
The Pennsylvania State University

The Graduate School

College of Engineering

SEMANTIC STRUCTURING OF SCIENTIFIC INFORMATION IN

SCHOLARLY DOCUMENTS

A Dissertation in

Computer Science and Engineering

by

Rabah Al-Zaidy

© 2017 Rabah Al-Zaidy

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2017



The dissertation of Rabah Al-Zaidy was reviewed and approved∗ by the following:

C. Lee Giles

David Reese Professor of Information Science and Technology, Professor of

Computer Science and Engineering, Courtesy Professor of Supply Chain

and Information Systems

Dissertation Advisor

Chair of Committee

Jesse Barlow

Professor of Computer Science and Engineering

Vasant Honavar

Professor of Information Science and Technology, Professor of Bioinformatics

and Genomics, Professor of Neuroscience

Bruce Desmarais

Associate Professor of Political Science

Mahmut Kandemir

Director of Graduate Studies, Department of Computer Science and Engi-

neering

∗Signatures are on file in the Graduate School.

ii



Abstract

The continuing growth of published scholarly content on the web ensures

the availability of the most recent scientific findings to researchers. Scientific

information extraction from these documents into a structured knowledge graph

representation facilitates automated machine understanding of the documents.

Knowledge graphs model information as entities that are semantically related.

Thus, in order to restructure a scholarly document into such a representation, we

must identify meaningful entities and relationships that capture the scientific facts

within the articles as accurately as possible. In this thesis, we propose a suite

of algorithms that are designed precisely for the task of semantic structuring of

scientific content in scholarly documents. The thesis addresses two main areas

of this problem. The first is concerned with algorithms capable of automatically

understanding scientific charts in documents. These charts play an important role

in scholarly documents as their content, most often than not, contains key facts

that are not mentioned elsewhere in the document text. Scientific charts are an

effective tool to visualize numerical data. They appear in a wide range of contexts,

from experimental results in scientific papers to statistical analyses in business

reports. The abundance of scientific charts in the web has made it inevitable for
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search engines to include them as indexed content. However, by relying solely

on the meta data tags to understanding the charts the facts represented in the

charts can not be fully available to information retrieval tools. Unfortunately, most

applications, such as search indexing, use image meta-data to describe these charts

rather than the information the graphic was initially designed to display.

Many studies exist to address the extraction of data from scientific diagrams

in order to improve search results. Specifically, the problem of understanding

digital charts found, specifically, in scholarly documents and inferring useful textual

information from their graphical components is the focus of numerous studies.

In our approach to achieving this goal, we attempt to enhance the semantic

labelling of scientific charts by using the original data values that these charts were

designed to represent. In this work, we describe a framework to automatically read

chart data, specifically bar charts, and provide the user with a textual summary

of the chart. The chart reading process is fully automated using image processing

and text recognition techniques combined with various heuristics derived from

the graphical properties of bar charts to extract the original data values. The

proposed framework follows a knowledge discovery approach that relies on a versatile

graph representation of the chart. This representation is derived from analyzing

a chart’s original data values, from which useful features are extracted. The

data features are in turn used to construct a semantic-graph. To illustrate the

portability of the semantic graph structure we use a common natural language

application, summary generation. To generate a summary, the semantic-graph of

the chart is easily mapped to appropriately crafted protoforms, which are linguistic

constructs based on fuzzy logic. We verify the effectiveness of our framework by
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conducting experiments on bar charts extracted from over 1, 000 PDF documents.

Our preliminary results show that, under certain assumptions, 83% of the produced

summaries provide plausible descriptions of the bar charts.

The second focus area of this thesis, is that of automatically understanding a

document’s scientific text itself. Specifically, we address the problem of constructing

a knowledge graph from a set of scholarly documents that contains a large set of

concepts found in scientific research content that can not be found in a general

purpose knowledge base. Traditional information extraction approaches, that either

require training samples or a preexisting knowledge base to assist in the extraction,

can be challenging when applied to such repositories. Labeled training examples

for such large scale are difficult to obtain for such datasets. Also, most available

knowledge bases are built from web data and do not have sufficient coverage to

include concepts found in scientific articles. In this thesis, we aim to construct a

knowledge graph from scholarly documents while addressing both these issues. We

propose a fully automatic, unsupervised system for scientific information extraction

that does not build on an existing knowledge base and avoids manually-tagged

training data. We describe and evaluate a constructed knowledge graph resulting

from applying our approach to 10k documents.
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Chapter 1 |
Introduction

Typical search use for scholarly repositories such as Google Scholar1, CiteseerX2,

SemanticScholar3 and WebofScience4, is via keyword-based queries that return

ranked lists of links to scientific documents. In recent years, web search engines

have introduced a new search paradigm, called entity-based search, which is mostly

inspired by the semantic web community. Entity-based search abilities are typically

made possible by use of knowledge graphs. Knowledge graphs model knowledge

base information as entities and their relations. The nodes represent the entities

and the set of labeled edges define the relationships between the entities. For

web search engines, a knowledge graph is built from the contents of web pages

by identifying explicit entities. i.e. semantic labels provided by the website, and

implicit entities that are identified by contextual analysis of the text using natural

language processing techniques. Existing ontologies and knowledge base data is

used to further enrich the extracted entities and the relations among them.

For the scholarly search engine context, a similar approach can be applied since

the scientific documents contain meta data such as title, keywords, and bibliographic

information as well as content, which is the text of the document itself. Thus,
1scholar.google.com
2citeseerx.ist.psu.edu
3semanticscholar.org
4wokinfo.com
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explicit entities can be easily derived from the metadata of the documents. The field

of bibliometrics has extensively studied links and relations between bibliometric

information including authors and publication data and has shown a vast amount

of knowledge that can be extracted from the existing semantics provided with a

document. However, if we wish to find an extraction analogous to the implicit

entity identification, very few studies exist outside the biomedical domain that

extracts biomedical entities. Thus, we formulate the implicit entity extraction

problem for scholarly documents as a knowledge base construction problem. The

purpose of this formulation is to explore the possibility for a scientific entity-based

search realm.

As web pages contain multiple forms of data, scholarly articles also contain

a variety of data formats such as images, tables, algorithms, charts in addition

to the text. Thus, enhancing scientific search by processing queries in scholarly

search engines as entity based queries rather than keywords based queries has

merited potential. That is partly due to studies that have been able to extract

and automatically analysis many of these forms of data in [1], [2], [3], [4], [5]

enable semantic analysis of this auxiliary content of documents. Studies such as

[6] provide an example of this semantic analysis by representing charts as related

entities in a semantic graph.

To approach this problem, we define two tasks. The first involves ensuring the

ability to extract facts when they exist not as raw text, but rather as auxiliary data,

e.g. figures and tables. A system that is expected to automatically understand

contents of scholarly documents, by definition, must be capable of understanding

these forms of data as well. Scientific charts, such as bar charts, when used in

scholarly documents almost always contain research results and findings, all of

which are key facts about the study described in the document. Thus, by ensuring

their content is included in the extraction process, the document-understanding

claim is more accurate.
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Scientific charts have wide presence not only as images in the web, but also

as embedded figures in PDF documents. Main search engines nowadays include

figures in search results. However, indexed content for charts, and documents

containing them, rely mainly on the metadata textual tags. By not including the

actual information these charts represent in the query process, search engines may

overlook many valuable query results. Thus, enriching the indexing content for

both documents and images based on the chart’s content, provides an additional

dimension to search improvement. Many studies aim to extract various types of

information from scientific charts including bar charts. Automatically extracting

the data values from bar charts can effectively enhance their semantic labeling.

This additional information for charts can allow various analyses for search tools.

Additionally, it can further assist the application of information retrieval and

knowledge discovery techniques. We describe a system that targets bar charts

specifically. The method automatically extracts text and graphical components

from the charts and combines the results to infer the original data values of the

chart.

Scientific charts contain valuable information for search engines. The metadata

used to tag the chart image does not always provide enough information about

the graphical contents of the chart. This has led many studies to address the

problem of automating chart reading and understanding. Typically, the chart will

represent data values that could be expressed as tables in a database. For a user,

the values become known by visualizing the chart. However, for a computer to

read the chart, image processing techniques must be applied to the chart along

with some reasoning algorithm. Additionally, the designer of the chart may intend

to illustrate a certain fact that the data values support, and this illustration is

achieved by means of graphical effects in the chart. The purpose of this study is to

propose a framework that is able to infer this fact from both the data values of the

chart and the graphical effects employed in it’s design by producing a corresponding
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summary in plain text. We focus on a specific class of charts, bar charts.

Summary generation from numerical data is a natural language problem. Lin-

guistic studies propose constructs called protoforms that facilitate various forms

of sentence generation. Protoforms generate linguistic summaries from data by

exploiting the structure of the input data. Thus, in order to apply this method, the

chart data is required to have some semantic structure. We propose to structure

the chart data as a semantic graph. The appeal of a semantic-graph structure

for the chart is due to it’s wide applicability and ability to provide an abstract

of the chart data. This abstraction of the chart data can be easily employed in

various knowledge extraction and information retrieval applications. We provide an

empirical evaluation of the proposed framework on a set of 300 bar charts extracted

from scholarly PDF documents. The evaluation shows the results of key steps

in the pipeline and the effects they propagate to subsequent steps. An overall

evaluation of the summaries is conducted to verify the effectiveness of the system

in automating the reading of bar charts.

In order for a knowledge base to be useful for scientific search purposes, it must

have high accuracy of extraction and sufficient coverage of scientific concepts and

entities contained in the documents. Thus, it is important to select an appropriate

approach for KB construction that meets these needs. The main four approaches

for KB construction are curated approaches, collaborative approaches, automated

semi-structured approaches and automated unstructured approaches [7] . Curated

and collaborative approaches are used for smaller domain specific KB since they

require manual construction of the KB by expert or groups of experts, respectively.

Automated approaches differ in the target text, as they can be from semi-structured

texts or unstructured text. These typically use heuristics and rule-based approaches

or machine learning and natural language processing techniques. Since The content

of scholarly documents is unstructured, and the scale of the repositories dictates

an automated approach, thus, for our model an automated unstructured approach
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is used. For automatic unstructured text approaches, harvesting entities and their

relations methods can be classified into two categories: pattern-based methods or

learning/reasoning methods [8]. Pattern based methods rely almost entirely on hand-

crafted patterns to harvest new entity relationships whereas learning/reasoning

method, use statistical analysis and natural language processing techniques to

harvest new relations from existing ones. In our approach we use a pattern-based

method to generate a seed of relations that are used for an iterative learning

approach that harvests more entity relationships.

We address the problem of constructing a knowledge graph from a set of scholarly

documents that provides more coverage of concepts found in scientific research

content. Due to the large scale and diverse nature of scientific research content,

the approach must be fully automated to avoid manually tagged seed data. Due to

the specificity of topics in research content, find an existing knowledge base with

sufficient entity coverage of research topics can be difficult. We propose using an

iterative learning approach that bootstraps from a pattern-based method.

1.1 Motivation

In this section we discuss a brief background about each of the research tasks

covered by this thesis. We describe main challenges in the problem of bar chart

understanding for data at a large scale. This section also points out the limitations

of significant approaches in the literature in order to set our problem apart from

these works. We also describe the benefits of representing scientific content of

research articles in a knowledge graph. This is followed by a discussion of the most

prominent approaches in the literature of knowledge base construction.
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1.1.1 Automatic Understanding of Bar Charts

The task of automatically reading scientific charts involves the process of transform-

ing as much content of the chart from image representation to a structured text

representation. This task has been the focus of many studies for several reasons:

• Scientific charts are widely available on the web as well as embedded images in

documents. In the context of PDF scholarly documents, bar charts comprise

almost 11% of the images found in papers published in top computer science

conferences.

• In search engine algorithms queries retrieve results by matching texts against

indexed content. Images are indexed using their meta-data and ranking

algorithms measure their relevance to submitted queries by the relevance

of the meta-data labels to the user query. The more intelligent the meta-

data labels are the better the query results can be ranked. Automatic

understanding chart content and transforming it to structured text format

enables the enhancement of the semantic labelling of indexed charts. This

directly improves search engine coverage and query results.

• Knowledge discovery and AI techniques have great advances and high quality

results on text format of data. Transforming the charts to structured texts

enables the application of these techniques to scientific charts.

• Applications designed for automatic reading of documents for the visually

impaired must also be able to translate images, including scientific charts.

The problem of understanding chart images and representing them in a struc-

tured text format is typically approached in two ways. The first builds on the

textual components of the charts, e.g., captions, chart title, axes names and scale

and legend labels and then applying knowledge discovery and intelligent analysis
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to these extracted texts. This approach is more common in large scale applica-

tions where a large number of charts are processed. The other approach builds

on extracting not only the textual components of the chart image, but deriving

the original numerical data values that are represented by the combination of

graphical and textual components in the chart. These however are more common in

limited-size data sets. Although these approaches are useful and applicable each in

their context, they are considered insufficient for application on large scale scholarly

data repositories for several reasons:

• To the best of our knowledge, none of the approaches have been made publicly

available as open source code at the time of this study.

