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Abstract

This dissertation makes contributions to two major areas in machine learning, namely,
semi-supervised active learning and anomaly detection, with general applicability but
with demonstrated application to vehicle tracking and network intrusion detection. In
both of these domains, some categories may be rare or unknown, with very few or no
labeled samples to start with. For example, in a network intrusion detection system, fol-
lowing a standard statistical anomaly detection (AD) approach, one would train a null
hypothesis, characterizing the normal behavior whose data sources are usually captured
in a sandbox environment, and flag any sample that deviates from the norm (above a pre-
defined threshold) as anomalies. Naively deploying the null model, however, will flood the
administrator with too many uninteresting anomalies to further fully investigate. Thus,
it makes sense to further discriminate many of the uninteresting anomalies from the truly
interesting ones, and develop an active selection strategy to efficiently forward samples
for oracle labeling that help to learn to discriminate these groups. Moreover, the interest-
ing anomalies, which may amount to zero-day threats, are often highly skewed and may
only manifest on a very small subset of features. Using all features to identify anomalies
will not be advantageous because many features may not be informative/discriminative
in practice. We try to design a rare category identification and characterization system
that can benefit from 1) statistical AD, 2) a semi-supervised active learning based dis-
criminant classifier, with zero weights given to the irrelevant features, and 3) an active
sample selection strategy to select the most likely unknown sample, hence efficiently
ranking/forwarding interesting anomalies for the administrator. In terms of 1), we also
develop a purely unsupervised learning technique to extract group behavior that jointly
exhibits anomalousness on a sample and feature subset.

In the case of semi-supervised learning, wherein the fundamental idea is to combine
the usage of the limited number of labeled training samples and the abundance of un-
labeled samples to learn a classifier, we focus on domains where some categories are
rare or unknown, with very few or no labeled samples to start with. Unlike the conven-
tional approaches in the mainstream literature, where unlabeled samples are perceived
as belonging to one of the known categories and should be leveraged to minimize class
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posterior uncertainty, we propose a semi-supervised objective that seeks to preserve the
uncertainty among unlabeled samples, both to avoid overtraining and to help efficiently
discover unknown classes. Specifically, using Shannon entropy as the measure of uncer-
tainty, we propose to use max entropy regularization (maxEnt), rather than minimum
entropy regularization (minEnt). Moreover, our proposed model in a two class classifica-
tion problem is convex (unlike minEnt) and it has been shown to outperform in a variety
of rare category characterization problems, compared to existing approaches. While
semi-supervised learning focuses on exploiting the latent structures hidden in the sample
distribution, active learning tries to explore the sample space with the least represen-
tation. We combine our maxEnt semi-supervised learning with a novel active learning
strategy that together efficiently draw from the pool of unlabeled samples for oracle la-
beling, to achieve the best class discovery (exploration) and classification (exploitation).

In the case of anomaly detection, wherein the fundamental idea is to detect significant
outliers that deviate from the one class or null hypothesis, we have two contributions
to make. First, we propose a group based anomaly detection scheme that identifies
the sample and feature subset that jointly manifest the potential anomalous group,
with a Bonferroni approximation used to account for multiple testing. Unlike point-
wise anomaly detectors, our model has the potential to jointly identify which of the
sample and feature subsets are most atypical with respect to the null, thus avoiding
most point-wise, superficial outliers and efficiently capturing group anomalies. Second, a
singleton and pairwise Gaussian Mixture Models (GMMs) method is proposed as a novel
feature representation to characterize atypicality on each single or pairwise dimension,
using p-value as score/feature. This avoids the curse of dimensionality and achieves
superior performance, compared to other non-informative feature mapping techniques in
the literature.
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Chapter 1
Introduction

There are two basic paradigms in machine learning. One is supervised and the other

unsupervised. In supervised learning, data are collected and annotated (labeled), often

by human experts. Given the data set X and the associated label set Y, the task in-

volves learning a relationship/mapping between variables x and y based on a functional

model (e.g., decision tree) and optimization of an objective criterion (e.g., maximum

likelihood). If y is a discrete variable, we call it a classification problem; otherwise we

call it a regression problem. Supervised learning methods have been applied in various

applications, such as text classification, predictive modeling, and disease/fraud preven-

tion. On the other hand, in unsupervised learning, data are collected in bulk without

human annotation (e.g., survey data), and the task involves exploring interesting clus-

ters/structures hidden in the data. Some other applications also involve dimensionality

reduction and data visualization. Semi-supervised learning (SL) – a learning method

to perform either transduction or inductive reasoning using both labeled and unlabeled

samples – is usually conceived as a method to exploit both the information hidden in the

latent clusters of the data and the discriminability of different classes/categories. The

research on SL has been motivated by applications where annotation of data is scarce

compared to the bulk of the unlabeled data that are easy to collect, e.g., in natural lan-

guage processing. A detailed survey on semi-supervised learning is presented in [7]. This

thesis focuses on inductive semi-supervised learning, i.e., the design of a semi-supervised

learning model for general class discrimination, using both labeled and (potentially a

much larger number of) unlabeled samples. In the sequel, we will provide a brief intro-

duction on semi-supervised learning and specifically data dependent regularization – in

which unlabeled data are utilized as a kind of regularization source.
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1.1 Semi-supervised Learning

In semi-supervised learning, we are given a set of training data X = {Xl,Xu}, with

Xl the labeled training examples and Xu the unlabeled examples, and the goal is to

learn a mapping F (.) that generalizes the distribution of X and/or prediction of Y. As

noted in [7], the presence of unlabeled samples can only be made useful when samples

are obtained unbiasedly. If the data collection process is biased, the input distribution

information available from the unlabeled samples tends to hurt the generalization per-

formance. Transductive based semi-supervised learning, e.g., transductive SVM [62],

concerns only with inferring labels for the unlabeled examples in Xu, whereas inductive

based semi-supervised learning tries to learn class boundaries for general classification

besides the unlabeled samples on the sample space.

Inductive based semi-supervised learning can be further categorized into two groups:

generative and discriminative models. A generative model seeks to estimate the joint

distribution P [x, y], using both labeled and unlabeled samples, typically assuming sam-

ples are drawn i.i.d.. For example, in [41] and [44], a stochastic generation mechanism

is hypothesized for the observed data, treating the labels of those unlabeled samples as

missing values, with the associated expectation-maximization (EM) learning to well-fit

the data based on a maximum likelihood estimate. One can further extend it into the

Bayesian framework by introducing a prior on the parameter space. On the other hand,

in a discriminative model, e.g., [7], [4], [62], the focus is on learning a class posterior

P [y|x] (e.g., logistic regression) or a discriminant function (e.g., SVM [62]) that can well

separate data from the different classes. If the philosophical principle of Vapnik [62]

(which leads to the development of transductive SVM) is to be realized, i.e., one does

not solve a harder problem as an intermediate step towards solving a simpler problem,

then discriminative approaches, by modeling P [y|x] explicitly, with the need to estimate

a (much) less number of parameters, can be more attractive in the case of regression or

classification, compared to the generative models. In addition, the objective measure in

selecting the best generative model is not discriminative in nature, so the best generative

model we can estimate in practice may not be the best for prediction, especially when

there is model mismatch. However, a discriminative model will not model the underly-

ing sample distribution and hence is not suitable for tasks related to density estimation

which requires the explicit knowledge of P [x].

Based on various semi-supervised learning approaches, there are various assumptions

associated with each of the methods used:
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• Smooth label assumption : In a high density region, the closer the input samples

x1 and x2, the likelier its labels y1 and y2 are the same.

• Cluster assumption : Samples belonging to the same cluster are more likely to

belong to the same class, compared to samples belonging to different clusters.

• Low-density separation : The separating hyperplane should be generated from

a low-density region. Note that this assumption is related to that of the first and

the second one, because by guaranteeing that the decision boundary cuts through

a low density region, clustered samples and high density regions are more likely

assigned to the same class.

• Manifold assumption : To avoid the curse of dimensionality in modeling data

in high dimension, the manifold assumption states that the high-dimensional data

can be perfectly characterized in a low-dimensional manifold. Semi-supervised

graphical models implicitly encode this assumption, by modeling each sample as a

node and weights among data as their pairwise similarity measures [7], [2],[64].

In this thesis, we do not explicitly impose any of the above-mentioned assumptions

and develop our semi-supervised learning model with a different paradigm that is suitable

for rare and unknown category detection and characterization. Our work is closely related

to data dependent regularization, which is discussed in the sequel.

1.1.1 Data Dependent Regularization

In this section, we discuss using unlabeled data as a source of regularization for a dis-

criminative classifier.

Semi-supervised learning wherein unlabeled samples are used to achieve a type of

“regularization” have been proposed in a number of prior works [20],[36],[17],[19],[10].

Penalizing solutions that cut through a high density region, by postulating low-density

separation, all of these approaches introduce a cost term on the unlabeled samples which

encourages solutions with minimum entropy on the unlabeled samples, i.e., consistent

with “most confident” decisions [20] and class label “smoothness” in identifiable lo-

cal regions [10]. This has also been related to maximizing classifier margin [20]. [19]

goes one step further than [20] by introducing an empirical estimate of the class prior.

The proposed objective function in [19] is shown to work well in both clustering and

semi-supervised learning tasks. [36] extends [20] by adding an expected class estimate

regularization term, whose prior belief can be provided by a domain expert if available.
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However, a concern with these approaches is that they encourage overtraining in the case

where there are too few or no labeled examples from rare categories, the phenomenon of

which will be experimentally demonstrated in Chapter 3. Accordingly, we modified these

approaches, essentially by changing the sign on the unlabeled term – rather than min-

imizing decision uncertainty, our approach encourages maximizing decision uncertainty

so as to limit the amount of classifier learning performed based on a limited number of

supervising minority examples and so as to aid in efficient discovery of unknown classes.

Moreover, our optimization problem for the standard multi-class classification problem

is convex, whereas the minimum entropy problem is not. While we impose the complete

opposite assumption of minEnt, the proposed maxEnt framework allows for unidenti-

fied categories samples to be the most uncertain; hence it is highly suitable in detecting

unknown unknowns (unknown classes, zero-day phenomenon).

1.2 Active Learning

The main idea behind active learning is to allow the learner to ask questions. To put

this into a machine learning context, a learning machine can query unknown/unlabeled

samples to an oracle who knows the nature of the problem and hence can provide ground

truth labeling to the machine [55]. By judiciously choosing the samples to be labeled by

an oracle, one can potentially reduce the number of labeled examples that would other-

wise be needed to learn an accurate classifier for the given domain. Such economization

is of great practical importance, considering that ground-truth labeling is often an expen-

sive and time-consuming exercise. Active learning also gives a flexible, user-interactive

learning capability for domains where categorizations are highly subjective, e.g., consider

learning to predict the music (or art) that an idiosyncratic user would find “interesting”

or “uninteresting”. Active learning systems involve a closed-loop learning cycle, with the

classifier’s model parameters adapted/retrained in light of newly ground truth labeled

examples, and with the resulting model in turn used to help select additional samples

for labeling. The initial model, which starts this process, is generally learned based on a

(relatively small) initially available labeled training set. We focus on pool-based AL [55],

where the additional (actively) labeled samples are chosen from a captured batch (pool)

of unlabeled samples. A pool-based AL system is fully determined by:

1. The features and associated feature representation used as input to the classifier.

2. The chosen classifier model structure (e.g., decision tree, logistic regression).
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3. The criterion or algorithm used for selecting samples to be labeled (e.g., choosing

the sample with the greatest class uncertainty (entropy)).

4. The training objective function and associated optimization method, used for

adapting the classifier’s parameters in light of each new labeled instance.

In this work, we develop an active learning system suitable for detecting and learn-

ing unknown or label scarce categories. There are few prior works that address active

learning with rare/unknown categories. The active learning review in [55] gives little dis-

cussion of this problem. [12] proposes a sampling scheme which exploits cluster structure

(and class purity of same) in the data to potentially improve active learning efficiency.

They demonstrated their method on the Statlog Shuttle Data domain, for which the

rarest category occurs with frequency just 0.014%. Their scheme reduced the number of

labelings required to identify a labeled example from every class by a factor of almost

ten, compared with random selection. The most focused, notable research effort, of

which we are aware, on active learning with rare categories is [26]. This thesis separately

addresses rare category detection (identifying the first labeled instances of all classes),

rare category characterization (to subsequently identify all instances of a rare category),

and a related unsupervised problem, where rare groups should be identified in the ab-

sence of class labels for any samples in the pool. There are some fundamental differences

between the approaches taken in [26] and the maxEnt framework we propose. First, [26]

focuses on identifying examples of the rare category – not on overall classification accu-

racy. For a two-class problem with one unknown category, the most valuable samples

to label may be the samples that are nearest to the true (optimal) decision boundary.

It need not be the case that such samples predominantly come from the unknown class.

In fact, if the unknown class is a rare class, one would expect, within the unlabeled

pool, that more common category samples are close to the decision boundary than rare

category samples. Accordingly, we expect that the most effective active selection strat-

egy (to optimize overall classification performance) should sample accordingly. In fact,

this was borne out by our experimental results – prioritizing the labeling of most/all

rare category samples may not help a classifier to learn how to accurately discriminate

common category samples that are near these rare category samples. Many of these rare

category samples may be largely redundant. Second, some of the proposed methods in

[26] assume the class priors are known. While this may be realistic for some domains

(e.g., rare disease categories with known prevalence), such information will not be avail-

able in general. Third, in detecting rare category examples, [26] uses a nearest neighbor

framework, with distances in general measured using all the features. By contrast, our
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approach seeks to be robust to the presence of many noisy features that are irrelevant

to (and which may thus confound) discrimination of the rare and common categories.

Accordingly, it accommodates implicit (soft) feature selection.

1.3 Anomaly Detection

Anomaly detection refers to the process of detecting (interesting) samples that deviate

from the normal behavior. A detailed survey can be found in [6]. For example, in

network intrusion detection, the administrator is interested in detecting various kinds

of abnormal traffic (DDoS attack pattern, botnet C&C traffic, etc.) in real time and to

act upon them; in astronomy, scientists want to find interesting objects in a large batch

of captured astronomical images, while many of them may contain anomalies that are

uninteresting (noise, sensor mis-calibration, etc.) [46].

In both of these situations, the experts are only interested in a (very small) subset of

anomalies and this is usually subjectively defined according to the particular situation.

In this work, applying active learning, we allow the learning machine to actively exploit

expert’s subjective knowledge by judiciously choosing what samples to be forwarded

for labeling, based on the amount of “information” they contain. We also show how

this improves anomaly detection in the domain of vehicle tracking [51]. To characterize

normal behavior, we hypothesize a null model exclusively based on normal behaviors,

which will be described in Section 2.2.

1.4 Other Related Work

Training set class imbalance for supervised learning of classifiers has been addressed in a

number of prior works. Widely used approaches include class rebalancing (by discarding

samples from the majority class) [29] and class reweighting [8][22], where greater weights

in the sample-wise learning objective function are given to samples from minority classes.

Other approaches such as boosted ensembles [16] implicitly address this problem, by

focusing the training of successive classifier stages on the most difficult examples. That

is, the minority class examples and the examples from common classes nearest to them

in feature space are likely the most difficult examples to correctly classify.

We also emphasize that our definition of an “unknown” class is very different from

[40] and the “unsupervised” case considered in [26]. In these works, beyond wholly lack-

ing initial labeled examples, “unknown categories” are not even in the predefined set,
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i.e., they are completely unanticipated classes(clusters). Such classes can be identified

by applying some type of clustering to a given (semi-supervised) data batch, with the

unknown classes identified as detected clusters that do not contain any labeled examples

[40]. These unanticipated classes might be latently present within a batch due to an

incomplete knowledge of the classification domain (e.g., presence of an as yet undiscov-

ered type of galactic object in an astronomical database ostensibly capturing predefined

categories; presence of an unknown disease type “contaminating” a patient database for

a known disease domain).

1.5 Our Contributions

There are a total of five novel contributions and applications in this thesis related to

semi-supervised active learning and anomaly detection:

1. Our proposal of a novel (p-value based) feature representation and a companion

class posterior model that together encode our inductive bias for semi-supervised

learning in the presence of unknown (label-deficient) categories. When there are

rare categories, this model will be shown to outperform conventional classifiers

that have similar representation power and which are trained in the same way as

our model, but which work on raw features rather than p-values. This will be

highlighted in Chapter 2.

2. A novel semi-supervised learning framework with built-in capability for avoiding

overtraining, as especially needed for SL and AL with unknown categories. This

approach preserves, rather than minimizes, unlabeled decision uncertainty, and will

be shown to give superior results for SL and AL under the unknown and LS class

scenarios. This will be highlighted in Chapter 2.

3. A semi-supervised AL framework that exploits the first two contributions to achieve

good classification accuracy with sparing use of oracle labeling. This approach will

be shown to outperform several conventional benchmark methods, including sup-

port vector machine based AL. These observations and results will be highlighted

in Chapter 2.

4. The application of the proposed maxEnt model and its variations in vehicle tracking

and network intrusion detection systems will be discussed and their results are

presented in Chapter 3.



8

5. A group anomaly detection (GAD) technique is proposed to jointly identify the

sample and feature subset that together exhibit similar anomalous behaviors. This

will be the primary focus in Chapter 4.

In Chapter 5, we will summarize our contributions and provide directions for future

research.



Chapter 2
Proposed MaxEnt Semi-supervised

Active Learning Model

2.1 The Assumed Inductive Bias: the Unknown Class as a

Subset of What is Anomalous

The framework that we propose for SL and AL with unknown or label-scarce categories

is inspired by statistical AD, and can be thought of as a generalization of (unsupervised)

statistical AD. Specifically, considering a two-class problem, we will treat the common

category (ω1) as the null hypothesis (whose model can be learned based on the initial

labeled training set of common category examples, Xl), with the unknown (or LS) class

denoted ω2. Invoking a standard AD approach, given the learned null model, one would

interrogate the unlabeled data batch Xu, seeking to identify the set of anomalous samples

– those which deviate most from the null, i.e., those with lowest p-values 1. The inductive

bias [42] that we impose on the common versus unknown two-class problem is that the

samples that come from the unknown (or label-scarce) class are a (special) subset of

the anomalous samples in the data batch – those whose atypicalities (low p-values) are

with respect to certain key (albeit a priori unknown) features or feature combinations.

While other inductive bias should be more suitable for learning a classifier when there

are plentiful labeled examples of both classes, for our label-scarce setting, we focus on

anomalies with respect to the common class, in learning to discriminate between the

common class and an unknown (or LS) class. The effectiveness of this choice will be

1A p-value is the probability of seeing a datum more extreme than the given observation, under the
null hypothesis.



10

borne out by our experiments.

To exposit further, our inductive bias has three fundamental tenets:

1. A sample originates from the unknown class ∼ only if it is anomalous with respect

to the common class – i.e., if it is “typical” of the common class with respect to

all features, it should not belong to the unknown class.

2. The samples in the unlabeled batch that come from the unknown class all exhibit

anomalies with respect to a special (a priori unknown) common subset of the

measured features, which we dub the informative feature subset.

3. The more atypical a sample is with respect to these (unknown) informative features,

the more likely it is to originate from the unknown class.

The first tenet simply assumes the two classes are statistically distinct and discrim-

inable to some extent – if so, the unknown class samples should be atypical in some way,

referenced to the common class distribution. The second tenet suggests the anomalies

of the unknown class samples are not expected to be random - since they come from

the same class, these samples’ anomalies are expected to exhibit a pattern. Finally, the

third tenet links the strength of the anomalous pattern to the discriminability of the two

classes.

Example: given a classification domain with a 100-dimensional feature vector X ∈ <100,

the unknown class could consist of the samples in Xu that exhibit anomalies (low p-

values) with respect to some subset of the following: the common class’s (marginal)

distributions for individual features X17 and X32; the common class’s marginal distribu-

tions for the feature pairs (X79, X93), (X45, X67), and (X17, X52).

There are several important observations to make here.

First, it should be clear from the above example, with a high-dimensional feature

space and a small unknown subset of informative features, that, in general, an unknown

class may not be identifiable without some supervising examples. At the same time, we

note that there is prior work on purely unsupervised detection of unknown classes in a

data batch [11][28], e.g., the approach in [28] solely exploits the low likelihood (under

the null) that a (sizeable) subset of samples would manifest anomalies with respect to

the same subset of features. In any event, in an AL setting, the supervision needed to

make the unknown class identifiable/learnable will be oracle-supplied.

Second, note our inductive bias instructs that a special (nonlinear) feature transfor-

mation should be applied to the original, measured features - p-values (on individual
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features and low-order feature combinations), treated as derived features (classifier in-

puts), are hypothesized to be effective for discriminating between the unknown and

common classes.

Third, as illustrated by the above example, it is possible that the unknown class may

only conspicuously manifest anomalies (low p-values) with respect to a small subset of the

measured features (the informative features)2. The presence of many “uninformative”

or nuisance features is plausible because, without any initial labeled examples of the

(unknown) class, one does not in general know a priori which features will be needed to

discriminate this class from the common class, i.e. one may need to “overprovision” with

features; consequently, many uninformative features may be measured. Likewise, it will

also be a priori unknown which low-order feature combinations (and associated p-values)

will be class-discriminating. Thus, in general, one must agnostically measure all of them

– e.g., restricting just to feature pairs to limit complexity, all N(N−1)
2 . Thus, for N large,

there may be many marginal and, especially, many pairwise, feature atypicalities that

are uninformative. It is thus incumbent upon AL to “figure out” which (potentially

sparse subset of) individual and low-order feature combination p-values are strongly

discriminating. This amounts to a (possibly high-dimensional) feature selection problem.

Note also that “distance-based” methods, such as [26], which discriminate on the basis of

all (or most) features, should be suboptimal when many of the features are uninformative.

Fourth, suppose that we have identified the informative features. The three tenets

together imply a constraint should be imposed on the classifier’s parameter space. Specif-

ically, as seen in the sequel, negative log p-values should be non-negatively weighted, with

zero weights for irrelevant features (tenet 2), and with larger positive weights for more in-

formative features (tenet 3). Finally, note that our above assumptions do not necessitate

that an unknown class consist of a compact cluster, in either the full feature space (as

assumed, e.g., in [26], [47]), or even in a subspace of the full feature space. That is, two

(unknown class) samples that are atypical with respect to the same pair of features need

not be close together in the corresponding 2-D feature space. As an example, consider a

bivariate Gaussian null, whose equidensity contour is an ellipse. A pair of samples lying

on the same ellipse will have the same p-value3. However, the two samples could be at

2The common and unknown class may have very similar distributions for all other features. Alterna-
tively, common and unknown class samples in the data batch may both manifest anomalies with respect
to these other features. Either way, these other features will not have much power to discriminate the
two classes and are thus “uninformative”. Moreover, considering finite sample sizes available for clas-
sifier training, it is well-known that use of features with weak discrimination power can compromise
classification accuracy [61], i.e., these “uninformative” features may effectively be nuisance features.

