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Abstract

This dissertation concentrates on chance constrained optimization problems and their
application in systems and control area. In chance optimization problems, we aim
at maximizing the probability of a set defined by polynomial inequalities involving
decision and uncertain parameters. These problems are, in general, nonconvex and
computationally hard. With the objective of developing systematic numerical proce-
dures to solve such problems, a sequence of convex relaxations based on the theory
of measures and moments is provided, whose sequence of optimal values is shown to
converge to the optimal value of the original problem. Indeed, we provide a sequence
of semidefinite programs of increasing dimension which can arbitrarily approximate
the solution of the original problem. In addition, we apply obtained results on chance
optimization problems to challenging problems in the area of systems, control and
data science. We consider the problem of probabilistic control of uncertain systems
to ensure that the probability of defined failure/success is minimized/maximized. In
particular, we consider the probabilistic robust control and chance constrained model
predictive control problems. We also use the obtained results to analysis of stochastic
and deterministic systems. More precisely, we address the problem of uncertainty set
propagation and computing invariant robust set for uncertain systems and problem
of computing region of attraction set for deterministic systems. In the problem of
uncertainty propagation, we propagate the set of initial sets through uncertain dy-
namical systems and find the uncertainty set of states of the system for given time
step. In the problem of region of attraction and invariant robust set, we aim at
finding the largest set of all initial states whose trajectories converge to the origin.
Moreover, we present the problem of corrupted and sparse data reconstruction where
we want to complete the data with least possible complexity. In this thesis, to be
able to efficiently solve the resulting large-scale problems, a first-order augmented
Lagrangian algorithm is also implemented. Numerical examples are presented to
illustrate the computational performance of the proposed approach.
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Chapter 1
Introduction

The work presented in this thesis addresses the risk bounded control and planning

problems. In uncertain environments and systems, not only we need to specify

the desired behavior and control objectives, but also the level of risk that we are

willing to accept. In such environments, achieving predefined control objectives for

all possible uncertainties results in conservative approaches. Instead of achieving

control objectives for all possible scenarios, we aim at increasing the probability of

achieving these predefined goals. For this purpose, we use a probabilistic approach

to represent uncertainty and risk and introduce chance constrained optimization

problems. In chance constrained optimization problem, we aim at minimizing the

probability of failure or, on the other hand, maximizing the probability of success.

Probability of success and failure are defined in terms of constraints involving decision

and uncertain parameters with known probability distributions.

The potential application area of this problem class is quite large and encom-

passes many well-known problems in different areas as special cases. For example,

designing probabilistic robust controllers, model predictive controllers in the presence

of random disturbances, and optimal path planning and obstacle avoidance problems

in robotics can be cast as special cases of this framework. Moreover, problems in

the areas of economics, finance, and trust design can also be formulated as chance

optimization problems. These problems are, in general, nonconvex and computa-

tionally hard. In this thesis, with the objective of developing systematic numerical

procedures to solve such problems, a sequence of convex relaxations based on the

theory of measures and moments is provided, whose sequence of optimal values is
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shown to converge to the optimal value of the original problem. Indeed, we provide

a sequence of semidefinite programs of increasing dimension which can arbitrarily

approximate the solution of the original problem.

We apply obtained results on chance optimization problem to design probabilis-

tic robust controllers for uncertain dynamical systems. Probabilistic control formula-

tions are used in different areas to deal with uncertain systems in order to ensure that

the probability of failure/success is minimized/maximized. For example, minimizing

probability of obstacle collision in motion planning of robotic systems under environ-

ment uncertainty can be formulated as instances of probabilistic control problems.

In this thesis, we provide results aimed at designing robust controllers that maxi-

mize the probability of reaching a given target set. More precisely, we start with an

uncertain polynomial system subjected to external perturbations for which we know

the probability distribution of the initial state, the uncertainty and the disturbances.

Then, given a target set defined by polynomial inequalities and number of steps N,

we provide algorithms for designing a nonlinear state feedback control law that i)

makes the target set a robustly invariant set and ii) maximizes the probability of

reaching the target set in N steps.

Also, we provide chance constrained model predictive control problems whose

objective is to obtain finite-horizon optimal control of dynamical systems subject

to probabilistic constraints. The control laws provided are designed to have precise

bounds on the probability of achieving the desired objectives. More precisely, con-

sider a polynomial dynamical system subject to external perturbation and assume

that the probability distribution of the disturbances at each time is known. Then,

given a desired set defined by polynomial inequalities and a polynomial cost function

defined in terms of states and control input of the system, we aim at designing a

controller to i) minimize the expected value of given cost function over the finite

horizon and ii) reach the given desired set with high probability. For this purpose,

at each sampling time we solve a convex optimization problem that minimizes the

expected value of cost function subject to probabilistic constraints over the finite

horizon.

We also, address the problem of uncertainty propagation through dynamical sys-

tems where the aim is to find uncertainty set of states of the system for given time.

This set can be employed for analysis of uncertain systems and robust control pur-
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poses.

Moreover, we generalize the obtained results on chance constrained problem and

introduce constrained semialgebraic volume optimization problem. This framework

enables us to find a convex equivalent problem for different problems with deter-

ministic or probabilistic nature. In this problem, we aim at maximizing the volume

of a semialgebraic set under some semialgebraic constraints. We show that many

well-known problems can be formulated as a constrained volume optimization prob-

lem. In particular, we address the problem of computing region of attraction set and

maximal invariant set for uncertain systems.

At the end, we show the application of convex methods in data science and

address the problem of reconstructing noisy sparse data. In this problem, we aim at

finding the missing part of given data with least possible complexity. This problem

arises in different areas like sensory networks, where the sensors do not completely

cover the area of interest; Hence, the sampled data are usually inadequate. Moreover,

reconstruction of corrupted image or videos can can be cast in this framework. In

this thesis, we propose a Hankel based approach to address this problem, where the

data is completed such that the number of exponential signals that can describe the

data, becomes minimum.

1.1 Classical Methods of Chance Optimization and

Control

Several approaches have been proposed to solve chance constrained problems. The

main idea behind most of the proposed methods is to find a tractable approximation

for chance constraints. One particular method is the so-called scenario approach;

see [1, 2, 3, 4, 5] and the references therein. In this approach, the probabilistic

constraint is replaced by a (large) number of deterministic constraints obtained by

drawing independent identically distributed (iid) samples of random parameters. Be-

ing a randomized approach, there is always a positive probability of failure (perhaps

small). In [6, 7, 8, 9, 10], robust optimization is used to deal with uncertain linear

programs (LP). In this method, the uncertain LP is replaced by its robust counter-

part, where the worst case realization of uncertain data is considered. The proposed
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method is not computationally tractable for every type of uncertainty set. A specific

case that is tractable is LP with ellipsoidal uncertainty set [10]. In [11, 12, 13], an al-

ternative approach is proposed where one analytically determines an upper bound on

the probability of constraint violation. Although this method does provide a convex

approximation, it can only be applied to specific uncertainty structures. In [14, 15]

the authors propose the so-called Bernstein approximation where a convex conserva-

tive approximation of chance constraints is constructed using generating functions.

Although approximation is efficiently computable, it is only applicable to problems

with convex constraints that are affine in random vector q ∈ Rm. Moreover, compo-

nents of q need to be independent and have computable finite generating functions.

In [16, 17, 18] convex relaxations of chance constrained problems are presented. The

concept of polynomial kinship function is used to estimate an upper bound on the

probability of constraint violation. Solutions to a sequence of relaxed problems are

shown to converge to a solution of the original problem as the degree of the polyno-

mial kinship function increases along the sequence. In [18, 19], an equivalent convex

formulation is provided based on the theory of moments. In this method the prob-

ability of a polynomial being negative is approximated by computing polynomial

approximations for univariate indicator functions [19].

Distributionally robust chance constrained programming – (see [20, 21, 22, 23,

24]), is another popular tool for dealing with uncertainty in the problem, where

only a finite number of moments mα of the underlying measure µ̄q are assumed

to be known, i.e., {mα}α∈A is known for A ⊂ Nm such that |A| < ∞. In this

approach robust chance constraints are formulated by considering the worst case

measure within a family of measures with moments equal to {mα}α∈A. However,

proposed methods in this literature are mainly limited to linear chance constraints

and/or to specific types of uncertainty distributions. For instance, in [20], under

the assumption m̄ = Eµ̄q [q] and S̄ = Eµ̄q [(q − m̄)(q − m̄)T ] are known, the linear

chance constraint of the form µ̄q
(
{q : qTx ≥ 0}

)
≥ 1 − ε is replaced by its robust

counterpart: infµq∈M µq
(
{q : qTx ≥ 0}

)
≥ 1− ε, where M is the set of finite (pos-

itive) Borel measures on Σ̄q with their means and covariances equal to m̄ and S̄,

respectively; and it is shown that these robust constraints can be represented as

second-order cone constraints for a wide class of probability distributions. In [21],

the authors has reviewed and developed different approximation methods for prob-
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lems with joint chance constraints. In the proposed method, joint chance constraints

are decomposed into individual chance constraints, and classical robust optimization

approximation is used to deal with the new constraints. In [22] a tractable approxi-

mation method for probabilistically dependent linear chance constraints is presented.

In [23] linear chance constraints with Gaussian and log-concave uncertainties are ad-

dressed, and it is shown that they can be reformulated as semi-infinite optimization

problems; moreover, tight probabilistic bounds are provided for the resulting compre-

hensive robust optimization problems [25, 26]. In [24] an SDP formulation is provided

to approximate distributionally robust chance constraints where only the support of

µ̄q, and its first and second order moments are known.

Probabilistic control methods are used in different areas to deal with uncertain

systems in order to ensure that the probability of defined failure/success is mini-

mized/maximized. Several approaches have been proposed to involve statistics of

uncertainty in control procedure of uncertain systems. The main approaches are (i)

adding probabilistic constraints on states and inputs of system (e.g., see [27, 28]), (ii)

minimizing the expected value of the objective function (e.g., see [27, 28]). The main

problem in the formulation of chance constrained control is the efficient evaluation of

the probabilistic constraints. Hence, several approaches have been proposed to pro-

vide tractable approximations of the chance constraints involved in a probabilistic

control design problem. One of such methods is the so-called randomized approach;

see [28, 28, 29, 30, 31] and references therein. In this case, the probabilistic constraint

is replaced by a (large) number of deterministic constraints obtained by drawing iid

samples of the random parameters. Being a randomized approach, there is always a

(perhaps small) probability of failure of the algorithm. In [32, 33, 34, 35, 36, 37], an

alternative approach is proposed where one analytically determines an upper bound

on the probability of constraint violation. In [37] expected value of uncertain objec-

tive function is proposed using the notion of particles. It tries to approximate the

distribution of the system state using a finite number of particles.

Probabilistic formulations of model predictive control can be used in different

areas to deal with systems subject to disturbances. The MPC method is an optimal

control based method, which a finite cost function is optimized at every sampling

time under imposed constraints. At each sampling time, MPC needs to predict

the future states of the system over the finite horizon using the dynamic of the
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system. To deal with uncertain parameters of the system and disturbance, several

approaches have been proposed. In ([38, 39]), robust MPC for linear and polynomial

systems are proposed where robust constraints are employed. In this method, MPC

is formulated considering the a bundle of trajectories for all possible realizations of

the uncertainty. The robust MPC methods are conservative, due to the requirement

of robust feasibility for all disturbance realizations. In ([40, 41, 42, 43, 44]), adaptive

MPC are provided where neural networks are used to predict the future behavior of

the system. Using the online training algorithm, robustness against changes in the

robot parameters is obtained. In ([36, 45, 14]), to deal with model uncertainty the

probabilistic constraints are used. In ([36, 45]) probabilistic constraints for linear

systems are replaced with hard constrained assuming the Gaussian distribution for

uncertainty. In [14], a semialgabriac approximation of the probabilistic constraints

are obtained.

In dynamical systems with uncertain parameters and initial states, the states of

the system at each time are uncertain. This uncertainty set is a result of propaga-

tion of initial states set through uncertain dynamical system. Computing this set

of uncertainty for states of system could be used for analysis and robust control of

uncertain systems. This set can be obtained using the information of the probabil-

ity distribution of system states when probabilistic representation of uncertainty is

considered. More precisely, to compute such set of uncertainty one needs to recon-

struct the support of probability distribution of system states. Several approaches

have been proposed to construct the support from the moments information. In

[46] an approach to exact reconstruction of convex polytope supports is proposed,

which is based on the collection of moment formulas combined with Vandermonde

factorization of finite rank Hankel matrices. In [47], a method to reconstruct planar

semi-analytic domains from their moments is proposed based on the diagonal Pade

approximation where it can approximate arbitrarily closely any bounded domain.

The approach in [48] provides a method to obtain a polynomial that vanishes on the

boundary of support. However, obtained polynomial may vanish inside the support

or on any other points as well. Hence, one can not use the polynomial to reconstruct

the support.

In this thesis, we extend the results obtained for chance optimization and develop

a framework that enables us to find convex formulation for well known problems in
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system and control. Building on theory of measures and moments as well as theory

of sum of squares polynomials, many approaches have been proposed to reformulate

different problems in the area of control and system as a convex optimization prob-

lems with Linear Matrix Inequalities (LMI). The methods in ([49, 50, 51]), provide

hierarchy of finite dimensional LMI relaxations to compute polynomial outer ap-

proximation of the region of attraction set and maximum controlled invariant set for

polynomial systems. The concept of occupation measure is used to reformulate the

original problem to truncated moment problem. It is shown that the optimal value

of the provided LMI converges to the volume of desired sets and on the other hand

the optimal value of the dual problem in continuous function space converges to the

polynomial outer approximation of the set. This proposed method is modified in [50]

to obtain a inner approximation for region of attraction set for finite time-horizon

polynomial systems. In this case, outer approximations of complement of region of

attraction set is computed. In ([52, 53]) sum of square formulation to find a suitable

Lyapunov function for dynamical system and approximation of region of attraction

set is provided. In provided approach, one needs to look for SOS Lyapunov function

whose negative derivative is also SOS. Also, a repetitive control design approach is

provided where enables to maximize the ROA set of the system.

We also show the application of convex methods in data science and address

the problem of reconstructing noisy sparse data. This problem could arise in data

networks [54, 55] and sensory networks. For example, incomplete sensory networks,

where the sensors do not completely cover the area of interest; Hence, the sampled

data are usually inadequate. Moreover, reconstruction of corrupted image or videos

can can be cast in this framework. Several approaches to construct the data from

spars measurement have been proposed. The main idea in the most of proposed

methods is to use interpolation methods to setup an approximating statistical model

for measured data. For example, the methods K-Nearest Neighbors [56] is a lo-

cal interpolation method that uses the nearest neighbors to estimated the missing

data. It uses Bayes decision procedure to estimated the missing data and bound

the probability of error. This approach does not depend on any assumptions about

the underlying statistics for its application. On the other hand, the Delaunay Tri-

angulation [57] method is a global interpolation methods that use vertices of data

and consider the global error in interpolation. In [58] a data adaptive method called
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Multi-channel Singular Spectrum Analysis (MSSA) is proposed which works based

on the embedded lag-covariance matrix of measured data.

These proposed interpolation methods needs large number of measurements and

fail when the number of missing data grow. To solve this problem, a method called

compressed sensing [59] is proposed. In this method the number of measurements

can be dramatically smaller than size of missing data. This method uses the weighted

linear combination of samples to reconstruct the data. Using the randomly selected

samples, a underdetermined linear system is built whose solution is used to construct

the data. In solving linear system, the assumption of sparsity for the initial signal is

made. However, for accurate environment reconstruction, this method requires some

inherent structure [60, 61]. The sampling matrices constructed by measurement sam-

ples are required to satisfy certain conditions, for example the mutual coherence of

matrices should have a small mutual coherence, the largest absolute and normalized

inner product between different columns in matrix. Actually, the optimal matrices

where the CS algorithm performs well are Gaussian iid matrices, uniform random

ortho-projectors, or Bernoulli matrices.

In [62, 63, 64] the proposed methods seeks low-rank structure for estimating the

missing data. [62] proposes a approach based on compressed sensing to reconstruct

the massive missing data. It develops an environmental space time improved com-

pressed sensing (ESTICS) algorithm for estimating the missing data, where it com-

putes low-rank approximations of the incomplete matrix called environment matrix.

In [63, 64] a Hankel operator based approach to the problems of texture modeling and

in-painting is proposed. It models textured images as the output of an unknown,

periodic, linear shift invariant operator in response to a suitable input and solves

sequence of rank minimization problems.

1.2 Contributions

In this thesis, we take a different approach to deal with chance constrained prob-

lems [65, 66]. The proposed method is based on volume approximation results in

[67] and the theory of measures and moments [68, 69]. In [67], a hierarchy of SDP

problems is proposed to compute the volume of a given compact semialgebraic set.

It is shown that the volume of a semialgebraic set can be computed by solving a
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maximization problem over finite (positive) Borel measures supported on the given

set, and restricted by the Lebesgue measure on a simple set containing the semi-

algebraic set of interest. Building on volume approximation results, we propose a

convex approximation method to address chance optimization problems over semi-

algebraic sets. In particular, we address the problem of probability maximization

over the union of semialgebraic sets defined by intersections of a finite number of

polynomial inequalities. Here, one needs to search for the (positive) Borel measure

with maximum possible mass on the given semialgebraic set while simultaneously

searching for an upper bound probability measure over a simple set containing the

semialgebraic set and restricting the Borel measure. Using the theory of moments,

we provide sequence of semidefinite programs (SDP’s) where one need to look for

moment sequences of measures of chance optimization problem. To solve resulted

SDP’s, a first-order augmented Lagrangian algorithm is implemented that enables

us to solve large scale chance optimization problems.

To show the application of chance optimization problems in control and systems,

we consider probabilistic control of uncertain systems [70, 71]. In the problem of

probabilistic control, we incorporate the probability directly in the objective function

and aim at maximizing the probability of desired defined control objectives. We, also,

consider the problem of uncertainty set propagation through stochastic dynamical

systems where enables us to compute uncertainty at each time step. Building on

theory of measures and moment, we provide semidefinite program to approximate

the set of uncertainty [72].

Moreover, we generalize the results obtained for chance optimization problems

and define constrained volume optimization problems where enables us to obtain

convex formulation of different challenging problems in system and control [73]. We

reformulate problems of computing region of attraction and invariant set of dynamical

systems as a particular case of constrained volume optimization problems.

Finally, we address the problem of data reconstruction and motivated by low-rank

structure methods, we propose a novel approach to reconstruct a noisy sparse data

with least possible complexity. To obtain the complete data, we look for minimum

rank block Hankel matrix associated with given sparse and noisy data. We show that

minimizing the rank of constructed block Hankle matrix is equivalent to minimizing

the number of exponential signals that describes the data. The proposed method,
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with out making any assumption on the structure of data and data loss pattern,

could reconstruct the complete data.

1.3 The Sequel

The outline of this thesis is as follows: in Chapter 2, the notation adopted in the

paper and preliminary results on measure and polynomial theory and also linear and

semidefinite programs are presented; in Chapter 3 we address the chance optimization

problem. We first start with semialgebraic set involving intersection of polynomials

and provide equivalent convex problem in measure and moment spaces. We then

extend the result for more general case with semialgebraic set involving union and

intersection of polynomials. To be able to solve large problems we present First or-

der Lagrangian algorithm in this chapter. In Chapter 4, the problem of probabilistic

robust controller design and also chance constrained model predictive controllers are

addressed. In this chapter, semidefinite programs are provided to solve the original

problems. In Chapter 5, the problem of uncertainty propagation through dynami-

cal systems are presented. In Chapter 6, we introduce the problem of constrained

volume optimization problem and address the problem of computing the region of

attraction and also robust invariant set of uncertain systems as a particular case of

this optimization problem. The problem of noisy and sparse data reconstruction is

presented in Chapter 7 and finally in Chapter 8, we give concluding remarks and

some future direction of this research.



Chapter 2
Preliminary Results on Measures,

Polynomials, and Semidefinite

Programs

In this thesis, building on the theory of measure and moments as well as theory of

polynomials, we develop our semidefinite programs to approximate the optimal so-

lution of the original problems. Hence, in this chapter the mathematical background

and some basic definitions on polynomial and measure theory as well as linear and

semidefinite programming are presented.

2.0.1 Polynomial Functions

Let R[x] be the ring of real polynomials in the variables x ∈ Rn. Given P ∈ R[x],

we represent P as
∑

α∈Nn pαx
α using the standard basis {xα}α∈Nn of R[x], and

p = {pα}α∈Nn denotes the polynomial coefficients. We assume that the elements

of the coefficient vector p = {pα}α∈Nn are sorted according to grevlex order on the

corresponding monomial exponent α. Given n and d in N, we define Sn,d :=
(
d+n
n

)
and Nn

d := {α ∈ Nn : ‖α‖1 ≤ d}. Let Rd[x] ⊂ R[x] denote the set of poly-

nomials of degree at most d ∈ N, which is indeed a vector space of dimension

Sn,d. Similarly to P ∈ R[x], given P ∈ Rd[x], p = {pα}α∈Nn
d

is sorted such that

Nn
d 3 0 = α(1) <g . . . <g α

(Sn,d), where Sn,d is the number of components in p.

Now, consider the following definitions on polynomials.
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Sum of Squares Polynomials: Let S2[x] ⊂ R[x] be the set of sum of squares

(SOS) polynomials. Polynomial s : Rn → R is an SOS polynomial if it can be

written as a sum of finitely many squared polynomials, i.e., s(x) =
∑`

j=1 hj(x)2 for

some ` <∞ and hj ∈ R[x] for 1 ≤ j ≤ `, ([74, 75]).

Quadratic Module: For a given set of polynomials Pj(x) ∈ R[x], j = 1, . . . , `,

the quadratic module generated by these polynomials is denoted byQM(P1, . . . ,P`) ⊂
R[x] and defined as ([69, 74])

QM(P1, . . . ,P`) := s0(x) +
∑̀
j=1

sj(x)Pj, {sj}`j=0 ⊂ S2[x] (2.1)

Putinar’s property: A closed semialgebraic set K = {x ∈ Rn : Pj(x) ≥ 0, j =

1, 2, . . . , ` } defined by polynomials Pj ∈ R[x] satisfies Putinar’s property [76] if

there exists U ∈ R[x] such that {x : U(x) ≥ 0} is compact and U = s0 +
∑`

j=1 sjPj
for some SOS polynomials {sj}`j=0 ⊂ S2[x] – see [76, 69, 77]. Putinar’s property

holds if the level set {x : Pj(x) ≥ 0} is compact for some j, or if all Pj are affine

and K is compact - see [77]. Putinar’s property is not a geometric property of the

semi-algebraic set K, but rather an algebraic property related to the representation

of the set by its defining polynomials. Hence, if there exits M > 0 such that the

polynomial P`+1(x) := M − ‖x‖2 ≥ 0 for all x ∈ K, then the new representation of

the set K = {x ∈ Rn : Pj(x) ≥ 0, j = 1, 2, . . . , ` + 1 } satisfies Putinar’s property,

[66].

Orthogonal Polynomials: A set of polynomials are orthogonal if inner prod-

uct of any two different polynomials is zero, i.e.,
∫
Pn(x)Pm(x)dx = 0, m 6= n.

For example, univariate Chebyshev polynomials, defined as P0(x) = 1,P1(x) =

x,Pn+1(x) = 2xPn(x)− Pn−1(x) are orthogonal.

2.0.2 Measures and Moments

Let M(χ) be the space of finite Borel measures and M+(χ) be the cone of finite

nonnegative Borel measures µ such that supp(µ) ⊂ χ, where supp(µ) denotes the

support of the measure µ; i.e., the smallest closed set that contains all measurable

sets with strictly positive µ measure. Also, let C ⊂ Rn, Σ(C) denotes the Borel σ-

algebra over C. Given two measures µ1 and µ2 on a Borel σ-algebra Σ, the notation
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µ1 4 µ2 means µ1(S) ≤ µ2(S) for any set S ∈ Σ. Moreover, if µ1 and µ2 are both

measures on Borel σ-algebras Σ1 and Σ2, respectively, then µ = µ1 × µ2 denotes

the product measure satisfying µ(S1 × S2) = µ1(S1)µ2(S2) for any measurable sets

S1 ∈ Σ1, S2 ∈ Σ2 [67].

Let RN denote the vector space of real sequences. Given y = {yα}α∈Nn ⊂ RN, let

Ly : R[x]→ R be a linear map defined as ([68, 69])

P 7→ Ly(P) =
∑
α∈Nn

pαyα, where P(x) =
∑
α∈Nn

pαx
α (2.2)

A sequence y = {yα}α∈Nn ∈ RN is said to have a representing measure, if there

exists a finite Borel measure µ on Rn such that yα =
∫
xαdµ for every α ∈ Nn –

see ([68, 69]). In this case, y is called the moment sequence of the measure µ.

Given two square symmetric matrices A and B, the notation A < 0 denotes that

A is positive semidefinite, and A < B stands for A−B being positive semidefinite.

Moment Matrix: Given r ≥ 1 and the sequence {yα}α∈Nn , the moment matrix

Mr(y) ∈ RSn,r×Sn,r , containing all the moments up to order 2r, is a symmetric matrix

and its (i, j)-th entry is defined as follows ([68, 69]):

Mr(y)(i, j) := Ly

(
xα

(i)+α(j)
)

= yα(i)+α(j) (2.3)

where 1 ≤ i, j ≤ Sn,r, Nn
r 3 0 = α(1) <g . . . <g α

(Sn,2r) and Sn,2r is the number

of moments in Rn up to order 2r. Let BTr =
[
xα

(1)
, . . . , xα

(Sn,r)
]T

denote the vector

comprised of the monomial basis of Rr[x]. Note that the moment matrix can be

written as Mr(y) = Ly

(
BrBTr

)
; here, the linear map Ly operates componentwise on

the matrix of polynomials, BrBTr . For instance, let r = 2 and n = 2; the moment
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matrix containing moments up to order 2r is given as

M2 (y) =



y00 | y10 y01| y20 y11 y02

− − − − − −
y10 | y20 y11| y30 y21 y12

y01 | y11 y02| y21 y12 y03

− − − − − −
y20 | y30 y21| y40 y31 y22

y11 | y21 y12| y31 y22 y13

y02 | y12 y03| y22 y13 y04


(2.4)

Localizing Matrix: Given a polynomial P ∈ R[x], let p = {pγ}γ∈Nn be its

coefficient sequence in standard monomial basis, i.e., P(x) =
∑

α∈Nn pαx
α, the (i, j)-

th entry of the localizing matrix Mr(y;P) ∈ RSn,r×Sn,r with respect to y and p is

defined as follows ([68, 69]):

Mr(y;P)(i, j) := Ly

(
Pxα(i)+α(j)

)
=
∑
γ∈Nn

pγyγ+α(i)+α(j) (2.5)

where, 1 ≤ i, j ≤ Sn,d. Equivalently, Mr(y,P) = Ly

(
PBrBTr

)
, where Ly operates

componentwise on PBrBTr . For example, given y = {yα}α∈N2 and the coefficient

sequence p = {pα}α∈N2 corresponding to polynomial P ,

P(x1, x2) = bx1 − cx2
2, (2.6)

the localizing matrix for r = 1 is formed as follows

M1(y;P) =

 by10 − cy02 by20 − cy12 by11 − cy03

by20 − cy12 by30 − cy22 by21 − cy13

by11 − cy03 by21 − cy13 by12 − cy04

 (2.7)

Orthogonal Basis: One can represent the moment and localization matrices

in terms of given orthogonal basis. Let {bi}i∈N be an orthogonal basis of univariate

polynomials on [−1, 1], i.e.,
∫

[−1,1]
bi(t)bj(t) dt = 0 for all i 6= j. Without loss of

generality, suppose that the degree of bi is equal to i for all i ∈ N. Given n ≥ 1, for

all α ∈ Nn, define bα : Rn → R such that bα(x) :=
∏n

i=1 bαi(xi), where αi and xi are
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the i-th components of α ∈ Nn and x ∈ Rn, respectively. Clearly {bα : α ∈ Nn
d}

is an orthogonal basis of multivariate polynomials on [−1, 1]n with degree at most

d, i.e.,
∫

[−1,1]n
bα(i)(x) bα(j)(x) dx = 0 for all 1 ≤ i 6= j ≤ Sn,d. Let Bod denote the

vector of polynomials in Rd[x] defined as B0
d
T

=
[
bα(1)(x), bα(2)(x), . . . , b

α
(Sn,d)(x)

]
;

and Td ∈ RSn,d×Sn,d denote the one-to-one correspondence such that Bod = TdBd.
Moreover, for a given sequence y = {yα}α∈Nn , let Loy : R[x] → R be a linear map

defined as

P 7→ Loy(P) =
∑
α∈Nn

poαyα, where P(x) =
∑
α∈Nn

poαbα(x). (2.8)

Given y ∈ RSn,2d such that yT =
[
yα(1) , . . . , y

α
(Sn,2d)

]T
, define its extension y =

{yα}α∈Nn such that yα = 0 for all α ∈ Nn with ‖α‖1 > 2d. For ȳ := T−1
2d y, define

its extension ȳ similarly. Then for all P ∈ Rd[x], we have Loy(P) = Lȳ(P). In the

rest of the chapter, we abuse the notation and write ȳ = T−1
2d y. Then the moment

matrix operator, M o
d (y), for the given orthogonal basis is defined as

M o
d (y) := Loy

(
Bod Bod

T
)

= LT−1
2d y

(
TdBd BdTT Td

)
= TdMd

(
T−1

2d y
)
T Td . (2.9)

For example for d = 2 and n = 2, the moment matrix under the orthogonal basis

formed by Chebyshev polynomials of the first kind can be written as follows

M o
2 (y) =



y00 y10 y01 y20 y11 y02

y10
y00+y20

2
y11

y10+y30
2

y01+y21
2

y12

y01 y11
y00+y02

2
y21

y10+y12
2

y01+y03
2

y20
y10+y30

2
y21

y00+y40
2

y11+y31
2

y22

y11
y01+y21

2
y10+y12

2
y11+y31

2
y00+y20+y02+y22

4
y11+y13

2

y02 y12
y01+y03

2
y22

y11+y13
2

y00+y04
2


. (2.10)

Let P ∈ R[x] be a given polynomial with degree δ, and p = {pα}α∈Nn denote

its coefficient sequence with respect to the standard monomial basis, i.e., P(x) =∑
α∈Nn pαx

α. For a given orthogonal basis, the localization matrix operator is defined
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as

M o
d (y; p) := Loy

(
PBod Bod

T
)

= LT−1
2d+δy

(
TdPBd BTd T Td

)
= TdMd

(
T−1

2d+δy; p
)
T Td .

(2.11)

Let r := d δ
2
e. It is important to note that since T2d is invertible, {y : M o

d (y) �
0, M o

d−r(y; p) � 0} and {y : Md(y) � 0, Md−r(y; p) � 0} are isomorphic.

2.0.3 Preliminary Results on Measures and Polynomials

In this section, we state some standard results found in the literature that will be

referred to later in this thesis.

Moment Condition: The following lemmas give necessary, and sufficient con-

ditions for sequence of moments y to have a representing measure µ – for details see

[67, 78, 69].

Lemma 1. Let µ be a finite Borel measure on Rn, and y = {yα}α∈Nn such that

yα =
∫
xαdµ for all α ∈ Nn. Then Md(y) < 0 for all d ∈ N.

Lemma 2. Let y = {yα}α∈Nn be a real sequence. If Md(y) < 0 for some d ≥ 1, then

|yα| ≤ max

{
y0, max

i=1,...,n
Ly

(
x2d
i

)}
∀α ∈ Nn

2d.

Lemma 3. If there exist a constant c > 0 such that Md(y) < 0 and |yα| ≤ c for

all d ∈ N and α ∈ Nn, then there exists a representing measure µ with support on

[−1, 1]n.

Lemma 4. Let µ be a Borel probability measure supported on the hyper-cube [−1, 1]n.

Its moment sequence y ∈ RN satisfies ‖y‖∞ ≤ 1.

Proof. Since supp(µ) ⊂ [−1, 1]n and µ is a probability measure, we have |yα| ≤∫
|xα|dµ ≤

∫
|x|dµ ≤ 1 for each α ∈ Nn. Hence, ‖y‖∞ ≤ 1.

Given polynomials Pj ∈ R[x], let pj be its coefficient sequence in standard mono-

mial basis for j = 1, 2, . . . , `; consider the semialgebraic set K defined as

K = {x ∈ Rn : Pj(x) ≥ 0, j = 1, 2, . . . , ` }. (2.12)
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The following lemma gives a necessary and sufficient condition for y to have a rep-

resenting measure µ supported on K – see [67, 78, 69, 68].

Lemma 5. If K defined in (2.12) satisfies Putinar’s property, then the sequence

y = {yα}α∈Nn has a representing finite Borel measure µ on the set K, if and only if

Md(y) < 0, Md(y; pj) < 0, j = 1, . . . , `, for all d ∈ N.

Measure of Compact Set: The following lemma, proven in [67], shows that the

Borel measure of a compact set is equal to the optimal value of an infinite dimensional

LP problem.

Lemma 6. Let Σ be the Borel σ-algebra on Rn, and µ1 be a measure on a compact

set B ⊂ Σ. Then for any given K ∈ Σ such that K ⊆ B, one has

µ1(K) =

∫
K
dµ1 = sup

µ2∈M(K)

{∫
dµ2 : µ2 4 µ1

}
,

where M(K) is the set of finite Borel measures on K.

SOS Representation: The following lemma gives a sufficient condition for

f ∈ R[x] to be nonnegative on the set K– see [79, 78, 68, 69].