• For large scale repositories where the data is used to index the charts and

the embedding document, the first approach that relies on only the textual

content of the chart, eliminates a large amount of meaningful information

that can be used to describe the chart and document.

• Studies in both approaches have assumptions on the bar chart format that

limit the percentage of charts available in digital format to which they can be

applied. For instance, some proposed extractors focus only on binary images,

others address only charts whose bars are all the same color (single-series data

charts). Some address only charts that are extracted from PDF documents

in raster format, or only vector graphics.

1.1.2 Scientific Knowledge Base Construction

Knowledge base construction is a problem motivated mainly by the semantic

web. The semantic web promotes a proposal that machines can better understand

web pages if their content is structured using semantic labels. Knowledge base

construction is one of several approaches to semantic structuring. It is most present

in studies that address the structuring problem at a large scale, e.g. the web.
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Knowledge graph construction has been the focus of many studies for several

reasons:

• Knowledge graphs enable entity-based queries to search engines. Major search

engines such as Google and Microsoft Bing now use knowledge graphs as an

integral component of the search engine. Microsoft Bing’s entity based search

result box, called a Snapshot, shows a combination of data facts in different

formats of images, text snippets, and other data formats. This is enabled by

using their knowledge base called Satori which contains over 22 billion entities

and their attributes [9]. Google harvested a large knowledge graph from web

pages. Google’s Knowledge Graph [10] covers over 570 million concepts and

over 18 billion facts about these entities. The KG is used to for entity based

search and the results of the lookup in the graph are then integrated in the

search results presented to the user.This also enables search engines to answer

natural language-like questions in addition to simple look-up queries [7].

• Knowledge base representations of information are fundamental components

for state-of-the art approaches that are currently used in key text understand-

ing applications such as question answering. IBM have their own question

answering system called Watson. At the core of Watson’s question answering

system is a knowledge base that it derives it’s facts from [11].

• Knowledge graphs are important components in digital assistant systems such

as Siri and Cortana.

• Automated summary generation systems such as the summaries provided in

Bing Snapshots and Google’s snippets rely on knowledge graphs to generate

the summaries.

• Many decision support systems also use knowledge base data, as seen in the

biomedical and life sciences domains.
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In this thesis, we address the problem of constructing a knowledge graph from

a set of scholarly documents that provides more coverage of concepts found in

scientific research content. Although there exist many information extraction

tools that extract triples from raw texts, these can not be directly applied to our

knowledge base extraction system. Additionally, there are many approaches that

generated well known knowledge base data sets, they are not fitted for our problem

for several reasons:

• Many knowledge base studies make available their extracted knowledge base,

however, to the best of our knowledge none of the approaches that extract

hyponymy relations from unstructured texts have been made publicly available

as open source code.

• Very few studies exist that evaluate the methods and algorithms used for

knowledge base construction on a large scale scholarly repository, or from

research papers.

• Most approaches that are applied at scale bootstrap on a knowledge drawn

from an existing knowledge base. For scholarly repositories, most of these

knowledge bases do not have sufficient coverage of research-specific terms.

• Domain specific knowledge base extraction studies that produced high pre-

cision mostly involve manually curated steps to guarantee extractions with

better quality.

• Existing systems that address the problem of of knowledge base construction

from scholarly articles as PDF documents do not provide a fully automated

pipeline .
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1.2 Objectives

The main objective of this thesis is to provide search engines query results with a

source of intelligent indexing data collected from scholarly content, mainly chart

images and article texts. The focus of the chart data extraction is to represent

bar charts in digital format with intelligent semantic labels and meta-data. The

aim is to achieve this goal by automating the entire process as well as ensuring it’s

applicability to large scale data sets. Since the data extraction is in the context

of search engines and scholarly data repositories, the framework must be able to

process standalone chart images in the web as well as chart images found in PDF

documents. Thus our approach aims to extract the following data:

1. Chart text values

2. Chart original data values

3. Graphical properties used to emphasize or represent certain information

To meet these objectives it is necessary to evaluate existing methods and

employ a combination of image processing and semantic representation methods.

Additionally, it is key to illustrate the applicability of the intelligent semantics, and

demonstrate by a well-known problem such as summary generation. This purpose

of this step is to demonstrate how the use of intelligent semantic labels in NLP

methods can enhance the meaningfulness of the resulting summaries.

To extract knowledge from scholarly document’s texts, we focus on proposing a

system to construct a knowledge base from the documents. Teh resulting knowledge

base provides more coverage of concepts found in scientific research content. The

knowledge base study in this thesis aims to acheive the following goals:

• Due to the large scale and diverse nature of scientific research content, the

approach must be fully automated to avoid manually tagged seed-data.
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• Due to the specificity of topics in research content, find an existing knowledge

base with sufficient entity coverage of research topics can be difficult, thus

the system must be capable of capturing scientific facts in the documents.

Since no ground truth for such a system exists, we also aim to explore knowledge

base evaluation techniques that are capable of capturing the properties of the system.

1.3 Contribution

In order to meet our objectives we developed a framework to automate intelligent

reading of scientific chart data, specifically bar charts, and provide the user with

a textual summary of the chart. Additionally, we propose a system that reads

scholarly articles in PDF format and constructs a knowledge base out of 10,000

documents. Our approaches have the following merits:

• We explore the accuracy of various image processing techniques in recovering

the original data values represented by the bar chart.

• We investigate the correlation between certain graphical effects in the charts

to specific designer-intended messages.

• We propose a semantic graph data structure to represent the chart information.

• We explore the feasibility of using the semantic graph as input to to fuzzy

logic constructs called protoforms. in The summary generation module is

responsible for reading the graph and applying the linguistic techniques to

generate the summary.

• We deploy an NLP based system to extract entities and their relations from

scientific texts in scholarly articles.

• We propose an iterative algorithm to expand the space of extracted entities.
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• We propose a taxonomy construction algorithm to build a knowledge graph

that covers over 15,000 computer science-related entities.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents definitions of

image processing, semantic data, and fuzzy logic terms. It describes the significance

of chart data extraction and main challenges in this domain. It also presents

limitations of state-of-the-art chart processing studies. It also introduces concepts

and methods used for summary generation. Chapter 3 explains our proposed

method for extracting the data values from bar charts. It describes the supported

formats and the assumptions on the input of this step, which is the input for

the entire pipeline. It also provides the various output formats provided by the

system. Chapter 4 describes the proposed semantic graph structure that is used to

represent the set of charts. This chapter also explains the algorithm used to generate

the summaries from the chart’s graph representation. It presents the construction

process of the various protoforms that are used in the summary generation algorithm.

Chapter 5 Presents our knowledge base construction framework. It provides details

on the iterative scientific entity learning algorithm as well as the taxonomy building

algorithms. Chapters 6 and 7 present experimental results. These chapters describe

thorough evaluations of each step of the proposed systems. Chapter 8 summarizes

our research and provides conclusions and future research directions.
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Chapter 2 |
Preliminaries

2.1 Chart Data Extraction

Various studies provide approaches to address the problem of understanding sci-

entific graphics, algorithms, and tables in scholarly documents [12], [13], [1],

[14], and [15]. Earlier work that focused on classification and data extraction of

scientific charts in particular are [16] and [17]. More recently, [18] proposes a

search engine called DiagramFlyer that indexes a large amount of scientific charts

extracted from PDF documents. The method extracts the text from the charts and

classifies their role, i.e. x-axis, y-axis, and uses it along with the figure metadata.

Their method, described also in [19], does not show any module to extract the

original data contained in the graphical components of the chart. Another approach

for searching and retrieving charts is proposed by [20], which identifies certain

structures that are extracted from charts and user-entered queries. A proposed

linear model is then used to rank the charts whose information structures are best

matched to those in the queries. One of the extracted structures is the notion of

an intended message, which they describe in [21]. The method is based on the idea

that a chart contains communicative signals which are extracted and used in a

Bayesian network-based method to infer the intention of the bar chart. A further

extension of this work is used to aid the visually impaired in reading graphical

13



charts by means of an interactive chart summarizing tool called SIGHT, described

in [22].

Any chart summarizing approach builds on a data extraction method that uses

image processing techniques to extract the data values of the chart. The extraction

method in [3] uses connected component analysis of the chart image. This is based

on the method proposed by [23]. Other methods as in [13], target plot charts and

apply machine learning techniques to extract the data. Some methods are based

on an analysis of gray level histograms, such as the one proposed by [24].

2.1.1 Chart Figures in Scholarly Documents

Digital libraries, on which academic search engines are built, store scholarly articles

in Portable Document Format (PDF). This format allows for embedding figures,

tables and other artifacts in a variety of formats. Chart figures, the interest of

this work, are typically embedded in PDF files using one of two different formats:

vector graphics and raster images.

Raster image format is the a bit-by-bit representation of pixels in an image, also

called bitmap. The image can be seen as a matrix of pixel colors. Raster graphic

images are stored in compressed file formats such as GIF, JPEG, and PNG. Raster

figures embedded in a PDF documents, are typically extracted by converting the

PDF document to a bitmap image and then perform document image segmentation.

The images are returned in any of the above compressed file formats, with varying

qualities of resolution depending on the rendering and original document properties.

vector graphics, as the name indicates, uses vectors to store the data points of

a set of polygons representing the image. The standard format for vector graphics

is called SVG short for Scalable Vector Graphics, which is much smaller is size

than raster image files. The SVG graphic can be rendered at time of use, either

display or printing, by converting it to raster format at any scale without any

loss in resolution. It is most commonly used for representing text, but is also for
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digitally created graphics, such as charts, maps that are not photographs. Common

vector graphic extractions from PDF documents are done by identifying the path

objects in the graphic component found in the PDF stream. The path objects are

then converted to to SVG path objects and the final image is extracted as an SVG

file [25].

2.1.2 Connected Component Analysis

Connected component labeling is an image processing technique used to identify

objects in an image [26]. This is achieved by a scan of the pixels of the image and

assigning a label to each contiguous set of pixels. If a set of pixels have similar

intensity values, that indicates that they belong to the same graphical object.

Connected component labeling is most commonly applied to binary and grey-

scale images, but it also can be applied to colored images. When scanning the

image and assigning labels based on pixel connectivity, neighborhoods of 4 pixels

or 8 pixels are considered. Generally, connected component labeling follows these

main steps:

• Beginning at the top leftmost pixel, scan the image row-wise and assign a

label to the pixel based on whether it is similar to its neighboring pixels or

not.

• If a pixel is similar to it’s neighbors it is assigned the same label. If it has a

different color, then a new label value is created and assigned to the pixel.

• If the pixel is similar to any of the neighbors, yet the neighbors have different

label values, assign any of the labels to this pixel and record the equivalence

of labels in the neighborhood of the current pixel.

• After the first pass over the image, consolidate equivalent labels into one label

with a single label value.
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• Run another pass over the image and replace each label with the updated

label value from the previous step.

As evident from the steps above, the case for binary images is much simpler

than colored images. With colored images, the pixel color must be compared with

all other pixels, as there are more classes than black or white.

In order to compare the color of a pixel for connected component labeling,

many color scales are used in computer vision applications. RGB color space is

the most commonly used color scheme for raster graphics. Comparing similarity

between pixels when represented in RGB values requires the existence of a measure

of difference between RGB values that gives a high numerical value for visually

different colors and low values for visually similar colors. Since RGB values for

colors do not reflect the colors as perceived by humans, no such measure can be

used. As an alternative, other color spaces are used such as the Lab color scheme.

This color scheme mathematically describes colors using three values per color:

lightness, and green-red and blue-yellow color opponents. The L is for the first,

and a and b are for the second two values. Uniform changes in the three values

numerically correspond to uniform changes in the perceived color, thus allowing for

a metric of color similarity that captures the differences in colors as a human eye

would. A formula called DeltaE94, or dE94, computes the difference between two

Lab colors based on the three factors of lightness, chroma and hue value.

dE94 =

√√√√( ∆L
kLSL

)2

+
(

∆Cab

kCSC

)2

+
(

∆Hab

kHSH

)2

where,

∆L = L1 − L2,

∆Cab = C1 − C2,
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C1 =
√
a2

1 + b2
1,

C2 =
√
a2

2 + b2
2,

∆Hab =
√

∆E2
ab −∆L2 −∆C2

ab,

SL = 1,

SC = 1 +K1C1,

SH = 1 +K2C1,

such that K1, K2 and kL depend on the application, kH and kC unity values.

The computed difference using deltaE94 between two colors is used to compare

pixels to their neighbors in order to determine their labels. The more reflective the

measure is to the colors difference, the better the result of the connected component

analysis.

2.2 Summary Generation

The problem of generating linguistic summaries from charts has been addressed

by many projects, such as the iGRAPH-Lite project [27] that presents the data

facts contained in the chart as a textual summary. Another summarization system

is the one proposed by [28], where they provide the intended message, described

above, as a summary. Summarizing numerical data and time series is also the focus

of various studies [29], [30]. An example is the method for generating summaries

from data collected by medical-purpose sensors by [29]. The method generates the

summary of eldercare data using protoforms, a concept proposed by [30].

