The Pennsylvania State University
The Graduate School
Eberly College of Science

ON SOME PROBLEMS IN LAGRANGIAN DYNAMICS AND FINSLER GEOMETRY

A Dissertation in
Mathematics
by
Dong Chen
© 2017 Dong Chen

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

The dissertation of Dong Chen was reviewed and approved* by the following:

Dmitri Burago
Distinguished Professor of Mathematics
Dissertation Advisor
Chair of Committee

Federico Rodriguez Hertz
Professor of Mathematics

Mark Levi
Professor of Mathematics

Runze Li
Verne M. Willaman Professor of Statistics

Yuxi Zheng
Francis R. Pentz and Helen M. Pentz Professor of Science Department Head

[^0]
Abstract

The purpose of this dissertation is to present several applications of enveloping functions and dual lens maps to geometry and dynamical systems. In Chapter 1 we have a brief review on basic notions and theory we need to understand the main results. In Chapter 2 we prove that given a point on a Finsler surface, one can always find a neighborhood of the point and isometrically embed this neighborhood into a Finsler torus without conjugate points. The major tool is enveloping functions.

In Chapter 3 we introduce the dual lens map technique developed by Burago and Ivanov. It derives from enveloping functions and symplectic geometry. We then show how this technique is used to perturb the geodesic flows of flat Finsler tori.

In Chapter 4 we show how dual lens map can be used in KAM theory. The celebrated KAM Theory says that if one makes a small perturbation of a nondegenerate completely integrable system, we still see a huge measure of invariant tori with quasi-periodic dynamics in the perturbed system. These invariant tori are known as KAM tori. What happens outside KAM tori draws a lot of attention. We show two types of Lagrangian perturbations of the geodesic flow on flat Finsler tori. The perturbations are C^{∞} small but the resulting flows has a positive measure of trajectories with positive Lyapunov exponent. The measure of this set is of course extremely small. Still, the flow has positive metric entropy. From this result we get positive metric entropy outside some KAM tori and it gives positive answer to a question asked by Kolmogorov.

Table of Contents

List of Figures vi
Acknowledgments vii
Chapter 1
Preliminaries 2
1.1 Hamiltonian flow on a cotangent bundle 2
1.2 Geodesic flows on Finsler manifolds and its entropy 3
1.3 Geometry on Finsler manifolds 4
1.4 Entropy non-expansive flows 4
Chapter 2
Local Structures of Finsler Tori Without Conjugate Points 6
2.1 Introduction 6
2.2 Enveloping functions 7
2.3 Total flexibility of local structures of Finsler tori without conjugate points 9
Chapter 3
Dual Lens Maps and Its Application to Geodesic Flows 12
3.1 Dual lens map 12
3.2 Perturbation on flat Finsler tori 13
Chapter 4
Positive Metric Entropy in KAM Systems 17
4.1 Introduction 17
4.2 Non-ergodic Donnay-Burns-Gerber tori 18
4.3 Construction of a non-ergodic DBG torus 20
4.4 Perturbation of the Hamiltonian H_{0} 23
4.5 Perturbation of $\tilde{H}_{0}=-\sqrt{1-2 H_{0}}$ 24
4.6 Entropy exapansive cases 26
4.7 Entropy non-exapansive cases 27
Appendix
Nondense Irrational Geodesics in Nearly Flat Finsler Tori 30
1 Twist maps, minimal configurations and Peierls' barrier 30
1.1 Twist maps and generating functions 30
1.2 Properties of functions in \mathscr{H}_{θ} 32
1.3 Minimal configuration and Rotation symbols 33
1.4 Peierls' barrier 34
2 An extension of Mather's destruction of invariant circle 35
3 Nondense irrational geodesics 39
Bibliography 41

List of Figures

$$
\text { 4.1 Graphs of } u_{S}, u_{C} \text { and } u \text {. } 19
$$

4.2 Graph of ρ 22

Acknowledgments

I would love to take this opportunity to express my deepest gratitude to Dima Burago, who has been an awesome advisor throughout my six years' graduate studies in Penn State. He is always there to listen, to support, to guide, and to help me succeed in every way. His immense knowledge and patient endure guided my research into the right direction. My entire graduate experience became so meaningful and enjoyable because of Dima.

I would also extend my appreciation to my dissertation committee members: Profs. Federico Rodriguez Hertz, Marc Levi, Runze Li, as well as Anton Petrunin, who served in my committee during my comprehensive exam. I am indebted to you all. I am also thankful to Profs. Vadim Kaloshin, Anatoly Katok, Sergei Ivanov, Leonid Polterovich, Yakov Sinai, Daniel Thompson and Anatoly Vershik, for their invitation, interest in my work and useful comments.

I am grateful to the graduate students, especially those in the dynamical group and on the fourth floor of McAllister, for providing a friendly, stimulating and enthusiastic work environment. I greatly value their friendship and deeply appreciate their faith in me. Many thanks also go to the faculty and staff in Department of Mathematics. Thank you for making this a memorable and fruitful experience.

Finally, special thanks are due to my parents for their unconditional love and continued support on my dreams. I owe you everything and love you.

Chapter 1 Preliminaries

1.1 Hamiltonian flow on a cotangent bundle

Let $\left(\Omega^{2 n}, \omega\right)$ be a $2 n$-dimensional symplectic manifold. Let H be a smooth function on $T^{*} M$. We can define the Hamiltonian vector field X_{H} as the unique solution to the equation

$$
\omega\left(X_{H}, V\right)=d H(V)
$$

for any smooth vector field V on $\Omega . X_{H}$ is well-defined due to nondegeneracy of ω. The flow Φ_{H}^{t} on Ω defined by $\dot{\Phi}_{H}^{t}=X_{H}$ is called the Hamiltonian flow on Ω with Hamiltonian H. One can easily verify that Φ_{H}^{t} preserves ω and hence the volume form ω^{n}. The metric entropy of Φ_{H}^{t} is defined to be the measure theoretical entropy with respect to the volume form ω^{n}.

If ω is exact (i.e. $\omega=d \theta$ for a 1 -form θ), θ is preserved on each energy level by the Hamitonian flow Φ_{H}^{t} if and only if H is positively homogeneous in coordinates of cotangent spaces (i.e. $H(q, \lambda p)=\Theta(\lambda) H(q, p)$ for some positive function Θ, see [23]). Such Hamiltonians are called generalized homogeneous.

Let H be a generalized homogeneous Hamiltonian and h be a noncritical value of H, then θ is a contact form on the level set $H^{-1}(h)$ and Φ_{H}^{t} is a contact flow. The measure defined by $\theta \wedge(d \theta)^{n-1}$ is an invariant measure of the flow Φ_{H}^{t}. This volume form is called the Liouville measure. The Hamiltonian flow Φ_{H}^{t} has positive metric entropy if and only if its restriction on $H^{-1}(h)$ has positive measure theoretical entropy with respect to the Liouville measure.

1.2 Geodesic flows on Finsler manifolds and its entropy

A typical example of a Hamiltonian flow with generalized homogeneous Hamiltonian is the geodesic flow on a Finsler manifold. Let M be a smooth manifold. A Finsler metric φ on M is a smooth family of quadratically convex norms $\varphi(x, \cdot)$ on each tangent space $T_{x} M$. It is reversible if $\varphi(x, v)=\varphi(x,-v)$ for all $x \in M, v \in T_{x} M$. Let (M, φ) be a Finsler manifold with its unit tangent bundle $U T M$. We define the dual norm on cotangent bundle $T^{*} M$ by

$$
\varphi^{*}(\alpha):=\sup _{v \in U T_{x} M}\{\alpha(v)\}, \text { for } \alpha \in T_{x}^{*} M
$$

The cotangent bundle $T^{*} M$ has an exact natural symplectic form ω. The geodesic flow g_{t} on (M, φ) is defined to be the Hamiltonian flow on the cotangent bundle $T^{*} M$ with generalized homogeneous Hamiltonian $\left(\varphi^{*}\right)^{2} / 2$.

For any point x in (M, φ), the unit ball B_{x} in $T_{x} M$ is a convex body. By F . John [22], among all ellipsoids contained in B_{x}, there exists a unique ellipsoid E_{x} with maximum volume. E_{x} is the unit sphere of some quadratic form on $T_{x} M$. In this way we can define quadratic forms on each tangent spaces and these forms are close to Finsler norms. In this way we can associate with the Finsler metric φ a Riemannian metric g_{φ}, from which $U T M$ inherits a Riemannian structure (see [33] for details). This metric is called the Sasaki metric. For each vector $\zeta \in T_{v} U T M$ we define the Lyapunov exponent by

$$
\chi^{+}(v, \zeta):=\limsup _{t \rightarrow \infty} \frac{\ln \left\|D g_{t} \zeta\right\|}{t}
$$

and the upper Lyapunov exponent by

$$
\chi^{+}(v):=\max _{\zeta \in T_{v} U T M} \chi^{+}(v, \zeta) .
$$

For our purpose, there is no need to recall the precise definition of the metric entropy h_{μ} for the Liouville measure μ on $U T M$. Indeed, it is enough to know that Pesin's inequality [32]

$$
\begin{equation*}
h_{\mu} \geq \int_{U T M} \chi^{+}(v) d \mu(v) \tag{1}
\end{equation*}
$$

provides a lower bound of metric entropy. Indeed, this formula tells us that the metric entropy is no less than the mean of upper Lyapunov exponent.

1.3 Geometry on Finsler manifolds

If $\gamma:[a, b] \rightarrow M$ is a smooth curve on a Finsler manifold (M, φ), then one defines the length of γ by

$$
L(\gamma):=\int_{a}^{b} \varphi\left(\gamma(t), \gamma^{\prime}(t)\right) d t
$$

Using this definition of length we define a non-symmetric metric (i.e. a positive definite function on $M \times M$ satisfying the triangle inequality) on M by letting the distance $d(x, y)$ from x to y be the infimum of the lengths of all piecewise smooth curves starting from x and ending at y. It can be non-symmetric since $d(x, y)$ may not be equal to $d(y, x)$. Under this non-symmetric metric we can define geodesics in the following way: a curve $\gamma:[a, b] \rightarrow M$ is said to be a geodesic of (M, φ) if for every sufficiently small interval $[c, d] \subseteq[a, b],\left.\gamma\right|_{[c, d]}$ realizes the distance from $\gamma(c)$ to $\gamma(d)$. In this thesis we will always assume that a geodesic is unit-speed, i.e. if γ is a geodesic, then $\varphi\left(\gamma(s), \gamma^{\prime}(s)\right)=1$, for $s \in[a, b]$. A geodesic $\gamma:[a, b] \rightarrow M$ is called minimal if for $a \leq t_{1}<t_{2} \leq b, d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=t_{2}-t_{1}$. And a C^{k} Finsler metric φ on M is called simple if every pair of points on M is connected by a unique geodesic depending C^{k} smoothly on the endpoints.

Let γ be a ray with unit speed in a Finsler manifold. Define the Busemann function $b_{\gamma}: M \rightarrow \mathbb{R}$ with respect to γ by

$$
b_{\gamma}(x):=\lim _{t \rightarrow \infty}(t-d(x, \gamma(t))) .
$$

1.4 Entropy non-expansive flows

Let Φ^{t} be a flow on a metric space (X, d). We say Φ^{t} is entropy non-expansive if for any $\epsilon>0$, there exists an orbit γ such that the set of trajectories which stay forever within distance no more than ϵ from γ contains an open invariant set on which the dynamic has positive metric entropy [4]. Basically it means that positive metric entropy can be generated in an arbitrarily small neighborhood of an orbit of
the system. The issue attracted a lot of interest, see for instance... In particular, D. Burago introduced this notion in 1988 being in mathematical isolation in the former Soviet Union, see This situation is a bit counter-intuitive since hyperbolic dynamics tends to expand and occupy all space. In our situation, however, it is generated even near a periodic orbit, meaning that hyperbolic dynamics is localized in a small neighborhood not only in the phase space but in the configuration space too. The paper [9] gave a construction of an entropy non-expansive flow however not in the context of the KAM Theory.

Chapter 2 Local Structures of Finsler Tori Without Conjugate Points

2.1 Introduction

In this chapter we study the universality of local structures of 2-dimensional Finsler tori without conjugate points. It is known that 2-dimensional Riemannian tori without conjugate points are flat, which was proved by E.Hopf [20] in 1940s. Hopf's paper is a partial answer to a question asked by Hedlund and Morse [21], that is, whether the same result still holds in all dimensions. The positive answer to this question is now known as Hopf's conjecture. After that many other people studied this problem with various assumptions. In 1994, D.Burago and S.Ivanov [7] proved the Hopf's conjecture. This breakthrough shows the rigidity of Riemannian tori without conjugate points.

Hopf's problem is originally formulated for Riemannian manifolds. On the other hand, if you look into the world of Finsler manifolds, the whole picture of Finsler tori without conjugate points remains veiled. There are examples of non-flat Finsler tori without conjugate points, thus the original Hopf's conjecture does not hold in Finsler case. One can construct such a non-flat Finsler 2-torus by making symplectic (contact) perturbations on the Euclidean torus [25] or constructing some metric of revolution [35].

Before Burago and Ivanov, Croke and Kleiner [15] have shown that in the Riemannian case, if a torus without conjugate points has a smooth (or bi-Lipschitz) Heber foliation [19], then it is flat. Smoothness of the Heber foliation is (more or
less) equivalent to the assertion that the geodesic flow is smoothly conjugate to that of some flat Finsler torus. It is still an open question if the Heber foliation of a Finsler manifold without conjugate points is smooth, and whether the geodesic flow of such manifold is smoothly conjugate to that of some flat Finsler torus. We even do not know whether every geodesic with an irrational rotation number is dense in a 2-dimensional Finsler torus without conjugate points.

In this chapter I extend an approach suggested by Burago-Ivanov to show that there are no local restrictions for a metric to be the metric of a Finsler torus without conjugate points. Therefore the world of Finsler tori without conjugate points is much wider than the examples to the best of my knowledge. See Theorem 2.1 for precise formulation.

In order to proof Theorem 2.1 we generalize the concept of Busemann functions on Finsler manifold to an enveloping function. Such extension does not depend on the ray. And we can get back the Finsler metric from the enveloping function. By perturbing the enveloping function we can get a perturbation of the Finsler metric.

2.2 Enveloping functions

We use some notation and techniques from [8]. To make this note more readerfriendly, we copy them here.

Definition 2.1. A function f on a Finsler manifold (M, φ) is called forward 1 -Lipschitz if for $p, q \in M, f(p)-f(q) \leq d(q, p)$.

