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Abstract

Glasses are non-equilibrium disordered solids that constitute a wide range of natural
and engineered materials, including silicate glasses, plastics, colloidal suspensions
and foams. Despite decades of research, the nature of the glass transition, whereby
liquids transform to glasses under rapid cooling or compressing, is still a matter of
debate. According to many leading glass theories, the dramatic slowing down of
dynamics with decreasing temperature or increasing concentration— a key signature
of the glass transition— is attributed to some underlying growing length scale.
While a number of methods have been proposed, identifying the length scale relevant
to the sluggish dynamics in glass-forming liquids remains elusive, since, after all,
glasses are defined not by a common feature they share, but rather something they
all lack: order.

In this thesis, we combine computational and theoretical approaches to study
the dynamics and structures in glass-forming colloidal hard spheres, which is the
simplest model glass-former and theoretically more tractable, as well as realistic
polymer systems. First, we develop a novel crystal-avoiding method to suppress
crystallization while preserving the dynamics of monodisperse hard spheres, which
allows us to probe the long-time dynamics of the system in metastable equilibrium
and o�ers new opportunities to examine the e�ect of size polydispersity. Then,
we introduce a purely geometric criterion for the glass transition in monodisperse
hard spheres, based on potentially caged particles that are restricted to neighbor
rearrangement. We also propose a graph theory-based method combining Voronoi
tessellation and graph isomorphism to explicitly enumerate distinct inherent struc-
tures and thereby obtain the structural entropy. We find a finite structural entropy
at the glass transition volume fraction for both hard disks and hard spheres. When
applied to identify locally preferred structures, the graph method reveals growing
icosahedral clusters in random dense hard spheres, whose lifetime increases signifi-
cantly as the system is densified. Finally, we expose the hidden correlation lengths
in glass-forming systems from the dynamical response to external perturbations —
pinned particles in colloidal hard spheres and free surfaces in polymer thin films.
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We find the correlation lengths obtained in both systems increase moderately as
the glass transition is approached and correlate to the unperturbed structural
relaxation times, as predicted by some theories.
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Chapter 1 |
Introduction

Glasses or amorphous solids constitute a range of solid materials ranging from
window glasses, plastics (polymers) and colloidal suspensions to metallic glasses,
foams and granular materials. The most common way to make a glass is to
cool a liquid fast enough so that crystallization is avoided below the melting
temperature. The liquid first becomes a supercooled liquid in metastable equilibrium.
As cooling proceeds, motions of atoms or molecules in the supercooled liquid
become increasingly slow, until at some temperature, the so-called glass transition
temperature Tg, the liquid can no longer be equilibrated within the experimental
time scale, and a glass is formed. Understanding the nature of glass and the glass
transition is widely accepted as a deep, interesting and fundamental problem in
condensed matter physics and materials science. However, the consensus does not
extend much further. Despite decades of intense research, there still lacks a coherent
and elegant approach to the glass problem. Since the glassy state is ubiquitous in
both nature and engineered materials, the final resolution of the glass problem may
have a broad implication on many areas, such as food processing, drug release and
organic semiconductors.

Glass-forming liquids display extremely slow dynamics and disordered structures.
One of the central questions about glass and the glass transition is whether the
spectacular glassy dynamics are associated with one or more length scales. The quest
for length scales in glass-forming liquids arises naturally as a temptation to treat
the glass transition in analogy to well-studied critical phenomena, where the critical
slowing down is characterized by a diverging correlation length. However, there is no
obvious way to define a static order parameter for the glass transition— conventional
measures of structure, such as radial distribution function and structure factor,
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show very little di�erence, if any, between glass and liquid. Identifying the relevant
length scale in glass-forming liquids is crucial for understanding the key aspects of
the glass phenomena, including the dramatic slowdown in dynamics without any
apparent structural change, the structural origin of dynamical heterogeneity, and
the breakdown of the Stokes-Einstein relation.

In this thesis, we apply a variety of theoretical and computational methods
to study the relation between dynamics and structures of glass-forming systems,
including simple hard/soft-sphere models and realistic polymeric systems. Our aim
is to seek the relevant length scales that may be associated to the glassy dynamics.
The thesis is organized as follows.

In this chapter, the phenomena of the glass transition and some leading glass
theories are introduced. In Chapter 2, the avoidance of crystallization in glass-
forming liquids is discussed, which is a matter that is often taken for granted in
glass theories and most simulations. A novel crystal-avoiding method is developed
to suppress crystallization while preserving the dynamics, which allows us to study
monodisperse hard- and soft-sphere systems in metastable equilibrium.

In Chapter 3, a purely geometric criterion for the colloidal glass transition is
introduced. We identify topologically caged (T1-inactive) particles as those that
cannot gain or lose any Voronoi neighbors by moving within their free volumes while
others are held fixed. For glass-forming hard-sphere fluids, we find that all particles
become caged at random close packing, while caged particles start to percolate
at the colloidal glass transition accompanying a diverging correlation length. The
growth of the percolation length seems consistent with the dynamical correlation
length associated to the spatially heterogeneous dynamics in supercooled liquids.

In Chapter 4, we propose a graph theory-based method to explicitly enumerate
the inherent structures for both hard disks and hard spheres and thereby obtain
the configurational entropy, which is related to the length scale of the so-called
cooperatively rearranging regions (CRR) in thermodynamic glass theories, such as
Adam-Gibbs (AG) theory and random first-order transition (RFOT) theory. We
also use the graph method to identify local structures in glass-forming hard-sphere
systems, which reveals an increase of icosahedral order that is locally preferred and
long-lived when approaching the glass transition.

Finally, we study the e�ect of external perturbations on the dynamics and
expose the length scales for colloidal hard spheres with periodically pinned particles
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(Chapter 5) and polymer thin films with free surfaces (Chapter 6). Proposals for
future studies and some preliminary results are presented in Chapter 7.

1.1 Phenomenology
The most common way to make a glass, as has been practiced by glassblowers for
thousands of years, is to cool down a melt fast enough so that nucleation and growth
of crystalline order do not have time to happen. Below the melting temperature,
a supercooled liquid is in metastable equilibrium compared to the crystal phase,
which, if it exists, is the true thermodynamic equilibrium. As cooling proceeds,
the dynamics in the supercooled slows down rapidly. until at some temperature
Tg, when the longest relaxation time of the system exceed the experimental time
scale set by the inverse of the cooling rate, the system falls out of equilibrium with
respect to the metastable state and becomes a glass. Below the glass transition
temperature, many glass properties, such as specific volume or enthalpy, deviate
from the supercooled line, but changes slowly towards the (metastable) equilibrium
values at a slow rate depending on the thermal history, a phenomenon known as
“aging”. This observed glass transition, albeit quite sharp in most cases, is not
a bona fide phase transition such as the solid/liquid/gas transition, but rather
a dynamical crossover that depends on the cooling rate or observation time. A
schematic of the glass transition is shown in Figure 1.1.

As the glass transition is approached from high temperature, a class of glass
formers called “fragile” liquids display super-Arrhenius temperature dependence
of viscosity or structural relaxation time; that is, the e�ective activation energy
itself increases with decreasing T . Furthermore, the dynamics of a supercooled
liquid not only slows down dramatically but inhomogeneously. This phenomenon
is referred to as dynamical heterogeneity. In a supercooled liquid, there exist
spatially correlated domains that can be faster or slower than the mean dynamics
by orders of magnitude, the size and strength of which are both temperature and
time dependent. In striking contrast to the dynamical anomalies in the glass
transition, the structure of glasses and supercooled liquids is apparently the same as
liquids at high temperatures. Both dynamic heterogeneity and dramatic slowdown
of dynamics without obvious structural change are recognized as central aspects of
the glass transition, and are the focus of intense research in the last decades. In
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Figure 1.1: Schematic of the liquid-glass transition at constant pressure. Specific
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this section, several important experimental observations on glass formation and
their implications are discussed.

1.1.1 Slow Dynamics

The experimental glass transition is now widely accepted as a dynamical crossover
through which a liquid falls out of equilibrium in the observation time fixed by some
operational convention. A common definition of the glass transition temperature
for a liquid is the temperature at which the viscosity of the system reaches ÷ = 1013

poise = 1012 Pa·s, or roughly a relaxation time · ≥ 102–103 s, according to the
Maxwell model, · = ÷/GŒ, where GŒ ≥ 1–10 GPa is the instantaneous (infinity
frequency) shear modulus and is almost constant that varies little with temperature.
Note that the viscosity criterion usually does not apply for polymers, since the
viscosity is highly molecular weight dependent while Tg is not. In this case, the
relaxation time criterion is still valid for segmental time but not for the terminal
relaxation time.

The temperature dependence of viscosity for a variety of glass formers are shown
in Figure 1.2. In this well-known “Angell” plot, the slope of a curve at a given
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temperature is related to the corresponding activation energy � in the Arrhenius
equation,

· = ·0 exp
C

�
kBT

D

, (1.1)

where the prefactor · is some vibrational time scale ≥ 10≠13 s and kB is the
Boltzmann constant. The fragility m is commonly defined as the steepness at Tg [2],

m = ˆ log ·

ˆ(Tg/T )

----
T =Tg

. (1.2)

It is clear that for strong glass formers (small m) like SiO2 and GeO2, the activation
energy � is almost constant throughout the temperature range of interest, and
therefore the slowing dynamics as the temperature is lowered is due to the fact
that thermal energy becomes smaller so that the rearrangements take longer time
to overcome the energy barrier. On the other hand, fragile liquids (large m), such
as o-terphenyl (OTP) and toluene, deviate strongly from the Arrhenius behavior,
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suggesting an increasing activation energy with decreasing temperature. There
is in general agreement that the non-Arrhenius temperature dependence implies
cooperative motions of multiple atoms or molecules, with the size of rearranging
particles associated to the energy barrier [3].

The temperature dependence of activation energy �, defined as �(T ) =
kBT log(·/·0), is shown as a function of TA/T in Figure 1.3, where TA is the
temperature above which relaxation time has simple Arrhenius dependence. As
the glass transition is approached, the energy barrier remains the same for strong
liquids such as SiO2 and GeO2, while the barrier increases by a factor of 2–3 for
fragile liquids such as OTP and toluene. In contrast to the dramatic change in the
relaxation time, the energy barrier of a supercooled liquid increases moderately as
temperature is lowered. If we assume the activation energy and some length scale
(e.g., size of CRRs) are related through a power law, � ≥ ›

Â, the moderate change
of barrier implies the growth of any associated length scale may also be small.

Many fitting functions, either empirical or theory-based, have been used to
describe the non-Arrhenius relaxation behavior. Proposed almost a century ago, the
Vogel-Fulcher-Tammann (VFT) equation [5–7] is undoubtedly the most frequently
used:

·/·0 = exp
3

BT0

T ≠ T0

4
, (1.3)

where B and T0 are material-dependent parameters. When T0 = 0 and B æ Œ,
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the usual Arrhenius law is recovered. According to VFT, relaxation time of a fragile
liquid diverges at nonzero temperature T0 < Tg, which is usually interpreted as
the hallmark of an ideal glass transition in thermodynamic glass theories, such as
Adam-Gibbs theory and RFOT theory.

The fragility evaluated from Eq. 1.2 then becomes

m = Ÿ

3
1 + Ÿ

B

4
, (1.4)

where Ÿ = log(·(Tg)/·0). The fragility is therefore inversely proportional to B as
m ≥ 1/B, given that ·(Tg) is fixed to be 100 s and ·0 does not vary significantly
for di�erent substances. Based on the VFT fits shown in Figure 1.2, strong liquids
such as SiO2 and GeO2 have very large B ≥ 1012, corresponding to a fragility
m = Ÿ ¥ 20 [8]; whereas fragile liquids have small B and hence large fragility
indices, e.g., B = 4.9, m = 81 for OTP and B = 4.2, m = 94 for K+Ca2+NO≠

3 [8].
Alternatively, the relaxation time of a wide range of materials can be equally

well fit to a parabolic form

log(·/·o) =
3

J

To

42 3
To

T

≠ 1
42

, (1.5)

as suggested by dynamical facilitation (DF) theory [9], where J is an energetic
barrier, ·o is the relaxation time of the liquid at the To, and To is the onset
temperature below which this form holds. Unlike VFT, the parabolic form is only
singular at T = 0, which suggests no thermodynamic glass transition.

However, the VFT or parabolic form in general fails to account for the relaxation
times of fragile liquids at higher temperatures. Instead, a power law fit

·/·0 =
3

T ≠ Tc

Tc

4≠“

, (1.6)

captures the initial stages of supercooling as predicted by mode-coupling theory
(MCT). Because of its mean field nature, the singularity at Tc > Tg in ideal MCT
is usually avoided in real systems as a result of activated or hopping process [3].

There are other functions that yield similarly good fits in the temperature
range accessible with current experimental or simulation techniques, it is therefore
di�cult to distinguish between leading theories. Nevertheless, as one of the central
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questions in the glass transition, non-Arrhenius temperature dependence should be
a key aspect captured in any successful glass theory.

1.1.2 Two-Step Relaxation Process

One common way to study the dynamics of a system is to measure the mean-square
displacement (MSD) defined as

e
r

2(t)
f

= 1
N

Nÿ

i=1

e
(r

i

(t) ≠ r
i

(0))2
f

(1.7)

where r
i

(t) is the position of particle i at time t and the brackets È...Í denotes
ensemble or initial time average. At short times, particles translate ballistically
between collisions and Èr2(t)Í ≥ t

2 is expected. On long time scales, the motion
of particles are governed by the di�usion process. In Einstein’s seminal work on
Brownian motion, the MSD is related to the di�usivity D and the time elapsed t as

e
r

2(t)
f

= 2dDt, (1.8)

where d is the spatial dimension. In supercooled liquids, however, the ballistic
and di�usive regimes are separated by a subdi�usive regime or a plateau at low
temperatures (see Figure 1.4). The length of the subdi�usive regime increases as
temperature decreases, which is often interpreted as particles spending more and
more time in the cages formed by their nearest neighbors before they can escape.

The dynamics can also be characterized by dynamical correlation functions. For
glass-forming liquids, the self (coherent)-intermediate scattering function Fs(k, t) is
commonly used, which can be measured by inelastic neutron or X-ray scattering.
Mathematically, Fs(k, t) is defined as the spatial Fourier transform of the self-part
of the van Hove function Gs(r, t), which correlates positions of the same particle
separated by time interval t,

Gs(r, t) = 1
N

K
Nÿ

j=1
”[r + r

j

(0) ≠ r
j

(t)]
L

, (1.9)

where ”(x) is the delta function. Therefore, the self-intermediate scattering function
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can be written as

Fs(k, t) = 1
N

K
Nÿ

j=1
exp[ik · (r

j

(t) ≠ r
j

(0))]
L

, (1.10)

where k is the wave vector usually chosen as the first peak of static structure factor
S(k) For isotropic systems like liquids, one can average over the wave vector angle
so that the self-intermediate scattering function only depends on the magnitude
k = |k|, which finally leads to

Fs(k, t) = 1
N

K
Nÿ

j=1

sin(kr

j

(t))
kr

j

(t)

L

, for d = 3, (1.11)

Fs(k, t) = 1
N

K
Nÿ

j=1
J

o

(kr

j

(t))
L

, for d = 2, (1.12)

where J0(x) is the zeroth-order Bessel function of the first kind. The above expres-
sions for Fs(k, t) can be readily evaluated in simulations from particle trajectories.

Similar to the time-dependence of MSD, Fs(k, t) also shows di�erent relaxation
behaviors as the glass transition is approached. At high temperatures, the decay of
Fs(k, t) as a function of time follows a simple exponential form Fs(k, t) = exp(≠t/·),
where · is the characteristic time. In the case of exponential decay, · is identical
to the structural or –-relaxation time, ·

–

, usually defined as the time such that
Fs(k, ·

–

) = 1/e. In the supercooled regime, however, after the initial decay,
which is also observed in high T as a result of ballistic collisions, the correlation
function develops a plateau in a log-time representation, whose length increases
with decreasing temperature, before eventually decays to zero at long enough times
(see Figure 1.4). Conventionally, the fast (above the plateau) and slow (below
the plateau) relaxation processes are called, respectively, — and – relaxation. The
decay of – relaxation can be well described by a stretched exponential (also called
Kohlrausch-Williams-Watts (KWW) law),

Fs(k, t) = A exp
C

≠
3

t

·

4
—

D

, (1.13)

where — is the stretching exponent and is normally less than 1 for glassy dynamics.
Note that in this case, the –-relaxation time ·

–

is di�erent from · .
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Figure 1.4: Mean-square displacement Èr2(t)Í (top) and self-intermediated scattering
function Fs(q0 = 7.2, t) (bottom) for A particles in a Kob-Andersen (KA) fluid [10]
at di�erent temperatures near the glass transition. Simulations are performed in
the NVE ensemble with density fl = 1.2.

The two-step relaxation in the dynamics is another hallmark of the glass
transition. Although the cage interpretation is intuitive and sometimes useful, it is
only a simplistic view. First, the dynamical heterogeneity observed in a supercooled
liquid (see below) suggests that the structural relaxation is achieved via cooperative
motions instead of individual particles escaping their cages independently. Second,
the driven force for the uncaging process can be either energetic, i.e., a large energy
barrier is overcome due to thermal fluctuation, or entropic, i.e., the rare low energy
path through barriers is taken. It is unclear which scenario will dominate or whether
it depends on the temperature. Finally, for mean-field systems without real space
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structure (i.e., no distance or neighboring particles), the plateau of the dynamical
correlation function is also present at low temperatures, suggesting that there
may be an alternative explanation of the two-step relaxation. For example, from
the potential energy landscape viewpoint of the glass transition, the decreasing
number of unstable saddle points with decreasing temperature is responsible for
the two-step relaxation and slowing down in dynamics.

1.1.3 Dynamical Heterogeneity

It is now well established from experiments [11–14] and simulations [15–17] that
there exist spatially correlated fast and slow domains in supercooled liquids, dense
colloidal suspensions and granular materials, known as dynamical heterogeneity
(DH). In Figure 1.5, we show an example of DH for a binary mixture of hard disks
in the vicinity of glass transition.

In experimental [18] and numerical [19] studies, the simplest way to characterize
the dynamical heterogeneity is to consider the non-Gaussian parameter –2, defined
as

–2(t) = d Èr4(t)Í
(d + 2) Èr2(t)Í2 ≠ 1, (1.14)

where d is the spatial dimension. The non-Gaussian parameter essentially measure
the deviation of the distribution of particle displacements from Gaussian behavior.
–2 = 0 for perfect Gaussian distribution and larger –2 value indicates stronger DH.

Dynamical heterogeneity is transient in the sense that the size of the most
mobile or immobile clusters reaches the maximum at some intermediate time scale
t

ú, roughly corresponding to – relaxation time ·

–

. At too short or long enough times,
motion of particles are primarily vibrational or di�usive, and their displacements
follow a Gaussian distribution; no obvious DH can be observed.

To further quantify the spatial extent of mobile or immobile clusters, a four-
point correlation function G4(r; t) has been introduced [20–23], which quantifies the
relaxation of density fluctuations at two points separated by distance r and time
t. The dynamical susceptibility ‰4(t) and dynamical correlation length ›d(t) are
often extracted from the four-point correlation function in Fourier space, namely
the dynamical structure factor,

S4(q; t) = 1
N

(ÈW (q; t)Í ÈW (≠q; t)Í ≠ | ÈW (q; t)Í |2), (1.15)
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Figure 1.5: Particle displacements for a binary mixture of hard disks at „ = 0.76.
A third (xA = 1/3) of disks are 1.4 times larger than the remaining disks. The time
interval is chosen as 500 collisions per particle, about three times the relaxation
time. Large displacements are shown in red while small are in blue.

W (q; t) =
Nÿ

i=1
�[a ≠ |r

i

(t) ≠ r
i

(0)|] exp[≠iq · r
i

(0)], (1.16)

whereN is the total number of particles and the �(x) is Heaviside step function,
which selects localized or immobile particles with displacements below a (often
chosen as the plateau value of the Èr2Í). In the low-q limit, S4(q; t) can be fit to an
Ornstein-Zernike form,

S4(q; t) = ‰4(t)
1 + (q›d)2 . (1.17)

Like non-Gaussian parameter, the time-dependent dynamical susceptibility ‰4(t)
also displays a peak at t

ú ≥ ·

–

. However, di�erent time dependence of the
dynamical correlation length ›d(t) have been reported in di�erent investigations.
Specifically, ›4(t) is found to grow monotonically with time [24], or reach a plateau
and remain constant at longer time [25], or show a maximum value like dynamical
susceptibility [26]. This inconsistency may arise from the di�culties involved
in extracting ›d(t), such as finite size e�ect. To avoid this potential problem,
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the dynamical correlation length is usually evaluated at t

ú corresponding to the
maximum of susceptibility ‰4(t). A number of studies [25–27] have shown that ›d

increases considerably as glass transition is approached.
While the four-point correlation function by construction selects the localized

particles, similar ‰4 and ›d values have been obtained for delocalized particles.
Interestingly, more direct analyses of fast and slow domains in ref. [16] reveal
di�erent roles played by mobile and immobile particles. It is found that the
characteristic time of mobile clusters (when spatial size reaches a maximum) is
linear with the di�usion coe�cient D/T , while the time scale of immobile clusters
is related to the structural relaxation time ·

–

. Thus the wide distribution of fast
and slow particles has been argued to be responsible for the breakdown of the
Stokes-Einstein relation, D/T Ã 1/· , in supercooled liquids [28,29].

As previously mentioned, the increasing energy barrier for structural relaxation
has been attributed to cooperative motions. Therefore, it is natural to study the
correlation between relaxation time and dynamical length. On the one hand, La�eviÊ
et al. [26] show that a power law, ·

–

≥ ›

2.34
d , is valid for WCA soft spheres above

the MCT temperature Tc, while Flenner and coworkers [25] find that exponential
form, ·

–

≥ exp(A›d), provides a better description over larger range of data for
binary hard-sphere mixtures. For bead-spring polymers, Starr et al. [16] show that
the radius of gyration of mobile clusters and strings (a subset of mobile clusters
with replacing particles) Rg or the string size z, evaluated at some shorter time
scale related to di�usion process, also correlate well with ·

–

as ·

–

≥ exp(AR

1.3
g /T )

or ·

–

≥ exp(Az/T ). On the other hand, based on finite-size scaling analysis of Kob-
Andersen model [10], Karmakar et al. [30] point out that the growth of relaxation
time may not correlate with that of the dynamical length.

In summary, while the dynamical heterogeneity has been appreciated as a core
aspect of glass phenomenon, which distinguishes supercooled liquids from high-
temperature liquids, it remains elusive as to whether di�erent measurements of
dynamical length scale are equivalent; whether fast and slow particles have di�erent
local environments in structure; and most importantly, whether the DH is the
origin or only a byproduct of slow dynamics.
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1.1.4 Configurational Entropy

One of the mysteries about glass transition is whether the dynamical slowdown is
purely a kinetic arrest— no glass transition would occur if the system were cooled
infinitely slowly (assuming crystallization can be avoided), or a manifestation
of an underlying thermodynamic phase transition or ideal glass transition— the
relaxation time diverges below some nonzero temperature and the system is in an
equilibrium glass phase.

The configurational entropy Sc plays a central role in a number of thermodynamic
approaches of glass transition. Traditionally, the configurational entropy is defined
as the di�erence between the total entropy of a liquid and the vibrational entropy ,

Sc = St ≠ Sv. (1.18)

Experimentally, the configurational entropy has been estimated from the excess
entropy, defined as Sex = St ≠ SCR, in which the vibrational entropy of the liquid is
approximated by the entropy of the crystal, SCR. The excess entropy can therefore
be obtained from thermodynamic relation,

Sex(T ) = �Sm(Tm) +
⁄

T

Tm

�Cp

T

dT, (1.19)

where �Cp is the di�erence between the heat capacities of liquid and crystal at
T , and �Sm(Tm) is the melting entropy at the melting temperature Tm. In 1948,
Kauzmann observed that for many substances, including lactic acid, glucose and
glycerol, the excess entropy decreases significantly with decreasing temperature
and appears to vanish at some nonzero temperature by low-T extrapolation, This
phenomenon is known as Kauzmann’s paradox or entropy crisis. However, Kauz-
mann’s himself did not believe the vanishing configurational entropy and resolved
the problem by invoking a kinetic spinodal at Tsp > TK, below which crystallization
always occurs before a supercooled liquid could relax. It is Gibbs who first argued
that the vanishing Sc could be a signature of thermodynamic glass transition.