3Assuming that the p-value is obtained by integrating the bivariate null density over the region defined
by the exterior of the ellipse.
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opposite ends of the ellipse along the principal axis, and thus be quite distant from each

other. What this suggests is that “clustering-based” approaches that work in the origi-

nal feature space, e.g., [26],[47], may not be effective at identifying unknown classes (at

least those consistent with our inductive bias). Our use of p-values as derived features

can accordingly be considered an (intuitively motivated) alternative to agnostic use of

a (e.g., Gaussian) kernel for achieving a nonlinear mapping of the original features. For

some domains, use of such kernel-based mappings may give poor class discrimination,

e.g., [25]4.

As aforementioned, we assume this inductive bias in SL and AL-based learning of

classifiers for common versus unknown (or LS) class discrimination in general and will

experimentally validate that the resulting classifiers achieve good performance on a va-

riety of real-world (UC Irvine ML) data domains. However, to further motivate our

approach, we next consider in more detail a domain where it is natural both i) to have

unknown classes and ii) to expect that they are best discriminated using p-values.

2.1.1 Discriminating Interesting from Uninteresting Anomalies

In real AD deployment settings, one often finds that too many samples are detected as

anomalies, flooding human operators with alerts [46],[58]. This may be due to limited

prior knowledge/data for accurately estimating a model of what is “normal”. It may

also be due, e.g., to sensor mis-calibration, sensor failure, or human error in system con-

figuration. What is desired is not to detect all anomalous samples, but rather to detect

and prioritize what, for some domains, amounts to the most suspicious anomalies (for

behavioral tracking, intrusion detection, email spam) and for others (scientific applica-

tions) amounts to the most interesting ones, i.e. new/emergent physical phenomena.

There are several challenges associated with detecting the most suspicious (interesting)

samples. First, “suspicious” may be a very small subset of what is anomalous, consisting

of samples whose atypicalities are with respect to certain key (albeit a priori unknown)

features (and feature interactions). Indiscriminately forwarding all detected anomalies

for operator scrutiny will not scale; it will swamp the operator, making it very unlikely to

identify truly suspicious anomalies5. Thus, in practice, it is necessary to automatically

discriminate suspicious and innocuous anomalies that are output by an AD, and thus

4The Gaussian kernel, for example, implicitly defines generalized coordinates that include product
features (and, thus, will combine informative and irrelevant features through their products). In this
way, the contribution to the classifier from informative features may be distorted or masked by use of
the kernel.

5If the detection rate is higher than the inspection rate, the operator will only be able to inspect and
label a fraction of forwarded anomalies.
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treat this as a supervised learning problem, as we have done recently [51]. However,

because “suspicious” is rare, it may be an unknown (or LS) class. This by itself implies

the need for AL (to identify some suspicious instances). Moreover, “suspicious” may be

subjective, and thus may need to be informed by the current human operator. Second,

we can expect feature selection will be especially important here – beyond “provisioning”

for the unknown (suspicious) class, suspicious (e.g., malicious) entities may actively ob-

fuscate their behavior, in which case the suspicious signature – its anomalousness – may

only manifest with respect to a small subset of all measured features. If one restricts

the features under consideration, one may wholly miss the suspicious signature. Feature

selection can also make explicit and objective the basis upon which a (subjective) human

operator distinguishes suspicious from innocuous anomalies.

2.2 Comprehensive Low-order Null Modeling

Suppose we are given a “training set” of known common (i.e., null hypothesis) class (Ω1)

examples X̃ = {x̃(i), i = 1, . . . , T}, x̃(i) ∈ IRD, from which to learn our probability model

under the null6. One possibility is to learn the joint density function for X ∈ IRD under

Ω1; then, for a given observed vector x ∈ Xu, one would measure a single p-value with

respect to this joint density. However, there are several issues here. First, if D is large,

the training database X̃ may need to be huge in order to accurately estimate the joint

density, i.e., there is a curse of dimensionality [3]7. This statement may hold even if one

invokes strategies for limiting how the model size grows as a function of D, e.g., [15], [18]

and [37], which efficiently model covariance matrices for Gaussian mixture model-based

joint densities. Second, the anomalous signature may be too weak (the p-value too large)

for large D. For example, suppose that the features are statistically independent under

the null, and that a sample x exhibits an anomaly only for one (or very few) of the

D features. In this case, the joint log-likelihood for x under the null is the sum of the

marginal (single feature) log-likelihoods, with the effect of a single (anomalous) feature

on the joint log-likelihood (and, thus, on the joint p-value) averaged out for increasing

D.

To avoid both these problems, we instead propose to represent the null (and assess

p-values) using low-order distributions, defined on sub-vectors of X. Since it is a priori

6For the unknown class case, X̃ = Xl. For the label-scarce case, X̃ is the subset of Xl that originates
from the common classes.

7This problem is exacerbated by the potential of finding poor local optima of the (generally non-
convex) likelihood objective function that is maximized in learning the joint density function.
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unknown which individual features and feature combinations may be informative about

the unknown class, we must be unbiasedly comprehensive, considering all of them. Not-

ing that there are
(
D
k

)
= D!

k!(D−k)! such distributions at order k, even assuming that

estimation of these distributions is performed “off-line”, the highest order models that

may be computationally practicable to learn (while at least capturing statistical depen-

dencies between pairs of features) is k = 2. Accordingly, assuming large D, we propose

to estimate all D marginal densities {fXi(·), i = 1 . . . , D} and all D(D − 1)/2 pairwise

densities {fXi,Xj (·), i, j = 1, . . . , D, i < j}. Moreover, since distributions under the null

will in general be complicated and multimodal, we will apply a widely invoked approach,

modeling each marginal and pairwise feature density as a finite Gaussian mixture model

(GMM). We learn each such model separately via the Expectation-Maximization (EM)

algorithm [13], with the number of components chosen to minimize the Bayesian In-

formation Criterion (BIC) [54] model order selection objective8. While this learning is

computationally heavy, in practice it can often be performed off-line, prior to active

learning. Moreover, this GMM learning is also highly parallelizable. In the next section,

we describe our GMM modeling approach.

2.2.1 Gaussian Mixture Model

A widely used approach for learning a complex, multi-modal probability distribution for

continuous data is a GMM. A GMM with M components is defined as follows:

P (x) =

M∑
m=1

αmN (x|µ
m
,Σm),

8Separately learning each marginal and pairwise feature GMM using the common training set X̃
will not ensure consistency with respect to feature marginalizations. Specifically, a marginal-consistent
collection of univariate and bivariate density functions should satisfy the following: if we consider any
feature pairs (i, j) and (j, k), marginalizing out feature i from the (i, j) bivariate density and marginalizing
out feature k from the (j, k) bivariate density should lead to the same marginal density for feature j.
However, when the univariate and bivariate distributions are Gaussian mixtures, with a non-convex log-
likelihood function (and with BIC-based model order selection separately applied to choose the number
of components for each GMM), separate application of EM-plus-BIC to learn each GMM density function
does not ensure a set of marginal-consistent distributions. This property is not centrally important here,
however, since our main concern is only to learn marginal and pairwise density functions that allow
accurate assessment of p-values. Accordingly, in this work we will apply EM-plus-BIC separately, to
learn each low-order GMM.

One approach to obtain marginal-consistent low-order distributions is to simply learn the single GMM
for the joint distribution on the full feature vector, X. This determines (via marginalization) all lower-
order distributions (which are also GMMs, and which are guaranteed to be marginal-consistent). How-
ever, if available data is limited, this strategy suffers from the curse of dimensionality [3]. Alternatively,
it is possible to directly, jointly learn a marginal-consistent set of low-order GMMs.
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where N (x|µ
m
,Σm) represents the mth component of the mixture model, with its own

unique mean and covariance matrix. αm represents the mth mixture coefficient (or

component mass) and
∑

m αm = 1. Given a null training set X̃ = {x̃(i), i = 1, . . . , T}
with T observations, a standard approach to learn the GMM parameters Θ, with:

Θ = {(α1, µ1
,Σ1), . . . , (αM , µM ,ΣM )},

is through maximum likelihood estimation (MLE):

argmaxΘ P [X̃ |Θ].

Assuming data are statistically independent and identically distributed, due to mono-

tonicity of the log function, we can simply turn this into a maximum log likelihood

estimate:

argmaxΘ

T∑
i=1

log

M∑
m=1

αmN (xi|µm,Σm). (2.1)

Because of the presence of the mixture coefficients and the summation over M inside

the logarithm, the log likelihood function is non-convex and the MLE for Θ does not

have a closed-form analytical solution. We instead use the framework of expectation-

maximization (EM) to find a local maximum of the above.

Specifically, applying the EM framework in learning the GMM (2.1), we have the

following iterative process:

1. Initialize Θ(t) through k-mean clustering.

2. Expectation (E) Step: calculate the posteriors of each sample for each component.

P [M = m|xi] =
αmfx|m(xi|θm)

M∑
k=1

αkfx|k(xi|θk)
, ∀i ∈ {1, . . . , T}, ∀m ∈ {1, . . . ,M}. (2.2)

3. Maximization (M) Step, ∀m ∈ {1, . . . ,M}:

µ
m

=
1

T

T∑
i=1

P [M = m|xi]xi

Σm =
1

T

T∑
i=1

P [M = m|xi](xi − µm)(xi − µm)T
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αm =
1

T

T∑
i=1

P [M = m|xi] (2.3)

4. When convergence in (2.1) happens (e.g., when the relative difference from the

previous update falls below a threshold), return. Otherwise, assign Θ(t) to Θ(t+1)

and return to 2).

To select the number of component (M), we can apply the Bayesian Information

Criterion (BIC) [3]:

BIC = (M(D +
D(D + 1)

2
) +M − 1)

log(T )

2
−

T∑
i=1

log
M∑
m=1

αmfx|m(xi|θm), (2.4)

where the last summation is the incomplete data log likelihood in (2.1).

In summary, each single and pairwise GMM is learned by EM-plus-BIC, selecting the

(M,Θ) pair that minimizes the BIC cost.

2.2.2 Mixture-based P-Values as Derived Features

Consider any pair of features Y = (Xi, Xj), modeled by a bivariate GMM under the

null. Let {αm,m = 1, . . . ,Mij}, 0 ≤ αm ≤ 1,
Mij∑
m=1

αm = 1, be the prior probabilities

for the (Mij) mixture components, with associated component densities fY |m(y|θm),

m = 1, . . . ,Mij , θm = (µ
m
,Σm) the (mean vector, covariance matrix) parameter set

for the mth density. The mixture density is thus fY (y) =
Mij∑
m=1

αmfY |m(y|θm). Given

such a mixture null, we would like to calculate the p-value – the probability that a

two-dimensional feature vector will be more extreme than the given observed vector

y = (xi, xj). This has been previously considered in [48], with the result dubbed mixture-

based p-values. First consider a single bivariate Gaussian density N (µ,Σ). We call a

vector y′ “more extreme” than y if it lies on a lower equidensity (elliptical) contour than

y. Accordingly, the p-value for y, denoted pij(y) is the integral of the bivariate density

over the exterior of the ellipse defined by the squared Mahalanobis distance from y to µ:

r2(y) = (y − µ)
′
Σ−1(y − µ). (2.5)

This integral can be calculated exactly by applying a whitening transformation [14],

leading to the result that the p-value is: pij(y) = e−r
2(y)/2, i.e., it is one minus the

Rayleigh cdf evaluated at r(y). Extending to a GMM by applying the law of total



17

probability and conditioning on the mixture component of origin, we find that the p-

value for y = (xi, xj) is:

pij(y) =

Mij∑
m=1

P [M = m|y]e−r
2
m(y)/2. (2.6)

Here, the mixture posterior is:

P [M = m|y] =
αmfY |m(y|θm)

Mij∑
k=1

αkfY |k(y|θk)
, (2.7)

and r2
m(y) is the squared Mahalanobis distance between y and µ

m
for the lth GM compo-

nent. Note that pij(y) is the expected p-value, with the expectation taken with respect

to the mixture posterior pmf. In a similar fashion, one can also calculate mixture-based

p-values for single (univariate) features, denoted pi(xi), i = 1, . . . , D. In this case, com-

plementary error functions are used to measure the p-value conditioned on each mixture

component, with the mixture-based p-value again the expected p-value.

2.3 Classifier Model

2.3.1 Two Class Case

For a given feature vector x ∈ IRD, define the set of low-order (one and two-dimensional)

mixture p-values P(x) = {pij(xi, xj), i, j = 1, . . . , D, i < j} ∪ {pi(xi), i = 1, . . . , D}9, as

defined in Section 2.2. Our active learning approach can be applied for various class

posterior models. Here, it is developed assuming a “nearly standard” logistic regression

class posterior form, albeit with negative logs of the p-values P(x) as derived feature

inputs and with non-negative weight constraints. Specifically, for a two-class problem,

with one common class (Ω1) and one unknown or LS class (Ω2), let

f(x; Λ) = exp(w0 −
D∑
i=1

wi log pi(xi)−
∑
j>i

βij log pij(xi, xj)),

9We restrict to first and second order p-values in order to ensure scalability of the method with
increasing D.
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where the model parameters are Λ = {w0, {wi}, {βij}}. We then have:

P (Ω2|P(x); Λ) =
f(x; Λ)

1 + f(x; Λ)
, wi ≥ 0, βij ≥ 0, ∀i, j

P (Ω1|P(x); Λ) = 1− P (Ω2|P(x); Λ). (2.8)

We can make the following observations about this model:

• If we initialize at w1 = w2 = ... = wD = w > 0 and set βij = β > 0, ∀i, j, then

ordering samples by their a posteriori probability of belonging to the unknown

class is equivalent to ordering them by their aggregate atypicality (the sum of

the arithmetic averages of their first and second order log p-values), i.e., initially,

before there are any supervising examples, the model is unbiased about which fea-

tures/combinations are informative, treating the “most anomalous” sample as the

one most likely to come from the unknown class. Thus, before there are supervising

examples, our model is akin to a conventional anomaly detector.

• We enforce non-negative weights on negative log p-values (which are positive), con-

sistent with our inductive bias that “unknown” is a subset of what is anomalous

with respect to Ω1 – no increase in a feature’s atypicality should reduce the prob-

ability of a sample belonging to the unknown class. However, if a single feature’s

(i) or a feature pair’s ((i, j)) atypicality is irrelevant to common-unknown discrim-

ination, this can be properly reflected by setting wi = 0 or βij = 0, respectively. In

fact, as will be seen in the sequel, our approach learns highly sparse models, with

very few non-zero weights. Thus, once learned, our model is very different from a

conventional anomaly detector.

• Monotonic Sample Ordering (Generalization) Property: Suppose that the classi-

fier parameters have been chosen so that P (Ω2|P(x(n))) < 0.5, i.e. such that

sample n is MAP-classified to Ω1. Now consider any other sample x(m) such that

pi(x
(m)
i ) ≥ pi(x(n)

i ),∀i = 1, ..., D and pij(x
(m)
i , x

(m)
j ) ≥ pij(x(n)

i , x
(n)
j ),∀i, j. Clearly,

P (Ω2|P(x(m))) ≤ P (Ω2|P(x(n))) < 0.5, i.e. if we have learned to maximum a pos-

teriori (MAP)-assign sample n to Ω1, we have in fact also learned to MAP-assign

all samples more typical than n under the null to Ω1. The same also holds in

the alternative case, supposing that x(n) is MAP-assigned to Ω2 and considering

the set of samples more atypical than x(n). This is a type of generalization that

comes from constraining the weights (on derived features that are positive) to be

non-negative.
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2.3.2 Extension for Multiple Common and Label-scarce Classes

Suppose now that there are multiple common classes Ωmi ∈ Cm, i ∈ {1, ...,M} and

multiple LS classes Ωrj ∈ Cr, j ∈ {1, ..., R}. In order to generalize our two-class approach

to handle multiple common and LS classes, we propose a hierarchical class posterior,

defined on all common and LS classes, to allow inference on common and rare/unknown

sub-classes, i.e.,

P [C = Ωrj |x] = P [C ∈ Cr|x]P [C = Ωrj |Cr, x], (2.9)

and

P [C = Ωmi |x] = P [C ∈ Cm|x]P [C = Ωmi |Cm, x]. (2.10)

Here, the top-level posterior is the two class subset ({Cr, Cm}) posterior, i.e.,

P [C ∈ Cr|x; Λ] =
f(x; Λ)

1 + f(x; Λ)
, wi ≥ 0, βij ≥ 0,∀i, j

and

P [C ∈ Cm|x; Λ] = 1− P [C ∈ Cr|x; Λ]. (2.11)

The second-level posteriors P [C = Ωrj |Cr, x] and P [C = Ωmi |Cm, x] “divide up” the

top-level probabilities P [C ∈ Cr|x] and P [C ∈ Cm|x] amongst Ωrj ∈ Cr and Ωmi ∈ Cm,

respectively.

The second-level posterior for the LS classes, P [C = Ωrj |Cr, x], is of the multi-logit

form and can be defined either in the raw feature space or in p-value space, e.g., for raw

feature space, let:

f(x;Aj) = exp(a
(j)
0 +

D∑
k=1

a
(j)
k xk +

∑
l>k

a
(j)
kl xkxl),

where the model parameters are Aj = {a(j)
0 , {a(j)

k }, {a
(j)
kl }}.

We then have, ∀j ∈ {1, ..., R}:

P [C = Ωrj |Cr, x;Aj ] =
f(x;Aj)∑

Ωrj′∈Cr
f(x;Aj′)

. (2.12)

Experimentally, we have found that while using p-values in the top level (to discriminate
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between the common and LS class subsets) significantly outperforms use of raw features,

there are only small differences in performance resulting from using p-values versus raw

features for the second-level posterior to discriminate between the LS classes. This is not

so surprising, since our inductive bias is really associated with the top layer posterior

(discriminating the common class subset from the rare class subset). Note that one can

also change the feature representation on the second-level posterior instead of using raw

features.

The second-level posterior for the known classes P [C = Ωmi |Cm, x] is also of the

multi-logit form and works in the raw feature space, i.e., for the ith common class, let:

f(x;Bi) = exp(b
(i)
0 +

D∑
k=1

b
(i)
k xk +

∑
l>k

b
(i)
kl xkxl),

where the model parameters are Bi = {b(i)0 , {b(i)k }, {b
(i)
kl }}. We then have, ∀i ∈ {1, ...,M}:

P [C = Ωmi |Cm, x;Bi] =
f(x;Bi)∑

Ωi′∈Cm
f(x;Bi′)

. (2.13)

Note that both second-level posteriors are valid pmfs, summing to one over their respec-

tive class subsets, with the hierarchical posterior summing to one over all classes. Note

also that, unlike the top-level posterior, there are no constraints on values for parameters

of the bottom-level posterior pmfs.

2.3.3 Extension to Include Unknown Classes

In the AL setting, in addition to Cm and Cr, we have the unknown class subset, Cu,

consisting of an (in general) unknown number of unknown classes, which need to be dis-

covered through active learning. Once a new class is discovered via AL sample selection

and oracle labeling, this category (now with one labeled instance) is moved from Cu to

the LS class subset, Cr. Thus, the subsets Cu and Cr change as a function of oracle label-

ings. To reflect this, we use the superscript (t), denoting C(t)
u and C(t)

r after the t-th oracle

labeling. For concise notation in representing the event that a sample belongs to the

unknown class subset, we assign (the unused) class C = 0, i.e. we let C ∈ Cu ⇔ C = 0.

Letting C
(t)
ru denote C(t)

r ∪C(t)
u , the top level posterior for C(t)

ru and Cm is of the same form

as (2.11), with P [C ∈ C(t)
ru |x] and P [C ∈ Cm|x], respectively. However, we modify the

bottom level posterior for Cr as follows, to allow inference on the unknown class subset.
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We have:

P [C = Ωrj |C
(t)
ru , x;Aj ] = f(x;Aj)

1+
∑

Ωrj′ ∈C
(t)
r

f(x;Aj′ )
(2.14)

∀j ∈ {1, ..., R},

and for C ∈ C(t)
u :

P [C = 0|C(t)
ru , x;Aj ] =

1

1 +
∑

Ωrj′∈C
(t)
r

f(x;Aj′)
. (2.15)

Note that (2.14) and (2.15) define a valid pmf, i.e. P [C = 0|C(t)
ru , x;Aj ] +

R∑
j=1

P [C =

Ωrj |C
(t)
ru , x;Aj ] = 1. Note also that, at the outset of AL, if there are no LS classes, all

probability is assigned to the unknown class (C = 0). As the cardinality of C(t)
r grows

during AL, the probability of the unknown category (C = 0) tends to diminish. To

control the amount of contribution from the unknown class, one can further replace the

value “1” in both (7) and (8) with a hyper-parameter, and tune its value based on cross

validation or a related measure. We leave consideration of this for future work.

2.4 Learning Objective Function for Semi-supervised and

Active Learning

In this section, we focus on classifier learning, developing a novel semi-supervised learning

objective well-suited both for SL and AL with unknown (and LS) classes. Our principal

focus, in devising a learning framework for these scenarios, is to make appropriate,

effective use of the (assumed to be many) unlabeled samples in the data batch (Xu), in

addition to the current cadre of labeled samples (Xl). In this section, let Il denote the

sample index set for the labeled samples, Xl, with Iu the index set for the unlabeled

samples.

If we were to only make use of the labeled samples, a standard (supervised) approach

for learning a class posterior model is maximization of the posterior log-likelihood over

the labeled training samples [3]. For our purposes, it is convenient to exploit the equiva-

lence between posterior log-likelihood maximization and minimization of a sum of cross

entropies objective function, specified as follows. For a given labeled feature vector
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instance xn from class cn, we define the “target” distribution vector:

Q[C|n] = (Q[Ω1|n], . . . , Q[Ω|C||n])

= (0, 0, . . . , 1, 0, . . . , 0),

with the ‘1’ in the position of cn ∈ {Ω1, . . . ,ΩK}. Then, after the t-th oracle labeling

of active learning, maximizing the log-likelihood of the posterior model P [C|x] given in

(2.9),(2.10) is equivalent to minimizing

D(t) =
∑
n∈I(t)

l

d(Q[C|n]||P [C|xn])

= −
∑

Ω∈Cm∪C(t)
r

∑
n∈I(t)

l :c(n)=Ω

logP [Ω|xn] (2.16)

Here, d(Q||P ) =
∑

k qk log(qk/pk) is the Kullback-Leibler distance [30] (cross entropy)

between probability mass functions Q = {qk} and P = {pk} defined on the same support,

withQ the “target” distribution and P its (model-constrained) approximation. Note that

in the AL case the labeled index set Il, the LS class set Cr, and the unknown class set

Cu are all functions of time. Il grows with each oracle labeling, while Cr grows when a

new unknown class is discovered through active labeling10. Note further that we do not

consider here the case where a rare class Ωrj may transition (after AL has produced a

sufficient number of labeled instances from this class) from Cr to Cm11.