Let (M, φ) be a Finsler manifold. We have a norm φ^{*} on the cotangent bundle $T^{*} M$ given by:

$$
\varphi^{*}(\alpha):=\sup \left\{\alpha(v) \mid v \in T_{x} M, \varphi(v)=1\right\}
$$

for $x \in M, \alpha \in T_{x}^{*} M$. And we denote by $U M$ and $U^{*} M$ the bundles of unit spheres of φ and φ^{*}. Since φ is Minkowski on each tangent space, φ^{*} is also Minkowski on each cotangent space, hence $U_{x}^{*} M$ is quadratically convex for all $x \in M$. A C^{1} function on M is called distance-like if $\varphi^{*}\left(d_{x} f\right)=1$ for all $x \in M$.

Notice that a distance-like function is always forward 1-Lipschitz. In fact, for any $x, y \in M$ and any unit-speed curve $c:[a, b] \rightarrow M$ starting at x and ending at
y, if f is distance-like, then

$$
f(y)-f(x)=\int_{a}^{b} d f_{c(s)}\left(c^{\prime}(s)\right) d s \leq b-a=L(c)
$$

By taking the infimum for all c, f is forward 1-Lipschitz.

Let S be a smooth manifold diffeomorphic to S^{n-1} where $n=\operatorname{dim} M$.
Definition 2.2. A continuous function $F: S \times M \rightarrow \mathbb{R}$ is called a C^{k} enveloping function for φ if F is C^{k} smooth outside $S \times \partial M$ and the following conditions are satisfied:
(a) For every $p \in S$, the function $F_{p}:=F(p, \cdot)$ is distance-like.
(b) For every $x \in M$, the map $p \rightarrow d_{x} F_{p}$ is a diffeomorphism from S to $U_{x}^{*} M$.

If M is a manifold with boundary S, φ is a C^{k} simple Finsler metric and F is given by $F(p, x):=d(p, x)$, then F is a C^{k} enveloping function. On the other hand, given an enveloping function F we can define a distance function on $M \times M$ by

$$
d_{F}(x, y):=\sup _{p \in S} F(p, y)-F(p, x) .
$$

By d_{F} we can define a metric φ_{F} on $T M$, and the unit sphere of φ_{F}^{*} in $T_{x}^{*} M$ is the image of the map $S \rightarrow T_{x}^{*} M, p \mapsto d_{x} F_{p}$.

Lemma 2.1. Let F be an enveloping function for φ. Then there exists a function $\delta: M \rightarrow \mathbb{R}$ depending only on φ such that for every $\tilde{F}: S \times M \rightarrow \mathbb{R}$ with

$$
\left\|d_{x} F .-d_{x} \tilde{F} \cdot\right\|_{C^{2}\left(S, T_{x}^{*} M\right)}<\delta(x)
$$

for all $x \in M$, we can find a Finsler metric $\tilde{\varphi}$ on M such that \tilde{F} is an enveloping function for $\tilde{\varphi}$. In particular, if M is compact or φ is flat, $\delta(x)$ can be chosen to be a constant.

Proof. Since φ is a Finsler metric, the image of the map $S \rightarrow T_{x}^{*} M, p \mapsto d_{x} F_{p}$ is quadratically convex. And $p \mapsto d_{x} \tilde{F}_{p}$ is a C^{2} small perturbation of this map, hence also has quadratically convex image, therefore the image is the unit sphere of some Minkowski norm on $T_{x}^{*} M$. And the dual norm $\tilde{\varphi}$ is a Finsler norm at x.

Definition 2.3. Let f be a distance-like function on a Finsler manifold (M, φ), and $\gamma:[a, b] \rightarrow M$ be a geodesic. We say that γ is calibrated by f if $f\left(\gamma\left(t_{2}\right)\right)-f\left(\gamma\left(t_{1}\right)\right)=$ $t_{2}-t_{1}$, for any $a \leq t_{1}<t_{2} \leq b$.

The (Finslerian) gradient of a distance-like function $f: D \rightarrow \mathbb{R}$ at $x \in D$, denoted $\operatorname{grad} f(x)$, is defined to be the unit tangent vector $v \in U_{x} D$ such that $d_{x} f(v)=1$. If γ is calibrated by f, then for all points on γ, the tangent vector of γ coincide with the gradient of f.

Lemma 2.2. If we have an enveloping function F on a Finsler manifold (M, φ), then M has no conjugate points.

Proof. If f is a distance-like function on M, then any integral curve of $\operatorname{grad} f$ is a minimal geodesic. In fact, let $\gamma:[a, b] \rightarrow M$ be such a unit-speed curve and $a \leq t_{1}<t_{2} \leq b$. Then for all $s \in(a, b), d f_{\gamma(s)}\left(\gamma^{\prime}(s)\right)=1$ since $\gamma^{\prime}(s)$ is the gradient of f at $\gamma(s)$. Thus

$$
t_{2}-t_{1} \geq d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right) \geq f\left(\gamma\left(t_{2}\right)\right)-f\left(\gamma\left(t_{1}\right)\right)=\int_{t_{1}}^{t_{2}} d f_{\gamma(s)}\left(\gamma^{\prime}(s)\right) d s=t_{2}-t_{1}
$$

This implies $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=t_{2}-t_{1}=f\left(\gamma\left(t_{2}\right)\right)-f\left(\gamma\left(t_{1}\right)\right)$. Hence γ is a minimal geodesic and it is calibrated by f.

Now let $\sigma:[a, b] \rightarrow M$ be a geodesic. Since a geodesic is a local minimizer, we can find $\delta>0$ such that $d(\sigma(a), \sigma(a+\delta))=\delta$. Let $p \in S$ be a point such that $d_{\sigma(a)} F_{p}$ is the dual to $\sigma^{\prime}(a)$, then the integral curve γ of $\operatorname{grad} F_{p}$ with $\gamma(a)=\sigma(a)$ is a minimal geodesic calibrated by F_{p}. Since γ and σ are geodesics with the same starting point and initial direction, $L(\gamma)=b-a=L(\sigma)$, therefore $\gamma=\sigma$. Therefore σ is a minimal geodesic. This implies any geodesic is a minimal one, so M has no conjugate points.

Remark 2.1. By the proof of Lemma 2.2, if a geodesic γ is calibrated by a distance-like function, then γ is minimal.

2.3 Total flexibility of local structures of Finsler tori without conjugate points

Theorem 2.1. [12] Suppose (M, φ) is a $C^{k}(k \geq 3)$ Finsler surface. Then for
any $p_{0} \in M$, we can find a neighborhood U of p_{0}, and an isometric embedding $\Psi:\left(U,\left.\varphi\right|_{T U}\right) \rightarrow\left(\mathbb{T}^{2}, \tilde{\varphi}\right)$, where $\left(\mathbb{T}^{2}, \tilde{\varphi}\right)$ is a C^{k} Finsler torus without conjugate points. If in addition, φ is reversible, then $\tilde{\varphi}$ can be chosen to be reversible too.

Proof. Lei $\psi: U_{0} \rightarrow \mathbb{R}^{2}$ be a local chart around p_{0} mapping p_{0} to origin. Since ψ is a diffeomorphism we can define the metric on $\psi\left(U_{0}\right)$ simply by pushing forward that on U_{0} through ψ. Once we get this isometric embedding, we can assume the image of ψ is $U_{\epsilon}:=\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \alpha^{2}+\beta^{2}<\epsilon^{2}\right\}$, and we identify U_{0} with U_{ϵ}. By choosing small ϵ and let D_{ϵ} be the closure of U_{ϵ}, we get a simple Finsler metric on D_{ϵ}. Let φ_{0} be a constant Finsler metric on \mathbb{R}^{2} which is identical to $\left.\varphi\right|_{T_{p_{0}} D}$. For each $x \in \mathbb{R}^{2}$ denote by S_{x} the unit circle of φ_{0} in $T_{x} \mathbb{R}^{2}$. For any $q \in S_{x}$ there exists a unique $q^{*} \in T_{x}^{*} \mathbb{R}^{2}$ supporting q (i.e. $q^{*}(q)=1$ and $q^{*}\left(S_{x}\right) \leq 1$.) and we denote $S_{x}^{*}:=\left\{q^{*}: q \in S_{x}\right\}$. Due to the smoothness of φ, we can choose small ϵ so that

$$
\begin{equation*}
\left\|\varphi^{*}(x, \cdot)-\varphi_{0}^{*}(x, \cdot)\right\|_{C^{k}\left(S_{x}^{*}\right)}<\delta(x) \tag{}
\end{equation*}
$$

for all $x \in U_{\epsilon}$, where δ is the function in Lemma 1 .
For $p \in S_{p_{0}}$, let $\gamma_{p}^{0}:\left[-a_{0}, b_{0}\right] \rightarrow D_{\epsilon}$ be the geodesic in the Finsler disk $\left(D_{\epsilon}, \varphi_{0}\right)$ with $\gamma_{p}^{0}(0)=p_{0}$ and $\left(\gamma_{p}^{0}\right)^{\prime}(0)=p$. Let $\gamma_{p}:[-a, b] \rightarrow D_{\epsilon}$ be the geodesic in $\left(D_{\epsilon}, \varphi\right)$ with $\gamma_{p}(0)=p_{0}, \gamma_{p}^{\prime}(0)=p$. Then we can define a function F on $S_{p_{0}} \times D_{\epsilon}$ by the following: if x lies on the left hand side of the direction of γ_{p}, then $F(p, x):=d\left(x, \gamma_{p}\right)$, otherwise define $F(p, x):=-d\left(\gamma_{p}, x\right)$. Then F is a C^{k} enveloping function for φ.

Similar as above we get a C^{∞} enveloping function F^{0} on $S_{p_{0}} \times \mathbb{R}^{2}$ for the constant metric φ_{0}. From (*) we know that

$$
\begin{equation*}
\left\|d_{x} F .-d_{x} F^{0} .\right\|_{C^{k}\left(S_{p_{0}}, T^{*} D_{\epsilon}\right)}<\delta(x) \tag{**}
\end{equation*}
$$

for all $x \in D_{\epsilon}$. Extend F to $S_{p_{0}} \times \mathbb{R}^{2}$ so that (**) holds for all $x \in \mathbb{R}^{2}$.
Take a large r and let g be a function on \mathbb{R}^{2} with value 1 on D_{ϵ} and value 0 outside D_{r}. By choosing r large enough we may assume g has very small $i \operatorname{th}(1 \leq i \leq k)$ derivatives. Take $l>r$ and define a function \tilde{F} on $S_{p_{0}} \times[-l, l]^{2}$ by

$$
\tilde{F}(p, x)=F(p, x) g(x)+F^{0}(p, x)(1-g(x)) .
$$

Extend \tilde{F} to $S_{p_{0}} \times \mathbb{R}^{2}$ by setting
$\tilde{F}(p, x+(2 l m, 2 l n))=F^{0}(p, x+(2 l m, 2 l n))+\tilde{F}(p, x)-F^{0}(p, x)$, for $(m, n) \in \mathbb{Z}^{2}$.
\tilde{F} satisfies $\left({ }^{* *}\right)$ if we replace F by \tilde{F}. By Lemma $1, \tilde{F}$ is an enveloping function for some Finsler metric $\tilde{\varphi}$ on \mathbb{R}^{2}. By Lemma 2 we know that $\tilde{\varphi}$ has no conjugate points. Since \tilde{F} is quasiperiodic on x, the metric $\tilde{\varphi}$ is periodic on x, hence it projects to a Finsler metric on $\mathbb{T}^{2}:=\mathbb{R}^{2} /(2 l \mathbb{Z})^{2}$. $\tilde{\varphi}$ agrees with φ on $T D_{\epsilon}$ and it agrees with φ_{0} on $T\left(\mathbb{T}^{2} \backslash D_{r}\right)$.

Suppose φ is symmetric, use the same notations as above, then γ_{p} and γ_{-p} are the same curve with different directions. Therefore we have

$$
\begin{equation*}
F(p, x)=-F(-p, x), \tag{***}
\end{equation*}
$$

for all $x \in D_{\epsilon}$. Extend F to $S_{p_{0}} \times \mathbb{R}^{2}$ so that (${ }^{* * *)}$ holds. Repeating the procedures as above we get a function \tilde{F} on $S_{p_{0}} \times \mathbb{R}^{2}$. Now define

$$
\tilde{d}(x, y)=\max _{p \in S_{p_{0}}} \tilde{F}(p, x)-\tilde{F}(p, y)
$$

then \tilde{d} is symmetric and it is C^{k} close to d_{0}, which is the metric on \mathbb{R}^{2} generated by φ_{0}. As we get such metric \tilde{d}, we can define a Finsler metric on the tangent bundle in the following way: for $x \in \mathbb{R}^{2}, v \in T_{x} \mathbb{R}^{2}$, let $c:\left(-\epsilon_{1}, \epsilon_{1}\right) \rightarrow D_{r}$ be a curve with $c(0)=x, c^{\prime}(0)=v$. Define

$$
\tilde{\varphi}(x, v):=\lim _{t \rightarrow 0} \frac{\tilde{d}(x, c(t))}{t} .
$$

Then \tilde{F} is an enveloping function for $\tilde{\varphi}$. By symmetry of \tilde{d} we get symmetry of $\tilde{\varphi}$.

Chapter 3 Dual Lens Maps and Its Application to Geodesic Flows

3.1 Dual lens map

Here we use the notions and definitions from [9].
Definition 3.1. A Finsler metric φ on an n-dimensional disc D is called simple if it satisfies the following three conditions:
(S1) Every pair of points in D is connected by a unique geodesic.
(S2) Geodesics depend smoothly on their endpoints.
(S3) The boundary is strictly convex, that is, geodesics never touch it at their interior points.

Once (D, φ) is simple, denote by $U_{\text {in }}, U_{\text {out }}$ the set of inward, outward pointing unit tangent vectors with base points in ∂D respectively. With any vector $\nu \in U_{i n}$, we can associate a unique vector $\beta(\nu) \in U_{\text {out }}$, namely the tangent vector of the (unique) geodesic with initial velocity ν at its next intersection point with ∂D. This defines a map $\beta: U_{\text {in }} \rightarrow U_{\text {out }}$, which is called the lens map of φ. If φ is reversible, then the lens map is reversible in the following sense: $-\beta(-\beta(\nu))=\nu$ for every $\nu \in U_{i n}$.

We denote by $U T^{*} D$ the unit sphere bundle with respect to the dual norm φ^{*}. Let $\mathscr{L}: T D \rightarrow T^{*} D$ be the Legendre transform of the Lagrangian $\varphi^{2} / 2$. It maps $U T D$ to $U T^{*} D$. For a tangent vector $\nu \in U T_{x} D$, its Legendre transform $\mathscr{L}(\nu)$ is the unique covector $\chi \in U_{x}^{*} D$ such that $\chi(\nu)=1$.

