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ABSTRACT 
 

Atmospheric inversions are used to assess biosphere-atmosphere CO2 surface exchanges 
at various scales. Recently, higher resolution inversions were performed using mesoscale models 
to improve the spatial and temporal resolution of these inversions, but variability among inverse 
flux estimates remains significant. One of the main contributors to these uncertainties is the 
atmospheric transport model errors. Past studies have used ensembles to understand these transport 
model uncertainties, but have some limitations including the small number of measurements, coarse 
resolution of the models, small number of members, centered only in the variation of Planetary 
Boundary Layer (PBL) schemes and no assessment was performed to test whether the spread of 
the ensemble represents the true uncertainty. 

For this work, I evaluate and quantify the transport model errors with a large set of 
simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The 
large ensemble of 45-members was constructed using different physics parameterizations (i.e., land 
surface models (LSMs), planetary boundary layer (PBL) schemes, cumulus parameterizations and 
microphysics parameterizations) and initial/boundary conditions. All the different models were 
coupled to CO2 fluxes and lateral boundary conditions from CarbonTracker to simulate CO2 mole 
fractions. I evaluate the atmospheric transport errors over a highly instrumented area, the Mid-
Continental Intensive (MCI) region, for 2008 summer period. Both modeled meteorological 
variables (i.e., wind speed, wind direction and PBL height) and CO2 mixing ratios are compared to 
observations to evaluate the performance of the different models and the ensemble. 

In Chapter 2, I performed statistical analyses to evaluate the impact of both physics 
parameterizations and the meteorological dataset on CO2 mixing ratios and meteorological 
variables. The different model configurations show varying performances across the region that 
impede the selection of an optimal solution or least biased simulation for all the meteorological 
variables except for PBL height (PBLH). In general, physical parameterizations contribute equally 
to the model-to-model variability in atmospheric CO2 and meteorological variables, with the 
microphysics parameterization being the exception. It was also found that daily variations in CO2 
mole fractions across the region are correlated primarily with errors in the PBLH. In Chapter 3, I 
introduce two calibrations (or down-selection) methodologies using Simulated Annealing (SA) and 
Genetic Algorithm (GA) over 2008 summer.  I applied the calibration process to the multi-
physics/multi-analysis ensemble of 45-members to select the optimal ensemble using the flatness 
of the rank histogram as the main criteria. The calibrated ensemble representing the model errors 
is based on all three meteorological variables. Using multiple model configurations (i.e. 45 
configurations of varying physics), I show that a reduced number of simulations (less than 10 
members) is sufficient to characterize the transport errors, reproducing the statistics of the model-
data differences while minimizing the size of the ensemble. The CO2 error correlations of the 
calibrated ensembles were compared to the large ensemble to identify any impact of the calibration. 
Compared to the initial error structures, the calibrated ensembles revealed sampling noise across 
the region which indicates that additional filtering or modeling of the errors would be required to 
construct the error covariance matrix for regional CO2 inversion. 

Using the multi-physics and multi-analysis ensemble, I showed the importance that other 
physics parameterization besides the PBL schemes has on the atmospheric CO2 mixing ratio errors. 
In addition, the challenges that future atmospheric inversions still need to confront including 
correction of systematic biases and representation of errors, to avoid the propagation of these errors 
into inverse fluxes.  
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Chapter 1  
 

INTRODUCTION 

The increase in atmospheric carbon dioxide (CO2) concentration has a direct influence on 

the radiative budget of the Earth and is the main driver of climate change since the world's 

industrialization (IPCC, 2013). Global atmospheric CO2 has increased from 280 ppm at the start of 

the Industrial Revolution to over 400 ppm in recent years (Canadell et al., 2007; Dlugokencky and 

Tans, 2015). The atmospheric CO2 increase is primarily due to fossil fuel combustion and, to a 

lesser extent, land use change (Houghton et al., 1999; IPCC, 2013; Le Queré et al., 2015). Not all 

the CO2 emitted remains in the atmosphere, because the terrestrial biosphere absorbs about 30% of 

the emissions (Battle et al., 2000; Sarmiento et al., 2010; Le Quere et al., 2015). Several studies 

have identified the temperate latitudes of the Northern Hemisphere as a large net sink (Tans et al., 

1990; Ciais et al., 1995; Gurney et al., 2002; Houghton et al., 2002; Sarmiento et al., 2010; Pan et 

al., 2011; Le Queré et al., 2015). However, the specific magnitudes and distributions of terrestrial 

sources and sinks are still uncertain. Accurate and precise quantification of terrestrial fluxes is an 

important step toward successful prediction of future atmospheric CO2. 

Terrestrial fluxes over continents can be estimated using two broad classes of methods: (1) 

“bottom-up” and (2) “top-down”. The “bottom-up” methods include either modeling of 

biogeochemical processes or evaluation of carbon stock changes from crop and forest inventories 

(e.g., King et al., 2007; Houghton et al., 2002; Pan et al., 2011; Fang et al., 2014). The “top-down” 

method or atmospheric inverse method uses atmospheric transport models to estimate carbon fluxes 

by adjusting these fluxes to be optimally consistent with observed CO2 concentrations (e.g., Enting, 

1999; Bousquet et al., 2000; Chevallier et al., 2010). Bottom-up methods estimate carbon budgets 
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from local-to-global scales by simulating land-atmosphere exchange processes for the terrestrial 

biosphere (Fung et al., 1983), collecting fossil fuel consumption data (Marland and Rotty, 1984), 

estimating emissions from forest fires (Van der Werf et al., 2010), and other minor sources (i.e., 

oxidation of other trace gases). The atmospheric inversion method is an independent approach to 

the “bottom-up” method, and therefore has been compared at global (Peylin et al., 2013) and 

regional scales (Ogle et al., 2015). Both methods yield a wide range of results (Houghton et al., 

2002; Sarmiento et al., 2010; King et al., 2015), and even when flux estimates overlap between the 

two methods, large uncertainties still remain (Pacala et al., 200l; Janssens et al., 2003). 

Uncertainties are caused by the limitations of each method, and the sources of uncertainties differ. 

The methods differ because each incorporates different types of data, captures different processes, 

and uses different spatial and temporal resolutions. Many investigations have documented large 

uncertainty and variability among inverse flux estimates (Gurney et al., 2002; Baker et al., 2006; 

Sarmiento et al., 2010; Peylin et al., 2013). Different sources of uncertainty in the inverse method 

include limited atmospheric CO2 data (Gurney et al., 2002), uncertain prior flux estimates 

(Huntzinger et al., 2012), and atmospheric transport uncertainty (Stephens et al., 2007; Gerbig et 

al., 2008; Picket-Heaps et al., 2011). 

Early atmospheric inversions of CO2 sources and sinks performed at global scale used 

observations from remote locations such as mountain tops and ocean sites, to avoid the 

misrepresentation of large and highly variable CO2 fluxes over continents (e.g., Keeling et al., 1989; 

Tans et al., 1990). While these remote locations provide information about the composition of the 

“background” atmosphere, the location and magnitude of sources and sinks remain under-

constrained. Continental sites are required to understand the mechanisms driving carbon sources 

and sinks (Denning et al., 1995). As the information content of observations increases, accurate 

interpretation of these data requires data assimilation systems that can simulate the spatial 

variability of terrestrial fluxes and the complexity of atmospheric dynamics over land (Law et al., 
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2003). In the last decade, continental networks consisting of tall towers or airborne measurements 

have been deployed throughout Northern Hemisphere (e.g., National Oceanic and Atmospheric 

Administration-Earth Systems Research Laboratory (NOAA-ESRL); CarboEurope) to better 

constrain terrestrial vegetation fluxes. The deployment of these continental atmospheric CO2 

measurement networks helps constrain inverse fluxes mainly in the Northern Hemisphere, reducing 

uncertainty in carbon flux estimates from the continental biosphere (Gurney et al., 2002; Baker et 

al., 2006; Patra et al., 2008; Butler et al., 2010). 

Adding observations to atmospheric inversions can reduce the uncertainty in inverse flux 

estimates. Increasing the spatial resolution of atmospheric inversions may also increase 

atmospheric transport uncertainties if atmospheric models are not able to represent the atmospheric 

processes that cause observed variability in CO2 mole fractions over land in the atmospheric 

boundary layer (Gurney et al., 2002;2008, Patra et al., 2008). At regional scales, domain-limited 

inversions require an atmospheric CO2 model that is capable of reproducing both large interannual 

and day-to-day variability in atmospheric CO2 over land (Ahmadov et al., 2007). Such a model is 

required to avoid additional flux biases due to an incorrect interpretation of atmospheric signals 

(Law et al., 2008; Patra et al., 2008). Recent inversion systems have replaced coarse resolution 

models (Global Circulation models (GCM)), which caused large representation errors over 

heterogeneous and complex terrain (Geels et al., 2007), with mesoscale models able to capture the 

local variability in CO2 observations (e.g. Lauvaux et al., 2008). To improve the simulation of both 

atmospheric dynamics over such terrain and high spatial variability in fluxes, higher resolution 

transport models have been evaluated during intensive observation campaigns of greenhouse gases 

(GHGs) at regional scales (Sarrat et al., 2007). 

In the past few years, several inversions were performed using higher resolution transport 

models (e.g. Lauvaux et al., 2009a; Schuh et al., 2010; Göckede et al., 2010; Lauvaux et al., 2012) 

to obtain better representations of atmospheric dynamics and flux spatial variability. Although 
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regional inversions benefit from increased atmospheric transport model and flux resolutions (Schuh 

et al., 2013), several limitations affect these systems including the sparsity of regional measurement 

networks, errors in the boundary conditions (Göckede et al., 2010), lack of detailed prior fluxes and 

prior error structures (Schuh et al., 2013), and uncertainty in mesoscale models caused by different 

parameterizations of atmospheric physics (Lauvaux and Davis, 2014). Several regional inversions 

have used short-term intensive field campaigns such as CarboEurope Regional Experiment 

Strategy (CERES; Dolman et al., 2006), Ameriflux sites in Oregon (Göckede et al., 2010) or Mid-

Continental Intensive (MCI) field campaign (Miles et al., 2012; Lauvaux et al., 2012) to solve for 

the increasing number of unknowns in the state vector (i.e., increased flux resolution) (Law et al., 

2003). Boundary conditions (i.e. the inflow of CO2 in the simulation domain) used in regional 

inversions can cause large errors in the regional carbon balance because this inflow is provided by 

global CO2 models and depends on their ability to simulate continental and oceanic air masses 

(Göckede et al., 2010; Gourdji et al., 2010). Therefore, additional data are required to reduce the 

uncertainty of the boundary conditions and inform the system of any potential biases (Lauvaux et 

al., 2012; Schuh et al., 2013). True surface fluxes can be highly variable in space and time, and 

biogeochemical models and fossil fuel inventories may fail to represent the large gradients across 

the landscape (Lokupitiya et al., 2009). Prior flux errors can only be prescribed based on modeled 

error covariances in order to regularize the assimilation of local tower data (Bocquet et al., 2005). 

For the last critical component of inversion systems, that is atmospheric transport, higher resolution 

data require atmospheric models able to represent multiple drivers of the atmospheric dynamics at 

high resolution such as the terrain-driven dynamics (Perez-Landa et al., 2007), coastal dynamics 

(Sarrat et al., 2007), variable land surface properties, and the planetary boundary layer dynamics 

(Lauvaux and Davis, 2014). Because transport errors remain difficult to estimate, regional 

inversions will require new approaches to characterize their magnitude and their structures, more 
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advanced than the simplified description of transport errors in global inversions (i.e., variances 

only).  

Despite the progress in the top-down methodologies (e.g., additional observations and 

higher model resolutions), the impact of the atmospheric transport errors on inverse flux estimates 

remained a major uncertainty. Inversion systems assume perfect transport models (i.e., unbiased) 

with frameworks that are still limited to the optimization of the biogenic surface fluxes alone. 

However, model-data mismatches, used to optimize the fluxes, contain the contribution of both 

flux and transport errors (Figure 1-1). Therefore, the atmospheric inversions will systematically 

attribute atmospheric CO2 model-data mismatches to the surface fluxes without considering the 

potential biases in transport models. In a Bayesian framework, the atmospheric inversion assumes 

(1) atmospheric transport model errors are unbiased and (2) the random errors are known. 

Inconsistent errors (i.e., random and systematic) will be propagated into the state space by the 

optimization process, generating biased inverse (i.e., posterior) fluxes (Tarantola, 2004). 

Atmospheric inverse CO2 flux estimates will be reliable only if random atmospheric transport errors 

are quantified rigorously and the transport models are unbiased.  
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Figure 1-1. Diagram of a typical atmospheric inversion system that corrects only for errors in prior 
fluxes. 

 
Few studies have quantified these transport errors thoroughly. The Atmospheric Transport 

Model Intercomparison Project (TransCom) has been dedicated to evaluate and to quantify the 

impact of the atmospheric transport errors on CO2 fluxes using a model-intercomparison 

framework in a series of published research studies (Gurney et al., 2002; Baker et al., 2006; Stephen 

et al., 2007; Patra et al., 2008; Peylin et al., 2013). To approach the model errors, the experiment 

used the assumption that the spread of a model-ensemble can represent the uncertainty among 

inverse estimates, which is mostly due to atmospheric transport model errors. TransCom studies 

were not only limited to varying the transport models but also varied the number of observations 

and the inverse methodologies. Among other results, some of the latest Transcom studies concluded 

that only an atmospheric transport model capable of representing synoptic and mesoscale 

atmospheric dynamics will be able to extract high-resolution information from the atmospheric 

observations (Law et al., 2008; Patra et al., 2008). More recently, a different study clarified the 
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contribution of model errors by using identical surface fluxes with models of different resolutions 

(Díaz Isaac et al., 2014). It concluded that transport alone has a significant impact on interpretations 

of the atmospheric CO2 signals that can lead to large differences in the inverse fluxes (Díaz Isaac 

et al., 2014). Going further into the processes responsible for these model differences, this study 

showed that not only the resolution of the atmospheric transport model impacts both CO2 mixing 

ratios and fluxes; errors in sub-grid parameterizations such as the vertical mixing can have a 

significant impact on the simulated CO2 mole fractions (Stephens et al., 2007).  

 Several studies that considered the misrepresentation of vertical mixing as a critical error 

in atmospheric transport models, assumed these errors were caused by the incorrect representation 

of the PBL. Therefore, efforts have been made to evaluate the mixing layer (ML) depth (Denning 

et al., 1995; Stephen et al., 2007; Gerbig et al., 2008; Williams et al., 2011; Kretschmer et al., 2012) 

to explore the vertical mixing errors. The misrepresentation of vertical mixing by TransCom’s 

atmospheric models shown by Stephen et al. (2007) led Gerbig et al. (2008) to evaluate the 

uncertainty in ML depth when using a global model and found errors of several ppm in the 

atmospheric CO2 mixing ratios. Sarrat et al. (2007) used an inter-comparison of five mesoscale 

models and identified large discrepancies in the ML depth impacted the atmospheric CO2 mixing 

ratios. Most of these studies have attributed the causes of the differences between simulated and 

observed ML depths to the parameterizations of the PBL (i.e., PBL schemes and land surface 

models (LSMs)).   

At the regional scale, inter-comparisons of physical parameterizations have quantified the 

impact of physics schemes on the vertical distribution of CO2 mixing ratios (Kretschmer et al., 

2012; Yver et al., 2013; Lauvaux and Davis, 2014; Feng et al., 2016). These studies have found 

systematic errors in atmospheric CO2 that can lead to biased flux estimates when used in a CO2 

flux inversion. Nevertheless, these studies were limited in several ways. Some of them performed 

their evaluations with pseudo-data experiments (e.g. Lauvaux and Davis, 2014), or used a limited 
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number of observations (e.g. Kretschmer et al., 2012), and more importantly their primary focus 

was on the impact of using different PBL physics schemes (i.e., sensitivity to the physics schemes). 

However, the vertical mixing is not solely affected by the PBL parameterizations. Therefore, the 

extent of previous transport evaluation studies on vertical mixing as a function of different PBL 

parameterizations within atmospheric transport models is incomplete.  

The ability of atmospheric transport models to simulate CO2 mole fractions depends on 

different components of the models, generally described as the boundary conditions, the initial 

conditions, and the model physics parameterizations. Each of these components contributes to the 

modeling performances with varying levels of accuracy in their representation of atmospheric 

variability. Flux CO2 errors are not considered here because the optimization procedure in CO2 

inversions treats them separately (i.e., prior fluxes and model-data mismatches are independent 

from each other). To represent model errors and propagate the uncertainties through the 

optimization algorithm, different approaches have been used in the carbon cycle community, as 

follow: (1) multi-model ensembles that encompass models from different research institutions 

around the world (e.g., TransCom experiment; Gurney et al., 2002; Baker et al., 2006; Peylin et al., 

2013), (2) multi-physics ensembles involving different physics configurations generated by 

variations of different combinations of schemes (e.g., Kretschmel et al., 2012; Lauvaux and Davis, 

2014; Feng et al., 2016), and perturbed ensembles consisting of multiple model simulations using 

different analysis fields and initial conditions (i.e. perturbations are added to the reference state) 

(e.g., Miller et al., 2015). While several studies have used ensembles as a technique to explore the 

transport errors, some of these ensembles do not vary only the transport but also the amount of 

observations, or the prior fluxes, and have been mostly focused on the PBL scheme 

parameterizations. More importantly, robust evaluations of model ensembles were missing with no 

guarantee that the ensemble of simulations statistically represent the transport errors.       
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In the present work, I will to quantify the uncertainty of atmospheric transport model in a 

more accurate and robust framework able to translate transport errors into uncertainty estimates on 

the atmospheric CO2 mixing ratios and CO2 surface fluxes. To explore the atmospheric transport 

errors, I will select a region that offers a dense network of CO2 measurement to allow me to 

constrain the CO2 fluxes and therefore avoid the lack of observation experienced in previous 

studies. I selected the Mid-Continental Intensive (MCI) domain, the first measurement campaign 

of the North American Carbon Program (NACP) that supported the deployment of a high-density 

measurement network (Ogle et al., 2006) over several years (2007-2009). The Midwest agricultural 

belt in the north central United States (U.S.) includes Iowa and surrounding states, which is also 

known as the “Corn-Belt” (Figure 2-2). The MCI campaign is unique for the unprecedented amount 

of atmospheric CO2 mixing ratio observations and therefore an ideal experiment to constrain the 

carbon budget over this region with an unprecedented level of confidence.  

 

 

Figure 1-2. Mid-Continental Intensive (MCI) field campaign study region 
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Several atmospheric inversion systems implemented over the MCI showed how the large 

number of atmospheric CO2 measurements was sufficient to constrain the regional carbon budget 

of the Corn Belt, as demonstrated by the convergence between inverse flux estimates using different 

prior fluxes, transport models, and prescribed errors (e.g. Lauvaux et al., 2012; Schuch et al., 2013). 

However, the spatial distribution of the inverse fluxes was not entirely constrained by the data, 

possibly due to differences caused by the definition of errors in both fluxes and transport. Similarly, 

Diaz-Isaac et al., (2014) showed that using the same fluxes but two different transport models 

(WRF versus TM5) led to large CO2 model-data differences among the two models over the MCI 

region. Diverging interpretation of atmospheric signals by the models translates into different 

inverse fluxes across the region, as shown in Schuh et al. (2013). Based on these results, a small 

has been made in the characterization of transport errors in atmospheric inversions. Error 

propagation is non-trivial and often requires a large ensemble of simulations that are 

computationally expensive and often under-estimate model errors. For these reasons, transport 

models remain an important source of flux biases and therefore a major limitation in current 

regional inverse studies.   

In recent years, the development of ensemble methods has improved the representation of 

transport uncertainty using the statistics of large ensembles to characterize the statistical spread of 

atmospheric forecasts (e.g. Evensen, 1994a, 1994b). However, single-physics ensemble-based 

statistics are highly susceptible to model error, leading to under-dispersive ensembles. Large 

ensembles (>50 members) remain computationally expensive and ill-adapted to the assimilation 

over longer time scales such as multi-year inversions of long-lived species such as CO2 and CH4. 

Smaller-size ensembles would be ideal, but most initial-condition-only perturbation methods 

produce unreliable and overconfident representations of the atmospheric state (Buizza et al. 2005). 
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To represent these errors over long time scales, the ensemble has to remain small and also has to 

guarantee the mass conservation of CO2 and the atmospheric flow over time. 

