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Abstract

A new method to reweight anthropometric data from a reference population to match that of a
target population is proposed. When designing products and environments, detailed data on body
size and shape are seldom available for the specific user population. Instead, the available data
are outdated or represent a population that is demographically different on factors that are known
to affect anthropometry. One way to mitigate this issue is to reweight available data such that
they provide an accurate estimate of the target population of interest. This is done by assigning a
statistical weight to each individual in the reference data, increasing or decreasing their influence
on statistical models of the whole. This paper presents a new approach to reweighting these
data. Instead of stratified sampling (the traditional approach), the proposed method uses a
clustering algorithm to identify relationships between the target and reference populations using
their height, mass, and body mass index. The newly weighted data were shown to provide more
accurate estimates than traditional approaches. Data weighted with the new approach was used
in different multivariate design test cases to demonstrate its use in real-world design applications.
The improved accuracy that accompanies this method provides designers with an alternative to
data synthesis techniques as they seek appropriate data to guide their design practice.
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Chapter 1
Intoduction

Anthropometric data quantify the body size and shape of individuals. They are used extensively

for the ergonomic design of artifacts, tasks, and environments since body dimensions play a criti-

cal role in their design. Factors such as product dimensions, shape, and other physical parameters

influence the fit, convenience, comfort, and performance of the designed item. Guidance on how

to conduct these design and assessment activities is provided through ergonomics curricula [2]

and textbooks [3, 4], discipline-specific guides (e.g., [5]) and standards [6, 7, 8]. Broadly speak-

ing, a person is classified as accommodated if the design can be used safely and comfortably in

the intended manner. This means that every body measure relevant to the interaction of the

human body with the product must be accommodated by the corresponding product dimension.

For example in the typical case of a chair, height of the chair must be less than or equal to

the popliteal height of the user, width of the chair must be greater than or equal to sitting hip

breadth of the user and so on. A person is considered accommodated in this chair only if all these

relevant body measures are accommodated by the corresponding dimensions of the chair at the

same time. The conventional method of identifying the spatial requirements of a user population

requires the identification of values that represent the extremes (e.g., the 5th or 95th percentiles)

of variability that might be observed in a measure of interest [9]. Depending on the individual

design variable and overall accommodation targets, the required value might be a minimum,

maximum, or range. For example, doorway height might have an established maximum and the

vertical adjustability of a task chair would have minimum and maximum values. These might be

determined through available anthropometric data and the desired levels of accommodation.

Of course this approach relies on accurate estimates of the body size and shape of the target

user population. Since data for the precise user population are seldom available, designers must

assume that available data are “close enough”. However, several determining factors including

the demographic factors such as nationality, race, age distribution, and gender ratio cause the

anthropometric measures to vary between different populations. Different occupational groups

are also observed to have distinctive anthropometric characteristics which differ greatly from
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the general population [10]. Additionally, many of the databases of anthropometry are decades

old. The 1988 U.S. Army anthropometric survey (ANSUR), for example, was collected in the

mid 1980s [11]. Nevertheless, it is widely used in design due to its easy availability and quality

and volume of detailed measurements. However, the race, age, and fitness of this sample are

very different from those of the general US population. Additionally, changes are observed

in population characteristics in the time since 1988 due to secular and demographics trends

[12]. These changes have also occurred within military populations. The increase in several

anthropometric measurements of active U.S. Army from 1988 to 2007 was demonstrated through

a pilot study [13].

Therefore, many products are designed for the wrong population due to unavailability of

detailed anthropometric data for their target populations. This causes the accommodation of

the designed product to be considerably less than what was estimated, thereby only allowing

a lot less number of users to use the product conveniently. Such disaccommodation can lead

to a variety of health, safety, performance, and functionality issues are described in section 2.1.

This thesis presents a new methodology to reweight detailed anthropometric data using stature,

mass and BMI to match the target population. A cluster analysis is performed by measuring the

closeness of the predictor values based on their euclidean distance. The data points are clustered

together based on their characteristic(s) so that the same statistical weight can be assigned to

these data points. Further binning can be performed using factors such as age, gender, and race.

This allows us to obtain detailed anthropometric data for the target population when only two of

the three measures, stature, mass, and BMI, are known for the target population. It is also easier

to survey two such measures compared to the time, effort and cost associated with a detailed

anthropometric survey.

1.1 Research Objective

The motivation for this research is the mismatch between the designed products and the popula-

tions that they were intended for, resulting in far less people being able to use the products than

intended. This occurs due to differences between the design population and the target population

of a design. Most products are designed using ANSUR data (refer section 2.2.1) collected from

US army population in the 1980s, due to its easy and free availability. So for example, when a

car is designed to accommodate 90% of the U.S. civilian population using this data, in reality

a far lower fraction of the U.S. civilian population would be able to use the car comfortably

and safely, due to the wider variety in the body shape and size of civilians compared to army

personnel. Unavailability of detailed anthropometric data for the target population of a product

to be designed. This forces the designers to use the available data instead. The resulting designs

would therefore accommodate people with different maximum or minimum anthropometric mea-

surements. This results in either reduced accommodation which would affect the market for the

product, or increased accommodation, in which the cost of the product would have unnecessarily

been higher.
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The objective of this research is to develop a new approach to reweight data so to represent a

target population, and compare the accuracy of this method with those of the existing ones.

The next chapter looks at the existing literature in the field. Three different methods used

previously to reweight data are explained. In chapter 3, these methods are then used to reweight

anthropometric data to match a target population, and their results are discussed. Then the new

method is introduced and explained. It is followed by experimenting with the new method to

identify the effects of different parameters on the accuracy of the reweighted data. Several ways

to validate the accuracy of reweighted data by comparing with the original representative data

are also demonstrated in this process. In chapter 4, this new method to reweight data is used to

reweight a particular dataset to represent different populations. The results of these reweighting

trials are discussed along with the reasons for errors. Finally in chapter 5, three design test

cases are used to demonstrate the use of the new methods in real life design situations. The

accommodation level of these designs were found using the actual data and the reweighted data,

and compared.



Chapter 2
Literature Review

This chapter introduces the relevance of proper sizing of products and the health, safety, perfor-

mance and functionality issues associated with their improper sizing. Different methods to obtain

anthropometric data for the target population are then described. The different commonly used

anthropometric databases and their drawbacks in design purposes are further discussed. Finally

the existing reweighting methods to obtain anthropometric data is used to reweight data to

observe the level of errors, thereby demonstrating the requirement for a new method.

2.1 Issues arising from improper sizing of products and

workspaces

Improper sizing and seat positioning in cars have shown to increase the response time and

therefore the braking distance while driving[14]. The distance between the headform and the

head restraint in car seats affects the occurrence of whiplash-associated disorders caused by rear

impacts[15]. These cause major safety concerns with improperly sized seating and vehicle pack-

aging. Improper sizing of seats and workspace could cause users to sit in wrong postures for

extended periods of time causing several health issues. This is particularly an issue in case of

long and frequent driving scenarios such as in case of truck drivers. Alsong with its safey and

health issues, the performance of the user many also be lowered.

Workspace configuration design has been suggested to be important in head stabilization of

ship operators[16], where the head movement of the operator has to be minimized in order to

reduce motion sickness[17] and overall seasickness among officers of the U.S. Coast Guard. The

objective of this study was to improve the seakeeping by the U.S. Coast Guard. Similar restriction

of head movement has also been found to reduce airsickness among aircraft pilots[18, 19]. In case

of vehicles and particularly aircraft, proper vision of the surroundings and access to all the

controls are important, which can be ensured by designing with the relevant anthropometric

data. It was found in a study that designing airplanes using preestablished critical limits for
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different dimensions caused 52.6% of the target naval aviators to be disaccommodated by the

airplane cockpit design as opposed to the intended 10% disaccommodation[20]. This unintended

disaccommodation could be avoided if the design was virtually tested with the anthropometric

data of the target pilot population.

It is seen that the anthropometry of people of different occupational groups vary greatly[10].

Therefore relevant anthropometric databases must be chosen to design workspace and personal

protective equipments for use in a manufacturing environment in order to ensure the safety

and productivity of the workers. Anthropometry may be used in workspace design in order to

ensure sufficient clearances from the body to surrounding hazards such as the equipment itself,

to ensure that there is no hindrance to the operator’s movements by any parts of the machine

in the workspace, and to calculate the sufficient distances from and between the controls. Non-

ergonomic design of tools have been found to cause health issues. A study on workers in the carpet

weaving industry concluded that constant and repetitive tying of knots with non-ergonomic hand

tools could result in arthritis, neuralgia, and permanent deformation of fingers [21]. Such issues

can be countered up to a certain extent by proper sizing of the designs which requires appropriate

anthropometric data. But in cases where detailed anthropometric data are not available for the

target population, the resulting designs would still pose the same issues and risks. Appropriate

anthropometric data and digital human models also help study occupational biomechanics which

in turn assist workspace design, thereby reducing musculoskeletal injuries and disabilities in

industries[22, 3, 23].

2.2 Anthropometric data used

Several different anthropometric databases are available with varying levels of detail, aimed at

populations different in terms of nationality, occupation, etc. Four anthropometric databases are

used in this thesis for the different studies conducted. These anthropometric databases, their

advantages, and their shortcomings are discussed in the following sections.

2.2.1 ANSUR

One of the first detailed anthropometric database is the 1988 Anthropometric Survey of U.S.

Army Personnel, commonly known as ANSUR[11]. This survey was conducted from 1987 to

1988 among the Army personnel in the U.S. It was then downsampled from nearly 9000 men

and women to create a subset of 1774 men and 2208 women that matched the age, and racial

composition of the US army in active duty in June 1988. It contained 132 standard measurements,

60 derived dimensions which were calculated from the standard measurements, and 48 head and

face dimensions. This data is used in the design of product for civilians even in other countries

owing to its high level of detail, and free and easy access. But this would result in products

designed with the required dimensions only when the target population matches that of the U.S.

army population in 1988. Army personnel tend to have better fitness compared to most of the
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civilian populations. Apart from the generic differences between army and civilian populations,

the ANSUR data has been found to not represent the modern U.S. Army population accurately,

due to secular trends[24]. These secular trends include steady changes particularly in stature

and BMI over a period of several years.

2.2.2 NHANES

The National Health and Nutrition Examination Survey (NHANES) is a program of studies that

aimed at assessing the health and nutritional status of the U.S. population[25]. This involved

conducting a demographics survey of the people along with several other surveys relevant to

health and nutrition. The NHANES data is representative of the U.S. population and is updated

every two years. For this reason, trends in the U.S. population over the year can be studied

with these data. The data released every two years can also be combined for a larger sample

size while still being a representative sample. The major shortcoming of this data is that useful

anthropometric data is mostly limited to stature, mass, and BMI along with demographic infor-

mation such as gender, age, and race. Although detailed anthropometric data are not available,

NHANES is an ideal candidate to reweight other detailed anthropometric data to represent the

current civilian U.S. population.

2.2.3 CAESAR

Civilian American and European Surface Anthropometry Resource (CAESAR) surveyed the

civilian populations of three countries which represent the North Alantic Treaty Organization

(NATO)[26]. These countries included the U.S.A., the Netherlands and Italy[27, 28]. Due to

the inclusion of a site in Canada in the U.S.A. sample, it is referred to as the North American

CAESAR sample. It surveyed civilians aged 18-65 in these countries with 3-D measurement

technology. It was a collaborative effort of many industries and partners in different countries.

The CAESAR data contains detailed anthropometric data derived from the 3D scans. The body

scan data allows to make more detailed digital human models for design purposes. But a major

drawback of this data is that it is not representative of any population. It would be inappropriate

to use the CAESAR data as such in design as the products would then not be designed for any

particular population. Therefore it has to be weighted to represent the target population before

its use for most design purposes.

2.2.4 AIST

The AIST data contains detailed anthropometric data with 255 different body dimensions col-

lected in Japan from 1991 to 1992[29]. It consists of two age groups, the civilian Japanese youth

aged 18 to 29 years and the older Japanese civilians ages 60 years and older. The former contains

200 females and 200 males, while the latter contains 50 females and 50 females. This population

will herein be referred to as Japanese population in this thesis. This data is assumed to represent
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the population in Japan and therefore other detailed anthropometric data is reweighted using

the AIST data in this thesis. This is performed to demonstrate reweighting anthropometric data

to match the population of a different country.

