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Abstract

The purpose of this dissertation is to present several applications of enveloping
functions and dual lens maps to geometry and dynamical systems. In Chapter
1 we have a brief review on basic notions and theory we need to understand the
main results. In Chapter 2 we prove that given a point on a Finsler surface,
one can always find a neighborhood of the point and isometrically embed this
neighborhood into a Finsler torus without conjugate points. The major tool is
enveloping functions.

In Chapter 3 we introduce the dual lens map technique developed by Burago
and Ivanov. It derives from enveloping functions and symplectic geometry. We
then show how this technique is used to perturb the geodesic flows of flat Finsler
tori.

In Chapter 4 we show how dual lens map can be used in KAM theory. The
celebrated KAM Theory says that if one makes a small perturbation of a non-
degenerate completely integrable system, we still see a huge measure of invariant
tori with quasi-periodic dynamics in the perturbed system. These invariant tori are
known as KAM tori. What happens outside KAM tori draws a lot of attention. We
show two types of Lagrangian perturbations of the geodesic flow on flat Finsler tori.
The perturbations are C∞ small but the resulting flows has a positive measure of
trajectories with positive Lyapunov exponent. The measure of this set is of course
extremely small. Still, the flow has positive metric entropy. From this result we get
positive metric entropy outside some KAM tori and it gives positive answer to a
question asked by Kolmogorov.
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Chapter 1 |
Preliminaries

1.1 Hamiltonian flow on a cotangent bundle
Let (Ω2n, ω) be a 2n-dimensional symplectic manifold. Let H be a smooth

function on T ∗M . We can define the Hamiltonian vector field XH as the unique
solution to the equation

ω(XH , V ) = dH(V )

for any smooth vector field V on Ω. XH is well-defined due to nondegeneracy of
ω. The flow Φt

H on Ω defined by Φ̇t
H = XH is called the Hamiltonian flow on Ω

with Hamiltonian H. One can easily verify that Φt
H preserves ω and hence the

volume form ωn. The metric entropy of Φt
H is defined to be the measure theoretical

entropy with respect to the volume form ωn.
If ω is exact (i.e. ω = dθ for a 1-form θ), θ is preserved on each energy level by

the Hamitonian flow Φt
H if and only if H is positively homogeneous in coordinates

of cotangent spaces (i.e. H(q, λp) = Θ(λ)H(q, p) for some positive function Θ,
see [23]). Such Hamiltonians are called generalized homogeneous.

Let H be a generalized homogeneous Hamiltonian and h be a noncritical value
of H, then θ is a contact form on the level set H−1(h) and Φt

H is a contact flow. The
measure defined by θ∧ (dθ)n−1 is an invariant measure of the flow Φt

H . This volume
form is called the Liouville measure. The Hamiltonian flow Φt

H has positive metric
entropy if and only if its restriction on H−1(h) has positive measure theoretical
entropy with respect to the Liouville measure.
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1.2 Geodesic flows on Finsler manifolds and its en-
tropy

A typical example of a Hamiltonian flow with generalized homogeneous Hamil-
tonian is the geodesic flow on a Finsler manifold. Let M be a smooth manifold.
A Finsler metric ϕ on M is a smooth family of quadratically convex norms
ϕ(x, ·) on each tangent space TxM . It is reversible if ϕ(x, v) = ϕ(x,−v) for all
x ∈ M, v ∈ TxM . Let (M,ϕ) be a Finsler manifold with its unit tangent bundle
UTM . We define the dual norm on cotangent bundle T ∗M by

ϕ∗(α) := sup
v∈UTxM

{α(v)}, for α ∈ T ∗xM.

The cotangent bundle T ∗M has an exact natural symplectic form ω. The geodesic
flow gt on (M,ϕ) is defined to be the Hamiltonian flow on the cotangent bundle
T ∗M with generalized homogeneous Hamiltonian (ϕ∗)2/2.

For any point x in (M,ϕ), the unit ball Bx in TxM is a convex body. By F.
John [22], among all ellipsoids contained in Bx, there exists a unique ellipsoid Ex
with maximum volume. Ex is the unit sphere of some quadratic form on TxM . In
this way we can define quadratic forms on each tangent spaces and these forms are
close to Finsler norms. In this way we can associate with the Finsler metric ϕ a
Riemannian metric gϕ, from which UTM inherits a Riemannian structure (see [33]
for details). This metric is called the Sasaki metric. For each vector ζ ∈ TvUTM
we define the Lyapunov exponent by

χ+(v, ζ) := lim sup
t→∞

ln ||Dgtζ||
t

and the upper Lyapunov exponent by

χ+(v) := max
ζ∈TvUTM

χ+(v, ζ).

For our purpose, there is no need to recall the precise definition of the metric
entropy hµ for the Liouville measure µ on UTM . Indeed, it is enough to know that
Pesin’s inequality [32]

hµ ≥
∫
UTM

χ+(v)dµ(v) (1)
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provides a lower bound of metric entropy. Indeed, this formula tells us that the
metric entropy is no less than the mean of upper Lyapunov exponent.

1.3 Geometry on Finsler manifolds
If γ : [a, b] → M is a smooth curve on a Finsler manifold (M,ϕ), then one

defines the length of γ by

L(γ) :=
∫ b

a
ϕ(γ(t), γ′(t))dt.

Using this definition of length we define a non-symmetric metric (i.e. a positive
definite function on M ×M satisfying the triangle inequality) on M by letting the
distance d(x, y) from x to y be the infimum of the lengths of all piecewise smooth
curves starting from x and ending at y. It can be non-symmetric since d(x, y) may
not be equal to d(y, x). Under this non-symmetric metric we can define geodesics
in the following way: a curve γ : [a, b]→M is said to be a geodesic of (M,ϕ) if for
every sufficiently small interval [c, d] ⊆ [a, b], γ|[c,d] realizes the distance from γ(c)
to γ(d). In this thesis we will always assume that a geodesic is unit-speed, i.e. if
γ is a geodesic, then ϕ(γ(s), γ′(s)) = 1, for s ∈ [a, b]. A geodesic γ : [a, b]→M is
called minimal if for a ≤ t1 < t2 ≤ b, d(γ(t1), γ(t2)) = t2 − t1. And a Ck Finsler
metric ϕ on M is called simple if every pair of points on M is connected by a
unique geodesic depending Ck smoothly on the endpoints.

Let γ be a ray with unit speed in a Finsler manifold. Define the Busemann
function bγ : M → R with respect to γ by

bγ(x) := lim
t→∞

(t− d(x, γ(t))).

1.4 Entropy non-expansive flows
Let Φt be a flow on a metric space (X, d). We say Φt is entropy non-expansive

if for any ε > 0, there exists an orbit γ such that the set of trajectories which stay
forever within distance no more than ε from γ contains an open invariant set on
which the dynamic has positive metric entropy [4]. Basically it means that positive
metric entropy can be generated in an arbitrarily small neighborhood of an orbit of
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the system. The issue attracted a lot of interest, see for instance... In particular,
D. Burago introduced this notion in 1988 being in mathematical isolation in the
former Soviet Union, see .... This situation is a bit counter-intuitive since hyperbolic
dynamics tends to expand and occupy all space. In our situation, however, it is
generated even near a periodic orbit, meaning that hyperbolic dynamics is localized
in a small neighborhood not only in the phase space but in the configuration space
too. The paper [9] gave a construction of an entropy non-expansive flow however
not in the context of the KAM Theory.
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Chapter 2 |
Local Structures of Finsler Tori
Without Conjugate Points

2.1 Introduction
In this chapter we study the universality of local structures of 2-dimensional

Finsler tori without conjugate points. It is known that 2-dimensional Riemannian
tori without conjugate points are flat, which was proved by E.Hopf [20] in 1940s.
Hopf’s paper is a partial answer to a question asked by Hedlund and Morse [21],
that is, whether the same result still holds in all dimensions. The positive answer
to this question is now known as Hopf’s conjecture. After that many other people
studied this problem with various assumptions. In 1994, D.Burago and S.Ivanov [7]
proved the Hopf’s conjecture. This breakthrough shows the rigidity of Riemannian
tori without conjugate points.

Hopf’s problem is originally formulated for Riemannian manifolds. On the
other hand, if you look into the world of Finsler manifolds, the whole picture of
Finsler tori without conjugate points remains veiled. There are examples of non-flat
Finsler tori without conjugate points, thus the original Hopf’s conjecture does not
hold in Finsler case. One can construct such a non-flat Finsler 2-torus by making
symplectic (contact) perturbations on the Euclidean torus [25] or constructing some
metric of revolution [35].

Before Burago and Ivanov, Croke and Kleiner [15] have shown that in the
Riemannian case, if a torus without conjugate points has a smooth (or bi-Lipschitz)
Heber foliation [19], then it is flat. Smoothness of the Heber foliation is (more or
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less) equivalent to the assertion that the geodesic flow is smoothly conjugate to
that of some flat Finsler torus. It is still an open question if the Heber foliation of
a Finsler manifold without conjugate points is smooth, and whether the geodesic
flow of such manifold is smoothly conjugate to that of some flat Finsler torus. We
even do not know whether every geodesic with an irrational rotation number is
dense in a 2-dimensional Finsler torus without conjugate points.

In this chapter I extend an approach suggested by Burago-Ivanov to show that
there are no local restrictions for a metric to be the metric of a Finsler torus without
conjugate points. Therefore the world of Finsler tori without conjugate points is
much wider than the examples to the best of my knowledge. See Theorem 2.1 for
precise formulation.