 The research presented in this dissertation will quantify the transport errors with an 

ensemble of simulations created with the WRF mesoscale model using different physics 

parameterizations (LSMs, PBL schemes, cumulus parameterization and microphysics 

parameterizations) and different reanalysis data sets, avoiding the use of random perturbations that 

would generate incremental changes in the simulations. This multi-physics and multi-analysis 

ensemble of 45-members will allow me to explore the performances of these configurations by 

evaluating different meteorological variables affecting tower CO2 measurements such as wind 

speed, wind direction, and PBL height. Additionally, these atmospheric transport errors will be 

reflected in the atmospheric CO2 mixing ratios due to the offline coupling of surface CO2 fluxes 

into WRF (using WRF-Chem passive tracer mode; Lauvaux et al., 2012). Throughout this 

dissertation, I will plan to focus on the following questions: How do the different physical 

parameterizations schemes affect CO2 mixing ratios and inverse surface fluxes? Will some 

parameterizations be more accurate than others? Can I provide reliable random and systematic error 

estimates in transport models? Will the multi-physics and multi-analysis ensemble be able to 

represent the transport errors? Can I represent our atmospheric transport errors with a small 

ensemble of simulations and avoid large computational expenses? I will address these different 

questions by exploring the performance of the atmospheric transport model ensemble over the MCI 

region, for the summer of 2008.  

In this dissertation, I will evaluate the multi-physics and multi-analysis ensemble in two 

different ways: (1) by evaluating in detail the performance of each member of the ensemble and (2) 

by evaluating the performance of the whole ensemble. Chapter 2 introduces how I built the 45-

member multi-physics and multi-analysis ensemble used to quantify the atmospheric transport 

errors. This chapter shows the performance of the different model-configurations across the region, 
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the physics schemes that contribute to large systematic errors across the region and a sensitivity 

experiment that will propagate the impact of the different physics parameterizations and reanalyses 

into CO2 mixing ratios. Chapter 3 shows how well the current multi-physics and multi-analysis 

ensemble represents the atmospheric transport errors. Additionally, in this Chapter 3, I test two 

techniques that will select specific members of the ensemble to better represent transport errors 

while considering an ensemble smaller than the original ensemble (i.e., 45-members). In this last 

chapter, I determine the minimal requirements for the quantification of atmospheric transport errors 

using an ensemble of model simulations.  

In summary, this dissertation presents a unique effort to quantify the atmospheric transport 

errors and their potential impact on both CO2 fluxes and mixing ratios. Both Chapters 2 and 3 will 

present the atmospheric transport errors from a different perspective compared to past studies; that 

is, using a large ensemble of model simulations and a robust calibration technique to represent 

accurately the model errors. Current studies use transport uncertainties based on a small number of 

measurements or on very limited ensembles focused on PBL schemes (e.g., Lauvaux et al., 2009b; 

Lauvaux and Davis, 2014; Feng et al., 2016). In this work, I use a significant number of 

meteorological observations able to characterize errors in horizontal and vertical transport of CO2 

and a greater number of simulations (i.e. ensemble members) that will use varying physics 

parameterizations to explore in detail the model uncertainties through physics configurations. My 

analysis will explore different meteorological observations including wind speed, wind direction, 

and PBL height. Past analyses mostly focused on the evaluation of CO2 atmospheric mixing ratios 

with no emphasis on transport errors alone (e.g., Stephens et al., 2007; Lauvaux et al., 2009b). Past 

ensembles used to explore the atmospheric transport errors were small and not calibrated (e.g., 

Lauvaux and Davis, 2014; Feng et al., 2016). By calibration, I mean the evaluation of the ensemble 

statistics to test how the ensemble is representing the transport errors.  In this work, I generate a 

large ensemble and evaluate if this ensemble represents the transport errors. A down-selection 
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process (or calibration) of the ensemble is presented to test if a small ensemble can represent 

atmospheric transport errors. Chapter 4 is a summary of the different findings and suggestion of 

future work that could improve and expand our knowledge of the atmospheric transport errors. In 

general, the proposed research will expand our ability to assess, understand and reduce transport 

errors in future atmospheric inversions. 
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Chapter 2  
 

Sensitivity and Uncertainty Analysis of Physical Parameterization and 
Initial Conditions on Meteorological Variables and CO2 Mole Fractions 

2.1 INTRODUCTION 

The increase in atmospheric carbon dioxide (CO2) concentrations is a primary factor that 

influences the radiation budget and leads to major changes of the Earth's climate (IPCC, 2013). 

Atmospheric mixing ratios have increased primarily due to fossil fuel combustion and land use 

change. Not all CO2 emitted remains in the atmosphere because the terrestrial biosphere absorbs 

about 30% of the released emissions (Le Queré et al., 2015). Terrestrial ecosystems in the temperate 

northern latitudes are identified as a substantial sink (Tans et al., 1990; Ciais et al., 1995; Gurney 

et al., 2002; Sarmiento et al., 2010; Pan et al., 2011; Le Queré et al., 2015). However, the specific 

magnitudes and distributions of terrestrial sources and sinks are still uncertain. Accurate and precise 

quantification of these fluxes is an important step towards a successful prediction of future 

atmospheric CO2 and climate change mitigation.  

 One method used to estimate the terrestrial fluxes is the “top-down” method or 

atmospheric inverse method. The atmospheric inversion uses atmospheric transport models to 

estimate carbon fluxes (i.e., prior fluxes) by adjusting these fluxes to be optimally consistent with 

observed CO2 concentrations (e.g., Enting, 1993; Bousquet et al., 2000; Chevallier et al., 2010).  

Uncertainties in the inverse method can be caused by the following: sparse atmospheric data 

(Gurney et al., 2002), uncertain prior flux estimates, limited spatial resolution in biospheric and 

atmospheric models, and transport model errors (Stephen et al., 2007; Gerbig et al., 2008; Picket-

Heaps et al., 2011). Despite progress in top down methodologies, these sources of uncertainty have 
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hindered inverse estimates of sources and sinks from terrestrial ecosystems, which remain inferred 

from the residual term of the global carbon budget (Le Quéré et al., 2015).  

Current atmospheric inversion systems are limited to the optimization of surface fluxes. 

However, the model-data mismatches used to optimize the fluxes contain the contributions of both 

flux and transport errors. Therefore, the atmospheric inversions may attribute atmospheric CO2 

model-data mismatches to surface fluxes. In a Bayesian framework, the atmospheric inversion 

assumes (1) atmospheric transport model errors are unbiased and (2) the random errors are known. 

Inconsistent errors (i.e., random and systematic) will be propagated into the state space by the 

optimization process, generating biased inverse (i.e. posterior) fluxes (Tarantola, 2005). The 

atmospheric inverse system will be reliable only if both the atmospheric transport random errors 

are quantified rigorously and the transport model is unbiased.   

To date, only a few studies have focused on atmospheric transport errors. The Atmospheric 

Tracer Transport Model Intercomparison Project (TransCom) has been dedicated to quantifying  

atmospheric transport errors and their impact on CO2 fluxes through model inter-comparisons 

(Gurney et al., 2002; Baker et al., 2006; Stephen et al., 2007; Patra et al., 2008; Peylin et al., 2013). 

As inter-comparison exercises, TransCom studies were not always limited to varying atmospheric 

transport, but at times also varied the number of observations, the inverse methodologies, and the 

prior fluxes that were used. Some of these studies have concluded that only an atmospheric 

transport model capable of representing synoptic and mesoscale atmospheric dynamics will be able 

to extract high-resolution information from the atmospheric observations (Law et al., 2008; Patra 

et al., 2008). Following these recommendations, the spatial resolution of transport models used to 

simulate atmospheric CO2 mole fractions has increased to capture local-scale variability in 

continental observations (e.g. Ahmadov et al., 2009). Díaz Isaac et al. (2014) showed significant 

differences in the atmospheric CO2 model-data mismatches when comparing a lower-resolution 

global transport model to a high-resolution regional transport model, but using identical surface 
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fluxes, suggesting that changes in the transport model resolution could lead to large differences in 

inverse surface flux estimates.  

A critical problem in atmospheric transport resides in the representation of vertical mixing, 

which significantly impacts the interpretation of near-surface CO2 mole fractions and the resulting 

inverse CO2 flux estimates (Denning et al., 1995; Stephens et al., 2007). As a result, several studies 

have been dedicated to the evaluation of mixed layer (ML) depth (Yi et al., 2004; Gerbig et al., 

2008; Kretschmer et al., 2012). An overestimation of the ML depth by an atmospheric model, for 

example, will cause an overestimation of the CO2 surface flux magnitude. The misrepresentation 

of vertical mixing by TransCom’s atmospheric models shown by Stephens et al. (2007) led Gerbig 

et al., (2008) to evaluate uncertainty in ML depth using a global model and find errors on the order 

of several ppm in ML CO2 mixing ratios.  Sarrat et al., (2007) used an inter-comparison of five 

mesoscale models and identified discrepancies in the ML depth that was potentially impacting the 

atmospheric CO2 mixing ratios. These studies have attributed the differences between simulated 

and observed mixed ML height to flaws in planetary boundary layer (PBL) schemes and land 

surface models (LSMs). The accurate representation of the ML depth, however, is a necessary but 

most likely insufficient step for simulating CO2 mixing ratios in the lower troposphere.  Mixing 

between the ML and the rest of the atmosphere is also an important factor in the relationship 

between surface fluxes of CO2 and ML CO2 mixing ratios.  It is likely that parameterizations other 

than PBL and LSM will influence ML CO2 mixing ratios. 

Inter-comparison of physical parameterization schemes using the Weather Research and 

Forecasting (WRF; Skamarock et al., 2005) mesoscale model has been explored to understand the 

impact of physics parameterizations on the vertical distribution of CO2 mixing ratios (Kretschmer 

et al., 2012; Yver et al., 2013; Lauvaux and Davis, 2014; Feng et al., 2016). These studies have 

found systematic errors of several ppm in atmospheric CO2 that can lead to biased surface flux 

estimates. These studies performed pseudo-data experiments or used a small number of 
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observations, and focused mostly on the impact of different PBL physics schemes. There is 

agreement among the studies that misrepresentation of vertical mixing causes biases in ML CO2 

mixing ratios, and that these biases directly affect inverse flux estimates. Vertical mixing, however, 

is not solely affected by the PBL parameterization. Therefore, investigations of vertical mixing  of 

CO2 remain incomplete. Additional parameterizations that impact the transport of air masses both 

horizontally and vertically should be evaluated. 

In this work, we study uncertainty in an atmospheric transport model using a multi-physics 

approach not limited to the evaluation of the PBL schemes. This evaluation will include different 

LSMs, cumulus parameterizations (CP), microphysics parameterizations (MP), and initial and 

boundary conditions used by the WRF model. We aim ultimately to quantify the uncertainty of the 

atmospheric transport model and propagate these errors into the CO2 mixing ratios and the final 

inverse fluxes. In this paper, we plan to focus on errors from physical parameterization schemes in 

a state-of-the-art mesoscale model, i.e. the WRF model. We will focus on the following questions: 

How do different physical parameterization schemes affect ML CO2 mixing ratios? Are some 

physics parameterizations more effective/accurate than others at simulating atmospheric conditions 

important to interpreting CO2 mixing ratio observations in the PBL? What are the nature and 

magnitude of random and systematic errors in the WRF model, and how does this depend on model 

configuration? We will address these questions by exploring atmospheric transport model 

performance over a highly instrumented area, the Mid-Continental Intensive (MCI) region (Ogle 

et al., 2006). Evaluating the atmospheric transport during summer, the most biologically active time 

of the year, is a first step toward a more rigorous and complete atmospheric inversion that quantifies 

random transport errors more accurately, and minimizes transport biases. Thus this work will 

expand our ability to assess, understand, and reduce transport errors in future atmospheric 

inversions. 
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2.2 METHODS 

2.2.1 Region 

The region selected for our study is the Midwest region of the United States (Figure 2-1). 

The Midwest of U.S. was chosen because the first multi-year (2007-2009) campaign with a high-

density CO2 measurement network was deployed in this region (Ogle et al., 2006, Miles et al., 

2012). This field campaign, part of the North American Carbon Program (NACP), was called the 

Mid-Continental Intensive (MCI) and encompassed the agricultural belt in the north-central U.S. 

The MCI campaign is unique for its density of well-calibrated (Richardson et al., 2012) atmospheric 

CO2 mole fraction measurements intended to constrain the region’s carbon budget. We describe 

the operational rawinsonde and GHG tower networks over the region in Section 2.2.4. These 

networks provided a significant amount of observational constraint on both transport and GHG 

mole fractions, which allow us to evaluate and quantify the atmospheric transport errors in this 

study. 

2.2.2 Atmospheric Model Setup 

The atmospheric transport model used in this study to generate our 45-member physics 

ensemble is the Weather Research and Forecasting (WRF) model version 3.5.1 (Skamarock et al., 

2005) and a modified chemistry module for CO2 (called WRF-ChemCO2, Lauvaux et al., 2012). 

The atmospheric column in each simulation is described with 59 vertical levels, with 40 of them 

within the first 2-km of the atmosphere. Two nested domains were used. The coarse domain (d01) 

uses a horizontal grid spacing of 30-km and the nested or inner domain (d02) uses 10-km grid 

spacing (Figure 2.1). The coarse domain covers most of the United States and parts of Canada and 

the nested domain is centered over Iowa and covers the Midwest region of United States. The 
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nesting method employed is the "one-way" nesting in which the outer domain constrains the inner 

domain through nudging of the boundary conditions that drive the meteorology once the outer 

domain simulation has finished (Soriano et. al., 2002). No feedback from the inner domain to the 

coarse domain was allowed. For our sensitivity study, only the inner domain (d02) has been 

analyzed as it covers the area of interest.  

	

 

Figure 2-1. Geographical domain used by WRF-ChemCO2 physics ensemble. The parent domain 
(d01) has a 30-km resolution, the inner domain (d02) has a 10-km resolution. 

2.2.3 Ensemble Configuration 

Similar to any domain-limited atmospheric model, transport errors arise from initial and 

boundary conditions and the different physics parameterizations. Therefore, we have built an 

ensemble of 45-members using different physical parameterization schemes and large-scale initial 
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and boundary conditions from reanalysis products (see Table 2-1). WRF offers multiple options for 

the LSM, PBL, cumulus, and microphysics schemes. The members in our multi-physics ensemble 

all use the same radiation schemes (both long wave and shortwave) but the land surface, surface 

layer, boundary layer, cumulus, and microphysics schemes are variable. In addition, we have 

initialized the model boundary and initial conditions with different datasets. Table 2-2 shows the 

different options used in this study. 

Table 2-1. Different model configurations used in this study. 

Num. Cases Reanalysis LSM 
Scheme 

PBL 
Scheme 

Cumulus 
Scheme 

Microphysics 
Schemes 

1 CASE1 NEST CP 
 

NARR Noah YSU Kain-Fritsch WSM 5-class 

2 CASE2 NEST CP 
 

NARR Noah MYJ Kain-Fritsch WSM 5-class 
3 CASE5 NEST CP 

 

NARR Noah MYNN Kain-Fritsch WSM 5-class 
4 CASE4 NEST CP 

 

GFS RUC YSU Kain-Fritsch WSM 5-class 
5 CASE3 NEST CP 

 

GFS RUC MYJ Kain-Fritsch WSM 5-class 
6 CASE6 NEST CP 

 

GFS RUC MYNN Kain-Fritsch WSM 5-class 
7 CASE1 SLAB NEST CP 

 

NARR Thermal Dif. YSU Kain-Fritsch WSM 5-class 

8 CASE2 SLAB NEST CP 
 

NARR Thermal Dif. MYJ Kain-Fritsch WSM 5-class 
9 CASE3 SLAB NEST CP 

 

NARR Thermal Dif. MYNN Kain-Fritsch WSM 5-class 
10 CASE7 NEST CP 

 

NARR Noah YSU Grell-3D WSM 5-class 
11 CASE8 NEST CP 

 

NARR Noah MYJ Grell-3D WSM 5-class 
12 CASE11 NEST CP 

 

NARR Noah MYNN Grell-3D WSM 5-class 
13 CASE10 NEST CP 

 

GFS RUC YSU Grell-3D WSM 5-class 
14 CASE9 NEST CP 

 

GFS RUC MYJ Grell-3D WSM 5-class 
15 CASE12 NEST CP 

 

GFS RUC MYNN Grell-3D WSM 5-class 
16 CASE4 SLAB NEST CP 

 

NARR Thermal Dif. YSU Grell-3D WSM 5-class 
17 CASE5 SLAB NEST CP 

 

NARR Thermal Dif. MYJ Grell-3D WSM 5-class 
18 CASE6 SLAB NEST CP 

 

NARR Thermal Dif. MYNN Grell-3D WSM 5-class 
19 CASE13 NEST CP 

 

NARR Noah YSU Kain-Fritsch Thompson 
20 CASE14 NEST CP 

 

NARR Noah MYJ Kain-Fritsch Thompson 
21 CASE17 NEST CP 

 

NARR Noah MYNN Kain-Fritsch Thompson 
22 CASE16 NEST CP 

 

GFS RUC YSU Kain-Fritsch Thompson 
23 CASE15 NEST CP 

 

GFS RUC MYJ Kain-Fritsch Thompson 
24 CASE18 NEST CP 

 

GFS RUC MYNN Kain-Fritsch Thompson 
25 CASE7 SLAB NEST CP 

 

NARR Thermal Dif. YSU Kain-Fritsch Thompson 
26 CASE8 SLAB NEST CP 

 

NARR Thermal Dif. MYJ Kain-Fritsch Thompson 
27 CASE9 SLAB NEST CP 

 

NARR Thermal Dif. MYNN Kain-Fritsch Thompson 
28 CASE19 NEST CP 

 

NARR Noah YSU Grell-3D Thompson 
29 CASE20 NEST CP 

 

NARR Noah MYJ Grell-3D Thompson 
30 CASE23 NEST CP 

 

NARR Noah MYNN Grell-3D Thompson 
31 CASE1 NEST 

 

NARR Noah YSU No CP WSM 5-class 
32 CASE2 NEST 

 

NARR Noah MYJ No CP WSM 5-class 
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33 CASE5 NEST 
 

NARR Noah MYNN No CP WSM 5-class 
34 CASE4 NEST 

 

GFS RUC YSU No CP WSM 5-class 
35 CASE3 NEST 

 

GFS RUC MYJ No CP WSM 5-class 
36 CASE6 NEST 

 

GFS RUC MYNN No CP WSM 5-class 
37 CASE1 SLAB NEST 

 

NARR Thermal Dif. YSU No CP WSM 5-class 
38 CASE2 SLAB NEST 

 

NARR Thermal Dif. MYJ No CP WSM 5-class 
39 CASE3 SLAB NEST 

 

NARR Thermal Dif. MYNN No CP WSM 5-class 
40 CASE1 GFS NEST CP 

 

GFS Noah YSU Kain-Fritsch WSM 5-class 
41 CASE2 GFS NEST CP 

 

GFS Noah MYJ Kain-Fritsch WSM 5-class 
42 CASE5 GFS NEST CP 

 

GFS Noah MYNN Kain-Fritsch WSM 5-class 
43 CASE1 GFS SLAB NEST CP 

 

GFS Thermal Dif. YSU Kain-Fritsch WSM 5-class 
44 CASE2 GFS SLAB NEST CP 

 

GFS Thermal Dif. MYJ Kain-Fritsch WSM 5-class 
45 CASE3 GFS SLAB NEST CP 

 

GFS Thermal Dif. MYNN Kain-Fritsch WSM 5-class 
 

Table 2-2. Parameters included in the sensitivity analysis. 

Parameter Options 
Land Surface Model  Noah	LSM		

Rapid	Update	Cycle	(RUC)	LSM		
5-layer	Thermal	Diffusion	

Planetary Boundary Layer (PBL) 
scheme – Surface Layer scheme 

Yonsei	University	(YSU)		
Mellor-Yamada-Janjic	(MYJ)		
Mellor-Yamada-Nakanishi-Niino	(MYNN)	

Cumulus  Kain-Fritsch	(KF)		
Grell-3Devenyi	(G3D)		

Microphysics WSM	5-class		
Thompson	et	al.,	(2004)	

Initial & Boundary Conditions North	America	Regional	Reanalysis	(NARR)	
Global	Final	Analysis	(FNL)	

2.2.3 Physics Parameterization Schemes 

a. Land Surface Models (LSMs) 

 The land surface models (LSMs), which ingest land-surface properties, soil, and surface 

conditions from driver data, simulate the conditions at the land surface, including surface energy 

fluxes. The partitioning of these fluxes affects the structure and depth of the PBL through the 

turbulence parameterization, hence modifying the near-surface in situ CO2 mole fractions. To 

evaluate the sensitivity of modeled mole fractions to the surface conditions, three LSM schemes 
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are chosen for this study: the 5-layer soil thermal diffusion model (Dudhia, 1996), the Noah land 

surface model (Chen and Dudhia, 2001), and the Rapid Update Cycle (RUC) (Smirnova, 2000). 