Lemma 7. Assume K defined in (2.12) satisfies Putinar’s property. If P ∈ R[x] is

strictly positive on K, then P ∈ QM({Pj}`j=1). Hence,

P = s0 +
∑̀
j=1

sjPj, sj ∈ S2[x], j = 0, ..., `

Duality: The following theorems show the relationship between measures, con-

tinuous functions and polynomials:

i) Stone-Weierstrass Theorem: Every continuous function defined on a closed

set can be uniformly approximated as closely as desired by a polynomial function,

[80].

ii) Riesz Representation Theorem: Let C(χ) be the Banach space of con-

tinuous functions on χ with associated norm ‖f‖ := supx∈χ |f(x)| for f ∈ C and

C+(χ) := {f ∈ C : f ≥ 0 on χ} be the cone of nonnegative continuous functions.
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The cone of nonnegative measures is dual to the cone of nonnegative continuous

functions with inner product 〈µ, f〉 :=
∫
χ
fdµ, µ ∈ M+(χ), f ∈ C+(χ); i.e., any

µ ∈M+(χ) belongs to the space of all linear functional on C+(χ) - see ([81], Section

21.5, [79, 82]).

2.0.4 Linear and Semidefinite Programming

In this section preliminary results on linear program and semidefinite programs are

presented.

Consider the linear programming (LP) problem in standard form

P∗ := max〈x, c〉 (2.13)

s.t. Ax ≤ b (2.13a)

x ≥ 0. (2.13b)

where, x ∈ Rn is variable vector, A : Rn → Rm is the linear operator, b ∈ Rm are real

matrices and vector.Also, 〈x, c〉 = cTx. Based on standard results on LP [79, 82],

the dual problem of (2.13) reads as

P∗Dual := min〈b, y〉 (2.14)

s.t. A∗y ≥ c (2.14a)

y ≥ 0. (2.14b)

where, A∗ : Rm → Rn denotes the adjoint operator of A, i.e., 〈A∗y, x〉 = 〈y, Ax〉.
The following theorem shows the relationship of primal and dual problems.

Theorem 8. Strong Duality: If in problem (2.13), 〈x, c〉 is finite value and the

set {(Ax, 〈x, c〉) : x ≥ 0)} is closed, then there is no duality gap between (2.13) and

(2.14), i.e., P∗ = P∗Dual, ([79], Theorem 3.10, [82], Theorem 7.2)

Consider the semidefinite programming (SDP) problem in standard form

P∗ := min〈C,X〉 (2.15)

s.t. 〈Ai, X〉 = bi, i = 1, ...,m (2.15a)

X < 0. (2.15b)
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where, Ai, C ∈ Rn × Rn, vector b ∈ Rm, and X ∈ Rn × Rn, 〈C,X〉 = trace(CX).

Based on standard results on SDP [83, 84], the dual problem of (2.15) reads as

P∗Dual := max bTy (2.16)

s.t. C −
m∑
i=1

Aiyi < 0 (2.16a)

Example: Consider following SDP for n = 2,m = 2 and given matrices:

A1 =

 1 3

0 5

 , A2 =

 1 2

7 4

 , C =

 3 4

1 1

 , b =

 2

1

 . (2.17)

The variable matrix is symmetric matrix as

X =

 x11 x12

x12 x22

 (2.18)

Hence, the standard SDP reads as

min 3x11 + 5x12 + x22 (2.19)

s.t. x11 + 3x12 + 5x22 = 2 (2.19a)

x11 + 9x12 + 4x22 = 1 (2.19b)

X < 0. (2.19c)

The dual problem is as

max 2y1 + 1y2 (2.20)

s.t.

 3 4

1 1

−
 1 3

0 5

 y1 −

 1 2

7 4

 y2 < 0 (2.20a)

The following theorem shows the relationship of primal and dual problems.

Theorem 9. Slater’s sufficient condition: if the feasible set of strictly positive

matrices in constraint of primal SDP is nonempty, then there is no duality gap
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between (2.15) and (2.16), i.e., P∗ = P∗Dual, ([83, 84]) .



Chapter 3
Chance Constrained Optimization

3.1 Introduction

In this chapter, we aim at solving chance optimization problems; i.e., problems which

involve maximization of the probability of a semialgebraic set defined by polynomial

inequalities [65, 66]. More precisely, given a probability space
(
Rm, Σ̄q, µ̄q

)
with Σ̄q

denoting the Borel σ-algebra of Rm and µ̄q denoting a finite (nonnegative) Borel

measure on Σ̄q, we focus on the problem given in (3.1) over decision variable x ∈ Rn.

P∗ := sup
x∈Rn

µ̄q

( ⋃
k=1,...,N

⋂
j=1,...,`k

{
q ∈ Rm : P(k)

j (x, q) ≥ 0
})

, (3.1)

where P(k)
j : Rn × Rm → R, j = 1, 2, . . . , `k and k = 1, . . . , N are given polyno-

mials. Let Kk :=
{

(x, q) : P(k)
j (x, q) ≥ 0, j = 1, . . . , `k

}
and K :=

⋃N
k=1Kk. Under

the assumption that K is bounded, we show that by solving a sequence of semide-

fine programming (SDP) problems of growing dimension, we can construct a se-

quence {ydx}d∈Z+ ⊂ RN that has an accumulation point in the weak-? topology of

`∞, and for every accumulation point y∗x ∈ RN, there is a representing finite (posi-

tive) Borel measure µ∗x such that any x∗ ∈ supp(µ∗x) is an optimal solution to (3.1),

i.e., the supremum P∗ is attained at x∗, where RN denotes the vector space of real se-

quences. Note that the problem of interest in (3.1), when reformulated in hypograph

form, can be equivalently written as a chance constrained optimization problem:

supx∈Rn,γ∈R

{
γ : µ̄q

(⋃
k=1,...,N

⋂
j=1,...,`k

{
q ∈ Rm : P(k)

j (x, q) ≥ 0
})
≥ γ

}
.
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First, the emphasis will be placed on the following special case of (3.1), where

N = 1,

P∗ := sup
x∈Rn

µ̄q

({
q ∈ Rm : Pj(x, q) ≥ 0, j = 1, . . . , `

})
, (3.2)

and then all the results derived for the special case (3.2) will be extended to the case

where N > 1.

Although, in some particular cases, the problem in (3.1) is convex (e.g., see

[27, 28]), in general, chance constrained problems are not convex; e.g., see [27] for

non-convex chance constrained linear programs. In this chapter, we use results on

moments of measures (e.g., see [68, 69, 74]) to develop a sequence of SDP problems,

known as Lasserre’s hierarchy [69], whose solutions converge to the solution of (3.1).

3.2 Chance Optimization over a Semialgebraic Set

In this section we focus on the chance optimization problem stated in (3.2). We first

provide an equivalent problem over finite (positive) Borel measures, and then we

consider its relaxations in the moment space. Given polynomials Pj : Rn×Rm → R
with degree δj for j = 1, . . . , `, we define

K = {(x, q) ∈ Rn × Rm : Pj(x, q) ≥ 0, j = 1, 2, . . . , `}. (3.3)

Assumption 1. K satisfies Putinar’s property.

Remark 3.2.1. Assumption 1 implies that K is a compact set; hence the pro-

jections of K onto x-coordinates and onto q-coordinates, i.e., Π1 =: {x ∈ Rn :

∃q ∈ Rm s.t. (x, q) ∈ K} and Π2 =: {q ∈ Rm : ∃x ∈ Rn s.t. (x, q) ∈ K}, are

also compact. Therefore, after rescaling of polynomials, we assume without loss

of generality that Π1 ⊂ χ := [−1, 1]n and Π2 ⊂ Q := [−1, 1]m and also the set

(χ×Q)\K = {(x, q) ∈ χ×Q : (x, q) /∈ K} has a nonempty interior. Furthermore, in-

stead of working on the original probability space (Rm, Σ̄q, µ̄q), we can adopt a smaller

probability space (Q,Σq, µq), where Σq := {S ∩ Q : S ∈ Σ̄q} and µq(S) := µ̄q(S)

µ̄q(Q)
for

all S ∈ Σq. Therefore, we can take for granted that µq ∈ M(Q), where M(Q) is

the set of finite Borel measures µq such that supp(µq) ⊂ Q. We also assume that

moments of any order of µq can be computed.
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3.2.1 An Equivalent Problem

As an intermediate step in the development of convex relaxations of the original

problem, a related infinite dimensional problem in the measure space is provided

below:

P∗µq := sup
µ,µx

∫
dµ, (3.4)

s.t. µ 4 µx × µq, (3.4a)

µx is a probability measure, (3.4b)

µx ∈M(χ), µ ∈M(K). (3.4c)

Theorem 10. The optimization problems in (3.2) and (3.4) are equivalent in the

following sense:

i) The optimal values are the same, i.e., P∗ = P∗µq.

ii) If an optimal solution to (3.4) exists, call it µ∗x, then any x∗ ∈ supp(µ∗x) is an

optimal solution to (3.2).

iii) If an optimal solution to (3.2) exists, call it x∗, then µx = δx∗, Dirac measure

at x∗, and µ = δx∗ × µq is an optimal solution to (3.4).

Proof. See Appendix A.

As an example, consider the following chance constrained problem corresponding

to the semialgebraic set K, displayed in Fig 3.1.a, in the space of (x, q) ∈ R×R. Our

objective is to compute an optimal decision x∗ that attains P∗ = supx∈[−1,1] µq(F(x)),

in presence of random variable q with known probability measure µq supported on

[−1, 1]. In other words, x∗ should be chosen such that the probability of the random

point (x∗, q) belonging to K becomes maximum. Fig 3.1.b shows the problem in

the measure space, where a probability measure µx is assigned to decision variable

x. If x ∈ [−1, 1] is chosen randomly according to fixed µx, then to calculate the

probability of the random event (x, q) ∈ K, one should compute an integral with

respect to measure µx × µq over the set K as in (3.31) – see (Fig 3.1). This integral

is equal to the volume of a measure which is supported on K and has the same

distribution as µx × µq on K – see (Fig 3.1.d). Hence, for fixed µx, one needs to
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Figure 3.1: a) Simple chance optimization problem over semialgebraic set K with
random parameter q, and decision variable x, b) Equivalent problem in the measure
space over probability measure µx as variable for given probability measure µq, c)
Probability of given semi algebraic set K for a fixed µx is equal to the integral of K
with respect to the measure µx × µq, d) The probability is equal to the volume of
the measure µ which is supported on the set K and has the same distribution as the
measure µx × µq over its support

look for the measure µ supported on K with maximum volume, and bounded above

with measure µx×µq. Therefore, searching for µx and µ simultaneously leads to the

optimization problem (3.4) in the measure space.

3.2.2 Semidefinite Relaxations

In this section, we provide an infinite dimensional SDP of which feasible region is

defined over real sequences in RN. Unlike the problem (3.4) in which we are looking

for a measure, in the SDP formulation given in (3.5), we aim at finding a sequence

of moments corresponding to a measure that is optimal to (3.4). After proving
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the equivalence of (3.4) and (3.5), we next provide a sequence of finite dimensional

SDPs and show that the corresponding sequence of optimal solutions can arbitrarily

approximate the optimal solution of (3.5), which characterizes the optimal solution

of (3.4).

Consider the following infinite dimensional SDP:

P∗yq
:= sup

y,yx∈RN
(y)0, (3.5)

s.t. M∞(y) < 0, M∞(y; pj) < 0, j = 1, . . . , `, (3.5a)

M∞(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (3.5b)

M∞(Ayx − y) < 0, (3.5c)

where A : RN → RN is a linear map depending only on µq. Indeed, let yq :=

{yqβ}β∈Nm be the moment sequence of µq. Then for any given yx = {yxα}α∈Nn , Ayx

is equal to y such that yθ = yqβyxα for all θ = (β, α) ∈ Nm × Nn. Given y ∈ RN,

M∞(y) < 0 means that Md(y) < 0 for all d ∈ Z+.

The following lemma establishes the equivalence of (3.4) and (3.5).

Lemma 11. Suppose that K satisfies Assumption 1. If an optimal solution to (3.4)

exists, call it (µ∗, µ∗x), then their moment sequences (y∗,y∗x) is an optimal solution

to (3.5). Conversely, if an optimal solution to (3.5) exists, call it (y∗,y∗x), then

there exists representing measures µ∗ and µ∗x such that (µ∗, µ∗x) is optimal to (3.4).

Moreover, the optimal values of (3.4) and (3.5) are the same, i.e., P∗µq = P∗yq
.

Proof. See Appendix B.

In order to have tractable approximations to the infinite dimensional SDP in

(3.5), we consider the following sequence of SDPs, known as Lasserre’s hierarchy [69],

defined below:

Pd := sup
y∈RSn+m,2d , yx∈RSn,2d

(y)0, (3.6)

s.t. Md(y) < 0, Md−rj(y; pj) < 0, j = 1, . . . , `, (3.6a)

Md(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (3.6b)

Md(Adyx − y) < 0, (3.6c)
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where δj is the degree of Pj, rj :=
⌈
δj
2

⌉
for all 1 ≤ j ≤ `, and Ad : RSn,2d → RSn+m,2d

is defined similarly to A in (3.5). Indeed, let yq := {yqβ}β∈Nm2d be the truncated

moment sequence of µq. Then for any given yx = {yxα}α∈Nn2d , y = Adyx such that

yθ = yqβyxα for all θ = (β, α) ∈ Nn+m
2d .

In the following theorem, it is shown that the sequence of optimal solutions to

the SDPs in (3.6) converges to the solution of the infinite dimensional SDP in (3.5).

In essence, the following theorem is similar to Theorem 3.2 in [67]; however, for the

sake of completeness we give its proof below.

Theorem 12. For all d ≥ 1, there exists an optimal solution (yd,ydx) ∈ RSn+m,2d ×
RSn,2d to (3.6) with the optimal value Pd. Let S := {(yd,ydx)}d∈Z+ ⊂ RN×RN be such

that each element of S is obtained by zero-padding, i.e.,
(
yd
)
α

= 0 for all α ∈ Nn+m

such that ‖α‖1 > 2d, and
(
ydx
)
α

= 0 for all α ∈ Nn such that ‖α‖1 > 2d. Then

{Pd}d∈Z+ and S have the following properties:

i) limd∈Z+ Pd = P∗, the optimal value of (3.2),

ii) There exists an accumulation point of S in the weak-? topology of `∞ and every

accumulation point of S is an optimal solution to (3.5). Hence, there exists

corresponding representing measures (µ∗, µ∗x) that is optimal to (3.4) and any

x∗ ∈ supp(µ∗x) is optimal to (3.2).

Proof. See Appendix C.

3.2.3 Discussion on Improving Estimates of Probability

In our numerical experiments, we have observed that the convergence of the upper

bound Pd to the optimum probability P∗ was slow in d when we solved the sequence

of SDP relaxations in (3.6). Suppose that the semi-algebraic set K := {(x, q) :

Pj(x, q) ≥ 0, j = 1, . . . , `} satisfies Putinar’s property. The procedure detailed

below helped us to get better estimates on the optimum probability P∗. To make

the upcoming discussion easier we make the following assumptions: i) there is a

unique x∗ ∈ relint Π1 such that µq(F(x∗)) = P∗, where F is defined in (3.29), and

Π1 := {x ∈ Rn : ∃q ∈ Rm s.t. (x, q) ∈ K} ⊂ χ := [−1, 1]n; and ii) µq ∈ M(Q)

has the following “continuity” property: if {Sk} ⊂ Σq such that limk→∞ Sk = S∗ in

the Hausdorff-metric, then limk→∞ µq(Sk) = µq(S
∗). Let (yd,ydx) denote an optimal
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solution to the SDP relaxation in (3.6), and form xd ∈ Rn using the components

of (ydx)α such that ‖α‖1 = 1. Clearly, xd ∈ χ. Since µq ∈ M(Q) is given, we

approximate the volume
∫
F(xd)

dµq as described in [67] by solving an SDP relaxation

for

P̄d := sup
µ′∈M(F(xd))

∫
dµ′ s.t. µ′ � µq. (3.7)

Let P′d denote the optimal value of the volume approximation SDP corresponding

to (3.7) with relaxation order d. Clearly, P̄d = µq
(
F(xd)

)
≥ 0, and for all d we

have Pd ≥ P∗ ≥ P̄d, and Pd ≥ P′d ≥ P̄d. Note that since x∗ is the unique op-

timal solution (assumption i), Theorem 12 implies that limd→∞(ydx)α = (y∗x)α for

all α ∈ Nn such that y∗x is the moment sequence corresponding to Dirac measure

at x∗. Therefore, from the definition of xd, it follows that limd→∞ x
d = x∗. Also

note that since K is compact (from Putinar’s property) and Pj is a polynomial in

(x, q) for all j = 1, . . . , `, it follows that the multifunction F : χ → Σq such that

F(x) = {q ∈ Q : (x, q) ∈ K} with domF = Π1 is locally bounded, closed-valued,

and limd→∞F(xd) = F(x∗) in Hausdorff metric. Hence, assumption ii implies that

limd→∞ P̄d = limd→∞ µq
(
F(xd)

)
= P∗. Moreover, since limd→∞Pd = P∗ (from The-

orem 12), and Pd ≥ P′d ≥ P̄d for all d, we can conclude that limd→∞P′d = P∗ as

well.

We noticed in our numerical experiments that although {P′d}d∈Z+ is closer to P∗

when compared to {Pd}d∈Z+ , the convergence of P′d to P∗ was still slow in practice

as d increases. This phenomena may partly be explained as in [67] by considering

the dual problem. Let C be the Banach space of continuous functions on Q such that

‖f‖ := supq∈Q f(q) for f ∈ C, and C+ := {f ∈ C : f ≥ 0 on Q}. The Lagrangian

dual of (3.7) is given below:

P̄Dual
d := inf

f∈C+

∫
f dµq, (3.8)

s.t. f ≥ 1 on F(xd).

Moreover, assumption ii (“continuity” of µq) and Urysohn’s Lemma together imply

that P̄Dual
d = P̄d for all d. Indeed, solving the SDP relaxation of (3.7) corresponds to

approximating the indicator function of the semi-algebraic set F(xd) in dual space,

which is discontinuous on the boundary of the set. Therefore, although there exists

a minimizing sequence of functions belonging to C+ that approximates the indicator
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function of F(xd) from above, the discontinuity on the boundary F(xd), causing

numerical problems in P′d computation, might be an important factor leading to

slow convergence of {P′d}d∈Z+ to P∗.

Let Gd : Q → R such that Gd(q) :=
∏`

j=1Pj(xd, q). To deal with the numerical

problems caused by approximating the discontinuous indicator function, we propose

to solve

sup
µ̃∈M(F(xd))

∫
Gd dµ̃ s.t. µ̃ � µq. (3.9)

Let µ∗d denote the optimal solution to (3.9). Note that Gd is continuous on the

boundary of F(xd). Moreover, “continuity” of µq in assumption ii implies that

Gd is strictly positive almost everywhere on F(xd). Hence, µ∗d is clearly also op-

timal to (3.7). Therefore, µ∗d
(
F(xd)

)
= µq(F(xd)) = P̄d → P∗ as d → ∞. But

most importantly, solving (3.9) corresponds to approximating the continuous func-

tion max(Gd(q), 0) from above on F(xd). These properties of (3.9) motivated us to

numerically investigate the behaviour of {P̃d}d∈Z+ sequence, where P̃d := (ỹd)0 and

ỹd denotes an optimal solution to the SDP relaxation for (3.9) with order d. In our

numerical experiments we observed that P̃d → P∗; however, this time with a faster

convergence rate. To illustrate this behavior numerically, we considered two simple

example problems in Section 3.2.4.

3.2.4 Simple Examples

In this section, we present two simple example problems that illustrate the effec-

tiveness of the proposed methodology to solve the chance optimization problem in

(3.2). The decision variables and the uncertain problem parameters in these exam-

ples are low dimensional for illustrative purposes. In the first example, we considered

a problem over a semialgebraic set defined by a single polynomial:

sup
x∈R

µq ({q ∈ R : P(x, q) ≥ 0 }) , (3.10)

where

P (x, q) = 0.5 q
(
q2 + (x− 0.5)2)− (q4 + q2(x− 0.5)2 + (x− 0.5)4) . (3.11)

The uncertain parameter q ∈ R has a uniform distribution on [-1,1]. To obtain
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an approximate solution, we solve the SDP in (3.6) with the minimum relaxation

order d = 2 since the degree of the polynomial in (3.11) is 4. The moment vectors

yq, yx, and y for the measures µq and µx, and µ up to order four are

yTq =
[
1, 0, 1

3
, 0, 1

5

]
, yTx = [1, yx1 , yx2 , yx3 , yx4 ] ,

yT = [y00 | y10, y01 | y20, y11, y02 | y30, y21, y12, y03 | y40, y31, y22, y13, y04] .

Given moment vectors yq, the moment vector ȳ for the measure µ = µx×µq has the

form

ȳT = [1|yx1 , yq1 |yx2 , yx1yq1 , yq2 |yx3 , yx2yq1 , yx1yq2 , yq3 |yx4 , yx3yq1 , yx2yq2 , yx1yq3 , yq4 ] ,

=
[
1 | yx1 , 0 | yx2 , 0, 1

3 | yx3 , 0,
1
3yx1 , 0 | yx4 , 0,

1
3yx2 , 0,

1
5

]
.

SDP in (3.6) with d = 2 is solved using SeDuMi [85], which is an interior-point

solver add-on for Matlab, and the following solution was obtained:

y∗T = [0.66, 0.3, 0.14, 0.16, 0.07, 0.1, 0.08, 0.03, 0.05, 0.04, 0.04, 0.02, 0.02, 0.02, 0.02] ,

y∗x
T = [1, 0.50, 0.25, 0.13, 0.85].

Figure 3.2: Pd, P′d, and P̃d for increasing relaxation order d

We approximate the solution to (3.2) with y∗x1 = 0.5 (in Section 3.2.3 we make a

case for this approximation under some simplifying assumptions), and estimate the

optimal probability P∗ with P2 = y∗00 = 0.66. To test the accuracy of the results
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obtained, we used Monte Carlo simulation to estimate an optimal solution to (3.10).

The details of the Monte Carlo simulation are discussed in Section 3.4.3.1. This

computationally intensive method estimated that x∗ = 0.5 with optimal probabil-

ity of 0.25. To obtain better estimates of the optimum probability, one needs to

increase the relaxation order d. Figure 3.2 displays the three sequences defined in

Section 3.2.3: {Pd}d∈Z+ , {P′d}d∈Z+ , and {P̃d}d∈Z+ , against the optimal probability P∗

denoted by the green dashed line.

We employed Monte Carlo simulation to compute P∗ – see Section 3.4.3.1 for

details of the simulation; and for increasing relaxation orders d = 2, ..., 25, we adopted

SeDuMi [85] to compute Pd and P′d, the optimal values of the SDP in (3.6), and of the

SDP relaxation for the volume problem in (3.7) with relaxation order d, respectively;

and also to compute P̃d = (ỹd)0. Similar to the results in [67], Figure 3.2 shows a

faster convergence to P∗ for the case when
∫
Gd dµ̃ is maximized as in (3.9).As

discussed in Section 3.2.3, max{Gd, 0} is continuous while the indicator function

of F(xd) is discontinuous on the boundary; and this might be a factor affecting

the convergence speed. Indeed, Figure 3.3.a displays the degree-100 polynomial

approximation f ∗ to the indicator function of the set F(x∗), i.e., f ∗ is a minimizer

to inff∈Rd[x]{
∫
f dµq : f ≥ 0 on Q, f ≥ 1 on F(x∗)} for d = 100. Note that

this problem is a restriction of the Lagrangian dual problem for sup{
∫
dµ′ : µ �

µq, µ
′ ∈ M(F(x∗))} –indeed, dual variable f ∈ C is restricted to be in Rd[x]. On

the other hand, Figure 3.3.b displays the degree-100 polynomial approximation h∗

to the piecewise-polynomial function G(q) = P(x∗, q), where h∗ is a minimizer to

infh∈Rd[x]{
∫
h dµq : h ≥ 0 on Q, h ≥ G on F(x∗)} for d = 100. Similarly, this

problem is a restriction of the Lagrangian dual problem for sup{
∫
G dµ̃ : µ̃ �

µq, µ̃ ∈M(F(x∗))}. Note that Figure 3.3 shows that it is easier to approximate the

continuous function max{G, 0} than the discontinuous indicator function of F(x∗).

Next, we considered a problem over a semialgebraic set defined by an intersection

of two polynomials:

sup
x∈R

µq ({q ∈ R : P1(x, q) ≥ 0, P2(x, q) ≥ 0 }) , (3.12)

where

P1 (x, q) = 0.1275+0.7x−x2−q2, P2 (x, q) = −0.1225+0.7x+q−x2−q2. (3.13)



31

Figure 3.3: a) f ∗: the degree-100 polynomial approximation to indicator function of
F(xxx∗), b) h∗: the degree-100 polynomial approximation of the piecewise-polynomial
function max(0,P(xxx∗, q))

Figure 3.4: Pd, P′d, P̃
(1)
d , P̃

(2)
d , and P̃d for increasing relaxation order d

The uncertain parameter q ∈ R has a uniform distribution on [-1,1]. Figure 3.4

displays two other sequences, {P̃(1)
d }d∈Z+ and {P̃(2)

d }d∈Z+ , in addition to the three

sequences defined in Section 3.2.3: {Pd}d∈Z+ , {P′d}d∈Z+ , and {P̃d}d∈Z+ . Here, P̃
(1)
d

and P̃
(2)
d are defined similarly to P̃d = (ỹd)0 by replacing Gd(q) = P1(xd, q)P2(xd, q)

in (3.9) with P1(xd, q), and P2(xd, q), respectively.

3.2.5 Orthogonal Basis

In this work, all polynomials are expanded in the usual monomial basis, and the SDPs

are therefore formulated as optimization problems over ordinary monomial moments.
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However, one can improve the numerical performance as in [67] by employing an or-

thogonal basis of polynomials. Hence, one can reformulate the SDP relaxation in

(3.6) using the new moment and localization matrix operators defined in (2.9) and

(2.11), respectively; and the resulting problem stated in the given orthogonal basis is

equivalent to (3.6). In order to illustrate the effect of orthogonal polynomial basis on

the numerical behavior of the proposed method, we compared the two formulations

of the simple example in (3.10): the first formulation is given in (3.6) using monomial

basis, and the second formulation is obtained by replacing Md(.) and Md−rj(.; pj) in

(3.6) with M o
d (.) and M o

d−rj(.; pj), i.e., moment and localizing matrices in Chebyshev

polynomial basis representations. In order to avoid matrix inversions as in (2.9) and

in (2.11), we used Chebfun package [86], which can efficiently manipulate univari-

ate Chebyshev polynomials, to form M o
d (.) and M o

d−rj(.; pj) that use multivariate

Chebyshev polynomials in a numerically stable way; and solved the resulting SDP

problems represented in the Chebyshev polynomial basis using SeDuMi. Figure 3.5

shows that the approximations to the optimal probability P∗ converge faster when

Chebyshev polynomial basis is used as opposed to the standard monomial basis as

relaxation order d increases. For the problems in Chebyshev basis, the approxima-

tion (xo)d to the optimal decision x∗ is formed similarly as xd – see Section 3.2.3.

For this example xd and (xo)d sequences were close.

Figure 3.5: Pd for monomial and Chebyshev polynomial bases
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3.2.6 Dual Convex Problem on Function Space

In this section, we provide an infinite LP on continuous functions which is dual to

the infinite LP on measure in (3.4). To obtain a dual problem to the infinite LP in

(3.4), let C(χ×Q) be the Banach space of continuous functions on χ × Q. Then,

Lagrangian dual of (3.4) is:

P∗Dual := inf
β∈R,W∈C(χ×Q)

β, (3.14)

s.t. W(x, q) ≥ 1 on K, (3.14a)

β −
∫
Q
W(x, q)dµq ≥ 0 on χ, (3.14b)

W(x, q) ≥ 0, β ≥ 0. (3.14c)

where, K is defined as (3.3), µq is a given Borel measure. We can interpret the

obtained dual problem as follow. If we assume that x is given, then the optimal

solution for W(x, q) is the indicator function of the set K and the optimal value

P∗Dual is the volume of the set K, i.e., P∗Dual = β =
∫
QW(x, q)dµq. Otherwise,∫

QW(x, q)dµq is an upper bound for the volume of the set K.

The following theorem establish the equivalence of problems in (3.4) and (3.14).

Theorem 13. There is no duality gap between the infinite LP on measure in (3.4)

and infinite LP on continuous function in (3.14) in the sense that the optimal values

are the same, i.e., P∗µq = P∗Dual

Proof. See Appendix D.

To be able to obatin a tractable relaxation of infinite LP in (3.14), we use poly-

nomial approximation of continuous function W and use SOS relaxation to satisfy

the nonnegativity constraints, where results in following finite SDP on polynomials:

P∗d := min
β∈R,PdW∈Rd[x,q]

β, (3.15)

s.t. PdW(x, q)− 1 ∈ QM
(
{Pj}lj=1

)
, (3.15a)

β −
∫
Q
PdW(x, q)dµq ∈ QM

(
{1− x2

i }ni=1

)
, (3.15b)

PdW(x, q) ≥ 0, β ≥ 0. (3.15c)
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where, PdW(x, q) ∈ Rd[x, q], µq is a given finite Borel measure and QM defined

in (2.1) is quadratic module generated by polynomials. According to the Lemma

7, constraints (3.15a) and (3.15b) imply that polynomials PdW(x, q) − 1 and β −∫
QP

d
W(x, q)dµq are positive on the sets K in (3.3) and χ, respectively. Problem in

(3.15) is a SDP, where objective function is a linear and constraints are convex linear

matrix inequalities in terms of coefficients of polynomial PdW .

The following theorem establish the equivalence of problems in (3.6) and (3.15).

Theorem 14. There is no duality gap between the finite SDP on moments in (3.6)

and finite SDP on polynomials in (3.15) in the sense that the optimal values are the

same.

Proof. See Appendix E.

Figure 3.6: Polynomial PdW(x, q) obtained by SDP (3.15) for d = 12

Remark 3.2.2. In low dimensional problems, we can replace the global positivity

condition in (3.15c) with local constraint as {PdW(q, x) ≥ 0 on χ ×Q} to improve

the obtained results.

Illustrative Example Consider the simple example (3.10) provided in section

3.2.4. Here, to obtain an approximate solution, we solve the dual problem provided

in finite SDP (3.15). We solve SDP in (3.15) for polynomial order d = 12 by Yalmip.

Figure 3.6 displays obtained PdW(x, q) which is greater than 1 on the set K and is
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positive on χ×Q = [−1, 1]2 as in constraint (3.15a). Figure 3.7 displays obtained β

and also
∫
Q P

d
W(x, q)dµq. As in constraint (3.15b) β is greater than

∫
Q P

d
W(x, q)dµq on

the set χ. Based on obtained β and P10
W (x, q), we approximate the solution to the vol-

ume optimization problem with x = 0.5 that maximizes polynomial
∫
QP

d
W(x, q)dµq

on the χ and estimate the optimal volume P∗d with Pd = β = 0.51. Based on

the Theorem 14, the obtained solution by solving dual SDP in (3.15) matches the

solution obtained by SDP in (3.6).

Figure 3.7: β and
∫
QP

d
W(x, q)dµq obtained by SDP (3.15) for d = 10

3.3 Chance Optimization over a Union of Sets

We now focus on the more general setting of the chance optimization problem in

(3.1). Given polynomials Pkj : Rn × Rm → R with degree δ
(k)
j for j = 1, . . . , `k and

k = 1, . . . , N , the semi-algebraic set of interest is K = ∪Nk=1Kk, where

Kk =
{

(x, q) ∈ Rn × Rm : P(k)
j (x, q) ≥ 0, j = 1, . . . , `k

}
, k = 1, . . . , N. (3.16)

Similar to the previous section, we need Putinar’s property to hold for Kk for all

k = 1, . . . , N . With the following assumption, we can ensure this.

Assumption 2. K = ∪Nk=1Kk is bounded, where Kk is defined in (3.16).

Hence, as discussed in Remark 3.2.1, we can assume without loss of generality

that K ⊆ χ × Q and the probability measure µq ∈ M(Q), where χ = [−1, 1]n and
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Q = [−1, 1]m. Therefore, for all (x, q) ∈ K, we have ‖x‖2
2 + ‖q‖2

2 ≤ m + n. Define

P(k)
0 (x, q) := m+ n−

∑n
i=1 x

2
i −
∑m

i=1 q
2
i for all k = 1, . . . , N . Kk can be represented

as Kk =
{
(x, q) : P(k)

j (x, q) ≥ 0, j = 0, . . . , `k

}
–note that index j starts from 0. Since

polynomials are continuous in (x, q), the new representation of Kk satisfies Putinar’s

property for each k and we still have K = ∪Nk=1Kk.
The objective of this section is to provide a sequence of SDP relaxations to the

chance optimization problem in (3.1) withN > 1, and show that the results presented

in the previous sections can be easily extended for this case. More precisely, we start

by providing an equivalent problem in the measure space and then develop relaxations

based on moments of measures.

3.3.1 An Equivalent Problem

As an intermediate step in the development of convex relaxations of (3.1), an equiv-

alent problem in the measure space is provided below.

P∗µq := sup
µk, µx

N∑
k=1

∫
dµk, (3.17)

s.t.
N∑
k=1

µk 4 µx × µq, (3.17a)

µx is a probability measure, (3.17b)

µx ∈M(χ), µk ∈M(Kk) k = 1, . . . , N. (3.17c)

This problem is equivalent to the problem addressed in this work in the following

sense.

