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Abstract

The quantile regression method, first introduced by Koenker and Bassett Jr. (1978),
provides a comprehensive toolkit of performing statistical inference for a class of
statistical models and has become an important surrogate for the conventional least
squares method. Specifically, quantile regression offers several versatile approaches
to produce highly efficient estimates, regardless whether the error distribution is
homoscedastic or not.

This dissertation is concerned with developing some efficient estimation methods
for both the regression parameter and the dispersion parameter under the parametric
nonlinear heteroscedastic model. The proposed methods have their roots in quantile
regression and rely heavily on large-sample properties of the estimates.

In Chapter 2, we estimate the parameters by solving the “double-weighted
composite quantile regression (DWCQR)” optimization problem. We establish
central limit theorems for both estimates, based on which we recommend an
objective way of choosing the optimal weights for both the quantile losses and
the heteroscedasticity. It is shown by theoretical calculation that the resulting
estimates are typically more efficient than those obtained from other methods, and
their asymptotic variances converge to the Cramér-Rao lower bounds as the number
of quantile positions tends to infinity. An adaptive estimation procedure is reported
at the end of this chapter.

The computational aspects of the DWCQR problem are discussed in Chapter
3. Although the DWCQR problem in general does not admit numerical solutions
that are guaranteed to converge, we attempted to provide an algorithm that
combines the MM algorithm (Hunter and Lange (2000)) and the linear programming.
The proposed MMLP algorithm overall works well and successfully confirms the
nice theoretical properties of the DWCQR estimates using the optimal weights.
The Monte Carlo study demonstrates that the DWCQR method outperforms the
conventional estimation methods for the models under investigation.

In Chapter 4, for simplicity, we restrict the regression function to be linear
and consider an alternative efficient estimation approach, which is based on a

iii



preliminary estimate α̂n of the dispersion parameter. We first derive the Bahadur
representation of the regression quantile β̂(τ) for fixed τ . It is then interesting to
note that the effect of the α̂n propagates in the asymptotic representation of β̂(τ).
Such asymptotic bias brought by α̂n can be eliminated by averaging regression
quantiles across different quantile positions with a set of carefully chosen weights. In
the meantime, it can be shown that these weights can be simultaneously adjusted so
that the resulting estimate is also asymptotically efficient. The chapter is concluded
by Monte Carlo studies.

In the appendix, by surveying some classical examples and representative proofs
in the quantile regression literature, we illustrate an important proof technique
known as the “chaining arguments”.
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Chapter 1 |
Introduction

1.1 Literature Review

The concept of quantile regression introduced in the seminal paper of Koenker
and Bassett Jr. (1978), has become a widely used and accepted technique in many
areas of theoretical and applied statistics and econometrics. The first monograph
on this topic has been published by Koenker (2005), covering a wide scope of
well established foundations and actual research frontiers. In this dissertation, by
effectively employing the quantile regression tools, we will study the parameter
estimation problem for nonlinear heteroscedastic models in depth.

The nonlinear heteroscedastic model (2.1) has been discussed systematically by
Carroll and Ruppert (1988) using the least squares approach, for a similar treatment,
see also Bates and Watts (1988). Welsh et al. (1994) applied regression quantiles
(Koenker and Bassett Jr. (1978)) to estimate regression and dispersion parameters
in nonlinear heteroscedastic models. If the regression part is restricted to be linear,
there is more literature on statistical inference based on regression quantiles, see
for example Koenker and Bassett Jr. (1982), Koenker and Zhao (1996), Zhou and
Portnoy (1998). By contrast to the aforementioned papers for which the dispersion
parts are modelled parametrically, Welsh (1996), Zhao (2001) considered the case
that the dispersion part is left unspecified and estimated nonparametrically.

It is well-known that residual-based methods are employed extensively in re-
gression diagnosis and as an intermediate step to obtain robustified estimates of
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regression parameters. For a comprehensive introduction to how to wisely summa-
rize, transform and exploit residuals under the least squares context, see Bickel
(1978) and Chapters 2, 3 of Carroll and Ruppert (1988). Ruppert and Carroll (1980)
constructed trimmed least squares least estimator by discarding a small portion of
observations whose residuals based on some preliminary estimate are extreme, in
this way the robustness of the original least squares estimator gets improved. Under
the general M -estimation setting, Bickel (1975) established large-sample theory for
the one-step estimates based on residuals. Since the weights must be estimated
in advance before applying any weighted regression procedure, it is natural that
the residual-based methods would play a vital role in heteroscedastic models such
as (2.1), among others we refer readers to Koenker and Zhao (1996), Zhou and
Portnoy (1998) and Xiao and Koenker (2009), for which the preliminary estimates
are obtained via regression quantiles.

One of the remarkable advantages of quantile-based regression method is that
it allows us to incorporate information across different quantile positions. Based
on regression quantiles and regression rank scores (Gutenbrunner and Jurečková
(1992)), three broad classes of statistics, which are termed as linear rank statistics,
the first type L-statistics and the second type L-statistics, can be derived. As
manifested in Jurečková (1977) and Jurečková (1985), these classes of statistics are
natural generalizations in linear models to their counterparts in location models.
Among these statistics, of our primary interest is the L-statistics (of the first type)
which takes the form

T νn =
∫
β̂n(τ) dν(τ), (1.1)

where β̂n(τ), τ ∈ (0, 1) are regression quantiles and ν is a finite signed measure on
the open unit interval (0, 1) that has a compact support. In practice, this integral
representation form usually reduces to a weighted average of some regression
quantiles at finite distinctive quantile positions τ1, . . . , τK . Under the framework
of quantile regression, the L-estimator (1.1) has been extensively studied since
1980s. For representative work, see Koenker and Portnoy (1987), Portnoy and
Koenker (1989), Koenker and Zhao (1994), and Koenker and Xiao (2002). It is
demonstrated in Zhao and Xiao (2014) that the discrete weighted average version
of (1.1) is efficient by carefully choosing the weights under various settings. In this
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dissertation the similar idea will be further extended to the more general model
(2.1).

Compared to L-estimators based on regression quantiles, the composite quan-
tile regression (CQR) estimators seem to be less intuitive but could have better
efficient performance than L-estimators. The possibility of estimation in the linear
homoscedastic case CQR was studied by Koenker (1984) and attributed to Robert
Hogg. A notable application of CQR to variable selection problem was conducted
by Zou and Yuan (2008). Kai et al. (2010) applied the CQR technique to local
polynomial regression and showed its attractive asymptotic efficiency property.

We finally remark the development on asymptotic theory related to L-estimator
in quantile regression and nonlinear quantile regression. There are in general two
routes to establish large-sample properties under the context of quantile regres-
sion: before the advent of the innovative work by Pollard (1991), the derivation
of asymptotic normality of regression quantiles relies heavily on empirical process
and stochastic equicontinuity argument (Bickel (1975)), see Ruppert and Carroll
(1980), and Koenker and Portnoy (1987), among others. Such argument is math-
ematically technical and usually requires some sort of preliminary consistency
result. By proving the elegant convexity lemma, Pollard (1989) circumvented the
key difficulty in the asymptotic proof and made the arguments more accessible to
many potential users. Knight (1998) elaborated this technique by introducing the
celebrated Knight’s identity. Recently, Hjort and Pollard (2011) reviewed this topic
systematically and illustrated its applications to many other statistical problems.
We believe that nowadays the second route has become the main workhorse in
proving consistency and asymptotic normality in quantile regression literature, and
the spirit of this route is adopted in our own proof in Chapter 2. Regarding the
asymptotic theory in nonlinear quantile regression, Oberhofer (1982) considered the
consistency and Wang (1995) derived the asymptotic normality of the least absolute
deviations (LAD) estimator under the assumption of i.i.d. errors, respectively, see
also Jurečková and Procházka (1994), Koenker (2005). He and Shao (1996) pro-
vided very general treatments for other classes of M -estimators under this context.
Recently, Oberhofer and Haupt (2016) studied the asymptotic properties of the
nonlinear quantile regression under general assumptions on the error process, which
is allowed to be heterogeneous and mixing.
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1.2 Contribution and Organization

The main contribution of this dissertation is to systematically study the CQR
method in nonlinear heteroscedastic models. Nonlinear models and heteroscedastic
models rarely appeared together in the quantile regression literature. Initially, the
main goal of the dissertation is to propose some optimal weighting mechanism
under the CQR setting, under the guidance of the derived large-sample behavior of
the estimates. In the course of completing Chapter 2, we found that the numerical
studies of CQR estimators could be considerably challenging. Therefore, on one
hand, we have made some attempt on estimating the parameters by combining the
MM algorithm (Hunter and Lange (2000)) and the classical linear programming
technique, which forms the content of Chapter 3, whereas on the other hand, we
resorted to the classical L-estimators to alleviate the computational difficulty, which
results in another efficient estimation approach and the content of Chapter 4. In
the quantile regression literature, it is well-known that the establishment of the
Bahadur representation of the constructed estimates is standard and can be highly
technical, to account for this topic, we conclude this dissertation by providing a
comprehensive survey on some important prove technique, known as the chaining
arguments, that deciphers the essential technicality in the process of building the
Bahadur representation.



Chapter 2 |
Efficient Composite Quantile Re-
gression for Nonlinear
Heteroscedastic Models

2.1 Introduction

There is vast literature on parameter estimation and variable selection for the
classical linear regression model Y = XTβ + ε. The classical linear regression
imposes the restrictive assumption of homoscedastic errors, i.e., the error has the
same distribution regardless of the covariates. From the modeling perspective,
it is hard to justify that the error is independent of the covariates whereas the
mean relationship strongly depends on the covariates. For example, Engle (1982)
examined the United Kingdom inflation during the time period 1958-1977 and
found that it is more reasonable to allow the conditional variances to vary over
time, leading to the widely used autoregressive conditional heteroscedastic (ARCH)
models. As shown in Section 2.3.1, ignoring such heteroscedasticity could result in
substantial loss of efficiency.

In this chapter we study the following nonlinear heteroscedastic regression model

Yi = g(Xi, β) + s(Xi, α)εi, i = 1, . . . , n. (2.1)

where (Xi, Yi, εi) is the triplet of covariates, response, and error, and g(Xi, β) and
s(Xi, α) > 0 are two known functions with unknown parameters β ∈ Rp and α ∈
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Rq. If g(Xi, β) = XT
i β and s(Xi, α) ≡ 1, then (2.1) reduces to the classical

homoscedastic linear model. Model (2.1) allows for heteroscedasticity in the error
with the scale s(Xi, α) > 0 depending on the covariates Xi.

Our goal is seeking for efficient estimation for the parameters (β, α).
The rest of this chapter is organized as follows. In Section 2.2 we present the

double weighted composite quantile regression method and study its asymptotic
properties. Following the asymptotic results established in Section 2.2, we propose
an objective way to determine the optimal weights in Section 2.3 and discuss the
theoretical possible efficiency gain by doing so. An adaptive estimation procedure
with estimated optimal weights is reported in Section 2.4. Proofs are collected in
Section 2.5.

We now introduce some notation. For matrix A = (aij), denote its Frobenius
norm by ‖A‖ = (

∑
i,j a

2
ij)1/2, which reduces to the Euclidean L2 norm if A is a

vector. For d > 0 and a random variable Z, we write Z ∈ Ld if E(|Z|d) <∞. AT

stands for the transpose of A. The indicator function of a set A is denoted by 1x∈A,
or 1(x ∈ A).

2.2 Double-weighted Composite Quantile
Regression

For τ ∈ (0, 1), denote by QYi(τ |Xi) the conditional τ -th quantile of Yi given Xi and
by Qε(τ) the τ -th quantile of εi. Suppose εi is independent of Xi. Then

QYi(τ |Xi) = g(Xi, β) + s(Xi, α)Qεi(τ) (2.2)

which can be used to construct quantile regression estimation (Koenker (2005)).
Denote by ρτ (z) = z(τ − 1z<0) the quantile loss at a quantile position τ ∈ (0, 1).

In particular, ρ0.5(z) = |z|/2 is the median quantile loss or the least absolute
deviation (LAD). If εi has median zero (i.e., Qε(0.5) = 0), then QYi(0.5|Xi) =
g(Xi, β) and we can estimate β by

β̂LAD = arg min
b

n∑
i=1
|Yi − g(Xi, b)|
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However, since s(Xi, α)Qε(0.5) = 0 for all α, α is non-identifiable from this LAD
regression, although it may be estimated through regression of residuals, which is
the theme of Chapter 4.

Unlike the least squares regression that employs information from the conditional
mean, quantile regression can provide a more informative picture of the distribution
by specifying different quantile positions τ ∈ (0, 1). In (2.2), since (β, α) does
not depend on τ , we can combine the information across quantiles to estimate
(β, α). Throughout this paper we consider combining information across k uniformly
spaced quantile positions τj = j/(k + 1), j = 1, . . . , k.

From (2.2), QYi(τj|Xi) = g(Xi, β) + s(Xi, α)Qεi(τj), j = 1, . . . , k. There are
quantile-independent unknown parameters (βT , αT )T , and the unknown quantiles
Qε(τ1), . . . , Qε(τk). To estimate β, α,Qε(τ1), . . . , Qε(τk) jointly, we consider the
weighted quantile loss

L(θ) =
n∑
i=1

k∑
j=1

wj
h(Xi)

ρτj{Yi − g(Xi, b)− s(Xi, a)qj}, θ = (bT , aT , q1, . . . , qk)T

(2.3)
where w = (w1, . . . , wk)T with wj ≥ 0 are weights for the quantile loss ρτj and
h(Xi) > 0 is a general weight function for the heteroscedasticity due to s(Xi, α)εi.
Since the proposed method incorporates two weights and multiple quantile losses,
we call it double-weighted composite quantile regression (DWCQR).

For the homoscedastic model Y = XTβ + ε, Koenker (1984) studied parameter
estimation via weighted composite quantile regression (WCQR), Zou and Yuan
(2008) studied parameter estimation and variable selection using unweighted com-
posite quantile regression (UCQR) with weights w1 = · · · = wk = 1, Bradic et al.
(2011) further extended their methodology to weighted case. In these works, the
model has homoscedastic errors so that h(Xi) = 1. As shown in Section 2.3.1 below,
in the presence of heteroscedastic errors, their methods could lead to substantial
loss of efficiency.

To study the asymptotic behavior of our DWCQR estimator, we set up the
following framework:
Condition 1. (i) For each i ∈ Z, εi is independent of Xi, εi−1, Xi−1, εi−2, . . .. (ii)
{(Xi, εi)}i∈Z is a strictly stationary ergodic process.
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The dependence structure in Condition 1 offers a very flexible framework to study
asymptotic theory. In particular, as shown in Section 2.5, Condition 1(i) allows
us to construct appropriate martingales, which can greatly facilitate asymptotic
theory.

We illustrate Condition 1 by several common examples:
Example 1 (i.i.d. data). If {(Xi, εi)}i∈Z are i.i.d. and the error εi is independent
of the covariate Xi, then Condition 1 holds.
Example 2 (Causal ergodic processes). Let {εi}i∈Z be i.i.d. random variables. In
(2.1), if Xi = (Yi−1, . . . , Yi−p), then we have the nonlinear ARCH model

Yi = g(Yi−1, . . . , Yi−p, β) + s(Yi−1, . . . , Yi−p, α)εi (2.4)

This model includes many widely used time series models, including threshold
autoregressive models, exponential autoregressive models, Engle’s ARCH models.
Under conditions in Wu (2005), (2.4) admits a unique stationary solution Yi =
G(εi, εi−1, . . .) for some function G. Thus Xi = (Yi−1, . . . , Yi−p) is a function of
εi−1, εi−2, . . ., and Condition 1 holds.
Example 3 (Mixing processes). To facilitate asymptotic theory, a popular con-
dition is the strong mixing condition with mixing coefficients {αj}j∈N satisfying∑∞

j=1 α
1−2δ
j <∞ for some δ > 2 (Fan and Yao (2003)). It is well known that strong

mixing processes are ergodic so that Condition 1(ii) holds. Due to the martingale
structure of Condition 1(i), we do not require the usual condition

∑∞
j=1 α

1−2δ
j <∞.

It is worth pointing out many non-mixing processes also satisfy Condition 1. For
the autoregressive model Yi = ρYi−1 + εi with ρ ∈ (0, 1/2] and εi being Bernoulli
variables P(εi = 1) = 1 − P(εi = 0) = q ∈ (0, 1), the stationary solution is not
strong mixing (Andrews (1984)). By contrast, Condition 1 holds.

Denote by ġ(Xi, β) = ∂g(Xi, β)/∂β and g̈(Xi, β) = ∂2g(Xi, β)/∂β2 the gradient
vector and Hessian matrix of g(Xi, β) with respect to β. Similarly, define ṡ(Xi, α)
and s̈(Xi, α).
Condition 2. Let X, ε be distributed as Xi, εi. Denote by Fε, fε the distribu-
tion function and density function of ε respectively. (i) supu[fε(u) + |f ′ε(u)|] <
∞ and fε(u) > 0 on {u : 0 < Fε(u) < 1}. (ii) s(X,α) > c and h(X) > c for
some constant c > 0, E

[
s(X,α)
h(X)

]
<∞. (iii) For D = (ġ(X, β)T , ṡ(X,α)T , s(X,α))T ,
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E(DDT ) is positive definite. (iv) w1, . . . , wk > 0 are strictly positive. (v) For some
constants ε > 0 and δ > 2,

Vi := sup
‖ϑβ‖<ε

[‖ġ(Xi, β + ϑβ)‖+ ‖g̈(Xi, β + ϑβ)‖]

+ sup
‖ϑα‖<ε

[‖s(Xi, α + ϑα)‖+ ‖ṡ(Xi, α + ϑα)‖+ ‖s̈(Xi, α + ϑα)‖] ∈ Lδ
(2.5)

We briefly comment on Condition 2. (i) is a common assumption in quantile
regression. (ii) is imposed for technical convenience and can be weakened. (iii) rules
out singular design matrix (see Lemma 2.4). (iv) is necessary to avoid an ill-posed
problem. Otherwise, if wj = 0 for some j, then qj in (2.3) can take arbitrary
value; in that case, we can remove the quantile position τj from (2.3) and use the
remaining quantiles with positive weights in the analysis. (v) is used to control the
remainder terms in Taylor’s expansions.

Theorem 2.1. Let the true value θ0 = (βT , αT , Qε(τ1), . . . , Qε(τk))T . Under Con-
ditions 1–2, L(θ) in (2.3) has a local minimizer θ̂ = (β̂T , α̂T , q̂1, . . . , q̂k)T such that
‖θ̂ − θ0‖ = OP (n−1/2). Define ej = (0, . . . , 1, . . . , 0)T ∈ Rk with 1 on the j-th
element and 0 elsewhere, and

Mj =


ġ(X, β)

Qε(τj)ṡ(X,α)
ejs(X,α)

 ∈ Rp+q+k, j = 1, . . . , k.

Then the asymptotic normality holds:

√
n

[(
β̂

α̂

)
−

(
β

α

)]
⇒ N (0,Σ(w, h)), Σ(w, h) = {M−1ΩM−1}(p+q)×(p+q) (2.6)

where the subscript means the (p + q)× (p + q) leading submatrix of M−1ΩM−1,
with

M =
k∑
j=1

wjfε(Qε(τj))E
[

MjM
T
j

h(X)s(X,α)

]
(2.7)
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Ω =
k∑
j=1

k∑
j′=1

wjwj′ [min(τj, τj′)− τjτj′ ]E
[
MjM

T
j′

h(X)2

]
(2.8)

By Theorem 2.1, with different choices of the weights w1, . . . , wk and h(X1), . . . ,
h(Xn) in (2.3), the resulting estimator has different limiting covariance matrices
Σ(w, h) in (2.6). In Section 2.3 we study optimal choice of w and h to make Σ(w, h)
as “small" as possible.

2.3 Optimal DWCQR

Definition 2.1. For two matricesM1 andM2, we writeM1 ≥M2 ifM1−M2 is non-
negative definite. Let K(z) be a matrix-valued function. We say that K(z) attains
the minimum at z∗ , denoted by z∗ = arg minK(z), if K(z) ≥ K(z∗) for all z.

Minimum in Definition 2.1 also implies minimum in trace or determinant.
However, some matrix-valued functions (e.g., the diagonal matrix diag(z2, (z−1)2))
may not have a minimum. Due to its complicated structure, it is generally infeasible
to study the problem minw,h Σ(w, h). Here we shall solve this problem under the
symmetric density assumption.
Condition 3. The density function fε(u) of εi is symmetric, i.e., fε(u) = fε(−u),
and we use the symmetric weights wj = wk+1−j, j = 1, . . . , k.

Theorem 2.2. Assume Conditions 1–3. Then, for the local minimizer in Theorem
2.1,

(i) β̂ satisfies CLT:
√
n(β̂ − β)⇒ N (0, Iβ(w)Jβ(h)), where Jβ(h) = M−1

β ΩβM
−1
β ,

Iβ(w) =
∑k

j=1
∑k

j′=1wjwj′ [min(τj, τj′)− τjτj′ ]
[
∑k

j=1wjfε(Qε(τj))]2
(2.9)

Mβ = E
[
ġ(X, β)ġ(X, β)T
h(X)s(X,α)

]
− E[ġ(X, β)/h(X)]E[ġ(X, β)T/h(X)]

E[s(X,α)/h(X)]

Ωβ = E(UβUT
β ) with Uβ = ġ(X, β)

h(X) −
s(X,α)
h(X)

E[ġ(X, β)/h(X)]
E[s(X,α)/h(X)]
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(ii) α̂ satisfies CLT:
√
n(α̂−α)⇒ N (0, Iα(w)Jα(h)), where Jα(h) = M−1

α ΩαM
−1
α ,

Iα(w) =
∑k

j=1
∑k

j′=1wjwj′Qε(τj)Qε(τj′)[min(τj, τj′)− τjτj′ ]
[
∑k

j=1wjQε(τj)2fε(Qε(τj))]2
(2.10)

Mα = E
[
ṡ(X,α)ṡ(X,α)T
h(X)s(X,α)

]
− E[ṡ(X,α)/h(X)]E[ṡ(X,α)T/h(X)]

E[s(X,α)/h(X)]

Ωα = E(UαUT
α ) with Uα = ṡ(X,α)

h(X) −
s(X,α)
h(X)

E[ṡ(X,α)/h(X)]
E[s(X,α)/h(X)]

By Theorem 2.2, the asymptotic covariance matrix of β̂ has two independent
components: the Iβ(w) that depends on the quantile weight w and the Jβ(h) that
depends on the heteroscedasticity weight h(Xi). To achieve optimal performance,
we can choose h to minimize (Definition 2.1) the matrix Jβ(h) and choose w to
minimize Iβ(w). Similarly, the most efficient α̂ is obtained by choosing (w, h)
minimizing Jα(h) and Iα(w). See Sections 2.3.1 – 2.3.3.

2.3.1 Optimal choice of h(Xi)

Theorem 2.3 concerns with the optimal choice of the heteroscedasticity weight
function h.

Theorem 2.3. Recall Jβ(h) and Jα(h) in Theorem 2.2. Then, in the sense of
Definition 2.1,

arg min
h

Jβ(h) = arg min
h

Jα(h) = s(·, α)

That is, both Jβ(h) and Jα(h) are minimized at h(X) = s(X,α). Furthermore,

Jβ(s(·, α)) =
{
E
[
ġ(X, β)ġ(X, β)T

s(X,α)2

]
− E

[
ġ(X, β)
s(X,α)

]
E
[
ġ(X, β)T
s(X,α)

]}−1

Jα(s(·, α)) =
{
E
[
ṡ(X,α)ṡ(X,α)T

s(X,α)2

]
− E

[
ṡ(X,α)
s(X,α)

]
E
[
ṡ(X,α)T
s(X,α)

]}−1

Theorem 2.3 agrees with our intuition that the optimal choice of h(Xi) is
exactly the heteroscedasticity function s(Xi, α). Intuitively, using the denominator
h(Xi) = s(Xi, α) in (2.3) can completely remove the heteroscedasticity of errors
s(Xi, α)εi, leading to optimal efficiency. If we extend the composite quantile



12

regression method in Koenker (1984), Zou and Yuan (2008), and Bradic et al.
(2011) in the simple linear regression setting Y = XTβ + ε to the nonlinear
heteroscedastic model (2.1) but without using the weight h(Xi), we have the single
(as opposed to double in (2.3)) weighted composite quantile regression

(β̂WCQR, α̂WCQR, q̂1, . . . , q̂k) = arg min
b,a,q1,...,qk

n∑
i=1

k∑
j=1

wjρτj{Yi − g(Xi, b)− s(Xi, a)qj}

Under Conditions 1–3, β̂WCQR satisfies the asymptotic normality in Theorem
2.2(i) with Jβ(h) therein replaced by Jβ(1), where 1 stands for the constant function
h(X) ≡ 1. By Theorem 2.3, Jβ(1) ≥ Jβ(s(·, α)). The same assertion holds for
α̂WCQR.

To compare the efficiency of the optimal heteroscedasticity weight h(X) =
s(X,α) to that of the unweighted case h(X) ≡ 1, we consider univariate X with
E(X) = 0, and linear function g(X, β) = βX. Then (the analysis for Jα(h) is
similar)

Jβ(1) = E(X2)
{E[X2/s(X,α)]}2 and Jβ(s(·, α)) = 1

E[X2/s2(X,α)]− {E[X/s(X,α)]}2

Define the relative efficiency gain (REG) of Jβ(s(·, α)) over Jβ(1) as

REG = 1− Jβ(s(·, α))/Jβ(1) (2.11)

By Theorem 2.3, 0 ≤ REG ≤ 1. Figure 2.1 plots REG for s(X,α) = exp(αX)
for α ∈ [0, 1] and different distributions of X. The distribution of X is scaled
properly so that Var(X) = 1. It reveals that: (i) There could be potentially
substantial efficiency gain; (ii) The efficiency gain depends on the distribution of X;
and (iii) As α increases, s(·, α) becomes further away from the constant function,
and the efficiency gain increases quickly.

2.3.2 Optimial choice of w for Iβ(w) and asymptotic efficiency

Recall Iβ(w) in (2.9) of Theorem 2.2(i). The simplest choice of w is the equal
weight w = uk := (1, . . . , 1)T . For simple homoscedastic linear model Y = XTβ + ε,
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Figure 2.1. Relative efficiency gain (REG) [Equation (2.11)] as a function of α in
s(X,α) = exp(αX). Solid, dotted, and dashed curves correspond to standard nor-
mal N (0, 1), uniform distribution on [−

√
3,
√

3], and Laplace distribution with density
exp(−

√
2|x|)/

√
2, x ∈ R, respectively, for the covariate X.

Zou and Yuan (2008) used this unweighted composite quantile regression (UCQR)
approach. Then

Iβ(uk) =
∑k

j=1
∑k

j′=1[min(τj, τj′)− τjτj′ ]
[
∑k

j=1 fε(Qε(τj))]2
(2.12)

Naturally, a more efficient approach is possible by choosing the optimal weight
via minimizing Iβ(w):

w∗β = arg min
w

Iβ(w), subject to w1, . . . , wk ≥ 0, wj = wk+1−j, j = 1, 2, . . . , bk/2c.
(2.13)

Due to the non-negative and symmetric weight constraints, there is generally
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no closed form solution for w∗β, which makes it difficult to study w∗β and Iβ(w∗β). To
understand the best possible performance of the proposed estimator, we proceed in
two steps:

(I) First, we study the unconstrained minimization problem minw Iβ(w), see
Theorem 2.4.

(II) Second, we study conditions to ensure the non-negative and symmetric
constraints, see Theorem 2.5.

Condition 4. We say that a function `(τ) : (0, 1) → R satisfies the efficiency
regularity condition if [`2(τ) + `2(1− τ)]/τ + τ 2 ∫ 1−τ

τ
|`′′(t)|2 dt→ 0 as τ → 0.

Theorem 2.4. For Iβ(w) in (2.9), consider the unconstrained minimization problem
minw Iβ(w).

(i) The minimizer is w◦β = cΓ−1λ for any constant c > 0, where

Γ = [min(τj, τj′)− τjτj′ ] ∈ Rk×k, λ = (fε(Qε(τ1)), . . . , fε(Qε(τk)))T (2.14)

(ii) Let ρ(τ) = fε(Qε(τ)). If ρ(τ) satisfies the efficiency regularity Condition 4,
then

lim
k→∞

Iβ(w◦β) = 1
F(fε)

, where F(fε) =
∫
R

[f ′ε(u)]2
fε(u) du. (2.15)

Note that F(fε) in (2.15) is the Fisher information of fε. By Theorem 2.4(ii), as
the number of quantiles k →∞, the unconstrained minimum Iβ(w◦) converges to
the inverse of Fisher information of fε, which is the maximum likelihood estimation
efficiency.

Under the assumption that fε is symmetric, it can be easily verified that w◦β
is symmetric (see (2.57)). It remains to discuss under which condition that w◦β
is also non-negative. For homoscedastic linear model Y = XTβ + ε, Koenker
(1984) obtained the same optimal weight but failed to address the essential issue of
non-negative constraint. Theorem 2.5 below presents a characterization of fε(u)
for w◦β to satisfy the non-negative constraint.



15

Theorem 2.5. A sufficient condition for the unconstrained minimizer w◦β in Theo-
rem 2.4(i) to satisfy the non-negative constraint is that log fε(u) is concave. Con-
versely, if w◦β is non-negative for every k ∈ N, then log fε(u) is concave.

From Theorems 2.4, 2.5, for densities whose logarithm are concave, the optimal
DWCQR estimator of β can asymptotically achieve the optimal efficiency. The
log-concave density assumption is satisfied for, e.g., standard normal density,
logistic density e−u/(1 + e−u)2, Laplace density exp(−|u|/2), and the Gumbel
(extreme-value) density exp(−u− exp(−u)), etc. For these log-concave densities,
the constrained minimizer has the closed form w∗β = w◦β = cΓ−1λ and Iβ(w∗β)
asymptotically attains the inverse Fisher information bound. On the other hand,
Theorem 2.5 asserts that the log-concavity is also a necessary condition, and thus
1/F(fε) bound in Theorem 2.4(ii) is not attainable if this assumption is violated;
examples include Student’s t and normal mixture distributions.