The three LSMs differ in several aspects, from the description of soil properties to the physical 

processes driving the land-surface interactions. The thermal diffusion model uses a simple thermal 

diffusion equation to transfer thermal energy from the ground to the atmosphere, describing the 

belowground profile with 5 soil layers (Dudhia, 1996). This LSM also includes snow-covered land 

and constant soil moisture values for a given land use type and season. The Noah LSM scheme 

uses time-dependent soil variables, soil temperature for four soil layers, canopy moisture, and snow 

cover prediction (Chen and Dudhia, 2001). The fluxes calculated within this scheme include 

sensible and latent heat fluxes. The RUC LSM scheme is a higher resolution soil model with six 

soil layers and includes the effects of vegetation, canopy water, and snow (Smirnova, 2000). This 

scheme also includes parameterizations for snow and frozen soil (Smirnova, 2000).  

b. Planetary Boundary Layer (PBL) Schemes 

 The planetary boundary layer (PBL) is directly influenced by frictional drag, sensible heat 

flux, and evapotranspiration, all of which are responsible for generating turbulent eddies. The PBL 

schemes parameterize sub-grid scale turbulent vertical fluxes of heat, momentum, and moisture 

within the PBL and throughout the atmosphere. The three PBL schemes used in this study are the 

Yonsei University (YSU) (Hong et al., 2006) PBL scheme, the Mellor-Yamada-Janjic (MYJ) 

(Janjic, 2002) PBL scheme, and the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme 

(Nakanishi & Niino, 2004). These three PBL schemes differ in the treatment of turbulent diffusion. 

The YSU scheme is a non-local first order scheme that uses non-local eddy diffusivity coefficients 

to compute turbulent fluxes. Vertical transport is dependent on the bulk characteristics of the PBL 

and includes counter-gradient transport of temperature and momentum arising from large scale 

eddies. The YSU scheme explicitly calculates entrainment at the top of the PBL as a function of 
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the surface buoyancy flux. The MYJ and MYNN 2.5 PBL schemes are local closure schemes that 

include a prognostic equation for turbulent kinetic energy (TKE) and a level 2.5 turbulence closure 

approximation to determine eddy transfer coefficients. The MYJ scheme implicitly calculates the 

entrainment layer while the MYNN uses a more explicit calculation of entrainment at the top of the 

PBL (it forecasts other second order moments besides TKE) (Román-Cascón et al., 2012).  The 

MYNN 2.5 is a variation of the MYJ PBL scheme that includes a nonlocal component of the 

turbulent mixing that reduces potential cold biases and increases PBL depths. The MYJ PBL 

scheme used in this study has been slightly modified to allow for very low turbulence regimes (e.g. 

nocturnal stable conditions) with a decreased minimum value for TKE.  

c. Cumulus Parameterizations 

The cumulus parameterization (CP) schemes are used with the aim of representing the 

vertical fluxes due to unresolved updraft and downdrafts and compensating motion outside the 

clouds. In this study we use two different cumulus parameterization schemes, Kain-Fritsch (KF) 

(Kain, 2004), Grell-3D (G3D) (Grell and Devenyi, 2002). The KF scheme is deep and shallow 

convection sub-grid scheme, which uses a simple cloud model that simulates moist updrafts and 

downdrafts along with detrainment and entrainment effects. The G3D cumulus scheme is based on 

the Grell (1993) scheme and G3D is a scheme for higher resolution domains allowing for 

subsidence and neighboring columns. The G3D uses a large ensemble of closure assumptions and 

parameters that are used in numerical models and implements some statistical techniques to 

determine the optimal value for feedback to the entire model (Pei et al., 2014). The cumulus 

parameterization is theoretically only valid for coarse grid resolutions (e.g., greater than 10 km) 

and should not be used when the model has a higher resolution (e.g., less than 5km) (Skamarock et 

al., 2005). Therefore, we are in a ‘grey-zone’ (e.g., 5-10km), where it is unclear if cumulus 
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parameterization should be used or not. For that reason, we also ran simulations that do not use a 

cumulus parameterization scheme in the nested domain.   

d. Microphysics Parameterizations 

Microphysics parameterizations (MP) schemes explicitly resolve water vapor, cloud, and 

precipitation processes. In this study we use two MP schemes: the WRF Single-Moment 5-class 

(WSM5) scheme (Hong et al., 2004) and the Thompson scheme (Thompson et al., 2004). The 

WSM5 scheme is a single moment parameterization that includes five species: water vapor, cloud 

water, cloud ice, rain, and snow, which are all treated independently. The Thompson scheme is a 

double moment scheme, which predicts the mixing ratio of five hydrometeors species, the number 

concentration of ice phase hydrometeors, and rain. 

2.2.4 Meteorological Initial and Boundary Conditions 

Two meteorological datasets provide the initial and lateral boundary conditions for our 

regional model. For initialization, WRF interpolates the coarse-resolution analysis products onto 

the model grid and calculates the values of the parent domain lateral boundaries. The inner grid 

uses the boundary conditions of the parent domain. In this study, we compare two different 

meteorological datasets: the North America Regional Reanalysis (NARR) (Mesinger et al., 2006), 

and the Global Final Analysis (FNL). The NARR dataset was developed at the Environmental 

Modeling Center (EMS) of the National Centers for Environmental Prediction (NCEP). NARR 

uses a high resolution NCEP Eta Model with a horizontal grid spacing of 32 km and includes 45 

vertical levels. NARR provides both initial and boundary conditions at 3-hourly intervals. The 

NCEP FNL analysis data has a horizontal grid spacing of 1°×1° and is prepared operationally every 
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six hours. The FNL is prepared with the same model that NCEP uses in the Global Forecast System 

(GFS). 

2.2.5 CO2 Surface Fluxes 

For this study, we used the summer 2008 posterior surface fluxes from the data assimilation 

system CarbonTracker1 version 2009 (CT2009) (Peters et al., 2007).  This system produces CO2 

flux estimates by integrating daily daytime averaged CO2 mole fractions from continuous hourly 

observations and then minimizing the differences between the observed and modeled atmospheric 

CO2 mole fractions. The Transport Model 5 (TM5) offline atmospheric tracer transport model (Krol 

et al., 2005) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) 

operational forecast model, propagates the surface fluxes to generate 3D mole fractions of CO2 

across the globe.     

The CO2 surface fluxes are represented by different sub-components, which include: fossil 

fuel emissions, biomass burning, terrestrial biosphere exchange, and ocean-atmosphere exchanges. 

The annual fossil fuel emissions used in CT2009 are from the Carbon Dioxide Information and 

Analysis Center (CDIAC) (Boden et al., 2009). These fossil fuel fluxes are mapped onto a 1°×1° 

grid and are then distributed into country totals according to the spatial patterns from the EDGAR-

4 inventories (Olivier and Berdowski, 2001). Biomass burning is based on the Global Fire Emission 

Database version 2 (GFEDv2). The dataset consists of 1°×1° gridded monthly burned areas, fuel 

loads, combustion completeness, and fire emissions. Terrestrial biosphere fluxes come from the 

Carnegie-Ames Stanford Approach (CASA) global biogeochemical model (van der Werf et al., 

2006; Giglio et al., 2006). The CASA biosphere model produces net primary production (NPP) and 

                                                        
1	http://carbontracker.noaa.gov	
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heterotrophic respiration fluxes with a monthly time resolution at 0.5°×0.5° spatial resolution. The 

long-term ocean fluxes and uncertainties are derived from inversions reported in Jacobson et al., 

(2007). Ocean inverse flux estimates are composed of preindustrial (natural), anthropogenic flux 

inversions, and an additional level of biogeochemical interpretations (Gloor et al., 2003; Gruber, 

Sarmiento and Stocker, 1996). Similar to other CO2 inverse systems, the fossil fuel and fire 

emissions are specified (i.e. remain constant) and only the oceanic and terrestrial biosphere fluxes 

are optimized.	

 

Figure 2-2. Map of the study region, including the CO2 towers (blue triangles) and rawinsonde sites 
(red circles) locations. 

2.2.6 Datasets 

Our interest is to explore and quantify atmospheric transport errors over the Midwest U.S. 

using observations that we have over this region. Therefore, we will evaluate the errors over the 

inner domain (D2) of our models. Figure 2-2 shows the location of all the stations that provide 
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atmospheric CO2 mole fractions and the meteorological observation sites that will be used. 

Meteorological data were obtained from the University of Wyoming’s online data archive 

(http://weather.uwyo.edu/upperair/sounding.html) for the 14 rawinsonde stations shown in Figure 

2-2. In-situ atmospheric CO2 mole fraction data are provided by seven communication towers 

(Figure 2-2) (Miles et al., 2012). Five of these towers were part of an experimental network, 

deployed from 2007 to 2009 (Richardson et al., 2012; Miles et al., 2012). The other two towers 

(Park Falls-WLEF and West Branch-WBI) are part of the Earth System Research 

Laboratory/Global Monitoring Division (ESRL/GMD) tall tower network (Andrews et al., 2014). 

Each of these towers sampled air at multiple heights, ranging from 11 m AGL to 396 m AGL.  

2.2.7 Data Selection 

Most atmospheric inversion that use continental observations use daytime CO2 mole 

fractions from continuous observations to minimize the difference between the observed and 

modeled atmospheric CO2 mole fractions. Only daytime measurements are assimilated due to the 

difficulty in simulating strong vertical gradients in the nocturnal boundary layer, which are 

minimized during daytime under well-mixed boundary layer conditions (Bakwin et al., 1998). 

Therefore, both models and observations will be evaluated during daytime. 

We analyzed CO2 mole fractions collected from sampling levels at or above 100m AGL, 

which is the highest observation level across the MCI network (Miles et al., 2012). This ensures 

that the observed mole fractions reflect regional CO2 fluxes and not near-surface gradients of CO2 

in the atmospheric surface layer (ASL) or local CO2 fluxes (W. Wang et al., 2007). Both observed 

and simulated CO2 mole fractions are averaged from 1800 to 2200 UTC (12:00-16:00 LST), when 

the daytime period when the boundary layer should be convective and the CO2 profile well mixed 
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(e.g., Davis et al., 2003; Stull, 1988). This averaged mole fraction will be referred to hereafter as 

daily daytime average (DDA).  

In this study, we will also evaluate the wind speed, wind direction, and PBL height (PBLH) 

from the different rawinsonde stations. Similar to the CO2 mole fractions, we want our 

meteorological observations to be within the well-mixed layer. Therefore, we use the wind speed 

and wind direction observed approximately 300 m above ground level (AGL). CO2 mole fraction 

observations were sampled at about 100m, however, the availability of meteorological observations 

at this height is too low to collect a sufficient number of data for our statistical evaluation. The 

observed PBLH was estimated using the virtual potential temperature gradient with a threshold of 

0.2 K/m. We want our simulated meteorological variables to be close to the observational level, 

therefore we use wind speed and wind direction from level 11 (~350 m) of the model. The WRF 

model provides an estimate of the PBLH, but the methodology used to diagnose these values varied 

with the PBL scheme used in the simulation. To remain consistent, we decided to calculate the 

PBLH in WRF with the same potential temperature gradient method that is used for the rawinsonde 

data. Rawinsonde stations across this region collect data at 1200 UTC and 0000 UTC, however, 

our model-data evaluation will be done for daytime conditions only. Therefore, both the modeled 

results and data will be evaluated in the late afternoon (i.e., 0000 UTC) corresponding to well mixed 

conditions. 

2.2.8 Evaluation Methodology or Analyses of the Models  

Comparisons to measurements of wind speed, wind direction, PBLH, and DDA CO2 mole 

fractions are used to inform the performance of each model configuration. Modeled data are 

extracted from the simulations using the nearest grid points to the locations of our observations. 

Each model configuration is evaluated from June 18 to July 21, 2008 for the meteorological 
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variables and from June 26 to July 21, 2008 for the CO2 mole fractions. Summer in the U.S. 

Midwest corresponds to the peak of the growing season for both crops and most non-agricultural 

ecosystems (except grasslands). We focus here on the growing season because the large biogenic 

fluxes make this the most important time of year for understanding the relationship between fluxes 

and CO2 mole fractions.  Smallan et all, (2014) showed that atmospheric models simulated the day-

to-day variability in CO2 mole fraction poorly, and therefore have limited capability in constraining 

the regional carbon balance. 

A series of statistical analyses are used to assess the performance of the different model 

configurations. The different metrics used include mean absolute error (MAE), root mean square 

error (RMSE), mean bias error (MBE), and root mean square difference (RMSD),  
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where o is the observed variable, p is the predicted variable, µ is the mean of the ensemble, N is the 

total number of days, and “n” is the number of members.  

The MAE and RMSE represent the average daily model-observation differences. The MBE 

describes the model-observation difference averaged error over the entire period. These three 

metrics are critical to inverse flux estimates as biases can arise from day-to-day (which we will 

refer to as random) or longer-term (systematic) errors in the transport model. We acknowledge that 

the propagation of meteorological errors to mole fractions, and mole fractions errors to surface 
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fluxes is complex, but these metrics provide valuable insight into model performance. To these 

three model-data statistical metrics, we add the RMSD (model-model differences) to evaluate the 

impact of the physics parameterizations on both meteorological variables and CO2 mole fractions. 

No observation is considered in RMSD as we compare each model configuration to the ensemble 

mean. Our main interest with the RMSD is to identify how much the physics parameterizations 

contribute to variability in CO2 mole fraction, PBLH, wind speed, and wind direction.  

We will also use Taylor diagrams and spatial correlations to evaluate the model-data 

mismatch in CO2 mixing ratios. We are also interested in describing the performance of the 

different models using standard deviation and correlation analysis to identify particular spatial 

patterns among the different models.  Taylor diagrams rely on three nondimensional statistics: the 

variance ratio (model variance normalized by the observed variance), the correlation coefficient, 

and the normalized centered root-mean-square (CRMS) difference (Taylor, 2001). The variance 

ratio or normalized standard deviation (NSD) indicates the difference in amplitude between the 

model and the observation. If this ratio is less than 1.0, then the model tends to underestimate the 

amplitude compared to the observation. The correlation coefficient measures the similarity in the 

temporal variations between the model and the observation, regardless of the amplitude. This 

correlation coefficient has a range of -1.0 ≤ R ≤ 1.0 and is insensitive to systematic errors. As R 

approaches 1.0, the model approaches agreement with the observation. The CRMS is normalized 

by the observed standard deviation and quantifies the ratio of the amplitude of the variations 

between the model and the observation. The CRMS is also insensitive to biases in the model-data 

residuals. 

Temporal correlations between the modeled-observed residual in meteorological variables 

and CO2 mixing ratios are used to determine the impact that meteorological errors have on the 

transport of CO2.  Since the meteorological and CO2 observations are not collocated (Figure 2-2), 
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nearest neighbor sites are used in this evaluation. This spatial correlation will be estimated using 

the ensemble mean of the MBE estimated for each rawinsonde site and CO2 tower.  

2.3. RESULTS 

2.3.1 Impact of physics parameterizations on the PBL dynamics  

Previous studies indicate that one of the main sources of transport errors in inverse flux 

estimates is the misrepresentation of the PBL dynamics, which can be mainly attributed to PBL 

schemes (Stephens et al., 2007; Gerbig et al., 2008). The root mean square difference (RMSD) of 

the simulated CO2 mixing ratio was used to explore if other physical parameterizations have a 

significant impact on CO2 mole fractions compared to PBL parameterizations. The RMSD was 

computed for different parameterization schemes (i.e., LSM, PBL schemes, CP, and MP) and for 

two reanalysis products (i.e., NARR and GFS). The CO2 mixing ratio RMSD is greatest for the LSM 

parameterization schemes across the different sites, followed by the PBL schemes and CP (Figure 

2-3).  Microphysics parameterization has the least impact on CO2 mole fractions. Only two 

microphysics parameterizations are tested in this ensemble but additional tests using only two 

options for all the different physics produced similar results, i.e. the least impact from MP.  
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Figure 2-3. Sensitivity of CO2 mole fractions as a function of model physics parameterizations (i.e., 
land surface model (LSM), planetary boundary layer scheme (PBL), cumulus parameterization 
(CP), microphysics parameterization (MP) and Reanalyses). The root mean square difference 
(RMSD) of the CO2 mole fractions simulated at each site and for each model ensemble member 
was computed by varying only the type of physics parameterization noted, and keeping all other 
model elements constant.  RMSD was averaged across sites and across model ensembles. 

 

We also explore how much the variability in PBL winds and depth, important variables in 

determining CO2 mole fractions in the PBL, are influenced by physics parameterizations.  Therefore, 

we want to explore which parameterization impacts the PBL dynamics by comparing the RMSD of 

the three selected meteorological variables (i.e., PBLH, wind speed and wind direction) that define 

and contribute the most to the representation of the CO2 mole fraction distribution in the PBL. Figure 

2-4 shows the RMSD of PBL wind speed and direction, and PBL height over the entire simulation 

period. All the physics parameterizations, except for microphysics, impact all three meteorological 

variables. Rreanalysis has a greater impact on wind speed (Figure 2-4b) and wind direction (Figure 

2-4c) than it does on PBLH (Figure 2-4a). It is worth noting that the PBLH RMSD (Figure 2-4a) 
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shows the same RMSD ranking (i.e. relative importance of the physics) as for CO2 mixing ratio 

RMSD (Figure 2-3).  

 

Figure 2-4. Root mean square difference (RMSD) of the PBLH (a), wind speed (b) and wind 
direction (c) for the different physics parameterizations (i.e., land surface model (LSM), planetary 
boundary layer scheme (PBL), cumulus parameterization (CP), microphysics parameterization 
(MP) and Reanalyses). 

 

Based on the evaluation of the CO2 mixing ratio, wind speed, wind direction, and PBLH 

RMSD, the PBL scheme impact was ranked second after the impact of the LSM. Generally, all the 

parameterization schemes, including the reanalysis data source, have a significant impact on each of 

these variables.  



34 

 

2.3.2 Meteorological day-to-day variability 

Figure 2-5 shows a time series of the 0000 UTC observed and simulated PBL wind speed 

(Figure 2-5a), wind direction (Figure 2-5b), and PBLH (Figure 2-5c) from June 18 to July 21, 2008 

at the Omaha, NE (OAX) rawinsonde site. Across the study region, we found that the range of 

residual values lie between 5.4 and 7.1 m/s for wind speed, 76 and 114 degrees in wind direction, 

and between 1000 and 1700 m for PBLH. Other sites have similar characteristics to Figure 2-5. At 

all of the sites, the model configurations followed the observed patterns in wind speed (Figure 2-5a) 

and wind direction (Figure 2-5b). Nevertheless, the ensemble shows less variability (or spread) for 

the wind speed and wind direction compared to the PBLH. The time series at each rawinsonde site 

shows that for certain days, the ensemble is biased (i.e. all the members either overestimate or 

underestimate) wind speed and wind direction (199 and 186 DOY respectively), regardless of the 

physics configuration. The time series of the PBLH, however, shows that simulated PBLH can vary 

significantly across the different physics configurations and that the ensemble is rarely biased (i.e. 

some members of the ensemble are able to match the observed PBLH).  
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Figure 2-5. Observed (black line) and simulated (colored lines) PBL (300 m AGL) wind speed (a), 
wind direction (b) and PBLH (c) at time 0000 UTC from day of the year (DOY) 169 to 203 of 2008 
at the Lincoln, Nebraska (OAX) rawinsonde site. 
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2.3.3 Characterization of transport errors 

The performances of each model configuration are evaluated using the monthly average 

MAE, RMSE, and MBE (or bias). Each of these statistics was applied to the three meteorological 

variables, wind speed, wind direction, and PBLH, at a local scale and over the region. 