Inspired by the analytical solution of mean-field spin glasses, the physical
significance of configurational entropy (called complexity in spin-glass model) can
be understood in terms of metastable states in the free energy landscape. Formally,
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the configurational entropy is a measure of the number of metastable states, i.e.,

Sc(T ) = kB

N

log
Nÿ

–=1
”(f

–

≠ f

ú(T )), (1.20)

where N denotes the number of states, f

–

is the free energy of state – and
f

ú(T ) is the characteristic free energy at a given temperature that satisfies the
saddle-point equation, S

Õ(f ú) = 1/T . The exact solution of p-spin model reveals a
thermodynamic phase transition at TK (called Ts in the p-spin). For T > TK, the
equilibrium state consists exponentially large number of metastable states and the
configurational entropy is finite. For T < TK, the equilibrium state is dominated by
one of the free energy minima, whose number is sub-exponential; the configurational
entropy vanishes in the thermodynamic limit and only the vibrational entropy
gradually reduces with decreasing T .

In the mean-field model, the free energy barrier becomes infinite below the
dynamic glass transition Td > TK; therefore, the configurational and vibrational
entropies can be sharply separated, and the metastable state can be well defined.
However, the concept of metastable state is not so clear in real systems. For
one thing, since the energy barriers are finite due to finite range interaction, a
metastable state may be surrounded by many small minima that are irrelevant as
metastable states. For another, di�erent parts in a large system, far from each other,
can rearrange independently and continuously, so the whole system represented
as a single point in the phase space cannot be found vibrating within a global
metastable state, but instead, is always on top of a barrier.

Nevertheless, at low enough temperatures, the metastable states in free energy
landscape may be identified as the inherent structures (IS) in the potential energy
landscape (PEL). First proposed by Stillinger and Weber [31,32], the configurational
space can be unambiguously partitioned into a set of distinct basins, associated
with the local minima of the PEL. Each configuration is connected to a inherent
structure via a steepest descent path. Unlike free energy landscape, the shape
of PEL is independent of temperature, but the exploration of PEL is strongly
T -dependent. As a result, the configurational entropy defined in terms of PEL is
related to the number of basins with a local minimum energy eIS(T ) typical at T .

Following the PEL thermodynamic formalism, a number of simulations have
been conducted to calculate the configurational entropy for various systems [33–35].
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In most cases, thermodynamic integration of some macroscopic observable is evoked.
For example, the total entropy of the liquid St in Eq. 1.18 can be evaluated from
the equilibrium liquid equation of state (EoS), while the vibrational entropy Sv

is obtained by constraining the system to a local energy minima. Alternatively,
the vibrational entropy can be estimated by harmonic approximation. Note that
although the total entropy is well defined, some ambiguity may arise in defining
the vibrational contribution. In general, the obtained configurational entropy is
found to decreases with decreasing temperature.

Unfortunately, this putative ideal glass transition is inaccessible to experiments
or simulations, as the system will fall out of equilibrium at Tg > TK, and the Sc in
the glassy state will remain almost constant as T decreases. Therefore, most work
that reports vanishing configurational entropy at nonzero temperature are based
on extrapolation. The validity of extrapolations into lower temperature or higher
density regions has been criticized. For example, it has been argued that the ideal
glass transition does not exist in 2d hard-disk systems by explicitly constructing an
exponentially large number of packings [36]. Second, the identification of metastable
state with inherent structures has been questioned [37], for reasons discussed above.
A di�erent numerical measurement of configurational entropy has been proposed
recently [38], which does not require precise definitions of the free energy landscape
and metastable states, and is conceptually closer to the theoretical definition.
Interestingly, the configurational entropy obtained from this approach disappears
discontinuously above some onset temperature, consistent with predictions from
spin-glass model. Finally, while the idea that the system becomes extremely slow
at low temperatures as a result of rarefaction of available states is an intriguing
one, direct evidence of the fact that the structural rearrangement is driven by the
configurational entropy is still lacking; there are other explanations of the sluggish
dynamics in which thermodynamics is trivial [39]. In Chapter 3, we propose another
way to compute the configurational entropy based on local structures in real space.

1.1.5 Structural Property of glass transition

Over the past few decades, considerable e�ort been devoted to searching for the
structural origin of glass transition. In conventional condensed matter systems,
structures determines dynamics, and a sudden change in dynamical properties
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Figure 1.6: Pair correlation function g(r) between A-A particles for a KA model at
di�erent temperatures. The structural change revealed by this standard correlation
function is subtle as the glass transition is approached.

usually follows from a similar sudden change in structure, e.g., phase transition
between liquid and crystal. However, in the glass transition, the dynamics slows
down drastically without apparent structural change. For example, the radial
distribution function (RDF) or pair correlation function which is the only measure
of structure that is easy to access experimentally, displays little change when
approaching to the glass transition from high temperature, as shown in Figure 1.6,
for a Kob-Andersen (KA) model [10]. This rather discouraging result suggests that
even if there exists some static length scale accompanying the glass transition, it is
hidden in the apparently disordered structure, so that conventional tools are not
e�ective to detect it. Therefore, delicate analyses of local properties are required
to identify the underlying structural signature in glassy materials.

The free volume theory [40–42] is one of the theories that are rooted in the real
space structures, which became popularized as a way to explain dynamical and
mechanical changes in the glass transition. This theory assumes that molecular
transport in a supercooled liquid relies motions of particles into voids formed by
redistribution of the so-called “free volume”, loosely defined as the remaining space
not taken by molecules. As temperature is lowered (or density is increased), the free
volume decreases due to the reduction of system volume, and eventually vanishes at
some T0 (or „0), which is reminiscent to singularity appears in the VFT equation
(Eq. 1.3). Indeed, the VFT equation can be derived based on the free volume
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distribution and thermal expansion coe�cient. However, except for hard particles,
which have a simple geometry, the free volume is not well defined in most systems
and thus cannot be measured directly. The lack of a precise definition may give
rise to some contradictory results. For example, in the traditional model, the total
free volume is define as the system volume subtracted by the hard-core volume of
particles. This suggests that the glass transition would not occur if temperature is
lowered at a constant volume, which is certainly not true. The free volume model
also fails in explaining the pressure-dependent behavior [43]. A more consistent
treatment of free volume, such as the approach recently proposed based on the
lattice model [44], may help clarity some ambiguities and misconceptions in this
theory. Finally, although the free volume theory provides a reasonable explanation
of the non-Arrhenius behavior of dynamics, the type of molecular motion is poorly
defined in the model on the microscopic level. Thus it gives no prediction of
dynamical heterogeneity— no causal link has been found between local free volume
and local dynamics [45].

A di�erent approach focuses on local structural motifs in glass-forming systems.
Charles Frank first suggested about 60 years ago that the formation of energeti-
cally favored, fivefold symmetric icosahedra in supercooled liquids may suppress
crystallization and lead to vitrification. The geometric frustration approach argues
that the glass transition can be thought as “crystallization” of polyhedral motifs
in curved space, where locally preferred structures (LPS) like icosahedron can
tessellate but the growth of LPS is frustrated in Euclidean space as they cannot
fill the space. Both experiments [46,47] and simulations [48–50] have revealed the
existence of icosahedral or other polyhedral order in fluids of spherical particles,
such as colloidal suspensions and metallic glasses. Furthermore, some studies
suggest that icosahedral clusters tend to have slower dynamics than the rest of the
system [51,52]. A key drawback of this proposal is that the prevalent local order is
system-dependent (e.g., bicapped square antiprisms are locally favored in the KA
model), and that it may be di�cult to access in generic molecular glass formers
such as polymers.

Another type of structural motif called medium-range crystalline order (MRCO)—
short-lived transient crystal-like ordering characterized by bond-orientational order—
has been associated to the dynamical heterogeneity and slow dynamics in poly-
disperse particle systems and a spin liquid [53, 54]. The splitting of the second
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peak in the RDF is often used as the evidence of growing MRCO (see Figure
1.6). However, this scenario has been challenged by some contradictory results
for moderately polydisperse disks [55], and the lack of growing MRCO in binary
and highly polydisperse systems [56,57]. Moreover, a recent study suggests that
the growth of MRCO could be a result of weakly first-order transition rather than
glassiness [58].

One related question in establishing the link between structural and dynamic
length scales is whether the dynamic heterogeneity has a purely structural origin.
Using isoconfigurational ensemble, Widmer-Cooper et alṡhowed that the particle
propensities, obtained by averaging over independent trajectories with the same
initial configuration but di�erent initial velocities, display considerable spatial
variation, and hence demonstrated that the underlying initial structure does a�ect
the DH [59]. However, in quest of an explicit structural criterion for mobile/immobile
particles, local free volume and local potential energy failed badly [45], while LPS
correlates only weakly to the local dynamics [60]. Recent studies suggest a strong
correlation between irreversible structural reorganization and quasi-localized soft
modes in binary mixture of 2d glass-formers [61, 62]. Machine learning methods
have proven successful in predicting a population of particles that are susceptible
to rearrangement at a later time from the local structural geometry alone [63],
but the actual structural indicators for particle propensities remain unclear. It
is probably as good as what we may expect for predicting dynamics from initial
structure, as Wolfram [64] has pointed out that for some irreducible phenomena in
complex systems, the future behavior cannot be obtained by an algorithm more
e�cient than solving the equations of motion.

More recently, a series of “order-agnostic” approaches have been developed
[30, 65, 66], which capture the static amorphous order without a priori knowing
the any specific local order. Among other proposals, the point-to-set correlation
length [66,67] characterizes the distance over which boundary conditions imposed
by pinned particles a�ect the equilibrium structure of the remaining liquid.

Exploring the relationships between structure and dynamics is of great impor-
tance for understanding the glass phenomena. The correct length scale could serve
as the order parameter in glass-forming systems, with which the glass problem may
be studied within the framework of conventional second-order phase transitions.
Also, recasting dynamic properties in terms of structure may provide new insights
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on predicting the glassy behavior. In this thesis, di�erent approaches have been
employed in search of the relevant length scales associated with glass transition.

1.2 Theories of the Glass Transition
Over the course of time many theories of the glass transition have been developed.
The approaches by which these theories explain the slowing down of supercooled
liquids with decreasing temperature vary radically. Some have a underlying thermo-
dynamic origin, such as free-volume model [40], energy landscape description [68],
Adam-Gibbs (AG) theory [69] and random first-order transition (RFOT) the-
ory [70]. Others are purely based on dynamics, including the mode-coupling theory
(MCT) [71], dynamical facilitation (DF) theory [39] and kinetically constraint
model (KCM) [72]. Although each model can explain some aspects of the glass
transition, there is no widely accepted resolution that can provides a coherent and
elegant explanation of all the key features of glassy phenomena. One of the main
di�culties arises from the large gap between the time scale required to discern
leading theories and that accessible in current experiments or simulations. It is
worth mentioning that some advanced simulation algorithms (e.g., swap Monte
Carlo [73]) and experimental protocols (e.g., vapor deposition [74]) can prepare equi-
librium samples for certain glass-formers at a temperature below the conventional
Tg, however, direct measurement of relaxation time still requires a long observation
time, which exceeds the capability of current techniques. Despite relatively slow
evolution of this field owing to these di�culties, emerging evidence of correlations
between various properties in glass-forming liquids suggests that a general theory
for the glass transition is possible. Several detailed reviews of glass theories can be
found in the literature [3,75,76]. In this section, some popular glass theories are
introduced with their advantages and limitations discussed.

1.2.1 Mode-Coupling Theory

First developed by Bengtzelius, Götze and Sjölander [71] in the 1980s, the mode-
coupling theory (MCT) is still regarded by many as the only established first
principles approach to the glass transition. Essentially, MCT is an approximate
solution of exact equations of slow motions derived from the Mori-Zwanzig projection
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operator formalism, i.e.,

F̈ (q, t)+�2(q)F (q, t)+
⁄

t

0

Ë
M

0(q, t ≠ t

Õ) + �2(q)m(q, t ≠ t

Õ)
È

Ḟ (q, t

Õ)dt

Õ = 0. (1.21)

Here F (q, t) is the intermediate scattering function introduced previously; �(q)
is a microscopic frequency related to static structure factor S(q) via �2(q) =
q

2
kB/(mS(q)) with m the mass of the particles; and the kernel is split into a

regular part M

0(q, t) and the main contribution m(q, t), describing respectively the
dynamics of a normal liquid and a supercooled liquid. The regular part M

0(q, t)
is often approximated by delta function corresponding to Newtonian friction,
M

0(q, t) = v(q)”(t), while the kernel m(q, t) is rather complicated. In the idealized
version of MCT, it can be expressed as m(q, t) = q

k+p=q V (q; k, p)F (k, t)F (p, t).
Importantly, the vertices V (q; k, p) can be calculated from static structure factor
S(q). In short, MCT gives the dynamics from the static information.

Owing to the nonlinear feedback mechanism of the MCT equations, the resulting
Fs(q, t) is strongly temperature-dependent even though the input S(q) is rather
temperature insensitive. One of the main results from MCT is the existence of —-
and –-relaxation processes at low temperature— the development of a plateau in
Fs(q, t) in intermediate time scales, consistent with experimental and simulation
observations (see Figure 1.4).

Another important prediction of the idealized MCT is the power law dependence
of the relaxation time · or the inverse of di�usion constant D on temperature, with
a singularity at Tc, · ≥ 1/D ≥ (T ≠ Tc)≠“, which is reasonably good for the hard-
sphere model (although the calculated „c ≥ 0.52 is lower than the experimental
value between 0.58 and 0.59). However, the singularity is often avoided and instead
manifests itself as a crossover in most real systems, as a result of thermal activated
or hopping process neglected in the idealized theory. Even if the hopping processes
are taken into consideration, a signature of the sharp transition still persists and
gives rise to a dynamical anomaly in the relaxation behavior. This suggests that
simply incorporating the hopping process in MCT below the critical temperature
Tc is not adequate to correctly describe the relaxation of the system.

Although the diverging relaxation time in the simple version of MCT is originally
viewed as a local caging phenomenon without any growing length scale, recent
discovery of the connection between MCT and mean-field spin glasses [77], as well
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as the subsequent development of inhomogeneous MCT [78,79], suggest that MCT
dynamical transition should be understood as a critical phenomenon accompanied
by a diverging “dynamical” length scale ›d ≥ (T ≠ Tc)≠1/4.

Despite the success in explaining various experimental and numerical results,
there are several disturbing issues with MCT. For example, it has been shown
by comparing Lennard-Jones and WCA potentials that structural information
not encoded in the two-body density correlation S(k) may play a crucial role in
the dynamics and thus cannot be captured by MCT [80]. In addition, increasing
discrepancy between MCT and numerical results at higher dimensions d > 4
suggests the success of MCT in d = 3 might be partially a coincidence and some
modification of MCT is required [81].

1.2.2 Adam-Gibbs Theory

In the deeply supercooled regime below the onset temperature To (empirically iden-
tified as the MCT Tc), structural relaxation is mainly achieved via activated process,
whereby the system overcomes the barriers between neighboring basins of energy
landscape. According to Adam-Gibbs (AG) theory [69, 82], such relaxation process
is associated to the so-called “cooperatively rearranging regions” (CRR). They
define the typical CRR as the smallest region that can be rearranged independently
from its surrounding. Assuming the typical number of particles within a CRR is z

and is temperature dependent, while the number of locally stable states for a CRR
is a constant � of order unity, it follows that the number of global states a system
of N particles can be found is N = �N/z. Since the configurational entropy Sc is a
measure of number of states as discussed previously, we may write

Sc = 1
N

log N = log �
z

. (1.22)

Finally, assuming the activation energy scales with the size of CRR, � ≥ z, the
relaxation time can be written as

log · ≥ �
T

≥ 1
TSc

, (1.23)

according to Arrhenius formula. Therefore, the increasing relaxation time is
intimately related to the reducing Sc as temperature is lowered, which is the main
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result of AG theory. As an aside, the empirical VFT fit can be rationalized based on
the assumption that the configurational entropy can be approximated by the excess
entropy Sex between liquid and crystal, which vanishes at Kauzmann temperature
TK. For several glass-forming liquid, the excess specific heat can be well fitted by
�Cp = K/T , where K is a constant. Thus, the configurational entropy can be
evaluated by integration the standard thermodynamics relation dSc/dT = �Cp/T

from TK to T , to obtain S

c

= K/(1/TK ≠ 1/T ). This finally leads to the VFT
equation

log · ≥ TK/K

T ≠ TK
. (1.24)

The Adam-Gibbs theory has enjoyed an enduring favor thanks to its elegance
and simplicity. For one thing, AG theory provides a direct connection between the
thermodynamics and dynamics in supercooled liquids, For another, also relates
the fragility to the changing rate of excess specific heat, m ≥ K, according to
Eq. 1.2. However, the nature of CRR, arguably the most important concept in
AG framework, remains unclear. What do CRRs look like microscopically? How
do they relax independently? Why the number of configurations � accessible
to a typical CRR is constant and does not scale with CRR size? Some recent
progress has been made to address these ambiguities in the AG theory. For example,
based on dynamical heterogeneity it has shown that string-like mobile clusters
in which particles move cooperatively may be a good candidate for CRR [16]. A
“living polymerization” theory has been proposed [4] based on string-like clusters.
Nevertheless, the dynamical nature of mobile/immobile strings seem to defeat the
purpose of a thermodynamic explanation of the glass transition in AG theory.

1.2.3 Random First-Order Transition Theory

The random first-order transition (RFOT) theory [70] (also known as mosaic theory)
is a real space interpretation of the mean-field theory of spin glasses. In the RFOT
framework, a supercooled liquid below the onset temperature is decomposed into a
set of “mosaic states”. On length scales smaller than the typical size of a mosaic,
particles cannot decorrelate from their original positions and the region is trapped
in one state; whereas on larger length scales, the region can rearrange and explore
other states. The free energy change of rearranging a region of size R comes from
the entropic gain of visiting other available states, and the surface energy cost of
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mismatch between a new state and the old surroundings, namely,

�F = Y R

◊ ≠ TScR
d

, (1.25)

where Y is some generalized surface tension, d is the dimension of space and
◊ Æ d ≠ 1. Therefore, the typical size of a CRR is obtained by letting �F = 0,

›(T ) =
A

Y (T )
TSc(T )

B 1
d≠◊

. (1.26)

For activated processes, the relaxation time is expected to scale with the energy
barrier, which grows with mosaic size as � ≥ ›

Â. RFOT theory then predicts

log · ≥ 1
T

A
Y (T )

TSc(T )

B Â
d≠◊

. (1.27)

The original proposal based on renormalization group suggests ◊ = d/2 and
Â = ◊ [70], which simplifies Eq. 1.27 to the familiar Adam-Gibbs relation assuming
Y ≥ T . However, some recent numerical works have predicted di�erent values of
Â ¥ 1 and ◊ = 0.3–2.3 [16,83].

In both RFOT and AG scenarios, the super-Arrhenius slowdown comes from
the growth of › or the size of CRR. Like AG theory, the RFOT theory predicts
an ideal glass transition at TK associated with vanishing configurational entropy
and a diverging length scale ›. However, the RFOT provides a much clearer
picture of the role played by configurational entropy and the nature of CRRs— a
region smaller than › cannot rearrange to explore all its available states, because
the surface energy penalty is larger than the entropic gain in getting out of its
original state. Thus this explains why the number of states a CRR can explore,
� ≥ 1, is independent of temperature, as assumed in AG theory. Furthermore,
RFOT approach suggests a way to measure the growing mosaic or amorphous
order using the so-called point-to-set correlation function, which has a purely static
definition [66]. In Chapter 5, we introduced a related method to extract the static
correlation length in hard spheres from dynamical response to the pinning field.

Historically, the RFOT theory is constructed based on the intrinsic mean-field
glass transition (also called one-step replica symmetry breaking (1-RSB)), with
a high-temperature ergodicity breaking transition at Tc and a low-temperature
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thermodynamic transition at TK. According to the mean-field solution, for T > Tc,
the most probable states are unstable saddles of free energy landscape, which
becomes marginally stable near Tc, and the dynamics is exactly described by MCT
equation. For Tc > T > TK, system is trapped in one of the exponentially large
number states because of the infinite energy barrier in the mean field, but the
thermodynamics can still be described by the ensemble of these states, e.g., total
free energy is given by fliquid = fstate ≠ TSc. For T < TK, the configurational
entropy vanishes and the system is an ideal glass. However, in realistic systems,
the free energy barriers are finite and ergodicity is restored by activated processes.
Thus, the dynamical transition at Tc is smeared out and appears as a crossover.
Moreover, metastable states are no longer global and permanent in real systems,
but have a finite size and lifetime as described in RFOT theory.

With additional modeling, the RFOT approach can also make a connection
to a broad range of experimental data in glass-forming liquids and polymers [84].
However, there are some concerns about RFOT. For example, the concept of surface
tension seems fuzzy for a domain containing only a few particles. In addition, the
role played by dynamical heterogeneity in the RFOT framework and its relation
to the mosaic or CRRs also remain unclear. Finally, the RFOT theory has been
criticized for containing too many uncontrolled assumptions, so that one can always
attribute the weakness of the theory as resulting from some approximation, as
well as its mean-field foundations that may be destroyed by fluctuations in finite
dimensions [85]. Indeed, analytical progress on a finite system where RFOT can be
shown to hold is highly crucial but also challenging.

1.2.4 Frustration-Limited Domain Theory

Unlike MCT and AG/RFOT models, the frustration-limited domain (FLD) theory
[86–88] focuses on the geometric origin of the glassy dynamics. The concept of
frustration in general refers to the situation where the total energy function cannot
be minimized by merely minimizing all local interactions. For supercooled liquids
without quenched randomness, frustration arises from locally preferred structures
that cannot tile space. For example, the locally preferred cluster of spheres
in three dimensions is an icosahedron, however, forming a periodic icosahedral
crystal is impossible since the five-fold rotational symmetry is incompatible with
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transitional symmetry. In the FLD picture, there is a crossover temperature
T

ú ≥ Tc corresponding to the ordering transition of locally preferred structures
in the absence of frustration; below T

ú, the liquid is broken up into a patchwork
of locally preferred domains whose size is limited by frustration. The associated
correlation length ¸

ú grows with decreasing temperature as (1≠T/T

ú)‹

/K

1/2, where
K is the a dimensionless parameter of the frustration strength and ‹ is the exponent
that governs the growth of L

ú without frustration K = 0. The energy barrier
associated with the rearrangement of these domains is predicted as

�(T < T

ú) = �
>

+ AT

ú

K

3
1 ≠ T

T

ú

44‹

(1.28)

where �
>

is the high-temperature energy barrier for vibrational motion and A is a
positive constant [87]. This energy barrier naturally leads to the super-Arrhenius
behavior with its variation related to dynamical heterogeneity, according to the
FLD theory.

There are several similarities between FLD and RFOT scenarios, such as an
onset temperature of some thermodynamic order, and the decomposition into
domains that grow with decreasing temperature. However, the domain size is
limited by configurational entropy in RFOT, and by long-range elastic energy
that frustrate the locally preferred structure in FLD. Additionally, FLD predicts
saturation of ¸

ú and � below a certain temperature far from T

ú, and a reversion to
a purely Arrhenius behavior known as fragile-to-strong crossover, also predicted
by other models such as the shoving model [89], string model [4] and dynamical
facilitation theory [90]. Consequently, no ideal glass transition at TK appears
in the FLD theory. Finally, although the FLD is an appealing approach based
on real space, it is in general di�cult to identify locally preferred structures in
glass-forming liquids except for simple spherical systems, and quantitative and
testable predictions beyond scaling are still lacking.
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Chapter 2 |
Avoiding Crystallization

It is believed by many that crystallization does not play an important role in the glass
transition, provided that it can be avoided in supercooled liquids as assumed by most
theories and models. However, for systems made of non-attractive monodisperse
components, such as colloidal suspension of hard spheres, the supercooled metastable
state is obscured by two competing phenomena: a rapid, first-order crystallization
under slow compression, and an out-of-equilibrium glass transition under fast
compression. Therefore, the equilibration of one-component colloidal systems in
metastable state is a subtle question. While particles with polydisperse diameters
are often used in order to avoid or delay the crystallization, the e�ect of size
polydispersity on the glass transition dynamics is still a matter of debate. To
address this problem, we introduce a crystal-avoiding method that can e�ectively
suppresses the crystallization while preservation the dynamics, which allows us
to probe the long-time dynamics of metastable monodisperse hard-sphere liquids.
We also extend this method to purely repulsive soft spheres. Some complications
related to soft spheres are discussed.