In order to proof Theorem 2.1 we generalize the concept of Busemann functions
on Finsler manifold to an enveloping function. Such extension does not depend on
the ray. And we can get back the Finsler metric from the enveloping function. By
perturbing the enveloping function we can get a perturbation of the Finsler metric.

2.2 Enveloping functions
We use some notation and techniques from [8]. To make this note more reader-

friendly, we copy them here.

Definition 2.1. A function f on a Finsler manifold (M,ϕ) is called forward
1-Lipschitz if for p, q ∈M, f(p)− f(q) ≤ d(q, p).

Let (M,ϕ) be a Finsler manifold. We have a norm ϕ∗ on the cotangent bundle
T ∗M given by:

ϕ∗(α) := sup{α(v)|v ∈ TxM,ϕ(v) = 1},

for x ∈M,α ∈ T ∗xM . And we denote by UM and U∗M the bundles of unit spheres
of ϕ and ϕ∗. Since ϕ is Minkowski on each tangent space, ϕ∗ is also Minkowski
on each cotangent space, hence U∗xM is quadratically convex for all x ∈M . A C1

function on M is called distance-like if ϕ∗(dxf) = 1 for all x ∈M .
Notice that a distance-like function is always forward 1-Lipschitz. In fact, for

any x, y ∈M and any unit-speed curve c : [a, b]→M starting at x and ending at
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y, if f is distance-like, then

f(y)− f(x) =
∫ b

a
dfc(s)(c′(s))ds ≤ b− a = L(c)

By taking the infimum for all c, f is forward 1-Lipschitz.

Let S be a smooth manifold diffeomorphic to Sn−1 where n = dimM .

Definition 2.2. A continuous function F : S ×M → R is called a Ck enveloping
function for ϕ if F is Ck smooth outside S × ∂M and the following conditions are
satisfied:

(a) For every p ∈ S, the function Fp := F (p, ·) is distance-like.
(b) For every x ∈M , the map p→ dxFp is a diffeomorphism from S to U∗xM .

If M is a manifold with boundary S, ϕ is a Ck simple Finsler metric and F is
given by F (p, x) := d(p, x), then F is a Ck enveloping function. On the other hand,
given an enveloping function F we can define a distance function on M ×M by

dF (x, y) := sup
p∈S

F (p, y)− F (p, x).

By dF we can define a metric ϕF on TM , and the unit sphere of ϕ∗F in T ∗xM is the
image of the map S → T ∗xM, p 7→ dxFp.

Lemma 2.1. Let F be an enveloping function for ϕ. Then there exists a function
δ : M → R depending only on ϕ such that for every F̃ : S ×M → R with

||dxF· − dxF̃·||C2(S,T ∗xM) < δ(x)

for all x ∈M , we can find a Finsler metric ϕ̃ on M such that F̃ is an enveloping
function for ϕ̃. In particular, if M is compact or ϕ is flat, δ(x) can be chosen to be
a constant.

Proof. Since ϕ is a Finsler metric, the image of the map S → T ∗xM, p 7→ dxFp is
quadratically convex. And p 7→ dxF̃p is a C2 small perturbation of this map, hence
also has quadratically convex image, therefore the image is the unit sphere of some
Minkowski norm on T ∗xM . And the dual norm ϕ̃ is a Finsler norm at x.

8



Definition 2.3. Let f be a distance-like function on a Finsler manifold (M,ϕ), and
γ : [a, b]→M be a geodesic. We say that γ is calibrated by f if f(γ(t2))−f(γ(t1)) =
t2 − t1, for any a ≤ t1 < t2 ≤ b.

The (Finslerian) gradient of a distance-like function f : D → R at x ∈ D,
denoted gradf(x), is defined to be the unit tangent vector v ∈ UxD such that
dxf(v) = 1. If γ is calibrated by f , then for all points on γ, the tangent vector of γ
coincide with the gradient of f .

Lemma 2.2. If we have an enveloping function F on a Finsler manifold (M,ϕ),
then M has no conjugate points.

Proof. If f is a distance-like function on M , then any integral curve of gradf is
a minimal geodesic. In fact, let γ : [a, b] → M be such a unit-speed curve and
a ≤ t1 < t2 ≤ b. Then for all s ∈ (a, b), dfγ(s)(γ′(s)) = 1 since γ′(s) is the gradient
of f at γ(s). Thus

t2 − t1 ≥ d(γ(t1), γ(t2)) ≥ f(γ(t2))− f(γ(t1)) =
∫ t2

t1
dfγ(s)(γ′(s))ds = t2 − t1.

This implies d(γ(t1), γ(t2)) = t2 − t1 = f(γ(t2))− f(γ(t1)). Hence γ is a minimal
geodesic and it is calibrated by f .

Now let σ : [a, b]→M be a geodesic. Since a geodesic is a local minimizer, we
can find δ > 0 such that d(σ(a), σ(a + δ)) = δ. Let p ∈ S be a point such that
dσ(a)Fp is the dual to σ′(a), then the integral curve γ of gradFp with γ(a) = σ(a) is
a minimal geodesic calibrated by Fp. Since γ and σ are geodesics with the same
starting point and initial direction, L(γ) = b−a = L(σ), therefore γ = σ. Therefore
σ is a minimal geodesic. This implies any geodesic is a minimal one, so M has no
conjugate points.

Remark 2.1. By the proof of Lemma 2.2, if a geodesic γ is calibrated by a
distance-like function, then γ is minimal.

2.3 Total flexibility of local structures of Finsler tori
without conjugate points

Theorem 2.1. [12] Suppose (M,ϕ) is a Ck(k ≥ 3) Finsler surface. Then for
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any p0 ∈ M , we can find a neighborhood U of p0, and an isometric embedding
Ψ : (U,ϕ|TU) → (T2, ϕ̃), where (T2, ϕ̃) is a Ck Finsler torus without conjugate
points. If in addition, ϕ is reversible, then ϕ̃ can be chosen to be reversible too.

Proof. Lei ψ : U0 → R2 be a local chart around p0 mapping p0 to origin. Since ψ
is a diffeomorphism we can define the metric on ψ(U0) simply by pushing forward
that on U0 through ψ. Once we get this isometric embedding, we can assume the
image of ψ is Uε := {(α, β) ∈ R2|α2 + β2 < ε2}, and we identify U0 with Uε. By
choosing small ε and let Dε be the closure of Uε, we get a simple Finsler metric
on Dε. Let ϕ0 be a constant Finsler metric on R2 which is identical to ϕ|Tp0D

. For
each x ∈ R2 denote by Sx the unit circle of ϕ0 in TxR2. For any q ∈ Sx there exists
a unique q∗ ∈ T ∗xR2 supporting q (i.e. q∗(q) = 1 and q∗(Sx) ≤ 1.) and we denote
S∗x := {q∗ : q ∈ Sx}. Due to the smoothness of ϕ, we can choose small ε so that

||ϕ∗(x, ·)− ϕ∗0(x, ·)||Ck(S∗x) < δ(x), (*)

for all x ∈ Uε, where δ is the function in Lemma 1.
For p ∈ Sp0 , let γ0

p : [−a0, b0]→ Dε be the geodesic in the Finsler disk (Dε, ϕ0)
with γ0

p(0) = p0 and (γ0
p)′(0) = p. Let γp : [−a, b]→ Dε be the geodesic in (Dε, ϕ)

with γp(0) = p0, γ
′
p(0) = p. Then we can define a function F on Sp0 ×Dε by the

following: if x lies on the left hand side of the direction of γp, then F (p, x) := d(x, γp),
otherwise define F (p, x) := −d(γp, x). Then F is a Ck enveloping function for ϕ.

Similar as above we get a C∞ enveloping function F 0 on Sp0 × R2 for the
constant metric ϕ0. From (*) we know that

||dxF· − dxF 0
·||Ck(Sp0 ,T

∗Dε) < δ(x), (**)

for all x ∈ Dε. Extend F to Sp0 × R2 so that (**) holds for all x ∈ R2.
Take a large r and let g be a function on R2 with value 1 on Dε and value

0 outside Dr. By choosing r large enough we may assume g has very small
ith(1 ≤ i ≤ k) derivatives. Take l > r and define a function F̃ on Sp0 × [−l, l]2 by

F̃ (p, x) = F (p, x)g(x) + F 0(p, x)(1− g(x)).

10



Extend F̃ to Sp0 × R2 by setting

F̃ (p, x+ (2lm, 2ln)) = F 0(p, x+ (2lm, 2ln)) + F̃ (p, x)− F 0(p, x), for (m,n) ∈ Z2.

F̃ satisfies (**) if we replace F by F̃ . By Lemma 1, F̃ is an enveloping function for
some Finsler metric ϕ̃ on R2. By Lemma 2 we know that ϕ̃ has no conjugate points.
Since F̃ is quasiperiodic on x, the metric ϕ̃ is periodic on x, hence it projects to a
Finsler metric on T2 := R2/(2lZ)2. ϕ̃ agrees with ϕ on TDε and it agrees with ϕ0

on T (T2\Dr).
Suppose ϕ is symmetric, use the same notations as above, then γp and γ−p are

the same curve with different directions. Therefore we have

F (p, x) = −F (−p, x), (***)

for all x ∈ Dε. Extend F to Sp0×R2 so that (***) holds. Repeating the procedures
as above we get a function F̃ on Sp0 × R2. Now define

d̃(x, y) = max
p∈Sp0

F̃ (p, x)− F̃ (p, y),

then d̃ is symmetric and it is Ck close to d0, which is the metric on R2 generated by
ϕ0. As we get such metric d̃, we can define a Finsler metric on the tangent bundle
in the following way: for x ∈ R2, v ∈ TxR2, let c : (−ε1, ε1)→ Dr be a curve with
c(0) = x, c′(0) = v. Define

ϕ̃(x, v) := lim
t→0

d̃(x, c(t))
t

.