Without log-concavity, (2.13) can be solved numerically. Table 2.1 tabulates
Iβ(w∗β) for some commonly used densities (both log-concave and non-log-concave)
for different k. To appreciate the results in Theorems 2.4, 2.5, we include the
Cramér-Rao bound 1/F(fε) in the last column of Table 2.1. For LS regression, the
asymptotic variance is proportional to Var(ε). For LAD regression, the asymptotic
variance is proportional to 1/[4f 2

ε (Qε(0.5))]. For comparison purpose, we also
include them in Table 2.1. Furthermore, we include the UCQR case Iβ(uk) (cf.
Equation (2.12)) in the column UCQR.

Table 2.1 reveals some interesting phenomena. First, for all the eight densities
considered, Iβ(w∗β) stabilizes quickly at some limit. However, the limits are different
for the two categories of densities. For the four log-concave densities, the limit is
1/F(fε). For the four non-log-concave densities, the limit is larger than 1/F(fε) (for
Student’s t2, they are close), but it is unclear how to derive an explicit expression;
we leave this as an open problem. Second, for both categories of densities, Iβ(w∗β)
with k = 9 or even 5 performs almost as good as Iβ(w∗β) with k = 39. Thus, in
practice, we recommend using k = 9. Third, the proposed method can significantly
outperform the LS, LAD and Zou and Yuan (2008)’s UCQR.
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Table 2.1. Efficiency comparison of LS (Var(ε)), LAD (1/[4f2
ε (Qε(0.5))]), and the

proposed method with k = 5, 9, 19, 29, 39 quantiles. The column UCQR is Iβ(u9) in (2.12)
with k = 9. The last column is the Cramér-Rao bound 1/F(fε). Smaller number means
better efficiency. The densities in the upper part are log-concave, while that in the lower
part are not log-concave.

Iβ(w∗β) with k = 1/F(fε)
Distribution of ε LS LAD UCQR 5 9 19 29 39
N (0, 1) 1.00 1.57 1.07 1.09 1.04 1.02 1.01 1.01 1.00
logistic 3.29 4.00 3.03 3.09 3.03 3.01 3.00 3.00 3.00
Laplace 2.00 1.00 1.32 1.00 1.00 1.00 1.00 1.00 1.00
Gumbel 1.64 2.08 1.37 1.22 1.12 1.06 1.04 1.03 1.00
Student’s t1 ∞ 2.47 3.26 2.39 2.31 2.29 2.28 2.28 2.00
Student’s t2 ∞ 2.00 1.91 1.77 1.74 1.72 1.72 1.72 1.67
0.5N (−2, 1) + 0.5N (2, 1) 5.00 85.76 4.27 2.52 2.23 2.09 2.05 2.03 1.38
0.95N (0, 1) + 0.05N (0, 100) 5.95 1.72 1.25 1.25 1.22 1.25 1.22 1.22 1.08

2.3.3 Optimal choice of w for Iα(w)

Similar to (2.13), for optimal estimation efficiency of α̂, we can minimize Iα(w)
(2.10):

w∗α = arg min
w

Iα(w), subject to w1, . . . , wk ≥ 0, wj = wk−j+1, j = 1, . . . , bk/2c.
(2.16)

As in Section 2.3.2, we first consider the unconstrained minimization problem.
This can shed some light on the best possible performance of the estimator. On
the other hand, we can study conditions to ensure the non-negative constraint.

However, it is more complicated to study Iα(w) than Iβ(w). To see this, if
Qε(τ ∗) = 0 for some τ ∗, then (2.2) gives QYi(τ ∗|Xi) = g(Xi, β), and thus τ ∗

does not contribute to the estimation of α and the corresponding weight has no
effect. Under Condition 3 and Condition 2(i), Qε(τ) = 0 if and only if τ = 0.5.
Thus, we need to distinguish whether k is odd or even, which determines whether
0.5 ∈ {τj = j/(k + 1), j = 1, . . . , k}.

Theorem 2.6. For Iα(w) in (2.10), consider the unconstrained minimization prob-
lem minw Iα(w). Assume Condition 3 and Condition 2(i). Let w◦α = arg min

w
Iα(w).
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(i) For even k (Qε(τj) 6= 0 for all j), w◦α = cΞ−1ζ for any constant c > 0, and

Ξ =
[
Qε(τj)Qε(τj′)[min(τj, τj′)− τjτj′ ]

]
∈ Rk×k

ζ = (Qε(τ1)2fε(Qε(τ1)), . . . , Qε(τk)2fε(Qε(τk)))T ∈ Rk
(2.17)

For odd k, w◦α = (w◦α,1, . . . , w◦α,k∗−1, wk∗ , w
◦
α,k∗+1, . . . , w

◦
α,k)T with k∗ = (k +

1)/2, arbitrary w∗k, and (w◦α,1, . . . , w◦α,k∗−1, w
◦
α,k∗+1, . . . , w

◦
α,k)T = cΞ∗−1ζ∗.

Here Ξ∗−1 is formed by removing k∗-th row and k∗-th column of Ξ, and ζ∗ is
formed by removing k∗-th entry of ζ. For either case, the symmetric constraint
in (2.16) is automatically satisfied.

(ii) If s(τ) := Qε(τ)fε(Qε(τ)) satisfies the efficiency regularity Condition 4, then

lim
k→∞

Iα(w◦α) = 1
G(fε)

, where G(fε) =
∫
R

[fε(u) + uf ′ε(u)]2
fε(u) du

From Theorems 2.4 and 2.6, the optimal weights w∗β and w∗α for β̂ and α̂ are
different, and we can achieve different estimation efficiency for β̂ and α̂. This can
be interpreted by the quantile representation (2.2), where β does not depend on τ
whereas s(Xi, α) has the coefficient Qε(τ) and thus introduces more dependence on
the quantiles.

Similar to Theorem 2.5, we can derive necessary and sufficient condition for w◦α
in Theorem 2.6(i) to satisfy the non-negative constraint. However, the condition is
more complicated and has no clear interpretation, and thus we omit it. Theorem
2.6(ii) intends to demonstrate the optimal performance when ignoring the non-
negative constraint. In practice, we can numerically solve the constrained problem
(2.16).

2.3.4 Choice of w for estimating both β and α

From Sections 2.3.2 – 2.3.3, if we are interested in estimating β only, the optimal
weight w∗β in (2.13) leads to asymptotically efficient estimator of β for log-concave
densities. Similarly, if we are interested in estimating α only, the weight w∗α in
(2.16) is the optimal choice of w.
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In general, the weights w∗β and w∗α are different, and thus we cannot simultane-
ously achieve optimal efficiency for both β and α. If we are interested in estimating
both β and α, we can run (2.3) twice, one using w∗β to estimate β and the other
using w∗α to estimate α.

To estimate both β and α, an alternative approach is to run (2.3) with w of
the form

w = ωw∗β + (1− ω)w∗α, w ∈ [0, 1].

Different ω assigns different importance to β and α, and its choice is up to the goal
of practitioners. For example, to achieve a balanced performance of β and α, we
may use

ω = trace[Jβ(h)]
trace[Jβ(h)] + trace[Jα(h)]

where Jβ(h) and Jα(h) are defined in Theorem 2.2. On the other hand, if we wish
to put more emphasize on the accuracy of β than α, then we can use relatively
large ω. As mentioned above, this approach leads to sub-optimal estimates of β
and α. Thus, if computation is not a serious concern, we recommend the above
two-separate-regression approach, which is taken in the Monte Carlo studies in
Chapter 3.

2.4 Adaptive Estimation with Estimated
Weights

By the discussion in Section 2.3.1, in the DWCQR (2.3), the theoretical optimal
choice of h(Xi) is h(Xi) = s(Xi, α) for estimating both β and α. Denote by
w∗ = (w∗1, . . . , w∗k) the optimal choice of w = (w1, . . . , wk). From Sections 2.3.2–
2.3.3, under Conditions 1–3,

(i) To estimate β, we use w∗ = w∗β determined by (2.13).

(ii) To estimate α, we use w∗ = w∗α determined by (2.16).

With the above choices of optimal weights, (2.3) becomes the following loss
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function

L̄(θ) =
n∑
i=1

k∑
j=1

w∗j
s(Xi, α)ρτj{Yi − g(Xi, b)− s(Xi, a)qj}, θ = (bT , aT , q1, . . . , qk)T

(2.18)
By Sections 2.2 and 2.3, minimizing L̄(θ) gives optimal estimates of β or α,

depending on different choices of w∗ in (i) or (ii) above. In practice w∗ and s(X,α)
are unknown and thus (2.3) is an infeasible function. Nevertheless, by minimizing
the infeasible loss function (2.18), the resulting infeasible estimator can serve as a
standard against which we can measure other estimators.

2.4.1 Adaptive estimation: A general theory

We say an estimator is adaptive if it can attain the same asymptotic efficiency of
the infeasible estimator in (2.18); that is, it works as well as if the optimal weights
were known.

Denote by ŵ∗ and α̂0 some consistent estimates of w∗ and α, respectively, see
Section 2.4.2 below. Then a practical version of (2.18) is

L̃(θ) =
n∑
i=1

k∑
j=1

ŵ∗j
s(Xi, α̂0)ρτj{Yi − g(Xi, b)− s(Xi, a)qj}, θ = (bT , aT , q1, . . . , qk)T

(2.19)
Under mild conditions, Theorem 2.7 establishes

√
n-equivalence between regres-

sions (2.18) and (2.19).
Condition 5. In (2.19), ‖α̂0−α‖ = OP (n−1/2) and ŵ∗j −w∗j = oP (1), j = 1, . . . , k.

Theorem 2.7. Assume Conditions 1–3 and 5, then there exists a local minimizer
of L̃(θ), denote by θ̃, and a local minimizer of L̄(θ), denote by θ̄, such that ‖

√
n(θ̃−

θ̄)‖ = oP (1), therefore θ̃ has the same asymptotic distribution as θ̄. Consequently,
θ̃ is adaptive.

2.4.2 An adaptive procedure

From Theorem 2.7, in order to achieve adaptiveness, we need to find ŵ∗ and α̂0

that satisfy Condition 5. We propose the following procedure:
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(W1) Use (2.3) with wj ≡ 1 and h(Xi) ≡ 1 to obtain preliminary estimates β̂0

and α̂0.

(W2) Compute the estimated noises:

ε̂i = Yi − g(Xi, β̂
0)

s(Xi, α̂0) , i = 1, . . . , n. (2.20)

(W3) Estimate fε(u) through the nonparametric kernel density estimator:

f̃ε(u) = 1
nbn

n∑
i=1

K

(
u− ε̂i
bn

)
(2.21)

for a bandwidth bn > 0 and kernel function K(·).

(W4) Estimate Qε(τ) by the sample τ -th quantile of ε̂1, . . . , ε̂n, denoted by Q̃ε(τ).

(W5) To ensure the symmetry in Condition 3, we symmetrize f̃ε and Q̃ε(τ) through

f̂ε(u) = f̃ε(u) + f̃ε(−u)
2 and Q̂ε(τ) = Q̃ε(τ)− Q̃ε(1− τ)

2

(W6) Plug Q̂ε(τ) and f̂ε(Q̂ε(τ)) into Iβ(w) (resp. Iα(w)) in Theorem 2.2 and use
(2.13) (resp. (2.16)) to obtain the estimated optimal weight ŵ∗ = ŵ∗β (resp.
ŵ∗α).

Condition 6. (i) Viεi ∈ Lδ, where Vi and δ are defined in Condition 2(v). (ii)
The bandwidth bn ∝ n−1/5. (iii) The kernel K(·) is Lipschitz continuous and∫
RK(x) dx = 1.

Theorem 2.8. Assume Condtions 1–3 and 6, then α̂0 in step (W1) and ŵ∗ in step
(W6) satisfy Condition 5. Therefore, the above procedure is adaptive.

In (2.21), we follow Silverman (1986) to use the rule-of-thumb bandwidth bn:

bn = 0.9n−1/5 min
{
sd(ε̂1, . . . , ε̂n), IQR(ε̂1, . . . , ε̂n)

1.34

}
Here, “sd" and “IQR" are the sample standard deviation and the sample interquartile
range.
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2.5 Technical Proofs

In linear quantile regression, the convexity of the loss function leads to technical
simplicity, e.g., point-wise convergence of convex functions implies uniform conver-
gence. Due to the nonlinearity of g(Xi, b) and s(Xi, a) in (2.3), the loss function is
no longer convex in the parameter θ = (bT , aT , q1, . . . , qk)T , which adds significant
technical complexities. In Section 2.5.1, we present a general result on uniform
convergence that may be of independent interest.

Throughout c, c1, c2, . . . are generic finite constants. Without causing confusion,
we use 0 to denote both the number zero and the zero vector, depending on specific
context.

Lemma 2.1 states some elementary results under mild finite moments conditions.
For example, if Ui = 1, Lemma 2.1(iv) asserts that it suffices to have E(|Vi|δ) <∞
for some δ > 2 to ensure n−3/2∑n

i=1 |Vi|3 = oP (1), although the latter holds trivially
under condition E(|Vi|3) <∞.

Lemma 2.1. Let {(Ui, Vi)}i∈N be a stationary process with Vi ∈ L2 and UiVi ∈ Lδ

for some δ > 2. Then (i) max1≤i≤n |UiVi| = OP (n1/δ); (ii)
∑n

i=1 |UiV 2
i | = OP (n);

(iii) n−3/2∑n
i=1 |UiV 3

i | = OP (n1/δ−1/2); and (iv) n−3/2∑n
i=1 |U2

i V
3
i | = OP (n1/δ−1/2).

Proof. (i) Let sn →∞. By Markov’s inequality,

P( max
1≤i≤n

|UiVi| > snn
1/δ) ≤

n∑
i=1

P(|UiVi| > snn
1/δ) ≤ n

E(|U1V1|δ)
(snn1/δ)δ = O(s−δn )→ 0

Since the rate of sn → ∞ can be arbitrarily slow, we have max1≤i≤n |UiVi| =
OP (n1/δ).

(ii) From Vi ∈ L2 and UiVi ∈ Lδ with δ > 2, it follows from the Schwarz
inequality that UiV 2

i = (UiVi)Vi ∈ L1.
(iii) From (i),

∑n
i=1 |UiV 3

i | ≤ max1≤i≤n |UiVi| ×
∑n

i=1 V
2
i = OP (n1/δ)OP (n).

(iv) From (i) and (ii),

n∑
i=1
|U2

i V
3
i | ≤ max

1≤i≤n
|UiVi| ×

n∑
i=1
|UiV 2

i | = OP (n1/δ)OP (n).

This completes the proof.



22

2.5.1 Uniform convergence of stationary processes

Let {Gi(·) : ϑ 7→ Gi(ϑ) ∈ R|ϑ ∈ Rm}i∈N and {Hi(·) : s 7→ Hi(s) ∈ R| s ∈ R}i∈N
be sequences of random functions, and {Wi} be a sequence of random variables.
Define the random function

Gn(ϑ) =
n∑
i=1

{
Wi

∫ Gi(ϑ/
√
n)

0
[Hi(s)−Hi(0)] ds

}
, ϑ ∈ Rm. (2.22)

Let Ġi(ϑ) = ∂Gi(ϑ)
∂ϑ

∈ Rm be the gradient vector and G̈(ϑ) = ∂2Gi(ϑ)
∂ϑ2 ∈ Rm×m

be the Hessian matrix. Our goal is to study uniform convergence of Gn(ϑ) on
compact sets.

Condition 7. In (2.22), {Wi, Gi(·), Hi(·)} satisfy the following conditions:

(A1) For each ϑ ∈ Rm and s ∈ R, {(Wi, Gi(ϑ), Hi(s))}i∈N is strictly stationary.

(A2) For each i, {Hi(s) : s ∈ R} is independent of {(Wj, Gj(ϑ), Hj−1(s)) : ϑ ∈
Rm, s ∈ R}j≤i.

(A3) n−1∑n
i=1WiĠi(0)Ġi(0)T →P E[WĠ(0)Ġ(0)T ] with (G,W ) distributed as

(Gi,Wi).

(A4) Gi(0) = 0, i ∈ N. For some stationary process {Zi} and constants ε >
0 and δ > 2,

sup
‖ϑ‖≤ε

[‖Ġi(ϑ)‖+ ‖G̈i(ϑ)‖] ≤ Zi, Zi ∈ L2, WiZi ∈ Lδ. (2.23)

(A5) For H(s) = E[Hi(s)], sups∈R[|H′(s)|+ |H′′(s)|] <∞.

(A6) For J (s) = E{[Hi(s)−Hi(0)]2}, sups∈R |J ′(s)| <∞.

(A7) There exists a constant c <∞ such that |Hi(s)| < c uniformly in s and i.

From the proof of Theorem 9, (A2) enables martingale construction (Lemma
2), and the law of large number condition (A3) is necessary. By ergodic theorem
[Theorem 3.5.7 of Stout (1974)], if {(Wi, Ġi(0))}i∈N is ergodic andWiĠi(0)Ġi(0)T ∈
L1, then (A3) holds.
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Let Θ ∈ Rm be any given compact set. From Condition 7(A4), for large enough
n,

sup
ϑ∈Θ

∣∣Gi(ϑ/
√
n)
∣∣ = sup

ϑ∈Θ
|Gi(ϑ/

√
n)−Gi(0)| ≤ c1Zi/

√
n, (2.24)

where the constant c1 = maxϑ∈Θ ‖ϑ‖ <∞. Similarly, for some constant c2,

sup
ϑ∈Θ

∣∣∣∣Gi(ϑ/
√
n)− Ġi(0)Tϑ√

n

∣∣∣∣ = sup
ϑ∈Θ

∣∣∣∣Gi(ϑ/
√
n)−Gi(0)− ĠT

i (0)ϑ√
n

∣∣∣∣ ≤ c2
Zi
n
. (2.25)

Theorem 2.9. Assume Condition 7. Recall H(s) = E[Hi(s)] in Condition 7(A5).
Then, for any compact set Θ ⊂ Rm, we have the uniform convergence

sup
ϑ∈Θ

∣∣∣∣Gn(ϑ)− H
′(0)
2 ϑTE[WĠ(0)Ġ(0)T ]ϑ

∣∣∣∣ = oP (1).

Proof. We have the decomposition Gn(ϑ) = Ḡn(ϑ) +Nn(ϑ) +Rn(ϑ), where

Ḡn(ϑ) = H
′(0)
2

n∑
i=1

WiGi(ϑ/
√
n)2,

Nn(ϑ) =
n∑
i=1

Wi

∫ Gi(ϑ/
√
n)

0
[H(s)−H(0)− sH′(0)] ds,

Rn(ϑ) =
n∑
i=1

Wi

∫ Gi(ϑ/
√
n)

0
{[Hi(s)−Hi(0)]− [H(s)−H(0)]} ds. (2.26)

First, consider Ḡn(ϑ). We have

sup
ϑ∈Θ

∣∣∣∣∣Ḡn(ϑ)− H
′(0)
2 ϑT

[
1
n

n∑
i=1

WiĠi(0)Ġi(0)T
]
ϑ

∣∣∣∣∣ ≤ |H′(0)|
2 Λn, (2.27)

where Λn =
n∑
i=1

{
|Wi| sup

θ∈Θ

∣∣∣Gi(ϑ/
√
n)2 −

[
Ġi(0)Tϑ/

√
n
]2∣∣∣}. Observe the elemen-

tary inequality

|x2 − y2| = |(x− y)(x− y + 2y)| ≤ δ1(δ1 + 2δ2), for |x− y| ≤ δ1, |y| ≤ δ2.

Applying the above inequality with x = Gi(ϑ/
√
n) and y = Ġi(0)Tϑ/

√
n and using
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the bound in (2.25) for x− y and the bound in (2.23), we obtain

Λn ≤ c3

n∑
i=1
|Wi|

Zi
n

(
Zi
n

+ Zi√
n

)
= OP (n−1/2), (2.28)

for some constant c3 <∞. Here the last bound OP (n−1/2) follows from (2.23) in
Condition 7(A4) and Lemma 1(ii). Thus, from (2.27), (2.28) and Condition 7(A3),
we conclude that Ḡn(ϑ) = [H′(0)/2]ϑTE[Ġ(0)Ġ(0)T ]ϑ+ oP (1), uniformly.

Next, consider Nn(ϑ). By Condition 7(A5), |H(s) −H(0) − sH′(0)| = O(s2).
By (2.24),

sup
ϑ∈Θ
|Nn(ϑ)| = O(1)

n∑
i=1
|Wi| sup

ϑ∈Θ
|Gi(ϑ/

√
n)|3 = O(1)

n3/2

n∑
i=1
|WiZ

3
i | = oP (1),

in view of Lemma 1(iii). Finally, by Lemma 2 below, the proof is completed.

Lemma 2.2. For Rn(ϑ) defined in (2.26), under the conditions in Theorem 2.9,
supϑ∈Θ |Rn(ϑ)| = oP (1).

Proof. We claim that Rn(ϑ) is a martingale for each ϑ. Write Rn(ϑ) =
∑n

i=1 ri(ϑ),
where

ri(ϑ) = Wi

∫ Gi(ϑ/
√
n)

0
{[Hi(s)−Hi(0)]− [H(s)−H(0)]} ds.

Let Fi be the σ-algebra generated by {Wj+1, Gj+1(ϑ), Hj(s) : ϑ ∈ Rm, s ∈
R, j ≤ i}. By Condition 7(A2), {Hi(s) : s ∈ R} is independent of Fi−1. Thus
E[Hi(s)−Hi(0) | Fi−1] = E[Hi(s)−Hi(0)] = H(s)−H(0) hence E[ri(ϑ) | Fi−1] = 0.
Consequently, {ri(ϑ)}i∈N is a martingale difference sequence with respect to the
filtration {Fi}i∈N for each ϑ.

Assume without loss of generality that ϑ ∈ R is a one-dimensional parameter
and Θ = [0, 1]. The multivariate case can be treated similarly. To bound Rn(ϑ)
uniformly on ϑ ∈ [0, 1], we proceed in four steps:

(i) Discretize the continuous martingale process Rn(ϑ), ϑ ∈ [0, 1], at some grid
points.

(ii) Truncate the discretized Rn(ϑ) so that it is deterministically bounded.
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(iii) Apply Freedman’s exponential inequality for bounded martingales (Freedman
(1975)).

(iv) Show that the effect of truncation is negligible.

Step (i): Introduce the grid points ϑj = j/n, j = 0, 1, . . . , n on [0, 1]. Since
any point ϑ ∈ [0, 1] is at most 1/n away from the set {ϑ1, . . . , ϑn}, we have the
inequality

sup
ϑ∈[0,1]

|Rn(ϑ)| ≤ max
1≤j≤n

|Rn(ϑj)|+ sup
|ϑ−ϑ′|≤1/n

|Rn(ϑ)−Rn(ϑ′)|. (2.29)

By Condition 7(A7), |[Hi(s)−Hi(0)|− [H(s)−H(0)]| ≤ 4c. Thus, by Condition
7(A4),

|ri(ϑ)− ri(ϑ′)| ≤ 4c|Wi||Gi(ϑ/
√
n)−Gi(ϑ′/

√
n)| ≤ 4c |ϑ− ϑ

′|√
n
|WiZi|.

Therefore, by (2.29), we conclude that the discretization effect is negligible in view
of

sup
|ϑ−ϑ′|≤1/n

|Rn(ϑ)−Rn(ϑ′)| ≤ 4c
n3/2

n∑
i=1
|WiZi| = OP (n−1/2) = oP (1). (2.30)

Step (ii): Since ri(ϑj) is not deterministically bounded (although bounded in
probability), we cannot directly apply Freedman’s exponential inequality which
deals with bounded martingale differences. To address this issue, we use truncation.
Let

Ai = sup
ϑ∈[0,1]

|Gi(ϑ/
√
n)|, i = 1, . . . , n.

Recall δ > 2 in Condition 7(A4). Consider the events

Ej =
[
|Rn(ϑj)| ≥

1
log n

]
, j = 1, . . . , n.

T =
[

max
1≤i≤n

|WiAi| < n1/δ−1/2(log n)2,

n∑
i=1

W 2
i A

3
i < n1/δ−1/2 log n

]
. (2.31)

Since [max1≤j≤n |Rn(ϑj)| ≥ 1/ log n] =
⋃n
j=1Ej = [

⋃n
j=1(Ej∩T )]

⋃
[(
⋃n
j=1Ej)∩
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T c], it follows that

P

[
max
1≤j≤n

|Rn(ϑj)| ≥
1

log n

]
≤

n∑
j=1

P (Ej ∩ T ) + P (T c). (2.32)

As will be shown below, the choice of T makes it easy to handle P (Ej ∩ T ) and
P (T c).

Step (iii): Consider the event Ej ∩ T . By definitions of ri(ϑj) and T , we have

|ri(ϑj)| ≤ 4c|Wi||Ai| ≤ 4c max
1≤i≤n

|WiAi| (2.33)

uniformly in i, j. Recall J (s) = E{[Hi(s) − Hi(0)]2} in Condition 7(A6), since
J (0) = 0 and J (s) has bounded derivative, we have J (s) = J (s)− J (0) = O(s),
therefore,

E
(
{[Hi(s)−Hi(0)]− [H(s)−H(0)]}2) ≤ E[(Hi(s)−Hi(0))2] = J (s) = O(s).

(2.34)
It then follows by (2.34), the independence between {Hi(s) : s ∈ R} and Fi−1, the
Schwarz inequality, and the Tonelli’s theorem that

E[r2
i (ϑj) | Fi−1] ≤ W 2

i E

[(∫ Ai

−Ai
|[Hi(s)−Hi(0)]− [H(s)−H(0)]| ds

)2∣∣∣∣∣Fi−1

]

≤ W 2
i E
[
2Ai

∫ Ai

−Ai
{[Hi(s)−Hi(0)]− [H(s)−H(0)]}2 ds

∣∣∣∣Fi−1

]
= 2W 2

i Ai

∫ Ai

−Ai
E[{[Hi(s)−Hi(0)]− [H(s)−H(0)]}2 | Fi−1] ds

= 2W 2
i Ai

∫ Ai

−Ai
E[{[Hi(s)−Hi(0)]− [H(s)−H(0)]}2] ds

≤ W 2
i Ai

∫ Ai

−Ai
O(s) ds ≤ c4W

2
i A

3
i (2.35)

uniformly in j, for some constant c4. By (2.33) and (2.35), on the event (2.31),
the martingale differences ri(ϑj) are bounded by 4cn1/δ−1/2(log n)2 and the sum
of conditional variances

∑n
i=1 E[r2

i (ϑj) | Fi−1] ≤ c4
∑n

i=1W
2
i A

3
i ≤ c4n

1/δ−1/2 log n,
uniformly in j. Thus, by Freedman’s exponential inequality for bounded martingale
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differences,

P (Ej ∩ T ) ≤ 2 exp
(
− (1/ log n)2

2{[4cn1/δ−1/2(log n)2](1/ log n) + c4n1/δ−1/2 log n}

)
= 2 exp(−λn log n), j = 1, 2, . . . , n. (2.36)

where λn = n1/2−1/δ

2(4c+ c4)(log n)4 . Since δ > 2, for large enough n, we have λn > 2.

Thus, in (2.32),

n∑
j=1

P (Ej ∩ T ) ≤ 2n exp(−λn log n) = O(1/n). (2.37)

Step (iv): It remains to show that P (T c)→ 0. Notice that

P (T c) ≤ P

[
max
1≤i≤n

|WiAi| ≥ n1/δ−1/2(log n)2
]

+ P

[
n∑
i=1

W 2
i A

3
i ≥ n1/δ−1/2 log n

]
.

(2.38)
By (2.24), Ai ≤ c1Zi/

√
n, therefore Condition 7(A4) and Lemma 2.1 imply that

max1≤i≤n |WiAi| ≤ c1n
−1/2 max1≤i≤n |WiZi| = OP (n1/δ−1/2) and

∑n
i=1W

2
i A

3
i ≤

c3
1n
−3/2∑n

i=1W
2
i Z

3
i = OP (n1/δ−1/2). Therefore, the probabilities on the right hand

side of (2.38) are of order o(1), hence P (T c)→ 0. This result together with (2.37)
and (2.32) imply that max

1≤j≤n
|Rn(ϑj)| = oP (1). The lemma then follows from (2.29)

and (2.30).

2.5.2 Proofs of Theorem 2.1, Theorem 2.2, Theorem 2.7

Lemma 2.3. Let U be a column random vector. Suppose that the matrix E[UUT ]
is positive definite, then for any random variable η > 0, E[UUT/η] is also positive
definite.

Proof. Suppose xTE[UUT/η]x = 0 for some vector x, then E[(xTU/√η)2] = 0,
which implies that P [xTU/√η = 0] = 1. Consequently, P [xTU = 0] = 1 and
xTE[UUT ]x = E[(xTU)2] = 0, which implies that x is a zero vector by the positive
definiteness of the matrix E[UUT ].
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Lemma 2.4. Under Condition 2(i)–(iv), the matrix M in Theorem 2.1 is positive
definite.

Proof. Recall D in Condition 2(iii). For x = (xTβ , xTα , x1, . . . , xk)T with xβ ∈ Rp,
xα ∈ Rq,

xTMx =
k∑
j=1

wjf(Qε(τj))(xTβ , Qε(τj)xTα , xj)E
[

DDT

h(X)s(X,α)

]
xβ

Qε(τj)xα
xj

 ≥ 0.

