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ABSTRACT 

 

   Additive manufacturing is often a complex undertaking involving interaction between an 

energy source, feedstock, and substrate. Many independent process variables such as travel 

speed, feedstock flow pattern, laser power, chamber gas, etc. contribute significantly to the 

overall build quality of the component. Any fluctuation in these process variables affects 

the quality of the final part inducing defects and results in non-conformance to dimensional 

tolerance, microstructure, and properties. A wide variety of sensor data and analysis have 

been used for process monitoring and quality control of the additive manufacturing 

processes. Sensor feedback enables to form a correlation between the variation in process 

parameters contributing to the changes in the final build quality. This thesis presents new 

methods of multifractals and uncorrelated multilinear principal component analysis of 

additive manufacturing images for process machine modeling and defect characterization 

in the additive manufacturing based components. First, we simulated the classical defects 

encountered in additive manufacturing on a set of in-situ images of AM process. Second, 

we applied the proposed methodologies to the in-situ images and extracted the parametric 

features correlating to the defects and irregularities induced on the images. Third, we 

checked the statistical significance of the parametric features from the images of defects to 

the images of control quality.  In the end, we compared both the methodologies for 

successful detection and characterization of defects/discontinuities emerged in the additive 

manufacturing processes. 

Keywords – Additive Manufacturing, Defects, Simulation, Multifractals, UMPCA 

  



iv 
 

TABLE OF CONTENTS 

List of Tables……………………………………………………………………………..vii 

List of Figures……………………………………………………………………….......viii 

Acknowledgments………………………………………………………………………..xi 

CHAPTER 1. INTRODUCTION ................................................................................. 1 

1.1 Additive Manufacturing ....................................................................................... 2 

1.2 AM Processes and Subsystems ............................................................................ 2 

1.3 Sensing and Control of Machine Variables.......................................................... 5 

1.4 Defects/Irregularities in Additive Manufacturing Processes ............................... 6 

1.5 Motivation and Objective of the Proposed Research Related to Additive 

Manufacturing ................................................................................................................. 8 

CHAPTER 2. LITERATURE REVIEW ...................................................................... 9 

2.1 Review of the Literature Relating to In-situ Process Monitoring in Additive 

Manufacturing ................................................................................................................. 9 

2.1.1 Process Errors and Defects ........................................................................... 9 

2.1.2 Pore Defects ................................................................................................ 10 

2.1.3 Balling Defects............................................................................................ 12 

2.1.4 Re-coater Damage affecting Powder Layer ................................................ 13 

2.1.5 Crack Defects .............................................................................................. 14 

2.2 Process Monitoring and Sensor Methodologies ................................................. 15 

2.2.1 In-situ Methodologies of Process Monitoring ............................................ 16 



v 
 

2.3 Shortcomings in the existing methodologies ..................................................... 20 

CHAPTER 3. RESEARCH METHODOLOGY ........................................................ 21 

3.1 Multifractal Analysis Approach ......................................................................... 21 

3.1.1 Fractal Geometry ........................................................................................ 22 

3.1.2 Theory of Multifractal and Mathematical Proof ......................................... 24 

3.1.3 Multifractal Analysis of Additive Manufacturing Images .......................... 30 

3.2 Uncorrelated Multilinear Principal Component Approach ................................ 31 

3.2.1 Tensor methodology for Images ................................................................. 32 

3.2.2 Theory of UMPCA ..................................................................................... 32 

3.3 Parametric feature Analysis ............................................................................... 35 

CHAPTER 4. CHARACTERIZATION AND MODELING OF BUILD DEFECTS 37 

4.1 4.1 Introduction .................................................................................................. 37 

4.1.1 4.2 Design of Experiments .......................................................................... 37 

4.1.2 4.2.1 Experimental Set-up........................................................................... 37 

4.1.3 3D Computerized Tomography .................................................................. 39 

4.2 Transformation of 3D scan images into 2D profiles .......................................... 40 

4.3 Simulation of Heterogenous Defects.................................................................. 41 

4.4 Summarization of Data....................................................................................... 43 

CHAPTER 5. RESULTS AND CONCLUSIONS ..................................................... 45 



vi 
 

5.1 Introduction ........................................................................................................ 45 

5.2 Multifractal Analysis of In-situ Images ............................................................. 45 

5.3 UMPCA analysis of In-situ Images ................................................................... 48 

5.4 Comparison of Multifractal and UMPCA results .............................................. 50 

CHAPTER 6. SUMMARY AND FUTURE WORK ................................................. 51 

6.1 Introduction ........................................................................................................ 51 

6.2 Summary of thesis research................................................................................ 51 

6.2.1 Significance of Multifractal Analysis ......................................................... 51 

6.2.2 Limitations in UMPCA approach ............................................................... 52 

6.3 Research Contribution to Image-Guided Additive Manufacturing .................... 53 

6.4 Future work in Image-guided Additive Manufacturing ..................................... 55 

References……… ............................................................................................................. 56 

 

 

 

 

 

 

 



vii 
 

LIST OF TABLES 

Table 1.1    Type of Defects/ Discontinuities in AM processes……………………8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF FIGURES 

Figure 1.2:1: Electron beam, wire-fed DED system ........................................................... 3 

Figure 1.2:2 Powder-bed additive manufacturing .............................................................. 4 

Figure 1.2:3 AM and its subsystems ................................................................................... 4 

Figure 2.1:1 Typical process errors in AM processes by influence, type and cause [12] .. 9 

Figure 2.1:2 Defects of porosity and un-melted particles due to low laser power [6] ...... 11 

Figure 2.1:3 Pore defects in AM processes identified by Tammas et.al, (a) two round pores, 

(b) irregular pore, (c) pores structure and sizes in detail [8]. ............................................ 12 

Figure 2.1:4 Balling phenomenon with varying O2 contents in chamber environment: a). 

0.1% O2 content; b). 2% O2 content; c). single scan paths under different laser powers[9]

........................................................................................................................................... 13 

Figure 2.1:5 a) Balling event due to insufficient heat conduction, b) visible horizontal lines 

caused by a damaged recoater blade [12] ......................................................................... 14 

Figure 2.1:6 (a) Poor composite weld seams due to variation in ratio of hatch distance h 

and width w [12] (b) the cracks extending in multi-directions [11] ................................. 15 

Figure 2.2:2 Visual inspection system for monitoring powder layer surfaces [18] .......... 16 

Figure 2.2:3 Image of proper quality powder bed, (b) illuminated image of powder bed 

with irregularities, (c) illustration of pixel values with mean 120 and standard deviation 

5.75 for proper quality and (d) illustration of pixel values with mean 120 and standard 

deviation 10 for irregular powder bed [18] ....................................................................... 17 

Figure 2.2:4 (a) Schematic representation of camera and photodiode (b) camera system 

showing different intensity by Berumen et al. [20] .......................................................... 18 



ix 
 

Figure 2.2:5 (a) Mismatch in the powder layer of first two tracks; (b) pyrometer signal 

depicting irregularity in the powder layer [22] ................................................................. 19 

Figure 2.2:6 (a) Showing ArcamA2 build chamber with Infra-Red camera and (b) 

corresponding image in Infra-Red settings with defects by Rodriguez et al. [24] ........... 19 

Figure 3.1:1 (a) Natural fractal systems of exhibiting self-similar patterns 

[29][30][31][32](b) some other man-made fractal systems[33][34] ................................ 22 

Figure 3.1:2 (a) Self-similarity and fractal dimension from Koch curve (b) plot of ln(1/a) 

against ln N(a) for Koch curve[37] ................................................................................... 23 

Figure 3.1:3 PSU Lion Shrine image with different multifractal scales, (a) original image 

of PSU Lion Shrine (2448 x 2448 x 3 pixels), spatial patterns of probabilities using varying 

pixel size (b) L = 25 pixels, and (c) L = 50 pixels[39] ..................................................... 26 

Figure 3.1:4 Multifractal spectrum features and parameters ............................................ 29 

Figure 3.1:5 (a) Defect images of pores, irregular pores, balling and crack defect (b) f(α)-

spectra of images with defects .......................................................................................... 31 

Figure 3.2:1 Elementary multilinear projection (EMP) of the order-2 tensor data[51] .... 34 

Figure 3.2:2 The sequential variance maximization algorithm for tensor decomposition 35 

Figure 3.3:1 Illustration of the Kolmogorov–Smirnov statistic ........................................ 36 

Figure 4.1:1 Design and Methodology of the research ..................................................... 37 

Figure 4.1:2 (a) Experimental setup inside the EOS M280, (b) electronics to operate the 

flashes and proximity sensors ........................................................................................... 38 

Figure 4.1:3 (a) In-situ images of machine after recoating and after laser scanning, (b) test 

plan for variation of parameters, and (c) component build by AM .................................. 39 

Figure 4.1:4 Computerized tomography of components exhibiting induced defects ....... 40 



x 
 

Figure 4.2:1 (a) 3D CT scan of the AM build component, (b) top view of 2D layer without 

defect, (c) top view of 2D layer with induced defect, and (d) background neutralize by 

bootstrapping method........................................................................................................ 41 

Figure 4.3:1 In-situ stream of 120 images with control (1-60) and pore defect, crack defect 

and balling defect (61-120) ............................................................................................... 43 

Figure 5.2:1 (a).  Four in-situ images with no defect, pores defect, crack defect and balling 

defect (b) multifractal f(α)-spectra of the four in-situ images .......................................... 46 

Figure 5.2:2 (a).  KS statistics for multifractal parameters (b) The visualization of feature 

(fmax- fmin) in the form of histogram .................................................................................. 47 

Figure 5.2:3 (a) The visualization of feature (fmax- fmin) for all images (b) The visualization 

of feature (αmax- αmin) for all images ................................................................................. 48 

Figure 5.3:1 (a) Variance explained by the 10 UMPCA features, and (b) KS statistics for 

UMPCA features ............................................................................................................... 49 

Figure 5.3:2 Visualization of significant feature extracted through UMPCA .................. 49 

 

  



xi 
 

Acknowledgements 

   I owe my deepest gratitude to my advisor, Dr. Hui Yang, for all guidance and mentoring 

offered to me throughout my graduate studies. He has always inspired, and encouraged me, 

and without his support, I would not have been able to achieve my graduate career goals. 

