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ABSTRACT 

 

Structural-acoustic calculations are most often performed in the frequency-

domain assuming time-harmonic (i.e. steady-state) forcing functions.  While frequency-

domain modeling can be used for most calculations, some problems in engineering and 

acoustics are inherently transient.  In these cases, it becomes important to model the 

response of the structure in the time-domain, a task that can be difficult given existing 

frequency-domain solution infrastructure and certain frequency-domain specific types of 

damping.  The purpose of this thesis is to establish techniques and guidelines for 

frequency-domain analyses by documenting time-domain solution accuracy for 

frequency-domain data transformed using the Fourier Transform.  These guidelines have 

been developed by comparing time-domain solutions that are known to be accurate with 

transformed frequency-domain calculations first for a simple spring mass system, and 

then a more complex system where the finite element method is used to compute the 

response.   

The primary guidelines involve setting frequency range and frequency resolution 

to values that are computationally efficient, yet still produce accurate results once 

transformed into the time-domain.  Frequency range must be set based on the highest 

modal frequency of interest so its waveform is well resolved in the time-domain.   

Frequency resolution is tied directly to the damping of the system.  The sharpest modal 

peak in a frequency-domain response will dictate frequency resolution, which will be set 

to produce accurate time-domain amplitudes.  Computational savings will come mostly 

from limiting the modal frequency analysis range and zero-padding portions of the linear 

spectrum, sacrificing total sample duration in the final time-domain response and 

interpolating rather than directly computing certain parts of the frequency-domain 

response.  These techniques allow for transient problems to be solved using frequency-

domain results without having to create new time-domain specific analysis programs.   
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Chapter 1. INTRODUCTION 

Traditionally, structural-acoustic calculations are performed in the frequency-

domain assuming time-harmonic or steady-state motion.  Finite and boundary element 

methods have been studied extensively for these types of problems.  However many 

important problems in engineering are inherently transient.  For example, a purely 

frequency-domain analysis would be insufficient in modeling the initial startup of a 

rotating piece of machinery, where the spooling up of the rotating pieces in the machine 

excite natural resonances in the structure.  But in general, time-domain calculations are 

less popular and haven’t been developed to the same level of sophistication. 

Boundary element computations, in particular, are almost always formulated in 

the frequency-domain.  In these calculations, complex-valued matrices are generated 

representing transfer functions between the vibrations of the outer surface of a structure 

in contact with the acoustic medium and the resulting sound radiation.  Many physical 

phenomena can be represented this way, but not in the time-domain where the equations 

of motion are written as purely real. An example of this would be a system with 

hysteretic damping, represented using a complex modulus, which has no time-domain 

equivalent.   

While it would certainly be possible to derive transient boundary element 

computations from first principles, it would be much more computationally efficient to 

use existing frequency-domain programs to derive a transient solution.  The main goal of 

this thesis is to explore the possibility of using the Fast Fourier Transform (FFT) to 

produce accurate and efficient transient solutions for structural vibration problems. The 

extension of the results to structural-acoustic problems should be trivial, but is beyond the 

scope of this thesis. 

In dealing with very large models, the time of analysis becomes a primary 

concern.  It is desirable to produce the most accurate solution in the least amount of time.  

Aside from proving that an accurate solution can be obtained, a secondary goal is to 

develop general guidelines for how to choose analysis parameters such as the upper 

analysis frequency and frequency spacing for the frequency-domain calculations, and the 

sample rate and overall analysis time for transient calculations.  These guidelines will be 
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developed by comparing transient solutions calculated using transform techniques with 

analytical or numerical solutions that are known to be accurate.     

Initially, a simple one degree-of-freedom spring mass system will be used as a test 

case to catalog solution accuracy as a function of frequency range and resolution. The 

spring mass system will be modeled and analyzed using Femap w/NX NASTRAN.
1
  The 

system will be modeled with viscous damping for two different values of damping.  One 

value represents a relatively low level of damping and the other represents a relatively 

high level.  Two values were chosen to provide two concurrent sets of data, and are not 

meant to be representative of real-world engineering problems.  The resulting frequency-

domain data will be transformed to the time-domain and then compared to time-domain 

data known to be accurate.  Certain general conclusions will be made based on the 

correlation between the two sets of data. These conclusions will form the basis for a set 

of parameters dictating the fastest and most efficient computational techniques for 

transient acoustic field calculations. The appropriate tradeoff between accuracy and 

computation time for the given method will be highlighted. 