(2.39)
By Condition 2(iii) and Lemma 2.3, E{DDT/(h(X)s(X,α))} is positive definite.
Since wjfε(Qε(τj)) > 0 (Condition 2(i) and (iv)), xTMx = 0 implies that every
summand in (2.39) is zero so that (xTβ , Qε(τj)xTα , xj)T is a zero vector for every j.
It follows by Condition 2(i) that x must be a zero vector.

Lemma 2.5. Let gj : Rp → Rm, j = 1, . . . , k be k vector-valued functions, and
hj : R → R, j = 1, . . . , k be k scalar functions such that gj(Xi)hj(εi) ∈ L2,
E[hj(εi)] = 0, j = 1, . . . , k, and the matrix

C(g, h) =
k∑
j=1

k∑
j′=1

E[gj(X0)gj′(X0)T ]E[hj(ε0)hj′(ε0)] ∈ Rm×m

is non-singular. Then, under Condition 1, the multivariate CLT holds

1√
n

n∑
i=1

ξi ⇒ N (0, C(g, h)), where ξi =
k∑
j=1

gj(Xi)hj(εi). (2.40)

Proof. By the Cramér-Wold device, without loss of generality, we consider m = 1.
Let Fi be the algebra generated by {Xj+1, εj : j ≤ i}. By Condition 1(i), εi
is independent of Fi−1. Thus, E[gj(Xi)hj(εi) | Fi−1] = gj(Xi)E[hj(εi)] = 0 and
E[ξi | Fi−1] = 0. Hence {ξi}i∈N is a sequence of martingale differences with respect
to {Fi}i∈N. Since εi is independent of Fi−1,

1
n

n∑
i=1

E[ξ2
i | Fi−1] =

k∑
j=1

k∑
j′=1

E[hj(ε0)hj′(ε0)]
[

1
n

n∑
i=1

gj(Xi)gj′(Xi)
]
→ C(g, h)



29

with probability 1, by Condition 1(ii) and the ergodic theorem. Let ε > 0, it follows
by ξ0 ∈ L2 and the dominated convergence theorem that n−1∑n

i=1 E[ξ2
i 1(|ξi| ≥

ε
√
n)] = E[ξ2

01(|ξ0| > ε
√
n)] → 0, thus the Lindeberg condition holds, the result

then follows from the martingale CLT (Billingsley (1995), p.476).

Proof of Theorem 2.1. To show that L(θ) has a local minimizer θ̂ satisfying ‖θ̂ −
θ‖ = OP (n−1/2), it suffices to show that, for any given ν > 0, there exists a constant
C such that, for all large enough n,

P

[
inf
‖ϑ‖=C

χ(ϑ) > 0
]
≥ 1− ν, where χ(ϑ) = L(θ0 + ϑ/

√
n)− L(θ0). (2.41)

This means that, with probability at least 1−ν, L(θ0 +ϑ/
√
n) > L(θ0) for ‖ϑ‖ = C.

Therefore, the continuous function L(θ) has a local minimizer on the compact
ball {θ0 + ϑ/

√
n : ‖ϑ‖ ≤ C}, and the minimizer, denoted by θ̂, must satisfy

‖θ̂ − θ0‖ = OP (n−1/2).
Partition ϑ according to θ0 as ϑ = (ϑTβ , ϑTα , ϑ1, . . . , ϑk)T . Define the random

functions

Dij(ϑ) = g(Xi, β + ϑβ)− g(Xi, β)
s(Xi, α) + s(Xi, α + ϑα)

s(Xi, α) [Qε(τj) + ϑj]−Qε(τj) (2.42)

for i = 1, . . . , n, j = 1, . . . , k. It is easy to see that

Yi − g(Xi, β + ϑβ)− s(Xi, α + ϑα)[Qε(τj) + ϑj]
s(Xi, α) = εi −Qε(τj)−Dij(ϑ).

From the above equation and the linearity ρτ (cz) = cρτ (z) for c > 0, for χ(ϑ) in
(2.41),

χ(ϑ) =
n∑
i=1

k∑
j=1

wjs(Xi, α)
h(Xi)

{
ρτj
(
εi −Qε(τj)−Dij(ϑ/

√
n)
)
− ρτj (εi −Qε(τj))

}
(2.43)

By Knight’s identity (Knight (1998)) ρτ (x − y) − ρτ (x) = −y(τ − 1(x < 0)) +



30

∫ y
0 (1(x < s)− 1(x < 0)) ds,

χ(ϑ) = −
k∑
j=1

n∑
i=1

wjs(Xi, α)
h(Xi)

Dij(ϑ/
√
n)[τj − 1(εi < Qε(τj))] +R(ϑ), (2.44)

where

R(ϑ) =
k∑
j=1

wj

{
n∑
i=1

s(Xi, α)
h(Xi)

∫ Dij

(
ϑ√
n

)
0

[1(εi < Qε(τj) + s)− 1(εi < Qε(τj))] ds
}
.

Applying Theorem 2.9, we have

sup
‖ϑ‖≤C

∣∣∣∣R(ϑ)− 1
2ϑ

TMϑ

∣∣∣∣ = oP (1). (2.45)

where M is defined in Theorem 2.1.
Let Ḋij(ϑ) be the gradient of Dij(ϑ). By the same martingale-discretization-

truncation technique used in the proof of Lemma 2.2, it can be shown that

sup
‖ϑ‖≤C

∣∣∣∣∣
k∑
j=1

n∑
i=1

wjs(Xi, α)
h(Xi)

[
Dij

(
ϑ√
n

)
−Dij(0)− ϑT Ḋij(0)√

n

]
[τj − 1εi<Qε(τj)]

∣∣∣∣∣
= oP (1). (2.46)

Note that Dij(0) = 0. From (2.44), (2.45) and (2.46),

χ(ϑ) = −ϑTγn + 1
2ϑ

TMϑ+ oP (1) (2.47)

holds uniformly on ‖ϑ‖ ≤ C, where

γn = 1√
n

n∑
i=1

ξi and ξi =
k∑
j=1

wjs(Xi, α)
h(Xi)

[τj − 1εi<Qε(τj)]Ḋij(0). (2.48)

From the proof of Lemma 2.5, {ξi}i∈N is a sequence martingale differences. By the
orthogonality of martingale differences, E[‖γn‖2] = n−1∑n

i=1 E[‖ξi‖2] = E[‖ξ0‖2] <
∞. The Schwarz inequality then gives that |ϑTγn| ≤ ‖ϑ‖‖γn‖ = COP (1) on
‖ϑ‖ = C. On the other hand, on ‖ϑ‖ = C, ϑTMϑ ≥ ρ0‖ϑ‖2 = ρ0C

2, where ρ0 is
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the smallest eigenvalue of M and ρ0 > 0 (Lemma 2.4). Since the quadratic term
grows faster than the linear term COP (1), we can choose a large enough C so that
(2.41) holds.

To prove the CLT for θ̂, let ϑ =
√
n(θ − θ0). Since θ̂ is a local minimizer of the

criterion function L(θ) in (2.3), the reparameterized parameter ϑ̂ =
√
n(θ̂− θ0) is a

local minimizer of the reparameterized function χ(ϑ) defined in (2.41). By (2.47),
χ(ϑ) = −ϑTγn +ϑTMϑ/2 + oP (1) on the space of functions topologized by uniform
convergence on compact sets. Also, by the above analysis, the local minimizer ϑ̂
satisfies ‖ϑ̂‖ = OP (1). Thus, by Theorem 2.7 of Kim and Pollard (1990) (see also
the proof of Theorem 3 in Knight and Fu (2000)),

ϑ̂ = arg min
ϑ

(
−ϑTγn + 1

2ϑ
TMϑ

)
+ oP (1) = M−1γn + oP (1). (2.49)

Note that Cov(τ − 1εi<Qε(τ), τ
′ − 1εi<Qε(τ ′)) = min(τ, τ ′)− ττ ′ for τ, τ ′ ∈ (0, 1).

Applying Lemma 2.5, we have γn ⇒ N (0,Ω) with Ω defined in Theorem 1. There-
fore, we conclude that ϑ̂ =

√
n(θ̂ − θ0)⇒ N (0,M−1ΩM−1).

Proof of Theorem 2.2. For notational convenience, write

U = ġ(X, β)
h(X) , V = ṡ(X,α)

h(X) , η = s(X,α)
h(X) , cj = wjfε(Qε(τj)), dj = Qε(τj).

For M in (2.7), we have the partitioned form:

M =



E
[
UUT

η

] k∑
j=1

cj E
[
UV T

η

] k∑
j=1

cjdj E[U ]c1 E[U ]c2 · · · E[U ]ck

E
[
V UT

η

] k∑
j=1

cjdj E
[
V V T

η

] k∑
j=1

cjd
2
j E[V ]c1d1 E[V ]c2d2 · · · E[V ]ckdk

E[UT ]c1 E[V T ]c1d1 E[η]c1 0 · · · 0
E[UT ]c2 E[V T ]c2d2 0 E[η]c2 · · · 0

... ... ... ... . . . ...
E[UT ]ck E[V T ]ckdk 0 0 · · · E[η]ck


:=
[
A B

BT D

]

where A ∈ R(p+q)×(p+q), B ∈ R(p+q)×k, D ∈ Rk×k. By the block matrix inversion
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formula, with E = A−BD−1BT :[
A B

BT D

]−1

=
[

E−1 −E−1BD−1

−D−1BTE−1 D−1 +D−1BTE−1BD−1

]
.

Therefore by (2.48), (2.49), it follows that

√
n

[(
β̂

α̂

)
−

(
β

α

)]
= E−1 1√

n

n∑
i=1

k∑
j=1

wj[τj − 1εi<Qε(τj)]Uj(Xi) + oP (1), (2.50)

where

Uj(Xi) =
[

ġ(Xi, β)/h(Xi)
Qε(τj)ṡ(Xi, α)/h(Xi)

]
−BD−1ej

s(Xi, α)
h(Xi)

. (2.51)

Condition 3 implies that
∑k

j=1wjQε(τj)fε(Qε(τj)) = 0. It then can be shown that

E =
[
Mβ

∑k
j=1wjfε(Qε(τj)) 0

0 Mα

∑k
j=1wjQε(τj)2fε(Qε(τj))

]
(2.52)

is a block diagonal matrix. The result then follows from (2.50)–(2.52) and Lemma
2.5.

Proof of Theorem 2.7. Recall χ(ϑ) in (2.41). With L̄(θ) and L̃(θ) in (2.18) and
(2.19), define

χ̄(ϑ) = L̄(θ0 + ϑ/
√
n)− L̄(θ0) and χ̃(ϑ) = L̃(θ0 + ϑ/

√
n)− L̃(θ0). (2.53)

By the proof of Theorem 1, χ̄(ϑ) has the uniform quadratic approximation (2.47) on
compact sets, which leads to the asymptotic Bahadur representation of

√
n(θ̄ − θ0)

in (2.49). By the same argument, to prove the asymptotic
√
n-equivalence of θ̃

and θ̄, it suffices to prove that χ̃(ϑ)− χ̄(ϑ) = oP (1), uniformly on ‖ϑ‖ ≤ C for any
C > 0.

Recall Dij(ϑ) in (2.42). Let

Tij(ϑ) = ρτj
[
εi −Qε(τj)−Dij(ϑ/

√
n)
]
− ρτj [εi −Qε(τj)] (2.54)
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It then can be seen that

χ̄(ϑ) =
k∑
j=1

w∗j

[
n∑
i=1

Tij(ϑ)
]

and χ̃(ϑ) =
k∑
j=1

ŵ∗j

[
n∑
i=1

s(Xi, α)
s(Xi, α̂0)Tij(ϑ)

]

Applying the elementary identity x/y−1 = (x−y)2/(xy)−(y−x−z)/x−z/x with
x = s(Xi, α), y = s(Xi, α̂

0) and z = (α̂0 − α)T ṡ(Xi, α), we have the decompsition

χ̃(ϑ)− χ̄(ϑ) =
k∑
j=1

{
(ŵ∗j − w∗j )∆1j(ϑ) + ŵ∗j [∆2j(ϑ)−∆3j(ϑ)−∆4j(ϑ)]

}
,

where

∆1j(ϑ) =
n∑
i=1

Tij(ϑ),

∆2j(ϑ) =
n∑
i=1

[s(Xi, α)− s(Xi, α̂
0)]2

s(Xi, α)s(Xi, α̂0) Tij(ϑ),

∆3j(ϑ) =
n∑
i=1

s(Xi, α̂
0)− s(Xi, α)− (α̂0 − α)T ṡ(Xi, α)

s(Xi, α) Tij(ϑ),

∆4j(ϑ) = (α̂0 − α)T
n∑
i=1

ṡ(Xi, α)
s(Xi, α)Tij(ϑ).

Since k is fixed and ŵ∗j − w∗j = oP (1), it suffices to show that ∆1j(ϑ) = OP (1),
∆2j(ϑ) = oP (1), ∆3j(ϑ) = oP (1), and ∆4j(ϑ) = oP (1), uniformly on ‖ϑ‖ ≤ C. The
same argument in (2.43)–(2.47) yields ∆1j(ϑ) = OP (1) and ∆4j(ϑ) = OP (‖α̂0 −
α‖) = OP (n−1/2), uniformly on ‖ϑ‖ ≤ C. It remains to prove the other two
assertions.

First, consider ∆2j(ϑ). For Tij(ϑ) in (2.42), since for any x, y ∈ R, τ ∈ (0, 1),
|ρτ (x− y)− ρτ (x)| ≤ |y|, it follows by Condition 2(v) and Theorem 9.19 in Rudin
(1976) that

|Tij(ϑ)| ≤ |Dij(ϑ/
√
n)| = |Dij(ϑ/

√
n)−Dij(0)| ≤ c1Vi/

√
n (2.55)
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uniformly on ‖ϑ‖ ≤ C, for some constant c1 > 0. Similarly,

|s(Xi, α̂
0)− s(Xi, α)| ≤ Vi‖α̂0 − α‖. (2.56)

An application of Lemma 2.1(i) with Ui = 1 gives max1≤i≤n |Vi| = OP (n1/δ).
Since ‖α̂0−α‖ = OP (n−1/2) and δ > 2, from (2.56), we have max1≤i≤n |s(Xi, α̂

0)−
s(Xi, α)| ≤ ‖α̂0−α‖max1≤i≤n |Vi| = oP (1). Thus, by the condition s(Xi, α) > c > 0
in Condition 2(ii), with probability tending to one, s(Xi, α̂

0) > c/2 for all i. Thus,
in view of (2.55)–(2.56), we conclude that

sup
‖ϑ‖≤C

|∆2j(ϑ)| ≤ OP (1)
n3/2

n∑
i=1

V 3
i = oP (1),

where the last convergence follows by applying Lemma (2.1)(iii) with Ui = 1.
Finally, let’s consider ∆3j(ϑ). By expanding one more term in (2.56), we have

|s(Xi, α̂
0)−s(Xi, α)− (α̂0−α)T ṡ(Xi, α)| ≤ Vi‖α̂0−α‖2, which together with (2.55)

gives

sup
‖ϑ‖≤C

|∆3j(ϑ)| ≤ OP (1)
n3/2

n∑
i=1

V 2
i = oP (1).

This completes the proof.

2.5.3 Proofs of Theorem 2.3, Theorem 2.4, Theorem 2.5, The-
orem 2.6, Theorem 2.8

Recall the matrix Γ in (2.14). With τj = j/(k + 1), direct calculation shows that

Γ−1 = (k + 1)



2 −1
−1 2 1

. . . . . . . . .
−1 2 −1

−1 2


, (2.57)

that is, Γ−1 is a tri-diagonal matrix with 2(k + 1) on the diagonal, −(k + 1) on the
super-/sub-diagonals, and 0 elsewhere.
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Lemma 2.6. Let `(τ) : (0, 1)→ R satisfy Condition 4, then for Γ defined in (2.14),
it holds that

lim
k→∞

LTΓ−1L =
∫ 1

0
[`′(τ)]2 dτ, where L = (`(τ1), . . . , `(τk))T .

Proof. Let δ = 1/(k + 1). By τj = j/(k + 1) and (2.57), direct calculation shows
that

LTΓ−1L = (k + 1)
{
`2(τ1) + `2(τk) +

k∑
j=2

[`(τj)− `(τj−1)]2
}

= (k + 1)[`2(τ1) + `2(τk)] +Rk +
∫ 1−δ

δ

[`′(t)]2 dt, (2.58)

where

Rk = −k + 1
2

k∑
j=2

∫ τj

τj−1

∫ τj

τj−1

[`′(t)− `′(s)]2 dt ds.

For t, s ∈ [τj−1, τj], |`′(t)− `′(s)| = |
∫ t
s
`′′(v) dv| ≤

∫ τj
τj−1
|`′′(v)| dv. By Schwarz

inequality,

max
t,s∈[τj−1,τj ]

|`′(t)− `′(s)|2 ≤
[∫ τj

τj−1

|`′′(v)| dv
]2

≤ δ

∫ τj

τj−1

[`′′(v)]2 dv.

It then follows that

|Rk| ≤
k + 1

2

k∑
j=2

(τj − τj−1)2 max
t,s∈[τj−1,τj ]

|`′(t)− `′(s)|2 ≤ δ2

2

∫ 1−δ

δ

|`′′(t)|2 dt.

As k → ∞,
∫ 1−δ
δ

[`′(τ)]2 dτ →
∫ 1

0 [`′(τ)]2 dτ , regardless of whether the latter
integral is finite or infinite. The result then follows from the efficiency regularity
condition of `(·), which is given as Condition 4.

Proof of Theorem 2.3. We prove the result by constructing least squares estimates
for a special linear regression model. Consider i.i.d. data (X1, Z1), . . . , (Xn, Zn)
from

Z = µ+ ġ(X, β)T
s(X,α) γ + e, e ∼ N (0, 1) independent of X, (2.59)
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where µ and γ are unknown parameters to be estimated from the data, whereas α
and β are known. Consider the weighted least squares estimation of (µ, γ):

(µ̂, γ̂LS(h)) = arg min
u,r

n∑
i=1

wi

[
Zi − u−

ġ(Xi, β)T
s(Xi, α) r

]2

with wi = s(Xi, α)
h(Xi)

.

By the classical least squares estimation theory, we have

√
n[γ̂LS(h)− γ]⇒ N (0, Jβ(h)),

where Jβ(h) is defined in Theorem 2(i). On the other hand, by letting wi ≡ 1 or
equivalently h(Xi) = s(Xi, α), the resulting ordinary least squares estimator has
asymptotic covariance matrix Jβ(s(·, α)). Since e has a standard normal distribution,
the ordinary least squares estimator is exactly the maximum likelihood estimator,
which is most efficient and has the smallest variance. That is, Jβ(h) ≥ Jβ(s(·, α)).

The case of Jα(h) can be treated by replacing ġ(X, β) in (2.59) with ṡ(X,α).

Proof of Theorem 2.4. Using Γ and λ in (2.14), Iβ(w) = wTΓw/(wTλ)2.
We first prove the assertion (i). Since Iβ(w) = Iβ(cw) for c 6= 0, minw Iβ(w) is

equivalent to minw{Ĩβ(w) = wTΓw : wTλ = 1}. For this constrained problem, the
unique minimizer is w = Γ−1λ/(λTΓ−1λ). Thus, the minimizer of Iβ(w) takes the
form w◦ = cΓ−1λ for some constant c.

To show the assertion (ii), plugging w◦ = cΓ−1λ into Iβ(w) = wTΓw/(wTλ)2,
we get Iβ(w◦) = 1

λTΓ−1λ
. By Lemma 2.6, λTΓ−1λ →

∫ 1
0 [ρ′(τ)]2 dτ with ρ(τ) =

fε(Qε(τ)). Define the transformation u = Qε(τ). Then ∂τ/∂u = fε(u). By the
chain rule,

ρ′(τ) = (∂ρ/∂u)(∂u/∂τ) = f ′ε(u)/fε(u),∫ 1

0
[ρ′(τ)]2 dτ =

∫
R
[f ′ε(u)]2/fε(u) du = F(fε).

This completes the proof.

Proof of Theorem 2.5. Write λj = fε(Qε(τj)), j = 1, . . . , k, and λ0 = λk+1 = 0. By
(2.57), Γ−1λ = (k+ 1)(2λ1− λ0− λ2, 2λ2− λ1− λ3, . . . , 2λk − λk−1− λk+1)T . As in
Theorem 2.4, write ρ(τ) = f(Qε(τ)). Define u = Qε(τ). By the proof of Theorem
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2.4(ii), ρ′(τ) = f ′ε(u)/fε(u) = (log fε(u))′. Applying the chain rule once more gives
that

ρ′′(τ) = ∂ρ′(τ)
∂u

∂u

∂τ
= [log fε(u)]′′

fε(u) .

If log fε(u) is concave, then [log fε(u)]′′ ≤ 0. By the above expression of ρ′′(τ),
ρ′′(τ) ≤ 0 hence ρ(τ) is concave, which implies that 2λj − λj−1 − λj+1 ≥ 0 hence
Γ−1λ satisfies the non-negative constraint.

Conversely, assume Γ−1λ ≥ 0 for every k, then for every k ∈ N, it is easy to
verify that if i+ j is even, then

ρ

(
i+ j

2(k + 1)

)
≥ 1

2ρ
(

i

k + 1

)
+ 1

2ρ
(

j

k + 1

)
.

Continuity argument then shows that for every τ1, τ2 ∈ (0, 1), it follows that
ρ((τ1 + τ2)/2) ≥ ρ(τ1)/2 + ρ(τ2)/2, whence ρ(τ) is concave, consequently, log fε(u)
must be concave.

Proof of Theorem 2.6. Using Ξ and ζ in (2.17), we can write Iα(w) = wTΞw
(wT ζ)2 .

To prove (i), for even k, under Condition 3 and Condition 2(i), we have
Qε(τj) 6= 0 for all j. The result follows from the same argument in the proof for
Theorem 2.4(i).

For odd k, Qε(k∗) = 0 and we can drop τk∗ from Ξ and ζ to form Ξ∗ and ζ∗.
Let w̄ = (w1, . . . , wk∗−1, wk∗+1, . . . , wk)T . Then Iα(w) = Iα(w̄) = w̄TΞ∗w̄/(w̄T ζ∗)2

has minimizer w̄ = cΞ∗−1ζ∗.
The symmetry of the solution w◦α is clear from part (ii), by examining the forms

of Ξ,Ξ∗, ζ, ζ∗ and using Condition 3.
We next prove (ii). For even k, from w◦α = cΞ−1ζ and Iα(w) = wTΞw/(wT ζ)2,

we have Iα(w◦α) = 1/(ζTΞ−1ζ). Let P = diag(Qε(τ1), . . . , Qε(τk)). With Γ in (2.14),
we have Ξ = PΓP and ζTΞ−1ζ = (P−1ζ)TΓ−1(P−1ζ). For s(τ) = Qε(τ)fε(Qε(τ)),
P−1ζ = (s(τ1), . . . , s(τk))T . Thus, by Lemma 2.6, ζTΞ−1ζ →

∫ 1
0 [s′(τ)]2 dτ .

For odd k, Iα(w◦α) = 1/(ζ∗TΞ∗−1ζ∗). Recall P defined above and Γ in (2.14).
Define P ∗ and Γ∗ by removing the k∗-th row and k∗-th column from P and Γ. It
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can be verified that

Γ∗−1

k + 1 =





2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 3
2 −1

2 (k∗ − 1)-th
−1

2
3
2 −1 k∗th
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

Note that Ξ∗ = P ∗Γ∗P ∗. Thus, using the above inversion matrix and by the
same argument in Lemma 2.6, it can be shown that

ζ∗TΞ∗−1ζ∗ = (P ∗−1ζ∗)TΓ∗−1(P ∗−1ζ∗)→
∫ 1

0
[s′(τ)]2 dτ.

The result then follows from
∫ 1

0 [s′(τ)]2 dτ = G(fε) via the transformation
u = Qε(τ).

Proof of Theorem 2.8. By Theorem 2.1, ‖α̂0 − α‖ = OP (n−1/2) and ‖β̂0 − β‖ =
OP (n−1/2). Since k is fixed, in order to prove ŵ∗j = wj + oP (1), it suffices to prove
(i) Q̃ε(τ) = Qε(τ) + oP (1) for each fixed τ ∈ (0, 1); and (ii) f̃ε(u) = fε(u) + oP (1)
for each fixed u.

First, we prove Q̃ε(τ) = Qε(τ) + oP (1). For ε̂i in (2.20), we have

ε̂i = εi + ∆i,∆i = g(Xi, β)− g(Xi, β̂0)
s(Xi, α̂0) + s(Xi, α)− s(Xi, α̂

0)
s(Xi, α̂0) εi.

In the proof of Theorem 2.7, it has been shown that, with probability approaching
to one, s(Xi, α̂

0) > c/2 > 0 for all i. Let Vi be defined as in (2.5). Similar to (2.56),

|∆i| =
OP (1)√

n
Vi(1 + |εi|). (2.60)
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Since Vi ∈ Lδ (Condition 2(v)), Viεi ∈ Lδ (Condition 6(i)), and Lemma 2.1(i),
max1≤i≤n Vi(1 + |εi|) = OP (n1/δ). Thus, ε̂i = εi + oP (1) uniformly for all i, and
consequently Q̃ε(τ) = Q̄ε(τ) + oP (1), where Q̄ε(τ) is the τ -th sample quantile
of ε1, . . . , εn. By standard theory of sample quantiles, Q̄ε(τ) = Qε(τ) + oP (1).
Therefore Q̃ε(τ) = Qε(τ) + oP (1).

Next, we prove f̃ε(u) = fε(u) + oP (1) for each fixed u. Since K is Lipschitz, it
follows that

f̃ε(u) = 1
nbn

n∑
i=1

K

(
u− εi
bn

)
+ O(1)

nb2
n

n∑
i=1
|∆i|

By standard theory of nonparametric kernel density estimation,

1
nbn

n∑
i=1

K

(
u− εi
bn

)
= fε(u) + oP (1). (2.61)

By (2.60),

1
nb2

n

n∑
i=1
|∆i| = OP (1) 1

nb2
n

n−1/2
n∑
i=1

Vi(1 + |εi|) = OP ((
√
nb2

n)−1) = oP (1)

in view of bn ∝ n−1/5 (Condition 6(ii)). This completes the proof.



Chapter 3 |
Estimating Parameters in Non-
linear Heteroscedastic Models:
Numerical Studies and Simula-
tion

3.1 Introduction

To implement the adaptive estimation method proposed in Chapter 2, we are
required to solve the following optimization problem:

min
β,α,q1,...,qk

n∑
i=1

K∑
k=1

wkh
−1
i ρτk(yi − g(xi, β)− s(xi, α)qk), (3.1)

where β ∈ Rp and α ∈ Rq are the regression parameter and the dispersion parameter
respectively, (q1, . . . , qk)′ is the nuisance parameter, representing the true quantiles
of the error distribution. In (3.1), the weights {wk} and {hi} are known and
satisfy wk = wK+1−k, wk > 0, k = 1, . . . , K, hi > 0, i = 1, . . . , n. Although our
method can be generalized to asymmetric error case, throughout the chapter we
will impose the symmetric error condition to ε, which implies an implicit constraint:
qk = qK+1−k, k = 1, . . . , K. This condition typically is fulfilled by manually
symmetrizing an preliminary result or coding this constraint into the optimization
routines explicitly.
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Generally speaking, the optimization problem (3.1) is very challenging. The
reason is threefold:

1. The non-linearity of the regression function g(x, ·) and the dispersion function
s(x, ·) characterizes (3.1) a nonlinear optimization problem, which in general
is considered to be very hard, in particular, no algorithm is guaranteed to
converge theoretically for a general problem such as (3.1).

2. The non-differentiability of objective functions ρτk(·) prohibits direct applica-
tion of any efficient derivative-based optimization algorithm.

3. The multiplicative structure s(x, α)q typically makes α and (q1, . . . , qK)′ non-
identifiable, especially when they are minimized jointly (simultaneously).
In addition, such structure makes the problem a non-convex optimization
program.

To the best of our knowledge, Challenge 1 does not admit any definite answers
— to discuss under which circumstances does (3.1) allow for a global (or local)
minimizer and its convergence property is more a mission for operations researchers
than statisticians. Therefore, although a general algorithm for solving (3.1) is
proposed in Section 3.3, it is not warranted that this algorithm would work well
for arbitrary specification of g and s. In this chapter, our main goal is to address
Challenge 2 and Challenge 3 above and the details can be found in Section 3.3.

The remaining of this chapter is organized as follows: in Section 3.2 we review
some representative algorithms used to solve regression quantiles. In literature,
these algorithms are described under the linear single quantile regression case, in
lieu of the nonlinear composite quantile regression case. Thus the leading purpose
of this section is to discuss how these state-of-the-art algorithms may be generalized
to the nonlinear composite quantile regression case. Section 3.3 gives a detailed
description of our “MMLP” algorithm for solving the program (3.1). The name
“MMLP” clearly indicates that our algorithm is a hybrid of the MM algorithm
and the linear programming method. For completeness, a brief introduction to
the MM algorithm is given at the beginning of this section. In Section 3.4 we will
investigate the numerical performance of the MMLP algorithm proposed in Section
3.3 and recommend a modified version of MMLP for practical applications. In
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addition to this topic, a self-start procedure that computes reasonable initialized
parameter values, including the nuisance parameters is also reported. In Section
3.5, we compare our method with several existing estimation methods by running
Monte Carlo studies under two nonlinear heteroscedastic models.

3.2 Literature Review

To open the discussion of computational aspects of quantile regression, let’s first
focus on the classical linear model

yi = x′iβ + εi, i = 1, . . . , n, (3.2)

with {εi} i.i.d. ∼ F . By definition, for τ ∈ (0, 1), the τ -th regression quantile β̂(τ)
is the solution to the following optimization problem:

min
b∈Rp

n∑
i=1

ρτ (yi − x′ib), (3.3)

where ρτ (z) = (τ − I(z < 0))z = τz+ + (1 − τ)z− is the well-known “check”
function. When τ = 0.5, (3.3) reduces to the famous Least Absolute Deviation
problem: minb

∑n
i=1 |yi − x′ib|. Historically, the method of least absolute deviation

(LAD) couldn’t receive similar popularity as its closely related sibling: the method
of least squares (LS), mainly due to by contrast to the LS method, it doesn’t
admit a closed form solution. For a historical account for this interesting topic, see
Portnoy and Koenker (1997) and Chapter 1 of Koenker (2005).