He brings best out of the student, and it was honor and privilege to work under him. I am 

thankful to Prof. Russell Barton for agreeing to be my reader for this thesis. I am grateful 

for his valuable contribution to improving the quality of research, and I have learned a lot 

from him during my graduate years. He is an amazing person, and his interaction with 

students make them feel at ease. I would like to thank Prof. Ted Reutzel from Applied 

Research Lab for providing me data that was the foundation for this research. I would also 

like to acknowledge the valuable contributions of Dr. Abdalla Nassar and Steve Brown 

from ARL at Penn State for building the imaging system and Gabrielle Gunderman, a PSU 

student who assembled the data used in this experiment. 

I am indebted to my lab colleagues Chen Kan, Bing Yao for helping wholeheartedly for 

the research and development of this thesis. I am thankful to my friends who also have 

become my family in U.S., Siddharth, Aakash, Goutham, Shrey, and Habeeb for all the 

support, love, and memorable moments in one of the best phases of my life.   

Most of all, I want to thank my parents, Sunil Sakpal and Archana Sakpal, and my brother, 

Rohan Sakpal who have always supported me in pursuing my goals and ambition. Your 

love, teachings, and sacrifices made me what I am today.  

 

  



   1 
 

CHAPTER 1. INTRODUCTION 

    Additive manufacturing processes work on the principle of adding successive layers of 

material to make an object of the desired shape. This concept changed the traditional 

assumptions of building an object by removing the mass through the object using machines 

such as CNC drilling, milling, etc. AM processes have superiority over many traditional 

processes. AM methodologies do not involve jigs, molds, fixtures, or any special apparatus, 

which decreases overall operation time of the process. AM have spread its wings to the 

field of toolmaking, dental, medical, and aerospace after been limited to models and 

prototypes in initial years. Complex shapes can be built selectively as per their structure 

and geometries which were challenging in the past. AM technology offers Near-net shaping 

where initial production of the item is close to the final (net) using less material thereby 

producing less waste. Because of these factors, commercial exploitation of AM has been 

increased, and many industrial sectors started seizing the opportunity. AM technology can 

reduce total environmental impact up to 70% than conventional machining [1]. Even cost 

benefits are in line with benefits using the AM technology. Different studies have claimed 

50-80% weight reduction in an aircraft is possible if metal brackets are developed using 

AM methodologies amounting to yearly saving of millions in fuel costs[2]. GE has been 

achieving benefits of AM technology with reduced operations time and money without 

sacrificing performance [3]. A wide range of materials can be developed using additive 

manufacturing including metals, plastics, alloys, composites, etc. 
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1.1 Additive Manufacturing 

   Additive manufacturing, also known as 3D printing, refers to the process of building an 

object by adding layers of material one by one in all three directions. The material can be 

a plastic or metal. The techniques used in the additive manufacturing of metals are slightly 

different from those performed in plastics. The technologies in the metals-based additive 

manufacturing have evolved using welding and cladding (walls) processes that have been 

around for decades. The advantage of AM is the development of ready-to-use part from 

design stage in less time and number of manufacturing steps. A set of machine instructions 

follows the CAD (Computer-Aided Design) object transforming the surface geometries of 

the virtual part into a set of tool paths. Mass-efficient designs with intricate geometries can 

be developed directly from the computer-aided designs, without the design of constraints 

of conventional processes. Additive manufacturing involves lots of complexity involving 

hundreds of individual laser or electron-beam deposits in the process. Significant 

interaction between an energy source, substrate, and feedstock lead to many process 

variables that contribute to the overall build quality of the product. These limitations have 

given rise to the need for sensing and control strategies for achieving sophistication of the 

overall additive manufacturing techniques.  

1.2 AM Processes and Subsystems 

American Society for Testing and Materials (ASTM) standard F2792 defines additive 

manufacturing as “the process of joining materials to make objects from 3-D model data, 

usually layer upon layer, as opposed to subtractive manufacturing technologies” [4]. 

Additive manufacturing processes vary in types and differ depending on the kind of 
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material and machine technology used. Fully-dense parts can be built using additive 

manufacturing processes in one of two categories: (i) directed-energy deposition and (ii) 

powder-bed fusion (ASTM F42 Committee, 2012)[5].  Both the process differs in the 

material used in the process. In the directed-energy deposition, powder or wire is fed into 

a molten pool on top of the substrate. In latter, electron beam or laser is scanned over a bed 

of powder on top of the substrate. The subsystem of both categories is similar apart from 

feeding material. It consists of an electron beam or laser, a beam delivery system, motion 

controls, feedstock delivery system, and environmental controls. Figure. 1 and 2 show the 

AM categories of Directed Energy Deposition and Powder bed fusion. Figure 1.2:3 shows 

AM and its subsystems. 

 

Figure 1.2:1: Electron beam, wire-fed DED system 



4 
 

 

Figure 1.2:2 Powder-bed additive manufacturing 

 

  

 

 

 

 

 

Figure 1.2:3 AM and its subsystems 
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1.3 Sensing and Control of Machine Variables 

      Additive manufacturing solves many shortcomings that come with traditional 

processes, but AM has its own complications which need to be monitored for better quality 

and accuracy. Some of the early obstacles of the AM processes identified by the researchers 

persists today (porosity, cracking, thermal management). This can be mainly attributed to 

lack of process monitoring and fault diagnostics systems used to manage AM operations. 

Many independent factors are involved in the process which poses a challenging task for 

achieving top-notch grade in quality and repeatability. Some of the problems arise in AM 

are inherent to the working of the AM principle and its supporting systems. Key process 

parameters can be accounted for the performance of final build quality such as strength, 

surface roughness, dimensional tolerance, and structural properties. For illustration, 

discontinuities may appear in building direction if the melted matter is unable to fuse 

properly due to low laser scan[6]. In powder bed fusion, uneven melt pool temperature 

affects the microstructure and structural properties of the object. If the key performing 

variables are identified, these variables can be adequately monitored and controlled to 

improve the quality features of the object. Sensing and feedback control can be employed 

for each of these variables. These can provide us the information on instabilities in the 

subsystems causing non-conformance of the final build quality. For such capabilities in the 

system, sensor technologies are on the rise to effectively monitor the parameters 

influencing the quality and accuracy of the produced components [5]. A key methodology 

in process monitoring and fault diagnostics is the in-situ monitoring techniques.  Although 

the use of in-process monitoring is common in traditional processes, AM processes are yet 



6 
 

to be benefited from monitoring techniques that allow in-situ detections of 

defects/discontinuities.  

1.4 Defects/Irregularities in Additive Manufacturing Processes 

   Some of the early drawbacks of additive manufacturing were the formation of defects 

and discontinuities which persist today. The building process in most additive 

manufacturing technologies relies on a continuous layer-by-layer addition process. So, the 

breakdown of 3D design into the 2D layer is a principal drawback of AM. Discontinuities 

may appear in all building directions because of the layer-by-layer addition process. Most 

typical defects are built up between the internal layers of the components during AM 

processes. In AM, pores are most susceptible to fatigue cracks than structural instabilities 

[7]. Cracks extending to the component surface due to pores affect fatigue life and result 

in breakages. Insufficient laser power in powder bed processes results in the formation of 

gas pores due to partially un-melted powders [6]. Over-melting causes disorder within the 

melt pool and hence, uncontrolled evaporation which give rise to gas pores between the 

layers of material. Therefore, there is a need to develop a better correlation between process 

parameters and the defects found within the layers of AM based component. Some of the 

typical defects are shown in Table 1.  

Sensor methodologies can provide us valuable feedback for better monitoring of the AM 

process and give insights on the failure mode and effect analysis. But the process 

monitoring and control techniques allowing to detect the discontinuities in the AM 

processes have not been fully developed. Researchers have been proposing and 

investigating new forms of mechanism and sensing techniques which, when integrated with 
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AM system will allow the discontinuities to be detected, monitored and successfully 

characterized for realizing the full potential towards process monitoring and fault 

diagnosis.  