We seek to modify (2.16) in two respects: i) primarily, to sensibly exploit for learn-

ing the (typically large) current subset of unlabeled samples, X (t)
u ; ii) to also account

for large imbalance between the number of labeled samples from common classes versus

label-scarce classes. Let us consider the first goal. In [20], [17], and [19], semi-supervised

learning objective functions were proposed by adding, to the purely supervised training

objective function, a cost term which penalizes posterior solutions with high class uncer-

tainty (i.e., high class entropy) on the unlabeled sample subset. Specifically, following

the approach taken in [20], one would modify the above training objective function to

10In the semi-supervised learning case, the superscript (t) should be omitted from these sets because,
in this case, Xl and Xu remain fixed.

11For our experiments in the sequel, with the maximum number of oracle labelings set to 100, rare
categories in general remain rare during our active learning.
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add an entropy regularization term:

D
(t)
min−H = D(t) + µ

∑
n∈I(t)

u

H(C|n), (2.17)

where

H(C|n) = −
∑

Ω∈Cm∪C(t)
ru

P [C = Ω|xn] logP [C = Ω|xn],

and with µ a non-negative hyperparameter, giving the weight on the entropy term12.

This general approach, together with a weight decay term to avoid overfitting, has been

dubbed “minimum entropy regularization” (minEnt), and has been motivated from the

principle of making decisions with “confidence” [20]. A related approach given in [10]

seeks to locally minimize class overlap. For the scenario considered here, however, with a

deficient amount of labeled training data for some of the classes, it appears that the piv-

otal learning issue is how much training of the classifier’s model parameters one should

do, commensurate with the available labeled data, to glean as much information as pos-

sible from the labeled examples but while avoiding overtraining. The entropy penalty

term in (3.3) will in general give a tendency for more learning, rather than less. This

can be understood as follows. Consider the solution to the purely supervised posterior

log-likelihood maximization problem, i.e. minimizing (2.16). Suppose that this solution

achieves a level of unlabeled subset class entropy H0 =
∑

n∈I(t)
u

H(C|n). Clearly, since

the semi-supervised modification of (2.16) positively penalizes this class entropy, mini-

mizing (3.3) should yield solutions with lower class entropy than those which minimize

(2.16). However, such reduction in class entropy is generally achieved by increasing the

magnitudes of the classifier’s weights on the features as given in the posterior, i.e. by

performing more learning. But this gives propensity for overtraining. In fact, in [20], [17]

and [19], there is some “hedging” on the minimum entropy solution – in [20], the authors

impose a smoothness constraint on weight vector, while in [17] an explicit, additional

weight vector norm (L2) regularization term is introduced. Regardless, in both of these

approaches, the impetus in the cost function coming from the unlabeled samples is to

seek solutions with minimum class entropy.

By contrast, rather than penalizing solutions with high class decision uncertainty on

the unlabeled samples, we penalize solutions with low decision uncertainty, as they may

12The value of the hyperparameter can be chosen, e.g., so as to minimize a cross-validated classification
error rate measure.



24

be consistent with possible overtraining, especially during the early stages of AL and/or

in the SL case, given label-scarce classes – i.e., we propose maximum entropy (maxEnt),

rather than minimum entropy regularization13.

Tikhonov-style regularization such as L2 or Lasso, by imposing a prior belief on the

parameter space, also limits overtraining. However, such a universal prior has no de-

pendence on (is unaffected by) unlabeled samples. By contrast, our maximum entropy

regularizer is unlabeled-sample-dependent, seeking to keep the classifier as “noncommit-

tal” as possible in regions of the feature space solely occupied by unlabeled samples. An

example highlighting the difference between maxEnt and L2 regularization will be given

in the sequel.

There are different ways maxEnt regularization can be mathematically formulated

in practice. We effect such regularization by choosing the same (cross entropy) cost

function for the unlabeled samples as for the labeled samples, albeit with a different

choice for the target distribution. For every unlabeled sample, n ∈ I(t)
u , we introduce

maximum entropy target distributions for both the top level and bottom level posteriors.

Denote S(Ω) as the class subset (Cru or Cm) to which Ω belongs. For the top level,

we choose the uniform target distribution:

Q[S(t)(C)|n] = (
1

2
,
1

2
).

Likewise, for the bottom level, we choose uniform target distributions. In the AL case,

where we may have both C(t)
r and C(t)

u , we choose:

Q[C|C ∈ C(t)
ru , n] = (

1

|C(t)
r |+ 1

,Ω ∈ {0, C(t)
r }),

Q[C|C ∈ Cm, n] = (
1

|Cm|
,Ω ∈ Cm)

In the SL case, if we only have Cr, we choose:

Q[C|C ∈ Cr, n] = (
1

|Cr|
,Ω ∈ Cr),

Q[C|C ∈ Cm, n] = (
1

|Cm|
,Ω ∈ Cm)

That is, at the top level, target probability is equally apportioned between C
(t)
ru and

13In the latter stages of AL, when there are “sufficient” labels from all classes, minimizing class
uncertainty on the unlabeled samples may be a good choice. However, in the early AL stages, a main
concern should be avoiding over-training.
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Cm and, at the bottom level, given a class subset, equally apportioned amongst the

classes belonging to that subset14. Consistent with these target distributions, we have

the following maximum entropy regularization costs (exposited for the AL case, where

there are unknown classes). At the top level:

R
(t)
top =

∑
n∈I(t)

u

d(Q[S(t)(C)|n]||P [S(t)(C)|xn]),

where P [S(t)(C)|x] = (P [C
(t)
ru |x], P [Cm|x]), and at the bottom level:

R
(t)
bot =

∑
n∈I(t)

u

(P [C(t)
ru |xn] · drQP + P [Cm|xn] · dmQP ),

where

drQP = d(Q[C|C ∈ C(t)
ru , n]||P [C|C ∈ C(t)

ru , xn])),

dmQP = d(Q[C|C ∈ Cm, n]||P [C|C ∈ Cm, xn]).

Note that the bottom-level regularizer weights each of the cross entropy terms by the

probability that the sample originates from that class subset. Clearly, minimizing the

costs R
(t)
top and R

(t)
bot will encourage entropy maximization on the unlabeled samples.

Accordingly, our proposed semi-supervised objective function is a weighted sum of cross

entropies over both the labeled and unlabeled data subsets, specified as follows15:

D
(t)
max−H = −

∑
Ω∈Cm∪C(t)

r

∑
n∈I(t)

l :c(n)=Ω

α
(t)
Ω logP [Ω|xn]

+α
(t)
topR

(t)
top + α

(t)
botR

(t)
bot (2.18)

Note that, in general, this cost function is nonconvex in its parameters – this is due to

the regularization term R
(t)
bot. However, in the special case where there is a single known

class and a single unknown (or LS) class (and, thus, no bottom layer regularization

term R
(t)
bot), or for a standard multi-class, logistic regression based classification problem,

the cost function is in fact convex. The objective (2.18) can be minimized by various

optimization techniques, e.g., projected gradient or interior point methods, where the

14Note also that in the special case where there is a single common class and a single unknown class,
there is only the top level, with target distribution ( 1

2
, 1

2
).

15Again, in the SL case, the superscript (t) should be omitted since in this case the labeled and
unlabeled data subsets are fixed.
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descent direction can either be the gradient or Newton’s direction. In our experiments,

(2.18) is minimized, after the t-th oracle labeling, via a gradient descent procedure, which

we have found to be effective. We applied the projected gradient descent method, i.e.,

at each step, we update each parameter in its steepest descent direction. For parameters

constrained to be non-negative, we project their values to 0 if the gradient-updated

value goes negative. Inexact line search is used to select the learning rate (common

to all parameters) at each iteration to ensure that each gradient update satisfies the

Wolfe condition [45]. For each gradient update, with K known classes, N samples and

D raw features, computational complexity of the gradient is O(KND2). To start the

learning, the weights Λ, {Aj}, {Bi} were all (unbiasedly) initialized to the same small

value ∼ 10−6, except for w0, {a(j)
0 }, and {b(i)0 }, which were all initialized to zero.

A second important issue is how to choose the weights α
(t)
top, α

(t)
bot, and α

(t)
Ω , ∀Ω ∈

C(t)
r ∪ Cm. We propose to choose the weight α

(t)
Ω to balance the contribution to the

objective function coming from the common and label-scarce class subsets. That is, we

let α
(t)
Ω = 1, ∀Ω ∈ Cm and α

(t)
Ω = |n∈Il:c(n)∈Cm|

|n∈Il:c(n)∈C(t)
r |
,∀Ω ∈ C(t)

r . It appears more difficult

to find a principled, “universal” prescription for choosing α
(t)
top and α

(t)
bot – the “right”

level of class decision uncertainty at the t-th labeling step may depend in a complicated

way on the sizes of the labeled and unlabeled data subsets, on K, and could also be

domain-dependent. We suggest in practice to set these hyperparameters to minimize

(over a finite grid of candidate values) a cross-validated error rate measure, based on

the labeled samples “seen until now”16. The choice of these hyperparameters is further

discussed in Section 3.1.6.

While the design of our semi-supervised learning objective (2.18) and its maxEnt

regularization is largely motivated to avoid overlearning, it is fundamentally different

from Tikhonov-style regularization such as L2. To illustrate this and also compare with

other objectives, we synthetically generated a three-cluster example shown in Figure 2.1.

We labeled 10 samples from each of classes 1 and 2, treating the rest of the samples as

unlabeled. Here, we want to discriminate between class 1 and 2, and make inference on

all the unlabeled samples. Because the classification task involves two common categories

and no rare categories, our hierarchical posterior reduces to a standard two-class logistic

regression, using raw features as input, i.e., no top level posterior and with bottom level

posteriors solely on the two common classes. We trained different objective functions and

plotted the resulting optimized decision boundaries. Note that MLE, L2 and maxEnt are

16Again, in the SL case, the superscript (t) on αΩ, αtop and αbot should be omitted because in this
case the unlabeled and labeled data subsets are fixed.
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Figure 2.1: A three-cluster example with decision boundaries trained by different ob-
jectives: (MLE) Maximum Likelihood Estimate; (L2) MLE with L2-norm; (minEnt)
Minimum entropy with weight decay (L2) [20]; (maxEnt) Proposed.

all convex functions, while minEnt is not. As seen in Figure 2.1, all the objectives are able

to confidently discriminate between class 1 and 2. However, all objectives except maxEnt

classify the unknown cluster (lower left) samples to class 2. On the other hand, maxEnt

places the decision boundary in the middle of this high density region with no labeled

samples, reflecting minimum classifier confidence (a maximum entropy posterior) in this

region – this solution makes sense, since this is a region with purely unlabeled samples.

Note that L2, MLE, and minEnt all give very similar solutions – the main difference is

that with a smoothness constraint on the weight magnitudes, L2 achieves smaller margin

between classes 1 and 2 than MLE. The cross validated minEnt solution is identical to

L2’s, because in this case, the cross validated error rate is 0 when the hyperparameter

on the unlabeled sample’s entropy term is set to 0. Note that the proposed maxEnt is

highly suitable for unknown class discovery, since most of the unidentified samples are

also the most uncertain ones as illustrated in this example.

2.5 Active Learning: Sample Selection Criteria for Oracle

Labeling

Tailored for our semi-supervised AL learning objective function, we propose a new sam-

pling criterion suitable for both classification and especially for new class discovery.

Specifically, at the t-th oracle labeling, we select xi∗ to be the most likely unknown class
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sample from Xu:

i∗ = argmax
i∈I(t)

u

P [C ∈ C(t)
ru |xi]P [C = 0|C(t)

ru , xi]. (2.19)

Intuitively, the unlabeled sample most likely to belong to the unknown category should

also deviate the most from the current common and LS categories, and once labeled, it is

expected to either be from a new class or to significantly improve classification accuracy

on the existing classes. At the initial AL phase, before any rare category is known,

(2.19) reduces to argmax
i∈I(t)

u

P [C ∈ C(t)
ru |xi]. Thus, our sample selection rule specializes, in

this case, to choosing the sample least likely to belong to the common class subset. We

call our new sample selection criterion (2.19) most likely unknown.

2.6 Experimental Results for Semi-supervised Active Learn-

ing and New Class Discovery

In this experimental results section, we will demonstrate:

1. the advantage of p-values as features over other feature mapping techniques (raw,

RBF kernel) when one class is rare. Thus, we validate our choice of p-values as

derived features;

2. that p-values in conjunction with weight constraints yield sparse solutions;

3. the advantage of the proposed entropy-preserving regularizer (maxEnt) as opposed

to minimum entropy (minEnt) regularization in semi-supervised learning settings

with unknown and label-scarce classes;

4. that, when applied to AL, our maxEnt semi-supervised learning approach yields a

performance advantage over alternative methods, especially during the early phase

of AL.

In all of our experiments, the available data set was partitioned into two mutually

exclusive subsets – one used for learning and the other for (heldout) testing of generaliza-

tion accuracy. This in fact was repeated multiple (five) times, with the test performance

results averaged.

2.6.1 Performance Metrics

There are two fundamental performance measures of interest on the test batch: i) true

detection rate – the proportion of truly unknown class samples (ω2) that have been



29

correctly classified and ii) false alarm rate – the proportion of truly common class samples

(ω1) classified as unknown. We evaluate these measures in all our experiments and, in

an active learning setting, for the “current” classifier (after every iteration of active

labeling). As a comprehensive performance measure encompassing true detections and

false positives, we measure average test set area under the ROC curve (ROC AUC). For

discriminating among different common and rare classes, we also measure the per-class

classification accuracy, averaged over all classes. In the AL setting, before an unknown

class is discovered, all of its samples are assumed misclassified.

2.6.2 Data Set Description

Data sets were selected from the UCI ML repository, with both real and categorical

features and with naturally rare classes. Most of the chosen data sets have been used

in prior related studies [26], [27]. For each of these data sets, we define rare categories

as those comprising less than 5% of the whole data set. The main properties of these

data sets are shown in Table 2.1. The majority of these data sets have multiple normal

and/or multiple rare classes. For the two-class domains (Spam Base and Seismic Pump),

normal emails and normal recordings, respectively, are treated as the common category.

Since Spam Base has balanced normal/spam email subsets, we randomly subsampled

the spam subset to consist of only 5% of the whole batch.

Table 2.1: Data Set Properties: (N) number of samples. (D) number of attributes. (K)
number of classes. (Kr) number of rare classes. (SCP ) smallest class proportion in
percentage.

Data Set N D K Kr SCP

Page Block 5473 10 5 4 0.50%

Statlog Shuttle 58000 9 7 4 14e-3%

Yeast 1484 8 10 5 0.34%

(White) Wine Quality 4898 11 7 4 0.10%

Abalone (age 3-23) 4177 8 21 13 0.15%

Spam Base 4601 57 2 1 5.0%

Seismic Pump 2584 18 2 1 5.0%

KDD’99 (10%) 494021 42 15 14 2.4e-3%

2.6.3 Mixture P-values as Features for Supervised Learning

Here, we compare several feature mapping techniques on UCI ML repository data sets,

using the support vector machine (SVM) as the supervised learning model. For the p-
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value feature mapping, we first used all the available majority class samples in Xl to build

GMM null models; then we measured first and second order mixture p-values as derived

features for all the samples. For data sets with both categorical and continuous features,

we measured the p-value of a single or a pair of categorical features using frequency

counts. For a pair of continuous and categorical features, conditioned on each category,

we modeled the first order GMM and measured the GMM-based mixture p-value; then

the pair’s p-value is the product of the categorical p-value and the mixture-based p-

value. We then applied different kernel mappings (linear, RBF) to train an SVM, with

the hyper-parameters (on margin slackness and on the RBF’s width) chosen via 10-fold

cross validation on the learning batch. We compared against linear and RBF kernel

SVMs that use the original (raw) features, as well as against SVMs that use both raw

and all pairwise feature products. We measured ROC AUC performance as a function

of the minority category proportion (from 2% up to 20%). For data sets with multiple

classes, we chose the most populous class as the majority class and randomly chose one

of the other classes as the minority class. Similarly, for binary classification domains, we

chose the most populous class as the majority and the least populous as the minority.

Table 2.1 shows various data sets we used to evaluate performance. For each data set,

we took the training set file and split it into a learning subset and a test subset, of equal

sizes. We then randomly subsampled without replacement from the learning subset, to

achieve specified majority/minority class proportions. Again, the learning/testing split

was performed five times, with the test subset classification performance averaged over

these five trials. Shown in Figure 2.2, on every data set, p-value feature mappings (linear

and RBF) gave the overall best results, compared to other feature mappings. Moreover,

consistent with our inductive bias, the performance advantage is most obvious when the

class proportions are highly skewed (2% and 5%). Also, as demonstrated for Abalone

in Figure 2.2c, p-value with the linear kernel gives an almost perfect ROC when few

minority samples are present, but with the AUC decreasing as the number of minority

samples is increased; on the other hand, p-values used with the RBF kernel mapping

shows a reverse trend. This result is not surprising – as the size of the minority class

grows, so does the VC dimension, and a more complicated (non-linear) decision boundary

may be needed to well-separate the two classes.
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2.6.4 Semi-supervised Learning Evaluation

2.6.4.1 Majority v. Minority – a Two Class Classification Study

Here, we compare the performance of maxEnt against minEnt regularization [20][19] and

L2 regularization of the weight vector, with all of these methods learning our p-value

based class posterior model. As in the previous subsection, five times we repeated a

50-50 split into learning and test subsets, with the classification performance averaged

over these five trials. For the learning subset, we randomly selected 20% of both the

majority and minority classes as labeled samples, treating the remaining samples as

unlabeled (Xu). The class proportions in the test batch were fixed to be the same as

in the learning batch. The labeled majority samples in the learning batch were used to

learn the null GMM models; we then evaluated both first and second order p-values as

derived features for all samples. We measured the average ROC AUC performance for

varying minority proportion, from 2% up to 20%. For the approach presented in [20], we

used a pair of hyper-parameters, one on the unlabeled sample’s entropy and one on the

weight decay term (L2 norm). The hyper-parameter values were chosen via 10-fold cross

validation applied to the learning batch. In the case of CV error tie, a smaller value

on the unlabeled sample’s entropy term and a larger weight decay have been selected.

For [19], which claims to be an improvement over [20], we supplied the true class priors,

which are needed by this model (even though they will not be available in practice).

Shown in Figure 2.3 is the average ROC AUC performance on Page Block, along with

each method’s average entropy on the unlabeled samples and associated weight vector

magnitude in Figure 2.4 and Figure 2.5. In addition to evaluating performance for

varying minority fraction from 2% to 20%, we also measured the performance for the

case where we only have labeled majority samples (i.e., the unknown class scenario),

with a 1% minority proportion amongst the unlabeled samples. This performance is

shown as the zero percent proportion point in the figure. From the figure, maxEnt

regularization gives the best performance, and this coincides with maxEnt having a

much smaller weight magnitude and a much higher average entropy on the unlabeled

samples than both minEnt methods and the L2 regularization approach. Both of these

measures indicate that minEnt “overtrains” relative to maxEnt.

Note that when there are no labeled minority samples in the training batch, both

of the minEnt-based models as well as the L2 regularization approach have no gener-

alization capability (i.e., the ROC AUC is 0.5 for all of these methods, for this case,

because these methods do not correctly classify any minority class samples in the test
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batch). Scrutinizing the minEnt objective function [20], one can see that when there

are no labeled minority samples, the only impetus is to confidently correctly classify the

majority class samples. Apparently, this gives no discrimination power for the minority

class. These results affirm the importance of overtraining avoidance, especially when the

two labeled classes are highly imbalanced.

Results on other data sets are shown in Figure 2.6, for minority labeled fractions

from 2% up to 20%. We observe that the maxEnt regularizer gives the best performance

in most cases, especially for low minority proportions. Also, as the proportion of labeled

minority samples increases, the performance of minEnt approaches that of maxEnt, with

even better results on Spam Base and Waveform for the higher class proportions. This

is expected, since making confident decisions is plausible when there are “sufficient”

labeled examples from both classes. As observed on Page Block, Shuttle, Yeast and

Waveform, both minEnt based regularizers combined with the L2 norm perform worse

overall than using the L2 norm alone. This again may be attributed to “overtraining”,

with the L2 norm penalty term insufficiently compensating for the minEnt impetus for

“overtraining”.

2.6.4.2 Multiple Common and Rare Classes

Here, we are interested in two scenarios of semi-supervised learning: i) with labeled

samples from only the common classes (completely unknown rare categories), and ii)

with label-scarce rare categories. For the first (unknown class) scenario, from the learning

subset, we randomly labeled 20% of samples from each of the common classes, treating

the remaining samples as unlabeled (Xu). Thus, all rare categories are unknown. For

the latter scenario, besides the 20% labeled common class samples, we also labeled one

sample from each of the rare categories. The labeled common class samples in the

learning batch were used to learn the 1st and 2nd order null GMM models; we then

evaluated both first and second order p-values as derived features for all samples. We

measured ROC AUC performance for the unknown class scenario, and measured both

ROC AUC and average classification accuracy for the label-scarce case. For the minEnt

approach presented in [20], we used a pair of hyperparameters, one on the unlabeled

sample’s entropy and the other on the L2 norm. The hyperparameter values were chosen

via 10-fold CV applied to the learning batch, so as to minimize average classification error

of the top level posterior. In the case of CV error ties, a smaller weight on the unlabeled

sample’s entropy term and a larger weight decay term were selected. For the unknown

class scenario (with no ability to measure CV error), all hyperparameters were fixed at
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|Xl|
|Xu| for all the regularizers, so as to balance the effective sample size between the labeled

and unlabeled data subsets.

Shown in Table 2.2 is the ROC AUC performance for the unknown class scenario.

Note that when there are no labeled examples from the rare categories, both minEnt and

L2 yield degenerate solutions, classifying all samples as coming from the common classes.

Thus, these methods wholly fail under the first scenario. Also shown is the performance

of two standard anomaly detectors: one using OC-SVM [53] [35] with the RBF kernel

and the other a Gaussian Mixture Model (GMM), trained on the labeled common class

samples, modeling the full-feature space. For these two methods, we ranked the test

samples based on their respective anomaly scores (distance from origin in the case of

OC-SVM and data likelihood for the GMM) and used the ordered list to sweep out an

ROC curve. We also lower-bound ROC AUC by 0.5. Both of these anomaly detectors

lag performance-wise behind our proposed model on most of the investigated data sets.

Compared to these full-feature space models, our proposed method’s inductive bias (p-

values and non-negative constraints) yields a better classifier on these data sets. Table

2.3 shows both the ROC AUC and average classification accuracy for the second (label-

scarce) scenario. Again, we see superior performance of our maxEnt regularizer compared

to minEnt and L2-norm regularizers, presumably because maxEnt regularization avoids

overtraining when there are few labeled rare samples, while minEnt encourages weight

magnitudes to increase. However, during active learning, as the number of labeled

rare samples increase, minEnt tends to perform well (see next subsection for further

discussion). An uninformative prior (L2-norm) also underperforms compared to our

proposed data-dependent regularizer.