Then consider subsets $U_{\text {in }}^{*}=\mathscr{L}\left(U_{\text {in }}\right)$ and $U_{\text {out }}^{*}=\mathscr{L}\left(U_{\text {out }}\right)$ of $U T^{*} D$. The dual lens map of φ is the map $\sigma: U_{\text {in }}^{*} \rightarrow U_{\text {out }}^{*}$ given by $\sigma:=\mathscr{L} \circ \beta \circ \mathscr{L}^{-1}$ where β is the lens map of φ. If φ is reversible then σ is symmetric in the sense that $-\sigma(-\sigma(\chi))=\chi$ for all $\chi \in U_{i n}^{*}$.

Note that $U_{\text {in }}^{*}$ and $U_{\text {out }}^{*}$ are $(2 n-2)$-dimensional submanifolds of $T^{*} D$. The restriction of the canonical symplectic 2-form of $T^{*} D$ to $U_{\text {in }}^{*}$ and $U_{\text {out }}^{*}$ determines the symplectic structure. And the dual lens map σ is symplectic. In [9], by using enveloping functions, Burago and Ivanov proved the following theorem:

Theorem 3.1 (Burago-Ivanov [9]). Assume that $n \geq 3$. Let φ be a simple metric on $D=D^{n}$ and σ its dual lens map. Let W be the complement of a compact set in $U_{i n}^{*}$. Then every sufficiently small symplectic perturbation $\tilde{\sigma}$ of σ such that $\left.\tilde{\sigma}\right|_{W}=\left.\sigma\right|_{W}$ is realized by the dual lens map of a simple metric $\tilde{\varphi}$ which coincides with φ in some neighborhood of ∂D.

The choice of $\tilde{\varphi}$ can be made in such a way that $\tilde{\varphi}$ converges to φ whenever $\tilde{\sigma}$ converges to σ (in C^{∞}). In addition, if φ is a reversible Finsler metric and $\tilde{\sigma}$ is symmetric then $\tilde{\varphi}$ can be chosen reversible as well.

In the same paper they proved the above theorem for $n=2$ with additional requirement:

Proposition 3.1 (Burago-Ivanov [9]). Let φ be a simple metric on D^{2} and σ its dual lens map. If $\tilde{\sigma}$ satisfies the conditions in Theorem 3.1 and moreover, there is an open subset $O \subseteq S$ such that

$$
\left.\tilde{\sigma}\right|_{O_{i n}^{*}}=\left.\sigma\right|_{O_{i n}^{*}},
$$

here $O_{i n}^{*}:=\pi^{-1}(O) \cap U_{i n}^{*}$, then $\tilde{\sigma}$ is a dual lens map of some simple Finsler metric in D^{2} which coincides with φ in some neighborhood of ∂D. The convergence and reversibility are the same as in Theorem 3.1.

3.2 Perturbation on flat Finsler tori

Let $\left(\mathbb{T}^{n}, \varphi_{0}\right)$ be a torus with flat Finsler metric φ_{0} and $U T^{*} \mathbb{T}^{n}$ be its unit cotangent bundle with standard coordinates $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$. It is not hard to see that $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ are action-angle coordinates of the geodesic flow. We
think of \mathbb{T}^{n} as the cube $[-1 / 2,1 / 2]^{n}$ with sides identified. Take a submanifold $T_{0}:=$ $\left\{q_{n}=-1 / 2\right\}$ and a section $\Gamma_{0}:=\left\{\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right) \in U T^{*} \mathbb{T}^{n}: q_{n}=-1 / 2, p_{n}>\right.$ $0\}$. Γ_{0} inherits a natural symplectic form from $T^{*} \mathbb{T}^{n}$. We set $R_{0}: \Gamma_{0} \rightarrow \Gamma_{0}$ to be the Poincaré map to Γ_{0} of the geodesic flow on $\left(\mathbb{T}^{n}, \varphi_{0}\right)$.

Denote by $\mathbf{q}=\left(q_{1}, \ldots, q_{n-1}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n-1}\right)$. We can find a neighborhood $O_{p} \subseteq \mathbb{R}^{3}$ of $\mathbf{0}$ such that for the covectors in Γ_{0} with $\mathbf{p} \in O_{p}$ we have $p_{n}=\psi(\mathbf{p})$ for some positive function ψ. Let $\Pi: \Gamma_{0} \rightarrow T^{*} T_{0}$ be the canonical projection defined by

$$
\Pi\left(\mathbf{q},-1 / 2, \mathbf{p}, p_{n}\right)=(\mathbf{q}, \mathbf{p})
$$

It is clear that Π is a symplectic bijection between $\Pi^{-1}\left(T_{0} \times O_{p}\right)$ and $T_{0} \times O_{p}$.
Define

$$
R_{1}:=\Pi \circ R_{0} \circ \Pi^{-1}: T_{0} \times O_{p} \rightarrow T_{0} \times O_{p}
$$

By a simple calculation we know the map $R: \mathbb{R}^{n-1} \times O_{p} \rightarrow \mathbb{R}^{n-1} \times O_{p}$ defined by

$$
R(\mathbf{q}, \mathbf{p})=\left(\mathbf{q}+\psi(\mathbf{p})^{-1} \mathbf{p}, \mathbf{p}\right)
$$

is a lift of R_{1} to the universal cover. We say a compact set $K \subseteq \mathbb{R}^{n-1} \times O_{p}$ is penetrating if there exists $r_{0}<1$ such that

$$
\pi(K) \subseteq B_{0}\left(r_{0}\right) \text { and } \pi(R(K)) \subseteq B_{0}\left(r_{0}^{-1}\right)
$$

here $\pi: T^{*} \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ is the bundle projection and $B_{0}(r)$ is the Euclidean open ball with radius r and center the origin. Since $r_{0}<1$ we can also regard a penetrating K as a subset of $B^{*} T_{0}$. In particular, if O_{p} and $\pi(K)$ are both small neighborhoods around $\mathbf{p}=\mathbf{0}$ and $\mathbf{q}=\mathbf{0}$ respectively, then K is penetrating.

Proposition 3.2. Assume that $n \geq 2$ and K is a penetrating compact set in $T_{0} \times O_{p}$. For any sufficiently C^{∞}-small symplectic perturbation \tilde{R}_{1} of R_{1} coinciding with R_{1} outside K, there exists a Finsler metric $\tilde{\varphi}$ on \mathbb{T}^{n} that agrees with φ_{0} on Γ_{0} such that the Poincaré map to Γ_{0} of the geodesic flow on $\left(\mathbb{T}^{n}, \tilde{\varphi}\right)$ is $\Pi^{-1} \circ \tilde{R}_{1} \circ \Pi$. The convergence and reversibility are the same as in Theorem 3.1.

Proof. Denote by D^{n} the n-dimensional ball inscribed in $[-1 / 2,1 / 2]^{n}$ and σ : $U_{i n}^{*} \rightarrow U_{\text {out }}^{*}$ be the dual lens map of the Finsler disc $\left(D^{n}, \varphi_{0}\right)$. Denote $\Gamma_{ \pm}:=$ $\left\{\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right) \in U T^{*}\left(\mathbb{R}^{n}\right): q_{n}= \pm 1 / 2, p_{n}>0\right\}$ and define the projections
$\Pi_{ \pm}: \Gamma_{ \pm} \rightarrow B^{*} \mathbb{R}^{3}$ by

$$
\Pi_{ \pm}\left(\mathbf{q}, \pm 1 / 2, \mathbf{p}, p_{n}\right)=(\mathbf{q}, \mathbf{p})
$$

It is clear that both $\Pi_{ \pm}$are symplectic bijections.
For any $\alpha_{1} \in \Pi_{-}^{-1}(K)$ (resp. $\alpha_{2} \in \Pi_{+}^{-1}(R(K))$), consider its orbit (resp. backward orbit) under the geodesic flow generated by φ_{0}. Since K is penetrating, the orbit (resp. backward orbit) will intersect $U_{\text {in }}^{*}$ (resp. $U_{\text {out }}^{*}$) transversally and we denote by $\phi_{1}\left(\alpha_{1}\right)$ (resp. $\left.\phi_{2}\left(\alpha_{2}\right)\right)$ the first intersection. This defines a map $\phi_{1}: \Pi_{-}^{-1}(K) \rightarrow U_{\text {in }}^{*}\left(\right.$ resp. $\left.\phi_{2}: \Pi_{+}^{-1}(R(K)) \rightarrow U_{\text {out }}^{*}\right)$. It is clear that both ϕ_{1} and ϕ_{2} are symplectic bijections to their images.

The restriction of R on K can be decomposed as

$$
\left.R\right|_{K}=\Pi_{+} \circ \phi_{2}^{-1} \circ \sigma \circ \phi_{1} \circ \Pi_{-}^{-1}
$$

Let \tilde{R} be a lift of \tilde{R}_{1} to the universal cover. Define a dual lens map $\tilde{\sigma}: U_{\text {in }}^{*} \rightarrow U_{\text {out }}^{*}$
by

$$
\tilde{\sigma}(\alpha):= \begin{cases}\phi_{2} \circ \Pi_{+}^{-1} \circ \tilde{R} \circ \Pi_{-} \circ \phi_{1}^{-1}(\alpha), & \text { if } \alpha \in \phi_{1}\left(\Pi_{-}^{-1}(K)\right) ; \\ \sigma(\alpha), & \text { otherwise } .\end{cases}
$$

By definition, $\tilde{\sigma}$ coincides with σ outside a compact set. Moreover $\tilde{\sigma} \rightarrow \sigma$ in C^{∞} as $\tilde{R} \rightarrow R$ in C^{∞}.

By Theorem 3.1, there exists a Finsler metric $\tilde{\varphi}$ in D^{n} agreeing with φ_{0} around the boundary ∂D^{n} and the dual lens map for $\left(D^{n}, \tilde{\varphi}\right)$ is $\tilde{\sigma}$. Extend $\tilde{\varphi}$ to $[-1 / 2,1 / 2]^{n}$ by φ_{0}. Now extend $\tilde{\varphi}$ to the whole $[-1 / 2,1 / 2]^{n}$ by setting it equal to φ_{0} outside D^{n}. It is flat in a neighborhood of the boundary $\partial[-1 / 2,1 / 2]^{n}$ so it projects to a Finsler metric $\tilde{\varphi}$ (we abuse notation again) on \mathbb{T}^{n}. The Poincaré map onto Γ_{0} is $\Pi^{-1} \circ \tilde{R}_{1} \circ \Pi$. Since \tilde{R}_{1} has positive metric entropy, so does $\Pi^{-1} \circ \tilde{R}_{1} \circ \Pi$. Thus we can make a C^{∞} perturbation of φ_{0} on any small tubular neighborhood of a closed orbit γ and the resulting metric has positive metric entropy.

If φ_{0} is reversible, we define $\tilde{\sigma}$ by:

$$
\tilde{\sigma}(\alpha)= \begin{cases}\phi_{2} \circ \Pi_{+}^{-1} \circ \tilde{R} \circ \Pi_{-} \circ \phi_{1}^{-1}(\alpha), & \text { if } \alpha \in \phi_{1}\left(\Pi_{-}^{-1}(K)\right) \\ -\phi_{1} \circ \Pi_{-}^{-1} \circ \tilde{R}^{-1} \circ \Pi_{+} \circ \phi_{2}^{-1}(-\alpha), & \text { if } \alpha \in-\phi_{2}\left(\Pi_{+}^{-1}(R(K))\right) \\ \sigma(\alpha), & \text { otherwise }\end{cases}
$$

It is clear that $\tilde{\sigma}$ is symmetric. By Theorem 3.1, $\tilde{\varphi}$ can be chosen to be reversible.

Remark 3.1. We only give the proof for \mathbb{T}^{n} glued out of a cube. Similar arguments work not only for general tori glued out of parallelepipeds, but also for perturbations in any neighborhood of any closed orbit.

Chapter 4 Positive Metric Entropy in KAM Systems

4.1 Introduction

Already in the early 50 's the study of nearly integrable Hamiltonian systems has drawn the attention of many outstanding mathematicians such as Arnol'd, Kolmogorov and Moser. Indeed, for any integrable Hamiltonian system the whole phase space is foliated by invariant Lagrangian submanifolds that are diffeomorphic to tori, generally called KAM tori, and on which the dynamics is conjugated to a rigid rotation. Therefore, it is natural to ask what happens to such a foliation and to these stable motions once the system is slightly perturbed. In 1954 Kolmogorov [24] - and later Arnol'd [1] and Moser [26] in different contexts - proved that, for small perturbations of an integrable system it is still possible to find a big measure set of KAM tori. This result, commonly referred to as KAM theorem, contributed to raise new interesting questions, for instance about the destiny of the stable motions that are destroyed by effect of the perturbation (in other words, about the dynamics outside KAM tori). In this context, Arnol'd [2] constructed an example of a perturbed integrable system, in which some orbits outside KAM tori have a wide range in action variables (even though the rate of change of action variables is exponentially small [29]). This striking phenomenon, known as Arnol'd diffusion and still quite far from being fully understood, shows the presence of some randomness in the dynamics outside KAM tori. The question we address in the present paper is therefore the following: how much random can the motion outside

KAM tori be?
It is well-known that, C^{2}-generically the Hamiltonian flow has positive topological entropy (cf. [30], see also [14] for an analogous statement for Riemannian geodesic flows). Once we turn our attention to metric entropy, the problem becomes more challenging and one cannot simply derive positive metric entropy from positive topological entropy. In fact, Bolsinov and Taimanov [5] built an example of a Riemannian manifold on which the geodesic flow has positive topological entropy but zero metric entropy.

Recently Burago and Ivanov [9] used dual lens map to construct a reversible Finsler metric C^{∞}-close to the standard metric on $S^{n}, n \geq 4$, such that its geodesic flow has positive metric entropy. However the geodesic flow on the sphere is degenerate, hence it does not lie in the realm of KAM theory.

Unlike the case of spheres, the geodesic flow on flat tori are nondegenrate. In this paper we therefore provide examples analogous to Burago-Ivanov's one on torus (Theorem 4.1 and Theorem 4.2). Our theorem shows that in the complement of KAM tori, the behavior of nearly integrable Hamiltonian flows can be quite stochastic.

4.2 Non-ergodic Donnay-Burns-Gerber tori

Definition 4.1. We say that a centrally symmetric cap $\mathscr{C}=\left\{r \leq r_{1}\right\} \subseteq \mathbb{R}^{2}$ is a non-ergodic Donnay-Burns-Gerber (DBG) cap if:
(a) \mathscr{C} has two parallel geodesics $C_{r_{0}}$ and $C_{r_{1}}$, where $C_{r_{i}}:=\left\{r=r_{i}\right\}$ for $i=0,1$.
(b) The Gaussian curvature is positive on $\left\{r \leq r_{0}\right\}$, negative at $C_{r_{1}}$, and strictly decreasing from center to boundary.