   Material 

Discontinuities 

Description Defect Image 

1. Gas Pores Trapped gases causing pores within 

the layers 

[8] 

2. Elongated Pores Incomplete fusion of powder 

particles causing irregular pore 

[8] 

3. Balling Large spherically shaped formation 

due to excessive melting  

[9] 

4. Infused Powder Insufficient laser power develops 

unfused powder regions 

[10] 

5. Cracking Crack defect extending in multi-

direction relieving stress 

[11] 

Table 1.  Summary of Defects/ Discontinuities in AM processes 
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1.5 Motivation and Objective of the Proposed Research Related to Additive 

Manufacturing 

Chapter 5 of this research thesis describes the successful detection and classification of 

defects in the AM processes through image based sensors. This is achieved through the 

development of methodologies that differentiates the images having defects from the 

images of in-control quality. These methods are as follows: 

1.    Multifractal analysis of images describing the heterogeneity in the additive 

manufacturing systems through features and parameters of multifractal spectrum 

correlating to the irregularities and defects in the images. 

2.    Uncorrelated multilinear principal component analysis extracting the principal 

component features from the multi-dimensional image data of additive manufacturing that 

points to the irregularities and defects in the images. 

These methodologies can help in in-situ process monitoring of additive manufacturing. 

This thesis is organized as follows: Chapter 2 describes the review of related literature. The 

research methodology and experimental studies developed for the process monitoring and 

defect detection of the additive manufacturing process are detailed in Chapter 3. Chapter 4 

outlines the design of experiments, experimental set-up and simulation strategies used for 

process modeling and defect characterization in this research. Chapter 5 summarizes the 

results and discussion of this investigation. Finally, Chapter 6 describes the potential future 

research for application of these methodologies for real-time, online process monitoring. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter describes the research background and reviewed the literature relating to in-

situ process monitoring of defects in additive manufacturing. 

2.1  Review of the Literature Relating to In-situ Process Monitoring in Additive 

Manufacturing  

Here are reviewed typical defects which occur in the additive manufacturing processes as 

well as the sensor methodologies used to detect such defects in the past and identify 

shortcomings in the current state of sensor methodologies. 

2.1.1 Process Errors and Defects 

 

 

Figure 2.1:1 Typical process errors in AM processes by influence, type and cause [12] 
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          Many dependent and independent parameters are involved in AM processes which 

influence the characteristics of final build component. Processing parameters such as laser 

power, scanning speed, hatch distance, etc. govern AM processes. Van Elsen list over fifty 

parameters for laser-PBF processes [13]. The fundamental mechanism of “defect” or 

irregularities forming into the powder bed additive manufacturing have been addressed as 

early as by Kruth et. al [14]. Figure 2.1:1 shows the typical process errors encountered in 

AM processes. 

2.1.2 Pore Defects 

      Variety of defects and irregularities are known to occur in AM processes, typical are 

the ones that are built up between the internal layers of the components, for e.g. elongated 

pores forming between layers or gas pores within the layer. Attar et al. showed that 

insufficient laser power in powder bed processes results in the formation of gas pores due 

to partially un-melted powders [6]. It revealed that low laser power had a significant 

influence on pore formation. When the laser power was less than 100W, a significant 

number of un-melted particles and porosities were developed, as shown in Figure 2.1:2. 

This phenomenon was caused by incomplete melting of the powders due to insufficient 

laser power and unbalanced viscosity of melt pool. It was also shown over-melting due to 

high laser power can result in gas pores within the material due to increased stress and 

excessive evaporation. Thus, the processing parameter of laser power as the main reason 

for the creation of this discontinuities/defects.  
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Figure 2.1:2 Defects of porosity and un-melted particles due to low laser power [6] 

Tammas-Williams et al. performed X-ray computed tomography (XCT) to reveal that the 

variation in hatching/scanning regime is the reasons for the formation of voids and 

discontinuities[8]. Most pores were found to be small spherical gas pores, attributed to the 

lower energy density and low focused beam used. Increasing the power of beam focus or 

the energy density resulted in the reduction in gas porosity level. Irregularly shaped pores 

were primarily found in the inter-build region and probably caused by insufficient fusion 

in powder particles. Some of the images of the pores discontinuities developed in the 

experiment are shown in Figure 2.1:3 
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Figure 2.1:3 Pore defects in AM processes identified by Tammas et.al, (a) two round 

pores, (b) irregular pore, (c) pores structure and sizes in detail [8]. 

2.1.3 Balling Defects 

   In high laser power environment, another defect called “balling” of powder emerge when 

powder material fused together excessively to form spheres that rise above the layer 

thickness, due to the oxidation process in the build chamber. This phenomenon creates a 

discontinuity in the subsequent layers making the surface uneven. Gu et al. revealed similar 

event of balling happened in stainless steel powders in a lower power setting[15]. Balling 

defects were divided into two types: One formed due to insufficient laser energy input, and 

the second by molten pool splashing under high scan speed. Childs et al. performed 

experiments to study the effects of single laser track on balling due to different scan speed 

and laser power [16]. Single scan paths under varying laser powers are shown in Figure 

2.1:4 (c). Li et al. revealed that the balling incidents could be controlled by lowering the 

(c) 
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oxygen content in the chamber environment [9]. Development of a smooth melting surface 

demands lower oxygen content to prevent balling defects in SLM. A higher O2 content of 

2% and 10% will initiate the balling event, as schematically shown in Figure 2.1:4 (a) and 

(b). 

 

Figure 2.1:4 Balling phenomenon with varying O2 contents in chamber environment: a). 

0.1% O2 content; b). 2% O2 content; c). single scan paths under different laser powers[9] 

2.1.4 Re-coater Damage affecting Powder Layer 

        S. Kleszczynski et al. showed process stability could be at risk due to the collision of 

the re-coater blade and curled areas [12]. Melting and solidification in high cooling 

environment develop residual stresses causing plastic deformation within the layer. 

Support structures are necessary to counteract deformations and prevent the process from 

stopping. Heat induction is another reason for using support structures since the 

conductivity of metal powders is not same as solid metal. Unless the heat induced is not 

relieved in building platform, balling effects appear Fig 2.1:5 (a). Residual stresses building 

up within the bed causes inconsistencies in the layer called ‘curling up.' These areas of 

increased thickness can affect the subsequent distribution of the powder layer as in Figure 

2.1:5 (b). To mitigate such effects, silicon blades can be used for spreading the powder 

layer but they have short life and erode quickly. 
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Figure 2.1:5 a) Balling event due to insufficient heat conduction, b) visible horizontal 

lines caused by a damaged recoater blade [12] 

2.1.5 Crack Defects 

     Product quality is affected by the hot cracks defects in AM which depend on the powder 

material and heat input density. Most materials used in AM show good welding 

characteristics and hence, assigned to ductile metal alloys. The problem arises when the 

different concentration of metal powder or powder contaminations are used and thereby 

pose such defects. This exerts the use of specific ratios between width and distance melt 

traces in such processes. The width of melt traces depends on many factors such as laser 

beam diameter, laser scanning velocity, etc. If the gap between melt traces (hatch distance) 

– is too big as in Figure 2.1:6 (a), melt traces will be deranged causing porosities and  poorer 

mechanical properties [12]. Wang et al. performed acoustic emission testing to reveal crack 

defects in powder-DED as one shown in Figure 2.1:6 [11]. The experiment presented four 

typical forms of the cracking defect: (1) the slag cracks occurring at the grain boundary, 

(2) The cracks generating at the combining sites of coating and substrate. (3) The cracks 

forming at the bonding zone. (4) The cracks resulted from manufacturing.  
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Figure 2.1:6 (a) Poor composite weld seams due to variation in ratio of hatch distance h 

and width w [12] (b) the cracks extending in multi-directions [11] 

2.2 Process Monitoring and Sensor Methodologies 

   Process Monitoring of the AM process relies on the data collection methods capturing 

the process-related features pointing to the sources of inaccuracies and defects that can lead 

to failure. Process-related data will be much more effective if the monitoring techniques 

are real-time so the information related to the errors and defects can be effectively 

understood. Monitoring techniques that detect material discontinuities during the build in 

AM processes would help in the tight control of the process characteristics as every layer 

of the build could be assessed for defects and flaws and give room for correctional 

strategies. This possibility can provide information on the process parameters and their 

ranges for building parts with better quality and accuracies. There have been numerous 

effort to address the process monitoring of AM processes to enhance the part quality [17]. 

Most of the research within the process monitoring and control of temperature centered 

around on pyrometry, which is the non-contact measurement of the temperature of a body 

based on its emitted thermal radiation. Photodiodes and digital cameras are most favored 
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type of pyrometers used in AM. As opposed to pyrometers, a thermocouple is a device that 

conducts contact measurement of temperature. Figure 2.2:2 shows the typical visual 

inspection system in AM for powder surfaces. 