Theorem 15. The optimization problems in (3.1) and (3.17) are equivalent in the

following sense:

i) The optimal values are the same, i.e. P∗ = P∗µq.

ii) If an optimal solution to (3.17) exists, call it µ∗x, then any x∗ ∈ supp(µ∗x) is an

optimal solution to (3.1).

iii) If an optimal solution to (3.1) exists, call it x∗, then Dirac measure at x∗, µx =

δx∗ and µ = δx∗ × µq is an optimal solution to (3.17).
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Proof. See Appendix F.

3.3.2 Semidefinite Relaxations

In this section, a sequence of semidefinite programs is provided which can arbitrarily

approximate the optimal solution of (3.17). As before, this is done by consider-

ing moments of measures instead of the measures themselves. Define the following

optimization problem indexed by the relaxation order d.

Pd := sup
yk∈R

Sn+m,2d , yx∈RSn,2d

N∑
k=1

(yk)0 , (3.18)

s.t. Md(yk) < 0, M
d−r(k)j

(
yk; p

(k)
j

)
< 0, j = 1, . . . , lk, k = 1, . . . , N (3.18a)

Md(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (3.18b)

Md

(
Adyx −

N∑
k=1

yk

)
< 0, (3.18c)

where δ
(k)
j is the degree of P(k)

j , r
(k)
j :=

⌈
δ
(k)
j

2

⌉
for all 1 ≤ j ≤ `k and 1 ≤ k ≤ N ; and

Ad : RSn,2d → RSn+m,2d is defined similarly to A in (3.5). Indeed, let yq := {yqβ}β∈Nm2d
be the truncated moment sequence of µq. Then for any given yx = {yxα}α∈Nn2d ,
y = Adyx such that yθ = yqβyxα for all θ = (β, α) ∈ Nn+m

2d .

Next, we show that the sequence of optimal solutions to the SDPs in (3.18)

converges to the solution of the infinite dimensional SDP in (3.17). More precisely,

we have the following result.

Theorem 16. For all d ≥ 1, there exists an optimal solution
(
{ydk}Nk=1,y

d
x

)
to (3.18)

with the optimal value Pd. Moreover,

i) limd∈Z+ Pd = P∗, the optimal value of (3.1).

ii) Let S :=
{(
{ydk}Nk=1,y

d
x

)}
d∈Z+

such that each element is obtained by zero-padding

yd and ydk for 1 ≤ k ≤ N . There exists an accumulation point of S in the

weak-? topology of `∞, and for every accumulation point of S, there exists corre-

sponding representing measures
(
{µ∗k}Nk=1, µ

∗
x

)
that is optimal to (3.17) and any

x∗ ∈ supp(µ∗x) is optimal to (3.1).
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Proof. See Appendix G.

3.4 Implementation and Numerical Results

In previous sections, we showed that chance optimization problem in (3.1) can be

relaxed to a sequence of SDPs. In this section, we go one step further to improve

approximation quality of the relaxed problems in practice and implement an efficient

first-order algorithm to solve the resulting SDP relaxations.

3.4.1 Regularized Chance Optimization Using Trace Norm

As shown in Theorem 10 and Theorem 15, if the chance optimization problems in

(3.2) and (3.1) have unique optimal solution x∗, then the optimal distribution µ∗x is

a Dirac measure whose mass is concentrated on the single point x∗, i.e., its support

is the singleton {x∗}. Such distributions, have moment matrices with rank one. To

improve the solution quality of the algorithm, one can incorporate this observation

in the formulation of the relaxed problem. For the sake of notational simplicity, in

this section we will consider the regularized version of chance optimization problem

(3.6) for presenting the algorithm:

min
y∈RSn+m,2d , yx∈RSn,2d

ωr Tr(Md(yx))−(y)0 subject to (3.6a), (3.6b), (3.6c) (3.19)

for some ωr > 0, where Tr(.) denotes the trace function. Our objective is to achieve

the maximum probability with a low-rank moment matrix Md(y
∗
x), hopefully with

rank 1. To this end, we regularize the objective with trace norm. Since Md(y
∗
x) < 0,

Tr(Md(y
∗
x)) is equal to sum of singular values of Md(y

∗
x), which is called the nuclear

norm of Md(y
∗
x). This is a well known approach for obtaining low-rank solutions.

Indeed, the nuclear norm is the convex envelope of the rank function and, in practice,

produces good results; see [87] and [88] for details.

To be able to solve the SDP in (3.19) involving large scale matrices in practice,

one need to implement an efficient convex optimization algorithm. Recently, a first-

order augmented Lagrangian algorithm ALCC has been proposed in [89] to deal with

regularized conic convex problems. We will adapt this algorithm to solve SDPs of
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the form in (3.19). In the following section, we briefly discuss the algorithm ALCC.

3.4.2 First-Order Augmented Lagrangian Algorithm

Consider the optimization problem:

(P ) : p∗ = min{ρ(x) + γ(x) : A(x)− b ∈ C}, (3.20)

where γ : Rn → R is a convex function such that ∇γ is Lipschitz continuous with

constant Lγ, ρ : Rn → R∪{+∞} is a closed convex function such that ∆ := dom(ρ)

is convex compact set, A : Rn → Rm is a linear map, and C ⊂ Rm is a closed convex

cone. Let C∗ := {θ ∈ Rn : 〈z, θ〉 ≥ 0, ∀z ∈ C} denote the dual cone of C, and B > 0

denote the diameter of ∆, i.e., B = max{‖x− y‖2 : x, y ∈ ∆}; and we assume that

B is given. Given a penalty parameter ν > 0 and Lagrangian dual multiplier θ ∈ C∗,
the augmented Lagrangian for (P) in (3.20) is given by

L(x; ν, θ) := 1
ν

(ρ(x) + γ(x)) + 1
2
dC(A(x)− b− θ)2, (3.21)

where dC : Rm → R denotes the distance function to cone C, i.e., dC(z̄) := ‖z̄ −
ΠC(z̄)‖2, and ΠC(z̄) := argmin{‖z − z̄‖2 : z ∈ C} denotes the Euclidean projection

of z̄ onto C. Given νk > 0 and θk ∈ C∗, we define Lk(x) := L(x; νk, θk) and L∗k :=

minx Lk(x). Let fk : Rn → R such that fk(x) := 1
νk
γ(x) + 1

2
dC(A(x)− b− θ)2; hence,

L∗k = minx
1
νk
ρ(x) + fk(x). It is important to note that fk is a convex function with

Lipschitz continuous gradient ∇fk(x) = 1
νk
γ(x) − A∗ (ΠC∗(θk + b− A(x))); and the

Lipschitz constant of ∇fk is equal to Lk := 1
νk
Lγ + σ2

max(A), where A∗ : Rm → Rn

denotes the adjoint operator of A : Rn → Rm, and σmax(A) denotes the maximum

singular value of the linear map A. Therefore, given εk > 0, an εk-optimal solution,

x̃k, to L∗k := minx Lk(x) can be efficiently computed such that Lk(x̃k) − L∗k ≤ εk

using an Accelerated Proximal Gradient (APG) algorithm [90, 91, 92, 93] within

`max
k (εk) := B

√
2Lk
εk

APG iterations. In each APG iteration, ∇fk, ΠC∗ and proximal

map of ρ are all evaluated once.

ALCC algorithm proposed in [89] can generate a minimizing sequence {xk} to (P)

in (3.20) by inexactly solving a sequence of subproblems minx Lk(x). In particular,

given inexact computation parameters αk > 0 and ηk > 0, xk is computed such that
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either one of the following conditions holds:

Lk(xk)− L∗k ≤ αk
νk
, (3.22)

∃sk ∈ ∂Lk(xk) such that ‖sk‖2 ≤ ηk
νk
, (3.23)

where ∂Lk(xk) denotes the subdifferential of Lk at xk. Then dual Lagrangian mul-

tiplier is updated: θk+1 = νk
νk+1

ΠC∗(θk + b − A(xk)). For given c, β > 1, fix the

parameter sequence as follows: νk = βkν0, αk = 1
k2(1+c)βk

α0, and ηk = 1
k2(1+c)βk

η0

for all k ≥ 1; and let {xk, θk} ⊂ ∆× C∗ be the primal-dual ALCC iterate sequence.

Theorem 3.10 in [89] shows that limk θkνk exists and it is an optimal solution to the

dual problem. Moreover, Theorem 3.8 shows that for all ε > 0, xk is ε-feasible, i.e.,

dC(Axk − b) ≤ ε, and ε-optimal, i.e., |ρ(xk) + γ(xk)− p∗| ≤ ε within log(1/ε) ALCC

iterations, i.e., k = O(log(1/ε)), which requires O(ε−1 log(ε−1)) APG iterations in

total. Moreover, every limit point of {xk} is optimal (when A ∈ Rm×n is surjective,

the techniques used for proving Theorem 4 in [94] can be used to improve the rate

result to O(1/ε)).

Now consider the following problem p∗ = minx∈∆{γ(x) : A(x) − b ∈ C}, where

∆ ⊂ Rn is a compact convex set. Note that this problem can be written as a special

case of (3.20) by setting ρ(x) = 1∆(x), the indicator function of the set ∆. In

Figure 3.8, we present the ALCC algorithm customized to solve p∗ = minx∈∆{γ(x) :

A(x)− b ∈ C}. Note that Step 11 and 12 in Figure 3.8 are the bottleneck steps (one

∇γ evaluation and two projections: one onto C∗, and one onto ∆) – in Step 11 ∇fk
is evaluated at x

(2)
` , and then in Step 12 x

(1)
` is computed via a projected gradient

step of length 1/Lk.

In this customized version, ALCC iterate xk is set to x
(1)
` whenever either ` > `max

k

or ‖x(1)
` − x

(2)
` ‖2 ≤ ηk

νk
. Note that `max

k := k1+cβkB
√

2ν0Lk
α0

, which is equal to `max
k (εk)

when εk = αk
νk

. Therefore, if ` > `max
k , then Lk(xk)−L∗k ≤

αk
νk

– this follows from the

complexity of Accelerated Proximal Gradient algorithm (lines 9-19 in Figure 5.1)

running on minLk(x); next we’ll show that if ‖x(1)
` − x

(2)
` ‖2 ≤ 1

2Lk

ηk
νk

, then (3.23)

holds. For ρ(x) = 1∆(x), we have Lk(x) = ρ(x) + fk(x). Suppose that for some

`, ‖x(1)
` − x

(2)
` ‖2 ≤ 1

2Lk

ηk
νk

holds. Note that g` computed in Line 11 is equal to

∇fk(x(2)
` ); thus x

(1)
` computed in Line 12 is equal to Π∆(x

(2)
` −∇fk(x

(2)
` )/Lk), where

Lk := 1
νk
Lγ + σ2

max(A) is the Lipschitz constant of ∇fk. One can easily show that
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x
(2)
` −∇fk(x

(2)
` )/Lk−x(1)

` ∈ ∂ρ(x
(1)
` ); and since ρ is the indicator function, we also have

Lk

(
x

(2)
` − x

(1)
`

)
−∇fk(x(2)

` ) ∈ ∂ρ(x
(1)
` ). Hence, sk := Lk

(
x

(2)
` − x

(1)
`

)
+∇fk(x(1)

` )−

∇fk(x(2)
` ) ∈ ∂Pk(x

(1)
` ). Since ∇fk is Lipschitz continuous, we have ‖∇fk(x(1)

` ) −
∇fk(x(2)

` )‖2 ≤ Lk‖x(2)
` − x

(1)
` ‖2. Therefore, we have ‖sk‖2 ≤ 2Lk‖x(2)

` − x
(1)
` ‖2 ≤ ηk

νk
.

Algorithm ALCC (x0, ν0, α0, Lγ, B)

Figure 3.8: first-order Augmented Lagrangian algorithm for Conic Convex (ALCC)
problems

Semidefinite program of (3.19) is a special case of the conic convex problem

in (3.20), where γ(yx,y) = cTr yx + cTp y for some cr ∈ RSn,2d and cp ∈ RSn+m,2d

since the objective of (3.19) is linear in (y,yx); hence, Lγ = 0, the conic constraint

A(.)−b ∈ C in (3.20) is a linear matrix inequality (LMI), with C = C∗ being the cone

of positive semidefinite matrices S+, and the compact set ∆ = {(y,yx) : ‖y‖∞ ≤
1, ‖yx‖∞ ≤ 1, (yx)0 = 1}. Hence, ΠC(.) = ΠC∗(.) can be computed using one

eigenvalue decomposition, and Π∆(.) is very efficient and can be computed in linear

time. In our numerical experiments in Section 3.4.3, we used ‖xk − xk−1‖2/(1 +

‖xk−1‖2) ≤ tol as the stopping condition for ALCC.
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3.4.3 Numerical Examples

In this section, four numerical examples are presented that illustrate the performance

of the proposed methodology, discussed in Sections 3.2 and 3.3, coupled with the

augmented Lagrangian algorithm presented in Section 3.4.2 in finding approximate

solutions to the chance constrained problems in (3.1) and (3.2) by solving their

regularized semidefinite relaxations in (3.19). In all the tables, for problems of the

form (3.2), i.e., N = 1, Pd, P′d, P̄d, and P̃d denote the optimal probability estimates

defined similarly as in Section 3.2.3 for xd obtained by solving the regularized problem

in (3.19); for problems of the form (3.1), i.e., N > 1, these estimates can be defined

naturally using (yd,ydx) with yd :=
∑N

k=1 ydk; and d ∈ Z+ denotes the relaxation

order. In order to compute P∗ and P̄d, we used Monte Carlo simulation discussed

in Section 3.4.3.1. In all the tables, iter denotes the total number of algorithm

iterations, and cpu denotes the computing time in seconds required for computing

Pd; nvar denotes the number of variables, i.e., total number of moments used. For

ALCC iter is the total number of APG iterations, and for GloptiPoly it denotes the

total number of SeDuMi [85] iterations.

3.4.3.1 Monte Carlo Simulation

To test the accuracy of the results obtained using ALCC and GloptiPoly, we used

Monte Carlo integration to estimate an optimal solution and the corresponding op-

timal probability. Let K ⊂ Rn × Rm be the given semialgebraic set such that

Π1 := {x ∈ Rn : ∃q ∈ Rm s.t. (x, q) ∈ K} ⊂ χ := [−1, 1]n, and Π2 := {q ∈
Rm : ∃q ∈ Rm s.t. (x, q) ∈ K} ⊂ Q := [−1, 1]m. Define F : χ→ Σq,

F(x) := {q ∈ Q : (x, q) ∈ K}. (3.24)

First, we uniformly grid χ into N̄ grid-points (N̄ depending on the desired precision).

Let {x(i)}N̄i=1 ⊂ χ denote the points in the uniform grid. Next, for each grid point

x(i), we sample from the distribution induced by the given finite Borel measure µq

supported on Q. Let {q(i,k)}Nik=1 be Ni i.i.d. sample of random parameter q. Then
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we approximate µq(F(x(i))) by

P
(i)
Ni

:=
1

Ni

Ni∑
k=1

1K
(
x(i), q(i,k)

)
, where 1K (x, q) =

{
1, if (x, q) ∈ K;

0, otherwise.

Because of law of large numbers, limNi↗∞ P
(i)
Ni

= µq(F(x(i))). For each x(i), we chose

sample size Ni such that P
(i)
Ni

becomes stagnant to further increase in Ni. Finally,

we approximate x∗ by x(i∗), where i∗ ∈ argmax{P (i)
Ni

: 1 ≤ i ≤ N̄}. It is clear that

what we used is a naive method, and it can be made much more efficient by using

an adaptive gridding scheme on χ. On the other hand, as the dimensions n and m

are very small for the problems discussed in the numerical section, this naive method

served its purpose.

3.4.3.2 Example 1: A Simple Semialgebraic Set

Consider the chance optimization problem

sup
x∈R5

µq
(
{q ∈ R5 : P(x, q) ≥ 0 }

)
, (3.25)

where

P(x, q) = 0.185 + 0.5x1 − 0.5x2 + x3 − x4 + 0.5q1 − 0.5q2 + q3 − q4 − x2
1 − 2x1q1 − x2

2

−2x2q2 − x2
3 − 2x3q3 − x2

4 − 2x4q4 − x2
5 + 2x5q5 − q2

1 − q2
2 − q2

3 − q2
4 − q2

5,

and the uncertain parameters q1, q2, q3, q4, q5 have a uniform distribution: q1 ∼
U [−1, 0], q2 ∼ U [0, 1], q3 ∼ U [−0.5, 1], q4 ∼ U [−1, 0.5], q5 ∼ U [0, 1] – U [a, b]

denotes the uniform distribution between a and b. The k-th moment of uniform

distribution U[a,b] is (yq)k = bk+1−ak+1

(b−a)(k+1)
. The optimum solution and corresponding

optimal probability are obtained by Monte Carlo method: x∗1 = 0.75, x∗2 = −0.75,

x∗3 = 0.25, x∗4 = −0.25, x∗5 = 0.5, and P ∗ = 0.75. To obtain an approximate

solution, we solve the SDP in (3.6) using GloptiPoly and ALCC. For ALCC, we

set ν0 to 1, 5 × 10−2 and 5 × 10−3 when d is equal to 1, 2, and 3, respectively,

and tol = 1 × 10−2. The results for relaxation order d = 1, 2, 3 are shown in

Table 3.1. As in Figure 3.2, when compared to Pd, P̃d approximates P∗ better,

i.e., when max{
∫
P(xd, q) dµ̃ : µ̃ � µq, µ̃ ∈ M(F(xd))} is solved instead of

max{
∫
dµ′ : µ′ � µq, µ

′ ∈ M(F(xd))}. We reported results up to order d = 3,
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ALCC

d 1 2 3

nvar 87 1127 8463

iter 169 624 1207

cpu 0.9 28.1 785.9

x1 0.742 0.745 0.757

x2 -0.777 -0.701 -0.721

x3 0.213 0.226 0.216

x4 -0.239 -0.250 0.236

x5 0.500 0.551 0.557

Pd 0.991 0.971 0.961

P′d 1 1 1

P̃d 0.996 0.7739 0.6919

P̄d 0.7504 0.7459 0.7459

GloptiPoly

d 1 2 3

nvar 87 1127 8463

iter 18 25 41

cpu 0.5 12.3 15324.3

x1 0.467 0.710 0.742

x2 -0.467 -0.710 -0.742

x3 0.163 0.245 0.249

x4 -0.163 -0.245 -0.249

x5 0.319 0.475 0.495

Pd 1 1 1

P′d 1 1 1

P̃d 0.9652 0.7768 0.7031

P̄d 0.5067 0.7484 0.7535

Table 3.1: ALCC and GloptiPoly results for Example 1

because for larger d, GloptiPoly did not terminate in 24 hours.

3.4.3.3 Example 2: Union of Simple Sets

Given the following polynomials

P(1)(x, q) =− 0.263 + 0.4x1 − 0.4x2 + 0.8x3 − 0.8x4 + 1.2x5 + 0.1q1 + 0.08q2 + 0.04q3

+ 0.4q4 + 0.6q5 − x2
1 − x2

2 − x2
3 − x2

4 − x2
5 − 0.5q2

1 − 0.4q2
2 − 0.1q2

3 − q2
4 − q2

5,

P(2)(x, q) =− 2.06 + 0.4x1 − 0.8x2 + 3.2x3 − 1.6x4 + 3.6x5 − 0.4q1 − 0.4q2 − 0.2q3

− 0.2q4 − 0.8q5 − x2
1 − 2x2

2 − 4x2
3 − 2x2

4 − 3x2
5 − q2

1 − q2
2 − q2

3 − q2
4 − q2

5,

consider the chance optimization problem

sup
x∈R5

µq

( ⋃
j=1,2

{
q ∈ R5 : P(j)(x, q) ≥ 0

})
, (3.26)

where qi ∼ U [−0.5, 0.5] for all i = 1, . . . , 5, i.e., the uncertain parameters qi are

uniformly distributed on [−0.5, 0.5]. The optimum solution and corresponding opti-

mal probability are obtained by Monte Carlo method: x∗1 = 0.2, x∗2 = −0.2, x∗3 =

0.4, x∗4 = −0.4, x∗5 = 0.6, and P∗ = 0.80. To obtain an approximate solution, we
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ALCC

d 1 2 3

nvar 153 2128 16478

iter 979 1467 1875

cpu 6.5 102.2 434.7

x1 0.209 0.328 0.201

x2 -0.202 -0.174 -0.201

x3 0.397 0.466 0.430

x4 -0.400 -0.405 -0.401

x5 0.667 0.638 0.591

Pd 1 0.997 0.981

P′d 1 1 1

P̃d 0.9973 0.8610 0.8926

P̄d 0.8937 0.8745 0.8984

Table 3.2: ALCC results for Example 2

solve the SDP in (3.18) using ALCC, where we set ν0 to 1, 1×10−1 and 1×10−3 when

d is equal to 1, 2, and 3, respectively, and tol = 1× 10−2. The results for relaxation

order d = 1, 2, 3 are shown in Table 3.2. Let F (k)(x) =: {q ∈ Q : P(k)(x, q) ≥ 0}
for k = 1, 2. The probability estimates P̃d reported in Table 3.2 are computed by

solving the SDP relaxation for

max

∫
P(1)(xd, q) dµ̃1 +

∫
P(2)(xd, q) dµ̃2 :

µ̃1 + µ̃2 � µq, µ̃1 ∈M(F (1)(xd)), µ̃2 ∈M(F (2)(xd)).

For this example, GloptiPoly fails to extract the optimum solution.

3.4.3.4 Example 3: Portfolio Selection Problem

We aim at selecting a portfolio of financial assets to maximize the probability of

achieving a return higher than a specified amount r∗. Suppose that for each asset

i = 1, ..., N , its uncertain rate of return is a random variable ξi(q); and let (Q,Σq, µq)

denote the underlying probability space. In this context xi denotes the percentage
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of money invested in asset i. More precisely, we solve the following problem:

sup
x∈RN

µq

({
q ∈ RN :

N∑
i=1

ξi(q)xi ≥ r∗

})
s.t.

N∑
i=1

xi ≤ 1, xi ≥ 0 ∀ i ∈ {1, . . . , N}.

(3.27)

In our example problem, r∗ = 1.5, N = 4, ξ1(q) = 1 + q1, ξ2(q) = 1 + q2, ξ3(q) =

0.9+q3, ξ4(q) = 0.9+q4, where {qi}4
i=1 are independent, and q1 ∼ Beta(3−

√
2, 3+

√
2),

q2 ∼ Beta(4, 4), q3 ∼ Beta(3 +
√

2, 3 −
√

2), q4 ∼ U [0.5, 1]. The k-th moment of

Beta distribution Beta(α, β) over [0,1] is yk = α+k−1
(α+β+k−1)

yk−1 and y0 = 1. We will

solve an equivalent problem in the form of (3.2) with ` = 7, where Pj(x, q) = xj

for j = 1, . . . , 4, P5(x, q) = 1 −
∑4

i=1 xi, P6(x, q) = 8 −
∑4

i=1 x
2
i −

∑4
i=1 q

2
i , and

P7(x, q) =
∑4

i=1 ξi(q)xi−r∗. Since any (x, q) ∈ K satisfies x ∈ χ and q ∈ Q, we added

polynomial P6(x, q) to assure that the resulting representation of the semialgebraic

set K satisfies Putinar’s property. The optimum solution and the corresponding

optimal probability are computed approximately by Monte Carlo method: x∗1 = 0,

x∗2 = 0, x∗3 = 0.3, x∗4 = 0.7, and P ∗ = 0.89. To obtain an approximate solution, we

solve the SDP relaxation in (3.6) using GloptiPoly and ALCC. For ALCC, we set ν0

to 1× 10−2, 1× 10−2 and 1× 10−3 when d is equal to 1, 2, and 3, respectively, and

tol = 1 × 10−3. The results for relaxation order d = 1, 2, 3 are shown in Table 3.3.

We reported results up to order d = 3, because for larger d, GloptiPoly did not

terminate in 24 hours.

3.4.3.5 Example 4: Run time

In this example, for fixed degree of the relaxation order d, we examined how the run

times of ALCC algorithm scale as the problem size increases. For this purpose, we

consider the following problem: Given n ≥ 1, we set P : Rn × Rn → R, P (x, q) =

0.81−
∑n

i=1(xi − qi)2; and solve

sup
x∈Rn

µq ({q ∈ Rn : P(x, q) ≥ 0 }) . (3.28)

The numerical results for increasing n and fixed relaxation order d = 1 are displayed

in Table 3.4. For each n, ALCC recovered the optimal decision value: x∗ = 0.
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ALCC

d 1 2 3

nvar 60 565 3213

iter 573 388 2227

cpu 3.625 16.426 756.798

x1 0.004 0.009 0.002

x2 0.012 0.009 0.006

x3 0.438 0.449 0.299

x4 0.5007 0.522 0.677

Pd 0.996 0.994 0.980

P′d 1 1 0.9716

P̃d 0.7928 0.8177 0.8220

P̄d 0.7405 0.8655 0.8422

GloptiPoly

d 1 2 3

nvar 60 565 3213

iter 15 20 48

cpu 0.509 2.617 1025.045

x1 0.133 0.0462 0.003

x2 0.192 0.154 0.075

x3 0.295 0.297 0.210

x4 0.325 0.493 0.710

Pd 1 1 0.999

P′d 0.9071 0.9997 0.9896

P̃d 0.3808 0.7753 0.8395

P̄d 0.3865 0.8267 0.8675

Table 3.3: ALCC and GloptiPoly results for Example 3

ALCC
n 5 10 20 30 40 50 60 70 80
d 1 1 1 1 1 1 1 1 1
nvar 10 20 40 60 80 100 120 140 160
iter 82 140 97 182 201 175 191 186 208
cpu 0.3969 1.5349 3.5542 14.2899 27.7978 37.2624 60.4454 83.3669 122.7844

Table 3.4: ALCC for increasing problem in Example 4

3.5 Conclusion

In this chapter, “chance optimization” problems are introduced, where one aims at

maximizing the probability of a set defined by polynomial inequalities. These prob-

lems are, in general, nonconvex and computationally hard. A sequence of semidef-

inite relaxations is provided whose sequence of optimal values is shown to converge

to the optimal value of the original problem. To solve the semidefinite programs

of increasing size obtained by relaxing the original chance optimization problem, a

first-order augmented Lagrangian algorithm is implemented which enables us to solve

much larger size semidefinite programs that interior point methods can deal with.

Numerical examples are provided that show that one can obtains reasonable approx-

imations to the optimal solution and the corresponding optimal probability even for

lower order relaxations. In the next chapter, we show the application of chance con-
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strained problems in system and control. We formulate the problem of controller

design for uncertain systems as a chance optimization problem and building on the

result obtained in this chapter, sequence of SDP’s are developed.

3.6 Appendix A: Proof of Theorem 10

Let (Q,Σ, µq) be the probability space defined in Remark 3.2.1. Note that since

Pj(x, q) is a polynomial in random vector q ∈ Rm for all x ∈ Rn, it is continuous in

q; hence Pj(x, .) is Borel measurable for all x ∈ Rn and j = 1, . . . , `. As discussed

in Remark 3.2.1, it can be assumed that K ⊂ χ × Q = [−1, 1]n × [−1, 1]m. Define

F : Rn → Σ as follows

F(x) := {q ∈ Rm : Pj(x, q) ≥ 0, j = 1, 2, . . . , `}, (3.29)

and consider the following problem over the probability measures in M(χ):

P := sup
µx∈M(χ)

{∫
χ

µq(F(x)) dµx : µx(χ) = 1

}
. (3.30)

Note that the optimal value of (3.2) can be written as P∗ = supx∈χ µq(F(x)).

Let µx be a feasible solution to (3.30). Since µq(F(x)) ≤ P∗ for all x ∈ χ, we have∫
µq(F(x)) dµx ≤ P∗. Thus, P ≤ P∗. Conversely, let x ∈ Rn be a feasible solution

to the problem in (3.2) and δx denote the Dirac measure at x. The objective value

of x in (3.2) is equal to µq(F(x)). Moreover, µx = δx is a feasible solution to the

problem in (3.4) with objective value equal to µq(F(x)). This implies that P∗ ≤ P.

Hence, P∗ = P, and (3.30) can be rewritten as

P∗ = sup
µx∈M(χ)

{∫
χ

∫
F(x)

dµqdµx : µx(χ) = 1

}
= sup

µx∈M(χ)

{∫
K
dµxµq : µx(χ) = 1

}
,

(3.31)

and using the epigraph formulation shown in Lemma 6, we finally obtain

P∗ = sup
µx∈M(χ)

sup
µ∈M(K)

∫
dµ s.t. µ 4 µx × µq, µx(χ) = 1.

Therefore, P∗ = P∗µq .
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3.7 Appendix B: Proof of Lemma 11

Suppose that (µ, µx) is feasible to (3.4). Let y and yx be the moment sequences

corresponding to µ and µx, respectively. Lemma 5 implies (3.5a); Lemma 1 and

Lemma 4 imply (3.5b). Moreover, let ȳ = {ȳα}α∈Nn+m be the moment sequence

corresponding to the product measure µ̄ := µx × µq. (3.4a) implies that µ̄ − µ is

a measure; hence, Lemma 1 implies M∞(ȳ − y) < 0. Moreover, the definition of

A implies that ȳ = Ayx, which gives (3.5c). Since y is chosen to be the moment

sequence of µ, we have
∫
dµ = y0. This shows that for each (µ, µx) feasible to

(3.4), one can construct a feasible solution to (3.5) with the same objective value.

Therefore, P∗yq
≥ P∗µq . Note that Assumption 1 is not used for this argument.

Next, suppose that (y,yx) is a feasible solution to (3.5). Since K satisfies As-

sumption 1, (3.5a) and Lemma 5 together imply that y has a representing finite Borel

measure µ supported on K, i.e., µ ∈M(K). Moreover, (3.5b) and Lemma 3 together

imply that yx has a representing probability measure µx supported on hyper-cube

χ, i.e., µx ∈M(χ) such that µx(χ) = 1. Hence, the sequence Ayx has a representing

measure µ̄ which is the product measure of µx and µq, i.e., µ̄ = µx×µq. Furthermore,

since K ⊂ χ × Q = [−1, 1]n+m, (3.5c) implies that µ � µ̄, which is (3.4a). Finally,

the fact that µ is a representing measure of y implies that
∫
dµ = y0. Therefore,

P∗yq
≤ P∗µq . Combining this with the above result gives us P∗yq

= P∗µq .

3.8 Appendix C: Proof of Theorem 12

First, we will show that for all d ≥ 1, the corresponding feasible region of (3.6) is

bounded . Fix d ≥ 1. Let (y,yx) be a feasible solution to (3.6). Then from (3.6b),

we have ‖yx‖∞ ≤ 1. Since µq is a probability measure supported on Q = [−1, 1]m,

Lemma 4 implies that ‖yq‖∞ ≤ 1 as well. Moreover, the definition of Ad further

implies that ‖Adyx‖∞ ≤ 1. Let ȳ := Adyx. It follows from (3.6c) that the diagonal

elements of Md(ȳ−y) are nonnegative, i.e., (ȳ)2α− (y)2α ≥ 0 for all α ∈ Nn+m
d . This

implies that

max

{
y0, max

i=1,...,n+m
Ly

(
x2d
i

)}
≤ max

α∈Nn+md

y2α ≤ max
α∈Nn+md

ȳ2α ≤ ‖ȳ‖∞ ≤ 1, (3.32)
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where the first inequality follows from the fact that

{y0} ∪
{
Ly

(
x2d
i

)
: i = 1, . . . , n+m

}
⊂ {y2α : α ∈ Nn+m

d }.

From (3.6a), we have Md(y) < 0. Hence, using Lemma 2, (3.32) implies that |yα| ≤
‖ȳ‖∞ ≤ 1 for all α ∈ Nn+m

2d . Therefore, the feasible region is bounded. Since the

cone of positive semidefinite matrices is a closed set and all the mappings in (3.6) is

linear, we also conclude that the feasible region is compact. Hence, there exists an

optimal solution (yd,ydx) to the problem (3.6) for all d ≥ 1.

Fix d ≥ 1. Clearly, for any given feasible solution (y,yx) to (3.5), by truncating

the both sequences to vectors y ∈ RSn+m,2d and yx ∈ RSn,2d , we can construct a

feasible solution to (3.6) with the same objective value. Hence, it can be concluded

that Pd ≥ P∗yq
for all d ≥ 1. Moreover, the same argument also shows that Pd ≥ Pd′

for all d′ ≥ d. Hence, {Pd}d∈Z+ is a decreasing sequence bounded below by P∗yq
.

Therefore, it is convergent and has a limit such that limk∈Z+ Pk ≥ P∗yq
.

In order to collect all the optimal solutions corresponding to different d in one

space, we extend (yd,ydx) ∈ RSn+m,2d × RSn,2d to vectors in `∞ (the Banach space

of bounded sequences equipped with the sup-norm) by zero-padding, i.e., we set

(yd)α = 0 for all α ∈ Nn+m such that ‖α‖1 > 2d, and
(
ydx
)
α

= 0 for all α ∈ Nn such

that ‖α‖1 > 2d. Note that `∞ is the dual space of `1, which is separable; hence,

sequential Banach-Alaoglu theorem states that the closed unit ball of `∞, denoted

by B∞, is weak-? sequentially compact. Since {yd}d∈Z+ ⊂ B∞ and {ydx}d∈Z+ ⊂ B∞,

there exists a subsequence {dk} ⊂ Z+ such that {ydk}k∈Z+ and {ydkx }k∈Z+ converge

weak-? to y∗ ∈ B∞ and y∗x ∈ B∞ in the weak-? topology, respectively. Hence,

lim
k∈Z+

(
ydk
)
α

= (y∗)α , ∀ α ∈ Nn+m, lim
k∈Z+

(
ydkx
)
α

= (y∗x)α , ∀ α ∈ Nn. (3.33)

Fix d ≥ 1, then for all k ∈ Z+ such that dk ≥ d, we have

Md(y
dk) < 0, Md−rj(y

dk ; pj) < 0, j = 1, . . . , `,

Md(y
dk
x ) < 0, ‖ydkx ‖∞ ≤ 1,

(
ydkx
)

0
= 1,

Md(Aydkx − ydk) < 0.