Since the summary application at hand is for data that is extracted from a bar

chart as a data table, we focus on linguistic summary techniques that are designed

for numerical data. An approach by Yager [31] and Zadeh et al. [30] generates

summaries in the form of several natural-language sentences that capture some
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properties descriptive of the numerical data as a whole. The linguistic summary

model is defined on a database D that contains a set Y={y1, ..., yn} of objects.

Objects from Y are described using a set of attributes A={A1, ..., Am}. The

linguistic summary contains the following components:

Summarizer, P This is a coupling of an attribute Aj with a linguistic fuzzy

predicate, e.g. low, high, etc.

Quantity in agreement, Q A linguistic quantifier such as some, half, most, etc.

Qualifier, Q An optional additional attribute coupled with a predicate over an

attribute Ak that describes a subset of Y .

The components above are combined in a linguistic construct called protoforms

which are in the form:

Q y’s are P

QR y’s are P

An example of a resulting sentence is "Most cars with color red have highest

sales". Here the summarizer P is a combination of the attribute sales and the

predicate highest, Q is the quantifier most and R is the qualifier cars with color red.

2.3 Knowledge Base Construction

Knowledge graph construction from large scale corpora has been the focus of many

studies. Examples include Google Knowledge Graph [10] , NELL [32] , YAGO [33]

and DBpedia [34]. Some KBs are constructed using manual curation, such as the

Cyc project [35] that has a limited concept space coverage of only 120,000 concepts.

To improve coverage from a curated method, collaborative crowd-sourcing was

used for the construction KBs such as Freebase [36] and Wikidata [37]. These

have shown better coverage results however, they do not contain scientific concepts
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that are at a low level of granularity in specific scientific fields. More automated

approaches for extraction include the NELL [32] , KnowItAll [38], ReVerb [39].

These do contain many concepts that may exist in scientific texts yet they are

general concepts. A more comprehensive KB is that contains finer-level concepts

is Probase [40]. Probase is constructed from a corpus of 1.68 billion web pages

and harvested over 2.7M concepts. Although concepts are less course than other

KBs, it’s corpus is web pages rather than research articles and scholarly content in

general.

A hyponymy relationship between two entities occurs when one of the entities is

an instance of the other, also referred to as the is-a relationship. The super-concept

is called hypernym whereas the instance, or sub-concept is called the hyponym.

Many studies aim to extract hypernym-hyponym pairs using various approaches.

One of the initial works is [41] that introduced the Hearst patterns used by most

other approaches for bootstrapping. Latent semantic analysis is used to improve

the results obtained by using the Hearst patterns by using latent semantic indexing

for the hypernym-hyponym terms pair [42]. It then compares the similarity score

between the two to infer if one of the terms is actually an instance of the other.

In [43] they use a training set of known hypernym-hyponym pairs to train a model

using the dependency path features. The model then learns new dependency paths

and uses them to extract new is-a relation pairs.

Iterative approaches for knowledge base extraction such as TextRunner [44],

NELL [32], and Probase [40] use a bootstrapping approach. The first two iteratively

learn new syntactic patterns to improve the extraction for the next iterations. Our

approach is similar to the one in [40] in that our iterations learn more entities and

relations by using knowledge extracted from previous iterations.

Automatic taxonomy construction from raw text in some cases makes use of an

existing knowledge source. An example of these works is [45], where they construct a

taxonomy using external knowledge such as Wordnet [46] and Hearst-style patterns.
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In other studies the approach itself does not rely on external knowledge sources to

construct a taxonomy for web data , such as YAGO [33] and WikiTaxonomy [47].

Although, our method is similar to these in that we do not use external knowledge

sources, however, they construct the taxonomies from Wikipedia articles. Other

studies provide approaches for merging the nodes for combining taxonomies, such

as [48], where word embeddings are used to determine the similarity between two

taxonomies in order to merge them.
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Chapter 3 |
Bar Chart Data Extraction

In this chapter we describe the methods used to extract data from bar charts that

are found in scholarly articles. First, a rule-based method is proposed and described.

Next, a machine learning-based approach is proposed and also described.

3.1 Rule-Based Data Extraction

Our rule-based method follows the pipeline shown in Figure 5.1. The system

comprises of three main modules: graphical-component extraction module, text

extraction module, and the data inference module. The system takes a 2-dimensional

bar chart in image format as input and regenerates the chart as output. The

following assumptions are made regarding the charts:

• Charts are 2-dimensional.

• The fill color for the bars is a solid color, rather than a pattern.

• The y-axis follows a linear scale, rather than logarithmic.

• Y-axis alignment is to the left, x-axis alignment is to the bottom of the chart.

Following these assumptions the system modules extract bar data automatically.

The system initially applies some pre-processing steps to the chart image, such
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as color normalization and noise filtering. Algorithms for text recognition in

graphics typically apply noise removal filters to the image first [49]. For scientific

charts, however, it is uncommon to have highly noisy images [50] as compared to

non-chart images. Additionally, noise removal filters, e.g. bilateral filter, while

computationally costly, provided no significant improvements when applied to

charts that were extracted from PDF documents. Thus, we do not apply any

noise filtering step. The only pre-processing step in our method is changing the

color-space prior to passing the chart to the extraction modules.The text extraction

module requires a grayscale version of the chart. For the graphical component

extraction the image is converted to the Lab color space. This is due to the fact

that our method is expected to apply to colored charts just as effectively as black

and white ones. The images in PDF documents are recovered in raster format,

where each pixel is specified by its RGB value. Processing a chart in the RGB color

scale proposes the following challenges:

• A single bar can have very light color that is close in RGB value to that of

the background. This makes it less distinguishable as a distinct graphical

component in the chart.

• In multiple-series bar charts where bars can share an adjacent edge, adjacent

bars can be mistaken to be the same graphical component if their RGB colors

do not highly contrast.

These challenges are far less present when the recognition of components is applied

to in image in the LAB color space. The LAB color space is more perceptually

uniform than the RGB space. This implies that the amount of change in the

color values corresponds to a similar amount of change in human perception. This

makes it effective in extracting information that is distinguishable based on visual

effects, such as chart components. In order to extract meaningful information from

the chart, two basic tasks must be performed. First, extraction of the graphical
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components, i.e. the bars and axes. The other task is the retrieval of texts that label

these graphical components. Additional processing of the extracted information is

required to obtain the data values of the chart. The methods proposed to achieve

all these tasks are described in the remainder of this section.

3.1.1 Graphical Component Extraction

Once the bar is converted to the Lab space, the graphical component extraction

module is responsible for identifying the main chart component, the bars. For

accurate data extraction, the bar extraction method must first: correctly identify

each bar distinctly, and secondly have high recall, i.e. identify as many bars as

possible (preferably all of them). In order to recover the bars, our algorithm follows

a similar approach to the one presented in [23]. We perform connected component

labeling to the image, however our method uses the Lab color space to distinguish

components. For the connected component method, neighboring pixels who differ

in color are labeled as different components. To compare colors in the Lab space

we use the delta-E 95 distance equation. Upon experimentation the threshold of 7

was found suitable. Once the connected components are recovered, we identify the

bar components by using heuristics derived from the graphical properties of the

bars. The following properties are used to distinguish a bar component:

• A bar fills its bounding box with ratio greater than 90%.

• The color of any pixels inside the bar is different than the color of all pixels

within 2 to 3 pixels distance outside the bar edges.

Each bar is defined by its location and height in pixels. In order to identify the

x-axis we use the conjecture that the x-axis is the horizontal line that all bars have

an edge on. We use a histogram of the location of the base of the bars to recover a

common horizontal coordinate among the horizontal edges of all the bars. This is

defined as the x-axis.
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3.1.2 Text Component Extraction

The texts associated with the graphical components of the chart are key elements to

recover the original values represented by the chart components. Text components

include: labels for x and y-axes, and each of the bars, in addition to the numerical

values marking the scale of the y-axis. In this section we describe our proposed

method to automatically extract these pieces of valuable information. The method

involves two basic steps as following the method in [49]. The first step is to

automatically locate text regions in the image. The next step is to apply OCR

recognition to these text components.

3.1.2.1 Identification of Text Regions in a Chart

To identify the text regions in a chart we follow similar steps to the method

proposed in [49]. The image is already binarized in step A above. We remove

components whose area size is greater than that of a typical character size. Next,

in order to identify which letters represent a single word, the letters are subjected

to an isotropic dilation with a small window size. This will close the small gaps

between pixels that are close to one another just enough to be adjacent. Then

we apply connected component labeling to the dilated image. This labeling will

label entire words as one component. To maintain image quality for the OCR, once

the locations of the text regions are specified, the text region blocks passed to the

OCR step are from the image before dilation rather than the dilated ones. If a text

region’s width is smaller than its height, it is vertical and most likely to be the

name of the y-axis.

3.1.2.2 Extracting Text and Numerical Values

The tesseract OCR is used to recognize the nominal or numerical values of each

text region. The results are filtered out for any text regions that produce empty
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spaces or only punctuation marks. For instance, some stray pixels may be identified

as texts and return the ’.’ character. Finally, the recovered texts are represented as

their nominal or numerical values along with their locations.

Figure 3.1: System Architecture

3.2 Machine Learning based Extraction

The rule based method faced several challenges. The first is regarding the y-axis

detection. The scale of the y-axis is key for accurate extraction of the data values,

thus the precision obtained by a rule-based method is not sufficient. In order to

improve the precision we propose a machine learning approach that is described in

this section. the data values represented by a bar chart, the chart text and graphics

components must be identified and their locations retrieved. This section covers

the techniques and methods used for component extraction. The extraction process

follows the pipeline illustrated in figure 3.1. The first step is to extract two types of

components, the graphic components and text components. Graphic components

include: x-axis and y-axis, chart legend, and bars. By text component we refer to

all text labels found in the chart area. The graphic components are extracted using

the method described in [3].
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3.2.1 Graphic Component Extraction

The method applied to extract graphic components follows a 3 step process:

Image Color Space Conversion The image color is converted from RGB space

to the L*ab space. This step is performed to provide higher accuracies in

distinguishing a wider spectrum of colors than can be achieved using RGB

color space.

Grid Line Removal Hough transforms are used to identify horizontal lines that

are not long enough to be the x-axis. This step is useful in eliminating

background boxes.

Color Connected Component Labeling This is performed over the image in

L*ab color. The distance function used to measure the difference between

pixel colors is the deltaE95 function. This step returns, for each of the

connected components, the bounding box coordinates, area, and color.

3.2.2 Text Component Extraction

The text region extraction steps are as follows:

Binarization The image is converted to binary format.

B/W Connected Component Labeling A pass of the black and white con-

nected component labeling is run on the binary image. The returned compo-

nents are then filtered to remove large components that are not candidates

for being text characters. This step returns regions for single characters in

the image.

Isotropic Dilation Each extracted character is dilated, using a small enough

window, only to make each character attach to the character next to it if they
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are in the same word. The window size is chosen to be small enough to not

reach a standard space size.

2nd Pass Connected Component Labeling Since the previous dilation is per-

formed, each word is now a single component rather than each character.

Thus, the output of this pass is the coordinates of the bounding box of each

text word in the chart image.

Text Recognition-OCR The patch of the image where the text region is located

is passed to an OCR tool that returns the text content of that part of the

image in string format.

The output of the text region extraction step is the location of the text region and

the text string value. This is then passed to the text role labeling step.

Figure 3.2: Role labels for Graphic and Text Components.

3.2.3 Component Role Classification

From the previous section, the chart has been reduced to a set of image components.

The information we have about these components at this point is the location
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of their bounding box in the image, whether they are text or graphics, color for

graphic components and text string for text components. The next step to obtain

the data is to correlate the text descriptors and numerical values with the graphic

component whose value they are describing. This process is referred to as role

labeling or role classification. Figure 3.2 shows the different role labels defined by

our system for both graphic and text components. (Sample chart is from [51]). In

this section we describe the methods used for role classification.

3.2.3.1 Graphic Component Classification

For bar charts, we define four role labels, bar, legend, x-axis, and y-axis. The

components are subject to a noise cleaning step to remove false positives. We define

10 features for the graphic components. The graphic features that are selected for

these components are:

Shape We are interested in rectangular/square shapes for bars and legends. The

extent of a shape is a value between [0,1] that measures how much a shape

fills its bounding box. The higher this value, the more likely it is a box shape.

This feature is for both bars and legends, as both are box shaped.

Color The color of the centroid of the shape is used for this feature. The value is

a binary true if the shape is either black or white and false otherwise. This

feature determines background boxes.

Distance to X-axis The value of this feature is a the distance between bottom

edge of the bounding box and the x-axis normalized over the image size. For

bars, the distance will be very small or zero. For legends it can vary.

