𝑡     (4.23)  

where 𝑑𝑖
+ and 𝑑𝑖

− are the positive and negative deviational variables from target value for goal 𝑖. 
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Equations (4.21) – (4.23) represent the goal constraints (also known as soft constraints) in 

the GP model.  

Since the goals are not to exceed the targets, the deviational variables, 𝑑1
+, 𝑑2

+ and 𝑑3
+ have 

to be minimized in the GP model. The targets, 𝑏1, 𝑏2 and 𝑏3 have to be specified by the hospital 

and are given as inputs to the GP model. Note that the targets may or may not be achievable 

depending on their values specified.  

In this chapter, two types of goal programming formulations are discussed to solve the 

hospital inventory management problem. They are based on how the preferences on achieving the 

goals are specified. 

• Preemptive Goal Programming (PGP) 

• Non-Preemptive Goal Programming (NPGP) 

4.2.1. Preemptive Goal Programming (PGP) Model 

In PGP, the ordinal preference of achievement of goals is specified by the decision maker. 

Therefore, the high priority goals are achieved first followed by the fulfillment of low priority 

goals (Masud and Ravindran, 2008). The priorities for the objectives can be obtained using ranking 

methods such as Borda count, rating method or pair-wise comparison methods such as the Analytic 

Hierarchy Process (AHP). 

PGP Model Objective 

Minimize Z = 𝑃1𝑑1
+ + 𝑃2𝑑2

+ + 𝑃3𝑑3
+             (4.24) 

𝑃1, 𝑃2 and 𝑃3 are the priorities assigned to goals 1, 2 and 3 respectively. In this case, cost 

is assigned priority 1, followed by shortage of platelets and outdating. It is to be noted that  𝑃𝑝 >> 

𝑃𝑝+1. In other words, the goal which is given the 𝑝th priority (𝑃𝑝) is achieved first, followed by the 

fulfillment of the goal which is given the (𝑝 + 1)th priority (i.e.,  𝑃𝑝+1). 

PGP Model Constraints 

The constraints of the PGP model include the hard constraints, 4.5 through 4.20, the three 

goal constraints, 4.21 – 4.23, and the non-negativity constraints on the deviational variables, given 

by Equation 4.25. 

𝑑𝑖
+, 𝑑𝑖

− ≥ 0       𝑖 = 1,2,3     (4.25) 

Equation (4.24) represents the objective function of the goal programming model, which 

is to minimize the goal deviations from their target values. 
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For the illustration, it is assumed that the decision maker at the hospital ranks minimizing 

cost as Priority 1, shortage as Priority 2 and units outdated as Priority 3. 

4.2.2. Non-Preemptive Goal Programming (NPGP) Model 

In the non-preemptive goal programming, numerical weights are assigned to the goals and 

the values of the weights indicate the relative importance of the goals. The objective is to minimize 

the weighted sum of deviations from the target values. Unlike the preemptive goal programming 

model, equal weights can be assigned to each objective ensuring equal importance to all criteria or 

different weights can be assigned in the order of the importance of the goals.  

Criteria Weights (Ravindran and Warsing, 2013): 

The first step in the NPGP method is to obtain criteria weights. There are three methods 

discussed in the literature (Ravindran and Masud, 2008) to obtain the relative weights of each goal: 

• Ranking Method (Borda Count) 

• Rating Method 

• Analytic Hierarchy Process (AHP) 

Ranking Method (Borda Count): 

This method obtains the rank order of the criteria, and the weights are computed based on 

these ranks. If there are p criteria under consideration, then the decision maker assigns rank 1 for 

the most important criteria and rank p for the least important criteria. The criterion which is 

assigned the first rank gets p points, second rank gets (p-1) points and so on. Finally, the criterion 

which is assigned the last rank gets 1 point. Each criterion weight is obtained by diving the 

criterion’s point by the sum of all the points (for further details, refer to Chapter 6, Ravindran and 

Warsing, 2013). 

Rating Method: 

In the rating method, the decision maker (DM) rates each criterion on a certain scale, say, 

1-10, and the weights are obtained by normalizing the rating. 

If there are p criteria and 𝑟𝑗 is the rating assigned for criteria j, then the weight, 𝑤𝑗, is given 

by: 

𝑤𝑗 =
𝑟𝑗

∑ 𝑟𝑗
𝑝
𝑗=1
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Analytic Hierarchy Process: 

Analytic Hierarchy Process (AHP) is a pair-wise comparison method developed by Saaty 

(1980). Two criteria are compared by the DM at a time indicating his preference and the strength 

of preference on a scale of 1 to 9. They are then used to compute the relative weights using Eigen-

value theory. 

It is to be noted that these method can produce different sets of weights and the optimal 

solution for each set of weight can be determined. Based on the different solutions, the decision 

maker can select the best compromise solution.   

NPGP Model Objective: 

Equation (4.26) represents the objective function, which is to minimize the weighted sum 

of the goal deviations. 

Minimize Z = 𝑤1𝑑1
+ + 𝑤2𝑑2

+ + 𝑤3𝑑3
+       (4.26) 

It is to be noted that scaling of the objectives is necessary because the goals have different 

units and magnitude. Otherwise, a goal with large magnitude, will dominate the optimal solution 

irrespective of the weight assigned to it. There are several scaling methods available and are 

discussed in detail in Chapter 6 of Ravindran and Warsing (2013). Denoting the scaling factors as 

𝑣1, 𝑣2 and 𝑣3, the scaled objective function is given in Equation 4.27. 

Minimize Z = 
𝑤1∗𝑑1

+

𝑣1
+

𝑤2∗𝑑2
+

𝑣2
+

𝑤3∗𝑑3
+

𝑣3
       (4.27) 

where 𝑤𝑖 is the weight assigned to goal 𝑖. 

Subject to the constraints: 

Equations (4.5) – (4.23) and (4.25). 

4.3. Weighted Objective Model (WOM) 

In the weighted objective method, relative weights are assigned to each objective based on 

its importance. The objective function is to minimize the weighted sum of the objectives. This 

approach also requires that the objectives are scaled properly.  

WOM Objective: 

Equation (4.28) gives the scaled weighted objective function. 

Minimize Z= 
𝑤1∗𝑇𝑂𝑇𝑃𝐻𝐶

𝑣1
+

𝑤2∗𝑆𝐻𝑂𝑅𝑇

𝑣2
+

𝑤3∗𝐸𝑋𝑃

𝑣3
       (4.28) 
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Subject to the constraints: 

Equations (4.5) – (4.20) 

where 𝑇𝑂𝑇𝑃𝐻𝐶 = ∑ 𝑃𝐻𝐶𝑡
𝑇
𝑡=1 = ∑ (𝐶𝐹 ∗ 𝛿𝑡 + 𝐶𝑃 ∗ 𝑥𝑡 + 𝐶𝐻 ∗ (𝐼𝑡,1 +  𝐼𝑡,2))𝑇

𝑡=1    

           𝑆𝐻𝑂𝑅𝑇 = ∑ 𝑆𝑡
𝑇
𝑡=1           

           𝐸𝑋𝑃 = ∑ 𝐸𝑡
𝑇
𝑡=1           

4.4. Case Study – 1 

In this section, the demand data from case study-1, discussed in Chapter 3, is used to 

compare the results of the three different multiple criteria models. Recall that case study-1 consists 

of daily demand data from a hospital in New York for 122 days. The demand fulfillment rate is set 

at 90% (i.e., 𝐹𝑅=90%) for all the three MCMP models. Also, the models are run for 30 days, with 

zero lead time and one day review period (i.e., 𝑇= 30, 𝐿 = 0 and 𝑅𝑃=1). 

The forecasted demand for 30 days presented in Section 3.2.1 is given in Table 4.1. 

Table 4.1: Forecasted demand for 30 days 

 Week 1 Week 2 Week 3 Week 4 Week 5 

Day 1 198 198 198 198 198 

Day 2 216 216 216 216 216 

Day 3 202 202 202 202  

Day 4 187 187 187 187  

Day 5 186 186 186 186  

Day 6 169 169 169 169  

Day 7 161 161 161 161  

 

4.4.1. Input Parameters 

Cost Settings 

Table 4.2 gives the cost data used for the case study. These costs are estimates obtained 

from a regional medical center in Pennsylvania. The fixed cost represents the fixed transportation 

cost.  

Table 4.2: Cost Setting 

Cost Fixed Cost of Procurement Variable Purchasing Cost Holding Cost 

Value $650/shipment $650/unit $1.45/unit/day 
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Target Values 

In order to compute the target values for the GP models, the Ideal Solution for each 

objective (minimize cost, minimize units shortage and minimize platelet wastage) is first 

calculated. The Ideal Solution is obtained by minimizing each objective independently, ignoring 

the other objectives, subject to the constraints. However, this solution cannot be achieved and is 

infeasible because of the conflicting nature of the three objectives. For example, the Ideal Solution 

for cost is obtained by minimizing cost (𝑍1) ignoring the objectives of shortage (𝑍2) and wastage 

(𝑍3). Similarly, the ideal solution of 𝑍2 is obtained by minimizing 𝑍2 ignoring the objectives of 

𝑍1 and 𝑍3. From the Ideal Solutions, realistic bounds on the three objectives can be obtained. The 

results of solving the model with three objectives independently are given in Table 4.3. The upper 

bound and the lower bound values for the three criteria are also given in Table 4.3 for 90% demand 

fulfillment. 

Table 4.3: Ideal Solutions and Bounds on the Objectives 

 
Minimizing 

Cost 

Minimize 

Shortage 

Minimize 

Outdating 

Lower 

Bound 

Upper 

Bound 

Cost $3,224,276 $3,584,835 $3,552,262 $3,224,276 $3,584,835 

Units Shortage 522 0 50 0 522 

Units Outdated 0 0 0 0 0 

 

Table 4.4: Ideal Values and Target Values 

 Ideal Value Target Value 

Cost $3,224,276 $3,385,489 

Units Shortage 0 units 260 units 

Units Outdated 0 units 0 units 

 

Based on the upper and the lower bounds of the three objectives given in Table 4.3, the 

target values are selected. The target value for each goal is set by the decision maker based on the 

ideal values. The target value of the cost is assumed to be at 105% of the ideal value, which is 

$3,385,489 (i.e., 𝑏1=$3,385,489). The target value for shortage is set at 5% of the total demand, 

which is approximately 260 units (i.e., 𝑏2 = 260 units). Since the lower and the upper bound of 

expiration is 0, the target value for expiration is set at 0 units (i.e., 𝑏3 = 0 units). The ideal and the 

target values are given in Table 4.4. The target values used here are for illustrative purposes only. 

A hospital administrator can use different target values, including the ideal values as targets. 
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4.4.2. Solution for the MCMP Model by Preemptive Goal Programming (PGP) 

For the case study-1 data discussed in Section 4.4.1, the PGP model had the following 

features: 

• Total number of decision variables: 426 (out of which 30 are binary variables)  

• Total number of constraints: 455 

• The mathematical model discussed in Section 4.2.1 is programmed using C++ and solved 

using IBM CPLEX®12.4.0.0 optimizer. 

• Solution time is approximately 25 seconds 

Table 4.5: Results of Preemptive Goal Programming Model 

 Ideal Value Target Value 
Achieved 

Objective Value 

Goal 

Achievement 
Priority 

Cost ($) $3,224,276 $3,385,489 $3,385,455 Achieved 𝑃1 

Units 

Shortage 
0 units 260 units 305 units 

Not Achieved 

(14.75%) 
𝑃2 

Units 

Outdated 
0 units 0 units 0 units Achieved 𝑃3 

 

Table 4.5 shows the value of the objectives obtained from the preemptive goal 

programming model. Table 4.5 represents the scenario where cost has the highest priority, 

followed by shortage and outdating. This scenario is considered as the base scenario. The results 

indicate that the cost and units expired are less than the target value (goals achieved). However, 

the total units shortage is greater than the target by 14.75% (goal not achieved). Effects of changing 

the goal priorities are discussed in Section 4.4.6 under Sensitivity Analysis.  

4.4.3. Solution for the MCMP Model by Non-Preemptive Goal Programming 

An initial set of weights used in the non-preemptive goal programming model are given in 

Table 4.6. A sensitivity analysis will be performed in Section 4.4.6 by varying the selected weights. 

Table 4.6: Weights given to the Goals in Non-Preemptive Goal Programming (NPGP) 

 
Cost 

(𝐺1) 

Shortage 

(𝐺2) 

Wastage 

(𝐺3) 

Weight (𝑤𝑖) 0.5 0.3 0.2 

 

The weights reflect the relative importance given in the preemptive GP model. For 

instance, cost is given the highest weight of 0.5, followed by shortage at 0.3 and wastage at 0.2. 
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For scaling the objectives, 𝑣1 is set at 10000, 𝑣2 and 𝑣3 are set at 1. This ensures that all three 

goals are scaled to be of comparable magnitudes. 

For the case study-1 data discussed in Section 4.4.1, the NPGP model had the following 

features: 

• Total number of decision variables: 426 (out of which 30 are binary variables)  

• Total number of constraints: 455 

• The mathematical model discussed in Section 4.2.2 is programmed using C++ and solved 

using IBM CPLEX®12.4.0.0 optimizer. 

• Solution time is approximately 25 seconds 

 

Table 4.7: Results of Non-Preemptive Goal Programming Model 

 Ideal Value 
Target 

Value 

Achieved 

Objective Value 

Goal 

Achievement 
Weights 

Cost ($) $3,224,276 $3,385,489 $3,413,389 
Nearly Achieved 

(0.82%) 
0.5 

Units 

Shortage 
0 units 260 units 260 units Achieved 0.3 

Units 

Outdated 
0 units 0 units 0 units Achieved 0.2 

 

For the given weights, Table 4.7 shows the value of the objectives obtained from the non-

preemptive goal programming model. From Table 4.7, it can be observed that the total units 

shortage is 260 units making the deviational variable associated with the shortage objective to be 

0 (goal achieved). The units expired is also equal to the target value (goals achieved). The cost is 

slightly higher (0.82%) than the target cost (goal nearly achieved). Even though more weight is 

given to the cost, the target assigned for cost is not achievable because the NPGP model only tries 

to minimize the sum of the weighted deviations from the target values. 

4.4.4. Solution by the Weighted Objective Model (WOM) 

The weights and the scaling factors used in the weighted objective model are the same as 

those used for NPGP model. 

For the case study-1 data discussed in Section 4.4.1, the WOM model had the following 

features: 

• Total number of decision variables: 423 (out of which 30 are binary variables)  

• Total number of constraints: 455 
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• The mathematical model discussed in Section 4.2.3 is programmed using C++ and solved 

using IBM CPLEX®12.4.0.0 optimizer. 

• Solution time is approximately 23 seconds 

Table 4.8: Results of the Weighted Objective Model 

 Ideal Value 
Achieved 

Objective Value 

Deviation from 

the Ideal 
Weights 

Cost ($) $3,224,276 $3,584,835 10.06% 0.5 

Units Shortage 0 units 0 units 0% 0.3 

Units Outdated 0 units 0 units 0% 0.2 

 

For the given weights, Table 4.8 shows the value of the objectives obtained using the 

weighted objective model (WOM). The model results in no shortage and no outdating of platelets. 

Recall that the ideal value represents the minimum value for all the criteria. Therefore, minimizing 

directly the weighted sum of the criteria in WOM is equivalent of minimizing deviations from the 

ideal value. In NPGP, the deviations from the target values are minimized and in WOM, the 

deviations from the ideal values are minimized. Therefore, the WOM is similar to the NPGP 

technique with the targets set as ideal values.  

4.4.5. Comparison of Results from the Three Multiple Objective Models 

Table 4.9 gives a comparison of the objective values achieved by the three different 

approaches to solving the multiple criteria mathematical programming problem. It can be observed 

that for this particular case study, the units expired is always 0 across all the methods. Hence, it is 

evident that only the cost and the shortage objectives are conflicting in nature. Since, there are 

only two conflicting criteria, a two dimensional graph is drawn to graphically compare the 

solutions (see Figure 4.1). Note that the three optimal solutions are non-dominated solutions. For 

example, comparing PGP and NPGP solutions, a decrease in shortage of 45 units (305 – 260) is 

obtained at a cost increase of $27,934 ($3,413,389-$3,385,455). Similarly, zero shortage can be 

achieved at an additional cost of $171,446 ($3,584,835-$3,413,389). 

Table 4.9: Comparison of Results from the Multiple Objective Models 

 PGP NPGP WOM 

Cost ($) $3,385,455 $3,413,389 $3,584,835 

Units Shortage 305 units 260 units 0 units 

Units Outdated 0 units 0 units 0 units 
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Figure 4.1: Cost and Shortage Values for the Three Different Approaches 

From Figure 4.1, the decision maker can analyze and obtain the tradeoff among the three 

solutions. If there are more than two conflicting objectives, the value path approach of Schilling 

et al., (1983) can be used. In the value path approach, the solutions are displayed using parallel 

scales and it helps the decision maker to identify whether an optimal solution dominates another. 

It is also used to determine the tradeoff among the solutions. 

4.4.6. Sensitivity Analysis 

In this section, the effect of changing the goal priorities in the PGP model and the weights 

in the NPGP model and WOM are discussed. 

4.4.6.1. Effect of Changing Goal Priorities in the PGP Model 

The different priority scenarios considered for the sensitivity analysis are given in Table 

4.10. The priority setting used in Section 4.4.2 is considered the base scenario, where cost is given 

the highest priority, followed by shortage and outdating. In alternate scenario-1 (A-1), cost goal is 

given in priority 1, followed by outdating and shortage. Therefore, it is expected that the cost under 

A-1 will be same as that of the base scenario. In alternate scenario-2 (A-2), shortage goal is given 

priority 1, followed by cost and outdating. Therefore, it is expected that the cost will be more under 

A-2 compared to that of the base scenario. In alternate scenario-3 (A-3), outdating goal is given 

priority 1, followed by cost and shortage. In alternate scenario-4 (A-4), shortage goal is given 

priority 1, followed by outdating and cost. Therefore, it is expected that the cost will be more and 

shortage will be less under A-4 compared to those of the base scenario. In alternate scenario-5 (A-

5), outdating goal is given priority 1, followed by the shortage and cost. Therefore, it is expected 

that the cost will be the highest in this scenario. 
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Table 4.10: Alternate Scenarios Considered for the PGP Model 

Scenario 
Priorities 

𝑮𝟏 𝑮𝟐 𝑮𝟑 

Base 𝑃1 𝑃2 𝑃3 

A-1 𝑃1 𝑃3 𝑃2 

A-2 𝑃2 𝑃1 𝑃3 

A-3 𝑃2 𝑃3 𝑃1 

A-4 𝑃3 𝑃1 𝑃2 

A-5 𝑃3 𝑃2 𝑃1 

 

Table 4.11 gives the results for the PGP model under the different scenarios. The results 

are identical for scenarios A-2, A-4 and A-5. In all the three scenarios, shortage is given more 

priority than cost. The total units shortage is therefore, exactly equal to the target shortage making 

the corresponding shortage deviational variable in the objective function to be zero (goal 

achieved). The units expired is also equal to the target value (goal achieved). Since the shortage 

objective is achieved, the cost is greater than the target cost by 0.82% (goal nearly achieved).  

When shortage is equal to the target shortage, the corresponding deviational variable in the 

objective function is equal to 0. Further decrease in shortage cannot decrease the shortage 

deviational variable but will result in increase in the cost thereby increasing the cost deviational 

variable. Therefore, when priority is given to minimize shortage, the shortage is made exactly 

equal to the target shortage in the PGP model.  

The results are identical for the base scenario, A-1 and A-3. In these three scenarios, cost 

objective is given more priority than shortage. Therefore, as in the base scenario, the cost and units 

expired are less than the target value (goals achieved). The total units shortage is greater than the 

target shortage by 14.75% (goal not achieved).  

From all the six scenarios considered, it is evident that the priority for expiration objective 

has no impact on the results. This is because the maximum number of units that can be purchased 

within the target cost will result in 305 units shortage. 
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Table 4.11: Effect of Alternate Scenarios on the Objectives under PGP 

Objective 
Ideal 

Value 

Target 

Value 

Achieved 

Objective Value 

Goal 

Achievement 
Priority 

Base Scenario 1 

Cost ($) $3,224,276 $3,385,489 $3,385,455 Achieved 𝑃1 

Units Shortage 0 units 260 units 305 units 
Not Achieved 

(14.75%) 
𝑃2 

Units Outdated 0 units 0 units 0 units Achieved 𝑃3 

Alternate Scenario 1 (A-1) 

Cost ($) $3,224,276 $3,385,489 $3,385,455 Achieved 𝑃1 

Units Shortage 0 units 260 units 305 units 
Not Achieved 

(14.75%) 
𝑃3 

Units Outdated 0 units 0 units 0 units Achieved 𝑃2 

Alternate Scenario 2 (A-2) 

Cost ($) $3,224,276 $3,385,489 $3,413,389 
Not Achieved 

(0.82%) 
𝑃2 

Units Shortage 0 units 260 units 260 units Achieved 𝑃1 

Units Outdated 0 units 0 units 0 units Achieved 𝑃3 

Alternate Scenario 3 (A-3) 

Cost ($) $3,224,276 $3,385,489 $3,385,455 Achieved 𝑃2 

Units Shortage 0 units 260 units 305 units 
Not Achieved 

(14.75%) 
𝑃3 

Units Outdated 0 units 0 units 0 units Achieved 𝑃1 

Alternate Scenario 4 (A-4) 

Cost ($) $3,224,276 $3,385,489 $3,413,389 
Nearly Achieved 

(0.82%) 
𝑃3 

Units Shortage 0 units 260 units 260 units Achieved 𝑃1 

Units Outdated 0 units 0 units 0 units Achieved 𝑃2 

Alternate Scenario 5 (A-5) 

Cost ($) $3,224,276 $3,385,489 $3,413,389 
Nearly Achieved 

(0.82%) 
𝑃3 

Units Shortage 0 units 260 units 260 units Achieved 𝑃2 

Units Outdated 0 units 0 units 0 units Achieved 𝑃1 
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4.4.6.2. Effect of Changing Goal Priorities in NPGP Model and WOM 

Effect of Changing Weights in the NPGP Model: 

Table 4.12 gives the different set of weights assigned to the NPGP model and they reflect 

the priorities given in the preemptive GP model.  

Table 4.12: Alternate Scenarios Considered for the NPGP Model 

Scenario 
Priorities 

𝑮𝟏 𝑮𝟐 𝑮𝟑 

Base 0.5 0.3 0.2 

A-1 0.8 0.1 0.1 

A-2 0.4 0.5 0.1 

A-3 0.4 0.1 0.5 

A-4 0.1 0.45 0.45 

A-5 0.3 0.3 0.3 

 

The results obtained for all the alternate scenarios are same as those of the base scenario. 

In other words, the change in weights has no impact on the NPGP model results for this particular 

case study. This can happen in the NPGP model because only the relative weights are specified; 

hence, it is not necessary that the optimal solutions have to change.  

Effect of Changing Weights in the WOM: 

In the weighted objective method, the weights discussed in Table 4.12 are used and results 

for all the alternate scenarios are same as those of the base scenario. As in the NPGP model, the 

change in weights has no impact on the WOM results for this particular case study. 

4.5 Comparison of the MCMP Model by the Three Solution Techniques  

In the preemptive goal programming (PGP) model, first-priority goals are achieved first 

followed by the second, third priority goals and so on. As a result, there are infinite tradeoffs made 

between the criteria under different priorities. The PGP model is solved in a sequential procedure 

and hence, the scaling of the objectives is not necessary.  