Table 2.2: Semi-supervised experiment for the unknown class scenario: ROC AUC per-
formance.

Data Set OC-SVM GMM Proposed minEnt L2

Page Block 0.500 0.969 0.971 0.5 0.5

Statlog Shuttle 0.946 0.927 0.943 0.5 0.5

Yeast 0.802 0.706 0.824 0.5 0.5

Wine 0.747 0.751 0.738 0.5 0.5

Abalone 0.741 0.725 0.780 0.5 0.5

Spam Base 0.500 0.702 0.874 0.5 0.5

Seismic Pump 0.554 0.587 0.704 0.5 0.5

KDD 99 0.500 0.862 0.985 0.5 0.5
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Table 2.3: Semi-supervised experiment for the label-scarce class scenario: ROC AUC
and average accuracy per-class. (P) Proposed. (M) minEnt. (L2) L2 regularization.

Data Set
ROC AUC Average Accuracy

P M L2 P M L2

Page Block 0.97 0.93 0.97 0.41 0.39 0.35

Statlog Shuttle 0.93 0.93 0.92 0.78 0.73 0.68

Yeast 0.78 0.74 0.71 0.47 0.42 0.39

Wine 0.72 0.70 0.71 0.29 0.23 0.17

Abalone 0.66 0.62 0.62 0.21 0.17 0.19

Spam Base 0.91 0.87 0.88 0.88 0.73 0.76

Seismic Pump 0.61 0.50 0.62 0.54 0.50 0.53

KDD 99 0.98 0.86 0.86 0.50 0.49 0.41

2.6.5 Evaluating Method Variations

2.6.5.1 Majority v. Minority – a Two Class Classification Study

Here, we investigate the performance of our maxEnt regularizer: i) with an additional

weight decay (L2 norm) term, to further penalize overtraining; ii) with/without our

“inductive bias,” i.e., either imposing positive constraints on the weights or allowing

unconstrained weights (positive and negative-valued); iii) with our sample weighting

scheme on the three data subsetsM, S, and U , or with the alternative of equal weighting

applied to all samples.

We trained our maxEnt classifier and compared with these variations on several data

sets, using the same experimental protocol as in the previous subsections. As shown

in Figure 2.7, imposing our inductive bias gives superior performance in all of these

experiments, compared to a maxEnt regularizer with unconstrained weights. When the

two classes are highly skewed, our sample weighting scheme outperforms equal weighting

of all samples, on all the data sets. However, as the minority sample size increases, our

weighting scheme sometimes (apparently) “over-represents” the minority class, yielding

poorer generalization performance, as observed on both Waveform and Abalone. The

L2 weight decay’s effect is domain-dependent: on Spam Base and Waveform, the weight

penalty term helps improve maxEnt generalization performance, but on the other data

sets it gives mixed results. Further investigation of different combinations of regularizers

may be a good subject for future work.

Table 2.4 shows that, even though our basic maxEnt method (without an L2 norm

term) does not explicitly encourage zero weights, on all the data sets there is a significant

degree of sparsity in the solution – on Spambase, for the case of a 5% minority fraction,



35

only 3.7% of all the weight parameters are non-zero. On Waveform, only 6.35% are

non-zero. The maximum degree of non-sparsity is on Statlog Shuttle, with 34.5% of

weight parameters non-zero. Our inductive bias is thus seen to give propensity for

sparse solutions, which is useful when dealing with many uninformative features.

Table 2.4: Sparsity of the maxEnt model: average number of non-zero weight parameters
for semi-supervised learning with 5% minority class proportion.

Data Set No. active parameters (%) of active parameters

Page Block 9 16.36

Statlog Shuttle 16 34.5

Spam Base 61 3.7

Abalone 11 22.7

Yeast 10 27.78

Waveform 16 6.35

Seismic 15 8.77

2.6.5.2 Multiple Common and Rare Classes

Table 2.5: Compare model variations: average classification accuracy per-class and frac-
tion of inactive model parameters in Λ. (P) Proposed. (Uc) Unconstrained Parameters.
(Uw) Uniform Weighting. (MLE) Maximum Likelihood.

Data Set
Average Accuracy Inactive Parameters

P Uc Uw Raw MLE P Uc Uw Raw MLE

Page 0.41 0.39 0.25 0.37 0.37 0.78 0 0.80 0 0.80

Statlog 0.78 0.76 0.61 0.51 0.66 0.49 0 0.54 0 0.51

Yeast 0.47 0.47 0.27 0.48 0.50 0.78 0 0.89 0 0.89

Wine 0.29 0.22 0.19 0.23 0.23 0.74 0 0.42 0 0.74

Abalone 0.21 0.17 0.11 0.12 0.16 0.45 0 0.31 0 0.45

Spam 0.88 0.74 0.82 0.61 0.82 0.95 0 0.76 0 0.97

Seismic 0.54 0.50 0.51 0.49 0.53 0.84 0 0.86 0 0.86

KDD99 0.50 0.45 0.48 0.46 0.48 0.90 0 0.90 0 0.91

In a multiple common and rare classes scenario, we compare our proposed scheme

(P), with maxEnt regularization, p-values as features, our hierarchical posterior, with

non-negative constraints on weights in the top level, and employing our sample weight-

ing choice for α
(t)
Ω against alternatives that each vary some of our design choices: i)

using raw and pairwise product features and unconstrained weights, instead of p-value

based features in the top level (Raw); ii) allowing unconstrained weights (positive and

negative-valued) on p-value features (Uc); iii) applying equal weighting to all samples
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(Uw); iv) maximizing the posterior log-likelihood without performing maxEnt regular-

ization (MLE). Ten times we repeated a 50-50 split into learning and test subsets, with

generalization performance averaged over these ten trials. In each trial, in the learning

subset we randomly labeled 20% of samples from each of the common classes, which

are used to train the null GMM models. P-values for each sample are calculated from

the null models. Besides the 20% labeled common samples, we also labeled one sample

from each of the rare categories. Thus, all categories are known. Then we trained our

proposed maxEnt classifier and these four method variations on several data sets. Hy-

perparameters (α
(t)
top and α

(t)
bot) are chosen via 10-fold cross validation (CV). Although it

seems that the best CV method is to minimize the hierarchical posterior’s error, aver-

aged over all classes, in the LS case, we do not have enough samples from each class to

perform such validation. As an alternative, we minimized (over a finite grid of candidate

values) a 10-fold cross-validated average error rate measure of the top level posterior. In

the case of CV ties, a larger value of α
(t)
top and a larger value of α

(t)
bot were chosen.

Shown in Table 2.5, imposing a non-negative constraint on the top level weights

gives superior performance in all of these experiments, compared to a scheme with un-

constrained weights. There is large improvement that comes from zero-weighting the

features that are deemed uninformative. Moreover, use of weight constrained p-value

features improves generalization performance compared to the use of raw and pairwise

product features. But when the top level weights are unconstrained, the use of p-value

features performs similarly to the use of raw and pairwise product features on the ma-

jority of the data sets. Hence, our inductive bias (both non-negative weight constraints

and p-value features) acts jointly to achieve superior performance. Third, maxEnt regu-

larization is seen to be vital to achieving good performance, substantially outperforming

classifiers trained without this regularization. That is, unlike MLE, the proposed reg-

ularizer avoids over-training based on the few labeled rare samples. Finally, the effect

of sample weighting is data-set dependent, but when non-uniform weighting is effective,

it gives a large improvement over equal weighting. Thus, the experimental comparison

in Table 2.5 supports our method’s use of i) maxEnt regularization, ii) p-values, iii)

non-negative top level weights, and iv) non-uniform sample weighting.

Table 2.5 also shows that p-values as features and non-negativity constraints on

top level weights act jointly to achieve a substantial level of parameter sparsity (zero

weights) in the solution – P, Uw, and MLE, which all use p-values and non-negative

top level weights, achieve high top level feature sparsity. Note also that this is achieved

with only one labeled sample from each rare category. Thus, the degree of sparsity
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does not appear to strongly depend on the number of labeled rare (unknown) category

samples. On Spambase, only around 5% of top level weight parameters are non-zero

for our proposed method. The maximum degree of non-sparsity for our method is on

Statlog Shuttle and Abalone, with more than 50% of weight parameters non-zero. By

contrast, the method variations that allow unconstrained weights and which use raw

features rather than p-values achieve no degree of sparsity (all nonzero weights). Finally,

note that sparsity by itself is not an indicator of good performance – the MLE method

(without maxEnt regularization) achieves the highest degree of sparsity on all data sets,

but it is outperformed, accuracy-wise, by the proposed method on all the data sets.

2.6.6 Active Learning Evaluation

In this section, we investigate the use of our semi-supervised maximum entropy learning

approach within a pool-based AL setting, with samples chosen for oracle labeling one-

by-one. In principle, the null model GMMs could be adapted when a new oracle labeling

is from a common class. However, we fixed the null models after their initial training

because there were an adequate number of common class samples in the initial Xl.
Other than our proposed criterion, we also evaluate the following AL sample selection

criteria:

Most uncertain: the unlabeled sample xi∗ with greatest class uncertainty (as measured

by Shannon’s entropy function H(C|i∗) over all the known classes and the unknown

class) is forwarded to the oracle. Intuitively, if an unlabeled sample is most uncertain for

the current classifier, the removal of this uncertainty (by oracle labeling) should provide

valuable information to the classifier.

Least common: the unlabeled sample xi∗ with largest a posteriori probability of not

belonging to the common class subset (as measured by P [C(t)
ru |xi∗ ]) is forwarded to the ora-

cle. This choice prioritizes accuracy in discriminating between common and LS/unknown

classes.

Random: the unlabeled sample xi∗ is randomly chosen for oracle labeling. This choice

gives a lower-bound baseline for AL performance.

To assess performance, we measured test set ROC AUC and average classification

accuracy as a function of the number of oracle labelings. We assumed the unknown

class scenario at the outset, with no initially known (labeled) rare class samples in the

learning batch, and with 20% from each of the common classes samples labeled. The

experimental protocol was the same as in previous subsections, with results averaged

over ten learning/test splits.
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Comparison of Sample Selection Schemes

Active learning performance may be affected by the choice of classifier structure,

learning method, as well as by the scheme for choosing which samples to label. First,

we compared different active sample selection strategies, using our maxEnt model as the

classifier. Initially, since there are no labeled rare class samples, it may appear tempting

to select for labeling the sample least likely (as measured by the model) to belong to

the common class subset. Indeed, when using this strategy as the AL sample selection

mechanism, we are able to identify many more rare class samples than either “most likely

unknown” or “most uncertain” sampling. However, as next shown, the generalization

performance of a classifier using this “least common” strategy can be poor. Besides the

strategies mentioned in Section 2.5, we also show the performance achieved when all the

samples in the learning batch are labeled (this should upper bound performance of AL).

In Figure 2.8, we show both ROC AUC and average classification accuracy as a

function of oracle labelings, while in Table 2.6, we show the average number of true

detections and the fraction of rare classes discovered after 100 oracle labelings. We em-

phasize that the “average number of true detections” is not a classification performance

measure – it merely indicates how frequently the sample selection strategy forwards un-

known/rare class samples to the oracle for labeling. As seen in Table 2.6, the “least

common” strategy forwards many more unknown/rare class samples to the oracle on

average than “most likely unknown” and “most uncertain”, with uncertainty sampling

forwarding the fewest. This can be explained by the fact that the number of common

class samples close to the decision boundary dominate the rare class ones. However, as

seen in Figure 2.8, both “least common” and “most uncertain” have poorer generalization

performance than “most likely unknown”. Note the initial drop in performance of “most

uncertain” sampling on the Wine data set. Here, the labelings of “most uncertain” sam-

ples are clearly not the most helpful for classification. Moreover, while the “most likely

unknown” and “least common” curves in Figure 2.8 start out together because the two

criteria are equivalent until the first unknown category sample is labeled, the two curves

diverge after this first labeling. The “least common” strategy has a tendency to identify

many rare class samples that are very similar to each other, and far from the decision

boundary – it does not tend to select informative samples that either are close to the

decision boundary or are instances of novel classes. Thus, as shown in Table 2.6, it tends

to have higher true detections but a lower fraction of rare classes discovered compared to

“most likely unknown” (see results on Yeast and KDD). It also has poorer generalization

performance than “most likely unknown” seen in Figure 2.8 (Note in particular results
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on KDD, Wine, Page Block, and Yeast).

In some applications, where, e.g., the rare class samples are “suspicious” and hence

urgently actionable, there may thus be a need for two (concurrent) operational labeling

“streams” [51]. One is the most actionable samples: these are the unlabeled samples most

likely to be rare (suspicious), whose identification may lead to subsequent action by a

human operator. The other is the most informative samples: these are the samples whose

labeling will help to improve the generalization accuracy of the classifier the most. The

new “most likely unknown” method achieves the best results with the highest fraction

of rare classes discovered, and sometimes comes close to the performance upper bound

line.

Note that, for all these strategies, there is an initial drop in ROC AUC while the

average accuracy increases, on all the data sets. The reason is that, when the first few

rare class samples are labeled, the non-uniform weighting takes effect, and there is a

trade-off between false positives and classification accuracy between the common and

rare class subsets. As more rare samples are labeled and new classes are discovered in

latter AL stages, ROC AUC tends to increase and surpass the initial level.

Table 2.6: AL true detections and fraction of rare classes discovered out of 100 itera-
tions for different sample selection strategies: (MLU) most likely unknown. (MU) most
uncertain. (LC) least common and (R) random.

Data Set
AL True Detections Rare Classes Discovered
MLU MU LC R MLU MU LC R

Page Block 35 12 85 15 1.0 1.0 1.0 0.75

Statlog Shuttle 60 4 68 2 0.93 0.75 0.93 0.12

Yeast 24 6 49 12 0.93 0.62 0.74 0.64

Wine 14 5 34 9 1.0 0.83 0.99 0.70

KDD’99 33 18 31 4 0.71 0.57 0.32 0.16

Spam Base 48 11 49 6 1.0 1.0 1.0 1.0

Comparison of Active Learning Models

Next, we compared our proposed maxEnt model (using the “most unlikely unknown”

strategy for sample selection) with other alternatives: SVM based, minEnt based and a

generative model based, elaborated as follows. For an SVM based approach, we first used

OC-SVM with the RBF kernel and queried the most anomalous samples, until the first

rare class sample was selected and labeled; then we switched to using the standard multi-

class SVM with RBF kernel, labeling the most uncertain sample. However, this approach

requires knowledge of the number of classes and, to initiate the learning, requires labeled

instances from every class. As for a minEnt based approach (as opposed to our maxEnt
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model), we chose the approach presented in [20]. We also compared with the recent

model presented in [27], which we dub “Unified”, a generative model that uses a Dirichlet

Process to model the true class distribution, with expected classifier improvement as the

sample selection mechanism. This approach was shown to outperform a number of

previous works on rare category detection and characterization, e.g., [26].

In our initial AL experiments, we found that the minEnt approach achieves no gener-

alization capability – i.e., the method classifies all samples as common class (see previous

subsection and Table 2.2) and never selects any samples from the unknown class. This

represents a fundamental breakdown of the minEnt approach within an “initially un-

known class” AL setting. Subsequently, in order to at least allow minEnt to achieve

some generalization performance, we “fed” the minEnt classifier with the labeled sam-

ples selected by our maxEnt approach. In this way, “informative” samples determined

by our proposed model were also used to train the minEnt classifier. As seen in Fig-

ure 2.9, it is apparent that minEnt, even when fed the labeled samples selected by the

maxEnt approach, achieves no generalization power in the early AL stage, on all the

data sets. However, as observed for KDD’99, as more and more rare class samples are

included into the labeled subset, minEnt improves, and performs quite well in the latter

iterations, sometimes even better than maxEnt at a certain point. Compared with [27],

our maxEnt approach achieves overall superior performance on all the data sets except

KDD’99, especially during the early AL phase. Note that our model’s ROC AUC curve

outperforms all others on all data sets except Statlog Shuttle and Wine.

For comparing our method with the SVM, note that for the leftmost part of the curve,

before any rare class samples have been labeled, we are really comparing our approach

with OC-SVM. The SVM approach, which does not make effective use of unlabeled

samples to regulate the learning, performs poorly on all the data sets.

2.7 Conclusion

In this chapter, we proposed novel SL and AL frameworks, along with a class poste-

rior model, for learning to discriminate unknown from common classes. Our use of a

hierarchical class posterior accommodates multiple common, multiple LS, and unknown

classes. Our top-level class posterior imposes a constraint on the parameter space (non-

negative weights on p-values) consistent with the inductive bias that what is unknown

is a subset of what is anomalous relative to the common classes. Experimentally, we

found that imposing this inductive bias leads to sparsity in the solution, with only a
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small subset of feature p-values contributing to the class decision. Our SL approach

exploits unlabeled samples in an unconventional way to control the amount of learning

given few labeled samples. That is, we proposed a novel (maxEnt) sample-dependent

semi-supervised regularizer, suitable for AL with unknown categories and for SL with

high class imbalance in general. We also proposed a sample selection criterion for AL

which focuses on the discovery of novel classes. Our framework is particularly suitable

for learning a mapping between a human operator’s concept of an unknown class (which

could be based on complementary, human-digestible information sources, e.g., images

or text) and an information rich, albeit possibly very low-level high-dimensional feature

space. The classifier achieves this mapping, identifying which (low level) features promi-

nently capture the operator’s concept. Future work could investigate encoding higher

order interactions into our posterior model. It could also explore a hybrid approach, with

maxEnt regularization used during the early AL stage, transitioning to minEnt regular-

ization in the later learning phase. We could also consider online learning of the null.

We may also explore a hyperparameter to control the mass of the unknown category.

Finally, we could investigate the effect of nonconvexity of the learning objective on the

quality of classifier solutions we obtain.
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(a) Page Block (b) Spam Base

(c) Abalone (d) Yeast

(e) Waveform (f) Seismic Pump

Figure 2.2: Supervised classification experiment: average ROC AUC performance com-
parison of different feature mappings input to linear and RBF kernel SVMs on various
UCI data sets.
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Figure 2.3: Page Block: ROC AUC.

Figure 2.4: Page Block: Entropy.

Figure 2.5: Page Block: Weight vector magnitudes.
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(a) Statlog Shuttle (b) Spam Base

(c) Abalone (d) Yeast

(e) Waveform (f) Seismic Pump

Figure 2.6: Semi-supervised classification experiment: average ROC AUC performance
comparison of different regularizers applied to learn our posterior model on various data
sets.



45

(a) Statlog Shuttle (b) Spam Base

(c) Abalone (d) Page Block

(e) Waveform (f) Seismic Pump

Figure 2.7: Performance comparison of proposed model variations on various data sets.
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Figure 2.8: Active learning experiment for different sample selection strategies. (a) Page
Block. (b) Statlog Shuttle. (c) Yeast. (d) Wine Quality. (e) KDD’99. (f) Spam Base.
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Figure 2.9: Active learning experiment: comparison of methods’ ROC AUC performance
and average classification accuracy versus number of oracle labelings, on various data
sets. (a) Page Block. (b) Statlog Shuttle. (c) Yeast. (d) Wine Quality. (e) KDD’99. (f)
Spam Base.



Chapter 3
Applications of The Semi-supervised

Active Learning with Maximum

Entropy Regularization

In this chapter, we investigate two applications of the semi-supervised active learning

with maximum entropy regularization. The first section focuses on active detection of

suspicious vehicle tracks [51]. The second section focuses on a network intrusion detection

system [50].

3.1 Active Learning to Distinguish Suspicious from Innocu-

ous Anomalies in a Batch of Vehicle Tracks

In anomaly detection, one often aims to identify the most atypical samples from a poten-

tially large “test batch” of observed samples. This is generally assessed by evaluating the

test batch relative to a reference model of what is “normal” (which may itself be learned

based on a large representative training set of “normal” (null) instances). However, for

a deployed system, in practice, one may find that many samples in the test batch will be

detected as statistically significant anomalies. This may be due to limited prior knowl-

edge and/or due to limited data available for accurately characterizing what is “normal”.

It may also be due to measurement inaccuracy, e.g., in astronomy many (uninteresting)

anomalous objects may be detected if there is an equipment glitch, or due to human error

in system configuration or data collection [46]. In fact, what is often genuinely desired is

not to detect all the anomalous samples, but rather to detect and to prioritize what, for
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some domains, amounts to the most suspicious anomalies (i.e., for behavioral tracking,

intrusion detection, email spam) and for others (scientific applications) amounts to the

most interesting ones, i.e. those associated with heretofore unknown physical phenom-

ena. For example, considering vehicle tracking, the main target domain in this section,

speeding off-road or in a school zone may be highly suspicious, whereas speeding on a

local highway or making a U-turn may be merely atypical. There are several challenges

associated with detecting the most suspicious (most interesting) samples. First, “suspi-

cious” may be a very small subset of the anomalous class, consisting of samples whose

atypicalities are with respect to certain key (albeit a priori unknown) features and/or

feature interactions. Indiscriminately forwarding all detected anomalies to an operator

for scrutiny or action will not scale; it will swamp the operator, and likely fail to detect

any of the truly suspicious anomalies1. Thus, in practice, it is necessary to discriminate

between suspicious anomalies and innocuous ones. This seems to suggest treating the

problem as one of standard supervised learning. However, there are several distinctive

aspects of this problem. First, because anyway they tend to be rare, there may initially

be no known (supervising) examples of what is truly suspicious/interesting. Moreover,

what is truly suspicious may in fact be subjective, and thus may need to be informed by

each (expert) consumer of an anomaly detection report. Thus, an active learning frame-

work [55] and one that starts from scratch (i.e., no initially labeled suspicious instances),

is in general needed here. Second, for this suspicious/innocuous discrimination problem,

there is in general an inherent, challenging feature selection problem. There are multiple

reasons for this. First, since “suspicious” may be a wholly unknown class, it is a priori

unknown which features may be needed to characterize it. Thus, many features may

need to be measured and assessed. Second, some suspicious (e.g., malicious) activities

may seek to be as obfuscating as possible, in which case the suspicious signature – its

anomalousness – may only be exhibited with respect to a very small subset of all pos-

sible features. Thus, if one restricts the features under consideration, one may wholly

miss the suspicious signature. On the other hand, many of the chosen features may be

irrelevant (nuisance features) – anomalies with respect to these will not be indicative of

suspiciousness. These features will degrade the classification accuracy unless they are

eliminated or de-emphasized in the decision-making. It is also useful in general to iden-

tify what are the essential features and feature combinations – in this way, the classifier

1Even if the rate with which anomalies can be inspected by a human operator matches the rate at
which anomalies are detected by a system, the likelihood of an operator to identify rare, suspicious
anomalies will be low. But this is anyway far too optimistic – the rate of anomaly detection may be
much higher than the inspection rate.
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may make explicit and objective the basis upon which a (subjective) human operator

distinguishes between anomalies that are suspicious (interesting) and those which are

innocuous (uninteresting).