2.1 Phase Diagram of Hard Spheres
Colloidal hard-sphere systems have been studied intensively in experiments, simu-
lations and theory, because of their theoretic simplicity, well-defined geometry and
the ability to model a number of physical systems with more complicated potentials.
As an analogy to the temperature in molecular liquids, the control parameter in
a hard-sphere system is the volume fraction „ = fifl‡

3
/6, where ‡ is the particle

diameter, while temperature only serves as a scaling factor of the time unit. The
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Figure 2.1: Phase diagram in the pressure-volume fraction plane for hard-sphere
systems. Similar to molecular systems shown in Figure 1.1, hard-sphere systems
exhibits a first-order liquid to solid thermodynamic transition and a dynamical
glass transition under fast compression.

phase diagram for the hard-sphere system is depicted in Figure 2.1. By varying the
volume fraction, monodisperse hard spheres display a fluid phase below the freezing
transition „f ¥ 0.494, and a liquid-crystal coexistence regime between „f and the
melting transition „m ¥ 0.545. Above the melting volume fraction „m, the system
exhibits a crystal phase that can be densified until „ ¥ 0.74, which corresponds
to the close packing of face-centered cubic (fcc) crystal. Under rapid compression,
on the other hand, the hard-sphere system may remain disordered in metastable
equilibrium above the freezing point until it falls out of equilibrium with further
compression and becomes a glass . Depending on the compression protocol, such as
compression rate and , the maximum volume fraction of a disordered hard-sphere
system can achieve, known as the random close packing (RCP) is approximately
„RCP ¥ 0.64. While it is possible to generate a random packing of hard sphere at
„ < „RCP, in order to explore the metastable branch of the phase diagram and
study the properties in the vicinity of the glass transition, one needs to equilibrate
the initially non-equilibrium system while being caution not to allow crystallization
to occur, which is not trivial for hard spheres.
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2.2 Crystallization and Metastability
In general, liquids undergo a first-order phase transition at the melting temperature
Tm. The thermodynamically stable state below Tm is the ordered crystal phase
associated with a lower free energy. In this regard, an equilibrium supercooled
liquid is a metastable phase and can be probed only if the liquid relaxation time is
shorter than that of crystallization. The formation of crystal within a supercooled
liquid is usually considered as a two-step process: nucleation and crystal growth.
The system has to first form some stable nuclei larger than a critical size, and
then grow them to be a considerable part of the sample. The nucleation process is
dominated by the competition between surface tension and free energy gain, while
the growth of crystal is limited by the viscosity of the background liquid as well as
the mismatch between contacting crystallites. As a result, the crystallization rate
is dominated by the slowest process, nucleation or crystal growth.

The metastability of supercooled state relies on the di�erence between the
relaxation time of liquid and the nucleation time. The temperature dependence
of nucleation time usually shows a minimum at a certain temperature below Tm,
while the relaxation time is a monotonic function that increases with decreasing
temperature. Therefore, if the nucleation time and relaxation time do not cross,
it is possible to equilibrate the supercooled liquid to an arbitrarily low T with a
nonlinear cooling protocol. However, there are systems exhibiting a kinetic spinodal
at Tsp > 0, below which the relaxation time excesses the nucleation time and
equilibration of the supercooled liquid becomes impossible. Close to the spinodal,
the di�erence between polycrystal and glass is somewhat blurred. In this case,
the relaxation time of the supercooled liquid cannot really diverge at a finite
temperature and the ideal glass transition predicted by some theories is always
intervened by crystallization.

The existence of kinetic spinodal is not necessarily a serious problem if the
kinetic spinodal is in the low temperature regime far from the experimental glass
transition, since theories explaining the slow dynamics by the underlying phase
transition do not need the transition to actually happen. However, di�culties
may arise in studying the supercooled system if the kinetic spinodal is close to the
melting point and thereby buries the metastable state. The colloidal suspension of
monodisperse hard spheres falls into this category. In Figure 2.2, we show the crystal
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Figure 2.2: Crystal nucleation time (disk) and liquid relaxation time (square) as a
function of volume fraction for monodisperse hard spheres. Three regions separated
by the relaxation and nucleation times are indicated.

nucleation time and the liquid relaxation time as a function of volume fraction for
monodisperse hard spheres. The nucleation time date is taken from Ref. [91], while
the – relaxation time is obtained from the self-intermediate scattering function
Fs(k0, t) (see Eq. 1.12), with k0 = 6.5 corresponding to the the first peak in the
structure factor S(k). The metastable hard-sphere liquid is simulated using our
crystal-avoiding method, as will be introduced in the following section. It is evident
that the relaxation time exceeds the nucleation time at „ ¥ 0.57, above which the
metastable branch is inaccessible with conventional simulation method.

To suppress crystallization and explore the metastable regime in the vicinity of
the hard-sphere glass transition, a strategy widely used in both experiments and
simulations is to introduce a small amount of polydispersity in particle sizes. The
size polydispersity ” is conventionally defined as the fractional standard deviation
of particle diameter, ” =

Ò
1
N

q
N

i=1(‡i

≠ ‡)2
/‡. As polydispersity increases, the

freezing and melting points moves towards higher volume fractions. The fact that
polydispersity can destabilize the crystal phase can be understood as follows. For
monodisperse spheres above the melting volume fraction, the ordered crystal have
higher entropy because of larger free volume for local motions, and therefore lower
free energy, compared to the disordered metastable fluid. When polydisperse is
introduced, random distribution of di�erent particle sizes results higher packing
e�ciency than packing on a crystal lattice. It is found via computer simulation
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that for ” > 0.08, crystallization without fractionation is e�ectively suppressed [92].
At larger polydispersity and volume fraction, coexistence of multiple solid phases is
predicted from free energy calculation [93], the size fractionation requires motion
of particles over large distance to form and therefore occurs on a much longer time
scale, which is recently observed in Monte Carlo simulations with unphysical swap
moves [73]. In this case, a relatively large polydispersity ”0.23 is used to avoid
crystal formation.

However, a large polydispersity not only complicates dynamic properties of
hard spheres, such as dynamical heterogeneity, but may alter the glass transition
as a result of the partial localization.e�ect of large and small particles [94]. In
contrast, monodisperse hard-sphere system is the simplest glass former and is
theoretically more tractable. Therefore, it would be attractive to find a way to
carry out molecular dynamics (MD) simulations of monodisperse hard-sphere fluids
in which crystallization was somehow suppressed. To this end, we propose a
novel crystal-avoiding method that allows us to suppress crystallization without
perturbing the dynamics significantly.

2.3 Bond-Orientational Order Parameters
To suppress crystallization in supercooled liquids, one needs to identify the occur-
rence of crystallization. While crystallization, as a first-order phase transition, is
associated with an abrupt change in thermodynamic properties, such as potential
energy and pressure, these macroscopic observables are found unsatisfying for
detecting the early stage of crystal formation [95]. A widely used, more sensitive
measure of crystalline order is the bond-orientational order parameter. Based
on the angles between a center particle and its surrounding neighbors, the bond
order parameter is independent of the specific crystal structure and invariant to
translation and rotation of the whole system.

In two-dimensional disks, the global bond order parameter for hexagonal order
[96] is defined as

�6 =
------

1
Nb

ÿ

j

ÿ

k

e

6i◊jk

------
, (2.1)

where indices j and k run over all pairs of neighboring particles in the system, ◊jk

is the angle between the bond connecting the centers of disk j and k and the x
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axis, and Nb is the number of bonds in the system. The neighbors can be defined
in various ways, such as Voronoi tessellation, fixed distance cuto� (e.g., the first
minimum of pair correlation function g(r)) or a solid-angle based method [97].
By construction, for perfect hexagonal packing, �6 = 1, while �6 ≥ 1/

Ô
Nb for

an ideal gas [98]. A caveat to the global order parameter is that it is possible to
construct a system in which disks are mostly in hexagonal packing with a small
�6 value [98]. To avoid this problem, an averaged local order parameter has been
proposed,

Â6 = 1
N

Nÿ

j

-----
1

nb(j)
ÿ

k

e

6i◊jk

----- , (2.2)

where nb(i) is the number of neighbors of particle j. While the local order parameter
is sensitive to local hexagonal order, it may fail to identify systems with substantial
global orientational order but locally disordered. In practice, one needs to take
both global and local order parameters into consideration in order to detect crystal
formation more e�ectively.

As a natural generalization on the two-dimensional order parameter for 6-fold
symmetry, the bond order parameter can be constructed in three dimensions based
on spherical harmonics, Y

m

l

(◊
i

, Ï

i

), where ◊

i

and Ï

i

are the polar and azimuthal
angles or bond i relative to a fixed coordinate system [99]. A global order parameter
is then defined as

Q

l

=

Q

ca
4fi

2l + 1

lÿ

m=≠l

------
1

Nb

Nbÿ

i=1
Y

m

l

(◊
i

, Ï

i

)
------

2
R

db

1/2

, (2.3)

where m and l are the order and degree of spherical harmonics. It can be shown
that Q

l

is independent of the reference coordinate system (see Appendix A for
details). Depending on the choice of l, Q

l

is sensitive to di�erent types of ordering.
For l = 6, which is used extensively in the literature, Q6 reaches its maximum
value (Q6 ¥ 0.574) for perfect fcc crystal, and also has high values for other typical
crystals, such as body-centered cubic (bcc, Q6 ¥ 0.511), hexagonal close packing
(hcp, Q6 ¥ 0.485) and simple cubic (sc, Q6 ¥ 0.353). For l = 4, a higher value is
found for simple cubic than for other crystals. For a truly random distribution of
bonds, Q

l

= 1/

Ô
Nb, similar to that in two dimensions [95].

Likewise, a local measure of orientational order can be defined. First, an
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averaged spherical harmonics is defined for each particle,

q

m

l

(i) = 1
nb(i)

nb(i)ÿ

j=1
Y

m

l

(◊
j

, Ï

j

), (2.4)

where nb(i) is the number of nearest neighbors of particle i. Note that q

m

l

(i) is
a complex number. To make the quantity rotationally-invariant, the local order
parameter is defined by summing all integer m from ≠l to l similar to the global
one,

q

l

(i) =
Q

a 4fi

2l + 1

lÿ

m=≠l

|qm

l

(i)|2
R

b
1/2

. (2.5)

Finally, the averaged local order parameter,q
l

, for the whole system can be obtained,

q

l

= 1
N

Nÿ

i=1
q

l

(i). (2.6)

Notably, for a particle on the center of icosahedron cluster, q6(i) ¥ 0.663, which is
higher than that for fcc crystal, although the maximum value of q6 for a considerably
large system is still given by fcc since icosahedron cannot tile the space.

Another useful bond order parameter, which is also rotationally-invariant and
sensitive to di�erent orientational symmetries, is often considered [99]. For a given
particle, such parameter is defined as

w

l

(i) =

ÿ

≠l6m1,m2,m36l

m1+m2+m3=0

Q

a l l l

m1 m2 m3

R

b
q

m1
l

(i)qm2
l

(i)qm3
l

(i)

A
lq

m=≠l

|qm

l

(i)|2
B3/2 , (2.7)

where the coe�cients in parentheses is the Wigner 3j symbols. It is worth noting
that w6(i) has a very negative value for icosahedra (-0.170), about 13 times larger
than that for fcc (-0.013), hcp (-0.012), bcc (0.013) and sc (0.013).

An improved local bond parameter that takes into account of the next-nearest
neighbors has been proposed [100]. The only di�erence from the previous local
bond parameter is that an additional average is performed on q

m

l

(i) defined in Eq.
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2.4,

q

m

l

(i) = 1
nb + 1

nbÿ

j=0
q

m

l

(j), (2.8)

where j runs over all neighbors of particle i and itself. The corresponding new
local order parameters, q

l

(i), q

l

and w

l

(i), are then defined similarly following Eq.
2.5, Eq. 2.6, Eq. 2.7 with q

m

l

(i) substituted with q

m

l

(i). This coarse-grained local
bond parameter is found more robust in distinguishing between liquid and di�erent
crystals.

It is sometimes convenient to assign particles as liquid-like or solid-like based
on their local environment. One way is to choose a threshold for the local order
parameter above which a particle is regarded as solid-like. Another commonly
used method [101] is based on the structural similarity between a particle and its
neighbors. From the complex vector q

m

6 (i), the correlation between particle i and j

can be calculated from the scalar product

S

ij

=
6ÿ

m=≠6
q

m

6 (i)qm

6
ú(j). (2.9)

Typically, two particles are considered connected if S

ij

> 0.7, and if the number of
connected neighbors n

c

of particle i exceeds a certain threshold, e.g, nc > 6, the
particle is considered as solid-like.

Finally, we note that a similar bond order parameter, called Minkowski structure
metrics [102], has been recently proposed to avoid the ambiguity of the neighborhood
definition, such as the instability involved in Voronoi tessellation [103]. In this
method, each bond spherical harmonics Y

m

l

(◊
j

, Ï

j

is weighted by the associated
Voronoi facet area relative to the total Voronoi cell area, and hence improves the
robustness of conventional bond order parameters.

2.4 Crystal-Avoiding Method

2.4.1 Monodisperse Hard Spheres

The simple form of hard-sphere potential leads to a special simulation algorithm
called event-driven or discrete MD. In this algorithm, one recursively computes the
collision time between each pair of spheres, proceeds the collision that happens

34



Δt

randomize 

velocities

accept

reject

Figure 2.3: Schematic of the crystal-avoiding method. An MC move generated from
a short MD trajectory of time �t is accepted or rejected depending on the change
of crystal bond order parameter. If the move is rejected, velocities of particles are
randomized before next trial move.

first and updates positions of particles accordingly. A cell list is often employed
to reduce the computational complexity. Note that the microcanonical (NVE)
ensemble is sampled with this method.

For hard spheres, we have developed a crystal-avoiding (CA) MD simulation
method based on hybrid Monte Carlo (MC), inspired by previous works [104–107].
Each MC move is generated from a short event-driven MD trajectory and accepted
with a probability p = min {exp(≠“N�q6), 1}, where N is the number of particles
and q6 is the local bond order parameter averaged over next-nearest neighbors [100]
(or any other sensitive bond-order parameter that measures the crystallinity of the
system). If the MC move is rejected, all particle velocities are reassigned from a
Maxwell-Boltzmann distribution before the next trial move. We emphasize that
the simulation time only advances when a trial is accepted; in this way, the particle
dynamics can be reasonably reproduced despite the low acceptance rate. In short,
the method essentially samples among those trajectories in phase space for which
crystallization did not occur. If the duration of the trial trajectories and hence the
time between velocity randomizations is larger than velocity autocorrelation time,
the resulting dynamics should well represent the metastable fluid. If nucleation is
rapid, this may lead to a low acceptance rate of trial moves. In practice, we choose
the bias “ and trial trajectory length lMD for reasonably high acceptance rates and

35



P
êrk

B
T

t

f

mono. (CA)
poly. (MD)

mono.(CA)
mono.(MD)
poly.(MD)

  f=0.57

0 100 200 300 400 500
14

16

18

20

22

10-1 100 101 102 103

10-2

10-1

100

101

t

XDr2 \

Figure 2.4: Mean-squared displacements for monodisperse hard spheres using
crystal-avoiding method (CA) and polydisperse systems with conventional MD
(MD) at „ = 0.55, 0.56, 0.57 and 0.58. Inset: pressure versus time at „ = 0.57
with di�erent methods. Dotted line indicates corresponding pressure reported in
Ref. [108].

fidelity to dynamics of polydisperse systems (see Table 2.1).
Fig.2.5 illustrates the dependence of the particle self-di�usion coe�cient D on

the crystal bias parameter “ and trial trajectory length lMD, for a dense system
with „ = 0.56. The self-di�usion coe�cient is clearly insensitive to the value of “

(over this range, crystallinity is e�ectively suppressed). D depends weakly on lMD,
until lMD becomes longer than the particle velocity autocorrelation time. For the
largest values of „ we study „ > 0.57, to maintain a reasonable acceptance rate,
we take smaller lMD values (10–20, see Table 2.1). This leads to slightly smaller
values of D (by a factor of 100.15 ¥ 1.4), which is a small e�ect compared to the
strong dependence of D on „.

We test the CA method by comparing to monodisperse and mildly polydisperse
systems (Gaussian distributed diameters with ” = 0.08) at „ = 0.57 > „f simulated
with conventional MD. The inset to Fig. 2.4 shows that a monodisperse system
under MD will crystallize spontaneously as indicated by an abrupt drop in pressure.
The same monodisperse system simulated with the CA method maintains a constant
pressure, indicating that crystallization is suppressed. Likewise, a polydisperse
system under MD does not crystallize— but does display a lower constant pressure,
as noted previously [91]. On the other hand, the mean-squared displacement (MSD)
of systems simulated with the CA method are consistent with those of polydisperse
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Figure 2.5: Dependence on “ and lMD of di�usion coe�cients D at „ = 0.56. The
resulting dynamics is insensitive to “ and depends weakly on lMD (see main text).

Table 2.1: Parameters for crystal-avoiding MD simulation. MD trial length lMD is
in unit of collisions per particle. The smaller lMD used for high „ is a compromise
between reproducing dynamics and high acceptance rate (see main text).

„ “ lMD

< 0.50 0 -
0.50 – 0.53 0.25 40

0.54 0.50 40
0.55 0.50 40
0.56 1.00 40
0.57 1.20 20
0.58 1.20 10

> 0.59 1.50 10

systems under MD. Previous work suggests that MSD is insensitive to the amount
of mild polydispersity [92] as long as the system is below glass transition, so we
conclude the dynamics of metastable monodisperse fluids are well represented by
our CA method.

2.4.2 Monodisperse Soft Spheres

While first proposed for hard-sphere systems, the crystal-avoiding method can be
readily applied to soft potential systems. A soft-sphere system is often modeled
by the purely repulsive Weeks-Chandler-Andersen (WCA) potential, which is a
simpler alternative to the more realistic Lennard-Jones (LJ) potential. The WCA
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(a) (b) (c)

Figure 2.6: (a) A snapshot of the low-q6 crystal phase. (b) A thin slab of the
system with thickness around 3‡. (c) Frank-Kasper ‡ phase projected along the c

axis.

potential is the LJ potential truncated and shifted at the minimum energy, which
reads

UWCA(r) =

Y
_]

_[

4‘

51
‡

r

212
≠

1
‡

r

26
6

+ ‘, r 6 21/6
‡

0, r > 21/6
‡,

(2.10)

where ‘ and ‡ are the characteristic energy and length parameters, respectively. In
molecular dynamics simulations, it is convenient to define dimensionless (reduced)
units based on the LJ/WCA potential. The reduced units chosen in this work are
mass m, length ‡, energy ‘, temperature ‘/kB, time

Ò
m‡

2
/‘ and pressure ‘/‡

3.
Unlike the event-driven scheme for simulating hard spheres, MD simulation of

soft spheres mostly adopts the Verlet algorithm with constant time-step. To extend
our crystal-avoiding method to soft spheres, we incorporate the MC algorithm into
the GROMACS package, a highly e�cient MD simulation software, using shell
scripts. While considerable disk read/write operations are involved in this approach,
the overhead is negligible compared to the main computation cost.

In generally, we find the CA method also works for soft spheres for di�erent
densities and temperatures where system would crystallize with normal MD. How-
ever, we have encountered some complications in choosing the proper bond order
parameter to signal soft-sphere crystals. Under certain conditions, an uncommon
crystal phase, signaled by an abrupt drop in pressure, may be sampled with the CA
method for WCA spheres (and possibly also for LJ systems). A snapshot for this
crystal phase is shown in Figure 2.6. Such crystalline order has a similar or even
lower bond order parameter, q6, than that for a liquid (see Figure 2.7(a)), which
explains the failure of the CA method in suppressing the crystal.
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using (a) normal MD and (b) CA method with bond order parameter q6 suppressed.
Points shown in (a) are phase coexistence data from Ref. [109]. Solid Lines are
isobaric melting curves. Dashed lines in (b) indicate the solid-liquid coexistence
shown in (a).

A detailed analysis based on local bond parameters q6 and w6, as shown in
Figure 2.7, suggests that the unexpected crystal is closely related to the Frank-
Kasper ‡ phase, which is a quasicrystal approximant. In addition, the isobaric
melting temperature of the unknown phase is very close to that of the ‡ phase.
Indeed, quasicrystals and their approximant have been observed in many soft matter
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systems, such as polymers [110] and colloidal micelles [111], as well as in computer
simulations [112,113].

To compare the quasicrystal phase with the ordinary fcc crystal, we construct
the T ≠ fl phase diagram for WCA systems by melting a fcc crystal or a QC
under constant pressure and observing the abrupt change in density. We note that
although this rather crude approach may su�er from the limitations like finite-size
e�ect and overheating, the results for solid-liquid coexistence are in good agreement
with those obtained from some meticulous method [109]. As shown in Figure 2.8(b),
fcc crystals are suppressed below the melting temperature by the CA method using
bond order parameter q6 , while a liquid-quasicrystal transition occurs at a lower
temperature depending on the density.

While the formation of quasicrystal is interesting and deserve further investiga-
tions, our main focus here is the metastable liquid state and thus it is necessary to
suppress both fcc and QC. We find that this can be achieved by replacing the single
bond order parameter q6 with a a linear combination of multiple order parameters.
For example, an e�ective bond order parameter can be defined as

Qe� = w1q6 + w2Q6 + w3q6, (2.11)

where w1, w2, w3 are constants. In general, q6 is the most sensitive to local fcc
order, Q6 is a more global measure and q6 gives signal to both crystal and QC.
With properly adjusted coe�cients, the e�ective order parameter can detect the
occurrence of either fcc or QC, and hence the CA method can probe the metastable
state of WCA soft spheres, at least in a time scale long enough to study the
dynamics. We also check that di�erent choices of coe�cients can barely a�ect the
results, as long as the system is in metastable equilibrium.

40



Chapter 3 |
Geometrical Criterion for the
Hard-Sphere Glass Transition

To study the relationship between dynamics and structure in a glass-forming liquid,
we introduce a purely geometric criterion for locally mobile particles in a dense
hard-sphere fluid: namely, “T1-active” particles, which can gain or lose at least one
Voronoi neighbor by moving within their free volume with other particles fixed. We
obtain geometrical and dynamical properties for monodisperse hard-sphere fluids
with 0.40 < „ < 0.64 using a new “crystal-avoiding” MD simulation that e�ectively
suppresses crystallization without altering the dynamics. We find that the fraction
of T1-active particles vanishes at random close packing, while the percolation
threshold of T1-inactive particles is essentially identical to the commonly identified
hard-sphere glass transition, „g ¥ 0.585.

3.1 Introduction
The dramatic slowing down and heterogeneity of dynamics in glass-forming liquids
is related to growth of regions of particles that require collective rearrangements to
relax. Despite substantial e�orts, the structural origin of glass transition remains
unclear. Widmer-Cooper et al., demonstrated that local Debye-Waller factor of a
particle (corresponding to the short time dynamics or “rattling motion”) is correlated
with its dynamical propensity (characterizing long time dynamics or “cage-breaking”
process) [114]. Both quantities were obtained from an isoconfigurational ensemble
average, in which multiple simulations are performed with the same starting
configuration and di�erent realizations of thermal initial velocities. Hence both
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the Debye-Waller factor and the propensity only depend on the initial geometry.
Similarly, recent numerical and experimental results suggest a strong correlation
between irreversible structural reorganization and quasi-localized soft modes, which
again reflect the local structure [17,62]. However, finding a local measure of the
initial configuration that is causally connected to the dynamics has proven to be
elusive [45].