It was not until the introduction of the simplex algorithm in the late 1940s
that a practical, general method for computing (3.3) was made available. It is
well-known that the problem (3.3) may be formulated as the linear program:

min{0′b+ τe′u+ (1− τ)e′v : y = Xb+ u− v, (u, v) ∈ R2n
+ } (3.4)

and has dual formulation

max{y′a : X ′a = (1− τ)X ′e, a ∈ [0, 1]n}. (3.5)
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In the above formulations, y = (y1, . . . , yn)′ ∈ Rn×1, X ′ = [x1, . . . , xn] ∈ Rn×p and
e is an n-vector of all ones.

There are two state-of-the-art algorithms in literature to solve (3.4) and (3.5),
namely, the simplex methods and the interior point methods. There are, however,
other methods to solve (3.3) in addition to these two, for example, the finite
smoothing algorithm proposed by Chen (2007). The computational aspects of
quantile regression are also widely discussed under more complicated models or as
a leading example of some innovative optimization algorithms, in this respect, see
Fan et al. (2014), Fan et al. (2016) and Liu et al. (2016). In the following, we will
briefly review the classical simplex methods and the interior point methods.

The simplex-type algorithms are guided by very strong geometric intuition —
the basic idea is to look for vertex solution across the surface of the diamond-shaped
constraint set. Simply speaking, the algorithm is divided into two phases: in phase
I an initial feasible vertex of the problem is found, and then in phase II, we proceed
from one such vertex to another until optimality is achieved. In quantile regression
problems, the implementation of phase I is typically easy, and the phase II is
implemented in the path-breaking algorithm of Barrodale and Roberts (1974).
The innovative part of the Barrodale and Roberts (1974) algorithm is that rather
than simply adopting the conventional simplex strategy of traveling only as far
as the next vertex, they proposed to continue in the original direction as long as
doing so continued to reduce the value of the objective function. In this way they
dramatically reduce the number of simplex pivot operations required when the basis
changes. For details of this algorithm and its application in quantile regression
problems, we refer readers to Barrodale and Roberts (1974) and Section 6.2 of
Koenker (2005).

The simplex algorithm is one strategy of the exterior point methods, in the
sense that it relies on an iterative path along the exterior of the constraint set. By
contrast, the interior point methods “work systematically from the interior of the
admissible region and employ some barrier function as a guide to avoid crossing the
boundary” (Koenker (2005), p.191). In quantile regression problems, the algorithm
is the Frisch-Newton method proposed by Portnoy and Koenker (1997). Specifically,
the formulation of Portnoy and Koenker (1997)’s algorithm corresponding to the
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dual formulation (3.5) employs the logarithm barrier function

B(a, s, µ) = y′a+ µ

n∑
i=1

(log ai + log si),

which should be maximized subject to the constraints X ′a = (1 − τ)X ′e and
a + s = e. A Newton step is then followed to bring down the objective value of
B(a, s, µ). Throughout, the barrier parameter µ is gradually decreased to 0 so that
a central path is traced and along which the iterations converge to the optimal
solution. There are many technical issues need to be addressed in implementing
the interior point method to solve (3.4) and (3.5). Among others, Portnoy and
Koenker (1997) gives the primal-dual formulation of the interior point algorithm,
Mehrotra (1992) provides the general guidance of how to decrease µ and handle the
nonlinearity during the Newton step. Further details about the history, convergence
property and advantages of the interior point algorithm may be found in a series of
excellent expository papers of Wright (1992) and Wright (2005).

Let’s conclude this section by making some comparison between the simplex
algorithm and the interior point algorithm. As pointed out by Portnoy and
Koenker (1997), for problems of modest size, both algorithms are competitive
with least squares in terms of computational speed. For small problems, the
simplex implementation is the clear winner, but the interior point algorithm does
considerably better than simplex at larger sample sizes. More importantly, as noted
by Wright (1992), unlike the simplex method, the interior point techniques can
obviously be applied to nonlinear optimization problems. In particular, while it
seems difficult to directly apply the simplex method to nonlinear quantile regression
problems, the interior point method has been successfully generalized to these
problems, see Koenker and Park (1996) and Section 6.6 of Koenker (2005).
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3.3 An “MMLP” Algorithm for Nonlinear Composite
Quantile Regression

This nonlinear quantile regression problem:

min
θ∈Rp

n∑
i=1

ρτ (yi − g0(xi, θ)), (3.6)

where g0 is some known function that is nonlinear in the parameter θ, is clearly
harder to solve than its linear counterpart (3.3). As pointed out at the end of
Section 3.2, (3.6) may be solved by the interior point algorithm proposed by Koenker
and Park (1996). On the other hand, Hunter and Lange (2000) introduce the MM
algorithm to the nonlinear quantile regression community and soon becomes a
strong rival to the interior points methods (Kai et al. (2010) have successfully
applied this MM algorithm to a nonparametric composite quantile regression
problem, though the optimization problem studied there is linear in parameters.).
In Section 5 of Hunter and Lange (2000), the authors made a comprehensive
numerical comparison between the MM algorithm and the interior point algorithm,
concluding that “although neither of the two algorithms outpaces the other or
produces more accurate solutions in Table 1,∗ the MM algorithm is the more stable
of the two”. Due to its better numerical stability, as well as its conceptual simplicity
and ease of implementation, we choose to extend the MM algorithm, instead of the
interior point algorithm to the current setting (3.1) that we are interested in.

The nature of the MM algorithm can be briefly described as follows: suppose
we want to minimize the objective function L(θ) : Rp → R. If θ(k) denotes the
current iterate in finding the minimum point, then the MM algorithm proceeds in
two steps. First, we create a surrogate function Q(θ|θ(k)) : Rp × Rp → R satisfying

Q(θ(k)|θ(k)) = L(θ(k))

Q(θ|θ(k)) ≥ L(θ) for all θ.

The function Q(θ|θ(k)) is said to majorize L(θ) at θ(k) (aka, the surrogate function).
∗In this table, 14 different nonlinear models are investigated and the thousands of FLOPs

required until convergence for two algorithms are reported.
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In the second step, we choose θ(k+1) to minimize Q(θ|θ(k)) with respect to θ. In
general, it is a challenge to construct a good surrogate function which simultaneously
majorizes L(θ) at θ(k) and is itself easy to minimize.

Since the check function ρτ (z) is not differentiable at z = 0, so instead of
seeking for the surrogate function for ρτ (z), Hunter and Lange (2000) suggested
seeking for the surrogate function for the perturbation of ρτ (z), which is ρετ (z) :=
ρτ (z)− ε

2 log(ε+|z|). It is remarkable that for any ε > 0, ρετ (z) is smooth everywhere
in R1. In Hunter and Lange (2000), they showed that the ρετ (z) is majorized at z(k)

by the quadratic function

ζετ (z|z(k)) = 1
4

[
z2

ε+ |z(k)|
+ (4τ − 2)z + c

]
,

where c is a constant chosen so that ζετ (z(k)|z(k)) = ρετ (z(k)). The relations between
ρτ (z), ρετ (z) and ζετ (z|z(k)) are shown in Figure 3.1.

As emphasized before, any joint minimization procedure to the problem (3.1)
may bring numerical stability issues. Therefore, in order to deploy the MM
algorithm, let’s assume the values of nuisance parameters q1, . . . , qK are known
temporarily, and the goal now is to solve the following nested problem of (3.1):

min
β,α

n∑
i=1

K∑
k=1

wkh
−1
i ρτk(yi − g(xi, β)− s(xi, α)qk), (3.7)

To derive the MM algorithm for (3.7) using the surrogate functions ζετk , k =
1, . . . , K, let θ ∈ Rp+q be the vector of parameters (β1, . . . , βp, α1, . . . , αq)′ and
assume we are currently at the (m+ 1)-st iterate. The MM algorithm operates by
minimizing the majorizer

Qε(θ|θ(m)) =
n∑
i=1

K∑
k=1

wkh
−1
i ζετk(rik|r

(m)
ik )

with respect to θ. In the above expression, rik = rik(θ) = yi − g(xi, β)− s(xi, α)qk,
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Figure 3.1. The original check function ρτ (z) (black solid), its perturbation function
ρετ (z) (red dashed), and the surrogate function ζετ (z|z(k)) (blue dotted) of ρετ (z) at z(k).
In this picture, τ = 0.3, ε = 0.1 and z(k) = 2.

i = 1, . . . , n, k = 1, . . . , K. Direct calculation shows that

∂Qε(θ|θ(m))
∂β

= −1
2

n∑
i=1

K∑
k=1

wkh
−1
i

[
rik

ε+ |r(m)
ik |

+ 2τk − 1
]
ġ(xi, β),

∂Qε(θ|θ(m))
∂α

= −1
2

n∑
i=1

K∑
k=1

wkh
−1
i

[
rik

ε+ |r(m)
ik |

+ 2τk − 1
]
qkṡ(xi, α),
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and

∂Q2
ε(θ|θ(m))
∂β2 =1

2

n∑
i=1

K∑
k=1

wkh
−1
i

{
1

ε+ |r(m)
ik |

ġ(xi, β)ġ(xi, β)′

+
[

rik

ε+ |r(m)
ik |

+ 2τk − 1
]
g̈(xi, β)

}
,

∂Q2
ε(θ|θ(m))
∂α2 =1

2

n∑
i=1

K∑
k=1

wkh
−1
i

{
1

ε+ |r(m)
ik |

q2
kṡ(xi, α)ṡ(xi, α)′

+
[

rik

ε+ |r(m)
ik |

+ 2τk − 1
]
qks̈(xi, α)

}
,

∂Q2
ε(θ|θ(m))
∂α∂β

=1
2

n∑
i=1

K∑
k=1

wkh
−1
i

1
ε+ |r(m)

ik |
qkġ(xi, β)ṡ(xi, α)′.

In line with Hunter and Lange (2000), after omitting the second-order partial
derivatives g̈ and s̈ from the above results, the Newton direction [δ′β, δ′α]′ can be
found by solving the following linear system:

n∑
i=1

K∑
k=1

ġ(xi, β(m))ġ(xi, β(m))′

ε+ |r(m)
ik |

n∑
i=1

K∑
k=1

qkġ(xi, β(m))ṡ(xi, α(m))′

ε+ |r(m)
ik |

n∑
i=1

K∑
k=1

qkṡ(xi, α(m))ġ(xi, β(m))′

ε+ |r(m)
ik |

n∑
i=1

K∑
k=1

q2
kṡ(xi, α(m))ġ(xi, α(m))′

ε+ |r(m)
ik |


[
δβ

δα

]

=


n∑
i=1

K∑
k=1

wkh
−1
i

[
rik

ε+ |r(m)
ik |

+ 2τk − 1
]
ġ(xi, β)

n∑
i=1

K∑
k=1

wkh
−1
i

[
rik

ε+ |r(m)
ik |

+ 2τk − 1
]
qkṡ(xi, α)

 . (3.8)

Denote the solution to the above system by ∆(m)
ε . To guarantee the value of

the surrogate function is decreased, following Hunter and Lange (2000), we take an
appropriate fractional step size α(m) ∈ (0, 1]:

θ(m+1) = θ(m) + α(m)∆(m)
ε , (3.9)
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where

α(m) = max{2−ν : Qε(θ(m) + 2−ν∆(m)
ε |θ(m)) < Qε(θ(m)|θ(m)), ν ∈ N}.

Suppose we have obtained a convergent solution (β′∗, α′∗)′ to the program (3.7),
the next step is to update the parameters q1, . . . , qK . Denote yi − g(xi, β∗) by ỹi,
s(xi, α∗) by x̃i, i = 1, . . . , n, and the goal is to solve:

min
q1,...,qK

n∑
i=1

K∑
k=1

wkh
−1
i ρτk(ỹi − x̃iqk). (3.10)

It can be easily identified that the program (3.10) has the following linear
programming formulation:

min
ξ,u,v

0′ξ + c′1u+ c′2v, subject to
X̃1 I 0 · · · 0 −I 0 · · · 0
X̃2 0 I · · · 0 0 −I · · · 0
... ... ... . . . ... ... ... . . . ...
X̃K 0 0 · · · I 0 0 · · · −I



ξ

u

v

 =


ỹ

ỹ
...
ỹ

 (3.11)

u ≥ 0, v ≥ 0.

In the above formulation, ξ = (q1, . . . , qK)′ ∈ RK×1, c1 = (w1τ1, . . . , wKτK)′ ⊗
(h−1

1 , . . . , h−1
n )′ ∈ R(Kn)×1, c2 = (w1(1 − τ1), . . . , wK(1 − τK))′ ⊗ (h−1

1 , . . . , h−1
n )′ ∈

R(Kn)×1, u = (u′1, . . . , u′K)′ ∈ R(Kn)×1
+ , v = (v′1, . . . , v′K)′ ∈ R(Kn)×1

+ . For each
k ∈ {1, . . . , K}, uk = (u1k, . . . , unk)′ ∈ Rn×1

+ , vk = (v1k, . . . , vnk)′ ∈ Rn×1
+ . I is an

n-by-n identity matrix, ỹ = (ỹ1, . . . , ỹn)′ ∈ Rn×1, and X̃k is an n-by-K matrix with
its k-th column (x̃1, . . . , x̃n)′ and all the other entries zero. As a linear program,
(3.11) can be handled by directly calling the optimization routine, say, the MATLAB
function linprog. If it is presumed that the error term is symmetric, then we may
add further constraints ξj = ξK+1−j, j = 1, . . . , bK/2c into (3.11) to address the
symmetry condition.

Now we have seen why our algorithm is termed as “MMLP”: it consists of
alternating steps of updating the parameter of interest (β′, α′)′, given the nuisance
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parameter (q1, . . . , qK)′, using the MM algorithm, and of updating the nuisance
parameter (q1, . . . , qK)′, given (β′, α′)′, using the LP method. The algorithm is
terminated when we repeat such outer iterates for C times. Intuitively, it is expected
that through the outer iterates between MM steps and LP steps, the parameter
of interest would converge to the optimal solutions (at least to a local optimum).
Although it is our belief that a better estimates of (q1, . . . , qK)′ would result in more
accurate estimate of (β′, α′)′, there is no guarantee for such convergence in theory,
partially may be due to the fact that updating (q1, . . . , qK)′ doesn’t necessarily
decrease the objective value of the surrogate function, compared to that at the
completion of the last MM step. We will come back to discuss this issue later in
Section 3.4.

The MMLP algorithm for solving the problem (3.1) derived in this section can
be summarized as the pseudo code in Table 1.

Algorithm 1 General MMLP algorithm for nonlinear heteroscedastic composite
quantile regression, with the weights {wk} and {hi} as fixed inputs.
1: Initialize θ(0) = (β(0)′ , α(0)′)′, ξ(0) = (q(0)

1 , . . . , q
(0)
K )′. Set the outer iterate index

` = 1.
2: repeat
3: MM Step: Set the starting value for the MM step as θ(`−1), assume ξ(`−1) to

be known constants. Update θ(`−1) to θ(`) by completing the MM steps (3.8)
and (3.9) multiple times, until the MM algorithm’s convergence condition is
met.

4: LP Step: Evaluate ỹ, X̃1, . . . , X̃K in (3.11) using θ(`). Solve the linear
program (3.11) to update ξ(`−1) to ξ(`).

5: Increase ` to `+ 1.
6: until ` = C

3.4 Further Discussions on the Algorithm

In this section, two important aspects related to the MMLP algorithm proposed
in Section 3.3 will be discussed. The method to pick up a reasonable starting
values, under the assumption of symmetric errors, is studied in Section 3.4.1. In
Section 3.4.2, we investigate two ramifications of the Algorithm 1, and provide
some guidance on which algorithm should be chosen for different purposes.
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3.4.1 Parameters Initialization

Since the core of our Algorithm 1 is MM algorithm, which heavily relies on the
choice of initial values, it is natural to expect that good initial values would speed
up the convergence, and increase the chance of achieving the global minimizer.
Therefore it is critical for us to develop some automatic procedure that provides
users with reasonably good initial values of β, α, as well as (q1, . . . , qK)′.

Recall the model under consideration takes the form:

yi = g(xi, β) + s(xi, α)εi, i = 1, . . . , n,

where s(·, α) > 0, {εi} i.i.d. ∼ ε, whose distribution function is F . Usually we are
willing to further assume that F is symmetric about 0, i.e., F (x) = 1− F (−x) for
any x ∈ R1. For the ease of reference, we will call this condition as symmetric
error condition. Throughout this chapter, without explicit specification, we tacitly
assume the symmetric error condition holds.

Since we don’t impose conditions on the moments of ε, but do have Qε(0.5) = 0
due to the symmetric error condition, the parameter β can be initialized by solving
the nonlinear least absolute deviation problem:

β̂(0) = arg min
b∈Rp

n∑
i=1
|yi − g(xi, b)|

Other estimation method, such as least squares, may also be used to initialize β,
but for robustness consideration, we recommend using β̂(0). After β̂(0) is obtained,
we are able to calculate the residuals ri = yi − g(xi, β̂(0)), i = 1, . . . , n. It is then
conventional to postulate

|ri| ≈ s(xi, α)εi,

or equivalently,
log |ri| ≈ log s(xi, α) + log |εi| (3.12)

Keep in mind that qk has the direct interpretation that it is the τkth quantile
of ε, thus if we are able to uncover the relationship between the quantiles of ε and
log |ε|, then (3.12) suggests a plausible quantile regression framework to estimate
qk, k = 1, . . . , K. Under the symmetric error condition, we have the following
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proposition:

Proposition. For any absolute continuous random variable ε whose distribution
is symmetric about 0 and τ ∈ (0, 1), we have

Qε

(
1 + τ

2

)
= exp[Qlog |ε|(τ)]. (3.13)

Proof. Denote Qlog |ε|(τ) by ξ. By definition,

τ = P [log |ε| ≤ ξ] = P [|ε| ≤ exp(ξ)] = 2P [ε ≤ exp(ξ)]− 1, (3.14)

which implies P [ε ≤ exp(ξ)] = (1 + τ)/2, i.e., Qε((1 + τ)/2) = eξ = exp[Qlog |ε|(τ)].
The symmetric error condition is used in the last equality of (3.14).

In light of (3.12) and the proposition above, for k such that τk > 1/2, we can
perform a nonlinear (2τk − 1)-quantile regression:

Qlog |ri|(2τk − 1|xi) = log s(xi, α) + γk,

in which we treat log |ri|, i = 1, . . . , n as responses and γk as the intercept. When
α and γk is identifiable with each other (i.e., both of them are estimable without
confusion), qk can be initialized as

q
(0)
k = exp(γ̂k), if k satisfies τk > 1/2.

For those k such that τk < 1/2, qk is initialized by symmetry. Additionally, if
the function log s(xi, α) is linear in α, then α can be initialized simultaneously
with qk. Otherwise, the special structure of the dispersion function s(·, α) needs
to be exploited and some ad-hoc self starting procedure needs to be designed, see
Venables and Ripley (2003), pp.216–217.

To solve the nonlinear quantile regression problem (3.12), we can call the R
function nlrq in the quantreg package directly. The nlrq function is based on the
interior point ideas described in Koenker and Park (1996).

It is notable that the general initialization method proposed above may not be
the best way for a specific problem. Whenever possible, we should take advantage
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of the special structure of the model under consideration. In particular, we need
to take advantage of linear parameters, as pointed out by Venables and Ripley
(2003, pp.218–220) and is termed as the partially linear algorithm. It can be much
more stable than methods that do not take advantage of linear parameters, it
requires fewer initial values and it can often converge from poor starting positions
where other procedures fail. To illustrate this point under our setting, we describe
the initialization procedure here for the Model 2 in Section 3.5. Note that before
reparametrization, both the regression function g and the dispersion function s are
linear in parameters, hence it is the classic location-scale model (see Jurečková and
Procházka (1994), Koenker and Zhao (1994)). Because of this nice structure, none
initial values need to be provided to complete the initialization stage. Specifically,
we can do:

Step 1: Perform a linear LAD regression to obtain the initial values β(0), as well
as the residuals rt = yt − x′tβ(0), t = 1, . . . , n.

Step 2: In light of rt ≈ (1 + α1|yt−1|+ α2|yt−2|)εt, qk may be estimated by solving

min
qk,a1k,a2k

n∑
t=3

ρτk(rt − qk − a1k|yt−1| − a2k|yt−2|).

In addition, for each k, we estimate αj by α̂jk = âjk/q̂k, j = 1, 2.

Step 3: Finalize q(0) by taking the symmetric error condition into account, and
initialize α(0)

j by K−1∑K
k=1 α̂jk, j = 1, 2.

3.4.2 Ramifications of the MMLP Algorithm

Now that we have some proposal on the initialization stage of the Algorithm 1,
a natural follow-up question is how we should determine the number of outer
iterates C (aka, “cycles”). Similar question has been discussed in great detail
in pp.14–18 of Carroll and Ruppert (1988), under the generalized least squares
(GLS) framework. It is worth pointing out that the algorithm for GLS described in
Carroll and Ruppert (1988, pp.69–70) and our MMLP algorithm Algorithm 1 for
CQR bear in essential resemblance, at least from the iterative structure point of
view. Specifically, both algorithms have to alternate between steps of estimating
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regression parameters and dispersion parameters. In their monograph, Carroll and
Ruppert (1988) acknowledge that “there has been no clear consensus about the best
of the number of cycles, which reflects the indeterminate nature of the theoretical
calculations.” Through a series of simulation study, they recommend “at least two
cycles of generalized least squares, largely to eliminate the effect of the inefficient
unweighted least-squares estimate.”

Before giving any recommendation on the best choice of C in Algorithm 1, let’s
point out that in Algorithm 1, the weights {wk} and {hi} are treated as fixed during
the whole implementation process. In other words, both {wk} and {hi} are inputs
of the function that implements Algorithm 1 and are never updated in the execution
period of the function. Such specification is indeed useful in some situations, in
particular when we want to evaluate the performance of the algorithm under the
true weights or when we have reliable weights a priori. In practice, however, it
seems heuristic that the optimal weights should be calculated adaptively using the
rules derived in Chapter 2, thus depend on the latest values of β, α†. Therefore,
if C ≥ 2, the Algorithm 1 can be modified accordingly to the Algorithm 2 below,
which takes the varying weights into account.

Algorithm 2 General MMLP algorithm for nonlinear heteroscedastic composite
quantile regression, with weights updated during each outer iterate
1: Initialize θ(0) = (β(0)′ , α(0)′)′, ξ(0) = (q(0)

1 , . . . , q
(0)
K )′. Set the outer iterate index

` = 1, weights wk = 1, k = 1, . . . , K, hi = 1, i = 1, . . . , n.
2: repeat
3: MM Step: Set the starting value for the MM step as θ(`−1), assume ξ(`−1) to

be known constants. Update θ(`−1) to θ(`) by completing the MM steps (3.8)
and (3.9) multiple times, until the MM algorithm’s convergence condition is
met.

4: Compute the optimal weights {wk} and {hi} using θ(`). These weights will
be used in the LP step in this outer iterate and the MM step in the next
outer iterate.

5: LP Step: Evaluate ỹ, X̃1, . . . , X̃K in (3.11) using θ(`). Solve the linear
program (3.11) to update ξ(`−1) to ξ(`).

6: Increase ` to `+ 1.
7: until ` = C

†Interestingly, these weights do not depend on (q1, . . . , qK)′, on the contrary, they influence
the LP step that updates (q1, . . . , qK)′, see Algorithm 2 for details.
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As in the GLS scenario, there seems no theoretical guidance to help us determine
the best choice of C. In addition to that, it is also of our interest that when C ≥ 2,
which of Algorithm 1 and Algorithm 2 gives better estimates. Clearly, as in Carroll
and Ruppert (1988), these two questions need to be answered by simulation study,
as well as from the practical perspective. We will relegate this simulation study to
Section 3.5.

Note that in Algorithm 2, due to the newly added statement 4, in principle
we are facing a distinctive optimization problem (3.1) for each outer iterate. This
feature prevents the declaration of convergence of the algorithm based on the change
of successive objective function values. On the other hand, although Algorithm 2
need not converge theoretically, by simulation we found that the convergence is
usual in the sense that the change of parameters estimates (β′, α′)′ is tiny when
C is large (in experience, when C is around 20). This observation suggests the
following modification of Algorithm 2.

Algorithm 3 General MMLP algorithm for nonlinear heteroscedastic composite
quantile regression, with prespecified convergence threshold ε0
1: Initialize θ(0) = (β(0)′ , α(0)′)′, ξ(0) = (q(0)

1 , . . . , q
(0)
K )′. Set the outer iterate index

` = 1, weights wk = 1, k = 1, . . . , K, hi = 1, i = 1, . . . , n and the threshold ε0.
Set δ = 1.7977× 10308.

2: while ‖δ‖ > ε0 do
3: MM Step: Set the starting value for the MM step as θ(`−1), assume ξ(`−1) to

be known constants. Update θ(`−1) to θ(`) by completing the MM steps (3.8)
and (3.9) multiple times, until the MM algorithm’s convergence condition is
met.

4: Compute δ = ‖θ(`) − θ(`−1)‖.
5: Compute the optimal weights {wk} and {hi} using θ(`). These weights will

be used in the LP step in this outer iterate and the MM step in the next
outer iterate.

6: LP Step: Evaluate ỹ, X̃1, . . . , X̃K in (3.11) using θ(`). Solve the linear
program (3.11) to update ξ(`−1) to ξ(`).

7: Increase ` to `+ 1.
8: end while

Let me conclude this section by briefly commenting Algorithm 1–Algorithm 3.
Algorithm 1 is most useful when we have prior knowledge about the weights {wk}
and {hi}, for which case we use Algorithm 1 by substituting {wk} and {hi} into
(3.1) and typically setting C = 2. This is particularly useful in simulation studies
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where the true underlying error distributions are known to us, hence both {wk} and
{hi} can be calculated theoretically. Algorithm 2 and Algorithm 3 are essentially
the same, except for different termination rules. The simulation result in Section
3.5 reveals that the Algorithm 3 is in general not preferable to the Algorithm 2,
even at the cost of much more computational time. Thus in practice we recommend
using Algorithm 2 with C = 2 or C = 3.

It is worth pointing out that the initialization steps in both algorithms can
be completed by using the method proposed in Section 3.4.1. In experience, we
found that all the MMLP algorithms are fairly sensitive to the initial values of ξ
(by comparison, the initial values of θ is less sensitive), and when applicable, the
method proposed in Section 3.4.1 does provide a warm start of ξ to ensure the good
behavior of the MMLP algorithm. It is also straightforward to note that the CQR
procedure with uniform weights (i.e., non-weighting) and the adaptive procedure
mentioned in Section 2.4.2 can be effectively carried out by running Algorithm 2
with C = 1 and C = 2, respectively. More cycles may be exerted if higher precision
of estimates is expected.

3.5 Monte Carlo Studies

In this section, we conduct extensive Monte Carlo experiments to demonstrate the
numerical performance of the proposed MMLP algorithm. The purpose of this
section is threefold, namely:

Purpose 1: To corroborate the recommendation made at the end of Section 3.4.2.

Purpose 2: To illustrate how different choices of the weights {wk} and {hi} affect
the estimation accuracy.

Purpose 3: To demonstrate the advantage of the adaptive CQR method using
the optimal weights proposed in Chapter 2 over other conventional statistical
methods, under a wide scope of error distributions.

Throughout this section, Monte Carlo samples will be simulated from the
following two models:

Model 1: yt = β0 + exp(β1xt) + exp(0.3 + αx2
t )εt, t = 1, . . . , n.
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Model 2: yt = β0 + β1x1t + β2x2t + (1 + α1|yt−1|+ α2|yt−2|)εt,

α1 > 0, α2 > 0, t = 1, . . . , n.

In Model 1, the true parameters are set to be (β0, β1)′ = (1, 2)′ and α = 0.3. The
regressors are independent uniform random variables: {xt} i.i.d. ∼ U(0, 1). Similar
models to Model 1 are termed as “model the logarithm of the variances as linear in
predictors” in p.65 of Carroll and Ruppert (1988).

In Model 2, the true parameters are set to be (β0, β1, β2)′ = (1,−0.4, 0.2)′ and
(α1, α2)′ = (0.3, 0.1)′. The regressors are independent uniform random variables:
{xjt} i.i.d. ∼ U(0, 1), j = 1, 2 and they are independent to each other. Model
2 differs from the celebrated ARCH-type model (Engle (1982)) by replacing the
“square-root” volatility function

√
1 + α1y2

t−1 + α2y2
t−2 with the “absolute-value”

volatility function 1 + α1|yt−1|+ α2|yt−2|, which is widely adopted in the quantile
regression literature, for instance, see Koenker and Zhao (1996), Xiao and Koenker
(2009). Model 2 is essentially a time series model, but the exogenous factors {xjt}
are also included to show the flexibility of our method. At the first glance, both
the regression function g and the dispersion function s are linear in parameters,
but the constraints α1 > 0 and α2 > 0 effectively disqualifies s to be treated as
linear function of α. In literature, this issue is usually handled by estimating α as
if it is unconstrained, and only the positive estimates would result in a meaningful
model. Here, we take a simple reparametrization approach: let α1 = eγ1 , α2 = eγ2

so that γ1 and γ2 are unconstrained, and Model 2 can be rewritten as

yt = β0 + β1x1t + β2x2t + (1 + eγ1|yt−1|+ eγ2|yt−2|)εt, t = 1, . . . , n,

which matches our nonlinear heteroscedastic model specification, therefore the
previous algorithms are readily applicable to estimate (β0, β1, β2, γ1, γ2)′. After the
estimates γ̂1 and γ̂2 are obtained, we estimate αj by α̂j = exp(γ̂j), j = 1, 2.