On the other hand, in the non-preemptive goal programming (NPGP) and weighted 

objective method (WOM), only relative weights are assigned to all the objectives. The weights can 

be equal indicating that all the criteria are equally important or different when certain criteria are 

given more importance. The weights represent the DM’s utility for each criterion and the objective 

is to minimize the weighted sum of deviations from the target values. Hence, a linear utility 
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function is assumed in the NPGP. Another drawback of both the NPGP and the WOM is that the 

scaling of the objectives is required to avoid any biasness in the magnitudes or units used to 

measure the 3 objectives.  
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Chapter 5 : Platelet Ordering Policies at Hospitals using Stochastic Programming 

In this chapter, two mixed integer stochastic programming models under demand 

uncertainty are developed. In the first stochastic programming model, an optimal platelet order 

policy for the finite time horizon is determined under stochastic demand. The second stochastic 

programming model uses an (𝑠, 𝑆) periodic review policy to determine the platelet order quantity 

each day. Due to the computational complexity of the mathematical models, four heuristic rules 

are proposed for determining the platelet ordering policy at the hospital. The performance of these 

order policies is compared against the stochastic programming models, using real data obtained 

from a regional medical center. The shelf life of arriving platelets, coefficient of variation of 

demand and cost parameters are then varied, and their impacts are analyzed on the performance 

measures and the best order policy is identified for each hospital setting. Based on the hospital 

setting and cost prioritization, the decision maker can decide the best platelet order policy. 

5.1 Stochastic Inventory Models under Demand Uncertainty 

In this section, two finite time horizon stochastic programming models under demand 

uncertainty are developed in this section. Scenario approach is used to solve the two stochastic 

programming models by generating multiple scenarios for the platelet demand. Each scenario 

represents a demand pattern. Demand patterns can be generated from the hospital’s historical 

demand data or from a distribution based on the decision maker’s knowledge. In the first stochastic 

programming model (referred to as SP1), the number of units to procure through regular shipments 

remain the same and number of units to procure under emergency shipments (i.e., during a 

shortage) varies. The second stochastic programming model (referred to as SP2) uses the periodic 

review policy, known as the (𝑠, 𝑆) policy, to determine the order quantity each day. The constraints 

in both models take into consideration the different demand scenarios and the objective function 

is to minimize the expected total cost across all the scenarios. In both models, it is assumed that 

the hospital follows a FIFO policy for platelet use (i.e., the platelets with the shortest shelf life are 

used first, i.e., demand is first fulfilled with platelets with shelf life of 1 day, followed by platelets 

with shelf life of 2 days, followed by platelets with shelf life of 3 days). We will begin with the 

development of the first stochastic programming model (SP1), which is a finite time horizon model 

under stochastic demand. 

 



57 

 

5.1.1. Stochastic Programming Model-1 (SP1) 

5.1.1.1 Model Notations 

Model Parameters (known data) 

𝑖 Index for shelf life of platelets (𝑖=1,2,3) 

𝜔  Index for scenarios (platelet demand patterns) 

𝑡 Index for day 

Ω  Total number of scenarios (i.e., 𝜔=1, 2, 3, …, Ω) 

𝑇 Time horizon in days (i.e., 𝑡=1, 2, 3, …, 𝑇) 

𝑐𝑓 Fixed cost of procuring platelets ($/shipment) 

𝑐𝑝 Platelet purchasing cost ($/unit) 

𝑐ℎ Inventory holding cost of platelets ($/unit/day)  

𝑐𝑒𝑥 Cost of expired/outdated platelet ($/unit) 

𝑐𝑠ℎ Shortage cost ($/unit) (Note: This is the additional cost of procuring one unit of platelet 

through emergency shipment) 

𝑑𝑡
𝜔 Platelet demand for day 𝑡 under scenario 𝜔 (units) 

𝐿 Procurement lead time (days) 

𝑅𝑃 Review period (days) 

𝑖𝑛𝑖 Initial inventory with shelf life of 𝑖 days for day 1 

𝛾𝑖 Percentage of arriving platelets with shelf life of 𝑖 days (Note: ∑ 𝛾𝑖
3
𝑖=1 = 1) 

𝑝𝜔 Probability of occurrence of scenario 𝜔 

Decision Variables (unknown) 

𝑄𝑡 
Quantity of platelet units ordered at the end of day 𝑡 (same across all the demand 

scenarios) 

𝑇𝐶  Expected total cost incurred for the hospital across the finite time horizon 

𝑋𝑡,𝑖  Platelet units received from the blood center at the beginning of day 𝑡 with a shelf life of 

𝑖 days (note: maximum remaining shelf life of the arriving platelets is 3 days) 

𝑋𝑡 Total platelet units received from the blood center at the beginning of day 𝑡 (i.e.,  

𝑋𝑡 = ∑ 𝑋𝑡,𝑖
3
𝑖=1 ) 
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𝐷𝑡,𝑖
𝜔  Remaining demand on day 𝑡, after using platelets with shelf life of 𝑖 days under scenario 

𝜔 

𝐼𝑡,𝑖
𝜔  On-hand inventory at the beginning of day 𝑡 with shelf life of 𝑖 days under scenario 𝜔 

(𝑖 = 1,2). Note: Since platelets have a maximum shelf life of 3 days, on-hand inventory 

at the beginning of day 𝑡 (carried over from day 𝑡 − 1) can have a maximum of 2 days 

shelf life. 

𝐼𝑃𝑅𝑡,1
𝜔  Leftover platelets after satisfying 𝑑𝑡

𝑠 with shelf life of 1 day under scenario 𝜔 

𝐼𝑃𝑅𝑡,𝑖
𝜔  Leftover platelets after satisfying 𝐷𝑡,𝑖−1

𝑠  with shelf life of 𝑖 days under scenario 𝜔 (𝑖 =

2,3) 

𝑆𝐻𝑡
𝜔  Number of platelet units shortage at the end of day 𝑡 under scenario 𝜔 (these are procured 

through emergency shipment by the hospital from the blood center) 

𝐸𝑡
𝜔 Number of platelet units outdated (expired) at the end of day 𝑡 under scenario 𝜔 

𝛿𝑡 
1 if platelet units are ordered by the hospital on day 𝑡   

0 otherwise 

The stochastic programming model discussed in this section is an extension of the single 

objective integer programming model with deterministic demands, discussed in Chapter 3.  

5.1.1.2. Sequence of Daily Events at the Hospital 

6. Hospital receives platelet units, 𝑋𝑡, from the blood center.  

7. Based on the scenario 𝜔, hospital receives platelet demand, 𝑑𝑡
𝜔, on day 𝑡 

8. If the demand at the hospital is greater than the on-hand inventory, then demand is partially 

fulfilled with the available on-hand inventory and the on-hand inventory is updated to 0. The 

unfulfilled demand units incur the corresponding shortage cost. 

9. If the demand at the hospital is less than the on-hand inventory, then the unutilized platelet 

units with remaining shelf life of 1 day are thrown away at the end of the day and incur an 

outdating cost. The remaining platelets (after discarding the outdated units) are carried over to 

the next day and the on-hand inventory is updated. 
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10. Hospital determines platelet order quantity (𝑄𝑡) at the end of day 𝑡. The units ordered at the 

end of each day 𝑡 is will be received by the hospital on the day after the lead time, 𝑙 (i.e., on 

day 𝑡 + 𝑙, hence 𝑋𝑡+𝑙 = 𝑄𝑡). 

5.1.1.3. Formulation of the SP1 Model 

Equation (5.1) represents the objective function, which is to minimize the expected cost 

across all scenarios. The total cost comprises of fixed cost of procurement, variable purchasing 

cost, holding cost, shortage cost, and outdating cost. 

Minimize TC = ∑ [𝑐𝑓 ∗ 𝛿𝑡 + 𝑐𝑝 ∗ 𝑄𝑡 + ∑ [𝑝𝜔 ∗ {𝑐ℎ ∗ (𝐼𝑡,1
𝜔 + 𝐼𝑡,2

𝜔 ) + 𝑐𝑠ℎ ∗ 𝑆𝐻𝑡
𝜔 +Ω

𝜔=1
𝑇
𝑡=1

𝑐𝑒𝑥 ∗ 𝐸𝑡
𝜔}]]               (5.1) 

(Note: The number of units ordered through regular shipments, 𝑄𝑡, remain the same across all 

scenarios. However, emergency shipments vary by scenario). 

Model Constraints: 

(1) Platelet Units Ordered 

Equation (5.2) ensures that 𝛿𝑡 becomes 1 even if a single platelet unit is ordered from the 

blood center on day 𝑡 and 0 otherwise. Equation (5.3) ensures that orders for platelet units can take 

place only during the days corresponding to multiples of the review period, 𝑅𝑃. 

𝑄𝑡 ≤ 𝑀𝛿𝑡                    for 𝑡 = 𝑅𝑃, 2 𝑅𝑃, 3 𝑅𝑃 …      (5.2)  

𝑄𝑡 = 0                                          for all other 𝑡           (5.3) 

(Note: 𝑀 is a large positive number) 

(2) Platelet Units Received 

Equations (5.4) and (5.5) are used to calculate the total units received by the hospital at the 

beginning of day 𝑡 (i.e., 𝑋𝑡), which corresponds to the order quantity placed on the day before the 

lead time (𝑄𝑡−𝐿). 𝑋𝑡 comprises of platelets with different shelf life. The total units arriving with a 

remaining shelf life of 𝑖 days is given by Equation (5.6). 

𝑋𝑡 = 𝑄𝑡−𝐿        ∀𝑡 > 𝐿         (5.4) 

𝑋𝑡 = 0 or known constants     ∀𝑡 ≤ 𝐿        (5.5) 

𝑋𝑡,𝑖 = 𝛾𝑖 ∗ 𝑋𝑡       ∀𝑡 and 𝑖 = 1,2,3      (5.6) 

(Note: 𝛾𝑖 is the percentage of platelets received with a shelf life of 𝑖 days and ∑ 𝛾𝑖
3
𝑖=1 = 1) 
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(3) Demand Constraints 

Consider day 𝑡 under scenario 𝑠 with a platelet demand of 𝑑𝑡
𝜔: 

• If 𝑑𝑡
𝜔 is greater than the platelet units with shelf life of 1 day (i.e., 𝐼𝑡,1

𝜔 + 𝑋𝑡,1), then the leftover 

demand is 𝐷𝑡,1
𝜔 , and is given by 𝐷𝑡,1

𝜔  = 𝑑𝑡
𝜔 − 𝐼𝑡,1

𝜔 − 𝑋𝑡,1. Also, 𝐼𝑃𝑅𝑡,1
𝜔 = 0. On the other hand if 

the demand, 𝑑𝑡
𝜔, is less than platelet units with shelf life of 1 day, then the leftover demand, 

𝐷𝑡,1
𝜔 , is 0 and the remaining platelet units after satisfying the demand is given by 𝐼𝑃𝑅𝑡,1

𝜔 = 𝐼𝑡,1
𝜔 +

𝑋𝑡,1 − 𝑑𝑡
𝜔. Equation (5.7) is used to calculate 𝐷𝑡,1

𝜔  and 𝐼𝑃𝑅𝑡,1
𝜔 . Note that both 𝐷𝑡,1

𝜔  and 𝐼𝑃𝑅𝑡,1
𝜔  

cannot be positive simultaneously. 

𝑑𝑡
𝜔 − 𝐼𝑡,1

𝜔 − 𝑋𝑡,1 = 𝐷𝑡,1
𝜔 − 𝐼𝑃𝑅𝑡,1

𝜔       ∀𝑡, 𝜔        (5.7)  

• If the leftover demand, 𝐷𝑡,1
𝜔 , is positive, then it is first fulfilled by platelet units with a shelf life 

of 2 days (i.e., 𝐼𝑡,2
𝜔 + 𝑋𝑡,2). If 𝐷𝑡,1

𝜔  is greater than 𝐼𝑡,2
𝜔 , then the leftover demand, 𝐷𝑡,2

𝜔 , is given 

by 𝐷𝑡,2
𝜔  = 𝐷𝑡,1

𝜔 − 𝐼𝑡,2
𝜔 − 𝑋𝑡,2. If 𝐷𝑡,1

𝜔  is less than 𝐼𝑡,2
𝜔 , then the leftover demand, 𝐷𝑡,2

𝜔 , is 0 and the 

remaining platelet units after satisfying 𝐷𝑡,1
𝜔  is given by 𝐼𝑃𝑅𝑡,2

𝜔  = 𝐼𝑡,2
𝜔 + 𝑋𝑡,2 − 𝐷𝑡,1

𝜔 . Equation 

(5.8) is used to calculate 𝐷𝑡,2
𝜔  and 𝐼𝑃𝑅𝑡,2

𝜔 . Note that both 𝐷𝑡,2
𝜔  and 𝐼𝑃𝑅𝑡,2

𝜔  cannot be positive 

simultaneously. 

𝐷𝑡,1
𝜔 − 𝐼𝑡,2

𝜔 − 𝑋𝑡,2 = 𝐷𝑡,2
𝜔 − 𝐼𝑃𝑅𝑡,2

𝜔      ∀𝑡, 𝜔           (5.8)  

• If 𝐷𝑡,2
𝜔  is positive, then it is fulfilled by platelet units with a shelf life of 3 days, 𝑋𝑡,3. If 𝐷𝑡,2

𝜔  is 

greater than 𝑋𝑡,3, then the leftover demand, 𝐷𝑡,3
𝜔 , is given by 𝐷𝑡,3

𝜔  = 𝐷𝑡,2
𝜔 − 𝑋𝑡,3, and 𝐷𝑡,3

𝜔  is the 

platelet shortage at the end of day 𝑡. The shortage units are obtained through emergency 

procurement. If 𝐷𝑡,2
𝜔  is less than or equal to 𝑋𝑡,3, then no shortage is incurred, and leftover 

platelet units after satisfying 𝐷𝑡,2
𝜔  is given by 𝐼𝑃𝑅𝑡,3

𝜔  = 𝑋𝑡,3 − 𝐷𝑡,2
𝜔 . Equation (5.9) is used to 

calculate 𝐷𝑡,3
𝜔  and 𝐼𝑃𝑅𝑡,3

𝜔 . Note that both 𝐷𝑡,3
𝜔  and 𝐼𝑃𝑅𝑡,3

𝜔  cannot be positive simultaneously. 

𝐷𝑡,2
𝜔 − 𝑋𝑡,3 = 𝐷𝑡,3

𝜔 − 𝐼𝑃𝑅𝑡,3
𝜔      ∀𝑡, 𝜔        (5.9) 

(4) Expired/Outdated Platelets 

The unutilized platelet units with the remaining shelf life of 1 day in scenario 𝜔, 𝐼𝑡,1
𝜔 , are 

discarded at the end of the day 𝑡 and is given by Equation (5.10). 

𝐸𝑡
𝜔 = 𝐼𝑃𝑅𝑡,1

𝜔       ∀𝑡, 𝜔      (5.10) 
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(5) Inventory Updates 

At the end of the day 𝑡, the inventory is updated for the next day using Equations (5.11) 

and (5.12). Note that the ending inventory varies depending on the scenario, 𝜔. 

𝐼𝑡+1,1
𝜔  = 𝐼𝑃𝑅𝑡,2

𝜔       ∀𝑡, 𝜔       (5.11) 

𝐼𝑡+1,2
𝜔  = 𝐼𝑃𝑅𝑡,3

𝜔       ∀𝑡, 𝜔       (5.12) 

Note: By Equation (5.10), 𝐼𝑃𝑅𝑡,1
𝜔  is discarded due to outdating. 

(6) Platelet Shortages 

The units of unfulfilled demand in scenario 𝜔, 𝐷𝑡,3
𝜔 , is considered as the shortage in day 𝑡, 

as given by Equation (5.13) and it is calculated using Equation (5.9). 

𝑆𝐻𝑡
𝜔 = 𝐷𝑡,3

𝜔       ∀𝑡, 𝜔                   (5.13) 

(7) Initial Inventory of Platelets 

Equation (5.14) gives the initial conditions at time 𝑡 = 1 for each scenario, 𝜔. 

𝐼1,𝑖
𝜔 = 𝑖𝑛𝑖        ∀𝜔 and 𝑖 = 1,2,3    (5.14) 

(8) Non-negativity 

Constraints (5.15-5.17) represent non-negativity and binary restrictions in the model. 

𝑋𝑡 , 𝑋𝑡,1, 𝑋𝑡,2, 𝑋𝑡,3, 𝑄𝑡 ≥ 0      ∀𝑡    (5.15) 

𝐷𝑡,1
𝜔 , 𝐷𝑡,2

𝜔 , 𝐷𝑡,3
𝜔 , 𝑆𝐻𝑡

𝜔 , 𝑦𝑡
𝜔, 𝐸𝑡

𝜔 , 𝐼𝑃𝑅𝑡,1
𝜔 , 𝐼𝑃𝑅𝑡,2

𝜔 , 𝐼𝑃𝑅𝑡,3
𝜔 , 𝐼𝑡,1

𝜔 , 𝐼𝑡,2
𝜔 ≥ 0 ∀𝑡, 𝜔    (5.16) 

𝛿𝑡 ∈ (0,1)                                                                  ∀𝑡    (5.17) 

5.1.2. Stochastic Programming Mathematical Model-2 (SP2) 

The ordering policy obtained under SP1 is more cumbersome to follow since the hospital 

staff has to follow an optimal order policy which would be different each day. However, the 

hospital might be interested in following a simple ordering policy without compromising the 

quality of the solution. Hence, in this section, a (𝑠, 𝑆) periodic review policy is also developed for 

the finite time horizon. Under this policy, at the end of each review period (𝑅𝑃), the inventory 

position is reviewed. The inventory position is the sum of the actual on-hand inventory and the 

past orders that are in transit. If the inventory position is below the reorder point 𝑠, then an order 

is placed to bring the inventory to level 𝑆. If the inventory position is greater than or equal to the 

reorder point 𝑠, then no platelets are ordered at that time.  
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5.1.2.1. Sequence of Daily Events at the Hospital under the (𝒔, 𝑺) Policy 

1. Hospital receives platelet units, 𝑋𝑡
𝜔, from the blood center on day 𝑡 under scenario 𝜔.  

2. Hospital receives platelet demand, 𝑑𝑡
𝜔, on day 𝑡. 

3. If the demand at the hospital is greater than the on-hand inventory, then demand is partially 

fulfilled and unfulfilled demand units incur the corresponding shortage cost. If the demand at 

the hospital is less than the on-hand inventory, then the unutilized platelet units with 

remaining shelf life of 1 day are thrown away and the remaining platelets are carried over to 

the next day. 

4. At the end of day 𝑡 under scenario 𝜔 (𝑡 = 𝑅𝑃, 2 𝑅𝑃, 3 𝑅𝑃 …), hospital determines the 

inventory position (𝐼𝑃𝑡
𝜔) and if 𝐼𝑃𝑡

𝜔 is less than re-order point 𝑠, then platelets are ordered to 

raise the inventory level up-to 𝑆 (i.e., 𝑄𝑡
𝜔= 𝑆 − 𝐼𝑃𝑡

𝜔). On the other hand, if 𝐼𝑃𝑡
𝜔 is greater than 

𝑠, then no order is placed (i.e., 𝑄𝑡
𝜔 = 0). The units ordered at the end of each day 𝑡 is will be 

received by the hospital on the day after the lead time, 𝐿 (i.e., on day 𝑡 + 𝐿, hence 𝑋𝑡+𝐿
𝜔 =

𝑄𝑡
𝜔). 

Note: Both the re-order point (𝑠) and the order up-to-level (𝑆) at the hospital are the same 

across the planning horizon and for all scenarios, which makes the (𝑠, 𝑆) policy easier to 

implement by a hospital administrator. 

5.1.2.2. Notations Used in the SP2 Model 

Model parameters (known data) that are used in the SP1 model are applicable to SP2 model 

also. However, the decision variables have to be modified as follows: 

Decision Variables (unknown) 

𝑄𝑡
𝜔 Quantity of platelet units ordered at the end of day 𝑡 under scenario 𝜔 by the hospital 

𝑋𝑡,𝑖
𝜔  Platelet units received by the hospital from the blood center at the beginning of day 𝑡 with a 

shelf life of 𝑖 days in scenario 𝑠 (note: maximum remaining shelf life of the arriving platelets 

is 3 days) 

𝑋𝑡
𝜔 Total platelet units received by the hospital from the blood center at the beginning of day 𝑡 

in scenario 𝜔 (i.e., 𝑋𝑡
𝜔 = ∑ 𝑋𝑡,𝑖

𝜔3
𝑖=1      ∀𝜔) 

𝐷𝑡,𝑖
𝜔  Remaining demand on day 𝑡, after using platelets with shelf life of 𝑖 days under scenario 𝜔 

𝐼𝑃𝑡
𝜔  Inventory position at the end of day 𝑡 in scenario 𝜔 
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𝑠 Re-order point (same across all the scenarios) 

𝑆 Order-up-to level (same across all the scenarios) 

𝛥𝑡
𝜔 

1if 𝐼𝑃𝑡
𝜔 ≤ 𝑠                                                                                        𝑡 = 𝑅𝑃, 2 𝑅𝑃, 3 𝑅𝑃 … 

0 otherwise                                                                           

The other decision variables 𝐼𝑡,𝑖
𝜔 , 𝐼𝑃𝑅𝑡,𝑖

𝜔 , 𝐷𝑡,𝑖
𝜔 , 𝑆𝐻𝑡

𝜔  and 𝐸𝑡
𝜔 used in Model SP1 are used in 

Model SP2 also.  

5.1.2.3. Formulation of the Stochastic Programming Mathematical Model using (𝒔, 𝑺) Policy 

Equation (5.18) represents the objective function, which is to minimize the expected cost 

across all scenarios at the hospital. The total cost comprises of fixed cost of procurement, variable 

purchasing cost, holding cost, shortage cost, and outdating cost. 

Minimize 𝑇𝐶 = ∑ [∑ [𝑝𝜔 ∗ {𝑐𝑓 ∗ 𝛥𝑡
𝜔 + 𝑐𝑝 ∗ 𝑄𝑡

𝜔 + 𝑐ℎ ∗ (𝐼𝑡,1
𝜔 + 𝐼𝑡,2

𝜔 ) + 𝑐𝑠ℎ ∗ 𝑆𝐻𝑡
𝜔 +Ω

𝜔=1
𝑇
𝑡=1

𝑐𝑒𝑥 ∗ 𝐸𝑡
𝜔}]]             (5.18) 

Model Constraints: 

Equations 5.10 to 5.14 used in Model SP1 are applicable to Model SP2 also. The 

constraints used in Model SP1 that need to be modified for Model SP2, namely, Equations 5.4 

through 5.9,  are described below: 

Platelet Units Ordered and Received 

Equations (5.19) – (5.24) are similar to Equations (5.4) – (5.9) used in model SP1, with the 

difference that the total units ordered and procured from the blood center is dependent on the 

scenario, 𝜔, even though the optimal values of 𝑠 and 𝑆 are the same across all the scenarios. Under 

the SP1 model, the total units ordered remains the same across all the scenarios. 