2.3 Different methods to obtain anthropometric data for

target user population

So far, many procedures have been developed to obtain anthropometric data for the target

user population. These can broadly be classified into three methods. The first is to synthesize

detailed anthropometric data through estimation using the available basic anthropometric data

for the target user population. Such syntheses have been performed using a variety of techniques

with distinct pros and cons [30, 31, 32, 33, 34, 35]. The second method is to collect required

anthropometric data from the target population. This method is common when designing for

particular occupational groups [36, 37, 38]. Studies have collected anthropometric dimensions of

truck drivers across the U.S. [39, 40]. These data are used in truck cabin and workspace design.

In such data collections, sampling plans need to be used to capture the appropriate population

characteristics such as race/ethnicity, age, and gender. The third method is to modify the

available data to better represent the target user population.

The two most common approaches to modifying the available data to represent the target

population are resampling and weighting. Resampling alters the number of datapoints in the

data by removing or multiplying certain data to match the required overall characteristics of

the target population. This approach has been used in creating the ANSUR data where data

was downsampled to match the U.S. army in active duty in June 1988[11]. In weighting, each

individual in the sample is assigned a weight which represents the fraction of the target popu-

lation characterized by that individual. When summed, the weights equal the total number of

individuals in the population. One advantage to this approach is that it makes use of all of the

available data. This can improve the ability of the data to model the tails of the distribution.

Weighted survey data are used in several domains such as health surveys [25] and crash statistics

[41].

The National Health and Nutrition Examination Survey (NHANES) collects basic anthropo-

metric statistics of the U.S. population [25]. Rather than gathering data by randomly sampling

individuals, participants are carefully selected to ensure a good representation of the US popula-

tion. Individuals in the tails of the distribution are intentionally oversampled (Figure 2.1, which

improves the fidelity of the model in that region. This results in a dataset that does not directly

represent the population of interest. Instead, weights must be assigned to the data so that they

represents the US population.
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measure(s)

frequency
in participant
population

randomly
sampled

participants

measure(s)

oversampled
participants

Figure 2.1: Distribution of samples obtained when different sampling techniques. The actual
population distribution is shown by the curve.

2.4 Existing methods to reweight anthropometric data

Several efforts have been made in the past to assign weights to unweighted anthropometric data

in order to make it representative of the target user population. The first method discussed here

was used at the United States Air Force Research Laboratory where a binning approach was

used to assign weights to CAESAR data using NHANES III data to represent the adult U.S.

population [42]. This was performed to obtain detailed anthropometric data that represents the

U.S. population of that period. Reweighting CAESAR data also provides detailed body scans

that are representative of the U.S. population, which can then be used to test the accommodation

of new designs. This reweighting method will be herein referred to as Harrison method in this

thesis. The predictors, stature, mass, age, race, and gender were used to estimate the weights

for CAESAR. A total of 45 bins each for men and women were used by binning with 2 gender

groups, 3 age groups, 3 racial groups, and 5 groups based on stature and mass.

A similar attempt was made again at the United State Air Force Research Laboratory to create

anthropometric data for the U.S. Air Force using CAESAR data from North America, Italy, and

the Netherlands [43]. This method will be herein referred in this thesis as Hudson method. It

was used to reweight CAESAR data to match the pilots of Joint Strike Fighter program of the

U.S. Air Force. This provides 3D body scans which would then assist in the design and sizing

of clothing and protective equipment for the pilots in this program. The CAESAR data were

screened with mass regulations of Navy and Air Force, then screened with age limits and then

weighted with predictions of racial composition in 2010 using three ethnicity categories: European

American, African American and Asian American. Hispanic American ethnicity was excluded

from the categories considered for binning as it was found that the distinct body shape and size

variation which characterize the other three races was not evident in the Hispanic population[43].

Therefore it was decided that the Hispanic American population was not needed as a distinct

category, as the variation was included and described by the first three mentioned ethnicities.

Between 2006 and 2008, a pilot study called ANSUR II at the United States Army Natick

Soldier Research, Development and Engineering Center aimed to compare the 1988 ANSUR data

with anthropometric data on the active U.S. Army in 2007. This was performed to check the

effect of secular trends over the years in the U.S. Army population. Secular trends such as

increase in height and BMI over the decades result in the ANSUR data being not representative
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of the modern U.S. army population. A binning approach was used to weight the data collected

from ANSUR II to match the then demographics of U.S. army’s active, reserve and National

Guard components[13]. The bins were created on the basis of these components, age, race, and

sex, resulting in a total of 16 bins each for men and women in each of the said three components

of military duty. This method will herein be called Paquette method in this thesis.



Chapter 3
New method to reweight data

This chapter evaluates the results of reweighting anthropometric data using the existing meth-

ods. The new method is then described and the effect of different parameters on reweighting

are studied. The results of reweighting with the new method are then evaluated to check the

reliability of the reweighted data for design purposes. In order to compare the effectiveness of the

existing weighting techniques described in the previous chapter, the North American CAESAR

population is weighted using the already weighted NHANES data from 2011 to 2014. This is

performed to show the requirement for a new weighting method. The errors in various statistics

of the stature, mass and BMI in the reweighted CAESAR data compared to the actual NHANES

data would suggest the accuracy of the reweighting method. If the errors in these three measures

are large, it would signify that the percentile vales of other detailed anthropometric measures

would also have similar errors. This can be inferred in cases where the anthropometric measure

under consideration is proportional to stature, mass or BMI. Therefore, each of the three existing

techniques are used to reweight CAESAR data, and the corresponding errors are compared.

3.1 Results of weighting CAESAR using existing weighting

techniques

Table 3.1 gives the results of reweighting CAESAR data with each of the three methods de-

scribed earlier. Table 3.2 gives the differences in the values obtained for original and reweighted

CAESAR data from the NHANES 2011-14 data. The values compared were the 5th, 50th, and

95th percentiles, mean, and standard deviations in three basic body measures namely, stature,

mass, and BMI. The difference in stature among the different statistics was as high as 46 mm in

Hudson method, 17 mm in Catherine method and 14 mm in Paquette method. Harrison method

had a maximum error of 6.5 kg in mass and 1.9 in BMI among the 5 statistics considered. While

Paquette method had a maximum error of 12.3 kg in mass and 4.6 in BMI among these 5 statis-

tics. Hudson method was found to aggravate the errors in the unweighted CAESAR data upon



11

Table 3.1: Statistics of NHANES 2011-14 data, and North American CAESAR data reweighted
using different binning methods

reweighted reweighted reweighted
NHANES unweighted CAESAR CAESAR CAESAR

statistic measure 2011-14 CAESAR Harrison Hudson Paquette

5th height (mm) 1534 1550 1541 1505 1535
percentile weight (kg) 53.9 51.8 52.2 48.1 52.6

BMI 20.0 19.6 20.0 18.9 19.7

50th height (mm) 1689 1700 1693 1645 1696
percentile weight (kg) 79.6 73.5 77.8 66.4 74.4

BMI 27.6 25.2 26.3 24.2 25.4

95th height (mm) 1859 1876 1876 1813 1873
percentile weight (kg) 123.0 113.7 116.6 102.3 110.7

BMI 42.5 37.1 40.6 34.5 37.5

weighted height (mm) 1693 1704 1700 1653 1699
mean weight (kg) 83.0 76.8 80.3 69.0 77.1

BMI 28.9 26.3 27.7 25.1 26.6

standard height (mm) 100 102 105 95 103
deviation weight (kg) 22.0 19.4 20.4 17.3 18.9

BMI 7.1 5.6 6.3 4.9 5.6

reweighting. The error was maximum in the tails of the distribution for all of the methods, with

higher errors below 5th and above 95th percentiles. Therefore, none of these methods provided

a reliable way to reweight anthropometric data so as to make it suitable for use in design of

products. The reweighting process had to be considerably improved before its implementation

in real-world design applications.

3.2 Effect of varying number of bins in regular binning

method to reweight data

All the three existing methods described in the previous section was essentially a kind of binning

process. This meant that data from both the dataset representative of an actual population as

well as the dataset to be reweighted were divided on the basis of one or more of its characteristics

such as stature, mass and race/ethnicity. Each of the categories formed as a result of division

based a single or multiple characteristic(s) is termed as a bin. Each bin would ideally contain

at least one record from the representative data and at least one record from the data to be

reweighted. The weights of the representative data points in each bin is summed and then

divided equally amongst the records in same bin belonging to the dataset to be reweighted. This

process will be termed as binning in the following sections.

One of the ways to improve the accuracy of reweighting is to increase the number of bins.

This creates more number of divisions and/or divisions based on more number of characteristics.
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Table 3.2: Difference in statistics of reweighted North American CAESAR data from NHANES
2011-14 data

reweighted reweighted reweighted
unweighted CAESAR CAESAR CAESAR

statistic measure CAESAR Harrison Hudson Paquette

5th percentile height (mm) 16 7 29 1
weight (kg) 2.1 1.8 5.8 1.3

BMI 0.4 0.0 1.1 0.3

50th percentile height (mm) 11 4 44 7
weight (kg) 6.1 1.8 13.2 5.2

BMI 2.5 1.3 3.5 2.2

95th percentile height (mm) 17 17 46 14
weight (kg) 9.3 6.5 20.7 12.3

BMI 5.4 1.9 7.9 4.9

weighted mean height (mm) 12 7 40 7
weight (kg) 6.2 2.7 14.0 5.9

BMI 2.6 1.2 3.8 2.3

standard deviation height (mm) 3 5 4 3
weight (kg) 2.6 1.6 4.7 3.1

BMI 1.5 0.8 2.2 1.5

For example, the number of bins may be increased by reducing the range of stature in each of the

bins. The number of bins may further be also increased by separating each of these bins based on

the value of weight, and further based on the race, and so on. The following test was conducted

to evaluate the improvement in reweighting process upon increasing the number of bins.

In this study, bins were created based on two characteristics namely, stature and mass. The

number of bins on the two characteristics were both increased simultaneously from 2 to 40 in

steps of one. In each step, the data was reweighted using the earlier described method of binning.

Therefore, the statistical weights of records from the representative data were redistributed among

those of the dataset to be reweighted, within the same bin. Increasing the number of bins in each

of the two characteristics simultaneously, resulted in an overall increase in the number of bins

from 4 to 400 in 38 steps. This followed the pattern 22,32,42, ...402. In each of these stages, each

of the created bins were checked whether they contained at least one data point from each of

the two datasets. In cases where it did not satisfy this condition, it was merged with the nearest

bin which when combined with, contained at least one data point from each of the datasets, in

the resulting merged bin.This ensured that all the sum of statistical weight in the representative

data and the reweighted data set amounts to the same value. In other words, the number of

people represented by both the datasets would be equal, upon reweighting. This process reduced

also the number of bins from the initial count in most cases, resulting in a maximum of 849 bins

formed in this study.

Once the reweighting process was performed, the percentiles values of 1 to 100 were calculated
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Figure 3.1: Mean, standard deviation and maximum errors in percentiles 1-100 of Stature, Mass
and BMI, on comparing reweighted CAESAR Male data with NHANES 11-14 Male data.

for each of the three body measures, stature, mass and BMI. The differences of these percentile

values from the corresponding percentiles of the representative dataset were termed as errors.
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These errors were calculated for male CAESAR data reweighted with each of the 38 binning

strategies. A total of 100 error values at each percentile value (1 to 100) were calculated for

each of the three body measures considered. Figure 3.1 shows the variation of mean, standard

deviation and maximum of these errors with the number of bins used in the reweighting process.

It was found that upon increasing the number of bins from 2 to around 10 along each of the two

characteristics, stature and mass, the errors had a decreasing trend, omitting certain outliers.

But upon further increasing the number of bins, the errors also increased. Therefore, it was

observed that mere increase in the number of bins did not improve the accuracy of reweighting

beyond a particular level. Further improvement in the reweighting process is required before

reweighted data can be used in design of products.