 

Figure 2.2:1 Visual inspection system for monitoring powder layer surfaces [18] 

2.2.1 In-situ Methodologies of Process Monitoring 

     A key methodology in process monitoring and control technologies is the in-situ 

monitoring techniques. These techniques help in closed loop monitoring and detection of 

defects/discontinuities through in-situ data acquisition methodology. New forms of in-situ 

instrumentation and methodologies are developed continuously which allows further 

enhancement to improve the quality of AM components [19]. Early works in-situ 

inspection of AM processes utilized an in camera or photodiodes based setups. Early works 

of Kruth et al. performed process monitoring by combining a visual inspection camera 

equipment and a melt pool monitoring system [18]. The system inspected the 

decomposition of powder layer for any instabilities in the powder recoating system causing 

surface distortions in the powder bed after scanning. These irregularities pass on to 
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subsequent layers and cause high surface roughness. A light source was used in the process 

chamber to brighten the horizontal lines caused by the damaged powder coating system. 

An analysis of gray values was used for detection of powder bed irregularities as shown in 

Figure 2.2:2. The high standard deviation in pixel values indicated the wear and instability 

of the recoater blade.  This arrangement can be used to detect irregularities in the system 

and corrective action can be implemented at the first layer and prevent other layers of 

powder from being affected. 

 

 

Figure 2.2:2 Image of proper quality powder bed, (b) illuminated image of powder bed 

with irregularities, (c) illustration of pixel values with mean 120 and standard deviation 

5.75 for proper quality and (d) illustration of pixel values with mean 120 and standard 

deviation 10 for irregular powder bed [18] 

     Berumen et al. showed the use of scan head and semi-transparent mirror for transmitting 

the radiation by the melt pool and image to high-speed camera respectively [20]. The 

experiment showed that the photodiode sensor could distinguish temperature gradients 

across build area and a camera with significant resolution could acquire the melt pool 
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features illustrated in Figure. 2.2:3. Predefined limits of temperature ranges for melt pool 

could be possible to regulate with the help of closed loop feedback and control. This 

enables to keep the material from overheating and causing gas pores.  

 

Figure 2.2:3 (a) Schematic representation of camera and photodiode (b) camera system 

showing different intensity by Berumen et al. [20] 

   Furmoto et al. used a simple system of high-speed cameras [21]. The system monitored 

the powder bed during irradiation by the vertically installed camera above the powder bed. 

The deviation in powder layer thickness was captured by camera images lighten by a metal 

halide lamp. Pavlov et al. used a two-wavelength pyrometer in-line with the optical unit of 

a laser-PBF Phoenix PM-100[22]. This arrangement helped to monitor hatch distance for 

powder thickness and the catch any deviations in powder layer thickness, as shown in 

Figure 2.2:4. Through the experiment, it was found that the readings are affected due to 

heat build up in the previously melted layer. Islam et al. used pyrometry to assess the 

reasons of balling through visual inspection system [23]. It showed that minimum heat 

inputs in the range 1400 J mm-3 to 1700 J mm-3 reduces balling defects, and cooling rates 

not causes any effects of the balling phenomenon.  
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Figure 2.2:4 (a) Mismatch in the powder layer of first two tracks; (b) pyrometer signal 

depicting irregularity in the powder layer [22] 

      Rodriguez et al. used an Infra-Red camera into an Arcam A2 electron beam-PBF 

machine, shown in Figure 2.2:6, to assess surface temperature profiles for each powder 

layer [24]. The profile values extracted can be used to rectify the performance settings for 

subsequent layer. ThermaCAM Researcher analyzes the images to measure the emitted 

radiation from the surface and transforming to a relative temperature reading. Defects 

caused by “over-melting” during the AM process could be distinguished from the 

generated Infra-Red image, shown in Figure 2.2:5 (b).  

 

Figure 2.2:5 (a) Showing ArcamA2 build chamber with Infra-Red camera and (b) 

corresponding image in Infra-Red settings with defects by Rodriguez et al. [24] 
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    High-speed cameras with large view has given rise to identification method to diagnose 

irregularities in the powder bed due to re-coater damage and over-processing causing parts 

to curl up in AM.  Although the defects and irregularities in AM can be manually detected, 

closed-loop monitoring and automatic defect detection is still out of reach in most in-situ 

methodologies and yet to be attained. 

2.3 Shortcomings in the existing methodologies 

    Most of the previous work were limited to the detection of defects in additive 

manufacturing but lack the characterization and classification of defects. Standard image 

processing techniques that detect defects in the images involves three general phases of 

pre-processing, enhancement and display, and information extraction. Pre-processing 

techniques such as image enhancement, filters, edge detection, noise removal, etc. are 

needed before reaching an output of either an image or a set of parameters related to the 

image. Further steps necessitate characterizing the defect through feature extraction as 

typical defects such as pores, balling, cracks, etc. have different shapes, sizes, and spatial 

arrangement. Hence above methodologies lose on computational time, resources, and 

several operations involved in generating results of detection and characterization of 

defects. In this thesis, we are proposing two methods which will not only detect but also 

characterize the defects without the need for any image processing techniques. It will run 

the original image of AM processes and detects the deviation in parameters belonging to 

the irregularities such as defects/discontinuities. This methodology will provide parametric 

features that can be correlated to the different type of defects with size, shape and spatial 

arrangement and hence, will be able to differentiate images of control and fault in the in-

situ operations of additive manufacturing.  
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CHAPTER 3. RESEARCH METHODOLOGY 

   This chapter details the research methodology of multifractal analysis and uncorrelated 

multilinear principal component analysis used to detect the defect in the images of additive 

manufacturing.  

3.1 Multifractal Analysis Approach 

   Lakes, oceans, mountains are often described as circular, cone, spheres but they are not. 

Natural patterns and shapes are so irregular and fragmented that they exhibit not simply a 

higher degree but entirely altogether different level of complexity[25]. Standard geometric 

measurements are not enough to capture their dimensions and complexity. The concept 

was first introduced by Mandelbrot (1977, 1983) to describe nature’s complexity and thus, 

coined the term “fractal geometry” [26]. Many natural phenomena have an ingrained 

irregularity in their systems and look somewhat similar to each other at different scales, as 

shown in Figure 3.1:1. This scale invariant similarity is a source of simplicity in fractal 

geometry. Observed fractal structure remains similar under the scales of magnification or 

contraction. For example, components of trees such as a trunk, branches, leaves, etc. have 

similar patterns in their shapes, structure and spatial arrangement. This patterns under 

magnification are a miniscule replication of the whole: not identical, but similar in nature. 

Even some of the man-made structures have exhibited the property of fractal geometry and 

often subject to research as in Figure 3.1:1 (b). Since the advent of fractal geometry, it has 

been used extensively to describe the complexity of non-linear systems such as ecology, 

signal and image processing, soil mechanics, etc.[25][27][28]. 
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Figure 3.1:1 (a) Natural fractal systems of exhibiting self-similar patterns 

[29][30][31][32](b) some other man-made fractal systems[33][34] 

3.1.1 Fractal Geometry 

   Fractals defined by Benoit Mandelbrot as “A fractal is by definition being a set for which 

Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.” The concept 

of dimension is vital in fractal geometry. Dimension can be defined as “A measure of 

spatial extent, especially width, height, or length or can be defined as the least number of 

coordinates required to specify the points uniquely in space.” The first fractal was 

discovered by a French mathematician named Gaston Julia who discovered them decades 

before the advent of computer graphics [35]. Julia’s work was discovered by Benoit 

Mandelbrot. A fractal set fills the space in which it is embedded and possesses a certain 

degree of self-similarity with high irregularity. If we reduce the linear size of an object in 

(a) 

(b) 
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the Euclidean space ℝ𝐷 by the scaling factor ε in each spatial direction, its measure (length, 

area, or volume) will increase to N = ε−𝐷, where 𝑁 is the number of measure elements 

needed to capture the object. This measure is captured by fractal dimension, DF, of the set. 

Fractal sets have theoretical dimensions exceeding their topological dimensions and can be 

non-integer values. Figure 3.1:2 (a) shows an example of the Koch snowflake curve which 

has a non-integer dimension[36]. 

 

Figure 3.1:2 (a) Self-similarity and fractal dimension from Koch curve (b) plot of ln(1/a) 

against ln N(a) for Koch curve[37] 

   The Koch snowflake curve is self-similar at all scales of magnification. The Koch 

snowflake curve is generated by starting with a straight line, and dividing the line into three 

segments of equal size. Second, remove the middle part of the line and replace it with two 

lines that have the same length (1/3) as the remaining lines on both sides[37]. Iterating this 

process recursively generate the “infinitely complex” Koch curve. Fig. 3.1:2 (a) shows the 

first three iterations of the process. In each iteration, the length of the curve increases. 

However, the Koch snowflake curve is self-similar at all scales of magnification. If we 

follow the scaling and covering rule, the dimension of Koch curve is D = − log 4 log(
1

3
)⁄ =

(a) (b) 

slope = 1.2849 
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1.26. The Fig. 3.1:2 (b) shows the plot of ln N(ε) against ln(1/ε) for the Koch curve with 

estimated slope is approximately 1.2849, while theoretical fractal dimension is 1.263.  