To verify the guidelines developed for the simple spring mass system, the same 

approach utilized for the simple spring mass system will be applied to a more general 

finite element problem of a hinge plate.  Additional guidelines are necessary for this 

problem because it has multiple resonances, each with a different damping level.  The 

results will show that the frequency spacing must be chosen to resolve the sharpest peak 

and the sample rate must be chosen to adequately resolve the highest frequency of 

interest.  Fundamentally, these results are expected.  A cursory examination would lead 

one to believe that transform techniques would be very inefficient due to the frequency 

range required to produce the desired sample rate in the time-domain.  However, it will 

be shown that “zero-padding” and interpolation can be used to reduce the overall 

computation times.   

In general, the basic techniques for transforming between the time- and 

frequency-domains are well known.  However, there are relatively few references 

available on the subject of performing transient numerical calculations using Fourier 

transform techniques.  The book by Nashif et al.
2
 is primarily concerned with damping, 

but it does have a relatively complete discussion of Fourier transform techniques for 



3 

 

single degree of freedom systems.  There have been several recent papers on the subject 

including Martins et al.,
3
 Barkanov et al.,

4
 Akay et al.

5
 and Mehl and Miles.

6
  Also, the 

computer code NASTRAN
1
 by McNeil-Schwindler has the capability to perform 

transient analyses using Fourier transform techniques.  Thus, the general ideas discussed 

in this thesis are not original.  However, none of the references give an exhaustive list of 

guidelines for accurate transient computations, which is the goal of this thesis.  
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Chapter 2. BASICS OF THE ANALYSIS METHOD 
 

Time-Domain Analyses 
 

In order to determine the accuracy of a frequency-domain solution transformed 

into the time-domain, it is necessary to have an accurate time-domain solution to which 

the transformed solution can be compared.  The finite element analysis program 

NASTRAN can be used to produce accurate time-domain solutions with its “direct 

transient” solution sequence for general problems.  The method used is implicit and is 

similar to the Newmark Method as described by Bathe.
7
  According to Blakey,

8
 the 

structural response is computed by solving a coupled set of equations using direct 

numerical integration.  The structural response is solved at discrete times, the velocity 

and acceleration are represented using a central finite difference, and the applied force is 

averaged over three adjacent time points.  The solution behaves like a succession of static 

solutions with each time step performing a forward-backward substitution on a new load 

vector.  To test the accuracy of NASTRAN’s solver, a simple one degree-of-freedom 

spring mass system can be solved analytically for the time-domain response.  Then, the 

same one degree-of-freedom spring mass system can be modeled and solved using Femap 

w/NX NASTRAN.  If these two solutions match, a conclusion can be made about 

whether or not NASTRAN’s “direct transient” solver produces an accurate time-domain 

solution for comparison purposes.   

 The first step in making a comparison is to generate an analytical time-domain 

solution for a simple one degree-of-freedom spring mass system where a force F is 

applied to the mass.  The equation needed to do this is described by Nashif et al:
2 

 

𝑤(𝑡)

𝐹
=  

1

𝜋
 

[ 𝑘−𝑚𝜔2 𝑐𝑜𝑠 𝜔𝑡+𝑘𝜂 𝑠𝑖𝑛 𝜔𝑡 ]

(𝑘−𝑚𝜔2)2+(𝑘𝜂 )2
𝑑𝜔

∞

0
 ,                 Eq. (2.1) 

       

where k is spring stiffness, m is mass, t is time, η is loss factor, ω is the natural frequency 

and variable of integration and w(t) is the displacement of the mass.  Because viscous 

damping will be specified, it would also be possible to write the solution in analytical 

form.  However, the solution derived using Fourier transform techniques is used instead 

to keep the same format as in the discussion given by Nashif et al.
2
  If this integration is 
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performed for a number of values of t, the result is the time-domain response of the 

spring mass system to a perfect unit impulse.  In the real world, such an impulse could be 

generated by striking the system at a selected point with a hammer.   