Since d ∈ Z+ is arbitrary, by taking the limit as k →∞, we see that (y∗,y∗x) satisfies
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all the constraints in (3.5). Therefore, (y∗)0 ≤ P∗yq
. On the other hand, (y∗)0 =

limk∈Z+

(
ydk
)

0
= limk∈Z+ Pdk . Moreover, since every subsequence of a convergent

sequence converges to the same point, we have limk∈Z+ Pk = limk∈Z+ Pdk = P∗yq
.

This shows that the subsequential limit (y∗,y∗x) is an optimal solution to (3.5). The

rest of the claims follow from our previous results: Theorem 10 and Lemma 11.

3.9 Appendix D: Proof of Theorem 13

The LP in (3.4) can be rewritten as

P∗1 := sup〈γ, c〉 (3.34)

s.t. A∗γ = b (3.34a)

γ ∈M+(K)×M+(χ). (3.34b)

where, γ := (µ, µx) ∈ M+(K) ×M+(χ) is the variable vector, and c := (1, 0) ∈
C+(K)×C+(χ), so objective function is 〈γ, c〉 =

∫
dµ. Also, A∗ :M+(K)×M+(χ)→

M+(Q×χ)×R+ is the linear operator that is defined by A∗γ := (µ−µx×µq,
∫
χ
dµx)

and b := (0, 1) ∈M+(Q×χ)×R+,([49], Theorem 2, [79, 82]). The problem in (3.34)

is infinite LP defined in cone of nonnegative measures. The cone of nonnegative

continuous functions are dual to cone of nonnegative measures. Based on standard

results on LP ([49], Theorem 2, [79, 82]), the dual problem of (3.34) reads as

P∗2 := inf〈b, z〉 (3.35)

s.t. Az − c ∈ C+(K)× C+(χ) (3.35a)

where, z := (W(x, q), β) ∈ C+(Q × χ) × R+ is the variable vector, so the objective

function is 〈b, z〉 = β. The linear operator A : C+(Q × χ) × R+ → C+(K) × C+(χ)

satisfies adjoint relation〈A∗γ, z〉 = 〈γ,Az〉; hence, is defined by Az := (W(x, q), β −∫
QW(x, q)dµq). As a result, the dual problem (3.35) is equal to the problem (3.34).

If problem in (3.34) is consistent with finite value and the set

D := {(A∗γ, 〈γ, c〉) : γ ∈M+(K)×M+(χ)}
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is closed, then there is no duality gap between (3.34) and (3.35), ([79], Theorem

3.10, [82], Theorem 7.2). The support of measures in (3.34) are compact. Also, the

measure µ is constrained by the measure µx×µq in which, measure µx is probability

measure; i.e., µx(χ) = 1, and µq is finite Borel measure defined on compact set Q.

Hence, P∗1 = sup
∫
dµ <∞. Also, the feasible set of (3.34) is nonempty for instance

(δx × µq, δx) for x ∈ χ is a feasible solution; therefor 0 ≤ P∗1 = sup
∫
dµ <∞. Using

sequential Banach−Alaoglu theorem [80] and weak-? continuity of the A∗, there

exist an accumulation point of γk = (µk, µxk) in the weak-? topology of nonnegative

measures such that limk→∞ ((A∗γk, 〈γk, c〉)) ∈ D; hence, D is closed, ([49], Theorem

2).

3.10 Appendix E: Proof of Theorem 14

Matrices of the problem (3.6) can be rewritten as follow, ([67, 68]). Mr(y) =
∑

αAαyα

and Md−rj (y;Pj) =
∑

αB
j
αyα. Also, Md(yx) =

∑
αDαyxα, Md−ri(yx; {1 − x2

i }ni=1)) =∑
αE

i
αyaα, and Md(yx × yq − y) =

∑
α Fαyxα −

∑
αAαyα for appropriate real sym-

metric matrices (Aα, {Bj
α}lj=1, Dα, {Ei

α}ni=1, Fα) and 0 ≤ |α| ≤ 2d. Let, γ = (y ∈
RSn+m,2d , yx ∈ RSn,2d). Then problem in (3.6) can be rewritten as a standard form

as follow:

P∗r := sup
γ
bTγ, (3.36)

s.t. C1 +
∑
α

Âαγα < 0, (3.36a)

Cj2 +
∑
α

B̂j
αγα < 0, j = 1, . . . , l (3.36b)

C3 −
∑
α

Ĉαγα < 0, (3.36c)

C4 +
∑
α

D̂αγα < 0, (3.36d)

Cj5 +
∑
α

Êjαγα < 0, j = 1, . . . , n (3.36e)

C6 +
∑
α

F̂αγα < 0, (3.36f)

where, b = (1,0) ∈ RSn+m,2d+Sm,2d , (C1, C2, C4, C5, C6) are zero matrices, (Âα, {B̂j
α}lj=1

, D̂α, {Êj
α}nj=1, F̂α) are real symmetric matrices, C3 = 1, and ĈT = (0 ∈ RSn+m,2d , 1,0 ∈
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RSm,2d−1) ∈ RSn+m,2d+Sm,2d . Based on standard results on duality of SDP, the dual

problem to (3.36) reads as ([83, 84])

P∗d = inf
{Xj}lj=0,{Y j}nj=0,Z,β

〈
C1, X

0
〉
+

l∑
j=1

〈
Cj2 , X

j
〉
+ 〈C3, β〉+

〈
C4, Y

0
〉
+

n∑
j=1

〈
Cj5 , Y

j
〉
+ 〈C6, Z〉

(3.37)

s.t. β −
〈
Aα, X

0
〉
−

l∑
j

〈
Bjα, X

j
〉
−
〈
Dα, Y

0
〉
−

n∑
j

〈
Ejα, Y

j
〉
− 〈Fα, Z〉 = bα, α = 0, (3.37a)

−
〈
Aα, X

0
〉
−

l∑
j

〈
Bjα, X

j
〉
−
〈
Dα, Y

0
〉
−

n∑
j

〈
Ejα, Y

j
〉
− 〈Fα, Z〉 = bα, 0 < |α| ≤ 2d,

(3.37b)

X0, {Xj}lj=1, Y
0, {Y j}nj=1, Z, β < 0 (3.37c)

where, 〈X, Y 〉 = trace(XY ). This problem is equal to the problem in (3.15).

Based on the defined matrices and vectors, the cost function of (3.37) is equal to

β. Also, let Bd denote the vector comprised of the monomial basis of Rd[x, q]. We

can represent the polynomials of (3.15) as PdW(q, x) = BTdX0Bd, QM
(
{Pj}l1j=1

)
=∑l1

j BTdXjBd,
∫
PdW(q, x)dµq = BTd Y 0Bd, QM

(
{1− x2

j}nj=1

)
=
∑n

j BTd Y jBd, and

P̂dW(q, x) = BTd ZBd. Then constraints (3.37a) and (3.37b) are conditions for α-

th coefficient of polynomial PdW(q, x) so that as constraints (3.15a) and (3.15b),

PdW(q, x)− 1 ∈ QM
(
{Pj}l1j=1

)
, β − P̂dW(q, x) ∈ QM

(
{1− x2

j}nj=1

)
, and P̂dW(q, x) =∫

QP
d
W(x, q)dµq are satisfied.

Based om Slater’s sufficient condition ([83, 84]) if the feasible set of strictly posi-

tive matrices in constraint of primal SDP is nonempty, then there is no duality gap.

Consider SDP in (3.6). Let µx be uniform measure on χ and µ = µx × µq. Since set

K and χ have a nonempty interior, then Md(y) � 0, Md−rj(y;Pj) � 0, j = 1, . . . , l,

Md(yx) � 0, and Md−rj(yx; {1 − x2
j}) � 0, j = 1, . . . , n. Based on Remark 3.2.1,

χ × Q \ K has nonempty interior; hence Mr(yx × yq − y) � 0. Therefore, Slater’s

condition holds, (see [67, 68] for similar setup). Also, Theorem 13 can be proved

based strong duality condition provided in [83], (e.g., see [49, 95]).
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3.11 Appendix F: Proof Of Theorem 15

Let P∗ denote the optimal value of (3.1), and K = ∪Nk=1Kk, where Kk is defined in

(3.16). It can be proven as in Theorem 10 that

P∗ = sup
µx∈M(χ)

sup
µ∈M(K)

∫
dµ s.t. µ 4 µx × µq, µx(χ) = 1. (3.38)

Let {µk}Nk=1 and µx be a feasible solution to (3.17) with objective value P . Since

µk ∈ M(Kk) ⊂ M(K) for all k = 1, . . . , N , we have
∑N

k=1 µk ∈ M(K). Hence,(∑N
k=1 µk, µx

)
is a feasible solution to (3.38) with objective value P , as well. Clearly,

this shows that P∗µq ≤ P∗, where P∗µq denotes the optimal value of (3.17).

Suppose that (µ, µx) is a feasible solution to (3.38) with objective value P . Define

{µk}Nk=1 as follows

µk(S) := µ

(
S ∩

(
Kk \

k−1⋃
j=0

Kj

))
, ∀S ∈ Σ(K), (3.39)

for all k = 1, . . . , N , where K0 := ∅ and Σ(K) denotes the Borel σ-algebra over K.

Definition in (3.39) implies that µk ∈M(Kk) for all k = 1, . . . , N , and
∑N

k=1 µk(S) =

µ(S) for all S ∈ Σ(K). Hence, {µk}Nk=1 and µx form a feasible solution to (3.4) with

objective value equal to P . Therefore, P∗µq = P∗.

3.12 Appendix G: Proof Of Theorem 16

Let {yk}Nk=1 ⊂ RSn+m,2d and yx ∈ RSn,2d be a feasible solution to (3.18). As in

Theorem 12, it can be shown that

max

{
(y)0 , max

i=1,...,n+m
Ly

(
x2d
i

)}
≤ 1, (3.40)

where y :=
∑N

k=1 yk. Note that Ly

(
x2d
i

)
=
∑N

k=1 Lyk

(
x2d
i

)
, and {Lyk

(
x2d
i

)
}n+m
i=1

is a subset of diagonal elements of Md(yk) � 0 for each k ∈ {1, . . . , N}. Hence,

Lyk

(
x2d
i

)
≥ 0 for all i ∈ {1, . . . , n + m} and k ∈ {1, . . . , N}. Therefore, (3.40)
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implies that

max

{
(yk)0 , max

i=1,...,n+m
Lyk

(
x2d
i

)}
≤ 1 (3.41)

for all k ∈ {1, . . . , N}. Lemma 2 implies that |(yk)α| ≤ 1 for all α ∈ Nn+m
2d . Therefore,

the feasible region is bounded. The rest of the proof is exactly the same as in

Theorem 12.



Chapter 4
Convex Relaxation of Probabilistic

Controller Design Problems

4.1 Introduction

In this chapter, we address the application of chance optimization algorithms in

the control of stochastic systems. For this purpose, we consider the problems of

probabilistic robust controller design and chance constrained model predictive control

[70, 71]. In the problem of designing probabilistic robust controllers, we aim at

designing robust controllers that maximize the probability of reaching a given target

set. More precisely, given probability distributions for the initial state, uncertain

parameters and disturbances, we develop algorithms for designing a control law that

i) maximizes the probability of reaching the target set in N steps and ii) makes the

target set robustly positively invariant.

In the chance constrained model predictive control problem, we aim at finding

optimal control input for given disturbed dynamical system to minimize expected

value of a given cost function subject to probabilistic constraints, over a finite horizon.

The control laws provided have a predefined (low) risk of not reaching the desired

target set.

Building on the theory of measures and moments, a sequence of finite semidefinite

programmings are provided, whose solution is shown to converge to the optimal

solution of the original problems. Numerical examples are presented to illustrate the
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computational performance of the proposed approach.

4.2 Probabilistic Robust Control

In this section, we provide results aimed at designing robust controllers that maximize

the probability of reaching a given target set. More precisely, we start with an

uncertain polynomial system subjected to external perturbations for which we know

the probability distribution of the initial state, the uncertainty and the disturbances.

Then, given a target set defined by polynomial inequalities and number of steps N ,

we provide algorithms for designing a nonlinear state feedback control law that i)

makes the target set a robustly invariant set and ii) maximizes the probability of

reaching the target set in N steps. It is assumed that a static polynomial state

feedback control law exists that makes the target set robustly invariant. In the

provided method, we incorporate the probability directly in the objective function

and aim at maximizing the probability of desired defined control objectives. The

proposed method is based on results on semialgebraic chance optimization provided

in Chapter 3. Being, in general, a non-convex problem, a hierarchy of semidefinite

relaxations for the approximation of the solution was proposed. These results provide

the main motivation for the approach taken in this section.

In the next section, an explicit definition of chance robust control problem is

given. Then, a sequence of convergent convex relaxations is provided.

4.2.1 Problem Statement

Consider the following discrete-time stochastic dynamic system

x(k + 1) = f(x(k), u(k), δ, ω(k)) (4.1)

where f : Rn+2m+p → Rn is a polynomial function, x(k) ∈ χ ⊆ Rn is the system

state, u(k) ∈ ψ ⊆ Rm is the control input, δ ∈ ∆ ⊆ Rp is the uncertain model

parameter and ω(k) ∈ Ω ⊆ Rm is the disturbance, at time step k.

The initial state x(0) ∈ χ0 ⊆ χ, model parameter δ, and disturbance ω(k) at

time k are independent random variables having probability measure µx0 , µδ, and

µωk , with compact supports supp(µx0) ⊆ χ0, supp(µδ) ⊆ ∆ and supp(µωk) ⊆ Ω,
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respectively. We assume that χ0,∆,Ω are compact semialgebraic sets of the form

χ0 = {x : g0(x) ≥ 0}, ∆ = {δ : gδ(δ) ≥ 0}, Ω = {ω : gω(ω) ≥ 0} for given

polynomials g0, gδ, gω. Although each of these sets is defined by just one polynomial,

the approach proposed in this work can be extended to more complex semialgebraic

sets. This assumption is only done to simplify the exposition.

Let N be a given integer. The desired terminal set at time step N is defined as

the compact semialgebraic set

χN = {x : gN(x) ≥ 0}.

We aim at finding a polynomial state feedback control input

u(x) =
∑
‖i‖1≤nu

bix
i

where u : Rn → Rm is polynomial of order no more that nu and b ∈ B is a vector

of coefficients bi, such that χN is an invariant set and maximizes the probability of

reaching χN in N steps. Terminal set χN is invariant under control law if

f(x, u(x), δ, ω) ∈ χN

for all

x ∈ χN , δ ∈ ∆, ω ∈ Ω.

Under the definitions provided above, the stochastic control problem can be stated

as follows

Problem 1: Solve,

P1*
= max

b
Probµx0 ,µδ,µω {gN(x(N)) ≥ 0} (4.2)

subject to,

x(k + 1) = f(x(k), u(k), δ, ω(k))

u(k) =
∑
‖i‖1≤nu

bix
i(k)

x0 ∼ µx0 , δ ∼ µδ, ω(k) ∼ µωk , µω = [µω0 , ..., µωN ]
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f(x, u(x), δ, ω) ∈ χN for all x ∈ χN , δ ∈ ∆, ω ∈ Ω

4.2.2 An Equivalent Problem

As mentioned before we address this problem in two steps. First we determine a

set of control laws that renders the set χN robustly positively invariant. Then, we

search for a control law in this set that maximizes the probability of reaching χN in

N steps.

4.2.2.1 Set Invariant Control Laws

In first step, we are looking for a set of parameters of control laws that render desired

terminal set χN invariant. In this work, we approximate this set by a semialgebraic

set Pd ⊆ B of the form

Pd = {b : pd(b) ≥ 0}

where the pd is a polynomial of order d of the form

pd(b) =
∑
j∈Nn

λjb
j ∈ R[b]d.

To determine λj the coefficients of this polynomial, one needs to solve the fol-

lowing optimization problem involving SOS polynomials, which can be easily done

using semidefinite programming.

minλj ,σ0,σ1,σ2,σ3
∑
j∈Nn

γjλj (4.3)

subject to

gN(f(x,
m∑
i=0

bix
i, δ, ω))−

∑
j∈Nn

λjb
j = σ0(x, b, δ, ω)

+σ1(x, b, δ, ω)gN(x) + σ2(x, b, δ, ω)gω(ω) + σ3(x, b, δ, ω)gδ(δ)

where,γj is j-th moment of uniform probability measure over the set B of parameters

of the control law and σ0, σ1, σ2, σ3 ⊂
∑2[x, b, δ, ω], are finite degree SOS polynomials

such that deg(σ0) 6 d, deg(σ1gN) 6 d, deg(σ2gω) 6 d, deg(σ3gδ) 6 d.

We then have the following result:
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Theorem 17. Let pd(b) be a polynomial constructed by solution of the optimization

problem (4.3). Then, for any

b ∈ Pd = {b : pd(b) ≥ 0}

the corresponding control law

u(x) =
∑
i∈Nn

nu

bix
i

renders the set χN positively invariant. Moreover, define the set

Ptotal = {b : u(x) renders the set χN positively invariant}.

Then

lim
d→∞

µB(Ptotal − Pd) = 0

where Ptotal − Pd denotes the elements of Ptotal not in Pd.

Proof. See Appendix A.

4.2.2.2 Maximizing Probability of Reaching χN

Now that we have an estimate of the set of control laws that render the set χN

positively invariant, we can now address the problem of maximizing the probability of

reaching the target set in at most N steps. Note that this is equivalent to maximizing

the probability of x(N) ∈ χN since we have restricted the control laws to those that

make the set χN invariant.

Define the function h as

x(N) = h(x0, b, δ, ω)

as the value of the state at time N when the value of the uncertain parameters is δ,

the disturbances are

ω = [ω0, ..., ωN ],

the control has coefficients b and the initial condition is x0. Note that since one has
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a polynomial system and a polynomial control law, h is a polynomial. Additionally

define the semialgebraic set

K1 = {(x0, b, δ, ω) : gN(h(x0, b, δ, ω) ≥ 0}

which represents all the values of the variables that will result in x(N) ∈ χN and the

semialgebraic set

K2 = Pd(b) ∩B

of control laws that render the set χN invariant. Define the following problem

Problem 2: Solve

P2*
= max

µ,µb

∫
dµ (4.4)

subject to

µ 4 µb × µx0 × µδ ×
N∏
k=0

µωk

µb is a probability measure

supp(µ) ⊆ K1

supp(µb) ⊆ K2

This problem is equivalent to the problem addressed in this work in the following

sense.

Theorem 18. Problem 2 is equivalent to Problem 1 in the following sense: Let’s

restrict our attention to control laws that have

b ∈ Pd

Under this addition restriction one has

1. The optimal values are the same.

2. If µ∗b be a solution of Problem 2, then, any b∗ ∈ supp(µ∗b) is a solution of

Problem 1.

3. If b∗ be a solution of Problem 1, then µ∗b = δb∗ is a solution of Problem 2
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Proof. See Appendix B.

4.2.3 Semidefinite Relaxations

In this section, a sequence of semidefinite programs is provided which can arbitrarily

approximate the optimal solution of Problem 2. Unlike Problem 2 in which we are

looking for a measure, in the provided semidefinite program, we aim at finding a

sequence of moments of a measure that satisfies the criteria of Problem 2. One

should note that looking for a sequence of moments associated with one measure,

is equivalent to looking for the measure itself. Proceeding as in Chapter 3.3.2, this

leads to the following finite dimensional approximation.

Problem 3: Let y = (yα), yb = (ybα) be a sequence with appropriate dimension, and

defined semialgebraic sets K1,K2. Consider the sequence of semidefinite programs

as:

P3*i
= sup

y,yb

y0 (4.5)

subject to

Mi(y) < 0,Mi−rj(g(h(.))y) < 0

Mi(yb) < 0,Mi−rj(p(.)yb) < 0

Mi(ŷ − y) < 0

where, ŷ = (ŷα) are the moments of measure µ̂ = µb × µx0 × µδ ×
∏N

k=0 µωk , if one

assumes that yb are the moments of a measure µb. Given the fact that, yx0 ,yδ,yωk
,

sequence of moments of measures µx0 , µδ, µωk , are given ŷ is a linear transformation

of yb. The sequence of problems provided above converges to the solution of the

original problem. More precisely, we have the following result.

Theorem 19. Optimal value of problem P3i
converges to optimal value of problem

P2 as i→∞.

Proof. See Appendix C.
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Figure 4.1: The polynomial Pd (b1, b2) of example 2

4.2.4 Numerical Results

We now present two numerical examples that illustrate that the proposed semidefi-

nite relaxations are effective in finding an appropriate control input even with lower

order relaxations. Further research is needed to develop more efficient numerical

implementations and study their behavior. Matlab toolboxes Yalmip [96] and Glop-

tipoly [97] are employed to solve the semidefinite programs 4.3 and 4.5, respectively.

4.2.4.1 Example 1: Nonlinear Control Problem

In this example, we consider the controller design problem for the following uncertain

nonlinear dynamical system. For a given control parameter vector K ∈ R3, let the

system x(k)T = [x1(k), x2(k), x3(k)] ∈ R3 satisfy

u(k) = K1x1(k) +K2x2(k) +K3x3(k),

x1(k + 1) = ∆ x2(k),

x2(k + 1) = x1(k) x3(k),

x3(k + 1) = 1.2 x1(k)− 0.5 x2(k) + x3(k) + u(k),

(4.6)

for k = 0, 1, where x1(0) ∼ U [−1, 1], x2(0) ∼ U [−1, 1], x3(0) ∼ U [−1, 1], ∆ ∼
U [−0.4, 0.4], i.e., initial state vector x(0), and model parameter ∆ are uncertain

and uniformly distributed. The objective is to lead the system using state feedback

control u(k) to the cube centered at the origin with the edge length of 0.2 in at

most 2 steps by properly choosing the control decision variables {Ki}3
i=1 such that
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−1 ≤ Ki ≤ 1. The equivalent chance problem is stated in (4.7), where eT = [1, 1, 1].

sup
K∈R3

µq

({(
x(0),∆

)
: −0.1e ≤ x(2) ≤ 0.1e

})
, (4.7)

s.t. {x(k), u(k)}2
k=0 satisfy (4.26),

− e ≤ K ≤ e.

The following optimal solution and the corresponding optimal probability are com-

puted by Monte Carlo method: K∗1 = −1, K∗2 = 0.5, K∗3 = −0.9, and P∗ = 0.84. To

obtain an equivalent SDP formulation for the chance constrained problem in (4.7),

x(2) is explicitly written in terms of control vector K ∈ R3 and uncertain parameters,

x(0) and ∆, using the dynamic system given in (4.26):

x1(2) = ∆ x1(0)x3(0),

x2(2) = (1.2 +K1)∆ x1(0)x2(0) + (K2 − 0.5)∆ x2(0)2 + (1 +K3)∆ x2(0)x3(0),

x3(2) = (1 + 2K3 +K2
3) x3(0) + (K2 − 0.5K3 − 0.5 + 1.2∆ +K1∆ +K2K3) x2(0)

+ (1.2 +K1 + 1.2K3 +K1K3) x1(0) + (K2 − 0.5) x1(0)x3(0).

Based on the obtained polynomials, the minimum relaxation order for this problem

is 2. To obtain an approximate solution, we solve the SDP in (3.6) using GloptiPoly

and ALCC. For ALCC, we set ν0 to 5× 10−3, 5× 10−3 and 1× 10−3 when d is equal

to 2, 3 and 4, respectively, and tol = 1 × 10−3. The results for relaxation order

d = 2, 3, 4 are shown in Table 4.1.

Example 2: Consider the uncertain systems as:

x1(k + 1) = δx2(k) (4.8)

x2(k + 1) = x1(k) + 2x2(k) + u(k) + ω(k)

x0 ∼ U [−10, 10]2, δ ∼ U [−0.5, 0.5], ω(k) ∼ U [−0.4, 0.4]

where, uncertain initial state x0, model parameter δ, and disturbance ω has uniform

probability distribution U . We aim at leading the system using state feedback control

u(k) = −b1x1(k)−b2x2(k) to the unit circle centered at the origin in at most 2 steps,

in presence of uncertainties. Solving the semidefinite program 4.3, the semialgebraic
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ALCC

d 2 3 4

nvar 365 1800 6600

iter 416 4300 5325

cpu 14.934 897.708 5318.387

K1 0 -0.244 -0.683

K2 0 0.468 0.476

K3 0 -0.868 -0.868

Pd 0.238 0.996 0.983

P′d 0.65 0.9 0.982

P̄d 0.061 0.445 0.685

GloptiPoly

d 2 3 4

nvar 365 1800 6600

iter 19 26 36

cpu 1.3 99.2 10389.8

K1 0 -0.492 -0.796

K2 0 0.439 0.487

K3 0 -0.823 -0.891

Pd 1 1 1

P′d 0.65 0.959 0.999

P̄d 0.061 0.508 0.766

Table 4.1: ALCC and GloptiPoly results for Example 1

set Pd for d = 2 is obtained as:

Pd = {b : −6.46 + 2.45b1 + 5.35b2 − 1.22b21 − 0.009b1b2 − 1.33b22 ≥ 0}

Solving semidefinite program 4.5 with relaxation order i = 6, the obtained opti-

mal probability is 1. Using the obtained optimal y,yb, the control is

u(k) = −0.99x1(k)− 1.99x2(k)

Where, [0.99, 1.99] are the moments order one, from the moments sequence yb. Ap-

plying the obtained control input to the uncertain system, with probability one, the

trajectories of the system for all initial states from the box [−10, 10]2 will reach and

remain in a unit ball, in presence of model uncertainty and disturbances; see Fig.

4.2.

Example 3: Consider the uncertain systems as:

x1(k + 1) = x2(k) (4.9)

x2(k + 1) = x1(k)x2(k) + u(k) + ω(k)

x0 ∼ U [−5, 5]2, ω(k) ∼ U [−0.5, 0.5]

where, uncertain initial state x0, model parameter δ, and disturbance ω has uniform

probability distribution U . We aim at leading the state of the system to unit box
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Figure 4.2: Example 2: trajectories of the uncertain system under obtained control
input

Figure 4.3: Example 3: trajectories of the uncertain system under obtained control
input

[−1, 1]2 at most in 2 steps, in presence of uncertainties. Since, the system consists

of polynomial with order two, we use a state feedback control of the form u(k) =

b1x1(k)2 + b2x1(k)x2(k) + b3x2(k)2 to control the system. Solving the semidefinite

programs 4.5, with relaxation order i = 6, the obtained optimal probability is 1.

Using the obtained optimal y,yb, the control input is:

u(k) = 0.98x1(k)2 − 0.94x1(k)x2(k)− 0.98x2(k)2

State response of the system under obtained control input is provided in Fig 4.3.

Example 4: Consider the uncertain nonlinear system as

x1(k + 1) = δx2(k),

x2(k + 1) = x1(k) x3(k),

x3(k + 1) = x1(k)− x2(k) + x3(k) + u(k)

(4.10)
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where, initial system states x1(0) ∼ U [−1, 1], x2(0) ∼ U [−1, 1], x3(0) ∼ U [−1, 1],

and model parameter δ ∼ U [−0.2, 0.2] are uncertain and uniformly distributed. Also,

there is a sphere shaped obstacle centered at (−0.5,−0.5, 0) with radius of 0.3 in the

state space.

The objective is to find the state feedback control of the form u(k) = a1x1(k) +

a2x2(k) + a3x3(k) to lead the states of the system to the cube centered at the origin

with the edge length of 0.2 in at most 3 steps and at the same time to avoid the

obstacle at each time k with high probability. In other word, we want to maximize

the probability of semialgebraic sets χ3 = {−0.1 ≤ x1(3) ≤ 0.1, −0.1 ≤ x2(3) ≤
0.1, −0.1 ≤ x3(3) ≤ 0.1} and χxk = {(x1(k)+0.5)2 +(x2(k)+0.5)2 +x3(k)2−0.32 ≥
0}, k = 1, 2. Hence, the semialgebraic of chance optimization problem reads as{

(x0, δ) : {−0.1 ≤ Pxi(3) ≤ 0.1}3i=1,
{
(Px1(k) + 0.5)2 + (Px2(k) + 0.5)2 + P2

x3(k)
− 0.32 ≥ 0

}2

k=1

}
(4.11)

where, {xi(k) = Pxi(k)(x0, δ, a)}3
k=1, i = 1, 2, 3, are states of the system in terms of

control coefficients vector a, initial states x0, uncertain parameters δ that is derived

by dynamic of the system given in (4.10). The maximum degree of polynomials

defining semialgebraic set is 8. Using Monte Carlo method, we obtain the optimal

solution as (a∗1, a
∗
2, a
∗
3) = (−0.5, 1,−1) and the corresponding optimal probability as

1. To obtain an approximate solution, we solve SDP in (3.6).

Based on moments of uniform measures, we construct the matrices in constraints

of SDP (3.6) in terms of unknown moment vectors y ∈ RS7,2d and ya ∈ RS3,2d . The

SDP in (3.6) with d = 7 is solved using GloptiPoly. Based on obtained solution for

moment vectors, we approximate the (a1, a2, a3) with the first order moments of vec-

tor ya as (ya100 , ya010 , ya001) = (−0.2820, 0.4766,−0.8602) and also we approximate the

probability with zero moment of vector y as y0000000 = 1. Using Monte Carlo method,

the true probability for obtained solution (a1, a2, a3) = (−0.2820, 0.4766,−0.8602) is

computed as 0.95. To improve the estimated probability and also to estimate the

probability of reaching to target set, i.e.,

Prob
{

(x0, δ) : {−0.1 ≤ Pxi(3) ≤ 0.1}3
i=1

}
and probability of avoiding the obstacle, i.e.,

Prob
{

(x0, δ) :
{

(Px1(k) + 0.5)2 + (Px2(k) + 0.5)2 + P2
x3(k) − 0.32 ≥ 0

}2

k=1

}
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separately, we solve the SDP suggested in chapter 3 for obtained points (a1, a2, a3) =

(−0.2820, 0.4766,−0.8602). By solving the SDP with relaxation order of 7 for the set{
(x0, δ) : {−0.1 ≤ Pxi(3) ≤ 0.1}3

i=1

}
, the estimated probability of 0.994 is obtained,

while the true one computed by Monte Carlo is 0.95. Also, the estimated proba-

bilty for the set

{
(x0, δ) :

{
(Px1(k) + 0.5)2 + (Px2(k) + 0.5)2 + P2

x3(k) − 0.32 ≥ 0
}2

k=1

}
is obtained as 1, while the true one computed by Monte Carlo is 1. Figure 4.4 shows

the trajectories of the uncertain system (4.10) controlled by obtained state feedback

u(k) = −0.2820x1(k) + 0.4766x2(k) − 0.8602x3(k) for different initial points. Note

that, although states of the system x(k) avoids the obstacle, the trajectories between

the points x(k), k = 0, ..., 3 may collide the obstacle.

Figure 4.4: The trajectories of the uncertain system of Example 4 controlled by
obtained state feedback

4.3 Chance Model Predictive Control

In this section, we aim at solving chance constrained model predictive control prob-

lems whose objective is to obtain finite-horizon optimal control of dynamical systems

subject to probabilistic constraints. The control laws provided are designed to have

precise bounds on the probability of achieving the desired objectives. More precisely,

consider a polynomial dynamical system subject to external perturbation and assume

that the probability distribution of the disturbances at each time is known. Then,
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given a desired set defined by polynomial inequalities and a polynomial cost function

defined in terms of states and control input of the system, we aim at designing a

controller to i) minimize the expected value of given cost function over the finite

horizon and ii) reach the given desired set with high probability. For this purpose,

at each sampling time we solve a convex optimization problem that minimizes the

expected value of cost function subject to probabilistic constraints over the finite

horizon.

In the next section, we precisely define the chance constrained MPC problem.

Next, we provide equivalent infinite dimensional convex problem one measure and a

semidefinite program on moments to solve obtained convex problem on measures.

4.3.1 Problem Formulation

We consider chance constrained model predictive control problem defined as follows.

Consider the following discrete-time stochastic dynamical system

xk+1 = f(xk, uk, ωk) (4.12)

where f : Rnx+nu+nω → Rnx is a polynomial function, xk ∈ χ ⊆ Rnx is system state,

uk ∈ ψ ⊆ Rnu is control input, and ωk ∈ Ω ⊆ Rmω is disturbance, at time step k. The

disturbances ωk at time k are independent random variables with probability measure

µωk supported on Ω, respectively. We assume that Ω is compact semialgebraic set

of the form Ω = {ω ∈ Rnω : Pω(ω) ≥ 0} for given polynomial Pω. Also, let χN be a

given desired set defined by the compact semialgebraic sets as

χD = {x ∈ χ : PχD(x) ≤ 0} (4.13)

In this work we aim at solving following problem.

Problem 1: For a given stochastic dynamical system in (4.12), find an optimal

control u to:

i) Reach the desired set χD with high probability,

ii) Minimize the expected value of given cost function in terms of states and inputs

of the system.