3.1.2 Theory of Multifractal and Mathematical Proof 

   Fractal geometry is advantageous in explaining complex systems using a relatively low 

number of parameters as in the case of Dimension DF [37]. Compared to classical approach 

of image analysis, fractal and multifractal analysis are advantageous in the way of handling 

of irregularities [28]. Major motivation of the work is developed through the paper on 

multifractal characterization of soil pore systems by Posadas et.al [28]. Fractal theory is 

based on the idea of “measurement at scale ε.” For each ε, we quantify a system by ignoring 

irregularities of size less than ε, and monitor how these systems change as ε → 0. In the 

case of fractals, the relationship between the measurements N(ε) and the scale ε must obey 

power-law form: 

                                                               N(ε) ~ ε-D                                                         (3.1) 

    where D is a fractal dimension. This equation governs the structural distributions of 

many objects in nature. The box-counting dimension, one of the methods used to measure 

the fractal dimension of the two-dimensional object finds the “ε cover” of the object or the 

number of boxes of length ε needed to capture the object[38]. Practically, the object is 

overlaid by a regular grid of pixels of length L and number of pixels capturing the object 

is counted. This procedure is repeated using different values of L. Once the L becomes 

sufficiently small, N(L) becomes equal to the number of points in the set and the limit above 

this is given by  

                                                      Db = 𝑙𝑖𝑚
𝐿→0

𝑙𝑜𝑔𝑁(𝐿)

𝑙𝑜𝑔⁡(
1

𝐿
)

                                                       (3.2) 
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    where L is the size of the box, N(L) denotes the number of boxes occupied by the object 

and Db is the box-fractal dimension determined by Eq. [3.2]. Db is estimated from the slope 

of the linear trend of the log-log plot of N(L) versus L. One disadvantage of fractal method 

is that it does not consider the amount of mass inside the box Ni(L) and hence, not able to 

resolve local densities of mass. A measure is multifractal if different fractal dimension 

exists on different parts of the support. The multifractal approach, when compared to the 

fractal framework, helps to determine the overall complexity present in the given dataset 

and thus, can be fully quantified. The method considers inner variation in a system by 

resolving local densities (e.g. pixel value 0-255 in the case of an image) and quantifies 

them in the shapes of the Multifractal spectrum. Multifractal techniques have been used in 

soil science to characterize soil pore systems [33]. 

                                                         Pi(L) = 
𝑁𝑖(𝐿)

𝑁𝑇
⁄                                                    (3.3) 

where Pi(L) is the mass probability in the ith box, Ni(L) is the number of pixels containing 

mass in the ith box, and NT is the total mass of the system. Eq. [3.3] is a way of quantifying 

local densities by evaluating the mass probability in the boxes. Illustration of spatial 

patterns of Pi (L = 10), and Pi (L = 50) for image of PSU Lion Shrine displayed in Figure 

3.1:3. (L is expressed in pixels).  
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Figure 3.1:3 PSU Lion Shrine image with different multifractal scales, (a) original image 

of PSU Lion Shrine (2448 x 2448 x 3 pixels), spatial patterns of probabilities using 

varying pixel size (b) L = 25 pixels, and (c) L = 50 pixels[39] 

    The Multifractal theory describes the statistical properties of the fractal set in their 

singularity spectrum. Using Eq. [3.3], the singularity strength exponent αi can be defined 

by  

                                                            Pi(L) ~ 𝐿𝛼𝑖                                                          (3.4) 
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The number αi = 
log 𝑃𝑖(𝐿)

log⁡(𝐿)⁄ is also known as the Holder exponent, and represents 

singularity strength of the ith box. This exponent denotes mass index of the concentration 

of singular measure; the greater αi is, smaller the concentration of the measure, and vice 

versa [25]. For every box size L, the number of boxes of Nα(L) in which Holder exponent 

αi has a value within the range [α, α + dα]is found to scale as [40][41]: 

                                                           Nα(L)~ L-f(α)                                                         (3.5) 

where f(α) can be defined as fractal dimension of the set of boxes with singularity strength 

α. Eq. [3.5] generalizes Eq. [3.1] by considering a range of indices to quantify the scaling 

of the system.  

    An alternative measure of characterizing multifractal measures is possible through 

scaling of the qth exponents of the singular measures [40][42]. If we capture the support of 

the measure with boxes of size L and define Pi(L) to be the probability measure in the ith 

box, then a series of exponents parameterized by q can be defined as  

                                                  ∑ 𝑃𝑖
𝑞(𝐿)

𝑁(𝐿)
𝑖=1 =⁡𝐿(𝑞−1)𝐷𝑞                                              (3.6) 

where Dq is the observed fractal dimensions defined from Eq. [3.6]. Limiting the size of 

the box leading to zero gives the dimension definition as: 

                                                 Dq = lim
𝐿→0

1

𝑞−1

𝑙𝑜𝑔∑ 𝑃𝑖
𝑞
(𝐿)

𝑁(𝐿)
𝑖=1

𝑙𝑜𝑔𝐿
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.7)          

  The exponent in Eq. [3.6] is called as the mass exponent of the qth order moment, 𝜏(q) 

[42]: 

                                                     𝜏(𝑞) = (𝑞 − 1)𝐷𝑞                                                     (3.8) 
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    The generalized dimensions are exponents that characterize the non-uniformity of the 

measure; q > 0 features the crowded regions and q < 0 features the scarce ones [43]. In the 

range of values of q, certain values represent the dimension of a peculiar set, which 

supports a part of the measure. From the Eq. [3.7], boxes with a weight of unity, makes the 

fractal dimension Dq into capacity dimension, D0. Same probability in all boxes in the 

system i.e. Pi = 1/N, makes Dq = D0 for all values of q and hence, 𝜏(𝑞)becomes a linear 

function of q (homogenous fractal system). 

    The Legendre transformation connects the singularity spectrum f(α) and the mass 

exponent function 𝜏(𝑞) [44] 

                                                          𝛼(𝑞) = ⁡
𝑑𝜏(𝑞)

𝑑𝑞
                                                        (3.9) 

And 

                                                  𝑓[𝛼(𝑞)] = 𝑞𝛼(𝑞) − ⁡𝜏(𝑞)                                          (3.10) 

     The multifractal spectrum f(α)-spectra contains the same information as both equations 

of Eq. [3.9] and [3.10]. The Function f(α) is a concave shaped with a maximum at D0. An 

easy method for the calculation of f(𝑞) and 𝛼(𝑞) was provided by Chhabra and Jensen 

through Equations (3.12) and (3.13) [40]. Equation (3.11) represents a family of 

normalized measures µi(q, L) developed for values of q > 0 and q < 0 over ranges in steps 

of 0.1. Pi(L) is the probability of measure captured in each ith box size L.  

𝜇𝑖(𝑞, 𝐿) = ⁡
𝑃𝑖
𝑞
(𝐿)

∑ 𝑃
𝑖
𝑞
(𝐿)

𝑁(𝐿)
𝑖=1

                                                (3.11) 
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𝑓(𝑞) = ⁡ lim
𝐿→0

∑ 𝜇𝑖(𝑞,𝐿)log⁡[𝜇𝑖(𝑞,𝐿)]
𝑁(𝐿)
𝑖=1

log𝐿
                                     (3.12) 

And 

𝛼(𝑞) = ⁡ lim
𝐿→0

∑ 𝜇𝑖(𝑞,𝐿)log⁡[𝑃𝑖(𝑞,𝐿)]
𝑁(𝐿)
𝑖=1

log𝐿
                                      (3.13) 

Eq. [3.12] and [3.13] provides the value of f(q) and α(q) for each q through the slopes of 

numerator against box size L. The curvature obtained through the functions f(q) and α(q) 

over a given Δq is the f(α)-spectra quantifying multifractal properties of the system. The 

Multifractal spectrum provides the information on the extreme regions of the measure i.e. 

where the measure is sparser or denser. Figure 3.1:4 shows the multifractal parameters of 

the f(α)-spectra. 

 

Figure 3.1:4 Multifractal spectrum features and parameters 
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3.1.3 Multifractal Analysis of Additive Manufacturing Images 

   Classical defects of pores, balling, cracks, etc. have different shapes, sizes and spatial 

arrangement on the layers of additive manufacturing processes. This defect is induced due 

to the variation of different parameters involved, and hence detection of this defects are 

important. Once detected these defects could help in understanding the additive 

manufacturing process and its variables. The symmetry and the curvature of the f(α)-

spectra provide information on the diversity of a system captured by images and defined 

by the diversity of scaling components q used to characterize it. Feature values to the left 

and right of D0 represent positive and negative q values. Moments q > 0 amplify the 

contribution of boxes with the higher value pixels from mean (value towards 255 or white 

pixels) to the estimates of either f(q) or α(q)[28]. Similarly, q < 0 amplify the contribution 

of boxes with lower value pixels from the mean (value towards 0 or black pixels). In the 

Y-axis of f(q), a magnitude of difference between D0 and values of f (1) or D1 and f (-1) 

represent the deviation of the system from normal behavior. In the x-axis of α(q), the 

difference (αmax- αmin) is used as a sign of heterogeneity in the system. Figure 3.1:5 (b) 

shows f(α)-spectra of images with defects from chapter 1. The f(α)-spectra among images 

shows the distinctively different shape and symmetry. The smallest heterogeneity is 

evident in the image with the crack defect and largest in the image with irregular pores. 