2.3.3.1 Mean Absolute Error (MAE) 

Daily model errors, represented by the MAE on Figure 2-6, show the sites with the 

maximum and minimum MAE for each of the model.  Over the region, the MAE varies significantly 

from site to site for wind speed (Figure 2-6a), wind direction (Figure 2-6b), and PBLH (Figure 2-

6c) regardless of the model configuration. About three (ABR, BNA, and LMN) out of the fourteen 

rawinsonde sites show the smallest MAEs across the different model configurations. Over the 

region, about two rawinsonde (DDC and TOP) sites show consistently a low MAE regardless of the 

model configuration. Two sites (DDC and LBF) systematically show a higher MAE for the PBLH 

and two additional sites (SGF and APX) show the smallest MAE for PBL. For all the three 

meteorological variables, the model configurations that yield the smallest MAEs varies across 

rawinsonde sites, impairing the selection of a best configuration over the region.  
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Figure 2-6. Maximum and minimum monthly average wind speed (a), wind direction (b) and PBLH 
(c) mean absolute errors (MAE) for the different sites and models. The abscissa shows the different 
model configurations, while the ordinate shows the MAE for the meteorological variables. Each 
dot represents the site with the maximum and minimum MAE for each model and variable; while 
the x represents the regional mean of the MAE. (See Table 2-1 for model references.) 

 

The regionally—averaged MAEs reveal that some model physics parameterizations are 

associated with larger regional MAEs (Figure 2-7). PBL wind speed MAE averaged across the 

region does not vary significantly across model configurations (Figure 2-7a). The vast majority of 

the model configurations have a regional wind speed MAEs of 2.4 - 2.8 m/s, except for two 

configurations with a larger regional MAE (3 m/s). Similar to wind speed, the regional MAE for 

PBL wind direction is not much different (Figure 2-7b) among model configurations.  Three 

simulations have higher regionally-averaged MAEs.  Two of these configurations are the same as 

those with high PBL wind speed MAEs.  These configurations both include MYJ as a PBL 
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parameterization (models 14 and 23 see Figure 2-7a,b and Table 2-1).  Unlike winds, the different 

model configurations show significantly different regionally-averaged MAEs for PBLH (Figure 2-

7c). The configurations that show a higher MAE for the PBLH use the YSU PBL scheme (models 

4, 13, 22 and 34 see Figure 2-7c and Table 2-1). In addition, all model configurations with large 

MAEs for all three PBL meteorological variables use RUC as the LSM scheme. 

Although the identification of the configurations with the lowest MAE remains unclear for 

wind speed and wind direction, three configurations show the lowest MAE (~ 2.4 m/s) for wind 

speed and two configurations show the lowest MAE (~ 34 degrees) for wind direction. For PBLH, 

the majority of configurations with lowest regional MAE (MAE < 600m) use the same PBL 

parameterization (MYNN 2.5). We were able to identify specific configurations with the lowest 

MAE but only for one variable at a time.  
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Figure 2-7. Regional averages of the monthly average wind speed (a), wind direction (b) and PBLH 
(c) mean absolute errors (MAE) for the different models (see Table 2-1 for model references). 

2.3.3.2 Root mean square error (RMSE) 

We evaluated the daily model errors by computing the RMSE (Figure 2-8) at each of the 

sites over a month. This analysis complements the MAE analysis but also assumes a Gaussian 

distribution of the errors. The RMSE results for wind speed (Figure 2-8a), wind direction (Figure 2-

8b), and PBLH (Figure 2-8c) are highly variable across the region. Two sites show frequently small 

RMSE for both PBL wind speed (ABR and BNA) and PBLH (SGF and APX). However, there is 

more variability in the sites that shows a higher RMSE for the all the variables except for PBLH, 
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where LBF and DDC are showing the highest RMSE across the ensemble. We are able to identify 

some sites with specific patterns in the RMSE, however, none of these sites were having the same 

behavior for the three variables. After evaluating all the model configurations at each of the sites, 

we were unable to identify an optimal configuration that would satisfy all of the sites.  

 

 

Figure 2-8. Maximum and minimum monthly average wind speed (a), wind direction (b) and PBLH 
(c) root mean square errors (RMSE) for the different sites and models. The abscissa shows the 
different model configurations, while the ordinate shows the RMSE for the meteorological 
variables. Each dot represents the site with the maximum and minimum RMSE for each model and 
variable; while the x represents the regional mean of the RMSE. (See Table 2-1 for model 
references.) 

 

Because of the difficulties we encountered evaluating the RMSE for each rawinsonde site, 

we explore the RMSE at the regional level. Figure 2-9 shows the regional RMSE of wind speed 
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(Figure 2-9a), wind direction (Figure 2-9b), and PBLH (Figure 2-9c). For both PBL wind speed and 

wind direction, we found no significant difference in the regional RMSE. Differences among 

configurations are larger in the regional RMSE of the PBLH (Figure 2-9c), with most of the 

configurations being between 680m and 972m, except for four configurations that show higher 

RMSEs (1018m to 1149m). Although the regional RMSE for both wind speed and wind direction 

are fairly constant, the two variables have the same two model configurations with the highest 

RMSE. These two configurations share the same LSM scheme (RUC) and the same PBL 

parameterization scheme (MYJ) (models 14 and 23 see Figure 2-9a,b and Table 2-1). Similar to the 

MAE, the model configurations that show the highest PBLH RMSE include the same LSM scheme 

(RUC) and PBL parameterization scheme (YSU) (models 4, 13, 22 and 34 see Figure 2-9c and Table 

2-1). 
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Figure 2-9. Regional averages of the monthly average of wind speed (a), wind direction (b) and 
PBLH (c) RMSE for the different models (see Table 2-1 for model references). 

2.3.3.3 Mean Bias Error (MBE) 

The average over- or under-estimation of the different model configurations is assessed by 

computing the MBE for each of the sites over a month (Figure 2-10). Similar to the other metrics, 

the MBE was computed for wind speed (Figure 2-10a-c), wind direction (Figure 2-10d-f), and 

PBLH (Figure 2-10g-i). In this study, a positive (resp. negative) MBE means the model 

configurations are systematically higher (resp. lower) than the observation. Figure 2-10 shows the 

MBE of three sites, however, the analysis was performed for all the sites (not shown) and they were 
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split up by region. The three sites shown are located in three differ rent regions of the domain: ABR 

in the west (Figure 2-10a, d, g), DVN which is close to the center of the domain (Figure 2-10b, e, 

h), and BNA in the eastern part of the domain (Figure 2-10c, f, i).  Most of the model configurations 

show positive PBL wind speed MBE (overestimation) for the majority of the rawinsonde sites (e.g., 

Figure 2-10b-c), however, one site shows both positive and negative MBE for the different model 

configurations (e.g., Figure 2-10a). The majority of the sites shows all the models with a positive 

bias are located in the eastern and center areas of the domain, whereas, the sites that show both 

positive and negative bias for the different simulations are located in the western part of the domain. 

The MBE for PBL wind direction is highly variable across the different rawinsonde sites (ex. Figure 

2-10d,e,f). At the majority of the sites, the simulations had both positive and negative biases, except 

two sites where all the models are positive or negative (not shown). The MBE of PBLH does not 

show any site with all the configurations being positively or negatively biased (Figure 2-10g,h,i). 

However, two rawinsonde sites in this region show most of the largest negative (DDC) or positive 

(LBF) MBE for more than half of the model configurations and these two sites are located in the 

western region of the domain. Again, the evaluation of the MBE does not allow us to identify a 

configuration with a smaller bias across all sites and all variables. However, from the PBLH MBE, 

we were able to identify some models that were showing a systematic bias across the different sites. 

All the model configurations that show the highest positive bias across all sites were models that 

include YSU as a PBL parameterization scheme and RUC or Thermal Diffusion as an LSM 

parameterization scheme (red and green bars in the highest positive bias; Figure 2-10). Conversely, 

model configurations with the most negative PBLH biases across the different sites include MYJ 

as a PBL parameterization scheme.  
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Figure 2-10. Monthly average wind speed (a-c), wind direction (d-f) and PBLH (g-i) MBE for 
rawinsonde sites ABR (first row), DVN (second row) and BNA (third row). Models are sorted from 
the negative to the positive bias. 

 

We find remarkable variation in the regional MBE both as a function of different model 

configurations and across the variables of PBL wind speed (Figure 2-11a), PBL wind direction 

(Figure 2-11b), and PBLH (Figure 2-11c).  The regional wind speed bias was less than 1.2 m/s for 

the entire ensemble; however, all the members show a positive bias except for one configuration 

(Figure 2-11a). Four model configurations show the highest regional wind speed MBE, but these 

biases remain between 1 and 1.2 m/s. Regional wind speed biases show that all configurations that 

use YSU as the PBL parameterization (e.g., models 1, 4, 7, 10 see Figure 2-11a and Table 2-1)  

have greater biases than the rest of the PBL schemes. The regional MBE for wind direction is highly 
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variable across the different model configurations. Models using YSU as PBL scheme tend to show 

a positive bias in the wind direction (e.g., models 1, 4, 7, 10 see Figure 2-11b and Table 2-1), 

whereas models that use MYJ as PBL scheme show a negative bias (e.g., models 2, 5, 8, 11 see 

Figure 2-11b and Table 2-1). Similar to wind direction, the regional PBLH bias is highly variable, 

with model configurations showing both positive and negative biases. Any model configuration 

that uses YSU as PBL parameterization scheme shows a positive bias, larger than the rest of the 

PBL schemes (e.g., models 1, 4, 7, 11 see Figure 2-11b and Table 2-1).  The model configurations 

that do not include a cumulus parameterization (white filled bars; Figure 2-11c) also show positive 

PBLH biases, with one exception, regardless of the choice of LSM or PBL scheme used. The PBL 

wind speed analysis shows that the two model configurations with the smallest regional MBE (± 

0.1 m/s) share the same LSM (SLAB) and PBL (MYNN 2.5) parameterization schemes. For PBL 

wind direction, two of the three model configurations with the lowest MBE (± 0.1 degrees) use the 

same LSM (Noah) and PBL (YSU) parameterization schemes. All 15 model configurations with 

the lowest MBE for PBLH (± 100 m or less) share the same PBL parameterization schemes (MYJ 

and MYNN 2.5). Although the configurations that provide the lowest regional MBE is not the same 

across all variables, we found that the MYNN 2.5 PBL scheme is the most common element of the 

best-performing configurations.  It is possible to pick a configuration which, averaged across the 

month and across the region, has a very small MBE (less than 5% for both PBL wind speed and 

PBHL) for all three of the meteorological variables.  
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Figure 2-11. Regional average of the monthly average of wind speed (a), wind direction (b) and 
PBLH (c) bias for the different models (See Table 2-1 for model references.) 

 

The MBE statistics reveals a spatial pattern in PBL wind speed and PBLH that is not 

present in the other metrics. The map of PBL wind speed MBE (Figure 2-12a) shows that the 

ensemble is positively biased in the eastern region of the domain. However, sites in the western 

region of the domain show that the ensemble average has either negative or near-zero PBL wind 

speed MBEs. The PBLH MBE map (Figure 2-12c) also shows a clear spatial pattern, with the 

highest values, nearly all positive, at sites located in the western part of the domain, whereas the 

sites in the eastern part of our domain show a smaller MBE and no distinct regional sign. PBL wind 
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direction does not show any spatial pattern in the ensemble mean of the MBE (Figure 2-12b). 

Across the region, we found that our ensemble of simulations can produce an MBE range of ±1.5 

m/s in wind speed, ±20 degrees for wind direction, and ± 400 m for PBLH. Overall, the spatial 

patterns show that no configuration can avoid spatial biases across the region. 

 

Figure 2-12. Ensemble mean of the mean bias error (MBE) for PBL wind speed (a), PBL wind 
direction (b) and PBLH (c). 
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2.3.4 Best Model Performance 

Regional statistics allow us to determine the best-performing model configurations. We 

selected individual physical parameterization schemes to compute independent scheme-specific 

statistics. Table 2-3 shows the regional MAE of PBL wind speed, PBL wind direction, and PBLH 

for each of the physics parameterizations used. We found that changes in the physics 

parameterization can have a maximum impact of 0.2 m/s in the wind speed, 4 degrees in the wind 

direction, and 121 m in the PBLH throughout the region. Regional MAE results show that the 

choice of physical parameterization schemes has a small impact on PBL wind speed and wind 

direction but a large impact on PBLH. The regional statistics indicate that the choice of LSM, PBL, 

and CP parameterization scheme are the main contributors to the variability in PBLH, while the 

rest of the physics parameterizations show less impact. The RUC LSM scheme and MYJ PBL 

scheme show the highest MAE for the three meteorological variables, except for PBLH for which 

the YSU PBL scheme provides the highest MAE. The lowest MAE for the three variables was 

found with the MYNN 2.5 PBL parameterization scheme and SLAB LSM parameterization 

scheme, except for PBL wind direction where Noah LSM has the lowest MAE. 

These results agree with section 2.3.3.1 where we found some model configurations with 

higher regional MAE for wind speed and wind direction using RUC as the LSM scheme and MYJ 

as the PBL scheme. It also agrees with the PBLH MAE results in which all the high MAE (Section 

2.3.3.1) were found for configurations that use RUC as the LSM scheme and YSU as the PBL 

scheme. In addition, Table 2-3 shows that configurations that do not include a CP scheme have a 

significant error in the PBLH when compared to the other configurations. Nevertheless, for the 

three variables (i.e., wind speed, wind direction, and PBLH) both the choice of LSMs and PBL 

schemes show larger differences than the rest of the physical parameterization schemes. 
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Table 2-3. Regional average of wind speed, wind direction and PBLH mean absolute error (MAE) 
for each of the physics schemes. 

Physics 
MAE 

Schemes 
 

WSPD 
(m/s) 

WDIR 
(degree) 

PBLH 
(m) 

LSM 
Noah 2.67 36.23 620.57 
RUC 2.76 39.4 709.93 
SLAB 2.59 37.44 588.67 

PBL 
YSU 2.63 36.49 682.95 
MYJ 2.71 39.02 601.22 

MYNN 2.5 2.59 36.48 590.9 

Cumulus 
Kain-Fritsch 2.68 37.55 615.88 

Grell-3D 2.61 37.9 626.65 
No Cumulus 2.62 37.29 695.81 

Micro WSM-5class 2.64 37.37 613.61 
Thompson 2.7 37.91 617.68 

Rean. NARR 2.65 36.35 580.75 
GFS 2.57 35.03 544.78 

 

Regional statistics for the meteorological variables and physics parameterizations were 

done for the RMSE (Table 2-4). Results show that changes in physics parameterization can affect 

the RMSE of PBL wind speed by 0.3 m/s, PBL wind direction by 6 degrees, and PBLH by 183 m. 

Similar to the regional MAE, the RMSE results show that the choice of physical parameterization 

schemes has greater impact on PBLH than on wind speed and wind direction. The wind speed has 

less sensitivity to the physical parameterization schemes than wind direction and PBLHs. 

Nevertheless, we conclude that the LSM and PBL schemes have a significant impact on the RMSE. 

For PBLH, we found that not having a cumulus parameterization can have an additional 100 m 

increase in the RMSE. RUC LSM scheme and MYJ PBL schemes show the highest RMSE for 

wind speed and wind direction. For PBLH, RUC LSM scheme, YSU PBL scheme, and the absence 

of a cumulus parameterization scheme produce high regional RMSE. The lowest RMSE was found 
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with MYNN 2.5 PBL scheme and SLAB LSM scheme, except for wind direction where Noah LSM 

has the lowest RMSE. 

These results agree with section 2.3.3.2 where we indicate that specific model 

configurations show higher RMSE for wind speed and wind direction; these model configurations 

use RUC as the LSM scheme and MYJ as the PBL scheme. For PBLH, most of the model 

configurations that showed the highest RMSE were using RUC as the LSM scheme and YSU as 

the PBL scheme. One configuration did not use cumulus parameterization but it provides the largest 

RMSE out of all the model configurations. We also established that the simulations that showed 

the smallest regional RMSE for the three meteorological variables use the same PBL scheme 

(Section 2.3.3.2; MYNN 2.5), which also agrees with the results in Table 2-4.  

Table 2-4. Regional average of wind speed, wind direction and PBLH root mean square error 
(RMSE) for each of the physics schemes. 

Physics 
RMSE 

Schemes 
 

WSPD 
(m/s) 

WDIR 
(degree) 

PBLH 
(m) 

LSM 
Noah 3.48 53.17 821.68 
RUC 3.61 56.58 936.72 
SLAB 3.36 54.2 753.62 

PBL 
YSU 3.46 52.96 901.09 
MYJ 3.53 56.61 777.65 

MYNN 2.5 3.39 53.03 774.43 

Cumulus 
Kain-Fritsch 3.5 54.37 804.99 

Grell-3D 3.36 55.55 818.74 
No Cumulus 3.46 54.07 916.04 

Micro WSM-5class 3.44 54.44 806.93 
Thompson 3.54 54.72 810.08 

Rean. NARR 3.45 52.9 755.89 
GFS 3.41 51.09 703.14 

 

Table 2-5 shows the regional PBL wind speed, PBL wind direction, and PBLH MBE for 

each of the physics parameterizations used. In this table we can observe that all the different 
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parameterization schemes overestimate (i.e. create a positive MBE) in PBL wind speed over the 

region. These results agree with section 2.3.3.3 where all the model configurations show a positive 

MBE in wind speed except for one configuration (see Figure 2-12a).  Most of the schemes or 

models show a negative MBE (underestimation) in wind direction except for two LSMs schemes 

(RUC and SLAB), one PBL scheme (YSU), and the simulations that do not use a cumulus 

parameterization. For PBLH, we found that all the choices of physical parameterization show a 

positive MBE (overestimation) of the PBLH, except for MYJ PBL parameterization scheme. The 

simulations with the highest positive PBLH bias used RUC LSM, YSU PBL scheme, and no 

cumulus parameterization option. 

Table 2-5. Regional average of wind speed, wind direction and PBLH mean bias error (MBE) for 
each of the physics schemes. 

Physics 
MBE 

Schemes WSPD 
(m/s) 

WDIR 
(degree) 

PBLH 
(m) 

LSM 
Noah 0.81 -1.94 108.39 
RUC 0.71 0.73 219.4 
SLAB 0.38 1.4 96.72 

PBL 
YSU 0.84 2.74 381.44 
MYJ 0.54 -2.95 -67.49 

MYNN 2.5 0.51 -0.55 56.21 

Cumulus 
Kain-Fritsch 0.71 -0.19 86.3 

Grell-3D 0.35 -1.96 132.51 
No Cumulus 0.67 2.21 250.6 

Micro WSM-5class 0.68 -0.97 89.8 
Thompson 0.72 -0.4 104.15 

Rean. NARR 0.69 -0.89 49.37 
GFS 0.7 -1.2 12.98 
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2.3.5 Sensitivity of CO2 mixing ratios to model configurations 

In this study, we explored the sensitivity of meteorological variables to transport variations. 

CO2 mixing ratios were excluded from the analysis to avoid interpreting errors from CO2 surface 

fluxes and CarbonTracker global CO2 mixing ratios. We use our different model configurations, 

which all share the exact same surface fluxes and identical boundary conditions, to explore the 

impact of transport errors on CO2 mixing ratios. WRF transport errors will have an impact on the 

modeled CO2 fields in the domain as the CO2 is transported from the boundaries (initialized by 

CarbonTracker data) to the rest of the domain. However, the errors from incorrect transport from 

the boundaries are insignificant compared to the more localized errors associated with the transport 

of local CO2 surface fluxes. Here we present the impact of model configurations on the CO2 mixing 

ratios compared to the total CO2 mixing ratio mismatches (or residuals), i.e. hourly model-data 

differences. 
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Figure 2-13. Observed (black line) and simulated (colored lines) DDA CO2 mixing ratio (ppm) at 
Centerville (RCV) (a) and Kewanee (RKW) (b). Residuals (model-data mismatch) of DDA CO2 
mixing ratios at Centerville (RCV) (c) and Kewanee (RKW) (d). 

 

Figure 2-13 shows simulated and observed atmospheric CO2 mixing ratios for Centerville (Figure 

2-13a) and Kewanee (Figure 2-13b). For this period, both sites show larger residuals compared to 

the ensemble spread (RMSD) for several periods (e.g. DOY 183-184 or DOY 194-199). This result 

suggests that transport model errors from our ensemble only represent a fraction of the total 

residuals. The remaining mismatches are therefore attributable to CO2 surface fluxes or CO2 

boundary conditions. Over the region, most of the sites show that the ensemble generally 

underestimates the atmospheric CO2 mixing ratios (e.g., Centerville-Figure 2-13a, c), except for 

one site, Kewanee (Figure 2-13b, d), where the CO2 concentrations are overestimated for the 

majority of the members. We want to note here that this ensemble has not been properly calibrated 

and may under-estimate the total transport error. Further analyses of the ensemble will correct for 

the under- or over-dispersion of the ensemble.  