In this paper, we propose a new, purely geometrical criterion that relates
directly to the hard-sphere glass transition. By analogy to rearrangement processes
in foams, we define “T1-active” particles as those that can either gain or lose a
Voronoi neighbor by moving within their own free volumes, with other particles
held fixed. When T1-inactive particles percolate, we may expect the system to
become non-ergodic or glassy. In fact, we find that the percolation threshold of
T1-inactive particles coincides with the monodisperse hard-sphere glass transition,
commonly reported at „g ¥ 0.585 [91, 92].

3.2 Method
Hard-sphere fluids have been intensively studied since they serve as the simplest
model that exhibits a glass transition, and are well approximated by real col-
loidal suspensions. Geometric properties such as free volume and cavities can
be defined rigorously and computed conveniently for hard-sphere systems [115].
However, monodisperse hard-sphere fluids crystallize readily at volume fractions
„ > „f ¥ 0.494. To study the metastable fluid phase above „g, a small amount
of polydispersity ” (defined as the fractional standard deviation of particle di-
ameter) is typically introduced to suppress crystallization. Recently, the extent
to which polydispersity alters the dynamics near the glass transition has been
debated [94,116,117]. Also, algorithms for computing free volume and related prop-
erties are most conveniently implemented for monodisperse hard-spheres (though
extension to polydisperse spheres is possible) [115]. For these reasons, we carry out
molecular dynamics (MD) simulations of monodisperse hard-sphere fluids with the
crystal-avoiding introduced in Chapter 2.

To systems at or slightly above the glass transition, we observe a dramatic
di�erence in the dynamics of monodisperse and slightly polydisperse systems.
Fig. 3.1 compares the dependence of the apparent particle di�usion coe�cient on
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„ = 0.58 and „ = 0.59 with filled and empty symbols representing monodisperse
and polydisperse systems, respectively. Inset: examples of obtaining D(te) from
the slope of MSD in monodisperse systems at „ = 0.59 for di�erent te.

aging time te (time elapsed after the initial Lubachevsky-Stillinger configurations
are generated, before the di�usion coe�cient is measured). For „ = 0.58, both
monodisperse (filled symbols) and slightly polydisperse systems (open symbols)
show no dependence of D on aging. For „ = 0.59— slightly above the commonly
reported colloidal glass transition of „c = 0.585 [91, 92]— the monodisperse system
shows a strong aging dependence of D, which continues to decrease with te as far as
we can observe. (The inset shows two representative plots of �r

2 versus t for the
monodisperse system for di�erent aging times; values of D are extracted from the
slopes of these plots.) The polydisperse system displays some aging dependence,
but ultimately seems to settle to a finite value of D. This contrast between the
sudden onset of strong aging in the monodisperse system and the more modest
aging behavior of the polydisperse system suggests that the polydisperse glass
transition is smeared or delayed due to small mobile particles, consistent with
recent findings by Zaccarelli et al. [94].

For our simulations of metastable monodisperse hard-sphere fluids, we use the
Lubachevsky-Stillinger algorithm [118] to prepare initial fluid configurations of
N = 2000 hard spheres with „ = 0.40 to 0.61. Then, we use the CA method to
equilibrate the systems until no obvious aging process is observed for the quantity
of interest before collecting data. (For „ Ø 0.59, data are collected after the longest
equilibration time we can perform in spite of the aging.) The fraction of “crystalline
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particles” is controlled to be less than 3%. (A particle i is deemed crystalline if it
has N

c

Ø 6 neighbors with local bond order parameter d6(i, j) > 0.7, see Ref. [101].)
Polydisperse systems are also prepared using Lubachevsky-Stillinger algorithm
with diameters normally distributed. Standard hard-sphere units are used: sphere
diameter ‡, sphere mass m, collision time · = ‡

Ò
m/(kBT ).

3.3 Results

3.3.1 Particle Propensity and Neighbor Rearrangements

In this work, we are concerned with local geometries that permit particles to
rearrange. Such rearrangements or “cage-breaking” events are often identified by
comparing particle displacements to a threshold. As we shall show, such events can
equally well be identified by counting the number of changed Voronoi neighbors.
In this language, the “supercooling” (densification) of a hard-sphere fluid can
be described as follows. For „ < „g, particles change neighbors frequently and
irreversibly, and the system is ergodic. Above „g, more and more neighbors are
fixed during a given time, and ergodicity is broken. At „ = „

J

, the system is
completely jammed, and no particle can change any neighbors.

To establish the connection between mobility and neighbor rearrangements, we
compare the dynamic propensity È�r

2
i

Í
ic

, calculated following Ref. [59], and the
total number of new Voronoi neighbors, defined as | fi

j

V
ij

|, where V
ij

is the set
of new neighbors that particle i gained in the jth isoconfigurational run, starting
from the same initial configuration. Here | fi

j

V
ij

| is a short-time measure of
rearrangements, in that we take the isoconfigurational run length to be 25 times
shorter than that used for the propensity, which is evaluated at the end of the caging
regime [59]. Fig. 3.2 shows that the propensity and number of new neighbors are
heterogeneously distributed and correlated with each other— indicating that cage-
escape dynamics of particles can be predicted to some extent by the rearrangements
of Voronoi neighbors over a much shorter time.

Having established that acquiring new and losing old Voronoi neighbors is
correlated with cage escape and hence particle di�usion, we ask what could be
the elementary local motions by which new neighbors are acquired and old ones
lost, and what local particle arrangements promote or preclude these motions. We
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Figure 3.2: Dynamic propensity (left) and number of new Voronoi neighbors (right)
averaged at „ = 0.58 over 400 isoconfigurational runs of length 125· and 5·

respectively. 20% of particles with the largest and smallest values are shown for
clarity. Propensity timescale 125· corresponds to the end of the caging plateau in
the log-log plot of MSD (see Fig. 2.4).

consider the simplest class of local motions in which a single particle moves in its
free volume, defined as the space within which its center can translate with other
particles fixed.

3.3.2 Uncaged Particles

A su�cient condition for a given particle to gain a new Voronoi neighbor is that at
least one of its “exclusion spheres”, i.e., the neighboring particles that define its free
volume, is not currently one of its Voronoi neighbors (see Fig. 3.4a). In such a case,
by moving within its free volume the given particle can touch the exclusion sphere,
which certainly then becomes a new Voronoi neighbor. This criterion implies that
the circumcenter of the Delaunay tetrahedron formed by the new Voronoi neighbor
and three other neighboring exclusion spheres must be farther than ‡ from the
original position of the given particle. Therefore, a cavity (into which an new
sphere can be added) must exist. When a cavity is present, a nearby particle can
hop into the cavity to acquire a new neighbor, leaving behind a cavity for another
particle to hop into, and so forth. Stringlike motion observed in experiments [12]
and simulations [22, 59] seems to support this scenario. We call such a particle
“uncaged”, because it can move beyond its Voronoi cell without the aid of nearby
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Figure 3.3: (a) Di�usion coe�cient D(„) and uncaged particle fraction h(„), versus
volume fraction „. Inset: average number of cavities per particle. (b) T1-active
fraction pT1(„). Inset: pT1 as „ approaches „0 (random close packing). All dashed
lines are power law fits. The error bars are smaller the size of the symbols.

particle motion.
To test this scenario, that uncaged particles contribute to neighbor rearrange-

ments, we compute the fraction of uncaged particles h(„) and number of cavities
as a function of „ by extending the Sastry free volume construction [115] (see Fig.
3.3a). We find that cavities and hence uncaged particles become extremely rare,
decreasing by four orders of magnitude as „ approaches 0.53 or so. By contrast, the
di�usion coe�cient D(„) decreases much more gently with „ in this range. Thus
uncaged particles cannot be primarily responsible for local neighbor rearrangements
and structural relaxation in glassy hard-sphere fluids. (Note that we do observe
a small concentration of cavities (vacancies) in the crystal phase, which lead to
vacancy di�usion.)

3.3.3 T1 Process

If the su�cient but not necessary condition of uncaged particles is rarely met, how
can particles in dense glassy change Voronoi neighbors when there is no cavity
to hop into? By analogy to the T1 process of structural rearrangement in two
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(a)

(b)

(c)

T1

Figure 3.4: 2D schematics of neighbor rearrangements. (a) A hopping particle
(purple) initially surrounded by its Voronoi neighbors (gray) can hop into the cavity
(white region), collide with a new neighbor (green), and leave behind a cavity. (b)
T1 event in a 2D foam corresponding to a flip of one soap film (solid line). (c) A
T1-active particle (blue) gains a new neighbor (green) in a T1 event; no cavity is
required.

dimensional foams [119] (see Fig. 3.4b), we identify another way particles can
change neighbors. A particle p1 with Voronoi neighbors p2, p3, p4 can acquire a
new Voronoi neighbor p5, if p1 is initially outside the circumsphere of the Delaunay
tetrahedron formed by the four particles p2–p5, but is able to move inside the
circumsphere to complete the T1 event. Note particle p1 may have p5 as a neighbor
without being able to touch p5. Through a reverse T1 event p1 can lose p5 as a
neighbor.

The free volume of a given particle presents a set of cusps, each defined by
three Voronoi neighbor particles. These cusps are the most favorable positions for
a T1 event to occur. If a particle can either gain or lose a Voronoi neighbor while
moving within its free volume, both it and the neighbor are marked as T1-active;
otherwise, particles are T1-inactive.

The fraction of T1-active particles pT1(„) as a function of „ is shown in Fig. 3.3b.

47



0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

pT1

Pe
rc
ol
at
io
n
pr
ob
ab
ilit
y

0.18 0.21 0.24 0.27
0.575

0.580

0.585

0.590

pT1

f

fC

pC

p C
ª
0.
23
2

N=500
N=1000
N=2000
N=3000
N=4000

ɸ=0.57 ɸ=0.58

ɸ=0.59 ɸ=0.60

T1-active T1-inactive
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function (see main text). Inset: volume fraction „ versus T1-inactive fraction pT1.
Four typical configurations in the vicinity of the glass transition are shown, with
particles highlighted according to their T1-activities.

In the fluid region „ < 0.5, almost all particles are T1-active. In the metastable
region „ > 0.5, pT1(„) decreases gently until ultimately vanishes near random close
packing, as („0≠„)’ , with „0 = 0.6448±0.0001 and ’ = 0.65±0.02. In contrast, the
di�usion coe�cient appears to vanish at the glass transition, at „ ¥ 0.585, which is
associated with the growth of domains of particles that must rearrange cooperatively.
Evidently, particle di�usion does not cease because T1-active particles become rare.
Instead, we focus on T1-inactive particles, which by definition are those that cannot
undergo T1 events by the motion of any single particle in the system. In reality,
of course, particles can move simultaneously so that a T1-inactive particle based
on geometric analysis may change its neighbors within some time scale; however,
a T1-active particle may not actually undergo a T1 process at the same time.
Therefore, we argue that the actually T1-activity at short times may be represented
by a static analysis.

For a T1-inactive particle to change Voronoi neighbors and contribute to struc-
tural relaxation, cooperative motion of at least two particles is required. Thus,
formation of a network of T1-inactive particles could be related to the growth of
cooperatively rearranging regions (CRRs). To this end, we study percolation of
T1-inactive particles as volume fraction increases. We use particles that define the
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free volume of a given particle as its neighbors in the percolation problem. Span-
ning clusters (infinite in periodic boundary conditions) of T1-inactive particles are
identified for many configurations over a range of „ = 0.57 to 0.61. The percolation
threshold p

c

and critical exponents are obtained from finite-size analysis.
Fig. 3.5 displays the percolation probability of T1-inactive clusters as a function

of T1-inactive fraction pT1. The inset shows the linear relation between T1-inactive
fraction pT1 and the particle volume fraction „. Evidently, percolation of T1-
inactive particles occurs around pT1 = 0.232, or equivalently „ = 0.59. To obtain
the critical threshold and exponents, we perform finite-size scaling by fitting the
percolation probability as a function of T1-inactive fraction to a tanh function1
1 + tanh[(pT1 ≠ p

e�
c (L))/�(L)]

2
/2 for di�erent system sizes L, as shown in Fig.

3.5. In the limit of an infinite system, the percolation probability would be a
step function and the percolation transition occurs at pc = 0.232 ± 0.002, which
corresponds to „c ¥ 0.586— essentially identical to the location of the “colloidal
glass transition” often quoted as „g ¥ 0.585 [91, 92]. The critical exponents in
our model for the correlation length [› ≥ („c ≠ „)≠‹ ] and percolating cluster
fraction [m ≥ („ ≠ „c)—] are ‹ = 0.91 ± 0.01 and — = 0.50 ± 0.02, consistent with
standard percolation results ‹0 ¥ 0.88 and —0 ¥ 0.41 [120]. This suggests whatever
spatial correlations in T1 activity are present are not strong enough to change the
universality class.

In addition to our result that T1-inactivity percolates and the di�usion coe�cient
vanishes at the same volume fraction, we note that the scaling of the T1-inactive
correlation length, combined with a power law fit for the vanishing di�usion
coe�cient [D ≥ („c ≠ „)≠2.2±0.1], gives a dynamic scaling relation 1/D ≥ ›

z with
z ¥ 2.4. Similar values of z ≥ 2 ≠ 5 have been reported for power law relations
between relaxation time and dynamic correlation length [25,26,121]. This is further
evidence that T1-inactive clusters are dynamically relevant.

In fact, a percolation approach to the glass transition has been suggested before.
Cohen and Grest studied percolation of liquid-like particles with free volumes above
some arbitrary criterion [42]. This approach seemed ad hoc, because no significant
di�erence in free volume distribution distinguishes the liquid and glassy states.
In contrast, the T1 activity of a particle by definition is determined from the
configuration, the evolution of which is in turn influenced by the dynamics.

Recently, another connection between the glass transition and percolation has
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been reported [122]; namely, that the MCT glass transition „c coincides with the
divergence of the cluster size of fast moving particles, and the VFT-fitted „0 (close
to „RCP) coincides with the divergence of the cluster size of slow moving particles.
Comparing this to the present work, we remark that fast and slow clusters are
defined dynamically, based on observed particle mobility; both of them grow with
increasing „, consistent with increasing collective motion. In contrast, T1-activity
is a purely geometrical property describing the “possibility” of changing Voronoi
neighbors for a given configuration; the fraction of T1-inactive particles increases
with increasing „. The actual mobility of a particle in a given simulation is also
influenced by the initial velocities, so there is no deterministic relation between
T1-activity and mobility. That being said, an increasing number of T1-inactive
particles, which cannot change their Voronoi neighbors by their individual motion,
implies a growing degree of collective motion required for relaxation. The similar
power law divergence of the dynamic correlation length and T1-inactive cluster
length discussed above also suggests a connection between mobility and T1-inactive
particles.

3.4 Conclusion
In this work, we employ a new crystal avoiding (CA) method to study glassy
monodisperse hard-sphere fluids at „ > „f. The CA method allows us to explore
glassy monodisperse hard-sphere fluids at „ > „f— for which equilibration has been
a “subtle question” [123]— and o�ers new opportunities to examine the e�ect of
polydispersity on dynamics. In searching for the relevant local rearrangements
that permit particles to gain and lose Voronoi neighbors, we show that the number
of uncaged particles vanishes too rapidly compared to the moderate slowing of
di�usion, and so cannot be the primary means by which particles acquire new
neighbors.

Instead, we propose that T1-active particles, identified based purely on geometry,
are able to acquire and lose neighbors by single particle motion without cavities
present, and are common enough to contribute to rearrangements, only becoming
scarce near random close packing. Moreover, clusters of T1-inactive particles
percolate at „ ¥ 0.586, remarkably close to the glass transition. These results
suggest a close relation between T1-inactive clusters and slow dynamics in glassy
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hard-sphere fluids. Establishing the same link for polydisperse systems and exploring
the possible connection of T1-(in)active correlation length to the dynamic or static
correlation lengths will be the subject of future work.
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Chapter 4 |
Local Structures and Entropy
From Graph Isomorphism

Configurational entropy plays a central role in thermodynamic scenarios of the
glass transition. As a measure of the number of metastable states configurational
entropy for a glass-forming liquid can be evaluated by counting distinct inherent
structures. In this work, we propose a graph-theory based method to examine local
structure and obtain the configurational entropy of hard-particle systems. Voronoi
diagrams of associated clusters are classified using a graph isomorphism algorithm.
The statistics of these clusters reveal structural motifs such as icosahedron-like
order, and also allow us to calculate the structural entropy SG. We find the
structural entropy of an n-particle subsystem grows linearly with n. Thus the
structural entropy per particle can be obtained from the slope dSG/dn. Our
results are consistent with previous values for configurational entropy obtained
via thermodynamic integration. Structural entropies per particle are measured for
hard-disk and hard-sphere polydisperse systems, and extrapolated for monodisperse
hard disks, all of which are nonzero at the dynamic glass transition.

4.1 Introduction
As a liquid is quenched toward the glass transition temperature Tg without crystal-
lizing, the dynamics slows drastically without any apparent change in the liquid-like
molecular structure. One of the fundamental questions regarding the glass transition
is whether the dynamical phenomena have an underlying thermodynamic origin.
Depending on the answer to this question, glass theories are divided into two points
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of view. A kinetic perspective, such as dynamical facilitation theory [90,124], claims
the glass transition is a kinetic arrest, and should be understood at the dynamic
level. Whereas, a thermodynamic scenario, such as random first-order transition
(RFOT) theory [66, 70] attributes the increasing relaxation time to decreasing
configurational entropy, which vanishes at a Kauzmann temperature 0 < TK < Tg,
leading to a thermodynamic phase transition from fluid to glass state.

Considerable e�orts have been made to calculate the configurational entropy,
because of its central role in thermodynamic glass theories. Based on the idea that
particle motions in a supercooled liquid can be decomposed into fast vibrations
within the cage formed by its neighbors and slow cage-breaking rearrangements,
the configurational entropy Sc has been calculated as the di�erence between the
total entropy of the liquid S and the vibrational entropy Sv. While the total
entropy can be readily obtained by thermodynamic integration of the pressure from
the ideal gas to the glassy state, significant ambiguity arises in the definition of
vibrational motions. As a result, the estimate of Sv depends on the method used to
restrict structural rearrangement; these methods include harmonic approximation
[34,125,126], perturbed Hamiltonian approach [33], and tether method [127].

We are interested in systems near a dynamic glass transition, defined opera-
tionally as the point at which in experiments or simulations it becomes extremely
di�cult to observe particle di�usion, and hence to equilibrate a liquid. As a system
approaches a dynamic glass transition, ergodicity is e�ectively broken, and con-
figuration space is partitioned into some number of distinct regions, with a given
system trapped for increasingly long times in a single region. The configurational
entropy S

c

can therefore be defined by counting the number of distinct “inherent
structures” [32,128] of a glassy system.

These inherent structures can be defined in several ways. For jammed particles,
inherent structures can be taken as the set of collectively jammed configurations at
a given volume fraction. For particles interacting via smooth potentials, inherent
structures have been defined as the set of local minima of the potential energy
landscape at a given total energy, which can be found by minimizing the potential
energy, starting from representative system configurations. Structures could also be
defined in terms of free energy minima (called “pure states”)— one of which may
correspond to several energy minima separated by weak barriers [37]. (Counting
free energy minima for such systems would be more relevant, but is much harder
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to do.)
Several previous authors have obtained values for S

c

by explicitly counting
inherent structures, with di�erent heuristic methods for distinguishing di�erent
structures. For example, Xu et al. [129] study small jammed hard-disk systems, in
which di�erent inherent structures are distinguished by the eigenvalues of vibrational
modes; Donev et al. [35] partition large hard-disk systems onto lattices and count
the occurrence of sublattice configurations. In a related method [130,131], volumes
of basins in the potential energy landscape are measured; then the number of basins
is the total volume of configurational space divided by the average basin volume.
Despite these e�orts, relation between configurational entropy, characterizing the
number of basins in dN -dimensional landscape, and real space structures remains
elusive.

For hard-sphere systems near the dynamic glass transition, conventional ap-
proaches to identifying inherent structures do not directly apply; there is no
potential energy to minimize, and the system is not jammed. In this work, we
present a new approach to identifying structures, and thereby reveal local geometric
motifs and estimate the configurational entropy. We propose that a useful definition
of structures for glassy hard-sphere fluids can be given in terms of the network of
neighbor relationships, as defined by the Voronoi construction, because these remain
essentially unchanged for very long times above the dynamic glass transition, even
as particles rattle in their cages. Phase space for the broken-ergodicity dynamic
glass is then partitioned into regions defined by distinct Voronoi network topologies.

To distinguish di�erent neighbor networks, we classify the corresponding graphs
using graph isomorphism algorithms, which reliably identify and uniquely label
topologically distinct graphs. In this way, we can obtain the statistics of distinct
structures, investigate prominent local clusters, and estimate the structural entropy.
Our direct results for structural entropy are consistent with the configurational
entropy inferred from thermodynamic integration. In this work we focus on the
simple hard-particle systems, though our method can be applied to systems with
any potential.
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Figure 4.1: Two graphs are said to be isomorphic if they contain the same number
of graph vertices connected in the same way. One possible isomorphism is shown
in the diagram.

4.2 Method
We study hard-particle systems in the vicinity of the dynamic glass transition („ ¥
0.80 in 2D and „ ¥ 0.58 in 3D), defined by the apparent vanishing of the particle
di�usivity [92, 132]. After initial preparation using the Lubachevsky-Stillinger (LS)
algorithm [133], systems with packing fraction below the dynamic glass transition
are equilibrated until no obvious aging is observed for the quantity of interest.
Moderate size polydispersity (fractional standard deviation of particle diameter),
� = 0.13 in 2D and � = 0.08 in 3D, is introduced to inhibit crystallization [92,134]
above the monodisperse freezing point („f ¥ 0.70 in 2D and „f ¥ 0.50 in 3D).

We perform Voronoi tessellation to define the nearest-neighbor network for a
given configuration of hard particles. For polydisperse systems, we use the radical
plane construction to define the Voronoi network; this construction prevents Voronoi
facets from intersecting particles, and yields a sensible neighbor network. In fact,
the glass transition of binary soft disks has been studied in terms of the statistics
of Voronoi cells [135], suggesting a close relation between amorphous structure and
Voronoi network.

Since the total number of distinct graphs grows exponentially with number of
particles, we are limited to relatively small systems with less than 30 particles in 2D
and 20 particles in 3D. However, a strong finite size e�ect has been observed in small
systems with periodic boundary conditions [136]; in particular, we find systems of
certain “magic” sizes can develop crystalline order even when the density is below
the freezing point. To avoid this problem, we consider small subsystems within
a large system of size N ≥ 105. For each large system, we examine many small
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(3) (4)

f = 0.73, D = 0.13, n = 16

Figure 4.2: Snapshot of a polydisperse hard-disk system with 4 distinct graphs
of n = 16 vertices shown in di�erent colors. Corresponding canonical graphs of
Voronoi clusters are shown with the same color. Graphs (1) and (2) are more
common than (3) and (4).

subsystems (less than N to avoid double counting), whose centers are uniformly
chosen from a square or cubic grid superimposed on the system. A fixed number
of particles nearest to the center are selected to constitute the subsystem, which
is then mapped to a graph with edges formed between Voronoi neighbors in the
subsystem (see Figure 4.2,

Instead of comparing graphs with all their possible permutations of vertex labels,
we exploit a powerful tool in graph theory – canonical labelling. Roughly speaking,
two graphs are isomorphic if some relabelling vertices yields the same set of edges
for both graphs (see Fig. 4.1). A canonical labelling of a graph then represents
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the whole isomorphism class of that graph. We automate the graph classification
process by adapting NAUTY [137], a leading graph isomorphism solver, which
produces a canonical graph that can be used to “name" any given graph.

The structural entropy measures the number of distinct topological states
available to the subsystem of size n, defined as

SG = ≠
ÿ

i

p

i

log(p
i

), (4.1)

where p

i

is the probability of finding distinct graph i. For large enough n, SG is
expected to grow linearly with n. We estimate the structural entropy per particle
S

Õ
G from the slope dS(n)G/dn.