If a torus contains a non-ergodic DBG cap and outside the cap the Gaussian curvature is nonpositive, then we call it a non-ergodic DBG torus.

Lemma 4.1. The geodesic flow on a non-ergodic DBG torus has positive metric entropy.

Sketch of proof. The proof is similar to the proof of Theorem 1.1 in [11]. By virtue of Clairaut's integral, any geodesic entering the cap \mathscr{C} will go out of the cap.

Let $c:\left[-T_{1}, T_{1}\right] \rightarrow \mathscr{C}$ be an arc-length parametrized geodesic with endpoints in $C_{r_{1}}$ such that $c(0)$ is the point of c closest to the origin; suppose furthermore
that $c\left(\pm T_{2}\right)$ lie in $C_{r_{0}}$, for some $0<T_{2}<T_{1}$. Let J_{S}, J_{C} be two Jacobi fields on c with $J_{S}(0)=0, J_{S}^{\prime}(0)=1, J_{C}(0)=1, J_{C}^{\prime}(0)=0$. Let $u_{S}=J_{S}^{\prime} / J_{S}, u_{C}=J_{C}^{\prime} / J_{C}$ and $K(t)$ be the Gaussian curvature at $c(t)$. Then both u_{S} and u_{C} satisfy the Riccati equation:

$$
u^{\prime}(t)+u(t)^{2}+K(t)=0
$$

By imitating the proofs of Lemma 2.5 and Lemma 2.6 in [11], we get
(A) $u_{S}\left(\pm T_{1}\right)=u_{S}\left(\pm T_{2}\right)=0$. and $J_{S}(t)$ vanishes only at $t=0$.
(B) There is a $\tau \in\left(0, T_{2}\right)$ such that $\lim _{t \rightarrow \tau^{-}} u_{C}(t)=-\infty$.

Figure 4.1. Graphs of u_{S}, u_{C} and u

If a Jacobi field J on c satisfies $J^{\prime}\left(-T_{1}\right) J\left(-T_{1}\right) \geq 0$ then $u:=J^{\prime} / J$ satisfies the Riccati equation with $u\left(-T_{1}\right) \geq 0$. This means the graph of u must lie above that of u_{S}. By (A) and (B) we have $u\left(T_{1}\right) \geq 0$. So the cone $J^{\prime} J \geq 0$ is preserved by the cap.

By Poincaré recurrence theorem, almost every vector in $U T \mathscr{C}$ will come back infinitely many times. For any geodesic c entering the cap \mathscr{C} at time t_{0}, when it returns to the cap again, say at time $t_{1}>t_{0}$, the image of the cone $\left\{J^{\prime}\left(t_{0}\right) J\left(t_{0}\right) \geq 0\right\}$ under the translation will lie strictly in the interior of $\left\{J^{\prime}\left(t_{1}\right) J\left(t_{1}\right) \geq 0\right\}$. By Wojkowski's cone field theory [34], the vectors with non-zero Lyapunov exponents
form a set with positive Liouville measure. By Pesin's inequality (1) the geodesic flow has positive metric entropy.

4.3 Construction of a non-ergodic DBG torus

In this section we construct a conformal metric on $[-1 / 2,1 / 2] \times[-1 / 2,1 / 2]$ which is flat outside a disc and centrally symmetric inside the disc. More precisely we want to build a function $g:[0,1] \rightarrow(0,1]$ such that the torus with conformal metric

$$
\begin{equation*}
d s^{2}=g(r)^{2}\left(d x^{2}+d y^{2}\right), \text { where } r:=\sqrt{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

is a non-ergodic DBG torus.
In order to get such a function g we change our coordinate system to geodesic polar coordinates. However before doing this we need some preliminary.

Definition 4.2. We say a function $\rho: I \rightarrow \mathbb{R}$ is even (resp. odd) at a point $a \in I$ if all odd (resp. even) derivatives of ρ vanish at a.

Lemma 4.2. For any smooth function $\rho: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ which is odd at $0, \rho^{\prime}(0)=1$ and is positive except at 0 , there exist smooth functions $g, l: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ such that l is odd at $0, l(0)=0, l^{\prime}(r)=g(r), g(0)=1, \rho(l(r))=r g(r)$, and g is positive.

Proof. Since

$$
\rho=r \frac{d l}{d r}
$$

we have

$$
\begin{equation*}
\frac{d r}{r}=\frac{d l}{\rho} \tag{*}
\end{equation*}
$$

Both sides of $(*)$ have singularity at 0 . Since ρ is odd at $0, \rho^{\prime}(0)=1$, for small l we have

$$
\frac{1}{\rho}=\frac{1}{l}\left(\frac{1}{1+\rho^{(3)}(0) l^{2} / 6+o\left(l^{3}\right)}\right)=\frac{1}{l}\left(\frac{1}{1+l^{2} O(1)}\right)=\frac{1}{l}\left(1+l^{2} \tilde{\rho}(l)\right)=\frac{1}{l}+l \tilde{\rho}(l)
$$

where $\tilde{\rho}$ is a smooth function that is even at 0 . We integrate both sides of $(*)$ regarding r as a function of l with $r(0)=0$. Then we get

$$
\lim _{l \rightarrow 0}(\ln r-\ln l)=\lim _{l \rightarrow 0} \int_{0}^{l} s \tilde{\rho}(s) d s=0
$$

Therefore $\lim _{l \rightarrow 0} \ln (r / l)=0$ and $\ln (r / l)$ is even at 0 . By direct computation, it is now easy to see that r / l is even at 0 . This implies that r is odd at 0 . From (*) we have

$$
\frac{d \ln r}{d l}=\frac{d r}{r d l}=\frac{1}{\rho}>0 .
$$

Therefore $\ln r(l)$ is strictly increasing and smooth, so is $r(l)$. By the Inverse Function Theorem there exists a smooth $l: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ which is the inverse function of $r(l)$. Moreover $l(0)=0, l^{\prime}(0)=1$ and l is odd at 0 . Finally we define $g(r):=l^{\prime}(r)$. It is clear that g is even at 0 and positive.

By Lemma 4.2 we have only to find $\rho: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with the following properties:
(i) ρ satisfies the conditions in Lemma 4.2;
(ii) $\rho^{\prime}\left(l_{0}\right)=\rho^{\prime}\left(l_{1}\right)=0$ for some $0<l_{0}<l_{1}$.
(iii) Let $K(l):=-\rho^{\prime \prime}(l) / \rho(l)$. Then $K(l)>0$ on $\left[0, l_{0}\right], K\left(l_{1}\right)<0$.
(iv) $K^{\prime}(l)<0$ on $\left[0, l_{1}\right]$.
(v) There exists $l_{2}>l_{1}$ such that $K(l)$ is negative on $\left[l_{1}, l_{2}\right)$ and $\rho^{\prime}(l)=1$ for $l \geq l_{2}$.

Indeed once we have such a function ρ, by Lemma 4.2 we have smooth functions $g, l: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $\rho(l(r))=r g(r)$ and $l(r)=\int_{0}^{r} g(t) d t$. Consider the metric defined by (2). By changing the coordinate system to geodesic polar coordinates, the metric becomes

$$
\begin{equation*}
d s^{2}=d l^{2}+\rho(l)^{2} d \theta^{2} \tag{3}
\end{equation*}
$$

Note that $\rho^{\prime}(l)=0$ iff the parallel at l is a geodesic, and the Gaussian curvature is given by $K(l)=-\rho^{\prime \prime}(l) / \rho(l)$. Let $r_{i}:=l^{-1}\left(l_{i}\right)$ for $i=0,1,2$. (ii) implies (a) in the definition of a non-ergodic DBG cap, while (b) can be derived from (iii) and (iv). (v) guarantees the metric is negatively curved on the annulus $\left\{r_{1}<r<r_{2}\right\}$ and is flat outside $\left\{r=r_{2}\right\}$. So once ρ satisfies (i)-(v), the torus with metric (3) will be a non-ergodic DBG torus.

Here is the construction of $\rho(l)$:
For any $a>0$, let $\lambda_{1}: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ be a C^{∞} function with the properties that $\lambda_{1} \equiv 1$ on $\left[0, \frac{1}{\sqrt{5 a}}\right]$ and $\lambda_{1} \equiv 0$ on $\left[\frac{1}{2 \sqrt{a}},+\infty\right)$. Let $\lambda_{2}: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ be another C^{∞} function with $\lambda_{2} \equiv 0$ on $\left[0, \frac{1}{\sqrt{5 a}}\right] \cup\left[\frac{1}{2 \sqrt{a}},+\infty\right)$ and positive on $\left(\frac{1}{\sqrt{5 a}}, \frac{1}{2 \sqrt{a}}\right)$. Define $\rho^{\prime \prime}(l)$ by

$$
\rho^{\prime \prime}(l)=\lambda_{1}(l)\left(-30 a l+200 a^{2} l^{3}\right)+C\left(1-\lambda_{1}(l)\right) \lambda_{2}(l),
$$

where C is a positive constant such that $\int_{0}^{\infty} \rho^{\prime \prime}(l) d l=0$. Notice that $\rho^{\prime \prime}(l)=0$ on $\left[\frac{1}{2 \sqrt{a}},+\infty\right)$. Define ρ by setting $\rho(0)=0, \rho^{\prime}(0)=1$. Then $\rho(l)=l-5 a l^{3}+10 a^{2} l^{5}$ on $\left[0, \frac{1}{\sqrt{5 a}}\right]$ and $\rho^{\prime}(l) \equiv 1$ for $l \geq \frac{1}{2 \sqrt{a}}$. The graph of ρ is shown in Figure 3.

Figure 4.2. Graph of ρ

It is easy to see that ρ satisfies (i) and (ii) for $l_{0}=\frac{1}{\sqrt{10 a}}$ and $l_{1}=\frac{1}{\sqrt{5 a}} \cdot \rho^{\prime \prime}(l)=$ $-30 a l+200 a^{2} l^{3}$ on $\left[0, l_{1}\right]$ and it is positive on $\left[l_{1}, \frac{1}{2 \sqrt{a}}\right)$, so $K(l)$ is positive on $\left\{l \leq \frac{1}{\sqrt{10 a}}\right\}$ and negative in the annulus between $\left\{l=l_{1}\right\}$ and $\left\{l=\frac{1}{2 \sqrt{a}}\right\}$. Hence ρ satisfies (iii) and (v) for $l_{2}=\frac{1}{2 \sqrt{a}}$. The last part to be verified is (iv). Since

$$
K^{\prime}(l)=-\frac{\rho \rho^{\prime \prime \prime}-\rho^{\prime} \rho^{\prime \prime}}{\rho^{2}}
$$

we only need to verify that $\rho \rho^{\prime \prime \prime}-\rho^{\prime} \rho^{\prime \prime}=100 a^{2} l^{3}\left(1+12 a l^{2}-40 a^{2} l^{4}\right)$ is positive on $\left(0, \frac{1}{\sqrt{5 a}}\right]$. This can be done by direct calculation. This finishes the construction.

Remark 4.1. The function g constructed in this way is strictly decreasing on [$0, r_{2}$] and constant for $r \geq r_{2}$ since

$$
\frac{d \rho}{d l}=\frac{d \rho}{d r} \frac{d r}{d l}=\frac{g+r g^{\prime}}{g}=1+\frac{r g^{\prime}}{g}
$$

and $\rho^{\prime}(l)<1$ on $\left(0, \frac{1}{2 \sqrt{a}}\right), \rho^{\prime}(l)=1$ for $l \geq \frac{1}{2 \sqrt{a}}$. So the supremum of g is $g(0)=1$. From Lemma 4.2 we know that the lower bound is positive.

Remark 4.2. If g satisfies the condition that a torus with metric $g(r)^{2}\left(d x^{2}+d y^{2}\right)$ is non-ergodic DBG , we can find a constant δ_{0} such that for all $\delta \in\left(-\delta_{0}, \delta_{0}\right)$, a torus with metric $\left(g(r)^{2}+\delta\right)\left(d x^{2}+d y^{2}\right)$ is also non-ergodic DBG. This follows from the fact that being a non-ergodic DBG torus is an open condition.

Remark 4.3. By choosing a sufficiently large a we can shrink the support of g^{\prime} to be as small as we want. Indeed notice that $\rho(s) \leq s$ and $\rho^{\prime}(s)>0$ on $\left(\frac{1}{\sqrt{5 a}}, \frac{1}{2 \sqrt{a}}\right)$. Therefore

$$
\begin{aligned}
\max _{s \geq 0} s-\rho(s) & =\max _{0 \leq s \leq \frac{1}{2 \sqrt{a}}} \int_{0}^{s} 1-\rho^{\prime}(t) d t \\
& =\frac{1}{\sqrt{5 a}}-\rho\left(\frac{1}{\sqrt{5 a}}\right)+\max _{0 \leq s \leq \frac{1}{2 \sqrt{a}}} \int_{\frac{1}{\sqrt{5 a}}}^{s} 1-\rho^{\prime}(t) d t \\
& <\frac{1}{\sqrt{5 a}}-\rho\left(\frac{1}{\sqrt{5 a}}\right)+\max _{0 \leq s \leq \frac{1}{2 \sqrt{a}}} s-\frac{1}{\sqrt{5 a}}<\frac{1}{3 \sqrt{a}} .
\end{aligned}
$$

From (*) we have

$$
\begin{aligned}
\ln r_{2}-\ln \left(\frac{1}{2 \sqrt{a}}\right) & =\int_{0}^{\frac{1}{2 \sqrt{a}}}\left(\frac{1}{\rho(s)}-\frac{1}{s}\right) d s \\
& =\int_{0}^{\frac{1}{\sqrt{5 a}}}\left(\frac{1}{s-5 a s^{3}+10 a^{2} s^{5}}-\frac{1}{s}\right) d s+\int_{\frac{1}{\sqrt{5 a}}}^{\frac{1}{2 \sqrt{a}}}\left(\frac{1}{\rho(s)}-\frac{1}{s}\right) d s \\
& <\int_{0}^{\frac{1}{\sqrt{5 a}}} \frac{5 a s-10 a^{2} s^{3}}{1-5 a s^{2}+10 a^{2} s^{4}} d s+\int_{\frac{1}{\sqrt{5 a}}}^{\frac{1}{2 \sqrt{a}}}\left(\frac{1}{s-\frac{1}{3 \sqrt{a}}}-\frac{1}{s}\right) d s \\
& <10 a \int_{0}^{\frac{1}{\sqrt{5 a}}} 2 s-4 a s^{3} d s+\left.\ln \left(1-\frac{1}{3 s \sqrt{a}}\right)\right|_{\frac{1}{\sqrt{5 a}}} ^{\frac{1}{2 \sqrt{a}}}<2-\ln (3-\sqrt{5}) .
\end{aligned}
$$

Thus $r_{2} \rightarrow 0$ as $a \rightarrow \infty$.