To obtain such control input, at each sampling time k, we solve the following
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optimization problem:

P∗MPC := min
u∈U

E
[
Pcost

(
{xi}

k+Np
i=k+1, {ui}

k+Np
i=k

)]
(4.14)

s.t.

Probµωk {PχD(xk+1) ≥ αPχD(xk)} ≥ 1− βPχD(xk) (4.14a)

xk+1 = f(xk, uk, ωk), {ωi ∼ µωi}
k+Np−1
i=k (4.14b)

where, u = {ui}k+Np
i=k ∈ U ⊂ RNp is sequence of inputs, E[.] =

∫
(.)dµωk ...dµωk+Np−1

is

expected value operator, Np ≥ 1 ∈ N is prediction horizon. 0 < α < 1 and 0 < β < 1

such that 0 ≤ βPχD(x) < 1 for all x ∈ χ. Polynomial Pcost
(
{xi}k+Np

i=k+1, {ui}
k+Np
i=k

)
is

defined cost function in terms of states and control input of the system over control

and prediction horizon. We assume that the set of feasible control input U is a

semialgebraic set defined as

U :=
{
u = (uk, ..., uk+Np) : PU(u) ≥ 0

}
(4.15)

Also, using the dynamic of the system in (4.12), {xi}k+Np
i=k+1, sequences of system states

over the prediction horizon, can be explicitly expressed in terms of disturbance and

input of the system as

xi = Pxi({uj}i−1
j=k, {ωj}

i−1
j=k) i = k + 1, ..., Np (4.16)

Then, expected value in the cost function (4.14) can be rewritten in terms of inputs

as

E
[
Pcost

(
{xi}k+Np

i=k+1, {ui}
k+Np
i=k

)]
= PE(u) (4.17)

where, PE : RNp → R is a polynomial function and u = {ui}k+Np
i=k .

By solving problem in (4.14), we find sequence of control inputs {ui}k+Np
i=k that

minimizes expected value of defined cost function over the finite horizon with respect

to the chance constraint (4.14a). Chance constraint (4.14a) implies that the proba-

bility of getting closer to the desired set at next sampling time k+1 is bounded with

respect to PχD(xk), the distance of states of the system to the desired set at current

time k. At each sampling time k, the first element of the obtained control input u is
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applied to the system. The implemented chance constraint (4.14a) depend only on

uk; hence, is recursively feasible.

Assumption: We assume that for every x ∈ χ, there exist a u such that the prob-

ability constraint (4.14a) is satisfied. Hence, problem (4.14) is always feasible.

The following theorem holds true.

Theorem 20. Given an initial state x0 ∈ χ and ε > 0 there exist a k̂(ε, α, β) and

P̂ (ε, α, β) such that

Prob
{
PχD(xk) ≤ ε, ∀k ≥ k̂(ε, α, β)

}
≥ P̂ (ε, α, β) (4.18)

where,

k̂(ε, α, β) ≥ ln(ε)− ln(PχD(x0))

ln(α)
(4.19)

P̂ (ε, α, β) =
k̂−1∏
i=0

(1− βαi) > 0 (4.20)

Proof. See Appendix D.

The probability lower bound (4.20) is a convergent product and converges to a

non-zoro constant. For example, consider the cases that (α, β) = (0.8, 0.05). For this

case, P̂ converges to 0.8169 for k̂ ≥ 36. In the section 4.4, where numerical examples

are presented, we consider this case for α and β.

Remark: The lower bound probability (4.20) is conservative bound and the

actual probability of reaching the ε level set of PχD is greater than provided P̂ (ε, α, β).

However, lower bound (4.20) is useful for controller design purposes and shows that

the probability of reaching the set is nonzero.

The provided problem in (4.14) is in general nonconvex and hard to solve. In the

next section, we provide a convex equivalent problems to the problem (4.14).

4.3.2 Equivalent Convex Problem on Measures

As an intermediate step in the development of finite convex relaxations of the original

problem in (4.14), a related infinite dimensional convex problem on measures is

provided as follows. Let µu and µ be the finite nonnegative Borel measures and also
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the set K be defined as

K := {(uk, ωk) : PχD(xk+1)− αPχD(xk) ≥ 0} = {(uk, ωk) : PK(uk, ωk) ≥ 0} (4.21)

where, polynomial PK can be obtained using system dynamics and and polynomial

PχD . Consider the following convex problem on measures:

P∗measure := sup
µ,µu

∫
PE(u)dµu, (4.22)

s.t.

∫
dµ ≥ 1− βPχD(xk) (4.22a)

µ 4 µu × Π
k+Np−1
i=k µωi , (4.22b)∫

µu = 1, (4.22c)

µ ∈M+(K), µu ∈M+(U). (4.22d)

where, measures µ and µu are supported on the sets U and K defined as (4.15) and

(4.21).

Assume that there exist a unique solution u∗ ∈ U to the problem in (4.14). Then,

following theorem shows the equivalency of the problem in (4.22) and the original

volume problem in (4.14).

Theorem 21. Assume that µ∗u, the solution of the problem (4.22), is a delta distri-

bution whose mass is concentrated on a single point u∗. Then, optimization problem

in (4.14) is equivalent to the infinite LP in (4.22) in the following sense:

i) The optimal values are the same, i.e., P∗MPC = P∗measure.

ii) u∗ ∈ supp(µ∗u) is an optimal solution to (4.14).

iii) If an optimal solution to (4.14) exists, call it u∗, then µu = δu∗, delta measure

at u∗, and µ = δu∗ × Π
k+Np−1
i=k µωi is an optimal solution to (4.22).

Proof. See Appendix E.

In the next section, we provide the tractable finite relaxations to the problem

(4.22).
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4.3.3 Semidefinite Programming Relaxations

In this section, we provide an finite dimensional semidefinite programming (SDP) of

which feasible region is defined over real sequences. We show that the corresponding

sequence of optimal solutions can arbitrarily approximate the optimal solution of

(4.22), which characterizes the optimal solution of original problem in (4.14). Unlike

the problem (4.22) in which we are looking for measures, in the SDP formulation

given in (4.23), we aim at finding moment sequences corresponding to measures that

are optimal to (4.22). Consider the following finite dimensional SDP:

P∗r := sup
y∈RS(Np−1)nω+Np,2r , yu∈R

SNp,2r

Lyu(PE (u)) , (4.23)

s.t. Mr(y) < 0, Mr−rK(y;PK) < 0, (4.23a)

(y)0 ≥ 1− βPχD(xk), (yu)0 = 1, (4.23b)

Mr(yu) < 0, Mr−rU (yu;PU) < 0, (4.23c)

Mr(yu × Π
k+Np−1
i=k yωi

− y) < 0. (4.23d)

where Lyu is the linear map defined in (2.2). (y)0 and (yu)0 are first element of the

sequences y and yu, respectively. Polynomials PU and PK are defined in (4.15) and

(4.21). r ∈ Z+ is relaxation order of matrices, dK and dU are the degree of polyno-

mial PK and PU , rK :=
⌈
dK
2

⌉
and rU :=

⌈
dU
2

⌉
. Also, yu × Π

k+Np−1
i=k yωi

is truncated

moment sequence of measure µu×Π
k+Np−1
i=k µωi . Mr−rK(y;PK) and Mr−rU (yu;PU) are

localization matrices constructed by polynomials PK and PU .

Now, consider the following theorem.

Theorem 22. The sequence of optimal solutions to the finite SDP in (4.23) converges

to the moment sequence of measures that are optimal to the infinite LP in (4.22).

Hence, limr→∞P∗r = P∗measures.

Proof. See Appendix F.

As in Theorem 21 and Theorem 22, if equivalent problem on measures has delta

distribution solution µ∗u, then problems on measures and moments in (4.22) and (4.23)

are equivalent to the chance constraint problem (4.14) and the optimal distribution

µ∗u is a delta distribution whose mass is concentrated on the single point u∗, i.e.,
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its support is the singleton {u∗}. Such distributions, have moment matrices with

rank one. Hence, we incorporate this observation in the formulation of the relaxed

problem (4.23) as follows:

P∗trace := min
y, yu

Lyu(PE (u)) + ωrTr(Mr(yu)), (4.24)

s.t. (4.23a), (4.23b), (4.23c), (4.23d) (4.24a)

where, Tr(.) is the trace function and ωr > 0. We want to minimize the expected

value with a low rank momnet matrix Mr(y
∗
u). For this, we use the trace norm

(nuclear norm) which is the convex envelope of the rank function, ([88, 98]). Since,

Mr(y
∗
u) < 0, Tr(Mr(y

∗
u)) is equal to sum of singular values of Mr(y

∗
u).

Remark To be able to apply the provided chance constrained model predictive

control to large scale systems, we can implement Fast MPC approach [99] where, one

needs to compute the control input uk offline for all possible states xk. Then, the

online controller can be implemented as a lookup table, (see [99] for more details).

4.4 Numerical results

In this section, two numerical examples are presented that illustrate the performance

of the proposed method. To solve proposed SDP in (4.23), GloptiPoly is employed

which is a Matlab-based toolbox aimed at optimizing moments of measures [97].

Using GloptiPoly, we call Mosek, which is an interior-point solver add-on for Matlab.

Example 1: Consider the unstable nonlinear system as

x1(k + 1) = x2(k),

x2(k + 1) = x1(k)x2(k) + ω(k) + u(k)
(4.25)

where, χ = [−1, 1]2 and disturbance ωk ∼ U [−0.5, 0.5] are uniformly distributed.

The desired set is a circle centered at the origin with radius 0.2; hence χD =

{x ∈ χ : PχD(x) = x2
1 + x2

2 − 0.22 ≤ 0}. The finite cost function is defined as

Pcost =
∑k+Np

i=k ‖x(i)‖22 +
∑k+Np

i=k ‖u(i)‖22, where ‖.‖2 is L-2 norm and Np = 3 To obtain

control input, we solve the SDP in (4.24) for α = 0.8, β = 0.0510, ωr = 1, and relax-

ation order r = 5. The obtained control input at each time k for the initial condition

x0 = (1, 1) is
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uk = [−0.5634,−0.4647, 0.0007]

where results in the trajectory of

x1(k) = [1, 1, 0.878,−0.0430]

x2(k) = [1, 0.878,−0.0430,−0.168]

Hence in 3 steps the trajectory of the system under control reaches the desired

set. The observed disturbance is ωk = [0.4421,−0.4570,−0.1315]. Also, by applying

the obtained control input uk, the cost function at time k, ‖x(k)‖22 + ‖u(k)‖22 is as

[3.11, 2.56, 0.408] and also the trace of the moment matrix is as [1.58, 1.37, 1.00]. More-

over, the lower bound probability 1 − βPD(xk) and the obtained probability of the

event {PχD(xk+1) ≥ αPχD(xk)} is as [0.5, 0.558, 0.812]. Note that, we stop the opti-

mization problem and input control by reaching the desired set. We can add extra

constraint that makes the given desired set, an invariant set; hence the trajectories of

the system remains in the set despite all disturbance and uncertainties, (See Section

4.2.2.1 for more details).

Example 2:

Consider the uncertain nonlinear system as

x1(k + 1) = x2(k),

x2(k + 1) = x1(k) x3(k),

x3(k + 1) = x1(k)− x2(k) + x3(k) + ω(k) + u(k)

(4.26)

where, χ = [−1, 1]3 and disturbances ω(k) ∼ U [−0.5, 0.5] are uniformly distributed.

Also, The desired set is a circle centered at the origin with radius 0.2.The finite cost

function is defined as Pcost =
∑k+Np

i=k ‖x(i)‖22+
∑k+Np

i=k ‖u(i)‖22, where ‖.‖2 is L-2 norm and

Np = 3. To obtain control input, we solve the SDP in (4.24) for α = 0.9, β = 0.2027,

ωr = 1, and relaxation order r = 5. The obtained control input at each time k for

the initial condition x0 = (1, 1, 1) is

uk = [−0.227,−0.219,−0.325,−0.196,−0.215,−0.605, 0.550]
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where results in the trajectory of

x1(k) = [1, 1, 1, 0.752, 0.892, 0.417,−0.101, 0.0487]

x2(k) = [1, 1, 0.752, 0.892, 0.417,−0.101, 0.0487, 0.041]

x3(k) = [1, 0.752, 0.892, 0.554,−0.113, 0.116,−0.410, 0.171]

Hence in 7 steps the trajectory of the system under control reaches the desired set.

The observed disturbance is

ωk = [−0.020, 0.359,−0.260,−0.332,−0.028,−0.440, 0.182]

Also, by applying the obtained control input uk, the cost function at time k,

‖x(k)‖2
2 + ‖u(k)‖2

2 is as [7.61, 5.33, 5.86, 2.95, 1.6, 1.61, 1.45] and also the trace of the mo-

ment matrix is as [1.26, 1.22, 1.34, 1.16, 1.12, 1.65, 1.68]. Moreover, the lower bound proba-

bility 1−βPD(xk) and the obtained probability of the event {PχD(xk+1) ≥ αPχD(xk)}
is as [0.5, 0.57, 0.6, 0.72, 0.84, 0.973, 0.976].

4.5 Conclusion

In this chapter, we presented a novel approach based on chance optimization results

to the chance constrained controller design when the objective is to reach a given

target set with high probability. More precisely, given a target set defined by poly-

nomial inequalities and number of steps N, we provide algorithms for designing a

nonlinear state feedback control law that i) makes the target set a robustly invariant

set and ii) maximizes the probability of reaching the target set in N steps. Also, we

provide chance constrained model predictive control problems whose objective is to

obtain finite-horizon optimal control of dynamical systems subject to probabilistic

constraints. The control laws provided are designed to have precise bounds on the

probability of achieving the desired objectives.

These problems are, in general, nonconvex and computationally hard. Using

theory of measures and moments, a sequence of semidefinite relaxations is provided

whose sequence of optimal values is shown to converge to the optimal value of the

original problem. Numerical examples are provided that show that one can obtains
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reasonable approximations to the optimal solution. In dynamical systems with un-

certain parameters and initial states, states of the system at each time step are

uncertain. In the next Chapter, we consider the problem computing uncertainty set

for states of the system where we have probabilistic representation of uncertainty.

4.5.1 Appendix A: Proof of Theorem 17

Recall that

χN = {x : gN(x) ≥ 0}.

Define function

p∗(b) = min
x∈χN ,δ∈∆,ω∈Ω

{
gN(f(x,

∑
i

bix
i, δ, ω))

}
(4.27)

Then,

u(x) =
∑
i

bix
i

renders the set invariant if and only if

p∗(b) ≥ 0.

Now, the results on robust polynomial optimization in [100, 77, 101] show that

pd(b) ≤ p∗(b) for all b ∈ B.

Hence, for any b ∈ Pd, we have

0 ≤ pd(b) ≤ p∗(b)

and the corresponding control law makes the set χN invariant. This proves the first

part of the theorem.

The second part of the theorem is a consequence of the fact that∫
|pd(b)− p∗(b)|dµB(b)→ 0 as d→∞
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a result that has also been proven in [100, 77, 101].

Therefore, b parameters of control law should belong to the semialgebraic set Pd,

otherwise the trajectories of system may not remain inside the desired terminal set.

4.5.2 Appendix B: Proof of Theorem 18

Problem 1 is a semialgebraic chance constrained optimization, where [x0, δ, ω0, ..., ωN ]

is a random vector with probability measure [µx0 , µσ, µω0 , ..., µωN ], and [b0, ..., bm] ∈
K2 is our decision variable vector, and gN(h(x0, b, δ, ω)) is a polynomial. Therefore,

based on (4.2), the problem of maximizing probability of reaching the target set in N

steps is equivalent to problem (4.4). This is a consequence of the results of Theorems

10 and 15.

4.5.3 Appendix C: Proof of Theorem 19

It can be shown that y,yb in Problem 3 are bounded and converge to the sequence

of moments of measures µ and µb satisfying the optimal value of Problem 3 in the

weak * topology σ(l∞, l1) sense; see Theorems 12 and 16.

4.5.4 Appendix D: Proof of Theorem 20

Given the system in (4.12), the desired set χD, and the initial state x0 ∈ χ, the con-

dition Probµωk {PχD(xk+1) ≤ αPχD(xk)} ≥ 1 − βPχD(xk) is satisfied at each sampling

time k, where 0 < α, β < 1. For a given k̂, we define the events χ1 and χ2 as follow:

χ1 = {(x0, ..., xk̂) : PχD(xk̂) ≤ ε} (4.28)

χ2 = {(x0, ..., xk̂) : PχD(xi+1) ≤ αPχD(xi), i = 0, ..., k̂ − 1} (4.29)

where, αPχD(xk̂−1) ≤ ε and; hence, αk̂PχD(x0) ≤ ε. This implies that given x0, ε,

and α, the time k̂ for which PχD(xk̂) ≤ ε has lower bound of

k̂ ≥ ln(ε)− ln(PχD(x0))

ln(α)
(4.30)
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Also, χ2 ⊂ χ1 and thus Prob(χ2) ≤ Prob(χ1). Since, the distribution of the uncertain

parameters and disturbance at each time k are independent, the stochastic model

(4.12) has Markov property; hence, the probability of the event χ2 is

Prob {χ2} =
k̂−1∏
i=0

Prob {PχD(xi+1) ≤ αPχD(xi)|xi} (4.31)

The probability in (4.31) has lower bound as

Prob {χ2} ≥
k̂−1∏
i=0

(1− βPχD(xi)) ≥
k̂−1∏
i=0

(1− βαi) (4.32)

where, PχD(xi) ≤ αiPχD(x0). Hence, the lower bound of probability read as

P̂ (ε, α, β) =
k̂−1∏
i=0

(1− βαi) (4.33)

This is a convergent product and converges to nonzero constant as k̂ → ∞. As

ε→ 0, by (4.30) k̂ →∞; hence, P̂ is non-zero and bounded.

4.5.5 Appendix E: Proof of Theorem 21

Consider the following problem over the measures µu

Pµu := min
µu∈M+(U)

∫
U
PE(u)dµu (4.34)

s.t.∫
U

Prob {PχD(xk+1) ≥ αPχD(xk)} dµu ≥
∫
U

(1− βPχD(xk))dµu (4.34a)∫
dµu = 1, {ωi ∼ µωi}

k+Np−1
i=k (4.34b)

We first want to show that P∗MPC = Pµu . Let µu be a feasible solution to (4.34),

i.e.,
∫
U Prob {PχD

(xk+1) ≥ αPχD
(xk)} dµu ≥ 1 − βPχD

(xk)). Then for any u in support of

measure µu Prob {PχD
(xk+1) ≥ αPχD

(xk)} ≥ 1−βPχD
(xk)), i.e, the feasible set of problem

(4.14). Also, Since, PE(u) ≤ P∗MPC for all u ∈ U , we have
∫
U PE(u)dµu ≤ P∗MPC. Thus,
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Pµu ≤ P∗MPC. Conversely, let u ∈ U be a feasible solution to the problem in (4.14).

Let δu denotes the Dirac measure at u. Then the δu belongs to the feasible set of

problem (4.34). The objective value of u in (4.14) is equal to PE(u). Moreover,

µu = δu is a feasible solution to the problem in (4.34) with objective value equal to

PE(u). This implies that P∗MPC ≤ Pµu . Hence, P∗MPC = Pµu , and (4.34) can be

rewritten as

Pµu := min
µu∈M+(U)

∫
U
PE(u)dµu (4.35)

s.t.∫
U

∫
K
dµudµ ≥ 1− βPχD(xk) (4.35a)∫

dµu = 1, {ωi ∼ µωi}
k+Np−1
i=k (4.35b)

where, set K is defined in (4.21). Using the Lemma 6, we obtain

P∗measure := min
µ,µu

∫
PE(u)dµu, (4.36)

s.t.

∫
dµ ≥ (1− βPχD(xk)) (4.36a)

µ 4 µu × Π
k+Np−1
i=k µωi , (4.36b)∫

dµu = 1, (4.36c)

µ ∈M+(K), µu ∈M+(U). (4.36d)

Note that, if there exist delta solution µ∗u for the problem (4.22) whose mass is con-

centrated on a single point u∗, the
∫
dµ in constraint (4.36a) implies the probability

of event {PχD(xk+1) ≥ αPχD(xk)} for a control input u∗.

4.5.6 Appendix F: Proof of Theorem 22

Using Lemma (4) and (5), the constraints of problem (4.23) implies that the sequence

of y and yu are the moment sequence of the measures of problem (4.22). For more

details, see Theorems 12 and 16.



Chapter 5
Uncertainty Propagation Through

Uncertain Dynamical Systems

Given an uncertain dynamical system and a set of initial conditions with known

probability distribution, we want to propagate the set of initial condition through

uncertain dynamical system and find the set of uncertainty for given time step. To

obtain such set, we reconstruct the support of probability distribution of states of the

system using the information of the moments of distribution [72]. In this chapter, we

first obtain the moment information of probability distribution of system states at

time k. Next, we address the problem of reconstruction of support of a positive finite

Borel measure from its moments. More precisely, given a finite subset of the moments

of a measure, we develop a semidefinite program for approximating the support of

measure using level sets of polynomials. To solve this problem, a sequence of convex

relaxations is provided, whose optimal solution is shown to converge to the support

of measure of interest. Moreover, the provided approach is modified to improve the

results for uniform measures. Numerical examples are presented to illustrate the

performance of the proposed approach.

5.1 Problem Statement

Consider the following discrete-time stochastic dynamic system

x(k + 1) = f(x(k), u(k), δ, ω(k)) (5.1)
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where f : Rn+2m+p → Rn is a polynomial function, x(k) ∈ χ ⊆ Rn is the system

state, u(k) ∈ ψ ⊆ Rm is the control input, δ ∈ ∆ ⊆ Rp is the uncertain model

parameter and ω(k) ∈ Ω ⊆ Rm is the disturbance, at time step k. The initial state

x(0) ∈ χ0 ⊆ χ, model parameter δ, and disturbance ω(k) at time k are independent

random variables having probability measure µx0 , µδ, and µωk , with compact supports

supp(µx0) ⊆ χ0, supp(µδ) ⊆ ∆ and supp(µωk) ⊆ Ω, respectively.

Due to the uncertainty in the system, state of the system at time k is uncertain

with probability measure µxk supported on χk ∈ χ, i.e., xk ∈ χk, ∀x0 ∈ χ0, δ ∈
∆, ω ∈ Ω. In fact, the support set χk is the set of uncertainty obtained by propagation

of initial state set χ0 through uncertain system 5.1.

In this chapter, we aim at finding the support set χk using the moment infor-

mation of the probability distribution µxk associated to states xk. For given k, we

first obtain the moment information of µxk and then, we provide the semidefinite

program to reconstruct the support set χk, using the moment information.

5.2 Moment Information

Consider the following discrete-time stochastic dynamic system 5.1. States of the

system at time k, can be explicitly written in terms of uncertain parameters x0, δ, and

{ωi}k−1
i=1 using the dynamic of the system, i.e., xk = Pxk(x0, δ, {ωi}k−1

i=1 ) where Pxk is

a polynomial function. Hence, α-th moment associated with probability distribution

of states xk can be written in terms of known moments of uncertain parameters as:

mα(k) = E[xαk ] = E[Pαxk(x0, δ, {ωi}k−1
i=1 )] =

∑
i,j,k,l,...,p

aimx0jmδkmω0l
...mωk−1p

. (5.2)

Where, ai are known coefficients, mx0j , mδk ,mω0l
, and mωk−1p

are the moments of

uncertain parameters x0, δ, and ω0, and ωk−1, respectively.

For example, consider the following uncertain system x(k+1) = δx2(k)+ω(k). We

aim at finding the moment of stets at time k = 2. States of the system at time k = 2

can be written in terms of uncertain parameters as x2 = δ3x4
0 + δω2

0 + 2δ2x2
0ω0 + ω1.

Hence, the α-th moment reads as mx2α = E[xα2 ] = E[(δ3x4
0 + δω2

0 + 2δ2x2
0ω0 + ω1)α].
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For instance, the moment of order α =2 reads as:

mx21 = E[x2] = E[δ3x4
0+δω2

0+2δ2x2
0ω0+ω1] = mδ3mx04+mδ1mω02+2mδ2mx02mω01+mω11

5.3 Support Reconstruction

In this section, we aim at solving the problem of reconstructing of support of a

measure using only its moments. More precisely, we consider the following problem.

Problem Given the moment sequence of a measure µ, find a polynomial P :

Rn → R such that the set

K = {x ∈ Rn : P(x) ≥ 1}

coincides with the support set of the measure µ.

To reconstruct the support of the measure of interest from its moments, we de-

velop a sequence of semidefinite programming (SDP) problems whose solutions con-

verge to the solution of Problem 5.3. The proposed method relies on results on Sum

of Squares (SOS) polynomials and also, results on necessary and sufficient condition

for moment sequence to have a representing measure. A hierarchy of semidefinite

relaxations for approximation of the support set is proposed.

5.3.1 Convex Formulation

The approach presented in this work relies on finding polynomial approximations of

the indicator function of the support set of the measure of interest. More precisely,

let K represent the support set of a given measure µ. The results in this work aim

at finding polynomial approximations of

IK(x)
.
=

{
1 if x ∈ K
0 otherwise.

and use the level sets of these polynomials to approximate K. In order to approxi-

mate the indicator function above consider the following optimization problem.
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Problem Let d be a given integer. Moreover, let B be a known (simple) set

containing the support set K and µB be the Lebesgue measure supported on the set

B. Solve

P∗2 := min
Pd(x)∈Rd[x]

∫
Pd(x)dµB (5.3)

s.t. Pd(x) ≥ 0, for all x ∈ B (5.3a)

Pd(x) ≥ 1, x ∈ K. (5.3b)

For every d, the problem above provides a polynomial P∗d with the smallest `1-

norm on B that is i) positive in the (simple) set B and ii) larger than one inside

the support set K. For this (infinite dimensional) optimization problem we have the

following result.

Theorem 23. For a given integer d, let

Kd
.
= {x ∈ Rn : P∗d(x) ≥ 1}

be the semialgebraic set constructed using the solution P∗d of the problem (5.3). Then

lim
d→∞

µB(Kd −K) = 0.

Sketch of proof : As in [102] one can show that P∗d converges almost uniformly

(with respect to measure µB) to the indicator function IK. Moreover, one has K ⊆ Kd
for all d. These two facts imply that

lim
d→∞

µB(Kd −K) = 0

which completes the proof.

In the optimization problem above, one approximates the indicator function of

the set K by using the knowledge that this set is contained in a known set B. This

set is usually chosen in such a way that one can compute all the moments of the

measure µB in a closed form.

However, the problem above obviously requires the knowledge of the measure

µ whose support K we are trying to determine. To be able to solve this problem
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by using only knowledge of moments consider a bounding set B defined by a set of

polynomial inequalities; i.e.,

B = {x ∈ Rn : gj(x) ≥ 0, j = 1, ..., l}

where gj, j = 1, 2, . . . , l are given polynomials. As before, let µB be the Lebesgue

measure supported in B with α-th moment yBα . Moreover, let the (infinite) vector

y be the vector containing all the moments of the measure µ. Then, define the

following optimization problem (which has an infinite number of constraints).

Problem

P∗3 := min
pα,σj

d∑
α=0

pαyBα (5.4)

s.t. Pd(x) =
∑
‖α‖1≤d

pαx
α (5.4a)

Pd(x) ≥ 0, for all x ∈ B (5.4b)

M∞((Pd(x)− 1)y) < 0 (5.4c)

The problem above is a first step towards an implementable version of Problem

5.3.1. The objective function is the same in both, just represented as a function of

the moments of µB in Problem 5.3.1. Constraint (5.4b) enforces Pd to be positive

on the set B. Finally, based on Lemma 5 constraint (5.4c) implies that moment

sequence y has a representing measure µ supported on the set {x ∈ Rn : Pd(x) ≥ 1}.
Hence, Pd is larger than one in the support set of µ.

Since one cannot solve the problem above, we start be proposing the following

relaxation.

Problem

P∗4 := min
pα,σj

d∑
α=0

pαyBα (5.5)

s.t. Pd(x) =
∑
‖α‖1≤d

pαx
α (5.5a)

Pd(x) ≥ 0, for all x ∈ B (5.5b)

Mr((Pd(x)− 1)y) < 0 (5.5c)
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where, r ≥1 is relaxation order. In other words, we truncate the infinite moment

localization matrix.

Theorem 24. Polynomial P∗d(x) =
∑
‖α‖1≤d p

∗
αx

α constructed by p∗α, the optimal so-

lution of the Problem 5.3.1, converges to the indicator function of support of measure

with known moments y.

Sketch of proof : The feasibility set of Problem 5.3.1 contains the feasibility set

of Problem 5.3.1 and converges to it as r → ∞. Hence, optimal value of Problem

5.3.1 converges to the optimal value of Problem 5.3.1.

The truncation of the moment localization matrix provides an approximation of

the constraint Pd(x) ≥ 1 for all x ∈ K. Although, if r is “large” one has acceptable

estimates of the support set, for “low” values of r this can lead to estimates of the

support set that are less accurate than desirable.

To be able to solve the problem above, in this work we use following SOS relax-

ation.

Problem

P∗5 := min
pα,σj

d∑
α=0

pαyBα (5.6)

s.t. Pd(x) =
∑
‖α‖1≤d

pαx
α (5.6a)

Pd(x) = σ0(x) +
l∑

j=1

σj(x)gj(x) (5.6b)

σj ∈ Σ2[x]; j = 0, 1, . . . , l (5.6c)

deg(σ0) ≤ dsos; (5.6d)

deg(σjgj) ≤ dsos; j = 1, 2, . . . , l (5.6e)

Mr((Pd(x)− 1)y) < 0 (5.6f)

where, dsos is SOS relaxation order. One can see that constraint (5.6b) enforces Pd
to be positive on the set B. Furthermore, as dsos → ∞, standard results on SOS

relaxations can be used to show that one converges to the solution of Problem 5.3.1.

One should note that the problem above can be formulated as a standard SDP; i.e.,
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minimization of a linear function subject to Linear Matrix Inequalities (LMIs).

Figure 5.1: Result of SDP in (5.6) For Example 1

Example 1: Let, y be a moment sequence of uniform probability measure µ

supported on [−0.5, 0.5]. The α-th moment of uniform distribution U [a, b] is yα =
bα+1−aα+1

(b−a)(α+1)
. For this example, we take B = [−1, 1], and use the moments up to order

2d. To solve the SDP (5.6), Yalmip with Sedumi SDP solver is used. The obtained

results are depicted in Fig 5.1. One can see as d, the order of polynomial, increases

Pd(x) converges to indicator function of support of uniform measure. Hence, the

semialgebraic set Kd = {x ∈ R : Pd(x) ≥ 1} provides better approximations of the

support as one increases d. However, as one can see in Fig 5.1, Pd can be below one

in a significant subset of the support of µ.

5.3.2 An Heuristic for Improved Performance

To minimize the measure of the subset of the support of the measure µ where Pd
is below one, we propose to maximize the values of Pd(x) inside the support of the

measure while still trying to bring its values as low as possible everywhere else in B.

This results in following modified SDP.
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Figure 5.2: Result of SDP in (5.7) For Example 1

Problem

P∗6 := min
pα,σj

d∑
α=0

pαyBα − ωhh (5.7)

s.t. Pd(x) =
∑
‖α‖1≤d

pαx
α (5.7a)

Pd(x) = σ0(x) +
l∑

j=1

σj(x)gj(x) (5.7b)

σj ∈ Σ2[x]; j = 0, 1, . . . , l (5.7c)

deg(σ0) ≤ dsos; (5.7d)

deg(σjgj) ≤ dsos; j = 1, 2, . . . , l (5.7e)

Mr((Pd(x)− h)y) < 0 (5.7f)

1 ≤ h ≤ 1 + ∆h (5.7g)

where, ωh and ∆h are positive design parameters.

To show the effectiveness of the modified SDP, we again consider the uniform

measure in Example 6.6.1. Fig 5.2 shows the results obtained by solving the mod-

ified SDP with parameters ωh = 1.2 and ∆h = 0.2. As it is seen, on obtains a

substantial improvement in the estimate of the support set.
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Figure 5.3: Result of SDP in (5.7) For Example 2

Example 2 In this example, we consider a Beta(4, 4) probability measure on

[0, 1]. The α-th moment of Beta distribution Beta(a, b) over [0,1] is yα = a+k−1
(a+b+α−1)

yα−1

and y0 = 1. We assume that set B = [−1.2, 1.2], and use the moments up to order 2d.

The obtained results by solving SDP (5.7) with parameters ωh = 1.2 and ∆h = 0.2

are depicted in Fig 5.3.

This is a more difficult problem than previous ones since, in terms of probability,

there is a “smooth transition” from the interior to the exterior of the support set.

Nevertheless, if one uses enough moments, one can get a very good approximation

of the support.

Example 3 Here, we consider a 2-dimensional example where one wants to

approximate the support of a uniform probability measure on [−0.5, 0.5]2. The results

obtained by solving SDP (5.7) with parameters d = 14, ωh = 1.2, and ∆h = 0.2 are

depicted in Fig 5.4.