𝑋𝑡
𝜔 = 𝑄𝑡−𝐿

𝜔       ∀𝜔, 𝑡 > 𝐿       (5.19) 

𝑋𝑡
𝜔 = 0 or known constants    ∀𝜔, 𝑡 ≤ 𝐿      (5.20) 

𝑋𝑡,𝑖
𝜔 = 𝛾𝑖 ∗ 𝑋𝑡

𝜔       ∀𝑖, 𝑡, 𝜔      (5.21) 

Demand-Inventory Balance 

𝑑𝑡
𝜔 − 𝐼𝑡,1

𝜔 − 𝑋𝑡,𝑖
𝜔  = 𝐷𝑡,1

𝜔 − 𝐼𝑃𝑅𝑡,1
𝜔      ∀𝑡, 𝜔      (5.22)  

𝐷𝑡,1
𝜔 − 𝐼𝑡,2

𝜔 − 𝑋𝑡,2
𝜔  = 𝐷𝑡,2

𝜔 − 𝐼𝑃𝑅𝑡,2
𝜔     ∀𝑡, 𝜔         (5.23)  

𝐷𝑡,2
𝜔 − 𝑋𝑡,3

𝜔  = 𝐷𝑡,3
𝜔 − 𝐼𝑃𝑅𝑡,3

𝜔      ∀𝑡, 𝜔      (5.24) 
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Inventory Position and Order Quantity 

Equations (5.25) is used to calculate the inventory position at the end of each day for each 

scenario, 𝐼𝑃𝑡
𝜔 . Under the (𝑠, 𝑆) policy, if the inventory position 𝐼𝑃𝑡

𝜔 ≥ 𝑠, then no order is placed; 

otherwise, we order an amount 𝑄𝑡
𝜔 = 𝑆 − 𝐼𝑃𝑡

𝜔. These are enforced in the model by Equations 

(5.26) through (5.30). If 𝛥𝑡
𝜔 = 0, then 𝐼𝑃𝑡

𝜔 ≥ 𝑠 according to Equation (5.26) and Equation (5.27) 

is inactive. On the other hand, if 𝛥𝑡
𝜔 = 1, then Equation (5.26) is inactive and 𝐼𝑃𝑡

𝜔 ≤ 𝑠 according 

to Equation (5.27). If 𝛥𝑡
𝜔 = 1, then from Equations (5.28) and (5.29), 𝑄𝑡

𝜔 = 𝑆 − 𝐼𝑃𝑡
𝜔 and Equation 

(5.30) is inactive. On the other hand, if 𝛥𝑡
𝜔 = 0, then Equations (5.28) and (5.29) are inactive and 

Equation (5.30) forces 𝑄𝑡
𝜔 to take the value 0. The order up-to level (𝑆) must be greater than the 

reorder point (𝑠) at the hospital and is ensured by Equation (5.31). 

𝐼𝑃𝑡
𝜔 = 𝐼𝑃𝑅𝑡,2

𝜔 + 𝐼𝑃𝑅𝑡,3
𝜔 + ∑ 𝑄𝑡−𝑙𝑡

𝜔𝐿−1
𝑙𝑡=1    ∀𝑡, 𝜔      (5.25) 

𝐼𝑃𝑡
𝜔 ≥ 𝑠 − 𝑀𝛥𝑡

𝜔     ∀𝑡, 𝜔      (5.26)  

𝐼𝑃𝑡
𝜔 ≤ 𝑠 + 𝑀(1 − 𝛥𝑡

𝜔)    ∀𝑡, 𝜔      (5.27) 

𝑄𝑡
𝜔 ≤ (𝑆 − 𝐼𝑃𝑡

𝜔) + 𝑀(1 − 𝛥𝑡
𝜔)   ∀𝑡, 𝜔      (5.28) 

𝑄𝑡
𝜔 ≥ (𝑆 − 𝐼𝑃𝑡

𝜔) − 𝑀(1 − 𝛥𝑡
𝜔)   ∀𝑡, 𝜔      (5.29) 

𝑄𝑡
𝜔 ≤ 𝑀(𝛥𝑡

𝜔)      ∀𝑡, 𝜔      (5.30) 

𝑆 > 𝑠             (5.31) 

Non-negativity Constraint 

Constraints (5.32) – (5.34) represent non-negativity and binary restrictions in the model. 

𝑋𝑡
𝜔 , 𝑋𝑡,1

𝜔 , 𝑋𝑡,2
𝜔 , 𝑋𝑡,3

𝜔 , 𝑄𝑡
𝜔 , 𝐷𝑡,1

𝜔 , 𝐷𝑡,2
𝜔 , 𝐷𝑡,3

𝜔 , 𝑆𝐻𝑡
𝜔 , 𝐸𝑡

𝜔 , 𝐼𝑃𝑅𝑡,1
𝜔 , 𝐼𝑃𝑅𝑡,2

𝜔 , 𝐼𝑃𝑅𝑡,3
𝜔 , 𝐼𝑡,1

𝜔 , 𝐼𝑡,2
𝜔 , 𝐼𝑃𝑡

𝜔 ≥ 0  

        ∀𝑡, 𝜔     (5.32) 

𝑠, 𝑆 ≥ 0            (5.33) 

𝛿𝑡
𝜔, 𝛥𝑡

𝜔 ∈ (0,1)      ∀𝑡, 𝜔     (5.34) 

5.1.3. Computational Complexity of the stochastic programming models 

The stochastic programming models discussed in Sections 5.1.1 and 5.1.2 are coded using 

Microsoft Visual C++ 6.0 Professional and solved using IBM CPLEX®12.4.0.0 optimizer on a 

computer with 8GB RAM, Intel i5 2.50 GHz processor. The computational complexity of the 

stochastic programming models increases quickly as the number of platelet demand scenarios and 

the time horizon increase. For example, assuming t=30 days, review period of 1 day and lead time 

of 1 day, the maximum number of scenarios for which SP1 and SP2 models can run for the 

specified computer system are 35 and 42 respectively.  
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For 35 scenarios and 30-day planning horizon, the problem size is the following: 

Complexity measures SP1 SP2 

Total number of decision variables 12750, of which 1050 are 

binary variables 

22682, of which 2520 are 

binary 

Total number of constraints 7455 20203 

Solution time 60 minutes 60 minutes 

5.2 Heuristic Rules for Ordering Quantities 

As discussed in Section 5.1.3, the complexity of the stochastic programming models 

increases as the number of scenarios and time horizon increase. Moreover, the usage of stochastic 

programming models not only requires users to have a good knowledge of optimization models, 

but also skills to solve them. Therefore, four heuristic policies are developed for determining the 

platelet ordering policy without solving the stochastic programming models. The performance of 

these policies is compared against the optimal policies obtained by solving the stochastic 

programming models by CPLEX solver. The computation time of the heuristics will be minimal 

and the policies will also be easy to implement at the hospitals. 

5.2.1. Order-up-to-Level Policy 

This rule is based on the traditional periodic review, order-up-to level policy, under 

stochastic demand. In the order-up-to level policy, the inventory position is checked at the end of 

every review period (𝑅𝑃) and an order is placed to bring the level to 𝑆, i.e., the inventory position 

is raised to a constant value, 𝑆, by placing an order, 𝑄𝑡 =  𝑆 − 𝐼𝑃𝑡 where 𝐼𝑃𝑡 is the inventory 

position at the end of day 𝑡, where 𝑡 = 𝑅𝑃, 2𝑅𝑃, 3𝑅𝑃 etc (Ravindran and Warsing, 2013). 

Assuming that the daily demand follows a normal distribution with mean μD and standard 

deviation σD, 

• Mean demand during lead time plus review period = μDLTR = (𝐿 + 𝑅𝑃)μD 

• Standard deviation of the demand during lead time plus review period = σDLTR =

σD√𝐿 + 𝑅𝑃  

• 𝑆 = μDLTR + zSLσDLTR              (5.35)  

• Safety stock, 𝑆𝑆 = zSLσDLTR  

where zSL = 𝜙−1(𝑆𝐿), where 𝑆𝐿 is the service level (the expected in-stock probability of 

meeting platelet demand in each replenishment cycle), 𝜙 is the standard normal cumulative 

distribution function, and 𝐿 and 𝑅𝑃 are the lead time and review period respectively. 
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5.2.2. Modified Order-up-to-Level Policy 

In this rule, order-up-to-level policy is used considering the coefficient of demand variation 

(CV). CV is the ratio of the standard deviation to the mean of the demand during the lead time and 

the review period as given in Equation (5.36). The value of order-up-to level (𝑆’) is calculated as 

a multiple of the mean demand during lead time and review period (μDLTR) as given in Equation 

(5.37). 

𝐶𝑉 =
𝜎DLTR

μDLTR
 (5.36) 

𝑆’ = 𝑐 ∗ μDLTR (5.37) 

where 𝑐 is a positive value and is a function of the CV. 

In the base stock policy, if we set σDLTR =
(𝑐−1)μDLTR

zSL
, then from Equation (5.35), we get 

𝑆 = μDLTR + zSL
(𝑐−1)μDLTR

zSL
= 𝑐 ∗ μDLTR             

Therefore, the base stock policy becomes the modified base stock policy under this special 

case and there is no need to specify a service level criterion. If CV is low (i.e., less than 10%), then 

𝑐 takes the value 1 and when CV is high, then 𝑐 is varied and the value of 𝑐 that yields the least 

total operating cost is chosen. 

5.2.3. Weighted Mean-Variance Policy 

This rule is based on weighted moving average technique. The ordering policy is developed 

considering the weighted average of the platelet demand over several periods. The most recent 

demand is given the highest weight and the weights gradually decrease for older platelet demands. 

If the last 𝑛 weeks of demand are considered for determining the order policy and 𝑡 is the current 

day, then the weighted mean of the most recent demands, denoted by 𝜇𝑡, is computed using 

Equation (5.38). 

𝜇𝑡 = (
𝑢𝑛

7
) ∗ (𝑑𝑡−1 + 𝑑𝑡−2 + ⋯ + 𝑑𝑡−7) + (

𝑢𝑛−1

7
) ∗ (𝑑𝑡−8 + 𝑑𝑡−9 + ⋯ + 𝑑𝑡−14) + ⋯ + (

𝑢1

7
) ∗

(𝑑(𝑛−1)∗7+1 + 𝑑(𝑛−1)∗7+2 + ⋯ + 𝑑𝑛∗7)                    (5.38) 

𝑢𝑛 ≥ 𝑢𝑛−1 ≥ ⋯ ≥ 𝑢1 

𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 = 1 

In Equation (5.38), 𝑑𝑡 is the platelet demand on day 𝑡, 𝑢1 is the weights assigned to the 

oldest moving average, and 𝑢𝑛 is the weight assigned to the most recent moving average. The 

number of weeks for the moving average and their weights must be chosen by the decision maker 
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(DM). If the DM observes a trend in the demand data, then more weight can be given to the most 

recent demand. On the contrary, if the demand is stable, then 𝑢1 ≅ 𝑢2 ≅ ⋯ ≅ 𝑢𝑛−1 ≅ 𝑢𝑛. 

If  𝐿 and 𝑅𝑃 are the lead time and review periods respectively and 𝐼𝑃𝑡 is the inventory 

position at the end of day 𝑡 considering the outdated platelets units, then the units ordered to the 

blood center by the hospital at the end of day 𝑡 is given by Equation (5.39). 

𝑄𝑡 = (𝐿 + 𝑅𝑃)𝜇𝑡 + 𝑘√𝐿 + 𝑅𝑃𝜎𝑡 − 𝐼𝑃𝑡        (5.39) 

where 𝑘 is a positive integer and 𝜎𝑡
2 is the weighted variance of the past 𝑛 weeks’ demand, 

which is calculated using Equation (5.40). 

𝜎𝑡
2 = [(

𝑢𝑛

7
) ∗ (𝑑𝑡−1

2 + 𝑑𝑡−2
2 + ⋯ + 𝑑𝑡−7

2 ) + (
𝑢𝑛−1

7
) ∗ (𝑑𝑡−8

2 + 𝑑𝑡−9
2 + ⋯ + 𝑑𝑡−14

2 ) + ⋯ +

(
𝑢1

7
) ∗ (𝑑(𝑛−1)∗7+1

2 + 𝑑(𝑛−1)∗7+2
2 + ⋯ + 𝑑𝑛∗7

2 )] − 𝜇𝑡
2       (5.40) 

5.2.4. Last Value Policy 

This policy is based on the concept of last value method for forecasting. Under this ordering 

policy, the total units ordered at the end of day 𝑡 will be equal to the sum of the demand during 

day 𝑡 and the prior demands during lead time plus review period. Therefore, the total units ordered 

by the hospital at the end of day 𝑡 is given by Equation (5.41). 

𝑄𝑡 = ∑ 𝑑𝑖
𝑡
𝑖=𝑡−(𝐿𝑇+𝑅𝑃)   (5.41) 

For example, if LT = RP = 1, then 𝑄𝑡 = 𝑑𝑡 + 𝑑𝑡−1 + 𝑑𝑡−2 

The main advantage of the weighted mean-variance and last value policies is that they take 

into consideration increases in platelet demand over time. It has been reported that there has been 

an increase of nearly 4% of blood demand each year (Borkent‐Raven et al., 2010). Therefore, it is 

expected that developing ordering policies considering the trend in demand will result in less 

shortage. 

5.3. Results and Analysis 

The stochastic programming models are coded using C++ and solved using IBM 

CPLEX®12.4.0.0 optimizer on a computer with 8GB RAM, Intel i5 2.50 GHz processor. The four 

heuristic ordering policies are coded in Microsoft Visual C++ 6.0 Professional. To illustrate the 

performance of the proposed stochastic programming and heuristic models, five performance 

measures are considered; Units Held in Inventory, Units Shortage, Units Outdated, and Expected 

Total Cost. The ordering policies, obtained by the two stochastic programming models and the 

four heuristic rules, are compared for the same demand patterns using real data for platelet demand. 
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5.3.1. Input Data 

In this section, the data used for illustrating the stochastic programming and heuristic 

models are discussed. 

Demand Distribution 

The daily platelet demand data reported by Tetteh (2008) for a New York hospital for 122 

days is fitted to a probability distribution and for each day, platelet demand is generated from that 

distribution. The parameters of the daily demand follow a normal distribution with mean 200 and 

standard deviation 32.  

Shelf life of Arriving Platelets 

Based on our interaction with the pathologist and technicians at a Regional Medical Center 

(RMC) in Pennsylvania, USA, we found that hospitals receive platelets with varying shelf life. 

Hence, we collected data for 72 days of incoming platelet at the RMC and obtained the distribution 

of the shelf life of arriving platelets as given in Table 5.1. 

Table 5.1: Distribution of Shelf Life of Arriving Platelets 

Shelf life (𝑖) Probability that an arriving platelet has a shelf life of 𝑖 days 

1 0.3 

2 0.2 

3 0.5 

(Note: Platelet with shelf life of 3 days are fresh and the youngest) 

In most medical centers, the inventory position is reviewed at the end of each day and 

orders are placed to the blood center in the evening daily and received at the beginning of the next 

day. Therefore, the lead time (𝐿) is assumed to be 1 day and the review period (𝑅𝑃) is also 1 day. 

However, the decision maker can vary the lead time and review period in the models depending 

upon the hospital’s ordering practice. When 𝑅𝑃 = 1, the order-up-to-level policy is known as the 

base stock policy in the literature. Hence, we will refer to Policies 1 and 2 as Base Stock and 

Modified Base Stock Policies respectively in this section. 

Cost Settings 

Most of the cost parameters (fixed cost and variable purchasing cost) are obtained from the 

RMC at Pennsylvania, USA. The inventory holding cost (IHC) is calculated based on the cost of 

storing platelets in the agitator and the electricity cost. However, IHC must include the working 

capital tied up in inventory because, platelets are very expensive. Therefore, in this Chapter, IHC 

is taken as 20% of the purchasing cost. The shortage is considered five times the variable 
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purchasing cost and outdating costs is taken as the purchasing cost based on the ratios given in the 

literature (Hill, 2011; Haijema, 2013). Table 5.2 summarizes the cost data used for the analysis. 

Table 5.2: Cost Parameters 

Cost Parameter Value Units 

Fixed Cost of Procurement (FCP) 225 $/shipment 

Inventory Holding Cost (IHC) 130 $/unit/day 

Variable Purchasing Cost (VPC) 650 $/unit 

Shortage Cost (SC) 3250 $/unit 

Outdating Cost (OC) 650 $/unit 

  

Heuristic Input Parameters 

The input parameters for each heuristic ordering policy are varied and the parameter values 

that result in the least expected total cost for the base setting is given in Table 5.3. Also, it is to be 

noted that the platelet demand data under consideration is observed to be stable and the variation 

of weights did not significantly impact the performance measures. Therefore, in the weighted 

mean-variance method, equal weights are chosen. 

Table 5.3: Heuristic Input Parameters 

Parameter Policy Value 

Service Level (𝑆𝐿) Base stock policy 99% 

𝑐 Modified base stock policy 18.75 

𝑛 Weighted mean-variance policy 4 

𝑢1 = 𝑢2 = ⋯ = 𝑢𝑛−1 = 𝑢𝑛 Weighted mean-variance policy 
1

4
 

𝑘 Weighted mean-variance policy 3 

Lead Time (𝐿) All policies 1 day 

Review Period (𝑅𝑃) All policies 1 day 

 

5.3.2. Comparison of the Stochastic Programming Models and Heuristic Methods  

As discussed in Section 5.1.3, the stochastic programming models were able to run 

efficiently upto 35 scenarios for a time horizon of 30 days. For the same 35 demand scenarios, the 

expected units ordered under the stochastic programming models (SP1 and SP2) and the four 

heuristic policies (base stock (BS), modified base stock (MBS), weighted mean-variance (WMV) 

and last value method (LVM)) for each day are obtained, and the results are compared in Table 

5.4. Each demand scenario is considered to be equally likely in the stochastic programming 
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models. For the heuristic methods, each order policy is simulated for 30 days using the same 

demand scenarios. The expected values of the performance measures are computed assuming again 

that each demand scenario is equally likely. However, the probability of occurrence of each 

demand scenario can be varied based on the decision maker’s preference and the expected 

performance measures can be computed accordingly.  

Table 5.4: Comparison of Ordering Policies across Stochastic Programming and Heuristic 

Models (time horizon T=30 days and demand scenarios ω=35) 

Policy 
Days 

1 2 3 4 5 6 7 8 9 10 

SP1 202 230 230 240 210 220 230 180 200 220 

SP2 203 226 250 215 200 200 198 209 203 210 

BS 201 226 200 203 202 206 203 208 203 209 

MBS 201 229 200 204 202 206 203 208 203 209 

WMV 204 218 199 197 207 204 194 199 204 195 

LVM 201 202 199 202 201 204 202 207 201 208 

 11 12 13 14 15 16 17 18 19 20 

SP1 210 200 220 180 210 200 210 240 200 180 

SP2 200 205 199 203 199 208 197 203 204 204 

BS 204 205 198 200 203 208 199 200 195 203 

MBS 204 205 198 200 203 208 199 200 195 203 

WMV 205 206 202 201 200 213 205 205 201 198 

LVM 202 204 197 198 201 206 198 198 194 201 

 21 22 23 24 25 26 27 28 29 30 

SP1 230 190 220 220 200 210 200 200 220 - 

SP2 195 214 199 204 209 201 199 211 189 - 

BS 201 199 197 211 211 202 199 209 194 - 

MBS 201 199 197 211 211 202 199 209 194 - 

WMV 189 200 198 202 198 195 200 205 208 - 

LVM 199 198 196 210 210 201 198 208 192 - 

 

From Table 5.4, it can be seen that the platelets are ordered daily, and their values are 

around the mean demand of 200 units. The units ordered under SP1 is more than those of SP2 for 

nearly 70% of the days, because the units purchased under SP1 remains the same across all the 

scenarios and the solver tries to order units such that the shortages across all the scenarios are 

minimized. However, for all the other methods, the units purchased vary by scenario. It can also 

be observed that the average units ordered per scenario is almost the same for the base stock and 

modified base stock policies. Since the finite time horizon period is only for 30 days, no units are 

ordered at the end of 30th day to avoid purchasing cost. 
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The average values of the performance measures, using the stochastic programming 

models (SP1 and SP2) and the four heuristic approaches, are given in Table 5.5, including the total 

“cost-gaps” from the optimal policies of SP1 and SP2. If 𝑃𝑀𝑚,𝑡
𝜔  is the value of the performance 

measure 𝑚, on day 𝑡, under scenario 𝜔, then the average performance measure, 𝐴𝑃𝑀𝑚, is 

computed using Equation (5.42). 

Average value of the performance measure 𝑚, 𝐴𝑃𝑀𝑚 = ∑ ∑
𝑃𝑀𝑚,𝑡

𝜔

Ω∗𝑇

𝑇
𝑡=1

Ω
𝜔=1 , ∀𝑚   (5.42) 

Table 5.5: Average Values of Performance Measures for Stochastic Programming and Heuristic 

Policies (Ω=35, T=30) 

Policy 

Average Performance Measures 

Units 

Shortage 

Units 

Outdated 

Inventory 

Units 

Units 

Purchased 

Total Cost 

($) 

Gap from 

SP1 

Gap from 

SP2 

SP1 0 9 48 205 $141,969 - 6.22% 

SP2 1 2 68 185 $133,656 -5.86% - 

BS 8 3 316 201 $174,204 22.71% 30.34% 

MBS 1 1 316 203 $174,089 22.62% 30.25% 

WMV 0 1 292 198 $167,572 18.03% 25.38% 

LVM 1 2 316 202 $173,950 22.53% 30.15% 

 

Table 5.5 gives the comparison of the performance measures using SP1, SP2 and the four 

heuristic policies. It can be observed that the units purchased is more under SP1 resulting in more 

outdating. Shortage is more under SP2 because fewer units are purchased. The total expected cost 

of SP2 is less than that of SP1 by more than 6%. In other words, (𝑠, 𝑆) policy gives the lowest 

expected total cost! After evaluating the four heuristics, we found that for small sized problems, 

weighted mean-variance policy performs the best overall. In the weighted mean-variance policy, 

the units outdated and the shortage are the least; in fact, even lower than those obtained using the 

stochastic programming models. This can be explained by the fact that the objectives of the 

stochastic programming models are to minimize the expected total cost. Hence, it is not necessary 

that each performance measure obtained must be the least. 

5.3.3. Comparison of Heuristic Ordering Policies for Larger Problems 

To further study the effectiveness of the four heuristic rules, they are simulated for larger 

problems with 100 demand scenarios and a time horizon of 500 days. The average values of the 

daily performance measures of each ordering policy is presented in Table 5.6. From Table 5.6, it 
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can be seen that no single policy is superior across all performance measures. For example, units 

held in inventory, units purchased and total cost using last value policy are less compared to those 

of the base stock policy; however, units shortage and units outdated are more compared to the base 

stock policy. It is to be noted that the weighted mean-variance policy performs the best for the 

expected total cost measure for both small and large-sized problems. Also, modified base stock 

rule performs the best for units shortage measure. Hence, the decision maker (DM) has to look at 

the tradeoff among the measures and choose the rule that works best for the hospital. For example, 

if the hospital’s highest priority is to minimize the total operating cost, then weighted mean-

variance policy should be used. On the other hand, last value policy works best if minimizing 

inventory is given the highest priority. 

Table 5.6: Average Values of Performance Measures for Larger Problems (Ω=100, T=500) 

Policy 

Average Performance Measures 

Units 

Shortage 

Units 

Outdated 

Inventory 

Units 

Units 

Purchased 

Total 

Cost ($) 

Base Stock (BS) 0.11 0.07 273 207 $170,561 

Modified Base Stock (MBS) 0.04 0.09 299 201 $169,913 

Weighted Mean-Variance (WMV) 0.07 0.10 290 201 $168,568 

Last Value Method (LVM) 1.42 0.13 252 202 $168,718 

5.4. Sensitivity Analysis 

Sensitivity analysis is performed to evaluate the effectiveness of the heuristic rules due to 

changes in the input data. Coefficient of variation of demand, the shelf life of arriving platelets 

and cost settings are varied from those used in the base setting (Tables 5.1, 5.2 and 5.3 in Section 

5.3.1). 