 To evaluate the performance of the different model over the month, we compute the 

correlation coefficient, normalized standard deviation, and the normalized root-mean-square 
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(RMS) difference (Taylor, 2001) for each of the sites. These results are presented as Taylor 

Diagrams on Figure 2-14 using the daily daytime average observed and simulated CO2 mole 

fractions (Figure 2-14). All the models tend to overestimate the variability at three sites (e.g., Figure 

2-14b) and the rest of the sites show that all of the models had both an overestimation and 

underestimation of the variability. The highest correlation (r ≥ 0.5) for the majority of the sites is 

found at the Round Lake (RRL) site (Figure 2-14a), the other six sites have correlations within a 

range of 0.1 and 0.8 (e.g., Figure 2-14b). During this period, we did not find any model that shows 

a specific pattern across the region for the three statistics included in the Taylor Diagram. 

 

 

Figure 2-14. Taylor Diagram comparing observations versus simulations at (a) Round Lake (RRL) 
and (b) Centerville (RCV), using DDA CO2 mole fractions. Black dot represents the observation 
reference. 

 The spatial correlation of the errors between the meteorological variables and the CO2 mole 

fraction is evaluated at the different rawinsonde and CO2 tower sites (Figure 2-15). To perform this 

evaluation, we decided to compare the mean ensemble MBE in CO2 mixing ratios with mean 

ensemble MBE of the different meteorological variables. Both wind speed (Figure 2-15a) and wind 

direction (Figure 2-15a) show a low correlation coefficient, whereas PBLH (Figure 2-15a) shows 

a higher correlation with the CO2 mole fraction errors among the different sites. Although the 

correlation varies with different variables, we did not find any change in the correlation that could 
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be associated with the distance among the different sites. These results suggest that the errors in 

the in situ CO2 mixing ratios are directly related to the PBLH MBE, whereas correlations with wind 

MBE, which are strongly influenced by the magnitude and location of sources around the towers, 

remain low. We conclude here that first-order errors of in situ CO2 mixing ratios are driven 

primarily by mean errors in the PBLH across the domain. 

 

Figure 2-15. Tower and rawinsonde site specific spatial correlation coefficients between ensemble 
mean MBE of (a) wind speed, (b) wind direction and (c) PBLH and ensemble mean MBE of DDA 
CO2 mole fractions. The abscissa shows the different CO2 tower sites, while the ordinate shows 
rawinsonde sites. 
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2.4. DISCUSSION 

 
The evaluation of the RMSD of CO2 mixing ratios shows that all the physics 

parameterizations have a significant impact on the simulated values, except for the microphysics 

parameterization (Figure 2-3). Previous research has focused on the potential impact of PBL 

schemes errors on CO2 mixing ratios (e.g. Kretschmer et al., 2012,2014; Lauvaux and Davis 2014). 

Results from our study indicate that other physics parameterization schemes including the LSM 

and CP generate errors of similar magnitude on simulated CO2 mixing ratios. The influence that 

each physical parameterization impacts CO2 mixing ratios (Figure 2-3) is similar to the PBLH 

errors (Figure 2-4c). The similarity may reflect the high correlation that exists between PBLH errors 

and CO2 mixing ratio errors (see Figure 2-15c). Results from this study agree with previous studies 

that the misrepresentation of the PBLH plays an important role in atmospheric CO2 errors. Figure 

2-3 also shows that the reanalysis has an impact on atmospheric CO2 mixing ratios, which indicates 

that even if the wind speed and wind direction errors do not show a high correlation with 

atmospheric CO2 errors (see Figure 2-15a-b), these two variables can contribute to the errors in 

CO2 mixing ratios due to the high impact that the reanalysis has on both of them (Figure 2-4a, b). 

However, we have to ponder our conclusions for three reasons: (1) we explore fewer microphysics 

options (only two) compared to the amount of PBL, cumulus, and LSM with three options for each, 

(2) we also evaluate only two reanalysis products for this evaluation, (3) this evaluation was 

performed over a limited period of time and location. We also note that some of the models (i.e. 

RUC configurations) were only run using the FNL reanalysis product, which may cause some 

under-estimation of the variability as this configuration contributes significantly to the errors of all 

the meteorological variables. 

The MAE and RMSE for each of the meteorological variables do not show a specific 

behavior from the different model configurations at the site level.  However, these statistics 

averaged over the region provide more insights regarding the different model configurations. For 
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example, the RMSE and MAE increase for the three meteorological variables when RUC is used 

as an LSM in the model configuration, whereas the PBL schemes that contributes to these errors 

varies from YSU for PBLH and MYJ for wind speed and wind direction (Zhang et. al., 2009; 

Yerramilli et al. 2010). The MBE, however, provides additional information for the different 

meteorological variables at both local and regional scale that the rest of the metrics do not provide. 

Over the region, we found that 10 out of the 14 rawinsonde sites show all the model configurations 

to be positively biased (i.e., overestimation of the wind speed). This can be shown in Figure 2-12a, 

where the ensemble mean bias shows all the sites in the eastern and center regions of the domain 

have a positive bias.  Figure 2-11a shows that the wind speed is positively biased for all the models 

regardless of the configuration. This positive bias in the wind speed confirms what has being 

previously record in past studies that also had shown an overestimation of the wind speed for WRF 

mesoscale model (Cheng et al., 2005; Zhang et al., 2009; Yerramilli et. al., 2010). One potential 

reason for this positive bias can be associated with the reanalysis products, as shown in Figure 2-

4b, where the meteorological driver data have a significant impact on the wind speed variability. 

Concerning the PBL schemes, we found that YSU at the regional scale provides the highest wind 

speed bias compared to the rest of the PBL schemes, this problem has been shown previously by 

Hu et al. (2013), especially during night time. The MBE of the PBLH also provides some other 

insight from the different physics schemes used. Rawinsonde sites over the western region of the 

domain shows certain model configurations with the highest positive bias compared to the rest. 

This high positive bias over the West of the domain is shown in map from Figure 2-11c where 

PBLH shows large positive biases in the western region of the domain and slightly negative biases 

in the east part of the domain. We suspect that this gradient can be associated with problems in the 

models in representing the gradient that exists of warmer and drier areas in the west and cooler and 

moister areas in the eastern portion of the domain (Molod et al., 2015).  In addition, some of the 

models show a systematic behavior in the PBLH, where the highest positive biases were found in 
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configurations that use RUC as the LSM and YSU as the PBL scheme in the western region of the 

domain. This is unlike the eastern region of the domain, where the highest biases were dominated 

by configurations that use Thermal Diffusion as the LSM and YSU as the PBL scheme. To 

understand the potential cause of these differences in errors across the domain, we compute the 

MBE of the sensible heat at different eddy covariance stations available over the region. We found 

that Thermal Diffusion LSM tends to over-estimate the sensible heat over in the east and RUC 

LSM over the western region of the domain, which is reflected in the PBLH biases (not shown. 

However, this is not necessarily only a problem with the LSM, but also the interaction of these two 

LSMs with YSU PBL scheme because similar results have been shown in previous studies (e.g., 

Zhang et al., 2009). Finally, we note that the biases were larger for the PBLH when model 

configurations did not include a cumulus parameterization, creating a positive bias regardless of 

the model configuration. At 10 km resolution, the contribution from unresolved convection may 

accumulate subgrid-scale convection. In general, we were not able to find an optimal configuration 

but we found the MYNN 2.5 PBL scheme shows a better performance across the different variables 

(similar to Coniglio et al., 2013). 

Over the region, we found that the different model configuration tends to underestimate 

the CO2 mole fractions, except for Kewanee (RKW) site (Figure 2-13b). However, Kewanee is a 

site over the region that often shows a behavior that is significantly different when compared to the 

other sites (Díaz Isaac et al., 2014). The different models also show correlations that range between 

0.1 and 0.8 for the majority of the sites, with both overestimation and underestimation of the 

variability, but we did not find a model that behaves optimally across the region (Figure 2-14). In 

our study we try to make a connection between the errors in the meteorological variables and the 

CO2 mole fractions. We found a low correlation between wind speed (Figure 2-15a) or wind 

direction (Figure 2-15b) and the CO2 mole fractions. However, we know errors in these two 

variables can impact the distribution and magnitude of the inverse CO2 fluxes over the region. The 
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only variable that shows a high correlation with CO2 mole fraction errors was the PBLH (Figure 2-

15c). However, these correlations are not associated with the distance among the sites. This result 

is consistent with the high impact that errors in PBLH can have on CO2 mole fraction errors 

(Stephens et al., 2007; Gerbig et al., 2008; Kretschmer et al., 2012).  

2.5. CONCLUSION 

 

We evaluated the atmospheric transport errors using multiple simulations with varying 

physical parameterization schemes and reanalysis driver data. The transport errors were quantified 

using observation of meteorological variables (i.e., wind speed, wind direction, and PBLH). Each 

of the physics parameterization schemes were tested to first determine whether the PBL schemes 

have the largest impact on the modeled CO2 mole fraction errors among other parameterizations. 

This study shows that PBL schemes are not the only contributors of the CO2 errors. Other physics 

schemes like LSMs and Cumulus parameterization have a significant impact on CO2 errors. The 

meteorological variables show a similar result where all the physics parameterization schemes have 

a significant impact, except for microphysics. The PBLH was the only meteorological variable with 

ranking of the physics schemes importance identical to the CO2 mole fractions.  

The different model configurations show highly variable behaviors across rawinsonde sites 

for the different meteorological variables. Whereas wind speed and direction mean errors vary 

across sites, PBLH metrics reveal specific configurations affected by systematic errors across all 

the rawinsonde sites. To obtain more regional information of the different model configurations, 

we computed domain averages for each of the statistics. Although MAE and RMSE are fairly 

consistent across sites, we were able to identify specific configurations with larger errors: using 

RUC as the LSM and MYJ as the PBL scheme for wind speed and wind direction, and YSU PBL 

scheme for PBLH. For the regional MBE estimates, we observed that all the WRF configurations 
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show a systematic positive bias (i.e., overestimation) in wind speed across the region. The over- or 

under-estimation of the PBLH across the region is highly controlled by the PBL scheme, LSM, and 

cumulus parameterization.  

The different model configurations gave us additional insights about the magnitudes of the 

atmospheric transport errors that can be encountered over this region. However, multiple challenges 

remain, such as the validity of our ensemble to represent the entire error magnitudes. We showed 

here that errors vary across the region. If these errors are not well represented in a regional 

inversion, the distribution of the inverse fluxes will be erroneous. Our ensemble has a systematic 

positive bias in the wind speed regardless of the configuration. These systematic errors will be 

propagated into the inverse fluxes, which is unavoidable unless other techniques including the 

assimilation of data are used. Finally, without generalizing for other areas, no optimal model 

configuration was found for the entire region. Therefore, random and systematic errors will remain. 

To understand how these errors will propagate into the fluxes, a representative ensemble of 

simulations that represents the atmospheric transport errors would help characterize the errors and 

their spatio-temporal structures in future regional inversion systems.   
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Chapter 3  
 

Calibration of a Multi-Physics Ensemble for Greenhouse Gas 
Atmospheric Transport Model Uncertainty Estimation 

3.1 INTRODUCTION 

Atmospheric inversions are used to assess the exchange of CO2 between the biosphere and 

the atmosphere (e.g., Gurney et al., 2002; Baker et al., 2006; Peylin et al., 2013). The atmospheric 

inversion or “top-down” method combines a prior distribution of surface fluxes with a transport 

model to simulate CO2 concentrations and adjust the fluxes to be optimally consistent with the 

observations (Enting, 1993). Large differences exist among inverse flux estimates independent of 

the spatial scales (e.g., Gurney et al., 2002; Sarmiento et al., 2010; Peylin et al., 2013; Schuh et al., 

2013). These posterior flux uncertainties arise from limited atmospheric data density (Gurney et 

al., 2002), uncertain prior fluxes (Corbin et al., 2008; Gourdji et al., 2010) and errors in atmospheric 

transport (Stephens et al., 2007; Gerbig et al., 2008; Picket-Heaps et al., 2011).  

Atmospheric inversions based on Bayesian inference depend on the prior flux error 

covariance matrix and the observation error covariance matrix. The prior flux error covariance 

matrix represents the statistics of the mismatch between the true fluxes and the prior fluxes, but the 

limited density of flux observation limits our ability to characterize these errors (Hilton et al., 2013). 

The observation error covariance describes errors of both measurements and the atmospheric 

transport model. In the atmospheric inversions the model errors tend to dominate the measurement 

errors (e.g. Gerbig et al., 2003; Law et al., 2008). Additionally, the atmospheric inversion assumes 

that the atmospheric transport uncertainties are known, therefore, the method propagates the 

atmospheric transport model errors to inverse fluxes limiting their optimality. Unfortunately, 
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rigorous assessments of the transport uncertainties within atmospheric inversions are limited.   

Estimation of the atmospheric transport errors and their impact on CO2 fluxes remains a challenge. 

A limited number of studies are dedicated to quantify the uncertainty in the atmospheric 

transport models in detail and translate this information into the impact on the CO2 mixing ratio 

and inverse fluxes. The atmospheric Tracer Transport Model Intercomparison Project (TransCom) 

has been dedicated to evaluate the impact of atmospheric transport models in atmospheric inversion 

systems (e.g., Gurney et al., 2002; Law et al., 2008; Peylin et al., 2013). These experiments, have 

shown the importance of the transport model resolution to avoid any misrepresentation of 

atmospheric signals (Law et al., 2008), especially more atmospheric observations are added. Diaz 

Isaac et al., (2014) showed how two models with two different resolution using the same surface 

fluxes can lead to large model-data differences in the atmospheric CO2 concentrations that can yield 

significant errors on the inverse fluxes. However, other elements of the atmospheric transport 

models besides the spatial resolution has been taken into account as additional sources of error. 

Errors in the horizontal wind (Lin and Gerbig, 2005) and in the vertical transport (Stephen et al., 

2007; Gerbig et al. 2008; Kretschmer et al., 2012) have been considered as two of the major 

uncertainties in the CO2 modelling. Lin and Gerbig (2005), estimate the impact of horizontal wind 

error on CO2 concentrations and conclude that uncertainties in CO2 due to advection errors can be 

as large as 6ppm. Other studies have considered that critical errors of the atmospheric transport 

models reside in the misrepresentation of the vertical mixing (e.g., Denning et al., 1995; Stephens 

et al., 2007; Gerbig et al., 2008). Therefore, some studies have been dedicated to evaluate the effects 

that planetary boundary layer height (PBLH) has on CO2 concentrations (Gerbig et al., 2008; 

Williams et al., 2011; Kretschmer et al., 2012).  Some of these studies have estimated an uncertainty 

of approximately 3ppm on CO2 concentrations due to PBLH errors during the summer time using 

different model spatial resolutions (Gerbig et al., 2008; Kretschmer et al., 2012). These studies have 

attributed the errors to the lack of sophisticated sub-grid parameterization, especially PBL schemes 
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and land surface models (LSMs). This led other studies to evaluate the impact of different 

parameterization specifically PBL schemes (Kretschmer et al., 2012; Lauvaux and Davis, 2014; 

Feng et al., 2016). These studies have found systematic errors of several ppm in atmospheric CO2 

that can generate biased fluxes. While there is an agreement that errors in the vertical mixing and 

advection can affect directly the inverse flux errors, these errors are significantly influenced by 

different components of the atmospheric models.   

Atmospheric transport models have different sources of uncertainty, such as the boundary 

conditions, initial conditions, model physics parameterization schemes and parameter values. This 

has caused the ensembles to become a major tool for the quantification of atmospheric transport 

uncertainties. Different approaches have being taken in the carbon cycle community to represent 

the model uncertainty: (1) the multi-model ensembles that encompass models from different 

research institutions around the world (e.g. TransCom experiment; Gurney et al., 2002; Baker et 

al., 2006; Patra et al., 2008; Peylin et al., 2013; Houweling et al., 2010), (2) multi-physics 

ensembles that involve different model physics configurations generated by the variation of 

different parameterization schemes from the model (e.g., Kretschemer et al., 2012; Yver et al., 

2013; Lauvaux and Davis 2014; Feng et al., 2016) and (3) multi-analysis that consists of running a 

model over the same period using different analysis fields (where perturbations can be added) (e.g., 

Lauvaux et al., 2009b; Miller et al., 2015). These ensembles are informative (e.g., Peylin et al., 

2013; Kretshmer et al., 2012; Lauvaux and Davis 2014), but have some shortcomings. In some 

cases, the ensemble spread includes a mixture of transport model uncertainties and other errors 

such as the variation in prior fluxes or the observations used.  Other studies have only varied the 

PBL scheme parameterizations.  None of these studies have carefully assessed whether or not their 

ensemble spreads represent the true transport errors.    

Ideally, an ensemble requires a significant number of members to avoid sampling noise 

and the lack of dispersion of the ensemble members (Houtekamer and Mitchell, 2001) to explore 
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and quantify the uncertainties. However, large ensembles are computationally expensive. The 

limitations in computational resources lead to restrictions including the set-up of the model (e.g., 

model resolution, nesting options, duration of the simulation) and the number of ensemble 

members. It will be desirable to generate an ensemble that is capable of representing the transport 

errors, that does not include any redundant information and whose members are essential to 

maintaining the spread of the ensemble.  

Various post-processing techniques can be used to calibrate or “down-select” to a subset 

of ensemble members that represent the errors approximately equal to a large ensemble of 50 or 

more members (e.g., Alhamed et al., 2002; Garaud and Mallet, 2011; Lee et al., 2012a; 2016). 

Some of these techniques are principal component analysis (e.g., Lee et al., 2012a), K-means 

cluster analysis (e.g., Lee et al., 2012b) and hierarchical cluster analysis (e.g., Alhamed et al., 2002; 

Yussouf et al., 2004; Johnson et al., 2011; Lee et al., 2012b;2016). Riccio et al. (2012), applied the 

concept of “uncorrelation” to reduce that amount of members without using any measurement data. 

Solazzo and Galmarini (2014) reduced the number of members by finding a subset of members that 

maximize a statistical performance skill such as the correlation coefficient, the root-mean-square 

error or the fractional bias. Other techniques applied less commonly to the calibration of the 

ensembles include simulated annealing and genetic algorithms (e.g. Garaud and Mallet, 2011). All 

these techniques are capable of eliminating those members that are redundant, and generating an 

ensemble with a smaller number of members that still represents, perhaps even more faithfully 

uncertainty of the atmospheric transport model.  

In the last two decades, the development of ensemble methods has improved the 

representation of transport uncertainty using the statistics of large ensembles to characterize the 

statistical spread of atmospheric forecasts (e.g. Evensen, 1994a, 1994b). However, single-physics 

ensemble-based statistics are highly susceptible to model error, leading to under-dispersive 

ensembles (e.g. Lee et al., 2012). But large ensembles (>50 members) remain computationally 
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expensive and ill-adapted to assimilation over longer time scales such as multi-year inversions of 

long-lived species (e.g. CO2). Smaller-size ensembles would be ideal, but most initial-condition-

only perturbation methods produce unreliable and overconfident representation of the atmospheric 

state (Buizza et al. 2005). Therefore, we present here an optimal selection of model simulations 

based on different physics configurations (i.e. unperturbed) while minimizing persistent biases that 

might cause the ensemble to be biased. These conditions are ideal to propagate transport errors into 

CO2 mixing ratios (i.e. mass conservation and continuity in air flow) in future regional inversion 

systems.  

In this study we start with a large multi-physics/multi-analysis ensemble of 45-members 

presented in (Díaz-Isaac et al., in prep) that will go through a calibration process similar to the one 

explained in Garaud and Mallet (2011). There are two features of the ensemble that can be explored: 

reliability and resolution. The reliability is the probability that a simulation has of matching on 

average the frequency of an observed event. The resolution is the ability of the system to predict a 

specific event. The main goal is to generate an ensemble that will represent the uncertainty of the 

transport model with respect to meteorological variables of most importance in simulating 

atmospheric CO2, wind speed, wind direction and PBLH. We will focus therefore on the criterion 

that will measure the reliability of the ensemble, i.e. the probability of the ensemble in representing 

the frequency of events (i.e. the spatio-temporal variability of the atmospheric state). To calibrate 

the ensemble, we will use two different techniques, simulated annealing and a genetic algorithm. 

We will evaluate which physical parameterizations play important roles in balancing the ensembles, 

and evaluate how well a pure physics ensemble can represent transport uncertainty. 
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3.2 METHODS 

3.2.1 Generation of the Ensemble 

We generate an ensemble using the Weather Research and Forecasting (WRF) model 

version 3.5.1 (Skamarock et al., 2005), including the chemistry module modified in this study for 

CO2 (WRF-ChemCO2).  The ensemble consists of 45-members that were generated by varying the 

different physics parameterization and meteorological data. The land surface models, surface 

layers, planetary boundary layer schemes, cumulus schemes, microphysics schemes, and 

meteorological data (i.e., initial and boundary conditions) are alternated in the ensemble	(see Table 

3-1).  All the simulations keep the same radiation schemes, both long and shortwave.  