5.3.3 Support Reconstruction for Uniform Measures

In this section, we present a modification of our approach aimed specifically at uni-

form distributions. In the development to follow, we rely on a result in [48] which

provides criteria under which polynomials vanish on the boundary of support of the

uniform measure of interest. We now elaborate on this.
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Figure 5.4: Result of SDP in (5.7) For Example 3

Define

M̄r(y)(i, j) =
n+ |i|+ |j|
n+ |i|

yα(i)+α(j) , 1 ≤ i, j ≤ Sn,r, (5.8)

where y = {yα}α∈Nn are the moments of the uniform distribution of interest. The

results in [48] show that a polynomial P(x) whose vector of coefficients p is the eigen-

vector associated with zero eigenvalue of the matrix M̄r, vanishes on the boundary

of support of measure. More precisely, under some technical conditions,

M̄r(y)p = 0⇒ P(x) = 0 for all x ∈ ∂K (5.9)

where, ∂K denotes the boundary of support set K. However, without any additional

constraints, this polynomial can also be zero in the interior of K and, hence, it might

not provide a good estimate of the support.

Nevertheless, one can take advantage of this property and modify our approach

as follows.

Problem

P∗7 := min
pα,σj

d∑
α=0

pαyBα − ωhh+ ωM‖M̄d(y)(p− 1)‖2 (5.10)

s.t. Pd(x) =
∑
‖α‖1≤d

pαx
α (5.10a)
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Figure 5.5: Result of SDP in (5.10) For Example 1

Pd(x) = σ0(x) +
l∑

j=1

σj(x)gj(x) (5.10b)

σj ∈ Σ2[x]; j = 0, 1, . . . , l (5.10c)

deg(σ0) ≤ dsos; (5.10d)

deg(σjgj) ≤ dsos; j = 1, 2, . . . , l (5.10e)

Mr((Pd(x)− h)y) < 0 (5.10f)

1 ≤ h ≤ 1 + ∆h (5.10g)

where, ωM , ωh and ∆h are positive design parameters, p = {pα}α∈Nn denotes the

vector of polynomial coefficients and ‖.‖2 denotes the l2 norm.

In fact in (5.10), we aim at “pushing” the coefficients of the polynomial (P(x)−1)

as close as possible to the null space of M̄d by minimizing the term ‖M̄d(p−1)‖2. In

this case obtained polynomial Pd(x) becomes close to one at the boundary of support

while we still aim at having Pd larger than one inside the support.

To show the effectiveness of proposed method, we reconstruct the support for the

measure of Example 1 by solving the SDP (5.10) with parameter ωM = 10. The ob-

tained result are depicted in Fig 5.5, where semialgebraic set Kd = {x ∈ R : P(x)d ≥
1} for any polynomial order d ≥ 2 exactly reconstructs the support of measure.
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Figure 5.6: Result of SDP in (5.10) For Example 4

Example 4 To further show the effectiveness of our approach, we now consider a

uniform distribution with disconnected support. More precisely, we aim at estimating

the support of a uniform probability measure over the union of the sets [−0.8,−0.4]

and [0.3, 0.7]. We assume that B = [−1, 1] and use moments up to order 2d. The

results obtained by solving SDP (5.10) with parameters ωh = 1.2, ωM = 10 and

∆h = 0.2 are depicted in Fig 5.6, where one can see that the semialgebraic set

Kd = {x ∈ R : Pd(x) ≥ 1} for d ≥ 4 exactly reconstructs the support of measure.

5.4 Conclusion

In this chapter, we present a novel approach to the problem of uncertainty propaga-

tion and reconstruction of support of measures from their moments. A sequence of

semidefinite relaxations is provided whose solution converges to the support of the

measure of interest. Examples are provided that show that one does obtain a good

approximation of support using only a finite number of moments. Further research

effort is now being put on developing methods for support reconstruction for specific

classes of measures which have provable performance.



Chapter 6
Constrained Volume Optimization

Problem

In this chapter, we generalize the chance optimization problems and introduce con-

strained volume optimization where enables us to obtain convex formulation for chal-

lenging problems in systems and control [73]. We show that many different problems

can be cast as a particular cases of this framework. In constrained volume optimiza-

tion, we aim at maximizing the volume of a semialgebraic set under some semial-

gebraic constraints. Building on the theory of measures and moments, a sequence

of semidefinite programs are provided, whose sequence of optimal values is shown

to converge to the optimal value of the original problem. We show that different

problems in the area of systems and control that are known to be nonconvex can

be reformulated as special cases of this framework. Particularly, in this work, we

address the problems of probabilistic control of uncertain systems as well as inner

approximation of region of attraction and invariant sets of polynomial systems. Nu-

merical examples are presented to illustrate the computational performance of the

proposed approach.

6.1 Introduction

The purpose of the proposed approach is to develop convex tractable relaxations for

different problems in the area of systems and control that are known to be ”hard”.

We introduce the so-called constrained volume optimization and show that many
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challenging problems can be cast as a particular type of this framework. More

precisely, we aim at maximizing the volume of a semialgebraic set under some semi-

algebraic constraints; i.e., let S1(a) and S2(a) be semialgebraic sets described by set

of polynomial inequalities as follows

S1(a) := {x ∈ χ : P1j(x, a) ≥ 0, j = 1, . . . , o1} (6.1)

S2(a) := {x ∈ χ : P2j(x, a) ≥ 0, j = 1, . . . , o2} (6.2)

where a denotes the vector of design parameters. The objective is to find a parameter

vector a such that maximizes the volume of the set S1(a) under the constraint S1(a) ⊆
S2(a). More precisely, we aim at solving the following problem

P∗vol := sup
a∈A

volµxS1(a), (6.3)

s.t. S1(a) ⊆ S2(a) (6.3a)

where, volµxS1(a) =
∫
S1(a)

dµx is the volume of the set S1(a) with respect to a given

measure µx. Many well-known problems can be formulated as a constrained vol-

ume optimization problem. As an example, consider the problem of finding the

maximal region of attraction (ROA) set for dynamical systems. For a given poly-

nomial system ẋ = f(x), maximal ROA set is the largest set of all initial states

whose trajectories converge to the origin. This set can be approximated by level

sets of a polynomial Lyapunov function V (x). The level set of Lyapunov function

{x ∈ Rn : 0 ≤ V (x) ≤ 1} is ROA set if it is contained in the region described by

{x ∈ Rn : V̇ (x) ≤ ε‖x‖2
2}. By characterizing V (x) with a finite order polynomial

with unknown coefficients vector a and defining S1(a) := {x ∈ Rn : 0 ≤ V (x, a) ≤ 1}
and S2(a) :=

{
x ∈ Rn : V̇ (x, a) ≤ ε‖x‖2

2

}
, the problem of finding maximal ROA set

can be reformulated as a constrained volume optimization problem.

More details are provided in Section 6.3 where we reformulate different problems

in system and control area as constrained volume optimization problems. More

precisely, we address the problems of probabilistic control of uncertain systems, inner



95

approximation of region of attraction set and invariant set of polynomial systems,

and we also introduce generalized sum of squares problems. The defined constrained

volume optimization problem in this work is in general non-convex optimization

problem. In this work, relying on measures and moments theory as well as sum of

squares theory, we provide a sequence of convex relaxations whose solution converge

to the solution of the original problem.

The outline of the chapter is as follows. In Section 6.2, we precisely define the

constrained volume optimization problem with respect to semialgebraic constraints.

In Section 6.3, some well-known nonconvex problems in system and control area

are reformulated as constrained volume optimization problems. In Sections 6.4, we

propose equivalent convex problem and sequences of SDP relaxations to the original

problem and show that the sequence of optimal solutions to SDP relaxations con-

verges to the solutions of the original problems. In Section 6.5, the problems dual

to the convex problems given in Section 6.4 are provided. In Section 6.6, some nu-

merical results are presented to illustrate the numerical performance of the proposed

approach, and finally, conclusion is stated in Section 6.7.

6.2 Problem Statement

In this work, we consider constrained volume optimization problems defined as fol-

lows: Let (χ,Σx, µx) be a given measure space with Σx denoting the Borel σ-algebra

of χ ⊂ Rn and µx denoting a finite nonnegative Borel measure on Σx. Consider

semialgebraic sets S1 : Rn → Σx and S2 : Rn → Σx as follows

S1(a) := {x ∈ χ : P1j(x, a) ≥ 0, j = 1, . . . , o1} (6.4)

S2(a) := {x ∈ χ : P2j(x, a) ≥ 0, j = 1, . . . , o2} (6.5)

where P1j : Rn × Rm → R, j = 1, 2, . . . , o1, and P2j : Rn × Rm → R, j = 1, 2, . . . , o2

are given polynomials. We focus on the following problem.

P∗vol := sup
a∈A

volµxS1(a), (6.6)
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s.t. S1(a) ⊆ S2(a) (6.6a)

where, volµxS1(a) =
∫
S1(a)

dµx is the volume of the set S1(a) with respect to given

finite Borel measure µx. In the problem (6.6), we are looking for a ∈ A ⊂ Rm, the

parameters of sets S1 and S2, such that volume of the set S1(a) becomes maximum

while it is contained in the set S2(a).

6.3 Applications in Systems and Control

In this section we focus on some well-known challenging problems in the area of

system and control which are, in general, nonconvex and computationally hard.

As an first step in the development of convex relaxations of these problems, we

reformulate them as a constrained volume optimization problem.

6.3.1 Region of Attraction

Consider a continuous-time system of the form

ẋ = f(x) (6.7)

where, f : Rn → Rn is a polynomial function, x ∈ χ ⊂ Rn are system states and

χ is compact that contains the origin. Let the origin x = 0 be an asymptotically

stable equilibrium point for the system. The region of attraction (ROA) set Rx ⊆ χ

is defined as largest set of all initial states whose trajectories converge to the origin.

For the system in (6.7), assume there exist a function V (x) such that

V (0) = 0, V (x) > 0 for x 6= 0 (6.8)

The level set defined as R = {x ∈ χ : V (x) ≤ r} is an inner approximation of ROA

if V̇ (x) < 0 for all x ∈ R and V̇ (x) = 0 for x = 0 [103]. In this case function

V (x) is a Lyapunov function for the system in (6.7). We assume that polynomial

system in (6.7) admits a polynomial Lyapunov function (see [104] for discussion on

existence of a polynomial Lyapunov function). Hence, we can describe it as a finite

order polynomial V (x) =
∑
‖i‖1≤d aix

i ∈ Rd[s], where a ∈ A ⊂ RSn,d is a vector of
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unknown coefficients, ([105, 106]). The following optimization problem can be used

to find V (x) and corresponding inner approximation of maximal ROA. For a given

system in (6.7) and given compact sets χ and A, solve

P∗ROA := max
a∈A

volµx(R) (6.9)

s.t. V (x) =
∑
‖i‖1≤d

aix
i, V (0) = 0 (6.9a)

V (x) > 0, for all x 6= 0 (6.9b)

R = {x ∈ χ : 0 ≤ V (x) ≤ r} (6.9c)

R ⊆
{
x ∈ χ : V̇ (x) ≤ −εr‖x‖2

2

}
(6.9d)

where, volµx(R) =
∫
R dµx is the volume of the set R with respect to Lebesgue

measure µx supported on χ, ‖.‖2 is l2 norm and r > 0 and εr > 0 are known constants.

By solving problem in (6.9), we are in fact looking for a Lyapunov function V (x)

among the space of polynomial functions of order at most d. By defining the sets

S1(a) = {x ∈ χ : 0 ≤ V (x, a) ≤ r} and S2(a) = {x ∈ χ : V̇ (x, a) ≤ −εr‖x‖2
2},

problem in (6.9) can be restated as volume optimization problem in (6.6). With the

same reasoning, one can extend the problem in (6.9) for discrete-time systems xk+1 =

f(xk) by replacing the derivative of Lyapunov function V̇ (x) with the difference

Lyapunov function 4V (x) = V (xk+1)− V (xk).

6.3.2 Maximal Invariant Set

Consider a discrete time system

xk+1 = f(xk) (6.10)

where, f : Rn → Rn is a polynomial function and xk ∈ χext ⊂ Rn are system states.

Given a compact set χ ⊂ χext, the set V ⊂ χ is robustly invariant if

f(x) ∈ V , for all x ∈ V (6.11)

Hence, maximal invariant set is the maximal set of all initial states whose trajectories

remains inside the set. The following statement holds true for robustly invariant sets.
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Consider the set V = {x ∈ χ : P(x) ≥ 0}, for bounded above function P(x). The

set V is an robustly invariant set for dynamical system above if P(f(x)) > 0 for all

x ∈ V .

In order to find a polynomial approximation of maximal robustly invariant set

for dynamical system (6.10), we characterize the function P(x) with finite order

polynomial as P(x) =
∑
‖i‖1≤d aix

i ∈ Rd[x], where a ∈ A ⊂ RSn,d is vector of

unknown coefficients. Then, we consider following optimization problem to obtain

unknown coefficients.

Assume that the given compact set χ can be described as χ = {x ∈ Rn : Pχ(x) ≥ 0}
⊂ Rn, for some polynomial Pχ(x). Then for a given system in (6.10) and given com-

pact sets χ ⊂ Rn and A ⊂ RSn,d , solve

P∗INV := max
a∈A

volµx(V) (6.12)

s.t. P(x) =
∑
‖i‖1≤d

aix
i, (6.12a)

V = {x ∈ χ : P(x) ≥ 0} (6.12b)

V ⊂ {x ∈ χ : P(f(x)) ≥ 0} (6.12c)

where, volµx(V) =
∫
V dµx is the volume of the set V with respect to Lebesgue measure

µx supported on χext.

By defining the sets S1(a) = {x : P(x, a) ≥ 0, Pχ(x) ≥ 0} and S2(a) = {x :

P(f(x), a) ≥ 0, Pχ(f(x)) ≥ 0}, problem (6.12) can be restated as volume optimiza-

tion problem (6.6).

6.3.3 Generalized Sum of Squares Problem

Using SOS representation Lemma 7, we can find a polynomial that is strictly posi-

tive on the given semialgebraic set. Many different problems in system and control

can be reformulated as SOS representation problem which results in semidefinite

programming problems.

In this work, we generalize the notion of SOS and introduce a new class of SOS

problems where enable us to find a strictly positive polynomial on some unknown

semialgebraic sets. More precisely, we define the Generalized Sum of Squares (GSOS)

problem as follow.
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Generalized Sum of Squares: Consider polynomial P(x, a) ∈ Rd[x] and semi-

algebraic set S1(a) := {x ∈ χ : P1j(x, a) ≥ 0, j = 1, . . . , o1} where a ∈ A ⊂ Rm are

unknown parameters. We aim at finding parameters a such that polynomial P(x, a)

is strictly positive on the set S1(a).

This problem can be restated as a volume optimization problem in (6.6) by defin-

ing the set S2(a) := {x ∈ χ : P(x, a) ≥ 0}. As an example of GSOS, we could

consider the problem of finding polynomial Lyapunov function as in section 6.3.1

where we are looking for a polynomial ε||x||22 − V̇ (x) to be strictly positive on the

set {x ∈ χ : 0 ≤ V (x) ≤ r}, where ε < 0 and r > 0.

6.4 Equivalent Convex Problem on Measures and

Moments

In this section, we first provide an equivalent infinite linear program (LP) on finite

nonnegative Borel measures to solve the constrained volume optimization problem in

(6.6). Then, we provide a finite dimensional semidefinite program (SDP) in moment

space. Consider the sets of volume optimization problem S1 and S2 defined in (6.4)

and (6.5). Given polynomials P1j : Rn×Rm → R for j = 1, 2, . . . , o1, and polynomials

P2j : Rn × Rm → R for j = 1, 2, . . . , o2, we define following sets as

K1 := {(x, a) : P1j(x, a) ≥ 0, j = 1, . . . , o1} (6.13)

K2 := {(x, a) : P2j(x, a) ≥ 0, j = 1, . . . , o2} (6.14)

Assumption 3. Assume that K1 and K2 satisfy Putinar’s property represented in

Chapter 2. This implies that sets K1 and K2 are compact; Hence the projections of

the sets K1 and K2 onto x-coordinates and onto a-coordinates are also compact. Also,

we assume without loss of generality that x ∈ χ := [−1, 1]n and a ∈ A := [−1, 1]m

and the set (χ×A) \ K1 = {(x, a) ∈ χ×A : (x, a) /∈ K1} has a nonempty interior.
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6.4.1 Linear Program on Measures

As an intermediate step in the development of finite convex relaxations of the original

problem in (6.6), a related infinite dimensional convex problem on measures is pro-

vided as follows. Let µx be the given measure supported on χ defined in constrained

volume problem (6.6). The sets K1 and K2 are defined as (6.13) and (6.14) and let

K1 be the complement of the set K1. Consider the following problem on measures

P∗measure := sup
µ,µa

∫
dµ, (6.15)

s.t. µ 4 µa × µx, (6.15a)

µa is a probability measure, µa ∈M+(A), (6.15b)

µa × µx ∈M+(K1 ∪ K2), µ ∈M+(K1). (6.15c)

In the problem (6.15), we are looking for measures µ and µa supported on K1 and

A, such that µ is bounded by product measure µa × µx supported on K1 ∪ K2. The

following theorem, shows the equivalency of the problem in (6.15) and the original

volume problem in (6.6).

Theorem 25. The optimization problem in (6.6) is equivalent to the infinite LP in

(6.15) in the following sense:

i) The optimal values are the same, i.e., P∗vol = P∗measure.

ii) If an optimal solution to (6.15) exists, call it µ∗a, then any a∗ ∈ supp(µ∗a) is an

optimal solution to (6.6).

iii) If an optimal solution to (6.6) exists, call it a∗, then µa = δa∗, Dirac measure at

a∗, and µ = δa∗ × µx is an optimal solution to (6.15).

Proof. See Appendix A.

Problem (6.15), requires information of the set K1 and its complement K1. From

a numerical implementation point of view, this results on an ill conditioned problem.

To solve problem (6.15), we first need to obtain finite relaxations that provide an

outer approximation of the sets of problem (6.15). The outer approximation of the

sets K1 and K1 intersect and thus poor performance of the solution is observed. To

solve this, we modify the provided problem on measures as follows.
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We first aim at finding the approximation of the constraint of the original problem

(6.6). The set that approximates the constraint of volume problem includes all design

parameters a ∈ A for which the set S1(a) is a subset of the set S2(a). Next, we look

for parameter a inside the obtained set that maximizes the volume of the set S1(a).

Let AF be the set of all parameters a ∈ A for which the set S1(a) is a subset of

the set S2(a), i.e.

AF := {a ∈ A : S1(a) ⊆ S2(a)} (6.16)

To obtain the approximation of the set AF , consider the following infinite LP on

continuous functions:

P∗Af
:= inf

f∈C(a)

∫
A
f(a)dµA, (6.17)

s.t. f(a) ≥ 1 on K1 ∩ K2, (6.17a)

f(a) ≥ 0 on χ×A. (6.17b)

where, f ∈ C(a) and K2 is the complement of the set K2.

Then, following Theorem holds true.

Theorem 26. Let µA be the Lebesgue measure of the set A. Also, let IAF be the

indicator function of the set AF := {a ∈ A : S1(a) 6⊆ S2(a)}; i.e., IAF (a) = 1 if

a ∈ AF and 0 otherwise. Then

i) There is a sequence of continuous functions fi(a) to Problem (6.17) that con-

verges to the IAF in L1-norm sense, i.e., limi→∞
∫
A |fi(a)− IAF (a)|da = 0.

ii) The set Afi = {a ∈ A : fi(a) < 1} converges to the set AF , i.e., limi→∞µA(AF−
Afi) = 0, and Afi ⊆ AF .

Proof. See Appendix B.

Now, to obtain an approximate of the solution of the original volume problem

(6.6), consider infinite LP on measures as follows. Let, µx be the given measure

supported on χ as in problem (6.6) and K1 be the set as in (6.13). Then, consider
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the following problem

P∗fi := sup
µ,µa

∫
dµ, (6.18)

s.t. µ 4 µa × µx, (6.18a)

µa is a probability measure, (6.18b)

Afi = {a ∈ A : fi(a) < 1} , (6.18c)

µa ∈M+(Afi), µ ∈M+(K1). (6.18d)

Now, following theorem establishes the equivalence of volume optimization problem

in (6.6) and infinite LP in (6.18).

Theorem 27. Let, (µ∗a(fi), µ
∗(fi),P

∗
fi
) be an optimal solution and value of the LP

in (6.18) for the obtained function fi and the set Afi solving Problem (6.17). Also,

assume that volume problem (6.6) has a unique optimal solution and value (a∗,P∗vol).

As the set Afi = {a ∈ A : fi(a) < 1} defined in Theorem (26) converges to the set

AF , we have the following results:

i) The optimal value P∗fi converges to the P∗vol.

ii) Measures µ∗a(fi) and µ∗(fi) converge to µa = δa∗, Dirac measure at a∗, and

µ = δa∗ × µx, respectively.

iii) Any point in the support of the measure µ∗a(fi), i.e., ai ∈ supp(µ∗a(fi)), converges

to the a∗.

Proof. See Appendix C.

In the next section, we provide the tractable finite relaxation to infinite LP in

(6.18) and (6.17).

6.4.2 Finite Semidefinite Programming on Moments

In this section, we provide a finite dimensional SDP whose feasible region is defined

over real sequences. We show that the corresponding sequence of optimal solutions

arbitrarily approximate the optimal solution of (6.18). Unlike problem (6.18) in
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which we are looking for measures, in the provided SDP formulation, we aim at

finding moment sequences corresponding to measures that are optimal to (6.18).

For this purpose, we first need to obtain the semialgebraic approximation of the

set AF in (6.16), the set of all parameters a ∈ A for which the set S1(a) is a subset

of the set S2(a). In the previous section, the continuous function f and the infinite

LP in (6.17) are used to obtain an inner approximation of the set AF . Here, we use

polynomial PdA(a) ∈ Rd[a] and finite finite SDP problem below

P∗Ad
:= min

PdA(a)∈Rd[a]

∫
A
PdA(a)dµA, (6.19)

s.t. PdA(a)− 1 ∈ QMi

(
{P1j}o1j=1,−P2i

)
, i = 1, . . . , o2 (6.19a)

PdA(a) ∈ QM
(
{(1− x2

i )}ni=1, {(1− a2
i )}mi=1

)
. (6.19b)

where, µA is the Lebesgue measure over the set A and d is the order of polynomial

PdA(a). QMi and QM as defined in (2.1) are the quadratic modules generated

by polynomials of set K1 ∩ K2 = {(x, a) : ∪o2i=1{−P2i > 0,P1j ≥ 0, j = 1, . . . , o1}} , and

polynomials of hyper cube χ×A, respectively. According to the Lemma 7, constraints

(6.19a) and (6.19b) imply that polynomials (PdA(a)−1) and PdA(a) are positive on the

sets K1 ∩K2 and hyper cube χ×A, respectively. Problem in (6.19) is a SDP, where

objective function is a weighted summation of coefficients of polynomial PdA(a) with

respect to the moments of Lebesgue measure µA and constraints are convex linear

matrix inequalities in terms of coefficients of polynomial PdA(a).

The following theorem hold true for the problems (6.19).

Theorem 28. Let PdA(a) be an optimal solution of SDP (6.19) and consider the set:

Ad =
{
a ∈ A : PdA(a) < 1

}
(6.20)

Also, let IAF be the indicator function of the set AF := {a ∈ A : S1(a) 6⊆ S2(a)}.
Then,

i) The sequence of optimal solutions to the finite SDP in (6.19) converges to the

IAF in L1-norm sense as d→∞, i.e., limd→∞
∫
A |P

d
A(a)− IAF (a)|da = 0.

ii) The set Ad converges to the set AF in (6.16), i.e., limd→∞µA(AF − Ad) = 0,

and Ad ⊆ AF .
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Proof. See Appendix D.

Given that the indicator function IAF can be approximated by sequence of poly-

nomials of increasing order PdA as in Theorems 28, we restrict the continuous function

fi in problem (6.18) to be polynomials. Hence, we can approximate the optimal so-

lution of infinite LP (6.18) on measures with finite dimensional SDP on moments. In

order to have tractable approximations to the infinite dimensional LP in (6.18), we

consider the SDP (6.21), known as Lasserre’s hierarchy [68], where yx := {yxβ}β∈Nn2r
and ya = {yaα}α∈Nm2r are the truncated moment sequence of measures µx and µa.

P∗r := sup
y∈RSn+m,2r , ya∈RSm,2r

(y)0, (6.21)

s.t. Mr(y) < 0, Mr−rj(y;P1j) < 0, j = 1, . . . , o1, (6.21a)

(ya)0 = 1, (6.21b)

Mr(ya) < 0, Mr−ra(ya; 1− PdA(a)) < 0, Mr−1(ya; 1− a2
i ) < 0, i = 1, ...,m

(6.21c)

Mr(ya × yx − y) < 0. (6.21d)

In (6.21), (y)0 is the first element of the truncated moment sequence of measure µ,

r ∈ Z+ is relaxation order of matrices, dj is the degree of polynomial P1j in the set S1,

rj :=
⌈
dj
2

⌉
for all 1 ≤ j ≤ o1. Sequence ya × yx = ȳ is truncated moment sequence

of measure µa × µx such that (ȳ)θ = (ya)α(yx)β for all θ = (α, β) ∈ Nn+m
2r . Matrices

Mr(y), Mr(ya), and Mr(ya × yx − y) are moment matrices constructed by moment

sequences y, ya, and ya×yx−y, respectively. Also, Mr−rj(y;P1j), j = 1, . . . , o1 and

{ Mr−1(ya; 1− a2
i )}

m
i=1 are localization matrices constructed by polynomials of the set

K1 and hyper cube χ×A, respectively. Finally, Mr−ra(ya; 1−PdA(a)) is localization

matrix constructed by polynomial of the set Ad in (6.20), i.e., (1 − PdA(a)), where

PdA(a) is an optimal solution of SDP (6.19).

Remark 6.4.1. To be able to work with closed sets Ad in (6.20) and K1 ∩K2 which

are used in constraints (6.21c) and (6.19a), we use positive small εA, εK → 0 and

also to satisfy the Putinar’s property, we add the polynomial
√
m

2 − ‖a‖2 ≥ 0, i.e.,

Ad =
{
a ∈ A : PdA(a) ≤ 1− εA,

√
m

2 − ‖a‖2 ≥ 0
}
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and

K1 ∩ K2 = {(x, a) : ∪o2i=1{−P2i ≥ εK,P1j ≥ 0, j = 1, . . . , o1}}

.

6.4.3 Illustrative Example

In this section, we present a simple example of constrained volume optimization

problem in (6.6) and show how the proposed finite SDP in (6.21) effectively works.

For illustrative purposes, the provided example is low dimensional and consists of

sets described by polynomials in x ∈ χ ⊂ R and parameter a ∈ A ⊂ R. We consider

the volume optimization problem in (6.6) with following sets

S1(a) :=
{
x ∈ χ : 0.25− a2 − x2 ≥ 0

}
(6.22)

S2(a) :=
{
x ∈ χ : 0.09− a2 − 0.8a− x2 ≥ 0

}
(6.23)

where, χ = [−1, 1] and given measure µx is the Lebesgue measure supported on

A = [−1, 1].

Figure 6.1: Sets K1 and K2

Based on given sets S1 and S2, we define the sets K1 :=
{
(x, a) : 0.25− a2 − x2 ≥ 0

}
and K2 :=

{
(x, a) : 0.09− a2 − 0.8a− x2 ≥ 0

}
. Figure 6.1 displays the sets K1 and K2.
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Figure 6.2: Polynomial PdA(a) obtained by SDP (6.19) for d = 7

To obtain an approximate solution of constrained volume optimization problem, we

solve finite SDPs in (6.21) and (6.19). First, we solve the SDP in (6.19) to obtain

the polynomial PdA(a). To this, we use Yalmip which is a MATLAB-based toolbox

for polynomial and SOS optimization [96]. Figure 6.2 displays polynomial PdA(a)

obtained by SDP (6.19) for polynomial order d = 7. As constraints of SDP (6.19),

PdA(a) is greater than 1 on K1∩K2 and is positive on χ×A = [−1, 1]2. Hence, based

on Theorem 28 the set Ad =
{
a ∈ R : P7

A(a) ≤ 1− εA, 1− a2 ≥ 0, εA = 0.05
}

is an inner

approximation of the set AF , the set of all parameter a ∈ A that set S1 is subset

of S2. Clearly, based on the Figure 6.1, AF = (−1 ≤ a ≤ −0.2) ∪ (0.5 ≤ a ≤ 1),

where S1(a) ⊆ S2(a) for a ∈ [−0.5,−0.2], S1(a) = ∅ ⊆ S2(a) for a ∈ [−0.9,−0.5),

and S1(a) = S2(a) = ∅ for a ∈ [−1,−0.9) ∪ (0.5, 1]. Figure 6.3 displays polynomial

PdA(a) obtained by SDP (6.19) for different polynomial orders d = 2, 4, 6, 7 and also

the sets Ad.
We take P7

A(a) and solve SDP in (6.21). Based on moments of Lebesgue measure

µx on A = [−1, 1] as (yx)α = 1
(α+1)

(1α+1 − (−1)α+1), we construct the matrices

in constraints of SDP (6.21) in terms of unknown moment vectors y ∈ RS2,2r and

ya ∈ RS1,2r . Since the order of maximum degree of polynomials in S1 and Ad is 7, the

minimum relaxation order for SDP (6.21) is r = 4, which requires the moments up to

order 8. The SDP in (6.21) with r = 6 is solved using GloptiPoly. Based on obtained

solution for moment vectors, we approximate the solution to volume problem a with

ya1 = −0.2050 and estimate the optimal volume P∗vol with Pr = y00 = 1.239. Clearly,
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Figure 6.3: Polynomial PdA(a) obtained by SDP (6.19) for d = 2, 4, 6, 7

for obtained a = −0.2050, the set S1 = {x : 0.45612 − x2 ≥ 0} is a subset of

S2 = {x : 0.46042 − x2 ≥ 0}. Based on Figure 6.1, the true solution for the volume

optimization problem is a∗ = −0.2 with volume P∗vol = 0.9165. To obtain better

estimates of the optimum volume, one needs to increase the relaxation order r. Also,

Section 3.2.3, where we provided some methods to improve the estimated volume of

the semialgebraic sets in the similar setup.

6.5 Dual Convex Problem on Function Space

In this section, we provide an infinite LP on continuous functions which is dual to

the infinite LP on measure in (6.18). The provided dual problem gives a new insight

on solving the volume problem. Also, from computational efficiency perspective we

can take advantage of polynomial convex optimization techniques. For instance, to

handle large scale SDPs, one can employ DSOS optimization technique where relies

on linear and second order cone programming ([107, 108]).

To obtain a dual problem to the infinite LP in (6.18), let C(χ×A) be the Banach

space of continuous functions on χ×A. Then, Lagrangian dual of (6.18) is:

P∗Dual := inf
β∈R,W∈C(χ×A)

β, (6.24)

s.t. W(x, a) ≥ 1 on K1, (6.24a)

β −
∫
χ

W(x, a)dµx ≥ 0 on Afi , (6.24b)
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W(x, a) ≥ 0, β ≥ 0. (6.24c)

where, K1 is defined as (6.13), µx is a given Borel measure, and Afi is a set defined in

(6.18c). We can interpret the obtained dual problem as follow. If we assume that a is

given, then the optimal solution forW(x, a) is the indicator function of the set K1 and

the optimal value P∗Dual is the volume of the set K1, i.e., P∗Dual = β =
∫
χ
W(x, a)dµx.

Otherwise,
∫
χ
W(x, a)dµx is an upper bound for the volume of the set K1.

The following theorem establish the equivalence of problems in (6.18) and (6.24).

Theorem 29. There is no duality gap between the infinite LP on measure in (6.18)

and infinite LP on continuous function in (6.24) in the sense that the optimal values

are the same, i.e., P∗fi = P∗Dual

Proof. See Appendix E.

To be able to obatin a tractable relaxation of infinite LP in (6.24), we use poly-

nomial approximation of continuous function W and use SOS relaxation to satisfy

the nonnegativity constraints, where results in following finite SDP on polynomials:

P∗d := min
β∈R,PdW∈Rd[x,a]

β, (6.25)

s.t. PdW(x, a)− 1 ∈ QM
(
{P1j}o1j=1

)
, (6.25a)

β −
∫
χ

PdW(x, a)dµx ∈ QM
(
{1− PdA(a)}, {(1− a2

i )}mi=1

)
, (6.25b)

PdW(x, a) ≥ 0, β ≥ 0. (6.25c)

where, PdW(x, a) ∈ Rd[x, a], µx is a given finite Borel measure and QM defined

in (2.1) is quadratic module generated by polynomials. According to the Lemma

7, constraints (6.25a) and (6.25b) imply that polynomials PdW(x, a) − 1 and β −∫
χ
PdW(x, a)dµx are positive on the setsK1 in (6.13) andAd = {a ∈ A : 1−PdA(a) > 0}

in (6.20), respectively, where PdA(a) is an optimal solution of SDP (6.19). Problem

in (6.25) is a SDP, where objective function is a linear and constraints are convex

linear matrix inequalities in terms of coefficients of polynomial PdW . To be able to

work with closed set Ad, see the Remark 6.4.1.

The following theorem establish the equivalence of problems in (6.21) and (6.25).
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Theorem 30. There is no duality gap between the finite SDP on moments in (6.21)

and finite SDP on polynomials in (6.25) in the sense that the optimal values are the

same, i.e., P∗r = P∗d.

Proof. See Appendix F.

Figure 6.4: Polynomial PdW(x, a) obtained by SDP (6.25) for d = 12

Remark 6.5.1. In low dimensional problems, we can replace the global positivity

condition in (6.25c) with local constraint as {PdW(x, a) ≥ 0 on χ ×A} to improve

the obtained results.