In summary, for numerous applications, ranging from vehicle tracking to email spam

detection and Internet traffic monitoring, it is desirable to develop an active learning

framework for prioritized identification of activities that are suspicious (interesting) as

opposed to being merely atypical. In this work, we develop a novel method with such

capability, focused particularly on the domain of entity tracking in wide area motion

imagery (WAMI) video.

3.1.1 Track Data and Its Raw Features

The data we work with is based on less than one hour of video capturing an urban

scene. We applied Toyon’s in-house track detection and tracking software based in

part on [1], which applies a variety of paradigms in achieving accurate, computationally

efficient persistent entity tracking. Application of this system captured more than 1000

vehicle/entity tracks from the given scene. Based on Toyon’s software, each tracked entity

is represented by a (variable duration) multivariate time series (∼ 1 Hz sampling) where,

at each time point, there is instantaneous measurement of longitude, latitude, speed,

and azimuth (heading). While these comprise the “raw” features, one can also compute

derived features such as instantaneous acceleration, as well as track-level features such

as range or total distance covered by a track, and track duration. Note that absolute

timing features (time-of-day), while expected to be revealing in general (unusual vehicle

activity at 4 A.M.), are not relevant for the data here, comprising less than one hour.

Atypicality of instantaneous features such as speed and azimuth are best assessed by

conditioning on the road segment of origin - 60 m.p.h. instantaneous speed is normal

on a highway but abnormal on a suburban road. Likewise, an instantaneous azimuth

inconsistent with the direction of the road being travelled (e.g., suggesting the vehicle

is moving off-road) is unusual. Accordingly, we evaluate feature distributions under the

null hypothesis (of no anomaly present) while conditioning on the road segment of origin
2. Beyond speed and heading features, we also derive features that indicate whether a

vehicle track consists of U-turns, looping (wherein the track crosses itself), as well as the

proportion of the track that consists of off-road travel. U-turns are indicated by counting

the number of pairs of points along the track trajectory that are within ε-distance of each

other in opposite directions. Looping is indicated by pairs of “time-separated” points

2For the given scene, the road network was determined using Openstreetmap [24].
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along a track trajectory that are within ε-distance.

3.1.2 P-Values as Features for Discriminating Suspicious from Merely

Anomalous

The fundamental inductive bias that we exploit is that suspicious behavior is a subset of

anomalous behavior - i.e., the subset for which atypicalities are with respect to certain

key (albeit a priori unknown) features and/or feature combinations. Consistent with

this inductive bias, we treat, as feature inputs to our classifier, log p-values 3 with

respect to the different measurement types (speed, azimuth, acceleration, and others) -

a very negative log p-value indicates strong atypicality of a given feature type, which

may or may not be indicative of suspiciousness – the active learning essentially needs to

“figure this out” by learning suitable weights on these log p-value features. Measuring

p-values on raw features before feeding to the classifier can also be thought of as an

alternative (motivated by our inductive bias) to (agnostically) applying some nonlinear

kernel transformation to the original raw features.

For each track, we computed track-level p-values associated with U-turns and track

duration. We also computed, for each road visited along a track, speed, azimuth, acceler-

ation, and change-in-azimuth p-values (one p-value is computed for each individual raw

feature measurement). Each of these types of measurements, conditioned on the road of

origin, is modeled by a mixture of Gaussians (unimodal, in some cases). For unimodal

distributions, we separately measure both the left and right tail p-values (e.g., unusually

high speed on some road could be innocuous, while atypically low speed may be suspi-

cious). For features whose distributions are multimodal, we model using a mixture of

Gaussians, and evaluate a mixure-based p-value, as detailed in Section 2.2. In order to

fairly evaluate tracks that travel over different numbers of roads, for each track, for each

feature type, the top K most extreme p-values are retained (K left-tail and K right-tail

p-values, in unimodel case), considering all roads traveled over the duration of the track.

In this way, for every track, the same number of log p-values of each type comprise the

features that are the inputs to our classifier. We also included top K mixture p-values

for every pair of feature types, based on bivariate Gaussian mixtures and mixture-based

p-values, as detailed in Section 2.2. Experimentally, we found that K = 10, which allows

capturing multiple atypical events during a track, is an effective choice. This leads to

142 total number of (log p-value) features, representing every track.

3A p-value is the probability of seeing a realization more extreme than an observed one, under a given
null hypothesis. See Section 2.2.
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Figure 3.1: Compare ROC of different Ks in Track Data.

In order to understand how suspicious vs. innocuous classification accuracy on the

Track domain varies with the number of p-value features, we evaluated the test set ROC

as a function of K, with the classifiers trained in a supervised fashion, using all lableled

training examples. While there is an increasing performance trend with increasing K,

the accuracy gains are diminishing in going from K = 10 up to K = 20, as shown in

Figure 3.1. Accordingly, we set K = 5 in our subsequent Track experiments. We further

note that K is essentially practically limited by the minimum number of measurements

for a track, across all tracks in the captured batch of tracks4.

3.1.3 Classifier Model

Our active learning approach can be applied for various class posterior models. Here, it

is developed assuming a “nearly standard” logistic regression classifier form, albeit with

log p-values as features and with weight constraints:

P (C = “suspicious”|p) =
exp(w0 −

∑N
i=1(wi log pi +

∑
j 6=i βij log pij))

1 + exp(w0 −
∑N

i=1(wi log pi +
∑

j 6=i βij log pij))
(3.1)

based on the parameter set Θ = {{wi}, {βij}}, with wi ≥ 0, βij ≥ 0,∀i, j. Here, pi is a

p-value for feature i, with pij a p-value for the (i, j) feature type pair 5. See Chapter

4For the few instances where a track does in fact have fewer than K measurements, we (uninforma-
tively) “fill out” the missing log p-values with zeros (corresponding to high typicality).

5For clarity’s sake, to make the above expression “uncluttered”, the above equation does not distin-
guish, for unimodal distributions, between left and right tail p-values, and it assumes one (most extreme)
p-value, for each of N feature types. More generally, our classifier will indeed make use of both left and
right tail p-values for unimodel distributions, and it will use the top K p-values for each feature type to
represent a given track.
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2 for details in the properties (interpretability, monotonic sample ordering, etc.) and

development of the model.

3.1.4 Semi-supervised Active Learning Objective Function

At the outset, we may have few or no labeled suspicious examples, but plentiful examples

that can be (even without human inspection) reliably labeled as “innocuous” based on

high typicality (relatively large aggregate p-values). Essentially, there are two classes,

but with labeled instances initially available for only one of them. Thus, at the outset,

our active learning problem amounts to a “one-class classification” problem [43]. We are

proposing a pool-based active learning framework, with repeated selection of a sample

from the test batch for labeling and then adaptation of the existing classifier model

in light of this new labeled example. What distinguishes between different pool-based

schemes are: 1) the criterion used for selecting the sample to forward to the oracle

(operator) for labeling at each step and 2) the learning framework for adapting the

classifier model in light of the newly labeled sample. In this section, we focus on the

classifier learning, developing a novel semi-supervised learning framework, a variant of

the general framework proposed in Chapter 2, that we believe is suitable for active

learning of classifiers in general (not just for suspicious-innocuous discrimination). In

section 3.1.6, we will show that this learning scheme, used in conjunction with our logistic

regression classifier model, in fact gives improvement over support vector machine-based

active learning (with both methods using uncertainty-based sample selection).

Our main focus, as detailed in Chapter 2, in devising a learning framework and

objective function, is to make appropriate, effective use of the many unlabeled samples,

in addition to the current cadre of labeled innocuous and suspicious samples. If we

were only to make use of the labeled samples, a standard approach for (supervised)

learning of a class posterior model is maximization of the posterior log-likelihood over

the labeled training samples. Posterior log-likelihood maximization is in fact equivalent

to minimization of a sum of cross entropies objective function, specified as follows. For a

given labeled suspicious feature vector p
n
, we give the “target” distribution (Qtarget[C =

0|p
n
], Qtarget[C = 1|p

n
]) = (0, 1), while for a labeled innocuous sample p

n
, we give the

targets (Qtarget[C = 0|p
n
], Qtarget[C = 1|p

n
]) = (1, 0). Then, after the t-th oracle labeling

of active learning, maximizing the posterior log-likelihood model P [C|p] is equivalent to
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minimizing

D(t) =
∑
n∈I(t)

d(Qtarget[C|pn]||P [C|p
n
]) +

∑
n∈S(t)

d(Qtarget[C|pn]||P [C|p
n
])

= −
∑
n∈I(t)

logP [0|p
n
]−

∑
n∈S(t)

logP [1|p
n
]. (3.2)

Here, d(Q||P ) =
∑

lQl log(Ql/Pl) is the Kullback-Leibler distance [30] (cross entropy)

between probability mass functions Q and P , where C = 0 denotes “innocuous” and

C = 1 denotes “suspicious”. Q is interpreted as the “true” distribution, with P our

(model-constrained) approximation of the true. Also, I(t) and S(t) are, respectively, the

labeled innocuous and labeled suspicious subsets of the test batch after the t-th oracle

labeling, where t = 0 means before any oracle labeling has been performed.

Similar to the development in Chapter 2, we seek to modify (3.2) in two respects: i)

to sensibly incorporate and thus exploit for learning the (typically large) current subset

of unlabeled samples, U (t); ii) to account for large imbalance between the sizes of the

labeled subsets I(t) and S(t). We will modify (3.2) to incorporate prior knowledge about

the class statuses for samples in the unlabeled subset.

Let (Q
(t)
prior[C = 0|p

n
], Q

(t)
prior[C = 1|p

n
]) be the prior distribution for sample n ∈ U (t).

A consistent measure of the discrepancy between the distribution that we choose and a

given prior distribution is, again, the cross entropy, but this time written d(P [C|p
n
||Qprior[C|pn]) =∑

c=0,1 P [C = c|p
n
] log(P [C = c|p

n
]/Qprior[C = c|p

n
]). That is, with our model’s distri-

bution in the “posterior” position in the asymmetric measure d(·||·), and with Qprior(·)
in the position of the prior [56]. Accordingly, we propose the following semi-supervised

objective function:

D(t) = α(t)
u

∑
j∈U(t)

(P [1|p
j
] log(P [1|p

j
]/Q

(t)
prior[1|j]) + P [0|p

j
] log(P [0|p

j
]/Q

(t)
prior[0|j]))

− α(t)
i

∑
j∈I(t)

logP [0|p
j
]− α(t)

s

∑
j∈S(t)

logP [1|p
j
], (3.3)

where α
(t)
u , α

(t)
i , and α

(t)
s are the weights on the unlabeled, labeled innocuous, and labeled

suspicious terms at oracle labeling step t. (3.3) is clearly a semi-supervised generalization

of (3.2). Moreover, directly, we shall see that the additional, unlabeled term can be seen

as a special type of “ regularizer” on posterior log-likelihood maximization.

A key unresolved issue is how to choose the prior distributions (Q
(t)
prior[C = 0|p

n
], Q

(t)
prior[C =

1|p
n
]), n ∈ U (t). At t = 0, before there is any oracle labeling, a sensible choice, reflect-
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ing maximum uncertainty, is: (Q
(0)
prior[C = 0|p

n
], Q

(0)
prior[C = 1|p

n
]) = (1

2 ,
1
2), ∀n ∈ U (0).

Initially (t = 0), if there are no labeled suspicious examples, S(0) is empty, and D(0)

thus consists only of a sum of cross entropies for the subsets I(0) and U (0). We first

minimize D(0) with respect to our class posterior’s model parameters, resulting in the

learned class posteriors (P (0)[0|p
j
], P (0)[1|p

j
]). We then apply our active learning sam-

ple selection criterion (defined in the sequel) to select an unlabeled sample for (oracle)

labeling. The chosen sample is removed from the unlabeled subset and included in the

appropriate labeled subset, resulting in the new subsets U (1), I(1),S(1). How then to

choose the new prior distributions Q
(1)
prior(·) for the unlabeled samples, to be used in

the next round of learning, minimizing D(1) (in light of the first oracle labeling result)?

Unlike in Chapter 2, where we assign fixed target distribution throughout AL itera-

tions, we develop an adaptive target assignment approach to reflect the current best

estimate for unlabeled samples in each AL iteration. Prior to the initial round of learn-

ing, (1
2 ,

1
2) is a suitable choice, reflecting maximal uncertainty. However, post this initial

round, the new class posterior probabilities, denoted (P (0)[0|p
n
], P (0)[1|p

n
]), n ∈ U (1)

may be less uncertain, and in fact reflect our best current estimate for the true dis-

tributions (P [0|p
n
], P [1|p

n
]). Thus, we suggest this “current best estimate” as our

new prior after the initial round and, in fact, also more generally, i.e., we choose

(Q
(t)
prior[0|pn], Q

(t)
prior[1|pn]) = (P (t−1)[0|p

n
], P (t−1)[1|p

n
]), n ∈ U (t). Note that if we ini-

tialize the model parameters at the current solution after round t − 1, we in fact

initially have for round t that (P (t)[0|p
n
], P (t)[1|p

n
]) = (P (t−1)[0|p

n
], P (t−1)[1|p

n
]) =

(Q
(t)
prior[0|pn], Q

(t)
prior[1|pn]), n ∈ U (t), i.e., before any adaptation of the model parame-

ters is performed to account for the t-th oracle labeling, the sum of cross entropies term

associated with the unlabeled sample subset is zero. That is, in adapting the parameters

to account for the newly labeled sample at round t, we will decrease the labeled subset

cross entropy terms, but will in general increase the unlabeled subset term from zero.

From this, we can understand that the unlabeled data subset term is a type of “regular-

izer”, minimizing the “amount” of adaptation performed in light of each newly labeled

sample. We also note that this regularization is very different from e.g. [20], where class

uncertainty is minimized over the unlabeled samples. By limiting the amount of learning

in light of each new labeled sample, our unlabeled term forces retention of some class

uncertainty6. In our experiments, the objective function D(t) is minimized, after the t-th

oracle labeling, via a gradient descent procedure.

6In the latter stages of active learning, minimizing class uncertainty on the unlabeled samples may
be a good choice. However, in the early stages, a main concern should be avoiding over-training on the
small number of labeled examples.
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Another important question is how to choose the weights α
(t)
u , α

(t)
i , and α

(t)
s . We

propose to choose the weight α
(t)
s to amplify the contribution of the few labeled suspicious

samples, i.e., to “equalize” the contribution to the objective function coming from the

labeled suspicious and labeled innocuous subsets. That is, we let α
(t)
i = 1 and choose

α
(t)
s = |I(t)|

|S(t)| . What remains is the choice of the weight on the unlabeled samples α
(t)
u .

It appears more difficult to find a principled, “universal” choice for the weight α
(t)
u ,

since this controls the amount of regularization. Instead, we suggest to set α
(t)
u using a

cross-validated error rate measure, based on the labeled samples “seen until now”.

3.1.5 Sample Selection Criteria for Oracle Labeling

In this work we investigate the following five active learning strategies:

Most uncertain: the sample with the greatest class uncertainty is forwarded to the oracle.

Intuitively, if an unlabeled vehicle track is most uncertain for the current classifier, the

removal of this uncertainty (by oracle labeling) should provide valuable information to

the classifier.

Most suspicious: the sample with largest a posteriori probability of being suspicious is

forwarded to the oracle. This strategy prioritizes detection and forwarding of suspicious

samples, since the truly suspicious tracks are the ones that may require further action,

and possibly in a time-sensitive fashion. Forwarding the “most suspicious” track allows

achievement of confirmation that it is truly suspicious (in which case, the labeling also

serves as “notification” that something suspicious has been detected). However, labeling

of the track most likely to be suspicious (as estimated by the classifier) may not give the

most information for further improving the classifier – it may simply “confirm what is

already known”.

Random sampling: randomly selecting an unlabeled sample for forwarding to the oracle.

This scheme is expected to provide a “worst case” performance bound, since random

sampling should only work well if all samples’ labels are equally informative to the

classifier, which should not be valid for most realistic domains/data sets.

Largest expected decision change: selecting the sample whose labeling, in expectation,

results in the most change (in aggregate) in the classifier’s posterior probabilities over

the unlabeled samples:

x∗ = argmaxxP (S|x) ∗
∑
x′∈U
|P (S|x′)− P (S|x′, L(x) = s)|

+(1− P (S|x)) ∗
∑
x′∈U
|P (S|x′)− P (S|x′, L(x) = I)| (3.4)
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Figure 3.2: A suspicious track making a U-turn.

Largest expected improvement: recently in [27], the authors proposed a sample selection

strategy which forwards the sample with the greatest estimated “expected improvement

in classification error rate” for the current classifier (as measured over both the labeled

and unlabeled samples).

The first three methods have relatively low computational complexity, while the latter

two require substantial computation to trial re-train the classifier 2|Xu| times (under each

of two possible labelings, for all samples in the unlabeled batch). One can also expect

that the “most suspicious” criterion may have the greatest propensity for choosing truly

suspicious tracks. This will be investigated in the sequel.

3.1.6 Experimental Results

The road network used to capture vehicle tracks consists of several busy intersections,

highways and some suburban areas where vehicle tracks are scarce. Figures 3.2 and 3.3

show some examples of tracks that are subjectively defined as suspicious (one with a

U-turn and another with loops) by our human operator, where the cross point indicates

the starting position. Grey lines are different roads in the scene. By using these u-

turn/looping features by themselves, several suspicious tracks can be identified. But we

include these features inside our active learning framework to let the operator decide if

such tracks are indeed truly suspicious.

We separated the tracks into two independent batches, each with the same proportion

of suspicious to innocuous tracks. One batch was used both for null modeling and active

learning (but with innocuous examples that were used for null modeling segregated from

those used for active learning), and the other for test set performance evaluation. We

then switched the roles of the two batches and measured the average test set performance.
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Figure 3.3: A suspicious track with a loop.

We chose K = 10. If a track has less than 10 measurements, its remaining p-values (to

reach K = 10) were set to zero.

3.1.6.1 Performance Metrics

There are two fundamental performance measures of interest on the test batch: i) true

detection rate – the proportion of truly suspicious tracks that have been correctly classi-

fied as suspicious and ii) false alarm rate – the proportion of innocuous tracks classified

as suspicious. We evaluate these measures for our “current” classifier, after every iter-

ation of active learning. As a comprehensive performance measure encompassing true

detections and false positives, we measure the test set area under the ROC curve (ROC

AUC), as a function of the number of active labelings. On the training batch, we also

measure “true detections”, i.e., the number of truly suspicious tracks forwarded to the

oracle, as a function of the number of active labelings. This is not really a performance

measure – it simply indicates, for a given sample selection method, how many truly

suspicious examples there are amongst the samples found to be “most informative” for

refining the classifier.

3.1.6.2 Compare Different Alphas

In this section, we compare different choices of αu on unlabeled samples during active

labeling. Shown in Figure 3.4, we plot ROC AUC as a function of oracle labelings for

different choices of αu. We also plot the weight magnitudes after one hundred labelings

in Figure 3.5. We observe that different αu values give very different performance results

and the associated weight magnitudes. A smaller αu, which represents less amount of
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Figure 3.4: ROC AUC for different alphas.

regularization, tends to produce larger weight vector magnitude. The generalization

performance is best when the weight magnitude is neither too large nor too small (i.e.,

for αu in the range from 0.2 to 0.6; otherwise there is very poor detection capability, as

observed e.g. in the case of αu = 0.1 and 0.8;

3.1.6.3 Compare Sample Selection Strategies

In Figure 3.6 and Figure 3.7, we show the ROC AUC and training set “true detection”

performances of the “most uncertain” and “most suspicious” strategies, when used with

our classifier and semi-supervised learning framework. The two strategies provide very

different results, with “most suspicious” choosing many more “informative examples”

that are in fact truly suspicious. However, these labeled samples (including many truly

suspicious samples) provide weak gains in classifier generalization, i.e., in ROC AUC

shown in Figure 3.7. Presumably, the reason is that the tracks being forwarded are very

similar in their suspicious signatures – i.e., the classifier does not learn much from the

labeling of these samples. Uncertainty sampling, on the other hand, is seen to forward

for labeling very few truly suspicious tracks – only 4 out of 50 – but its generalization

performance is much better. Apparently, the samples selected by uncertainty sampling,

being closer to the current decision boundary than the “most suspicious”, are better able

to help refine the boundary. Figure 3.7 also shows the performance of random selection

(an effective performance lower bound), and that based on learning a classifier using the
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Figure 3.5: Weight magnitude for different alphas.

entire active learning batch as a labeled training set (which should upper bound active

learning performance).

These results show that forwarding the “most uncertain” sample greatly outperforms

forwarding the “most suspicious” sample. However, as we noted earlier, from an opera-

tional (actionable) standpoint, it is also clearly important to prioritize confirmation of the

detection of suspicious tracks. This suggests the need for two (concurrent) operational

labeling “streams” in a suspicious/innocuous active learning setting. One is the most

actionable tracks: these are the unlabeled tracks estimated to be most suspicious, whose

labeling may lead to subsequent action. The other is the most informative track(s):

these are the tracks whose labeling will help to improve a suspicious/innocuous classifier

the most. The “most uncertain” track is one reasonable candidate for the “most infor-

mative” track, evaluated here. However, alternative, more sophisticated criteria such as

[27] can also be investigated, which we suggest for future work.

3.1.6.4 Evaluation of Semi-supervised Learning

In this section we investigate i) the value of unlabeled tracks in building up the classifier

and ii) the proper choice of weights on the labeled subsets in our cross entropy-based

learning.
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Figure 3.6: Number of true detections for different sample selection mechanisms.
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Figure 3.7: ROC AUC performance for different sample selection mechanisms.

3.1.6.5 Value of unlabeled tracks

To assess the value of the unlabeled tracks, we investigated excluding them (excluding

the unlabeled subset) from our learning objective function. In this case, the learning

is strictly supervised, and maximizes the class posterior log-likelihood. Moreover, since

we start without any labeled suspicious tracks, initially, this amounts to maximizing the

joint log-likelihood of the labeled innocuous samples.

In Figure 3.8, it is seen that inclusion of the unlabeled tracks within the classifier

learning is essential for building up the classifier’s accuracy – without the unlabeled

term, uncertainty sampling is unable to detect any suspicious examples, and thus there

is no ability to identify the suspicious class gleaned from active learning7. Also shown

7This is not surprising, since from the outset of the active learning, the class posterior is solely being fit
to agree with the innocuous samples. With no unlabeled samples included in the learning, this situation
never changes over the active learning iterations.
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Figure 3.8: ROC AUC performance with/without use of unlabeled samples and with
(1

2 ,
1
2) unlabeled targets.

in Figure 3.8 is the performance of a classifier that uses our semi-supervised learning,

but with the target distribution (1
2 ,

1
2) for unlabeled samples, for all active learning

iterations (t). While in the long run similar ROC AUC performances are achieved, use

of our proposed unlabeled “regularizer” converges much more quickly, with far fewer

labelings, to this “long run” performance than when the (1
2 ,

1
2) targets are used. This in

part validates our particular choice of unlabeled term “regularizer”.