Then F̃ is an enveloping function for ϕ̃. By symmetry of d̃ we get symmetry of ϕ̃.
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Chapter 3 |
Dual Lens Maps and Its Appli-
cation to Geodesic Flows

3.1 Dual lens map
Here we use the notions and definitions from [9].

Definition 3.1. A Finsler metric ϕ on an n-dimensional disc D is called simple if
it satisfies the following three conditions:

(S1) Every pair of points in D is connected by a unique geodesic.
(S2) Geodesics depend smoothly on their endpoints.
(S3) The boundary is strictly convex, that is, geodesics never touch it at their

interior points.

Once (D,ϕ) is simple, denote by Uin, Uout the set of inward, outward pointing
unit tangent vectors with base points in ∂D respectively. With any vector ν ∈ Uin,
we can associate a unique vector β(ν) ∈ Uout, namely the tangent vector of the
(unique) geodesic with initial velocity ν at its next intersection point with ∂D. This
defines a map β : Uin → Uout, which is called the lens map of ϕ. If ϕ is reversible,
then the lens map is reversible in the following sense: −β(−β(ν)) = ν for every
ν ∈ Uin.

We denote by UT ∗D the unit sphere bundle with respect to the dual norm ϕ∗.
Let L : TD → T ∗D be the Legendre transform of the Lagrangian ϕ2/2. It maps
UTD to UT ∗D. For a tangent vector ν ∈ UTxD, its Legendre transform L (ν) is
the unique covector χ ∈ U∗xD such that χ(ν) = 1.
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Then consider subsets U∗in = L (Uin) and U∗out = L (Uout) of UT ∗D. The dual
lens map of ϕ is the map σ : U∗in → U∗out given by σ := L ◦ β ◦ L −1 where β
is the lens map of ϕ. If ϕ is reversible then σ is symmetric in the sense that
−σ(−σ(χ)) = χ for all χ ∈ U∗in.

Note that U∗in and U∗out are (2n − 2)-dimensional submanifolds of T ∗D. The
restriction of the canonical symplectic 2-form of T ∗D to U∗in and U∗out determines
the symplectic structure. And the dual lens map σ is symplectic. In [9], by using
enveloping functions, Burago and Ivanov proved the following theorem:

Theorem 3.1 (Burago-Ivanov [9]). Assume that n ≥ 3. Let ϕ be a simple metric
on D = Dn and σ its dual lens map. Let W be the complement of a compact
set in U∗in. Then every sufficiently small symplectic perturbation σ̃ of σ such that
σ̃|W = σ|W is realized by the dual lens map of a simple metric ϕ̃ which coincides
with ϕ in some neighborhood of ∂D.

The choice of ϕ̃ can be made in such a way that ϕ̃ converges to ϕ whenever σ̃
converges to σ (in C∞). In addition, if ϕ is a reversible Finsler metric and σ̃ is
symmetric then ϕ̃ can be chosen reversible as well.

In the same paper they proved the above theorem for n = 2 with additional
requirement:

Proposition 3.1 (Burago-Ivanov [9]). Let ϕ be a simple metric on D2 and σ its
dual lens map. If σ̃ satisfies the conditions in Theorem 3.1 and moreover, there is
an open subset O ⊆ S such that

σ̃|O∗in = σ|O∗in ,

here O∗in := π−1(O) ∩ U∗in, then σ̃ is a dual lens map of some simple Finsler metric
in D2 which coincides with ϕ in some neighborhood of ∂D. The convergence and
reversibility are the same as in Theorem 3.1.

3.2 Perturbation on flat Finsler tori
Let (Tn, ϕ0) be a torus with flat Finsler metric ϕ0 and UT ∗Tn be its unit

cotangent bundle with standard coordinates (q1, ..., qn, p1, ..., pn). It is not hard to
see that (q1, ..., qn, p1, ..., pn) are action-angle coordinates of the geodesic flow. We
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think of Tn as the cube [−1/2, 1/2]n with sides identified. Take a submanifold T0 :=
{qn = −1/2} and a section Γ0 := {(q1, ..., qn, p1, ..., pn) ∈ UT ∗Tn : qn = −1/2, pn >
0}. Γ0 inherits a natural symplectic form from T ∗Tn. We set R0 : Γ0 → Γ0 to be
the Poincaré map to Γ0 of the geodesic flow on (Tn, ϕ0).

Denote by q = (q1, ..., qn−1),p = (p1, ..., pn−1). We can find a neighborhood
Op ⊆ R3 of 0 such that for the covectors in Γ0 with p ∈ Op we have pn = ψ(p) for
some positive function ψ. Let Π : Γ0 → T ∗T0 be the canonical projection defined
by

Π(q,−1/2,p, pn) = (q,p)

It is clear that Π is a symplectic bijection between Π−1(T0 ×Op) and T0 ×Op.
Define

R1 := Π ◦R0 ◦ Π−1 : T0 ×Op → T0 ×Op.

By a simple calculation we know the map R : Rn−1 ×Op → Rn−1 ×Op defined
by

R(q,p) = (q + ψ(p)−1p,p)

is a lift of R1 to the universal cover. We say a compact set K ⊆ Rn−1 × Op is
penetrating if there exists r0 < 1 such that

π(K) ⊆ B0(r0) and π(R(K)) ⊆ B0(r−1
0 ),

here π : T ∗Rn−1 → Rn−1 is the bundle projection and B0(r) is the Euclidean
open ball with radius r and center the origin. Since r0 < 1 we can also regard a
penetrating K as a subset of B∗T0. In particular, if Op and π(K) are both small
neighborhoods around p = 0 and q = 0 respectively, then K is penetrating.

Proposition 3.2. Assume that n ≥ 2 and K is a penetrating compact set in
T0×Op. For any sufficiently C∞-small symplectic perturbation R̃1 of R1 coinciding
with R1 outside K, there exists a Finsler metric ϕ̃ on Tn that agrees with ϕ0 on Γ0

such that the Poincaré map to Γ0 of the geodesic flow on (Tn, ϕ̃) is Π−1 ◦ R̃1 ◦Π.
The convergence and reversibility are the same as in Theorem 3.1.

Proof. Denote by Dn the n-dimensional ball inscribed in [−1/2, 1/2]n and σ :
U∗in → U∗out be the dual lens map of the Finsler disc (Dn, ϕ0). Denote Γ± :=
{(q1, ..., qn, p1, ..., pn) ∈ UT ∗(Rn) : qn = ±1/2, pn > 0} and define the projections
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Π± : Γ± → B∗R3 by
Π±(q,±1/2,p, pn) = (q,p).

It is clear that both Π± are symplectic bijections.
For any α1 ∈ Π−1

− (K) (resp. α2 ∈ Π−1
+ (R(K))), consider its orbit (resp. back-

ward orbit) under the geodesic flow generated by ϕ0. Since K is penetrating,
the orbit (resp. backward orbit) will intersect U∗in(resp. U∗out) transversally and
we denote by φ1(α1)(resp. φ2(α2)) the first intersection. This defines a map
φ1 : Π−1

− (K)→ U∗in (resp. φ2 : Π−1
+ (R(K))→ U∗out). It is clear that both φ1 and φ2

are symplectic bijections to their images.
The restriction of R on K can be decomposed as

R|K = Π+ ◦ φ−1
2 ◦ σ ◦ φ1 ◦ Π−1

− .

Let R̃ be a lift of R̃1 to the universal cover. Define a dual lens map σ̃ : U∗in → U∗out

by

σ̃(α) :=

φ2 ◦ Π−1
+ ◦ R̃ ◦ Π− ◦ φ−1

1 (α), if α ∈ φ1(Π−1
− (K));

σ(α), otherwise.

By definition, σ̃ coincides with σ outside a compact set. Moreover σ̃ → σ in C∞ as
R̃→ R in C∞.

By Theorem 3.1, there exists a Finsler metric ϕ̃ in Dn agreeing with ϕ0 around
the boundary ∂Dn and the dual lens map for (Dn, ϕ̃) is σ̃. Extend ϕ̃ to [−1/2, 1/2]n

by ϕ0. Now extend ϕ̃ to the whole [−1/2, 1/2]n by setting it equal to ϕ0 outside
Dn. It is flat in a neighborhood of the boundary ∂[−1/2, 1/2]n so it projects to a
Finsler metric ϕ̃ (we abuse notation again) on Tn. The Poincaré map onto Γ0 is
Π−1 ◦ R̃1 ◦Π. Since R̃1 has positive metric entropy, so does Π−1 ◦ R̃1 ◦Π. Thus we
can make a C∞ perturbation of ϕ0 on any small tubular neighborhood of a closed
orbit γ and the resulting metric has positive metric entropy.