Relative position to Y-axis This takes a binary value of true if the shape is to

the right of the y-axis. Bars are always to the right of the y-axis. Legends

may or may not be.
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Relative shape width The relative width of the shape to mean width of all

graphic components in the image. Legends are usually smaller or wider than

bars. Also, small sized bars may have their total area similar to that of a

legend box, but the difference is that it’s width is similar to those of other

bars.

Centrality This is the normalized distance of the component from each bisector

of the image. This is for legends as they are typically closer to the borders of

the image.

Height-width ratio The ratio of height to width of the shape’s bounding box.

This feature is for legends since they are more commonly square-shaped.

Type of closest component This feature takes a binary value of true if the

closest component to the graphics is a text component. This feature is also

for legends since they are typically closest to texts.

We use the features to classify the role of the graphic component into either bar

or legend. The classification results are tested using the c4.8 and random forest

methods to compare accuracy levels obtained by each classifier.

3.2.3.2 Text Region Classification

For the text components we extract the features from the graphic properties of

the text regions. Additionally, we also have one feature that is related to the

actual text value of the text region. The classification is to determine what graphic

component the text is describing. The approach we use is a combination of two

approaches. We propose three types of features for the text role classification:

location/position-centric, text-centric and graphical features. The location-based

features are an adaptation of the classification method proposed by [16] where

they specify 5 features that are extracted from the texts to classify the regions.

The text-centric features are adopted from the [19] method. Graphical features
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are similar to those used in the heuristics-based methods of [3] and [23]. The

texts are classified into one of 7 roles: y-axis label, y-axis name, x-axis label, x-axis

name, legend name, chart title, and other. The location/position based features

mentioned are the following:

Distance to closest graphics The distance between the text region and the

closest graphic component to it, is determined as following:

h(Ti, Gj) = min
t∈Ti

min
g∈Gj

d(t, g)

where, Ti and Gi are the text and graphic components respectively, and t

and g are the sets of points on the perimeter of each component. This is a

measure of the closest Euclidean distance, d, between the two closest points

on the perimeter of each component.

Relative position of the closest graphics This is determined by the angle be-

tween a text block and it’s nearest graphic component. The positions take

values: top, bottom, right, left. top right, top left, bottom left, bottom right.

Position to Y-axis This is a binary value that is true if the text is to the left of

the y-axis.

Position to X-axis Also, a binary value. The value is true if the text region is

located below the x-axis.

Centricity Horizontal and vertical centricity are calculated as the normalized

distances between the centroid of the text region and both the vertical and

horizontal bisections of the image.

The text-centric features are the following:

Capitalization Percentage of characters in the word that are capitalized.
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String Length Normalized number of words in the text region. Axes titles and

chart title are more likely to contain more than one word.

isNumeric Whether the text has a nominal or numeric value. The y-axis labels

are always numbers.

The following are the graphical based features:

Orientation Vertical or horizontal orientations of the text box as a binary value.

This feature is for the y-axis title, which typically appears in charts in a

vertical layout.

Closest Graphic This feature stores the class of the graphic component closest

to the text box. This requires that the graphic component classification has

already been completed.

These features are then used to train both a c4.8 and a random forest classifier to

determine the role of the text label.

3.3 Chart Data Inference

In this step we extract the chart data by applying an inference process. The name

of the bar is the text identifying the bar, which is typically located under the bar.

The value of the bar is the y-axis value that corresponds to the highest point of

the bar. To extract this data pair we follow steps similar to those in [23]. Three

main values must be recovered to accurately obtain the bar values. These are:

the y-axis scale values, the data-per-pixel ratio, and the bar name, i.e. x values.

Algorithm 1 shows the steps of the inference method. As input, it requires the

location of the x-axis and y-axis, which have been previously located, the set of

bars B, and the extracted text strings T . The y-axis is determined to be the area

left to the left-most bar. The x-axis location has been extracted in the previous
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Input : x-axis, y-axis, B, T
Output :Data values (data.name, data.value),

Y_name, X_name
if Ti.y below x-axis then

X ← Ti

end
Assign elements of X to X_name and X_labels
based on horizontal alignment
if Ti.x to left of y-axis then

Y ← Ti

end
Assign elements of Y to Y_name and Y_labels
based on vertical alignment
for Ti ∈ Y_labels do

Scalei = Ti+1.y - Ti.y /Ti+1.value - Ti.value
end
η = median(Scale);
Set datai.value← Bi.height * η;
Set datai.name← X_labelsi where:;
X_labelsi.x is closest to Bi.x
return : set of data pairs (data.name, data.value)

Algorithm 1: Data inference algorithm for extraction of chart numerical values
and axes names.

graphical component extraction step. Each graphical component in Bi contains

3 values. The x and y coordinates and the height of the bar, denoted Bi.x, Bi.y,

and Bi.height, respectively. The text strings in T also contain 3 values. The x

and y coordinates of the text region and the value of the string, denoted Ti.x, Ti.y,

and Ti.value, respectively. The first value to infer, the y-scale, relies on both the

correct location of the texts describing the scale and the result of the OCR. To

specify the texts that correspond to this values, we apply two heuristics: the y-axis

labels are to left of the leftmost bar, and the are vertically aligned. Those texts

that satisfy these assumptions are sorted and used for the next step. The next

step is identifying the pixel-per-data ratio. For this, we calculate the difference

between the y-labels in pixel and divide it by the difference in the numerical values

of the y-label texts. The bar values are thus, their heights in pixels multiplied by
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the pixel-per-data ratio. The Nominal value for each bar is the value of the text

located below the bar. To identify the values we extract the text regions who are

located below the x-axis and are horizontally aligned.
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Chapter 4 |
Semantic Graph Representation

The purpose of chart component extraction is to convert the representation of

information contained in a chart image from graphical to a text representation. De-

pending on the application requiring the chart information, the needed information

representation can vary. In this section we describe how we produce machine-usable

information from the data extracted from bar chart images.

4.1 Data Analysis

The first step towards understanding a chart’s content is to extract the original

data values from the graphical component. The method described in [3] is used to

extract the following data values from the bar chart: (1) x and y axes names, if

they exist, (2) numerical value for each bar (the y value), (3) nominal value for each

bar (name of the data value the bar represents). Once the data is recovered from

the chart image, it is then passed to the feature extraction method. The graphical

features are special graphical effects used by the designer of the chart to illustrate

a certain fact, or as by [20] refer to is, the message of the chart. Based on empirical

analysis of charts messages performed in [20], the most common messages charts

typically aim to convey, are:

• Increasing/decreasing trend.
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• Showing the rank of each value in the chart.

• Drawing attention to the rank of a specific value, or subset of values.

• Showing the maximum value among a set of values.

Other messages include the minimum value as well, where the percentage of charts

expressing this message type was found to be less than 15% [20]. In this work we

select messages that are more prominent among bar charts. Each of these messages

has certain graphical features in the chart associated with it. Arranging the bar

data in increasing or decreasing order for the bars can be considered an indicator

that the chart is illustrating a trend. A bar that has a color different than all other

bars in a single-series chart, indicates that the bar may be of specific importance

to the meaning of the chart. Other annotations, such as labeling only certain bars

with their value or other textual data suggests the designer would like to draw

attention to their values. In [20], they refer to these as Salient bars. If none of

the bars in the chart image have any salient elements, nor display a visible trend,

it is most likely that the purpose of the chart is to simply display the values and

how they rank to one another. In [20] the message of such a chart is referred to as

communicating the bars’ Rank. Based on the findings mentioned above, we select

three type of features to extract from the chart data: Salience, Trend, and Rank.

Bars are marked Salient if they have a distinct color or are annotated with texts.

If the bar values are monotonically increasing, or decreasing, this indicates the

presence of the Trend feature. Additionally, if the x-axis labels are a time-series or

have ordinal values, this is a feature labeling the data series as a whole. As for the

Rank feature, we provide the user with only the maximum and minimum values

found in the chart for simplicity. Once the extraction of the data and the features

is complete, the next step is to generate a semantic-graph to represent the data.

This process is described in the next section.
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Figure 4.1: Semantic Representation of Bar Chart and its Extracted Features

4.2 Semantic Graph Construction

Constructing a semantic graph requires definition of relevant semantics. Semantic

labels are derived from the roles of each extracted data value or feature. The

y-axis name has semantic label element. If the y-axis name contains a noun and a

descriptor, the descriptor is labeled attribute. The x-axis name has semantic label

parameter. The edge between the attribute (or Element of no attribute was found)

is labeled with the features extracted by analyzing the data. Three labels are used

for edges. hasTrend can be: increasing, decreasing, or none. hasSalient determines

whether any of the bars are salient, either by annotated text or a different color.

hasMaxMin specifies the maximum value of the bars and the minimum . This is

used to to describe the chart in case no other features are present.
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4.3 Automatic Summary Generation

To generate the summary we follow a method similar to [29] which is an adaptation

of the concepts initially proposed in [30]. The method is based on generating

linguistic summaries from protoforms. A protoform is a linguistic construct that

allows the use of structured data to generate English language sentences using fuzzy

logic.

4.3.1 Fuzzy Logic Constructs

We define 4 basic protoforms for each type of feature the relationship between

the element node and parameter node may share. The protoforms are: trend

protoform for a time series, trend protoform for an ordinal data set, salience

protoform, and max/min protoform. We use notation similar to that in [29], with

some modifications to fit our context:

• y is the parameter.

• Qi is the specific value that the parameter may take.

• P a summarizer, which is a tuple made up of the subject of description,

element and a fuzzy predicate, e.g., low, high.

The predicates we use to pair with the element to make up the summarizer P ,

are the following: increasing, decreasing, highest, and lowest. The first protoform

is for a trend in a time series:

QmintoQmaxhas P (4.1)

where Qmin and Qmax are the beginning and end of the time series represented on

the x-axis. The predicate values that are used in this protoform are increasing and

decreasing.
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The next protoform is a trend for an ordinal series for the x-axis:

(y, p) has P (4.2)

where y is the parameter that has an ordinal value and p is the trend of the ordinal

value, which can be increasing or decreasing.

The next protoform is salience protoform:

y Qi has rank P (4.3)

where the predicates of P are xth highest or lowest.

The last protoform is the max/min protoform:

y Qi has P (4.4)

Here, the predicates are highest and lowest for the maximum and minimum values,

respectively.

Input : Semantic Graph G
Output : Summary Sentence S
if hasTrend is not nil then

S = protoform 1 for time series
S = protoform 2 for ordinal series.
S = nil otherwise.

end
if hasSalient = TRUE then

S = S+ protoform 3
end
if hasSalient = FALSE and hasTrend = nil then

S = protoform 4
end
return :S

Algorithm 2: Algorithm to Generate Summary from a Chart’s Semantic-Graph
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4.3.2 Summary Generation Algorithm

To generate the summary, the method follows the steps illustrated in Algorithm 2.

As input, the method takes a semantic-graph representation of the chart and returns

a text summary in the form of sentences stored in string S. Based on reading

the labels associated with edges between the element and parameter nodes, the

algorithm determines which protoform to use for generating the summary. One

or more sentences can be generated and eventually combined to produce the final

summary.
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Chapter 5 |
Scientific Knowledge Base Con-
struction

In this section we provide a formal definition to our extraction problem and a

description of the system pipeline.

5.1 Problem Definition

In this paper we design a system to extract related entities from a set of scholarly

documents. The entities are nouns and noun phrases and the type of relationship we

extract is the hyponymy relation among entities. A hypernym-hyponym relationship

is one where one entities is an instance of the concept represented by the other.

This is also known as the is-a relationship. We define hyponymy relations to occur

between 1) a concept and sub-concept or 2) between a concept and an instance. We

follow the same formal notation used in most hyponymy extraction studies [42], [40].

For a document set D, we extract a set of sentences S that contain candidate tuples

(Xi, Yj) such that,

s = {(X, Y1), (X, Y2), ..., (X, Yk)}

where X is a hypernym for candidate hyponyms Yj . Once the extraction is complete

we have a set of extracted pairs,
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Figure 5.1: Knowledge base construction system

P = {(X1, Y1), (X2, Y2), ..., (XN , YN)}

The knowledge base is constructed by building a taxonomy T by combining the

local taxonomies identified in by the triples in the set P . We define the sets

X={x1, ... ,xm} and Y={y1, ... ,yn} , with |X|=m and |Y |=n, to be the sets

of individual words comprising the noun phrase of a candidate hypernym and

hyponym, respectively.

5.2 System Overview

The pipeline of our system is shown in Figure 5.1. Our system is given a set

of documents in PDF format, and generates a knowledge base represented as a

graph. The system is comprised of three main modules: a parser, an entity-relation

extractor, and a taxonomy graph constructor. Below is a description of each

module.