5.4.1. Change in Coefficient of Variation (CV) of Demand 

Figure 5.1 shows the change in units purchased when the coefficient of variation increases. 

The units purchased increases significantly under the base stock and weighted mean-variance 

policy, because, the variation in the demand is captured to a greater extent, while determining the 

order policy. The change in the units purchased, as CV increases, is insignificant for modified base 

stock and last value policies. The impact of CV on units held in inventory is given in Figure 5.2. 

Due to the increase in the number of units purchased with the increase in CV, the units in inventory 

increase significantly for base-stock and weighted mean-variance policies. It can also be observed 
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that the performance of weighted mean-variance policy decreases with the increase in CV. When 

the CV is less than 30%, the average units held in inventory is least under last value policy and 

becomes the second best performer when CV is greater than 30%. 

 

Figure 5.1: Impact of CV on Platelets Purchased 

 

Figure 5.2: Impact of CV on Platelets Held in Inventory 

Figure 5.3 shows the units outdated for various rules, as a function of CV. The units 

outdated increases for all the rules as CV increases. As CV increases, the variation in the platelet 

demand increases and due to the short shelf life of platelets, more units are outdated. Due to the 

significant increase in the units purchased under the base stock and weighted mean-variance 

policies, the average number of units outdated is more for these rules compared to the other 

policies. The units shortage for all the rules due to change in CV are given in Figure 5.4. The units 
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shortage is less for base stock and weighted mean-variance policies, and the increase in units 

shortage with the increase in CV is also very insignificant. This happens because the excess units 

purchased under these rules compensates for the units outdated and still achieve a high service 

level. All the other rules incur more shortages as CV increases. 

 

Figure 5.3: Impact of CV on Platelets Outdated 

 

Figure 5.4: Impact of CV on Platelets Shortage 

Based on the expected daily cost shown in Figure 5.5, it is evident that the total cost 

increases as the CV increases for all cost settings, due to the increase in shortage and outdating. 

Last value policy performs the second best across all CV change. When CV is 10% and 20%, 

weighted mean-variance policy performs the best for cost performance measure and when CV is 

30%, 40% and 50%, modified base stock policy performs the best. In other words, if hospital’s 
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demand pattern indicates a low variation in demand, then the hospital may use weighted mean-

variance policy and when the variation is high, the modified base stock policy performs the best. 

 

Figure 5.5: Impact of CV on the Expected Total Cost 

5.4.2. Changes in the Shelf life of Arriving Platelets 

Seven-shelf life settings, given in Table 5.7, are used to evaluate the heuristic rules. SL1 is 

the base setting given in Table 5.1. In shelf life settings 1 and 2 (SL1 and SL2), 50% of the 

incoming platelets are fresh and hence, less outdating is expected. In shelf life settings 2 and 3 

(SL2 and SL3), more than 80% of the arriving platelets have a remaining life of 2 or 3 days. In 

shelf life settings 5 and 6 (SL5 and SL6), 50% of the arriving platelets have a remaining life of 1 

day only and hence, more outdating is expected in these two scenarios. Shelf life setting 7 (SL7) 

indicates that all the platelets received are fresh. We shall discuss the impact of the shelf life 

settings on the performance measures. 

Table 5.7: Shelf Life Settings 

Shelf life 

setting 

Probability of platelets 

arriving with a shelf life 

of 1 day 

Probability of platelets 

arriving with a shelf life 

of 2 days 

Probability of platelets 

arriving platelets with a 

shelf life of 3 days 

SL1 (Base) 0.3 0.2 0.5 

SL2 0.2 0.3 0.5 

SL3 0.2 0.5 0.3 

SL4 0.3 0.5 0.2 

SL5 0.5 0.2 0.3 

SL6 0.5 0.3 0.2 

SL7 0 0 1 
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The average daily units purchased for the various shelf life settings is almost the same 

across all the shelf life settings. This is because, when calculating the order quantity at the end of 

each day, only the inventory position, mean and the standard deviation of the demand, are 

considered and they do not take into account the probability of shelf life of incoming platelets. 

Figure 5.6 shows the units held in inventory for the various shelf life settings. For all the rules, the 

units held in inventory is the highest for SL7 compared to other settings. This is because, in SL7, 

all units arriving at the hospital are fresh and hence platelet outdating is less and more units are 

held in inventory. The total units held in inventory under SL3 is greater than SL4 because 30% of 

the platelets arriving are fresh in the former setting. Even though in both SL5 and SL6, 50% of the 

arriving platelets have a remaining life of 1 day, SL5 has more units held in inventory for all the 

settings due to less outdating and also because 30% of platelets arriving are fresh in SL5. In 

addition, it is noted that in most cases the total units held in inventory for each setting is the least 

for the last value rule, followed by the base stock rule. 

 

Figure 5.6: Change in Platelet Inventory for Various Shelf Life Settings 

Figure 5.7 shows the impact of the shelf life of platelets on units outdated. For setting SL1, 

the units outdated is greater than those of SL2 since, in the former setting, 30% of the arriving 

platelets have a remaining shelf life of 1 day. In setting SL3, 70% of the arriving platelets have a 

shelf life of 2 days or less and hence, there is more outdating in SL3 than SL2. In SL4, 80% of the 

arriving platelets have a shelf life of 2 days or less leading to a greater wastage compared to SL3. 

A similar explanation can be given to justify why more units are outdated in SL6 compared to 

SL5. Outdating is the least for SL7 since all the platelets arriving are fresh. Outdated is the highest 
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for SL6 because 80% of the arriving platelets are not fresh. We can see that the base stock rule 

performs the best in most settings for this performance measure. 

 

Figure 5.7: Change in Platelet Outdated for Various Shelf Life Settings 

 

Figure 5.8: Change in Platelet Shortage for Various Shelf Life Settings 

Figure 5.8 shows platelet shortages under various shelf life settings for the four rules. For 

all the rules, the shortage is the least for SL7, since more platelets are held in inventory, which 

leads to an increase in the demand fulfillment rate. Shortages in SL1 is more than SL2 across all 
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the rules because, in the latter setting, relatively fresh platelets are arriving at the hospitals and 

hence, it can fulfill the demand for more days compared to the fulfillment rate of the former. For 

the same reason, the total units short under SL3 is less than that under SL4. Since the units held in 

inventory for SL5 is more than SL6, the total units short is less for SL5. For most cases, modified 

base stock rule yields the least shortage compared to other policies. 

Figure 5.9 shows the daily expected total cost obtained for the 4 heuristic policies. The 

total cost under SL4 is greater than that of SL3, since the units outdated and short are more in the 

former. The total cost is more under SL6 than that of SL5 for a similar reason. Even though there 

is less outdating and shortage under SL7, due to the excess units held in inventory, it does not 

guarantee the lowest total cost across the different shelf life settings. In settings SL1 (base setting), 

weighted mean-variance policy performs the best. From Figure 5.9, it can be concluded that if 80% 

of the arriving platelets have a shelf life of 2 or more days, then modified base stock rule performs 

best. For all the other settings, base stock policy performs the best. Therefore, the decision maker 

can choose a rule based on the pattern of the shelf life of incoming platelets. 

 

Figure 5.9: Change in the Expected Cost for Various Shelf Life Settings 

5.4.3. Changes in Cost Settings 

Table 5.8 summarizes the six cost settings used for comparing the 4 policies. Cost setting 

1 (CS1) is the base setting for the cost parameters used in Section 5.3.1 (Table 5.2). The other 5 

cost settings represent doubling of the values of fixed cost of procurement (FCP), inventory 
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one at a time, compared to CS1 respectively. Thus, in each cost setting, only one of the cost 

parameters is doubled, while the others are maintained at their base values. 

Table 5.8: Cost Settings 

Setting 
FCP 

($/shipment) 

IHC 

($/unit/day) 
VPC ($/unit) SC ($/unit) OC ($/unit) 

CS1 (Base) 225 130 650 3250 650 

CS2 450 130 650 3250 650 

CS3 225 260 650 3250 650 

CS4 225 130 1300 3250 650 

CS5 225 130 650 6500 650 

CS6 225 130 650 3250 1300 

Table 5.9 details the daily expected total cost for various cost settings. For CS2, CS5 and 

CS6, the expected cost is not substantially different from that obtained under the base setting 

(CS1). In all cost settings, except for CS3, weighted mean-variance policy performs the best. As 

observed from the previous analyses, it is evident that the last value method results in reduced 

inventory and in CS3, when inventory holding cost is twice the base setting inventory cost, the last 

value method performs the best. In general, we can also see that the weighted mean-variance rule 

performs better than modified base stock but the differences are quite small. 

Table 5.9: Impact of Cost Settings on Daily Expected Cost 

Cost 

Setting 

Base Stock 

Policy 

Modified Base 

Stock Policy 

Weighted Mean-

Variance Policy 

Last Value 

Policy 
Best Policy 

CS1 

(Base) 
$170,561 $169,913 $168,568 $168,718 

Weighted Mean-

Variance 

CS2 $170,786 $170,138 $168,793 $168,943 
Weighted Mean-

Variance 

CS3 $206,005 $208,732 $206,228 $201,475 
Last Value 

Method 

CS4 $305,034 $300,595 $298,972 $299,740 
Weighted Mean-

Variance 

CS5 $170,933 $170,045 $168,786 $173,347 
Weighted Mean-

Variance 

CS6 $170,608 $169,970 $168,630 $168,805 
Weighted Mean-

Variance 

In the base setting, the units purchased and total cost are the least under weighted mean-

variance method, while, the shortage is the least under the modified base stock policy and units 

outdating is the least under the base stock policy (see Table 5.6). Therefore, the cost per unit for 



80 

 

shortage and outdating are varied to find the threshold values at which these policies outperform 

the weighted mean-variance method. When the shortage cost is set 17 times the base shortage cost, 

then the modified base stock policy yields a less total cost compared to that under the weighted 

mean-variance method. Similarly, when the outdating cost is set 200 times the base outdating cost, 

then the base stock policy performs better than the weighted mean-variance method. This clearly 

indicates that the performance of weighted mean-variance method is good. 

5.5 Managerial Implications 

The stochastic programming models proposed in this Chapter will determine the optimal 

solutions leading to less wastage and shortage. However, their implementations at the hospitals 

require higher knowledge and skills of the hospital staff. In addition, the computational complexity 

of the stochastic programming models increases with the increase in time horizon and scenarios. 

On the other hand, heuristic methods produce near optimal ordering policies in minimal time. 

Unlike the stochastic programming models that require an optimization software for obtaining a 

solution, such as, CPLEX to solve complex problems with large variables, the heuristic policies 

proposed in this study can be coded in an Excel® spread sheet.  

An implementation guide to the heuristic policies for hospital use is presented in Table 

5.10. The weighted-mean variance (WMV) policy requires the collection of several weeks of 

demand and the order quantity must be constantly updated with the most recent demand data. Also, 

explaining the method to compute the order quantity and weights for each daily demand, makes 

this policy difficult to implement.  Under the base stock (BS) and modified base stock (MBS) 

policies, the hospital administrator needs to know only the order-up-to level 𝑆. The value of 𝑆 

remains the same as long as the underlying demand distribution is the same. The optimization 

model for computing 𝑆 does not require staff expertise. Also, the model has to be solved only once 

to determine the order-up-to level. However, the computation of the value of 𝑆 requires several 

months of data to determine the underlying demand distribution. On the contrary, the last value 

method (LVM) only requires prior demand data covering the lead time and review period. The 

data requirement of the WMV policy is in between the base stock and LVM policies. 
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Table 5.10: Guide to the Ordering Policies for Hospital Implementation 

Criteria BS MBS WMV LVM 

Effort Low Low High Medium 

Implementation Easy Easy Difficult Medium 

Data required Large Large Medium Small 

Staff Expertise Low Low Medium Medium 

 

Other Managerial Guidelines 

Based on the hospital setting, the hospital administrator can decide the appropriate ordering 

policy that best suits the hospital. We list the following suggestions for the various hospital 

settings. 

• If the demand increases or decreases over time (i.e., if the observed demand has a trend), then 

the hospital may use the weighted mean-variance or last value ordering policies. 

• If the hospital experiences low demand variation, then the weighted mean-variance policy is 

better. For high demand variation, modified base stock policy is the best performing rule. 

• If the blood center is located far away from the hospital, then the cost of emergency 

procurement (i.e., shortage) would be very high. In such cases, base stock or modified base 

stock ordering policies would be better. 

• If the hospital has limited storage capacity, then it would like to minimize the number of units 

held in inventory. Hence, last value policy will be the most suitable. 

• If more than 80% of the platelets arriving at the hospital are fresh (i.e., have a shelf life of 2 or 

3 days), then the modified base stock policy should be adopted. 
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Chapter 6 : Stochastic Inventory Models for Blood Supply Chain 

In this chapter, the stochastic programming model using the (𝑠, 𝑆) periodic review policy 

for hospital inventory management, which was discussed in Chapter 5, is extended to the entire 

blood supply chain. The formulation of the blood supply chain inventory management problem, 

with 𝐽 hospitals and one blood center, as a stochastic programming model, is discussed in Section 

6.1. Due to the computational complexity of the model with the increase in the number of scenarios 

and time horizon, a new genetic algorithm, called modified stochastic genetic algorithm (MSGA) 

is proposed for larger problems and is discussed in Section 6.2. For smaller problems, the 

performance of the proposed MSGA is compared with the optimal solution obtained by solving 

the stochastic programming model directly. This is discussed in Section 6.3.4. For larger problems, 

the proposed MSGA is also compared against the existing genetic algorithm in the literature and 

the results are discussed in Section 6.3.5. The coefficient of variation of demand and cost 

parameters are varied as a part of a sensitivity analysis. Their impacts are analyzed on the 

performance measures and the best order policy is identified for each supply chain stage. The 

results are presented in Section 6.4 and Conclusions are presented in Section 6.5.  

6.1. Stochastic Integer Programming Model using (𝒔, 𝑺) Policy for Blood Supply Chain 

A blood supply chain configuration with one blood center and 𝐽 hospitals is given in Figure 

6.1. According to the HIPPA regulations, each hospital can receive blood only from a designated 

blood center and cannot share or procure blood from other hospitals. 

 

 

 

 

 

 

Figure 6.1: Blood Supply Chain with One Blood Center and J Hospitals 
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6.1.1. Demand Fulfillment at the Blood Center and Hospitals 

Demand Fulfillment at the Blood Center on day 𝒕 (Review period = 1 day) 

• Begin with inventory of platelets with one-day and two-day shelf lives. 

• Replenish inventory with new platelets arriving from the component lab with three-day 

shelf life. 

• Receive regular demand from all the hospitals. 

• Satisfy hospital demands in the following order: 

 Ship platelets to hospital 𝑗 with one-day shelf life first provided hospital 𝑗’s lead 

time is 0 days. 

 Next, ship platelets to hospital 𝑗 with two-day shelf life (if necessary) provided 

hospital 𝑗’s lead time is 0 or 1 day. 

 Finally, ship platelets to hospital 𝑗 with three-day shelf life (if necessary). 

• Receive emergency demand from all hospitals 

 Ship platelets to all hospitals placing emergency demand with one-day shelf life 

first, followed by two-day and three-day shelf life platelets if necessary. 

• Review inventory at the end of the day and place orders for new platelets following (𝑠, 𝑆) 

order policy. 

Demand Fulfillment at the Hospital on day 𝒕 (Review period = 1 day) 

• Begin with inventory of platelets with one-day and two-day shelf lives 

• Receive platelets from blood center with 1-, 2- and 3-day shelf lives 

• Receive platelet demand 

• Satisfy platelet demand at the hospital in the following order: 

 Use platelets with one-day shelf life first 

 If insufficient, use two-day shelf life next 

 Finally, 3-day shelf life 

• Review inventory at the end of the day and place orders for new platelets following (𝑠, 𝑆) 

order policy. 
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6.1.2. Model Notations 

Model Parameters (known data) 

𝑖 Index for shelf life of platelets (𝑖=1,2,3) 

𝑗 Index for hospital 

𝜔  Index for scenarios (platelet demand patterns) 

𝑡 Index for day 

𝐽  Total number of hospitals (i.e., 𝑗=1, 2, 3, …, 𝐽) 

Ω  Total number of scenarios (i.e., 𝜔=1, 2, 3, …, Ω) 

𝑇 Time horizon in days (i.e., 𝑡=1, 2, 3, …, 𝑇) 

𝑇𝐶𝐵𝑆𝐶  Expected total cost incurred for the entire blood supply chain across the finite 

time horizon for all scenarios 

𝑝𝜔  Probability of occurrence of scenario 𝜔 

Model Parameters associated with Hospital 𝒋 

𝑐𝐻𝑗
𝑓

 Fixed cost of procuring platelets at hospital 𝑗 ($/shipment) 

𝑐𝐻𝑗
𝑝

 Platelet purchasing cost incurred by hospital 𝑗 ($/unit) 

𝑐𝐻𝑗
ℎ  Inventory holding cost of platelets at hospital 𝑗 ($/unit/day)  

𝑐𝐻𝑗
𝑒𝑥  Cost of expired platelet at hospital 𝑗 ($/unit) 

𝑐𝐻𝑗
𝑠ℎ  Shortage cost at hospital 𝑗 ($/unit) (Note: This is the cost of procuring one unit 

of platelet through emergency shipment from the blood center) 

𝑑𝑗,𝑡
𝜔  Platelet demand at hospital 𝑗 for day 𝑡 under scenario 𝜔 (units) 

𝐿𝑇𝐻𝑗 Procurement lead time at hospital 𝑗 (days). This is the time between placing 

platelet orders to the blood center and receiving them. (Note: 𝐿𝑇𝐻𝑗 = 0,1 or 

2 only) 

𝑅𝐻𝑗  Review period at hospital 𝑗 (days) 

𝑖𝑛𝑗
𝑖 Initial inventory with shelf life of 𝑖 days for day 1 at hospital 𝑗 

Model Parameters associated with the Blood Center 

𝑐𝐵𝐶𝑓  Fixed cost of procuring platelets at the blood center ($/shipment) 

𝑐𝐵𝐶𝑝 Platelet withdrawal and testing cost incurred by the blood center ($/unit) 
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𝑐𝐵𝐶ℎ Inventory holding cost of platelet at the blood center ($/unit/day)  

𝑐𝐵𝐶𝑒𝑥 Cost of expired platelet at the blood center ($/unit) 

𝑐𝐵𝐶𝑠ℎ Shortage cost ($/unit) (Note: This is the cost of procuring one unit of platelet 

through emergency shipment from other blood centers) 

𝐿𝑇𝐵𝐶 Procurement lead time at the blood center (days). 𝐿𝑇𝐵𝐶 = Time between 

placing platelet orders and receiving fresh platelets. It includes blood 

collection time plus testing time of 2 days. 

𝑅𝐵𝐶 Review period at the blood center (days) 

𝑖𝑛𝐵𝐶𝑖 Initial inventory with shelf life of 𝑖 days for day 1 at the blood center 

Key Decision Variables (unknown) 

Decision Variables associated with Hospital 𝒋 

𝑄𝐻𝑗,𝑡
𝜔  Quantity of platelet units ordered at the end of day 𝑡, under scenario 𝜔, by hospital 

𝑗 

𝑋𝐻𝑗,𝑡,𝑖
𝜔  Platelet units received by hospital 𝑗 from the blood center, at the beginning of day 

𝑡, with a shelf life of 𝑖 days, in scenario 𝜔 (note: maximum remaining shelf life of 

the arriving platelets is 3 days) (𝑖=1,2,3) 

𝐼𝐻𝑗,𝑡,𝑖
𝜔  On-hand inventory of platelets at the beginning of day 𝑡, with shelf life of 𝑖 days 

(𝑖 = 1,2), under scenario 𝜔, at hospital 𝑗. Note: Since platelets have a maximum 

shelf life of 3 days when they arrive at the hospital, the on-hand inventory at the 

beginning of day 𝑡 (carried over from day 𝑡 − 1) can have a maximum of 2 days 

shelf life. 

𝑆𝐻𝐻𝑗,𝑡
𝜔  Number of platelet units shortage at the end of day 𝑡, under scenario 𝜔, at hospital 

𝑗 (these are procured through emergency shipment by the hospital from the blood 

center) 

𝐸𝐻𝑗,𝑡
𝜔  Number of platelet units outdated (expired) at the end of day 𝑡, under scenario 𝜔, 

at hospital 𝑗 

𝐼𝑃𝐻𝑗,𝑡
𝜔  Inventory position at the end of day 𝑡, in scenario 𝜔, at hospital 𝑗 

𝑠𝐻𝑗 Re-order point at hospital 𝑗 
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𝑆𝐻𝑗  Order-up-to-level at hospital 𝑗 

𝛥𝐻𝑗,𝑡
𝜔  

1 if 𝐼𝑃𝐻𝑗,𝑡
𝜔 ≤ 𝑠𝐻𝑗 (i.e., 𝛥𝐻𝑗,𝑡

𝜔 = 1 if platelet units are ordered by hospital 𝑗 to the 

blood center on day 𝑡 under scenario 𝜔) 

0 otherwise             

Key Decision Variables associated with the Blood Center 

𝑄𝐵𝐶𝑡
𝜔 Quantity of units ordered by the blood center to the blood drives at the end of day 

𝑡, under scenario 𝜔. These units will be available at the blood center at the beginning 

of day 𝑡 + 𝐿𝑇𝐵𝐶 (where 𝐿𝑇𝐵𝐶 is the lead time at the blood center which is the total 

time taken for blood collection and testing procedures) 

𝑋𝐵𝐶𝑡
𝜔 Total platelet units arriving at the blood center from the component lab after 

completing the testing procedure at the beginning of day 𝑡, in scenario 𝜔 (Note: All 

platelets arriving at the blood center will be fresh and have a remaining life of 3 

days) 

𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔  Platelets with shelf life of 𝑖 days, shipped to hospital 𝑗, on day 𝑡 (𝑖 =1,2,3) 

𝐼𝐵𝐶𝑡,𝑖
𝜔  On-hand inventory at the beginning of day 𝑡, with shelf life of 𝑖 days, under scenario 

𝜔, at the blood center (𝑖 = 1,2). Note: Since platelets have a maximum shelf life of 

3 days, on-hand inventory at the beginning of day 𝑡 (carried over from day 𝑡 − 1) 

can have a maximum of 2 days shelf life. 

𝑆𝐻𝐵𝐶𝑡
𝜔  Total Shortage incurred by the blood center at the end of day 𝑡, under scenario 𝜔, 

due to the sum of regular and emergency demands placed by the hospitals to the 

blood center 

𝐸𝐵𝐶𝑡
𝜔 Number of platelet units outdated (expired) at the end of day 𝑡, under scenario 𝜔, 

at the blood center 

𝐼𝑃𝐵𝐶𝑡
𝜔 Inventory position at the end of day 𝑡, under scenario 𝜔 at the blood center 

𝑠𝐵𝐶 Re-order point at the blood center 

𝑆𝐵𝐶 Order-up-to level at the blood center 

𝛥𝐵𝐶𝑡
𝜔 

1if 𝐼𝑃𝐵𝐶𝑡
𝜔 ≤ 𝑠𝐵𝐶 

0 otherwise 
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6.1.3. Sequence of Daily Events at the Hospitals and Blood Center 

Sequence of daily events at hospital 𝑗, for scenario 𝜔, day 𝑡: (Refer to Figure 6.2 also) 

1. At the beginning of day 𝑡, hospital 𝑗 receives platelet units, 𝑋𝐻𝑗,𝑡,𝑖
𝜔 , with shelf life of 𝑖 days, 

from the blood center. This was shipped from the blood center on day 𝑡 − 𝐿𝑇𝐻𝑗.  