If ϕ0 is reversible, we define σ̃ by:

σ̃(α) =


φ2 ◦ Π−1

+ ◦ R̃ ◦ Π− ◦ φ−1
1 (α), if α ∈ φ1(Π−1

− (K));

− φ1 ◦ Π−1
− ◦ R̃−1 ◦ Π+ ◦ φ−1

2 (−α), if α ∈ −φ2(Π−1
+ (R(K)));

σ(α), otherwise.
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It is clear that σ̃ is symmetric. By Theorem 3.1, ϕ̃ can be chosen to be reversible.

Remark 3.1. We only give the proof for Tn glued out of a cube. Similar arguments
work not only for general tori glued out of parallelepipeds, but also for perturbations
in any neighborhood of any closed orbit.
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Chapter 4 |
Positive Metric Entropy in KAM
Systems

4.1 Introduction
Already in the early 50’s the study of nearly integrable Hamiltonian systems

has drawn the attention of many outstanding mathematicians such as Arnol’d,
Kolmogorov and Moser. Indeed, for any integrable Hamiltonian system the whole
phase space is foliated by invariant Lagrangian submanifolds that are diffeomorphic
to tori, generally called KAM tori, and on which the dynamics is conjugated to a
rigid rotation. Therefore, it is natural to ask what happens to such a foliation and to
these stable motions once the system is slightly perturbed. In 1954 Kolmogorov [24]
- and later Arnol’d [1] and Moser [26] in different contexts - proved that, for small
perturbations of an integrable system it is still possible to find a big measure set
of KAM tori. This result, commonly referred to as KAM theorem, contributed
to raise new interesting questions, for instance about the destiny of the stable
motions that are destroyed by effect of the perturbation (in other words, about
the dynamics outside KAM tori). In this context, Arnol’d [2] constructed an
example of a perturbed integrable system, in which some orbits outside KAM tori
have a wide range in action variables (even though the rate of change of action
variables is exponentially small [29]). This striking phenomenon, known as Arnol’d
diffusion and still quite far from being fully understood, shows the presence of some
randomness in the dynamics outside KAM tori. The question we address in the
present paper is therefore the following: how much random can the motion outside
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KAM tori be?
It is well-known that, C2-generically the Hamiltonian flow has positive topo-

logical entropy (cf. [30], see also [14] for an analogous statement for Riemannian
geodesic flows). Once we turn our attention to metric entropy, the problem be-
comes more challenging and one cannot simply derive positive metric entropy from
positive topological entropy. In fact, Bolsinov and Taimanov [5] built an example of
a Riemannian manifold on which the geodesic flow has positive topological entropy
but zero metric entropy.

Recently Burago and Ivanov [9] used dual lens map to construct a reversible
Finsler metric C∞-close to the standard metric on Sn, n ≥ 4, such that its geodesic
flow has positive metric entropy. However the geodesic flow on the sphere is
degenerate, hence it does not lie in the realm of KAM theory.

Unlike the case of spheres, the geodesic flow on flat tori are nondegenrate. In
this paper we therefore provide examples analogous to Burago-Ivanov’s one on
torus (Theorem 4.1 and Theorem 4.2). Our theorem shows that in the complement
of KAM tori, the behavior of nearly integrable Hamiltonian flows can be quite
stochastic.

4.2 Non-ergodic Donnay-Burns-Gerber tori
Definition 4.1. We say that a centrally symmetric cap C = {r ≤ r1} ⊆ R2 is a
non-ergodic Donnay-Burns-Gerber (DBG) cap if:

(a) C has two parallel geodesics Cr0 and Cr1 , where Cri := {r = ri} for i = 0, 1.
(b) The Gaussian curvature is positive on {r ≤ r0}, negative at Cr1 , and strictly

decreasing from center to boundary.
If a torus contains a non-ergodic DBG cap and outside the cap the Gaussian

curvature is nonpositive, then we call it a non-ergodic DBG torus.

Lemma 4.1. The geodesic flow on a non-ergodic DBG torus has positive metric
entropy.

Sketch of proof. The proof is similar to the proof of Theorem 1.1 in [11]. By virtue
of Clairaut’s integral, any geodesic entering the cap C will go out of the cap.

Let c : [−T1, T1]→ C be an arc-length parametrized geodesic with endpoints
in Cr1 such that c(0) is the point of c closest to the origin; suppose furthermore
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that c(±T2) lie in Cr0 , for some 0 < T2 < T1. Let JS, JC be two Jacobi fields on c
with JS(0) = 0, J ′S(0) = 1, JC(0) = 1, J ′C(0) = 0. Let uS = J ′S/JS, uC = J ′C/JC and
K(t) be the Gaussian curvature at c(t). Then both uS and uC satisfy the Riccati
equation:

u′(t) + u(t)2 +K(t) = 0

By imitating the proofs of Lemma 2.5 and Lemma 2.6 in [11], we get
(A) uS(±T1) = uS(±T2) = 0. and JS(t) vanishes only at t = 0.
(B) There is a τ ∈ (0, T2) such that limt→τ− uC(t) = −∞.

Figure 4.1. Graphs of uS , uC and u

If a Jacobi field J on c satisfies J ′(−T1)J(−T1) ≥ 0 then u := J ′/J satisfies the
Riccati equation with u(−T1) ≥ 0. This means the graph of u must lie above that
of uS. By (A) and (B) we have u(T1) ≥ 0. So the cone J ′J ≥ 0 is preserved by the
cap.

By Poincaré recurrence theorem, almost every vector in UTC will come back
infinitely many times. For any geodesic c entering the cap C at time t0, when it
returns to the cap again, say at time t1 > t0, the image of the cone {J ′(t0)J(t0) ≥ 0}
under the translation will lie strictly in the interior of {J ′(t1)J(t1) ≥ 0}. By
Wojkowski’s cone field theory [34], the vectors with non-zero Lyapunov exponents
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form a set with positive Liouville measure. By Pesin’s inequality (1) the geodesic
flow has positive metric entropy.

4.3 Construction of a non-ergodic DBG torus
In this section we construct a conformal metric on [−1/2, 1/2] × [−1/2, 1/2]

which is flat outside a disc and centrally symmetric inside the disc. More precisely
we want to build a function g : [0, 1]→ (0, 1] such that the torus with conformal
metric

ds2 = g(r)2(dx2 + dy2), where r :=
√
x2 + y2. (2)

is a non-ergodic DBG torus.
In order to get such a function g we change our coordinate system to geodesic

polar coordinates. However before doing this we need some preliminary.

Definition 4.2. We say a function ρ : I → R is even (resp. odd) at a point a ∈ I
if all odd (resp. even) derivatives of ρ vanish at a.

Lemma 4.2. For any smooth function ρ : R≥0 → R≥0 which is odd at 0, ρ′(0) = 1
and is positive except at 0, there exist smooth functions g, l : R≥0 → R≥0 such that
l is odd at 0, l(0) = 0, l′(r) = g(r), g(0) = 1, ρ(l(r)) = rg(r), and g is positive.

Proof. Since
ρ = r

dl

dr
,

we have
dr

r
= dl

ρ
. (∗)

Both sides of (∗) have singularity at 0. Since ρ is odd at 0, ρ′(0) = 1, for small l we
have

1
ρ

= 1
l

(
1

1 + ρ(3)(0)l2/6 + o(l3)

)
= 1
l

(
1

1 + l2O(1)

)
= 1
l
(1 + l2ρ̃(l)) = 1

l
+ lρ̃(l),

where ρ̃ is a smooth function that is even at 0. We integrate both sides of (∗)
regarding r as a function of l with r(0) = 0. Then we get

lim
l→0

(ln r − ln l) = lim
l→0

∫ l

0
sρ̃(s)ds = 0.
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Therefore liml→0 ln(r/l) = 0 and ln(r/l) is even at 0. By direct computation, it is
now easy to see that r/l is even at 0. This implies that r is odd at 0. From (∗) we
have

d ln r
dl

= dr

rdl
= 1
ρ
> 0.

Therefore ln r(l) is strictly increasing and smooth, so is r(l). By the Inverse Function
Theorem there exists a smooth l : R≥0 → R≥0 which is the inverse function of r(l).
Moreover l(0) = 0, l′(0) = 1 and l is odd at 0. Finally we define g(r) := l′(r). It is
clear that g is even at 0 and positive.

By Lemma 4.2 we have only to find ρ : R≥0 → R≥0 with the following properties:
(i) ρ satisfies the conditions in Lemma 4.2;
(ii) ρ′(l0) = ρ′(l1) = 0 for some 0 < l0 < l1.
(iii) Let K(l) := −ρ′′(l)/ρ(l). Then K(l) > 0 on [0, l0], K(l1) < 0.
(iv) K ′(l) < 0 on [0, l1].
(v) There exists l2 > l1 such that K(l) is negative on [l1, l2) and ρ′(l) = 1 for

l ≥ l2.
Indeed once we have such a function ρ, by Lemma 4.2 we have smooth functions

g, l : R≥0 → R≥0 with ρ(l(r)) = rg(r) and l(r) =
∫ r

0 g(t)dt. Consider the metric
defined by (2). By changing the coordinate system to geodesic polar coordinates,
the metric becomes

ds2 = dl2 + ρ(l)2dθ2. (3)

Note that ρ′(l) = 0 iff the parallel at l is a geodesic, and the Gaussian curvature
is given by K(l) = −ρ′′(l)/ρ(l). Let ri := l−1(li) for i = 0, 1, 2. (ii) implies (a) in
the definition of a non-ergodic DBG cap, while (b) can be derived from (iii) and
(iv). (v) guarantees the metric is negatively curved on the annulus {r1 < r < r2}
and is flat outside {r = r2}. So once ρ satisfies (i)-(v), the torus with metric (3)
will be a non-ergodic DBG torus.