3.1.6.6 Weights on The Labeled Subsets

In Figure 3.9, we demonstrate the benefit of our proposed weighting scheme (which am-

plifies the weight on the suspicious subset, relative to the innocuous subset) by comparing

with a scheme wherein every sample is given equal weight. As seen in the figure, ROC

AUC is greatly improved by our unequal weighting scheme. Without the use of such

weighting, the objective function will be biased towards the majority class, which is seen

in the figure to hurt generalization performance.

3.1.6.7 Comparison with Support Vector Machines (SVMs)

Here we compared the performance of our method with that of active learning of SVMs

[62]. Both methods use our proposed p-value features and uncertainty sampling. Since

the SVM requires at least one sample from each class in order to learn, we “seed” SVM

learning using the one-class SVM approach [53]. Once the one-class SVM (which selects

the most outlying sample) is first successful in identifying a suspicious sample, we switch

from one-class SVM to standard (two-class) SVM classifier learning. While the one-class

SVM framework requires use of a nonlinear kernel, the two-class SVM could be applied
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Figure 3.9: ROC AUC for different labeled subset weighting schemes.

with either a linear or a nonlinear kernel. We have found there is some improvement

from using a nonlinear (Gaussian) kernel. Thus, we designed Gaussian kernel SVMs (for

both the one and two-class stages). Hyperparameter selection for the SVM (choosing the

slackness and Gaussian scale hyperparameters) was performed using a grid search, based

on 10-fold cross validation error performance, evaluated on the current labeled training

subset. As seen in Figure 3.10, the SVM, trained in a purely supervised fashion, initially

has poor accuracy. But as it learns more and more samples close to the decision boundary,

its performance boosts in the latter iterations, ultimately surpassing the ROC AUC of

our model. We also show results for a linear kernel SVM, with similar representation

power (linear feature dependence) as our logistic regression classifier. Note that the linear

SVM’s performance only approaches our model’s performance in the latter iterations.

Finally, we note that, in these results, for our method, we have not optimized the weight

that we apply on the unlabeled sample subset – the weight on unlabeled samples was

always set to one. Optimizing this hyperparameter, e.g., via cross validation, as well

as using a non-linear kernel and consideration of alternative sample selection strategies

could further enhance our method’s performance.

3.1.7 Conclusion

In this section, we applied the adaptive semi-supervised active learning framework, along

with a class posterior model, for learning to distinguish “suspicious” from “innocuous”

anomalies (as well as from samples that are not anomalous). Our class posterior is chosen

consistent with the inductive bias that “suspicious” is a subset of “anomalous”. Our

semi-supervised learning approach exploits unlabeled samples in an unconventional way

– to control the amount of learning that is performed given few labeled samples. That is,
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Figure 3.10: ROC AUC performance of our semi-supervised method, compared with
linear and Gaussian kernel SVMs.

unlabeled samples are used to form a novel regularizer, which we suggest may be suitable

for active learning in general. For the domain of detecting suspicious vehicle tracks, our

approach (using a simple logistic regression classifier) performs quite favorably compared

with a standard SVM-based active learning system. Our framework can be understood

as learning a mapping between a human operator’s concept of what is suspicious (based

possibly on visual inputs) and an information-rich, albeit possibly very low-level high-

dimensional feature space. The classifier achieves this mapping, and it also identifies

which (possibly low-level) features capture the operator’s concept.

3.2 Flow Based Botnet Detection through Semi-supervised

Active Learning

Detecting botnet communication presents a major challenge for current IDSes. Coordi-

nated bot malware is used to carry out malicious activities such as DDoS, spamming, and

phishing, with huge cost passed on to the victims. One recent survey claimed that around

16% of host computers connected to the Internet today are compromised, becoming ei-

ther active or passive bots, waiting to follow the bot master’s commands. Neutralization

of botnet activities involves technological, social, and political efforts, but successfully

detecting botnets is usually a prerequisite for all other neutralization efforts. One of the

most difficult challenges associated with detecting botnet communication is that both bot

masters and slaves constantly modify their behavior to evade popular signature-based

IDSes. For example, in order to avoid deep packet inspection based IDSes, botnet appli-

cations use secure transmission protocol (STP) to encrypt their command and control
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(C&C) messages. Botnets also use fast flux to randomize both their port numbers and/or

domain names, thus avoiding anomaly detectors that are based on usage of certain port

numbers or domain names, such as [21]. To avoid timing based signatures, botnets try to

randomly delay their transmissions or make their traffic round-trip-times (RTTs) similar

to perceived “normal” sessions subject to very low implementation complexity. On the

defender’s end, according to [23], most current flow-based IDSes rely on payload infor-

mation in the TCP packet, which is defeated by encryption. To avoid packet-size based

features, a botnet may pad segment and/or pad its packets. Obviously, an adaptive IDS

is required to quickly respond to the ever changing tactics of distributed botnets, which

are sometimes driven by contextual information not immediately available to IDSes.

We propose an AL framework to adapt to unknown botnet behavior using only

bidirectional packet sizes of a given flow8 to derive application-discriminating features.

To the best of our knowledge, this is the first work to apply AL to the domain of botnet

detection. In our AL approach, the network security administrator is leveraged as an

“oracle” to inform the IDS which AL-selected network flows are suspicious (botnets) or

from one of the attack class, and which are known normal (e.g., web). Such decisions may

be based on payload patterns, similarity to previously detected botnet flows, information

from honeynets, etc. Since it is a priori unknown which feature anomalies are bot-

indicative and which are merely spurious (leading to detection of innocuous outlier flows),

we use machine learning and AL to learn the (potentially sparse) informative feature

subset, starting from no ground truth about the botnet traffic, which may or in fact

may not be present in a current captured batch of (unlabelled) flows. Using packet

size and direction feature sets from available anonymized public datasets, we show our

proposed flow-based feature representation leads to better detection performance than

that of [33, 5] as well as that of [49]. Also unlike [49], we separate rare from “unknown-

unknown” anomalies in this work while preserving the convexity of the objective of

our optimization. This is an improvement over the multiclass, hierarchical approach

developed in Chapter 2.

The rest of the chapter is organized as follows: We define our problem and present re-

lated works in Section 3.2.1. We then present our methodology in Section 3.2.2, followed

by experimental results in Section 3.2.3. In Section 3.2.4, we conclude with a discus-

sion, including future work and mention of suitable enterprise NIDS implementation

platforms.

8Here, a packet flow is a bidirectional communication session between a pair of end-hosts.
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3.2.1 Problem Definition and Related Work

Assume there is a batch of normal labeled web traffic available at the outset for training a

null (normal) hypothesis model, i.e., Xl = {xi ∈ RD, i = 1, . . . , Tl}, where xi is a feature

vector representing the ith training (web) traffic-flow sample, and where we assume the

number of training flows Tl is large enough to learn an accurate null model. The feature

vector is based on the (possibly truncated, e.g., first ten packets) sequence of packet sizes

in the bidirectional flow. We assume, as a reference, that the packets are alternating

client-to-server and server-to-client, starting with a client-to-server packet. Thus, for a

given flow, if there are two consecutive packets in the same direction, this is represented

by inserting a zero between these two packet sizes. Illustrative examples are shown in

Table 3.1. In this way, our feature vector preserves information about both the sequence

of packet sizes and the sequence of packet directions. These training traffic flows can

either be captured in a sandbox environment or sampled from a domain of interest (data

warehouse, enterprise network) in real time under normal operating conditions – the

LBNL data set [31] was captured in the latter way.

During real-time operation, an unlabeled flow-batch Xu is captured, with Tu = |Xu|,
which may or may not contain any suspicious botnet traffic masquerading as web. Ap-

plying pool-based AL [55], the learning algorithm will sequentially select samples to be

labeled, aiming at each step to choose the most “informative” sample for labeling 9.

Based on some context information, the network administrator will ground-truth label

a selected flow ∈ Xu as web or botnet; the web vs botnet classifier’s parameters will

then be adapted and improved in light of this new labeled example. Thereafter, another

informative sample may be selected for labeling and the process is repeated. A flow chart

of the overall learning system is shown in Figure 3.11.

An AL-based anomaly detection system is fully determined by: 1) the choice of the

classifier’s features; 2) the classification model (e.g., linear classifier, nearest neighbor

classifier, decision tree); 3) the associated objective function optimized in learning the

classifier’s model parameters; 4) the optimization technique; and 5) the criterion used

for determining the next sample to be oracle-labeled. The ultimate goal is to mine the

current unlabeled flow-batch Xu such that, with as few labelings as possible, the active

9There are different possible definitions of “most informative”. This could be the sample whose
labeling is predicted to improve classification (bot vs. web) accuracy the most. Alternatively, it could be
the sample estimated most likely to be an example of an unknown class (zero day threat) – this choice
could lead to the most rapid discovery of unknown classes (zero day threats). It could even be the sample
most likely to be a known bot (one that has been seen and labeled before) – however, while this flow
may be the most actionable one by the system, labeling this sample may give less benefit in terms of
improving the classifier’s generalization accuracy, compared with other sample selection strategies.
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learner discovers whether there are any suspicious anomalies (unknown bots) in Xu and,

if there are, learns how to discriminate these suspicious anomalous flows from innocuous

anomalies (mere outlier flows) from existing bot classes, and from normal web traffic.

Moreover, the learning may identify a sparse set of informative, class-discriminating

features, which aid interpretability of the classifier solution and which may thus assist the

administrator in characterizing/identifying zero-day threats and their low-dimensional

“signatures”.

Machine-learning based botnet detection has been proposed in numerous previous

works, with most of them focusing on the supervised learning scenario, assuming that

ground truth examples of the botnet traffic are available at the outset [59, 57, 5]. Al-

though the true detection rate can go nearly to 100% in these works, the assumption

that we have ground truth examples for (possibly unknown) botnets limits the wide

applicability of these IDSes. While some previous works address unsupervised learn-

ing with initially unknown botnet traffic [28] [48] [39], these approaches are inherently

performance-limited, since supervised learning is not leveraged to label the anomalous

samples (or clusters) detected by these approaches. Such ground-truthing could be used

to refine the detector. For example, the AL IDS approach in [39] actively updates the

one-class IDS to detect attacks that degrade of the network Quality of Service (QoS),

but true anomalous traffic are not used when making a decision.

In this work, we try to address both of the above-mentioned limitations, assuming

labeled botnet flows are initially unavailable and only become available within the AL

framework when they are selected for labeling and then ground-truthed by the human

oracle. These labeled examples are used under the (sparingly supervised) AL framework

to learn and adapt a classifier that aims to discriminate the botnet from normal traffic

(as well as from mere outlier flows). Moreover, our approach is semi-supervised, i.e., it

exploits for classifier learning not only the existing cadre of labeled samples, but also

all captured unlabeled samples. We apply the very effective semi-supervised learning

approach introduced in [49] and Chapter 2. We demonstrate the performance advantage

of our proposed model over both unsupervised and standard supervised approaches in

Section 3.2.3.

AL, with its judicious creation of a labeled pool of samples from the current unlabelled

data-batch Xu, has been shown to effectively reduce the number of labeled samples

required for learning a classifier with a given level of generalization accuracy, compared

to standard supervised learning (where the labeled training set is simply given up front,

and may contain redundant, uninformative samples) [55]. The best-performing system
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(of which we are aware) for AL with rare (and/or unknown) categories is [49], which

consisted of: i) semi-supervised posterior log-likelihood maximization with maximum

entropy unlabeled sample regularization as the objective function; ii) p-values (reflecting

degree of atypicality relative to the null model) as derived features; and iii) a variant

of a logistic regression classifier structure wherein the weights applied to negative log

p-values were constrained to be non-negative, consistent with the inductive bias that

the “suspicious” category is a subset of what is anomalous. It has successfully been

applied in the domain of vehicle behavioral tracking, identifying suspicious or unknown

track behaviors [51]. With sparing use of active labeling, this model generally converges

within a few active labelings, and it has been demonstrated to perform better than other

rare-category based anomaly detectors such as [27] and [26]. Again, we will use the

same learning framework as proposed in [49], but propose a novel feature representation

for botnet detection and separate rare from “unknown-unknown” anomalies to obtain a

convex optimization objective.

3.2.2 Methodology

Obviously, in practice, NIDS may attempt to employ raw or derived features from packet

payloads or timing (or other packet-flow attributes besides the packet size and direction

sequence of a flow). Our primary aim herein is to demonstrate the efficacy of our proposed

active learning approach so that a NIDS can adapt to new behavioral anomalies indicative

of new or evolving threats. To this end, we make the best use of publicly available

background and attack datasets.

To the best of our knowledge, botnet C&C activity is not present in the public LBNL

background traces [31], particularly the public traces of the types of botnets used in the

experiments reported herein. The LBNL traces were anonymized: payload-clipped and

randomized IP addresses.

Timing-based features may lead to detection based on differences in the domains

wherein the background (LBNL) and botnet traffic were recorded, i.e., attack-salting ar-

tifacts [5]. As we are primarily interested in detecting botnet C&C activity masquerading

as web (port-80) traffic, we did not employ port-number features of the packet flows [65].

So, to demonstrate the efficacy of our AL framework, we settled on the use of a flow

feature-set consisting just of its packet size (taken as continuous numerical) and direction

(categorical) sequence (i.e., mixed feature types). This said, for purposes of comparison,

we did evaluations using different feature sets, including with timing information, cf.

Section 3.2.3.2.
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Table 3.1: Illustrative examples of bidirectional flow’s feature representation for the first
N transmitted packets. N = 6, D = 12. Ci denotes the ith packet from client to server,
whereas Si denotes the ith packet from server to client. The three-way hand shake
packets are not used.

Packet Sequence
Feature Representation x ∈ RD

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

C1S1C2S2C3S3 C1 S1 C2 S2 C3 S3 0 0 0 0 0 0

C1C2S1S2C3C4 C1 0 C2 S1 0 S2 C3 0 C4 0 0 0

S1S2S3S4S5S6 0 S1 0 S2 0 S3 0 S4 0 S5 0 S6

3.2.2.1 Feature-Space Representation

In the command-and-control (C&C) phase10, most botnet traffic involves master(s) pe-

riodically issuing C&C messages, whereas the slaves execute the given commands. Nor-

mal/background web traffic, on the other hand, tends to principally involve server-to-

client communication. In the attack phase, botnet malware carries out malicious activity,

periodically sending out beacon signals to the bot master via the previously established

C&C channel, most of the time without packet transmissions from the bot master to bot

slaves.

Hence, we specifically seek to preserve the bidirectional packet size sequence informa-

tion as feature representation for different traffic flows. This feature representation was

previously considered in [28, 48]. The authors used the first N (we set N = 10 in our

experiments) packets after the three-way hand shake of each TCP flow. Then a feature

vector of dimension D = 2N was defined, specified by the sizes and directionalities of

these N packets. Traffic is assumed to be alternating between client-to-server (CS) and

server-to-client (SC). A zero packet size is thus inserted between two consecutive packets

in the same direction to indicate an absence of a packet in the other direction. For

example, if the bidirectional traffic is strictly SC, a zero will be inserted after each SC

packet size. We demonstrate our flow feature representation using several examples in

Table 3.1, with N = 6 for illustrative purposes. This 2N -dimensional packet-size feature

representation preserves bidirectional information of a given TCP flow, which is essential

for discriminating between botnet and normal web traffic, as will be seen by our results.

We use this feature representation as our “raw” features.

10i.e., communication between Bot masters and slaves for attack coordination.
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3.2.2.2 Anomaly Based Derived Features

As we discussed previously, both the presence of packets in given directions and the sizes

of packets should be informative in identifying botnet traffic. We accordingly define a set

of anomalous scores to quantify such. Considering the previously defined D-dimensional

feature vector x = (x1, x2, . . . , xD)T , we use I(x) = (I(x1), I(x2), . . . , I(xD))T , with

I(x) = 1 if x > 0 and 0 otherwise, a binary vector, to specify the packet direction

sequence. To reduce the number of parameters to model the joint distribution for I(x),

we propose to model I(x) based on the Chow-Liu Bayesian Network variant [9] (An

alternative is to treat all pairwise probabilities as the basis for derived features). Here,

the joint distribution for a vector of discrete-valued random variables is the model which

maximizes the likelihood over the training data under the constraint that the distribution

factors as a product of first and second-order probabilities. Hence, based on this special

Bayesian Network structure, P [I(x)] factorizes as:

P [I(x)] = P [I(xj1)]P [I(xj2)|I(xj1)] . . . P [I(xjD)|I(xjD−1)],

where j1 denotes the root node index of the learned Bayesian Network. To simplify

notation in the sequel, we will use Ij to denote I(xj).

The maximum likelihood estimates of the probabilities are obtained from frequency

counts. For all estimates, we added 1 in the numerator to avoid assigning 0 probabilities.

That is, P [Ij = 1] =
N+

j +1

Tl+2 , with N+
j representing the number of web-flows belonging

to Xl with positive packet size in the jth position. Similarly, P [Ij |Im] =
P [Ij ,Im]
P [Im] , with

P [Ij = 1, Im = 1] =
N++

jm +1

Tl+4 and N++
jm representing the number of training web flows

that have positive packet size in the {j,m} position pair. Similarly, P [Ij = 0, Im = 1] =
N0+

jm+1

Tl+4 , P [Ij = 1, Im = 0] =
N+0

jm+1

Tl+4 , and P [Ij = 0, Im = 0] =
N00

jm+1

Tl+4 . Note that P [I(x)]

is a product of D unweighted probabilities, quantifying the unweighted total anomaly

score over the D dimensions, for the packet direction sequence. We will exploit the low-

order constituent probabilities of P [I(x)] as the basis for derived features input to the

classifier.

Next, for all single features and all pairs of features, considering only the positive

entries (non-zero packet sizes), we propose to model these continuous distributions us-

ing Gaussian Mixture Models (GMMs) 11, and use both first and second order mixture

11We separately model each single feature and each pair of features by GMMs (while ignoring higher-
order feature sub-collections) to avoid the curse of dimensionality in learning the parameters, while at
least capturing dependencies between all pairs of features. This also avoids intractable marginalizations
of the joint pdf on the full feature space, e.g., when considering evaluation of p-values involving the size
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p-values [49] to quantify the flow anomalies by these independently learned GMMs. Fol-

lowing the intuition and development behind [49], as also detailed in Chapter 2, consider

any pair of features Y = (Xi, Xj), 1 ≤ i 6= j ≤ D, modeled by a bivariate GMM under

the null. Let {αk, k = 1, . . . ,Kij}, 0 ≤ αk ≤ 1,
Kij∑
k=1

αk = 1, be the prior probabilities

for the (Kij) mixture components, with associated component densities {fY |k(y|θk), k =

1, . . . ,Kij}, and θk = (µ
k
,Σk) the (mean vector, covariance matrix) parameter set for the

kth density. The mixture density is thus fY (y) =
Kij∑
k=1

αkfY |k(y|θk). Given such a mixture

null, the p-value – the probability that a two-dimensional feature vector will be more ex-

treme than the given observed vector y = (xi, xj) – is p+
ij(y) =

Kij∑
k=1

P [M = k|y]e−r
2
k(y)/2.

Here, the mixture posterior is P [M = k|y] =
αkfY |k(y|θk)

Kij∑
m=1

αmfY |m(y|θm)

and r2
k(y) is the squared

Mahalanobis distance between y and µ
k

for the kth GM component.

Note that p+
ij(y) is the expected p-value, with the expectation taken with respect to

the mixture posterior pmf. In a similar fashion, one can also calculate a set of mixture-

based p-values for single (univariate) features, denoted {p+
i (xi), i = 1 . . . , D}.In this

case, complementary error functions are used to measure the p-value conditioned on

each mixture component, with the mixture-based p-value again the expected p-value.

Based on the Bayesian Network and the collection of GMM null distributions, we can

compute the vector of derived p-value based features for each flow from the raw features

(x, I(x)).

Let’s define pi(xi) and pij(y) the following way:

pi(xi) =

p
+
i (xi) Ii = 1

1 else
, pij(y) =

p
+
ij(y) Ii = 1, Ij = 1

1 else
.

We then have the derived feature vector z,

z = (P [Ij1 ], P [Ijk |Ijk−1
], pi(xi), pij(y) :

∀i, j, k, 1 < k ≤ D, 1 ≤ i < j ≤ D) ∈ (0, 1]2D+(D2).

Note that this is a fixed-dimensional feature representation for every flow. Note also

that we will take the log of the entries in z, which means that p-values set to 1 have

log p-values that are zero – taking the log thus effectively eliminates the effect of such

of packet j jointly with the binary presence/absence value for packet m.
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features.

Finally, the derived feature set can be augmented to include the conditional p-value

for packet size xi given the direction bit for packet j, Ij , ∀i, j. This approach will

introduce an additional 2D2 p-value features. During our experiments, however, we

found these augmented features have little value in classifying the botnet applications

we considered in this work, i.e., nearly all the weights associated with the conditional

p-value features were found to be 0. This prompts us not to use the conditional p-value

based features for botnet detection.

3.2.2.3 Classification Model and Learning Objective

The classifier model is identical to that of developed in Chapter 2, which uses logs of the

entries of the derived p-value based feature vector z and with non-negative constraints

on the weights on these features. For the cth class, let

f(z;β(c)) = exp(β
(c)
0 −

2D+(D2)∑
i=1

β
(c)
i log z(i)),

where the model parameters for the cth class are {β(c)
i , i = 0, . . . , 2D +

(
D
2

)
}. Using

ω2, ω1, and ω0 to respectively denote the known botnet, the known normal, and the

unknown class (which represents the union of all “unknown unknown” classes, i.e., those

that have not yet been discovered or labeled), we then have:

P (Ω = ωc|z) =
f(z;β(c))∑
c′ f(z;β(c′))

(3.5)

with β
(c)
i ≥ 0, ∀i > 0, c = 0, 1, 2.

The inclusion of ω0 allows for the possibility that there are unknown classes in a test

data batch, beyond a botnet class (ω2) that has already been discovered (for which there

are labeled flow examples). Note also that (3.5) is for the case of one normal class and

one known botnet class. This can of course be generalized if there are multiple known

botnet classes. Moreover, initially in our scenario, there are no known botnet classes,

i.e., ω2 is only instantiated once a sample from a botnet class is selected and actively

labeled.

The non-negatively constrained logistic regression model has been shown to produce

a highly sparse solution, in which only “informative features” have non-zero weights (See

Chapter 2).
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Let us assume at the tth oracle labeling we have a set of labeled samples Z(t)
l ∈

RT
(t)
l ×(2D+(D2)), with associated labels C

(t)
l and unlabeled samples Z(t)

u ∈ RT
(t)
u ×(2D+(D2)),

with no ground truth. Using Q to denote the uniform distribution on {ω0, ω1, ω2} if a

sample from class ω2 has already been labeled, and to denote the uniform distribution

{ω0, ω1} otherwise, i.e.,Q = {qω0 , qω1 , qω2} = {1
3 ,

1
3 ,

1
3} if ω2 ∈ C(t)

l

Q = {qω0 , qω1} = {1
2 ,

1
2} otherwise.