2. Hospital receives platelet demand, 𝑑𝑗,𝑡
𝜔 , on day 𝑡. 

3. If the demand at hospital 𝑗 is greater than the total on-hand inventory (𝐼𝐻𝑗,𝑡,1
𝜔 + 𝐼𝐻𝑗,𝑡,2

𝜔 +

𝑋𝐻𝑗,𝑡,1
𝜔 + 𝑋𝐻𝑗,𝑡,2

𝜔 + 𝑋𝐻𝑗,𝑡,3
𝜔 ), then the demand is partially fulfilled with the available on-hand 

inventory and the on-hand inventory is updated to 0. Shortages of 𝑆𝐻𝐻𝑗,𝑡
𝜔  units will be “special 

ordered” from the blood center and will be fulfilled by the blood center immediately. However, 

the hospital will incur a high cost for the emergency procurement. 

4. If the demand at hospital 𝑗 is less than the on-hand inventory, then the unutilized platelet units 

with a shelf life of 1 day are thrown away at the end of the day and incur an outdating cost. 

The remaining platelets (after discarding the outdated units) are carried over to the next day 

and the on-hand inventory is updated. 

5. At the end of day 𝑡(𝑡 = 𝑅𝐻𝑗 , 2𝑅𝐻𝑗, 3𝑅𝐻𝑗 , . . ), hospital 𝑗 determines the inventory position 

(𝐼𝑃𝐻𝑗,𝑡
𝜔 ). If 𝐼𝑃𝐻𝑗,𝑡

𝜔  is less than re-order point 𝑠𝐻𝑗, then platelets are ordered to raise the 

inventory level to 𝑆𝐻𝑗  (i.e., 𝑄𝐻𝑗,𝑡
𝜔 = 𝑆𝐻𝑗 − 𝐼𝑃𝐻𝑗,𝑡

𝜔 ). On the other hand, if 𝐼𝑃𝐻𝑗,𝑡
𝜔  is greater than 

𝑠𝐻𝑗, then no order is placed (i.e., 𝑄𝐻𝑗,𝑡
𝜔 = 0). The units ordered at the end of day 𝑡 will be 

received by the hospital on the day after its lead time, 𝑡 + 𝐿𝑇𝐻𝑗 (i.e., ∑ 𝑋𝐻𝑗,𝑡+𝐿𝑇𝐻𝑗 ,𝑖𝑖 = 𝑄𝐻𝑗,𝑡
𝜔 ). 

It is important to note that, for hospital 𝑗, both the reorder point and order-up-to level 

(𝑠𝐻𝑗 , 𝑆𝐻𝑗) at that hospital will remain the same for all scenarios across the planning horizon. 

The sequence of events at the hospital is also illustrated in Figure 6.2. 
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Figure 6.2: Sequence of Events at the Hospital 
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Sequence of daily events at the blood center, on day 𝑡, scenario 𝜔: (Refer to Figure 6.3 also) 

1. Fresh platelets with shelf life of 3 days (𝑋𝐵𝐶𝑡
𝜔) arrive at the blood center from the component 

lab. 

2. The blood center processes the demand that is placed by the hospitals (∑ 𝑄𝐻𝑗,𝑡
𝜔

𝑗 ). Note that this 

demand is referred to as the regular demand. 

3. If the sum of the regular demand placed by the hospitals to the blood center is greater than the 

on-hand inventory, then it is partially fulfilled with the available on-hand inventory and the on-

hand inventory is updated to 0. The unfulfilled demand units is procured from other blood 

centers through emergency procurement, incurring additional cost. 

4. Recall that if there is a shortage at hospital 𝑗 (i.e., if 𝑆𝐻𝐻𝑗,𝑡
𝜔 > 0), then the hospital places a 

special order to the blood center and this has to be fulfilled by the blood center immediately. 

This demand is referred to as the emergency demand. We assume that the emergency demand 

will be fulfilled by the blood center, with the inventory that is available, after fulfilling the 

regular demand. 

5. If the emergency demand is greater than the on-hand inventory at the blood center, then it is 

partially fulfilled with the available on-hand inventory and the on-hand inventory is updated to 

0. The unfulfilled emergency demand units incur the corresponding shortage cost at the blood 

center and is also procured from other centers through emergency procurement. 

6. If the sum of the regular and emergency demands placed by the hospitals are less than the on-

hand inventory at the blood center, then the unutilized platelet units with remaining shelf life of 

1 day are thrown away at the end of the day and incur outdating cost. The remaining platelets 

(after discarding the outdated units) are carried over to the next day and the on-hand inventory 

is updated. 

7. At the end of day 𝑡 (𝑡 = 𝑅𝐵𝐶, 2𝑅𝐵𝐶, 3𝑅𝐵𝐶,…), blood center determines the inventory position 

(𝐼𝑃𝐵𝐶𝑡
𝜔) and if 𝐼𝑃𝐵𝐶𝑡

𝜔 is less than re-order point 𝑠𝐵𝐶, then platelets are ordered to raise the 

inventory level to 𝑆𝐵𝐶 (i.e., 𝑄𝐵𝐶𝑡
𝜔= 𝑆𝐵𝐶 − 𝐼𝑃𝐵𝐶𝑡

𝜔). On the other hand, if 𝐼𝑃𝐵𝐶𝑡
𝜔 is greater 

than the re-order point 𝑠𝐵𝐶, then no order is placed (i.e., 𝑄𝐵𝐶𝑡
𝜔 = 0). The units ordered at the 

end of day 𝑡 is will be received by the blood center on the day after the lead time, 𝐿𝑇𝐵𝐶, i.e., 

on day (𝑡 + 𝐿𝑇𝐵𝐶), hence 𝑋𝐵𝐶𝑡+𝐿𝑇𝐵𝐶
𝜔 = 𝑄𝐵𝐶𝑡

𝜔). 
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∑ ∑ 𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔3

𝑖=1
𝐽
𝑗=1   

Update current inventory 

Blood center processes the emergency demand placed by all hospitals ∑ 𝑆𝐻𝐻𝑗,𝑡
𝜔𝐽

𝑗=1  

Calculate shortage in 

meeting regular demand, 

𝑆𝑅𝐵𝐶𝑡
𝜔 

∑ 𝑆𝐻𝐻𝑗,𝑡
𝜔𝐽

𝑗=1 < 

Leftover on-hand inventory 

after fulfilling regular 

demand 

C 
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Figure 6.3: Sequence of Events at the Blood Center 

Note: At the blood center, both the re-order point and the order up-to-level (𝑠𝐵𝐶, 𝑆𝐵𝐶) are the 

same for all scenarios across the planning horizon. 

The sequence of events at the blood center is given in Figure 6.3. 

6.1.4 Blood Supply Chain Model Formulation 

The blood supply chain model has the following constraints: 

(1)Units Received by the Hospital from the Blood Center 

The total units received by the hospital from the blood center with shelf life of 𝑖 days 

(𝑋𝐻𝑗,𝑡,𝑖
𝜔 ), will be equal to the units shipped from the blood center on day 𝑡 − 𝐿𝑇𝐻𝑗, with shelf life 

of 𝑖 + 𝐿𝑇𝐻𝑗 days is given using Equation (6.1). (Note: 𝐿𝑇𝐻𝑗 =0,1 or 2 days) 

𝑋𝐻𝑗,𝑡,𝑖
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡−𝐿𝑇𝐻𝑗,𝑖+𝐿𝑇𝐻𝑗

𝜔   ∀𝑡 > 𝐿𝑇𝐻𝑗 and 𝑖 + 𝐿𝑇𝐻𝑗 ≤ 3          (6.1) 

𝑋𝐻𝑗,𝑡,𝑖
𝜔 = 0     Otherwise        (6.2)  

If 𝐿𝑇𝐻𝑗 = 0 days (negligible lead time), then from Equation (6.1) we have: 

• 𝑋𝐻𝑗,𝑡,1
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡,1

𝜔  

• 𝑋𝐻𝑗,𝑡,2
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡,2

𝜔  

Remaining platelets are carried over to the next day and inventory is updated by 

reducing shelf life by one day 

Inventory position 

(𝐼𝑃𝐵𝐶𝑡
𝜔) < Re-order 

point (𝑠𝐵𝐶) 

Place order for 𝑄𝐵𝐶𝑡
𝜔 = 𝑆𝐵𝐶 −  𝐼𝑃𝐵𝐶𝑡

𝜔 Do not place order 

C 

Y N 
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• 𝑋𝐻𝑗,𝑡,3
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡,3

𝜔  

If 𝐿𝑇𝐻𝑗 = 1 day, then, 

• 𝑋𝐻𝑗,𝑡,1
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡−1,2

𝜔  

• 𝑋𝐻𝑗,𝑡,2
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡−1,3

𝜔  

• 𝑋𝐻𝑗,𝑡,3
𝜔  will not exist since the condition 𝑖 + 𝐿𝑇𝐻𝑗 ≤ 3  will be violated. Hence, 𝑋𝐻𝑗,𝑡,3

𝜔 =

0.  

If 𝐿𝑇𝐻𝑗 = 2 day, then, 

• 𝑋𝐻𝑗,𝑡,1
𝜔 = 𝑈𝐵𝐶𝐻𝑗,𝑡−2,3

𝜔  

• 𝑋𝐻𝑗,𝑡,2
𝜔  and 𝑋𝐻𝑗,𝑡,3

𝜔  will not exist since the condition 𝑖 + 𝐿𝑇𝐻𝑗 ≤ 3 will be violated. Hence, 

𝑋𝐻𝑗,𝑡,2
𝜔 = 𝑋𝐻𝑗,𝑡,3

𝜔 = 0 

(2) Demand-Inventory Balance at Hospital under Scenario 𝜔 

• At hospital 𝑗, if demand 𝑑𝑗,𝑡
𝜔  is greater than the platelets with shelf life of 1 day (i.e., 𝐼𝐻𝑗,𝑡,1

𝜔 +

𝑋𝐻𝑗,𝑡,1
𝜔 ), then the remaining demand denoted by, 𝐷𝐻𝑗,𝑡,1

𝜔 , is equal to 𝑑𝑗,𝑡
𝜔 − 𝐼𝐻𝑗,𝑡,1

𝜔 − 𝑋𝐻𝑗,𝑡,1
𝜔  and 

leftover inventory with 1 day shelf life denoted by, 𝐿𝐻𝑗,𝑡,1
𝜔  will be 0. On the other hand, if 𝑑𝑗,𝑡

𝜔 ≤

(𝐼𝐻𝑗,𝑡,1
𝜔 + 𝑋𝐻𝑗,𝑡,1

𝜔 ), then 𝐷𝐻𝑗,𝑡,1
𝜔 = 0 and 𝐿𝐻𝑗,𝑡,1

𝜔 = 𝐼𝐻𝑗,𝑡,1
𝜔 + 𝑋𝐻𝑗,𝑡,1

𝜔 − 𝑑𝑗,𝑡
𝜔 . Equation (6.3) is used 

to calculate 𝐷𝐻𝑗,𝑡,1
𝜔  and 𝐿𝐻𝑗,𝑡,1

𝜔 . 

𝑑𝑗,𝑡
𝜔 − 𝐼𝐻𝑗,𝑡,1

𝜔 − 𝑋𝐻𝑗,𝑡,1
𝜔  = 𝐷𝐻𝑗,𝑡,1

𝜔 − 𝐿𝐻𝑗,𝑡,1
𝜔      ∀𝑗, 𝑡, 𝜔                    (6.3)  

• If 𝐷𝐻𝑗,𝑡,1
𝜔  is positive, then this leftover demand is first fulfilled by platelet units with a shelf life 

of 2 days (i.e., 𝐼𝐻𝑗,𝑡,2
𝜔 + 𝑋𝐻𝑗,𝑡,2

𝜔 ). If 𝐷𝐻𝑗,𝑡,1
𝜔 > 𝐼𝐻𝑗,𝑡,2

𝜔 + 𝑋𝐻𝑗,𝑡,2
𝜔 , then leftover demand, 𝐷𝐻𝑗,𝑡,2

𝜔 , 

will be equal to 𝐷𝐻𝑗,𝑡,1
𝜔 − 𝐼𝐻𝑗,𝑡,2

𝜔 − 𝑋𝐻𝑗,𝑡,2
𝜔  and leftover inventory with 2 days shelf life, 𝐿𝐻𝑗,𝑡,2

𝜔  

will be 0. On the other hand, if 𝐷𝐻𝑗,𝑡,1
𝜔 ≤ 𝐼𝐻𝑗,𝑡,2

𝜔 + 𝑋𝐻𝑗,𝑡,2
𝜔 , then, 𝐷𝐻𝑗,𝑡,2

𝜔 = 0 and the leftover 

platelets with 2-day shelf life is given by 𝐿𝐻𝑗,𝑡,2
𝜔 = 𝐼𝐻𝑗,𝑡,2

𝜔 + 𝑋𝐻𝑗,𝑡,2
𝜔 − 𝐷𝐻𝑗,𝑡,1

𝜔 . Equation (6.4) is 

used to calculate 𝐷𝐻𝑗,𝑡,2
𝜔  and 𝐿𝐻𝑗,𝑡,2

𝜔 . 

𝐷𝐻𝑗,𝑡,1
𝜔 − 𝐼𝐻𝑗,𝑡,2

𝜔 − 𝑋𝐻𝑗,𝑡,2
𝜔 = 𝐷𝐻𝑗,𝑡,2

𝜔 − 𝐿𝐻𝑗,𝑡,2
𝜔     ∀𝑗, 𝑡, 𝜔                    (6.4)  

 

• If 𝐷𝐻𝑗,𝑡,2
𝜔  is positive, then it is first fulfilled by fresh platelet units with a shelf life of 3 days 

(i.e., 𝑋𝐻𝑗,𝑡,3
𝜔 ). If 𝐷𝐻𝑗,𝑡,2

𝜔 > 𝑋𝐻𝑗,𝑡,3
𝜔 , then leftover demand, 𝐷𝐻𝑗,𝑡,3

𝜔 , will be equal to 𝐷𝐻𝑗,𝑡,2
𝜔 −
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𝑋𝐻𝑗,𝑡,3
𝜔  and leftover inventory with 3 days shelf life, 𝐿𝐻𝑗,𝑡,3

𝜔  will be 0. If 𝐷𝐻𝑗,𝑡,2
𝜔 ≤ 𝑋𝐻𝑗,𝑡,3

𝜔 , then, 

𝐷𝐻𝑗,𝑡,3
𝜔 = 0 and the leftover platelets with 2-day shelf life is given by 𝐿𝐻𝑗,𝑡,3

𝜔  = 𝑋𝐻𝑗,𝑡,3
𝜔 − 𝐷𝐻𝑗,𝑡,2

𝜔 . 

Equation (6.5) is used to calculate 𝐷𝐻𝑗,𝑡,3
𝜔  and 𝐿𝐻𝑗,𝑡,3

𝜔 . 

𝐷𝐻𝑗,𝑡,2
𝜔 − 𝑋𝐻𝑗,𝑡,3

𝜔  = 𝐷𝐻𝑗,𝑡,3
𝜔 − 𝐿𝐻𝑗,𝑡,3

𝜔      ∀𝑗, 𝑡, 𝜔                  (6.5) 

(3) Expired/Outdated Platelets 

At the end of day 𝑡, hospital 𝑗 discards the unutilized platelet units with remaining shelf 

life of 1 day (𝐿𝐻𝑗,𝑡,1
𝜔 ) and is given by Equation (6.6). 

𝐸𝐻𝑗,𝑡
𝜔  = 𝐿𝐻𝑗,𝑡,1

𝜔        ∀𝑗, 𝑡, 𝜔       (6.6) 

(4) Inventory Position and Order Quantity at Hospital 

Equation (6.7) is used to calculate the inventory position at the end of day 𝑡 for hospital 

𝑗, (𝐼𝑃𝐻𝑗,𝑡
𝜔 ), which is the sum of the on-hand (i.e., 𝐿𝐻𝑗,𝑡,2

𝜔 + 𝐿𝐻𝑗,𝑡,3
𝜔 ) and in-transit inventory (i.e., 

∑ (𝑄𝐻𝑗,𝑙𝑡
𝜔 )

𝐿𝑇𝐻𝑗−1

𝑙𝑡=1
). Under the (𝑠, 𝑆) policy, at hospital 𝑗, if the inventory position 𝐼𝑃𝐻𝑗,𝑡

𝜔 ≥ 𝑠𝐻𝑗, 

then no order is placed; otherwise, we order an amount 𝑄𝐻𝑗,𝑡
𝜔 = 𝑆𝐻𝑗 − 𝐼𝑃𝐻𝑗,𝑡

𝜔 . These are enforced 

in the model by Equations (6.8) through (6.12). If 𝛥𝐻𝑗,𝑡
𝜔 = 0, then 𝐼𝑃𝐻𝑗,𝑡

𝜔 ≥ 𝑠𝐻𝑗 due to Equation 

(6.8) and Equation (6.9) is inactive. On the other hand, if 𝛥𝐻𝑗,𝑡
𝜔 = 1, then (6.8) is inactive and 

𝐼𝑃𝐻𝑗,𝑡
𝜔 ≤ 𝑠𝐻𝑗 due to Equation (6.9). Also, when 𝛥𝐻𝑗,𝑡

𝜔 = 1, Equations (6.10) and (6.11), force 

𝑄𝐻𝑗,𝑡
𝜔 = 𝑆𝐻𝑗 − 𝐼𝑃𝐻𝑗,𝑡

𝜔  and Equation (6.12) becomes inactive. On the other hand, if 𝛥𝐻𝑗,𝑡
𝜔 = 0, then 

Equations (6.10) and (6.11) are inactive and Equation (6.12) forces 𝑄𝐻𝑗,𝑡
𝜔  to zero. The order up-to 

level (𝑆𝐻𝑗) must be greater than the reorder point (𝑠𝐻𝑗) at the hospital and is ensured by Equation 

(6.13). 

𝐼𝑃𝐻𝑗,𝑡
𝜔 = 𝐿𝐻𝑗,𝑡,2

𝜔 + 𝐿𝐻𝑗,𝑡,3
𝜔 +  ∑ (𝑄𝐻𝑗,𝑡−𝑙𝑡

𝜔 )
𝐿𝑇𝐻𝑗−1

𝑙𝑡=1
  ∀𝑗, 𝑡, 𝜔       (6.7) 

𝐼𝑃𝐻𝑗,𝑡
𝜔 ≥ 𝑠𝐻𝑗 − 𝑀(𝛥𝐻𝑗,𝑡

𝜔 )     ∀𝑗, 𝑡, 𝜔       (6.8)  

𝐼𝑃𝐻𝑗,𝑡
𝜔 ≤ 𝑠𝐻𝑗 + 𝑀(1 − 𝛥𝐻𝑗,𝑡

𝜔 )     ∀𝑗, 𝑡, 𝜔       (6.9) 

𝑄𝐻𝑗,𝑡
𝜔 ≤ (𝑆𝐻𝑗 − 𝐼𝑃𝐻𝑗,𝑡

𝜔 ) + 𝑀(1 − 𝛥𝐻𝑗,𝑡
𝜔 )   ∀𝑗, 𝑡, 𝜔     (6.10) 

𝑄𝐻𝑗,𝑡
𝜔 ≥ (𝑆𝐻𝑗 − 𝐼𝑃𝐻𝑗,𝑡

𝜔 ) − 𝑀(1 − 𝛥𝐻𝑗,𝑡
𝜔 )   ∀𝑗, 𝑡, 𝜔     (6.11) 

𝑄𝐻𝑗,𝑡
𝜔 ≤ 𝑀(𝛥𝐻𝑗,𝑡

𝜔 )      ∀𝑗, 𝑡, 𝜔     (6.12) 

𝑆𝐻𝑗 > 𝑠𝐻𝑗       ∀𝑗     (6.13) 
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(5) Inventory Updates at the Hospital 

At the end of each day, the inventory is updated at hospital 𝑗 using equations (6.14) and 

(6.15). Note that the ending inventory varies for each hospital based on the scenario. 

𝐼𝐻𝑗,𝑡+1,1
𝜔  = 𝐿𝐻𝑗,𝑡,2

𝜔       ∀𝑗, 𝑡, 𝜔     (6.14) 

𝐼𝐻𝑗,𝑡+1,2
𝜔  = 𝐿𝐻𝑗,𝑡,3

𝜔       ∀𝑗, 𝑡, 𝜔     (6.15) 

(6) Platelet Shortages at Hospital 

Equation (6.16) gives the shortage at the end of day 𝑡 (𝑆𝐻𝐻𝑗,𝑡
𝜔 ) which is the unfulfilled 

demand, 𝐷𝐻𝑗,𝑡,3
𝜔  calculated using Equation (6.5). 

𝑆𝐻𝐻𝑗,𝑡
𝜔 = 𝐷𝐻𝑗,𝑡,3

𝜔       ∀𝑗, 𝑡, 𝜔            (6.16) 

(7) Initial Inventory of Platelets at Hospital 

The initial inventory at time 𝑡 = 1 at each hospital Equation (6.17) gives the initial 

conditions at time 𝑡 = 1 for each scenario, 𝜔 

𝐼𝐻𝑗,1,𝑖
𝜔 = 𝑖𝑛𝐻𝑗

𝑖        ∀𝑖, 𝑗, 𝜔                (6.17) 

(8) Platelet Units Ordered and Received at Blood Center 

At the blood center, platelets can be ordered only during review periods and not during the 

other days which is taken care by Equation (6.18). Equations (6.19) and (6.20) are used to calculate 

the total units available at the blood center at the beginning of day 𝑡 in scenario 𝜔 (𝑋𝐵𝐶𝑡
𝜔) after 

the testing procedure is complete. This which must be equal to the order quantity placed before 

the lead time (𝑄𝐵𝐶𝑡−𝐿𝑇𝐵𝐶
𝜔 ). 

𝑄𝐵𝐶𝑡
𝜔 = 0                                           for all 𝑡 except for 𝑡 =𝑅𝐵𝐶, 2𝑅𝐵𝐶, …                     (6.18) 

𝑋𝐵𝐶𝑡
𝜔 = 𝑄𝐵𝐶𝑡−𝐿𝑇𝐵𝐶

𝜔       ∀𝜔, 𝑡 > 𝐿𝑇𝐵𝐶     (6.19) 

𝑋𝐵𝐶𝑡
𝜔 = 0       ∀𝜔, 𝑡 ≤ 𝐿𝑇𝐵𝐶    (6.20) 

(9) Regular Demand Fulfillment by the Blood Center 

The total units shipped to hospital 𝑗 with shelf life of 𝑖 days on day 𝑡 (𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔 ), are set as 

decision variables (i.e., the model decides the hospital demand fulfillment policy) and they depend 

on the hospital’s lead time. If the lead time of hospital 𝑗 is 1 day, then platelets with shelf life of 1 

day cannot be shipped from blood center to hospital 𝑗, to avoid platelet expiration at the time of 

arrival at the medical center. In other words, if a hospital’s lead time is 1 day, then only platelets 

with shelf life of 2 or 3 days have to be shipped from the blood center. This is ensured by Equations 

(6.22) and (6.23). Similarly, only platelets with shelf life of 3 days have to be shipped to hospitals 
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with lead time of 2 days as given in Equation (6.23). However, if the hospital’s lead time is 

negligible (i.e., 0 days), then platelets with any shelf life can be shipped as given in Equations 

(6.21 – 6.23).  