Here is the construction of ρ(l):
For any a > 0, let λ1 : R≥0 → [0, 1] be a C∞ function with the properties that

λ1 ≡ 1 on [0, 1√
5a ] and λ1 ≡ 0 on [ 1

2
√
a
,+∞). Let λ2 : R≥0 → [0, 1] be another C∞

function with λ2 ≡ 0 on [0, 1√
5a ] ∪ [ 1

2
√
a
,+∞) and positive on ( 1√

5a ,
1

2
√
a
). Define

ρ′′(l) by
ρ′′(l) = λ1(l)(−30al + 200a2l3) + C(1− λ1(l))λ2(l),
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where C is a positive constant such that
∫∞
0 ρ′′(l)dl = 0. Notice that ρ′′(l) = 0 on

[ 1
2
√
a
,+∞). Define ρ by setting ρ(0) = 0, ρ′(0) = 1. Then ρ(l) = l − 5al3 + 10a2l5

on [0, 1√
5a ] and ρ′(l) ≡ 1 for l ≥ 1

2
√
a
. The graph of ρ is shown in Figure 3.

Figure 4.2. Graph of ρ

It is easy to see that ρ satisfies (i) and (ii) for l0 = 1√
10a and l1 = 1√

5a . ρ
′′(l) =

−30al + 200a2l3 on [0, l1] and it is positive on [l1, 1
2
√
a
), so K(l) is positive on

{l ≤ 1√
10a} and negative in the annulus between {l = l1} and {l = 1

2
√
a
}. Hence ρ

satisfies (iii) and (v) for l2 = 1
2
√
a
. The last part to be verified is (iv). Since

K ′(l) = −ρρ
′′′ − ρ′ρ′′

ρ2 ,

we only need to verify that ρρ′′′ − ρ′ρ′′ = 100a2l3(1 + 12al2 − 40a2l4) is positive on
(0, 1√

5a ]. This can be done by direct calculation. This finishes the construction.

Remark 4.1. The function g constructed in this way is strictly decreasing on
[0, r2] and constant for r ≥ r2 since

dρ

dl
= dρ

dr

dr

dl
= g + rg′

g
= 1 + rg′

g

and ρ′(l) < 1 on (0, 1
2
√
a
), ρ′(l) = 1 for l ≥ 1

2
√
a
. So the supremum of g is g(0) = 1.

From Lemma 4.2 we know that the lower bound is positive.
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Remark 4.2. If g satisfies the condition that a torus with metric g(r)2(dx2 + dy2)
is non-ergodic DBG, we can find a constant δ0 such that for all δ ∈ (−δ0, δ0), a
torus with metric (g(r)2 + δ)(dx2 + dy2) is also non-ergodic DBG. This follows from
the fact that being a non-ergodic DBG torus is an open condition.

Remark 4.3. By choosing a sufficiently large a we can shrink the support of g′ to
be as small as we want. Indeed notice that ρ(s) ≤ s and ρ′(s) > 0 on ( 1√

5a ,
1

2
√
a
).

Therefore

max
s≥0

s− ρ(s) = max
0≤s≤ 1

2
√
a

∫ s

0
1− ρ′(t)dt

= 1√
5a
− ρ( 1√

5a
) + max

0≤s≤ 1
2
√
a

∫ s

1√
5a

1− ρ′(t)dt

<
1√
5a
− ρ( 1√

5a
) + max

0≤s≤ 1
2
√
a

s− 1√
5a

<
1

3
√
a
.

From (∗) we have

ln r2 − ln( 1
2
√
a

) =
∫ 1

2
√
a

0

(
1
ρ(s) −

1
s

)
ds

=
∫ 1√

5a

0

( 1
s− 5as3 + 10a2s5 −

1
s

)
ds+

∫ 1
2
√
a

1√
5a

(
1
ρ(s) −

1
s

)
ds

<
∫ 1√

5a

0

5as− 10a2s3

1− 5as2 + 10a2s4ds+
∫ 1

2
√
a

1√
5a

 1
s− 1

3
√
a

− 1
s

 ds
< 10a

∫ 1√
5a

0
2s− 4as3ds+ ln

(
1− 1

3s
√
a

) ∣∣∣∣ 1
2
√
a

1√
5a

< 2− ln(3−
√

5).

Thus r2 → 0 as a→∞.

4.4 Perturbation of the Hamiltonian H0

Suppose the fundamental domain of the deck group on the universal cover of our
torus T2 ∼= R2/Z2 is {−1/2 < q1, q2 < 1/2}. We use p1, p2 to denote the coordinates
in the cotangent space and denote B∗T2 := {(q1, q2, p1, p2) ∈ T ∗T2 : p2

1 + p2
2 < 1}.
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In this section we want to perturb the kinetic Hamiltonian

H0(q1, q2, p1, p2) := p2
1 + p2

2
2

in such a way that the Hamiltonian flow if the resulting Hamiltonian has positive
metric entropy. More precisely, we want to prove the following:

Lemma 4.3. There exists a family {Hε}ε>0 of smooth perturbations of H0 such
that for all ε > 0, there exists an open interval Iε with the property that for any
h ∈ Iε, the Hamiltonian flow Φt

Hε on the level set {Hε = h} has positive metric
entropy.

Proof. Let ξ : R≥0 → [0, 1] be a smooth function with ξ ≡ 1 on [0, 1/3] and ξ ≡ 0
on [2/3, 1]. And let g be the function we built in 4.3. We define

Hε := H0 + ε(1− g(r)2)ξ(p2
1 + p2

2), where r =
√
q2

1 + q2
2.

Since g is positive and 0 ≤ 1− g2 < 1 (by Remark 4.1), we have

ε > max
(x,y)∈T2

ε(1− g(r)2)ξ(p2
1 + p2

2).

Notice that if Hε < 1/6 then p2
1 + p2

2 < 1/3, therefore ξ ≡ 1 whenever the total
energy is small. By the Maupertuis principle, the Hamiltonian flow Φt

Hε on the
level set {Hε = ε} is a time change of the geodesic flow on T2 with metric

ds2 = εg(r)2(dq2
1 + dq2

2).

This metric has positive metric entropy since, by Lemma 4.1, the metric ds2 =
g(r)2(dq2

1 + dq2
2) does.

Let δ0 be the constant we get from Remark 4.2 and define Iε := (ε− εδ0, ε+ εδ0).
By using Maupertuis principle again we prove the lemma.

4.5 Perturbation of H̃0 = −
√

1− 2H0

In this section we prove that a smooth perturbation of

H̃0(q1, q2, p1, p2) := −
√

1− p2
1 − p2

2
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can be derived from a suitable perturbation of H0. Since this result holds for all
degrees of freedom, we use (q,p) to denote the coordinates instead of (q1, q2, p1, p2).

Suppose Tn = Rn/Zn has coordinates q = (q1, ..., qn) and let p = (p1, ..., pn)
be the coordinates in the cotangent bundle. Denote B∗Tn = {(q,p) : ∑ p2

i < 1}.
Define

H0(q,p) := 1
2

n∑
i=1

p2
i , H̃0(q,p) := −

√
1− 2H0(q,p).

Then
Φt
H̃0

(q,p) = (q + tp√
1−∑ p2

i

,p).

Let V (q,p) be a C2-smooth function on B∗Tn. We perturb H0 and H̃0 by V in
the following way:

Hε(q,p) := 1
2

n∑
i=1

p2
i + εV (q,p), H̃ε(q,p) := −

√
1− 2Hε(q,p).

Then we have

Lemma 4.4. If suppV ⊆ {∑ p2
i ≤ C < 1} for some C ∈ R+, then for every

δ,m, T > 0, there exists ε = ε(V, δ,m, T ) > 0 such that for each 0 ≤ T ≤ T we
have

||ΦT
H̃ε
− ΦT

H̃0
||Cm(B∗Tn) < δ.

Proof. Denote ΦT
H̃ε

(q,p)−ΦT
H̃0

(q,p) by (∆q,∆p) as they usually do this in calculus
books. Put (q(t),p(t)) := Φt

H̃ε
(q,p). Suppose that Hε(q,p) = E. Then

q̇(t) = ∂H̃ε

∂p
= p + εVp√

1− 2E
, ṗ(t) = −∂H̃ε

∂q
= − εVq√

1− 2E
.

If ∑ p2
i > C, then ṗ(t) ≡ 0, hence ∆p = 0. Consider the trajectory (q(t),p(t)),

Vp vanishes along it, hence ∆q = 0. Therefore we only need to consider the case∑
p2
i ≤ C. Since V is compactly supported we may assume that ε is small enough

so that ∑ p2
i + 2εV < (1 + C)/2 < 1. In this case

∆p =
∫ T

0
ṗ(t)dt = −

∫ T

0

εVq√
1− 2E

dt = − ε√
1−∑ p2

i − 2εV

∫ T

0
Vqdt.
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∆q =
∫ T

0
q̇(t)dt− pT√

1−
∑
p2
i

=
∫ T

0

(
q̇(0) +

∫ t

0
q̈(s)ds

)
dt− pT√

1−
∑
p2
i

= T

(√
1−

∑
p2
i −

√
1−

∑
p2
i − 2εV

)
p

+
∫ T

0
∫ t

0 ṗ(s) + εṗ(s) · Vpp + εq̇(s) · Vqpdsdt√
1− 2E

= T

(√
1−

∑
p2
i −

√
1−

∑
p2
i − 2εV

)
p

+
∫ T

0
∫ t

0 −εVq − ε2Vq · Vpp + ε(p + εVp) · Vqpdsdt

1−
∑
p2
i − 2εV

.