Parser The first module in the pipeline is the parser. This is responsible for two

types of parsing. The first is a rendering parser, which extracts the raw text

from the PDF file. For this task we use the GROBID [52] parser. The second

parser is a syntactic parser that extracts dependency-paths to identify noun

phrases. This module passes a set of parsed sentences to the next phase.
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Table 5.1: Lexicosyntatic Hearst patterns

# Pattern
1 NP such as NP (, NP and/or NP)
2 such NP as NP (,NP and/or NP)
3 NP, including NP (,NP and/or NP)
4 NP (, NP) and other NP
5 NP (, NP) or other NP
6 NP, especially NP (, NP and/or NP)

Entity-relation Extractor This module has two basic components. The first

is a syntactic based extractor that takes the set of pre-defined Hearst patterns

as a basis for matching. The syntactic-based extractor, which generates the

set S of sentences containing candidate is-a triples. The next component

is the iterative semantic learner, which iteratively learns new triples from

the set S and populates the set P of the extracted pairs of the knowledge

base. This step passes a set of hypernym-hyponym triples to the taxonomy

construction phase.

Taxonomy Graph Constructor Taxonomy construction is accomplished through

three main graph operations. The set of extracted triples are initially mapped

to local taxonomy graphs. Next, based on the existence of similarities among

nodes of distinct local taxonomies, we apply modifier, simple, and vertical

node merging operations to generate the final knowledge graph G.

5.3 Hypernym Relation Extraction

In this section we describe the two modules responsible for generating the knowledge

base tuples of entities related with a hypernym-hyponym relation. The input to

this step is a set of PDF documents D and the output is the set P of pairs (X,Y ).
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5.3.1 Syntactic-based Extraction

Since our approach does not rely on an existing knowledge base, we bootstrap

our algorithm by extracting pairs using a set of hand-crafted patterns. The use

of lexico-syntactic patterns for bootstrapping hyponymy extraction is a common

practice since they have relatively high precision while compromising recall, which is

tolerable for a bootstrapping step. We use the Hearst patterns from [41] that define

syntactic patterns that are commonly used to denote a hyponymy relationship.

Table 5.1 shows the patterns used in our system. NP stands for Noun Phrase, that

are first identified and then matched against the pattern. The Stanford lexical

parser [53] parses the sentence to extract noun phrases. These are in turn passed

to a lexical tree matcher that identifies the patterns according to the noun phrase

identified at the highest level in the node. For instance the sentence by applying

pattern 1 in Table 5.1: NP1 such as NP2 to the following sentence:

"high and low level programming languages such as Assembly, Java,

and C++"

will extract NP1 as the entire phrase of high and low level programming languages

instead of low level programming languages. The Stanford token matcher [54] is used

to apply the patterns to the tokenized sentence to obtain this result. The extracted

candidate sentences are then parsed by identifying the sets of X and Y words

comprising each of the hypernym and hyponym phrases, respectively. Stemming

and removing initial stem words that are common adjectives is performed to cleanse

the phrase prior to the hypernym detection step.

5.3.2 Iterative Semantic Learning

Syntactic extraction generates a set C of candidate pairs that need to be classified

as acceptable pairs or ones that should be discarded. The iterative learning steps
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Input :Candidate sentences set C
Output :Tuple set P
Initialize: P ← ∅ while newTuples 6= ∅ do

newTuples← ∅ foreach s ∈ C do
(X, Y )← SyntacticExtraction(s)
if |X| > 1 then

χ← ngrams(X)
x1, x2 ← maxLikelihood(χ)

r(x1, x2) ← p(x1 | Y )
p(x2 | Y )

if r(x1, x2) > ζ then
X ← x1

else
X ← x2

end
end
if |X| = 1 then

newTuples← (X, Y )
end

end
P ← newTuples

end
return :P

Algorithm 3: Iterative Semantic Learning Algorithm

populates a set P of valid pairs that is initially empty. A first pass over the sentences

will add any pair for which the hypernym phrase contains only a single word. If

the hypernym phrase contains more than one word, the phrase must be processed

by the hypernym extraction algorithm for phrase-detection. If a valid hypernym

phase is detected we add the triple to the set P . We note here that since we used

a lexical token matcher, the hyponym phrases required very little processing for

validation. Thus, we simply used stemming and lemmatization to reduce them to

their base form.

The challenge is extracting a concept and instance in an is-a pair is the identifi-

cation of the concept to a precise level. Instances are typically listed by authors

with little descriptors when they are enumerated in a sentence, thus the pattern
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recovers them in a more clean form than the concept. The concept is usually a

noun phrase that can sometimes be a full sentence and more common than not can

be reduced to a much narrow noun phrase or single noun. Thus, for our hypernym

(concept) extraction algorithm we apply a modified version of the probabilistic

approach used in [40]. Given a candidate {X,Y} pair, we detect the values of

xi ∈ X for the hypernym phrase. This may be a single value of x, or a subset,

which we use as a sort set by computing the n-grams from the set X. For that, we

compute the likelihood ratio between the two words with highest likelihood of X

as follows. For each xi ∈ X and χj ⊂ X, where χj is a subset of ordered n-gram

words from X, we compute:

p(xk | Y ) = p(xi)Πn
i=1p(yi | xk)

where p(xi) is the percentage of pairs in the P that contain the word xi in the

hypernym phrase, and p(yi | xk) is the percentage of pairs in P that contain the

term yj in the hyponym where xi is in the hypernym. The same likelihood value is

computed for each χi as well. The highest two likelihood values obtained are then

used to compute the ratio r(x1,x2):

r(x1, x2) = p(x1 | Y )
p(x2 | Y )

If the ratio is higher than a specified threshold we select x1 as the hypernym

word (or phrase in case it is a χ1), otherwise x2 (or χ2) is selected as the hypernym.

5.4 Scientific Taxonomy Construction

The knowledge base extracted from the previous step in the set P is a set of N

hypernym-hyponym pairs. In order to construct a taxonomy graph from these pairs
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Input :Local taxonomy graphs set T
Output :Taxonomy Graph G
G← ∅ foreach t ∈ T do

if |t| = 2 then
G← node(t2, t)

end
end
foreach ti, tj ∈ T do

if ti.children ∩ tj.children 6= ∅ then
G← merge(ti.root, tj.root)

end
end
foreach ti ∈ T do

foreach v ∈ ti.children do
foreach tj ∈ T do

if tj.children ∩ ti.children 6= ∅ then
G← merge(v, tj.root)

end
end

end
end
return :G

Algorithm 4: Taxonomy Graph Construction Algorithm

we first represent each pair as a local taxonomy tree rooted at the hypernym. The

hyponym will be a child node. The construction of the taxonomy is thus reduced

to a graph merging problem where initially we have N local taxonomy trees. We

define three rules used as a basis for the taxonomy construction.

Axiom 1 (Modifiers). A noun phrase comprised of a modifier and a noun, is

almost always a subconcept of the noun. Thus, if (X, Y ) ∈ P and X={x1,x2}, then

(x2, X) ∈ T .

For example, we can easily infer from the phrase learning algorithm that it is

a subconcept of the more abstract concept algorithm. This allows to identify the

specific type of algorithm for other instances in other pairs by adding them under

their specific concept, this process is covered by the other merge operations.
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In order to construct the taxonomy from the individual pairs, pairs containing

the same concepts must be merged into a single node in the graph. Simple surface

form comparing will not do in this case because of possible polysemous terms and

phrases. Thus we derive the following two propositions to address the case of

several meanings for the same surface form. following proposition:

Axiom 2 (Horizontal Merging). For two pairs with same text values for their

hypernym noun phrases, the noun phrases have the same meaning if they were

extracted from the same sentence. If they are not in the same sentence, they have

the same meaning if they have similar instances. For pairs (X1, Y1), (X2, Y2) ∈ P ,

if X1 ∩X2 = X1 = X2 and Y1 ∩ Y2 6= ∅, then (X1, Y1 ∪ Y2) ∈ T .

Axiom 3 (Vertical Merging). For two pairs, if the instance noun phrase of the

first pair has the same text value as that of the concept of the other pair, they have

the same meaning if the instance’s coordinate terms are similar to the instances of

the concept in the other pair. For pairs (X, Y1), (V, Y2) ∈ P , if Y1 ∩ V = Y1 = V

and there exist other Yi and Yj such that (X1, Yi) ∈ P , (V, Yj) ∈ P and Yi ∩ Yj 6=

then (X, V ) ∈ T .

Our taxonomy construction algorithm is described in Algorithm 4. Initially

the taxonomy graph is empty. Based on the our first proposition, the method

performs a ModifierMerge operation. This generates a new local taxonomy t of a

concept-subconcept relationship. This steps adds these nodes to the set of local

taxonomies. This is illustrated in Figure 5.2a.

Next, using the second proposition, we perform a SimpleMerge operation, where

nodes whose roots are similar and belong to the same sentence are horizontally

merged into one parent node with the union of children of both nodes. In the case

where the two nodes did not occur in the same sentence, the similarity between

their children is used to determine whether to merge them or not. If the children

have some overlap then we consider the nodes as the same node and merge them

into one node. An example is shown in Figure 5.2b
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(a)

(b)

(c)

Figure 5.2: (a) Modified noun node insertion. (b) Simple similar root node merge.
(c) Vertical similar node insertion.

48



The third proposition is used for the VerticalMerge, shown in Figure 5.2c,

which aims to increase the hierarchy level in the graph. We apply this merge by

observing the overlap between the each child of a node and the root nodes of other

local taxonomies.
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Chapter 6 |
Evaluation of Chart Data Ex-
traction

In this chapter we desrcibe our evaluation for the various components of the bar

chart semantic structuring as well as the knowledge base construction methods.

6.1 Dataset

Our entire dataset consists of 40, 000 figures extracted from 10,000 articles published

in top fifty computer science conferences between 2004 and 2014. The figures were

extracted using a recently released system pdffigures [55]. Their system produces an

image file and a JSON metadata file for each figure in the document. The metadata

contains the location of the bounding box of the figure within the document

page and caption. For figures embedded as vector graphics, (eps/ps/PDF), the

metadata also contains the text and the bounding box of the words inside the

figure. We observed that around 50% of these figures contained sub-figures: often a

combination of line graphs, bar charts, and pie charts. By manual inspection of the

extracted images we found roughly 1,100 of these documents contained bar charts.

By taking a random sample of these charts we found that 67% of them follow the

assumptions followed in the data extraction step. To conduct our experiments we
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Precision Recall Type-II error
bar extraction 86% 89 % 11%
x-label region 83% 88% 12%
x-label text 73% 79% 21%
x-name char 87% 86% 13%
x-name word 85% 82% 18%
y-name char 77% 74% 26%
y-name word 79% 68% 32%

Table 6.1: Chart-Data Extraction Precision, Recall and Type-II Error

use a subset of 300 bar charts extracted from over 1,000 PDF files.

6.2 Rule-Based Extraction

Data extraction involves correct recognition of a chart’s bars, y-axis scale, axes

labels and names. In this section we describe our evaluation for the rule-based

extraction.

We run experiments on the extracted charts and through manual inspection

determine the accuracy of: bar recognition, y-scale calculation, extraction of x-

labels and axes names, where they exist. Table 6.1 shows precision, recall, and

type-II error for these steps. As noted the recall is higher than precision for the

bar extraction, which implies that the connected component method is effective

in capturing the bar shaped components in the graphic. Bars that go undetected

either have very small height, or are the same color as the background, e.g. white

bars in white-background charts. However, lower precision implies that a simple

heuristic based approach to classify these bar shapes as data bar or noise, leaves

room for improvement.

Y-Scale Extraction The scale of the x-axis, which is the graphic-pixel to real-data

ratio, can only be correctly calculated if both the y-axis labels are correctly located

and if the OCR returns their correct text values. The locating of y-label regions
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-since it is computed as simply the region left to the leftmost bar- depends on the

correct identification of the bars. Thus, we evaluate only the accuracy of the y-scale

as either correct or incorrect, since it directly relies on a step that has already been

evaluated. The method is able to identify 77% of y-scales correctly. This result is

lower in charts extracted from PDF documents as opposed to charts from the web

or ones from chart design tools [3]. Many interesting factors contribute to this rate,

such as the quality of the charts and accuracy of chosen OCR for the chart resolution.

X-Axis labels The x-axis labels are used to name the bars. Since many text

strings can appear below the x-axis, we evaluate both the correct identification of

the label’s location and the correctness of the text. Table 6.1 shows the accuracy of

extraction of the label region and the results for correct recognition of the text string

it contains. Most cases where the method fails to identify the regions correctly is

when the extracted bars contain many false positives. This will cause inaccuracies

in the location of the x-axis, and consequently the x-axis labels. In it’s current

state the method assumes labels are horizontally aligned, thus if a single label

spans more than one line, only the string in the first line will be returned. As

for the text accuracy, the method does not address slanted labels, although their

regions can be identified, the OCR does not recognize the texts. Additionally, if

the labels are too small, the text resolution will not be high enough to be recognized.

Axes Names Table 6.1 shows the results for the extraction of the axes names.

In many cases, the text characters are correctly extracted however the isotropic

dilation may not be able to separate them into their individual words. Thus, we

provide a detailed evaluation, one for the character recognition and another for word

recognition. Intuitively, the word recognition, i.e. separating the characters into

individual words, shows lower performance when the words are placed too close to

one another. Sometimes when the image is scaled in one dimension more than the
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other before it is embedded in the PDF document, the character spacing becomes

smaller than an average space for it’s font size, which can affect the recognition

results. However, the character recognition relies mainly on the OCR’s performance.