Before reporting the simulation results below, I must acknowledge that though
the initialization methods proposed in Section 3.4.1 could be used, it is found
through simulation that the quality of estimates are greatly influenced by the
initial values of (q1, . . . , qK)′. In other words, the precision of the estimates of
(α, β)′ are very sensitive to the correct specification of (q(0)

1 , . . . , q
(0)
K )′. Considering
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the general difficulty of solving (3.1) and our main purpose is to demonstrate the
advantage of using composite quantile regression with optimal weights, we will
initialize (q1, . . . , qK)′ with their true values in all the subsequent experiments. Of
course, we view this as a potential drawback of our algorithm as well as a tantalizing
future research topic.

To address Purpose 1, we focus our attention on Model 1 only. Three types of
the error distributions N (0, 1) (Normal), Student’s t3 and 0.5N (−1, 1) + 0.5N (1, 1)
(MG2) are considered. The sample size we took was n = 600, and there were
400 simulations in the experiment. For each case, we initialize β by β(0) = (0, 3)′,
α(0) = 1. In line with the Table 2.2 in Carroll and Ruppert (1988), the results of
our simulation are summarized in the Table 3.1 below.

Table 3.1. Mean squared errors (×10−2) of estimator (β̂0(C), β̂1(C), α̂(C))′ under Model
1, for different number of cycles C. The ε0 in the C column corresponds to Algorithm 3.
For columns initiated with β0 and β1, the weights {wk} are computed using (2.13), while
for columns initiated with α, the weights {wk} are computed using (2.16).

Normal t3 MG2
C β0 β1 α β0 β1 α β0 β1 α
1 0.740 0.121 0.577 1.104 0.182 0.883 1.723 0.234 0.550
2 0.704 0.122 0.693 1.112 0.184 1.152 1.489 0.209 0.633
3 0.710 0.123 0.835 1.117 0.185 1.425 1.504 0.213 0.750
5 0.711 0.124 1.018 1.118 0.185 1.717 1.503 0.215 0.895
10 0.715 0.125 1.144 1.117 0.186 1.901 1.508 0.215 0.988
20 0.714 0.125 1.190 1.114 0.185 1.990 1.513 0.216 1.029
ε0 0.712 0.125 1.198 1.111 0.185 2.017 1.508 0.214 1.033

It can be seen from the Table 3.1 that in general the increasing of iteration
times doesn’t improve the estimation accuracy, but for some cases increasing C
from 1 to 2 does enhance the efficiency a little. Considering the initialization
issue mentioned above probably makes the scenario C = 1 overly optimistic, in
practice we recommend using Algorithm 2 with C = 2, by noting that more cycles
is immaterial and even harmful.

To investigate Purpose 2, for each of Model 1 and Model 2, the estimators of β
and α are reported for six symmetric error distributions, using adaptive weights with
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varying objective functions, adaptive weights with unchanged objective function,
theoretical weights ((2.13), (2.16)) and the uniform weights. These methods are
labelled as “Adaptive 1”, “Adaptive 2”, “Theoretical” and “Uniform” respectively
in Table 3.2 and Table 3.3. For each of specifications, the Monte Carlo replications
is N = 400, and for each run, the sample size is n = 600. All the runs using uniform
weights and theoretical weights are implemented using Algorithm 1 with C = 2, and
all the runs using adaptive weights are implemented using Algorithm 2 with C = 2.
The initialization method for Model 1 is the same as that for Table 3.1, whereas
for Model 2, we set (β(0)

0 , β
(0)
1 , β

(0)
2 )′ = (0.6,−0.2, 0.1)′, (α(0)

1 , α
(0)
2 )′ = (0.2, 0.2)′.

The simulation results are summarized in Table 3.2 and Table 3.3 below. From
these two tables, we can make the following observations:

1. Among the six errors, using the theoretical weights w∗β always results in
the best performance in estimating β. By comparison, using the theoretical
weights w∗α always results in the best performance in estimating α for Model
2. This empirical evidence corroborates our theoretical arguments in Chapter
2.

2. Except for a few cases in Table 3.2, both adaptive methods outperform
the uniform method by some notable margin, which highlights the benefit
(efficiency gain) of weighting whenever it is applicable. On the other hand, the
“Adaptive 1” method and the “Adaptive 2” method are generally comparable.

3. For some unclear reason, the “Uniform” method gives the best result for
Laplace, logistic, MG1 and t3 errors when estimating α under Model 1,
though the leading advantage may typically be considered as negligible. This
unexpected output deserves further study in our future study.

Finally, to address Purpose 3, we will compare our adaptive method WCQR
(Algorithm 2 with C = 2 and the initialization method as before) with the following
conventional estimation methods:

1. Generalized least squares (GLS): This is generalized least squares estimation
produced by iteratively reweighted least squares algorithm introduced in
Carroll and Ruppert (1988), p.69. To obtain the weights estimation in the
intermediate steps, we regress the squared residuals on the dispersion function
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Table 3.2. Mean squared errors (×10−3) of different weighting schemes under Model
1, for a fixed error distribution. In the heading, “Laplace”, “logistic” and “Normal” all
refer to their standard distributions, “MG1” refers to 0.9N (0, 1)+0.1N (0, 10) and “MG2”
refers to 0.5N (−1, 1) + 0.5N (1, 1).

Laplace logistic MG1
α β0 β1 α β0 β1 α β0 β1

Adaptive 1 12.674 8.7206 1.1853 9.4725 21.508 3.0689 9.1527 10.553 1.3979
Adaptive 2 12.689 8.6483 1.1779 9.3 21.628 3.0739 9.2 10.601 1.3978
Theoretical 12.815 8.3654 1.1405 9.2485 21.003 3.0001 9.0719 10.368 1.3931

Uniform 12.279 9.4436 1.2958 9.0968 21.327 3.0449 9.0483 10.384 1.3957
MG2 Normal t3

α β0 β1 α β0 β1 α β0 β1
Adaptive 1 4.7738 14.861 2.1779 7.4534 7.5984 1.1366 10.87 11.503 1.7774
Adaptive 2 4.6549 14.86 2.1945 7.1712 7.6028 1.1387 10.9 11.439 1.7786
Theoretical 4.8254 14.529 2.1364 7.2374 7.4402 1.1053 10.931 11.288 1.7264

Uniform 5.2565 17.864 2.6398 7.7377 7.8152 1.1563 10.819 11.871 1.7953

s(·, α). As noted before, the GLS method they employed is similar to our
MMLP algorithm. In particular, I will also set C = 2 in the GLS algorithm.

2. Unweighted LAD (UWLAD): The unweighted Least Absolute Deviation
estimation.

3. Weighted LAD (WLAD): Weighted LAD estimation, for which the weights
are estimated by performing a median regression of absolute value of residuals
on the dispersion function s(·, α).

4. Weighted LAD using true weights (TWLAD): Weighted LAD estimation, for
which the weights are computed using the true parameter α.

Since all the above methods are proposed to estimate the regression parameter
β only, the results listed in Table 3.4 and Table 3.5 only include the mean standard
errors of different β̂s, though our method may well be applied to estimate the
dispersion parameter, as illustrated in earlier Monte Carlo studies. Same remarks
that explain the entries in Table 3.2 and Table 3.3 invariably work for Table 3.4
and Table 3.5, with necessary changes self-explanatory.

It can be seen from Table 3.4 and Table 3.5 that the proposed WCQR method
dominates other methods for every combination (except for Model 1, N (0, 1)
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Table 3.3. Mean squared errors (×10−3) of different weighting schemes under Model
2, for a fixed error distribution. In the heading, “Laplace”, “logistic” and “Normal” all
refer to their standard distributions, “MG1” refers to 0.9N (0, 1)+0.1N (0, 10) and “MG2”
refers to 0.5N (−1, 1) + 0.5N (1, 1).

Laplace logistic
α1 α2 β0 β1 β2 α1 α2 β0 β1 β2

Adaptive 1 2.5982 1.4343 41.274 64.687 63.534 1.3644 0.89809 128.5 215.34 212.62
Adaptive 2 2.4867 1.394 41.831 66.601 66.538 1.265 0.87434 129.23 216.35 212.88
Theoretical 2.3665 1.3825 39.823 62.076 63.925 1.248 0.86326 126.37 209.32 207.37

Uniform 2.8144 1.4858 48.526 74.133 79.418 1.6605 1.1112 135.04 228.39 233.6
MG1 MG2

α1 α2 β0 β1 β2 α1 α2 β0 β1 β2
Adaptive 1 2.169 1.0943 36.005 70.679 67.793 1.1045 0.69326 69.099 115.13 116.11
Adaptive 2 1.9842 1.0559 35.889 70.376 67.725 1.0436 0.66715 70.461 116.35 116.17
Theoretical 1.9334 1.0278 35.162 69.77 66.443 1.0223 0.67305 68.251 114.23 113.58

Uniform 2.5649 1.2632 39.016 73.004 74.936 1.2862 0.84492 87.732 150.35 137.62
Normal t3

α1 α2 β0 β1 β2 α1 α2 β0 β1 β2
Adaptive 1 2.205 1.3454 26.067 46.673 45.009 2.7316 1.8005 47.804 82.137 83.012
Adaptive 2 2.0518 1.2977 25.732 46.44 45.315 2.6277 1.8321 48.825 82.013 83.426
Theoretical 2.0654 1.2626 25.296 46.119 43.352 2.293 1.2 47.293 81.273 82.021

Uniform 2.3803 1.4128 28.296 49.398 48.633 3.1199 1.6016 50.596 83.962 94.766

error, the GLS method works slightly better, which is easy to understand). In
particular, for Model 2, except for the logistic error, our WCQR method on
average outperforms the other methods by at least one magnitude. Although the
MMLP algorithm has the aforementioned initialization restriction, we may still
consider, as an innovative estimation method, the adaptive optimal double-weighted
composite quantile regression method proposed in Chapter 2 can substantially
escalate estimation efficiency.

3.6 Conclusion

In this chapter, we generalize the MM algorithm proposed by Hunter and Lange
(2000), which works only for the single-quantile case, to the composite quantile
regression situation. In addition to that, our algorithm also takes the heterogeneity
part of the model into account by setting the nuisance parameter (q1, . . . , qK)′ to be
design variables, and update them by solving a linear programming problem. This



62

Table 3.4. Mean squared errors (×10−3) of different estimation methods under Model 1,
for a fixed error distribution. In the heading, “Laplace”, “logistic” and “Normal” refer to
their standard distributions, “MG1” refers to 0.9N (0, 1) + 0.1N (0, 10) and “MG2” refers
to 0.5N (−1, 1) + 0.5N (1, 1).

Laplace logistic MG1 MG2 Normal t3
β0 β1 β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

GLS 14.72 2.46 23.29 3.94 12.99 2.29 13.96 2.29 6.54 1.09 23.39 3.79
UWLAD 8.99 1.32 25.05 3.64 11.98 1.92 30.34 4.48 10.63 1.56 13.15 2.14
WLAD 9.04 1.33 25.05 3.67 12.04 1.93 29.59 4.36 10.56 1.55 13.12 2.14

TWLAD 8.91 1.28 25.51 3.70 12.60 1.99 30.10 4.36 10.66 1.58 13.27 2.13
WCQR 8.65 1.18 21.51 3.07 10.55 1.40 14.86 2.18 7.60 1.14 11.50 1.78

Table 3.5. Mean squared errors (×10−2) of different estimation methods under Model 2,
for a fixed error distribution. In the heading, “Laplace”, “logistic” and “Normal” refer to
their standard distributions, “MG1” refers to 0.9N (0, 1) + 0.1N (0, 10) and “MG2” refers
to 0.5N (−1, 1) + 0.5N (1, 1).

Laplace logistic MG1
β0 β1 β2 β0 β1 β2 β0 β1 β2

GLS 25.851 19.730 15.308 44.493 52.324 44.930 23.301 16.389 14.991
UWLAD 19.914 10.977 6.460 32.403 32.531 29.254 21.615 14.368 9.923
WLAD 19.824 10.497 6.690 32.482 30.299 29.435 21.770 13.881 10.372

TWLAD 19.936 10.432 6.644 32.239 30.494 29.390 21.990 13.679 10.001
WCQR 4.127 6.469 6.353 12.850 21.534 21.262 3.589 7.038 6.773

MG2 Normal t3
β0 β1 β2 β0 β1 β2 β0 β1 β2

GLS 26.036 20.551 18.344 18.095 8.768 6.490 28.434 28.910 29.101
UWLAD 30.018 28.564 28.444 18.937 11.167 7.894 21.810 14.498 12.327
WLAD 28.884 27.382 30.342 18.719 11.145 8.343 21.758 15.199 11.675

TWLAD 29.557 27.853 29.462 18.521 10.967 8.375 21.438 14.822 11.555
WCQR 6.910 11.513 11.611 2.573 4.644 4.532 4.780 8.214 8.301

explains the name of our algorithm: the “MMLP” algorithm. The Monte Carlo
studies performed in Section 3.5 confirm the theoretical assertions in Chapter 2,
also show that the proposed DWCQR method overall outperforms the conventional
statistical methods such as the generalized least squares, provided a reasonably
good initial values of (q1, . . . , qK)′ are supplied to the MMLP algorithm.

In developing this chapter, some technical issues, such as the number of cycles
of the algorithm, the initialization method are also discussed. By simulation, we
recommend using C = 2. On the other hand, it seems difficult to come up with
decent initial values of (q1, . . . , qK)′, which should be deemed as a major weakness of



63

our algorithm. We consider this unsolved problem as an interesting future research
topic, either from the statistical or the computational perspective.



Chapter 4 |
Efficient Quantile Regression for
Linear Heteroscedastic Models:
an Alternative Approach

4.1 Introduction

Inhomogeneity of the variances of the errors is a common phenomenon in practice.
As a major tool of modeling such inhomogeneity, heteroscedastic regression models
have received many important applications (among others, the celebrated ARCH
model (Engle (1982)) is a leading example) and have been extensively studied
in literature. Anscombe (1961) conducted the pioneering work of pointing out
the fitting of an ideal linear model is often only a first tentative step in the
analysis of data and has proposed some simple test statistics for heteroscedasticity.
This research is followed up by Bickel (1978), which investigated the power of
Anscombe’s procedures when the error distributions are not normal and compared
these procedures with some natural alternative tests which are robust against gross
errors. To the estimation end, Welsh et al. (1994) have proposed two estimation
methods for a broad class of heteroscedastic regression models. For a comprehensive
treatment to heteroscedastic models by the classical least squares methods, we refer
readers to Carroll and Ruppert (1988).

After the introduction of the seminal concept regression quantiles by Koenker
and Bassett Jr. (1978), it immediately becomes a powerful tool of studying het-
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eroscedastic models. Very much in the spirit of Bickel (1978)’s work, Koenker
and Bassett Jr. (1982) propose an alternative approach to robustify tests for het-
eroscedasticity based on regression quantiles. For the location-scale heteroscedastic
models

yt = x′tβ + (x′tα)ut, t = 1, . . . , n, (4.1)

under the local heteroscedasticity assumption, Gutenbrunner and Jurečková (1992)
derive the asymptotic distributions for {n1/2(β̂n(τ) − β(τ)), 0 < τ < 1}, namely,
the regression quantile processes, where

β(τ) = β + F−1(τ)α, (4.2)

β̂n(τ) = arg min
b∈Rp

n∑
t=1

ρτ (yt − x′tb). For the same location-scale model (4.1), if a
√
n-

consistent estimator γ̂ of γ is available, Koenker and Zhao (1994) investigate the
uniform Bahadur representation of the weighted regression quantiles n1/2(β̂(τ, α̂)−

β(τ)), where β̂(τ, α̂) = arg min
b∈Rp

n∑
t=1

(x′tγ̂)−1ρτ (yt−x′tb), and then propose the way of

constructing efficient L-estimators of β. The similar proof techniques has also been
successfully applied to ARCH models (Koenker and Zhao (1996)) to establish the
Bahadur representation of the ARCH parameter’s estimator. Zhao (2001) considers
the linear model with unknown heteroscedasticity form, and estimates β by using
weighted least absolute deviation regression, in which the weights are estimated
by k-nearest neighbors approach. For other works on heteroscedastic models using
quantile regression methods, let’s mention Welsh (1996), Zhou and Portnoy (1998)
and Xiao and Koenker (2009).

In this chapter, we consider a class of heteroscedastic models which is more
general than (4.1) as follows:

yt = x′tβ + s(xt, α)ut, t = 1, . . . , n, (4.3)

where β ∈ Rp, α ∈ Rk, s(xt, α) is some smooth known nonlinear function of α such
that s(xt, α) > 0 for all t, and ut, t = 1, . . . , n are i.i.d. errors. Our goal is seeking
for efficient estimators of the regression parameter β, provided the existence of
√
n-consistent estimator α̂n of the dispersion parameter α. It is worth pointing
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out that due to the nonlinearity of s(xt, ·), it’s infeasible to form a transformed
parameter β(τ) such as (4.2) which simultaneously contains regression parameter
β and dispersion parameter α, hence we need to look for another appropriate
normalizing constant when discussing the asymptotic distribution of any sensible
estimator of β. Under model (4.3), for any τ ∈ (0, 1), our main contribution
is to propose a weighted estimation method which aims to estimate β directly
(which is in marked contrast to estimate the transformed version of β), and then to
establish the Bahadur representation of this estimator, which will still be denoted
by β̂(τ) with the abuse of notation. Interestingly, we find that the effect of the
preliminary estimator α̂ propagates in the Bahadur representation of n1/2(β̂(τ)−β).
This undesirable asymptotic bias can be eliminated by wisely incorporating the
information across different quantile positions, as suggested by Zhao and Xiao
(2014). The resulting weighted quantile average estimator (WQAE) may then be
further polished to achieve optimal asymptotic efficient performance, leading to
the optimal weighted quantile average estimator (OWQAE).

The asymptotic theory on an estimator which is constructed based on a pre-
liminary estimator has been studied to some extent in literature. Among others,
Bickel (1975) and Ruppert and Carroll (1980) have become classics. However, both
of the models in these two papers are restricted to homoscedastic linear models.
Koenker and Zhao (1994) generalized the case to linear location-scale models, but
their result failed to reveal an explicit asymptotic relation between the estimator
of interest and the preliminary estimator. In this paper, under the more general
nonlinear heteroscedastic models, we succeeded in showing how the preliminary
estimator effects the asymptotic behavior of the estimator of central interest (similar
research to ours can be found in Koenker and Zhao (1996), while firstly, their model
is essentially location-scale, and secondly, some proofs are lacking of important
intermediate steps.).

The rest of this paper is organized as follows: in Section 4.2 we describe the
weighted quantile regression procedure of estimating β, for any fixed quantile
position τ ∈ (0, 1), and then give the Bahadur representation of n1/2(β̂(τ) − β).
In Section 4.3 we report an adaptive procedure on how to construct OWQAE of
β based on the results obtained in Section 4.2, and then demonstrate its good
efficiency property. We discuss computational aspects and compare our method
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with other estimation methods by simulation in Section 4.4. Technical proofs and
auxiliary results are collected in Section 4.5.

Before presenting the main result of this project, we briefly commenting the
connections between the method to be introduced in this chapter and the CQR
method proposed in Chapter 2. In short, the method considered in this chapter is
residual-based, i.e., depends on a preliminary estimator of the dispersion parameter.
By contrast, the CQR method estimates all the parameters jointly, hence does
not require any preliminary estimators. This seemingly advantage, however, is at
the cost of solving a very challenging optimization problem, as fully explained in
Chapter 4. In fact, it is the difficulty of coming up with an effective algorithm to
solve the CQR optimization problem that motivates me to initiate this project from
scratch. Consequently, residual-based method, which results in an estimator that
is similar to the L-estimator is computationally convenient. In spite of the very
disparate schemes in obtaining the estimates, these two methods share one vital
feature — the information across several different quantile positions is synthesized
by weighting (see Koenker (1984)), and the weights are determined based on the
result of asymptotic analysis to achieve the optimal efficiency. As can be seen from
Section 2.3 and Section 4.3, despite of the contrastive asymptotics, the efficiency
analysis for the CQR and for the L-estimator is almostly the same.

4.2 Bahadur Representation of β̂(τ )

In this paper, we restrict the independent variables {xt} to be nonrandom, though
the results obtained throughout will continue to hold if {xt} is independent of {ut},
or {(xt, ut)} is strictly stationary and ergodic, without increasing essential difficulty
in the proofs.

For fixed τ ∈ (0, 1), as mentioned in Section 4.1, due to the infeasibility of
incorporating the dispersion parameter α and the τ -quantile of error F−1(τ) into
the regression parameter β, we should view F−1(τ) as a nuisance parameter and
then estimate F−1(τ) and β jointly by solving the optimization problem as follows

min
q∈R1,b∈Rp

n∑
t=1

σ−1
t ρτ (yt − σtq − x′tb), (4.4)
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where σt ≡ s(xt, α), ρτ (z) = z(τ − I[z < 0]). Here and in the sequel, for simplicity,
we write I[z ∈ A] to stand for the indicator function IA(z), for any subset A ⊂ R1.
The rationale of coming up with problem (4.4) can be explained as follows: by
denoting yt/σt by y∗t , xt/σt by x∗t , model (4.3) can be rewritten as

y∗t = x∗t
′β + ut, t = 1, . . . , n.

Hence the τ -quantile of y∗t is Qy∗t
(τ) = x∗t

′β + F−1(τ) = (1, x∗t ′)(F−1(τ), β′)′,

suggesting that (F−1(τ), β′)′ can be estimated by minimizing
n∑
t=1

ρτ (y∗t − q −

x∗t
′b) =

n∑
t=1

σ−1
t ρτ (yt − σtq − x′tb) with respect to (q, b′)′. Reasoning in this way,

we automatically assigns (4.4) with a weighted quantile regression form, which is
expected to result in an estimator that has higher efficiency than its unweighted
counterpart. In practice, σt is unavailable and will be estimated by σ̂t ≡ s(xt, α̂),
where α̂ ≡ α̂n is any

√
n-consistent estimator of α. Substituting σt in (4.4) by σ̂t

yields the estimated weighted regression quantile estimator :

(F̂−1(τ), β̂(τ)) = arg min
q∈R1,b∈Rp

n∑
t=1

σ̂−1
t ρτ (yt − σ̂tq − x′tb). (4.5)

To derive the Bahadur representation of β̂(τ) (as well as of F̂−1(τ)), we will
employ the following conditions:

F. F has positive density f such that f ∈ C ′(R1). Moreover, both f and f ′ are
bounded functions on R1.

SX1. σt ≡ s(xt, α) ≥ c0 > 0, t = 1, . . . , n, for some constant c0.

SX2. For every τ ∈ (0, 1),

n−1
n∑
t=1

σ−rt

[
ξtξ
′
t ξtz

′
t

ztξ
′
t ztz

′
t

]
→ Qr ≡

[
Q

(11)
r Q

(12)
r

Q
(21)
r Q

(22)
r

]

as n → ∞, where ξt ≡ ṡ(xt, α), zt ≡ (σt, x′t)′, Qr ∈ R(k+p+1)×(k+p+1): r =
0, 1, 2 are positive definite.
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SX3.
n∑
t=1
‖(ξ′t, z′t)′/σt‖3 = O(n),

n∑
t=1
‖(ξ′t, z′t)′/σt‖ = O(n1/2).

SX4. max
t≤n
‖(ξ′t, z′t)′/σt‖ = O(n1/4).

SX5. There exist some ε0 > 0 andK > 0 such that all the second partial derivatives
of s are continuous on {ξ : ‖ξ − α‖ < ε0}, and for every t ∈ {1, . . . , n}

sup
‖ξ‖<ε0

‖ṡ(xt, α + ξ)‖ ≤ K, sup
‖ξ‖<ε0

‖s̈(xt, α + ξ)‖ ≤ K∗.

Moreover,
sup
‖ξ‖≤ε0

s(xt, α + ξ)
s(xt, α) ≤ K

uniformly in t.

We briefly comment the conditions above. Condition F is a classical condition
imposed on error distributions under the quantile regression setting. Conditions
SX1–SX4 naturally adapt conditions imposed on the location-scale model for the
nonlinearity of the dispersion function s(xt, ·): these conditions reduce to conditions
C1–C4 in Koenker and Zhao (1994) if s(xt, α) = x′tα. Condition SX5 imposes some
uniform (in t) smoothness restrictions on the function s(xt, ·), which will be used
to control the bounds of remainders in asymptotic expansions.

Under these conditions, we have the following main theorem:

Theorem 4.1. Consider the heteroscedastic model

yt = x′tβ + σtut, t = 1, . . . , n,

where σt ≡ s(xt, α). Given a preliminary
√
n-consistent estimator α̂n of α, define

δ̂n = n1/2(α̂n − α). Let (q̂(τ), β̂(τ)′)′ be the solution to the optimization problem
∗Here we use 2-norm for a matrix A (Golub and Van Loan (1996), p.55):

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

.

Throughout this article, by convention, for a vector x ∈ Rq, ‖x‖ means its Euclidean norm
p∑

j=1
|xj |2.
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(4.5). Then under conditions F, SX1–SX5, (q̂(τ), β̂(τ)′)′ has the following Bahadur
representation:

n1/2

[
q̂(τ)− F−1(τ)
β̂(τ)− β

]
= Q

(22)
2
−1

f(F−1(τ))n
−1/2

n∑
t=1

[
σt

xt

]
ψτ (ut − F−1(τ))

− F−1(τ)Q(22)
2
−1
Q

(21)
2 δ̂n + oP (1), (4.6)

where ψτ (z) = τ − I[z < 0], z ∈ R1.

By performing some matrix computations, we can extract the Bahadur repre-
sentation of β from (4.6) as follows:

Corollary. Partition Q(22)
2 and Q(21)

2 according to (F−1(τ), β′)′ as

Q
(22)
2 =

[
a v′

v A

]
, Q

(21)
2 =

[
b′

B

]
,

where a ∈ R1, v ∈ Rp, A ∈ Rp×p, b ∈ Rk, B ∈ Rp×k. Then under the same
conditions of Theorem 4.1, β̂(τ) has the following Bahadur representation:

n1/2(β̂(τ)−β) = 1
n1/2f(F−1(τ))

n∑
t=1

Ctψτ (ut−F−1(τ))−F−1(τ)Dδ̂n+oP (1), (4.7)

where Ct = (A − a−1vv′)−1(xt − a−1vσt), t = 1, . . . , n, D = (A − a−1vv′)−1(B −
a−1vb′).

In view of (4.7), due to the existence of δ̂n, n1/2(β̂(τ)− β) does not have zero
mean asymptotically, which is evidently unsatisfactory. Therefore, it is undesirable
to estimate β by only using one single weighted regression quantile β̂(τ). To
annihilate such bias caused by δ̂n, it is natural to consider the weighted quantile
average estimator (WQAE) proposed by Zhao and Xiao (2014):

β̂WQAE(w) =
K∑
j=1

wjβ̂(τj). (4.8)

(4.8) is also known as the Mosteller’s estimator (Koenker (1984)) or (a discrete
version of) the L-estimatior (Gutenbrunner and Jurečková (1992)). It is easy to
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see that under the constraints

K∑
j=1

wj = 1,
K∑
j=1

wjF
−1(τj) = 0, (4.9)

β̂WQAE(w) has the Bahadur representation

n1/2(β̂WQAE(w)−β) = 1
n1/2

K∑
j=1

wj
f(F−1(τj))

n∑
t=1

Ctψτj(ut−F−1(τj))+oP (1), (4.10)

which implies the asymptotic normality of β̂WQAE(w). We summarize this observa-
tion to a theorem as follows:

Theorem 4.2. Given any vector of weights w = (w1, . . . , wK)′ that satisfies (4.9),
define the weighted quantile average estimator β̂WQAE(w) as in (4.8). Then un-
der conditions F, SX1–SX5, n1/2(β̂WQAE(w) − β) converges weakly to a normal
distribution with mean 0 and covariance matrix Σ−1

α S(w), where

Σ−1
α = lim

n→∞

1
n

n∑
t=1

CtC
′
t = (A− a−1vv′)−1,

S(w) = w′Hw with H =
[

τj ∧ τj′ − τjτj′
f(F−1(τj))f(F−1(τj′))

]
∈ RK×K .

In practice, without loss of generality, we can always fix K to be an odd number,
and τj = j/(K + 1), j = 1, . . . , K are placed evenly on (0, 1). It’s remarkable
that if f is symmetric about 0, which is a common condition imposed on error
distributions, then the second constraint in (4.9) simplifies to wj = wK+1−j, j =
1, . . . , (K − 1)/2, which is independent of the quantiles F−1(τj), j = 1, . . . , K.

For easier reference, in the sequel we will refer the constraints
K∑
j=1

wj = 1 and

wj = wK+1−j, j = 1, . . . , (K − 1)/2 as the unity constraint and the symmetry
constraint, respectively.



72

4.3 Adaptive Weighted Quantile Average Estimator

By Theorem 4.2, the asymptotic variance of n1/2(β̂WQAE(w)− β) consists of two
parts: the first part Σ−1

α depends only on the design X and the true dispersion
function s(xt, ·), while the second part S(w) depends on the weights w and sparsity
function of error u. As proposed in Zhao and Xiao (2014), this structure offers us
a straightforward way to select the “optimal” weights w so that the asymptotic
variance is “minimized”. The following theorem shows that under the symmetry
distribution assumption, the optimal weights have a closed form solution:

Theorem 4.3. Under the same conditions of Theorem 4.2, and further assume
that the density function of error is symmetric about 0, then

w∗ = H−11
1′H−11

, where 1 = (1, . . . , 1)′ ∈ RK

minimizes S(w) and satisfies the unity constraint and the symmetry constraint
simultaneously. We call β̂WQAE(w∗) the Optimal Weighted Quantile Average Es-
timator (OWQAE) of β, and denote it by β̂OWQAE. It has the following limiting
distribution:

n1/2[β̂OWQAE − β]⇒ N (0,Σ−1
α Ω−1

K ), where ΩK = 1′H−11.