4.4 Perturbation of the Hamiltonian H_{0}

Suppose the fundamental domain of the deck group on the universal cover of our torus $\mathbb{T}^{2} \cong \mathbb{R}^{2} / \mathbb{Z}^{2}$ is $\left\{-1 / 2<q_{1}, q_{2}<1 / 2\right\}$. We use p_{1}, p_{2} to denote the coordinates in the cotangent space and denote $B^{*} \mathbb{T}^{2}:=\left\{\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \in T^{*} \mathbb{T}^{2}: p_{1}^{2}+p_{2}^{2}<1\right\}$.

In this section we want to perturb the kinetic Hamiltonian

$$
H_{0}\left(q_{1}, q_{2}, p_{1}, p_{2}\right):=\frac{p_{1}^{2}+p_{2}^{2}}{2}
$$

in such a way that the Hamiltonian flow if the resulting Hamiltonian has positive metric entropy. More precisely, we want to prove the following:

Lemma 4.3. There exists a family $\left\{H_{\epsilon}\right\}_{\epsilon>0}$ of smooth perturbations of H_{0} such that for all $\epsilon>0$, there exists an open interval I_{ϵ} with the property that for any $h \in I_{\epsilon}$, the Hamiltonian flow $\Phi_{H_{\epsilon}}^{t}$ on the level set $\left\{H_{\epsilon}=h\right\}$ has positive metric entropy.

Proof. Let $\xi: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ be a smooth function with $\xi \equiv 1$ on $[0,1 / 3]$ and $\xi \equiv 0$ on $[2 / 3,1]$. And let g be the function we built in 4.3. We define

$$
H_{\epsilon}:=H_{0}+\epsilon\left(1-g(r)^{2}\right) \xi\left(p_{1}^{2}+p_{2}^{2}\right), \text { where } r=\sqrt{q_{1}^{2}+q_{2}^{2}} .
$$

Since g is positive and $0 \leq 1-g^{2}<1$ (by Remark 4.1), we have

$$
\epsilon>\max _{(x, y) \in \mathbb{T}^{2}} \epsilon\left(1-g(r)^{2}\right) \xi\left(p_{1}^{2}+p_{2}^{2}\right) .
$$

Notice that if $H_{\epsilon}<1 / 6$ then $p_{1}^{2}+p_{2}^{2}<1 / 3$, therefore $\xi \equiv 1$ whenever the total energy is small. By the Maupertuis principle, the Hamiltonian flow $\Phi_{H_{\epsilon}}^{t}$ on the level set $\left\{H_{\epsilon}=\epsilon\right\}$ is a time change of the geodesic flow on \mathbb{T}^{2} with metric

$$
d s^{2}=\epsilon g(r)^{2}\left(d q_{1}^{2}+d q_{2}^{2}\right)
$$

This metric has positive metric entropy since, by Lemma 4.1, the metric $d s^{2}=$ $g(r)^{2}\left(d q_{1}^{2}+d q_{2}^{2}\right)$ does.

Let δ_{0} be the constant we get from Remark 4.2 and define $I_{\epsilon}:=\left(\epsilon-\epsilon \delta_{0}, \epsilon+\epsilon \delta_{0}\right)$. By using Maupertuis principle again we prove the lemma.

4.5 Perturbation of $\tilde{H}_{0}=-\sqrt{1-2 H_{0}}$

In this section we prove that a smooth perturbation of

$$
\tilde{H}_{0}\left(q_{1}, q_{2}, p_{1}, p_{2}\right):=-\sqrt{1-p_{1}^{2}-p_{2}^{2}}
$$

can be derived from a suitable perturbation of H_{0}. Since this result holds for all degrees of freedom, we use (\mathbf{q}, \mathbf{p}) to denote the coordinates instead of $\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$.

Suppose $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ has coordinates $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ and let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be the coordinates in the cotangent bundle. Denote $B^{*} \mathbb{T}^{n}=\left\{(\mathbf{q}, \mathbf{p}): \sum p_{i}^{2}<1\right\}$. Define

$$
H_{0}(\mathbf{q}, \mathbf{p}):=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}, \quad \tilde{H}_{0}(\mathbf{q}, \mathbf{p}):=-\sqrt{1-2 H_{0}(\mathbf{q}, \mathbf{p})}
$$

Then

$$
\Phi_{\tilde{H}_{0}}^{t}(\mathbf{q}, \mathbf{p})=\left(\mathbf{q}+\frac{t \mathbf{p}}{\sqrt{1-\sum p_{i}^{2}}}, \mathbf{p}\right)
$$

Let $V(\mathbf{q}, \mathbf{p})$ be a C^{2}-smooth function on $B^{*} \mathbb{T}^{n}$. We perturb H_{0} and \tilde{H}_{0} by V in the following way:

$$
H_{\epsilon}(\mathbf{q}, \mathbf{p}):=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\epsilon V(\mathbf{q}, \mathbf{p}), \quad \tilde{H}_{\epsilon}(\mathbf{q}, \mathbf{p}):=-\sqrt{1-2 H_{\epsilon}(\mathbf{q}, \mathbf{p})}
$$

Then we have
Lemma 4.4. If $\operatorname{supp} V \subseteq\left\{\sum p_{i}^{2} \leq C<1\right\}$ for some $C \in \mathbb{R}_{+}$, then for every $\delta, m, \mathcal{T}>0$, there exists $\epsilon=\epsilon(V, \delta, m, \mathcal{T})>0$ such that for each $0 \leq T \leq \mathcal{T}$ we have

$$
\left\|\Phi_{\tilde{H}_{\epsilon}}^{T}-\Phi_{\tilde{H}_{0}}^{T}\right\|_{C^{m}\left(B^{*} \mathbb{T}^{n}\right)}<\delta
$$

Proof. Denote $\Phi_{\tilde{H}_{\epsilon}}^{T}(\mathbf{q}, \mathbf{p})-\Phi_{\tilde{H}_{0}}^{T}(\mathbf{q}, \mathbf{p})$ by $(\Delta \mathbf{q}, \Delta \mathbf{p})$ as they usually do this in calculus books. Put $(\mathbf{q}(t), \mathbf{p}(t)):=\Phi_{\tilde{H}_{\epsilon}}^{t}(\mathbf{q}, \mathbf{p})$. Suppose that $H_{\epsilon}(\mathbf{q}, \mathbf{p})=E$. Then

$$
\dot{\mathbf{q}}(t)=\frac{\partial \tilde{H}_{\epsilon}}{\partial \mathbf{p}}=\frac{\mathbf{p}+\epsilon V_{\mathbf{p}}}{\sqrt{1-2 E}}, \quad \dot{\mathbf{p}}(t)=-\frac{\partial \tilde{H}_{\epsilon}}{\partial \mathbf{q}}=-\frac{\epsilon V_{\mathbf{q}}}{\sqrt{1-2 E}} .
$$

If $\sum p_{i}^{2}>C$, then $\dot{\mathbf{p}}(t) \equiv 0$, hence $\Delta \mathbf{p}=0$. Consider the trajectory $(\mathbf{q}(t), \mathbf{p}(t))$, V_{p} vanishes along it, hence $\Delta \mathbf{q}=0$. Therefore we only need to consider the case $\sum p_{i}^{2} \leq C$. Since V is compactly supported we may assume that ϵ is small enough so that $\sum p_{i}^{2}+2 \epsilon V<(1+C) / 2<1$. In this case

$$
\Delta \mathbf{p}=\int_{0}^{T} \dot{\mathbf{p}}(t) d t=-\int_{0}^{T} \frac{\epsilon V_{\mathbf{q}}}{\sqrt{1-2 E}} d t=-\frac{\epsilon}{\sqrt{1-\sum p_{i}^{2}-2 \epsilon V}} \int_{0}^{T} V_{\mathbf{q}} d t
$$

$$
\begin{aligned}
& \Delta \mathbf{q}=\int_{0}^{T} \dot{\mathbf{q}}(t) d t-\frac{\mathbf{p} T}{\sqrt{1-\sum p_{i}^{2}}}=\int_{0}^{T}\left(\dot{\mathbf{q}}(0)+\int_{0}^{t} \ddot{\mathbf{q}}(s) d s\right) d t-\frac{\mathbf{p} T}{\sqrt{1-\sum p_{i}^{2}}} \\
& =T\left(\sqrt{1-\sum p_{i}^{2}}-\sqrt{1-\sum p_{i}^{2}-2 \epsilon V}\right)_{\mathbf{p}}+\frac{\int_{0}^{T} \int_{0}^{t} \dot{\mathbf{p}}(s)+\epsilon \dot{\mathbf{p}}(s) \cdot V_{\mathbf{p p}}+\epsilon \dot{\mathbf{q}}(s) \cdot V_{\mathbf{q p}} d s d t}{\sqrt{1-2 E}} \\
& =T\left(\sqrt{1-\sum p_{i}^{2}}-\sqrt{1-\sum p_{i}^{2}-2 \epsilon V}\right)_{\mathbf{p}}+\frac{\int_{0}^{T} \int_{0}^{t}-\epsilon V_{\mathbf{q}}-\epsilon^{2} V_{\mathbf{q}} \cdot V_{\mathbf{p p}}+\epsilon\left(\mathbf{p}+\epsilon V_{\mathbf{p}}\right) \cdot V_{\mathbf{q p}} d s d t}{1-\sum p_{i}^{2}-2 \epsilon V}
\end{aligned}
$$

We can see from the above calculation that since $\sum p_{i}^{2}+2 \epsilon V<(1+C) / 2<1$, $(\Delta \mathbf{q}, \Delta \mathbf{p})$ converges to 0 uniformly in C^{m} as $\epsilon \rightarrow 0$.

4.6 Entropy exapansive cases

Theorem 4.1. [13] For every $\epsilon>0$ there exists a reversible Finsler metric on \mathbb{T}^{3} which is ϵ-close to the Euclidean metric in the C^{∞}-sense and such that the associated geodesic flow has positive metric entropy.

Proof. Suppose $\left(\mathbb{T}^{3}, \varphi_{0}\right)$ is the Euclidean 3-torus. From 3.2 we can choose $O_{p}=$ $B^{*} T_{0}=\left\{\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \in T^{*} T_{0}: p_{1}^{2}+p_{2}^{2}<1\right\}$. Then we have

$$
\psi\left(p_{1}, p_{2}\right)=\sqrt{1-p_{1}^{2}-p_{2}^{2}}
$$

Hence the lift of R_{1} to universal cover is

$$
R\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\left(q_{1}+\frac{p_{1}}{\sqrt{1-p_{1}^{2}-p_{2}^{2}}}, q_{2}+\frac{p_{2}}{\sqrt{1-p_{1}^{2}-p_{2}^{2}}}, p_{1}, p_{2}\right)
$$

Therefore $R_{1}=\Phi_{\tilde{H}_{0}}^{1}$. Note that $\Phi_{\tilde{H}_{0}}^{t}$ and $\Phi_{H_{0}}^{t}$ are the same up to time reparametrization. Let H_{ϵ} be the perturbation of H_{0} as in Lemma 4.3, and define

$$
\tilde{H}_{\epsilon}:=-\sqrt{1-2 H_{\epsilon}} .
$$

$\Phi_{\tilde{H}_{\epsilon}}^{t}$ has the same trajectories as $\Phi_{H_{\epsilon}}^{t}$, hence $\Phi_{\tilde{H}_{\epsilon}}^{t}$ has positive metric entropy since $\Phi_{H_{\epsilon}}^{t}$ does. Since the support of perturbation is contained in $\left\{p_{1}^{2}+p_{2}^{2}<2 / 3\right\}$, $\tilde{H}_{\epsilon} \rightarrow \tilde{H}_{0}$ in C^{∞}. From Lemma 4.3 we know that $\Phi_{\tilde{H}_{\epsilon}}^{1} \rightarrow \Phi_{\tilde{H}_{0}}^{1}=R_{1}$ in C^{∞}. By Proposition 3.2 we get the desired metric.

4.7 Entropy non-exapansive cases

In this section we genralizes the methods in [9] and obtains the Burago-Ivanov type result for flat Finsler torus.

Theorem 4.2. [6] The flat Finsler metric φ_{0} on $\mathbb{T}^{n}(n \geq 4)$ can be perturbed in the class of Finsler metrics so that the resulting geodesic flow has positive metric entropy and is entropy non-expansive. Such perturbations can be made C^{∞} small. Moreover, if φ_{0} is reversible, the resulting metric can be chosen to be reversible.

One primary distinction between our examples and those in Theorem 4.1 is the entropy non-expansiveness. We still do not know if one can do such perturbation in the class of Riemannanian metrics or if one can lower the dimension to $n=3$.

Proof. We will only give a proof for $n=4$. Higher dimensional cases are straightforward generalizations.