(3.6)

Our AL-based, semi-supervised, regularized negative posterior log-likelihood learning

objective, where we use novel maximum entropy regularization on the unlabeled sample

subset, is:

J (t)
maxEnt = −

∑
(z,c)∈(Z(t)

l ,C
(t)
l )

α(t)
c logP [Ω = ωc|z]

+γ
∑
z∈Z(t)

u

d(Q||P [Ω|z]). (3.7)

Here, in minimizing (3.7), we aim to maximize the class posterior log-likelihood on the

labeled samples, but also to maximize the class uncertainty of the posterior on the

unlabeled samples, where d(Q||P ) =
∑

c qclog(qc/pc), the Kullback-Leibler distance [30]

(cross entropy) between probability mass functionsQ = {qc} and P = {pc}. Compared to

the previously proposed minimum entropy regularization approach [20], which minimizes

decision uncertainty on unlabeled samples, (3.7) avoids over-training, especially when the

rare category (botnet) is underrepresented, i.e., during the early stages of AL.

(3.7) is a convex objective function 12, with a unique global minimum, unlike [20]. In

[49], maximum entropy regularization was demonstrated to greatly outperform minimum

entropy regularization, especially during the early phase of active learning, i.e., either

before an unknown class has been discovered, or when only a small subset of its samples

have been labeled. During this phase, minimum entropy regularization may in fact fail

to discover the unknown class, even after many oracle labelings.

We optimize (3.7) via projected gradient descent, which is guaranteed to reach the

global minimum due to the objective’s convexity. α
(t)
c is chosen to balance the effective

sample size between the two classes, whereas γ is chosen via cross validation (CV). When

12Unlike the developed model in Chapter 2, we separate rare from unknown-unknown in this work
primarily to preserve convexity.
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there is not enough botnet traffic for CV, γ is set to
T

(t)
l

T
(t)
u

.

3.2.2.4 Active Learning Strategy

We use pool-based AL, wherein the oracle ground-truth labels the informative samples

sequentially forwarded by the learner. There are several AL sample selection strategies

we investigate in this work, including one of the best AL strategies proposed in [49]:

• uncertainty sampling : pick the unlabeled sample with the highest entropy, as mea-

sured by the current classifier’s posterior (3.5).

• most likely unknown (MLU) sampling : pick the unlabeled sample that has the

highest probability of belonging to the unknown class, as evaluated by P (Ω = ω0|z).

• random sampling : pick the unlabeled sample randomly.

Other sample selection criteria are also possible, e.g., we can sample traffic with the

highest posterior for belonging to a known suspicious category. Moreover, we could use a

(randomized) mixed strategy to simultaneously address multiple learning and inference

objectives.

3.2.3 Experimental Setup and Results

The overall AL system is illustrated in Figure 3.11. Again, we obtained normal web traf-

Figure 3.11: The overall AL system design.

fic from LBNL traces [31]. These traces, constituting more than 100 hours of recorded

activity, were captured on a mid-size enterprise network, covering 22 subnets, from Oc-

tober 2004 through January 2005. This dataset contains web traffic on TCP port 80
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with recorded time-of-day information. Specifically, the experiments in this paper are

based on three PCAP files named “200412215-0510.port008”, “20041215-1343.port008”,

and “20041215-1443.port010”. There are respectively 2925, 5413, and 1634 web flows

with at least 10 packets after the 3-way handshake. Flows with less than ten packets

are not used in our experiments. We also investigate three distinct botnet applications,

namely Zeus, Waledac and Storm bots. The Zeus bot is well-known for its detection

evasion techniques such as randomization of proxy servers and/or port numbers, which

make it very difficult to detect; it and its variants have become the most popular botnet

application on the Internet today, especially for cybercrime activities. Waledac is cur-

rently one of the most prevalent P2P botnets and is widely considered the successor to

the Storm botnet, with a more decentralized communication protocol [52]. We obtained

Zeus PCAP files from [63] and [52], whereas both Waledac and Storm botnets are from

the ISOT botnet data set [52]. Both C&C and non C&C traffic are combined and used

in our experimentation.

In Table 3.2, the sample sizes of these web and botnet traffic traces shown. All traffic

uses TCP as the transport protocol, and we use the first ten packets from each flow after

the three-way handshake.

Table 3.2: Normal web and botnet flow sizes.

Application Number of Flows Used

LBNL Web 9972

VRT Zeus 64

ISOT Zeus 23

ISOT Storm 3974

ISOT Waledac 4926

We could have involved a plurality of different modeled zero-day botnets in the cur-

rent unlabelled flow-batch Xu and/or combine LBNL background traces together with a

(different) deemed known botnet trace to inform the null. To simplify matters, the null

was learned only using LBNL traces and only a single botnet appeared in Xu.

3.2.3.1 Performance Metrics

For botnet anomaly detection, we are interested in the following generalization perfor-

mance criteria. One is true positive rate or sensitivity: the ratio of botnet flows that

are classified as truly botnet; the other is false positive rate or specificity: the ratio of

web flows that are falsely classified as botnet flows. To give the comprehensive trade-off

between the true positive and false positive rates, we use receiver operating characteristic
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area under the curve (ROC AUC) as the generalization measure on the test batch, in all

of our experiments. The ROC AUC is calculated as a function of the number of active

labelings.

Note that other metrics could be used depending on the sensitivity to false positives

(public ISP) or false negatives (military, intelligence, financial) of the NIDS deployment

setting. For example, in a deployment setting with greater sensitivity to false positives,

instead of the ROC AUC, the number of true positives before the first false positive is

detected could be used to evaluate an anomaly detection or active learning framework,

a quantity discernible from the (entire) ROC.

3.2.3.2 Experimental Results

For each experiment involving a background/normal LBNL trace and a botnet C&C

trace:

1. One third of the normal batch is first randomly subsampled without replacement

from the whole normal batch and used to train the Bayesian Network and all the

marginal and pairwise packet size GMMs. The derived feature vector z is then

obtained for each flow sample.

2. Half of the remaining two thirds of the normal traffic are treated as unlabeled

and combined with half of the unlabeled botnet traffic for active learning (semi-

superived AL training).

3. Finally, the remaining normal and attack samples are used for testing (measuring

generalization performance of) our AL framework. Generalization performance is

averaged over 5 random training-test splits.

We are particularly interested in the effectiveness of the proposed p-value based fea-

ture vector, compared with alternative feature representations. Besides the performance

using associated raw features (x, I(x)), we also compare with popular derived flow-

based feature-sets in the current literature for network traffic classification. Through a

correlation-based filtering process, [33] identified 8 among the 248 flow based traditional

features as highly discriminative for different network flows. [5] additionally used IP-

ratio and goodput in their experiment - we denote this feature set as CSET’11. Since

the botnet applications are from different domains than the web traffic, we only use the

time-independent features from [5], i.e., RTT-samples and goodput are not used - these

“standard” flow based features are shown in Table 3.3. Also compared is the feature
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representation proposed in [49], i.e., without the use of a Bayesian Network to capture

presence/absence features for packets, but using GMM based p-values. We denote this

feature set as TNNLS’16. We are also interested in the effectiveness of different AL

strategies applied to the domain of botnet detection.

Table 3.3: Standard flow based feature representation [33] [5].

Abbreviation Description

cnt-data-pkt The count of all the packets
with at least a byte of TCP
data payload (client to server)

min-data-size The minimum payload size
observed (client to server)

avg-data-size Data bytes divided by number
of packets (server to client)

init-win-bytes The total number of bytes
sent in initial window(server
to client & client to server)

IP-bytes-med Median of total bytes in IP
packet (client to server)

frame-bytes-var Variance of bytes in (Ether-
net) packet (server to client)

IP-ratio Ratio between the maximum
packet size and minimum
packet size (server to client &
client to server)

In Figure 3.12, we compare different feature representations, using MLU as the AL

sample selection strategy. As expected, the proposed feature set greatly outperforms

the CSET’11 feature set for Zeus and Storm botnet classification, as well as greatly

outperforming the feature set proposed in [49] for general-purpose anomaly detection,

especially for the two Zeus bots. This is because in [5], the absence of a data packet in a

given direction is ignored; however, this information is seen to be highly discriminative

between web and Zeus (Figure 3.12 (a)), and between web and Storm botnets (Figure

3.12 (c)). We also show supervised learning results for various feature representations

in Table 4 with several standard supervised learning models. We use the following

shorthand notations: (SVM) support vector machine. (C4.5) C4.5 decision tree. (T)

TNNLS’16. (R) raw features x. (C) CSET’11 features. (P) proposed features z. (ALL)

combined features Table 3 and z. Again, we see the superior performance of the proposed

feature representation in discriminating Zeus bots from web. Note that performance of

the combined feature representation shown in Table 3.4 (ALL) has no advantage over the
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Table 3.4: ROC AUC results for various supervised learning models, comparing various
feature representations.

Data Set
SVM C4.5

T R C P ALL T R C P ALL

VRT Zeus 0.84 0.84 0.83 0.91 0.91 0.84 0.83 0.83 0.91 0.91

ISOT Zeus 0.84 0.81 0.81 0.84 0.85 0.84 0.80 0.82 0.84 0.84

ISOT Storm 0.99 1.0 0.91 1.0 1.0 1.0 1.0 0.91 1.00 1.0

ISOT Waledac 1.0 0.99 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0

standalone proposed features, in discriminating all the investigated botnet applications,

suggesting that the information contained in standard features is well-captured by our

proposed anomaly-based features. Note also that the AL-MLU performance for the

proposed feature set in Figure 3.12 is very close to that of supervised learning (given

botnet samples for training).

The proposed maxEnt model (3.7) produces a highly sparse solution, e.g., for VRT

Zeus, 95.2% of the {β(2)
i , i = 1, . . . , 2D+

(
D
2

)
} are zero by the fiftieth AL iteration, essen-

tially eliminating the effects of these (spurious) features while still achieving comparable

ROC AUC performance (about 88%) to that of the supervised learning models (about

90%) as shown in Table 3.

Next in Figure 3.13 , we compare different AL strategies and the standard minimum

entropy based model (minEnt [20]) using the proposed feature vector. The premise be-

hind the semi-supervised minEnt approach is to make classification decisions as confident

as possible, consistent with margin maximization on all the samples. However, here we

consider whether such a strategy is a sound one when there are few or no labeled samples

for some classes initially. Seen in the figure, the MLU strategy outperforms the other

two strategies, as was also claimed in [49]. Note that minEnt, with initially no labeled

botnet traffic, will classify all unlabeled samples as normal web traffic due to its objective

of minimizing unlabeled sample’s entropy. Because this degenerate situation in minEnt

will not change before observing the first botnet sample, minEnt will fail in the initially

unknown botnet setting, always unbiasedly classifying all unlabeled samples as normal,

i.e., β
(2)
0 < 0, β

(2)
i = 0,∀i. Hence, to compare its model performance to that of maxEnt

[49] during AL, we used the AL labeling stream from the maxEnt classifier with MLU,

and fed these informative samples to minEnt. As seen in Figure 3.13, even when be-

ing fed informative labeled samples, minEnt stays flat at the lowest possible ROC AUC

(0.5) during the initial learning phase (before the first botnet is labeled), and it requires

more labeled samples to achieve the same level of generalization performance as that
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Figure 3.12: Active learning experiment: comparison of different feature representations.

of the maxEnt model. This shows that the maxEnt framework is much more suitable

for unknown botnet detection, compared to minEnt. Moreover, the minEnt objective

is non-convex, thus this approach is susceptible to finding poor local minima. As more

and more samples are labeled, minEnt starts to learn and has very similar performance

to that of maxEnt, as seen on Storm and Waledac.

Also compared is an unsupervised full GMM anomaly detector, trained on the labeled

normal traffic, and an approach that unbiasedly sums up the log p-value based features

(unweighted score). Both of these unsupervised learning approaches have lower ROC

AUC compared to the AL based model except on ISOT Waledac, suggesting the value of

maxEnt learning and the use of sparing labeling in improving generalization performance.

3.2.4 Discussion and Future Work

The proposed AL IDS can be mounted on enterprise network security platforms, includ-

ing the Cisco Adaptive Security Appliance (ASA), Symantec Gateway Security (SGS),

and IBM SiteProtector. Following the block diagram presented in Figure 3.11, the de-
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Figure 3.13: Active learning experiment: comparison of different AL strategies.

veloped software can instantiate various active taps (probes) in different networks and

subnetworks, analyzing the flow-level traffic sequence, and digesting/classifying locally

aggregated real-time traffic periodically (e.g., hourly). The null model can be inde-

pendently maintained and actively updated on separate taps by administrators, thus

ensuring different security QoS requirements on various subnets.

By using the proposed feature representation, several common botnet evasion schemes

become ineffective. For example, the random back-off presented in [60] can be completely

overcome simply by ignoring (as above) timing-based features such as goodput or RTT,

see [5]. Also, encryption of data packets may not affect performance using the proposed

feature representation as it only requires packet-size information of the bidirectional

TCP flows. Obviously, randomization of port number and domain names (fast flux)

would also be ineffective when these features are not used, as above. However, flow

“perturbation” or “noise injection” [60], can significantly impact the performance using

our derived features. For example, if the intruder has detailed knowledge of the normal

traffic patterns at the detection point, then they can adaptively groom their bidirectional
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packet-size sequence accordingly to defeat a detection scheme predominantly based on

such features. Alternatively, if the attacker knows the underlying AL approach and its

state, then they can adaptively inject traffic sequences which adversely affect the labeling

process and thus degrade classification performance, either through the introduction

of highly uncertain traffic or extreme outliers or both. But such evasion techniques

have significant overhead and require packet-traffic telemetry that may not be available

to the bot slaves or master end-hosts. Hence, evasion is possible but may have very

high implementation complexity and require adaptation overhead leading to less covert

malware [60]. Note generally that active learning is a suitable defensive framework for

such cat-and-mouse scenarios of jointly evolving attack and defense.

For future work, we will include other botnet applications in our performance evalua-

tion. Given botnet activity observed in situ with background traffic, we will also consider

the use of timing-based features (possibly including the inferred client OS type) to detect

botnets. We will also consider detection of UDP-based anomalous traffic, e.g., botnet

communication within streaming forms of media such as audio or video. A challenge

here is that an entire UDP session may not be captured by a single network tap and so

may need to be constructed by correlating UDP session-fragments from multiple taps.



Chapter 4
Detecting Clusters of Anomalies on

Low-Dimensional Feature Subsets

with Application to Network Traffic

Flow Data

4.1 Introduction

Group anomaly detection has recently attracted much attention, with applications in

astronomy, social media, disease/custom control, and network intrusion detection. In this

work, we focus on group anomaly detection applied to network intrusion detection, where

the anomalous groups are either distributed botnet (Zeus) or peer-to-peer (P2P) nodes

generating traffic that deviates from the normal (Web traffic) behavior. Many existing

intrusion detection systems (IDSs) only make sample-wise anomaly detections, e.g., in

[58], the samples (individual flows, in the network IDS case) which deviate most from a

normal (reference) model are flagged as anomalies/outliers. However, such an approach

does not identify anomalous groups (e.g., a collection of botnet flows), whose samples all

exhibit similar behavior. Identifying such groups could be essential for mounting some

form of system response or defense. Moreover, individual samples may only be weakly

atypical. Thus, a sample-wise IDS may either fail to detect most of the anomalous

samples, or may incur high false positives when a low detection threshold is used. By

contrast, (weakly) anomalous samples whose anomalies are all “similar to each other”

may be strongly atypical when considered jointly. It should be noted that there is an
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enormous number of candidate anomalous clusters, considering the conjoining of all

possible sample subsets and all possible feature subsets. Thus, a GAD scheme will

require some type of heuristic search over this huge space, aiming to detect the most

statistically significant cluster candidates. In the sequel, we propose such a GAD scheme.

Rather than assuming individual features or outlier events are statistically independent

under the null hypothesis as in [38, 28], in our approach we capture and exploit statistical

dependencies amongst the features defining a candidate cluster. Compared to previous

works, as shown in our experiments, the proposed scheme is more effective in detecting

group anomalies.

The chapter is organized as follows. Section 4.2 defines the problem and elaborates

on related works. Section 4.3 describes the proposed model. Section 4.4 evaluates the

system performance, and compares with some recent works, followed by conclusions in

Section 4.5.

4.2 Problem Definition and Related Work

We assume there is a batch of normal labeled web traffic available at the outset as training

set, i.e., Xl = {x̃i, i = 1, ..., Tl, x̃i ∈ RD}, where x̃i is a D-dimensional feature vector

representing the i-th training traffic flow, and where we assume the number of training

flows Tl is large enough to learn an accurate reference model (null hypothesis). These

traffic flows can either be captured in a sandbox environment, or sampled from a domain

of interest (data warehouse, enterprise network) in real time under normal operating

conditions. Given a model of normal network traffic learned based on Xl, our goal is to

interrogate a captured batch of unlabeled traffic flows Xu = {xi, i = 1, ..., Tu, xi ∈ RD},
seeking to detect latent groups of botnet or P2P traffic, with the flows in each such

group exhibiting similar behavior. This has been previously considered in [28], where the

authors used the samples in Xl to estimate bivariate Gaussian Mixture Models (GMMs),

on all feature pairs, representing the null hypothesis. These bivariate GMMs were used to

evaluate mixture-based p-values (the probability that an event is more extreme than the

given observation) for all pairs of features. Assuming the features (tests) are statistically

independent, a joint significance score function was defined for a given candidate cluster,

specified by its sample subset and feature subset, with a Bonferroni approximation used

to account for multiple testing. However, the independent tests assumption used in [28]

becomes grossly invalid as more and more features are included in a cluster, which limits

the proposed model’s detection accuracy for increasing order K. Here, “order” is used
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to denote the maximum feature subset dimension considered. A related framework was

also proposed in [38], albeit assuming categorical attributes. The authors built a single,

global null hypothesis Bayesian network based on Xl. They then assigned categorical-

based p-values to samples in Xu, with a cross entropy based scoring criterion used to

efficiently search for the best feature and sample subset candidates. A limitation of this

approach is that the statistical tests are again assumed to be independent.

Here, we describe and experiment with a GAD method that extends [38, 28]. The

proposed method captures dependencies between the features in a candidate cluster by a

dependence tree structure, and uses this model to help evaluate joint p-values for cluster

candidates. As in [28], the Bonferroni corrected score is used as the objective function

for evaluating the best cluster candidates (defined by their sample and feature subsets).

The candidate with the best such score is detected as a cluster of anomalies. Whereas

in [38] a single global (null model) Bayesian network is used to assess candidate clusters,

in the current work a local, customized cluster-specific dependence tree model is used to

assess each candidate cluster.

4.3 Proposed Model

4.3.1 Mixture-based P-values for Singletons and Feature Pairs

Consider a (sample, feature) index pair (i, j) and let I
(j)
i be a binary indicator variable

for the event that the jth feature value of the ith sample, x
(j)
i , is an outlier with respect

to the null distribution for feature X(j). Let O(j)(x
(j)
i ) be a subset of the real line such

that, ∀y(j) ∈ O(j)(x
(j)
i ), y(j) is “more extreme” than the given observation x

(j)
i . One

good definition for this set, consistent with evaluating a 2-sided p-value for a unimodal,

symmetric null for X(j), is:

O(j)(x
(j)
i ;µ(j)) = {y(j) : |y(j) − µ(j)| ≥ |x(j)

i − µ
(j)|},

where µ(j) is a representative (mean) value for feature X(j). Given the component means

µ
(j)
l , l = 1, ..., Lj , of an Lj-component Gaussian mixture null, let M (j)(x) be a function

that maps x to the mixture component index set {1, 2, ..., Lj}, i.e., it indicates which

mixture component generated x. Also, let Yj be a random variable distributed according

to the mixture density fXj (x). Then, for a given observation x
(j)
i , we define the binary

random variable I
(j)
i , where I

(j)
i = 1 if Yj is more extreme under the null than x

(j)
i .



85

Then, we can write the singleton mixture p-value as:

P [I
(j)
i = 1]

= P [Yj ∈ ∪Ll=1((O(j)(x
(j)
i ;µ

(j)
l )) ∩ (M (j)(x

(j)
i ) = l))]

=
L∑
l=1

P [Yj ∈ O(j)(x
(j)
i ;µ

(j)
l )]P [M (j)(x

(j)
i ) = l]. (4.1)

Here, an extreme outlier event is conditioned on x
(j)
i having been generated by component

density l. The probability P [Yj ∈ O(j)(x
(j)
i ;µ

(j)
l )] is the two-sided Gaussian p-value,

integrating over the region |y − µ
(j)
l | ≥ |x

(j)
i − µ

(j)
l |, while P [M (j)(x

(j)
i ) = l] is the a

posteriori probability that x
(j)
i was generated by component l.

Similarly, for a pair of feature observations (x
(j)
i , x

(k)
i ), we have the second order

mixture p-value:

P [I
(j)
i = 1, I

(k)
i = 1]

=

L∑
l=1

P [Yj ∈ O(j)(x
(j)
i ;µ

(j)
l ), Yk ∈ O(k)(x

(k)
i ;µ

(k)
l )]

· P [M (j,k)(x
(j)
i , x

(k)
i ) = l]. (4.2)

Here, P [Yj ∈ O(j)(x
(j)
i ;µ

(j)
l ), Yk ∈ O(k)(x

(k)
i ;µ

(k)
l )] integrates the l-th component bivari-

ate Gaussian density over the region

{(yj , yk) : |yj − µ(j)
l | ≥ |x

(j)
i − µ

(j)
l |, |yk − µ

(k)
l | ≥ |x

(k)
i − µ(k)

l |}.

This region consists of the union of four unbounded rectangular regions in the plane.

Also, P [M (j,k)(x
(j)
i , x

(k)
i ) = l] is the a posteriori probability that (x

(j)
i , x

(k)
i ) was generated

by mixture component l.

In this work, a sample’s anomalousness on a given feature subset is estimated by a

joint p-value, with statistical dependencies between features accounted for by a depen-

dence tree (DT) structure presented in [9]. Since the dependence tree is based on first

and second order probabilities, the joint p-value will be based on the singleton and sec-

ond order mixture p-values, as given above. A smaller joint p-value indicates a sample

is more anomalous under the given feature subset.
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4.3.2 Scoring Clusters

Let {Ic, Jc} denote cluster candidate c, Ic its sample subset and Jc its feature subset.