6.5.1 Illustrative Example

Consider the simple example provided in section 6.4.3. Here, to obtain an approx-

imate solution, we solve the dual problem provided in finite SDP (6.25). We take

P7
A(a) obtained by solving (6.19) and solve SDP in (6.25) for polynomial order d = 12

by Yalmip. Figure 6.4 displays obtained PdW(x, a) which is greater than 1 on the set

K1 and is positive on χ × A = [−1, 1]2 as in constraint (6.25a). Figure 6.5 dis-

plays obtained β and also
∫
χ P

d
W(x, a)dµx. As in constraint (6.25b) β is greater than∫

χ P
d
W(x, a)dµx on the set Ad = {a ∈ A : P7

A(a) < 1}. Based on obtained β and

P12
W (x, a), we approximate the solution to the volume optimization problem with

a = −0.2050 that maximizes polynomial
∫
χ
PdW(x, a)dµx on the Ad and estimate the

optimal volume P∗vol with Pd = β = 1.239. Based on the Theorem 30, the obtained
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solution by solving dual SDP in (6.25) matches the solution obtained by SDP in

(6.21).

Figure 6.5: β and
∫
χ
PdW(x, a)dµx obtained by SDP (6.25) for d = 12

6.6 Implementation and Numerical Results

In this section, numerical examples are presented that illustrate the performance of

proposed method. The presented example are problem of inner approximation of

ROA set defined in section 6.3.1.

6.6.1 Example 1: ROA set of system

In this example, we address the problem of approximating ROA set defined in 6.3.1.

Consider the following locally stable nonlinear system.

ẋ1 =− x2

ẋ2 = x1 + (4x2
1 − 1)x2

(6.26)

where, states of the system x ∈ χ = [−1, 1]2. To approximate the ROA set of the

system in the unit box, the Lyapunov function is described as

V (x) = 3‖x‖2
2+3a1x1x2 + 3a2x

3
1x2 + 3a3x1x

3
2 (6.27)



111

where a = [a1, a2, a3] ∈ A = [−1, 1]3 is the vector of unknown coefficients. The

equivalent constrained volume optimization problem is stated as (6.9). To obtain

an approximate solution, we solve finite SDPs in (6.21) and (6.19). First, we solve

the SDP in (6.19) to obtain the polynomial PdA(a) for d = 10. The polynomials

describing the sets K1 and K2 are:

P11 = V (x, a), P12 = 1− V (x, a) (6.28)

P21 = −εr‖x‖2
2 −

∂V (x, a)

∂x1

ẋ1 −
∂V (x, a)

∂x1

ẋ2 (6.29)

We set εr to 0.001 and εK and εA as in Remark 6.4.1 to 0.1 and 0.02, respectively. Fig-

ure 6.6 shows the obtained set
{
(a1, a2, a3) : P10

A (a) ≤ 1− εA
}
. Based on Theorem 28,

the set Ad =
{
(a1, a2, a3) : P10

A (a) ≤ 1− εA, {1− a2
i ≥ 0}3i=1

}
is an inner approximation

of the set of all coefficients (a1, a2, a3) for which the set {x ∈ χ : 0 ≤ V (x, a) ≤ 1}
is subset of the set {x ∈ χ : V̇ (x, a) ≤ −εr‖x‖2

2}.

Figure 6.6: The set
{

(a1, a2, a3) : PdA(a) ≤ 1− εA
}

obtained by SDP (6.19) for d =
10 and εA = 0.02

We take A10 and solve SDP in (6.21). Based on moments of Lebesgue mea-

sure µx on χ = [−1, 1]2 we construct the matrices in constraints of SDP (6.21) in

terms of unknown moment vectors y ∈ RS5,2r and ya ∈ RS3,2r . The SDP in (6.21)

with r = 7 is solved using GloptiPoly. Based on obtained solution for moment

vectors, we approximate the (a1, a2, a3) with the first order moments of vector ya
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as (ya100 , ya010 , ya001) = (−0.999362, 0.853458, 0.132566). Figure 6.7 shows the sets

S1(a) = {x ∈ χ : 0 ≤ V (x, a) ≤ 1} and S2(a) = {x ∈ χ : V̇ (x, a) ≤ −εr‖x‖2
2}

for obtained coefficients a. For obtained a, the set S1(a) is subset of the set S2(a);

hence, is an inner approximation of the ROA set.

Figure 6.7: The sets S1(a) = {x ∈ χ : 0 ≤ V (x, a) ≤ 1} and S2(a) = {x ∈ χ :
V̇ (x, a) ≤ −εr‖x‖2

2} for obtained a

Figure 6.8: The true and estimated ROA sets

To test the accuracy of the obtained results, we used Monte Carlo simulation.

The obtained result for coefficients of provided Lyapunov function by Monte Carlo

method are (a∗1, a
∗
2, a
∗
3) = (−0.6, 0,−0.9). Figure 6.8 depicts the true ROA set for
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the system inside the unite box as well as obtained ROA using Monte Carlo method

and convex approach provided in this work.

6.7 Conclusion

In this chapter, constrained volume optimization problems are introduced, where one

aims at maximizing the volume of a set defined by polynomial inequalities such that

it is contained in other semialgebraic set. We showed that many nonconvex prob-

lems in system and control can be reformulated as constrained volume optimization

problems. To be able to obtain a equivalent convex problem, the results from theory

of measure and moments as well as duality theory are used. Sequence of semidefinite

relaxations is provided whose sequence of optimal values is shown to converge to the

optimal value of the original problem. Numerical examples are provided that show

that one can obtain reasonable approximations to the optimal solution.

6.8 Appendix A: Proof of Theorem 25

Let AF be the set of all parameters a ∈ A for which the set S1(a) is a subset of the

set S2(a).Then, consider the following problem over the measures µa

Pµa := sup
µa∈M+(AF )

{∫
A
volµx(S1(a)) dµa : µa(AF ) = 1

}
(6.30)

We first want to show that P∗vol = Pµa . Let µa be a feasible solution to (6.30).

Since, volµx(S1(a)) ≤ P∗vol for all a ∈ A, we have
∫
A volµx(S1(a)) dµa ≤ P∗vol. Thus,

Pµa ≤ P∗vol. Conversely, let a ∈ A be a feasible solution to the problem in (6.6);

hence, a belongs to the set AF . Let δa denotes the Dirac measure at a. The objective

value of a in (6.6) is equal to volµx(S1(a)). Moreover, µa = δa is a feasible solution to

the problem in (6.30) with objective value equal to volµx(S1(a)). This implies that

P∗vol ≤ Pµa . Hence, P∗vol = Pµa , and (6.30) can be rewritten as

P∗vol = sup
µa∈M+(AF )

{∫
A

∫
S1(a)

dµxdµa : µa(AF) = 1

}
(6.31)
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= sup
µa∈M+(AF )

{∫
K1

dµaµx : µa(AF) = 1

}
(6.32)

and using the Lemma 6, we obtain

P∗vol = sup
µa∈M+(AF ),µ∈M+(K1)

∫
dµ (6.33)

s.t. µ 4 µa × µx, µa(AF) = 1. (6.33a)

For a given a ∈ A, the set S1(a) is subset of the set S2(a), if the set {x ∈ χ : (x, a)

∈ K1 ∩ K2} is an empty set. Hence, for any measure µa ∈ M+(AF), we have

µa × µx ∈ M+(K1 ∪ K2) considering that µx is supported on χ. Therefore, in

problem (6.33) we can look for µa that is supported on A such that measure µa×µx
is supported on K1 ∪ K2. This results in the following problem:

P∗vol = sup
µa∈M+(A),µ∈M+(K1)

∫
dµ (6.34)

s.t. µ 4 µa × µx, µa(A) = 1, (6.34a)

µa × µx ∈M+(K1 ∪ K2). (6.34b)

Therefore, P∗vol = P∗measure.

6.9 Appendix B: Proof of Theorem 26

We want to obtain the set AF in (6.16), set of all possible decision parameters a ∈ A
for which S1(a) ⊆ S2(a). The idea is to approximate the indicator function of the

set AF ; i.e., IAF (a) = 1 if a ∈ AF and 0 otherwise, with continuous functions

([67], Section 3.2). There exist a sequence of functions fi ∈ C[a] that converges

from above to the indicator function of set AF as i → ∞ ([80], Theorem A6.6,

Urysohns Lemma A4.2), which results in an outer approximation of the set AF as

Afi = {a ∈ A : fi(a) ≥ 1} ⊃ AF .

To avoid the outer approximation and obtain the inner approximation of the set

AF instead, we obtain the outer approximation of the complement set AF by approx-

imating its indicator function. Hence, if f ∈ C approximates the indicator function

of AF from above, the set Af = {a ∈ A : f(a) < 1} is an inner approximation of
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the set AF .

To find such function f(a), we use the LP in (6.17). For a given a ∈ A, the set

S1(a) is subset of the set S2(a), if the set
{
x ∈ χ : (x, a) ∈ K1 ∩ K2

}
is an empty set.

Hence, the set AF can be describe as AF = {a ∈ A : @x ∈ χ s.t. (x, a) ∈ K1 ∩ K2}.
As a result, the complement set AF read as

AF = {a ∈ A : ∃x ∈ χ s.t. (x, a) ∈ K1 ∩ K2} (6.35)

Therefore, to approximate the indicator function of AF in (6.35), the continuous

function f(a) should be greater 1 over the set
{

(x, a) ∈ K1 ∩ K2

}
and 0 otherwise,

as in (6.17a) and (6.17b), the constrains of the LP. By minimizing the L1-norm of

f(a) as in the objective function of (6.17), we converge to the indicator function of

the set AF from the above. Hence, Afi can arbitrarily approximate the set AF in

(6.16) and (i) and (ii) hold true.

6.10 Appendix C: Proof of Theorem 27

First, consider the following problem over the measures supported in the set AF in

(6.16).

Pµa := sup
µa∈M+(AF )

{∫
A
volµx(S1(a)) dµa : µa(AF ) = 1

}
(6.36)

As in Appendix in 6.8, we can show that P∗vol = Pµa and Eq. (6.37) is true.

P∗vol = sup
µa∈M+(AF ),µ∈M+(K1)

∫
dµ (6.37)

s.t. µ 4 µa × µx, µa(AF) = 1. (6.37a)

Now, we replace the set AF in problem (6.37) with the set Afi , where results in

Problem (6.18). Hence, as the set Afi = {a ∈ A : fi(a) < 1} defined in Theorem 26

converges to the set AF , the optimal value P∗fi converges to the P∗vol and measures

µ∗a(fi) and µ∗(fi) converge to µa = δa∗ , Dirac measure at a∗, and µ = δa∗ × µx,

respectively. Also, since Afi is an inner approximation of the set AF , any point ai in

the support of measure µ∗a(fi) is also contained in the set AF ; Hence is an optimal
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solution to (6.6) and converges to the a∗.

6.11 Appendix D: Proof of Theorem 28

To drive a finite convex relaxation of the infinite LP problem in (6.17), we use

finite order polynomial PdA(a) to approximate the continuous function f(a) and

SOS relaxations to satisfy the constraints of the problem in (6.17), ([67] Section

3.3, [102]). Based on Stone-Weierstrass Theorem [80], every continuous function

can be uniformly approximated as closely as desired by a polynomial. Then, to

make such polynomial PdA to satisfy the constraints of the problem in (6.17), SOS

relaxations are used as in Lemma 7. Constraints (6.19a) implies that PdA(a) −
1 belongs to the quadratic module generated by polynomials of set K1 ∩ K2 =

{(x, a) : ∪o2i=1{−P2i > 0,P1j ≥ 0, j = 1, . . . , o1}} ; hence, PdA(a) − 1 is nonnegative on the

set K1 ∩ K2. Also, constraint (6.19b) implies that PdA(a) belong to the quadratic

module generated by polynomials describing the hyper cube [−1, 1]n × [−1, 1]m, so

PdA(a) is nonnegative over the set χ × A = [−1, 1]n × [−1, 1]m. Therefore, by min-

imizing the L1-norm of the PdA similar to (6.17), and d → ∞, PdA converges to the

indicator function of the set AF . Therefore, the set Ad =
{
a ∈ A : PdA(a) < 1

}
converges to the set AF in (6.16) as in the Theorem 26.

6.12 Appendix E: Proof of Theorem 29

The LP in (6.18) can be rewritten as

P∗1 := sup〈γ, c〉 (6.38)

s.t. A∗γ = b (6.38a)

γ ∈M+(K1)×M+(Afi). (6.38b)

where, γ := (µ, µa) ∈ M+(K1) ×M+(Afi) is the variable vector, and c := (1, 0) ∈
C+(K1) × C+(Afi), so objective function is 〈γ, c〉 =

∫
dµ. Also, A∗ : M+(K1) ×

M+(Afi) → M+(χ × A) × R+ is the linear operator that is defined by A∗γ :=

(µ− µa × µx,
∫
A dµa) and b := (0, 1) ∈M+(χ×A)×R+,([49], Theorem 2, [79, 82]).

The problem in (6.38) is infinite LP defined in cone of nonnegative measures. The



117

cone of nonnegative continuous functions are dual to cone of nonnegative measures.

Based on standard results on LP the dual problem of (6.38) reads as

P∗2 := inf〈b, z〉 (6.39)

s.t. Az − c ∈ C+(K1)× C+(Afi) (6.39a)

where, z := (W(x, a), β) ∈ C+(χ × A) × R+ is the variable vector, so the objective

function is 〈b, z〉 = β. The linear operator A : C+(χ×A)×R+ → C+(K1)× C+(Afi)
satisfies adjoint relation〈A∗γ, z〉 = 〈γ,Az〉; hence, is defined by Az := (W(x, a), β −∫
AW(x, a)dµx). As a result, the dual problem (6.39) is equal to the problem (6.24).

If problem in (6.38) is consistent with finite value and the set

D := {(A∗γ, 〈γ, c〉) : γ ∈M+(K1)×M+(Afi)}

is closed, then there is no duality gap between (6.38) and (6.39). The support of mea-

sures in (6.38) are compact. Also, the measure µ is constrained by the measure µa×µx
in which, measure µa is probability measure; i.e., µa(Afi) = 1, and µx is finite Borel

measure defined on compact set χ. Hence, P∗1 = sup
∫
dµ <∞. Also, the feasible set

of (6.38) is nonempty for instance (δa×µx, δa) for a ∈ Afi is a feasible solution; there-

for 0 ≤ P∗1 = sup
∫
dµ < ∞. Using sequential Banach−Alaoglu theorem [80] and

weak-? continuity of the A∗, there exist an accumulation point of γk = (µk, µak) in

the weak-? topology of nonnegative measures such that limk→∞ ((A∗γk, 〈γk, c〉)) ∈ D;

hence, D is closed, ([49], Theorem 2).

6.13 Appendix F: Proof of Theorem 30

For simplicity, we denote the polynomials
(
{1− PdA}, {(1− a2

i )}mi=1

)
that construct

the set Ad by {PAj(a)}oaj=1. Matrices of the problem (6.21) can be rewritten as follow,

([67]). Mr(y) =
∑

αAαyα and Mr−rj (y;P1j) =
∑

αB
j
αyα. Also, Mr(ya) =

∑
αDαyaα,

Mr−ra(ya;PAj(a)) =
∑

αE
j
αyaα, and Mr(ya × yx − y) =

∑
α Fαyaα −

∑
αAαyα for ap-

propriate real symmetric matrices (Aα, {Bj
α}

o1
j=1, Dα, {Ej

α}oaj=1, Fα) and 0 ≤ |α| ≤ 2r.

Let, γ = (y ∈ RSn+m,2r , ya ∈ RSm,2r). Then problem in (6.21) can be rewritten as a
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standard form as follow:

P∗r := sup
γ
bTγ, (6.40)

s.t. C1 +
∑
α

Âαγα < 0, (6.40a)

Cj2 +
∑
α

B̂j
αγα < 0, j = 1, . . . , o1 (6.40b)

C3 −
∑
α

Ĉαγα < 0, (6.40c)

C4 +
∑
α

D̂αγα < 0, (6.40d)

Cj5 +
∑
α

Êjαγα < 0, j = 1, . . . , oa (6.40e)

C6 +
∑
α

F̂αγα < 0, (6.40f)

where, b = (1,0) ∈ RSn+m,2r+Sm,2r , (C1, C2, C4, C5, C6) are zero matrices, (Âα, {B̂j
α}

o1
j=1

, D̂α, {Êj
α}oaj=1, F̂α) are real symmetric matrices, C3 = 1, and ĈT = (0 ∈ RSn+m,2r , 1,0 ∈

RSm,2r−1) ∈ RSn+m,2r+Sm,2r . Based on standard results on duality of SDP, the dual

problem to (6.40) reads as

P∗d := inf
{Xj}o1j=0,{Y j}oaj=0,Z,β

〈
C1, X

0
〉
+

o1∑
j=1

〈
Cj2 , X

j
〉
+ 〈C3, β〉+

〈
C4, Y

0
〉
+

oa∑
j=1

〈
Cj5 , Y

j
〉
+ 〈C6, Z〉

(6.41)

s.t. β −
〈
Aα, X

0
〉
−

o1∑
j

〈
Bjα, X

j
〉
−
〈
Dα, Y

0
〉
−

oa∑
j

〈
Ejα, Y

j
〉
− 〈Fα, Z〉 = bα, α = 0, (6.41a)

−
〈
Aα, X

0
〉
−

o1∑
j

〈
Bjα, X

j
〉
−
〈
Dα, Y

0
〉
−

oa∑
j

〈
Ejα, Y

j
〉
− 〈Fα, Z〉 = bα, 0 < |α| ≤ 2r,

(6.41b)

X0, {Xj}o1j=1, Y
0, {Y j}oaj=1, Z, β < 0 (6.41c)

where, 〈X, Y 〉 = trace(XY ). This problem is equal to the problem in (6.25).

Based on the defined matrices and vectors, the cost function of (6.41) is equal to

β. Also, let Bd denote the vector comprised of the monomial basis of Rd[a, x]. We

can represent the polynomials of (6.25) as PdW(x, a) = BTdX0Bd, QM
(
{P1j}o1j=1

)
=∑o1

j BTdXjBd,
∫
PdW(x, a)dµx = BTd Y 0Bd,QM

(
{PAj}oaj=1

)
=
∑oa

j BTd Y jBd, and P̂dW(x, a)
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= BTd ZBd. Then constraints (6.41a) and (6.41b) are conditions for α-th coefficient

of polynomial PdW(x, a) so that as constraints (6.25a) and (6.25b), PdW(x, a) − 1 ∈
QM

(
{P1j}o1j=1

)
, β − P̂dW(x, a) ∈ QM

(
{PAj}oaj=1

)
, and P̂dW(x, a) =

∫
χ
PdW(x, a)dµx

are satisfied.

Based om Slater’s sufficient condition,if the feasible set of strictly positive matri-

ces in constraint of primal SDP is nonempty, then there is no duality gap. Consider

SDP in (6.21). Let µa uniform measure on Ad and µ = µa × µx. Since set K1 and

Ad have a nonempty interior, then Mr(y) � 0, Mr−rj(y;P1j) � 0, j = 1, . . . , o1,

Mr(ya) � 0, and Mr−ra(ya;Paj) � 0, j = 1, . . . , oa. Based on Assumption 3,

χ ×A \ K1 has nonempty interior; hence Mr(ya × yx − y) � 0. Therefore, Slater’s

condition holds, (see [67] for similar setup).



Chapter 7
Sparse Data Reconstruction in

Sensory Networks

In this work, a novel approach to reconstruct a noisy sparse n-dimensional data is

proposed. The main idea is to complete the data with least possible complexity.

The complexity is defined as the number of exponential signals that can describe

the data. We show that the number of exponential signals that can describe a

data set corresponds to the rank of block Hankel matrix constructed from given

data. In this context, the problem of data reconstruction can be reformulated as

matrix completion and rank minimization problems where the nuclear norm is used

as a convex relaxation of matrix rank. To be able to deal with large scale data, a

first-order augmented Lagrangian algorithm is implemented for solving the resulting

optimization problem. To illustrate the performance of the proposed approach, the

results obtained by applying the method to practical data set is presented.

7.1 Introduction

This work addresses the problem of reconstructing a sparse and noisy data where

we aim at finding the missing part of given data. This problem arises in different

areas such as sensor networks, where the sensors do not completely cover the area

of interest; Hence, the sampled data are usually inadequate. Moreover, reconstruc-

tion of corrupted image or videos can can be reformulated as a special case of this

problem. Motivated by low-rank structure methods, we propose a novel approach
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to reconstruct a noisy sparse data with least possible complexity. In this work, to

obtain the complete data, we look for minimum rank block Hankel matrix associated

with given sparse and noisy data. We show that minimizing the rank of constructed

block Hankel matrix is equal to minimizing the number of exponential signals that

describes the data. The proposed method, with out making any assumption on the

structure of data and data loss pattern, could reconstruct the complete data. To be

able to deal with large scale data, a first-order augmented Lagrangian algorithm is

implemented for solving the resulting optimization problem.

7.2 Problem Formulation

The problem of reconstructing a sparse and noisy n-dimensional data is formulate

as follow. Consider a sensor network where sensors are scattered in a n-dimensional

space Rln×...×l2×l1 . We assume that the space is discretized in a uniform way where

sensors are placed in a specific set of nodes denoted by (k∗n, ..., k
∗
2, k
∗
1) in the space,

i.e., k∗i ∈ Rl∗i , l∗i ⊂ li, i = 1, ..., n.

Given a sparse n-dimensional array of measurement Ŷ ∈ Rln×...×l2×l1 with noisy

sensory measurement Ŷk∗n,...,k∗2 ,k∗1 , i.e., measurement for the node (k∗n, ..., k
∗
2, k
∗
1), the

objective is to denoise the measurement data and estimate the data for the missing

measurements, with the least complex extension of the given measurements. As

mentioned before, we define the notion of complexity as the number of exponential

signals describing the data.

More precisely, we assume that any n-dimensional data array Y ∈ Rln×...×l2×l1

can be approximated by weighted sum of complex exponential signals of the form

below

Ykn,...,k2,k1 ≈
N∑
i=1

aiz
kn
ni
...zk22i

zk11i
, kj = 0, ..., lj − 1, j = 1, ..., n (7.1)

where, ai is the i-th complex amplitude, and (z1i , z2i , ..., , zni) = (ejω1i , ejω2i , ..., ejωni )

defines the i-th n-dimensional complex frequency (ω1i , ω2i , ..., ωni), and N is the

number of the n-dimensional distinguish complex frequencies. Hence, the problem

completing the data can be defined as follows
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P∗1 := min
Y ∈Rln×...×l2×l1 ,{ai,(z1i ,z2i ,...,,zni )}

N
i=1

N (7.2)

s.t. ‖Yk∗n,...,k∗2 ,k∗1 − Ŷk∗n,...,k∗2 ,k∗1‖2 ≤ ε, (7.2a)

Ykn,...,k2,k1 =
N∑
i=1

aiz
kn
ni
...zk22i

zk11i
, kj = 0, ..., lj − 1, j = 1, ..., n (7.2b)

where, Y ∈ Rln×...×l2×l1 is constructed noiseless complete n-dimensional data, N is the

number of extensional signals that describes the data Y as in (7.1), Ŷ ∈ Rln×...×l2×l1

is given sparse noisy n-dimensional sensory data, (k∗n, ..., k
∗
2, k
∗
1) are indexes of known

parts of measurement data Ŷ , ‖.‖2 is l2 norm, and ε > 0. In chapter, we provide the

convex equivalent formulation of the Problem 1. For this purpose, we use Hankel

matrix notion which is defined in the next section.

7.3 Hankel Matrix

To provide a convex equivalent problem for Problem 1 in (7.22), we first define Hankel

matrix as follows.

Hankel Matrix: Given a vector y = {yk ∈ R, k = 0, ..., l − 1}, Hankel matrix

H(y) is defined as

H(y) =


y(0) y(1) ... y(l −M)

y(1) y(2) ... y(l −M + 1)

. . ... .

. . ... .

y(l −M) y(l −M + 1) ... y(l − 1)

 (7.3)

where, M ≤ l is window size.

Block Hankel Matrix: For a given array consisting of l Hankel matricesHi, i =
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0, ..., l − 1, Block Hankel matrix is defined as [109]

H({Hi}l−1
i=0) =



H0 H1 ... Hl−M

H1 H2 ... Hl−M+1

. . ... .

. . ... .

Hl−M Hl−M+1 ... Hl−1


(7.4)

where, M ≤ l is window size.

n-Dimensional Block Hankel: Based on definition of Hankel and Block Hankel

matrices, we define n-dimensional block Hankel matrix for n-dimensional data Y ∈
Rln×...×l2×l1 . For a given n-dimensional data array Ykn,...,k2,k1 , n-Dimensional Block

Hankel matrix HnD is defined as

HnD =



H(n−1)D
0 H(n−1)D

1 ... H(n−1)D
ln−Mn

H(n−1)D
1 H(n−1)D

2 ... H(n−1)D
ln−Mn+1

. . ... .

. . ... .

H(n−1)D
ln−Mn−1 H

(n−1)D
ln−Mn+1 ... H(n−1)D

ln−1


(7.5)

where, Mn is window size, H(n−1)D
i is (n-1)-dimensional Block Hankel matrix of (n-

1)-dimensional data Ykn=i,...,k2,k1 and i = 0, ..., ln − 1.

For example the 2D, 3D and 4D block Hankel matrices are as follow:

2D Block Hankel Matrix: For a given 2D data array Y ∈ R3×3, and window

sizes Mi = 2, i = 1, 2, 2D Block Hankel matrix H2D is defined as

H2D =

[
H1D

0 H1D
1

H1D
1 H1D

2

]
(7.6)

where, H1D
0 ,H1D

1 , and H1D
2 are 1D Hankel matrices of 1D data Y0,k1 , Y1,k1 , and Y2,k1 ,



124

respectively as below

H1D
0 =

[
Y0,0 Y0,1

Y0,1 Y0,2

]
,H1D

1 =

[
Y1,0 Y1,1

Y1,1 Y1,2

]
,H1D

2 =

[
Y2,0 Y2,1

Y2,1 Y2,2

]

3D Block Hankel Matrix: For a given 3D array Y ∈ R3×3×3, and window sizes

Mi = 2, i = 1, ..., 3, 3D Block Hankel matrix H3D is defined as

H3D =

[
H2D

0 H2D
1

H2D
1 H2D

2

]
(7.7)

where, H2D
0 ,H2D

1 , and H2D
2 are 2D Hankel matrices of 2D data Y0,k2,k1 , Y1,k2,k1 , and

Y2,k2,k1 , respectively. Matrix H2D
0 reads as

H2D
0 =

[
H1D

0 H1D
1

H1D
1 H1D

2

]

H1D
0 =

[
Y0,0,0 Y0,0,1

Y0,0,1 Y0,0,2

]
,H1D

1 =

[
Y0,1,0 Y0,1,1

Y0,1,1 Y0,1,2

]
,H1D

2 =

[
Y0,2,0 Y0,2,1

Y0,2,1 Y0,2,2

]

where, H1D
0 ,H1D

1 , and H1D
2 are 1D Hankel matrices of 1D data Y0,0,k1 , Y0,1,k1 , and

Y0,2,k1 , respectively. Matrix H2D
1 reads as

H2D
1 =

[
H1D

0 H1D
1

H1D
1 H1D

2

]

H1D
0 =

[
Y1,0,0 Y1,0,1

Y1,0,1 Y1,0,2

]
,H1D

1 =

[
Y1,1,0 Y1,1,1

Y1,1,1 Y1,1,2

]
,H1D

2 =

[
Y1,2,0 Y1,2,1

Y1,2,1 Y1,2,2

]

where, H1D
0 ,H1D

1 , and H1D
2 are 1D Hankel matrices of 1D data Y1,0,k1 , Y1,1,k1 , and

Y1,2,k1 , respectively. Matrix H2D
2 reads as

H2D
2 =

[
H1D

0 H1D
1

H1D
1 H1D

2

]

H1D
0 =

[
Y2,0,0 Y2,0,1

Y2,0,1 Y2,0,2

]
,H1D

1 =

[
Y2,1,0 Y2,1,1

Y2,1,1 Y2,1,2

]
,H1D

2 =

[
Y2,2,0 Y2,2,1

Y2,2,1 Y2,2,2

]

where, H1D
0 ,H1D

1 , and H1D
2 are 1D Hankel matrices of 1D data Y2,0,k1 , Y2,1,k1 , and
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Y2,2,k1 , respectively. Therefore,

H3D =



Y0,0,0 Y0,0,1 | Y0,1,0 Y0,1,1 | Y1,0,0 Y1,0,1 | Y1,1,0 Y1,1,1

Y0,0,1 Y0,0,2 | Y0,1,1 Y0,1,2 | Y1,0,1 Y1,0,2 | Y1,1,1 Y1,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y0,1,0 Y0,1,1 | Y0,2,0 Y0,2,1 | Y1,1,0 Y1,1,1 | Y1,2,0 Y1,2,1

Y0,1,1 Y0,1,2 | Y0,2,1 Y0,2,2 | Y1,1,1 Y1,1,2 | Y1,2,1 Y1,2,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y1,0,0 Y1,0,1 | Y1,1,0 Y1,1,1 | Y2,0,0 Y2,0,1 | Y2,1,0 Y2,1,1

Y1,0,1 Y1,0,2 | Y1,1,1 Y1,1,2 | Y2,0,1 Y2,0,2 | Y2,1,1 Y2,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y1,1,0 Y1,1,1 | Y1,2,0 Y1,2,1 | Y2,1,0 Y2,1,1 | Y2,2,0 Y2,2,1

Y1,1,1 Y1,1,2 | Y1,2,1 Y1,2,2 | Y2,1,1 Y2,1,2 | Y2,2,1 Y2,2,2



4D Hankel Matrix: For a given 4D array Y ∈ R3×3×3×3, and window sizes

Mi = 2, i = 1, ..., 4, 4D Block Hankel matrix H4Dis defined as

H4D =

[
H3D

0 H3D
1

H3D
1 H3D

2

]
(7.8)

where, H3D
0 ,H3D

1 , and H3D
2 are 3D Hankel matrices of 3D data Y0,k3,k2,k1 , Y1,k3,k2,k1 ,

and Y2,k3,k2,k1 , respectively. Based on the example of 3D block Hankel matrix, the

matrices H3D
0 ,H3D

1 , and H3D
2 read as

H3D
0 =



Y0,0,0,0 Y0,0,0,1 | Y0,0,1,0 Y0,0,1,1 | Y0,1,0,0 Y0,1,0,1 | Y0,1,1,0 Y0,1,1,1

Y0,0,0,1 Y0,0,0,2 | Y0,0,1,1 Y0,0,1,2 | Y0,1,0,1 Y0,1,0,2 | Y0,1,1,1 Y0,1,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y0,0,1,0 Y0,0,1,1 | Y0,0,2,0 Y0,0,2,1 | Y0,1,1,0 Y0,1,1,1 | Y0,1,2,0 Y0,1,2,1

Y0,0,1,1 Y0,0,1,2 | Y0,0,2,1 Y0,0,2,2 | Y0,1,1,1 Y0,1,1,2 | Y0,1,2,1 Y0,1,2,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y0,1,0,0 Y0,1,0,1 | Y0,1,1,0 Y0,1,1,1 | Y0,2,0,0 Y0,2,0,1 | Y0,2,1,0 Y0,2,1,1

Y0,1,0,1 Y0,1,0,2 | Y0,1,1,1 Y0,1,1,2 | Y0,2,0,1 Y0,2,0,2 | Y0,2,1,1 Y0,2,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y0,1,1,0 Y0,1,1,1 | Y0,1,2,0 Y0,1,2,1 | Y0,2,1,0 Y0,2,1,1 | Y0,2,2,0 Y0,2,2,1

Y0,1,1,1 Y0,1,1,2 | Y0,1,2,1 Y0,1,2,2 | Y0,2,1,1 Y0,2,1,2 | Y0,2,2,1 Y0,2,2,2


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H3D
1 =



Y1,0,0,0 Y1,0,0,1 | Y1,0,1,0 Y1,0,1,1 | Y1,1,0,0 Y1,1,0,1 | Y1,1,1,0 Y1,1,1,1

Y1,0,0,1 Y1,0,0,2 | Y1,0,1,1 Y1,0,1,2 | Y1,1,0,1 Y1,1,0,2 | Y1,1,1,1 Y1,1,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y1,0,1,0 Y1,0,1,1 | Y1,0,2,0 Y1,0,2,1 | Y1,1,1,0 Y1,1,1,1 | Y1,1,2,0 Y1,1,2,1

Y1,0,1,1 Y1,0,1,2 | Y1,0,2,1 Y1,0,2,2 | Y1,1,1,1 Y1,1,1,2 | Y1,1,2,1 Y1,1,2,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y1,1,0,0 Y1,1,0,1 | Y1,1,1,0 Y1,1,1,1 | Y1,2,0,0 Y1,2,0,1 | Y1,2,1,0 Y1,2,1,1

Y1,1,0,1 Y1,1,0,2 | Y1,1,1,1 Y1,1,1,2 | Y1,2,0,1 Y1,2,0,2 | Y1,2,1,1 Y1,2,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y1,1,1,0 Y1,1,1,1 | Y1,1,2,0 Y1,1,2,1 | Y1,2,1,0 Y1,2,1,1 | Y1,2,2,0 Y1,2,2,1

Y1,1,1,1 Y1,1,1,2 | Y1,1,2,1 Y1,1,2,2 | Y1,2,1,1 Y1,2,1,2 | Y1,2,2,1 Y1,2,2,2



H3D
2 =



Y2,0,0,0 Y2,0,0,1 | Y2,0,1,0 Y2,0,1,1 | Y2,1,0,0 Y2,1,0,1 | Y2,1,1,0 Y2,1,1,1

Y2,0,0,1 Y2,0,0,2 | Y2,0,1,1 Y2,0,1,2 | Y2,1,0,1 Y2,1,0,2 | Y2,1,1,1 Y2,1,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y2,0,1,0 Y2,0,1,1 | Y2,0,2,0 Y2,0,2,1 | Y2,1,1,0 Y2,1,1,1 | Y2,1,2,0 Y2,1,2,1

Y2,0,1,1 Y2,0,1,2 | Y2,0,2,1 Y2,0,2,2 | Y2,1,1,1 Y2,1,1,2 | Y2,1,2,1 Y2,1,2,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y2,1,0,0 Y2,1,0,1 | Y2,1,1,0 Y2,1,1,1 | Y2,2,0,0 Y2,2,0,1 | Y2,2,1,0 Y2,2,1,1

Y2,1,0,1 Y2,1,0,2 | Y2,1,1,1 Y2,1,1,2 | Y2,2,0,1 Y2,2,0,2 | Y2,2,1,1 Y2,2,1,2

−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−
Y2,1,1,0 Y2,1,1,1 | Y2,1,2,0 Y2,1,2,1 | Y2,2,1,0 Y2,2,1,1 | Y2,2,2,0 Y2,2,2,1

Y2,1,1,1 Y2,1,1,2 | Y2,1,2,1 Y2,1,2,2 | Y2,2,1,1 Y2,2,1,2 | Y2,2,2,1 Y2,2,2,2



7.3.1 n-Dimensional Block Hankel Matrix Decomposition

In this section, we generalize the 2D block hankel matrix decomposition shown

in [109, 110] and extend it to n-dimensional block Hankel matrix. Consider n-

Dimensional Block Hankel matrix HnD as (7.5) constructed with n-dimensional data

array Y ∈ Rln×...×l2×l1 .