Recall from Chapter 3.2,

$$
R_{1}:=\Pi \circ R_{0} \circ \Pi^{-1}: T_{0} \times O_{p} \rightarrow T_{0} \times O_{p}
$$

And $R: \mathbb{R}^{3} \times O_{p} \rightarrow \mathbb{R}^{3} \times O_{p}$ defined by

$$
R(\mathbf{q}, \mathbf{p})=\left(\mathbf{q}+\psi(\mathbf{p})^{-1} \mathbf{p}, \mathbf{p}\right)
$$

is a lift of R_{1} to the universal cover.
Lemma 4.5. We can find a neighborhood $O_{q} \subseteq \mathbb{R}^{3}$ of $\mathbf{q}=\mathbf{0}$ and a symplectic change of coordinates in $O_{q} \times O_{p}$ such that in the new coordinates (\mathbf{Q}, \mathbf{P}), the map R is the following:

$$
R(\mathbf{Q}, \mathbf{P})=(\mathbf{Q}+\mathbf{P}, \mathbf{P})
$$

Namely, locally ψ can be chosen to be $\psi \equiv 1$ or any positive function.
Proof. Define

$$
\mathbf{P}:=\psi(\mathbf{p})^{-1} \mathbf{p} .
$$

Then we have

$$
d \mathbf{P}=d \mathbf{p} \Phi(\mathbf{p})
$$

for some matrix function $\Phi: O_{p} \rightarrow \operatorname{Mat}(3, \mathbb{R})$. Notice that $\Phi(\mathbf{0})=\psi(\mathbf{0})^{-1} \mathbf{I}_{3}$. By choosing smaller O_{p} if necessary we may assume Φ are all invertible. Let O_{q} be a small neighborhood of $\mathbf{q}=\mathbf{0}$. We make the following coordinate change in $O_{q} \times O_{p}$:

$$
(\mathbf{Q}, \mathbf{P}):=\left(\mathbf{q} \Phi(\mathbf{p})^{-1}, \psi(\mathbf{p})^{-1} \mathbf{p}\right)
$$

By direct computation we have

$$
d \mathbf{Q} \wedge d \mathbf{P}=d \mathbf{q} \wedge d \mathbf{p}
$$

Under the new coordinates (\mathbf{Q}, \mathbf{P}), the map $\left.R\right|_{O_{q} \times O_{p}}$ is the following:

$$
R(\mathbf{Q}, \mathbf{P})=(\mathbf{Q}+\mathbf{P}, \mathbf{P})
$$

Denote by $\mathbf{P}^{2}:=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}$ and $\mathbf{Q}^{2}:=Q_{1}^{2}+Q_{2}^{2}+Q_{3}^{2}$. It is not hard to verify $\left.R\right|_{O_{q} \times O_{p}}$ is the time-one map of the Hamiltonian flow on $O_{q} \times O_{p}$ with Hamiltonian H_{0} defined by:

$$
H_{0}(\mathbf{Q}, \mathbf{P}):=\frac{\mathbf{P}^{2}}{2}
$$

Define a perturbed Hamiltonian on $O_{q} \times O_{p}$ by:

$$
H_{\epsilon}(\mathbf{Q}, \mathbf{P}):=H_{0}+\frac{\epsilon \mathbf{Q}^{2}}{2} \xi\left(\mathbf{P}^{2}\right) \xi\left(\mathbf{Q}^{2}\right)
$$

where $\epsilon<1$ and ξ is a smooth function on $[0,2]$ with $\xi \equiv 1$ on $[0, \delta]$ and $\xi \equiv 0$ on $[2 \delta, 2]$ for some given $\delta>0$. The change is supported by $\left\{\mathbf{P}^{2}<2 \delta, \mathbf{Q}^{2}<2 \delta\right\}$. Define

$$
\Xi:=\left\{(\mathbf{Q}, \mathbf{P}) \mid \mathbf{P}^{2}+\epsilon \mathbf{Q}^{2}<\epsilon \delta\right\} .
$$

We have

$$
\left.H_{\epsilon}\right|_{\Xi}=H_{0}+\frac{\epsilon \mathbf{Q}^{2}}{2} .
$$

Ξ is $\Phi_{H_{\epsilon}}^{t}$-invariant and all orbits in Ξ are closed with period $2 \pi / \sqrt{\epsilon}$.
We firstly choose small δ so that the support of the perturbation has tiny size in $O_{q} \times O_{p}$. Then we choose appropriate ϵ so that $2 \pi / \sqrt{\epsilon}=N$ for some positive integer N. As $N \rightarrow \infty, \Phi_{H_{\epsilon}}^{t}$ converges to $\Phi_{H_{0}}^{t}$ in C^{∞} topology. The time one map
$T:=\Phi_{H_{\epsilon}}^{1}$ satisfies $T^{N}=i d$ on Ξ.
After the first perturbation, we want to perturb T in order to get positive metric entropy. In [9], Burago and Ivanov proved the following lemma for 6-dimensional disc. In fact, similar arguments also work for general $2 n$-dimensional discs with $n \geq 4$.

Lemma 4.6 (Burago-Ivanov [9]). There exists a symplectomorphism $\theta: D^{6} \rightarrow D^{6}$ which is arbitrarily close to the identity in C^{∞}, coincides with the identity map near the boundary, and has positive metric entropy.

Let $D \subseteq \Xi$ be a closed set such that $D, T(D), T^{2}(D), \ldots, T^{N-1}(D)$ are disjoint. We can choose D to be symplectomorphic to the standard unit disc D^{6}. Let $\theta: D^{6} \rightarrow D^{6}$ be the map in Lemma 4.6. We extend this map by identity to a map from $T_{0} \times O_{p}$ to itself. We abuse notation and still use θ to denote this map. The restriction of $(T \circ \theta)^{N}$ to D is θ. Therefore $(T \circ \theta)^{N}$ has positive metric entropy, thus so does $T \circ \theta$.

Since T and θ are C^{∞}-close to R_{1} and $i d$ respectively, $\tilde{R}_{1}:=T \circ \theta$ can be as close to R_{1} in C^{∞} topology as we want. Moreover, the support of $\tilde{R}_{1}-R_{1}$ can be arbitrarily small given we choose tiny δ.

By Proposition 3.2, we get the desired Finsler metric.

Appendix Nondense Irrational Geodesics in Nearly Flat Finsler Tori

1 Twist maps, minimal configurations and Peierls' barrier

1.1 Twist maps and generating functions

Definition . 1 ([23]). $f: S^{1} \times(a, b) \rightarrow S^{1} \times(a, b)$ is an area-preserving twist map if:
(1) f is area preserving and preserves orientation.
(2) f preserves boundary components in the sense that there exists an $\epsilon>0$ such that if $(x, y) \in S^{1} \times(x, x+\epsilon)$ then $f(x, y) \in S^{1} \times\left(a, \frac{a+b}{2}\right)$.
(3) if $F=\left(F_{1}, F_{2}\right)$ is a lift of f to the universal cover $\mathbb{R} \times(a, b)$ then $\frac{\partial F_{1}}{\partial y}(x, y)>0$. Here (a, b) can be an open interval or the whole real line.

If in addition to (1)-(3) we have
(4) f twists infinitely at either end. Namely, for all $x \in S^{1}$ we have

$$
\lim _{y \rightarrow a+} F_{1}(x, y)=-\infty, \lim _{y \rightarrow b-} F_{1}(x, y)=+\infty,
$$

then we say f is an area-preserving twist map with infinite twist. The collection of all area-preserving twist maps with infinite twist from $S^{1} \times(a, b)$ to itself is denoted $\operatorname{IFT}(a, b)$.

Let $F: \mathbb{R} \times(a, b) \rightarrow \mathbb{R} \times(a, b)$ be a lift of $f \in \operatorname{IFT}(a, b)$ to the universal cover,
the generating function $h\left(x, x^{\prime}\right)$ is uniquely characterized by

$$
F(x, y)=\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow y=-\frac{\partial h}{\partial x}\left(x, x^{\prime}\right), y^{\prime}=\frac{\partial h}{\partial x^{\prime}}\left(x, x^{\prime}\right) .
$$

Example .1. The map $f_{0}: S^{1} \times \mathbb{R} \rightarrow S^{1} \times \mathbb{R}$ defined by $f(x, y)=(x+y, y)$ is an area-preserving twist map with infinite twist. The generating function is given by

$$
h_{0}\left(x, x^{\prime}\right)=\frac{\left(x^{\prime}-x\right)^{2}}{2} .
$$

Example .2. Define $f_{1}: S^{1} \times(-1,1) \rightarrow S^{1} \times(-1,1)$ by $f(x, y)=\left(x+\frac{y}{\sqrt{1-y^{2}}}, y\right)$. Then $f_{1} \in \operatorname{IFT}(-1,1)$ and the generating function is given by

$$
h_{1}\left(x, x^{\prime}\right)=\sqrt{\left(x^{\prime}-x\right)^{2}+1} .
$$

Given a $f \in \operatorname{IFT}(a, b)$, if the amount of twisting in (3) has a uniform lower bound β, then its generating function h will satisfy all the following conditions $\left(H_{1}\right)-\left(H_{6 \theta}\right)$ with $\theta=\cot \beta$ [27]:

$$
\begin{equation*}
h\left(x, x^{\prime}\right)=h\left(x+1, x^{\prime}+1\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{|\xi| \rightarrow \infty} h(x, x+\xi)=+\infty, \text { uniformly in } x \tag{2}
\end{equation*}
$$

There exists a positive continuous function ρ on \mathbb{R}^{2} such that for $x<\xi, x^{\prime}<\xi^{\prime}$:
$\left(H_{5}\right)$

$$
h\left(\xi, x^{\prime}\right)+h\left(x, \xi^{\prime}\right)-h\left(x, x^{\prime}\right)-h\left(\xi, \xi^{\prime}\right) \geq \int_{x}^{\xi} \int_{x^{\prime}}^{\xi^{\prime}} \rho
$$

$\left(H_{6 \theta}\right) \quad\left\{\begin{aligned} x & \rightarrow \theta x^{2} / 2-h\left(x, x^{\prime}\right) \text { is convex for any } x^{\prime} \\ x^{\prime} & \rightarrow \theta x^{\prime 2} / 2-h\left(x, x^{\prime}\right) \text { is convex for any } x\end{aligned}\right.$
Here θ is a positive number. We say h satisfies $\left(H_{6}\right)$ if it satisfies $\left(H_{6 \theta}\right)$ for some $\theta>0$. There was $\left(H_{3}\right)$ and $\left(H_{4}\right)$ but they can be derived from others. We use \mathscr{H}_{θ} to denote the collection of all continuous functions $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying $\left(H_{1}\right)-\left(H_{6 \theta}\right)$.

1.2 Properties of functions in \mathscr{H}_{θ}

Mather [28] proves that for a given $h \in \mathscr{H}_{\theta}$ there exists a unique Borel measure μ_{h} on \mathbb{R}^{2} such that for any $x<\xi, x^{\prime}<\xi^{\prime}$

$$
\mu_{h}\left([x, \xi] \times\left[x^{\prime}, \xi^{\prime}\right]\right)=h\left(\xi, x^{\prime}\right)+h\left(x, \xi^{\prime}\right)-h\left(x, x^{\prime}\right)-h\left(\xi, \xi^{\prime}\right)
$$

and two unique Borel measures ν_{h}^{1}, ν_{h}^{2} on \mathbb{R} such that

$$
\begin{aligned}
& \nu_{h}^{1}(y, z]=\theta(y-z)+\partial_{1} h(y+, y)-\partial_{1} h(z+, z) \\
& \nu_{h}^{2}(y, z]=\theta(y-z)+\partial_{2} h(y, y+)-\partial_{2} h(z, z+)
\end{aligned}
$$

It is clear ν_{h}^{i} is invariant under the translation $y \rightarrow y+1$ and $\nu_{h}^{i}(y, y+1]=\theta$. For $x \leq \xi$, we have

$$
\begin{equation*}
\mu_{h}\left([x, \xi]^{2}\right) \leq(\xi-x) \nu_{h}^{i}(x, \xi), i=1,2 . \tag{.1}
\end{equation*}
$$

For any sequence $\left(x_{i}\right)_{i \in \mathbb{Z}}$,

$$
\begin{equation*}
\sum_{i=j}^{k-1} h\left(x_{i}, x_{i+1}\right)=\sum_{i=j}^{k-1} h\left(x_{i}, x_{i}\right)+\int_{x_{j}}^{x_{k}} \partial_{2} h(y, y+) d y+\sum_{i=j}^{k-1} \mu_{h}\left(\Delta\left[x_{i}, x_{i+1}\right]\right), \tag{.2}
\end{equation*}
$$

where Δ_{i} is the triangle

$$
\left\{(y, z): x_{i} \leq y \leq z \leq x_{i+1}\right\} \text { or }\left\{(y, z): x_{i+1} \leq y \leq z \leq x_{i}\right\}
$$

according to whether x_{i} or x_{i+1} is greater. For the proofs of the results listed above, see [28].

If h_{1} and h_{2} are two real-valued continuous functions on \mathbb{R}^{2} satisfying $\left(H_{2}\right)$, then the conjunction of h_{1} and h_{2} is defined to be

$$
h_{1} * h_{2}\left(x, x^{\prime}\right)=\min _{y} h_{1}(x, y)+h_{2}\left(y, x^{\prime}\right)
$$

If $h_{1}, h_{2} \in \mathscr{H}_{\theta}$, then $h_{1} * h_{2} \in \mathscr{H}_{\theta}$ [27].

1.3 Minimal configuration and Rotation symbols

We refer to [4] [18] [27] [28] for the definitions and results we will need in the following.

A configuration is a bi-infinite sequence $\mathbf{x}=\left(\ldots, x_{i}, \ldots\right) \in \mathbb{R}^{\mathbb{Z}}$ (with product topology of $\mathbb{R}^{\mathbb{Z}}$). The Aubry graph of \mathbf{x} is the graph of the piecewise linear function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ determined by $\Phi(i)=x_{i}$ at every $i \in \mathbb{Z}$.

Suppose h is a function on \mathbb{R}^{2} satisfying $\left(H_{1}\right)-\left(H_{6}\right)$. Define

$$
h\left(x_{j}, \ldots, x_{k}\right):=\sum_{i=j}^{k} h\left(x_{i}, x_{i+1}\right) .
$$

A segment $\left(x_{j}, \ldots, x_{k}\right)$ is said to be minimal (for h) if it is a minimizer for $h\left(x_{j}^{*}, \ldots, x_{k}^{*}\right)$ with $x_{j}^{*}=x_{j}$ and $x_{k}^{*}=x_{k}$, A configuration is minimal if all its segments are minimal. We use $\mathscr{M}=\mathscr{M}_{h}$ to denote the set of all minimal configurations. The Aubry graphs of minimal configurations cross at most once (see [4] (3.1)). In the survey [4] Bangert shows how minimal geodesics on torus are related to minimal configurations.

A configuration \mathbf{x}^{\prime} is a translate of \mathbf{x} if there exist integers j, k such that $x_{i}^{\prime}=x_{i+j}+k$ for all i. In [4] Bangert use the notation $T_{(a, b)}$ to denote the translation $T_{(a, b)} \mathbf{x}=\mathbf{x}^{\prime}$ where $x_{i}^{\prime}=x_{i-a}+b$.

A translate of minimal configuration is always minimal. A basic result of Aubry says that the set of translates of a minimal configuration is totally ordered with $\mathbf{x}<\mathbf{y}$ being defined to be $x_{i}<y_{i}$ for all integers i ([4] (3.13)). Aubry's result has a consequence that if \mathbf{x} is a minimal configuration, then there is a number $\omega=\rho(\mathbf{x})$, called the rotation number of \mathbf{x}, such that if $x_{i}^{\prime}=x_{i+j}+k$ with $j>0$, then $\mathbf{x}^{\prime}>\mathbf{x}$ (resp. $\mathbf{x}^{\prime}<\mathbf{x}$) if $j \omega+k>0$ (resp. $j \omega+k<0$).

When $\rho(\mathbf{x})$ is irrational, it is also called rotation symbols $\tilde{\rho}(\boldsymbol{x})$ of \boldsymbol{x}. When $\rho(x)=p / q \in \mathbb{Q}, q>0$, we investigate $x_{i}^{\prime}=x_{i+q}-p$ i.e. $\mathbf{x}^{\prime}=T_{(-q,-p)} \mathbf{x}$, and we define

$$
\tilde{\rho}(\mathbf{x})= \begin{cases}p / q+ & \text { if } \mathbf{x}^{\prime}>\mathbf{x} \\ p / q & \text { if } \mathbf{x}^{\prime}=\mathbf{x} \\ p / q- & \text { if } \mathbf{x}^{\prime}<\mathbf{x}\end{cases}
$$

Since minimal configurations cross at most once, if $\tilde{\rho}(\mathbf{x})=\tilde{\rho}\left(\mathbf{x}^{\prime}\right)=p / q$, then the Aubry graphs of \mathbf{x} and \mathbf{x}^{\prime} do not cross.