The different simulations were run using the one-way nesting method, with two nested 

domains (Figure 3-1). The coarse domain (d01) uses a horizontal grid spacing of 30km and covers 

most of the United States and part of Canada. The inner domain (d02) uses a 10km grid spacing, is 

centered in Iowa and covers the Midwest region of the United States. The vertical resolution of the 

model is described with 59 vertical levels, with 40 of them within the first 2km of the atmosphere. 

This work focuses in the simulation with the higher resolution, therefore only the 10-km domain 

will be analyzed.  

The CO2 fluxes for summer 2008 were obtained from NOAA Global Monitoring 

Division’s CarbonTracker version 2009 (CT2009) data assimilation system (Peters et al., 2007; 

http://carbontracker.noaa.gov). The different fluxes that CT2009 propagates into the models are 

fossil fuel burning, terrestrial biosphere exchange, and the exchange with oceans. The CO2 lateral 

boundary conditions were obtained from CT2009 mole fractions. Only the atmospheric transport 

fields should vary between each model configuration or ensemble member. 
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Figure 3-1. Geographical domain used by WRF-ChemCO2 physics ensemble. The parent 
domain (d01) has a 30-km resolution, the inner domain (d02) has a 10-km resolution. 
 

Table 3-1. Physics schemes used in WRF for the sensitivity analysis. 

Parameter Options 
Land Surface Model  Noah	LSM		

Rapid	Update	Cycle	(RUC)	LSM		
5-layer	Thermal	Diffusion	

Planetary Boundary Layer (PBL) 
scheme – Surface Layer scheme 

Yonsei	University	(YSU)		
Mellor-Yamada-Janjic	(MYJ)		
Mellor-Yamada-Nakanishi-Niino	(MYNN)	

Cumulus  Kain-Fritsch	(KF)		
Grell-3Devenyi	(G3D)		

Microphysics WSM	5-class		
Thompson	et	al.,	(2004)	

Initial & Boundary Conditions North	America	Regional	Reanalysis	(NARR)	
Global	Final	Analysis	(FNL)	
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3.2.2 Dataset and Data Selection 

Our interest is to calibrate our ensemble over the Midwest U.S. using the available 

observations available over this region. Therefore, the calibration of the ensemble will be done 

using the inner domain for each simulation. To perform the calibration we used balloon soundings 

collected over the Midwest region (Figure 3-2).  Meteorological data were obtained from the 

University of Wyoming’s online data archive (http://weather.uwyo.edu/upperair/sounding.html) 

for 14 rawinsonde stations over the U.S. Midwest region (Figure 3-2). To evaluate how the new 

calibrated ensemble impacts CO2 concentrations we will use in-situ atmospheric CO2 mole fraction 

data provided by seven communication towers (Figure 3-2) (Miles et al., 2012). Five of these 

towers were part of an experimental network, deployed from 2007 to 2009 and managed by a group 

at The Pennsylvania State University (Richardson et al., 2012; Miles et al., 2012). The other two 

towers (Park Falls-WLEF and West Branch-WBI) are part of the Earth System Research 

Laboratory/Global Monitoring Division (ESRL/GMD) tall tower network (Andrews et al., 2014), 

managed by NOAA. Each of these towers sampled air at multiple heights, ranging from 11 m AGL 

to 396 m AGL.  

The ensemble will be calibrated for three different meteorological variables: wind speed, 

wind direction and planetary boundary layer height (PBLH). We will calibrate the ensemble with 

the late afternoon data (i.e., 0000 UTC) from the different rawinsondes. In this study, we use only 

daytime data, because we want to calibrate and evaluate the ensemble under the same well mixed 

conditions that CO2 mole fraction are used to perform atmospheric inversions. For each rawinsonde 

site we will use wind speed and wind direction observations from approximately 300 m above 

ground level (AGL). We choose this observational level because we want the observations to lie 

within the well mixed layer, a similar strategy being employed for interpreting tall-tower CO2 mole 

fractions. Many of CO2 mole fractions that we will use were collected at 100 m AGL, but the data 
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from the radiosondes were very limited at that height.  Simulated meteorological fields should be 

evaluated at a similar height as the observations. Therefore, simulated wind speed and wind 

direction are evaluated at level 11 (~350m). 

The PBLH was estimated using the virtual potential temperature gradient (sθν). The 

method identifies the PBLH as the first point above the atmospheric surface layer where (1) sθν 

is greater than or equal to 0.2 K/m, and (2) the difference between the surface and the threshold 

level virtual potential temperature is greater than or equal to 3 K( θνs - θν  ≥ 3K).    

WRF derives an estimated PBLH for each simulation, however the technique used to estimate the 

PBLH varies according to the PBL scheme used to run the simulation. For example, the YSU PBL 

schemes estimates PBLH using the Bulk Richardson number, MYJ PBL scheme uses the TKE to 

estimate the PBLH and MYNN PBL scheme uses QKE to estimate the PBLH. To avoid any errors 

from the technique used to estimate the PBLH, we decided to estimate the PBLH from the model 

using the same method used for the observations. Simulated PBLH will be analyzed at the same 

time as the observations, 0000 UTC, i.e., late afternoon in the study region. 

We analyzed CO2 mole fractions collected from the sampling levels at or above 100m 

AGL, which is the highest observation level across the MCI network (Miles et al., 2012). This 

ensures that the observed mole fractions reflect regional CO2 fluxes and not near-surface gradients 

of CO2 in the atmospheric surface layer (ASL) or local CO2 fluxes (W. Wang et al., 2007). Both 

observed and simulated CO2 mole fractions are averaged from 1800 to 2200 UTC (12:00-16:00 

LST), when the daytime period of the boundary layer should be convective and the CO2 profile 

well mixed (e.g., Davis et al., 2003; Stull, 1988). This averaged mole fraction will be referred to 

hereafter as daily daytime average (DDA).  
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Figure 3-2. Map of the study region, including the CO2 towers (blue triangles) and rawinsonde sites 
(red circles) locations. 

3.2.3 Criteria or Verification Methods 

The main reason to generate an ensemble is to estimate the atmospheric transport model 

uncertainties. In this research we want to test the performance of the ensemble and try to represent 

the uncertainties using an ensemble with a smaller number of members. A series of statistics 

analysis are used as criteria to measure the quality of the uncertainty estimation of the ensemble for 

the period of June 18 to July 21 of 2008. The different tools used for this evaluation include the 

rank histograms, rank histograms scores, Taylor diagrams, spread-skill relationship, ensemble bias 

and CO2 error covariance matrices.  These statistical analyses will be used to identify the 

characteristics of the different ensembles including the large ensemble and the calibrated 

ensembles.  
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3.2.3.1 Talagrand Diagram (or Rank Histogram) and Rank Histogram Score 

The main goal is to identify a sub-ensemble that is representative of model transport 

uncertainties. To calibrate the ensemble, we need criteria to select the sub-ensemble. The rank 

histogram and the rank histogram scores are tools used to measure the spread and reliability of the 

ensemble. 

The rank histogram (Anderson 1996; Hamill and Colucci 1997; Talagrand et al., 1999) is 

computed by sorting the corresponding modeled variable of the ensemble in increasing order and 

then a rank among the sorted predicted variable from lowest to highest is given to the observation. 

The ensemble members are sorted to define “bins” of the modelled variable, if the ensemble 

contains N members, then there will be N+1 bins.  If the rank is zero then the observed variable 

value is lower than all the modelled variable values, and if it is N then the observation is greater 

than all of the modelled values. If the ensemble is reliable, the rank histogram should be flat, this 

happens when the probability of occurrence of the observation within each bin is equal. A rank 

histogram that deviates from the flat shape implies a biased, over-dispersive or under-dispersive 

ensemble. A “U-shaped” rank histogram indicates that the ensemble is under-dispersive, normally 

in this type of ensemble the observations tend to fall outside of the envelope of the ensemble and 

indicates a lack of variability. A “central-dome” histogram indicates that the ensemble is over-

dispersive; this kind of ensemble has an excess of variability. If the rank histogram is overpopulated 

at either of the ends of the diagram, then this indicates that the ensemble is biased.  

The rank histogram score is used to measure the deviation from flatness of a rank 

histogram: 
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and should ideally be close to 1 (Talagrand et al., 1999; Candille and Talagrand, 2005). In Eq.(1), 

𝑁 is the number of models, 𝑀 is the number of observations, 𝑟: the number of observations of rank 

j, and 𝑟 = 𝑀/(𝑁 + 1)	is the expectation of 𝑟:. In theory, the optimal ensemble has a score of one 

(1) when enough members are available. A score lower than one would indicate overconfidence in 

the results but would not affect the selection process. Nevertheless, a flat rank histogram does not 

necessarily mean that the ensemble is reliable or has enough spread. For example, a flat histogram 

can still be generated from ensembles with different conditional biases (Hamill, 2001). The flat 

rank histogram can also be produced when covariances between samples are incorrectly 

represented. Additional verification analysis has to be introduced to certify that the calibrated 

ensemble has enough spread and is reliable. Therefore, we present here additional metrics to 

evaluate the ensemble. 

3.2.3.2 Spread-skill relationship 

To verify that the ensemble captures the spatial and temporal structures of the atmospheric 

transport errors at fine scales (i.e. resolution), we computed the relationship between the spread of 

the ensemble and the skill of the ensemble over the entire data set (i.e. spread-skill relationship). 

The linear fit between the two parameters measures the correlation between the ensemble spread 

and the ensemble mean error or skill (Whitaker and Lough, 1998). The ensemble spread is 

calculated by computing the standard deviation of the ensemble and the mean error by computing 

the absolute difference between the ensemble mean and the observations. Ideally, as the ensemble 

skill improves (get smaller), the ensemble spread becomes smaller, and vice versa. Compared to 
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the rank histograms, spread-skill diagrams represent the ability of the ensemble to represent the 

errors at every time step rather than statistically represent the spatio-temporal variability of the 

atmosphere (i.e., englobe the observations to calibrate the ensemble). Here, the spread-skill 

relationship will be used as an additional verification method to assess the error representation of 

the ensembles.  

3.2.3.3 Bias and Standard Deviation 

Atmospheric inverse flux estimates are highly sensitive to biases and deviations from the mean.  

The bias, or the mean of the residuals (i.e. model-data mismatches), was used to assist the selection 

of the calibrated sub-ensemble. We identify a sub-ensemble that has minimal bias, 
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where pi is the difference between the modeled wind speed, direction or PBLH, and the observed 

value, M is the number of measurements and i sums over each of the rawinsonde measurements. 

Standard deviation, used here for the ensemble evaluation, will indicate the deviation of 

the ensemble from the observations. We used the following definition: 
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to describe the deviation to the measurements. The equation describes the Root Mean Square Errors 

(RMSE) averaged across the members of any given ensemble.  
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3.2.3.4 Taylor Diagram 

We use Taylor diagrams to describe the performance of each of the models of the large 

ensemble (Taylor, 2001). The Taylor diagram relies on three nondimensional statistics: the ratio of 

the variance (model variance normalized by the observed variance), the correlation coefficient, and 

the normalized center root-mean square (CRMS) difference (Taylor, 2001). The ratio of the 

variance or normalized standard deviation indicates the difference in amplitude between the model 

and the observation. The correlation coefficient measures the similarity in the temporal variation 

between the model and the observation. The CRMS is normalized by the observed standard 

deviation and quantifies the ratio of the amplitude of the variations between the model and the 

observations. The Taylor diagram will be used to have a general idea of the behavior of the different 

models with respect to the observations. An ideal Taylor diagram will be one that shows a different 

performance, therefore different statistical measures. This will help the calibration system to have 

numerous alternatives to generate the different calibrated sub-ensembles. 

3.2.3.5 Ensemble-based error covariances 

Transport model errors in atmospheric inversions are described in the observation error 

covariance matrix, assumed independent of the prior flux error covariances. Based on the 

calibration method, the reduced-size ensembles generated using two different optimization 

techniques show an optimal representation of the spatio-temporal variability in the three 

meteorological variables. Therefore, we examined both the ensemble spread (i.e., variances) and 

the structures in space and time (i.e., covariances) in the different ensembles. We evaluate the 

impact of the calibration on variances and covariances of CO2. Because the limited number of 

members is likely to introduce sampling noise in the diagnosed error covariances, we compare the 

spatial extent of error structures between the full ensemble and the reduced-size ensembles. The 
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raw covariances were directly derived from the different ensembles to estimate the increase in 

sampling noise as a function of the ensemble size.  

3.2.4 Calibration Methods 

In this study, we want to test the ability to reduce the ensemble from 45-members to an 

ensemble with a smaller number of members that is still capable of representing the transport errors 

and does not include members with redundant information. We use the Garaud and Mallet (2011) 

technique to define the size of the calibrated sub-ensemble that each optimization technique will 

generate. Garaud and Mallet (2011) determine the size of the sub-ensemble by dividing the total 

number of observations by the maximum frequency in the rank histogram. We are going to generate 

sub-ensembles of three different size (number of members), to evaluate the impact that an ensemble 

size has for the representation of the atmospheric transport uncertainties. Each of the ensembles 

will be calibrated for the period of June 18 to July 21 of 2008. 

Two optimization methods are used to select a sub-ensemble that minimizes the rank 

histogram score (δ), which is the criterion that each algorithm will use to test the reliability of the 

ensemble. These two optimization methods are simulated annealing (SA) and a genetic algorithm 

(GA). Each method will select a sub-ensemble that best represents the model uncertainties of the 

three meteorological variables selected; wind speed, wind direction and PBLH. We hypothesize 

that all three meteorological variables are important for CO2 inverse flux estimates. 

In this study, SA and GA techniques will generate a sub-ensemble S of size N. For the first 

test, we will use these algorithms to choose the combination of members that optimize the score of 

the reduced ensemble J(S) (i.e., rank histogram score (δ as defined in Eq.(1)) for each variable. 

With this evaluation, we determine if each technique yields similar calibrated ensembles and if 

these calibrated ensembles are similar among the different meteorological variables. In the second 
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test, we calibrate the ensemble for all three variables simultaneously, where we use the sum of the 

score squared: [J(S)]2 (i.e. δ2 ): 

 

  [𝐽 𝑆 ], = [𝐽FGHI 𝑆 ], + [𝐽FI)J 𝑆 ], + [𝐽HKLM 𝑆 ],,  (4) 

 

to control acceptance of the sub-ensembles. In Eq. (4), Jwspd(S), Jwdir(S) and Jpblh(S) are the scores 

of the sub-ensemble for wind speed, wind direction and PBLH respectively. We will explore the 

ensemble characteristics identified by rank histogram scores for the individual meteorological 

variables, and for the sum of the rank histogram score for all three variables. 

3.2.4.1 Simulated Annealing 

Simulated annealing (SA) is a general probabilistic local search algorithm, described by 

Kirkpatrick et al. (1983) and Cerny et al. (1985) as an optimization method inspired from the 

process of annealing in metal work. Based on the Monte-Carlo iteration solving method, SA finds 

the global minimum using a cost function that gives to the algorithm the ability to jump or pass 

multiple local minima. In this case the optimal solution is a sub-ensemble with a rank histogram 

score close to 1.  

The SA starts with a randomly selected sub-ensemble. The current state (i.e, initial random 

sub-ensemble) has a lot of neighbors states (i.e., other randomly generated sub-ensembles) in which 

a unit (i.e., model) is changed, removed or replaced. Let 𝑆 be the current sub-ensemble and 𝑆′ be 

the neighbor sub-ensemble. 𝑆O is a new sub-ensemble (i.e., neighbor) that is randomly built from 

the current sub-ensemble with one model added, removed or replaced. To minimize the score J, 

only two transitions to the neighbors are possible. First transition, if the score of the neighbor sub-

ensembles J(S’) is lower than the current sub-ensemble J(S), then S’ becomes the current sub-

ensemble and a new neighbor sub-ensemble is generated. Second transition, if the score of the 
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neighbor sub-ensemble J(S’) is greater than the current sub-ensemble J(S), moving to the neighbor 

S’ only occurs through an acceptance probability. This acceptance probability is equal to 

exp − S TU VS(T)
W

 and it only allows the movement to the neighbor S’ if 𝑢 < exp − S TU VS(T)
W

. 

For the acceptance probability, u is a random number uniformly drawn from [0,1] and T is called 

temperature and it decreases after each iteration following a prescribed schedule. The acceptance 

probability is high at the beginning and the probability of switching to neighbor less at the end of 

the algorithm. The possibility to select a less optimal state S’, i.e., with higher J(S’) is meant to 

escape local minima where the algorithm could remain trapped. 

At the end of the process, we collect all the accepted sub-ensembles S and their respective 

scores J(S). Then we choose the sub-ensemble that has the smallest score for the three variables 

and a lower bias compare to the sub-ensembles.  

3.2.4.1 Genetic Algorithm 

A genetic algorithm (GA) is a stochastic optimization method that mimics the process of 

biological evolution, with the selection, crossover and mutation of a population (Fraser and Burnell, 

1970; Crosby, 1973; Holland, 1975). Let 𝑆) be an individual; that is, a sub-ensemble, and let 𝑃 =

{𝑆/, … , 𝑆), … , 𝑆4^_^} be a population of 𝑁HaH individuals. As a first step in the GA a random 

population is generated (denoted 𝑃<). Then this population will go through two steps (1) selection 

and (2) crossover. In the selection step, we select half of the best individuals with respect to the 

score (i.e., summation of the score of three variables J(S)). For the second step, a crossover among 

the selected individuals occurs when two parents create two new children by exchanging some 

ensemble members. A new population is generated with 𝑁HaH/2 parents and 𝑁HaH/2 children. This 

process is repeated until a criterion is satisfied. In this case the criterion is the number of iterations 

that we specified. This algorithm will provide at the end a population of individuals with a better 



78 

 

rank histogram score than the initial population. Out of all those individuals we choose the sub-

ensemble with the best score for the three variables (i.e., wind speed, wind direction and PBLH) 

and with a smaller bias than the large ensemble. 

 

3.2.5 Parameterization of the Selection Algorithms 

Various inputs are required to guide the selection algorithms. For example, we typically 

need to choose the initial and final temperature (T0 and Tf) for the SA and its schedule, the best 

population size (Npop) for the GA and the number of iterations for each algorithm. The temperature 

of the SA, the Npop of the GA and the iterations were chosen by running the algorithms multiple 

times and confirming that the system reached similar solutions with independent minimization runs.  

If similar solutions were not achieved within multiple SA or GA runs, the algorithm parameters 

were altered to increase the breadth of the search. For the SA we found that 20,000 iterations 

yielded similar solutions after multiple runs of the algorithm. For the GA, 30 to 50 iterations were 

sufficient as long as the ensemble was smaller than 8-members. For an ensemble of 10-members 

we needed to increase to 100 iterations. Another factor that was important in the SA was the initial 

temperature used in the algorithm and the temperature decrease for each iteration. While the 

temperature is high, the algorithm will accept with more frequency the poorer solutions, as the 

temperature is reduced, the acceptance of poorer solutions is reduced too. Therefore, we need to 

provide an initial (T0) and final (Tf) temperature that allows the system to reduce gradually and 

allowing it to search more combinations of members to identify the best solution or sub-ensemble.  

We were able to explore more solutions with T0 equal to 20 and Tf  equal to 1e-3. We need to specify 

the GA the size of the population that we want to create to find the calibrated ensemble. The larger 

the population, the more we can explore the space to find the optimal solution.  In this case we 
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chose Npop of 280 individuals, the smaller the population the harder it was to find similar solution 

(sub-ensembles) after multiple runs. 

 

Figure 3-3. Diagram of the process of selection of reduced-sized ensembles. 

3.2.6 Selection of the Optimal Reduced-sized Ensembles 

The selection process is performed in three distinct steps to ensure that the final calibrated 

ensembles will be the optimal combinations of model configurations (Figure 3-3). First, the flatness 

of the rank histograms will control the acceptance of the calibrated sub-ensembles by the selection 

algorithms. The flatness is defined by equation (1) for the single-variable calibration and equation 

(3) for the calibration of the three variables simultaneously. The algorithms select multiple sub-
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ensembles corresponding to a low score as defined by the lower percentile (here lowest 25%), as 

shown in Figure 3-4. To simplify the selection process, we accepted ensembles with a score smaller 

than six for each individual meteorological variable. As a second step, sub-ensembles accepted by 

SA and GA algorithms with a bias larger than the full ensemble are filtered out. The bias 

corresponds to the averaged model-data mismatch of the ensemble. Finally, the remaining 

calibrated ensembles are compared among SA and GA techniques to identify if both algorithms 

provide a common solution. If no solution was found by both techniques, the final sub-ensemble 

corresponds to the smallest score among the different solutions that shares more than half of the 

model configurations. This down-selection process was able to identify common ensembles in the 

majority of the experiments.   