4.3 Results

4.3.1 Local Structures in Hard-Sphere Systems

To begin with, we show that the seemingly oversimplified Voronoi graphs, which
only contain topological information of clusters, are quite e�ective to identify
local cluster structures. Because of the geometric constraints associated with
non-overlapping particles in dense systems, a given graph can be almost uniquely
mapped to a certain real-space structure, allowing for some degree of distortion by
thermal fluctuations. Hence Voronoi graphs can be used to represent local clusters
and reveal structural motifs.

As an example, we consider two configurations of monodisperse hard spheres
in di�erent phases— a supercooled liquid at „ = 0.58 (N = 2000) equilibrated by
crystal-avoiding (CA) method [138] and a crystal at „ = 0.71 (N = 4000). Here we
focus on local clusters built around each atom in the system with their first shell
of Voronoi neighbors. Clusters obtained this way typically have a size of 12 to 17
particles (as opposed to the fixed subsystem size we use for entropy calculation).

We do notice a small fraction of misdetections of Voronoi neighbors because
of the degeneracy of the Voronoi construction for highly symmetrical particle
arrangements, especially for the ordered phase. To address this issue, modifications
of the Voronoi construction have been used previously [139]. Here we simply remove
a Voronoi bond if the area of the shared Voronoi facet is below a threshold, e.g.,
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FCC (78%) HCP (9%)

(a) f=0.71

14A (5%) 13A (4%) 15C (3%)

(b) f=0.58

Figure 4.3: Most common cluster types in monodisperse hard-sphere systems for
solid phase (a) and liquid phase (b). Central atoms of each cluster type are colored
accordingly. Graph representations of selected clusters are shown with their number
fractions indicated.

2–4% of the average Voronoi facet area (our results are robust within this range of
threshold values).

As shown in Figure 4.3, FCC clusters dominate in the crystal, with less than
10% of HCP clusters appearing as a result of planar stacking defects. In contrast,
many di�erent structures are found in the disordered phase, with the most common
ones being icosahedron-like (13A, 14A) and decahedron-like (15C) (see Ref. [140]
for the established nomenclature of local clusters). However, compared to the few
crystalline structures that dominate the system, even the most common structures
(around each atom) in the amorphous systems are sparse, making up only about
10% of all the distinct structures found in that configuration, consistent with
previous findings [46,51,141]. (The TCC method finds somewhat fewer icosahedron-
based clusters [142], because that heuristic for local structures is more sensitive
to fluctuations in interparticle distances.) Since these clusters cannot tile space,
the central atoms of a given cluster type are unlikely to be neighbors of each other
because of geometric frustration, as depicted in figure Figure 4.3(b). This frustration
limits the concentration of the most common icosahedral and dodecahedral motifs.

To illustrate this point, Figure 4.4 highlights all involved atoms (not just the
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14A (50%) 13A (38%)

15C (28%) 14A‹13A‹15C (77%)

Figure 4.4: Same configuration as Figure 4.3(b) with all involved atoms highlighted
for each cluster type. Percentage indicates the fraction of cluster members. Cluster
centers are darkened.

center atoms) for a given cluster type. As can be seen in the figure, clusters of
each type pervade the system. Atoms involved in the three cluster types make
up nearly 80% of the system, although most of them are shared among di�erent
clusters. We find similar results for disordered systems with mild polydispersity
� = 0.08. This suggests that any structural artifacts of our CA method for
metastable monodisperse systems are small.

To explore the relation between local structures and dynamics, we compute the
persistent time or lifetime for the three most common clusters, namely, 13A, 14A
and 15C. Following Ref. [51], a single-particle function v

i

(t) can be defined that
equals 1 if particle i is at the center of a given type of cluster, and 0 if not. The
autocorrelation function of v

i

(t) can be computed as

‡(t) = 1
N

Nÿ

i=1
Èv

i

(t)v
i

(0)Í ≠
3

nc

N

42
, (4.2)

where nc = q
N

i=1 Èv
i

(0)Í is the average number of particles at the center of a
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Figure 4.5: (a) Single-particle function v

i

(t) at „ = 0.58 for selected common cluster
types (see text for details). (b) Persistent times for di�erent cluster types as a
function of volume fraction. Inset: autocorrelation function ‡(t) for 13A clusters.

given cluster. The persistent time of a given cluster can be defined as the time
when ‡(t)/‡(0) decays to 1/e. In Figure 4.5 (a), we show the time dependence of
single-particle function v

i

(t) for three typical particles that frequently appear at
the center of each type of cluster. It is clear that icosahedron is more resistant
to thermal fluctuation and local rearrangement than other clusters. As shown
in Figure 4.5 (b), icosahedron clusters display the longest persistent time among
others for monodisperse hard spheres, which increases rapidly as the glass transition
is approached, in a similar manner as the structural relaxation time. However it
is worth mentioning that the most immobile particles are not strongly correlated
with icosahedra. The relation between dynamics and local structure on single-
particle level remains elusive [114]. Nonetheless, our results suggest that icosahedral
order plays an important role in the slowing down of monodisperse hard spheres,
consistent with previous studies on di�erent potentials [51].

Several structure classification methods have been previously used in the litera-
ture. The shape matching approach [143] uses invariant harmonic descriptors to
compare structures; the topological cluster classification (TCC) algorithm [142,144]
compares a cluster with a library of known structures, using sophisticated detection
routines. By comparison, our graph-theory based method is completely automated,
with no need to identify important structures “by hand”. The common neighbor
analysis (CNA) [145] and Voronoi index [141] describe structures based on reduced
information on the neighbor connectivity, and therefore are not always able to
distinguish topologically di�erent structures.

The patch method [65], recently developed for characterizing order in 2D glassy
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systems, considers two patches as “congruent” if, by rotating one patch around
its central particle, particles in the two patches correspond to each other within
some distance cuto�. The patch method is more challenging in 3D because of the
need to rotate independently on multiple axes to bring patches into correspondence.
In addition, because congruency depends on the distance cuto�, a patch A may
be congruent to patches B and C, without B being congruent to C, which makes
defining equivalence classes and counting states potentially problematic.

Finally, a graph isomorphism technique similar to our present work has been
previously used by Donev et al. to analyze the local contact network of jammed
packings [146]. In that system, they find the dominant pattern to be open chains
with very few tetrahedra, because of small contact number (Z ¥ 6); no calculation
of graph entropy is performed.

4.3.2 Structural Entropy for Hard Disks

Having established the connection between cluster structures and Voronoi graphs, we
proceed to obtain the structural entropy of glassy hard-disk systems, by counting the
number of topologically distinct local structures. A typical probability distribution
of graphs for polydisperse hard disks is shown in Figure 4.6(a). The number of
distinct graphs grows dramatically as the subsystem size n increases. Although
only a few graph types dominate the configurations, the contribution from the tail
of rare states to the structural entropy are collectively non-negligible.

For larger subsystems, the total number of distinct clusters unavoidably exceeds
our maximum sample size (≥ 107), so that the entropy obtained from that sample
is underestimated. Since the decay of the graph histogram does not follow a simple
exponential form or a power law as indicated in Figure 4.6 (a), we do not know
how to extend the distribution tail by fitting. Remarkably, we observe that the
di�erence between entropy calculated from undersampled data and a su�ciently
large sample, �SG(⁄) = SG(⁄) ≠ SG(Œ), where ⁄ = ns/nd is the sampling ratio of
the total number of samples ns to the number of distinct clusters nd, is a universal
function of the sampling ratio for di�erent „, n and � (see Figure 4.6(b)). We use
this fact to construct a “correction curve”, to infer the true value of the structural
entropy from insu�ciently sampled data.
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Figure 4.6: (a) Probability distribution of distinct graphs (rank ordered) of di�erent
subsystem sizes for polydisperse hard disks at „ = 0.74. Inset: a log-log plot.
(b) Entropy di�erence �SG (see main text) as a function of sampling ratio ⁄ for
di�erent „, n and � collapse onto a master curve. Solid line is an empirical fit
of form f(x) = a1x

b1 + a2x
b2 . Inset: unshifted data of SG(⁄). (c) Structural

entropy SG versus subsystem size n for polydisperse hard disks at „ = 0.74. For
subsystem size shown here, the corrected entropy estimated from a small sample
size (ns = 104, filled red) agrees with that obtained from a larger sample (ns = 106,
black), supporting the validity of the correction curve. Dashed line depicts the
linear relation between SG and n.
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Figure 4.7: Measured structural entropy per particle S

Õ
G as a function of packing

fraction for polydisperse hard disks. Inset: equilibration times t dependence of
S

Õ
G(„), where · is the mean collision time.

Using the correction curve, we can estimate the value of SG(Œ) from the
undersampled SG(⁄) and its associated sampling ratio ⁄; this works well as long
as ⁄ is not close to unity (we mainly use ⁄ ≥ 3 for large n). As illustrated in
Figure 4.6(c), the correction method successfully reproduces the su�ciently sampled
entropy from a data set 100 times less well sampled.

Since the subsystems we study contains no more than 30 particles, the structural
entropy for such a small region might be contaminated by surface e�ects. Fortu-
nately, we find a good linear relationship between corrected SG and n for n > 12,
shown in Figure 4.6(c). This suggests that the surface correction for subsystem
entropy is negligible for relatively large n, and the slope dSG/dn gives a reasonable
estimate for the entropy per particle S

Õ
G.

The measured S

Õ
G(„) with the longest equilibration time, defined as the time

elapsed after the initial LS configurations are generated, are shown in Figure 4.7 as
a function of volume fraction. About 2 ◊ 106 samples have been used to evaluate
SG(n) before we apply the correction. Within the range of equilibration time studied
(see inset of Figure 4.7), the structural entropy per particle quickly converges to
its equilibrium value for „ < 0.78. As the glass transition is approached, a strong
aging e�ect is found for S

Õ
G because of slow structural relaxation. This aging of

the structural entropy can be understand in terms of the landscape view of aging.
During the rapid LS compression protocol, a hard-particle system at high „ may
be trapped in one of the basins typical for a lower density „0 < „ associated with
larger structural entropy. The aging process allows the system to evolve until it

63



2D binary
s1 : s2 = 7 : 5
n1 : n2 = 1 : 2

configurational entropy

structural entropy

0.72 0.74 0.76 0.78 0.80 0.82

0.70

0.75

0.80

f

S G
¢
HfL;

s c
HfL

Figure 4.8: Comparison between structural entropy per particle S

Õ
G and configura-

tional entropy sc from thermodynamic integration [36], for a bidisperse hard-disk
mixture. The growth rates used in the LS algorithm are “ = 1 ◊ 10≠4 and
“ = 3.2 ◊ 10≠6, respectively.

explores the configuration space correctly drawn from the Boltzmann distribution
at „. Our results suggest that the extremely large relaxation barrier in glassy
systems eventually dominates the thermodynamic driving force, resulting in a
structural entropy at high „ higher than that for a system at lower „ with the same
equilibration time. This may be the reason for a higher value of S

Õ
G at „ = 0.80

compared to „ = 0.78.
In spite of the aging process above „g, the di�erence between structural entropy

for our two longest equilibration times is quite small. This suggests the equilibrated
structural entropy of polydisperse hard-disk systems remains nonzero in the vicinity
of glass transition, consistent with recent studies of the configurational entropy
[36,147,148].

To compare our direct evaluation of the structural entropy with conventional
determination of the configurational entropy by thermodynamic integration, we
apply our method to a binary mixture of hard disks with diameter ratio 7:5
and mole fraction ratio 1:2. The configurational entropy for this system has
been calculated [36], for which the vibrational entropy is estimated from single-
occupation cell system. As shown in Figure 4.8, the structural entropy agrees with
configurational entropy sc at high „, indicating that Voronoi networks well represent
the inherent structures of a system, and the structural entropy is essentially identical
to the configurational entropy.

The discrepancy between the two calculations at low „ arises from the di�erences
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in defining vibrational motions. Since our structural entropy is calculated based
on a Voronoi network, any motion that does not change the Voronoi neighbor is
e�ectively “vibrational”; these motions are much larger in a dilute system. For the
configurational entropy, on the other hand, the vibrational contribution depends
on how far particles are allowed by the constraints to explore a single basin; these
constrains are less sensitive to density variation (cell radius around one particle
diameter is found su�ciently small to prevent particle rearrangements for the
densities studied [36]). The ambiguity in defining vibrational motions vanishes in
the high „ limit, where both methods are rigorous and consistent with each other.

For binary mixtures, it is possible to assign di�erent colors to the graph vertices
associated with large and small particles. This scheme leads to larger structural
entropy as each 1-color graph has many color combinations. However, we argue that
the configurational entropy calculated from integrating the pressure did not take
into account the “color di�erence”, but only the e�ect of variation in particle size
on the local geometry of the system, which are already encoded in the 1-color graph
as seen in the structural entropy of polydisperse systems. We note similar argument
has been made that when calculating the granular entropy of polydisperse soft
disks, a constant ln N ! should be subtracted [131]. Therefore, the structural entropy
obtained from 1-color graph is more suitable for the comparison here. Nevertheless,
entropy of color graphs provides additional information about the arrangement of
di�erent species, discussed further below.

4.3.3 E�ect of Polydispersity on Structural Entropy

Since polydispersity is known to a�ect the glass transition [94,149] and thus may
alter the structural entropy, it is natural to ask what is the structural entropy
of amorphous monodisperse systems. One may naively assume that the total
configurational entropy is the sum of the configurational entropy for a monodisperse
system, plus an ideal-gas polydispersity entropy (i.e. random assignment of diameter
to each particle), which can be computed as the entropy of mixing n species ideally,
Smix = ≠ q

n

x

i

ln x

i

, where x

i

is the fraction of particle diameters lie in successive
bins of width d‡. However, the random mixing assumption may not be valid at
high densities, where systems may adopt some correlations between large and small
disks in local arrangements to realize higher packing e�ciency.
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Figure 4.9: (a) Structural entropy per particle and (b) crystallinity ‰ versus packing
fraction „ for hard-disk systems with varying polydispersities �.

To see this, we recall that a 2-color structural entropy can be computed for
binary systems as discussed above, which, compared to its 1-color counterpart,
reveals information about the mixing of large and small particles. As an example,
for „ = 0.77, the 2-color and 1-color entropy per particle are S

Õ
2G = 0.96 and

S

Õ
1G = 0.67, respectively. Hence the di�erence S

Õ
2G ≠ S

Õ
1G is about 0.29, which is

considerably smaller than the entropy of ideal mixing at 1:2 ratio, �Smix ¥ 0.64.
In addition, we find that the value of random 2-color structural entropy, measured
by randomly assigning the color of graph vertices as if particles were ideally mixed,
is about 1.22, which is larger than the actual 2-color entropy. So simple assumption
about the random mixing of small and large disks are not justified.

An alternative approach to circumvent the di�culty of calculating polydispersity
entropy is to directly measure the S

Õ
G as a function of polydispersity for di�erent

densities, and extrapolate it to the monodisperse limit. In Figure 4.9(a), we show
a family of curves of S

Õ
G versus „ for polydispersity 0 Æ � Æ 0.16. For � < 0.12,

an abrupt drop in structural entropy around „ = 0.70 is due to the liquid-solid
transition, which is also signaled by the increase of crystallinity, defined as the
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Figure 4.10: (a) Structural entropy per particle as a function of polydispersity �
for di�erent „. Solid lines are power law fits of form y = ax

1.5 + b for � Ø 0.12
(filled points). (b) Extrapolated S

0
G

Õ for monodisperse disordered systems compared
to measured S

Õ
G for monodisperse and polydisperse systems at equilibrium.

fraction of solid-like particles (shown in Figure 4.9(b)). As an extension from
hard-sphere systems, a disk i is deemed solid-like if it has n

c

Ø 6 neighbors with
local bond order parameter d6(i, j) > 0.9. The structural entropy of crystals
almost vanishes at the highest density, with a small residual entropy mainly from
crystallographic defects. In contrast, for disordered systems with � Ø 0.12, the
structural entropy decreases only moderately as glass transition is approached.

To extrapolate the structural entropy from the high polydispersity region where
crystallization is avoided to the monodisperse limit, we replot the same data of
structural entropy shown in Figure 4.10(a), as a function of polydispersity for
di�erent „. It is evident that as the monodisperse limit is approached, S

Õ
G(�)

decreases smoothly for systems below the freezing density „f, whereas for „ > „f,
it deviates from the high polydispersity trend because of crystallization. We find
that for disordered systems with „ Æ 0.68, SG(�) follows a power law in the whole
� range studied, with exponent – ranging from 1.6 to 1.4. This nonlinearity, or
more specifically, the decreasing slope dS

Õ
G/d� as � æ 0, might result from the

fact that when � is too small compared to a certain threshold �0, the variance of
particle size barely a�ects the Voronoi neighbor relation of the configuration and
thus creates many fewer new graphs. Besides, the slightly decreased – at higher
density also suggests that the geometry of the system becomes more sensitive to the
size di�erence as particles have more contacts, which in turn moves the threshold
�0 toward a lower value.

In practice, we fit S

Õ
G to a power law with a fixed exponent – = 1.5, i.e.,
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Figure 4.11: Structural entropy of disordered states measured using CA method
(red diamonds) are in agreement with those extrapolated from high � data (dashed
line) for two “supercooled” densities: „ = 0.70 (top) and „ = 0.72 (bottom). Inset:
crystallinity for systems sampled by CA method and conventional MD.

S

Õ
G(�) = S

0
G

Õ + k�1.5, for 0.12 Æ � Æ 0.16 and 0.64 Æ „ Æ 0.80. As depicted in
Figure 4.10, the solid fitting curves are in good agreement with measured S

Õ
G for

„ Æ 0.68, and give decent estimates of the actual entropies in the monodisperse limit.
Assuming the fit remains valid for disordered states at „ Ø 0.70, we may take the
parameter S

0
G

Õ as the structural entropy for disordered monodisperse systems. As
presented in Figure 4.10(b)), the extrapolated monodisperse entropy S

0
G

Õ matches
that of actual monodisperse systems below „f, and then instead of decreasing
rapidly due to crystallization, it follows a smooth decay similar to polydisperse
systems. As a result, even though the extrapolated monodisperse entropy is smaller
than the polydisperse one, it exceeds that of a crystal, and is nonvanishing at the
highest density studied.

We can further justify this extrapolation approach by exploiting the crystal-
avoiding method, which samples the metastable states that would otherwise crystal-
lize. Compared to 3D hard spheres, it is more di�cult to bypass crystallization in
2D systems, since nucleation is easier in low dimensions [118]. Also, the crystallinity
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Õ
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G for „ = 0.55 ≠ 0.59 (the last two curves are

overlapping).

of metastable states is somewhat arbitrary, so one can always trade order for
entropy to some extent. With these caveats, we show in Figure 4.11 the measured
structural entropy of marginally “supercooled” metastable states („ = 0.70 and
„ = 0.72) sampled using the CA method. Crystallization is largely suppressed by
the CA method, with ‰ controlled below 6% for „ = 0.70, and 12% for „ = 0.72,
as depicted in the insets of the figure. The agreement between entropy at low
polydispersity obtained using the CA method and the extrapolated entropy is very
encouraging, suggesting the validity of our extrapolation procedure.

4.3.4 Structural Entropy for Hard Spheres

The same structural entropy calculation can be performed for 3D hard spheres.
However, it is more challenging than for hard disks since there are many more
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topologically distinct states. Here we show preliminary results for hard-sphere
systems near the glass transition ranging from „ = 0.55 to „ = 0.60. As expected,
the raw structural entropy soon becomes undersampled as subsystem size n > 15
(see Figure 4.12(a)). We again find a correction curve to estimate the true entropy
value from insu�ciently sampled data for hard-sphere systems. For n Æ 16, we find
a reasonably good linear relation between the corrected SG and n, from the slope
of which we obtain the structural entropy per particle S

Õ
G as displayed in Figure

4.12(b). We have also checked the aging behavior, and make sure that the change
in entropy, even though not completely settled for „ > 0.58, is very small for longer
equilibration times.

Similar to the hard-disk systems, the structural entropy per particle of polydis-
perse hard spheres decreases moderately as glass transition „g ¥ 0.59 is approached,
after which it remains nonzero. Additional extensive simulations are required for
detailed investigation, which is part of future work.

4.4 Conclusion
In this work, we propose a new graph-based approach to study the structure of
glass-forming hard-particle systems. We show that the geometric motifs of local
clusters can be revealed by classifying the corresponding Voronoi networks based on
graph isomorphism. A wide spectrum of di�erent cluster structures for amorphous
hard-sphere systems are identified, including icosahedron-like and decahedron-like
clusters. This suggests that complex structural information in real space is e�ectively
encoded in the Voronoi network. By extensively enumerating topologically distinct
graphs of subsystems with varying number of particles, we obtain the graph entropy
per particle for polydisperse hard-disk systems. We also estimate the structural
entropy per particle of disordered systems in the monodisperse limit, by fitting the
entropy in the high polydispersity regime (where crystallization is fully suppressed)
as a function of polydispersity to a power law. A good agreement is found between
the extrapolated entropy and those measured using our crystal-avoiding method
for selected densities. Furthermore, the structural entropy is found to be close to
the conventional configurational entropy for a model binary mixture near glass
transition. Finally, we apply the graph method to obtain the structural entropy of
polydisperse hard-sphere systems. As for hard-disk systems, we find the structural
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entropy per particle stops decreasing near glass transition, and exhibits a nonzero
value. This indicates an exponential number of topologically distinct structures exist
near glass transition in which a nonergodic system can be trapped. Whether this is
also true for systems cooled infinitely slowly without crystallization— which would
contradict the assumption that the configurational entropy vanishes for an ideal
glass [69,82,150]— remains an intriguing possibility. (assuming that metastable
states in free energy landscape are well represented by inherent structures, though
this idea has been questioned [37,38,75]). Our graph-based method can be extended
to systems with soft potentials or under confinement, as well as network glasses
such as amorphous silica, which will be interesting for future studies.
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Chapter 5 |
Static Lengths in Dense Hard
Spheres Revealed by Pinning

In this chapter, we explore the static correlation lengths in glass-forming hard-
sphere liquids revealed by the response of dynamical properties (di�usion coe�cient
D and – relaxation time ·

–

) to a regular array of pinned particles. By assuming a
universal scaling form, we find data can be excellently collapsed onto a master curve,
from which relative length scales can be extracted. By exploiting a crystal-avoiding
simulation method that suppresses crystallization while preserving dynamics, we
can study monodisperse as well as polydisperse systems. The static length obtained
from dynamical property Q (·

–

and D) scales as log Q ≥ ›

Â

s , with Â ¥ 1.

5.1 Introduction
The origin of sluggish motions in supercooled liquids is still a matter of debate.
Under the general view of cooperative motion in glass-forming liquids, growing
(or diverging) relaxation times should be associated with one or more growing (or
diverging) length scales.

On the one hand, a dynamic correlation length, characterizing the growth
of spatially heterogeneous dynamics as temperature decreases, can be extracted
from multipoint space-time correlation functions [11,25]. This correlation length
depends on the delay time, and reaches its peak value near the alpha relaxation
time ·

–

. However, although the relaxation time and dynamic length both grow
as the temperature decreases, it has been suggested they might not be directly
related [30]. The question remains unsettled, whether dynamic heterogeneity is the
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origin or only a consequence of glassy dynamics.
On the other hand, many e�orts have been made to identify a “hidden” static

length responsible for the slow dynamics. Since it is di�cult to identify any
amorphous order parameter from the apparently unchanged structure during glass
formation, static lengths are often computed either from spatial correlations of
some a priori local order, such as icosahedrons [52], polytetrahedrons [151] or
medium-range crystalline order [53], or by an “order-agnostic” approach, including
the point-to-set (PTS) technique [66] and excess plastic modes analysis [152]. It is
unclear whether static lengths estimated by di�erent approaches agree with each
other.