In practice, β̂OWQAE is not directly applicable for it contains the unknown
function `(τ) ≡ f(F−1(τ)). To further study the asymptotic property of its plug-in
version, in line with Zhao and Xiao (2014), we make the following assumption on
its estimator ˆ̀(τ).

E. sup
1≤j≤K

|ˆ̀(τj)− `(τj)| = oP (1).

We then denote corresponding plug-in estimators of H and w∗ by Ĥ and ŵ∗

respectively. Furthermore, denote β̂WQAE(ŵ∗) by β̂EOWQAE. It then follows by
Slutsky’s theorem that under condition E, β̂EOWQAE and β̂OWQAE have the same
limiting distribution. In other words, the estimator β̂EOWQAE is adaptive.

Here we propose an adaptive procedure to estimate `(τ) so that condition E is
satisfied, provided a

√
n-consistent estimator α̂ of α is available (the existence of α̂
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is assumed throughout the chapter). A general procedure is as follows:

Step 1: Obtain a
√
n-consistent estimator β̂0 of β.

Step 2: Compute the estimated noises:

ût = yt − x′tβ̂0

s(xt, α̂) , t = 1, . . . , n. (4.11)

Step 3: Estimate f(u) through the nonparametric kernel density estimator:

f̃(z) = 1
nbn

n∑
t=1

K

(
z − ût
bn

)
(4.12)

for a bandwidth bn > 0 and kernel function K(·).

Step 4: Estimate F−1(τ) by the sample τ -th quantile of û1, . . . , ûn, denoted by
F̃−1(τ).

Step 5: To ensure the symmetric density condition in Theorem 4.3, we symmetrize
f̃ and F̃−1(τ) through

f̂(z) = 1
2(f̃(z) + f̃(−z)) and F̂−1(τ) = 1

2(F̃−1(τ)− F̃−1(1− τ))

Step 6: Plug f̂(F̂−1(τ)) into H in Theorem 4.2 to obtain Ĥ, then plug Ĥ into w∗

in Theorem 4.3 to obtain the estimated optimal weights ŵ∗.

Under the assumption that the error u is symmetric, the β̂0 in Step 1 can be
obtained in various ways, among which the least squares estimator β̂0

LS and the
least absolute deviation estimator β̂0

LAD are two obvious candidates. Alternatively,
practitioners also use the composite quantile regression (Zou and Yuan (2008))
estimator β̂CQR as β̂0, regardless the heteroscedasticity of error terms. For simplicity
and robustness consideration, we recommend using β̂LAD and β̂0.

In Step 3, we follow Silverman (1986) to use the rule-of-thumb bandwidth bn:

bn = 0.9n−1/5 min
{
sd(û1, . . . , ûn), IQR(û1, . . . , ûn)

1.34

}
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where, “sd” and “IQR” are the sample standard deviation and the sample interquar-
tile range.

To show that the resulting estimators ˆ̀(τj), j = 1, . . . , K fulfill condition E, we
need to impose the following condition on bandwidth bn and kernel function K(·):

N. (i) The bandwidth bn ∝ n−1/5, (ii) The kernel K(·) is Lipschitz continuous and∫
R1
K(x) dx = 1.

Theorem 4.4. Under conditions F, SX1, SX3–SX5, N, then ˆ̀(τj) ≡ f̂(F̂−1(τj)),
j = 1, . . . , K obtained from Step 6 above satisfy condition E. Consequently, the
above procedure is adaptive.

The good efficiency property of β̂EOWQAE is justified by the following theorem:

Theorem 4.5. Suppose the function `(τ) : (0, 1) → R1 satisfies the efficiency
regularity condition:

1
τ

(`2(τ) + `2(1− τ)) + τ 2
∫ 1−τ

τ

|`′′(t)|2 dt→ 0

as τ → 0, then
lim
K→∞

ΩK = F(f),

where
F(f) =

∫
R1

[f ′(u)]2
f(u) du

is the Fisher information of the error distribution f .

4.4 Monte Carlo Studies

In this section, we conduct Monte Carlo studies to investigate the sampling perfor-
mance of the proposed procedures in two different models. In all settings below,
we use 600 realizations to evaluate the performance of various methods.

Each model under consideration is of the form

yt = β0 + β1x1t + β2x2t + s(x1t, x2t, α)ut, t = 1, . . . , n.
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For our first model, we use a modified version of the scale function from Carroll
and Ruppert (1982) as the following expression:

Model 1: s(x1, x2, α) = exp(β0 + β1x1 + β2x2). (4.13)

So in this setting, the dispersion parameter α coincides with the regression parameter
β, in which case the existence of

√
n-consistent estimator α̂ is automatically

guaranteed if a
√
n-consistent preliminary estimator of β is available. Although we

require the design {xt} is nonrandom during the theoretical development, here for
convenience we assume the regressors x1 and x2 are generated by (see Zhao (2001)):

x1 = U + 0.2V, x2 = 0.2U + V, U ∼ N (5, 9), V ∼ U(0, 4).

The true parameter is set to be β = (β0, β1, β2)′ = (1,−0.4, 0.2)′. The distributions
of errors will be specified shortly together with Model 2.

We specify the dispersion function of our second model as follows:

Model 2: s(x1, x2, α) =
√
α0 + α1x2

1 + α2x2
2. (4.14)

Thus the form of Model 2 resembles the celebrated ARCH model. The true
parameters are set to be β = (β0, β1, β2)′ = (2, 1, 2)′, (α0, α1, α2) = (1, 2, 1)′. The
regressors are drawn from N2((0, 0)′, I2).

For both Model 1 and Model 2, the distributions of error u are taken to be
normalized normal, Student’s t3, Cauchy, mixture normal (0.5N (−2, 1)+0.5N (2, 1))
and Laplace so that F−1(0.5) = 0 and G−1(0.5) = 1, where G is the distribution
function of |u|. Note that all the distributions under consideration are symmetric
about zero.

For Model 1, since α ≡ β and β̂0 is
√
n-consistent for β, β̂0 can be naturally

taken as a
√
n-consistent estimator of α. For Model 2 (or more generally, models

that α and β are different), the presumed
√
n-consistent estimator α is obtained

by performing a least absolute deviation (LAD) regression of absolute values of
residuals yt − x′tβ̂0, t = 1, . . . , n on the nonlinear function s(xt, ·). We wish to give
theoretical justifications for α̂ obtained in this way is indeed

√
n-consistent in our

future work.
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We will compare the following six estimation methods:

1. Generalized least squares (GLS): This is generalized least squares estimation
produced by iteratively reweighted least squares algorithm introduced in
Carroll and Ruppert (1988, p.69). For Model 2, to obtain the weights
estimation in the intermediate steps, we regress the square of residuals on x2

1

and x2
2.

2. Unweighted LAD (UWLAD): The unweighted LAD estimation.

3. Weighted LAD (WLAD): Weighted LAD estimation, for which the weights
are obtained as described in the last paragraph.

4. Weighted LAD using true weights (TWLAD): Weighted LAD estimation, for
which the weights are computed using the true α values.

5. WQAE using theoretical optimal weights (TWQAE): It is β̂(w∗) in Theorem
4.3.

6. WQAE using estimated optimal weights (EWQAE): It is the adaptive es-
timator β̂(ŵ∗), where ŵ∗ are estimated from data following the procedure
proposed in Section 4.3.

For each of the method mentioned above, the Monte Carlo replications is
N = 1000, and for each run, the number of data points generated from Model 1
and Model 2 is n = 600. With N replications, we use EWQAE as the benchmark
to which the other five methods are compared based on the empirical relative
efficiency:

MSE = 1
N

N∑
j=1

(β̂`(j)− β`)2 and RE(Method) = MSE(Method)
MSE(EWQAE) ,

where “Method” stands for one of UWLAD, WLAD, TWLAD and TWQAE, and
β̂`(j) is the estimator of β` in the j-th run, ` = 1, 2, j = 1, . . . , N . A value of RE
that is greater than 1 indicates better performance of EWQAE.

The simulation results are summarized in Table 4.1 and Table 4.2. From Table
4.1 and Table 4.2, we can make the following observations:
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Table 4.1. Empirical relative efficiency of EWQAE compared to other five methods
under Model 1. The last row gives the empirical MSE of EWQAE, the remaining entries
are the empirical relative efficiencies of the method in that row when estimating β, for a
fixed error distribution.

Normal Student’s t3 Cauchy Mixture Normal Laplace
Methods β1 β2 β1 β2 β1 β2 β1 β2 β1 β2
GLS 399.7 8.440 38081 29711 3.23× 108 9.68× 108 44.30 4.212 9859 787.2
UWLAD 4.694 2.564 3.279 1.867 0.398 0.444 27.14 10.78 2.000 1.708
WLAD 1.332 1.144 1.075 1.034 0.545 0.636 4.262 2.595 0.974 0.988
TWLAD 1.328 1.129 1.079 1.027 0.544 0.652 4.149 2.537 0.967 0.988
TWQAE 1.005 0.982 0.993 0.946 0.812 11.27 1.067 0.935 0.974 0.988

EWQAE.MSE (×10−5) 6.17 24.3 7.69 29.2 51.2 98.8 2.94 12.8 9.24 28.3

Table 4.2. Empirical relative efficiency of EWQAE compared to other five methods
under Model 2. The last row gives the empirical MSE of EWQAE, the remaining entries
are the empirical relative efficiencies of the method in that row when estimating β, for a
fixed error distribution.

Normal Student’s t3 Cauchy Mixture Normal Laplace
Methods β1 β2 β1 β2 β1 β2 β1 β2 β1 β2
GLS 1.359 1.781 3.118 4.934 5265 2402 1.621 2.086 6.402 5.845
UWLAD 1.533 1.434 1.201 1.049 0.265 0.113 17.82 21.40 0.940 0.963
WLAD 1.503 1.535 1.276 1.235 0.430 0.211 17.46 21.86 0.948 0.957
TWLAD 1.439 1.501 1.231 1.107 0.259 0.109 17.39 21.34 0.917 0.933
TWQAE 0.993 0.990 1.019 0.985 0.926 0.817 1.251 1.282 0.947 0.957

EWQAE.MSE 0.0221 0.0177 0.0262 0.0227 0.094 0.169 0.0071 0.0045 0.0214 0.0163

1. In general, the quantile-based methods outperform the mean-based method
significantly, even for the Gaussian-error case. This suggests that the existence
of heterogeneity greatly impairs the applicability of GLS method, especially
when the heterogeneity is strong. Consequently, the quantile-based methods
are better choices for the parameter estimation problem under heteroscedastic
models.

2. Among all the quantile-based methods under consideration, by comparing
results between UWLAD and WLAD/TWLAD/TWQAE, we see that the
efficiency gain through weighting the heteroscedasticity is also substantial.
Hence weighted scheme is typically more preferable than its unweighted
counterpart.
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3. Except for the Cauchy-error case and Laplace-error case, our method overall
outperforms methods that only use the 0.5 quantile position information, in
particular when the error is mixture normal, suggesting that our method may
have great potential when error distribution is not uni-modal. In addition, it is
remarkable that the EWQAE with estimated optimal weights has comparable
(many times slightly better) performance than the TWQAE with theoretical
optimal weights.

4. The inferiority of our method compared to other median-regression methods
under Laplace-error is explicable since LAD estimation is the MLE if errors
are Laplacian, for which no wonder the TWLAD method gives the optimal
estimation. Nevertheless, we see that our method is still comparable to the
TWLAD for this case.

5. For the Cauchy-error case, the single-quantile-based methods outperform our
proposed method by somewhat noticeable margin. This may be explained as
for either TWQAE or EWQAE, we need to estimate the dispersion parameter
α based on residuals. The accuracy of this estimation can be seriously
deteriorated because of the high kurtosis of Cauchy error. It can be expected
our method would again be competitive if we were able to get more reliable
estimate of α.

6. By comparing EWQAE.EMSE rows of Table 4.1 and Table 4.2, it can be
seen that the estimation accuracy of β under Model 1 is much higher than
that under Model 2, which again demonstrates the importance of obtaining a
reliable estimate of α: in Model 1, the

√
n-consistency of α̂ ≡ β̂0 is guaranteed

by theory while the
√
n-consistency of the residual-based α̂ in Model 2 hasn’t

been justified in theory.

In conclusion, substantial efficiency gain can be achieved by our proposed
method under various error distributions, and how to generate a theoretically-
insured

√
n-consistent estimator of α before applying our proposed method will be

an interesting research topic in the future.
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4.5 Technical Proofs

The proof of Theorem 4.1 is quite complicated, so we will first prepare a series of
lemmas.

Lemma 4.1. Define

V1(δ,∆) ≡ 1
n1/2

n∑
t=1

1
σt

[
ξt

zt

]
ψτ (ut − F−1(τ)− n−1/2σ−1

t ξ′tδF
−1(τ)− n−1/2σ−1

t z′t∆).

Then, under assumptions F, SX1–SX3, we have

sup
‖(δ′,∆′)′‖≤M

∥∥∥∥∥V1(δ,∆)− V1(0, 0) + f(F−1(τ))Q2

[
δF−1(τ)

∆

]∥∥∥∥∥ = oP (1).

for fixed M , 0 < M <∞.

Proof. For simplicity, denote (δ′F−1(τ),∆′)′ by d ∈ Rk+p+1, (ξ′t, z′t)′ by Zt ∈ Rk+p+1,
then

V1(δ,∆) ≡ V1(d) = n−1/2
n∑
t=1

σ−1
t Ztψτ (ut − F−1(τ)− n−1/2σ−1

t Z ′td).

Denote ψτ (ut − F−1(τ)− n−1/2σ−1
t Z ′td) by ηt(d). It then can be seen that:

|ηt(d)− ηt(0)|

=|I(ut − F−1(τ) < 0)− I(ut − F−1(τ)− n−1/2σ−1
t Z ′td < 0)|

≤I(−n−1/2‖Zt/σt‖M ≤ ut − F−1(τ) ≤ n−1/2‖Zt/σt‖M).

Therefore, by Lagrange mean value theorem and assumption F:

E[|ηt(∆)− ηt(0)|2]

≤F (F−1(τ) + n−1/2‖Zt/σt‖M)− F (F−1(τ)− n−1/2‖Zt/σt‖M)

≤c1n
−1/2‖Zt/σt‖

for some constant c1 that is independent of t and n.
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Denote the jth coordinate of V1(δ,∆) by V (j)
1 (δ,∆), j = 1, . . . , k, k + 1, . . . , k +

p+ 1. Given ε > 0, for j ∈ {1, . . . , k}, it follows by Chebyshev’s inequality that:

P [|V (j)
1 (d)− V (j)

1 (0)− E[V (j)
1 (d)− V (j)

1 (0)]| ≥ ε]

≤ 1
ε2 Var(V (j)

1 (d)− V (j)
1 (0)) = 1

ε2 Var
(
n−1/2

n∑
t=1

σ−1
t ξtj[ηt(d)− ηt(0)]

)

= 1
nε2

n∑
t=1

Var(σ−1
t ξtj[ηt(d)− ηt(0)]) ≤ 1

nε2

n∑
t=1

E[σ−2
t ξ2

tj[ηt(d)− ηt(0)]2]

≤ c1

n3/2ε2

n∑
t=1
‖Zt/σt‖3 = O(n−1/2),

where the last equality follows from condition SX3. In the same manner, it can be
shown that for j ∈ {k + 1, . . . , k + p+ 1}, we have

V
(j)

1 (d)− V (j)
1 (0)− E[V (j)

1 (d)− V (j)
1 (0)] = oP (1).

Hence V1(d)− V (0)− E[V1(d)− V1(0)] = oP (1).
Next, using Bickel’s chaining approach (Bickel (1975)), it can be shown that

sup
‖d‖≤M

‖V1(d)− V1(0)− E[V1(d)− V1(0)]‖ = oP (1). (4.15)

Finally, we need to show

sup
‖d‖≤M

‖E[V1(d)− V1(d)] + f(F−1(τ))Q2d‖ = oP (1),

which, by condition SX2, is implied by

sup
‖d‖≤M

∥∥∥∥∥n−1/2
n∑
t=1

σ−1
t Zt

[
F (F−1(τ))− F (F−1(τ) + n−1/2σ−1

t Z ′t∆)
]

+ n−1
n∑
t=1

σ−2
t ZtZ

′
tf(F−1(τ))d

∥∥∥∥∥ = oP (1). (4.16)
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By Taylor’s theorem with the integral remainder, we have

F (F−1(τ))− F (F−1(τ) + n−1/2σ−1
t Z ′td) = −f(F−1(τ))n−1/2σ−1

t Z ′td

− n−1(σ−1
t Z ′td)2

∫ 1

0
(1− s)f ′(F−1(τ) + sn−1/2σ−1

t Z ′td) ds.

Hence the left hand side of (4.16) is bounded by

sup
‖d‖≤M

∥∥∥∥∥n−3/2
n∑
t=1

σ−1
t Zt(σ−1

t Z ′t∆)2
∫ 1

0
(1− s)f ′(F−1(τ) + sn−1/2Z ′t∆) ds

∥∥∥∥∥
≤c2n

−3/2
n∑
t=1
‖Zt/σt‖3 = O(n−1/2). (4.17)

Combining (4.15) and (4.17) completes the proof.

When the estimated weights σ̂t is used, the following lemma asserts that the
resulting criterion function is close to the theoretical criterion function.

Lemma 4.2. Define

V̂1(δ,∆) ≡ n−1/2
n∑
t=1

σ̂−1
t

[
ξt

zt

]
ψτ (ut−F−1(τ)−n−1/2σ−1

t ξ′tδF
−1(τ)−n−1/2σ−1

t z′t∆).

Then under conditions F, SX1–SX5,

sup
‖(δ′,∆′)′‖≤M

‖V̂1(δ,∆)− V1(δ,∆)‖ = oP (1).

for fixed M , 0 < M <∞.

Proof. Adopting the notations used in Lemma 4.1, write V̂1(δ,∆) as

V̂1(d) = n−1/2
n∑
t=1

σ̂−1
t Ztψτ (ut − F−1(τ)− n−1/2σ−1

t Z ′td).

By Taylor’s theorem (Ferguson (1996), Section 4):

σ̂−1
t − σ−1

t = − ṡ(xt, α)′
s2(xt, α)(α̂n − α) + rt,n,
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where

rt,n = (α̂n − α)′
[∫ 1

0

∫ 1

0
vM(xt, α + uv(α̂n − α)) du dv

]
(α̂n − α),

with, for ξ ∈ Rk,

M(xt, ξ) = 2ṡ(xt, ξ)ṡ(xt, ξ)′
s3(xt, ξ)

− s̈(xt, ξ)
s2(xt, ξ)

∈ Rk×k. (4.18)

Thus V̂1(d)− V1(d) can be decomposed as T1 + T2, where

T1 = −n−1/2
n∑
t=1

ξ′tδ̂n
σ2
t

Ztψτ (ut − F−1(τ)− n−1/2σ−1
t Z ′t∆),

T2 = n−1/2
n∑
t=1

rt,nZtψτ (ut − F−1(τ)− n−1/2σ−1
t Z ′t∆),

where δ̂n = α̂n − α = OP (n−1/2). By conditions SX3, SX4, it follows that

|T1| ≤ ‖δ̂n‖n−1/2
n∑
t=1
‖ξt/σt‖‖Zt/σt‖ = OP (n−1/4).

Since δ̂n = oP (1), with probability tending to 1, ‖δ̂n‖ < ε0 for all sufficiently large
n. It then follows by(4.18) and condition SX5 that

|T2| ≤ n−1/2
n∑
t=1

∥∥∥∥Ztσt
∥∥∥∥∫ 1

0

∫ 1

0
σt|δ̂′nM(xt, α + uvδ̂n)δ̂n| du dv

≤ 1
n1/2

n∑
t=1

∥∥∥∥Ztσt
∥∥∥∥∫ 1

0

∫ 1

0

2s(xt, α)‖ṡ(xt, α + uvδ̂n)ṡ(xt, α + uvδ̂n)′‖
s3(xt, α + uvδ̂n)

‖δ̂n‖2 du dv

+ 1
n1/2

n∑
t=1

∥∥∥∥Ztσt
∥∥∥∥∫ 1

0

∫ 1

0

s(xt, α)‖s̈(xt, α + uvδ̂n)‖
s2(xt, α + uvδ̂n)

‖δ̂n‖2 du dv

=OP (n−1).

This completes the proof.

Considering the last p+ 1 components of V1(δ,∆) and V̂1(δ,∆), from Lemma
4.1 and Lemma 4.2, we have the following corollary:
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Corollary. Put

V
(2)

1 (δ,∆) = n−1/2
n∑
t=1

σ−1
t ztψτ (ut − F−1(τ)− n−1/2σ−1

t ξ′tδF
−1(τ)− n−1/2σ−1

t z′t∆),

V̂
(2)

1 (δ,∆) = n−1/2
n∑
t=1

σ̂−1
t ztψτ (ut − F−1(τ)− n−1/2σ−1

t ξ′tδF
−1(τ)− n−1/2σ−1

t z′t∆).

(4.19)

Then, under the conditions of Lemma 4.2,

sup
‖(δ′,∆′)′‖≤M

∥∥∥V (2)
1 (δ,∆)− V (2)

1 (0, 0)+

f(F−1(τ))(Q(21)
2 δF−1(τ) +Q

(22)
2 ∆)

∥∥∥ = oP (1),

sup
‖(δ′,∆′)′‖≤M

∥∥∥V̂ (2)
1 (δ,∆)− V (2)

1 (δ,∆)
∥∥∥ = oP (1)

for fixed M , 0 < M <∞.

Lemma 4.3. Let (q̂, β̂) be the minimizer of the function

n∑
t=1

σ̂−1
t ρτ (yt − σ̂tq − x′tb)

where σ̂t ≥ c0 > 0. Then under assumptions F, SX4, with probability 1,∣∣∣∣∣n−1/2
n∑
t=1

ψτ (ut − σ−1
t σ̂tF

−1(τ)− n−1/2σ−1
t σ̂t∆̂1 − n−1/2σ−1

t x′t∆̂2)

∣∣∣∣∣
≤n−1/2p = oP (1);∣∣∣∣∣n−1/2

n∑
t=1

σ̂−1
t xtjψτ (ut − σ−1

t σ̂tF
−1(τ)− n−1/2σ−1

t σ̂t∆̂1 − n−1/2σ−1
t x′t∆̂2)

∣∣∣∣∣
≤pn−1/2 max

t≤n
‖xt/σ̂t‖ = oP (1), j = 1, . . . , p, (4.20)

where ∆̂1 = n1/2(q̂ − F−1(τ)), ∆̂2 = n1/2(β̂ − β).

Remark 1. For the inequality part, many existing papers (for instance, Koenker
and Zhao (1994), Koenker and Zhao (1996)) cited Lemma A.2 of Ruppert and
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Carroll (1980). But a careful examination of the proof of this lemma shows that it is
at least unclear, if not incorrect. Here I will first restate the result as a proposition
then give a rigorous proof to it using Knight’s identity (Knight (1998)).

Proposition. Suppose B̂ ∈ RP solves the following optimization problem

min
B∈Rp

n∑
i=1

ρθ(Yi −X ′iB).

Then, ∣∣∣∣∣
n∑
i=1

Xijψθ(Yi −X ′iB̂)

∣∣∣∣∣ ≤
n∑
i=1

I[Yi = X ′iB̂]|Xij|, j = 1, . . . , P. (4.21)

Proof of Proposition. By Knight’s identity, for every t > 0 and w ∈ RP such that
‖w‖ = 1, we have

Gi(t) ≡ρθ(Yi −X ′i(B̂ + tw))− ρθ(Yi −X ′iB̂)

=− tX ′iwψθ(Yi −X ′iB̂) +
∫ tX′iw

0

{
I[Yi −X ′iB̂ < s]− I[Yi −X ′iB̂ < 0]

}
ds.

If Yi = X ′iB̂, then Gi(t) = −tX ′iwθ +
∫ tX′iw

0
I[s > 0] ds. For this case, if

X ′iw = 0, then Gi(t) = 0; if X ′iw > 0, then Gi(t) = −tX ′iwθ+ tX ′iw = tX ′iw(1− θ);
if X ′iw < 0, then Gi(t) = −tX ′iwθ. These three cases can be written compactly as
Gi(t) = tX ′iw(I[X ′iw > 0]− θ). Thus

lim
t→0+

Gi(t)
t

= X ′iw(I[X ′iw > 0]− θ). (4.22)

If Yi 6= X ′iβ̂, a careful evaluation shows that the integral term, when divided by
t always tends to 0 as t→ 0+, hence

lim
t→0+

Gi(t)
t

= −X ′iwψθ(Yi −X ′iB̂). (4.23)
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By (4.22) and (4.23), it follows that

0 ≤ lim
t→0+

1
t

n∑
i=1

[
ρθ(Yi −X ′i(B̂ + tw))− ρθ(Yi −X ′iB̂)

]
=

n∑
i=1

I[Yi = X ′iB̂]X ′iw(I[X ′iw > 0]− θ)−
n∑
i=1

I[Yi 6= X ′iB̂]X ′iwψθ(Yi −X ′iB̂).

Or equivalently,

n∑
i=1

I[Yi 6= X ′iB̂]X ′iwψθ(Yi −X ′iB̂) ≤
n∑
i=1

I[Yi = X ′iB̂]X ′iw(I[X ′iw > 0]− θ).

Adding
n∑
i=1

I[Yi = X ′iB̂]X ′iwψθ(Yi − X ′iB̂) to both sides of the above inequality

then yields

n∑
i=1

X ′iwψθ(Yi −X ′iB̂) ≤
n∑
i=1

I[Yi = X ′iB̂]X ′iw(I[X ′iw > 0]− I[Yi < X ′iB̂])

=
n∑
i=1

I[Yi = X ′iB̂]|X ′iw|I[X ′iw > 0]

Similar analysis for lim
t→0−

n∑
i=1

Gi(t)/t ≤ 0 yields

n∑
i=1

X ′iwψθ(Yi −X ′iB̂) ≥ −
n∑
i=1

I[Yi = X ′iB̂]|X ′iw|I[X ′iw ≤ 0].

These two inequalities together imply∣∣∣∣∣
n∑
i=1

X ′iwψθ(Yi −X ′iB̂)

∣∣∣∣∣
≤max

{
n∑
i=1

I[Yi = X ′iB̂]|X ′iw|I[X ′iw > 0],
n∑
i=1

I[Yi = X ′iB̂]|X ′iw|I[X ′iw ≤ 0]
}

≤
n∑
i=1

I[Yi = X ′iB̂]|X ′iw|.
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Taking w to be e1, . . . , eP respectively in above inequality then gives∣∣∣∣∣
n∑
i=1

Xijψθ(Yi −X ′iB̂)

∣∣∣∣∣ ≤
n∑
i=1

I[Yi = X ′iB̂]|Xij|, j = 1, . . . , P.

This completes the proof of proposition.

Proof of Lemma 4.3. Substitute Yi = yt/σ̂t, Xi = (1, x′t/σ̂t)′, B = (q, b′)′, B̂ =
(F−1(τ) + n−1/2∆̂1, β

′ + n−1/2∆̂′2)′ in (4.21), and then divide cases yields the in-
equality parts of (4.20), in which we also used condition F (the distribution of error
is continuous).

To show n−1/2 maxt≤n ‖xt/σ̂t‖ = oP (1), first apply (4.24) below, then use as-
sumption SX4.

The next lemma builds a bound of the difference between the weighted criterion
function of (4.5) and its first-order approximation (4.19).

Lemma 4.4. For δ ∈ Rk,∆ = (∆1,∆′2)′ ∈ Rp+1, define

V̂2(δ,∆) =n−1/2
n∑
t=1

σ̂−1
t

[
σ̂t

xt

]
ψτ (ut − σ−1

t s(xt, α + n−1/2δ)F−1(τ)−

n−1/2σ−1
t s(xt, α + n−1/2δ)∆1 − n−1/2σ−1

t x′t∆2),

Then under conditions F, SX1–SX5, it holds that

sup
‖δ‖≤M
‖∆‖≤M

∥∥∥V̂2(δ,∆)− V̂ (2)
1 (δ,∆)

∥∥∥ = oP (1)

for fixed M , 0 < M <∞.