 For the purpose of demonstration, Equation 2.1 is solved using Matlab’s
9
 quad 

command for a case with viscous damping where the spring stiffness k is constant with 

frequency and η increases linearly with frequency.  Matlab loops over a range of t and the 

other variables are set as follows: 

 

k = 2910 N/m 

m = 0.0073711 kg 

η = (2.28*10
-4

)*ω 

∞ = 10
5
 (need a value here so Matlab can perform the integration numerically) 

 

The loss factor η is set to match the parameters of an analytical solution presented 

in Nashif et al.
2
  Again, it would be possible to specify a viscous damping coefficient 

directly, but loss factors are specified instead to maintain the same format as Nashif et 

al.
2
  The spring value k and the mass value m selected set the modal frequency f of the 

system to a convenient and straightforward value of 100 Hz, 

 

                          𝑓 =
1

2𝜋
 

𝑘

𝑚
  .                                                 Eq. (2.2) 

 
 

The response of the system calculated by Matlab is displayed in Figure 2.1: 

 

 
 

Figure 2.1.  The first 0.04 seconds of the analytical solution for the damped spring mass system as 

calculated by Matlab. 
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The next step in the process is to model the spring mass system in Femap.  The 

system can be modeled with two nodes, connected by a spring.  The node on the left is 

fully fixed in all translational and rotational directions.  The node on the right represents a 

mass property and is fixed in all directions except for the translational x-axis. 

 

 
 

Figure 2.2.  Femap model of the spring mass system, a fixed point and a mass connected by a spring 

property. 

 

To analyze this model in the time-domain, we need to apply a time-domain 

impulse forcing function to the mass in the x direction.  Unfortunately Femap doesn’t 

allow us to create a perfect impulse and apply it to the system.  Instead, an impulse will 

be constructed that starts at a value of zero, rises to a value of one, and returns to a value 

of zero fast enough that it represents a pure impulse without creating a visible starting 

transient or “ramp-up” on a plot of the time-domain solution.  The values used to create 

this impulse are shown in Figure 2.3. 

 

 
 

Figure 2.3.  Graphical representation of the time-domain forcing function used in Femap. 
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It is also important to set the variables in Femap to match those used in the 

analytical solution.  The mass property for the node on the right is set to m = 0.0073711 

kg, and the spring property connecting the two nodes is set to k = 2910 N/m.  As 

described in Blakely,
8
 for Femap’s “direct transient” analysis, the only damping 

condition available is viscous damping where the resulting forces are proportional to 

velocity.  Most real world applications have damping more closely characterized as 

hysteretic, where the damping forces are proportional to displacement and are typically 

modeled using a complex stiffness as discussed by Nashif et al.
2
  However, since the key 

to verifying the validity of the guidelines presented in this thesis rests on comparing 

transformed frequency-domain data to accurate time-domain data, a real-valued viscous 

damping condition must be used for all example analyses.  The example viscous damping 

condition is created by assigning values for two parameters, “equivalent viscous 

damping” and “frequency for system damping.”  Based on the values input, Femap 

creates a damping function that starts at zero and grows linearly up to the “equivalent 

viscous damping” value set at the “frequency for system damping.”  In other words, a 

viscous damping condition is created that passes through the specified damping value for 

a specified frequency.  To make sure the modal frequency of 100 Hz is captured, the 

frequency for system damping is set to 200 Hz and the damping η at this point is 

calculated based on: 

 

𝜂 = 2.28 ∗ 10−4 ∗ 2𝜋𝑓 ,                                   Eq. (2.3) 

 

as introduced earlier on page 4 as a frequency dependent viscous damping condition.  

This process ensures that the damping at 100 Hz matches the damping for the analytical 

solution.  Using Equation 2.3, the result is η = 0.2865 at 200 Hz, and this value is input as 

“equivalent viscous damping” in Femap.  According to the viscous damping condition, 

this sets the damping to η = 0.14325 at our 100 Hz frequency of interest. 

 Since this is a very simple system, it allows us to produce a very accurate and 

well resolved time-domain solution in a very short amount of time using Femap’s “direct 

transient” solver.  The sample frequency for this time domain analysis is 10,000 Hz, so 

the response or physical displacement of the system to the impulse is being sampled 
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every 0.0001 second, for 1500 samples.  The response is plotted in Figure 2.4, and the 

NASTRAN input deck for this analysis is located in Appendix C. 

 

 
 
Figure 2.4.  Femap time-domain analysis of spring mass system previously calculated analytically in Figure 

2.1. 