 

Figure 3-4. Box plot of the rank histogram scores of the different sub-ensembles of 10 (a), 8(b), 
and 5 (c) members accepted by the SA. Each figure shows the rank histograms scores for the 
different variables wind speed (wspd), wind direction (wdir) and PBLH. The outliers are plotted 
using the + symbol. 
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3.3 RESULTS 

3.3.1 Evaluation of the Large Ensemble 

In this section, we evaluate the performance of the different models and the large 

ensemble. Our goal is to test the skill (how close the models are to the observations) and the 

spread (how well the models represent the uncertainty) from the ensemble. We will evaluate the 

skill and the spread for wind speed, wind direction and PBLH across the region of study at 0000 

UTC.  

3.3.1.2 Model Skill 

We evaluate the performance of the different models of the 45-member ensemble by 

computing the normalized standard deviation, center root mean square and the correlation 

coefficient for wind speed (Figure 3-5a), wind direction (Figure 3-5b) and PBLH (Figure 3-5c) 

(Taylor, 2001). Both wind speed and wind direction show the majority of the models with higher 

standard deviation (more variability) than the observations, whereas the simulations can over- or 

under-estimate PBLH variability depending on the model configuration. The models show 

correlations with wind speed and wind direction between 0.4 and 0.7, whereas the PBLH shows a 

smaller correlation, between 0.3 and 0.6. The range of variability in PBLH height will provide a 

wide range of alternatives for the calibrated sub-ensemble. Wind speed and wind direction do not 

show much variability among the different models. This reduces the potential selection of the 

models to produce a sub-ensemble that has sufficient spread.  
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Figure 3-5. Taylor diagram comparing the 0000 UTC rawinsonde observations (300 m wind speed 
(a), 300 m wind direction (b) and PBL height (c)) to the 45 model configurations (red circles).  

3.3.1.3 Reliability and Spread of the Ensemble 

We illustrate the ensemble spread and how this ensemble captures the observations using 

the time series of the simulated and observed meteorological variables at 0000 UTC. Figure 3-6 

shows the time series of the ensemble spread for wind speed, wind direction and PBLH at the 

GRB (Figure 3-6 a,c,e) and TOP (Figure 3-6 b,d,f) sites. The time series show qualitatively that 

simulated wind speed (Figure 3-6 a-b) and wind direction (Figure 3-6 c-d) have a smaller spread 

compared to PBLH (Figure 3-6 e-f). Figure 3-6 shows how the ensemble can have a small spread 

and still encompass the observations (i.e., DOY 183 Figure 3-6c); and have a large spread and not 

encompass the observation (i.e., DOY 174 Figure 3-6e). Similar to the Taylor Diagrams, the time 
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series of the large ensemble shows that more simulations have a similar behavior for wind speed 

and wind direction, whereas there is more variability in the performance of the model for the 

PBLH. 

 

Figure 3-6. Time series of the large ensemble for wind speed (a-b), wind direction (c-d) and PBL 
height (e-f) at GRB (a,c,e) and TOP (b,d,f) sites. The shaded blue area represents the spread (i.e. 
RMSD) of the ensemble, the solid line the ensemble mean and the red dots the observations at 
0000UTC.  

 

              Figure 3-7 shows the rank histograms of the 45-member ensemble for each of the 

meteorological variables that we are going to use to calibrate the ensemble (i.e., wind speed, wind 

direction and PBLH). In this rank histogram we include all the 14 rawinsonde sites. All the rank 
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histograms have a U-shape, where the highest frequencies are at the extremes of the histogram, 

indicating that the ensemble is under-dispersive, and that for many days the ensemble does not 

encompass the observations. Each rank histogram has the first rank as the highest frequency, 

indicating that observations are most frequently below the envelope of the ensemble.  The rank 

histogram score for each of the variables is greater than one, confirming that we do not have optimal 

spread in our ensemble. Table 3-2 shows that both wind speed and wind direction have a higher 

rank histogram score (i.e., ≥ 6), compared to PBLH that has a score of 3.2. Wind speed and PBLH 

show a positive bias in the model-data mismatch across the regions, whereas wind direction has 

negative bias. 

 

Figure 3-7. Rank histogram of the 45-member ensemble for wind speed (a), wind direction (b) and 
PBLH (c) using the 14 rawinsonde sites available over the region. 

 
 

Table 3-2. Rank histogram score (δ), biases and standard deviation (σ) of the 45-member ensemble 
for wind speed, wind direction and PBL height computed across 14 rawindsonde sites using daily 
0000 UTC observations for June 18 to July 21 of 2008 in the upper Midwest of the U.S. 

Variables δ Bias σ 
Wind Speed 6.1 0.7 m/s 3.5 m/s 

Wind Direction 6.2 -0.6 degrees 55.7 degrees 
PBLH 3.2 98.2 m 787.5 m 
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             Figure 3-8 shows the spread-skill relationship, another method that we use to examine the 

representation of errors of the ensemble. Wind direction (Figure 3-8b) shows a higher correlation 

between the spread and the skill compared to the PBLH (Figure 3-8c) and the wind speed (Figure 

3-8a). The PBLH and wind speed show consistently larger skill than spread. This supports the 

conclusion that the large ensemble is under-dispersive for these variables. However, none of these 

variables shows a correlation equal to one; this implies that our ensemble spread does not match 

exactly the atmospheric transport errors on a day-to-day basis. This feature is common among 

ensemble prediction systems (Wilks et al., 2006) and should not impair the ability to identify the 

optimal reduced-size ensembles. However, linear coefficients are all between 0.7 and 1.1 which 

indicates that the ensemble captures a significant fraction of the daily model-data differences. 
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Figure 3-8. Spread-skill for (a) wind speed, (b) wind direction and (c) PBL height using the 14 
rawinsonde sites available over the region. Each point represents the spread-skill of the different 
sites at different times.  A one-to-one line is plotted in black and a line of best fit is plotted in red. 
Correlation (r) and slope (b) of the line of best fit of the spread-skill relationship. 

3.3.2 Calibrated Ensemble 

In this section, we will show the results of the calibrated ensembles generated with both 

SA and GA. Each calibration was performed for three different sub-ensemble sizes; the size of 

the ensembles is determined using the technique explained in Section 3.2.4. To compute the size 

of the sub-ensemble we need to use the maximum frequency of the rank histogram, in this case 

the maximum frequency is the left bar (r0) of every rank histogram. This technique yields the 
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result that the calibrated ensemble should have about 8 to 10 members depending in the variable 

that to be used. Therefore, for this study we will generate three different ensemble sizes 10, 8 and 

5-member ensembles using the two calibration techniques. 

3.3.2.1 Individual Variable Calibration 

Table 3-3 shows that both techniques (i.e., SA and GA) were able to find similar 

combinations of configurations (i.e., an ensemble that shares more than half of the members) when 

each variable was used separately. The final set of simulations chosen for each sub-ensemble varies 

significantly for the different variables, with the exception of the calibrated 10-member ensemble 

estimated using wind speed and wind direction. Although calibrated ensembles share less than 30% 

of the same configurations among the different variables, the majority of the ensembles include 

model configuration 14. This model configuration, as shown in (Chapter 2), presents large errors 

for both wind speed and wind direction. This implies that this model configuration contributes 

significantly to the spread of the three variables. The final scores of the calibrated ensembles for 

each variable show that finding a calibrated sub-ensemble that reaches a score of one is not possible 

for wind speed and wind direction. A sub-ensemble with a score less than or equal to one can be 

found for PBLH. Figure 3-9 shows the rank histograms of the different calibrated ensembles (i.e., 

10, 8 and 5-member) for each meteorological variables shown in Table 3-3. The calibrated 

ensembles of PBLH (Figure 3-9 c, f, i) are nearly flat for all ensemble sizes, whereas the 10- and 

8- member sub-ensembles keep a U-shape for wind speed and wind direction. The smallest score 

for wind speed and wind direction are obtained with a 5-member ensemble (Figure 3-9 g-h). 
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Table 3-3. Calibrated ensembles generated by SA and a GA and their rank histograms scores and 
bias for each variable. 

N Variable	 Sub-Ensemble	 δ	 Bias	
	

10 
 

WSPD	 [5	13	14	16	17	29	33	35	39	45] 3.8 0.4 m/s 
WDIR	 [5	13	14	16	17	20	31	33	34	37] 3.4 -0.6 deg. 
PBLH	 [2	11	14	23	27	31	35	37	43	44] 0.4 58 m 

8 
WSPD	 [11	14	16	31	35	37	39	45] 3.7 0.5 m/s 
WDIR	 [14	15	17	20	23	33	34	37] 3.9 -1 deg. 
PBLH	 [12	13	14	23	26	28	37	44] 0.8 75.5 m 

5 
WSPD	 [5	14	29	36	39] 3 0.4 m/s 
WDIR	 [14	23	33	34	37] 1.9 0.3 deg. 
PBLH	 [2	5	13	31	44] 0.1 69 m 

 

 

Figure 3-9. Rank histograms of the calibrated ensembles found for wind speed (a, d, g), wind 
direction (b, e, h) and PBL height (c, f, i) for each of the ensemble size. The upper, middle and 
lower panels correspond to the ensemble with 10, 8, and 5 members, respectively.   
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3.3.2.2 Multiple Variable Calibration 

Table 3-4 shows the sub-ensembles selected by SA. Each of the sub-ensembles have two 

simulations in common (i.e., 17 and 33), implying that these models are crucial to build an ensemble 

that best represents the transport errors for the three variables. Figure 3-10 shows the rank 

histograms of the sub-ensembles shown in Table 3-4. These rank histograms show that we were 

able to flatten the histogram relative to the 45-member ensemble for each of the three 

meteorological variables. Similar to the individual variable calibration, the rank histogram for wind 

speed (Figure 3-10a, d) and wind direction (Figure 3-10b, e) still show a U-shape which is 

minimized for the smallest (i.e., 5-member) sub-ensemble (Figure 3-10g-h). The rank histograms 

are flatter for the PBLH (Figure 3-10c, f, i) and the score of each histogram is closer to one 

compared to wind speed and wind direction (Table 3-4). The rank histogram scores for all variables 

are greater than those for one-variable optimization (see Table 3-4), but are lower than the scores 

for the 45-member ensemble. In addition, all these calibrated sub-ensembles have biases smaller in 

magnitude than the 45-member ensemble. Both wind speed and PBLH retain an overall positive 

bias, and wind direction a negative bias. The standard deviations of these three calibrated ensembles 

are larger than those of the large ensemble, consistent with the effort to increase the ensemble 

spread. 
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Figure 3-10. Rank histograms of wind speed (a, d, g), wind direction (b, e, h) and PBL height (c, f, 
i) using the calibrated ensembles found with simulated annealing. The upper, middle and lower 
panels correspond to the ensemble with 10, 8, and 5 members, respectively.    

 

Table 3-4. Ensemble members, Rank histogram scores (δ), bias, and standard deviation (σ) for wind 
speed, wind direction and PBLH for the calibrated sub-ensembles generated with SA. 

N Sub-ensemble 
Wind Speed Wind Direction PBL Height 

δ Bias 
m/s 

σ 
m/s δ Bias 

Deg. 
σ 

Deg. δ Bias 
m 

σ 
m 

10 [14 17 23 26 28 33 34 35 37 45] 5.5 0.6 3.6 4.6 -0.6 58 1.5 79.7 817.4 
8 [5 6 14 17 26 33 34 37] 5.6 0.6 3.6 3.4 -0.7 58.5 1.6 71.8 823.4 
5 [16 17 23 33 35] 5 0.5 3.6 3.4 -0.7 59 0.6 76.2 810.7 

 
 

Table 35 shows the different simulations chosen by the GA to generate the different 

calibrated sub-ensembles of 10, 8 and 5-members. The different calibrated ensembles accepted by 
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the GA have two simulations in common (i.e., 17 and 33) and these two simulations are repeated 

in the SA calibrated ensembles. Figure 3-11 shows the rank histogram of the different sub-

ensembles calibrated using the GA. Similar to SA, GA is capable of reducing the U-shape of the 

rank histogram. The GA also has difficulty generating a flat rank histogram for wind speed and 

wind direction, however it was capable of finding a sub-ensemble for both variables with a smaller 

rank histogram score compared to the large ensemble. Similar to the SA technique, the sub-

ensembles generated for the PBLH have a flatter rank histogram and a smaller score compare to 

wind speed and wind direction. Compared to the SA the GA produces rank histogram with a higher 

score for the PBLH. Nevertheless, the GA was able to find calibrated sub-ensembles that fulfill the 

criteria of Section 3.2.3, a score smaller than six and an ensemble with a smaller bias than the large 

ensemble (see Table 3-2). 

Table 3-5. Ensemble members, Rank histogram scores (δ), bias, and standard deviation (σ) for wind 
speed, wind direction and PBL height for the calibrated sub-ensembles generated with GA. 

N Sub-ensemble 
Wind Speed Wind Direction PBL Height 

δ Bias 
m/s 

σ 
m/s δ Bias 

Deg. 
σ 

Deg. δ Bias 
m 

σ 
m 

10 [5 14 17 26 31 33 34 35 37 45] 5.6 0.6 3.6 4.1 -0.8 57.9 2.1 83.2 823.7 
8 [5 14 15 17 33 34 37 38] 5.7 0.5 3.5 3.7 -0.4 58.1 2.5 99.3 828.3 
5 [16 17 23 33 35] 5 0.5 3.6 3.4 -0.7 59 0.6 76.2 810.7 
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Figure 3-11. Rank histograms of wind speed (a, d, g), wind direction (b, e, h) and PBL height (c, f, 
i) using the calibrated ensembles found with genetic algorithm.  The upper, middle and lower panels 
correspond to the ensemble with 10, 8, and 5 members, respectively.    

 

Using SA and GA techniques and the selection criteria detailed in Section 3.2.6, we defined 

an optimal 5-member sub-ensemble (the optimal solution using both techniques) and nearly 

identical combinations of members for 10-and 8-member sub-ensembles, with only two model 

configurations not being shared by both algorithms. Both SA and GA techniques selected 

repeatedly two model configurations (i.e. 17 and 33) across the final sub-ensembles. However, 

statistical metrics (e.g. RMSE, ME) for these configurations are similar to other model 

configurations. When comparing the sub-ensembles from the multiple-variable calibration to the 
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single-variable calibrations, we found that both test generate sub-ensembles of 10- and 8-mebers 

that include simulation 14. This simulation shows larger errors in wind speed and wind direction 

compared to other configurations.  

3.3.2.3 Evaluation of the Multiple Variable Calibrated Ensemble 

Both optimization techniques were able to generate sub-ensembles that reduce the U-shape 

of the rank histograms while significantly reducing the number of members in the ensemble. The 

rank histograms tend to get flatter as we reduce the number of members, which indicates that the 

ensemble is more reliable and has a greater spread. However, as we mentioned in Section 3.2.3.1 a 

flat rank histogram does not always imply that the ensemble is reliable (Hamill, 2001). Therefore, 

we evaluate the spread-skill of the calibrated ensembles (Figure 3-12) as we did for the large 

ensemble (Figure 3-8). Figure 3-12 shows the spread-skill relationship of wind speed (Figure 3-

12a), wind direction (Figure 3-12b) and PBLH (Figure 3-12c) for the 5-member ensemble 

generated by both SA and GA optimization techniques. This spread-skill relationship shows that 

the spread of the sub-ensemble generated by the optimization techniques is too small when the 

model errors are small, but too large when the model errors are large (i.e., linear coefficient is less 

than 1). The lack of correlation between ensemble spread and skill means that, at the daily time 

scale, ensembles do not represent correctly the transport errors. This result is a common deficiency 

in model ensembles which are primarily designed to represent the statistics of the model errors 

rather than the actual spatial and temporal variations of the errors at high frequency. The correlation 

for the wind direction increased while wind speed and PBLH remain similar. Therefore, we 

conclude that the calibrated sub-ensembles are equivalent or even better than the full ensemble to 

represent the daily model errors. This behavior is also characteristic for the 10- and 8-member sub-

ensembles generated with SA and GA techniques. 
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Figure 3-12. Spread-skill for (a) wind speed, (b) wind direction and (c) PBL height using the 14 
rawinsonde sites available over the region using the 5-member calibrated ensemble. Each point 
represents the spread-skill of the different sites at different times.  A one-to-one line is plotted in 
black and line of best fit is plotted in red. Correlation (r) and slope (b) of the line of best fit of the 
spread-skill relationship.   

 

Figure 3-13 shows the time series of the different calibrated ensembles generated by the 

SA algorithm at TOP site. In general there are no major differences among 5- (Figure 3-13a,d,g), 

8- (Figure 3-13,e,h) and 10-member (Figure 3-13c,f,i) ensembles. Some of the new sub-ensembles 

shows how the calibration can increase the spread of the ensemble to the extent of encompassing 

the observations (e.g., DOY 179 Figure 3-13 b-c) compared to the full ensemble (Figure 3-6b). 

Occasionally, the ensemble spread was reduced after calibration for a few specific points in space 
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and time. The reduced spread may be an improvement if model errors were actually smaller than 

the initial 45-member ensemble spread or a degradation of the spread if model errors of the initial 

ensemble were similar or larger, possibly due to the fewer ensemble members. Compared to the 

large ensemble, PBLH in the calibrated ensembles has a larger spread compared to the rest of the 

variables. Overall, ensemble spread in the calibrated ensembles is as large as the large ensemble 

for the three variables but using a smaller size ensemble.  

 

Figure 3-13. Time series of simulated wind speed (a-c), wind direction (d-f) and PBL height (g-i) 
using the 5-, 8- and 10-member calibrated ensembles at the TOP rawinsonde site. The green shaded 
area represents the spread (i.e., Root Mean Square Deviation) of the ensemble, the black line is the 
mean of the ensemble and the red dots are the observations at 0000UTC.  
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As explained in Section 3.3.2.2, both selection algorithms find similar calibrated sub-

ensembles for 8- and 10-member ensembles, and identical configurations for 5-member sub-

ensembles. The LSM, PBL, CP, and MP scheme, and reanalysis choice varies across all of the sub-

ensemble members; no single parameterization is retained for all members in any of these 

categories. The selection of configurations is purely relative to the other configurations in the 

selected ensemble which limits the interpretation of any given scheme. We describe hereafter the 

statistics of the model configurations in the selection process. We find, however, that the calibrated 

ensembles rely upon certain physics parameterizations more than others. Figure 3-14 shows that 

most of the simulations in the calibrated ensemble use RUC and Thermal Diffusion (T-D) LSMs 

in preference to the Noah LSM. In addition, more simulations use MYJ PBL scheme than the other 

PBL schemes, and Kain-Fritsch as well as no Cumulus Parameterization more often than the Grell-

3D CP. The physics parameterizations shown with a higher percentage in Figure 3-14 seem to 

contribute more to the spread of the ensemble than the other parameterizations.  
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Figure 3-14. Frequency of the physics schemes used for each of the calibrated ensemble of 10 
members (a-b), 8-members (c-d) and 5-members (e).  

 

We next explore the characteristics of the individual ensemble members that are retained 

in an effort to understand what member characteristics are important to increase the spread of the 

ensemble. Figure 3-15 shows the mean and standard deviation of the residuals for each simulation 

included in the 5-member ensemble of SA and GA. Ensembles appear to need at least one member 

with a larger standard deviation to improve the spread for wind speed and wind directions (see 

member 23 from Figure 3-15a-b).  Additionally, a member that has a large PBLH bias (see member 

16 from Figure 3-15c) appears to be needed to generate a sub-ensemble that follows the criteria 

indicated in each of the optimization algorithms. It may be that the lack of an ensemble member 

with a persistently negative wind speed bias is a key factor in preventing us from finding a sub-

ensemble with a flat rank histogram for wind speed, in contrast to PBLH. The sub-ensemble could 
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potentially be substantially improved by adding such a member. This behavior is repeated across 

the different calibrated ensemble sizes and with each of the techniques (not shown).  

 

Figure 3-15. Bias of individual members for wind speed (a), wind direction (b), PBL height (c) 
using the SA and GA calibrated sub-ensemble of five members. 