We can see from the above calculation that since ∑ p2
i + 2εV < (1 + C)/2 < 1,

(∆q,∆p) converges to 0 uniformly in Cm as ε→ 0.

4.6 Entropy exapansive cases
Theorem 4.1. [13] For every ε > 0 there exists a reversible Finsler metric on
T3 which is ε-close to the Euclidean metric in the C∞-sense and such that the
associated geodesic flow has positive metric entropy.

Proof. Suppose (T3, ϕ0) is the Euclidean 3-torus. From 3.2 we can choose Op =
B∗T0 = {(q1, q2, p1, p2) ∈ T ∗T0 : p2

1 + p2
2 < 1}. Then we have

ψ(p1, p2) =
√

1− p2
1 − p2

2.

Hence the lift of R1 to universal cover is

R(q1, q2, p1, p2) =
q1 + p1√

1− p2
1 − p2

2

, q2 + p2√
1− p2

1 − p2
2

, p1, p2


Therefore R1 = Φ1

H̃0
. Note that Φt

H̃0
and Φt

H0 are the same up to time reparametriza-
tion. Let Hε be the perturbation of H0 as in Lemma 4.3, and define

H̃ε := −
√

1− 2Hε.

Φt
H̃ε

has the same trajectories as Φt
Hε , hence Φt

H̃ε
has positive metric entropy since

Φt
Hε does. Since the support of perturbation is contained in {p2

1 + p2
2 < 2/3},

H̃ε → H̃0 in C∞. From Lemma 4.3 we know that Φ1
H̃ε
→ Φ1

H̃0
= R1 in C∞. By

Proposition 3.2 we get the desired metric.
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4.7 Entropy non-exapansive cases
In this section we genralizes the methods in [9] and obtains the Burago-Ivanov

type result for flat Finsler torus.

Theorem 4.2. [6] The flat Finsler metric ϕ0 on Tn(n ≥ 4) can be perturbed in
the class of Finsler metrics so that the resulting geodesic flow has positive metric
entropy and is entropy non-expansive. Such perturbations can be made C∞ small.
Moreover, if ϕ0 is reversible, the resulting metric can be chosen to be reversible.

One primary distinction between our examples and those in Theorem 4.1 is the
entropy non-expansiveness. We still do not know if one can do such perturbation
in the class of Riemannanian metrics or if one can lower the dimension to n = 3.

Proof. We will only give a proof for n = 4. Higher dimensional cases are straight-
forward generalizations.

Recall from Chapter 3.2,

R1 := Π ◦R0 ◦ Π−1 : T0 ×Op → T0 ×Op.

And R : R3 ×Op → R3 ×Op defined by

R(q,p) = (q + ψ(p)−1p,p)

is a lift of R1 to the universal cover.

Lemma 4.5. We can find a neighborhood Oq ⊆ R3 of q = 0 and a symplectic
change of coordinates in Oq ×Op such that in the new coordinates (Q,P), the map
R is the following:

R(Q,P) = (Q + P,P).

Namely, locally ψ can be chosen to be ψ ≡ 1 or any positive function.

Proof. Define
P := ψ(p)−1p.

Then we have
dP = dpΦ(p)
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for some matrix function Φ : Op → Mat(3,R). Notice that Φ(0) = ψ(0)−1I3. By
choosing smaller Op if necessary we may assume Φ are all invertible. Let Oq be a
small neighborhood of q = 0. We make the following coordinate change in Oq×Op:

(Q,P) := (qΦ(p)−1, ψ(p)−1p).

By direct computation we have

dQ ∧ dP = dq ∧ dp.

Under the new coordinates (Q,P), the map R|Oq×Op is the following:

R(Q,P) = (Q + P,P).

Denote by P2 := P 2
1 +P 2

2 +P 2
3 and Q2 := Q2

1 +Q2
2 +Q2

3. It is not hard to verify
R|Oq×Op is the time-one map of the Hamiltonian flow on Oq ×Op with Hamiltonian
H0 defined by:

H0(Q,P) := P2

2 .

Define a perturbed Hamiltonian on Oq ×Op by:

Hε(Q,P) := H0 + εQ2

2 ξ(P2)ξ(Q2)

where ε < 1 and ξ is a smooth function on [0, 2] with ξ ≡ 1 on [0, δ] and ξ ≡ 0
on [2δ, 2] for some given δ > 0. The change is supported by {P2 < 2δ,Q2 < 2δ}.
Define

Ξ := {(Q,P)|P2 + εQ2 < εδ}.

We have
Hε|Ξ = H0 + εQ2

2 .

Ξ is Φt
Hε-invariant and all orbits in Ξ are closed with period 2π/

√
ε.

We firstly choose small δ so that the support of the perturbation has tiny size
in Oq × Op. Then we choose appropriate ε so that 2π/

√
ε = N for some positive

integer N . As N →∞, Φt
Hε converges to Φt

H0 in C∞ topology. The time one map
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T := Φ1
Hε satisfies TN = id on Ξ.

After the first perturbation, we want to perturb T in order to get positive metric
entropy. In [9], Burago and Ivanov proved the following lemma for 6-dimensional
disc. In fact, similar arguments also work for general 2n-dimensional discs with
n ≥ 4.

Lemma 4.6 (Burago-Ivanov [9]). There exists a symplectomorphism θ : D6 → D6

which is arbitrarily close to the identity in C∞, coincides with the identity map
near the boundary, and has positive metric entropy.

Let D ⊆ Ξ be a closed set such that D,T (D), T 2(D), ..., TN−1(D) are disjoint.
We can choose D to be symplectomorphic to the standard unit disc D6. Let
θ : D6 → D6 be the map in Lemma 4.6. We extend this map by identity to a map
from T0 ×Op to itself. We abuse notation and still use θ to denote this map. The
restriction of (T ◦ θ)N to D is θ. Therefore (T ◦ θ)N has positive metric entropy,
thus so does T ◦ θ.

Since T and θ are C∞-close to R1 and id respectively, R̃1 := T ◦ θ can be as
close to R1 in C∞ topology as we want. Moreover, the support of R̃1 −R1 can be
arbitrarily small given we choose tiny δ.

By Proposition 3.2, we get the desired Finsler metric.
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Appendix |
Nondense Irrational Geodesics
in Nearly Flat Finsler Tori

1 Twist maps, minimal configurations and Peierls’ bar-
rier

1.1 Twist maps and generating functions

Definition .1 ( [23]). f : S1 × (a, b)→ S1 × (a, b) is an area-preserving twist map
if:

(1) f is area preserving and preserves orientation.
(2) f preserves boundary components in the sense that there exists an ε > 0

such that if (x, y) ∈ S1 × (x, x+ ε) then f(x, y) ∈ S1 × (a, a+b
2 ).

(3) if F = (F1, F2) is a lift of f to the universal cover R×(a, b) then ∂F1
∂y

(x, y) > 0.
Here (a, b) can be an open interval or the whole real line.

If in addition to (1)-(3) we have
(4) f twists infinitely at either end. Namely, for all x ∈ S1 we have

lim
y→a+

F1(x, y) = −∞, lim
y→b−

F1(x, y) = +∞,

then we say f is an area-preserving twist map with infinite twist. The collection of
all area-preserving twist maps with infinite twist from S1× (a, b) to itself is denoted
IFT (a, b).

Let F : R× (a, b)→ R× (a, b) be a lift of f ∈ IFT (a, b) to the universal cover,
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the generating function h(x, x′) is uniquely characterized by

F (x, y) = (x′, y′)⇐⇒ y = −∂h
∂x

(x, x′), y′ = ∂h

∂x′
(x, x′).

Example .1. The map f0 : S1 ×R→ S1 ×R defined by f(x, y) = (x+ y, y) is an
area-preserving twist map with infinite twist. The generating function is given by

h0(x, x′) = (x′ − x)2

2 .

Example .2. Define f1 : S1 × (−1, 1)→ S1 × (−1, 1) by f(x, y) = (x+ y√
1−y2

, y).
Then f1 ∈ IFT (−1, 1) and the generating function is given by

h1(x, x′) =
√

(x′ − x)2 + 1.

Given a f ∈ IFT (a, b), if the amount of twisting in (3) has a uniform lower
bound β, then its generating function h will satisfy all the following conditions
(H1)− (H6θ) with θ = cot β [27]:

(H1) h(x, x′) = h(x+ 1, x′ + 1)

(H2) lim
|ξ|→∞

h(x, x+ ξ) = +∞, uniformly in x

There exists a positive continuous function ρ on R2 such that for x < ξ, x′ < ξ′:

(H5) h(ξ, x′) + h(x, ξ′)− h(x, x′)− h(ξ, ξ′) ≥
∫ ξ

x

∫ ξ′

x′
ρ

(H6θ)

 x→ θx2/2− h(x, x′) is convex for any x′

x′ → θx′2/2− h(x, x′) is convex for any x

Here θ is a positive number. We say h satisfies (H6) if it satisfies (H6θ) for some
θ > 0. There was (H3) and (H4) but they can be derived from others. We use Hθ to
denote the collection of all continuous functions h : R2 → R satisfying (H1)− (H6θ).
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1.2 Properties of functions in Hθ

Mather [28] proves that for a given h ∈Hθ there exists a unique Borel measure
µh on R2 such that for any x < ξ, x′ < ξ′

µh([x, ξ]× [x′, ξ′]) = h(ξ, x′) + h(x, ξ′)− h(x, x′)− h(ξ, ξ′).

and two unique Borel measures ν1
h, ν

2
h on R such that

ν1
h(y, z] = θ(y − z) + ∂1h(y+, y)− ∂1h(z+, z),

ν2
h(y, z] = θ(y − z) + ∂2h(y, y+)− ∂2h(z, z+).