 

Figure 2.5 shows, a comparison between the analytical solution and NASTRAN’s 

“direct transient” solution: 

 

 
 

Figure 2.5.  Comparison plot of the analytical response to the Femap response of the same system. 

 

A visual inspection of Figure 2.5 indicates that NASTRAN’s “direct transient” 

solver produces a very acceptable time-domain solution for the simple spring mass 
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system response to an impulse.  Any differences can most likely be attributed to Matlab’s 

finite approximation for the infinite upper limit of the integral.  This is a good indication 

that for more complicated systems, NASTRAN’s “direct transient” solution can be 

trusted as an accurate solution for which transformed frequency-domain data can be 

compared. 

 

Frequency-Domain Analyses 

The frequency-domain analyses performed using Femap w/NX NASTRAN 

produce the data to be transformed to the time-domain.  Continuing on with the example 

of the spring mass system with a resonance at 100 Hz, the first step is again to set the 

physical properties of the system.  The mass property of the node on the right is set to m 

= 0.0073711 kg, and the spring property connecting the two nodes is set to k = 2910 N/m.  

For NASTRAN’s “modal frequency” solver, the damping is set using a “modal damping 

table,” where a “structural damping” function must be specified.  To match the viscous 

damping specified for the previous time-domain example analysis, the damping function 

is formed point by point and is shown in Figure 2.6.  Again, the damping value at our 100 

Hz frequency of interest is η = 0.14325. 

 

 
 

Figure 2.6.  Viscous damping function for Femap frequency-domain analysis of a spring mass system. 

 

Applying an impulsive force to the system in the frequency-domain is actually 

quite simple.  Since a pure impulse transformed into the frequency-domain is a consistent 

flat response across all frequencies, we need to simply create a frequency forcing 
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function to match this.  To capture the 100 Hz modal frequency of interest, the system 

will be forced with a flat frequency response force of 1 N from 0 Hz to 200 Hz, as 

illustrated in Figure 2.7. 

 

 
 

Figure 2.7.  Forcing function for Femap frequency-domain analysis of a spring mass system. 

 

Once the physical system properties are selected and the forcing function is 

established, one can proceed with NASTRAN’s “modal frequency” analysis.  The two 

parameters that are specified as part of this analysis are frequency range and frequency 

resolution.  Frequency range is how high the frequency analysis will go, and the 

frequency resolution is how often along the frequency axis the response is sampled.  

Setting these two parameters is very important since the lower they are set, the faster the 

computation will be.   

 The data from the modal frequency response analysis is complex-valued.  It’s 

important to note that this analysis cannot produce values at zero frequency, so these 

values must be interpolated and set before manipulating the data. 

 

Preparing the Data for Comparative Analysis 

Unfortunately, the raw data exported from Femap isn’t scaled for a unit impulse.  

Similar to a Dirac Delta function, the amplitude of the impulse is related to the area under 

a curve of input force versus time.  Figure 2.3 is repeated as Figure 2.8 for convenience: 
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Figure 2.8.  Graphical representation of the time-domain forcing function used in Femap. 

 

In Figure 2.8, which is a plot of the time-domain forcing function, the area under 

the curve equals 0.00002 Ns.  Therefore, it is necessary to multiply the time-domain 

response data by 0.00002
-1

, or 50,000 to accurately represent the response of the system 

to a unit impulse. 

 For the frequency-domain, the real and imaginary components for each frequency 

point must be combined together into a complex number, that is: real + i*imaginary.  

Then, in order to form a full linear spectrum that goes from 0 Hz to the sample frequency 

fs in the time-domain after transformation, one must take all of the complex points 

excluding the zero frequency point and the fs/2 frequency point, mirror them about the x-

axis, take the complex conjugate and tag the new series onto the end of the original 

series.  This process is illustrated by Gabrielson
10

 and is displayed in Figure 2.9. 
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Figure 2.9.  Graphical representation of taking the complex conjugate of frequency data, mirroring it across 

the x-axis, and then tagging the new series onto the end of the original data series, thus forming the full 

linear spectrum. 

 

In addition, the zero and fs/2 frequency points must be completely real, so the 

imaginary component of those points are forced to be zero.  This produces a time-domain 

signal that is entirely real.   