3.3 New method to reweighting anthropometric data

In the previous section, it was observed that the errors with the reweighted data were large with

all the existing methods that were compared. Therefore, a new method is required which can

reweight anthropometric data more reliably. The following section describes this new method that

is introduced in this thesis. It is later evaluated to find the errors involved in the reweighted data.

In cases where the data to be weighted already contained weights, these weights were removed.

The data to be weighted or reweighted is herein called unweighted data. The word reweighted is

used in this thesis regardless of whether the data to be reweighted already contained weights or

not. The data representative of a the target population may or may not contain weights. In cases

where this representative data did not contain weights, each of its data points were assigned the

same weight of 1, and therein called weighted data. In all cases, the data for males and females

were weighted separately and then combined as needed. This can be considered the same as

having gender as an additional binning criteria. This was necessary due to the anthropometric

differences between males and females.

3.3.1 Binning

The data were first sorted on gender. In this reweighting method, each bin should contain a

minimum of one record from the weighted data and one record from the data to be weighted.

Each bin had to contain both of these records as the weight(s) of the weighted record(s) were

used to assign weight(s) to the remaining record(s) in the same bin. For this purpose, each record

in the unweighted data was assigned a unique bin number, resulting in the number of bins being

equal to the number of records in the unweighted data. Therefore,

b = N0, (3.1)

where b is the bin number and N0 is the record number in the unweighted data. Every record in

the weighted data needs a bin associated with it where its weights can be redistributed. So, for

each of the records in the weighted data, the nearest unweighted record was found by calculating
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the Euclidean distance between them. The bin number of this unweighted record was then

assigned to the weighted data record. The Euclidean distance, D between each pair of records

was calculated as,

D =

¿
ÁÁÁÀ⎛
⎝
S1 − S2

RS

⎞
⎠

2

+
⎛
⎝
M1 −M2

RM

⎞
⎠

2

+
⎛
⎝
B1 −B2

RB

⎞
⎠

2

, (3.2)

where S denotes stature, M denotes mass, B denotes BMI, and RS, RM, and RB denotes the

ranges of stature, mass, and BMI respectively of either of the datasets. The range of stature,

mass, and BMI were used in order to find the normalized distance using these three characteristics

of the two data points whose distance from each other was being calculated. For this purpose

both the ranges of variables in the weighted data and the unweighted data were used in separate

cases to identify its effect on the accuracy of the final weights. The bins which still did not contain

at least one record from the weighted data, were to be merged with other bins. These records

were instead given the bin number of the nearest record from the weighted data. Equation 2 was
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Figure 3.2: An Example of weighted and unweighted data are illustrated in a 3D graph of their
stature, mass and BMI. The zoomed in region shows the weighted data point A assigned the bin
of it closest unweighted data point B, and unweighted data point C assigned the bin of its closest
weighted data point A since its bin does not contain any weighted point from the first round of
bin assignments.
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again used for this purpose. 3.2 shows a scenario where the weighted data point A is assigned to

the bin of point B in the unweighted data since B is the unweighted data point closest to A. The

bin associated with Point C in the unweighted data does not contain a weighted data point and

is therefore assigned to the bin associated with point A which is the closest weighted data point.

3.3.2 Assignment of weights

After the binning process was completed in this manner, the sum of weights of weighted records

in each of the bins were equally divided among the remaining records in the same bin according

to the equation,

W0 =
∑Ww

n0
, (3.3)

where Ww denotes the weights assigned to the weighted records in the bin, W0 denotes the weight

to be assigned to each of the remaining records in the same bin, and n0 denotes the number of

records from the unweighted data which are assigned the same bin number as that which was

being considered.

3.4 Variations of the new weighting technique

The new method introduced in the previous section can be implemented in a variety of ways. A

different set of measures can be used to find matching pairs between the weighted and unweighted

data in place of using all the three basic measures, stature, mass, and BMI. Different ranges may

be used for normalizing the stature, mass, and BMI, thereby changing the bins formed in the

reweighting process. This section looks at the effects of such variations in order to minimize the

error observed in the reweighted data (unweighted data after weighting), when compared to the

actual weighted data.

3.4.1 Effect of using BMI in finding euclidean distance

The new reweighting technique introduced here uses three body measures namely, stature, mass

and BMI to find the euclidean distance between data points of representative dataset and those

of the data to be weighted. BMI is derived from stature and mass. The following steps prove

that the inclusion of BMI will alter the assignment of bins to the data points, although BMI is

a function of the other two body measures considered. Equation 3.2 changes to the following

equation 3.4 when BMI is not included in the calculation of distance.

D =

¿
ÁÁÁÀ⎛
⎝
S1 − S2

RS

⎞
⎠
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+
⎛
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M1 −M2

RM

⎞
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2

, (3.4)

where S denotes stature, M denotes mass, and RS and RM denote the ranges of stature and mass

respectively of either of the datasets. If the inclusion of BMI has to alter the bin assignment, the
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closest data point to a reference data point has to be different in cases where BMI is considered,

and not considered in equation 3.2 for finding the euclidean distance. It is observed that for a

set of three points, A(x1, y1, z1), B(x2, y2, z2) and C(x3, y3, z3), where x, y and z denote stature,

mass and BMI respectively, it is possible that the distance between C and A may be less than the

distance between B and A when BMI is not considered (when using equation 3.4), but is greater

than the distance between B and A when BMI is considered in the equation to find euclidean

distance (when using 3.2). This is the case when the three points A, B, and C satisfies the two

conditions, given in equation 3.8 and 3.5.

(z1 − z2)2 + (z1 − z3)2 > (x1 − x3)2 + (y1 − y3)2 − (x1 − x2)2 − (y1 − y2)2 (3.5)

When z denotes BMI, z changes to,

z = y

x2
(3.6)

since,

BMI = Mass in kilograms

(Stature in meters)2 (3.7)

Given three points,

A(x1, y1,
y1
(x1)2

)

B(x2, y2,
y2
(x2)2

)

C(x3, y3,
y3
(x3)2

)

Point C is closer to point A than point B when BMI is considered along with stature and mass

in finding the euclidean distance, but not when BMI is not considered, if the three points satisfy

the following two conditions (equations 3.8 and 3.9).

Condition 1:

(x1 − x2)2 + (y1 − y2)2 < (x1 − x3)2 + (y1 − y3)2 (3.8)

Condition 2:

( y1
(x1)2

− y2
(x2)2

)
2

+ ( y1
(x1)2

− y3
(x3)2

)
2

> (x1 − x3)2 + (y1 − y3)2 − (x1 − x2)2 − (y1 − y2)2 (3.9)

Proof.

Condition 1:

(x1 − x2)2 + (y1 − y2)2 < (x1 − x3)2 + (y1 − y3)2

Let 2D distance represent the Euclidean distance calculated using only stature and mass, while
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3D distance represent the Euclidean distance calculated using stature, mass and BMI.

(2D distance between point A and B)
2

< (2D distance between points A and C)
2

Distance is never negative. So,

2D distance between point A and B < 2D distance between points A and C

Condition 2:

( y1
(x1)2

− y2
(x2)2

)
2

+ ( y1
(x1)2

− y3
(x3)2

)
2

> (x1 − x3)2 + (y1 − y3)2 − (x1 − x2)2 − (y1 − y2)2

Using equation 3.6, we get,

(z1 − z2)2 + (z1 − z3)2 > (x1 − x3)2 + (y1 − y3)2 − (x1 − x2)2 − (y1 − y2)2

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 > (x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2

(3D distance between point A and B)
2

> (3D distance between points A and C)
2

Distance is never negative. So,

3D distance between point A and B > 3D distance between points A and C

Therefore, for three points A, B, and C, it can be shown that point B is closer than point C to

point A when x and y (stature and mass) alone are considered in the distance equation, whereas

point C is closer than point B to point A when z (BMI) is also considered in the distance equation,

by proving that these points satisfy assumptions 1 and 2. Consider the example where there are

three points,

A(X1, Y1, Z1) = (1.65,83.0,30.49)

B(X2, Y2, Z2) = (1.60,82.4,32.19)

C(X3, Y3, Z3) = (1.70,84.0,20.07)

X, Y, and Z represent stature in meters, mass in kilograms, and BMI respectively. Here Z being

BMI, satisfies equation 3.6.

Substituting these in condition 1,

(1.65 − 1.6)2 + (83 − 82.4)2 < (1.65 − 1.7)2 + (83 − 84)2

0.36 < 1.00

Condition 1 is true.

Substituting these in condition 2,

(30.49 − 32.19)2 + (30.49 − 29.07)2 > (1.65 − 1.7)2 + (83 − 84)2 − (1.65 − 1.6)2 − (83 − 82.4)2

4.91 > 0.64
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Condition 2 is true.

This example set of points prove that both assumptions 1 and 2 can be true for the same set of

points. The following steps show that this cannot be avoided by normalizing the values of X, Y

and Z with their respective ranges in the dataset. Since X, Y and Z represent stature, mass and

BMI, the ranges of these were taken from an anthropometric database, NHANES 2011-14 adult

males.

Range of stature = 0.65 m

Range of mass = 189.8 kg

Range of BMI = 60.0

The following normalized values x, y, and z were obtained using the ranges in NHANES 2011-14

male data.

An(x1, y1, z1) = (
1.65

0.65
,

83

189.8
,
30.49

60
)

= (2.54,0.44,0.51)

Bn(x2, y2, z2) = (
1.60

0.65
,

82.4

189.8
,
32.19

60
)

= (2.46,0.43,0.54)

Cn(x3, y3, z3) = (
1.70

0.65
,

84.0

189.8
,
20.07

60
)

= (2.62,0.44,0.49)

Substituting these in condition 1,

(1.65

0.65
− 1.60

0.65
)
2

+ ( 83

189.8
− 82.4

189.8
)
2

< (1.65

0.65
− 1.70

0.65
)
2

+ ( 83

189.8
− 84.0

189.8
)
2

0.00593 < 0.00594

Condition 1 is true.

Substituting these in condition 2,

(30.49

60
− 32.19

60
)
2

+ (30.49

60
− 20.07

60
)
2

> (1.65

0.65
− 1.70

0.65
)
2

+ ( 83

189.8
− 84.0

189.8
)
2

− (1.65

0.65
− 1.60

0.65
)
2

− ( 83

189.8
− 82.4

189.8
)
2

0.00024 > 0.00002

Condition 2 is true.

Now in order to prove that this is possible even when the values of stature, mass and BMI

are normalized to vary between 0 and 1, these values were normalized by dividing using their
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respective maximum values obtained from NHANES 2011-14 adult male data. We consider a

different set of three points,

A(X1, Y1, Z1) = (1.833,103.90,30.9236)

B(X2, Y2, Z2) = (1.838,103.40,30.6076)

C(X3, Y3, Z3) = (1.839,104.76,30.9765)

These maximum values used for normalization were,

Maximum stature = 2.045 m

Maximum mass = 222.6 kg

Maximum BMI = 74.1

After normalizing the values of points A, B, and C, the following points were obtained.

An(x1, y1, z1) = (
1.833

2.045
,
103.9

222.6
,
30.9236

74.1
)

= (0.8963,0.4668,0.4173)

Bn(x2, y2, z2) = (
1.838

2.045
,
103.4

222.6
,
30.6076

74.1
)

= (0.8988,0.4645,0.4131)

Cn(x3, y3, z3) = (
1.839

2.045
,
104.76

222.6
,
30.9765

74.1
)

= (0.8993,0.4706,0.4180)

Substituting these in condition 1,

(1.833 − 1.838)2 + (103.90 − 103.40)2 < (1.833 − 1.839)2 + (103.90 − 104.76)2

0.0001 < 0.00002

Condition 1 is true.

Substituting these in condition 2,

(30.9236 − 30.6076)2 + (30.9236 − 30.9765)2 > (1.833 − 1.839)2 + (103.90 − 104.76)2

− (1.833 − 1.838)2 − (103.90 − 103.40)2

0.000018 > 0.000013

Condition 2 is true.