It is clear νih is invariant under the translation y → y + 1 and νih(y, y + 1] = θ. For
x ≤ ξ, we have

µh([x, ξ]2) ≤ (ξ − x)νih(x, ξ), i = 1, 2. (.1)

For any sequence (xi)i∈Z,

k−1∑
i=j

h(xi, xi+1) =
k−1∑
i=j

h(xi, xi) +
∫ xk

xj
∂2h(y, y+)dy +

k−1∑
i=j

µh(∆[xi, xi+1]), (.2)

where ∆i is the triangle

{(y, z) : xi ≤ y ≤ z ≤ xi+1} or {(y, z) : xi+1 ≤ y ≤ z ≤ xi}

according to whether xi or xi+1 is greater. For the proofs of the results listed above,
see [28].

If h1 and h2 are two real-valued continuous functions on R2 satisfying (H2),
then the conjunction of h1 and h2 is defined to be

h1 ∗ h2(x, x′) = min
y
h1(x, y) + h2(y, x′).

If h1, h2 ∈Hθ, then h1 ∗ h2 ∈Hθ [27].
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1.3 Minimal configuration and Rotation symbols

We refer to [4] [18] [27] [28] for the definitions and results we will need in the
following.

A configuration is a bi-infinite sequence x = (..., xi, ...) ∈ RZ (with product
topology of RZ). The Aubry graph of x is the graph of the piecewise linear function
Φ : R→ R determined by Φ(i) = xi at every i ∈ Z.

Suppose h is a function on R2 satisfying (H1)− (H6). Define

h(xj, ..., xk) :=
k∑
i=j

h(xi, xi+1).

A segment (xj, ..., xk) is said to be minimal (for h) if it is a minimizer for
h(x∗j , ..., x∗k) with x∗j = xj and x∗k = xk, A configuration is minimal if all its segments
are minimal. We use M = Mh to denote the set of all minimal configurations. The
Aubry graphs of minimal configurations cross at most once (see [4] (3.1)). In the
survey [4] Bangert shows how minimal geodesics on torus are related to minimal
configurations.

A configuration x′ is a translate of x if there exist integers j, k such that
x′i = xi+j + k for all i. In [4] Bangert use the notation T(a,b) to denote the
translation T(a,b)x = x′ where x′i = xi−a + b.

A translate of minimal configuration is always minimal. A basic result of Aubry
says that the set of translates of a minimal configuration is totally ordered with
x < y being defined to be xi < yi for all integers i ( [4] (3.13)). Aubry’s result has a
consequence that if x is a minimal configuration, then there is a number ω = ρ(x),
called the rotation number of x, such that if x′i = xi+j + k with j > 0, then x′ > x
(resp. x′ < x) if jω + k > 0 (resp. jω + k < 0).

When ρ(x) is irrational, it is also called rotation symbols ρ̃(x) of x. When
ρ(x) = p/q ∈ Q, q > 0, we investigate x′i = xi+q − p i.e. x′ = T(−q,−p)x, and we
define

ρ̃(x) =


p/q+ if x′ > x

p/q if x′ = x

p/q− if x′ < x

Since minimal configurations cross at most once, if ρ̃(x) = ρ̃(x′) = p/q, then the
Aubry graphs of x and x′ do not cross.
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The space S of rotation symbols is the disjoint union R tQ + tQ−. Here Q±
are copies of Q. For p/q ∈ Q, let p/q± be the corresponding elements in Q±. The
underlying number is defined to be the projection image on R, denoted ω∗. We
provide S with the unique total order for which p/q− < p/q < p/q+ and the map
ω 7→ ω∗ is weakly order preserving [28]. For any ω ∈ S , Mω = Mω,h denotes the
set of all minimal configurations of rotation symbol ω or ω∗ (for example, Mp/q+,h

contains the minimal configurations with rotational symbol p/q+ or p/q). Mω is
nonempty for all ω ∈ S , see [4]. Define a projection pr0 by pr0(x) := x0. Let
Aω := pr0(Mω). Then Aω is closed and pr0 : Mω → Aω is a homeomorphism.

Remark .1. (i) If x ∈ Mp/q, then x is a minimum of hq,p : Pq,p → R, x 7→
h(x0, ..., xq), here Pq,p denotes the Tq,p-invariant confirgurations. In particular Hq,p

is constant on Mp/q. See [4].
(ii) The Aubry graph of configurations in Mp/q+,h and Mp/q−,h do not cross.

Suppose x < x′ are two neighborhood configurations in Mp/q, then there exists
configuration y− (resp. y+) between x and x′ with rotation symbol p/q− (resp.
p/q+) such that it is ω-asymptotic (resp. α-asymptotic) to x and α-asymptotic
(resp. ω-asymptotic) to x′. See [4].

(iii) For any h ∈Hθ, let H(x, x′) := h∗q(x, x′+p), where h∗q = h∗· · ·∗h(q times)
denotes the q-fold conjunction with itself. Then by Section A.1.2 we know H ∈Hθ.
It is clear that Aω,h = Aqω−p,H and Pω,h = Pqω−p,H as long as the rotational symbol
ω is not a rational number or is a rational number whose denominator is divisible
by q.

1.4 Peierls’ barrier

Peierls’ barrier Pω(ξ) = Pω,h(ξ) is defined for every real number ξ. If ξ ∈ Aω, then
Pω(ξ) = 0. Otherwise, ξ belongs to some complementary interval (x−0 , x+

0 ) of Aω in
R, where x−,x+ ∈Mω. Suppose x is a configuration with x0 = ξ,x− ≤ x ≤ x+,
and if ω = p/q, we require xi+q = xi + p. Then Pω(ξ) is defined to be the minimum
of the following formula taken over all such x:

∑
i

h(xi, xi+1)− h(x−i , x−i+1).

For any h ∈Hθ, Pω,h(ξ) exists, is non-negative, vanishes only on Aω and is a
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Lipschitz function of ξ with Lipschitz constant 2θ. See [27] for details.
In [27] and [28] Mather shows a modulus of continuity for Peierls’ barrier:

Theorem .1. There exists a positive real number such that the following holds.
For any h ∈Hθ, p/q ∈ Q and ω a rotation symbol, we have

(1) |Pp/q(ξ)− Pω(ξ)| ≤ Cθ(q−1 + |qω∗ − p|);
(2) |Pp/q+(ξ)− Pω(ξ)| ≤ Cθ|qω∗ − p| for ω ≥ p/q+;
(3) |Pp/q−(ξ)− Pω(ξ)| ≤ Cθ|qω∗ − p| for ω ≤ p/q−.

2 An extension of Mather’s destruction of invariant
circle
Proposition .1. For any f ∈ IFT (a, b) and any Liouville number ω, we can find
a C∞ small perturbation f̃ ∈ IFT (a, b) and a compact K ⊆ S1 × (a, b) such that
f̃ − f has support K and there is no f̃ -invariant circle with rotation number ω.

Remark .2. In [28] Mather proved that for any Liouville number ω and twist map
in IFT (−∞,+∞) there exists a C∞ small perturbation with no invariant circle
admitting rotation number ω. But the perturbation of Mather is not compactly
supported. Nevertheless we will imitate Mather’s construction to build up our
perturbation.

Proof of Proposition .1. We are going to prove that for any ε > 0 and r ≥ 1, we
can find f̃ ∈ IFT (a, b) such that ||f̃ − f ||Cr ≤ ε and there is no f̃ -invariant circle
with rotation number ω. The general idea is firstly choose a rational number p/q
close to ω, and make a Cr+1 small perturbation h′ on the generating function h
so that the Pp/q,h′ is positive at some point. When p/q < ω, we make the second
perturbation h′′ so that the maximum of Pp/q+,h′′ is bounded from below by a
constant depending only on q and r. Once p/q is sufficiently close to ω (here we use
the property that ω is Liouville), by Theorem .1 we can see Pω,h′′ does not vanish
identically. For p/q > ω, we find a lower bound of Pp/q−,h′′ instead of Pp/q+,h′′ and
the rest proceeds in a similar way.

Without loss of generality we may assume the twisting amount ∂F1/∂y has a
lower bound β so that we can use the formulas in Theorem .1. In fact, if (a, b) is
finite, ∂F1/∂y will have lower bound due to (3) and (4) in the definition of twist
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map. If a = −∞ or b = +∞, see the first paragraph in the proof of Theorem 2.1
in [28].

Let F : R× (a, b)→ R× (a, b) be the lift of f to universal cover and h be the
generating function. By the above assumption h ∈ Hθ. Suppose x is a minimal
configuration in Mp/q.

We now explain how to construct the perturbation of h when ω > p/q. Choose
an interval J with length≥ q−1 in the complement to the set {xi + j}i,j∈Z. Without
loss of generality we may assume J = (xj, xk +m) for some j, k,m ∈ Z.