 The linear spectrum is now ready to be transformed.  The inverse Fourier 

transform (ifft command in Matlab) of the full spectrum is taken.  The result should be a 

completely real time-domain representation, but will often include a small residual 

imaginary component (~ 1 x 10
-11

) which can be ignored.  According to Matlab’s help 

files, the Matlab ifft command includes a factor that divides the set of data by the number 

of data points, (1/N):
9
   

 

𝑥 𝑗 =  
1

𝑁
  𝑋(𝑘)𝜔𝑁

− 𝑗−1 (𝑘−1)𝑁
𝑘=1 .              Eq. (2.4) 

 

So, the transformed data must be multiplied by the number of data points N.  

Lastly, to complete the data preparation, the inverse Discrete Fourier Transform as 
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described by Gabrielson
10

 requires that the data must also be multiplied by ∆f, or the 

frequency resolution selected in Femap:  

 

𝑥𝑛 =  𝑋𝑚𝑒 𝑗2𝜋
𝑛𝑚

𝑁 (∆𝑓)𝑁−1
𝑚=0  .                        Eq. (2.5) 

 

Once all of those conditions are met, the transformed frequency data is ready to be 

compared to time-domain data obtained using NASTRAN’s “direct transient” solution 

sequence. 

Before beginning to analyze actual problems, a brief discussion will be given of a 

somewhat unexpected difficulty that can occur if the system damping is not physically-

realizable.  In a real system, the damping must go to zero at zero frequency.  However, it 

is possible to violate this requirement in a numerical calculation, especially when the 

damping is represented as being hysteretic.  For example, it is common to assume the 

damping is proportional to stiffness and constant with frequency.  In this situation, the 

computations may exhibit a non-causal response, such that the system will be displaced 

before an impulse is applied.  This effect is documented by Nashif et al.
2 

 In general, this 

difficulty does not occur unless the damping is relatively large, so a non-causal response 

is unlikely for practical problems with realistic damping levels.   
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Chapter 3. SPRING MASS SYSTEM ANALYSIS 
 

One of the primary parameters for a structural vibration problem is the upper 

frequency for the frequency-domain analyses.  For example, a frequency-domain analysis 

in Femap including frequencies up to 500 Hz will fill out to 1000 Hz after the real and 

imaginary Femap output vectors are manipulated to include the full linear spectrum.  That 

is, the frequency-domain representation of the response will include frequencies up to 

1000 Hz.  This frequency range of 1000 Hz translates to the sample frequency fs in the 

time-domain after an inverse Fourier transformation.  So in this example, once the 

frequency data is transformed to the time-domain, the ∆t, or time spacing between points 

would be 0.001 second, or the inverse of the sample frequency fs. 

 This frequency range parameter is very important because it determines the 

number of points per wavelength once the data is transformed to the time-domain.  The 

frequency range must be selected so there are enough points to accurately display the 

time-domain waveform, but not so many points such that the level of detail is 

unnecessary.  The Figures 3.1, 3.2 and 3.3 illustrate the effect of varying the frequency 

range, and have frequency ranges of 1000 Hz, 2000 Hz, and 1600 Hz respectively.   

 

 
 

Figure 3.1.  Transformed frequency-domain representation with 1000 Hz frequency range and modal 

frequency of 100 Hz, compared to Femap time-domain representation. 
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Figure 3.2.  Transformed frequency-domain representation with 2000 Hz frequency range and modal 

frequency of 100 Hz, compared to Femap time-domain representation. 

 

 
 

Figure 3.3.  Transformed frequency-domain representation with 1600 Hz frequency range and modal 

frequency of 100 Hz, compared to Femap time-domain representation. 
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Figure 3.1 displays a frequency range that corresponds to 10 time steps per 

wavelength.  It’s clear that the amplitude is clipped and the transformed data is not a very 

accurate representation of the time-domain response.  Figure 3.2 displays a frequency 

range that corresponds to 20 time steps per wavelength.  The correlation between the two 

curves is very good, but the peaks are a little more resolved than necessary, leading to 

extra computation time.  Figure 3.3 displays a frequency range that corresponds to 16 

time steps per wavelength.  This selection seems to be a fairly good compromise between 

the 10 and 20 point plots, with the even number of 16 being chosen because as an even 

number, 16 points can be spread evenly between the positive and negative halves of the 

waveform.  