One of the most studied static lengths is the PTS length ›ps. A general
procedure [66,153–155] of obtaining ›ps, motivated by random first-order transition
(RFOT) theory, is as follows. All particles in an equilibrated system outside of
a spherical region of radius R are frozen, while the inner particles are allowed to
relax in the presence of the frozen boundary. The RFOT theory predicts that for
R ∫ ›ps, the subsystem inside the cavity should decorrelate from its initial state in
favor of configurational entropy; whereas for R π ›ps, the subsystem is trapped
into the initial state due to the cost of surface tension (mismatch on the boundary).
To measure whether the subsystem of radius R can eventually switch to a di�erent
state, the long time limit of an global overlap function QŒ(R) is introduced. The
PTS length is defined as the radius for which QŒ(›ps) falls below some small value.

Although defined by static overlap, the PTS length might be generally regarded
as the characteristic length over which the boundary conditions imposed by pinning
particles a�ect nearby particles. This interpretation suggests that we can reveal
the static length from the response of some dynamic property (such as the particle
self-di�usion coe�cient) to an imposed pinning field.

In several recent works, the e�ect of pinned particles on structural relaxation has
been studied in systems with soft potentials [156–159]. To extract the correlation
length, these authors have made di�erent theoretically motivated assumptions
for how the structural relaxation time ·

–

depends on pinning strength, such as
·

–

≥ exp(Ac) with c the pinning concentration [156,158] or ln ·

–

≥ exp(Bz) with
z the distance from the wall [157, 159]. To distinguish from the “static” length
extracted from overlap, the length obtained from relaxation time has been called
“dynamic” in Ref. [157, 159]. In the present work, we refer such a length as “static”
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to emphasize its time-independent nature.
In this work, we use molecular dynamics (MD) simulation of monodisperse

hard-sphere systems to learn how dynamical properties change as the pinning length
scale varies, and extract static correlation lengths from scaling analysis without
assuming a specific functional form. Two typical dynamical properties are examined
in this work, namely the di�usion coe�cient D and alpha relaxation time ·

–

.

5.2 Method
The hard-sphere fluid is the simplest system that exhibits a glass transition, at a
volume fraction „g ¥ 0.59 [91,160]. In experiments on colloidal hard-sphere suspen-
sions, particles can be pinned using optical tweezers [161]. To avoid crystallization
above the freezing point „f ¥ 0.495, a moderate polydispersity in particle size s

is usually introduced. However, polydispersity does alter the dynamics, especially
in the vicinity of glass transition. For polydisperse hard spheres at high „, small
particles may remain di�usive while large ones are almost arrested, so that the
ideal monodisperse glass transition is smeared out [94].

To avoid this artifact, we exploit a crystal-avoiding (CA) hybrid Monte Carlo
method that suppresses crystallization in monodisperse hard spheres while pre-
serving the dynamics [138]. Although pinning some particles tends to frustrate
crystallization, we find that the monodisperse hard-sphere system still crystallizes
readily at low pinning concentrations (see Appendix B for details). To prevent
crystallization and to be consistent across di�erent pinning fractions, we employ
the CA method for all simulations reported here.

5.3 Results

5.3.1 Dynamics of Unperturbed Systems

We consider hard-sphere systems of N = 2000 particles for „ ranging from 0.53
to 0.58. For each „, initial configurations are generated using the Lubachevsky-
Stillinger algorithm and then equilibrated. For unpinned monodisperse systems,
we calculate the self-di�usion coe�cient D (extracted from the long-time limit of
mean square displacement (MSD)) and alpha relaxation time ·

–

(defined as the
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Figure 5.1: Self-di�usion coe�cient D and alpha relaxation time ·

–

as a function
of „ for monodisperse and polydisperse system (s = 0.08). Dashed and solid lines
are MCT fits. Inset: aging of di�usion coe�cient D at „ = 0.59 as a function of
equilibration time ·e .

time at which the intermediate incoherent scattering function Fs(q, ·

–

) equals 1/e,
with q = 6.5 near the first peak in S(q)), and compare to results for polydisperse
systems (see Fig. 5.1).

The dramatic increases in both 1/D and ·

–

are well described by a power-law
divergence,

1/D or ·

–

≥ („c ≠ „)≠“

, (5.1)

inspired by mode-coupling theory (MCT). We find for monodisperse systems,
„

c

= 0.586 ± 0.003, “ = 2.5 ± 0.5 for 1/D and „

c

= 0.584 ± 0.002, “ = 2.6 ± 0.4
for ·

–

. For our polydisperse system (s = 0.08), we have „

c

= 0.586 ± 0.001,
“ = 2.2 ± 0.1 for 1/D and „

c

= 0.584 ± 0.001, “ = 2.4 ± 0.2 for ·

–

. Although the
MCT calculation for hard-sphere systems using the Percus-Yevick approximation
gives a much smaller „c,MCT ¥ 0.52 [162], „c obtained here agrees well with the
experimental glass transition in colloidal suspensions, „g ¥ 0.59. [91, 160]

Alternatively, the data can be equally well fit by an exponential form

1/D or ·

–

≥ exp [A/(„0 ≠ „)] . (5.2)

with „0 = 0.605 ± 0.006 for 1/D and „0 = 0.599 ± 0.002 for ·

–

for the monodisperse
system, and „0 = 0.604 ± 0.002 for 1/D and „0 = 0.599 ± 0.001 for ·

–

for our
polydisperse system. Although the dynamics appears barely altered by small poly-
dispersity when the system is far from glass transition, strong aging is observed at
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Figure 5.2: Confining length dependence of di�usivity for monodisperse and poly-
disperse systems (at „ = 0.56), for periodic array and random pinning.

„ = 0.59 in monodisperse systems (Fig. 5.1 inset); in contrast, aging in polydisperse
systems at „ = 0.59 is much less pronounced, because of the decoupling of dynamics
of small and large particles [94]. As we shall see below, the glass transition can
also be induced by pinning particles even at „ π „g, hence polydispersity should
be expected to a�ect dynamics under pinning whenever the system becomes glassy.
Indeed, we observe a weaker pinning e�ect on dynamics for polydisperse systems
(see Fig. 5.2).

5.3.2 Pinning Induced Glass Transition

While random pinning has been proposed as the best candidate for studying static
correlation [67], we focus here on periodic array pinning, in which particles nearest
to the corresponding nodes of a m ◊ m ◊ m grid are pinned, so that the pinning
fraction is c = m

3
/N . The confining length ¸c is then defined as ¸c = L/m, with L

the system size. In this way, ¸c is una�ected by variations that may arise by random
pinning, as a result of fluctuations in the locations of pinned particles. Array
pinning also avoids spatial heterogeneity induced by randomly pinned particles,
that may mimic intrinsic dynamical heterogeneity. Some modified random pinning
schemes [163,164] have been used for similar purposes.

Fig. 5.2 compares the e�ect of pinning on di�usivity for monodisperse and
polydisperse systems with array and random pinning at „ = 0.56, as an example.
It is evident that fluctuations in both particle sizes (polydispersity) and pinned
particle positions (random pinning) diminish the liquid-glass transition.
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Figure 5.3: Pinning e�ect on mean-squared displacement È�r
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scattering function F
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(q0, t) for monodisperse systems at „ = 0.53 and „ = 0.57.
The confining length ¸c ranges from infinity down to 1.39‡ for „ = 0.53, and from
infinity down to 2.04‡ for „ = 0.57. Dashed lines are fits described in main text.

To expose a static length using pinning, an array of particles are frozen in an
equilibrated configuration, while the remaining unpinned particles are allowed to
move. For each „, we vary the number of pinned particles m

3 from zero up to
the value at which the system is essentially frozen during the simulation. The
confining length is related to m as ¸c =

1
fiN

6„

21/3
/m. For each „ and m, MSD and

F

s

(q0, t) are averaged over five independent initial configurations and at least five
realizations of array pinning. (Since the center of mass of unpinned particles can
di�use due to collisions with pinned particles, all particle positions are calculated
with respect to the mean position of the unpinned particles.)

Fig. 5.3 illustrates the pinning e�ect on MSD and F

s

(t) for „ = 0.53 and
„ = 0.57. The array of pinned particles evidently hinder the motions of unpinned
particles— the growth of È�r

2(t)Í and decay of F

s

(t) become slower with increasing
m or decreasing ¸c. Moreover, the pinning e�ect is more pronounced in the more
dense system— a smaller value of m is su�cient to freeze the system— consistent
with an increasing static length scale. In other words, the glass transition can also
be induced by pinning particles in a dense liquid with „ < „g or T > Tg, which
opens a new way to study the glass transition [165].
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Figure 5.4: Normalized di�usion coe�cient D(¸c, „)/D(Œ, „) and – relaxation
time ·

–

(¸c, „)/·

–

(Œ, „), for di�erent „ and confining length ¸c. Raw data with
error bars (one standard error) are in gray. Dashed lines are guides for the eye.

At high pinning concentration, our simulation time is unavoidably limited
compared to the slow relaxation time. Nonetheless, we can estimate the di�usion
coe�cient D from the slope of a linear plot of MSD versus time assuming the
di�usive region has been reached. Likewise, we can obtain the the alpha relaxation
time ·

–

as the time such that F

s

(q0, ·

–

) = 1/e with the final decay fit to a stretched
exponential. Since the configuration of unpinned particles is automatically in
equilibrium after pinning [163, 166], the measured MSD and F

s

(q0, t) are correct
equilibrium values, i.e., they do not show aging; and the accuracy of estimated D

and ·

–

is only limited by the simulation time. In fact, our values for D and ·

–

are
reasonably robust, in that we find since no significant change in our results when
we use longer runs at selected state points.

5.3.3 Correlation Lengths From Dynamical Scaling

Having obtained D and ·

–

for an array of values for „ and confining length ¸c, we
can extract static correlation lengths ›

s

from a dynamic scaling assumption. For
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¸c ∫ ›s, unpinned particles can barely “feel” the presence of pinned particles, and
dynamic properties are governed by the static correlation length ›s. As ¸c decreases
and becomes comparable to ›s, the dynamics crosses over from being governed by
›s to ¸c.

Assuming this crossover behavior depends only on the ratio of characteristic
lengths ¸c/›s, a given dynamic property Q at di�erent „ and ¸c can be described
by a scaling form

Q(¸c; „)
Q(Œ; „) = f

A
¸c

›s(„)

B

, (5.3)

in which Q is either 1/D or ·

–

, and f(x) is a dimensionless scaling function. A master
curve can be constructed by horizontally shifting the curves of Q(¸c; „)/Q(Œ; „)
plotted versus log ¸c. Up to an overall prefactor, the static length ›s(„) for each „

can be determined from the corresponding shift factor.
To construct the master curve without knowing the form of f(x), we define the

“smoothness” of a given set of n points as the arc length of its basis spline curve. A
better collapse of our data (Fig. 5.4) with fewer twists and turns result in a smaller
basis spline arc length. The master curve is obtained by horizontally shifting raw
data points and numerically minimizing the arc length with respect to the shift
factors („0 = 0.53 is chosen as reference and left unshifted).

As shown in Fig. 5.4, normalized data for both D and ·

–

collapse onto smooth
master curves that span nearly four decades for di�usion coe�cients and six decades
for – relaxation time, confirming our scaling assumption (Eq. 5.3). An analogous
data collapse ·

–

versus system size N

1/3 has been previously reported in systems
without pinning, using the static length obtained from the minimum eigenvalue of
the Hessian matrix [167]. However, because of the rather weak dependence of ·

–

on
system size, the range of · spans less than one decade. We find that the di�usion
coe�cient and relaxation time become decoupled as the pinning concentration
increases, consistent with recent reports [168]. Despite this behavior (related to
the breakdown of the Stokes-Einstein relation, see below), we find that the scaling
form Eq. 5.3 describes both the di�usion coe�cients and relaxation times very well
(see Fig. 5.4).

Based on RFOT theory and renormalization group method, Ref. [169] predicts
·

–

with random pinning scales as log · ≥ 1/(cK ≠ c) for high T > TK, where c

is the pinning concentration and cK the “Kauzmann” concentration at which the
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Figure 5.5: (a) Static lengths obtained from master curve construction of di�usion
coe�cient (triangles) and alpha relaxation time (diamonds) as a function of „;
dashed lines are power law fits. Also included are “Kauzmann” critical lengths
(disks) extracted from fitting inspired by AG theory. (b) D and ·
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versus the static
length ›s obtained from the corresponding quantity, with ›

ú
s at „ = 0.53 used as

reference.

configurational entropy Sc vanishes. If we fit the raw data for ·

–

at di�erent „ to
this form and extract the static length as ›s ≥ 1/c

3
K, the results are very close to

those from our master curve construction (see Fig. 5.5). However, it is di�cult
to obtain robust values for ›s by this procedure, since the fitting parameters are
so sensitive that we must exclude certain data at high pinning fractions to get
reasonable values. In contrast, the master curve covers a wider range of data and
is more robust.

As can be seen in Fig. 5.5(a), the static length ›s grows mildly by a factor of two
or so over the range of „ accessible to our simulations, comparable with previous
observations in a wide variety of systems [27, 154, 170,171]. Our results can be well
fit by a power law,

›s ≥ („s ≠ „)≠‹

, (5.4)

yielding „s = 0.593 ± 0.001, ‹ = 0.32 ± 0.01 for D; and „s = 0.589 ± 0.001,
‹ = 0.34 ± 0.01 for ·

–

. Although the values for „s are slightly larger than our
results for „c obtained from fitting the divergences in D and ·

–

, they agree within
statistical error. To see the relation between the static length and dynamics, we
plot 1/D and ·

–

versus ›

s

in Fig. 5.5 (b). The results can be fit either by a
power-law form, Q ≥ ›

z

s , or by an activated scaling behavior, log Q ≥ k›

Â

s , yielding
z = 10.6 ± 0.6, Â = 1.2 ± 0.3 for 1/D and z = 10.5 ± 0.7, Â = 1.2 ± 0.2 for ·

–

.
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Figure 5.6: Comparison of static lengths obtained from scaling and master curves,
and PTS lengths from configurational overlap. Static lengths are normalized by
their values at „ = 0.52.

Within the RFOT theory, scaling relations of the form log ·

–

≥ ›

Â

s and ›s ≥
(1/Sc)1/(d≠◊) are expected, where Sc is the configurational entropy and d is the space
dimension. While Â ¥ 1 is generally quoted which agrees with our result, the value
of exponent ◊ is controversial, varying from 0.3 to 2.3. [16, 70, 83]. Nevertheless,
by assuming the Kauzmann volume fraction „K ≥ „

s

and Sc ≥ („K ≠ „)—, with
— = 0.30 ± 0.04 approximated from a law-power fit of the Sc(„) data in Ref. [33]
(which also gives „(Sc = 0) ¥ 0.587 ≥ „s), we estimate ◊ ¥ 2.1 for hard-sphere
systems.

We note that the ›

s

obtained from D grows more slowly than the length obtained
from ·

–

, suggestive of the decoupling of 1/D and ·

–

with increasing „ (see Fig.
5.1), signaling the breakdown of the Stokes-Einstein relation. Since this breakdown
can be qualitatively understood as the consequence of dynamic heterogeneity— D

is dominated by the mobile particles while ·

–

results from the immobile ones—
the di�erence between ›s from D and ›s from ·

–

may also arise from di�erently
weighted averages of a spectrum of static lengths present in the system [66]. Despite
the growing discrepancy between 1/D and ·

–

and their corresponding ›s, the
proportionality constants k in the relations log 1/D ≥ k›s and log ·

–

≥ k›s are
nearly identical (assuming the two static length scales coincide at low „).

We have also applied our methods to bidisperse particles, and compare the
static lengths obtained from our scaling and master curves to PTS lengths obtained
from configurational overlap. Following Ref. [27], we randomly pinned an equimolar
binary mixture of N=2000 particles with a diameter ratio 6:5. We perform standard
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event-driven MD for „=0.52,0.55,0.56,0.57 and 0.58 and check that the pressures and
di�usion coe�cients are consistent with those reported in Ref. [27]. The resulting
static lengths is shown in Fig. 5.6 as a function of „, which agree reasonably well
with the PTS lengths previously reported. [27]

5.4 Conclusion
To conclude, we present a simple way of extracting static lengths based on the
response of dynamic properties to an external pinning field. By exploiting a
recently developed crystal-avoiding method, we simulate the monodisperse hard-
sphere metastable fluids and calculate D and ·

–

in the presence of a periodic array
of frozen particles. We find a universal scaling description of dynamic crossover
as a function of confining length ¸c over the range of „ studied. A master curve is
constructed by optimizing its “smoothness”, from which we extract static lengths ›s

for both D and ·

–

, which grow moderately with increasing „ as the dynamics slows
dramatically. The two ›s obtained for D and ·

–

decouple at higher „, suggesting a
distribution of static lengths in di�erent regions of the system. Scaling relations
between dynamical quantities and the static lengths of the form ·

–

≥ exp(k›

Â

s )
and ›s ≥ („s ≠ „)1/(d≠◊) with Â ¥ 1 and ◊ ¥ 2 are consistent with RFOT, but
investigations at higher „ are needed for more precise values. It would be interesting
to apply our method to systems with soft potentials, and compare the results to
static lengths obtained by other methods.
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Chapter 6 |
Suppression of Tg in Polymer
Thin Films

Suppression of the glass transition temperature Tg in polymer thin films is of great
practical importance and theoretical significance. It is widely believed that such
Tg suppression results from enhanced segmental mobility at the free surface. To
investigate these e�ects, we carry out united-atom molecular dynamics simulations
on free-standing polystyrene thin films. Care has been taken to ensure consistent
behavior between thin films and the bulk. The dilatometric Tg inferred from the
density versus temperature shows substantial reduction in thin films compared to
the bulk even at high cooling rates. Furthermore, we find that dynamical Tg shifts,
obtained by collapsing temperature-dependent short-time dynamical properties
onto a master curve, vary with film thickness just like the dilatometric Tg. We
apply the same data collapse procedure to dynamics of segments within a given
distance from the free surface to obtain the local Tg(z), which reveals a mobile
surface layer of about 4 nm larger than the Kuhn length (≥ 1 nm).

6.1 Introduction
While the of the nature of the glass and the glass transition in bulk materials
remains a subject of intense debate, nano-confinement e�ects on glass-forming
polymer thin films have attracted a great deal of interest in recent years. This
interest is largely driven by the importance of glassy thin films in engineering
applications ranging from protective coatings to organic photovoltaics, as well as
fundamental questions of glassy dynamics such as the origin of non-Arrhenius
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relaxation behavior, cooperative rearrangements, and dynamical heterogeneity.
Since the first observation of the confinement e�ect on glass transition tempera-

ture Tg in supported polystyrene thin films by Keddie et al, a variety of experiments
have shown considerable deviation of Tg in polymer films from the bulk value, when
the film thickness is below some tens of nanometers. While the average Tg for
supported thin films has been reported either increasing, decreasing or unchanged
compared to the bulk depending on polymer chemistry, polymer-substrate inter-
action and sample preparation [172], there is a general consensus that Tg is lower
in free-standing films. This behavior is attributed to a highly mobile layer near
the free surface. (One exception is for star-polystyrene thin films, for which the
Tg of free surface layer is slightly higher than the bulk probably because of higher
packing densities of short-arm star-shaped molecules at the interface [173].)

Another important experimental finding is that the Tg reduction in thin films de-
pends strongly on the cooling rate. Based on ellipsometric measurements, Fakhraai
and Forrest showed that for a 6 nm-thick polystyrene film supported by Pt coated
SiN substrate, no appreciable suppression of Tg can be observed for cooling rates
larger than 90K/min (or 0.6 Hz) [174]. Their results appear to clarify some con-
tradictions in the literature, such that thickness dependence of thin film Tg is
weak or even absent in calorimetric measurements with fast cooling rates [175], or
dielectric spectroscopy measurements at high frequency [172,176]. Similar cooling
rate dependence of thin film Tg have been observed in DSC measurements [177].
Investigations of dynamics near free surfaces also indicate that enhanced mobility
is only observable at very long time scales or low frequencies [178].

In contrast to the extensive experimental literature, there are rather few atom-
istic MD simulations of the glass transition in polymer thin films, because it is
computationally expensive to simulate systems with slow dynamics. Since the
longest time accessible in MD simulations (≥1 µs) is orders of magnitude smaller
than in experiments, one would expect no thickness-dependence of Tg according
to Fakhraai and Forrest. Indeed, recent atomistic simulations on supported PS
films [179] with a cooling rate of 10K/ns find the average Tg determined from the
temperature dependence of density is almost identical to the bulk value for films as
thin as 2 nm.

On the other hand, enhanced mobility near a free surface is a common feature in
coarse-grained simulations [180–183], atomistic MD simulations [179,184,185] and
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lattice models [186] of thin films with a free surface. Results from these simulations
often predict appreciable suppression of average or local Tg, by extrapolating the
segmental relaxation time to experimental time scale (e.g., 100 s) using VFT-like
equations. It is unclear whether the disagreements in measured and simulated
Tg reduction arise from probing di�erent relaxation processes (such as dipole
moment relaxation, segmental mobility and density fluctuations) that are coupled
with di�erent characteristic time scales, since the robust correlation for bulk
systems between Tg and many dynamical processes may no longer hold for thin
films [178,187].

In addition to the slow – relaxation, which is thought to involve collective
motions by more than one particle, supercooled liquids also exhibit a short-time —

relaxation process, which is thought to be related to motions of particles within
their cages formed by neighboring particles, and often manifests as the plateau in
the time-dependent mean-square displacement. From experimental observations
that Tg reduction in thin films is not appreciable at short time scales, one may
expect the e�ect of a free surface on the — relaxation will be weak or even absent.
However, contradictory and somewhat confusing results have been reported.

For example, measurements of structural relaxation in supported PMMA films
[188] suggest that the free surface e�ect on the structural relaxation rate, which
is possibly related to the — relaxation process, is stronger than on the local Tg

associated with – relaxation. Moreover, simulations of freestanding PS film show
that while the average — relaxation rate (based on orientational relaxation time of
phenyl bonds) is the same for films and the bulk, the — process is faster in the center
of the film than near the free surface, as opposed to the – relaxation [185]. From
these recent works, the response of – and — relaxation processes to free surfaces,
and the implications for Tg reduction, remains unclear.

In this work, we perform united-atom molecular dynamics simulations on free-
standing polystyrene films and investigate the e�ects of a free surface on thin film
Tg, inferred from a variety of film-average and local properties. The dilatometric
Tg inferred from film density versus temperature shows a noticeable thickness
dependence, with a reduction of about 35 K for a 6 nm thick film— in contrast
to the expectation from experiment of no Tg reduction at high cooling rates. For
the same cooling rates, we also obtain Tg values by collapsing the temperature
dependence of short-time dynamical properties for di�erent films and bulk onto a
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master curve. The Tg values obtained this way are generally consistent with the
dilatometric Tg.

We also extract the local Tg from relaxation of monomers and chains at a
given distance from the free surface, using a similar master curve approach. A
mobile surface layer of about 4 nm with lower Tg is observed, which agrees with
the thickness of the mobile surface layer inferred from long-time relaxation in our
simulations, as well as some experimental measurements [189, 190]. Our results
suggest that while Tg is most commonly associated with the relatively slow dynamics
of – relaxation, suppression of Tg in thin films can also be revealed by short-time
dynamics.

6.2 Methods
We perform molecular dynamics simulations on a united-atom model of atactic
polystyrene, with each chain consisting of 10 monomers (Mw = 1040 g/mol). These
chains are quite short compared to most experimental systems. We use short
chains to keep the simulation time manageable. We have checked for chain length
dependence by simulating 20-mer systems for a few selected film thicknesses; we find
results consistent with our 10-mer simulations. Each thin film system contains 384,
300, 192, 140, 110 or 80 chains, corresponding to a film thickness of approximately
28 nm, 22 nm, 14 nm, 10 nm, 8 nm or 6 nm at 500 K with box area fixed to 5 ◊5
nm2. The atactic chains are constructed by duplicating a single isotactic chain,
turning o� the improper dihedral potential that stabilizes the tetrahedral backbone
carbon and equilibrating at high temperatures to randomize the tacticity, and then
restoring the dihedral potential. Periodic boundary conditions are applied only
in the x and y directions for free-standing films. Bulk systems consisting of 192
chains are also prepared with full periodic boundary conditions in all directions.
To improve statistics, results are averaged over 5 to 20 independent runs depending
on system size.