It is seen that there exists combinations of stature, mass and BMI which satisfies the two condi-

tions. That is, there exists combinations of points where a point C is closer to A than B when

BMI is considered in the equation for euclidean distance, but farther than B when BMI is not

considered. Therefore it is proved that the closest point for a reference point can be different
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when BMI is considered and when BMI is not considered in the Euclidean distance equation,

even with normalization, although BMI is derived from stature and mass. So the created bins

are also different in the two cases. This is the reason why BMI was not omitted in equation 3.2

for calculating euclidean distances. Body measures other than stature, mass and BMI were still

not included since they are not available in most anthropometric data.

3.4.2 Effect of different ranges used for normalization during reweight-

ing

For the purpose of evaluation of the proposed weighting technique, CAESAR data on men from

North America were weighted using the NHANES 2011-14 data on men aged from 18 to 65. This

age group was chosen since CAESAR data contained anthropometric measures of people in this

age group. The NHANES data used, represent the male population of the US from year 2011 to

2014. Whereas, the male CAESAR data used was a very detailed anthropometric database which

did not represent an actual population. Several characteristics of stature, mass, and BMI in the

reweighted CAESAR data were analyzed in order to evaluate how representative these reweighted

data were of the 2011-14 US population. The weighted mean and standard deviation of each

of the variables provided an overall estimate of the population. In addition to these, the 5th ,

50th , and 95th percentile values were also compared as these values are crucial to several design

decisions. Table 3.3 shows the comparison of these values between CAESAR data reweighted

Table 3.3: Statistics of newly weighted CAESAR men datasets and NHANES 2011-14 men
dataset

reweighted reweighted reweighted weighted
CAESAR CAESAR CAESAR NHANES

statistic measure method 1 method 2 method 3 2011-2014

5th percentile stature (mm) 1638 1638 1638 1639
mass (kg) 61.9 61.9 61.9 61.7

BMI 20.6 20.6 20.6 20.6

50th percentile stature (mm) 1762 1761 1761 1761
mass (kg) 85.9 85.9 85.9 86.0

BMI 27.6 27.6 27.6 27.7

95th percentile stature (mm) 1883 1883 1885 1885
mass (kg) 127.4 128.1 128.1 127.8

BMI 40.4 40.4 40.4 40.1

weighted mean stature (mm) 1763 1763 1763 1762
mass (kg) 88.9 88.9 88.9 89.0

BMI 28.6 28.6 28.6 28.6

standard deviation stature (mm) 74.4 74.2 74.2 75.8
mass (kg) 20.5 20.4 20.4 20.9

BMI 6.0 6.0 6.0 6.2
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Table 3.4: Mean and maximum absolute errors among percentile values of reweighted CAESAR
men datasets

reweighted reweighted reweighted
CAESAR CAESAR CAESAR

statistic measure method 1 method 2 method 3

mean absolute error stature (mm) 1 1 1
mass (kg) 0.3 0.3 0.3

BMI 0.1 0.1 0.1

maximum absolute error stature (mm) 14 16 15
mass (kg) 7.0 7.7 7.3

BMI 1.8 1.4 1.7

using three different sets of ranges in equation 3.2, and the original weighted NHANES 2011-14

men data. Method 1 uses the stature, mass and BMI ranges of the weighted NHANES data.

Method 2 uses those ranges of the unweighted CAESAR data. Method 3 uses the ranges between

10th and 90th percentiles of stature, mass, and BMI of the weighted NHANES data. Method 3 is

considered to avoid the extreme values in the three measures. None of these ranges may provide

the optimum value for normalizing the values of stature, mass, and BMI for finding the unitless

euclidean distance, but the results can still be compared to find the better option. It is seen that

the values of different statistics of the three body measures are very similar between the three

methods in table 3.3.

In order to better evaluate the weighting, percentiles 1 to 99 of stature, mass, and BMI were

calculated for the reweighted CAESAR data and compared with those of the NHANES 2011-14

data. The difference in the values of each of these percentiles between the weighted CAESAR

data and NHANES data were termed as errors. The maximum and mean of these absolute errors

were compared for the weighting technique using the three different ranges for normalization

mentioned earlier. Table 3.4 shows this comparison of mean and maximum absolute error in the

percentiles. It is to be noted that the maximum absolute error occurs mostly only at the highest

or lowest percentile of the data. Here too its seen that the range chosen for the reweighting

method did not affect the errors considerably. Figure 3.3 shows the absolute errors i.e. the

absolute difference between weighted CAESAR data and NHANES data at percentiles 1 to 99 of

each of the variables, stature, mass, and BMI.

The choice of using the ranges of the variables in the weighted (NHANES) or unweighted

(CAESAR) datasets to normalize the distance between data points, as in equation 3.2 was not

found to have a noticeable impact on the statistical measures of the final data. It can be seen in

Table 3.4 that the mean absolute error among the 99 percentiles were almost the same whereas

the maximum absolute errors were not clearly better on either of the normalization methods. No

noticeable difference in the errors are seen visually (refer Figure 3.3). The statistical measures

such as weighted mean and standard deviation of the weighted CAESAR data were found to be

very close to those of NHANES 2011-14 data (refer Table 3.3).
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3.4.3 Further evaluation of reweighted data

In the following comparisons, the weighting were all performed using Method 1 where the ranges

from the weighted dataset were used in equation 3.2. Nine hundred and ninety three bins were

formed when weighting CAESAR data using NHANES data. The Figure 3.5 shows the values

associated with percentiles 1 to 99 of stature, mass, and BMI of the weighted CAESAR data

(using method 1) superimposed on those of NHANES 2011-14 data. The vertical distance between

the two at each percentile shows the error in the reweighted data at that percentile. It is seen

that these point almost coincide at each percentile values with any errors visible only at the tails

of the distribution. The percentile values of mass and BMI were visually seen to be less accurate

at only the three to five percentiles in the higher tail. The mean and maximum absolute errors

among the percentiles are given in table 3.4.

Apart from the statistical measures, weighted covariance matrices were used to compare

the relationships between variables in weighted CAESAR data and the relationships between

variables in NHANES data. In order to eliminate the effect of reduced sample size in CAESAR

compared to NHANES, a random subset of NHANES with a sample size same as that of CAESAR

was created with their weights so that the overall distribution is similar to the original NHANES

data. The covariance matrix of this downsampled NHANES data was calculated. This procedure

was performed 10000 times for a stochastic analysis. The mean and standard deviation of these

10000 matrices were then calculated. The mean of the covariance matrices obtained from the

downsampled NHANES and the covariance matrix of the weighted CAESAR data were compared

to calculate the number of standard deviations by which they differed (refer table 3.5). It is

observed that the number of standard deviations do not exceed 1 for any of the relations. This is

illustrated in figure 3.4 where the kernel density plot of each element of the covariance matrix of

downsampled NHANES data is shown, with the corresponding value from the covariance matrix

of reweighted CAESAR data superimposed on it.

Table 3.5: Comparing weighted covariance matrices

(a) Mean: NHANES

stature mass BMI

stature 57.32 58.85 0.49
mass 58.85 436.58 120.42
BMI 0.49 120.42 38.54

(b) Standard deviation: NHANES

stature mass BMI

stature 2.86 5.94 1.66
mass 5.94 30.50 8.71
BMI 1.66 8.71 2.73

(c) Weighted CAESAR

stature mass BMI

stature 55.41 59.42 1.50
mass 59.42 418.20 114.12
BMI 1.50 114.12 35.98

(d) Number of standard deviations

stature mass BMI

stature 0.67 0.10 0.61
mass 0.10 0.60 0.72
BMI 0.61 0.72 0.94
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data; X axis is covariance, Y axis is kernel density of each covariance value from the stochastic
study of downsampled NHANES data

3.4.4 Effect of additional binning criteria and sample size of

unweighted data

In order to evaluate the effect of the sample size of the unweighted data on the performance

of the weighting technique, the size of the sample to be weighted was varied between 100 and

2000 in progressions of 100. Due to unavailability of sample size of 2000 from the CAESAR

male data, NHANES 2007-2010 adult male data were used after removing its statistical weights.

Therefore, random samples of varying sizes picked from unweighted NHANES 2007-10 adult male

data were weighted using the weighted NHANES 2011-14 adult male data. The percentiles 1

to 99 of stature, mass, and BMI of the reweighted NHANES 2007-10 data were compared with

those of NHANES 2011-14 data. The difference of these percentiles were termed as errors. The

maximum, mean, and standard deviation of these absolute errors were compared for different

sample sizes of the unweighted data to analyze the effect of sample size on weighting. Figure 3.6

shows the maximum, mean, and standard deviation of errors at percentiles 1 to 99 of the three

variables in NHANES 2007-10 data weighted using three different methods. The first method

was the basic weighting method introduced in this paper, as described in the section 3.3 (using

ranges of variables in NHANES 2011-14). The second method reweighted data similar to the

first method, but it used an additional binning criteria of race. Three racial groups were used for

binning, namely non-Hispanic White, non-Hispanic Black, and other races. The third method

used was the Harrison method described in section 2.4 [42].



26

1550

1600

1650

1700

1750

1800

1850

1900

1950

height
(mm)

NHANES 2011-14

Reweighted CAESAR

40

60

80

100

120

140

160

180

weight
(kg)

0 100

percentile

15

20

25

30

35

40

45

50

BMI

10 20 30 40 50 60 70 80 90

Figure 3.5: Percentiles of three body measures in NHANES 2011-14 and newly weighted CAESAR
datasets



27

0

2

4

6

8

10

Mean

Harrison method

New method

New method, with race bins

0

0.5

1

1.5

2

2.5

3

height
(mm)

weight
(kg)

0

0.2

0.4

0.6

0.8

BMI

5

10

15

20

25

30

35

40

Maximum

4

8

12

16

20

0

1

2

3

4

5

6

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

sample size

1

2

3

4

5

6

7

Standard deviation

sample size

0

0.5

1

1.5

2

2.5

3

3.5

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00 0

0.2

0.4

0.6

0.8

1

sample size

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

20
00

0

0

0

Figure 3.6: Statistics of error in reweighted data when rewighted using different sample sizes of
actual weighted data



28

3.4.4.1 Statistical study to identify whether the reduction in error with the new

methods were statistically significant

Mann-Whitney U test was performed to find the statistical significance of the difference in errors

between three reweighting methods illustrated in Figure 3.6. The statistical significance was

tested for sample size of 2000. This was because, as seen in Figure 3.6, the difference between

the mean of the errors at each percentile value, are seen to lower with increasing sample size. The

sample size was not increased beyond 2000, since this sample was downsampled from the actual

NHANES 2011-14 adult male data which contained only 4471 observations. As the sample size

increases, the variation in the randomly downsampled population decreases. Therefore, when

the entire 4471 observations are used, the same error values will be obtained in all iterations of

reweighting.

In order to conduct Mann-Whitney U test to check the statistical significance of the difference

in mean error in BMI for each method, the weighted NHANES 2011-14 male adult data was

randomly downsampled to 2000 observations and used to reweight an unweighted NHANES

2007-10 male adult data. This was repeated 10000 times as a Monte Carlo simulation. For each

iteration, the errors in height, weight and BMI were recorded at each percentile value from 1

to 99. The mean of these errors were recorded for each of the 10000 iterations. These 10000

mean errors of BMI obtained when using each of the three methods, the new method introduced

in section 3.3, the same method with an additional binning criteria of race, and the Harrison

method described in section 2.4, were tested for statistically significant difference. This was

conducted only for BMI, since if one of the three measures, stature, mass and BMI are found to

be significantly different for the methods, then that gives reason to prefer one method over the

other.

All statistical tests were conducted in the software, IBM SPSS Statistics, version 24. The

dataset obtained from the three methods were tested for normality using Kolmogorov-Smirnov

test and the results are shown in Table 3.6. Here the null hypothesis,

H0: The sample data are not significantly different than a normal population.

The alternate hypothesis,

H1: The sample data are significantly different than a normal population.

For all the three methods or conditions, the Kolmogorov-Smirnov test gave a p-value less

than 0.05 with a degree of freedom (dof) of 10000. Therefore the null hypothesis can be rejected

for all three conditions, showing that none of the datasets were normally distributed.