For any ε > 0 and any integer r ≥ 1, we choose a C∞ nonnegative function u
on R with the following properties:

(a) u has support J̄ .
(b) ||u||Cr+1 ≤ ε/2.
(c) u(ξ) ≥ C1(r)ε/qr+1, for ξ ∈ J ′, here J ′ is the middle third of J and C1(r) is

a constant depending only on r.
Here is how to construct such a function: Define a function Ψ : R→ R by:

Ψ(t) =


exp

( 1
t2 − 1

)
, for |t| < 1

0, otherwise

Denote C0(r) := ||Ψ||Cr+1 . Define a function u0 by

u0(t) = ε

2r+2qr+1C0(r)Ψ(2qt).

and let
C1(r) = Ψ

(1
3

)
2−r−2C0(r)−1.

It is not hard to check that u0 satisfies (a)-(c) for J = (−1/2q, 1/2q). For a general
J , we have only to move and rescale u0.

Define a function v on R by

v(t) =



C2(r)q−r−1Ψ(2q(t− xj+1)), for t ∈ [xj+1 − 1/2q, xj+1);

C2(r)q−r−1Ψ(0), for t ∈ [xj+1, xk+1 +m);

C2(r)q−r−1Ψ(2q(t− xk+1 −m)), for t ∈ [xk+1 +m,xk+1 +m+ 1/2q);

0, otherwise,
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where C2(r) = 2−r−1C0(r)−1. Note that v is nonnegative, C∞, supported by an
interval with length≤ 3/q and ||v||Cr+1 = 1.

Now we make a first perturbation on h:

h′(x, x′) = h(x, x′) +
∑
i∈Z

u(x+ i)v(x′ + i).

Note that for each point (x, x′), the sum in the right hand side contains at most
one nonzero term, hence h′ is well-defined. Moreover we have

||h′ − h||Cr+1 ≤ ||u||Cr+1||v||Cr+1 ≤ ε/2.

It is clear that h′ satisfies (H1), (H2) and (H6θ′) for θ′ = θ+ 1 given r ≥ 1 and ε
small. For (H5), since h is a generating function of f = (f1, f2), for x < ξ, x′ < ξ′,

h(ξ, x′) + h(x, ξ′)− h(x, x′)− h(ξ, ξ′) =
∫ ξ

x

∫ ξ′

x′
−∂f1

∂y
.

The integrand is bounded from below by a constant, therefore it remains positive
under small Cr perturbation. Hence h′ satisfies (H5).

Now let us see how does this perturbation affect the Peierls’ barrier P ′p/q
associated to h′. For any ξ ∈ J , suppose (x−0 , x+

0 ) is the complementary interval of
A′p/q containing ξ. Then we have xj ≤ x−0 ≤ x+

0 ≤ xk +m. Take any configuration
y with y0 = ξ and x− ≤ y ≤ x+. Since x,x± ∈M ′

p/q, their Aubry graphs do not
cross(see Remark 5). Hence we have

xj+1 ≤ x−1 ≤ y1 ≤ x+
1 ≤ xk+1 +m.

Therefore

P ′p/q(ξ) = min
x−≤y≤x+,y0=ξ

q−1∑
i=0

h′(yi, yi+1)− h′(x−i , x−i+1)

≥ Pp/q(ξ) + min
x−≤y≤x+,y0=ξ

u(y0)v(y1)

= Pp/q(ξ) + C2(r)Ψ(0)u(ξ)/qr+1

Let H ′(x, x′) := h′∗q(x, x′ + p). Since x ∈ Ap/q,h′ = A0,H′ , we add a constant to
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H ′ so that H ′(xi, xi) = 0 for all i. For any ξ ∈ J ′,

H ′(ξ, ξ) = P0,H′(ξ) = Pp/q,h′(ξ) ≥ C2(r)Ψ(0)u(ξ)/qr+1 ≥ C3(r)ε/q2r+2, (.3)

where C3(r) := C1(r)C2(r)Ψ(0).
To simplify the notation, we denote by J− < J+ the endpoints of J . Since P ′p/q

is positive on J , J± are neighborhood elements in A0,H′ and H ′ is positive in J .
From [4] Theorem 5.3 there exist a minimal configuration y ∈M0+,H′ such that
yi → J± as i→ ±∞.

In order to do further perturbation we need to find a lower bound of maxi |yi+1−
yi|. We consider the point yi ∈ J ′(if no such yi exists then we take the length of J ′

as our lower bound). Mather [28] shows that

H ′(y) =
∞∑

i=−∞
h′(yi, yi+1)

is absolutely convergent. Hence in this case we can extend formula (.2) to infinite
sums

H ′(y) =
∞∑

i=−∞
h′(yi, yi) +

∫ J+

J−
∂2h

′(y, y+)dy +
∞∑

i=−∞
µ(∆[yi, yi+1]),

where µ = µH′ . Let y′ be the configuration obtained from y by removing yi, i.e.
y′j = yj for j < i and y′j = yj+1 for j ≥ i. H ′(y′) is finite since H ′(y) is. Hence we
can also use formula (.2) to calculate H(y′). By taking difference we have

H ′(y′)−H ′(y) = µ(∆[yi−1, yi+1])− µ(∆[yi−1, yi])− µ(∆[yi, yi+1])−H ′(yi, yi).

On the other hand the left hand side is nonpositive since y is minimal. Hence

C3(r)ε/q2r+2 ≤ H ′(yi, yi) ≤ µ(∆[yi−1, yi+1]) ≤ θ′|yi+1 − yi−1|.

Here the first inequality comes from formula (.3) and the last inequality comes
from formula (.1). This implies

max
i
|yi+1 − yi| ≥ C4(r)ε/q2r+2,
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where C4(r) = C3(r)/2θ′. Choose i such that |yi+1− yi| ≥ C4(r)ε/q2r+2 and denote
I := [yi, yi+1]. Use similar construction as u, we can build up a C∞ function w

with support in I with ||w||Cr+1 ≤ ε/2 and

maxw ≥ C5(r)εr+2/q2(r+1)2
,

where C5(r) = C4(r)r+1C0(r)−12−r−2. We set

h′′(x, x′) = h′(x, x′) +
∑
i∈Z

w(x+ i)v(x′ + i)

If ε is small enough, h′′ ∈Hθ′ . Moreover

||h′′ − h||Cr+2 ≤ ||h′ − h||Cr+2 + ||w||Cr+1||v||Cr+1 ≤ ε.

and
P ′′p/q+(ξ) ≥ P ′p/q+(ξ) + w(ξ)C2(r)Ψ(0)/qr+1.

So
P ′′p/q+(ξ0) ≥ C6(r)εr+2/q2(r+1)(r+2), (.4)

where ξ0 is where w reaches its maximum and C6(r) := C2(r)C5(r)Ψ(0). Notice
that C6(r) is independent of p/q and ω is Liouville, hence we can choose p/q so
close to ω that

Cθ′|ωq − p| < C6(r)εr+2/q2(r+1)(r+2), (.5)

where C is the constant in Theorem .1. When ω > p/q, by (.4)(.5) and Theorem .1,

P ′′ω (ξ0) ≥ P ′′p/q+(ξ0)− Cθ′|ωq − p| > 0.

When ω < p/q, instead of choosing y from M0+,H′ , we choose y from M0−,H′ and
use similar construction to increase P ′′p/q−.

This proves Proposition .1.

3 Nondense irrational geodesics
Theorem .2. For any Liouville number ω, one can perturb the flat Finsler metric
ϕ0 on T2 in the class of Finsler metric so that the resulting metric has a non-dense
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geodesic with rotation vector
(

ω√
1+ω2 ,

1√
1+ω2

)
∈ S1. Such perturbation can be made

C∞ small. If the unperturbed Finsler metric is reversible, the resulting Finsler
metric can be chosen to be reversible as well.

Proof. For any Liouville number ω, by taking an action of some matrix in SL(2,Z)
on the lattice and then translate in universal cover, we may assume ω is close to 0.
Recall in Section 3.2, when n = 2, the map R1 is given by

R1 : S1 × (−1, 1)→ S1 × (−1, 1), (x, y) 7→
(
x+ y

ψ(y) , y
)
.

We have R1 ∈ IFT (−1, 1) and its generating function is

h(x, x′) = κ(x− x′) :=
√
dϕ0((x, 0), (x′, 1)).

For any ε > 0, r ≥ 1, choose p/q sufficiently close to ω so that formula (.5)
holds. We take J = (−1/2q, 1/2q) and and use .1 to construct h′′ : R2 → R with
||h′′ − h||Cr+1 ≤ ε and the twist map R′′1 ∈ IFT (−1, 1) associated to h′′ has no
invariant circle with rotational number ω. From Aubry-Mather theory the absence
of R′′1-invariant circle implies the existence of a minimal R′′1-invariant Cantor set
whose projection to S is also Cantor. Let K be the support of R′′1 −R1. It is not
hard to see π(K) ⊆ (−1/q, 1/q) and π(R(K)) ⊆ (−ω − 3

q
, ω + 3

q
). Hence K is

penetrating for large q.
From Proposition 3.2 there exists a reversible Finsler metric ϕ̃ on T2 such that

the Poincaré map of the geodesic flow is Π−1 ◦R′′1 ◦Π. The R′′1-invariant Cantor set
with rotation number ω implies the existence of a nondense geodesic with rotation
vector

(
ω√

1+ω2 ,
1√

1+ω2

)
. This proves Theorem 3.1.
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