 

3.3.3 Propagation of Transport Errors into CO2 Concentrations 

The calibrated ensembles found in this study were chosen based on the meteorological 

variables and not on the CO2 concentrations to avoid the propagation of CO2 flux biases into the 

solution. We can now propagate these errors, represented by the ensemble spread, into the CO2 

concentration space. This straightforward calculation is possible because every model simulation 

included CO2 concentration fields uses identical CO2 fluxes. We present here the transport errors 

in both time and space as the spread in CO2 concentrations comparing the initial 45-member un-

calibrated ensemble to the calibrated sub-ensembles.  

3.3.3.1 CO2 Error Variances 

Figure 3-16 shows the spread of daily daytime average CO2 concentrations across the 

different sub-ensemble sizes at Mead (Figure 3-16a,d,g,j), West Branch (Figure 3-16b,e,h,k) and 
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WLEF (Figure 3-16c,f,i,l). The spread of the DDA CO2 concentrations of the large ensemble 

(Figure 3-16a-c) does not appear to differ in a systematic fashion from the spread of the calibrated 

ensembles of various sizes (Figure 3-16 d-l). While the calibration can produce both an increase or 

a decrease of the ensemble spread at different locations and times, none of the ensembles 

consistently encompasses the observations. The remaining difference between the models and the 

observations for those days may be caused by flux errors, another component impacting the 

modeled CO2 concentrations. However, the exact cause of the total difference cannot be determined 

from the CO2 data alone. We simply note here that the model-data mismatch is not entirely due to 

the transport errors as represented by our sub-ensembles. Additionally, we compute the sum of the 

variances across the domain to evaluate the impact of the calibration on the total variance at 

different time steps. Figure 16 shows that the calibrated ensembles created using SA (Figure 16a) 

and GA (Figure 16b) have a larger CO2 variance compare to the 45-member ensemble. The increase 

in total variance is maximum with 8-member ensembles which seems to be an optimal number of 

members for the calibration. We discuss further the number of members in the Discussion section.  
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Figure 3-16. Spread (i.e., RMSD) of the DDA CO2 concentrations of Mead (first column a,d,g,j), 
WBI (middle column b,e,h,k) and WLEF (last column c,f,i,l) using Simulated Annealing calibrated 
ensembles. Rows from top to bottom are 45, 10, 8 and 5 member ensembles. The blue area is the 
spread of the 45-member ensemble, green area is the spread is the spread of the calibrated (10-, 8- 
and 5-member) ensemble, the black line is the mean of the ensemble and the red dots are the 
observations. 
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Figure 3-17. Sum of variance of the SA (a) and GA (b). 

3.3.3.2 CO2 Error Correlations 

Figure 3-18 shows spatial correlation of the errors with respect to the Round Lake site on 

DOY 180. The structures in the errors are smoother using the large ensemble (Figure 3-18a) while 

smaller structures tend to appear as the number of members decreases (Figure 3-18 b,c,d). We 

suspect here that reduced-size ensembles are impacted by sampling noise which would require 

additional filtering (e.g., Ménétrier et al., 2015) or modeling (e.g., Lauvaux et al., 2009b). 

Concerning the magnitudes of the error correlation, the calibrated sub-ensembles exhibit a larger 

contrast in correlation values compared to the 45-member error correlations. Overall, the different 
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ensembles show similar flow-dependent spatial patterns which demonstrates that the calibration 

process, even if generating sampling noise, preserved the most important patterns in the error 

structures. Therefore, the calibrated ensemble is likely to provide a better representation of the 

variances and similar error structures for the construction of error covariance matrices in regional 

inversions. 

 

Figure 3-18. Spatial correlation of CO2 across the 45- (a), 10-(b), 8-(c) and 5-members (d) 
ensembles with respect to the location of the Round Lake tower for DOY 180.  This figure use 
calibrated ensembles of 10-, 8-, and 5-members found by SA technique. 
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3.4 DISCUSSION 

3.4.1 Impact of Calibration on Ensemble Statistics 

The calibration of the multi-physics/multi-analysis ensemble using SA and GA 

optimization techniques generated ensembles of 10-, 8- and 5- member with a better representation 

of the error statistics of the transport model than the initial 45-member ensemble. One of our goals 

here was to find a sub-ensemble that fulfill the criteria of Section 3.2.6, independent of the selection 

algorithm and for multiple meteorological variables. One can argue about the relative improvement 

after calibration remains relatively limited with potential remaining biases. For example, wind 

speed and wind direction only improve by a modest amount compared to the 45-member ensemble. 

Oppositely, PBLH shows a significant improvement in the calibrated ensembles. Overall, the 

variance increased relative to the 45-member ensemble but the improvement was limited by the 

spread in the initial ensemble. Stochastic perturbations (e.g. Berner et al., 2009) could increase the 

potential of the method if the initial ensemble offers a wider spread, which translates into additional 

combinations of model configurations better-suited to represent the model errors. Here, we limited 

the 45-member ensemble to mass-conserved, continuous flow (i.e., unpertubed) members that can 

be used in the regional inversion. Future work should address the problem of using an under-

dispersive ensemble before the calibration of the ensemble.  

3.4.2 Single-variable and Multiple-variable Ensembles  

 We first attempted to calibrate the ensemble for each meteorological variable (i.e., wind 

speed, wind direction and PBLH). Table 3-3 shows that the different sub-ensembles were able to 

follow the criteria presented on Section 3.2.6, but the calibration of the single-variable ensembles 

did not allow us to find a unique sub-ensemble that can be used to represent the errors of the three 
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variables. Therefore, the joint optimization of the three variables was required to identify an 

ensemble that best represents model errors across the three variables. By using the sum of the 

squared scores of the three variables (i.e., double-penalty with squared values), the selection 

algorithm found common solutions with higher scores than single-variable ensembles (cf. Table 3-

4 and Table 3-5) but the results improved when considering the three variables together. We 

assumed that each variable was equally important to the problem, which could also be a limitation 

here. Future work on the relative importance of meteorological variables on CO2 concentration 

errors would help weigh the scores in the selection algorithms.  

3.4.3 Resolution and Reliability 

The calibrated ensembles show the rank histogram score closer to one (Table 3-4 and Table 

3-5), that is, flatter rank histograms (Figure 3-10 and Figure 3-11) compared to the 45-member 

ensemble (Table 3-2 and Figure 3-7). This implies that the sub-ensembles have a greater variance 

than the large ensemble (i.e., improved reliability). However, the spread-skill relationship (i.e., 

resolution) does not show any major improvement compared to the 45-member ensemble, implying 

that the spread of the ensemble does not represent the day-to-day transport errors. These results 

indicate that regardless of the application of a calibration technique the sub-ensembles are still 

incapable of representing the higher frequency of the transport errors (i.e., spatial and temporal 

patterns across the domain and summer time). The disagreement between the rank histogram and 

the spread-skill relationship suggests that using the score of the rank histogram alone may not be 

sufficient to measure the reliability of the ensemble (Hamill, 2001). Down-selection of ensembles 

has been implemented in other studies (e.g., Garaud and Mallet, 2011; Lee et al., 2016) but 

resolution is usually excluded from the calibration process. To represent daily model errors, 

additional metrics should be introduced and the initial ensemble should offer a sufficient spread, 
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possibly with additional physic parameterizations, additional random perturbations, or modifying 

the error distribution of the ensemble (Roulston and Smith, 2003). 

3.4.4 Error Correlations 

Rank histograms, as explained in Section 3.2.3, evaluate the ensemble by ranking 

observations in a relative sense, and therefore can be difficult to interpret. Although the calibrated 

ensembles show flatter rank histograms, the ensemble may be representing correctly the variances 

over the region but not the covariances (Hamill, 2001). In this study, the calibrated ensembles show 

an increase in the variance of CO2 concentrations, but spatial structures of the errors (i.e., 

correlations) are impacted by sampling noise. Previous studies have suggested objective methods 

to filter the noise in small-size ensembles (i.e., Ménétrier et al., 2015) or modeling the error 

structures using the diffusion equation (e.g., Lauvaux et al., 2009b). Future work should address 

the impact of the calibration on the error structures as this information is critical in the observation 

error covariance to assess the inverse fluxes. Therefore, any misrepresentation of the errors could 

be directly detrimental to the improvement in the CO2 variances.  

3.5 CONCLUSION 

We applied a calibration (or down-selection) process to a multi-physics/multi-analysis 

ensemble of 45 members. In this calibration process, two optimization techniques were used to 

extract a sub-set of members from the initial ensemble to optimally represent the transport model 

errors in CO2 inversion modeling. We used purely meteorological criteria to calibrate the ensemble 

and avoid contaminating the calibration with CO2 flux errors. The two optimization techniques 

were SA and GA. Both techniques control the acceptance of the calibrated ensemble using the 
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flatness of the rank histogram. We generated different calibrated ensembles for three 

meteorological variables; wind speed, wind direction and PBLH. With these techniques, we 

identified sub-ensembles by calibrating the three variables jointly. Both techniques show that 

calibrated small-size ensembles can reduce the score of the rank histogram flatness and therefore 

improve the representation of the model error variances with few members (between 5 and 10 

members). 

The calibration techniques improved the error representation of the ensembles (i.e., 

distribution of the model errors), except for the daily atmospheric transport errors as shown by the 

spread-skill relationship. We assessed how the calibrated ensemble errors propagate into the CO2 

concentrations simulated with identical CO2 fluxes (i.e., independent of the atmospheric 

conditions). The spread from the new calibrated ensembles represented about 55% of the model-

data CO2 mismatches for summer 2008. These results suggest that additional errors in CO2 fluxes 

and/or large-scale boundary conditions represent a large fraction of the differences between 

modeled and observed CO2. Error correlations of the calibrated ensembles were compared to the 

large ensemble to identify any impact of the calibration. Compared to the initial error structures, 

the calibrated ensembles revealed sampling noise across the region which indicates that additional 

filtering or modeling of the errors would be required in order to construct the error covariance 

matrix for regional CO2 inversion. 

 

 

 



 
 

 

Chapter 4  
 

CONCLUSION 

In the present dissertation, I evaluated and quantified the atmospheric transport errors 

across a highly instrumented area, the Mid-Continental Intensive region of the Midwest U.S., for 

the period June 18 to July 21 of 2008. I isolated transport errors and propagated them into CO2 

mixing ratios using a multi-physics and multi-analysis ensemble of 45-members created with the 

Weather Research and Forecasting (WRF) mesoscale model. The transport differences of this 

ensemble come exclusively from the different physical parameterization (e.g., LSMs, PBL 

schemes, cumulus parameterizations and microphysics parameterizations) and different 

meteorological data sets. Each model configuration was coupled to the same CO2 surface fluxes 

from CarbonTracker, which allowed me to generate simulated CO2 mixing ratios. To evaluate the 

transport, I used a model-data comparison of three meteorological variables: wind speed, wind 

direction and PBL height. I assumed that these variables are the most important meteorological 

variables to understand the impact of atmospheric transport errors on in situ atmospheric CO2 

mixing ratios. 

The first goal of this research was to identify which physics parameterizations beside the 

PBL schemes contributed the most to the errors in CO2 mixing ratios. In Chapter 2, I found that all 

physics parameterizations except for microphysics have an impact on both CO2 mixing ratios and 

meteorological variables. This analysis also showed that PBL height and CO2 mixing ratios have 

similar sensitivities to the different physics schemes. The relationship between the two variables is 

reinforced by the high correlations found between PBL height errors and CO2 mixing ratio errors. 

I note here that this result is supported by the physical relation between in situ mixing ratios and 
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mixing depths (i.e., volume of air and number of CO2 molecules in the PBL). This result was 

expected based on previous studies, but this study was the first attempt to estimate more rigorously 

the relationship between the two, and compared it to other meteorological variables such as wind 

speed and wind direction.  

Among the multiple configurations evaluated in this research, I intended to identify if any 

of them was best suited to represent the atmospheric transport over the region. Using a set of 

statistical metrics, I found that the performances of the model configurations vary widely across 

the radiosonde sites and for the different meteorological variables. However, some specific 

configurations were affected by systematic errors in PBL height across the different radiosonde 

sites. I performed a domain-average analysis to obtain more information from the different 

statistics. I found that the majority of the simulations showed a systematic positive (overestimation) 

bias for wind speed. This result seems fairly robust to the configurations and could be caused by a 

more general problem in the mesoscale model. I also noted that for the PBL height, systematic 

patterns were controlled by the choice of certain schemes. For example, the YSU PBL scheme 

generated high biases in PBL height while MYJ tends to under-estimate the PBL height. I found 

that the absence of cumulus parameterization tends to increase the PBL height, creating large 

positive biases in our analysis.  

I evaluated the simulated CO2 mixing ratios using the different model configurations and 

compared them to the observations. I am aware that model-data mismatch is due to both flux errors 

and transport errors, and avoided any direct comparison to absolute mixing ratios. However, daily 

variability and temporal correlations can be used to estimate the modeling performances of CO2 

mixing ratios. As a first result, I found that WRF can underestimate or overestimate the daily 

variability in CO2 concentrations for the majority of sites except three of them affected by a 

systematic overestimation. In general, the model correlation with the observation range between 

0.8 and 0.1 and only Round Lake showed all the models with correlations down to 0.5. In general, 
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I did not find any patterns in any model for the different statistics presented in Chapter 2. 

Additionally, I evaluated if any spatial correlation existed among the model meteorological 

variables errors and the atmospheric CO2 mixing ratio errors. Correlations between errors were not 

related to the distance, that is, transport errors estimated from a rawinsonde near one of the CO2 

towers had similar correlations with CO2 errors at the tower than any other locations across the 

domain. I conclude that the local component of the transport errors is not the primary driver of CO2 

errors, while flux errors and regional transport errors are likely to contribute significantly to the 

total CO2 mixing ratio errors. Although I had a general idea of how the different members impacted 

the atmospheric CO2 mixing ratios, the ensemble constituted by the different model configurations 

needed to be calibrated to represent the atmospheric transport errors.  

For the second goal of this work, I addressed two problems related to transport errors: i) I 

decreased the number of simulations to reduce significantly the computational cost of our 

ensemble-based error assessment, and ii) I calibrated the ensemble to represent the actual model-

data mismatches in WRF. Prior to the calibration, I evaluated if the 45-member ensemble (or a 

calibrated sub-ensemble extracted from the 45 simulations) would be sufficient to represent the 

atmospheric transport errors over the region. This verification was crucial because the calibration 

process can only improve the initial ensemble to a certain extent. I used wind speed, wind direction 

and PBL height to evaluate the performance of the ensemble and how it represents the atmospheric 

transport errors. I found that the ensemble was under-dispersive for the three meteorological 

variables. To evaluate further the initial ensemble, I considered the imbalance between low and 

high biases (i.e., the first and last bins of the rank histograms) and the distribution of errors (i.e., 

the bins in-between). The ratio was about 5-6 which indicates that the low and high biases could 

be significantly reduced (if not removed) using a calibration algorithm. Similarly, the spread-skill 

relationship did not show a 1:1 ratio between the ensemble spread and ensemble mean error. By 

reducing the number of model configurations (and therefore increase the variance), I was confident 
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that this ensemble would improve significantly with a calibration that can optimize the variance of 

the ensemble. 

I used two optimization techniques to calibrate the ensemble: Simulated Annealing (SA) 

and Genetic Algorithm (GA). The calibration technique has two purposes: to improve the variance 

of the ensemble, and down-select the number of members to generate an ensemble that can 

represent errors similar to a large ensemble.  Using the flatness of the rank histogram as a criterion 

caused some limitations because the selection became highly dependent on the choice of 

meteorological variables. Nevertheless, both techniques were able to generate calibrated sub-

ensembles of 10-, 8- and 5-members that improved both the shape and score of the rank histogram 

for the three meteorological variables. The spread-skill relationship of these ensembles was not 

improved significantly for any of the variables, which indicated that despite the better statistics of 

the ensembles (i.e., better distributions), transport errors were not represented correctly on a daily 

basis. The calibration process improved the spread of the ensemble and the final ensembles were 

better able to reproduce transport errors with a smaller number of members.  

After performing the calibration of the ensemble, I evaluated the impact of transport errors, 

now represented by our calibrated sub-ensembles, on CO2 mixing ratios. I found that the spread of 

the calibrated ensembles represented about 50% of the total CO2 model-data differences. This result 

confirmed that transport errors represent a significant fraction of the atmospheric signals, but also 

that the remaining mismatch associated with flux errors and background conditions is large enough 

to be optimized in future regional CO2 inversions. I note here that atmospheric inversions use the 

observation error covariance matrix to represent the transport errors within the assimilation system. 

However, the calibration of the ensemble is mostly focusing on the ensemble variance. Thus, its 

impact on the covariance needs to be further studied. I estimated the final CO2 error variances and 

covariances over the region, and showed that variances increased significantly with the calibration 

to better represent transport errors, while the error correlations indirectly representing the error 
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covariances, were amplified in magnitude, which is likely due to sampling noise in the calibrated 

reduced-size ensembles. 

The research performed in this dissertation afforded me an insight into the magnitudes of 

the atmospheric transport errors that can be encountered over this region in summertime. 

Additionally, I showed how these transport errors can contribute to the atmospheric CO2 mixing 

ratio errors and more specifically to the model-data mismatches. I was also able to use a multi-

physics and multi-analysis ensemble to represent the atmospheric transport errors by calibrating a 

small-size ensemble. Nevertheless, some challenges and limitations still exist in the study. The 

ensemble used in this study shows all the members with a positive bias regardless of the model 

configuration. For future atmospheric inversions, these systematic biases need to be corrected or 

they will be propagated into the inverse fluxes. This ensemble of 45-members is still slightly under-

dispersive regardless of the different physics parameterization used, therefore one would need to 

think about other methods to improve the spread of the ensemble. The calibration method used in 

this study is also highly dependent of the meteorological variables. Therefore, to improve the 

calibration system, each of the variables should be weighted to select a calibrated ensemble that 

represent the transport errors for the most important variables.  

I propose here some directions for future work based on the different conclusions of this 

dissertation. 

(a)Initial ensemble: 

In this research, the ensemble was tested for a limited period of time, over a small region 

and with a limited amount of members. Therefore, new ensembles should be run over a longer 

period of time and a larger region. This will enable one to understand the errors during different 

seasons over the year and how these different models behave over other regions besides the U.S. 

Midwest. Additionally, the ensemble should expand the number of members by adding other 

parameterization schemes, including other models, or by adding stochastic perturbations. Ideally, 
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the addition of these components to the ensemble can potentially improve the spread of the initial 

ensemble and help obtain a better representation of the spread and the skills of the calibrated 

ensemble. Although the initial ensemble should be increased to generate more spread, a calibration 

should be applied to better represent the transport errors, and possibly with a smaller number of 

members.  

(b) Calibration criteria:  

The calibration process was highly constrained by the meteorological variables, thus 

weighting the different meteorological variables will help the system to optimize the ensemble 

based on the exact level of impact the meteorological variable has on CO2 mixing ratios. Here, I 

simply used an equally weighted approach, assuming that wind speed, wind direction, and PBL 

height all contribute in a similar way to the transport model errors. The criterion used for the 

acceptance of the ensemble depends in the flatness of the rank histogram. I show that this does not 

necessarily represent a better skill in general. Other statistics that can measure the reliability of the 

ensemble such as Reliability Diagram or Discrete Rank Probability Score should be used in the 

future to permit better evaluation of the ensemble performance. To use these new statistics a 

threshold that can affect the CO2 errors should be defined first to make these metrics useful. I did 

not use these statistics because currently these thresholds are unknown for this problem. 

Additionally, future calibration should include a criterion that can control the covariance of the 

ensemble; the current calibration only evaluates the variance. Therefore, the changes applied to the 

covariances remain unknown because this technique change only the variance of the ensemble.  

(c) Covariances:  

To measure the impact of these uncertainties on the inverse CO2 fluxes, an error covariance 

matrix needs to be generated but the limited amount of members means that the covariance matrix 

becomes noisier. Therefore, a filtering technique should be applied to remove the noise from this 

matrix and then apply it in an atmospheric inversion. Future work should address this important 
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limitation in future inversions to fully utilize the information provided by the calibrated ensembles. 

Finally, it would be ideal to use the different model simulations from the calibrated ensemble and 

the filtered covariance matrix to perform multiple atmospheric inversions and quantify the impact 

of the atmospheric transport model errors on CO2 fluxes. This approach will not only include a 

robust description of random transport errors but also propagate biases from individual ensemble 

members, allowing for the first time to characterize the impact of transport biases on the inverse 

CO2 fluxes. 
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