Let Tc = |Ic|, Nc = |Jc|. Note that p-values are uniformly distributed on [0, 1] under

the null. Thus, given a cluster with feature subset Jc, from a test batch of size Tu, the

probability that at least one cluster with Tc samples has a smaller joint p-value than∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1] is:

1− (1−
∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1])C(Tu,Tc) (4.3)

Here, C(Tu, Tc) =
(
Tu
Tc

)
, i.e., it is the number of combinations and accounts for all possible

sample subset configurations in a cluster with Tc samples, from a test batch of size Tu.

In statistical parlance, this exponent “multiple test corrects” for all possible sample

subset configurations. In principle, (4.3) provides a sound basis at least for directly

comparing all cluster candidates with the same feature subset Jc. However, it does not

allow comparing pairs of cluster candidates with any configurations of (Tc, Nc), because

all possible feature subset configurations at a given order, Nc, have not been accounted

for – (4.3) only accounts for all cluster candidates with the same feature subset, Jc.

Also, (4.3) requires evaluation of the joint p-value P [ ∩
j∈Jc

(I
(j)
i ) = 1]),∀i ∈ Ic, which in

general depends on the joint null density function for (Xj1 , Xj2 , ..., XjNc
), jm ∈ Jc,m =

1, ..., Nc. When D is large, it is not practically feasible to learn and store these
(
D
Nc

)
joint null density functions, i.e., for all possible combinations of features up to order

Nc. Thus, it appears some tractable representation of P [ ∩
j∈Jc

(I
(j)
i ) = 1]) is needed.

An obvious temptation is to assume that I
(j)
i and I

(j′)
i are statistically independent

∀j, j′ ∈ Jc, j
′ 6= j. But this is a very poor assumption, consistent with assuming the

features are independent.

To address the above problems, we seek to modify (4.3) in two respects. First, we

propose to multiple test correct both for the different sample and the different feature

subsets, given a cluster candidate with (Tc, Nc). In this approach, instead of the exponent

being the number of combinations, it becomes the product of combinations on samples

and combinations on features, i.e., the probability that at least one cluster with (Tc, Nc)

has a smaller joint probability than
∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1] is:

S(Ic, Jc) = 1− (1−
∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1])(

D
Nc

)(TuTc).
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The Bonferroni (upper bound) approximation of S(Ic, Jc) is derived as follows. Let

pl be the joint p-value for the l-th cluster candidate (out of
(
D
Nc

)(
Tu
Tc

)
candidates with

configuration (Tc, Nc)). Then, we have

S(Ic, Jc) = P

[⋃
l

(pl ≤
∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1])

]
≤

∑
l

P

[
pl ≤

∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1]

]
=(

Tu
Tc

)(
D

Nc

)∏
i∈Ic

P [ ∩
j∈Jc

(I
(j)
i ) = 1]. (4.4)

Here, we have used the union bound and the fact that joint p-values are uniformly

distributed under the null distribution. We will take the right hand side upper bound

expression as our joint score function for evaluating cluster candidates.

For this joint significance measure, we can efficiently determine the optimal sample

subset, given a fixed feature subset, by greedy sequential sample inclusion, in sorted

joint p-value order. This is due to the unimodality of this Bonferroni approximated

joint significance measure, as a function of the number of samples included in a cluster’s

sample subset (see next subsection).

Second, a rich, tractable, joint probability mass function model that does capture

statistical dependencies is a restricted form of Bayesian network, based exclusively on

first and second order distributions, i.e., the dependence tree (DT), which factorizes the

joint distribution P [ ∩
j∈Jc

(I
(j)
i ) = 1]) as a product of first and second order probabilities

[9]. In [9], it was shown that, even though there is an enormous number of unique

dependence tree structures, one can efficiently find the globally optimal dependence tree,

over all such structures, maximizing the dataset’s log-likelihood, by realizing that this

can be recast as a maximum weight spanning tree problem, with the pairwise weights

defined as the mutual information between the pairs of random variables. The maximum

weight spanning tree can be efficiently solved via Kruskal’s algorithm, with complexity

O(N2
c log(Nc)). Hence, given any candidate feature subset Jc, Kruskal’s algorithm can

be applied to determine the DT that maximizes the likelihood measured on Xl, i.e., the

null hypothesis is determined, consistent with the given candidate feature subset Jc.

Based on a given DT structure, P [ ∩
j∈Jc

(I
(j)
i ) = 1]) factorizes as a product of first and
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second order distributions, i.e., ∀i ∈ Ic:

P [ ∩
j∈Jc

(I
(j)
i )] = P [I

(j1)
i ]P [I

(j2)
i |I(j1)

i ]...P [I
(jNc )
i |I(jNc−1)

i ],

where we use j1 to denote the root node of the DT representing Jc.

It is apparent from the above that, for any feature subset, one can represent the joint

p-value of a given sample by its first and second order mixture p-values. That is, for

any feature pair (j, k), P [I
(j)
i |I

(k)
i ] =

P [I
(j)
i ,I

(k)
i ]

P [I
(k)
i ]

. The numerator and denominator are,

respectively, the second and first order mixture-based p-values that we defined earlier.

Note that the mixture p-value definition is different from Chapter 2. Also note that, in

order to evaluate the first order mixture p-value P [I
(k)
i ], we marginalize feature j from

the bivariate GMM for the feature pair (j, k). This gives us the GMM for feature k.

4.3.3 Identifying the Optimal Sample Subset Ic, Given Fixed Jc

Given a fixed Jc and associated DT, we would like to choose the sample subset Ic

to minimize the joint score function (4.4). Note that
∏
i∈Ic P [ ∩

j∈Jc
(I

(j)
i ) = 1] strictly

decreases as more samples are included in the cluster. On the other hand,
(
Tu
Tc

)
increases

with Tc for Tc < Tu/2. However,
(
Tu
Tc

)
decreases for Tc > Tu/2. The objective function is

thus globally minimized (for Tc ≤ Tu/2) by the following procedure: i) sort the samples

in increasing order of their joint p-values P [ ∩
j∈Jc

(I
(j)
i ) = 1]; ii) sequentially include the

samples on the sorted list into Ic, until the objective function no longer decreases or until

Tc = Tu/2. This procedure globally minimizes over Ic given fixed Jc. Note also that, by

applying the condition that (new score < old score), new samples are included so long

as the newest sample ĩ satisfies P [ ∩
j∈Jc

(I
(j)

ĩ
) = 1] < Tc+1

T−Tc .

4.3.4 Overall Search Algorithm

First, using the normal samples in Xl, all the first and second order null GMMs are

separately trained via the EM algorithm, with the Bayesian Information Criterion used

for model order selection. Mutual information for all feature pairs is then calculated

based on the bivariate GMMs. This is achieved by generating M = 106 samples from

a given bivariate GMM distribution, and then estimating the mutual information by

1
M

M∑
n=1

log(
fX1X2

(x
(n)
1 ,x

(n)
2 )

fX1
(x

(n)
1 )fX2

(x
(n)
2 )

). We then detect clusters in Xu sequentially, in a rank-

prioritized fashion, each time choosing the cluster which minimizes the joint score (4.4).

The algorithm operates on an enormous space of candidate clusters even if the feature
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space itself is only modestly sized (D). We start by sweeping over feature subset candi-

dates at low orders and, for tractability, only the “most promising” candidates at higher

orders, with candidate feature subsets at order K formed by “accreting” new features

to the best-scoring candidates at order K − 1. For each candidate feature subset Jc, its

DT is first learned and its associated, optimal subset Ic is then determined using the

method described in section 4.3.3. Evaluating all candidates at all feature subset orders,

the one with the smallest joint score at each order Nc is recorded. The cluster with

smallest Bonferroni-corrected score (4.4) is then forwarded as detected. Its samples are

then removed from the test batch. Subsequent cluster detections are then made following

the same procedure. Cluster detections are thus made (in general) in order of decreasing

joint significance.

4.4 Experimental Setup and Results

Our experiments focus on detecting Zeus botnet and P2P traffic among normal Web

traffic. The Web packet-flows are obtained from the LBNL repository [31]. This dataset

contains Web traffic on TCP port 80, with specified time-of-day information. Specif-

ically, the experiments in this paper are based on three datasets named “200412215-

0510.port008”, “20041215-1343.port008” and “20041215-1443.port010”. The protocols

to obtain normal, P2P and botnet network traffic are the same as in [28], i.e., we used

the port-mapper in [66] to identify P2P traffic in these files by a C4.5 decision tree pre-

trained in another domain (the Cambridge dataset [32]). The Zeus botnet traffic are

obtained from another domain [63].

4.4.1 Feature Space Selection and Representation

First, we did not use layer-4 port number features for purposes of detection [66, 5]. Also,

we did not consider timing information here because the Zeus activity was recorded on

another domain. In [5], previous efforts were made to detect botnet and P2P traffic

using the well-known feature representation for network intrusion detection from [34].

The authors found that these features, though able to detect some attack activity, could

not successfully discriminate botnet or P2P from normal Web traffic, i.e., botnet and

P2P traffic appear as “normal” Web activity according to the features from [34, 5].

To capture the intrinsic behavior of botnet and P2P packet-traffic, we note that most

Zeus botnet traffic involves masters giving command (control) messages, while slaves exe-

cute the given commands. In the case of P2P, nodes often communicate in a bidirectional



90

manner, exchanging relatively large packets in both directions. Normal/background Web

traffic, on the other hand, tends to involve server-to-client communications.

Hence, we seek to preserve the bidirectional packet size sequence information as fea-

ture representation for different traffic flows. This feature representation was previously

considered in [28]. The authors used the first N (we set N = 10 in our experiments) pack-

ets after the three-way hand shake of each TCP flow. Then a feature vector of dimension

2N is defined, specified by the sizes and directionalities of these N packets. Traffic are

assumed to be alternating between client-to-server (CS) and server-to-client (SC). A zero

packet size is thus inserted between two consecutive packets in the same direction to indi-

cate an absence of a packet in the other direction. For example, if the bidirectional traffic

is strictly SC, a zero will be inserted after each SC packet size. This 2N -dimensional

feature representation preserves bidirectional information of a given TCP flow, which is

essential for discriminating between P2P, Zeus and normal Web traffic.

4.4.2 Performance Metrics

Our algorithm detects clusters (groups) in a sequential fashion. For each extracted group,

we rank the samples in the group by their associated joint p-values on the given feature

subset. These samples will be sequentially removed from the test batch, with the system

then continuing to extract groups until the test set is depleted. Then we sweep out an

ROC curve based on these rank-ordered detected samples. A larger area under the ROC

curve indicates earlier detections of anomalous groups, which implies the effectiveness

of the intrusion detection system. We compare our system’s performance with a GMM

based anomaly detector, trained by normal samples, on the whole feature space. For this

detector, we rank the test samples based on their data likelihood under the GMM, and

sweep out an ROC curve. We also compare with the approach presented in [28], which

assumes significance tests are independent (denoted “Independence tests”), and with the

recent work presented in [38] with a slight modification – instead of discretizing feature

values as done in [38], we use a single dependence tree null distribution learned on Xl and

our proposed joint p-values for continuous features, P [ ∩
j∈Jc

(I
(j)
i ) = 1]. We denote this

variation on the approach in [38] by “single Bayesian Net.” There are two generalization

performance measures of interest on the test set: one is the aforementioned ROC area

under the curve (ROC AUC), as a function of the maximum feature subset size for a

cluster, Kmax. The other is the top 100 precision rate, defined as the fraction of anoma-

lous samples amongst the first 100 detected samples. Lastly, instead of exhaustively

searching over all feature subsets at order K, we trial-add individual features to the top
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candidate feature subsets from order K − 1. At each order K, starting from order 2, we

only consider the top 500 candidates from order K − 1.

Two different sets of experiments were performed, one on synthetic data, and the

other on the network data mentioned earlier. In the synthetic dataset experiment, we

used one unimodal Gaussian with 10 dimensions to generate normal samples and two

additional unimodal Gaussians to generate two distinct anomalous clusters. The two

anomalous clusters use the same distribution as the normal distribution for nine of

the ten features. Thus, they deviate from the normal (null) distribution only on a

single feature dimension (this “informative” feature dimension was different for the two

clusters). Their corresponding sample subsets consist of 2.5% of the whole data batch

Xu (so the proportion of anomalous samples in Xu is 5% of the total). The variance

of the informative features was chosen to be the same as that of the normal features,

σ2
n. Moreover the mean of the informative feature under an anomalous cluster was

chosen to be two standard deviations away from the mean under the normal class, i.e.,

|µn − µa| = 2σn, where we use subscripts n and a to denote ‘normal’ and ‘anomalous’,

respectively. Thus, if we consider only the informative feature dimension, the Bayes error

rate in discriminating normal from anomalous is 15.87%. After generating the synthetic

data batch (with a size of ten thousand samples), we randomly chose 20% of normal

samples as ground-truth and used them to train the null hypothesis. The remaining

normal samples were used as part of the test batch, along with the samples from the two

anomalous clusters. This was repeated 10 times, with the performance averaged.

For the network data, all the normal web flows from the three files were combined,

making nearly ten thousand normal web flows. We randomly selected 20% of these flows

as ground-truth normal samples to train the null, and treated the remaining normal

flows as part of the test batch, combined with either P2P or Zeus anomalous flows. We

separately experimented with P2P and Zeus flows. There were roughly 5 % of either

P2P or Zeus flows in a given test batch. Experiments for each scenario were averaged

over 10 random train-test splits.

4.4.3 Experimental Results

In Figure 4.1, we show the performance on the synthetic data. Note that both the pro-

posed scheme and [28] effectively capture groups of anomalies when the maximum feature

subset order is two. The first captured cluster (sample subset) consists of more than 95%

anomalous samples on average. However, as the maximum feature subset order increases,

the “independence tests” approach drops significantly in performance. This is because
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Figure 4.1: Synthetic data experiment: comparison of different schemes with 2 indepen-
dent Gaussian based anomalous feature subsets in (separate) 1-dim subspace.

too many (assumed to be independent) pairwise tests create many redundant features

that are all used to evaluate cluster anomalousness; use of these redundant features de-

emphasizes, within the score function, the important (low-order) feature subset. Also,

we see an early advantage of using cluster-specific DTs, compared to the single Bayesian

network approach. It appears that if an anomalous process is strictly generated from a

low order subspace and normal in other feature dimensions (as is the case in this experi-

ment) our cluster-specific DT approach outperforms a single Bayesian network approach.

In Figure 4.2 a), we show the performance for normal-P2P discrimination. Compared to

[28], which degrades in performance as more and more tests are included, we see supe-

rior performance for the proposed method. There is a large batch of anomalous samples

captured at maximum order 6 by the proposed method, but both [38] and [28] did not

capture this group effectively, as seen in the top 100 precision figure. Also, both of these

methods are outperformed by the GMM baseline method. In Figure 4.2 b), we show the

performance for normal-Zeus discrimination. Again, at maximum feature subset order

6 the proposed method captures a large portion of the anomalous flows – more than 50

Zeus flows were captured out of the first 100 flows detected by the proposed method.

[28] performs poorly in this experiment, and again we observed that as the number of

tests increase, the independence assumption degrades the detection performance. The

single Bayesian network approach in [38] also performs relatively poorly on this dataset.

4.5 Conclusion

In this work, we proposed a GAD scheme to identify anomalous sample and feature sub-

sets, accounting for dependencies between the features in a given subset. The proposed
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Figure 4.2: Network traffic data experiment: comparison of different schemes with P2P
or Zeus anomalies.

model outperforms previous works that assume statistical tests are independent under

the null. We demonstrated the effectiveness of our proposed system on both synthetic

and real world data, with the latter drawn from the network intrusion detection domain,

aiming to discriminate between normal and P2P/Zeus traffic. Our future work includes

empirical p-value assessment and automatic determination of the maximum feature sub-

set size of a cluster.



Chapter 5
Conclusion and Future Work

In this thesis, we developed a novel framework for semi-supervised active learning, using

unlabeled samples as a source of regularization to preserve uncertainty among the unex-

plored high density region (maxEnt). Rather than minimizing the empirical entropy on

the unlabeled samples, we seek to maximize it. We demonstrate its superior performance

in both standard multi-class classification and rare category identification, compared to

minEnt, especially when there are unknown categories. We have also successfully applied

the maxEnt framework in vehicle tracking and network intrusion detection.

In the case of anomaly detection, we developed a novel group anomaly detection

scheme to capture joint anomalies on a sample and feature subset, applied to network

intrusion detection using bi-directional traffic flows. Rather than assuming individual

features or outlier events are statistically independent under the null hypothesis as in

[38, 28], in our approach we capture and exploit statistical dependencies amongst the

features defining a candidate cluster. Compared to previous works, as shown in our

experiments, the proposed scheme is more effective in detecting group anomalies. For

future work in group anomaly detection, we would investigate the use of an alternative

hypothesis to characterize the novel cluster.

Below, we provide one future research direction regarding the maxEnt framework.

5.1 MixEnt: Joint Update of Target Distribution and Pos-

teriors

In a standard multi-class classification problem, consider a set of L labeled samples

with K distinct categories, XL = {(x1, y1), (x2, y2), ..., (xl, yl)}, where xl ∈ RD, yl ∈
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Figure 5.1: A three-cluster example with pathological labeled sample distribution from
the two known categories. Synthetic experiment 1.

{1, 2, ...,K}, and XU the set of U unlabeled samples whose categories are unknown, and

each can either be from one of the K categories or from a hitherto unknown category.

The previously proposed maxEnt learning objective in Chapter 2 is formulated as follows

(we get rid of the rare categories and use raw features):

Dmax−H = −
∑

(xnyn)∈Xl

logP [yn|xn]

+α
∑

xn∈X
(t)
u

d(Q[C ∈ {K, 0}]||P [C ∈ {K, 0}|xn]) (5.1)

where Q[C ∈ {K, 0}] = ( 1
K+1 , ∀C), a uniform pmf, and we use index 0 to denote the

unknown. Here, d(Q||P ) =
∑

k qk log(qk/pk) denotes the Kullback-Leibler divergence

between probability mass functions Q = {qk} and P = {pk} defined on the same support,

with Q the “target” distribution and P its (model-constrained) approximation. Clearly,

minimizing (5.1) will globally maximize unlabeled samples’ entropy. α is a non-negative

hyperparameter that controls the amount of learning from the unlabeled samples. As α

gets smaller, more weights will be put onto the labeled samples, tending to the maximum

likelihood solution.
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Figure 5.2: A three-cluster example with randomly chosen labeled samples from the two
known categories. Synthetic experiment 2.

However, a (globally) maxEnt regularizer does not take into consideration the fact

that some labeled and unlabeled samples within proximity ought to have the same label.

One pathological example is shown in Figure 5.1 when the initial labeled samples are

near the opposite ends of both known clusters: the maxEnt (as denoted by TNNLS’16 in

the figure) solution cuts through both of the two supposedly well-formulated clusters and

makes many more false predictions than the minEnt approach. The solution from minEnt

could easily solve this problem, which as shown in the figure brings the decision boundary

closer to the desired one (in which we assign the true target distribution for each sample,

or equivalently, all the samples are labeled). But under different scenarios, minEnt can be

overly confident about unknown clusters, hurting generalization performance, as shown

in Figure 2.1. In order to preserve the advantage of minEnt on low density separation,

while preserving uncertainty among local regions with purely unlabeled samples, we

propose to jointly update both sample targets and parameters.

Accordingly, we seek to minimize the reformulated semi-supervised objective func-

tion, dubbed mixEnt, as follows:

min J(Z,Θ) = −
∑

(xnyn)∈Xl

logP [yn|xn] + α
∑
xn∈Xu

d(zn||P [C ∈ {K, 0}|xn]; Θ) (5.2)
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Table 5.1: Empirical Results on both synthetic data sets and real world data sets.
(SYN1) Synthetic data set illustrated in Figure 5.1. (SYN2) Synthetic data set illus-
trated in Figure 5.2. (PB) Page Block. (SH) Shuttle Statlog.

Methods
Avg.Entropy on unknown class Error on known categories
SYN1 SYN2 PB SH SYN1 SYN2 SH PB

TNNLS’16 0.231 0.245 0.0564 0.236 5.00% 0 4.10% 24.0%

Joint Update 0.204 0.186 0.0249 0.236 0.00% 0 2.71% 24.0%

Desired 0.217 0.212 0.0447 0.203 0.00% 0 2.38% 23.9%

MinEnt 0.176 0.155 0 0.028 0.00% 0 2.49% 24.0%

where Z ∈ <N×(K+1) and each row zn denotes the target distribution for the nth sample

that have either Shannon entropy 0 (minEnt target, with probability 1 on one of the

categories and zero on others. There are a total of K + 1 of such target distributions) or

it is a uniform distribution (maxEnt target, with probability
1

K + 1
equally distributed

among all categories). We seek to optimize (5.2) by jointly determining Z and Θ through

an EM-like iterative process, which is guaranteed to reach a local minimum:

1. Initialization: Zt, with zn = { 1

(K + 1)
, . . . ,

1

(K + 1)
}, ∀n, Θt

2. Assignment: in Z(t+1), ∀n, switch target zn if doing so reduces the objective.

3. Gradient Descent on Θ: Θ(t+1) = Θt − µ ∗ ∂J
∂Θt

4. End if Z(t+1) = Zt and
|J (t+1) − J t|

J t
< 1e − 6. Else, Z(t+1) ← Zt, Θ(t+1) ← Θt,

and back to 2).

As observed in Figure 5.1, where we assume the labeled samples are pathologically

chosen from the known clusters, the proposed mixEnt produces a decision boundary very

close to the desired boundary. On the other hand, the method maxEnt in TNNLS’16 pro-

duces high entropy on all unlabeled samples, but with a decision boundary cut through

the two known clusters, hurting generalization performance on the known categories, as

seen in the error rate column in Table 5.1. minEnt approach, while achieving 0 error on

the known categories, compared to the proposed mixEnt with joint update, has much

lower entropy on the unknown category.

Figure 5.2 shows the case with randomly chosen labeled samples from the two known

clusters. All methods have 0 error on the known categories. In this case, TNNLS’16 is

the most preferred method because it produces the highest entropy on the unknown, as

seen in Table 5.1.
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In Table 5.1, we show the performance on a couple of real data sets (Page Block

and Shuttle). These data set’s property is described in Table 4.1. For each data set, we

used only the majority classes for this experiment, randomly picking one of them as the

unknown class and labeled 20% of the samples from each known class. Again, mixEnt

has lower error rate on the known categories than the TNNLS’16 method, and has much

higher entropy on the unknown than the minEnt method.

In conclusion, in a standard multi-class semi-supervised learning setting, the proposed

method improves the error rate on the known categories while achieving a certain degree

of uncertainty among the unlabeled samples, which provides a trade-off between maxEnt

and minEnt. For future work, one can investigate more on the mixEnt strategy, by

incorporating other information such as local regions, e.g., samples that belong to the

same region should be assigned the same target distribution, and pairwise constraints

on samples, and by developing theoretical guarantees on reaching a desired optimal

solution. One can also investigate it in the AL setting, and its general applicability in

characterizing rare categories and detecting unknown unknowns.
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