Table 3.6: Results of Kolmogorov-Smirnov test for normality on the mean errors in BMI, for
NHANES 2007-10 male adult data reweighted using three different methods.

method used to reweight statistic degrees of freedom significance

Harrison 0.030 10000 < 0.0005
New method 0.010 10000 0.015
New, with race bins 0.009 10000 0.047
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Figure 3.7: Population pyramids to compare the distribution shape of the errors in BMI obtained
with the new method, to those obtained with the new method with race bins, and the Harrison
method.

Using this test requires the study design and the data to fulfil certain assumptions. The data

on mean errors in BMI obtained from the stochastic study contained a continuous dependent

variable namely the mean error in each iteration. The independent variable was the method

used for reweighting, which has three groups out of which only two groups were considered at

a time for the statistical study. The observed values of errors are independent of each other.

These three statements satisfy the required assumptions about the study design required for the

Mann-Whitney U test.

The data distribution was then compared to check if they have similar distributions. Figure

3.7 shows the populations pyramids of the the errors in BMI obtained with the three methods.

Therefore, the errors associated with these two methods can be compared using their medians.

A Mann-Whitney U test was run to determine if there were differences in mean error among the

percentiles of BMI in the reweighted data, when using the new method, and the new method

with race bins. Distributions of the error values for these two methods were similar, as assessed

by visual inspection (refer figure 3.7). Median value of mean errors associated with the new

method with race bins (0.083) was higher than that obtained with the new method without race

bins (0.061), U = 145, z = -3.422, p < 0.0005.

A Mann-Whitney U test was run to determine if there were differences in mean error among

the percentiles of BMI in the reweighted data, when using the new method and Harrison method.

Distributions of the error values for these two methods were not similar, as assessed by visual in-
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spection (refer figure 3.7). Error values associated with Harrison method (mean rank = 15,000.5)

were statistically significantly higher than those associated with the new method (mean rank =

5,000.5), U = 218, z = -3.422, p < 0.0005.

3.4.4.2 Inferring the effect of sample size of actual weighted data and additional

binning criteria

It was shown that the mean errors in percentiles of BMI was statistically significantly different

when using the new method compared to both the new method with race bins, and Harrison

method. Several anthropometric measures are correlated with the BMI. So those anthropometric

measures would also be significantly different between the methods, thereby not necessitating the

need for additional statistical studies on errors in stature or mass. It was therefore observed that

adding an additional constraint increased the error in re-weighting. Since the statistical study

was conducted at sample size of 2000, where the difference between the methods were minimal

(as seen in figure 3.6), it is safe to assume that the three methods gave significantly different

results even at lower sample sizes. The maximum, mean, and standard deviations of the errors

on comparing the re-weighted NHANES 2007-10 data with the NHANES 2011-14 data were

found to decrease with increase in the unweighted sample size as observed by visual inspection

of Figure 3.6). This shows that higher the sample size, higher the accuracy of weighting. The

effect of increase in sample size was found to decrease with the increase in the sample size. On

comparing results obtained with those obtained using the Harrison method, it was found that

the maximum, mean, and standard deviation of the errors in stature, mass, and BMI were much

lower with the new technique. The reduction in error was more pronounced in mass and BMI in

this particular case of reweighting NHANES data.



Chapter 4
Reweighting different datasets using

the new method

One of the most important applications of reweighting is to obtain reliable anthropometric data

for countries where detailed anthropometric surveys have not been performed to obtain data

representative of the population. Similar to obtaining data for different countries, it is equally

desirable to obtain anthropometric data for a specialized population. Army, Air Force pilots, and

truck drivers are some of such specialized populations which have been subjects of research to

better design products for. This section looks at reweighting available suitable detailed anthro-

pometric data for similar desirable populations. For the comparison of reweighted and existing

representative samples, 5 statistical measures were compared. The 5th, 50th, and 95th percentile

values were considered as these values influence important design decisions in most cases. The

mean and standard deviations were compared as these give an overall measure of similarity be-

tween the two datasets. Each of these statistics were compared for stature, mass and BMI, as

many anthropometric measures are proportional to one or more of these three measures.

Table 4.1 shows different statistical measures of NHANES 2011-14 adults (ages 18-65) data

and CAESAR data reweighted to match the NHANES data. Two different groups in the CAE-

SAR sample, obtained from North America and the Netherlands were reweighted. Maximum

difference was observed at the tails of the distribution as expected. In the reweighted Nether-

lands CAESAR data, stature varied up to 5 mm, mass up to 0.6 kg, and BMI up to 2.1 in

the statistical measures considered here. Whereas in the reweighted North American CAESAR

data, stature varied only up to 1 mm, mass up to 0.8 kg, and BMI up to only 0.3 in the sta-

tistical measures considered here. Therefore the North American CAESAR data represented

the NHANES 2011-14 adults data very closely. The CAESAR data from Netherlands, although

represented the NHANES data very well, was not as close as the reweighted North American

CAESAR data. This could be because of the differences in racial composition between the US

and Netherlands. Such demographic differences were relatively low between the US and North
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Table 4.1: Statistics of CAESAR reweighted to represent NHANES 2011-14 population

absolute difference
from NHANES

weighted weighted weighted weighted
statistic measure NHANES CAESAR CAESAR CAESAR CAESAR

2011-14 N.America Netherlands N.America Netherlands

5th height(mm) 1534 1535 1538 1 4
percentile weight (kg) 53.9 53.7 53.4 0.2 0.5

BMI 20.0 20.0 20.0 0.0 0.0

50th height(mm) 1689 1688 1692 1 3
percentile weight (kg) 79.6 79.6 79.4 0.0 0.2

BMI 27.6 27.6 27.4 0.0 0.2

95th height(mm) 1859 1859 1864 0 5
percentile weight (kg) 123.0 122.2 122.4 0.8 0.6

BMI 42.5 42.3 40.4 0.2 2.1

mean height(mm) 1693 1694 1696 1 4
weight (kg) 83.0 82.9 82.7 0.1 0.3

BMI 28.9 28.8 28.6 0.1 0.3

standard height(mm) 100 99 99 1 1
deviation weight (kg) 22.0 21.6 21.0 0.4 1.0

BMI 7.1 6.8 6.5 0.3 0.6

American populations.

Table 4.2 compares ANSUR data and North American CAESAR data reweighted to match

the AIST data collected in Japan using statistical measures described earlier. The North Amer-

ican CAESAR data was observed to be closer than ANSUR data in representing the Japanese

population upon reweighting. One of the reasons for this might have been the better fitness of

the army population in ANSUR data compared to the civilian population. The maximum differ-

ence between the reweighted North American CAESAR and original Japanese data was 4 mm in

stature, 0.4 kg in mass, and 0.3 in BMI, among the statistical measures considered here. These

difference are very low and hence the reweighted data can be used to design for the Japanese

population, thereby providing detailed 3D scans from the CAESAR database.

For the third reweighting test, both North American and Netherlands CAESAR data were

reweighted to represent the ANSUR population. Table 4.3 gives the differences in the statistical

measures described earlier, between the reweighted datasets and the original ANSUR data. It

was observed that the maximum difference among these statistical measures was only 2 mm in

stature, 0.2 kg in mass, and 0.1 in BMI, for the reweighted North American CAESAR population.

This better represented the ANSUR population, than the reweighted Netherlands CAESAR data.

This is expected from the closer demographics of the North American CAESAR to the ANSUR

population compared to that of Netherlands CAESAR data.

These comparisons of stature, mass and BMI of reweighted data with their original data
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Table 4.2: Statistics of ANSUR and CAESAR reweighted to represent Japanese population

absolute difference
from Japanese data

weighted weighted weighted weighted
statistic measure Japanese ANSUR CAESAR ANSUR CAESAR

data N America N America

5th percentile height (mm) 1465 1477 1468 12 4
weight (kg) 44.8 45.5 45.0 0.7 0.2

BMI 18.0 18.4 18.2 0.4 0.2

50th percentile height (mm) 1627 1627 1625 1 2
weight (kg) 56.4 56.1 56.7 0.3 0.3

BMI 21.3 21.3 21.3 0.0 0.0

95th percentile height (mm) 1789 1785 1785 4 4
weight (kg) 73.0 73.2 73.3 0.1 0.3

BMI 26.1 26.0 26.2 0.2 0.0

mean height (mm) 1631 1632 1632 1 1
weight (kg) 57.3 57.7 57.7 0.3 0.4

BMI 21.5 21.6 21.6 0.1 0.1

standard height (mm) 97 93 98 4 1
deviation weight (kg) 9.1 9.0 9.5 0.0 0.4

BMI 2.5 2.4 2.9 0.1 0.3

provides a means to evaluate the effectiveness of the reweighting process. Comparing the different

statistical measures of stature, mass, and BMI between the reweighted data and actual data

gives designers more surety on using other anthropometric data proportional to these measures,

from the reweighted data. Comparing table 4.1 with table 3.2 shows that the differences in the

compared statistics of reweighted data from the actual data, obtained with the new method was

far lower than any of the existing methods.
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Table 4.3: Statistics of CAESAR reweighted to represent ANSUR population

absolute difference
from ANSUR

weighted weighted weighted weighted
statistic measure ANSUR CAESAR CAESAR CAESAR CAESAR

N America Netherlands N America Netherlands

5th height (mm) 1548 1548 1549 0 1
percentile weight (kg) 52.5 52.6 52.5 0.1 0.0

BMI 20.1 20.1 20.3 0.0 0.1

50th height (mm) 1682 1683 1680 1 2
percentile weight (kg) 68.9 68.9 68.6 0.0 0.3

BMI 24.5 24.5 24.4 0.0 0.1

95th height (mm) 1838 1840 1842 2 4
percentile weight (kg) 93.7 93.9 93.4 0.2 0.3

BMI 30.1 30.1 30.2 0.1 0.1

mean height (mm) 1686 1686 1686 0 1
weight (kg) 70.7 70.7 70.7 0.0 0.0

BMI 24.7 24.7 24.7 0.0 0.0

standard height (mm) 90 91 91 0 1
deviation weight (kg) 12.9 13.0 13.0 0.1 0.1

BMI 3.1 3.1 3.1 0.1 0.1



Chapter 5
Evaluation of new method using

multivariate design test cases

Until now the reweighted data was compared with that of the original weighted population

using descriptive statistics. These included mean, standard deviation and different percentile

values. But it is important to look at the effectiveness of the reweighting technique in real-

world applications. Design applications are rarely limited to univariate problems where only one

design variable needs to be decided at a time. Most design problems are multivariate, where

several design variable together decide the accommodation level of the product. For example,

in case of the design of a chair, a person whose hip breadth is less than the seat width is still

disaccommodated if his/her buttock-popliteal length is less than the seat depth. Therefore,

it is necessary calculate accommodation and decide design variables by considering multiple

dimensions simultaneously.

A suite of multivariate test cases suggested by G. Nadadur and M. Parkinson [1] were used

to evaluate the effectiveness of the reweighted data in such design problems. These problems

comprise of commonly-used and widely-available body dimensions. The following study makes

use of these test cases to demonstrate the use of the new reweighting technique in reweighting

detailed anthropometric data for use in designing products for a different population. Only those

target populations which has detailed anthropometric data collected from surveys are chosen

as this allows to compare the accommodation level of the resulting product calculated using

the surveyed data of the target population and the different data reweighted for the target

population. Hence the error in the perceived accommodation level of the designed product with

the reweighted data can be estimated, in real-world design situations.
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5.1 Virtual fitting trials

Virtual fitting trials aim to find the number of individuals from a dataset that are accommo-

dated by a particular design when multiple design variables are considered simultaneously. An

individual is considered accommodated in the design only if all the design variables are able to

accommodate the corresponding body measurements of the individual under consideration. This

largely decreases the number of accommodated individuals compared to univariate analysis where

only one design variable is considered at a time to check the accommodation level. In virtual

fitting trails, values have to be chosen for each of the design dimensions and then each individual

in the dataset is compared to check whether that person is accommodated with the selected

dimensions. The total accommodation is then calculated based on the number of individuals

considered accommodated and the total number of records in that dataset.