The shortage incurred at the blood center due to the regular demand placed by hospital 𝑗 

(𝑆𝑅𝐵𝐶𝑗,𝑡
𝜔) is calculated using Equation (6.24). As discussed earlier, this shortage will be fulfilled 

by the blood center by procuring units from other blood centers. In the model, it is assumed that 

the procured 𝑆𝑅𝐵𝐶𝑗,𝑡
𝜔  units will have a shelf life of 3 days. Hence, while calculating the units 

shipped from the blood center to hospital in the 3-day shelf life category (i.e., 𝑈𝐵𝐶𝐻𝑗,𝑡,3
𝜔 ), 𝑆𝑅𝐵𝐶𝑗,𝑡

𝜔  

should also be included in addition to 𝑈3𝑗,𝑡
𝜔  (𝑈3𝑗,𝑡

𝜔  is the platelet units with shelf life of 3 days from 

the available inventory shipped to hospital 𝑗) as given in Equation (6.25). 

∑ 𝑈𝐵𝐶𝐻𝑗,𝑡,1
𝜔

𝑗 + 𝐼𝐵𝐶𝐻𝑡,1
𝜔 = 𝐼𝐵𝐶𝑡,1

𝜔      ∀𝑡, 𝜔, 𝐿𝑇𝐻𝑗 = 0      (6.21)  

∑ 𝑈𝐵𝐶𝐻𝑗,𝑡,2
𝜔

𝑗 + 𝐼𝐵𝐶𝐻𝑡,2
𝜔 = 𝐼𝐵𝐶𝑡,2

𝜔      ∀𝑡, 𝜔, 𝐿𝑇𝐻𝑗 = 0,1      (6.22)  

(In general, ∑ 𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔

𝑗 + 𝐼𝐵𝐶𝐻𝑡,𝑖
𝜔 = 𝐼𝐵𝐶𝑡,𝑖

𝜔   ∀𝑡, 𝜔 and 𝑖 = 1,2, 𝐿𝑇𝐻𝑗 ≤ 𝑖) 

∑ 𝑈3𝑗,𝑡
𝜔

𝑗 + 𝐼𝐵𝐶𝐻𝑡,3
𝜔 = 𝑋𝐵𝐶𝑡

𝜔     ∀𝑡, 𝜔, 𝐿𝑇𝐻𝑗 = 0,1,2      (6.23)  

Where 𝐼𝐵𝐶𝐻𝑡,𝑖
𝜔  is the leftover platelets at the blood center, with shelf life of 𝑖 days (𝑖 =

1,2,3), after meeting the regular demands of all the hospitals. 

𝑈𝐵𝐶𝐻𝑗,𝑡,1
𝜔 + 𝑈𝐵𝐶𝐻𝑗,𝑡,2

𝜔 + 𝑈3𝑗,𝑡
𝜔 + 𝑆𝑅𝐵𝐶𝑗,𝑡

𝜔 = 𝑄𝐻𝑗,𝑡
𝜔   ∀𝑡, 𝑗, 𝜔     (6.24) 

𝑈𝐵𝐶𝐻𝑗,𝑡,3
𝜔 = 𝑈3𝑗,𝑡

𝜔 + 𝑆𝑅𝐵𝐶𝑗,𝑡
𝜔      ∀𝑡, 𝑗, 𝜔      (6.25) 

(10) Emergency Demand Fulfillment by the Blood Center 

The blood center must not only fulfill the regular demand placed by hospital 𝑗 (𝑄𝐻𝑗,𝑡
𝜔 ) but 

also the emergency demand placed by that hospital on the same day 𝑡 (𝑆𝐻𝐻𝑗,𝑡
𝜔 ). As indicated in the 

sequence of events section, emergency demand will be fulfilled only with inventory that is 

remaining after fulfilling the regular demand (i.e., ∑ 𝑆𝐻𝐻𝑗,𝑡
𝜔

𝑗  will be fulfilled with ∑ 𝐼𝐵𝐶𝐻𝑡,𝑖
𝜔

𝑖 ). 

Equations (6.26) – (6.28) are similar to regular demand-inventory balance equations discussed 

earlier. 

∑ 𝑆𝐻𝐻𝑗,𝑡
𝜔

𝑗 − 𝐼𝐵𝐶𝐻𝑡,1
𝜔 = 𝑆𝐵𝐶𝐻𝑡,1

𝜔 − 𝐿𝐵𝐶𝑡,1
𝜔      ∀𝑡, 𝜔          (6.26) 

Where 𝐿𝐵𝐶𝑡,1
𝜔  is the leftover inventory of platelets, with shelf life of 1 day, after meeting 

emergency orders of hospitals and 𝑆𝐵𝐶𝐻𝑡,1
𝜔  is the remaining shortage to be fulfilled by platelets of 

lives 2 and 3. 
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Similarly, 

𝑆𝐵𝐶𝐻𝑡,1
𝜔 − 𝐼𝐵𝐶𝐻𝑡,2

𝜔 = 𝑆𝐵𝐶𝐻𝑡,2
𝜔 − 𝐿𝐵𝐶𝑡,2

𝜔    ∀𝑡, 𝜔     (6.27) 

𝑆𝐵𝐶𝐻𝑡,2
𝜔 − 𝐼𝐵𝐶𝐻𝑡,3

𝜔 = 𝑆𝐵𝐶𝐻𝑡,3
𝜔 − 𝐿𝐵𝐶𝑡,3

𝜔    ∀𝑡, 𝜔      (6.28) 

The total shortage at the blood center due to the emergency demand placed by all hospitals 

is given by Equation (6.29).  

𝑆𝐸𝐵𝐶𝑡
𝜔 = 𝑆𝐵𝐶𝐻𝑡,3

𝜔       ∀𝑡, 𝜔      (6.29) 

(11) Inventory Position and Order Quantity at Blood Center 

The inventory position at the blood center is calculated after fulfilling the regular and 

emergency demands placed by all the hospitals. Equations (6.30) – (6.36) are similar to the order 

quantity calculations done at the hospital (similar to Equations 6.7 – 6.13). 

𝐼𝑃𝐵𝐶𝑡
𝜔 = 𝐿𝐵𝐶𝑡,2

𝜔 + 𝐿𝐵𝐶𝑡,3
𝜔 +  ∑ (𝑄𝐵𝐶𝑡−𝑙𝑡

𝜔 )𝐿𝑇𝐵𝐶−1
𝑙𝑡=1   ∀𝑡, 𝜔     (6.30) 

𝐼𝑃𝐵𝐶𝑡
𝜔 ≥ 𝑠𝐵𝐶 − 𝑀(𝛥𝐵𝐶𝑡

𝜔)     ∀𝑡, 𝜔     (6.31)  

𝐼𝑃𝐵𝐶𝑡
𝜔 ≤ 𝑠𝐵𝐶 + 𝑀(1 − 𝛥𝐵𝐶𝑡

𝜔)    ∀𝑡, 𝜔        (6.32) 

𝑄𝐵𝐶𝑡
𝜔 ≤ (𝑆𝐵𝐶 − 𝐼𝑃𝐵𝐶𝑡

𝜔) + 𝑀(1 − 𝛥𝐵𝐶𝑡
𝜔)   ∀𝑡, 𝜔        (6.33) 

𝑄𝐵𝐶𝑡
𝜔 ≥ (𝑆𝐵𝐶 − 𝐼𝑃𝐵𝐶𝑡

𝜔) − 𝑀(1 − 𝛥𝐵𝐶𝑡
𝜔)   ∀𝑡, 𝜔        (6.34) 

𝑄𝐵𝐶𝑡
𝜔 ≤ 𝑀(𝛥𝐵𝐶𝑡

𝜔)      ∀𝑡, 𝜔        (6.35) 

𝑆𝐵𝐶 > 𝑠𝐵𝐶            (6.36) 

(12) Expired Platelets at Blood Center 

At the blood center, the units expired at the end of each day is given using Equation (6.37). 

𝐸𝐵𝐶𝑡
𝜔 = 𝐿𝐵𝐶𝑡,1

𝜔       ∀𝑡, 𝜔     (6.37) 

(13) Inventory Updates at Blood Center 

At the end of the day 𝑡, the inventory is updated using Equations (6.38) and (6.39).  

𝐼𝐵𝐶𝑡+1,1
𝜔  = 𝐿𝐵𝐶𝑡,2

𝜔       ∀𝑡, 𝜔     (6.38) 

𝐼𝐵𝐶𝑡+1,2
𝜔  = 𝐿𝐵𝐶𝑡,3

𝜔       ∀𝑡, 𝜔     (6.39) 

(14) Platelet Shortages at Blood Center 

The shortage at the blood center under scenario 𝜔 on each day 𝑡 is the sum of shortage due 

to regular platelet demand (∑ 𝑆𝑅𝐵𝐶𝑗,𝑡
𝜔

𝑗 ) as well as emergency demand (𝑆𝐸𝐵𝐶𝑡
𝜔) placed by all the 

hospitals. This is given using Equation (6.40). 

𝑆𝐻𝐵𝐶𝑡
𝜔 = ∑ 𝑆𝑅𝐵𝐶𝑗,𝑡

𝜔
𝑗 + 𝑆𝐸𝐵𝐶𝑡

𝜔    ∀𝑡, 𝜔                (6.40) 
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(15) Initial Inventory of Platelets at Blood Center 

Equation (6.41) gives the initial conditions at time 𝑡 = 1 for each scenario 𝜔 at the blood 

center. 

𝐼𝐵𝐶1,𝑖
𝜔 = 𝑖𝑛𝐵𝐶𝑖        ∀𝑖, 𝜔     (6.41)  

(16) Non-negativity Constraints 

Constraints (6.42) – (6.44) represent non-negativity and binary restrictions in the model.     

𝑋𝐻𝑗,𝑡,𝑖
𝜔 , 𝐷𝐻𝑗,𝑡,𝑖,

𝜔 , 𝐿𝐻𝑗,𝑡,𝑖
𝜔 , 𝐼𝐻𝑗,𝑡,𝑖

𝜔 , 𝐼𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔 , 𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖

𝜔 , 𝑄𝐻𝑗,𝑡
𝜔 , 𝑆𝐻𝐻𝑗,𝑡

𝜔 , 𝐸𝐻𝑗,𝑡
𝜔 , 𝐼𝑃𝐻𝑗,𝑡

𝜔 , 𝑆𝑅𝐵𝐶𝑗,𝑡
𝜔 , 𝐿𝐵𝐶𝑡,𝑖

𝜔 , 

𝐼𝐵𝐶𝑡,𝑖
𝜔 , 𝐿𝐵𝐶𝑡,𝑖

𝜔 , 𝐼𝐵𝐶𝑡,𝑖
𝜔 , 𝑋𝐵𝐶𝑡

𝜔, 𝑄𝐵𝐶𝑡
𝜔, 𝑆𝐸𝐵𝐶𝑡

𝜔 , 𝑆𝐻𝐵𝐶𝑡
𝜔 , 𝐸𝐵𝐶𝑡

𝜔, 𝐼𝑃𝐵𝐶𝑡
𝜔 , 𝑆𝐵𝐶𝐻𝑡

𝜔 , 𝑠𝐻𝑗 , 𝑆𝐻𝑗 ≥ 0    

          ∀𝑖, 𝑗, 𝑡, 𝜔       (6.42) 

𝑠𝐵𝐶, 𝑆𝐵𝐶 ≥ 0             (6.43) 

𝛥𝐻𝑗,𝑡
𝜔 , 𝛥𝐵𝐶𝑡

𝜔 ∈ (0,1)       ∀𝑗, 𝑡, 𝜔     (6.44) 

Objective Function: 

The objective function is to minimize the total cost incurred at the blood supply chain (i.e., 

operational cost at the blood center and hospitals). There are 9 cost components along the two-

stage blood supply chain: 

• Cost incurred by hospital 𝑗 on day 𝑡: 

o Fixed transportation cost: 𝑐𝐻𝑗
𝑓

×𝛥𝐻𝑗,𝑡
𝜔  

o Variable purchasing cost: 𝑐𝐻𝑗
𝑝

×𝑄𝐻𝑗,𝑡
𝜔  

o Inventory holding cost: 𝑐𝐻𝑗
ℎ×(𝐼𝐻𝑗,𝑡,1

𝜔 + 𝐼𝐻𝑗,𝑡,2
𝜔 ) 

o Shortage cost: 𝑐𝐻𝑗
𝑠ℎ×𝑆𝐻𝐻𝑗,𝑡

𝜔  

o Expiration cost: 𝑐𝐻𝑗
𝑒𝑥×𝐸𝐻𝑗,𝑡

𝜔  

• Cost incurred by the blood center on day 𝑡: 

o Fixed transportation cost: 𝑐𝐵𝐶𝑓×𝛥𝐵𝐶𝑡
𝜔 

o Inventory holding cost: 𝑐𝐵𝐶ℎ×(𝐼𝐵𝐶𝑡,1
𝜔 + 𝐼𝐵𝐶𝑡,2

𝜔 ) 

o Shortage cost: 𝑐𝐵𝐶𝑠ℎ×𝑆𝐻𝐵𝐶𝑡
𝜔 

o Expiration cost: 𝑐𝐵𝐶𝑒𝑥×𝐸𝐵𝐶𝑡
𝜔 

It is to be noted that the platelet testing and processing cost incurred by the blood center is 

not included in the cost function since the variable procurement costs paid by the hospitals will 

cover this testing cost. 
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Equation (6.45) represents the final objective function, which is to minimize the expected 

cost across all scenarios along the two-stage blood supply chain. 

Minimize 𝑇𝐶𝐵𝑆𝐶 = ∑ [∑ [𝑝𝜔×{∑ [𝑐𝐻𝑗
𝑓

×𝛥𝐻𝑗,𝑡
𝜔 + 𝑐𝐻𝑗

𝑝
×𝑄𝐻𝑗,𝑡

𝜔 + 𝑐𝐻𝑗
ℎ×(𝐼𝐻𝑗,𝑡,1

𝜔 +𝐽
𝑗=1

Ω
𝜔=1

𝑇
𝑡=1

𝐼𝐻𝑗,𝑡,2
𝜔 ) + 𝑐𝐻𝑗

𝑠ℎ×𝑆𝐻𝐻𝑗,𝑡
𝜔 + 𝑐𝐻𝑗

𝑒𝑥×𝐸𝐻𝑗,𝑡
𝜔 ] + 𝑐𝐵𝐶𝑓×𝛥𝐵𝐶𝑡

𝜔 + 𝑐𝐵𝐶ℎ×(𝐼𝐵𝐶𝑡,1
𝜔 + 𝐼𝐵𝐶𝑡,2

𝜔 ) + 𝑐𝐵𝐶𝑠ℎ×

𝑆𝐻𝐵𝐶𝑡
𝜔 + 𝑐𝐵𝐶𝑒𝑥×𝐸𝐵𝐶𝑡

𝜔}]]                             (6.45) 

It is to be noted that the cost components vary for each hospital depending on the hospital 

settings. 

6.1.5. Complexity of the Stochastic Integer Programming Model for Blood Supply Chain 

The problem size of the stochastic mixed integer programming model is given below: 

• Total number of decision variables: (𝑡×𝜔)(24𝑗 + 20) + 2𝑗 + 2, out of which (𝑡×𝜔)(𝑗 +

1) are binary variables 

• Total number of constraints: (18×𝑡×𝜔 + 3𝜔)(𝑗 + 1) + 𝑗 + 𝑡 

The stochastic blood supply chain model discussed in Section 6.1.4 is programmed using 

GAMS® and solved using IBM CPLEX®12.6.0.0 optimizer. The problem was solved for 

optimality for one blood center and two hospitals, for a planning horizon of 30 days and 15 

scenarios. It had 30,306 variables (1350 are binary) and 24,468 constraints. It took 1 hour to solve 

the problem. The solutions are discussed in detail in Section 6.3. The direct optimization of the 

blood supply chain model was not feasible for more than 15 scenarios with 2 hospitals or when 

more hospitals were added to the blood supply chain. Hence, a modified stochastic genetic 

algorithm (MSGA) technique is proposed and is discussed in Section 6.2. For the smaller problem, 

the performance of the proposed MSGA is compared against the optimal solution obtained by 

solving the stochastic program directly in Section 6.3. 

6.2. Modified Stochastic Genetic Algorithm (MSGA) for the Blood Supply Chain 

The complexity of the stochastic integer programming model increases exponentially as 

the number of scenarios and time horizon increase. However, the blood center and hospital might 

be interested in considering hundreds of scenarios with different likelihood of occurrences. 

Therefore, in this section, a new stochastic genetic algorithm is developed, called modified 

stochastic genetic algorithm (MSGA) which can solve larger problems with relatively less time. 

Genetic algorithm (GA) is a metaheuristic technique based on natural selection and 

evolution process. Each candidate solution, known as chromosome, consists of a string of genes. 
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The property of the genes depends on the problem type. The chromosomes are evolved over many 

generations through the crossover and mutation operations resulting in gradual improvement of 

the objective function (Reeves, 2003). Over the past decade, GA has been a widely used 

metaheuristic technique to solve inventory management problems (Maiti et al., 2007; Gupta et al., 

2009; Sethupathy et al., 2010; Pasandideh et al., 2011; Amaruchkul and Auwatanamongkol, 2013). 

In this study, we propose a new variant of genetic algorithm, called modified stochastic 

genetic algorithm (MSGA). The proposed genetic algorithm is expected to converge faster due to 

the different approach taken for selecting the next generation chromosomes (discussed in detail in 

Section 6.2.7). The performance of MSGA is compared with that of the genetic algorithm proposed 

by Amaruchkul and Auwatanamongkol (2013) since the latter is one of the very few work in the 

recent times applying genetic algorithm for (𝑠, 𝑆) policy and is referred to as base stochastic 

genetic algorithm (Base SGA) in this chapter. 

6.2.1. Basic SGA steps 

Table 6.1: Basic SGA steps (adapted from Amaruchkul and Auwatanamongkol, 2013) 

Step Process 

1 Initialize the population 

2 While (termination condition is not met) do 

2a Evaluate the fitness value of each member of the population 

2b Select members of the population based on fitness 

2c Perform crossover on pairs of selected members to produce offspring 

2d Perform mutation on the offspring 

2e Replace members of the population with the offspring 

3 End 

Table 6.1 shows the steps involved in the basic stochastic genetic algorithm (SGA). The 

generation of initial population (step 1) for the blood supply chain inventory problem is given in 

detail in Section 6.2.3. Once the initial population is generated, step 2a is to evaluate the fitness of 

the initial population and the fitness function evaluation procedure is given in Section 6.2.4. Steps 

2b and 2c are the crossover and mutation operations (details provided in Sections 6.2.5 and 6.2.6 

respectively). In the traditional genetic algorithm, only the offspring produced (as a result of the 

crossover and mutation operations) are carried over to the next generation. Even if the parents are 

extremely fit, they are retained in that generation which might result in local optima or slower 

convergence. Therefore, in the proposed MSGA variant, the selection of the chromosomes to the 
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next generation (step 2e) is done differently, considering both parent and offspring population and 

is discussed in Section 6.2.7. Step 2 (steps 2a through 2e) is repeated until the termination criterion 

is met. The termination process might take place when the maximum number of user specified 

generations is reached or the difference between the fitness function values between the last two 

consecutive generations is below a certain threshold error value. 

6.2.2. Chromosome Representation 

In genetic algorithm, each chromosome consists of several genes and the number of genes 

in each chromosome depends on the problem type. Since the re-order point and the order-up-to 

parameters at the blood center and the hospitals (𝑠𝐵𝐶, 𝑆𝐵𝐶, 𝑠𝐻1, 𝑆𝐻1 , 𝑠𝐻2, 𝑆𝐻2, … , 𝑠𝐻𝐽 , 𝑆𝐻𝐽) are 

the key decision variables in our study, each chromosome is represented by the structure given in 

Figure 6.4. The first two genes represent the re-order point (𝑠𝐵𝐶) and order-up-to level (𝑆𝐵𝐶) at 

the blood center and the consequent pairs of genes represent the re-order point (𝑠𝐻𝑗) and order-

up-to level (𝑆𝐻𝑗) at hospital 𝑗. 

𝑠𝐵𝐶 𝑆𝐵𝐶 𝑠𝐻1 𝑆𝐻1 𝑠𝐻2 𝑆𝐻2 … 𝑠𝐻𝐽 𝑆𝐻𝐽 

Figure 6.4: Structure of Chromosome 

In addition, the genes have to be generated such that the conditions 𝑠𝐵𝐶 < 𝑆𝐵𝐶 and 𝑠𝐻𝑗 < 𝑆𝐻𝑗  are 

satisfied. 

Calculation of the upper and lower bounds for the order-up-to level parameter 

In this study, it is assumed that the daily patient demand at each hospital 𝑗 follows a normal 

distribution with mean 𝜇𝐻𝑗,𝐷 and standard deviation 𝜎𝐻𝑗,𝐷. Hence, at hospital 𝑗, the mean demand 

during lead time (𝐿𝑇𝐻𝑗) plus review period (𝑅𝐻𝑗) denoted by 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅  will be equal to  

𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 = (𝐿𝑇𝐻𝑗 + 𝑅𝐻𝑗) ∗ 𝜇𝐻𝑗,𝐷 

and its standard deviation, denoted by 𝜎𝐻𝑗,𝐷𝐿𝑇𝑅  is equal to  

𝜎𝐻𝑗,𝐷𝐿𝑇𝑅  = 𝜎𝐻𝑗,𝐷√𝐿𝑇𝐻𝑗 + 𝑅𝐻𝑗 

Since the demands at the hospitals are assumed to follow Normal distributions, the demand 

at the blood center, which is the sum of the demands placed by all the hospitals to the blood center, 

also follows a normal distribution, with mean 𝜇𝐵𝐶𝐷 = ∑ 𝜇𝐻𝑗,𝐷𝑗  and standard deviation 𝜎𝐵𝐶𝐷 =

√∑ 𝜎𝐻𝑗,𝐷
2

𝑗 . 
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Therefore, the mean demand during lead time (𝐿𝑇𝐵𝐶) plus review period (𝑅𝐵𝐶) = 

𝜇𝐵𝐶𝐷𝐿𝑇𝑅 = (𝐿𝑇𝐵𝐶 + 𝑅𝐵𝐶)𝜇𝐵𝐶𝐷  and standard deviation of the demand during lead time plus 

review period = 𝜎𝐵𝐶𝐷𝐿𝑇𝑅  = 𝜎𝐵𝐶𝐷√𝐿𝑇𝐵𝐶 + 𝑅𝐵𝐶.  

(i) Calculation of the lower bounds: 

In order to compute the lower bounds, we impose a condition that at least 80% of the 

demand has to be fulfilled at each stage (i.e., 0.8×𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 ≤ 𝑆𝐻𝑗  ∀𝑗 and 0.8×𝜇𝐵𝐶𝐷𝐿𝑇𝑅 ≤ 𝑆𝐵𝐶). 

Also, the earlier conditions 𝑆𝐻𝑗 > 𝑠𝐻𝑗  ∀𝑗 and 𝑆𝐵𝐶 > 𝑠𝐵𝐶 must be valid. Therefore, the lower 

bound of 𝑆𝐻𝑗  must be max {0.8×𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 ; 𝑠𝐻𝑗 + 1} ∀𝑗 (as given in Equation 6.46). Similarly, the 

lower bound of 𝑆𝐵𝐶 must be max {0.8×𝜇𝐵𝐶𝐷𝐿𝑇𝑅; 𝑠𝐵𝐶 + 1} (as given in Equation 6.47). 