Proof. In Lemma 4.2 we have shown that

σ̂−1
t − σ−1

t = −ξ
′
t(α̂n − α)

σ2
t

+ σ−2
t r̂t,n, (4.24)

where the remainder term r̂t,n satisfies (with d̂n denoting α̂n − α)

|r̂t,n| =
∣∣∣∣d̂′n [∫ 1

0

∫ 1

0
σ2
t vM(xt, α + uvd̂n) du dv

]
d̂n

∣∣∣∣
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≤
∫ 1

0

∫ 1

0

σ2
t

s3(xt, α + uvd̂n)
‖ṡ(xt, α + uvd̂n)ṡ′(xt, α + uvd̂n)‖‖d̂n‖2 du dv

+
∫ 1

0

∫ 1

0

σ2
t

s2(xt, α + uvd̂n)
‖s̈(xt, α + uvd̂n)‖‖d̂n‖2 du dv

≤c1‖d̂n‖2

for some constant c1 independent of t and n. Hence (4.24) implies

σ̂−1
t ≤ σ−1

t + ‖ξt/σ2
t ‖‖α̂n − α‖+ c1σ

−2
t ‖α̂n − α‖2. (4.25)

To quantify the difference between V̂2 and V̂ (2)
1 , we also need expand s(xt, α+

n−1/2δ) explicitly as follows:

s(xt, α + n−1/2δ) = σt + n−1/2ξ′tδ + ρt,n (4.26)

where ρt,n = n−1δ′
[∫ 1

0

∫ 1

0
vs̈(xt, α + n−1/2uvδ) du dv

]
δ satisfies

|ρt,n| ≤ c2n
−1‖δ‖2 (4.27)

for some constant c2 independent of t and n.
Denote the argument of ψτ (·) in the definition of V̂2(δ,∆) by ηt(δ,∆). By (4.26),

it follows that

ηt(δ,∆) = ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1 − n−1/2σ−1
t x′t∆2 −Rt,n

where Rt,n = n−1σ−1
t ξ′tδ∆1 + σ−1

t ρt,nF
−1(τ) + n−1/2σ−1

t ρt,n∆1. By (4.27) and SX4,
we have

|Rt,n| ≤ n−1c3‖ξt/σt‖‖δ‖3‖∆1‖+ n−1c3σ
−1
t ‖δ‖2 + n−3/2c3σ

−1
t ‖δ‖2‖∆1‖

≤ c4n
−3/4 (4.28)

for some constant c4 independent of t and n.
After above preparation, now we shall prove the statement coordinate-wisely. We

first compare the jth coordinate of V̂2(δ,∆) and that of V̂ (2)
1 (δ,∆) for j = 2, . . . , p+1.
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By definition, it is easily seen that

|ψτ (ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1 − n−1/2σ−1
t x′t∆2 −Rt,n)

− ψτ (ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1 − n−1/2σ−1
t x′t∆2)|

=|I(ut − F−1(τ) < n−1/2σ−1
t ξ′tδF

−1(τ) + n−1/2∆1 + n−1/2σ−1
t x′t∆2)−

I(ut − F−1(τ) < n−1/2σ−1
t ξ′tδF

−1(τ) + n−1/2∆1 + n−1/2σ−1
t x′t∆2 +Rt,n)|

≤I(F−1(τ)−Bn < ut < F−1(τ) +Bn), (4.29)

where, since ‖δ‖ ≤M and ‖∆‖ ≤M ,

Bn = n−1/2 max
t≤n

∥∥∥∥ ξtσt
∥∥∥∥MF−1(τ) + n−1/2M + n−1/2 max

t≤n

∥∥∥∥xtσt
∥∥∥∥M + max

t≤n
|Rt,n|

≤ c5n
−1/4

for some constant independent of n.
By (4.29) and (4.24), the difference between the (j + 1)st coordinate of V̂2(δ,∆)

and that of V̂ (2)
1 (δ,∆), j = 1, . . . , p is bounded by

n−1/2
n∑
t=1

σ̂−1
t |xtj|I(F−1(τ)−Bn < ut < F−1(τ) +Bn)

≤n−1/2
n∑
t=1

σ−1
t |xtj|I(F−1(τ)−Bn < ut < F−1(τ) +Bn)

+ ‖α̂n − α‖ ·
n∑
t=1

n−1/2
∥∥∥∥ ξtσ2

t

∥∥∥∥ |xtj|I(F−1(τ)−Bn < ut < F−1(τ) +Bn)

+ c1‖α̂n − α‖2 · n−1/2
n∑
t=1

σ−2
t |xtj|I(F−1(τ)−Bn < ut < F−1(τ) +Bn).

By Markov’s inequality and conditions F, SX1–SX4, it can be shown that each
term of the right hand side of the above inequality is oP (1).

Next we compare the first component of V̂2(δ,∆) with that of V̂ (2)
1 (δ,∆), which

may be decomposed as T1(δ,∆) + T2(δ,∆) with

T1(δ,∆)
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= 1
n1/2

n∑
t=1

[ψτ (ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1 − n−1/2σ−1
t x′t∆2

−Rt,n)− ψτ (ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1 − n−1/2σ−1
t x′t∆2)]

T2(δ,∆)

= 1
n1/2

n∑
t=1

σ̂t − σt
σ̂t

ψτ (ut − F−1(τ)− n−1/2σ−1
t ξ′tδF

−1(τ)− n−1/2∆1

− n−1/2σ−1
t x′t∆2)

By (4.24), (4.26) and (4.27) (with δ̂n denoting n1/2(α̂n − α)),∣∣∣∣ σ̂t − σtσ̂t

∣∣∣∣
≤
(
σ−1
t + n−1/2 ∥∥ξt/σ2

t

∥∥ ‖∆̂n‖+ c1n
−1σ−2

t ‖δ̂n‖2
)(

n−1/2‖ξt‖‖δ̂n‖+ c2n
−1‖δ̂n‖2

)
≤n−1/2‖ξt/σt‖‖δ̂n‖+ c−1

0 c2n
−1‖δ̂n‖2 + n−1‖ξt/σt‖2‖δ̂n‖2 + c2n

−3/2‖ξt/σ2
t ‖‖δ̂n‖3

+ c−1
0 c1n

−3/2‖ξt/σt‖‖δ̂n‖3 + c−2
0 c1c2n

−2‖δ̂n‖4.

By this inequality, conditions SX3, SX4 and |ψτ (·)| ≤ 1, it follows that

|T2(δ,∆)|

≤n−1‖δ̂n‖
n∑
t=1
‖ξt/σt‖+ n−1/2c−1

0 c2‖δ̂n‖2 + n−5/4‖δ̂n‖2
n∑
t=1
‖ξt/σt‖

+ n−2c−1
0 c2‖δ̂n‖3

n∑
t=1
‖ξt/σt‖+ n−2c−1

0 c1‖δ̂n‖3
n∑
t=1
‖ξt/σt‖+ n−3/2c−2

0 c1c2‖δ̂n‖4

=OP (n−1/2) = oP (1).

To bound T1(δ,∆), the inequality (4.29) is not tight enough, which needs to
be tightened a little more. For simplicity, denote n−1/2σ−1

t ξ′tδF
−1(τ) + n−1/2∆1 +

n−1/2σ−1
t x′t∆2 by ζt(δ,∆). To bound E[|ψτ (ut−F−1(τ)− ζt(δ,∆)−Rt,n)−ψτ (ut−

F−1(τ)− ζt(δ,∆))|], we consider the following three cases:

Case 1: Rt,n = 0. Trivial.
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Case 2: Rt,n > 0. For this case, we have

E[|ψτ (ut − F−1(τ)− ζt(δ,∆)−Rt,n)− ψτ (ut − F−1(τ)− ζt(δ,∆))|]

=P
[
F−1(τ) + ζt(δ,∆) ≤ ut < F−1(τ) + ζt(δ,∆) +Rt,n

]
=F (F−1(τ) + ζt(δ,∆) +Rt,n)− F (F−1(τ) + ζt(δ,∆))

≤c6Rt,n ≤ c6c4n
−3/4.

The last inequality follows from (4.28).

Case 3: Rt,n < 0. Similarly to case 2, we have

E[|ψτ (ut − F−1(τ)− ζt(δ,∆)−Rt,n)− ψτ (ut − F−1(τ)− ζt(δ,∆))|]

=P
[
F−1(τ) + ζt(δ,∆ +Rt,n) ≤ ut < F−1(τ) + ζt(δ,∆)

]
=F (F−1(τ) + ζt(δ,∆))− F (F−1(τ) + ζt(δ,∆ +Rt,n))

≤− c6Rt,n ≤ c6c4n
−3/4.

So for each case we have the bound

E[|ψτ (ut − F−1(τ)− ζt(δ,∆)−Rt,n)− ψτ (ut − F−1(τ)− ζt(δ,∆))|] ≤ c4c6n
−3/4.

Therefore

E[|T1(δ,∆)|]

≤n−1/2
n∑
t=1

E[|ψτ (ut − F−1(τ)− ζt(δ,∆)−Rt,n)− ψτ (ut − F−1(τ)− ζt(δ,∆))|]

≤c4c6n
−1/4 = O(n−1/4).

By Markov’s inequality, T1(δ,∆) = oP (1).
In summary, we have shown that for fixed δ and ∆ such that ‖δ‖ ≤ M and

‖∆‖ ≤ M , it holds that ‖V̂2(δ,∆)− V̂ (2)
1 (δ,∆)‖ = oP (1). The proof will then be

completed by routinely invoking the chaining arguments.

Combining the results of Corollary 4.5 and Lemma 4.4, we obtain
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Corollary. Under conditions F, SX1–SX5,

sup
‖δ‖≤M
‖∆‖≤M

∥∥∥V̂2(δ,∆)− V (2)
1 (0, 0) + f(F−1(τ))(Q(21)

2 δF−1(τ) +Q
(22)
2 ∆)

∥∥∥ = oP (1)

for fixed M , 0 < M <∞.

In view of Lemma 4.3 and Corollary 4.5, in order to establish the Bahadur
representation of ∆̂, it remains to show ∆̂ = OP (1), which can be done nicely
by following the proof of Lemma 5.2 in Jurečková (1977). Once this last step is
completed, we can prove our main theorem as below.

Proof of Theorem 4.1. For ∆ = (∆1,∆′2)′ ∈ Rp+1, define V̂ (∆) := V̂2(δ̂n,∆). It
then can be easily verified that

−∆′V̂ (λ∆) ≥ −∆′V̂ (∆), λ ≥ 1.

On the other hand, δ̂n = OP (1) and Corollary 4.5 together imply that

sup
‖∆‖≤M

∥∥∥V̂ (∆)− V (2)
1 (0, 0) + f(F−1(τ))(Q(21)

2 δ̂nF
−1(τ) +Q

(22)
2 ∆)

∥∥∥ = oP (1).

Finally, for ∆̂ = n1/2(q̂(τ)− F−1(τ), β̂(τ)′ − β′)′, Lemma 4.3 asserts that

‖V̂ (∆̂)‖ = oP (1).

The result of the theorem then follows by applying Lemma 3.4 in Koenker and
Zhao (1996).

Proof of Theorem 4.2. Let’s denote
K∑
j=1

f−1(F−1(τj))wjψτj (ut−F−1(τj)) by ζt, t =

1, . . . , n. By (4.10) and the Cramér-Wold device, it suffices to show that for any
c ∈ Rp,

n−1/2
n∑
t=1

c′Ctζt ⇒ N
(
0, c′Σ−1

α S(w)c
)
.

Note that ζt can be further written as ζt = w′Λφt, t = 1, . . . , n, with

Λ = diag(f−1(F−1(τ1)), . . . , f−1(F−1(τK))),
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φt = (ψτ1(ut − F−1(τ1)), . . . , ψτK (ut − F−1(τK)))′.

Using this form, it is then straightforward to show that

E[c′Ctζt] = 0, Var(c′Ctζt) = (c′Ct)2S(w), t = 1, . . . , n.

The result then follows from Lindeberg’s central limit theorem.

Proof of Theorem 4.3. It is easily seen that w∗ proposed in Theorem 4.3 minimizes
S(w) under the unity constraint. Therefore it remains to show this w∗ is also
symmetric.

Let Λ be defined as in the proof of Theorem 4.2, also define Γ = [τj∧τj′−τjτj′ ] ∈
RK×K . It can be seen that H = ΛΓΛ and both Γ and Λ are invertible†. Let ej be
the K-vector with its jth entry 1 and all other entries 0, thus to show wj = wK+1−j

for j ∈ {1, 2, . . . , (K − 1)/2} (recall that K is odd) is equivalent to show that

eTj H
−11 = eTK+1−jH

−11,

which is further equivalent to

eTj Λ−1Γ−1Λ−11 = eTK+1−jΛ−1Γ−1Λ−11.

Therefore it is sufficient to show that eTj Λ−1 = eTK+1−jΛ−1. Since eTj Λ−1 gives the
jth row of Λ−1 and eTK+1−jΛ−1 gives the (K + 1 − j)th row of Λ−1, these two
quantities are identical since f(F−1(τj)) = f(F−1(τK+1−j)), by symmetric error
assumption. The proof is completed by substituting S(w) in Theorem 4.2 by
S(w∗).

Proof of Theorem 4.4. By the umbrella assumption and Step 1, we have ‖α̂−α‖ =
OP (n−1/2) and ‖β̂0 − β‖ = OP (n−1/2). Since K is fixed, condition E ensues if
we can show that (i) F̃−1(τ) = F−1(τ) + oP (1) for each fixed τ ∈ (0, 1); and (ii)
f̃(z) = f(z) + oP (1) for each fixed z.

†We will give the explicit form of Γ−1 in the proof of Theorem 4.5.
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First, we prove F̃−1(τ) = F−1(τ) + oP (1). For ût in (4.11), we have

ût = εt + ∆t, ∆t = x′tβ − x′tβ̂0

s(xt, α̂) + s(xt, α)− s(xt, α̂)
s(xt, α̂) ut.

Denote α̂− α by δ̂. By (4.25),∣∣∣∣∣x′tβ − x′tβ̂0

s(xt, α̂)

∣∣∣∣∣ ≤ (‖xt/σt‖+ ‖ξt/σt‖‖xt/σt‖‖δ̂‖+ c‖xt/σt‖‖δ̂‖)‖β − β̂0‖. (4.30)

By (4.25), (4.26) and (4.27),∣∣∣∣s(xt, α)− s(xt, α̂)
s(xt, α̂) ut

∣∣∣∣
≤(σ−1

t + σ−1
t ‖ξt/σt‖‖δ̂‖+ c‖xt/σt‖‖δ̂‖)(‖ξt‖‖δ̂‖+ c‖δ̂‖2)|ut| (4.31)

In view of (4.30), (4.31) and conditions SX3, SX4, we have∣∣∣∣∣x′tβ − x′tβ̂0

s(xt, α̂)

∣∣∣∣∣ = OP (n−1/4),
∣∣∣∣s(xt, α)− s(xt, α̂)

s(xt, α̂) ut

∣∣∣∣ = OP (n−1/4) (4.32)

uniformly in t, which implies ∆t = oP (1) uniformly in t. Consequently, F̃−1(τ) =
F−1(τ)+oP (1), where F−1(τ) is the τth sample quantile of u1, . . . , un. By standard
theory of sample quantiles, F−1(τ) = F−1(τ)+oP (1). Therefore F̃−1(τ) = F−1(τ)+
oP (1).

Next, we prove f̃(z) = f(z) + oP (1) for each fixed z. Since K(·) is Lipschitz, it
follows that

f̃(z) = 1
nbn

n∑
t=1

K

(
z − ut
bn

)
+ O(1)

nb2
n

n∑
t=1
|∆t|

By standard theory of nonparametric kernel density estimation,

1
nbn

n∑
t=1

K

(
z − ut
bn

)
= f(u) + oP (1). (4.33)

Finally, by (4.30), (4.31) and conditions SX3, SX4, it follows that
n∑
t=1
|∆t| =
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OP (n−1/2). Hence

1
nb2

n

n∑
t=1
|∆t| = OP ((

√
nb2

n)−1) = oP (1)

in view of bn ∝ n−1/5. This completes the proof.

Proof of Theorem 4.5. The proof can be found in Zhao and Xiao (2014). For
completeness, we include their proof here.

Let Γ be defined in the proof of Theorem 4.3, we first show that under the
efficiency regularity condition,

lim
K→∞

L′Γ−1L =
∫ 1

0
[`′(τ)]2 dτ, where L = (`(τ1), . . . , `(τK))′. (4.34)

By the definition of Γ, direct calculation shows that

Γ−1 = (K + 1)



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


, (4.35)

that is, Γ−1 is a tri-diagonal matrix with 2(K + 1) on the diagonal, −(K + 1) on
the super-/sub-diagonals, and 0 elsewhere.

Let δ = 1/(K + 1). By τj = j/(K + 1) and (4.35), direct calculation shows that

L′Γ−1L = (K + 1)
{
`2(τ1) + `2(τK) +

K∑
j=2

[`(τj)− `(τj−1)]2
}

= (K + 1)[`2(τ1) + `2(τk)] +RK +
∫ 1−δ

δ

[`′(t)]2 dt, (4.36)

where

RK = −K + 1
2

K∑
j=2

∫ τj

τj−1

∫ τj

τj−1

[`′(t)− `′(s)]2 dt ds.

For t, s ∈ [τj−1, τj], |`′(t)− `′(s)| = |
∫ t
s
`′′(v) dv| ≤

∫ τj
τj−1
|`′′(v)| dv. By Schwarz
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inequality,

max
t,s∈[τj−1,τj ]

|`′(t)− `′(s)|2 ≤
[∫ τj

τj−1

|`′′(v)| dv
]2

≤ δ

∫ τj

τj−1

[`′′(v)]2 dv.

It then follows that

|RK | ≤
K + 1

2

K∑
j=2

(τj − τj−1)2 max
t,s∈[τj−1,τj ]

|`′(t)− `′(s)|2 ≤ δ2

2

∫ 1−δ

δ

|`′′(t)|2 dt.

As K → ∞,
∫ 1−δ
δ

[`′(τ)]2 dτ →
∫ 1

0 [`′(τ)]2 dτ , regardless of whether the latter
integral is finite or infinite. (4.34) then follows from the efficiency regularity
condition of `(·).

Recall the definition of L in (4.34), then by the last result of Theorem 4.3 and
the intermediate steps in the proof of Theorem 4.3, it follows that

ΩK = 1′H−11 = 1′Λ−1Γ−1Λ−11 = L′Γ−1L.

It then follows by (4.34) and the chain rule of differentiation that as K →∞,

ΩK →
∫ 1

0
[`′(τ)]2 dτ =

∫
R1

[f ′(u)]2
f(u) du = F(f).

This completes the proof.



Appendix |
Applications of Chaining Argu-
ments in Probability and Math-
ematical Statistics

1 Introduction

We have seen in the proofs of Theorem 2.9 in Chapter 2 and Lemma 4.1 in
Chapter 4 that how the point-wise convergence result may be generalized to its
strengthened uniform convergence result, thus induces some deeper consequences.
In the quantile regression literature, such technique is termed as the “chaining
technique” or “chaining arguments”. Nevertheless, this useful technique is by no
means the patent of quantile regression researchers — it has roots in the elegant
proofs of many classical probability and mathematical statistics theorems. In this
appendix, it is our hope to present a comprehensive account for the classical and
modern applications of the chaining technique, as well as the general steps to call
for it. In Section 2, we review some celebrated historical examples which could be
viewed as the prelude of the chaining technique. After unveiling the common feature
appeared in the proofs in Section 2, with the possible risk of oversimplification,
in Section 3 we streamline the invocation of the chaining technique into three key
steps. We conclude this chapter by revisiting several remarkable applications of
the chaining technique in the quantile regression literature.

The purpose of this chapter is to give theoretical statisticians an overview of
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the powerful, yet easy-to-use chaining technique.

2 Historical Examples

In this section, we review four classical probability theorems whose proofs clearly
utilized the chaining argument (explicit definition will be given in Section 3) in
different ways. These theorems are also from different areas: one-sample uniform
weak convergence, uniform strong convergence of empirical distribution functions,
uniform strong convergence of general functions, and weak convergence of random
functions. The structure of this section’s exposition is standard: the theorems are
given first and are followed by detailed proofs. The proofs of Theorem A.2 and
Theorem A.4 are taken from the references without much change, while the proofs
of Theorem A.1 and Theorem A.3 are adapted by the author.

Our first historical example is the well-known Polyá Theorem (Polyá (1920)):

Theorem A.1. Let X1, X2, . . . be a sequence of random variables that converges
weakly to a random variable X with continuous distribution function. Then

sup
x∈R
|P [Xn ≤ x]− P [X ≤ x]| → 0.

Proof. Let Fn and F denote the distribution functions of Xn and X, respectively.
Given ε > 0, choose k ∈ N sufficiently large such that k−1 < ε/2. Since F is

continuous on R, by the intermediate value theorem, there exist −∞ = x0 < x1 <

· · · < xk−1 < xk = +∞ such that F (xi) = i/k, i = 0, 1, . . . , k. For each x ∈ R,
there exists i ∈ {0, 1, . . . , k − 1} such that x ∈ (xi, xi+1] (of course, x 6= xk). By
monotonicity of F and Fn, we have

Fn(x)− F (x) ≤Fn(xi+1)− F (xi) = Fn(xi+1)− F (xi+1) + F (xi+1)− F (xi)

≤ sup
0≤j≤k−1

|Fn(xj)− F (xj)|+
1
k

;

Fn(x)− F (x) ≥Fn(xi)− F (xi+1) = Fn(xi)− F (xi) + F (xi)− F (xi+1)

≥− sup
0≤j≤k−1

|Fn(xj)− F (xj)| −
1
k
,

which is equivalent to |Fn(x)− F (x)| ≤ sup0≤j≤k−1 |Fn(xj)− F (xj)|+ k−1. Since
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this inequality holds for each x ∈ R, and the upper bound is independent of x, it
follows that

sup
x∈R
|Fn(x)− F (x)| ≤ sup

0≤j≤k−1
|Fn(xj)− F (xj)|+

1
k
. (A.1)

Since Fn ⇒ F , and F is continuous everywhere, there exists N ∈ N such that
sup0≤j≤k−1 |Fn(xj)− F (xj)| < ε/2 for all n > N . Hence for each n > N ,

sup
x∈R
|Fn(x)− F (x)| ≤ sup

0≤j≤k−1
|Fn(xj)− F (xj)|+

1
k
<
ε

2 + ε

2 = ε.

This completes the proof.

The second example is the celebrated Glivenko-Cantelli Theorem, which general-
izes the point-wise strong law of large numbers to the uniform case. The statement
and the proof of the theorem are taken from Billingsley (1995, pp.268–269).

Theorem A.2. Suppose that X1, X2, . . . are independent and have a common
distribution function F , put

Dn(ω) = sup
x
|Fn(x, ω)− F (x)|.

Then Dn → 0 with probability 1.

Proof. By the strong law of large numbers, for each x there is a set Ax and a
set Bx, both are of probability 0 such that limn Fn(x, ω) = F (x) except on Ax

and limn Fn(x−, ω) = F (x−) except on Bx. Let ϕ(u) = inf[x : F (x) ≥ u] for
0 < u < 1, and put xm,k = ϕ(k/m),m ≥ 1, 1 ≤ k ≤ m. It is not hard to see that
F (ϕ(u)−) ≤ u ≤ F (ϕ(u)); hence F (xm,k) − F (xm,k−1) ≤ m−1, F (xm,1−) ≤ m−1,
and F (xm,m−1) ≥ 1 − m−1. Let Dm,n(ω) be the maximum of the quantities
|Fn(xm,k)− F (xm,k)| and |Fn(xm,k−)− F (xm,k−)| for k = 1, . . . ,m.

If xm,k−1 ≤ x < xm,k, then Fn(x, ω) ≤ Fn(xm,k−, ω) ≤ F (xm,k−) + Dm,n(ω) ≤
F (x) + m−1 + Dm,n(ω) and Fn(x, ω) ≥ Fn(xm,k−1, ω) ≥ F (xm,k−1) − Dm,n(ω) ≥
F (x) −m−1 −Dm,n(ω). Together with similar arguments for the cases x < xm,1

and x ≥ xm,m−1, this shows that

Dn(ω) ≤ Dm,n(ω) +m−1. (A.2)
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If ω lies outside the union A of all the Axmk and Bxmk , then limnDm,n(ω) = 0
and hence limnDn(ω) = 0 by (A.2). But A has probability 0. This completes the
proof.

Unlike the preceding two pure probabilistic results, the third example below has
some clear statistical inference implications — it can be used to show the strong
consistency of the sample average of some function U(x, θ̂n), provided that θ̂n itself
is strong consistent. This example is excerpted from Section 16, Ferguson (1996).

Theorem A.3 (A Uniform Strong Law of Large Numbers). Let X1, X2, . . . be a
sequence of i.i.d. random variables with common distribution function F (x), and
let U(x, θ) be a measurable function of x for all θ in some parameter space Θ. If

1. Θ is compact,

2. U(x, θ) is continuous in θ for all x,

3. There exists a function K(x) such that E[K(X)] <∞ and |U(x, θ)| ≤ K(x)
for all x and θ.

Then

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

U(Xi, θ)− µ(θ)

∣∣∣∣∣→ 0

with probability 1.

To prove this theorem, we need the lemma below, and it is this lemma that
illustrates the chaining technique:

Lemma A.1. If

1. Θ is compact,

2. U(x, θ) is upper semicontinuous∗ in θ for all x,

3. There exists a function K(x) such that E[K(X)] <∞ and |U(x, θ)| < K(x)
for all x and θ,

∗A function f(θ) is upper semicontinuous at θ0 if for any ε > 0, there is a positive δ such that
|θ − θ0| < δ implies f(θ) < f(θ0) + ε.
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4. For all θ and for all sufficiently small ρ > 0, sup|θ′−θ|<ρ U(x, θ′) is measurable
in x.

Then
lim sup

n
sup
θ∈Θ

1
n

n∑
i=1

U(Xi, θ) ≤ sup
θ∈Θ

µ(θ)

with probability 1.

Proof of Lemma A.1. Define ϕ(x, θ, ρ) := sup|θ′−θ|<ρ U(x, θ′). By Condition 4,
ϕ(x, θ, ρ) is measurable in x for all θ and all sufficiently small ρ > 0. By Condition
2, for all x and fixed θ ∈ Θ, ϕ(x, θ, ρ) ↓ U(x, θ) as ρ ↓ 0. Therefore by Condition 3
and Lebesgue’s dominated convergence theorem,∫

ϕ(x, θ, ρ)dF (x) ↓
∫
U(x, θ)dF (x) = µ(θ) (A.3)

as ρ ↓ 0, for every θ ∈ Θ. Given ε > 0, (A.3) then implies that for each θ ∈ Θ,
there exists a sufficiently small ρθ > 0 such that

∫
ϕ(x, θ, ρθ)dF (x) < µ(θ) + ε.

Clearly, the family {B(θ, ρθ) : θ ∈ Θ} forms an open cover of Θ, and since Θ is
compact, we can choose a finite sub-cover {B(θj, ρθj) : j = 1, . . . ,m} such that
Θ =

⋃m
j=1B(θj, ρθj). Now for each θ ∈ Θ, there exists an index j, 1 ≤ j ≤ m

such that θ ∈ B(θj, ρθj). Hence by the definition of ϕ(x, θ, ρ), it follows that
U(Xi, θ) ≤ ϕ(Xi, θj, ρθj), i = 1, . . . , n. Thus

1
n

n∑
i=1

U(Xi, θ) ≤
1
n

n∑
i=1

ϕ(Xi, θj, ρθj) ≤ sup
1≤j≤m

1
n

n∑
i=1

ϕ(Xi, θj, ρθj).

Consequently,

sup
θ∈Θ

1
n

n∑
i=1

U(Xi, θ) ≤ sup
1≤j≤m

1
n

n∑
i=1

ϕ(Xi, θj, ρθj). (A.4)

For each j ∈ {1, . . . ,m}, by the strong law of large numbers,

lim
n

1
n

n∑
i=1

ϕ(Xi(ω), θj, ρθj) =
∫
ϕ(x, θj, ρθj)dF (x) < µ(θj) + ε

except on a set Aθj with probability 0. If ω lies outside the union A of all
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the Aθj , then limn sup1≤j≤m n
−1∑n

i=1 ϕ(Xi(ω), θj, ρθj) < sup1≤j≤m µ(θj) + ε ≤
supθ∈Θ µ(θ) + ε. Together with (A.4), it can be seen that

lim sup
n

sup
θ∈Θ

1
n

n∑
i=1

U(Xi, θ) < sup
θ∈Θ

µ(θ) + ε

with probability 1. Since ε is arbitrary, the result follows.

Proof of Theorem A.3. Because of Condition 2, Condition 4 in Lemma A.1 is
satisfied. By Condition 2 and Lebesgue’s dominated convergence theorem, µ(θ) is
continuous on Θ. Consequently, both U(x, θ)−µ(θ) and −U(x, θ) +µ(θ) are upper
semicontinuous in θ for all x. Therefore, we may apply Lemma A.1 to U(x, θ)−µ(θ)
and −U(x, θ) + µ(θ) respectively and claim that with probability 1,

lim sup
n

sup
θ∈Θ

1
n

n∑
i=1

[U(Xi, θ)− µ(θ)] ≤ 0,

lim sup
n

sup
θ∈Θ

1
n

n∑
i=1

[−U(Xi, θ) + µ(θ)] ≤ 0,

which is equivalent to

lim
n

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

U(Xi, θ)− µ(θ)

∣∣∣∣∣ = 0

with probability 1.

As the final historical example, let’s recall the notable Arzelà-Ascoli theorem.
This theorem has many variants across different analysis branches, among which
the following version regarding the characterization of compact subsets of the space
C[0, 1], is cited from Billingsley (1999, p.81).

Theorem A.4. Let C ≡ C[0, 1] be the space of continuous functions on the unit
interval. The set A ⊂ C is relatively compact† if and only if

sup
x∈A
|x(0)| <∞

†A set A is relatively compact if its closure A is compact.
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and the family A of continuous functions is uniformly equicontinuous, i.e.,

lim
δ→0

sup
x∈A

wx(δ) = 0. (A.5)

Here the modulus of continuity of an arbitrary function x(·) on [0, 1] is defined by

wx(δ) = w(x, δ) = sup
|s−t|≤δ

|x(s)− x(t)|, 0 < δ ≤ 1. (A.6)

Proof. If A is compact, then supx∈A |x(0)| ≤ supx∈A ‖x‖ <∞, (A.5) follows. Since
w(x, n−1) is continuous in x‡ and nonincreasing in n, limδ→0wx(δ) = 0 holds
uniformly on A if A is compact (Billingsley (1999, p.242, M8)), and (A.6) holds.

Suppose now (A.5) and (A.6) hold. Choose k large enough that supx∈Awx(k−1)
is finite. Since

|x(t)| ≤ |x(0)|+
k∑
i=1
|x(it/k)− x((i− 1)t/k)|,

it follows that
sup
t

sup
x∈A
|x(t)| <∞. (A.7)

The idea now is to use (A.7) and (A.6) to prove that A is totally bounded; since
C is complete, it will follow that A is compact.