In order to attain a certain level of accommodation for a particular design, several different

combinations of values for the design dimensions are possible. For this test, the design dimen-

sions were randomly chosen from either the 1-10 and 90-99 percentile ranges of the corresponding

body measures in the original representative data, or from 1-5 and 95-99 percentile ranges of the

same. The following sections describe the product dimensions and corresponding body measures

relevant to each of the design cases. The accommodation level is calculated with the original

data representative of an actual population, a second dataset reweighted to match this represen-

tative data, and the unweighted second dataset. It is essential that all the datasets used contain

the necessary body measures required in each of the design cases. Since the design dimensions

are chosen from particular percentiles of the available anthropometric data, the difference in

calculated accommodation level would drive the choice of design dimensions. Therefore, if the

reweighted data was used to decide the product dimensions, the closer the calculated accommo-

dation of the reweighted data is to that of the original representative data, the more accurate

the chosen design dimensions would be to the values required for the intended accommodation

level.

5.2 Design of cab geometry of work equipment

The first case involves the cab geometry of work equipment. This case would apply to work

equipment such as fork lifts and cranes where the operator has to be comfortable for long periods

of work hours as well as be able to effectively reach out to all the controls in the cabin. Table

5.1 gives the product dimensions that need to be defined, their corresponding anthropometric

measure that drive the design values, as well as their relationships for cab geometry design.

Figure 5.1 shows the dimensions of cab geometry guided by each of the body measures. In order

to demonstrate the use of reweighted anthropometric data for design of the cab geometry, North

American CAESAR data was reweighted to represent the ANSUR data.

Virtual fitting tests as described in the previous section were conducted with the four body

measures mentioned in table 5.1. For cases with B≤P (bideltoid breadth, foot length, sitting
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Figure 5.1: Body measures that guide the design of cab geometry. Adapted from [1].

Table 5.1: Product dimensions, relevant body measures, and design constrains involved in design
of cab geometry of work equipment. Adapted from [1].

Product dimensions Body measure Suggested design
(P) (B) constrain

Cab width Bideltoid breadth B≤P
Foot pedal length Foot length B≤P
Control distance Forward reach B≥P
Cab height Sitting height B≤P

height), P was chosen from the higher tail of the distribution, that is from either the percentile

range 90-99 or 95-99. For cases with B≥P (forward reach), P was chosen from the lower tail of the

distribution, that is from either the percentile range 1-10 or 1-5. The difference in accommodation

attained with the CAESAR data improved from 6.4% to 1.0% upon weighting for percentile

values of 1-10 and 90-99. Whereas for percentile values of 1-5 and 95-99, it improved from 6.0%

to 0.8%. Therefore it was observed that reweighting the data before using it in the actual design

process made the perceived accommodation more accurate. This in turn affects the choice of

design dimensions. The design dimensions would have otherwise been made unnecessarily large

or small thereby increasing the costs or adversely affecting accommodation level of the design.

The difference of 0.8 to 1.0% in accommodation levels signify the range of error that may be

observed in the accommodation level of the cab geometry when using reweighted data instead of

real surveyed data for the target population to make the design decisions.
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Table 5.2: Mean accommodation of the cab geometry of work equipment with its dimensions
picked randomly from given range of percentiles of ANSUR data, when compared with ANSUR
data, CAESAR data reweighted with Japanese data and unweighted CAESAR data

accommodation (%)
mean absolute

percentile standard difference from
ranges data mean deviation ANSUR

1-10 & 90-99 ANSUR 82.1 3.9
CAESAR (weighted) 82.8 4.2 1.0

CAESAR (unweighted) 75.8 4.1 6.4

1-5 & 95-99 ANSUR 89.8 1.8
CAESAR (weighted) 90.6 1.8 0.8

CAESAR (unweighted) 83.8 2.0 6.0

Buttock-popliteal length

Popliteal
height
(sitting)

Hip breadth (sitting)

Elbow
rest

height
(sitting)

Chair model: http://www.hermanmiller.com/products/seating/performance-work-chairs/aeron-chairs.html

Figure 5.2: Body measures that guide the design of office chair. Adapted from [1].

5.3 Design of office chair

The second case involves the design of office chairs. Table 5.3 gives the product dimensions that

need to be defined, their corresponding anthropometric measure that drive the design values, as

well as their relationships for the chair design. Figure 5.2 shows the dimensions of chair guided by

each of the body measures. In this case, ANSUR data was reweighted to represent the Japanese

population.

Virtual fitting tests as described in section 5.1 were conducted with the four body measures

mentioned in table 5.3. For cases with B≤P (elbow rest height and hip breadth), P was chosen

from the higher tail of the distribution, that is from either the percentile range 90-99 or 95-99.
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Table 5.3: Product dimensions, relevant body measures, and design constrains involved in design
of office chairs. Adapted from [1].

Product dimensions Body measure Suggested design
(P) (B) constrain

Seat depth Butt-popliteal length B≥P
Arm rest height Elbow rest height (sit) B≤P
Seat width Hip breadth (sit) B≤P
Seat height Popliteal height (sit) B≥P

Table 5.4: Mean accommodation of the seat design with its dimensions picked randomly from
given range of percentiles of Japanese anthropometric data, when compared with Japanese data,
ANSUR data reweighted with Japanese data and unweighted ANSUR data

accommodation (%)
mean absolute

percentile standard difference from
ranges data mean deviation Japanese data

1-10 & 90-99 Japanese 81.7 3.9
ANSUR (weighted) 87.5 3.7 5.9

ANSUR (unweighted) 61.9 7.9 19.8

1-5 & 95-99 Japanese 89.6 1.7
ANSUR (weighted) 91.8 0.9 2.2

ANSUR (unweighted) 71.7 3.6 17.9

For cases with B≥P (buttock-popliteal length and popliteal height), P was chosen from the lower

tail of the distribution, that is from either the percentile range 1-10 or 1-5. The difference in

accommodation attained with the ANSUR data improved from 19.8% to 5.9% upon weighting for

percentile values of 1-10 and 90-99. Whereas for percentile values of 1-5 and 95-99, it improved

from 17.9% to 2.2%. Therefore it was observed that reweighting the data before using it in

the design process made the perceived accommodation much more accurate. The difference of

2.2 to 5.9% is not negligible. This error could primarily be because of the difference in racial

composition between the two populations as well as the difference between civilian and army

populations.

5.4 Design of crutch

The third case involves the design of crutch. The grip circumference and support-grip length of

the crutch were identified as dimensions that define the accommodation level of the product as

illustrated in figure 5.3. Table 5.5 gives the product dimensions that need to be defined, their

corresponding anthropometric measure that drive the design values, as well as their relationships

for the chair design. In this case, CAESAR data was reweighted to represent the Japanese

population.
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Shoulder-elbow
length +
Elbow-
wrist
length

Hand
length

Figure 5.3: Body measures that guide the design of crutch. Adapted from [1].

Table 5.5: Product dimensions, relevant body measures, and design constrains involved in design
of crutches. Adapted from [1].

Product dimensions Body measure Suggested design
(P) (B) constrain

Grip circumference Hand length B≥P
Support-grip length Elbow-wrist height +

Shoulder-elbow length B≥P

Virtual fitting tests as described in section 5.1 were conducted with the four body measures

mentioned in table 5.3. Both the body measures (hand length and elbow-wrist height + shoulder-

elbow length) were chosen from the lower tail of the distribution, that is from either the percentile

range 1-10 or 1-5. This was because both the body measures had to be greater than or equal to

their corresponding product dimensions, as given in table 5.5. The difference in accommodation

attained with the CAESAR data improved from 5.8% to 1.9% upon weighting for percentile

values of 1-10 and 90-99. Whereas for percentile values of 1-5 and 95-99, it improved from 3.5%

to 1.0%. Therefore it was observed that reweighting the data before using it in the design process

made the perceived accommodation more accurate. The difference of 1.0 to 1.9% is small and

therefore would not considerably affect the design. This error could primarily be because of the

difference in racial composition between the two populations.
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Table 5.6: Mean accommodation of the crutch design with its dimensions picked randomly from
given range of percentiles of ANSUR data, when compared with ANSUR data, Japanese anthro-
pometric data reweighted with ANSUR data and unweighted Japanese data

accommodation (%)
mean absolute

percentile standard difference from
ranges data mean deviation Japanese data

1-10 & 90-99 Japanese 91.6 2.7
CAESAR (weighted) 92.8 2.7 1.9

CAESAR (unweighted) 97.4 1.3 5.8

1-5 & 95-99 Japanese 94.5 1.0
CAESAR (weighted) 94.9 1.4 1.0

CAESAR (unweighted) 98.5 0.6 3.5



Chapter 6
Conclusion

Unavailability of detailed anthropometric data causes products to be designed for populations

different from their target populations. The available detailed anthropometric data can be

reweighted to represent the target population using one of the existing reweighting techniques.

But the three existing methods were shown to have reweighted data with a large error partic-

ularly in the tails of the distribution. Most of the design decisions are also made based on the

body dimensions in the tails of the population distribution. Therefore, a new method to reweight

anthropometric data is demonstrated to obtain detailed anthropometric data for the target pop-

ulation with much lower and acceptable errors. This method can be used even when only two

out of the three measures, stature, mass, and BMI, available for a target population.

The number of bins used in the weighting for male CAESAR data using male NHANES

2011-14 data was 993. This is more than 220% of the number of bins used in Harrison method

while still using less number of predictors, and more than 620% of the number of bins used in

Paquette method. In all the existing methods, the number of bins are fixed. But the number

of bins formed in the new weighting technique varies according to the datasets used, to provide

better reweighting.

Most of the issues with reweighting data arose not from the technique itself but from the

lack of a large sample size for the data. This was the case with reweighting for the Japanese

population for which a limited sample size was available. But since the reweighting requires only

any two of stature, mass and BMI, it is much easier to collect data with a large sample size. The

cost of such a survey would also be much less than a survey to collect detailed anthropometric

data. Racial composition was another factor which caused increased errors in the reweighted

data. If detailed anthropometric data can be obtained for a particular population, it can be

reweighted reliably for all populations with similar racial composition. Inclusion of race bins was

found to increase the error when reweighting NHANES data. But this can be attributed to the

limited data on minority races. If the sample size is large enough and there is a broad range

of data available for each race, the target population need not be similar in racial composition
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either, as the binning strategy can then incorporate race bins and still provide better accuracy.

Reweighting data for several different populations were demonstrated, namely US civilian

population, US army population and Japanese population. Data from these three populations

as well as CAESAR data collected from North America and the Netherlands were used for this.

The results showed that the error in percentiles of stature, mass and BMI were very low when the

right data was chosen for reweighting. This was again dependent on the similarity in race and

occupational groups. The main application for reweighting is in design of products. This was

demonstrated through three multivariate design cases. The accommodation level of the designed

product calculated using the reweighted data and the actual data for the target population were

very close. This shows that the reweighted data may be used to decide the design dimensions to

attain the desired accommodation level.

The principal contribution of this thesis is that it provides a method to reweight anthropo-

metric data to represent a target population with acceptable errors. This was not achieved with

the existing reweighting methods. Using relevant anthropometric data in design helps to counter

many of the health, safety and performance issues associated with the product, described in

Chapter 1. Sections 5.2 and 5.3 demonstrate the use of this method in obtaining detailed an-

thropometric data for design of truck cab geometry and chairs. It is demonstrated that the

error in perceived accommodation of the product is reduced by a large margin, when weighted

anthropometric data which better represents the target population is used in place of unweighted

data. This improves the sizing of the resulting products as designers can pick product dimensions

based on the accommodation level calculated for that particular set of product dimensions using

this reweighted anthropometric data which better represents the target population. The method

presented in this thesis was found to be an effective way to assign weights to unweighted data by

comparing only the basic predictors of stature, mass and BMI. The method presented here was

also shown to model the target population more closely than the existing method. This provides

the potential to use detailed anthropometric data in designing products and environments more

accurately for target populations for which, only limited data such as stature and mass are avail-

able. It also allows more anthropometric measurement records to be added to existing database

with re-weighting without affecting the population statistics. This technique can also be applied

in many other fields which requires weighting of data, not limited to anthropometric data.