Thin film systems are equilibrated in the NVT ensemble at 500K until monomers
have di�used farther than the average end-to-end distance, and then quenched
from 500K to 200 K at a cooling rate of 5 K/ns. Bulk systems are equilibrated
and quenched in the same way, except that the semi-isotropic NPT ensemble is
used, with varying system dimension and zero pressure in the z direction only. The

86



bulk system dimensions are fixed in x and y for consistency with the thin films,
for which fixed x and y dimensions are necessary to keep the free surface from
shrinking in response to surface tension. [173] Compared to cooling results from full
3d NPT simulations, we find the bulk densities are identical in the melt region; in
the glassy state, the density is slightly higher in 3d NPT systems, since the system
can contract laterally in response to the tensile stress caused by cooling, which the
system with fixed transverse dimensions cannot do.

All simulations are carried out using the GROMACS package [191] with inte-
gration time step of 2 fs. Stochastic velocity rescaling thermostat (·t = 0.2 ps)
and the Berendsen barostat (·p = 0.5 ps) are chosen for NVT and NPT ensembles.
The united-atom force field we use for PS is adapted from the TraPPE-UA model,
which has been shown to produce polymeric properties in good agreement with
experimental values for simple polymer systems (e.g., PE [192] and iPP [193]).

However, it is found that for PS the UA model predicts a much faster dynamics
(≥ 40 times larger) compared to all-atom (AA) PS model [194], probably because of
a relatively weak dihedral potential along the aliphatic backbone in the presence of
phenyl ring [195]. To remedy this, we reparameterize the dihedral potential along
the aliphatic backbone, as well as the improper dihedral used to maintain the sp3

stereochemical configuration of the CH group, to match the corresponding dihedral
distributions obtained from the AA model, using the standard Boltzmann inversion
method (see Appendix C for the modified force field). The resulting modified UA
PS model leads to about 10 times faster di�usivity than the AA model for all
temperatures— which is fortunate, since the AA model dynamics is about 4.6 times
slower than experiments [196].

In addition, the modified UA force field gives a slightly smaller bulk density
than the original TraPPE UA model, only about 4% higher than the experimental
values for PS with Mw ≥ 910 g/mol at 0 MPa between 400 K and 500 K. This good
agreement for the density contrasts with the relatively large deviations given by the
AA model (density 7% too high), as well as another widely used UA model (18% too
high) proposed by Lyulin et al [197,198]. As a result, we do not need to boost the
external pressure to match the experimental density as in previous works, [179,197]
which anyway is not possible for simulating films exposed to vacuum.

Usually, simulations use cuto� LJ interactions, and apply standard “dispersion
corrections” to add back the average attractive energy of distant monomers. These
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corrections contribute to the cohesive energy, and increase the density at a given
pressure. (We included the standard dispersion correction for the benchmarking
bulk simulations discussed above.) This approach works well for homogeneous 3d
periodic systems. However, for systems with interfaces, computing these corrections
is more involved. One must consider the actual configuration during the MD run
and use some special treatments [199, 200]. Unfortunately, this nonuniform long
range correction is not currently implemented in the GROMACS package.

To make a consistent comparison between the bulk and thin films, we turn
o� the dispersion correction and use a rather large cuto� distance of 1.8 nm for
both bulk systems and thin films. While the bulk density without the long-range
correction decreases by less than 1%, a consistent density value is now reached in
the center of the film for all film thickness studied. We note that the density match
is crucial for a proper comparison of dynamics between thin films and the bulk. For
example, in a recent atomistic simulation study of supported PS films [184], the
segmental dynamics of the middle layers of a rather thick film (14 nm) is noticeably
faster than the corresponding bulk system. In contrast, we find in our simulations
with the dispersion correction turned o� that the segmental relaxation time of the
middle layer in a 14 nm film is the same as the bulk.

Another issue we have encountered is that a free-standing film tends to develop
spurious shear modes along the z direction, which are more pronounced in thick
films near the free surfaces. This is probably due to the lack of su�cient friction
in the xy plane, as the transverse area is anomalously small compared to the
film thickness to keep the overall system volume manageable (see Appendix C for
details). A closer examination reveals that particles in each layer tend to “drift”
together, with their center of mass moving like a random walk. This shear-like
motion cannot be corrected by removal of the center of mass motion of the entire
system. To minimize this finite-size e�ect without increasing the box area, we
subtract the lateral center of mass motion in each layer before analyzing the local
dynamics.

For bulk systems, this shear-like motion is largely inhibited by the full periodic
boundary conditions in a cubical box. However, small fluctuations of the center
of mass do exist in each layer, which scales approximately with the number of
particles in the layer N as

Ô
N . To make a consistent comparison between thin

films and bulk systems, we apply the same corrections to bulk samples as for thin
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films. In practice, we divide the system into a number of layers of thickness about
0.7 nm, which is thin enough to subtract the average shear-like motion in each
layer while still thick enough to containing plenty of particles for good statistics.
We note that this artifact does not a�ect the measurement of translation-invariant
properties, such as bond rotational dynamics.

6.3 Results

6.3.1 Tg From Temperature Dependence of Density

One way the glass transition reveals itself is a relatively sharp decrease in the
thermal expansivity as the system solidifies. To observe this in simulation, we begin
by obtaining the average density of a thin film, evaluated between two polymer-
vacuum interfaces. To locate the interfaces, we fit the film density profile to an
error function,

fl(z) = flb/2 (1 + erf ((z ≠ z0)/‡)) (6.1)

where z0 is the position of an interface, flb is the plateau density well inside the
film, and ‡ characterizes the interfacial width. This expression well describes the
density profiles, as shown in Figure 6.1 for selected film thicknesses equilibrated at
500 K. The width of the interface is about 1 nm, which is expected to decrease at
lower temperature.

We obtain the average density fl by averaging the density profile between the
two free surfaces, defined by the inflection points of the profile (dashed lines in
Figure 6.1). Also shown in Figure 6.1 is the bulk density at 500 K, which agrees
with the plateau density flb of thin films. (This agreement depends on turning o�
the long-range corrections in the bulk simulations, as discussed above.)

It is also interesting to define an interior density fl0 that characterizes the middle
region of the film. Naively, fl0 should be the same as the plateau density fl

p

from
the fit. However, the error function profile may not fit well for non-equilibrium
systems, as a result of faster aging near the free surface versus the middle of the
film [201]. To avoid this potential problem, we define the interior density fl0 as the
average over the middle region in the thin film 1.5 nm away from each free surface,
which is expected to give the bulk density for systems in equilibrium, given that
the width of free surface is about 1 nm.
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Figure 6.1: Snapshots of the bulk and thin films with selected thicknesses at 500 K
(top) and the corresponding density profiles as a function of z position (bottom).
Solid curves are fits Eq. 6.1). Film thickness h is defined as the distance between
two free surfaces indicated by dashed lines (inflection point of density profile).

We perform the density calculation for each configuration collected every 40 ps
during the cooling procedure. As shown in Figure 6.2(a), the average density for
thin films is smaller than the bulk, and decreases with decreasing film thickness.
This is simply a result of the contribution of the less-dense interfacial region, which
is a larger fraction of a thinner film.

In contrast, the interior densities are essentially the same for all films and
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Figure 6.2: (a) Average density fl and (b) interior density fl0 as a function of
temperature for di�erent systems. The solid are nonlinear fits to Eq. (6.2).

the bulk in the liquid regime (T > 400 K) above the glass transition. In the
glassy regime, the interior density of the thickest film is very close the the bulk,
but increases systematically with decreasing film thickness (see Figure 6.2(b)). It
appears that the interior of a thin film ages faster and thus becomes more dense,
because of the nearby free surface. This observation suggests non-local e�ects of
the free surface on dynamics that extends more than 1.5 nm into the interior.

In principle, we could probe the dynamical length scale over which the free
surface accelerates aging within the film, by the depth to which the non-equilibrium
local density is perturbed by the free surface. However, large spatial fluctuations
and insu�cient sampling of local density at low temperatures make accurate
measurement during the cooling process di�cult. Instead, we investigate the length
scale of enhanced dynamics directly from short-time local dynamical properties, as
discussed in the following section.

We determine the Tg values of thin films and the bulk by fitting the density
versus temperature to a function that smoothly transitions from a constant thermal
expansivity in the glass to a higher value in the liquid. We use the following
empirical form [202],

fl(T ) = w

3
M ≠ G

2

4
ln

C

cosh
3

T ≠ Tg

w

4 D

+ (T ≠ Tg)
3

M + G

2

4
+ c (6.2)

where w is the width of the transition, M and G are the slopes of melt and glass
regions, and c is the density at Tg. If we fit the data with w as free parameter, its
value ranges from 40 to 100 K for di�erent films. This is a much broader glass
transition than seen in experiments, where w ranges from 2 to 5 K. [202,203] This

91



increased transition width may be due to smaller fragility at the relatively high Tg

probed in simulations with high cooling rate. In practice, we find that fixing the
transition width w = 80 K yields good fitting results for thin films and the bulk, as
shown in Figure 6.2.

We emphasize that the Tg value is rather sensitive to the temperature range over
which the fit is performed. It is important to ensure that fully developed glassy and
melt regions are included in the fit. For example, fitting only the data from 300 K
to 500 K for the thinnest films, where the system still remains partially liquid-like,
would lead to a narrower transition, larger glassy thermal expansivity and hence
higher Tg value. Moreover, in the that temperature range, di�erent choices of w

may vary Tg considerably without significantly changing the fit quality. With these
caveats in mind, we can obtain the thickness dependence of Tg from the density
versus temperature in simulations, in the same way as for typical dilatometric
measurements.

Figure 6.3 shows dilatometric Tg values obtained as a function of film thickness,
from analyzing both the average density and the interior density of the films. We
find the dilatometric Tg from average density decreases substantially with decreasing
film thickness, varying roughly as �Tg ≥ 1/h. This 1/h dependence reflects the
decreasing contribution to the average density of a mobile surface layer with low Tg

and roughly fixed thickness, to an increasingly thick film with essentially bulk-like
properties.

In contrast, the Tg reduction of the interior region is weaker than that of the
whole film, and only substantially reduced for thinner films, because the outermost
1.5 nm of material has been eliminated from the average. Evidently some near-
surface material deeper than 1.5 nm is still more mobile, with a lower Tg than the
bulk value, so that the dilatometric Tg from the interior density still shows a modest
decrease for the thinnest films. Qualitatively, this behavior is consistent with the
relatively weak thickness dependence of the interior density versus temperature of
Figure 6.2(b). By eliminating more surface material, e.g., the outermost 3.0 nm
from each free surface, we find the Tg of the middle layer becomes essentially the
same as the bulk Tg within the error bars, independent of the film thickness (no
middle layer for the 6-nm film), as shown in Figure 6.3.

In short, we observe a dilatometric Tg reduction of about 20 K and 36 K,
respectively, for the interior region and the whole film of 6 nm. This is in contrast
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Figure 6.3: Film thickness dependence of Tg inferred from the change in the density.
Di�erent parts of thin films are considered, i.e., 0.0 nm (average density), 1.5 nm
(interior density) and 3.0 nm from the two free surfaces. The solid lines are fits of
data to �Tg(h) ≥ 1/h and the dashed line corresponds to the bulk value. The error
bars are calculated based on the standard errors of corresponding fits weighted by
measurement errors.

to previous simulation results [179] and experimental predictions [174] for supported
films on a neutral substrate, that no appreciable Tg reduction can be observed at
high cooling rates. Even if we take into account that the Tg reduction in a supported
film is about half as large as that of a freestanding film of same thickness, a Tg

reduction of about 10 K to 18 K in a 6-nm supported PS film is still significantly
larger than one would expect based on the experimental value of 10 K for the same
film thickness but with a cooling rate 12 decades slower.

On the other hand, we note that the magnitude of Tg reduction we find is smaller

than the experimental values for freestanding PS films obtained from ellipsometry
and Brillouin light scattering (BLS) techniques [204], e.g, 70K for a 20-nm film.
It is possible that this discrepancy is due to the di�erent time scales probed in
simulation (t ≥ 0.1 ns) and in experiments (t ≥ 1 s), such that the cooperative
– relaxation at long times may have additional contribution to Tg reduction in
thin films aside from the local short-time — relaxation. Interestingly, the thickness
dependence of the Tg reduction appears much closer to that determined from direct
measurement of probe reorientation in PS films [189] , e.g., 28 K for a 14-nm film.

We emphasize that our modified force field can reproduce the correct bulk Tg
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rather quantitatively, suggesting that our united atom simulations are a reason-
able representation of real PS. We note that our simulated bulk glass transition
temperature T

bulk
g = 402 K is comparable to previous simulation results for similar

PS systems [179,185]— and much higher than the nominal experimental Tg of 374
K. But to compare our Tg with experiment, we must account for the e�ects of our
very short chains and very high cooling rate.

On the one hand, Tg for low Mw = 103 PS is reduced by about 88 K, estimated
from the extrapolation of experimental data using the Fox-Flory equation [205],
Tg(Mn) = T

Œ
g ≠ K/Mn, with K = 8.8 ◊ 104 K g/mol. On the other hand, the

fast cooling rate “ = 5 ◊ 109 K/s in the simulation leads to an increase of Tg by
approximately 108 K, compared to a typical experimental cooling rate of about
1 K/s, according to the Vogel–Fulcher–Tammann–Hesse (VFTH) equation [206],
log “ = A ≠ B/(Tg ≠ T0), with A = 13.5, B = 570 K and T0 = 333 K. Given
the typical experimental Tg of about 374 K for high Mw PS at small cooling
rates [203,205–207], the expected Tg at simulation conditions is estimated as 394
K, in reasonable agreement with the simulation result of 402 K. Such corrections
are not yet routinely applied in simulations of glassy polymers, but have been
previously discussed for PS [208] and other polymer systems [209,210].

6.3.2 Tg From Short-Time Dynamics

To explore the connection between Tg and dynamics in film films, we measure
di�erent short-time dynamical properties for the same cooling runs and find the
shifts Tg from dynamical scaling. In brief, we find that a given short-time dynamical
property versus temperature for di�erent films and bulk samples collapses onto a
master curve, after shifting the temperatures by an amount that depends on film
thickness. From the temperature shifts we determine the suppression of Tg relative
to the bulk as displayed in Fig. 6.4, which shows similar thickness dependence as
the dilatometric Tg obtained above.

Now we describe in more detail what short-time dynamical properties we use
to extract Tg shifts versus film thickness, how those data are analyzed, and how
the master curves are constructed. The dynamical property we examine first is the
lateral monomer mean-square displacement (MSD), i.e., how far monomers can
di�use laterally in a given short time. As mentioned above, the e�ect of spurious
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shear modes must be eliminated before measuring the monomer MSD. In Figure
6.5, we show both raw and corrected monomer MSD as a function of time for
a 14 nm-thick film and the bulk, at T = 500 K and 400 K. We emphasize that
although the e�ect of the shear modes on average MSD appears to be modest, it
can significantly alter the apparent local dynamics in films (see Appendix C for
details).

To extract a distance from observations of monomer MSD, we must choose
an appropriate observation time t

ú. Three dynamical regimes for an unentangled
polymer melt can be identified for the monomer MSD: the initial ballistic regime with
Èr2(t)Í ≥ t

2, an intermediate subdi�usive regime with Èr2(t)Í ≥ t

0.66 corresponding
to the Rouse-like motion of monomers within a chain, and the long-time di�usive
regime with Èr2(t)Í ≥ t as monomers di�use farther than the chain end-to-end
distance.

We choose an observation time t

ú of 200 ps, which corresponds to monomer
displacements of less than one monomer diameter, within the subdi�usive regime of
chain dynamics over the temperature range of interest (see Figure 6.5). The mean-
squared displacement of monomers Èr2(tú)Í are calculated for di�erent starting
times or, equivalently, di�erent temperatures, along the cooling trajectory. The data
are finally averaged over a short time interval of 1 ns to improve the statistics. We
emphasize that our results for Tg shifts are insensitive to the choice of observation
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Figure 6.5: Mean-square displacement of monomer center of mass as a function of
time for a 14-nm thick film (black lines) and bulk (red lines), at 500 K and 400
K, before (dashed lines) and after (solid lines) removing the spurious shear mode
described in the main text. The dashed lines represent the end-to-end distance
Ree ¥ 16.7 Å and the average diameter of united atoms ‡ ¥ 4.3 Å, which is also
close to a monomer size.

time t

ú, over a wide range of short times from 100 to 400 ps, as discussed below.
Previous simulation studies [185,210,211] have estimated Tg from the intersection

of the melt- and glassy-state temperature dependences of short-time MSD. (This
approach is similar to the way dilatometric Tg is obtained from the intersection
of asymptotic tangents to the density versus temperature curve.) However, it is
di�cult to locate precisely the “kink” in the temperature dependence of monomer
MSD, as the transition between melt and glassy state is quite smooth (see Figure
6.6(a)).

Instead, we find that the temperature dependences of Èr2(tú)Í for both thin
films and the bulk follow the same functional form upon shifting the temperature
by a thickness-dependent factor �T (h), which is directly related to Tg reduction.
To construct the master curve in a systematic way, we first fit the T -dependent
Èr2(tú)Í for the bulk system to a sixth-order polynomial g(T ), and then obtain
the shift factor �T for each film thickness by fitting the T -dependent data to
g(T + �T ). Since the polynomial fit becomes significantly worse for T < 200 K or
T > 500 K, we fit the thin film data lying within the temperature range so that
200 K < T + �T < 500 K by iteration.

As shown in the inset of Figure 6.6(a), the data collapse is excellent for all
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Figure 6.6: Temperature dependence of average dynamical properties at t

ú = 200
ps for bulk and films of di�erent thicknesses. (a) Mean-square displacement of
monomer center of mass. (b) Mean-square angular displacement of CH2-CH2
backbones. (c) Mean-square displacement of chain center of mass. Insets: Master
curve of corresponding quantity as a function of temperature shifted by �T (h)

thin films and the bulk system. The resulting Tg(h) ≠ T

bulk
g varies strongly with

film thickness as shown in Figure 6.4. These results agree quantitatively with the
Tg reduction inferred from the density versus temperature (see Figure 6.3). We
note that this master curve construction method is more robust in obtaining Tg

reduction, as compared to fitting the temperature dependence of density, which is
sensitive to the fitting procedure as discussed previously.

To investigate e�ect of the observation time t

ú on our results, we vary t

ú from
40 ps to 400 ps and perform the same data collapse procedure to obtain �Tg.
Note that the monomer MSD is always in the subdi�usive regime for this range of
time at T Æ 500 K, but monomers do become di�usive at higher T . We find that
the data collapse is equally good for all t

ú values, although the master curves do
have di�erent shapes for di�erent t

ú. The �Tg values for di�erent film thicknesses
depend only weakly on t

ú, as shown in Figure 6.7.
This insensitivity of �Tg to the choice of t

ú not only demonstrates that our
method is robust for obtaining Tg in thin films, but suggests that a film of thickness
h at temperature T looks dynamically the same as the bulk at higher temperature
T + �Tg(h), at least in the subdi�usive region. Indeed, recent bead-spring chain
simulations of supported [212] and free-standing films [201] reveal similar dynamical
behavior for films and the bulk at the same reduced temperature, i.e., intermediate-
time monomer MSD versus T ≠ Tc, where Tc is the mode-coupling theory (MCT)
glass transition temperature obtained from a power law fit of relaxation time and
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ú for various film thicknesses.

the aging rate versus T ≠ Tg.
Monomer MSD is not the only dynamical property we can use to extract Tg

shifts from short-time dynamics. We perform the same data collapse method for
other dynamical properties, including bond orientation dynamics and chain center
of mass motion, and obtain corresponding �Tg values. In Figure 6.6(b) and (c), we
show the original data and the master curves for mean-square angular displacement
(MSAD) of backbones and the MSD of chain center of mass, for t

ú = 200 ps. The
data collapse is very good for both quantities. The angular displacement for a
given backbone vector v̨

i

, which connects two consecutive aliphatic CH2 atoms
separated by one CH atom, is calculated as �◊

i

(t) = arccos(v̨
i

(0) · v̨

i

(t)/|v̨
i

(0))|2),
By definition, �◊

i

is bounded to the maximum value of fi at long times. However,
within the observation time t

ú = 200 ps, we observe no bond rotates more than
180¶ at the highest temperature 500 K.

The Tg reduction obtained from backbone rotational motions (mean-square
angular displacement) and chain center of mass translational motions (mean-square
displacement) as a function of film thickness also are shown in Figure 6.4. In
comparison to the �Tg previously obtained from monomer MSD, they agree with
each other and also with the dilatometric Tg, which further suggests that substantial
Tg reduction can be revealed by short-time measurements. We notice that the
suppression is relatively weaker for the Tg determined from bond orientational
motions than from monomer MSD, while the chain translational motions shows
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Figure 6.8: Same as Figure 6.6 except for local dynamical properties (tú = 200 ps)
at di�erent distances d from the free surface in a 14-nm film. Insets: Master curves
of each dynamical property as a function of temperature shifted by �T (d).

stronger Tg suppression. One may ask whether the di�erence in the average Tg

reduction for di�erent dynamical properties arises from their distinct responses to
the free surface, or from a di�erently weighted average of essentially the same local
response.

To this end, we measure the local dynamics within a film as a function of the
distance from the free surface, and apply the same data collapse approach to obtain
the local Tg reduction. We divide the system into several “reporting layers” about
0.7 nm thick, each containing a subset of the centers of mass of the monomers,
backbones or chains. Objects in each layer are selected based on their average
position during t

ú = 200 ps, which is su�ciently small so that monomers di�use less
than the layer thickness even at the highest temperature of 500 K. (Note that the
position of the outermost “surface” layer defined this way will not coincide exactly
with the PS-vacuum interface defined by inflection point in the density profile.)

As depicted in Figure 6.8, the layer-resolved monomer MSD, backbone MSAD
and chain MSD are enhanced near the free surface compared to the bulk values.
Overall, we find a good collapse of each dynamical property for di�erent layers in the
film of 14 nm. (For the outermost layer about 0.5 nm from the free surface, the low
temperature dynamics slightly deviates from the master curve, probably because of
a smaller density than the inner layers (see Figure 6.1), so the quantitative results
for this layer should be interpreted with caution.)

Figure 6.9 shows results for the local Tg(d) shift versus distance from the free
surface d, obtained from data collapse of local short-time dynamics of the monomer
MSD, backbone MASD, and chain MSD. Remarkably, the results are essentially
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surface d obtained from data collapse of di�erent dynamical properties. The profile
has been symmetrized over two halves of the film. Solid line is a guide to the eye.

identical for the di�erent dynamical properties, in contrast to the average Tg

reduction shown in Figure 6.4. We argue that the local Tg reduction might be more
fundamental than the average Tg reduction, and the seemingly inconsistent results
can be reconciled as follows.

Given the successful collapse of local dynamics, the T -dependence of some local
dynamical property can be described as „

i

= g(T + �T

i

) for each layer i, with
g(T ) the functional form for the master curve. The average dynamics is then
obtained by averaging over the local dynamics weighed by the mass of each layer
„ = È„

i

Í = Èg(T + �T

i

)Í ¥ g(T + �T ), where the last approximation is suggested
by the successful data collapse of average dynamics. It is thus clear that while the
local Tg reduction is independent of the type of dynamical measurement, the data
collapse of an average dynamical property might only be a good approximation so
that the average Tg reduction obtained from the shift factor �T depends on the
specific form of g(T ).

The local Tg profile of Figure 6.9 reveals a mobile surface layer of about 4
nm thick, beyond which bulk-like behavior is recovered in the middle of the film.
This non-local e�ect of confinement on dynamics is consistent with the previous
observation that the interior density can be a�ected by the free surface much farther
away than the distance (≥ 1 nm) at which the bulk density is recovered in an
equilibrium system. As an aside, we find that results based on rotational dynamics
of side groups, characterized by the vector between the C atom attached to the
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backbone and the para-CH atom on the phenyl ring, are quantitatively similar to
those based on the rotations of backbone tangents.