The space \mathscr{S} of rotation symbols is the disjoint union $\mathbb{R} \sqcup \mathbb{Q}+\sqcup \mathbb{Q}-$. Here $\mathbb{Q} \pm$ are copies of \mathbb{Q}. For $p / q \in \mathbb{Q}$, let $p / q \pm$ be the corresponding elements in $\mathbb{Q} \pm$. The underlying number is defined to be the projection image on \mathbb{R}, denoted ω^{*}. We provide \mathscr{S} with the unique total order for which $p / q-<p / q<p / q+$ and the map $\omega \mapsto \omega^{*}$ is weakly order preserving [28]. For any $\omega \in \mathscr{S}, \mathscr{M}_{\omega}=\mathscr{M}_{\omega, h}$ denotes the set of all minimal configurations of rotation symbol ω or ω^{*} (for example, $\mathscr{M}_{p / q+, h}$ contains the minimal configurations with rotational symbol $p / q+$ or $p / q) . \mathscr{M}_{\omega}$ is nonempty for all $\omega \in \mathscr{S}$, see [4]. Define a projection $p r_{0}$ by $p r_{0}(\mathbf{x}):=x_{0}$. Let $A_{\omega}:=\operatorname{pr}_{0}\left(\mathscr{M}_{\omega}\right)$. Then A_{ω} is closed and $p r_{0}: \mathscr{M}_{\omega} \rightarrow A_{\omega}$ is a homeomorphism.

Remark .1. (i) If $\mathbf{x} \in \mathscr{M}_{p / q}$, then \mathbf{x} is a minimum of $h_{q, p}: P_{q, p} \rightarrow \mathbb{R}, x \mapsto$ $h\left(x_{0}, \ldots, x_{q}\right)$, here $P_{q, p}$ denotes the $T_{q, p}$-invariant confirgurations. In particular $H_{q, p}$ is constant on $\mathscr{M}_{p / q}$. See [4].
(ii) The Aubry graph of configurations in $\mathscr{M}_{p / q+, h}$ and $\mathscr{M}_{p / q-, h}$ do not cross. Suppose $\mathbf{x}<\mathbf{x}^{\prime}$ are two neighborhood configurations in $\mathscr{M}_{p / q}$, then there exists configuration $\mathbf{y}^{-}\left(\right.$resp. $\left.\mathbf{y}^{+}\right)$between \mathbf{x} and \mathbf{x}^{\prime} with rotation symbol $p / q-$ (resp. $p / q+$) such that it is ω-asymptotic (resp. α-asymptotic) to \mathbf{x} and α-asymptotic (resp. ω-asymptotic) to \mathbf{x}^{\prime}. See [4].
(iii) For any $h \in \mathscr{H}_{\theta}$, let $H\left(x, x^{\prime}\right):=h^{* q}\left(x, x^{\prime}+p\right)$, where $h^{* q}=h * \cdots * h(q$ times $)$ denotes the q-fold conjunction with itself. Then by Section A.1.2 we know $H \in \mathscr{H}_{\theta}$. It is clear that $A_{\omega, h}=A_{q \omega-p, H}$ and $P_{\omega, h}=P_{q \omega-p, H}$ as long as the rotational symbol ω is not a rational number or is a rational number whose denominator is divisible by q.

1.4 Peierls' barrier

Peierls' barrier $P_{\omega}(\xi)=P_{\omega, h}(\xi)$ is defined for every real number ξ. If $\xi \in A_{\omega}$, then $P_{\omega}(\xi)=0$. Otherwise, ξ belongs to some complementary interval $\left(x_{0}^{-}, x_{0}^{+}\right)$of A_{ω} in \mathbb{R}, where $\mathbf{x}^{-}, \mathbf{x}^{+} \in \mathscr{M}_{\omega}$. Suppose \mathbf{x} is a configuration with $x_{0}=\xi, \mathbf{x}^{-} \leq \mathbf{x} \leq \mathbf{x}^{+}$, and if $\omega=p / q$, we require $x_{i+q}=x_{i}+p$. Then $P_{\omega}(\xi)$ is defined to be the minimum of the following formula taken over all such \mathbf{x} :

$$
\sum_{i} h\left(x_{i}, x_{i+1}\right)-h\left(x_{i}^{-}, x_{i+1}^{-}\right) .
$$

For any $h \in \mathscr{H}_{\theta}, P_{\omega, h}(\xi)$ exists, is non-negative, vanishes only on A_{ω} and is a

Lipschitz function of ξ with Lipschitz constant 2θ. See [27] for details. In [27] and [28] Mather shows a modulus of continuity for Peierls' barrier:

Theorem .1. There exists a positive real number such that the following holds. For any $h \in \mathscr{H}_{\theta}, p / q \in \mathbb{Q}$ and ω a rotation symbol, we have
(1) $\left|P_{p / q}(\xi)-P_{\omega}(\xi)\right| \leq C \theta\left(q^{-1}+\left|q \omega^{*}-p\right|\right)$;
(2) $\left|P_{p / q+}(\xi)-P_{\omega}(\xi)\right| \leq C \theta\left|q \omega^{*}-p\right|$ for $\omega \geq p / q+$;
(3) $\left|P_{p / q-}(\xi)-P_{\omega}(\xi)\right| \leq C \theta\left|q \omega^{*}-p\right|$ for $\omega \leq p / q-$.

2 An extension of Mather's destruction of invariant circle

Proposition .1. For any $f \in \operatorname{IFT}(a, b)$ and any Liouville number ω, we can find a C^{∞} small perturbation $\tilde{f} \in \operatorname{IFT}(a, b)$ and a compact $K \subseteq S^{1} \times(a, b)$ such that $\tilde{f}-f$ has support K and there is no \tilde{f}-invariant circle with rotation number ω.

Remark .2. In [28] Mather proved that for any Liouville number ω and twist map in $\operatorname{IFT}(-\infty,+\infty)$ there exists a C^{∞} small perturbation with no invariant circle admitting rotation number ω. But the perturbation of Mather is not compactly supported. Nevertheless we will imitate Mather's construction to build up our perturbation.

Proof of Proposition.1. We are going to prove that for any $\epsilon>0$ and $r \geq 1$, we can find $\tilde{f} \in \operatorname{IFT}(a, b)$ such that $\|\tilde{f}-f\|_{C^{r}} \leq \epsilon$ and there is no \tilde{f}-invariant circle with rotation number ω. The general idea is firstly choose a rational number p / q close to ω, and make a C^{r+1} small perturbation h^{\prime} on the generating function h so that the $P_{p / q, h^{\prime}}$ is positive at some point. When $p / q<\omega$, we make the second perturbation $h^{\prime \prime}$ so that the maximum of $P_{p / q+, h^{\prime \prime}}$ is bounded from below by a constant depending only on q and r. Once p / q is sufficiently close to ω (here we use the property that ω is Liouville), by Theorem .1 we can see $P_{\omega, h^{\prime \prime}}$ does not vanish identically. For $p / q>\omega$, we find a lower bound of $P_{p / q-, h^{\prime \prime}}$ instead of $P_{p / q+, h^{\prime \prime}}$ and the rest proceeds in a similar way.

Without loss of generality we may assume the twisting amount $\partial F_{1} / \partial y$ has a lower bound β so that we can use the formulas in Theorem .1. In fact, if (a, b) is finite, $\partial F_{1} / \partial y$ will have lower bound due to (3) and (4) in the definition of twist
map. If $a=-\infty$ or $b=+\infty$, see the first paragraph in the proof of Theorem 2.1 in [28].

Let $F: \mathbb{R} \times(a, b) \rightarrow \mathbb{R} \times(a, b)$ be the lift of f to universal cover and h be the generating function. By the above assumption $h \in \mathscr{H}_{\theta}$. Suppose \mathbf{x} is a minimal configuration in $\mathscr{M}_{p / q}$.

We now explain how to construct the perturbation of h when $\omega>p / q$. Choose an interval J with length $\geq q^{-1}$ in the complement to the set $\left\{x_{i}+j\right\}_{i, j \in \mathbb{Z}}$. Without loss of generality we may assume $J=\left(x_{j}, x_{k}+m\right)$ for some $j, k, m \in \mathbb{Z}$.

For any $\epsilon>0$ and any integer $r \geq 1$, we choose a C^{∞} nonnegative function u on \mathbb{R} with the following properties:
(a) u has support \bar{J}.
(b) $\|u\|_{C^{r+1}} \leq \epsilon / 2$.
(c) $u(\xi) \geq C_{1}(r) \epsilon / q^{r+1}$, for $\xi \in J^{\prime}$, here J^{\prime} is the middle third of J and $C_{1}(r)$ is a constant depending only on r.

Here is how to construct such a function: Define a function $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
\Psi(t)= \begin{cases}\exp \left(\frac{1}{t^{2}-1}\right), & \text { for }|t|<1 \\ 0, & \text { otherwise }\end{cases}
$$

Denote $C_{0}(r):=\|\Psi\|_{C^{r+1}}$. Define a function u_{0} by

$$
u_{0}(t)=\frac{\epsilon}{2^{r+2} q^{r+1} C_{0}(r)} \Psi(2 q t) .
$$

and let

$$
C_{1}(r)=\Psi\left(\frac{1}{3}\right) 2^{-r-2} C_{0}(r)^{-1}
$$

It is not hard to check that u_{0} satisfies (a)-(c) for $J=(-1 / 2 q, 1 / 2 q)$. For a general J, we have only to move and rescale u_{0}.

Define a function v on \mathbb{R} by

$$
v(t)= \begin{cases}C_{2}(r) q^{-r-1} \Psi\left(2 q\left(t-x_{j+1}\right)\right), & \text { for } t \in\left[x_{j+1}-1 / 2 q, x_{j+1}\right) \\ C_{2}(r) q^{-r-1} \Psi(0), & \text { for } t \in\left[x_{j+1}, x_{k+1}+m\right) \\ C_{2}(r) q^{-r-1} \Psi\left(2 q\left(t-x_{k+1}-m\right)\right), & \text { for } t \in\left[x_{k+1}+m, x_{k+1}+m+1 / 2 q\right) \\ 0, & \text { otherwise },\end{cases}
$$

where $C_{2}(r)=2^{-r-1} C_{0}(r)^{-1}$. Note that v is nonnegative, C^{∞}, supported by an interval with length $\leq 3 / q$ and $\|v\|_{C^{r+1}}=1$.

Now we make a first perturbation on h :

$$
h^{\prime}\left(x, x^{\prime}\right)=h\left(x, x^{\prime}\right)+\sum_{i \in \mathbb{Z}} u(x+i) v\left(x^{\prime}+i\right) .
$$

Note that for each point $\left(x, x^{\prime}\right)$, the sum in the right hand side contains at most one nonzero term, hence h^{\prime} is well-defined. Moreover we have

$$
\left\|h^{\prime}-h\right\|_{C^{r+1}} \leq\|u\|_{C^{r+1}}\|v\|_{C^{r+1}} \leq \epsilon / 2
$$

It is clear that h^{\prime} satisfies $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{6 \theta^{\prime}}\right)$ for $\theta^{\prime}=\theta+1$ given $r \geq 1$ and ϵ small. For $\left(H_{5}\right)$, since h is a generating function of $f=\left(f_{1}, f_{2}\right)$, for $x<\xi, x^{\prime}<\xi^{\prime}$,

$$
h\left(\xi, x^{\prime}\right)+h\left(x, \xi^{\prime}\right)-h\left(x, x^{\prime}\right)-h\left(\xi, \xi^{\prime}\right)=\int_{x}^{\xi} \int_{x^{\prime}}^{\xi^{\prime}}-\frac{\partial f_{1}}{\partial y}
$$

The integrand is bounded from below by a constant, therefore it remains positive under small C^{r} perturbation. Hence h^{\prime} satisfies $\left(H_{5}\right)$.

Now let us see how does this perturbation affect the Peierls' barrier $P_{p / q}^{\prime}$ associated to h^{\prime}. For any $\xi \in J$, suppose $\left(x_{0}^{-}, x_{0}^{+}\right)$is the complementary interval of $A_{p / q}^{\prime}$ containing ξ. Then we have $x_{j} \leq x_{0}^{-} \leq x_{0}^{+} \leq x_{k}+m$. Take any configuration \mathbf{y} with $y_{0}=\xi$ and $\mathbf{x}^{-} \leq \mathbf{y} \leq \mathbf{x}^{+}$. Since $\mathbf{x}, \mathbf{x}^{ \pm} \in \mathscr{M}_{p / q}^{\prime}$, their Aubry graphs do not cross(see Remark 5). Hence we have

$$
x_{j+1} \leq x_{1}^{-} \leq y_{1} \leq x_{1}^{+} \leq x_{k+1}+m .
$$

Therefore

$$
\begin{aligned}
P_{p / q}^{\prime}(\xi) & =\min _{\mathbf{x}^{-} \leq \mathbf{y} \leq \mathbf{x}^{+}, y_{0}=\xi} \sum_{i=0}^{q-1} h^{\prime}\left(y_{i}, y_{i+1}\right)-h^{\prime}\left(x_{i}^{-}, x_{i+1}^{-}\right) \\
& \geq P_{p / q}(\xi)+\sum_{\mathbf{x}^{-} \leq \mathbf{y} \leq \mathbf{x}^{+}, y_{0}=\xi} u\left(y_{0}\right) v\left(y_{1}\right) \\
& =P_{p / q}(\xi)+C_{2}(r) \Psi(0) u(\xi) / q^{r+1}
\end{aligned}
$$

Let $H^{\prime}\left(x, x^{\prime}\right):=h^{\prime * q}\left(x, x^{\prime}+p\right)$. Since $\mathbf{x} \in A_{p / q, h^{\prime}}=A_{0, H^{\prime}}$, we add a constant to
H^{\prime} so that $H^{\prime}\left(x_{i}, x_{i}\right)=0$ for all i. For any $\xi \in J^{\prime}$,

$$
\begin{equation*}
H^{\prime}(\xi, \xi)=P_{0, H^{\prime}}(\xi)=P_{p / q, h^{\prime}}(\xi) \geq C_{2}(r) \Psi(0) u(\xi) / q^{r+1} \geq C_{3}(r) \epsilon / q^{2 r+2} \tag{.3}
\end{equation*}
$$

where $C_{3}(r):=C_{1}(r) C_{2}(r) \Psi(0)$.
To simplify the notation, we denote by $J^{-}<J^{+}$the endpoints of J. Since $P_{p / q}^{\prime}$ is positive on $J, J^{ \pm}$are neighborhood elements in $A_{0, H^{\prime}}$ and H^{\prime} is positive in J. From [4] Theorem 5.3 there exist a minimal configuration $\mathbf{y} \in \mathscr{M}_{0+, H^{\prime}}$ such that $y_{i} \rightarrow J^{ \pm}$as $i \rightarrow \pm \infty$.