(ii) Calculation of the upper bounds: 

The upper bounds for 𝑆𝐻𝑗  and 𝑆𝐵𝐶 are set at 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅  and 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 +

3𝜎𝐵𝐶𝐷𝐿𝑇𝑅  respectively. This will a good upper bound because 99.73% of the demand falls within 

three sigma limit under normal distribution. 

Equations (6.46) and (6.47) summarize the bounds for 𝑆𝐻𝑗  and 𝑆𝐵𝐶 respectively. 

Bounds on 𝑆𝐻𝑗 : max {(0.8 ∗ 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅); (𝑠𝐻𝑗 + 1)} ≤ 𝑆𝐻𝑗 ≤ 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅    (6.46) 

Bounds on 𝑆𝐵𝐶: max {(0.8 ∗ 𝜇𝐵𝐶𝐷𝐿𝑇𝑅); (𝑠𝐵𝐶 + 1)} ≤ 𝑆𝐵𝐶 ≤ 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅    (6.47) 

6.2.3. Generation of Initial Population 

For this study, 𝑛 distinct parent chromosomes are generated, and based on the literature, 𝑛 

is usually taken as (4×𝐽) (Sethupathi et al., 2010). Since 𝑆𝐵𝐶 must be less than or equal to 

𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅 and 𝑠𝐵𝐶 < 𝑆𝐵𝐶, the maximum value that 𝑠𝐵𝐶 can take must be strictly 

less than (𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅). Similarly, the maximum value that 𝑠𝐻𝑗 can take must be strictly 

less than (𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅). Therefore, the initial values of 𝑠𝐵𝐶 and 𝑠𝐻𝑗 are selected 

randomly within {0,1, … , 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅 − 1} and {0,1, … , 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅 − 1} 

respectively. If 𝐿𝐵𝑆𝐵𝐶 = max {(0.8×𝜇𝐵𝐶𝐷𝐿𝑇𝑅); (𝑠𝐵𝐶 + 1)}, then 𝑆𝐵𝐶 is randomly selected 

within {𝐿𝐵𝑆𝐵𝐶, 𝐿𝐵𝑆𝐵𝐶 + 1, 𝐿𝐵𝑆𝐵𝐶 + 2, … , 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅}. Similarly, if 𝐿𝐵𝑆𝐻𝑗 =

max {(0.8×𝜇𝐻𝑗,𝐷𝐿𝑇𝑅); (𝑠𝐻𝑗 + 1)}, then 𝑆𝐻𝑗  is randomly selected within {𝐿𝐵𝑆𝐻𝑗 , 𝐿𝐵𝑆𝐻𝑗 +

1, 𝐿𝐵𝑆𝐻𝑗 + 2, … , 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅}. 
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6.2.4. Fitness Function 

To determine the fitness function for each chromosome 𝑐, the total blood supply chain cost 

for each chromosome, 𝑇𝐶𝐵𝑆𝐶𝑐, is first computed across all scenarios. The total cost is calculated 

the same way as in the mathematical model (given by Equation 6.45).  

Since, the objective is to minimize cost, the fitness function for each chromosome 𝑐, 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐 , is given by Equation (6.48): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐 = 1/(𝑇𝐶𝐵𝑆𝐶𝑐)          (6.48) 

It is to be noted that a higher value of fitness function indicates that the chromosome is a 

better fit, since it results in lower cost. 

6.2.5. Crossover Operation 

In the traditional genetic algorithm, the genes are independent of each other. However, in 

the genetic algorithm for determining the (𝑠, 𝑆) policy, the condition that 𝑠 > 𝑆 must be valid after 

the crossover operation at both the hospitals and at the blood center (i.e., resultant offspring must 

have  𝑆𝐵𝐶 > 𝑠𝐵𝐶 and 𝑆𝐻𝑗 > 𝑠𝐻𝑗). Therefore, crossover operator is chosen such that the parent-

pair (𝑠𝐵𝐶, 𝑆𝐵𝐶) must remain together and the pair (𝑠𝐻𝑗 , 𝑆𝐻𝑗) must also remain together after 

crossover (i.e., 𝑠𝐵𝐶 and 𝑆𝐵𝐶 must remain together and 𝑠𝐻𝑗 and 𝑠𝐻𝑗 for each hospital 𝑗 must remain 

together). An illustration of the crossover operation with two chromosomes is given in Figure 6.5. 

Parent Chromosomes 

 

 

Parent 1 𝑠1𝐵𝐶 𝑆1𝐵𝐶 𝑠1𝐻1 𝑆1𝐻1 … 𝑠1𝐻𝐽 𝑆1𝐻𝐽 

 

Parent 2 𝑠2𝐵𝐶 𝑆2𝐵𝐶 𝑠2𝐻1 𝑆2𝐻1 … 𝑠1𝐻𝐽 𝑆1𝐻𝐽 

Offspring Chromosomes 

Off. 1 𝑠1𝐵𝐶 𝑆1𝐵𝐶 𝑠1𝐻1 𝑆1𝐻1 … 𝑠2𝐻𝐽 𝑆2𝐻𝐽 

 

Off. 2 𝑠2𝐵𝐶 𝑆2𝐵𝐶 𝑠2𝐻1 𝑆2𝐻1 … 𝑠1𝐻𝐽 𝑆1𝐻𝐽 

Figure 6.5: Crossover Operation 

Crossover point 
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Note: The crossover point can be randomly chosen in the 2nd, 4th, …, or (2𝐽)th positions. 

By choosing this way, the parent-pairs (𝑠𝐵𝐶, 𝑆𝐵𝐶) and (𝑠𝐻𝑗 , 𝑆𝐻𝑗) remain together even after the 

crossover operation. 

In this study, the crossover rate is set to one (i.e., there will be 𝑛 distinct offspring produced 

from the 𝑛 distinct parents). This is done because the population from which the parents are 

selected for the next generation will be large (equal to 2𝑛). The chromosomes selected for the 

crossover operation is based on the roulette wheel selection, as in the traditional GA given by 

Goldberg and Holland (1988). The 𝑛 offspring chromosomes, produced as a result of crossover, 

are then subjected to mutation operation. 

6.2.6. Mutation Operation 

If 𝑠𝐵𝐶𝑛𝑒𝑤 and  𝑠𝐵𝐶𝑜𝑙𝑑   represent the values of 𝑠𝐵𝐶 before and after mutation respectively, 

then 𝑠𝐵𝐶𝑛𝑒𝑤 is obtained by randomly mutating between 0 and 2×𝑠𝐵𝐶𝑜𝑙𝑑. Also, as discussed 

earlier, 𝑠𝐵𝐶 must be strictly less than 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅. Similar restrictions are imposed for 

mutating 𝑠𝐻𝑗 as well. Equations (6.49) and (6.50) represent the alteration of the re-order point 

genes due to mutation. The chromosomes are subjected to mutation with a mutation probability 

𝑀𝑃. 

𝑠𝐻𝑗
𝑛𝑒𝑤 = max {𝑠𝐻𝑗

𝑜𝑙𝑑×2 ∗ 𝑢𝐻𝑗; 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅 − 1}  ∀𝑗     (6.49) 

𝑠𝐵𝐶𝑛𝑒𝑤 = max {𝑠𝐵𝐶𝑜𝑙𝑑×2×𝑢𝐵𝐶; 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅 − 1}     (6.50) 

where 𝑢𝐵𝐶 and 𝑢𝐻𝑗 are the uniform random variables between 0 and 1. 

𝑆𝐻𝑗  and 𝑆𝐵𝐶 are assigned a random integer within {𝐿𝐵𝑆𝐻𝑗 , 𝐿𝐵𝑆𝐻𝑗 + 1, 𝐿𝐵𝑆𝐻𝑗 +

2, … , 𝜇𝐻𝑗,𝐷𝐿𝑇𝑅 + 3𝜎𝐻𝑗,𝐷𝐿𝑇𝑅} and {𝐿𝐵𝑆𝐵𝐶, 𝐿𝐵𝑆𝐵𝐶 + 1, 𝐿𝐵𝑆𝐵𝐶 + 2, … , 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅} 

respectively (recall that 𝐿𝐵𝑆𝐻𝑗 = max {(0.8×𝜇𝐻𝑗,𝐷𝐿𝑇𝑅); (𝑠𝐻𝑗
𝑛𝑒𝑤 + 1)} and 𝐿𝐵𝑆𝐵𝐶 =

max {(0.8×𝜇𝐵𝐶𝐷𝐿𝑇𝑅); (𝑠𝐵𝐶𝑛𝑒𝑤 + 1)}). 

It has been observed in the literature that a higher mutation probability (𝑀𝑃) in the initial 

generations results in a more diversified pool of population and hence increases the chance of 

obtaining a better solution. However, a high value of 𝑀𝑃 at the later generations result in slower 

convergence due to too much of perturbation (Brijesh and Rajendran, 2011). Therefore, in the 

proposed MSGA variant, the 𝑀𝑃 at the end of each generation is updated using 𝑀𝑃𝑛𝑒𝑤 =

𝑀𝑃𝑜𝑙𝑑×𝑀𝐹, where 𝑀𝐹 < 1 is the mutation factor. Multiplication of 𝑀𝑃 with the 𝑀𝐹 ensures that 

the mutation probability decreases over generations (since 𝑀𝐹 < 1). 𝑀𝐹 is decided based on 
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extensive experimentation. It is to be noted that in the traditional genetic algorithm, the mutation 

probability remains the same across all generations (i.e., 𝑀𝐹 = 1). 

After the mutation operation is completed, the fitness of each child produced is evaluated 

and recorded. 

6.2.7. Selection of Next Generation Chromosomes 

Drawback of the existing genetic algorithms: 

In the traditional genetic algorithm, only the 𝑛 offspring produced as a result of the 

crossover and mutation operations are taken to the next generation. Even if the parents producing 

the offspring are fitter than the children, they are not carried over to the next generation. This might 

result in the algorithm reaching a local optimum. Therefore, in the proposed MSGA, the 𝑛 

chromosomes taken over to the next generation are selected from the pool of current offspring as 

well as parent population. The population size will be 2𝑛 distinct chromosomes (i.e., 𝑛 parents and 

𝑛 offspring). The chromosomes (either parent or offspring) taken to the next generation are 

selected based on a probability, which is calculated as a function of their fitness values. 

Proposed Chromosome Selection Procedure in MSGA 

Recall that 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐 is the fitness value of chromosome 𝑐 obtained by Equation (6.48). The 

probability of selecting chromosome 𝑐 to the next generation is given by Equation (6.51). 

𝑝𝑟(𝑛𝑒𝑥𝑡_𝑔𝑒𝑛𝑐) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐
2𝑛
𝑐=1

             (6.51) 

Where 𝑐 = 1 to 𝑛 represents the parent chromosomes and 𝑐 = 𝑛 + 1 to 2𝑛 represents the 

offspring chromosomes. 

The fitness value of all the parent and offspring chromosomes are considered for making 

the selection. A greater value of the fitness function ensures a greater chance of the chromosome 

being selected to the next generation. It is also possible to select a bad chromosome to the next 

generation, but with a very small probability. This idea is derived from the simulated annealing 

metaheuristic in which a bad solution is also accepted and taken to the next iteration with a small 

probability (Laarhoven and Aarts, 1987). 

6.2.8. Termination Criteria 

In the proposed MSGA, the generation process is stopped when the number of generations 

reaches a maximum user specified value. The parameters ((𝑠𝐻𝑗 , 𝑆𝐻𝑗) and (𝑠𝐵𝐶, 𝑆𝐵𝐶)) that yield 

the least total cost across all the generations is selected as the final solution. 
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6.2.9. Steps of the Modified Stochastic Genetic Algorithm (MSGA) 

Step 1: Generate the initial population (𝑛 chromosomes); Initialize current generation to 1. 

Step 2: Calculate the total cost across all demand scenarios for each chromosome 𝑐 (𝑇𝐶𝐵𝑆𝐶𝑐) 

Step 3: Evaluate the fitness function for each chromosome 𝑐 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐) 

Step 4: If current generation < maximum generation, then do steps 4a through 4g; otherwise go 

to Step 5. 

Step 4a: Perform crossover operation on the parent chromosomes 

Step 4b: Perform mutation operation on the parent chromosomes 

Step 4c: Update mutation probability (i.e., set 𝑀𝑃𝑛𝑒𝑤 = 𝑀𝑃𝑜𝑙𝑑×𝑀𝐹)  

Step 4d: Calculate the total cost for the 𝑛 offspring 

Step 4e: Evaluate of the fitness function for the 𝑛 offspring 

Step 4f: Select parent chromosomes for the next generation based on the fitness function of 

the parents and offspring in the current generation 

Step 4g: Increment generation by 1 and repeat Step 4. 

Step 5: Current generation has reached the prescribed maximum value. Terminate the algorithm. 

The value of the chromosome with the least total cost across all the generations and the 

corresponding (𝑠, 𝑆) policies for the blood center and the hospitals will be the final solution 

obtained from the MSGA. 

In summary, the main difference between the proposed MSGA and the genetic algorithm 

proposed by Amaruchkul and Auwatanamongkol (2013) are as follows: 

(1) Gradual decrease in mutation probability over generations (step 4c) to ensure faster 

convergence as a result of reduced perturbation. 

(2) Selection of chromosomes for the next generation considering even the parent population 

in the current generation (step 4f). 

6.3. Computational Results 

In this section, the performance of the modified stochastic genetic algorithm (MSGA) is 

compared with that of the optimal solution obtained for smaller problems using a case study. For 

larger problems, the proposed MSGA is compared against an existing genetic algorithm in the 

literature. 

For the purpose of conducting the analysis, a blood supply chain configuration with two 

hospitals and one blood center is considered. The lead time of hospital-1 is negligible (i.e., close 
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to the blood center), while the lead time of the other hospital is assumed to be 1 day (i.e., located 

away from the blood center). 

6.3.1 Input Parameters 

The input parameters for the hospitals and the blood center used for the case study are 

given in Table 6.2. The impact of varying the input parameters is studied in Section 6.4. 

6.3.1.1. Demand Parameters at the Hospitals 

The blood demand data reported by Tetteh (2008) for a hospital at New York for 122 days 

is fitted to a normal distribution N(200,32). For hospital-2, the demand parameters are assumed 

to be half of those of hospital-1. In other words, the demand for hospital-2 follows Normal 

distribution with mean 100 and standard deviation of 16. The effect of varying the demand 

parameters is discussed in Section 6.4. 

6.3.1.2. Cost Settings 

The fixed and variable purchasing cost parameters are obtained from a regional medical 

center in Pennsylvania and from the literature (Civelek et al., 2015). The inventory holding cost 

(IHC) in the literature is calculated based on the cost of storing platelets in the agitator and the 

electricity cost. Because platelets are very expensive, IHC must also include the working capital 

tied up in inventory. Therefore, at both the blood center and hospitals, IHC is taken as 20% of their 

purchasing/testing cost. The shortage cost is assumed to be five times the variable purchasing cost 

and the outdating cost is taken as the purchasing cost based on the ratios given in the literature 

(Hill, 2011; Haijema, 2013). Table 6.2 summarizes the cost data used for the analysis. The effect 

of varying the cost parameters is discussed in Section 6.4. 

Table 6.2: Input Parameters 

Parameter Values 

Time Horizon (days) 30 

Number of Scenarios 15 

Parameter Hospital 1 Hospital 2 Blood Center 

Lead Time (days) 0 1 5 

Review Period (days) 1 1 1 

Fixed Cost of Procurement ($/shipment) 113 225 1125 

Inventory Holding Cost ($/unit/day) 130 130 108 

Variable Purchasing Cost ($/unit) 650 650 538 

Shortage Cost ($/unit) 3250 3250 2690 

Outdating Cost ($/unit) 650 650 538 

Platelet Demand N(200,32) N(100,16) - 
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Since the lead times of hospital-1 and hospital-2 are considered to be 0 and 1 day 

respectively, the fixed transportation cost at hospital-1 is considered to be half of that of hospital-

2. For the purpose of simplicity, all other cost parameters are considered the same at both the 

hospitals and are summarized in Table 6.2. 

6.3.2. Complexity of the Stochastic Programming Model 

The stochastic blood supply chain model discussed in Section 6.1 is programmed using 

GAMS® and solved using IBM CPLEX®12.6.0.0 optimizer. For the input parameters given in 

Table 6.2, the stochastic blood supply chain model was able to run in its fullest efficiency for only 

15 scenarios. The model had the following features: 

• Total number of decision variables: 30306, out of which 1350 are binary variables 

• Total number of constraints: 24468 

• Solution time: approximately 1 hour 

6.3.3. Calculation of the upper and lower bounds for order-up-to levels at the blood center 

and hospitals for the modified stochastic genetic algorithm (MSGA) 

Following the procedure given in Section 6.2.2, we get the bounds as follows: 

At Hospital-1 

From Table 6.2, 𝜇𝐻1,𝐷 = 200, 𝜎𝐻1,𝐷 = 32, 𝐿𝑇𝐻1 = 0 days and 𝑅𝐻1 = 1 day. 

𝜇𝐻1,𝐷𝐿𝑇𝑅 = (𝐿𝑇𝐻1 + 𝑅𝐻1)×𝜇𝐻1,𝐷 = 200 

𝜎𝐻1,𝐷𝐿𝑇𝑅 = 𝜎𝐷×√𝐿𝑇𝐻1 + 𝑅𝐻1 = 32 

Therefore, upper bound of 𝑆𝐻1 = 𝜇𝐻1,𝐷𝐿𝑇𝑅 + 3𝜎𝐻1,𝐷𝐿𝑇𝑅 = 296 

Lower bound of 𝑆𝐻1 = 0.8×𝜇𝐻1,𝐷𝐿𝑇𝑅 = 160 

At Hospital-2 

𝜇𝐻2,𝐷 = 100, 𝜎𝐻2,𝐷 = 16, 𝐿𝑇𝐻2 = 1 day and 𝑅𝐻2 = 1 day. 

𝜇𝐻2,𝐷𝐿𝑇𝑅 = (𝐿𝑇𝐻2 + 𝑅𝐻2)×𝜇𝐻2,𝐷 = 2×100 = 200 

𝜎𝐻2,𝐷𝐿𝑇𝑅 = 𝜎𝐷×√𝐿𝑇𝐻2 + 𝑅𝐻2 = 16×1.414 ≅ 23 

Therefore, upper bound of 𝑆𝐻2 = 𝜇𝐻2,𝐷𝐿𝑇𝑅 + 3𝜎𝐻2,𝐷𝐿𝑇𝑅 = 269 

Lower bound of 𝑆𝐻2 = 0.8×𝜇𝐻2,𝐷𝐿𝑇𝑅 = 160 
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At Blood Center 

𝐿𝑇𝐵𝐶 = 5 and 𝑅𝐵𝐶 = 1 

𝜇𝐵𝐶𝐷 = 𝜇𝐻1,𝐷 + 𝜇𝐻2,𝐷 = 200 + 100 = 300 

𝜎𝐵𝐶𝐷 = √𝜎𝐻1,𝐷
2 + 𝜎𝐻2,𝐷

2 = √322 + 162 = √1280 ≅ 36 

𝜇𝐵𝐶𝐷𝐿𝑇𝑅 = (𝐿𝑇𝐵𝐶 + 𝑅𝐵𝐶)×𝜇𝐵𝐶𝐷 = 6×300 = 1800 

𝜎𝐵𝐶𝐷𝐿𝑇𝑅  = 𝜎𝐵𝐶𝐷×√𝐿𝑇𝐵𝐶 + 𝑅𝐵𝐶 = 36×2.449 ≅ 88 

Therefore, upper bound of 𝑆𝐵𝐶 = 𝜇𝐵𝐶𝐷𝐿𝑇𝑅 + 3𝜎𝐵𝐶𝐷𝐿𝑇𝑅 = 2064 

Lower bound of 𝑆𝐵𝐶 = 0.8×𝜇𝐵𝐶𝐷𝐿𝑇𝑅 = 1440 

 

6.3.4. Comparison of the Optimal Solution by the Stochastic Integer Model with MSGA 

The proposed MSGA is coded in Matlab® on a computer with 8GB RAM, Intel i5 2.50 

GHz processor. To illustrate the performance of the MSGA, five performance measures are 

considered; Units purchased, units held in inventory, units shortage, units outdated and expected 

total cost. 

As discussed in Section 6.3.2, the stochastic programming mathematical model was able 

to run efficiently for only 15 scenarios. For the same 15 demand scenarios, MSGA is run and the 

expected total cost, units outdated, shortage and purchased for 30 days are recorded. The two 

solutions are then compared in Table 6.3. 

6.3.4.1. Demand Fulfillment at the Blood Center 

In the stochastic integer programming model, the number of units with shelf life of 𝑖 days 

to ship to hospital 𝑗, on day 𝑡 (𝑈𝐵𝐶𝐻𝑗,𝑡,𝑖
𝜔 ) is determined by the model. However, in the genetic 

algorithm, the allocation rule has to be given by the users to the model. Therefore, the stochastic 

integer model results are analyzed first to understand the allocation policy developed by the model.  

Based on the observation made from the optimal solution, in most scenarios, the allocation 

rule, when there is a shortage at the blood center, is as follows: 

All platelets with shelf life of 1 day (𝐼𝐵𝐶𝑡,1
𝜔 ) are allocated to hospital 1, since, hospital-1 

has a lead time of 0 days. If there exist a leftover demand placed by hospital-1, then the remaining 

inventory is proportionately split among the demand placed by both the hospitals. 
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Let us consider a numerical example to illustrate the allocation rule: 

Assume the following platelet data: 

• Platelets with shelf life of 1 day at the blood center: 200 units 

• Platelets with shelf life of 2 days at the blood center: 100 units 

• Platelets with shelf life of 3 days at the blood center: 200 units 

• Demand placed by hospital-1: 450 units 

• Demand placed by hospital-2: 200 units 

• Lead time at hospital-1: 0 days 

• Lead time at hospital-2: 1 day 

Note that the total demand of 650 units at the hospitals exceeds the available inventory of 

500 units. Since, the lead time of hospital-1 is 0, all platelets with 1-day life (200 units) are 

allocated to hospital-1. Platelets with shelf life of 2 and 3 days have to be proportionately split 

among the two hospitals based on their remaining demands. The remaining unfulfilled demand of 

hospital-1 is 250 (i.e., 450 – 200) units and the demand at hospital-2 is 200 units.  

Therefore, percentage of demand of hospital-1: 
250

(250+200)
= 0.56; Percentage of demand of 

hospital-2: 
200

(250+200)
= 0.44. 

The platelets with shelf life of 2 and 3 days are then partitioned among the two hospitals 

using the calculated percentage values. Platelets with two-day shelf life shipped to hospital-1: 

100*0.56 = 56 and platelets with two-day shelf life shipped to hospital-2: 44. Similarly, units 

shipped to hospitals 1 and 2 with three-day shelf life are 112 and 88 respectively.  

 

Allocation rule followed by the blood center:  

If the lead time of hospital 𝑗 is negligible (i.e., if 𝐿𝑇𝐻𝑗
𝜔 = 0 days), estimate the percentage of 

platelets to allocate to hospital 𝑗 with remaining life of 1 day, on day 𝑡 (𝑃𝑅𝑗,𝑡,1
𝜔 ).  