If a word has more than 90% of it’s characters returned correctly it is considered

correct. The character recognition was noted to perform with better accuracy when

the font used is not in bold, with a reasonable image resolution. Certain characters

were commonly misinterpreted by the OCR, such as ’r’ and ’Q’ as well as special

characters such as ’%’ and ’#’ signs.

6.3 Machine Learning-based Extraction

In this section we describe the evaluation of our method on a set of 213 bar

charts extracted from over 1000 PDF files. The tool used to extract the charts

is PDFFigures [55], [56]. The charts were selected randomly from the PDF

documents, however, to obtain a more diverse set of charts, we reject a chart if the

set already contained a chart extracted from that PDF. Most charts from the same

document have the same layout. The PDF documents are articles published in top

Computer Science conferences.

6.3.1 Graphics Role Labeling

The first part is to evaluate the classification of the graphic components. Tables 6.2

and 6.3 shows the results for multi-class and binary classification using the c4.8

classifier and the random forest classifier with 10-fold cross validation. As shown

the random forest produced better results and higher accuracy. It is noted that the

bar accuracy is higher and that is due to the fact that bars have more consistent

layout in the chart as opposed to legend boxes. Also, the removal of small size

components during the connected components labeling step, can cause some legend
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Table 6.2: Graphics Components Role Classification Accuracy using Multi-class
C4.8 and RF Classifiers

Precision Recall F1
RF C4.8 RF C4.8 RF C4.8

bar 98.4 97.5 97.4 96.8 97.9 97.2
legend 92.5 89.9 93.5 88.7 93 89.3
Other 94.7 92.9 96.3 94.3 95.5 93.6

Table 6.3: Graphics Components Role Classification Accuracy using Binary C4.8
and RF Classifiers

Precision Recall F1
RF C4.8 RF C4.8 RF C4.8

bar 98.5 97.3 97.2 96.8 97.9 97
legend 93.6 90 90.4 86.3 92 88.1
Other - - - - - -

boxes to be filtered out of the image all together.

6.3.2 Text Role Labeling

The extracted text regions are classified into one of 7 roles and the accuracy is

reported for both the C4.8 classifier and random forest. Tables 6.4 and 6.5 shows

the precision and recall for each of the roles (the first column) obtained by each

of the classifiers applied as multi-class and binary. As noted, the random forest

classification scheme provides higher accuracy for the text role labeling. The

results are highest for the y-scale values, which is a very important field, since the

extraction of the y-scale, and consequently the data values, rely on the correct

extraction of these values. The title of the x-axis has lowest accuracy, and that is

due to the fact that many charts in our data set did not contain an x-axis title.
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Table 6.4: Text Role Classification Accuracy using Multi-class C4.8 and RF Classi-
fiers

Precision Recall F1
RF C4.8 RF C4.8 RF C4.8

Y-title 96.8 93.4 95.8 91.6 96.3 92.5
Y-label 96.4 95.8 99.1 98 97.7 96.9
Legend 87.5 81.2 90.9 85.9 89.2 83.5
X-labels 95.1 93.8 95.9 95.1 95.5 94.4
X-title 85.7 84.7 82.4 77.8 84 81.1
Chart-title 88.2 84.7 86.5 83.1 87.4 83.9
Other 91.9 83.5 80.4 74.4 85.8 78.7

Table 6.5: Text Role Classification Accuracy using Binary C4.8 and RF Classifiers

Precision Recall F1
RF C4.8 RF C4.8 RF C4.8

Y-title 96.9 94.3 93.8 90.8 95.3 92.6
Y-label 97.4 95.6 98.6 97.6 98 96.6
Legend 93 84.6 85.1 82.8 88.9 83.7
X-labels 96 94.8 95.2 95 95.6 94.9
X-title 89.3 80.1 76.8 76.4 82.6 78.2
Chart-title 92.2 85.4 81.9 80.8 86.8 83
Other - - - - - -

6.4 Feature Extraction

The features extracted from the images are salience, trend, maximum and minimum,

time-line and ordinality of the x-axis. Salience refers to when a specific bar has

special design features that are meant to draw attention to it. Design features

that can be used to express a bar’s salience are giving it a different color than the

other bars, or by annotating it with a text string. By examining the charts in our

data set we found that less than 1% contain these salience features, which is not a

sufficient size to evaluate the extraction of this feature.

To evaluate the identification of the trend feature, we first evaluate the extraction

of the different bar series and groups. A bar series is the bars that belong to a

single data series and are represented graphically by having the same color. A bar
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group is the collection of bars that have the same x-label. Evaluating these two

extracted values is key because in our specific dataset of scientific charts the trends

are mostly expressed over a data series or among a group. Since at this point we

do not extract the legends of the chart, we determine the chart’s trend based only

on the trend of each data series, since the summary can be generated by using the

x-axis name as the parameter. An appealing extension to this step is to extract the

legends and their names so that they can be used as the parameter for the trend

protoform, yielding an even more accurate description. Table 6.6 shows the results

for the series and group identification steps. It is important to note that this step

is based on the correct identification of the y-scale. Charts with a y-scale that was

not extracted in the data extraction module, i.e. returned ’nil’ by the extractor,

cannot proceed to this step, thus the accuracy is calculated over only charts whose

y-scale was extracted. Table 6.6 also shows the percentage of correctly identified

maximum and minimum values. This is calculated over the entire set of bars in a

chart. The fact that the bar extraction overlooks very small bars contributes to a

great percentage of incorrect minimum values.

The last feature extracted is determining whether the data is a time series and

whether the x-axis is a trend of ordinal values. Table 6.6 shows the percentage of

correctly identified time series and ordinal x-axis values. Two factors affect the

accuracy of this step: the first is the accuracy of the x-label extraction and correct

recognition of their textual values. The second, is that the method in it’s current

design classifies the x-axis data as time-line only if all the x-axis labels are classified

as such. However, the case where only a single label is incorrectly extracted is not

uncommon and in the future this occurrence should be tolerated to achieve better

detection rates.
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Feature Extraction Accuracy
bar series 100%
bar groups 96%
trend in series 81%
trend in group 79%
x-axis timeline 89%
x-axis ordinal 65%
maximum value 88%
minimum value 68%

Table 6.6: Feature Extraction Evaluation Results

6.5 Bar Chart Data Recovery Accuracy

The quality of the role labeling phase naturally affects the accuracy of the final

data values we recover from the chart. To evaluate the effectiveness of our machine-

learning approach where we train the classifiers to label the roles of the components,

we compare the data extraction accuracy using our methods with those obtained

by a rule-based approach proposed in [3]. The data set used for this evaluation

is a set of 50 charts different than those used in training our classifier. Tables 6.7

and 6.8 show the precision and recall for the data extraction. As expected the

precision achieved using the ML approach is higher for most of the values. Legends

had low values for both precision and recall because the evaluation did not tolerate

any type of error in the recovery. If the entire legend map was not recovered fully

it was considered a miss. Also, in some cases when the legend texts were correctly

labeled as being legend text, they were associated with an incorrect legend box,

which is considered erroneous in our evaluation. Chart titles have notably high

accuracy, this is due to firstly, most charts had the title at the top. This is a

general observation about the data set. Additionally, for the data set used in this

experiment only 11 out of the 50 charts contained a title. Which is also noted as

common in Computer Science papers as not many of the charts contain a title.
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Table 6.7: Data Extraction accuracy for Rule-Based vs. Machine Learning Role
Labeling -1

Precision Recall
RB ML RB ML

Data Values 89.65 98.14 93.48 78.06
X-labels 40.03 91.93 84.32 79.26
Legend - 59.26 - 43.75

Table 6.8: Data Extraction accuracy for Rule-Based vs. Machine Learning Role
Labeling -2

Accuracy %
RB ML

X-title 75.76 90.91
Y-title 80.95 95.24
Y-scale 63.27 78
Chart-title - 99

6.6 Summary generation

The final step is to evaluate the final summaries, which is an evaluation of the entire

system performance. In order to determine the effectiveness of the summaries we

evaluate the summaries based on two metrics: fact accuracy and summary relevance.

To determine the fact accuracy we evaluate whether the information provided by

the summary is simply correct or not. Facts+ indicates an optimistic evaluation,

where minor errors that can be corrected by existing tools are overlooked, such

as a single incorrectly retrieved character in a word. The Facts- measures the

accuracy with a pessimistic evaluation where the summary facts are considered

correct only if the data has been extracted with 100% accuracy. The relevance

is based on whether the user thinks the summary captures the most important

information the chart is designed to illustrate. However, this type of evaluation

requires a quantification of the summary relevance in order to be able to measure

it. In our evaluation, we assume a summary is considered relevant if it succeeds to

mention either trend, maximum and minimum value over a timeline, or a trend in
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Summary Accuracy
Facts+ 74%
Facts- 56%
Relevance 83%

Table 6.9: Generated Summary Evaluation

the ordinal values of the x-axis. Or if it successfully concludes the overall trend or

max/min values whichever is present, in the case where the chart x-axis is neither

a timeline nor contains ordinal value trend.

Since the bar values exhibit a trend of increasing value and the x-axis values

are ordinal values, the protoform 2 is applied here. It is noted though, that a large

number of charts in scientific documents are used to illustrate experimental results.

The results show that most summaries express trends and maximum and minimum

values. This is consistent with the fact that not many contain salience features.

Table 6.9 shows the result of user evaluation of the summaries generated by the

charts. This step also was only evaluated for charts whose y-scale was extracted.
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Chapter 7 |
Evaluation of Knowledge Base
Construction

In this chapter we discuss a detailed evaluation on the knowledge base construction

method. We evaluate the proposed algorithms as well as discuss the properties of

taxonomy that is built using the proposed approach. First we discuss the details

of our data set, and then describe the experimental setup used to evaluate the

knowledge base construction portion of this thesis.

The first step is to evaluate the quality of the proposed hyponymy extraction

method. The second is to evaluate the quality of the taxonomy construction

method. Since no ground truth labeled data is available at the time of the study,

we adopt the most common evaluation measures used in prominent studies with

similar problem [40], [57], [32]. For the hyponymy extraction evaluation we

define two evaluation metrics: correctness using precision and recall, and relevance

using scoring scale well known in the literature [57]. The taxonomy construction

experiments are designed to capture the quality of the resulting knowledge base in

terms of: quality of entity categories and entity coverage of the taxonomy.

The hyponymy extraction method was applied to a data set of 10k research

articles from CiteSeerX1 published between 2004 and 2014 in top 50 computer
1http://citeseerx.ist.psu.edu
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Table 7.1: Comparison of taxonomy graph properties.

# tuples Avg. # children Avg. depth Max depth
UG-PL 10,589 0.0001 1 3
NG-PL 15,066 0.001 1 3

science conferences. The topics covered include data mining, artificial intelligence,

computer security and most computer science topics.

7.1 Hyponymy Extraction

In this section we describe two separate experiments conducted to evaluate correct-

ness of the extracted triples and relevance of the triple statement, respectively.

7.1.1 Correctness

To evaluate the quality of our extracted hypernym-hyponym pairs, we randomly

select pairs extracted from 400 documents. We extract the is-a pairs from these

documents using our approach that incorporates the ngrams of the hypernym

phrase and compare the results with that of applying the SuperConceptDetection

algorithm described in [40]. We refer to our approach as NG-PL, from n-gram

probabilistic learner and the baseline as UG-PL, since it considers only unigrams.

From the 400 documents the amount of harvested pairs is 133 and 74 when using

our method and the baseline respectively. The triples were annotated by three

computer science graduate students. The annotators were presented with the triple

and the text containing from which it was extracted and is asked to assign a score

to each extracted triple. The scoring system uses a scale ranging 0-4, similar to the

one in [57], defined as follows:

0: The extracted relation is nonsense.

1: The extracted relation is either vague or unhelpful. This covers the case where
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the hypernym-hyponym pair is too abstract to be useful or the phrase is not

descriptive enough to substantiate a clear relationship.

2: Opinion/I don’t know. An example of this case the pair may contain a very

specific concept that cannot be known without knowing the context of the

paper it was extracted from, such as a new algorithm name that is just

introduced in the paper and the annotator is not familiar with it.

3: The extracted relation is somewhat true. This is used when the pair is generally

correct but requires only small modification to become fully true.

4: The extracted relation is correct as is.

The inter-annotator agreement was computed among the three annotations

according to the average score given for each pair. The agreement result is 71%

and evaluation results are shown in Table 7.3.