Theorem 31. n-dimensional Block Hankel matrix HnD can be decomposed as

HnD = EnLAEnR (7.9)
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where, A, En
L, and En

R are the matrices of the form

A =



a1 0 .. 0

0 a2 .. 0

0 0 .. 0
...

...
...

0 0 ... aN


Zn =



zn1 0 .. 0

0 zn2 .. 0

0 0 .. 0
...

...
...

0 0 .. znN


(7.10)

EnL =


En−1LZ

0
n

En−1LZ
1
n

...

En−1LZ
Mn−1
n

 , EnR =
[
Z0
nEn−1R Z1

nEn−1R ... Z ln−Mn
n En−1R

]

(7.11)

E1L =



1 1 .. 1

z11 z12 .. z1N

z2
11

z2
12

.. z2
1N

...
...

...

zM1−1
11

zM1−1
12

.. zM1−1
1N


E1R =


1 z11 z2

11
.. zl1−M1

11

1 z12 z2
12

.. zl1−M1
12

...
...

...

1 z1N z2
1N

.. zl1−M1
1N


(7.12)

( in fact, EnR = ET
nL

where Mi is replaced by li −Mi + 1)

Proof. See Appendix A.

Consider the following examples.

Example 1 Consider 2D data array Y ∈ R3×3 as

Yk2,k1 =
N=2∑
i=1

aiz
k2
2i
zk11i
, k1, k2 = 0, 1, 2
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Hankel matrix H2D with M1 = M2 = 2, takes the form of

H2D =



Y0,0 Y0,1 | Y1,0 Y1,1

Y0,1 Y0,2 | Y1,1 Y1,2

−−−− −−−− −−−− −−−−
Y1,0 Y1,1 | Y2,0 Y2,1

Y1,1 Y1,2 | Y2,1 Y2,2



=


a1z021z

0
11

+ a2z022z
0
12

a1z021z
1
11

+ a2z022z
1
12
| a1z121z

0
11

+ a2z122z
0
12

a1z121z
1
11

+ a2z122z
1
12

a1z021z
1
11

+ a2z022z
1
12

a1z021z
2
11

+ a2z022z
2
12
| a1z121z

1
11

+ a2z122z
1
12

a1z121z
2
11

+ a2z122z
2
12

−−−− −−−− −−−− −−−−
a1z121z

0
11

+ a2z122z
0
12

a1z121z
1
11

+ a2z122z
1
12
| a1z221z

0
11

+ a2z222z
0
12

a1z221z
1
11

+ a2z222z
1
12

a1z121z
1
11

+ a2z122z
1
12

a1z121z
2
11

+ a2z122z
2
12
| a1z221z

1
11

+ a2z222z
1
12

a1z221z
2
11

+ a2z222z
2
12



=



[
1 1

z11 z12

] [
a1 0

0 a2

] [
z021

0

0 z022

] [
1 z11
1 z12

]
|

[
1 1

z11 z12

] [
a1 0

0 a2

] [
z121

0

0 z122

] [
1 z11
1 z12

]
−−−− −−−−[

1 1

z11 z12

] [
a1 0

0 a2

] [
z121

0

0 z122

] [
1 z11
1 z12

]
|

[
1 1

z11 z12

] [
a1 0

0 a2

] [
z221

0

0 z222

] [
1 z11
1 z12

]



=



[
1 1

z11 z12

][
z021 0

0 z022

]
−−−−[

1 1

z11 z12

][
z121 0

0 z122

]

[
a1 0

0 a2

][ [
z021 0

0 z022

][
1 z11
1 z12

]
|

[
z121 0

0 z122

][
1 z11
1 z12

] ]

= E2LAE2R

where, E2R , E2L , A and Z2 are as in (7.10).

7.3.2 Row Permutation of Block Hankel Matrix

In this section, we generalize the row permutation of 2D block hankel matrix shown

in [109] and extend it to n-dimensional block Hankel matrix. Consider n-dimensional

Block Hankel matrix HnD constructed by n-dimensional data array Y ∈ Rln×...×l1×l1
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as HnD = EnLAEnR . The matrices EnL and EnR contains all frequencies {z1i , i =

1, ..., N}, {z2i , i = 1, ..., N}, ..., {zni , i = 1, ..., N}. Using row permutation one can

change the position of frequencies in one dimension with one another. More precisely,

there exist row permutation matrix P r
j such that the position of frequencies in rth

dimension {zri , i = 1, ..., N} in the matrix EnL (or EnR) is same as the position of the

frequencies in jth dimension{zji , i = 1, ..., N} in the shuffled matrix ÊnL = P r
j EnL (or

ÊnR = P r
j EnR) and also the position of frequencies in jth dimension {zji , i = 1, ..., N}

in the matrix EnL (or EnR) is same as frequencies in rth dimension{zri , i = 1, ..., N}
in the shuffled matrix ÊnL (or ÊnR). In this case, matrices of the form (Vandermond)

Vi =



1 1 .. 1

zi1 zi2 .. ziN

z2
i1

z2
i2

.. z2
iN

...
...

...

zMi−1
i1

zMi−1
i2

.. zMi−1
iN


, i = 1, ..., n

are sub-matrices of EnL and its row shuffled matrices ÊnL .

Consider the following Examples, due to the similarity of EnL and EnR , we just

consider the EnL in the examples.

Example: Consider the E2L in 2D block Hankel matrix H2D as

E2L =


E1LZ

0
2

−−−−
E1LZ

1
2

 =



[
1 1 .. 1

z11 z12 .. z1N

]
Z0

2

−−−−[
1 1 .. 1

z11 z12 .. z1N

]
Z1

2


(7.13)
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By expanding the matrices, E2L takes the form

E2L =



[
1 1 .. 1

z11 z12 .. z1N

]
−−−−[

1 1 .. 1

z11 z12 .. z1N

]
z21 0 . . . 0

0 z22 . . . 0

0 0 . . . z2N





=



[
1 1 . . . 1

z11 z12 . . . z1N

]
−−−−[

z21 z22 . . . z2N

z11z21 z12z22 . . . z1N z2N

]


By row permutation of matrix E2L , one obtains Ê2L as

Ê2L =



[
1 1 . . . 1

z21 z22 . . . z2N

]
−−−−[

z11 z12 . . . z1N

z11z21 z12z22 . . . z1N z2N

]


=



[
1 1 .. 1

z21 z22 .. z2N

]
−−−−[

1 1 .. 1

z21 z22 .. z2N

]
z11 0 . . . 0

0 z12 . . . 0

0 0 . . . z1N




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=



[
1 1 .. 1

z21 z22 .. z2N

]
Z0

1

−−−−[
1 1 .. 1

z21 z22 .. z2N

]
Z1

1


(7.14)

The position of frequencies of first dimension {z1i , i = 1, ..., N} in the matrix E2L

(7.13) is same as the position of frequencies of second dimension {z2i , i = 1, ..., N} in

Ê2L (7.14) and the position of z2i in E2L is same as the position of z1i in Ê2L [109].

Also, matrices of the form

V1 =

[
1 1 .. 1

z11 z12 .. z1N

]
, V2 =

[
1 1 .. 1

z21 z22 .. z2N

]

are sub-matrices of E2L and its row shuffled matrices Ê2L , respectively.

Example: Consider the E3L in 3D block Hankel matrix H3D as

E3L =


E2LZ

0
3

−−−−
E2LZ

1
3

 =





[
1 1 .. 1

z11 z12 .. z1N

]
Z0

2

−−−−[
1 1 .. 1

z11 z12 .. z1N

]
Z1

2


Z0

3

−−−−−−−−−−−

[
1 1 .. 1

z11 z12 .. z1N

]
Z0

2

−−−−[
1 1 .. 1

z11 z12 .. z1N

]
Z1

2


Z1

3



(7.15)
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By expanding the matrices, E3L takes the form

E3L =





[
1 1 . . . 1

z11 z12 . . . z1N

]
−−−−[

z21 z22 . . . z2N

z11z21 z12z22 . . . z1N z2N

]


Z0

3

−−−−−−−−−−−

[
1 1 . . . 1

z11 z12 . . . z1N

]
−−−−[

z21 z22 . . . z2N

z11z21 z12z22 . . . z1N z2N

]


Z1

3



=





[
1 1 . . . 1

z11 z12 . . . z1N

]
−−−−[

z21 z22 . . . z2N

z11z21 z12z22 . . . z1N z2N

]


−−−−−−−−−−−

[
z31 z32 . . . z3N

z11z31 z12z32 . . . z1N z3N

]
−−−−[

z21z31 z22z32 . . . z2N z3N

z11z21z31 z12z22z32 . . . z1N z2N z3N

]





By row permutation of matrix E3L , one can change the position of frequencies

in the first, second and third dimension with one another. For example, we aim at

changing the position of frequencies in the first and third dimension with one another

by following row permutation of matrix E3L .
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Ê3L =





[
1 1 . . . 1

z31 z32 . . . z3N

]
−−−−[

z21 z22 . . . z2N

z31z21 z32z22 . . . z3N z2N

]


−−−−−−−−−−−

[
z11 z12 . . . z1N

z11z31 z12z32 . . . z1N z3N

]
−−−−[

z21z11 z22z12 . . . z2N z1N

z11z21z31 z12z22z32 . . . z1N z2N z3N

]





=





[
1 1 . . . 1

z31 z32 . . . z3N

]
−−−−[

z21 z22 . . . z2N

z31z21 z32z22 . . . z3N z2N

]


Z0

1

−−−−−−−−−−−

[
1 1 . . . 1

z31 z32 . . . z3N

]
−−−−[

z21 z22 . . . z2N

z31z21 z32z22 . . . z3N z2N

]


Z1

1


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=





[
1 1 .. 1

z31 z32 .. z3N

]
Z0

2

−−−−[
1 1 .. 1

z31 z32 .. z3N

]
Z1

2


Z0

1

−−−−−−−−−−−

[
1 1 .. 1

z31 z32 .. z3N

]
Z0

2

−−−−[
1 1 .. 1

z31 z32 .. z3N

]
Z1

2


Z1

1



(7.16)

As it is seen, the position of frequencies of first dimension {z1i , i = 1, ..., N}
in the matrix E3L (7.15) is same as the position of frequencies of third dimension

{z3i , i = 1, ..., N} in Ê3L (7.16) and the position of z3i in E3L is same as position of

z1i in Ê3L . Also, matrices of the form

V1 =

[
1 1 .. 1

z11 z12 .. z1N

]
, V3 =

[
1 1 .. 1

z31 z32 .. z3N

]

are sub-matrices of E3L and its row shuffled matrices Ê3L , respectively. In similar

way, by changing the position of the second dimension frequencies {z2i , i = 1, ..., N}
with first dimension frequencies {z1i , i = 1, ..., N}, it can be shown that the matrix

V2 =

[
1 1 .. 1

z21 z22 .. z2N

]

is sub-matrix of resulted row shuffled matrix Ê3L .

7.3.3 Rank of Block Hankel Matrix

In [109], it is shown that rank of 2D hankel matrix is equivalent to the number

exponential signals that describes the data. Here, we extend the results to n-
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dimensional Hankel matrix. Consider n-D Block Hankel matrix HnD constructed

from n-dimensional data array Y ∈ Rln×...×l2×l1 as HnD = EnLAEnR . We assume

that given n-dimensional data can be written in terms of exponential signal as in

(7.1).

Theorem 32. Rank of n−dimensional Hankel matrix HnD is equal to the number

of exponential signals that describes the data if

N ≤Mi ≤ li −N + 1

where, N is the number of exponential signals that describes the data, Mi and li are

window size of n−dimensional Hankel matrix and number of measurement for i-th

dimension.

Proof. See Appendix B.

7.4 Equivalent Problem and Convex Relaxation

As an intermediate step in the development of convex relaxation of the original

problem, a equivalent problem is provided. This is achieved by solving the following

problem:

Problem 2: Solve

minY ∈Rln×...×l2×l1{ Rank( HnD(Y ) ) : ‖Yk∗n,...,k∗2 ,k∗1 − Ŷk∗n,...,k∗2 ,k∗1‖2 ≤ ε} (7.17)

where, Y ∈ Rln×...×l2×l1 is constructed noiseless complete n-dimensional data,HnD(Y )

is a n dimensional block Hankel matrix of the form (7.5), Ŷ ∈ Rln×...×l2×l1 is given

sparse noisy n-dimensional sensory data, (k∗1, k
∗
2, ..., k

∗
n) are indexes of known parts

of measurement data Ŷ , and ε > 0.

Theorem 33. Problem 2 is equivalent to Problem 1.

Proof. In Theorem 32, we showed that rank of n-dimensional Hankel matrix is equiv-

alent to the number of exponentiation describing the data. Hence, minimizing the
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rank of n-dimensional Hankel matrix in Problem 2 is equivalent to minimizing the

number of exponential signals in Problem 1.

Equivalent Problem 2 involves nonconvex problem of rank minimization. To

avoid this, we use nuclear norm of matrix as a convex relaxation of rank of matrix.

Therefore, convex relaxation of Problem 2 is as follow:

Problem 3: Solve

minY ∈Rln×...×l2×l1{‖H(Y )‖∗ : ‖Yk∗n,...,k∗2 ,k∗1 − Ŷk∗n,...,k∗2 ,k∗1‖2 ≤ ε} (7.18)

where ‖.‖∗ stands for nuclear norm of a matrix.

7.5 Implementation and Numerical Results

In the previous sections, we showed that sparse and noisy data reconstruction prob-

lem can be reformulated as nuclear norm minimization problem. To be able to deal

with large scale data, one need to implement efficient and fast convex optimization

algorithm. Recently, first-order augmented Lagrangian algorithm has been proposed

to deal with large semidefinite programs. We adapt this algorithm to solve resulting

convex optimization problem as (7.18).

To be able to use convex optimization methods to solve nuclear norm minimiza-

tion Problem 3 which contains linear structured Hankel matrices, one needs to re-

formulated the Problem 3 as follows.

Problem 4: Solve

minY,H,y{‖H‖∗ : H(Y )−H = 0,A(Y )− b− s = 0, s ∈ Q} (7.19)

where, Y ∈ Rl1×l2...×ln is complete measurement matrix and H(Y ) is associated block

Hankel matrix, H is a matrix with appropriate dimension, A is a linear operator such

that A(Y ) = Yk∗n,...,k∗2 ,k∗1 , b is vector of known sensory measurement as Ŷk∗n,...,k∗2 ,k∗1 , s is

a slack variable and Q is a closed convex set of the form Q = {s : ‖s‖ ≤ ε}, and‖.‖∗
stands for nuclear norm.
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Table 7.1: First-Order Augmented Lagrangian Optimization Algorithm

1: s(0) ← A(Y (0))− b, η ← ‖H(0)‖∗, θ(1)
1 ← 0, θ

(1)
2 ← 0, k ← 0

2: While (FALC STOP is false) do
3: k ← k + 1

4: f (k)(H,Y, s) :=
1

2
‖H(Y )−H − λ(k)θ

(k)
1 ‖

+
1

2
‖A(Y )− b− s− λ(k)θ

(k)
2 ‖

4: η
(k)
1 ← η +

λ(k)

2
(‖θ(k)

1 ‖2
2 + ‖θ(k)

2 ‖2
2)

5: H
(0)
1 ← H(0), H

(1)
2 ← H(0), Y

(0)
1 ← Y (0), Y

(1)
2 ← Y (0)

s
(0)
1 ← s(0), s

(1)
2 ← s(0), t(1) = 1, l = 0

7: While (APG STOP is false) do
8: l← l + 1

9: [H
(1)
1 , Y

(1)
1 , s

(1)
1 ]← argmin

λ(k)‖H‖∗ +

 ∇Hf (k)(H
(l)
2 , Y

(l)
2 , s

(l)
2 )

∇Y f (k)(H
(l)
2 , Y

(l)
2 , s

(l)
2 )

∇sf (k)(H(l)
2 , Y

(l)
2 , s

(l)
2 )


T  H −H(l)

2

Y − Y (l)
2

s− s(l)2


+
LY

2
‖Y − Y (l)

2 ‖+
LH

2
‖H −H(l)

2 ‖+
Ls

2
‖s− s(l)2 ‖ : s ∈ Q


10: t(l+1) ← (1 +

√
1 + 4(t(l))

2
)/2

11: H
(l+1)
2 ← H

(l)
1 + (

t(l) − 1

t(l+1)
)(H

(l)
1 −H

(l−1)
1 )

Y
(l+1)

2 ← Y
(l)

1 + (
t(l) − 1

t(l+1)
)(Y

(l)
1 − Y

(l−1)
1 )

s
(l+1)
2 ← s

(l)
1 + (

t(l) − 1

t(l+1)
)(s

(l)
1 − s

(l−1)
1 )

12: end APG while

13: H(k) ← H
(l)
1 , Y (k) ← Y

(l)
1 , s(k) ← s

(l)
1

14: θ
(k+1)
1 ← θ

(k)
1 −

H(Y (k))−H(k)

λ(k)

θ
(k+1)
2 ← θ

(k)
2 −

A(Y (k))− b− s(k)

λ(k)

15: end FALC while

7.5.1 First-Order Augmented Lagrangian Optimization Al-

gorithm

First-order augmented Lagrangian algorithm (FALC)is shown in Table 7.1. FALC

derives the solution of the nuclear norm minimization problem of the form of Problem
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4, by inexactly solving a sequence of sub problems of the form:

minY,H,s∈Q{λ‖H‖∗ +
1

2
‖H(Y )−H − λθ1‖22 +

1

2
‖A(Y )− b− s− λθ2‖22} (7.20)

where, λ and θi are penalty parameter and Lagrangian dual variables, respectively.

These sub problems are solved using an Accelerated Proximal Gradient (APG) al-

gorithm, where in each update it solves the problem of the form:

minY,H,s∈Q


λ‖H‖∗ +


∇Hf(H̃, Ỹ , s̃)
∇Y f(H̃, Ỹ , s̃)
∇sf(H̃, Ỹ , s̃)


T 

H − H̃
Y − Ỹ
s− s̃


+
L

2
‖Y − Ỹ ‖22 +

L

2
‖H − H̃‖2F +

L

2
‖s− s̃‖22


(7.21)

where, f(H,Y, s) =
1

2
‖H(Y ) − H − λθ1‖2

2 +
1

2
‖A(Y ) − b − s − λθ2‖2

2 for a given

(H̃, Ỹ , s̃), and L is Lipschitz constant. If σmax(.) denotes the largest singular value

of a matrix, then L = σ2
max(H) +σ2

max(A). The gradients can be obtained as ∇Hf =

−(H(Y ) − H − λθ1), ∇Y f = −H∗(H(Y ) − H − λθ1) − A∗(A(Y ) − b − s − λθ2),

∇sf = −A∗(A(Y ) − b − s − λθ2). The problem of the form (7.21) is separable in

H,Y , and s variables and reduces to constrained shrinkage problem in H and Y , and

Euclidean projection problem onto Q in s.

7.5.2 Numerical Examples

We now consider the problem of data loss for different types of data. To complete

the given noisy and lost data we solve, convex problem in (7.18) using the first older

algorith provided in section 7.5.

Example 1: 1-dimensional data Consider given signal in Fig 7.1. The aim is

to complete the sampled sparse signal. The obtained signal by solving the convex

optimization problem provided in section 7.5 is shown in Fig 7.2. Also, Fig 7.2 shows

the nonzero singular values of Hankel matrix of obtained data where corresponds to

rank of matrix.

Example 2: 2-dimensional data Consider given sparse 2-dimensional signal in

Fig 7.3. The aim is to complete the sparse signal using provided convex optimization

method. The obtained signal and The singular values of Hankel matrix constructed

by obtained signal is shown in Fig 7.4.
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Figure 7.1: Original and sparse signal of Example 1

Example 3: Corrupted Image Consider corrupted image in Fig 7.5. The aim

is to reconstruct the corrupted signal using provided convex optimization method.

The singular values of Hankel matrix constructed by sparse signal is shown in Fig

7.6. The obtained signal is shown in Fig 7.5. As shown in Fig 7.6 the nuclear rank

of Hankel matrix of reconstructed signal is decreased.

Example 4: Lost and Noisy Sensor Data We apply proposed method on four

set of sensory data which contains light and temperature information of ocean and

a indoor place. The indoor experiment contains 49 nodes placed in a room which

each node reports the temperature and light data over the time. The measured

data for 149 sampling time, forms two 49 × 149 measurement matrices for light

and temperature as in Fig 7.7 and 7.8. The Ocean experiment contains 10 nodes

deployed in the sea which each node reports temperature, and light data over the

time. The obtained data for 42 sampling time, constructs two 10 × 42 measurement

matrices for light and temperature as in Fig 7.7 and 7.8. To show the performance

of the proposed method, first, each measurement matrix is corrupted by randomly

dropping of the elements; then, the proposed method is used to find the missing

parts of each measurement matrix. In order to measure the error of reconstructed

data, errors on the missing data are used to define a Error Ratio (ER) notion as
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Figure 7.2: Results of Example 1: a) Reconstructed signal, b) Singular values of
Hankel matrix of reconstructed sparse signal

ER =

√∑
(k1,k2)6=(k∗1 ,k

∗
2)(Y (k1, k2)− Ŷ (k1, k2))2√∑

(k1,k2)6=(k∗1 ,k
∗
2)(Y (k1, k2))2

is used. The results for 50% loss

problem for indoor and ocean light temperature are shown in Fig 7.9 to 7.12. It shows

singular values of block Hankel matrix constructed by corrupted and reconstructed

data, initial error data and obtained error data, the Error ratio and time at each

FALC iteration.

7.6 Conclusion

In this work, we presented a novel approach for solving the problem of reconstructing

spars and noisy data. The proposed method reformulates the problem as a minimum

rank problem and completes the data with least possible complexity, where the com-

plexity is defined as the number of exponential signals that could describe the data.

Provided method allows us to benefit the space-time features of data and correlation

between the sensory nodes in the data. To solve the resulting convex optimization

problem first order augmented Lagrangian optimization algorithm is implemented

where enables us to deal with large scale data. Numerical examples show effective
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Figure 7.3: Example 2: a) Original and sparse signal, b) Singular values of Hankel
matrix constructed by sparse signal

reconstruction even in face of massive missing values in the data.

7.7 Appendix A: Proof of Theorem 31

Consider 1D data array Y ∈ Rl1 as Yk1 =
∑N

i=1 aiz
k1
1i
, k1 = 0, ..., l1. Based on (7.5)

and (7.3), Hankel matrix H1D reads as

H1D =


Y0 Y1 ... Yl1−M1

Y1 Y2 ... Yl1−M1+1

. . ... .

. . ... .

Yl1−M1 Yl1−M1+1 ... Yl1−1



=



∑N
i=1 aiz

0
1i

∑N
i=1 aiz

1
1i

...
∑N

i=1 aiz
l1−M1
1i∑N

i=1 aiz
1
1i

∑N
i=1 aiz

2
1i

...
∑N

i=1 aiz
l1−M1+1
1i

. . ... .

. . ... .∑N
i=1 aiz

l1−M1
1i

∑N
i=1 aiz

l1−M1+1
1i

...
∑N

i=1 aiz
l1−1
1i


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Figure 7.4: Example 2: a) Reconstructed signal, b) Singular values of Hankel matrix
of reconstructed sparse signal



1 1 .. 1

z11 z12 .. z1N

z211 z212 .. z21N
...

...
...

zM1−1
11

zM1−1
12

.. zM1−1
1N





a1 0 .. 0

0 a2 .. 0

0 0 .. 0
...

...
...

0 0 ... aN




1 z11 z211 .. zl1−M1

11

1 z12 z212 .. zl1−M1
12

...
...

...

1 z1N z21N .. zl1−M1
1N

 = E1LAE1R

(7.22)

Hence, (7.9) holds true for 1D Hankel matrix. Now, we show that (7.9) holds

true for 2D Hankel matrix. Based on (7.5) , for a given 2D array Y ∈ Rl2×l1 2D

Block Hankel matrix H2D reads as

H2D =



H(1)D
0 H(1)D

1 ... H(1)D
l2−M2

H(1)D
1 H(1)D

2 ... H(1)D
l2−M2+1

. . ... .

. . ... .

H(1)D
l2−M2

H(1)D
l2−M2+1 ... H(1)D

l2−1


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Figure 7.5: a) corrupted image, b) reconstructed image

Figure 7.6: Singular values of Hankel matrix of a) corrupted and b)reconstructed
image

Based on (7.22), 2D Block Hankel matrix H2D can be rewritten as

H2D =



E1LZ
0
2AE1R E1LZ

1
2AE1R ... E1LZ

l2−M2
2 AE1R

E1LZ
1
2AE1R E1LZ

2
2AE1R ... E1LZ

l2−M2+1
2 AE1R

. . ... .

. . ... .

E1LZ
l2−M2
2 AE1R E1LZ

l2−M2+1
2 AE1R ... E1LZ

l2−1
2 AE1R


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Figure 7.7: Indoor light and temperature sensory data

Figure 7.8: Ocean light and temperature sensory data

=


E1LZ

0
2

E1LZ
1
2

...

E1LZ
M2−1
2

A
[
Z0

2E1R Z1
2E1R ... Z l2−M2

2 E1R

]
= E2LAE2R

where, Z2, E1L , E1R , and A is as (7.10). Hence, (7.9) holds true for 2D data.

Now, assume that (7.9) holds true for (n-1)D data. We want to show that (7.9)

is valid for n-D data. Based on (7.4), For a given n-dimensional data array Y ∈
Rln×...×l2×l1 , n-Dimensional Block Hankel matrix HnD reads as
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HnD =



H(n−1)D
0 H(n−1)D

1 ... H(n−1)D
ln−Mn

H(n−1)D
1 H(n−1)D

2 ... H(n−1)D
ln−Mn+1

. . ... .

. . ... .

H(n−1)D
ln−Mn

H(n−1)D
ln−Mn+1 ... H(n−1)D

ln−1


(7.23)

Based on the assumption that (7.9) hold true for (n-1)-D data, HnD can be

rewritten as

HnD =


En−1LZ

0
nAZ

0
nEn−1R En−1LZ

0
nAZ

1
nEn−1R ... En−1LZ

0
nAZ

ln−Mn
n En−1R

En−1LZ
0
nAZ

1
nEn−1R En−1LZ

0
nAZ

2
nEn−1R ... En−1LZ

0
nAZ

ln−Mn+1
n En−1R

. . ... .

. . ... .

En−1LZ
0
nAZ

ln−Mn
n En−1R En−1LZ

0
nAZ

ln−Mn+1
n En−1R ... En−1LZ

0
nAZ

ln−1
n En−1R



=


En−1LZ

0
n

En−1LZ
1
n

...

En−1LZ
Mn−1
n

A
[
Z0
nEn−1R Z1

nEn−1R ... Z ln−Mn
n En−1R

]
= EnLAEnR

where, Zn, EnL , EnR , and A is as (7.10). Hence, (7.9) holds true for n-D data as well.

7.8 Appendix B: Proof of Theorem 32

From the structure of n−dimensional Hankel matrix HnD, we know that Rank(HnD)

= N , iff Rank(EnL) = Rank(EnR) = N , where N is the number of exponential

signals. Now, we need to find the conditions on the free parameters Mi (window

parameter of ith dimension) under which Rank(EnL) = Rank(EnR) = N . Since the

structure of EnL and EnR are similar, only EnL is considered.

We show that Rank(EnL)= N iff

N ≤Mi ≤ li −N + 1 (7.24)

where Mi and li are window size parameter and number of data samples in the ith
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dimension, respectively.

First, it is clear form the structure of HnD as (7.9) that

Rank(HnD) ≤ N (7.25)

Now, consider the EnL matrix, as it is shown in the section 7.3.2 by row permu-

tation one can change the position of frequencies. Hence, the position of frequencies

in the higher dimensions (2, 3,...,n) can be changed with the frequencies of first di-

mension. Also the frequencies of the first dimension appear in the form of E1L as

(7.12) in the matrix of EnL . Therefore, matrices of the form (Vandermond)

Vi =



1 1 .. 1

zi1 zi2 .. ziN

z2
i1

z2
i2

.. z2
iN

...
...

...

zMi−1
i1

zMi−1
i2

.. zMi−1
iN


i = 1, 2, ..., n

are sub-matrices of EnL and its row shuffled matrices as section 7.3.2. Hence,

[109]
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Rank(EnL) ≥ Rank


V1

V2

...

Vn

 = Rank





1 1 .. 1

z11 z12 .. z1N

z2
11

z2
12

.. z2
MN

...
...

...

zM1−1
11

zM1−1
n2

.. zM1−1
nN




1 1 .. 1

z21 z22 .. z2N

z2
21

z2
22

.. z2
2N

...
...

...

zM2−1
21

zM2−1
22

.. zM2−1
2N


...

1 1 .. 1

zn1 zn2 .. znN

z2
n1

z2
n2

.. z2
nN

...
...

...

zMn−1
n1

zMn−1
n2

.. zMn−1
iN





(7.26)

Since, {(z1i , z2i , ..., zni), i = 1, 2, ...N} are distinct, the N columns of right hand

side matrix in (7.26) are linearly independent provided Mi ≥ N, i = 1, ..., n (so that

EiL each have no less than N row). Hence, the sufficient condition for EnL to be of

the full rank N is

Mi ≥ N, i = 1, ..., n. (7.27)

The necessary condition for EnL to be of the full rank N is that the number of rows

of EnL is no less than N . Hence:

n∏
i=1

Mi ≥ N. (7.28)

Due to the similarity between EnL and EnR , it can be similarly shown that the

necessary and sufficient conditions of Rank(EnR) = N are

Li −Mi + 1 ≥ N, i = 1, ..., n. (7.29)
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n∏
i=1

(Li −Mi + 1) ≥ N (7.30)

Hence, combining the (7.25), (7.27) and (7.29), the sufficient condition (7.24) is

proven.
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Figure 7.9: 50% sparse Ocean temperature data reconstruction
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Figure 7.10: 50% sparse Ocean light data reconstruction



151

Figure 7.11: 50% sparse indoor light data reconstruction
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Figure 7.12: 50% sparse indoor Temperature data reconstruction



Chapter 8
Conclusion and Discussion

In this thesis, “chance optimization” problems are introduced, where one aims at

maximizing the probability of a set defined by polynomial inequalities. These prob-

lems are, in general, nonconvex and computationally hard. A sequence of semidefinite

relaxations is provided whose sequence of optimal values is shown to converge to the

optimal value of the original problem. We also presented a novel approach based

on chance optimization results to the chance constrained controller design when the

objective is to reach a given target set with high probability. Moreover, we provided

a novel method to the problem of uncertainty propagation and reconstruction of

support of measures from their moments. In this thesis, constrained volume opti-

mization problems are introduced, where one aims at maximizing the volume of a

set defined by polynomial inequalities such that it is contained in other semialge-

braic set. We showed that many nonconvex problems in system and control can be

reformulated as constrained volume optimization problems. To be able to obtain a

equivalent convex problem, the results from theory of measure and moments as well

as duality theory are used. In addition, we presented a novel approach for solving the

problem of reconstructing spars and noisy data. The proposed method reformulates

the problem as a minimum rank problem and completes the data with least possible

complexity, where the complexity is defined as the order of linear differential equa-

tions describing the signal data or equivalently the number of exponential signals

that could describe the data.

To solve the semidefinite programs of increasing size obtained by relaxing the

original chance optimization problem, a first-order augmented Lagrangian algorithm
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is implemented which enables us to solve much larger size semidefinite programs

that interior point methods can deal with. Numerical examples are provided that

show that one can obtains reasonable approximations to the optimal solution and

the corresponding optimal probability even for lower order relaxations. In terms of

future work, by exploiting algebraic structures i.e., sparsity, symmetry, we can reduce

the complexity of obtained semidefinite programs. Also, to improve the performance,

we can develop the results for specific classes of measures, polynomials, and systems.
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