Although the reweighted data can be verified for accuracy by comparing several statistics of

stature, mass and BMI, this can only verify the reweighted data up to an extend. The low errors

in these three measures could signify low errors in anthropometric measures that are proportional

to one or more of these three basic measures. Buttock-popliteal distance and knee height are

examples for such anthropometric measures. But in case of anthropometric measures that are

not proportionate with any of these three basic measures, it is impossible to verify the accuracy

of the reweighted data. An example for this is the interpupillary distance which is the distance

between the center of the pupils of the two eyes of a person. Future research may be conducted on

reweighting the available data on such body measures to represent those of the target population,

and verifying it.
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Documentation of data reweighting

A.1 Data reweighting MATLAB script

load Nm1114.txt

%[Nm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age

%7=st.wt +8=bin#HtWt 9=bin#age], ages 18-65

load Cm.txt

%[Cm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age

%+7=st.wt 8=bin# 9=bin#valid]

pl=zeros(99,9);

error=zeros(3,3);

tic

Nm=Nm1114;

Nm(:,1) = Nm(:,1)*10;

Cm(:,8) = 1:size(Cm,1); %assign bin numbers to each data pt

Cm(:,9) = 0;

%Ranges of stature, mass and BMI in dataset for use in

%the function for Euclidean distance.

r1=max(Nm(:,1))-min(Nm(:,1));

r2=max(Nm(:,2))-min(Nm(:,2));

r3=max(Nm(:,3))-min(Nm(:,3));

%find closest C point for every N point and mark C point as valid
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for i=1:size(Nm,1)

[Nm(i,8)]=closestNbin(Nm(i,1:6),Cm);

Cm(Nm(i,8),9)=1;

end

%find closest N point for every invalid C point and copy bin#

for i=1:size(Cm,1)

if (Cm(i,9)==0)

[Cm(i,8)] = closestNbin(Cm(i,1:6),Nm);

end

end

%create table of all valid bin#, count #Cm in each bin

Bins=zeros(1,3); %[Bins 1=bin# 2=sum_of_st.wt 3=#Cm]

for i=1:size(Cm,1)

if (Cm(i,9)==1)

Bins(end+1,1)=Cm(i,8);

for j=1:size(Cm,1)

if (Cm(j,8)==Cm(i,8))

Bins(end,3) = Bins(end,3) + 1;

end

end

end

end

Bins = Bins(2:end,:);

%sum of st.wts from N for each bin

for i=1:size(Bins,1)

for j=1:size(Nm,1)

if(Bins(i,1)==Nm(j,8))

Bins(i,2) = Bins(i,2)+Nm(j,7);

end

end

end

%Assign st.wt. to C using by matchin bin# with Bins table

for i=1:size(Cm,1)

for j=1:size(Bins,1)

if (Cm(i,8)==Bins(j,1))

Cm(i,7)=Bins(j,2)/Bins(j,3);

end

end

end

% percentiles {1,2,3=Nm[ht,wt,bmi], 4,5,6=Cm[ht,wt,bmi],
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% 7,8,9=error[ht,wt,bmi]}

for i=1:3

pl(:,i)=wprctile(Nm(:,i),1:99,Nm(:,7));

pl(:,i+3)=wprctile(Cm(:,i),1:99,Cm(:,7));

pl(:,i+6) = abs( pl(:,i)-pl(:,i+3) );

end

% error [i=1:10000; j=mean,sd,max; k=ht,wt,bmi]

for i=1:3

error(1,i) = mean( pl(:,i+6) );

error(2,i) = std( pl(:,i+6) );

error(3,i) = max( pl(:,i+6) );

end

A.2 MATLAB script for function to find closest datapoint

from the second dataset for a particular datapoint

function [bin]= closestNbin(x,L)

dist=999999;

bin=0;

for i=1:size(L,1)

dist2 = sqrt( ((x(1)-L(i,1))/r1)^2 + ((x(2)-L(i,2))/r2)^2

+ ((x(3)-L(i,3))/r3)^2 );

if (dist2<dist)

dist = dist2;

bin = L(i,9);

end

% To exclude points which are too far

if (dist > sqrt( (50/r1)^2 + (5/r2)^2 + (2/r3)^2 ))

bin = 0;

end

end

A.3 MATLAB script for Monte Carlo simulation to find

error when using different sample sizes

load Nm1114.txt

%[1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age +7=st.wt 8=bin# 9=bin#valid]

load Nm0710.txt

res=table;



47

parfor k=1:20

pl=zeros(99,9);

error=zeros(30,3,3);

tempres=zeros(3,3);

for m=1:30

Nm=Nm1114;

RIx = randsample(1:size(Nm0710,1),k*100);

Cm = Nm0710(RIx,1:6);

Cm(:,8) = 1:size(Cm,1); %assign bin numbers to each data pt

Cm(:,9) = 0;

%find closest C point for every N point and mark C point as valid

for i=1:size(Nm,1)

[Nm(i,8)]=closestNbin(Nm(i,1:6),Cm);

Cm(Nm(i,8),9)=1;

end

%find closest N point for every invalid C point and copy bin#

for i=1:size(Cm,1)

if (Cm(i,9)==0)

[Cm(i,8)] = closestNbin(Cm(i,1:6),Nm);

end

end

%create table of all valid bin#, count #Cm in each bin

Bins=zeros(1,3); %[Bins 1=bin# 2=sum_of_st.wt 3=#Cm]

for i=1:size(Cm,1)

if (Cm(i,9)==1)

Bins(end+1,1)=Cm(i,8);

for j=1:size(Cm,1)

if (Cm(j,8)==Cm(i,8))

Bins(end,3) = Bins(end,3) + 1;

end

end

end

end

Bins = Bins(2:end,:);

%sum of st.wts from N for each bin

for i=1:size(Bins,1)

for j=1:size(Nm,1)

if(Bins(i,1)==Nm(j,8))

Bins(i,2) = Bins(i,2)+Nm(j,7);

end



48

end

end

%Assign st.wt. to C using by matchin bin# with Bins table

for i=1:size(Cm,1)

for j=1:size(Bins,1)

if (Cm(i,8)==Bins(j,1))

Cm(i,7)=Bins(j,2)/Bins(j,3);

end

end

end

% percentiles {1,2,3=Nm[ht,wt,bmi], 4,5,6=Cm[ht,wt,bmi],

% 7,8,9=error[ht,wt,bmi]}

for i=1:3

pl(:,i)=wprctile(Nm(:,i),1:99,Nm(:,7));

pl(:,i+3)=wprctile(Cm(:,i),1:99,Cm(:,7));

pl(:,i+6) = abs( pl(:,i)-pl(:,i+3) );

end

% error [i=1:10000; j=mean,sd,max; k=ht,wt,bmi]

for i=1:3

error(m,1,i) = mean( pl(:,i+6) );

error(m,2,i) = std( pl(:,i+6) );

error(m,3,i) = max( pl(:,i+6) );

end

end

% results for graph [k=1:20; j=mean,std,max; i=ht,wt,bmi]

for i=1:3

for j=1:3

%res(k,j,i) = mean( error(:,j,i) );

tempres(j,i) = mean ( error(:,j,i) );

end

end

resNew = table (k,tempres(1,1),tempres(1,2),tempres(1,3),

tempres(2,1),tempres(2,2),tempres(2,3),

tempres(3,1),tempres(3,2),tempres(3,3));

res=[res;resNew];

k

end

toc
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A.4 MATLAB script to reweight data

using Harrison method

load Nm1114_AF.txt

%[Cm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age +7=st.wt 8=bin#HtWt

%9=bin#age]

load Nf1114_AF.txt

load Cm_EthSexAge.txt

load Cw_EthSexAge.txt

pl=zeros(99,9);

error=zeros(3,3);

Nm = vertcat(Nm1114_AF,Nf1114_AF);

Cm = vertcat(Cm_EthSexAge,Cw_EthSexAge);

Nm(:,1) = Nm(:,1)*10;

Nm(:,3) = Nm(:,2)./((Nm(:,1)/1000).*(Nm(:,1)/1000));

Cm(:,3) = Cm(:,2)./((Cm(:,1)/1000).*(Cm(:,1)/1000));

for i=1:3

pl(:,i)=wprctile(Nm(:,i),1:99,Nm(:,7));

end

for i=1:size(Nm,1)

if (Nm(i,1)>=pl(28,1) && Nm(i,1)<=pl(72,1) && Nm(i,2)>=pl(28,2)

&& Nm(i,2)<=pl(72,2))

Nm(i,8)=5;

elseif (Nm(i,1)<=pl(50,1) && Nm(i,2)>=pl(50,2))

Nm(i,8)=1;

elseif (Nm(i,1)>=pl(50,1) && Nm(i,2)>=pl(50,2))

Nm(i,8)=2;

elseif (Nm(i,1)<=pl(50,1) && Nm(i,2)<=pl(50,2))

Nm(i,8)=3;

elseif (Nm(i,1)>=pl(50,1) && Nm(i,2)<=pl(50,2))

Nm(i,8)=4;

end

if (Nm(i,4)~=1 && Nm(i,4)~=2)

Nm(i,4)=3;

end

if (Nm(i,6)>=18 && Nm(i,6)<=29)

Nm(i,9)=1;

elseif (Nm(i,6)>=30 && Nm(i,6)<=44)

Nm(i,9)=2;

elseif (Nm(i,6)>=45 && Nm(i,6)<=65)
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Nm(i,9)=3;

end

end

for i=1:size(Cm,1)

if (Cm(i,1)>=pl(28,1) && Cm(i,1)<=pl(72,1) && Cm(i,2)>=pl(28,2)

&& Cm(i,2)<=pl(72,2))

Cm(i,8)=5;

elseif (Cm(i,1)<=pl(50,1) && Cm(i,2)>=pl(50,2))

Cm(i,8)=1;

elseif (Cm(i,1)>=pl(50,1) && Cm(i,2)>=pl(50,2))

Cm(i,8)=2;

elseif (Cm(i,1)<=pl(50,1) && Cm(i,2)<=pl(50,2))

Cm(i,8)=3;

elseif (Cm(i,1)>=pl(50,1) && Cm(i,2)<=pl(50,2))

Cm(i,8)=4;

end

if (Cm(i,6)>=18 && Cm(i,6)<=29)

Cm(i,9)=1;

elseif (Cm(i,6)>=30 && Cm(i,6)<=44)

Cm(i,9)=2;

elseif (Cm(i,6)>=45 && Cm(i,6)<=65)

Cm(i,9)=3;

end

end

%Table of Bins(HtWt1-5,gender1-2,ethnic1-3,age1-3,

%1=#Nm|2=sum(NmStWt)|3=#Cm)

Bins=zeros(5,2,3,3,3);

for i=1:size(Nm,1)

Bins(Nm(i,8),Nm(i,5),Nm(i,4),Nm(i,9),1)

=Bins(Nm(i,8),Nm(i,5),Nm(i,4),Nm(i,9),1)+1;

Bins(Nm(i,8),Nm(i,5),Nm(i,4),Nm(i,9),2)

=Bins(Nm(i,8),Nm(i,5),Nm(i,4),Nm(i,9),2)+Nm(i,7);

end

for i=1:size(Cm,1)

Bins(Cm(i,8),Cm(i,5),Cm(i,4),Cm(i,9),3)

=Bins(Cm(i,8),Cm(i,5),Cm(i,4),Cm(i,9),3)+1;

end

for i=1:size(Cm,1)
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Cm(i,7) = Bins(Cm(i,8),Cm(i,5),Cm(i,4),Cm(i,9),2)

/ Bins(Cm(i,8),Cm(i,5),Cm(i,4),Cm(i,9),3);

end

csvwrite(’CWtAF.csv’,Cm)

csvwrite(’NWtAF.csv’,Nm)

A.5 MATLAB script to reweight data

using Hudson method

%[Nm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age 7=st.wt], ages 18-65

load Nm1114_Hudson.txt

%[Cm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age +7=st.wt], ages 18-65

Nm11=Nm1114_Hudson;

load Nf1114_Hudson.txt

Nf11=Nf1114_Hudson;

load Cm_EthSexAge.txt

load Cw_EthSexAge.txt

pl=zeros(99,9);

error=zeros(3,3);

count=1;