Let α be the supremum in (A.7). Given ε, choose a finite ε-net H in the interval
[−α, α] on the line, and choose k large enough that wx(1/k) < ε for all x in A.
Take B to be the finite set consisting of the (polygonal) functions in C that are
linear on each interval Iki = [(i − 1)/k, i/k], 1 ≤ i ≤ k, and take values in H at
the end points. If x ∈ A, then |x(i/k)| ≤ α, and therefore there is a point y in B
such that |x(i/k)− y(i/k)| < ε for i = 0, 1, . . . , k. Now y(i/k) is within 2ε of x(t)
for t ∈ Iki, and similarly for y((i − 1)/k). Since y(t) is a convex combination of
y((i− 1)/k) and y(i/k), it too is within 2ε of x(t): ρ(x, y) < 2ε. Thus B is a finite
2ε-net for A.

‡For fixed positive δ, we have |wx(δ)− wy(δ)| ≤ 2ρ(x, y).
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3 Meditation: the Problem, the Construction of the
Chain and the General Procedure

From the four classical examples introduced in last section, we may have gotten a
vague impression about what a chain is and how the chaining arguments proceeds.
To get a clearer view of what kind of gaps that the chaining arguments fills in,
we summarize the key conditions and the ultimate goals of the four examples in
Section 2 in the Table A.1 below:

Table A.1. The key conditions and the ultimate goals of the four theorems introduced in
Section 2.

Theorems Conditions Goals
Polyá Theorem |Fn(x)− F (x)| → 0 for fixed x ∈ R1 sup

x∈R1
|Fn(x)− F (x)| → 0

Glivenko-Cantelli Theorem |Fn(x, ω)− F (x)| →a.s. 0 for fixed x ∈ R1 sup
x∈R1
|Fn(x, ω)− F (x)| →a.s. 0

Uniform SLLN n−1
n∑
i=1

U(Xi, θ)→ µ(θ) for fixed θ ∈ Θ sup
θ∈Θ

∣∣∣∣n−1
n∑
i=1

U(Xi, θ)− µ(θ)
∣∣∣∣→ 0

Arzelà-Ascolli Theorem Uniformly bounded + Uniformly equicontinuous Relative Compactness

In Table A.1, except for the last example for which we will uncover its connection
to the chaining arguments later, all the theorems share the common feature that a
point-wise result must be generalized to its uniform counterpart. Specifically, we
may refer the set (e.g., R1, Θ) in the “Conditions” column as the parameter space.
At the outset, an assertion S holds only for a fixed point in the parameter space
(i.e., point-wisely), and the goal is to extend S to the whole parameter space. Such
extensions are necessary as intermediate steps in establishing many asymptotic
theorems (as may be seen from the examples in Section 4) and it is the chaining
arguments that abridge the gap between them. Before giving a formal definition of
a general chain, let’s first find out what they are in the preceding four examples:

Polyá Theorem:
C = {x0, x1, . . . , xk}

Glivenko-Cantelli Theorem:

C = {xm1, xm2, . . . , xmm}
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Uniform SLLN:
C = {θ1, . . . , θm}

Arzelà-Ascolli Theorem:
C = {y ∈ C[0, 1] : y ∈ B}

In the above list, we use the generic symbol “C” to denote a chain, which is a
finite set consisting of representative points from the parameter space. The key
word “finite” is easily understood, whereas by saying “representative”, we mean
that the difference between suprema of the quantity of interest over the whole
parameter space and C is negligible when the sample size n is large. This statement
can be verified by carefully examining the proofs in Section 2. Now that we are
clear on problems type that the chaining technique applies, it is time to give a
formal definition of the chain and the chaining argument.

Definition A.1. Given a parameter space Θ whose cardinality is typically a
continuum, suppose that for each θ ∈ Θ, the proposition S(θ) is true. The chaining
technique, or the chaining arguments is a collection of mathematical statements
that proves S is true uniformly on Θ. In the course of these statements, we need to
construct a finite set C = {θ1, . . . , θm} ⊂ Θ, called a chain, through which the final
uniform assertion can be declared. The elements θi, i = 1, . . . ,m of C are called
the knots of the chain.

In the above definition, everything is clear except the sentence “through which
the final uniform assertion can be declared.” This is due to we cannot include
every case of how to achieve the uniform goal from the initial point-wise condition
with the help of C in a generic definition. Nevertheless, in the case of establishing
uniform convergence results where the chaining technique receives its popularity,
there do exist some routine steps as we have illustrated in the first three examples
in Section 2. Loosely speaking, in order to show sup

θ∈Θ
|Dn(θ)| → 0 with any specified

convergence mode, by cleverly constructing the chain C, we manage to show that

sup
θ∈Θ
|Dn(θ)| ≤ sup

θ∈C
|Dn(θ)|+ ε, (A.8)

where ε is a quantity that can be made arbitrarily small in advance. In this way
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we successfully reduces the supremum over an uncountable set Θ to the supremum
over a finite set C, thus the point-wise condition is immediately applicable.

There are, of course, much subtleties on determining C and establishing the
inequality (A.8). In general, both of these two tasks closely rely on the properties of
the parameter space Θ and that of the objects under investigation. For instance, the
chain in the proof of Polyá Theorem depends on the ordering property of the real
line and the continuity of F , whereas when showing (A.1), which is a special case
of (A.8), the monotonicity of F must be employed. Consequently, it is important
to keep in mind that the chaining technique may not be suitable for every problem
that requires a uniform generalization — the structure and the condition of the
problem does matter.

It is also remarkable that the point-wise condition in the proof is not always
readily available, on the contrary, it’s not unusual that establishing the point-wise
condition is much harder than invoking the chaining arguments itself. To see this,
let’s just compare the difficulty of the proof of the strong law of large numbers and
the chaining arguments used in the proof of Glivenko-Cantelli Theorem (the proof
itself is short since we all take the validity of the point-wise SLLN for granted). This
point is echoed in many papers in the quantile regression literature, where some
advanced exponential inequalities must be called for to establish the point-wise
preliminaries.

In summary, a complete chaining arguments can be formed by the following
three steps:

Step 1: Establish the point-wise proposition.

Step 2: Based on the special structure of the problem at hand, construct a chain
by which a passage from the point-wise result to the uniform goal is possible.

Step 3: Conclude the proof by establishing an inequality similar to (A.8).

So far, it remains to explain how the proof of the Arzelà-Ascolli Theorem
connects the chaining philosophy introduced above. In that proof, instead of
proving any uniform convergence result, we are contented to determine the chain
itself. Therefore only the Step 2 in the above list is needed. Nevertheless, it fully
demonstrates the technicalities during the process of constructing a chain and
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how a chain with only finitely many members can approximate any member in an
uncountable family with any pre-specified accuracy. From this example, it may
also be seen that the usage of the term “chain” is in fact quite random — the word
“net” could be an equally descriptive term.

4 Modern Applications

In this section, after summarizing the general philosophy of the chaining arguments,
we illustrate this important technique by reviewing some applications from journal
papers.

Example 1. Our first example comes from Bickel (1975, Lemma 4.1). In this
paper, for the linear model Yi =

∑p
j=1 xijβj + εi, 1 ≤ i ≤ n, the author studied the

asymptotic behavior of the one-step estimator β̂ = (β̂1, . . . , β̂p)′ satisfying

n∑
i=1

xijψ(Yi(β∗)) =
p∑

k=1
(β̂k − β∗k)

n∑
i=1

xikxijψ
′(Yi(β∗)), 1 ≤ j ≤ p.

where β∗ is any given preliminary estimator, Yi(t) = Yi −
∑p

j=1 xijtj for t =
(t1, . . . , tp)′. To show the asymptotic normality of β̂, the crucial step is to show the
small perturbation Tn(t)− Tn(0) is uniformly negligible for t small enough. Here

Tn(t) := 1√
n

n∑
i=1

ci{ψ(Yi(t))− E[ψ(Yi(t))]}

where ci = xi1. The asymptotic behavior of Tn(t) − Tn(0) is summarized as the
following lemma:

Lemma A.2. Assume the following conditions hold:

G The matrices n−1X ′X tend as n→∞ to a limit X0 which is positive definite.
Further, ‖X‖∞ = maxi,j |xij| = o(

√
n).

C The function ψ is nondecreasing and satisfies∫ ∞
−∞

(ψ(x+ h)− ψ(x))2dF (x) = O(1),
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∫ ∞
−∞

(ψ(x+ h)− ψ(x− h))2dF (x) = O(1)

as h→ 0.

In addition, assume β = 0. Then for a generic constant M ,

sup
‖t‖≤M/

√
n

|Tn(t)− Tn(0)| →P 0,

where we use ‖t‖ to denote the maximum of the absolute values of the coordinates
of t.

Proof. Step 1: Establish the point-wise convergence result for Tn(t/
√
n)− Tn(0):

First show that for fixed t such that ‖t‖ ≤M , Tn(t/
√
n)− Tn(0)→P 0. To see

this, compute

E
[{
Tn(t/

√
n)− Tn(0)

}2
]

= 1
n

Var
(

n∑
i=1

ci[ψ(Yi(t/
√
n))− ψ(Yi(0))]

)

≤ 1
n

n∑
i=1

c2
iE

{ψ(εi −
p∑
j=1

xijtj/
√
n)− ψ(εi)

}2


= 1
n

n∑
i=1

c2
i

∫ ∞
−∞

[ψ(s−
p∑
j=1

xijtj/
√
n)− ψ(s)]2f(s) ds

≤ 1
n

n∑
i=1

c2
i sup
‖h‖≤pM‖X‖∞/

√
n

∫ ∞
−∞

[ψ(s+ h)− ψ(s)]2f(s) ds→ 0

as n→∞, by Condition G and Condition C.
Step 2: Construct the chain, and argue that the value of the objective function

at each point of the original parameter set can be well approximated by that of
one knot of the chain.

Now, clearly, the “parameter set under investigation” is

Θ = {t ∈ Rp : ‖t‖ ≤M/
√
n}

For a given positive δ, we have Θ ⊂ K := {t ∈ Rp : ‖t‖ ≤ (bδ−1c+ 1)δM/
√
n}.
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We will construct a finite “chain” for the slightly larger parameter set K. Intuitively,
the chain consists of grid points that evenly divide the cube K. Mathematically, it
is the finite set:

C := {(j1δM/
√
n, . . . , jpδM/

√
n) : ji ∈ {0,±1, . . . ,±bδ−1c+ 1}, 1 ≤ i ≤ p}.

If ‖t‖ ≤M/
√
n, let P (t) ∈ C be the lowest vertex of the small cube containing

t. For fixed δ, by Step 1:

max
‖t‖≤M/

√
n
|Tn(P (t))− Tn(0)| →P 0. (A.9)

On the other hand, let K1 be any cube of the partition and let P1 be its lowest
vertex. Then, by monotonicity of ψ, it follows that

sup
t∈K1

|Tn(t)− Tn(P1)|

= sup
t∈K1

1√
n

∣∣∣∣∣
n∑
i=1

ci{[ψ(Yi(P1))− ψ(Yi(t))]− E[ψ(Yi(P1))− ψ(Yi(t))]}

∣∣∣∣∣
≤ sup

t∈K1

1√
n

n∑
i=1
|ci|{|ψ(Yi(P1))− ψ(Yi(t))|+ E[|ψ(Yi(P1))− ψ(Yi(t))|]}

≤ 1√
n

n∑
i=1
|ci|[ψ(Yi(P1) +MδSi/

√
n)− ψ(Yi(P1)−MδSi/

√
n)]

+ 1√
n

n∑
i=1
|ci|E[ψ(Yi(P1) +MδSi/

√
n)− ψ(Yi(P1)−MδSi/

√
n)]

=:I1n + I2n,

where Si =
∑p

j=1 |xij|.
To show supt∈K1 |Tn(t)− Tn(P1)| = oP (1), we first show that I2n = δO(1). By

monotonicity of ψ, I2n equals to

1√
n

n∑
i=1
|ci|
∫ [

ψ

(
s−

p∑
j=1

xijt
∗
j + MδSi√

n

)
− ψ

(
s−

p∑
j=1

xijt
∗
j −

MδSi√
n

)]
dF (s)

≤ 1√
n

n∑
i=1
|ci| sup

|q|≤M(δ+1)Sj/
√
n

∫ ∞
−∞

[
ψ

(
s+ q + 2MδSi√

n

)
− ψ(s+ q)

]
dF (s)
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=2Mδ

n

n∑
i=1
|ci| sup

|q|≤M(δ+1)Si/
√
n

|h|≤2MδSi/
√
n

1
|h|

∫ ∞
−∞
|ψ (s+ q + h)− ψ (s+ q)| dF (s)

≤2Mδ

n

n∑
i=1
|ci| sup

|q|≤M(δ+1)p‖X‖∞/
√
n

|h|≤2Mδp‖X‖∞/
√
n

1
|h|

∫ ∞
−∞
|ψ (s+ q + h)− ψ (s+ q)| dF (s)

=O(1)δ 1
n

n∑
i=1
|xi1| (by Condition G and C, and the definition of ci)

≤O(δ) 1
n

n∑
i=1

x2
i1 (by Cauchy-Schwarz inequality)

=O(1)δ (by Condition G)

Here we use (t∗1, . . . , t∗p)′ to denote the coordinates of P1.
Next, by the similar argument to Step 1, it can be shown that the variance of

I1n is bounded by

∑n
i=1 c

2
i

n

∫ ∞
−∞

[
ψ

(
s−

p∑
j=1

xijt
∗
j + MδSi√

n

)
− ψ

(
s−

p∑
j=1

xijt
∗
j −

MδSi√
n

)]2

dF (s)

≤ 1
n

n∑
i=1

c2
i

∫ ∞
−∞

[
ψ

(
s+ M(δ + 1)Si√

n

)
− ψ

(
s− M(δ + 1)Si√

n

)]2

dF (s)

≤ 1
n

n∑
i=1

c2
i sup
‖h‖≤pM(δ+1)‖X‖∞/

√
n

∫ ∞
−∞

[ψ(x+ h)− ψ(x− h)]2f(s)ds→ 0

as n→∞. In summary, we showed that

sup
t∈K1

|Tn(t)− Tn(P1(t))| = oP (1) + δO(1).

Clearly, the quantity supt∈Θ |Tn(t)−Tn(P1(t))| = maxK1 supt∈K1 |Tn(t)−Tn(P1(t))|
has the same order as the above expression.

Step 3: Use the arbitrariness of the length between knots, and finish the proof.
Because the δ used in Step 2 can be arbitrarily small, in fact, we proved that

sup
t∈Θ
|Tn(t)− Tn(P1(t))| = oP (1). (A.10)
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It then follows by (A.9) and (A.10) that

sup
t∈Θ
|Tn(t)− Tn(0)|

≤ sup
t∈Θ
|Tn(t)− Tn(P1(t))|+ max

t∈Θ
|Tn(P1(t))− Tn(0)|

=oP (1) + oP (1) = oP (1).

This completes the proof.

The above example may be considered as a revival of the chaining arguments
(although its conditions, and details of the proofs have minor mistakes, which have
been all corrected in this report) and it soon receives wide popularity, particularly in
the theoretical quantile regression literature. We will review several applications in
the subsequent examples. Although these applications vary across different models
and settings, the invocation of the chaining arguments are generally quite routine
— it always follows the three steps summarized in Section 3, as demonstrated in
Example 1.

In the quantile regression literature, the chaining arguments is needed when we
want to establish the uniform Bahadur representation of the regression quantiles,
for which a key step is to show that the subgradient function (a function in ∆) of the
objective function can be approximated uniformly by an affine transformation of ∆.
To achieve this goal, the chaining arguments is an indispensable tool. In the Table
A.2 below, I listed some representative applications of the chaining arguments,
from four different journal papers. For space restriction, the precise meanings
of notations are not listed in the same table and may be found by consulting
corresponding papers.

Although the models and the quantile estimates vary from paper to paper, it is
important to note from the third column of Table A.2 that all these papers aim to
show some “uniform negligibility in probability”. In fact, the proofs of these goals
are essentially similar to each other — the chaining technique must be invoked,
and the three steps summarized in Section 3 are closely followed. In the remaining
of this section, I will illustrate this procedure by going over the proof of Lemma 2.3
in Koenker and Zhao (1994). In its original proof, the author omitted the details of
Step 2 of the chaining arguments. Here I supplemented this missing part, as well
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as corrected some notational typos appeared in the original proof.

Table A.2. Four applications of the chaining technique from four journal papers. The
first two papers concern with the homoscedastic linear models, while the third paper and
the fourth paper study the location-scale model and the ARCH-type model, respectively.
For each of these papers, the primary interest is to establish the Bahadur representation of
the proposed quantile estimates, during which the key step is listed in the “Goal” column
here.

Paper Model Goal
Koenker and Portnoy (1987) yi = x′iβ + ui sup

τ∈[ε,1−ε]
‖β̂(τ)− β(τ)‖ = OP (

√
log n/n)

Gutenbrunner et al. (1993) yi = x′iβ + ui sup
‖t‖≤C

√
log2 n,

τ∈[τ∗n,1−τ∗n]

|rn(t, α)| = oP (1)

Koenker and Zhao (1994) yi = x′iβ + (x′iγ)ui sup
Dnε

‖V̂ (∆, τ)− V (0, τ) + f(F−1(τ))Q2∆‖ = OP (n−1/4 log n)

Koenker and Zhao (1996) yt = ut(γ0 +
q∑̀
=1
γ`|yt−`|) sup

‖∆‖≤M
‖V (∆)− V (0) + f(F−1(τ))G∆‖ = oP (1)

Example 2. This example is Lemma 2.3 in Koenker and Zhao (1994).

Lemma A.3. Define Dnε = {(∆, τ) : τ ∈ [ε, 1− ε], ‖∆‖ ≤ K
√

log n}, T (∆, τ) =
n−1/2

n∑
i=1

σ−2
i xix

′
iψτ (ui − F−1(τ)− n−1/2σ−1

i x′i∆), then under C1–C5 (see the paper

for details),

sup
Dnε

‖T (∆, ε)− T (0, τ)− E[T (∆, τ)]‖ = OP (log n).

Proof. Write T (∆, τ) = [Tjk(∆, τ)]k=1,...,p
j=1,...,p , where

Tjk(∆, τ) = n−1/2
n∑
i=1

vijkψτ (ui − F−1(τ)− n−1/2σ−1
i x′i∆)

with vijk = e′jxix
′
iek/σ

2
i is the (j, k)th entry of matrix xix′i/σ2

i , i = 1, . . . , n. Here,
as convention, ej = (0, . . . , 1, . . . , 0)′ denotes the vector in Rp whose jth component
is 1 and all the others are 0.

It is worth pointing out that since T (∆, τ) is a matrix of finite dimensions,
the asymptotic behavior (such as tightness) of T (∆, τ) is implied by those of its
individual entries Tjk(∆, τ). This is the standpoint we will take in the proof.
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The first goal is to show that for any fixed ∆ ∈ Dnε and any j, k ∈ {1, . . . , p},
Tjk(∆, τ)− Tjk(0, τ)−E[Tjk(∆, τ)] = OP (log n), which is implied by for any λ > 0,

P [|Tjk(∆, τ)− Tjk(0, τ)− E[Tjk(∆, τ)]| ≥ λ log n] ≤ 2e−λ logn(1+o(1)).

For ease of notation, denote n1/2(Tjk(∆, τ)− Tjk(0, τ)−E[Tjk(∆, τ)]) by T̃jk ≡
T̃jk(∆, τ). Then the goal becomes

P [|T̃jk| ≥ λn1/2 log n] ≤ 2e−λ logn(1+o(1)). (A.11)

Following the proof of Lemma A.2 in Koenker and Portnoy (1987), let Mjk(t) ≡
E[exp(tT̃jk)] denote the moment generating function of T̃jk. Since the summands
of T̃jk are mutually independent, it follows that Mjk(t) =

∏n
i=1Mijk(t), where

Mijk(t) = E{exp[tvijk(ψτ (ui − F−1(τ)− n−1/2σ−1
i x′i∆)− ψτ (ui − F−1(τ))

− Eψτ (ui − F−1(τ)− n−1/2σ−1
i x′i∆)]}

For λn > 0, t > 0, by Markov’s inequality (the introduction of the parameter t is
noteworthy):

P [|T̃jk| ≥ λn] ≤ e−tλn(Mjk(t) +Mjk(−t)). (A.12)

Since logMjk(t) =
∑n

i=1 logMijk(t), in order to bound Mjk(t), first consider bound-
ing Mijk(t) individually. We have the following three cases:

Case 1: x′i∆ = 0. This case is trivial, for which Mijk(t) = 1.

Case 2: x′i∆ > 0. Denote by pi the probability P [F−1(τ) ≤ ui < F−1(τ) +
n−1/2σ−1

i x′i∆], then

Mijk(t)

=E
{

exp
[
tvijk(pi − I(F−1(τ) ≤ ui < F−1(τ) + n−1/2σ−1

i x′i∆))
]}

=pi exp(−tvijk(1− pi)) + (1− pi) exp(tvijkpi)

≤1 + 2pi(tvijk)2 exp(|tvijk|).
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Case 3: x′i∆ < 0. Denote by qi the probability P [F−1(τ) + n−1/2σ−1
i x′i∆ ≤ ui <

F−1(τ)]. Similar calculation to case 2 yields

Mijk(t) ≤ 1 + 2qi(tvijk)2 exp(|tvij|).

In a compact way, all of the three cases above can be summarized as Mijk(t) ≤
1 + 2 sgn(x′i∆)(P [ui < F−1(τ) + n−1/2σ−1

i x′i∆]− τ)(tvijk)2 exp(|tvijk|), t ∈ R1. Re-
gardless the sign of x′i∆, by C5, there exists a constant c independent of i such
that

|pi| = |qi| ≤ cn−1/2σ−1
i |x′i∆|.

The inequality log(1 + x) ≤ x for x ≥ 0 then implies

logMijk(t) ≤ cn−1/2σ−1
i |x′i∆|(tvijk)2 exp(|tvijk|) (A.13)

By Schwarz inequality and C4,

|vijk| =
|e′jxix′iek|

σ2
i

≤
∥∥∥∥xiσi

∥∥∥∥2

= O(n1/2), (A.14)

exp(|tvijk|) ≤ exp(|t|‖xi/σi‖2) ≤ exp(Bn1/2|t|) (A.15)

uniformly in i, for some constant B > 0. (A.13), (A.14), (A.15), and C3 then
implies

logMjk(t) ≤ cn−1/2
n∑
i=1

σ−1
i |x′i∆|(tvijk)2 exp(|tvijk|)

≤ cn−1/2
n∑
i=1

σ−1
i ‖xi‖‖∆‖|t|2‖xi/σi‖4 exp(Bn1/2|t|)

≤ c′‖∆‖
n∑
i=1
‖xi/σi‖3|t|2 exp(Bn1/2|t|)

≤ c′′n
√

log n|t|2 exp(Bn1/2|t|),

where c′, c′′ are constants do not depend on n.
Note the above bound holds for all t ∈ R1, then recall our goal (A.11), by taking
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λn = λn1/2 log n, t = n−1/2 in (A.12) yields that

P [|T̃jk| ≥ λn1/2 log n] ≤ 2 exp(−λ log n+ c′′
√

log neB)

= 2 exp(−λ log n(1 + o(1))). (A.16)

Hence (A.11) follows.
Having proved (A.11), the next step is to generalize the point-wise result to

its uniform counterpart (4.7). The approach is the classical “chaining argument”,
which is originated from the seminal paper Bickel (1975).

In the following, we use a, a1, a2, . . . to denote generic constants.
For clarity, denote the interval [ε, 1−ε] by Iε, {∆ ∈ Rp : ‖∆‖ ≤ K

√
log n} by Hn

so that Dnε = Iε×Hn. Since we use L2 norm throughout the paper, the set Hn is a
ball in the Euclidean space Rp. Accordingly, let In := [−K

√
log n,K

√
log n]×· · ·×

[−K
√

log n,K
√

log n] be the smallest rectangle containing Hn. As the beginning
step of chaining arguments, we arrange a finite set of grid points to decompose In
into small cube. In detail, since it is desirable that the diameter of each small cube
is not greater than n−3, we set

Pn := {jδn : j ∈ {0,±1, . . . ,±bK
√

log n/δnc}} ∪ {−K
√

log n,K
√

log n},

where δn = n−3/
√
p. In the same manner, decompose Iε by small intervals whose

lengths are not greater than n−3 by letting

P0 := {ε+ i/n−3 : i = 0, . . . , b(1− 2ε)n3c} ∪ {1− 2ε}.

We then define the set of vertices (grid points) that “supporting” the set Dnε as:

V := (P0 × Pn × · · · × Pn) ∩Dnε

It is easily seen that the cardinality of V , which we shall denote by N , is bounded
above by

(b(1− 2ε)n3c+ 2)× (2bK
√

log n/δnc+ 3)p ≤ an3p+3(log n)p/2

for some constant a independent of n.
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By (A.16), we have

P

[
sup

(τ,∆)∈V
|T̃jk(∆, τ)| ≥ (3p+ 5)n1/2 log n

]
≤an3p+3(log n)p/2 × 2 exp(−(3p+ 5) log n(1 + o(1)))→ 0 (A.17)

as n→∞.
On the other hand, let C be the collection of disjoint cubes whose vertices belong

to Pn × · · · × Pn so that for each C ∈ C , diam C ≤ n−3. For any (τ,∆) ∈ Dnε, let
P (τ) be the greatest number in P0 such that P (τ) ≤ τ and P (∆) be the lowest
vertex of C ∈ C that contains ∆ (without loss of generality, we assume for every
∆, P (∆) ∈ Dnε.). For simplicity, write τ ∗ = P (τ), ∆∗ = P (∆), ∆̃ = n−1/2∆, ∆̃∗ =
n−1/2∆. Also without lost of generality, assume σi ≡ 1. Then

|T̃jk(∆, τ)− T̃jk(∆∗, τ ∗)| ≤ T1 + T2 + T3 + T4,

where

T1 =
n∑
i=1
|vijk||I(ui < F−1(τ ∗) + x′i∆̃∗)− I(ui < F−1(τ) + x′i∆̃)|

T2 =
n∑
i=1
|vijk||I(ui < F−1(τ ∗))− I(ui < F−1(τ))|

T3 =
n∑
i=1
|vijk||τ ∗ − τ |

T4 =
n∑
i=1
|vijk||F (F−1(τ ∗) + x′i∆̃∗)− F (F−1(τ) + x′i∆̃)|.

By construction, also recall |vijk| = O(n1/2), T3 = O(n · n1/2 · n−3) = O(n−3/2).
Since τ > τ ∗, we have E[T2] =

∑n
i=1 |vijk|(F (F−1(τ ∗))−F (F−1(τ)) = O(n−3/2).

The last equality holds because by Lagarange mean value theorem, there exists
ξ ∈ (τ ∗, τ) such that

F (F−1(τ ∗))− F (F−1(τ)) = s′(ξ)(τ − τ ∗) = O(n−3).
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In above we also used assumption C5. By Markov inequality, it follows that
T2 = OP (n−3/2).

To deal with T4, decompose F (F−1(τ) + x′i∆̃)− F (F−1(τ ∗) + x′i∆̃∗) as J1 + J2,
where

J1 = F (F−1(τ) + x′i∆̃)− F (F−1(τ) + x′i∆̃∗)

J2 = F (F−1(τ) + x′i∆̃∗)− F (F−1(τ ∗) + x′i∆̃∗)

By Taylor’s theorem (with integral remainder), it follows that

J1 = f(F−1(τ) + x′i∆̃∗)x′i(∆̃− ∆̃∗)

+
∫ 1

0
(1− s)f ′(F−1(τ) + x′i∆̃∗ + sx′i(∆̃− ∆̃∗)) ds · [x′i(∆̃− ∆̃∗)]2

It can be shown that under C5, both f and f ′ are bounded on [F−1(ε), F−1(1−ε)],
this fact and that x′i∆̃∗ = o(1) implies that there exists a constant a independent
of n such that (to be perfectly rigorous, we may slightly strengthen assumption C5
so that under consideration is an interior point of [F−1(ε), F−1(1− ε)].)

|J1| ≤ a(‖xi‖‖∆̃− ∆̃∗‖+ ‖xi‖2‖∆̃− ∆̃∗‖2) = O(n−11/4).

Similarly, for J2, we have

J2 = f(F−1(τ ∗) + x′i∆̃∗)(F−1(τ)− F−1(τ ∗))

+
∫ 1

0
(1− s)f ′(F−1(τ ∗) + x′i∆̃∗ + sx′i(F−1(τ)− F−1(τ ∗)))) ds

·[F−1(τ)− F−1(τ ∗)]2

Once more application of mean value theorem yields that F−1(τ) − F−1(τ ∗) =
O(n−3), hence the above expansion implies that J2 = O(n−3). Collecting these
results, we found that I3 = O(n · n1/2 · n−11/4) = O(n1/4).

In the same line with getting the order for T2 from T3, it can be verified by
using the order of T4 that T1 = OP (n1/4).

In summary,
T̃jk(∆, τ)− T̃jk(∆∗, τ ∗) = OP (n1/4)
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uniformly in (τ,∆) (the uniformity comes from that all the upper bounds obtained
above are independent of (∆, τ)). In other words, there exists a large M such that
(we retrieve the notation P (τ) and P (∆) here):

P

[
sup
Dnε

|T̃jk(∆, τ)− T̃jk(P (∆), P (τ))| ≥Mn1/4
]
→ 0 (A.18)

as n→∞.
Hence supDnε |T̃jk(∆, τ)| = OP (n1/2 log n) follows by combining (A.17) and

(A.18).

5 Further Notes

Regarding the term “chain” and “chaining”, there exists some slightly different, yet
spiritually similar definition, see Section 3 of Pollard (1990). On the other hand,
the chaining arguments summarized in this chapter may be viewed as a shortcut to
prove uniform results without diving into the empirical processes framework. The
similar concept embodied under the empirical processes framework is stochastic
equicontinuity, see Andrews (1994b) and Andrews (1994a) for details.
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