The right-hand side of the f(α)-spectra in the image with irregular pore defect exhibits the 

largest difference in D0 – f(-1) and α value due to a presence of massive pore structure and 

overall heterogeneity in the image. 



31 
 

 

Figure 3.1:5 (a) Defect images of pores, irregular pores, balling and crack defect (b) f(α)-

spectra of images with defects 

3.2     Uncorrelated Multilinear Principal Component Approach 

   Image processing is one of the widely growing areas in computer vision applications. 

With the rise in huge amount of image data, digital image processing is expanding rapidly 

and it is used to extract various features from the images. Many computer algorithm can 

do this without any human intervention. Digital images can prove useful in identifying and 

classifying various defects in images. Recently, there has been an increased in the use of 

sensor technology for process monitoring and fault diagnosis. The output of the sensor data 

is usually represented by spatial or time ordered data known as “profiles.” In the past, most 

cases of manufacturing processes were characterized by single profiles. With development 

of sophisticated sensors, online sensing system can record more than one profile at each 

operation cycle. For example, Paynabar and Jin used “profiles” of ram force signals to 

process valve seats into engine heads in an engine head assembly process [45]. Strain gauge 

sensors were installed on each four uprights of a forging press, where each sensor recorded 

the tonnage force profile in every stamping operation. Colosimo et al. include the 

roundness of profile of a machined part at different sampling angles in a lathe-turning 

(a) (b) 
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process[46]. Since such multiple profiles are recorded through different sensor channels, 

they are called “multichannel profiles”. 

3.2.1 Tensor methodology for Images 

   Input data sets from many process monitoring processes are multi-dimensional in nature 

and can be defined using tensors. A number of indices are used to define the “order” of a 

tensor, with each index defined as one “mode”. Gray-scale images are represented as a 

second-order tensor with column and row modes whereas video sequences are represented 

as third-order tensors with column, row and time modes. Often this type of high-order 

tensors suffers from the so-called curse of dimensionality in pattern recognition methods. 

Dimensionality reduction of subspace learning approach is regularly used to transform a 

multi-dimensional data set into low-dimensional feature space while retaining the most of 

the hidden structure. A standard method of principal component analysis is used for 

dimensional reduction but needs reshaping of tensor data into the form of 2-dimensional 

matrix. Recently, various methods were proposed to extensions of PCA operating directly 

on tensor objects.   

3.2.2 Theory of UMPCA 

   Vectorized- PCA (VPCA) uses high-dimensional vector by stacking multi-channel 

profiles into one higher order vector but computational complexity and memory demands 

of VPCA are higher than PCA. Lu et al. introduced multi-linear PCA (MPCA) as an 

alternative to VPCA [47]. This method operates directly on the multi-dimensional data 

rather than vectorized version. This makes MPCA applicable to the higher order matrix or 

higher order tensor representation. MPCA provides principal component features with 

correlation as against regular PCA. Uncorrelated features are needed to ensure linear 
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independence with minimum redundancy in the features which are necessary for most 

pattern recognition tasks. Lu et al. proposed uncorrelated multilinear principal component 

analysis (UMPCA) to overcome the issue of correlation [48]. In UMPCA, several 

elementary multilinear projections (EMP) are solved with an objective to maximize the 

captured variance with constraint of zero-correlation. UMPCA is proving useful in many 

image processing and computer visions applications[49].     

   This section introduces the UMPCA methodology for unsupervised subspace learning of 

tensor objects. The major motivation of the work is developed through work of Lu et. al 

and Liu et. Al [48][50]. The methodology is to resolve the maximum number of 

uncorrelated features that can be extracted from multi-dimensional matrix or tensors by 

tensor to vector projection. In principal component analysis, the variance of the principal 

components is considered one at a time, starting from the first principal components that 

targets to capture the most variance and then second principal component and so on. The 

TVP consists of multiple elementary projections (EMP), which project a tensor D ε RI
1
x…x 

I
N to a scalar x through the N projection vectors as  

x = D x1 u
(1) x2 u

(2) … xN u(N)                                                           (3.14) 

where u(n) is the nth projection vector, xn is the nth-mode multiplication. To calculate the 

nth-mode multiplication, the order-N tensor needs reshaping into matrices. The nth-mode 

multiplication xn of tensor D and matrix M is defined as D x1 M = MD(n), where D(n) is the 

“flatting” of tensor data along the nth dimension. Figure 3.2:1 exhibits the EMP of an order-

2 tensor to a scalar x = D x1 u
(1) x2 u

(2). First, the order-2 tensor data D ε Ra x b is flatted 

along the first dimension and then multiplied by the 1st projection vector u(1), resulting in 
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a vector D x1 u
(1) = u(1) D(1). Second, this vector of size 1 x b is then multiplied by the 2nd 

projection vector u(2) to get the scalar x = D x1 u
(1) x2 u

(2). 

 

Figure 3.2:1 Elementary multilinear projection (EMP) of the order-2 tensor data[51] 

  The use of P EMPs will project the tensor data D to a vector x ε RP as 

x = D xn=1⁡
N  {𝒖𝒑

(𝒏)
, 𝑛⁡ = ⁡1,2, … ,𝑁}𝑝=1

𝑃 ……………………………………………….(3.15) 

where p denotes the index of EMP. For our stacked images data, we need the projection of 

order-3 tensor χ to a 2-dimensional matrix Y. Then xm(p) is the projection of the mth image 

χm by EMPs: xm(p) = χm 𝑥n=1⁡
N  {𝒖𝒑

(𝒏)
, 𝑛⁡ = ⁡1,2, … ,𝑁}. As shown in Figure 3.2:2, gp denotes 

the pth coordinate vector and gp(m) = xm(p). In order to maximize the variance of 

projections and extract uncorrelated features, a constraint function will be imposed on the 

pth EMP.  

Multilinear subspace learning produces a low-dimensional set of uncorrelated features. To 

solve the constrained objective function, a sequential variance maximization algorithm is 

utilized as shown in Figure 3.2:2. The P EMPs {𝒖𝒑
(𝒏)
, n⁡ = ⁡1,2, … ,𝑁}𝑝=1

𝑃  are sequentially 

estimated in P steps subject to the orthogonal and normalization constraints. Multilinear 
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subspace learning will transform the tensor data of size a x b x M into a matrix of 

uncorrelated features of size p x M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:2 The sequential variance maximization algorithm for tensor decomposition 

 

3.3 Parametric feature Analysis 

Once we extract the features from the images of defects and control, we will use KS 

statistics to show a significant difference in value features from the group of defect induced 

image and control images [51][52]. Let Fi(x) and Fj(x) denotes the cumulative distribution 

Initialization: 

    Dm ε 𝑅𝐼1×…𝐼𝑁, m = 1, 2,.. , M    A set of tensor examples 

   P                                              desired feature vector length 

For p = 1: P 

gp(m) = 𝑫𝒎 xn=1⁡
N  {𝒖𝒑

(𝒏)𝑻
, n⁡ = ⁡1,2, … , N}   calculate the coordinate vector 

If p =1 

     Maximizing Var (𝒈𝟏)    maximizing variance 

    Else 

   Maximizing Var (gp)    maximizing variance 

  Subject to 𝑔𝑃
𝑇𝑔𝑞 ⁡= 0, 𝑞 = 1,2… , 𝑝 − 1   subject to the constraints 

End 

 End 



36 
 

of the images in ith and jth group of no defect and defect induced respectively, then 

hypotheses of the KS test are: 

𝐻0 ∶ ⁡ 𝐹𝑖(𝑥) = ⁡𝐹𝑗(𝑥)⁡⁡or  𝐻0 ∶ ⁡ 𝐹𝑖(𝑥) ≠ ⁡𝐹𝑗(𝑥)                            (3.16) 

The KS test statistics is tested against the corresponding cut-off value given by cα√
𝑛1+𝑛2

𝑛1𝑛2
 , 

where n1 and n2 are the number of independent observations in group of no defect images 

and defect induced images, the significant level of α-value is 0.05 and cα is roughly 

calculated as 1.36. If the KS test statistic is greater than the cut-off value, the null 

hypothesis H0 will be rejected and the cumulative distribution functions of two groups are 

claimed to be different at significant level of 0.05 as exhibited in Figure 3.3:1. Thus, higher 

the magnitude on KS statistics, the more significant the feature is. We will test the statistical 

significance for eleven multifractal parameters for multifractal analysis and ten features of 

UMPCA analysis. 