𝑃𝑅𝑗,𝑡,1
𝜔 =

𝑄𝐻𝑗,𝑡
𝜔

∑ 𝑄𝐻𝑗,𝑡
𝜔

𝑗 𝜖𝐽′
 

where 𝐽′ is the set of all hospitals with negligible lead time (i.e., 𝐿𝑇𝐻𝑗
𝜔 = 0). 𝑃𝑅𝑗,𝑡,1

𝜔  is the 

percentage of total platelets with shelf life of 1 day allocated to hospital 𝑗 on day 𝑡 𝑃𝑅𝑗,𝑡,1
𝜔  will be 

0 for hospitals with 𝐿𝑇𝐻𝑗
𝜔 ≥ 1 
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In order to allocate platelets with shelf life of 2 days, we have to consider two types of demand; 

(1) Demand for hospitals with lead time of 1 day and (2) Remaining unfulfilled demand of hospital 

𝑗 whose lead time is 0 days (i.e., remaining demand after consuming the 1-day platelets). 

𝑃𝑅𝑗,𝑡,2
𝜔 =

𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,1

𝜔 ×𝑄𝐻𝑗
𝜔

∑ (𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,1

𝜔 ×𝑄𝐻𝑗
𝜔)𝑗 𝜖𝐽′′

 

where 𝐽′′ is the set of all hospitals with 𝐿𝑇𝐻𝑗
𝜔 ≤ 1 

Note: According to step (a), 𝑃𝑅𝑗,𝑡,1
𝜔  will be 0 for hospitals whose lead time is 1 day. Therefore, 

𝑃𝑅𝑗,𝑡,2
𝜔  for these hospitals will become: 

𝑃𝑅𝑗,𝑡,2
𝜔 =

𝑄𝐻𝑗
𝜔

∑ (𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,1

𝜔 ×𝑄𝐻𝑗
𝜔)𝑗 𝜖𝐽′

 

Similarly, the percentage of platelets to be allocated to hospital 𝑗 with shelf life of 3 days is given 

below. 

𝑃𝑅𝑗,𝑡,3
𝜔 =

𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,1

𝜔 ×𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,2

𝜔 ×𝑄𝐻𝑗
𝜔

∑ (𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,1

𝜔 ×𝑄𝐻𝑗
𝜔 − 𝑃𝑅𝑗,𝑡,2

𝜔 ×𝑄𝐻𝑗
𝜔)𝑗

 

For the parameter settings given in Table 6.2, the daily performance measures for each 

scenario are compared for smaller problems and their average values are given in Table 6.3. 

From Table 6.3, it can be observed that the total cost obtained by MSGA is $ 598,059 with 

a gap of 15% from the optimal. At the blood center, the average units purchased under the 

mathematical model is 315 units which is 5% more than the mean demand. This happens because 

the blood center is not only responsible for fulfilling the regular demand but also the emergency 

demands placed by the hospitals. Due to the large quantity purchased, shortage is less at the blood 

center, in spite of the outdating under the optimal policy. At each of the two hospitals, almost the 

same number of units are purchased under the mathematical model and MSGA and is 

approximately equal to its mean demand. Since the lead time of hospital-2 (1 day) is more than 

that of hospital-1 (negligible), there is more outdating in hospital-2 compared to hospital-1, 

resulting in more shortage. It can also be observed that base stock periodic review policy is 

followed at the blood center under MSGA. 
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Table 6.3: Average Performance Measures for Smaller Problems (t=30,ω=15) 

Supply Chain 

Stage 

Performance 

Measure 

Stochastic Integer 

Programing Model 
MSGA 

Hospital-1 

Units Shortage 2 1 

Units Outdating 3 2 

Units Holding 62 59 

Units Purchased 194 195 

𝑠𝐻1 246 198 

𝑆𝐻1 258 248 

Hospital-2 

Units Shortage 3 2 

Units Outdating 4 2 

Units Holding 29 26 

Units Purchased 101 103 

𝑠𝐻2 267 265 

𝑆𝐻2 268 268 

Blood Center 

Units Shortage 2 15 

Units Outdating 25 16 

Units Holding 74 165 

Units Purchased 315 317 

𝑠𝐵𝐶 1469 1918 

𝑆𝐵𝐶 1710 1919 

Overall Measures 

Total Cost/day $ 518,902 
$ 598,059 

(Gap from optimal: 15.25%) 

Computational 

Time 
1 hour 7 minutes 

6.3.5. Comparison of MSGA and Base SGA for Larger Problems 

As discussed earlier, for larger problems, the performance of the proposed MSGA is 

compared with the genetic algorithm proposed by Amaruchkul and Auwatanamongkol (2013), 

which is referred to as Base stochastic genetic algorithm (Base SGA) in this chapter. Amaruchkul 

and Auwatanamongkol (2013) is one of the very few work in the recent times applying genetic 

algorithm for (𝑠, 𝑆) policy. To evaluate the effectiveness of MSGA for larger problems, 500 

scenarios are considered with a planning horizon of 100 days. 

For the settings presented in Table 6.2, the results obtained using MSGA and base SGA 

for larger problems are given in Table 6.4. It can be seen that the objective function value (total 

cost) obtained by the MSGA is better than that of the base SGA. Even though the gap is quite 

small, the actual difference between the cost values is more than $6500 (i.e., using MSGA, savings 
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per day per scenario is more than $6500). At both the hospitals and the blood center, shortage is 

more under the base SGA, due to the less units purchased compared to MSGA. 

Table 6.4: Average Performance Measures for Larger Problems (t=100,ω=500) 

Supply Chain 

Stage 

Performance 

Measure 
MSGA Base SGA 

Hospital-1 

Units Shortage 1 1 

Units Outdating 1 1 

Units Holding 53 84 

Units Purchased 201 200 

𝑠𝐻1 198 246 

𝑆𝐻1 248 258 

Hospital-2 

Units Shortage 1 2 

Units Outdating 1 1 

Units Holding 28 29 

Units Purchased 103 102 

𝑠𝐻2 202 232 

𝑆𝐻2 225 262 

Blood Center 

Units Shortage 9 28 

Units Outdating 5 3 

Units Holding 152 34 

Units Purchased 204 173 

𝑠𝐵𝐶 1918 1469 

𝑆𝐵𝐶 1924 1710 

Overall Measures 

Total Cost/day $ 539,728 $ 546,406 

Convergence 

Time 
29 minutes 32 minutes 

6.4. Sensitivity Analysis 

In this section, the impact of the cost parameters and the coefficient of demand variation 

on the total cost measure is studied. 

6.4.1 Impact of Cost Parameters 

The fixed transportation cost (FTC), inventory holding cost (IHC), variable purchasing cost 

(VPC), shortage cost (SC) and outdating cost (OC) at the blood supply chain are varied. Table 6.5 

summarizes the 17 cost settings used for the sensitivity analysis. Cost setting 1 (CS1) is the 

baseline setting used in Section 6.3. Cost settings 2 to 9 (CS2 – CS9) represent multiplying the 

values of cost parameters by 0.5 one at a time, compared to CS1 respectively. Similarly, cost 
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settings 10 to 17 (CS10 – CS17) represent multiplying the values of cost parameters by 1.5 one at 

a time, compared to CS1 respectively. Thus, in each cost setting, only one of the cost parameters 

is changed, while the others are maintained at their base values. The problems are solved under 

each cost settings by both MSGA and base SGA. The average values of the daily total cost are 

compared in Table 6.6. 

Table 6.5: Cost Setting 

Cost Setting 

Cost incurred at Blood 

Center 
Cost incurred at Hospital 

IHC SC OC 
FTC 

(H1,H2) 
IHC VPC SC OC 

CS1 (base) 108 2690 538 (113,225) 130 650 3250 650 

CS2 54 2690 538 (113,225) 130 650 3250 650 

CS3 108 1345 538 (113,225) 130 650 3250 650 

CS4 108 2690 269 (113,225) 130 650 3250 650 

CS5 108 2690 538 (57,113) 130 650 3250 650 

CS6 108 2690 538 (113,225) 65 650 3250 650 

CS7 108 2690 538 (113,225) 130 325 3250 650 

CS8 108 2690 538 (113,225) 130 650 1625 650 

CS9 108 2690 538 (113,225) 130 650 3250 325 

CS10 162 2690 538 (113,225) 130 650 3250 650 

CS11 108 4035 538 (113,225) 130 650 3250 650 

CS12 108 2690 807 (113,225) 130 650 3250 650 

CS13 108 2690 538 (170,338) 130 650 3250 650 

CS14 108 2690 538 (113,225) 195 650 3250 650 

CS15 108 2690 538 (113,225) 130 975 3250 650 

CS16 108 2690 538 (113,225) 130 650 4875 650 

CS17 108 2690 538 (113,225) 130 650 3250 975 

From Table 6.6, it can be observed that the MSGA performs better than the base SGA for 

12 out of the 17 cost settings. MSGA performs better with more than 25% deviation for CS7 and 

CS15. In both these settings, the purchasing cost at hospital is altered from the baseline setting. 

Hence, it can be concluded that MSGA remains robust with respect to change in unit purchasing 

cost. Also, for 6 out of the 17 scenarios considered, the performance of MSGA is better than the 

base SGA by more than 10%. For 5 scenarios, the base SGA performs better than the MSGA and 

with nearly 4% deviation on average. 
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Table 6.6: Impact of Cost Parameters on the Objective Function 

Cost 

Setting 
MSGA Base SGA 

% Deviation of Base 

SGA from MSGA 

Best Performing 

Rule 

CS1 $546,406 $539,728 -1.22% Base SGA 

CS2 $516,142 $566,338 8.86%* MSGA 

CS3 $516,445 $505,094 -2.20% Base SGA 

CS4 $529,875 $612,095 13.43%* MSGA 

CS5 $542,047 $532,751 -1.72% Base SGA 

CS6 $521,725 $574,605 9.20%* MSGA 

CS7 $328,896 $450,284 26.96%* MSGA 

CS8 $524,095 $545,214 3.87% MSGA 

CS9 $532,526 $594,535 10.43%* MSGA 

CS10 $549,391 $646,444 15.01%* MSGA 

CS11 $606,701 $558,650 -7.92%* Base SGA 

CS12 $536,113 $602,640 11.04%* MSGA 

CS13 $533,370 $542,758 1.73% MSGA 

CS14 $584,584 $543,621 -7.01%* Base SGA 

CS15 $736,568 $1,050,801 29.90%* MSGA 

CS16 $537,424 $576,005 6.70% MSGA 

CS17 $533,541 $589,252 9.45%* MSGA 
*Indicates that there exist a significant difference in the performance of the two methods at α=0.05. 

6.4.2 Impact of Demand Variation 

The coefficient of variation (CV) is the ratio of the standard deviation to the mean of the 

platelet demand. CV at both the hospitals is increased from 0.1 to 0.5 in steps of 0.1 and the 

objective function values under MSGA and base SGA are recorded in Table 6.7. From the results, 

it is evident that the performance of MSGA is significantly better than the base SGA for CV values 

greater than 40%. In other words, when there is more uncertainty in platelet demand, MSGA 

performs better. When CV is less than 30%, it can be seen that the gap between the base SGA and 

the MSGA is decreasing with increase in CV and in fact, for CV=30%, SGA performs better than 

MSGA. 

Table 6.7: Impact of Demand Parameters on the Objective Function 

CV Setting MSGA Base SGA 
% Deviation of Base 

SGA from MSGA 

Best Performing 

Rule 

CV = 10% $496,208 $502,854 1.32% MSGA 

CV = 20% $561,747 $567,760 1.06% MSGA 

CV = 30% $656,420 $650,527 -0.91% Base SGA 

CV = 40% $749,299 $824,690 9.14%* MSGA 

CV = 50% $860,272 $941,228 8.60%* MSGA 
*Indicates that there exists a significant difference in the performance of the two methods at α=0.05. 
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6.5. Conclusions 

In this chapter, inventory management at the entire blood supply chain is studied to 

minimize outdating and shortage of platelets. Stochastic integer programming model under a (𝑠, 𝑆) 

policy is developed to determine the ordering policy. The computational complexity of the model 

with the number of scenarios and time horizon appears to increase exponentially and hence, a new 

variant of genetic algorithm is proposed, called modified stochastic genetic algorithm (MSGA) for 

solving the stochastic program. The proposed MSGA overcomes the drawbacks of the traditional 

GA such as long convergence time and high probability of obtaining a local optimum. For smaller 

problems, the performance of MSGA is compared against that of the true optimal solution. For 

larger problems with 100 scenarios and 500 days horizon, MSGA and the existing genetic 

algorithm proposed in the literature are compared and the results are presented. Sensitivity analysis 

is performed by varying the cost and demand parameters. The results indicate that MSGA performs 

better than the existing genetic algorithm under most cost and demand settings. For future work, 

different allocation policies at the blood centers can be studied. Also, multi-criteria optimization 

techniques, discussed in Chapter 4, can be used to develop the inventory policies for the blood 

supply chain under conflicting performance measures (inventory, versus outdating and shortages). 
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Chapter 7 : Conclusions and Future Work 

Blood supply chain deals with the delivery of different components of blood, (Red Blood 

Cells (RBC), White Blood Cells (WBC) and platelets suspended in a liquid substance called 

plasma) from the donor to the hospitals and surgery centers for patient treatment. The whole blood 

is collected at several collection sites from various donors and is then sent to blood centers where 

blood is separated into different components and tested for infection. Several hospitals and surgery 

centers place orders to the blood centers for the various blood components, depending upon their 

needs to serve their patients. 

Among the blood components, platelets have a very short shelf life of 5 days and after the 

2-day testing procedure, they only have a remaining life of 3 days. Due to the demand uncertainty 

and short shelf life of platelets, there are significant wastage and shortage of platelets. It has been 

reported that about 20% of the total platelet unit collected are outdated in the US and western 

European countries and nearly 500 surgeries are canceled each day due to the shortage of blood. 

Therefore, it is necessary to develop inventory ordering policies such that both the outdating and 

shortage of platelets are reduced. 

In this dissertation, deterministic single objective inventory model is first developed to 

determine the number of platelet units to order and time between orders at the hospital. The model 

is extended to deterministic multiple objective inventory management at the hospital. All these 

models assume demand to be known. The models are later extended incorporating demand 

uncertainty for hospital inventory management. Finally, stochastic inventory models for the entire 

blood supply chain with a single blood center and multiple hospitals are developed. The models 

are illustrated using a real case-study data. 

7.1. Theoretical Contributions 

In the past research work on the inventory management of perishable items and blood in 

specific, reducing platelet wastage is seldom considered due to the extremely short shelf life of 

platelets. In addition, published articles on platelet inventory management have assumed infinite 

supply at the blood center, which is not the case in reality. The blood supply chain models 

developed in this dissertation consider platelet shortages at the blood center while determining the 

ordering policies. 
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According to Dillon et al. (2017), most research on blood inventory management assume 

that the demand is deterministic. However, Haijema et al., (2007) highlighted the necessity to 

consider blood demand uncertainties, since 50% of the total blood requested by the physicians are 

not transfused due to uncertainty. Therefore, stochastic programming models under demand 

uncertainty have been developed to determine ordering policies at individual hospitals as well as 

at the entire blood supply chain. 

In the research work done on the platelet inventory management, it is mostly assumed that 

the platelets arriving at the hospital are fresh, with a shelf life of 3 days, which is not necessarily 

true in practice. Based on our interaction with the technicians and pathologist at a regional medical 

center, the arriving platelets have different shelf lives. In fact, 50% of the platelets arriving have 

only 1-day life. The analysis presented in Chapter 5 clearly indicates that the inventory policies 

proposed in the literature are not valid, unless hospitals assume that they receive only fresh 

platelets from the blood center. The hospital inventory models developed in this dissertation have 

relaxed this assumption and considered platelets with varying shelf-lives. In addition, the impact 

of shelf life on the platelet wastage and shortage is also analyzed. 

There has been very little previous work on blood inventory management for the entire 

blood supply chain. In Chapter 6, stochastic programming models and meta-heuristic techniques 

have been developed for determining the ordering policies for the entire blood supply chain. In 

addition, the models consider two types of demands placed by the hospitals to the blood center. 

The first type of demand (referred to as the regular demand) is placed by the hospital at the end of 

each day and will be received after the lead time. The second type of demand (referred to as the 

emergency demand) have to be supplied by the blood center to the hospital immediately. The 

stochastic programming models developed in Chapter 6 is one of first research work to incorporate 

the real-life sequence of events in the blood supply chain. 

7.2. Methodological Contributions 

Most of the research on inventory management of platelets assume that the shortage cost 

is five times the outdating cost (Haijema, 2007; Haijema, 2009; van Dijk, 2009; Gunpinar and 

Centeno, 2015; Rajendran, 2016a, 2016b). However, shortage cost cannot be quantified in reality. 

Moreover, better inventory models can be developed if conflicting criteria such as outdating and 

shortage, holding cost and ordering cost are included. In this dissertation, multiple criteria 

mathematical programming (MCMP) models for platelet inventory management have been 
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developed and solved using three MCMP solution techniques - preemptive goal programming, 

non-preemptive goal programming and weighted objective method. The results obtained from the 

three MCMP techniques can assist the hospital management in deciding how many platelet units 

to purchase based on their operational settings. 

The stochastic programming model for hospital inventory management under the (𝑠, 𝑆) 

policy is developed in Chapter 5. The performance of the models under the (𝑠, 𝑆) policy is 

compared against the other ordering policies and have proven to be better than the others under 

several performance measures. Also, the model under the (𝑠, 𝑆) policy is computationally less 

complex and reaches optimality in less time.  

In Chapter 6, a new variant of the genetic algorithm, called modified stochastic genetic 

algorithm (MSGA) is proposed for determining the order-up-to level and re-order points at the 

hospitals and the blood center. In the MSGA, a new selection method is developed for generating 

the chromosomes for the next generation. The chromosomes that are carried over to the next 

generation are selected based on a probability, which is calculated as a function of their fitness 

value. A greater value of the fitness function ensures a greater chance of being selected to the next 

generation.  

7.3. Contributions to Practice 

Hospitals might be interested in following a simple ordering policy without compromising 

patient care. In Chapter 5, a (𝑠, 𝑆) periodic review policy has been developed for ordering platelets 

at the hospitals. Under this policy, at the end of each review period, the inventory position is 

recorded. If the inventory position is below the reorder point 𝑠, then an order is placed to bring the 

inventory to level 𝑆. If the inventory position is greater than or equal to the reorder point 𝑠, then 

no platelets are ordered at that time. This simple policy is easy to follow by the hospitals and also 

performs better than other ordering policies. 

In addition, four heuristic policies have been developed for hospital inventory management 

(base stock, modified base stock, weighted mean-variance and last value policies). These policies 

can be implemented easily using an Excel spreadsheet and can act as decision support systems to 

hospital administrators. 
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We also developed the following recommendations for the hospital’s inventory 

management:  

• If there is a trend in platelets demand (increasing/decreasing), then the hospital should use the 

weighted mean-variance or last value ordering policies. 

• If the hospital experiences low demand variation, then the weighted mean-variance policy is 

better. For high demand variation, modified base stock policy is the best performing rule. 

• If the blood center is located far away from the hospital, then the cost of emergency 

procurement (i.e., shortage) would be very high. In such cases, base stock or modified base 

stock ordering policies would be better. 

• If the hospital has limited storage capacity, then the last value policy will be the most suitable. 

This would result in minimizing the inventory of platelets. 

• If more than 80% of the platelets arriving at the hospital are fresh (i.e., have a shelf life of 2 or 

3 days), then the modified base stock policy should be adopted. 

7.4. Future Research Directions 

The following are the potential future work: 

• Multiple Criteria Approaches for managing the Blood Supply Chain: As discussed 

earlier, it is difficult to quantify the cost of shortage and outdating at any stage of the blood 

supply chain. Therefore, goal programming and weighted objective techniques developed 

for hospital inventory management in Chapter 4, can be extended to the entire blood supply 

chain. In addition, other multiple criteria techniques such as compromise programming and 

interactive approaches which directly involve the decision maker in the solution process, 

can also be used for making order policy decisions at the blood supply chain. 

• Platelet Demand for Two Types of Patients: Hospitals place platelet demand under two 

age categories. 'Young' (fresh) platelets are usually required by patients in the oncology 

and hematology departments, while 'any' age platelets are required by other departments 

such as traumatology and general surgery (Haijema et al., 2007). The models developed in 

this dissertation can be extended considering these two types of patient demands. 

• Vehicle Routing Policies for Blood Supply Chain: Vehicle routing policies can be 

studied for the two stages in the blood supply chain. The first stage is during the collection 

of blood from the donors in the blood drives. The blood that is collected at blood drives 
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have to be transported to the blood center within 4-6 hours of collection. Therefore, blood 

have to be collected from several drives and efficiently transported to the blood center 

within the limited time window. The other stage is during the delivery of blood components 

from blood centers to hospitals. In some cases, blood components have to be transported 

for several hundred miles from the blood centers to hospitals and hence, it is necessary to 

schedule vehicles such that the overall transportation cost is reduced. 

• Closed-Loop Blood Supply Chain: Blood can be sent back to blood center due to reasons 

such as bacterial contamination or when excess units are ordered. In these cases, the reverse 

shipment cost has to be considered in the model. However, none of the previous research 

takes into account the reverse shipment cost and the associated reduction in inventory. 

• Prediction Analytics for Blood Products: Predicting demand for blood components is 

essential since the demand is increasing and the supply is not increasing enough to meet 

the demand. Also, advanced information can increase blood collection efforts if more blood 

is required, and blood collection can be limited, if less units are needed (Frankurter et al., 

1974). Predicting demand of perishable items such as blood is specifically challenging 

because of the limited shelf life. Therefore, predictive analytic tools such as random forest, 

artificial neural network or regression can be used for demand prediction considering 

several input factors such as weather, day of the week and month of the year. 

• Ordering Policies considering Multiple Blood Products: Ordering policies can be 

developed for the entire platelet supply chain considering the flow of multiple blood 

products, such as red blood cells, white blood cells, platelets and plasma, along the blood 

supply chain. 

• Collaboration and Platelet Sharing: A collaborative hospital network can be proposed 

in which each hospital can fulfill its patient demand from its inventory, but can also receive 

an additional amount of platelet units from other collaborating hospitals, which have excess 

platelet available that day. As a result, the extent of platelet demand fulfillment is increased 

due to excess platelet units shared by the collaborating hospitals. This collaboration in a 

hospital network will reduce platelet shortage and outdating. Currently, the government 

policies do not allow sharing of platelets among different hospitals. The results from this 

work may reveal potential benefits of platelet sharing and act as a catalyst to change 

government policies. 
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Appendix 

Forecasting Data and Seasonality Index 

Day 1 average 193.6923077 

Day 2 average 211.6153846 

Day 3 average 198 

Day 4 average 183.7692308 

Day 5 average 182.6923077 

Day 6 average 165.7692308 

Day 7 average 158.3076923 

Overall average 184.8351648 

 

Seasonality index for day 𝑖 =
average demand during day 𝑖

overall average of demand for all periods
 

Seasonality index for day 1 =
193.6923

184.8352
=1.047919 

Seasonality index for day 2 =
211.6153846

184.8352
=1.144887 

Seasonality index for day 3 =
198

184.8352
=1.071225 

Seasonality index for day 4 =
183.7692308

184.8352
=0.994233 

Seasonality index for day 5 =
182.6923077

184.8352
=0.988407 

Seasonality index for day 6 =
165.7692308

184.8352
=0.896849 

Seasonality index for day 7 =
158.3076923

184.8352
=0. 85648 
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