7.1.2 Relevance

To evaluate the relevance of the extracted triples we ask the annotators to evaluate

the extracted triples based on whether they are concrete or abstract. A concrete

relationships is where the hypernym is considered to be one of the closest terms

or categories the hyponym can be described with. If the hypernym is a general

concept and not considered descriptive enough of the hyponym, it is considered to

be abstract. Table 7.2 shows the percentages of both as labeled by the annotators

described in section 7.1.1. The last row is a measure of whether the extracted

phrase is a complete phrase in itself. This evaluates the phrase detection, if the

phrase can hold it’s meaning and carry the same meaning even when taken out of

the context it is mentioned in, it is considered well-phrased.
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Table 7.2: Relevance of Extracted Hyponymy Relationships

Measure % of Triples
Concrete 82.8
Abstract 17.2
Phraseness 93.39

Table 7.3: Annotator scores for extracted triple quality

Score #NG-PL %NG-PL #UG-PL %UG-PL
4 72 54.13% 27 36.48%
3 26 19.54% 19 25.67%
2 09 06.76% 07 09.45%
1 15 11.27% 14 18.91%
0 11 08.27% 07 09.45%

7.2 Taxonomy Evaluation

By applying the pattern-based extraction step to the 10k documents, we extract

candidate hypernym-hyponym sentences. This generates over 17k candidate sen-

tences with average runtime of 0.3 sec/document. The dependency path parsing

step is the most expensive step in this phase. In this section we report on the

evaluation of the constructed taxonomy graph and the resulting knowledge base as

a source for scientific knowledge.

Table 7.4: Knowledge base coverage of top 3 million queries

# of top queryTerms #of queries covered
10,000 3504
20,000 4323
30,000 4702
40,000 4915
50,000 5810
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Table 7.5: Annotator scores for entity categories in knowledge base

Score %Entity-Concept pairs
4 61.27%
3 04.27%
2 11.77%
1 06.77%
0 15.93%

7.2.1 Correctness

To evaluate the accuracy of the categories assigned to concepts extracted in our

knowledge base, we conduct two evaluations. The first is similar to the one in the

previous section where we ask users to annotate the categories of a subset of 1, 000

entities. For this task we ask 6 computer science graduate and senior undergraduate

students to score the extractions on the same scale of 0-4. The results are shown in

Table 7.5.

The second evaluation of the terms is conducted by a comparison with an

existing knowledge base. We compare the assigned hypernym for each entity to

those extracted by the Microsoft Concept knowledge base2. This is built using the

methods proposed in [40] and provides an API to look up entities and retrieve their

hypernyms, which is referred to as "class" in the API. By applying our taxonomy

construction system to the 17k candidate sentences, we harvest over 15k entities

and their hypernym. For each entity if the MS concept graphs returns a hypernym

for that entity that matches the one extracted by our system we consider it a match.

Out of 15, 066 entities, 9, 160 were found in MS concept graph, and 9, 026 of those

entities’ hypernyms were found in the classes returned by the API.
2https://concept.research.microsoft.com/
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7.2.2 Coverage

In order to evaluate the coverage of the We compare the properties of the constructed

knowledge graph using our hypernym detection algorithm for ngrams against the

same method used only for unigrams, as in [40]. Table 7.1 shows the values for the

knowledge base size for each method. To evaluate the quality of the knowledge

base we asses the coverage of the entities. To do this we perform a concept-space

evaluation similar to that used in [40] to evaluate the coverage of the knowledge

base. This measures whether the concepts extracted are ones that are frequently

queried, the assumption is if a query term is found in our knowledge base, then it

has good coverage. To do this, we compile a set of 3 million query logs submitted to

the scholarly search engine CiteSeerX during the years 2015 and 2016. Stop-words

are removed from the terms in the queries to find the top unique query terms in

the entire set. The 3 million queries contained just over 500,000 unique terms. The

most frequent terms were selected and looked up in the knowledge base to assess

whether the knowledge base can provide more information about the concept.

Table 7.4 shows the amount of queried topics that were found in the knowledge

base. Although the knowledge base covers roughly 5% of the query terms, this

percentage does increase with the increase of query terms. Several factors are to be

noted here. The query logs are submitted to a search engine that contains papers

on most scientific fields not only computer science. Thus, the queries we count are

not selected for only computer science related queries, as our document set from

which we extract the KB was. Additionally, the query terms, although stop-words

were removed, they were not stemmed or lemmatized. Neither did they undergo a

cleansing step to remove noisy terms.

In order to evaluate the value of the extracted entities we conduct another

experiment to measure the amount of entities in our knowledge base that are

queried frequently by users. This is the reverse of the previous test, and implies a

slightly different insight. If our entities, which are stemmed and lemmatized, are
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Figure 7.1: KB entities that are frequently queried

queried frequently this suggests that they are useful extractions. Figure 7.1 shows

the amount of entities in our knowledge base that were frequently queried. In a

set of over 500,000 query terms we count the KB entities that occurred in the top

10,000-50,000 query terms. The results show that 59.76% of the KB entities are

among the 0.02% most frequent queried terms, and 79.64% are among the 0.1% of

queried terms. About 90% of the KB entities occur at least once in the entire set

of 500,000 query terms. This small increase in entity count compared to the large

increase in query terms indicates that it is possible that 10% of the KB entities are

not useful terms.

7.3 Comparisons with Open Information Extractors

In this section we conduct an experiment to compare the effectiveness of our

approach as whole in terms of: the choice of extracting only hyponymy relationships

and the quality of the results per the metrics in the previous sections.

Open information extraction (OpenIE) tools such as Reverb [58], [39] and
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Table 7.6: Correctness and Relevance of Triples using NG-PL vs. OpenIE Systems
on 100 Sentences

System Phraseness Correctness Concrete Abstract #Triples
S.OpenIE 149 (38%) 24 (6%) 7 (1.8%) 17 (4.3%) 396
ReVerb 14 (15.9%) 2 (2.3%) 1 (1.1%) 1 (1.1%) 88
NG-PL 16 (69.56%) 13 (56.52%) 9 (39.13%) 4 (17.39%) 23

StanfordOpenIE [59] are designed to extract triples from unstructured text. OpenIE

approaches do not assume a predefined schema for the triples extracted, thus the

predicate, which is the relationship, can be of any type. In order to evaluate the

effectiveness of our approach we compare the results obtained from our system with

those obtained by the Reverb and Stanford OpenIE tools.

We run both openIE tools on a set of 100 candidate sentences extracted from over

150 research articles. Both the StanfordOpenIe tool, denoted S.OpenIE, and the

Reverb tool extract all relationship types possible, whereas our approach, denoted

NG-PL, extracts only hyponymy relationships. Table 7.6 shows the resulting

evaluation of the triples extracted by each tool. The first row shows that the

StanfordOpenIe tool, denoted S.OpenIE, has the highest recall as it harvests 396

triples from only 100 sentences.The phraseness column reports the amount of triples

of which the subject and object were well-formed English phrases. The correctness

column measures the triples that scored a 3 or 4 based on our correctness scale

described in the previous section. For those correct triples, the quality of the

information carried in the triple is measured by whether the fact is concrete or

abstract. As noted from the table, our system outperforms openIE tools in quality

of phrase extraction, second best is Stanford OpenIE, which is expected since it

relies on a dependency parse similar to our approach. Although, the lowest in the

amount of extracted triples, our method has the highest ration in quality of triples,

i.e. concrete facts.

Table 7.7 shows the amount of triples that are extracted as is-a relationships.
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Table 7.7: Hyponymy Extraction using NG-PL vs. OpenIE Systems on 100
Sentences

System #Triples is-A Hyponymy Phraseness
S.OpenIE 396 28 1 17
ReVerb 88 8 1 0
NG-PL 23 23 13 16

Since both openIE tools extract all types of relationships, the table illustrates the

importance of proposing our method for hyponymy extractions as the values show

that none of these tools have high precision or recall when it comes to hyponymy

relations Extraction. The column displaying hte is-a values, shows the amount of

triples that have the is-a as a relationship. However, since "is-a" can be used in

English for purposes other than expressing hyponymy, we report the number of

these triples that actually are instances of hyponymy use of the is-a predicate. The

table shows that our method significantly outperforms both methods in extracting

triples if we focus on hyponymy relations, which is the goal of building a knoweldege

base.
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Chapter 8 |
Conclusion and Future Work

8.1 Summary and Conclusions

In this paper we propose a summary generation method for scientific charts,

specifically bar charts. Our system uses image processing techniques to extract data

from the charts and provides an analysis of the data. Charts are given semantic

structure by means of semantic-graphs. The summary generation techniques are

applied to the labeled graph to produce a textual description of the chart. A main

challenge to this work is that the quality of the feature extraction is based on the

accuracy of the data extraction method. Data extraction methods have indeed

reached high accuracy on this front, however, if a single misread value propagates

through the entire pipeline the summary may not be very representative of the

chart’s content.

Large scale knowledge graph construction from raw text is a challenging problem

when the text contains domain specific concepts that are not covered by existing

knowledge sources. In this paper we presented a system to extract a knowledge base

from scholarly documents to harvest scientific entity-relation pairs. Our approach

was tested on a set of 10,000 research articles publish in computer science related

conferences. The method bootstraps using a pattern-based approach to extract a

seed of triples that are used for learning new ones. An iterative semantic learner
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harvests more triples by using the knowledge gained from the previous iteration.

We also explore the effectiveness of a probabilistic scheme to identify valid

hypernym phrases for extracted triples. A taxonomy graph is then constructed using

graph merging and insertion operations designed to provide as much information

about entities as possible. Experimental evaluation shows that our hypernym

phrase extraction scheme is able to identify 3x more true hypernym/hyponym pairs.

From a data set of 10,000 documents and over 14,000 candidate sentences, the final

taxonomy graph contains over 16,000 concepts. By sampling 450 of those documents

we obtain a graph with 113 concepts of which computer science annotators found

over 70% of the concepts to be generally true.

8.2 Future Work

The proposed framework is flexible to a myriad of extensions for improving the

labeling and summaries. Identifying additional features can result in more complex,

and perhaps, more accurate summaries. A notable finding from this study is that

salience is not a common message in a data set such as the one used here, i.e. charts

found in computer science scholarly documents. This indicates that certain types

of messages can be more common in charts in certain contexts. A future extension

for this work is to identify the messages that are more pertinent to charts found in

computer science scholarly documents.

Future directions for the knowledge base construction problem are three cate-

gories: knowledge base construction, knowledge base completion, and knowledge

base applications. The first direction can provide more accurate classifiers for the

triples. Another future work, may include experimenting with additional bootstrap-

ping approaches to extract more types of relationships other than the hyponymy

relationship. The second category is an active area of research, and the knowledge

base resulting from this thesis can be used as a foundation for a large academic
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concept graph that can be further completed and expanded. The third category

involves applications built on knowledge base data such as entity based processing

of queries as well as question answering problems.

71



Bibliography

[1] Lu, X., S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and C. L.
Giles (2009) “Automated analysis of images in documents for intelligent doc-
ument search,” International Journal on Document Analysis and Recognition
(IJDAR), 12(2), pp. 65–81.

[2] Liu, Y., K. Bai, P. Mitra, and C. L. Giles (2007) “Tableseer: automatic
table metadata extraction and searching in digital libraries,” in Proceedings of
the 7th ACM/IEEE-CS joint conference on Digital libraries, ACM, pp. 91–100.

[3] Al-Zaidy, R. A. and C. L. Giles (2015) “Automatic Extraction of Data
from Bar Charts,” in Proceedings of the 8th International Conference on
Knowledge Capture, ACM, p. 30.

[4] Tuarob, S., S. Bhatia, P. Mitra, and C. L. Giles (2016) “AlgorithmSeer:
A system for extracting and searching for algorithms in scholarly big data,”
IEEE Transactions on Big Data, 2(1), pp. 3–17.

[5] Wu, J., J. Killian, H. Yang, K. Williams, S. R. Choudhury, S. Tu-
arob, C. Caragea, and C. L. Giles (2015) “Pdfmef: A multi-entity
knowledge extraction framework for scholarly documents and semantic search,”
in Proceedings of the 8th International Conference on Knowledge Capture,
ACM, p. 13.

[6] Al-Zaidy, R. A. and C. L. Giles (2017) “A Machine Learning Approach
for Semantic Structuring of Scientific Charts in Scholarly Documents,” in
Twenty-Ninth IAAI Conference.

[7] Nickel, M., K. Murphy, V. Tresp, and E. Gabrilovich (2015) “A
review of relational machine learning for knowledge graphs,” arXiv preprint
arXiv:1503.00759.

[8] Weikum, G. and M. Theobald (2010) “From information to knowledge:
harvesting entities and relationships from web sources,” in Proceedings of the
twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, ACM, pp. 65–76.

72



[9] Qian, R. (2013), “Introducing the Knowledge Graph: things, not
strings,” http://blogs.bing.com/search/2013/12/18/bing-in-2013-entities-apps-
and-maps.

[10] Singhal, A. (2012), “Introducing the Knowledge Graph: things, not
strings,” https://googleblog.blogspot.com/2012/05/introducing-knowledge-
graph-things-not.html.

[11] High, R. (2012), “The Era of Cognitive Systems: An Inside Look at IBM
Watson and How it Works,” .

[12] Liu, Y., K. Bai, P. Mitra, and C. L. Giles (2007) “Tablerank: A ranking
algorithm for table search and retrieval,” in Proceedings of the National Con-
ference on Artificial Intelligence, vol. 22, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, p. 317.