 

Figure 3.3:1 Illustration of the Kolmogorov–Smirnov statistic 
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CHAPTER 4. CHARACTERIZATION AND MODELING 

OF BUILD DEFECTS 

4.1 4.1 Introduction 

   This chapter details the design of experiments, experimental set-up and simulation of 

defects on AM images for process modeling and characterization of build defects 

4.1.1 4.2 Design of Experiments 

   In our research, we propose novel methods of multifractal analysis and UMPCA to study 

the in-process images of additive manufacturing for process-machine modeling and defect 

characterization. Figure 4.1:1 summarizes the design of experiment used in this study. 

 

Figure 4.1:1 Design and Methodology of the research 

4.1.2 4.2.1 Experimental Set-up 

   In our research, we used the data from the AmericaMakes project carried out at the 

Applied Research Laboratory at Penn State. A powder-based additive manufacturing 

process was planned and executed under a controlled environment. The additive 

manufacturing technique used in the process is a direct metal laser sintering process. The 
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DMLS process allows for complex geometries to be built directly from a 3D CAD model 

without any tooling. The entire manufacturing operation has been carried out inside the 

EOS M 280 Laser Sintering System for DMLS. The camera housing and fixture designs 

were completed and built using the Stratasys Fortus 400. Designs allowed for mounting 

within the EOS M280 build chamber, with electronics. Parts were coated with an epoxy 

layer to prevent outgassing from the high-vacuum environment. Proximity sensors were 

used to sense the motion of the re-coater arm to trigger image acquisition at the appropriate 

time in a non-invasive manner. Figure 4.1:2 shows the several images of the set-up. 

 
Figure 4.1:2 (a) Experimental setup inside the EOS M280, (b) electronics to operate the 

flashes and proximity sensors 

    The test plan of the experiment was to generate intentional defects in the components in 

the number of ways. The defects were developed by varying process parameters (laser 

power, scan velocity), by building geometries that exhibit extreme distortion during the 

build with variety of “supports” applied (e.g. no support, weak support, etc.) and by 

building components near the corners of the build plate, where defects caused by scanning 

inaccuracies have been observed. Images were acquired at each layer using a variety of 

flash locations, both immediately after recoating of powder layers and immediately after 

scanning. Figure 4.1:3 (a) shows the in-process images of the manufacturing bed from the 

(a) (b) 
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experiment from different image sensors. The components build at the end of the additive 

manufacturing process, and the individual variation in parameters for the selected 

components can be seen in Figure 4.1:3 (b). 

 

Figure 4.1:3 (a) In-situ images of machine after recoating and after laser scanning, (b) test 

plan for variation of parameters, and (c) component build by AM 

4.1.3 3D Computerized Tomography 

    From the experiment, a subset of components having a high likelihood of defects was 

selected for 3D digital computerized tomography scan analysis. The 3D CT scan is useful 

for detecting the inter build defects between the layers of the components. The 3D CT scan 

revealed clear evidence of internal defects. An example from the experiment “Sample No. 

(a) 

(b) (c) 
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16 with the scan velocity of +30%” is shown in Figure 4.1:4. Similarly, other components 

were induced with intentional defects with variation in other parameters. 

 

Figure 4.1:4 Computerized tomography of components exhibiting induced defects 

4.2 Transformation of 3D scan images into 2D profiles 

    For our research, we have used the 3D CT scan data of the component and processed 

them in the software Volume Graphic myVGL 3.0 to extract the 2D profiles of the surface 

images of the components. Images were generated through slicing of the component file 

from the top view, and each image has a circular profile with a black background. Actual 

images are a grayscale image with the size of 817 X 812 pixels, with a pixel size of 178.7 

µm. Once the 3D scan components were transformed into 2D image profiles, images with 

visible defects and images without visible defects were separated into two groups. Images 

from both groups can be seen in Figure 4.2:1 (b) and (c). Processed images from the group 

of defects, contained defects of varying size and shape and randomly distributed throughout 
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the surface. The noise in the background of the images was neutralize using bootstrapping 

method. 

 

Figure 4.2:1 (a) 3D CT scan of the AM build component, (b) top view of 2D layer 

without defect, (c) top view of 2D layer with induced defect, and (d) background 

neutralize by bootstrapping method 

4.3 Simulation of Heterogenous Defects  

  Once the images of interest were developed, the process of simulation of different types 

of defect took place. We used software Matlab R2016a for the simulation of various defects 

on the images. We previously mentioned the different types of defect and their shapes 

found in AM processes in Chapter 2 and with the characteristics of real defect induced 

images, we developed the classical defects discovered in the AM processes on the images 

free from defects. We used 120 images for our experiment in which 60 images were control 

images without any defect and 60 images with simulated defects. The defect sizes were 

(a) (b) 

(c) (d) 
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increased over the images by one pixel every time. Images from 60 to 80 were simulated 

with circular pore defects and thereby increasing the pore defect radius by a pixel every 

time. Similarly, images from 80 to 100 were simulated with a crack in which the minor 

axis was increased by a pixel every time.  Images from 100 to 120 were simulated which 

balling defect, a defect with highest variation in pixel values in all defects (0-255) Hence, 

the balling defects were simulated with both black and white pixels. We used software 

Matlab R2016a for the simulation of defects on the images. The stream of images with all 

the defects induced can be seen in Figure 4.3:1. 
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Figure 4.3:1 In-situ stream of 120 images with control (1-60) and pore defect, crack 

defect and balling defect (61-120) 

4.4 Summarization of Data 

   Post simulation operation, we have successfully grouped the images into two groups of 

control (Images 1-60) and defects (Images 61-120). These 120 images are a representation 

of in-situ process modeling of the additive manufacturing process. Our approach of 

multifractal analysis and UMPCA will use these images as input data and will give us 

output in the form of parametric features correlating to the heterogeneity or variation 

Image 20 Image 40 Image 60 

Image 66 Image 73 Image 80 

Image 86 Image 93 Image 100 

Image 106 Image 113 Image 120 
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induced in the images. We use parametric features from both the groups and perform 

parametric analysis to find out if our approach is significant to differentiate the parameters 

relating to two groups of control and defects. Also, we compare results from both methods 

and deduce which approach is significantly better for the process monitoring and fault 

diagnostics in additive manufacturing.   
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CHAPTER 5. RESULTS AND CONCLUSIONS 

5.1 Introduction 

   This chapter outlines the results of the experiment, statistical analysis of parametric 

features and conclusion arising out of the investigation. 

5.2 Multifractal Analysis of In-situ Images 

   The multifractal spectrum of images provides us with features quantifying the defect 

patterns and irregularities encountered in the images via the shape of the f(α)-spectra. The 

120 in-situ images were implemented through the multifractal program developed by Tegy 

J. Vadakkan in the Matlab Central 2009 [53]. The output from the multifractal code is 

displayed in the form of a graph in Figure 5.2:1 (b). Figure 5.2:1 (a) shows the four images 

from the in-situ stream of images used in the research depicting control and different 

defects of pores, cracks and balling. Corresponding multifractal f(α)-spectra of the four 

images is shown in Figure 5.2:1 (b) in different colored markers for differentiation. 

 

(a) 
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Figure 5.2:1 (a).  Four in-situ images with no defect, pores defect, crack defect and 

balling defect (b) multifractal f(α)-spectra of the four in-situ images 

    The multifractal method considers inner variation in an image system by resolving local 

densities (pixel value 0-255) and quantifies them in the shapes of the multifractal spectrum. 

The multifractal spectrum has quantified the differences in four in-situ images by 

considering different defects induced in them. In the f(q)-axis, a comparison is between D0 

and values of f (1) or D1 and f (-1). In the α(q) axis, the difference (αmax- αmin) is used as an 

indication of the heterogeneity of a system. The lowest variation in heterogeneity is the 

image with control quality or no defects. The highest variation can be seen in balling defect 

due to highest deviation of pixels, size and shape of defect. We checked the statistical 

significance for eleven multifractal parameters with dominant features of f(1) or D1, f(-1), 

α(-1), α(1) and α(-1)- α(1), f(-1)- f(1), α(-1)- α(0), α(0)- α(1), f(0)- f(-1), f(0)- f(1) and D0. 

The KS test statistics is tested against the corresponding critical value of 0.25. From the 

Figure 5.2:2 (a), ten out of eleven features have KS statistics greater than 0.25. Moreover, 

all significant features have the KS statistics greater than 0.5. Figure 5.2:2 (b) shows the 

visualization of feature (fmax- fmin) of all the images in the form of a histogram. The values 

(b) 
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of feature (fmax- fmin) from the group of no defect images are marked in blue, and the group 

of defect-based images marked in red. Both plots show distinct differences between the 

group of no defect and defect induced images. The group of images having defects have 

bigger mean and variation than the group of images with no defects.  Figure 5.2:3 (a) and 

(b) show the visualization of significant feature (fmax- fmin) and (αmax- αmin) for all 120 

images. Feature values from the group of defect induced images show distinct pattern 

different from the group of control images and significantly increase when the defect size 

and characteristics increases. It is an indication of the heterogeneity of a system. One 

feature with KS statistics below the cut-off value is the distribution of fractal dimension 

D0. Unlike multifractals parameters, fractal dimension characterizes the average properties 

of images and cannot provide information on deviation from average behavior in the 

system.  