%53 to 81 inches height, for the screening based on

%corresponding weight limit for each inch value of height

for i=53:81

HtWt(count,1)=i;

mx=0;

for j=1:size(Nm11,1)

if (round(Nm11(j,1)/2.54)==i)

if (Nm11(j,2)>mx)

mx=Nm11(j,2);

end

end

end

HtWt(count,2)=mx;

mx=0;

for j=1:size(Nf11,1)

if (round(Nf11(j,1)/2.54)==i)

if (Nf11(j,2)>mx)
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mx=Nf11(j,2);

end

end

end

HtWt(count,3)=mx;

count=count+1;

end

males=0;

count=1;

for i=1:size(Cm_EthSexAge,1)

for j=1:size(HtWt,1)

if (round(Cm_EthSexAge(i,1)/25.4)==HtWt(j,1))

if (Cm_EthSexAge(i,2) < (4.54+HtWt(j,2)))

males(count)=i;

count=count+1;

end

end

end

end

females=0;

count=1;

for i=1:size(Cw_EthSexAge,1)

for j=1:size(HtWt,1)

if (round(Cw_EthSexAge(i,1)/25.4)==HtWt(j,1))

if (Cw_EthSexAge(i,2) < (4.54+HtWt(j,3)))

females(count)=i;

count=count+1;

end

end

end

end

Nm = vertcat(Nm11,Nf11);

Cm = vertcat(Cm_EthSexAge(males,:),Cw_EthSexAge(females,:));

Nm(:,1) = Nm(:,1)*10;

Nm(:,3) = Nm(:,2)./((Nm(:,1)/1000).*(Nm(:,1)/1000));

Cm(:,3) = Cm(:,2)./((Cm(:,1)/1000).*(Cm(:,1)/1000));

%Table of Bins(gender1-2,ethnic1-3,

%1=#Nm|2=sum(NmStWt)|3=#Cm)

Bins=zeros(2,3,3);
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for i=1:size(Nm,1)

Bins(Nm(i,5),Nm(i,4),1)=Bins(Nm(i,5),Nm(i,4),1)+1;

Bins(Nm(i,5),Nm(i,4),2)=Bins(Nm(i,5),Nm(i,4),2)+Nm(i,7);

end

for i=1:size(Cm,1)

Bins(Cm(i,5),Cm(i,4),3)=Bins(Cm(i,5),Cm(i,4),3)+1;

end

for i=1:size(Cm,1)

Cm(i,7)=Bins(Cm(i,5),Cm(i,4),2) / Bins(Cm(i,5),Cm(i,4),3);

end

csvwrite(’CWtHudson.csv’,Cm)

csvwrite(’NWtAF.csv’,Nm)

A.6 MATLAB script to reweight data

using Paquette method

load Nm1114_Paquette.txt

%[Cm 1=ht 2=wt 3=bmi 4=ethnic 5=gender 6=age +7=st.wt 8=bin#HtWt 9=bin#age]

Nm11=Nm1114_Paquette;

load Nf1114_Paquette.txt

Nf11=Nf1114_Paquette;

load Cm_EthSexAge.txt

load Cw_EthSexAge.txt

pl=zeros(99,9);

error=zeros(3,3);

Nm = vertcat(Nm11,Nf11);

Cm = vertcat(Cm_EthSexAge,Cw_EthSexAge);

Nm(:,1) = Nm(:,1)*10;

Nm(:,3) = Nm(:,2)./((Nm(:,1)/1000).*(Nm(:,1)/1000));

Cm(:,3) = Cm(:,2)./((Cm(:,1)/1000).*(Cm(:,1)/1000));

for i=1:3

pl(:,i)=wprctile(Nm(:,i),1:99,Nm(:,7));

end

for i=1:size(Nm,1)

if (Nm(i,6)<=20)
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Nm(i,9)=1;

elseif (Nm(i,6)>=21 && Nm(i,6)<=25)

Nm(i,9)=2;

elseif (Nm(i,6)>=26 && Nm(i,6)<=35)

Nm(i,9)=3;

else

Nm(i,9)=4;

end

end

for i=1:size(Cm,1)

if (Cm(i,6)<=20)

Cm(i,9)=1;

elseif (Cm(i,6)>=21 && Cm(i,6)<=25)

Cm(i,9)=2;

elseif (Cm(i,6)>=26 && Cm(i,6)<=35)

Cm(i,9)=3;

else

Cm(i,9)=4;

end

end

%Table of Bins(gender1-2,ethnic1-4,age1-4,

%1=#Nm|2=sum(NmStWt)|3=#Cm)

Bins=zeros(2,4,4,3);

for i=1:size(Nm,1)

Bins(Nm(i,5),Nm(i,4),Nm(i,9),1)=Bins(Nm(i,5),Nm(i,4),Nm(i,9),1)+1;

Bins(Nm(i,5),Nm(i,4),Nm(i,9),2)

=Bins(Nm(i,5),Nm(i,4),Nm(i,9),2)+Nm(i,7);

end

for i=1:size(Cm,1)

Bins(Cm(i,5),Cm(i,4),Cm(i,9),3)=Bins(Cm(i,5),Cm(i,4),Cm(i,9),3)+1;

end

for i=1:size(Cm,1)

Cm(i,7)=Bins(Cm(i,5),Cm(i,4),Cm(i,9),2) / Bins(Cm(i,5),Cm(i,4),Cm(i,9),3);

end

csvwrite(’CWtPaquette.csv’,Cm)

csvwrite(’NWtAF.csv’,Nm)
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A.7 MATLAB script to find effect of increasing number of

bins on reweighting data

tic

load Nm1114.txt

load Cm.txt

Nm1114(:,4)=Nm1114(:,7);

Nm=Nm1114(:,1:4);

%Convert cm to mm

Nm(:,1)=Nm(:,1)*10;

%Set max number of bins on each axis here

maxBins=10;

%These will be partitions for the 10 bins each along stature and mass axes

%1st value will be min(Nm)-some value, last will be max(Nm)+some value,

%-in between are percentiles

plSt=zeros(maxBins+1,1);

plMs=zeros(maxBins+1,1);

plSt(1)=min(Nm(:,1))-30;

plMs(1)=min(Nm(:,2))-3;

pl=zeros(99,9); %martix to store percentile values for results

%-matrix to store error’s mean, sd, max

%error(binningdivisions, mean/sd/max, stature/mass/bmi

error=zeros(maxBins-1,3,3);

%This variable=0 if there are no bins in the end which didnt have at least

%-1 Nm and 1 Cm

invalid=zeros(maxBins-1,1);

%To record the number valid bins after merging, in each case

realBins=zeros(maxBins-1,1);

%Find the value of these partitions based on wtd percentiles

for i=1:(maxBins-1)

for j=1:i

plSt(j+1)=wprctile(Nm(:,1),j*(100/(i+1)),Nm(:,4));

plMs(j+1)=wprctile(Nm(:,2),j*(100/(i+1)),Nm(:,4));

end

%Making last value as maximum

plSt(i+2)=max(Nm(:,1))+30;

plMs(i+2)=max(Nm(:,2))+3;

%Decalre matrix to store no. of Nm (1st col), no. of Cm (2nd col) in

%each bin

%(stBin, msBin, 1-Sum of Nm wts & 2-No. of Nm & 3- No. of Cm in bin
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% & 4-Bin no. & 5-Nth copy)

bins=zeros(i+1,i+1,5);

%Number these bins

for j=1:i+1

for k=1:i+1

bins(j,k,4)=((j-1)*(i+1))+k;

end

end

%Assinging bin numbers to all data in two parts statureBin and massBin

for j=1:size(Nm,1)

for stBin=1:i+1

for msBin=1:i+1

if( Nm(j,1)>plSt(stBin) && Nm(j,1)<=plSt(stBin+1)

&& Nm(j,2)>plMs(msBin) && Nm(j,2)<=plMs(msBin+1) )

Nm(j,5)=stBin;

Nm(j,6)=msBin;

%Add to sum of Nm weights in each bin

bins(stBin,msBin,1)=bins(stBin,msBin,1)+Nm(j,4);

%Add to no. of Nm weights in each bin

bins(stBin,msBin,2)=bins(stBin,msBin,2)+1;

end

end

end

end

for j=1:size(Cm,1)

for stBin=1:i+1

for msBin=1:i+1

if( Cm(j,1)>plSt(stBin) && Cm(j,1)<=plSt(stBin+1)

&& Cm(j,2)>plMs(msBin) && Cm(j,2)<=plMs(msBin+1) )

Cm(j,5)=stBin;

Cm(j,6)=msBin;

%Add to no. of Cm weights in each bin

bins(stBin,msBin,3)=bins(stBin,msBin,3)+1;

end

end

end

end

%Check for bins which do not have at least 1 Nm and 1 Cm

%These bins should be merged with nearby bin which has 1 Nm and 1 Cm

%Loop it so that finally all bins will have 1 Nm and 1 Cm
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for j=1:10

for stBin=1:i+1

for msBin=1:i+1

if (bins(stBin,msBin,2)==0 || bins(stBin,msBin,3)==0)

%invalid(i)=invalid(i)+1;

for stepSt=[stBin,stBin-1,stBin+1]

for stepMs=[msBin,msBin-1,msBin+1]

if (stepSt==0 || stepSt==i+2)

stepSt=stBin;

end

if (stepMs==0 || stepMs==i+2)

stepMs=msBin;

end

if ( bins(stBin,msBin,5)==0

|| (bins(stBin,msBin,5)-1)

>bins(stepSt,stepMs,5))

if ((bins(stBin,msBin,2)

+bins(stepSt,stepMs,2))>0

&&(bins(stBin,msBin,3)

+bins(stepSt,stepMs,3))>0)

bins(stBin,msBin,4)

=bins(stepSt,stepMs,4);

bins(stBin,msBin,5)

=bins(stepSt,stepMs,5)+1;

for k=1:3

bins(stBin,msBin,k)

=bins(stBin,msBin,k)

+bins(stepSt,stepMs,k);

bins(stepSt,stepMs,k)

=bins(stBin,msBin,k);

end

end

end

end

end

end

end

end

end

%Check no. of bins still without at least 1 Nm and 1 Cm
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for stBin=1:i+1

for msBin=1:i+1

if (bins(stBin,msBin,2)==0 || bins(stBin,msBin,3)==0)

invalid(i)=invalid(i)+1;

end

end

end

%Distributing total wt of each bin among its Cm’s

for j=1:size(Cm,1)

if ( Cm(j,5)*Cm(j,6) > 0 )

Cm(j,4) = bins( Cm(j,5),Cm(j,6),1 ) / bins( Cm(j,5),Cm(j,6),3 );

end

end

% percentiles {1,2,3=Nm[ht,wt,bmi], 4,5,6=Cm[ht,wt,bmi],

% 7,8,9=error[ht,wt,bmi]}

for j=1:3

pl(:,j)=wprctile(Nm(:,j),1:99,Nm(:,4));

pl(:,j+3)=wprctile(Cm(:,j),1:99,Cm(:,4));

pl(:,j+6) = abs( pl(:,j)-pl(:,j+3) );

end

for j=1:3

error(i,1,j) = mean( pl(:,j+6) );

error(i,2,j) = std( pl(:,j+6) );

error(i,3,j) = max( pl(:,j+6) );

end

realBins(i)=size(unique(bins(:,:,4)),1);

end

toc

% Plot and save graphs

x=realBins(:,1);

for i=1:3

yMean=error(:,1,i);

ySD=error(:,2,i);

yMax=error(:,3,i);

figure;

%plot(x,yMean,’-’,x,ySD,’-’);

plot(x,yMax,’-r’);

xlabel(’Number of bins’);

switch i

case 1
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texti = ’Height’;

case 2

texti = ’Mass’;

case 3

texti = ’BMI’;

end

ylabel(texti);

textname=[’/Users/openlab/Documents/Box Sync/Documents/Matt/BinNumbers

/Graphs/Max’,texti,’Bins.pdf’];

saveas(gcf,textname,’pdf’);

close(gcf)

end
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