[13] Kataria, S., W. Browuer, P. Mitra, and C. L. Giles (2008) “Automatic
Extraction of Data Points and Text Blocks from 2-Dimensional Plots in Digital
Documents.” in AAAI, vol. 8, pp. 1169–1174.

[14] Tuarob, S., S. Bhatia, P. Mitra, and C. L. Giles (2013) “Automatic
detection of pseudocodes in scholarly documents using machine learning,”
in Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, IEEE, pp. 738–742.

[15] Fang, J., P. Mitra, Z. Tang, and C. L. Giles (2012) “Table Header
Detection and Classification.” in AAAI.

[16] Huang, W. and C. L. Tan (2007) “A system for understanding imaged
infographics and its applications,” in Proceedings of the 2007 ACM symposium
on Document engineering, ACM, pp. 9–18.

[17] Yang, L., W. Huang, and C. L. Tan (2006) “Semi-automatic ground truth
generation for chart image recognition,” in Document Analysis Systems VII,
Springer, pp. 324–335.

[18] Chen, Z., M. Cafarella, and E. Adar (2015) “DiagramFlyer: A Search
Engine for Data-Driven Diagrams,” in Proceedings of the 24th International
Conference on World Wide Web Companion, International World Wide Web
Conferences Steering Committee, pp. 183–186.

[19] Chen, S. Z., M. J. Cafarella, and E. Adar (2011) “Searching for statis-
tical diagrams,” Frontiers of Engineering, National Academy of Engineering,
pp. 69–78.

73

http://blogs.bing.com/search/2013/12/18/bing-in-2013-entities-apps-and-maps
http://blogs.bing.com/search/2013/12/18/bing-in-2013-entities-apps-and-maps
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html


[20] Li, Z., S. Carberry, H. Fang, K. F. McCoy, K. Peterson, and
M. Stagitis (2015) “A novel methodology for retrieving infographics utilizing
structure and message content,” Data & Knowledge Engineering, 100, pp.
191–210.

[21] Elzer, S., S. Carberry, and I. Zukerman (2011) “The automated under-
standing of simple bar charts,” Artificial Intelligence, 175(2), pp. 526–555.

[22] Demir, S., D. Oliver, E. Schwartz, S. Elzer, S. Carberry, and K. F.
McCoy (2010) “Interactive SIGHT into information graphics,” in Proceedings
of the 2010 International Cross Disciplinary Conference on Web Accessibility
(W4A), ACM, p. 16.

[23] Savva, M., N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and
J. Heer (2011) “Revision: Automated classification, analysis and redesign
of chart images,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology, ACM, pp. 393–402.

[24] Chester, D. and S. Elzer (2005) “Getting computers to see information
graphics so users do not have to,” in Foundations of Intelligent Systems,
Springer, pp. 660–668.

[25] Chao, H. and J. Fan (2004) “Layout and content extraction for pdf docu-
ments,” in International Workshop on Document Analysis Systems, Springer,
pp. 213–224.

[26] Gonzalez, R. and P. Wintz (1977) “Digital image processing,” .

[27] Ferres, L., P. Verkhogliad, G. Lindgaard, L. Boucher, A. Chre-
tien, and M. Lachance (2007) “Improving accessibility to statistical graphs:
the iGraph-Lite system,” in Proceedings of the 9th international ACM SIGAC-
CESS conference on Computers and accessibility, ACM, pp. 67–74.

[28] Demir, S., S. Carberry, and K. F. McCoy (2008) “Generating textual
summaries of bar charts,” in Proceedings of the Fifth International Natural
Language Generation Conference, Association for Computational Linguistics,
pp. 7–15.

[29] Wilbik, A., J. M. Keller, and G. L. Alexander (2011) “Linguistic
summarization of sensor data for eldercare,” in Systems, Man, and Cybernetics
(SMC), 2011 IEEE International Conference on, IEEE, pp. 2595–2599.

[30] Zadeh, L. A. (2002) “A prototype-centered approach to adding deduction
capability to search engines-the concept of protoform,” in Fuzzy Information
Processing Society, 2002. Proceedings. NAFIPS. 2002 Annual Meeting of the
North American, IEEE, pp. 523–525.

74



[31] Yager, R. R. (1982) “A new approach to the summarization of data,”
Information Sciences, 28(1), pp. 69–86.

[32] Carlson, A., J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka Jr, and T. M. Mitchell (2010) “Toward an Architecture for
Never-Ending Language Learning.” in AAAI, vol. 5, p. 3.

[33] Suchanek, F. M., G. Kasneci, and G. Weikum (2007) “Yago: a core of
semantic knowledge,” in Proceedings of the 16th international conference on
World Wide Web, ACM, pp. 697–706.

[34] Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives (2007) “Dbpedia: A nucleus for a web of open data,” The semantic
web, pp. 722–735.

[35] Lenat, D. B. and R. V. Guha (1989) Building large knowledge-based systems;
representation and inference in the Cyc project, Addison-Wesley Longman
Publishing Co., Inc.

[36] Bollacker, K., C. Evans, P. Paritosh, T. Sturge, and J. Taylor
(2008) “Freebase: a collaboratively created graph database for structuring
human knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, AcM, pp. 1247–1250.

[37] Vrandečić, D. and M. Krötzsch (2014) “Wikidata: a free collaborative
knowledgebase,” Communications of the ACM, 57(10), pp. 78–85.

[38] Etzioni, O., M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates (2004) “Web-scale
information extraction in knowitall:(preliminary results),” in Proceedings of
the 13th international conference on World Wide Web, ACM, pp. 100–110.

[39] Fader, A., S. Soderland, and O. Etzioni (2011) “Identifying relations
for open information extraction,” in Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, Association for Computational
Linguistics, pp. 1535–1545.

[40] Wu, W., H. Li, H. Wang, and K. Q. Zhu (2012) “Probase: A probabilistic
taxonomy for text understanding,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ACM, pp. 481–492.

[41] Hearst, M. A. (1992) “Automatic acquisition of hyponyms from large text
corpora,” in Proceedings of the 14th conference on Computational linguistics-
Volume 2, Association for Computational Linguistics, pp. 539–545.

75



[42] Cederberg, S. and D. Widdows (2003) “Using LSA and noun coordination
information to improve the precision and recall of automatic hyponymy extrac-
tion,” in Proceedings of the seventh conference on Natural language learning at
HLT-NAACL 2003-Volume 4, Association for Computational Linguistics, pp.
111–118.

[43] Snow, R., D. Jurafsky, A. Y. Ng, et al. (2004) “Learning syntactic
patterns for automatic hypernym discovery.” in NIPS, vol. 17, pp. 1297–1304.

[44] Yates, A., M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and
S. Soderland (2007) “Textrunner: open information extraction on the web,”
in Proceedings of Human Language Technologies: The Annual Conference of
the North American Chapter of the Association for Computational Linguistics:
Demonstrations, Association for Computational Linguistics, pp. 25–26.

[45] Cimiano, P., A. Pivk, L. Schmidt-Thieme, and S. Staab (2005) “Learning
taxonomic relations from heterogeneous sources of evidence,” in Ontology
Learning from Text: Methods, evaluation and applications.

[46] Miller, G. A. (1995) “WordNet: a lexical database for English,” Communi-
cations of the ACM, 38(11), pp. 39–41.

[47] Ponzetto, S. P. and M. Strube (2007) “Deriving a large scale taxonomy
from Wikipedia,” in AAAI, vol. 7, pp. 1440–1445.

[48] Swoboda, T., M. Hemmje, M. Dascalu, and S. Trausan-Matu (2016)
“Combining Taxonomies using Word2vec,” in Proceedings of the 2016 ACM
DocEng Symposium on Document Engineering, ACM, pp. 131–134.

[49] Fletcher, L. A. and R. Kasturi (1988) “A robust algorithm for text string
separation from mixed text/graphics images,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 10(6), pp. 910–918.

[50] Vassilieva, N. and Y. Fomina (2013) “Text detection in chart images,”
Pattern Recognition and Image Analysis, 23(1), pp. 139–144.
URL http://dx.doi.org/10.1134/S1054661813010112

[51] Zhang, X., C. Yang, F. Liu, Y. Liu, and Y. Lu (2014) “Optimizing and
scaling HPCG on Tianhe-2: early experience,” in International Conference on
Algorithms and Architectures for Parallel Processing, Springer, pp. 28–41.

[52] Lopez, P. (2008-2016), “GROBID,” https://github.com/kermitt2/grobid.

[53] Manning, C. D., M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky (2014) “The stanford corenlp natural language processing
toolkit.” in ACL (System Demonstrations), pp. 55–60.

76

http://dx.doi.org/10.1134/S1054661813010112
https://github.com/kermitt2/grobid


[54] Chang, A. X. and C. D. Manning (2014) “TokensRegex: Defining cascaded
regular expressions over tokens,” Tech. Rep. CSTR 2014-02.

[55] Clark, C. and S. Divvala (2015) “Looking Beyond Text: Extracting Figures,
Tables, and Captions from Computer Science Paper,” in AAAI Workshop on
Scholarly Big Data.

[56] Clark, C. and S. Divvalla (2016) “PDFFigures 2.0: Mining figures from
research papers,” in IEEE/ACM Joint Conference on Digital Libraries (JCDL),
IEEE, pp. 143–152.

[57] Li, X., A. Taheri, L. Tu, and K. Gimpel (2016) “Commonsense knowledge
base completion,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL), Berlin, Germany, August. Association
for Computational Linguistics.

[58] Etzioni, O., A. Fader, J. Christensen, S. Soderland, et al. (2011)
“Open information extraction: The second generation,” in Twenty-Second
International Joint Conference on Artificial Intelligence.

[59] Angeli, G., M. J. Premkumar, and C. D. Manning (2015) “Leveraging
linguistic structure for open domain information extraction,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
(ACL 2015).

77



Vita
Rabah Al-Zaidy

Education
• Ph.D. Computer Science and Engineering, Pennsylvania State University,

2017.

• M.A.Sc. Information Systems Engineering, Concordia University, Montreal,
Canada, 2011.

Publications

Journal Articles
• R Al-Zaidy, BCM Fung, AM Youssef, F Fortin. Mining criminal networks

from unstructured text documents. In Digital Investigation (DIIN) 8 (3),
147-160, 2012.

• R Al-Zaidy, A Kircanski, AM Youssef. Cryptanalysis of the parameterized
improved fast encryption algorithm for multimedia/ IEEE Communications
Letters 12 (12), 2008.

Proceedings
• Rabah A. Al-Zaidy, C. Lee Giles. A Machine Learning Approach for Semantic

Structuring of Scientific Charts in Scholarly Documents. In AAAI, 2017.

• Rabah A. Al-Zaidy, Sagnik Ray Choudhury, C. Lee Giles. Automatic Sum-
mary Generation for Scientific Data Charts. In AAAI -SBD Workshop, 2016.

• Rabah A. Al-Zaidy, C. Lee Giles. Automatic Extraction of Data from Bar
Charts. In Proceedings of the 8th K-CAP Conference., 2015.

• R Al-Zaidy, B Fung, AM Youssef. Towards discovering criminal communities
from textual data. In Proceedings of the 2011 ACM Symposium on Applied
Computing, 172-177, 2011.

• A Kircanski, R Al-Zaidy, AM Youssef. A new distinguishing and key recovery
attack on NGG stream cipher. Cryptography and Communications 1 (2),
269-282, 2009.


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation
	Automatic Understanding of Bar Charts
	Scientific Knowledge Base Construction

	Objectives
	Contribution
	Thesis Organization

	Preliminaries
	Chart Data Extraction
	Chart Figures in Scholarly Documents
	Connected Component Analysis

	Summary Generation
	Knowledge Base Construction

	Bar Chart Data Extraction
	Rule-Based Data Extraction
	Graphical Component Extraction
	Text Component Extraction
	Identification of Text Regions in a Chart
	Extracting Text and Numerical Values


	Machine Learning based Extraction
	Graphic Component Extraction
	Text Component Extraction
	Component Role Classification
	Graphic Component Classification
	Text Region Classification


	Chart Data Inference

	Semantic Graph Representation
	Data Analysis
	Semantic Graph Construction
	Automatic Summary Generation
	Fuzzy Logic Constructs
	Summary Generation Algorithm


	Scientific Knowledge Base Construction
	Problem Definition
	System Overview
	Hypernym Relation Extraction
	Syntactic-based Extraction
	Iterative Semantic Learning

	Scientific Taxonomy Construction

	Evaluation of Chart Data Extraction
	Dataset
	Rule-Based Extraction
	Machine Learning-based Extraction
	Graphics Role Labeling
	Text Role Labeling

	Feature Extraction
	Bar Chart Data Recovery Accuracy
	Summary generation

	Evaluation of Knowledge Base Construction
	Hyponymy Extraction
	Correctness
	Relevance

	Taxonomy Evaluation
	Correctness
	Coverage

	Comparisons with Open Information Extractors

	Conclusion and Future Work
	Summary and Conclusions
	Future Work

	Bibliography