 

Figure 5.2:2 (a).  KS statistics for multifractal parameters (b) The visualization of feature 

(fmax- fmin) in the form of histogram 
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Figure 5.2:3 (a) The visualization of feature (fmax- fmin) for all images (b) The 

visualization of feature (αmax- αmin) for all images 

5.3 UMPCA analysis of In-situ Images 

   Multilinear subspace learning transforms the tensor data of size a x b x M into a matrix 

of uncorrelated features of size p x M [51]. The 120 in-situ images form a multi-

dimensional matrix data representing layer-wise acquired images of in process additive 

manufacturing operation. The input data for the UMPCA program will be tensor data of 

size 817 x 812 x 120 where the size of each image is 817 x 812. This tensor or multi-

dimensional matrix data was implemented through the UMPCA algorithm presented in the 

paper of Uncorrelated Multilinear Principal Component Analysis for Unsupervised 

Multilinear Subspace Learning [39]. We extracted ten uncorrelated features from the 

UMPCA code, so our output data from the algorithm was a matrix of uncorrelated features 

of size 10 x 120. Figure 5.3:1 (a) and (b) shows the variance explained by the UMPCA and 

KS test statistics of 10 features tested against the corresponding critical value of 0.25 

respectively. 
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Figure 5.3:1 (a) Variance explained by the 10 UMPCA features, and (b) KS statistics for 

UMPCA features 

   Of all the features extracted, the first feature explains almost all the variance in the 

multidimensional matrix data of in-situ images shown in Figure 5.3:1(a). In all ten features, 

only second feature has KS statistics greater than cut off value but not far from it. Figure 

5.3:2 shows the visualization of the lone significant feature in the form of histogram. 

 

Figure 5.3:2 Visualization of significant feature extracted through UMPCA 
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5.4 Comparison of Multifractal and UMPCA results 

   In this research, we approach the subject of process modeling and defect characterization 

in additive manufacturing through multifractal and UMPCA approach. Given the results of 

both approach, the multifractal analysis clearly has an advantage in detecting the various 

defects induced in the AM processes. In the eleven features extracted from the multifractal 

spectrum of f (⍺)-spectra, ten features were statistically significant in KS statistics test. In 

contrast, UMPCA approach only provided one significant feature in a total of ten features 

extracted from the tensor data when tested against KS statistics test. The parametric 

features of multifractal analysis easily distinguish the images of defects/discontinuities 

from the control ones. Feature values from the group of defect induced images show 

distinct pattern different from the group of control images and significantly increase as the 

defect size increases.  The features correlating to the defects increases with the change in 

size, shape and spatial arrangement of defects and hence, provides unprecedented 

opportunity in process monitoring and defect detection in AM.  

 

 

 

 

 

 



51 
 

CHAPTER 6. SUMMARY AND FUTURE WORK 

6.1 Introduction 

This chapter describes the summary, contributions of this research in sensor-based, in-situ 

process monitoring of additive manufacturing as well as the direction of future work in this 

area. 

6.2 Summary of thesis research 

   Most of the previous work in additive manufacturing has been limited to 

defect/discontinuities detection, and very few considered the characterization of defects 

with respect to size, shape and spatial arrangement of defects. A wide range of defects are 

produced in AM processes and hence different methods of detection and characterization 

evolved separately considering defects. In this thesis research, we approached the 

shortcomings of additive manufacturing through image-guided methods of multifractal and 

UMPCA analysis. 

6.2.1 Significance of Multifractal Analysis 

   Since the advent of fractal geometry, it has been used extensively to describe the 

complexity of non-linear systems such as ecology, signal and image processing, soil 

mechanics, etc.[25][27][28]. The compelling reasons for using fractal theory in many 

scientific fields are based on the concept that complex systems could be explained using a 

relatively low number of parameters. Compared to classical approaches of image analysis, 

fractal and multifractal analysis are advantageous in the way of handling of irregularities.  
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For our research, Multifractal analysis contributed in following ways: 

 Multifractal analysis of images characterized the different defects induced in the 

AM without the need for any image processing technique. 

 Multifractal approach considered the size, shape and spatial arrangement of the 

defects and fully extracted the irregularities and heterogeneity induced in the 

process.  

 Multifractal f(⍺)-spectra successfully separated the defect and no defect images 

based on the feature parameters.  

 Ten out of eleven features used in the experiment have KS statistics greater than 

the critical value of 0.25, indicating significant differences between no defect and 

defect induced images. Moreover, all significant features have the KS statistics 

greater than 0.5.  

 Feature values from the group of defect induced images show distinct pattern 

different from the group of control images and significantly increase as the defect 

size increases.  This give room for sensitivity analysis in the future. 

This shows that the approach presented works for any defect/irregularity induced in the 

process and provides effective parameters for in-situ fault detection. This methodology can 

help in solving the shortcomings of additive manufacturing and achieving goals of high 

quality and repeatability.  

6.2.2 Limitations in UMPCA approach 

   Input data sets from many process monitoring processes are multi-dimensional in nature 

and can be formally represented using tensor. Uncorrelated Multilinear Principal 
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Component Analysis extracts the principal component features from the multi-dimensional 

image data or tensor that points to the irregularities in the images. Given the in-situ images 

of AM used in this research, UMPCA approach contributed in the following way and 

showed some limitation: 

 UMPCA analysis of images characterized the different defects induced in the AM 

without the need of any image processing technique. 

 UMPCA uses the sequential variance maximization algorithm to provide features 

that describes the variance in the image dataset. 

 UMPCA could not successfully differentiate the group of images with defect from 

group images of control or no defects used in this research. UMPCA approach only 

provided one significant feature in total ten features extracted from the tensor data 

in KS statistics test. The lone significant feature value was not far from KS cut-off 

value. 

 Feature values from the group of induced defect images did not show distinct 

differences from values for the group of control images. 

This shows that UMPCA parametric features were not able resolve the variation in image 

characteristics induced through simulation of defects. This concludes that the UMPCA 

approach is not effective in catching the small deviation or heterogeneity in images 

produced due to defects and irregularities.  

6.3 Research Contribution to Image-Guided Additive Manufacturing 

   Additive manufacturing solves many shortcomings that come with traditional processes, 

but AM has its own complications that need to be addressed for the successful development 
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of additive manufacturing technologies. In order to successfully monitor the quality control 

and fault diagnostics, this research develops and implements a multifractal approach which 

provide data quantifying some of the most important factors in additive manufacturing 

process. Specific contributions are as follows: 

1. Implementation of in-situ image-based methodology: There are different types 

of sensors used in AM processes depending on the application, popular being 

photodiodes and digital cameras. We proposed a method of multifractal analysis 

of in-situ images of AM process acquired through image sensors that can help in 

real-time detection and characterization of defects. Proximity sensors were used 

in the experiment to sense the motion of the re-coater arm to trigger image 

acquisition at the appropriate time in a non-invasive manner. 

2. Correlation of process parameters to defects/discontinuities: The multifractal 

analysis of images provided us with features quantifying the defect patterns and 

irregularities encountered in the images in shape of f(α)-spectra. It considered the 

size, shape and spatial arrangement of the defects. Statistical significance for 

eleven multifractal parameters from f(α)-spectra were analyzed against the KS 

statistics test. Ten out of eleven features used in the experiment had KS statistics 

greater than the critical value of 0.25.  

3. Classification of images in group of the faults and control:  

The multifractal approach presented successfully differentiated the control and 

defect groups indicating that the defects/irregularity induced in the process were 

captured by the multifractal spectra. Feature values from the defect group show 
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distinct patterns from the group of control group and significantly increase in 

value as the defect characteristics of size, shape and pixel variation increases.   

Through this research, we attempted to tackle one of the issues of defect and discontinuities 

in additive manufacturing. Multifractal analysis captures the inner variations in images by 

resolving local densities and expresses them in shapes of the multifractal spectrum. The 

parametric features provided by f(⍺)-spectra successfully distinguishes the images of 

control and defects. 

6.4 Future work in Image-guided Additive Manufacturing 

   Detection of the process failure is critical, and it would be beneficial to detect such failure 

in real-time so correctional technologies can be applied as soon as error and defect arise. 

This would require detection of the characteristics that correlates to the deviation in AM 

systems. For this purpose, in-situ technologies will have utmost importance in coming 

years and image sensors will suffice to meet this urgent need. Sensor methodologies need 

algorithms and methodologies that not only detect but also sufficiently characterizes the 

defects. Multifractal analysis can be one such method which successfully detects the 

smallest deviation in in-situ image characteristics. The next step in future work will be 

differentiating the characteristics of different defects and irregularities from each other. 

Different defects/discontinuities are related to change in different parameters and this work 

will bring higher sophistication and better understanding in dealing with irregularities in 

AM.  
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