6.4 Long-Time Dynamics and Free Surface Size
To this point, all our local Tg values, and the inferred range of influence of the free
surface, have been based on short-time dynamical properties. Alternatively, we can
investigate the range of influence of the free surface by analyzing the segmental
autocorrelation function decay time, typically of order 1–1000 ns. We cannot extract
isothermal autocorrelation functions at such long times from our rapid cooling scans.
Instead, we fully equilibrate 14 nm films and bulk systems at di�erent temperatures
ranging from 500 K to 400 K, and then calculate the segmental relaxation time
· . Here · is defined as the time when the autocorrelation function of the second
Legendre polynomial P2(t) = (3/2) Ècos2

◊(t)Í ≠ 1/2 decays to 1/e, where ◊(t) is
the backbone angular displacement defined above.

Figure 6.10(a) displays an example of the autocorrelation function of local
P2(t) at di�erent distances from the free surface for a 14 nm film at 400 K. These
autocorrelation functions are well fit by the Kohlrausch-Williams-Watts (KWW)
stretched exponential. We the obtain the local segmental relaxation time as a
function of position in the film for each temperature, as shown in Figure 6.10(b).
In the temperature range studied, the extent to which the long-time dynamics is
perturbed by the free surface (3–5 nm) is similar to the range over which the local
Tg obtained from short-time dynamics is perturbed. This 3–5 nm length scale is
also consistent with the experimental value of 4–5 nm at 370K deduced from probe
reorientation [189] and nanoparticle embedding measurements [190].

Moreover, we notice a moderate increase of the size of the mobile surface layer
with decreasing T . According to the thermodynamic framework of glass transition,
such as Adam-Gibbs (AG) theory [69] and random first-order transition (RFOT)
theory [66,70]. the growing relaxation time below the activation temperature can be
related to some growing correlation length › as · ≥ exp(›Â

/T ), where the exponent
Â = df in the AG theory and Â = df ≠ ◊ in the RFOT theory to recover the VFT
form, and df is the fractal dimension of the CRR (cooperatively-rearranging regions)
or “mosaic droplet” for each scenario [16]. It has been proposed that the domain
size a�ected by confinement by a free surface or fixed wall, might be controlled by
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Figure 6.10: (a) Layer-resolved autocorrelation function of P2 for a 14-nm thin film
at 400 K. The solid lines are to the KWW equation. (b) Local segmental relaxation
time · versus distance from the free surface at di�erent temperatures: 500 K, 480
K, 460 K, 440 K, 430K, 420 K, 410 K and 400 K (from lower to upper). Solid
curves are fits to an error function; dashed lines are bulk values. The profile has
been symmetrized over two halves of the film. (c) Bulk relaxation time ·/·0 versus
1/T and (›/T ), normalized by values at T0 = 500 K. Solid line is a VFT fit while
dashed line is a linear fit. Inset: correlation length versus temperature.
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the cooperatively rearranging region (CRR) in the AG scenario [201] or the mosaic
length scale.

To extract the size of the mobile surface layer ›, we fit the local relaxation time
profile to an error function log ·(d) = c1 + c2 erf(d/›) (see Figure 6.10(b)), which
we find gives better results for our data than the tanh function [201] or exponential
form [213] used previously by other groups. From the inset of Figure 6.10(c), it is
evident that the length scale › increases moderately with decreasing temperature,
consistent with simulation results on bead-spring chains [181,201].

Figure 6.10(c) displays a semi-log plot of the bulk relaxation time · as a function
of inverse temperature 1/T , normalized by their values at T0 = 500 K. The non-
Arrhenius behavior shown in the figure is typical for fragile glass formers, indicating
an increasing activation energy barrier. We plot the same data but as a function
of ›(T )/T , and find a reasonably good linear relationship between the logarithm
of the bulk relaxation time log(·) and ›(T )/T , This suggests a fractal dimension
df ¥ 1 in the AG theory corresponding to string-like clusters, or Â ¥ 1 in the
RFOT scenario, consistent with values obtained for di�erent systems using di�erent
methods [16, 83, 149, 171]. Clearly, data at lower temperature regime and with
better statistics is needed before we can draw a firm conclusion as to the value of
exponent, which is unfortunately challenging for atomistic simulations.

6.5 Conclusion
In this work, we perform extensive atomistic MD simulations on free-standing
polystyrene films to investigate the e�ect of free surfaces on static and dynamical
properties and hence on the glass transition temperature Tg. We modify the
TraPPE-UA potential to match the chain backbone dihedral distribution obtained
from all-atom simulations, which leads to simulated bulk density and segmental
dynamics close to the experimental values. Care has been taken in simulations to
ensure consistent results between films and bulk. Despite the high cooling rate
and short time scales probed, we find substantial suppression of the dilatometric
Tg in thin films inferred from the average film density versus temperature. The
dilatometric Tg reduction is much less when we measure only the density in the
interior of the film, suggesting that the mobile surface layer is largely responsible
for the Tg reduction obtained from the average film density.
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We also extract both average and local Tg values from dynamical properties. We
find the temperature dependence of short-time dynamics, including monomer MSD,
chain MSD and bond MSAD, collapses onto a master curve for di�erent films and
the bulk by shifting the temperature for each film thickness. The Tg shifts obtained
in this way from short-time dynamics averaged over the whole film exhibits similar
film thickness dependence as the dilatometric Tg from average density. Following
the same procedure, we study the local dynamics of each layer in the film at short
times, and obtain the associated local Tg shift. The local Tg reduction is as large as
80 K near the free surface, vanishes at a distance about 4 nm from the free surface,
and is the same for all dynamical properties we investigated.

We also show a qualitative agreement between the mobile surface layer thickness
based on local Tg inferred from short-time dynamics, and from the range › of
depth dependence of backbone orientational relaxation times. The latter-defined
dynamical length › increases moderately with decreasing T , and scales with the
bulk relaxation time as log(·) ≥ ›/T , broadly consistent with both the AG and
RFOT scenarios. Our work suggests that short-time measurements of static and
dynamical properties consistently reveal appreciable free surface e�ects on both
average and local Tg in thin films.
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Chapter 7 |
Future Work

7.1 Generalization of the T1-Activity Analysis
In Chapter 3, we explored the relation between T1-activity and dynamics in the
simplest glass former, monodisperse hard spheres, with the aid of crystal avoiding
method. Our main finding is that the T1-inactive particles percolate the whole
system at the glass transition volume fraction. It is nature to ask whether this
purely geometrical criterion is also applicable to other systems. such as polydisperse
hard spheres and soft spheres.

Given that the T1-activity is defined based on the possibility of neighbor
rearrangement for a given particle with all the others fixed, a general way to
compute the T1-activity for any system is to actually run the MD simulation for
a single particle with di�erent initial velocities drawn from Maxwell-Boltzmann
distribution while fixing all the other particles and observe whether neighbor
rearrangement occurs for that particle. The trade-o� for this generalization is
a higher computational cost. For certain systems, such as polydisperse hard
spheres and monodisperse soft spheres, however, it is possible to perform the purely
geometrical analysis for T1-activity.

7.1.1 Polydisperse Hard Spheres

For polydisperse hard spheres, the same analysis of T1-activity can be applied,
except that a new definition of Voronoi tessellation is needed to account for the size
di�erence. One choice is the so-called radical plane construction. In this method,
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Figure 7.1: Schematic of the radical plane construction.

the distance h between a point at x, and a sphere at s
i

of radius r

i

is defined as

h

2 = Îx ≠ s
i

Î2 ≠ r

2
i

. (7.1)

A set of points equidistant from two spheres i and j then defines a radical plane
(see Figure 7.1), from which the familiar Voronoi tessellation can be performed,
and geometrical properties such as free volume can be computed as before [115].

7.1.2 WCA Soft Spheres

For point-like particles interacting via a soft potential, particle sizes are rigorously
defined so that the free volume computation could be problematic. In this case,
we may define the free volume relative to an energy level— the amount of energy
available for a particle, which can be chosen as its current potential energy plus a
kinetic energy boost of order kTB. The cusps of free volume, whereby we check if a
particle can gain or lose a neighbor in hard spheres, can thus be defined for soft
spheres as follows the furthest place a particle can move toward the plane of each
triangle of nearest-neighbors along the path with minimized potential energy. In
this way, the T1-activity can be defined for any form of potential.

Alternatively, a simpler method can be applied to monodisperse WCA soft
sphere, in which we assign a single e�ective hard-sphere diameter for all particles
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Figure 7.2: (a) Di�usion coe�cients of soft spheres with varying densities and (b)
n values. Power law fits are shown in solid lines.

based on the mean collision energy and perform the same T1-analysis as if they
are hard spheres. Certainly, this will lead to some overlaps between particles and
particles may left no cavity after being removed. In this case, we may simply assign
those particles as T1-inactive.

For a generalized WCA potential of the form “n-2n”,

UWCA(r) =

Y
_]

_[

4‘

51
‡

r

22n

≠
1

‡

r

2
n

6
+ ‘, r 6 21/n

‡

0, r > 21/n

‡,

(7.2)

the e�ective hard-sphere diameter can be obtained following Ref. [214],

‡HS = ‡

Q

a 2
1 +

Ò
Ec/‘

R

b
1/n

, (7.3)

where ‡ and ‘ are the length and energy scales, n is the “softness” of spheres (n = 6
for standard LJ/WCA and n = Œ for hard spheres), and Ec = –(fl, n)kTB is the
mean collision energy with coe�cient – that depends on density fl and n. Note
that Ec = 2kTB for dilute hard spheres [215], which provides a reference for the
value of –.

To test this idea, we perform MD simulations on supercooled WCA soft spheres
using our crystal-avoiding method with special care taken to forestall both crys-
tallization and quasi-crystallization (see section 1.5). We obtain the di�usion
coe�cient from the time-dependent MSD at di�erent temperatures, densities and
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Figure 7.4: (a) Number fraction and (b) percolation probability of T1-inactive
particles as a function of temperature for soft spheres with fl = 1.2 and n = 6.

n values in the NVT ensemble (see Figure. 7.2). The coe�cient of the collision
energy, –, is chosen for di�erent n and fl such that the rescaled di�usion coe�cient
D(T )/

Ò
(T ) of soft spheres matches that of hard spheres. As shown in Figure 7.3,

the di�usivities for di�erent soft-sphere systems collapse onto to a master curve,
slightly below the data for hard spheres, consistent with the results in [214]. We
then conduct the T1-activity analysis based on the chosen e�ective hard-sphere di-
ameter for each system. In Figure 7.4, we show the number fraction and percolation
probability of T1-inactive particles as a function of temperature for n = 6, fl = 1.2
as an example. Moreover, we find that for all systems studied the percolation
temperatures of T1-inactive particles, Tc, are in good agreement with the MCT
glass transition temperatures, TMCT, defined from power law fitting, as depicted in
Figure 7.5. Our preliminary results suggest that our geometrical criterion of the
glass transition based on T1-activities can be extended to monodisperse WCA soft
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Figure 7.5: Correlation between the percolation temperature, Tc, and the MCT
glass transition temperature, TMCT, for various WCA systems.

spheres.
For monodisperse spheres with L-J potential, however, the di�usivity data

cannot collapse onto the same master curve as for WCA spheres with a constant
collision energy for all temperatures. This is probably because the e�ect of attractive
interaction becomes increasingly important at lower temperatures, e.g., particles
may be trapped in the potential well of a neighbors after the collision, so that the
e�ective free volume is smaller. Indeed, di�erent dynamical behaviors between WCA
and LJ binary mixtures with almost identical radial distribution functions have
been observed. In this case, a direct mapping between LJ system and monodisperse
hard spheres may be oversimplified; the more involved analysis mentioned above
may be needed.

7.2 Identifying Local Structures of Amorphous
Silica Network
In Chapter 4, we introduced a graph-theoretic method to automatically classify
the local structures in disordered hard spheres, and observed a relatively high
fraction of icosahedral-like clusters than other types of clusters. Similar approach
can be applied to study the structure of amorphous silica. The SiO2 network can be
generated using the BKS potential [216], a widely used potential that can reproduce
the experimental structural properties, including bond angle, bond length and
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Figure 7.6: Number fraction of prevalent local clusters for n = 2 as a function
of temperature. Graphs shown on the right are labelled according to their ranks.
Note that graph #7 and #12 correspond to the local structure of –/—-quartz (the
same for cristoballite and tridymite for n = 2) and coesite, respectively.

density [217]. In addition, the valence rule between Si and O atoms are largely
satisfied under low cooling rates. Instead of using Voronoi tessellation, the nearest
neighbors for a given atom can be defined by a fixed cuto� slightly larger than the
average Si-O bond length (about 1.64 nm). Since O atoms only serve as bridges
between Si atoms, we may focus on the Si atoms alone and define for each Si atom
the associated graph consisting of neighbors at depth n. For a given n value, we
can perform the canonical labeling on graphs and identify distinct local structures.

Preliminary results for n = 2 (including next-nearest neighbors of a center
particle) show that there are about 1500 topologically distinct clusters, and certain
structures containing five-membered rings appear more frequently than others; and
their concentrations increase with decreasing temperature but flatten out as the
simulated glass transition (≥ 2700 K) is approached (see Figure 7.6). Moreover,
these prominent structures do not belong to common crystal structures, such –/—-
quartz, —-tridymite, —-cristobalite or coesite. Interestingly, however, there seems
to be no di�erence in the persistent time or life time between prevalent structures
and uncommon ones, in contrast to spherical systems, where the life time of locally
preferred structures, e.g., icosahedra for hard spheres, is significantly longer. Given
that SiO2 is a typical strong glass-former while hard sphere are more fragile, this
observation may suggest a connection between long-lived structures and fragility

110



of glass-forming systems, We note that although the structure of SiO2 network
has been characterized by the distribution of rings of a given size [217], our graph
method captures the complete topological information about local environment since
particles participating in the same ring can have di�erent graphs. Even though a
detailed ring size analysis for each particle, similar to the common-neighbor analysis
(CNA), might provide similar structural information, the graph method can be
extended to include higher level of neighbors, which could be challenging for ring
size analysis.

7.3 Plasticization E�ects on Tg From Short-Time
Dynamics
In Chapter 6, we studied the glass transition in polystyrene thin films from atomistic
simulations. We find that short-time dynamical properties, such as monomer MSD,
collapse onto a master curve for di�erent film thicknesses, from which the reduction
of glass transition temperature can be obtained. We may apply the same technique
to bulk PS with plasticizers and study the e�ect of plasticization on dynamics
and Tg. To do so, we focus on bulk PS systems consisting of 96 chains, each
chain consists of 20 monomers. We select one or more chains to cut up into
monomers and change them into ethylbenzene (EB) as the plasticizer, for which the
inter/intramolecular interactions are well described by the TraPPE-UA potential.
Having prepared systems with di�erent weight fraction of EB, wEB ranging from 0
to 0.64, we equilibrate each system at 600 K for 20 ns before quenching it linearly
from 600 K to 200 K in 80 ns, corresponding to a cooling rate of 5 K/ns. To
improve statistics, final results are averaged over five independent runs for data
point.

Following our previous study on PS thin films, we first determine the dilato-
metric Tg from the change of thermal expansivity. As shown in Figure 7.7(a), the
temperature-dependent density of systems with di�erent EB concentrations are
well described by the empirical fit previously used (Eq. 6.2). It is clear that the
melt density is lowered by the plasticizer while the glassy density is slightly larger
for higher wEB, as a result of delayed glass transition. As an aside, we find that
the width of the transition appears unchanged by plasticization. In Figure 7.7(b).
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substantial Tg reductions is shown as a function of EB concentration, which suggests
that the presence of small EB molecules will speed up dynamics of the PS/EB
mixture and hence decrease the average glass transition temperature. We also find
that the extent of Tg suppression agree with experimental date from di�erential
scanning calorimetry (DSC) measurements [218].

Alternatively, we may also obtain the shift in Tg from the change in dynamical
properties. To this end, we first compute the monomer (or molecule) center of mass
MSD, as an example, for the entire system including both PS and EB, as well as
for PS only. In Figure 7.8, we show the MSD at a fixed time interval t

ú = 200 ps as
a function of temperature, with varying plasticizer concentration. The same master
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curve construction as used in Chapter 6 is applied. We find excellent collapse for
all our data as shown in the inset of Figure 7.8, which allows us to determine the
suppression in Tg from shift factor. Remarkably, for the entire system, the average
Tg reduction inferred from the temperature dependent of density agree with those
obtained from data collapse of MSD, consistent with our thin-film study. Moreover,
the dynamical scaling method allows us to isolate the contribution of plasticizers
to the Tg reduction by only focusing on the MSD of polymer chains. As also shown
in Figure 7.7(b), We find a weaker plasticizer concentration dependence of Tg for
PS chains than for the mixture.

The success of data collapse for dynamical properties also suggests that the width
of glass transition remains almost unchanged by the plasticizer EB. Admittedly,
for other types of plasticizer, we may expect a broader or narrower transition in
addition to the change of Tg, where the dynamical scaling by simply shifting the
temperature cannot collapse the data onto a master curve, and probably additional
rescaling of temperature is needed.
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Appendix A|
Rotational-Invariance of Bond
Order Parameter

Here we give a brief proof to show that the global bond order parameter Q

l

is
rotationally invariant, i.e., independent of the coordinate system in which bond
vectors v

i

are measured; the same arguments apply to other types of bond order
parameters. According to Eq. 2.3, the bond order parameter Q
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can be written as
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where “
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), is the angle between bond
i and j, and Y

ú is the complex conjugate of Y . Since the angle between each pair
of bonds is rotationally invariant, the bond order parameter Q
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as a function of “

ij

is also rotationally invariant.
To reach the last line, we have used the fact that spherical harmonics form an

complete, orthonormal basis for a (2l + 1)-dimensional subspace, which leads to
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and also the spherical harmonic addition theorem,
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where P
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(x) is the nth-degree Legendre polynomial.
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Appendix B|
Validation of Crystal-Avoiding
Method for Pinned Systems

While pinned particles can to some extent frustrate crystallization in monodisperse
hard spheres, a high pinning fraction is required. To illustrate this, we perform
standard event-driven MD for monodisperse systems with N = 2000 particles at
„ = 0.56 as an example. Periodic array pinning is applied with the number of
pinned particles m

3 ranging from 0 to 73. As shown in Fig.B.1, crystallization can
be observed within simulation time for m Æ 5, suggesting that crystal-avoiding (CA)
method is necessary to suppress crystallization for small pinning concentrations.

To show that the dynamics is preserved by CA method in pinned systems,
as we have demonstrated previously for unpinned systems [138], we compare the
MSD of monodisperse hard spheres at „ = 0.56 with that of slightly polydisperse
systems (s = 0.08) with the same pinning concentration. As shown in Fig. B.2,
CA method barely a�ect the dynamics for pinned systems for m < 5. Deviation
between monodisperse and polydisperse systems is observed for m Ø 5, possibly
due to the increasing partial localization of large and small particles in polydisperse
systems as pinning induced glass transition is approached.

For m > 5, the dynamics of monodisperse systems obtained with CA method
can be justified by directly comparing to that obtained without the CA method,
since crystallization is fully suppressed in this case as a result of strong pinning
e�ect. As shown in Fig. B.3, the MSD is almost identical between systems with and
without CA method for high pinning concentrations. In fact, when crystallization
is fully suppressed, the crystal-avoiding MD e�ectively becomes standard MD since
every MC move is accepted.
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Figure B.1: Time-dependent crystallinity ‰(t), defined as the number fraction
of crystal-like particles (see Ref. [138] for details), for monodisperse systems at
„ = 0.56 with varying pinning concentration. Five pinning realizations for each m

were performed.
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Figure B.2: A comparison of MSD between polydisperse systems (solid lines) and
monodisperse systems (dashed lines) for di�erent pinning concentrations at „ = 0.56.
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Appendix C|
Simulation Details on PS Thin
Films

C.1 Correction for Spurious Shear Modes
Because of the relatively small box area and correspondingly large fluctuation of the
center of mass position of each layer, a simulated “tall” thin film (“tall” = transverse
dimensions small relative to film thickness) tends to develop shear-like motion along
the z direction. This artifact cannot be completely eliminated by removal of the
center of mass motion of the entire system. In Figure C.1 we show two snapshots of
a 22 nm film separated by �t = 16 ns. In addition to the self-di�usion of polymer
segments in each layer, shear-like motions develop across the film.

This collective motion can be a combination of di�erent modes that satisfy a
zero total center of mass motion of the system. For example, the lowest mode is
a linear lateral velocity profile along the z axis, which leads to a quadratic MSD
profile for the layer center of mass as a function of height, as shown in Figure C.2.
For higher shear modes, the velocity gradient is larger and the mode less likely to
develop because of the larger shear stress. However, it is di�cult to theoretically
predict the magnitudes of di�erent modes and their contributions to the apparent
shear-like motion, in order to remove them analytically.

To correct this artifact, we divided the system into layers about 0.7 nm thick,
and remove the center of mass motion of each layer before analyzing the local
dynamics. Figure C.2 compares the raw monomer MSD, corrected monomer MSD
and layer center of mass MSD as a function of z position for a 22 nm thin film at
500 K. Finally, we verified that this shear-like motion is suppressed by a system
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Figure C.1: Example of the shear modes developed in a 22-nm film. Colors are
based on the chain positions in the z direction in the initial frame.
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Figure C.2: Lateral MSD of monomers at t

ú = 200 ps as function of z position
before and after the removal the layer center of mass motion. The MSD of center
of mass of each layer is well fit to a quadratic function, indicating a linear velocity
profile across the z direction. Dashed line is the bulk value with layer center of
mass motion removed, which agrees with the value at the center of the film.

with a larger transverse area, while the corrected MSD profile is not a�ected by
the transverse area, as shown in Figure C.3 for a 10 nm thick film with di�erent
box areas. To keep computational time manageable, rather than increasing the
transverse area for thick films we fix the transverse area of the system, and use this
technique to eliminate the spurious collective shear-like motions.
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Figure C.3: E�ect of box area on the lateral MSD of layer center of mass and the
corrected lateral MSD of monomer at t

ú = 200 ps.

C.2 Force Field Modification and Validation
The force field used in this work is adapted from the TraPPE-UA model for
polystyrene, [219, 220] modified to match the backbone dihedral distribution ob-
tained from all-atom simulations. We also find it necessary to modify the improper
dihedral that maintains the tetrahedral arrangement around the carbon connected
to the phenyl ring, and to add a torsional potential along the bond joining the
phenyl ring to the backbone following previous works [198,221], in order to match
all-atom results. In Table C.1 we present the modifications to the TraPPE-UA
dihedral potentials. All other bonded and nonbonded potential parameters are the
same as in Ref. [219].

A comparison of dihedral distributions, pair distribution functions and densities
among di�erent force fields are shown in Figure C.4. The modified TraPPE
potential used in this work improves the agreement with all-atom results for
structural properties. For the bulk density, both the original TraPPE potential and
the modified one show good agreement with experimental data.
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Table C.1: Modified Dihedral Potential for Atactic Polystyrene

V („) = c1[1 + cos(„)] + c2[1 ≠ cos(2„)] + c3[1 + cos(3„)] + c4[1 ≠ cos(4„)]

proper dihedral c1 (kJ/mol) c2 (kJ/mol) c3 (kJ/mol) c4 (kJ/mol)
CH

x

-CH-CH2-CH
y

5.77 -1.23 11.33 1.01
CH

x

-CH-Caro-CHaro 0 -2.09 0 0
improper dihedral c1 (kJ/mol) c2 (kJ/mol) c3 (kJ/mol) c4 (kJ/mol)
CH

x

-CH-Caro-CH
y

0 3.28 -14.73 -3.36

This work
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Figure C.4: Comparison between di�erent force fields for PS. (a) Probability
distributions of dihedral angles along the backbone CH

x

-CH-CH2-CH
y

. (b) Prob-
ability distributions of improper dihedral angles around the tetrahedron carbon
CH

x

-CH-Caro-CH
y

. (c) Total pair distribution functions of CH2-CH2 groups. (d)
Temperature dependence of bulk densities at P = 1.0 bar with dispersion correction
applied. Also shown are experimental data from Zoller and Walsh [222].
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