In order to do further perturbation we need to find a lower bound of $\max _{i} \mid y_{i+1}-$ $y_{i} \mid$. We consider the point $y_{i} \in J^{\prime}$ (if no such y_{i} exists then we take the length of J^{\prime} as our lower bound). Mather [28] shows that

$$
H^{\prime}(\mathbf{y})=\sum_{i=-\infty}^{\infty} h^{\prime}\left(y_{i}, y_{i+1}\right)
$$

is absolutely convergent. Hence in this case we can extend formula (.2) to infinite sums

$$
H^{\prime}(\mathbf{y})=\sum_{i=-\infty}^{\infty} h^{\prime}\left(y_{i}, y_{i}\right)+\int_{J^{-}}^{J^{+}} \partial_{2} h^{\prime}(y, y+) d y+\sum_{i=-\infty}^{\infty} \mu\left(\Delta\left[y_{i}, y_{i+1}\right]\right)
$$

where $\mu=\mu_{H^{\prime}}$. Let \mathbf{y}^{\prime} be the configuration obtained from \mathbf{y} by removing y_{i}, i.e. $y_{j}^{\prime}=y_{j}$ for $j<i$ and $y_{j}^{\prime}=y_{j+1}$ for $j \geq i . H^{\prime}\left(\mathbf{y}^{\prime}\right)$ is finite since $H^{\prime}(\mathbf{y})$ is. Hence we can also use formula (.2) to calculate $H\left(\mathbf{y}^{\prime}\right)$. By taking difference we have

$$
H^{\prime}\left(\mathbf{y}^{\prime}\right)-H^{\prime}(\mathbf{y})=\mu\left(\Delta\left[y_{i-1}, y_{i+1}\right]\right)-\mu\left(\Delta\left[y_{i-1}, y_{i}\right]\right)-\mu\left(\Delta\left[y_{i}, y_{i+1}\right]\right)-H^{\prime}\left(y_{i}, y_{i}\right)
$$

On the other hand the left hand side is nonpositive since \mathbf{y} is minimal. Hence

$$
C_{3}(r) \epsilon / q^{2 r+2} \leq H^{\prime}\left(y_{i}, y_{i}\right) \leq \mu\left(\Delta\left[y_{i-1}, y_{i+1}\right]\right) \leq \theta^{\prime}\left|y_{i+1}-y_{i-1}\right| .
$$

Here the first inequality comes from formula (.3) and the last inequality comes from formula (.1). This implies

$$
\max _{i}\left|y_{i+1}-y_{i}\right| \geq C_{4}(r) \epsilon / q^{2 r+2}
$$

where $C_{4}(r)=C_{3}(r) / 2 \theta^{\prime}$. Choose i such that $\left|y_{i+1}-y_{i}\right| \geq C_{4}(r) \epsilon / q^{2 r+2}$ and denote $I:=\left[y_{i}, y_{i+1}\right]$. Use similar construction as u, we can build up a C^{∞} function w with support in I with $\|w\|_{C^{r+1}} \leq \epsilon / 2$ and

$$
\max w \geq C_{5}(r) \epsilon^{r+2} / q^{2(r+1)^{2}}
$$

where $C_{5}(r)=C_{4}(r)^{r+1} C_{0}(r)^{-1} 2^{-r-2}$. We set

$$
h^{\prime \prime}\left(x, x^{\prime}\right)=h^{\prime}\left(x, x^{\prime}\right)+\sum_{i \in \mathbb{Z}} w(x+i) v\left(x^{\prime}+i\right)
$$

If ϵ is small enough, $h^{\prime \prime} \in \mathscr{H}_{\theta^{\prime}}$. Moreover

$$
\left\|h^{\prime \prime}-h\right\|_{C^{r+2}} \leq\left\|h^{\prime}-h\right\|_{C^{r+2}}+\|w\|_{C^{r+1}}\|v\|_{C^{r+1}} \leq \epsilon
$$

and

$$
P_{p / q+}^{\prime \prime}(\xi) \geq P_{p / q+}^{\prime}(\xi)+w(\xi) C_{2}(r) \Psi(0) / q^{r+1}
$$

So

$$
\begin{equation*}
P_{p / q+}^{\prime \prime}\left(\xi_{0}\right) \geq C_{6}(r) \epsilon^{r+2} / q^{2(r+1)(r+2)} \tag{.4}
\end{equation*}
$$

where ξ_{0} is where w reaches its maximum and $C_{6}(r):=C_{2}(r) C_{5}(r) \Psi(0)$. Notice that $C_{6}(r)$ is independent of p / q and ω is Liouville, hence we can choose p / q so close to ω that

$$
\begin{equation*}
C \theta^{\prime}|\omega q-p|<C_{6}(r) \epsilon^{r+2} / q^{2(r+1)(r+2)} \tag{.5}
\end{equation*}
$$

where C is the constant in Theorem .1. When $\omega>p / q$, by (.4)(.5) and Theorem .1,

$$
P_{\omega}^{\prime \prime}\left(\xi_{0}\right) \geq P_{p / q+}^{\prime \prime}\left(\xi_{0}\right)-C \theta^{\prime}|\omega q-p|>0
$$

When $\omega<p / q$, instead of choosing \mathbf{y} from $\mathscr{M}_{0+, H^{\prime}}$, we choose \mathbf{y} from $\mathscr{M}_{0-, H^{\prime}}$ and use similar construction to increase $P_{p / q-}^{\prime \prime}$.

This proves Proposition .1.

3 Nondense irrational geodesics

Theorem .2. For any Liouville number ω, one can perturb the flat Finsler metric φ_{0} on \mathbb{T}^{2} in the class of Finsler metric so that the resulting metric has a non-dense
geodesic with rotation vector $\left(\frac{\omega}{\sqrt{1+\omega^{2}}}, \frac{1}{\sqrt{1+\omega^{2}}}\right) \in S^{1}$. Such perturbation can be made C^{∞} small. If the unperturbed Finsler metric is reversible, the resulting Finsler metric can be chosen to be reversible as well.

Proof. For any Liouville number ω, by taking an action of some matrix in $S L(2, \mathbb{Z})$ on the lattice and then translate in universal cover, we may assume ω is close to 0 . Recall in Section 3.2, when $n=2$, the map R_{1} is given by

$$
R_{1}: S^{1} \times(-1,1) \rightarrow S^{1} \times(-1,1),(x, y) \mapsto\left(x+\frac{y}{\psi(y)}, y\right)
$$

We have $R_{1} \in \operatorname{IFT}(-1,1)$ and its generating function is

$$
h\left(x, x^{\prime}\right)=\kappa\left(x-x^{\prime}\right):=\sqrt{d_{\varphi_{0}}\left((x, 0),\left(x^{\prime}, 1\right)\right)} .
$$

For any $\epsilon>0, r \geq 1$, choose p / q sufficiently close to ω so that formula (.5) holds. We take $J=(-1 / 2 q, 1 / 2 q)$ and and use .1 to construct $h^{\prime \prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\left\|h^{\prime \prime}-h\right\|_{C^{r+1}} \leq \epsilon$ and the twist map $R_{1}^{\prime \prime} \in \operatorname{IFT}(-1,1)$ associated to $h^{\prime \prime}$ has no invariant circle with rotational number ω. From Aubry-Mather theory the absence of $R_{1}^{\prime \prime}$-invariant circle implies the existence of a minimal $R_{1}^{\prime \prime}$-invariant Cantor set whose projection to S is also Cantor. Let K be the support of $R_{1}^{\prime \prime}-R_{1}$. It is not hard to see $\pi(K) \subseteq(-1 / q, 1 / q)$ and $\pi(R(K)) \subseteq\left(-\omega-\frac{3}{q}, \omega+\frac{3}{q}\right)$. Hence K is penetrating for large q.

From Proposition 3.2 there exists a reversible Finsler metric $\tilde{\varphi}$ on \mathbb{T}^{2} such that the Poincaré map of the geodesic flow is $\Pi^{-1} \circ R_{1}^{\prime \prime} \circ \Pi$. The $R_{1}^{\prime \prime}$-invariant Cantor set with rotation number ω implies the existence of a nondense geodesic with rotation vector $\left(\frac{\omega}{\sqrt{1+\omega^{2}}}, \frac{1}{\sqrt{1+\omega^{2}}}\right)$. This proves Theorem 3.1.

Bibliography

[1] V. Arnold, Proof of a Theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Survey 18 (1963), 13-40.
[2] V. Arnold, Instability of dynamical systems with several degrees of freedom, Soviet Mathematics 5 (1964), 581-585.
[3] S. Aubry, P. Le Daeron, The discrete Frenkel-Kontorova model and its extensions.I. Exact results for the ground-states, Phys. D, 8(3):381-422, 1983.
[4] V. Bangert, Mather Sets for Twist Maps and Geodesics on Tori. Dynamics Reported, 1, (1988), 1-56.
[5] A. Bolsinov, I. Taimanov, Integrable geodesic flows on the suspensions of toric automorphisms, Proceedings of the Steklov Institute of Math. 231 (2000), 42-58.
[6] D. Burago, D. Chen, S. Ivanov, An example of entropy non-expansive nearly integrable system, manuscript in preparation.
[7] D. Burago, S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal. 4 (1994), no. 3, 259-269.
[8] D. Burago, S. Ivanov, Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. 171 (2010), no. 2, 1183-1211.
[9] D. Burago, S. Ivanov. Boundary distance, lens maps and entropy of geodesic flows of Finsler metrics, Journal of Geometry and Topology, 20 (2016), 469-490.
[10] D. Burago, S. Ivanov, B. Kleiner. On the structure of the stable norm of periodic metrics, Mathematical Research Letters 4 (1997), 791-808.
[11] K. Burns, M. Gerber. Real analytic Bernoulli geodesic flows on S2, Ergodic Theory and Dynamical Systems, Volume 9 (1989), 27-45.
[12] D. Chen, On total flexibility of local structures of Finsler tori without conjugate points, https://arxiv.org/pdf/1310.7299.pdf
[13] D. Chen, Positive metric entropy arises in some nondegenerate nearly integrable systems, Journal of Modern Dynamics, vol. 11, pp. 43-56, 2017.
[14] C. Contreras, Geodesic flows with positive topological entropy, twist map and hyperbolicity, Annals of Mathematics, Second Series, Vol. 172, No. 2 (2010), 761-808.
[15] C. Croke, B. Kleiner, On tori without conjugate points, Invent. Math. 120 (1995), 241-257.
[16] V. Donnay, Geodesic flow on the two-sphere, Part I: Positive measure entropy, Ergodic Theory and Dynamical Systems, 8 (1989), 531-553.
[17] V. Donnay, C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic, Communications in Mathematical Physics, 135 (1991), No. 2, 267-302.
[18] G. Forni. Analytic destruction of invariant circles, Ergodic Theory Dynam. Systems, 14(2):267-298, 1994.
[19] J. Heber, On the geodesic flow of tori without conjugate points, Math. Z. 216 (1994), 209-216.
[20] E. Hopf. Closed surfaces without conjugate points. Proceedings of the National Academy of Sciences 34 (1948), 47-51.
[21] G. A. Hedlund, M. Morse, Manifolds Without Conjugate Points, Trans. Am. Math. Soc., 51, (1942), 362-386.
[22] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York, Interscience (1948), 187-204.
[23] A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Vol. 54. Cambridge university press (1997).
[24] A. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk SSSR 98 (1954), 525-530.
[25] B. Kleiner. Personal communication.
[26] J. Moser, On invariant curves of area-preserving mappings of an annulus. Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1 (1962), 1-20.
[27] J. Mather, Modulus of continuity for Peierls's barrier. Periodic Solutions of Hamiltonian Systems and Related Topics, ed. P.H. Rabinowitz et al. NATO ASI Series C 209. Reidel: Dordrecht, 1987, 177-202.
[28] J. Mather, Destruction of invariant circles, Ergodic Theory and Dynamical Systems, 8, (1988) 199-214.
[29] N. Nekhoroshev, Behavior of Hamiltonian systems close to integrable, Functional Analysis and Its Applications, Volume 5, Issue 4 (1971), 338-339.
[30] S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, American Journal of Mathematics, Volume 99, No. 5 (1977), 1061-1087.
[31] S. Newhouse, Continuity Properties of Entropy, Annals of Mathematics, Second Series, Volume 129, No. 1 (1989), 215-235.
[32] Y. Pesin, Lyapunov characteristic exponents and smooth ergodic theory, Uspekhi Mat. Nauk, 32:4(196) (1977), 55-112.
[33] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958), 338-354.
[34] M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory and Dynamical Systems, 5 (1985), 145-161.
[35] N. Zinov'ev, Examples of Finsler metrics without conjugate points: Metrics of revolution, St. Petersburg Math. J. 20 (2009), 361-379.

Vita
 Dong Chen

EDUCATION

Ph.D., Mathematics, Graduate Minor in Statistics
Expected: August 2017
Concentration Area: Differential Geometry and Dynamical Systems
Dissertation Title: "On some problems in Lagrangian Dynamics and Finsler Geometry" Dissertation Chair: Dmitri Burago
B.S., Mathematics

2011
Department of Mathematics
Sun Yat-Sen University, China

PUBLICATIONS

Chen, D., Positive metric entropy arises in some nondegenerate nearly integrable systems, Journal of Modern Dynamics, vol. 11, pp. 43-56, 2017.
Chen, D., On total flexibility of local structures of Finsler tori without conjugate points, submitted.
Burago, D., Chen, D., \& Ivanov S., An example of entropy non-expansive nearly integrable system, manuscript in preparation.
Chen, D., \& Burago, D., Nondense geodesics with irrational rotational vector in C^{∞}-small perturbation of flat tori, manuscript in preparation.
Burago, D., Burago, Y., \& Chen, D., Elementary Introduction to Modern Geometry, book in preparation. This book is planned to be a text for instructors, graduate students and advanced undergraduate students interested in modern geometry.

TEACHING

Instructor The Pennsylvania State University

- MATH 021 - College Algebra I (FA12, SP13, FA15, SP16)
- MATH 230 - Calculus and Vector Analysis (FA14, SP15, SP17)

Teaching Assistant The Pennsylvania State University

- MATH 497C - Winding Number in Topology and Geometry (and the Rest of Mathematics) (FA13). Mathematics Advanced Study Semesters (MASS) Program
- MATH 536 - Abstract Algebras (SP14, SP17)

[^0]: *Signatures are on file in the Graduate School.