Of course, the overall accuracy looks different depending on the frequency range 

shown in the plot.  Narrowing the frequency range tends to highlight differences between 

the curves.  Roughly 16 time steps per wavelength seems to be a fairly good compromise 

between computation time and accuracy at reasonable zoom levels.  Four points per 

quarter-wavelength should be enough in most cases to form the roughly semi-circular-

shaped function.  The validity of this compromise however is almost purely a matter of 

interpretation, as different projects may warrant different accuracy based on the scope 

and goals of the project.  This 16 time steps per wavelength rule should therefore be 

treated more as a suggestive guideline rather than a hard rule. 

Aside from frequency range, frequency resolution is another important parameter 

that can be altered to change the computation time in a frequency-domain analysis.  

Frequency resolution refers to the spacing in Hz between sample points in the frequency-

domain.  Obviously, the smaller the spacing, the more accurate the representation of the 

true frequency curve, but the greater the computation time.   

In the best case scenario, the mode or modes of the system would fall directly at 

frequencies that are being sampled.  For example, if the frequency resolution is 10 Hz 

and the modal frequency is 100 Hz, the peak of the mode will fall directly on a sample 

point.  This scenario gives the best chance of producing an accurate time domain 

representation.  However, in most systems, it is unlikely that all the modes will fall 

directly on sample points.  The peak values will end up being at some degree between the 

sample points, with a worst case scenario of the mode falling directly in between two 



17 

 

sample points.  Considering the 10 Hz frequency resolution example again, if the mode of 

the system ends up being 95 Hz instead of 100 Hz, the peak amplitude of the mode will 

fall directly in between the sample points at 90 Hz and 100 Hz.  In this scenario, as 

opposed to the on-bin scenario, for the same frequency resolution, there is less of a 

chance that the time-domain data will reflect the true amplitude of the response. 

   The on-bin and off-bin scenarios actually produce two opposing amplitude 

results as frequency resolution degrades.  As the spacing between sample frequencies 

increases, the off-bin case produces amplitudes too low in the time-domain since the peak 

amplitude of the mode in the frequency-domain is cut off.  At the frequency resolution 

where this amplitude decrease starts to occur, an on-bin scenario will often still produce a 

good result.  But as frequency spacing increases, the on-bin case starts to produce 

amplitudes that are too high since the peak amplitude is captured in the frequency-

domain, but the sides of the peak start to broaden out and produce higher overall 

amplitudes across the frequency band near the resonance.   

Therefore, an on-bin mode will generally produce better results than an off-bin 

mode, but since large models will usually have many resonance frequencies, the analysis 

of an unknown system should be planned according to the worst case scenario.  The safe 

assumption is that every mode will fall exactly in between two frequency sample points.  

The selection of frequency resolution according to this plan will ensure an accurate time-

domain response is computed.   

The method that will be tested for selecting an appropriate frequency resolution 

involves the modal frequency f of the system, the frequency resolution ∆f, and the loss 

factor η.  The amount of damping at a particular frequency determines the width of that 

frequency peak in a frequency-domain representation.  Therefore, the selected frequency 

resolution must depend on the modal frequency and the damping.  Generally speaking, in 

order to get a somewhat accurate time-domain representation of the response, it’s good 

practice to adhere to the following rule: 

 

∆𝑓 < 𝜂 ∗ 𝑓 ,                                                  Eq. (3.1) 

 



18 

 

where the frequency resolution selected should be less than the product of the modal 

frequency and the damping at that frequency.  A response curve is a quadratic function 

near its peak, and three points are required to define a quadratic function.  When the peak 

is sampled at its maximum value, the neighboring samples are at the 3 dB down points if 

∆f = 0.5η*f.  The results presented in Figures 3.4 – 3.9 will show that it is permissible to 

relax this requirement slightly and follow Equation 3.1 instead.  The relationship 

proposed in Equation 3.1 will be tested using three separate plots for two different 

damping values. The first plots shown in Figures 3.4 and 3.7 display scenarios where the 

frequency resolution is much less than the product of the modal frequency and the 

damping.  The middle plots shown in Figures 3.5 and 3.8 display scenarios where the 

frequency resolution and the product of the modal frequency and the damping are nearly 

equal.  The final plots shown in Figures 3.6 and 3.9 display scenarios where the 

frequency resolution is much greater than the product of the modal frequency and 

damping.  All plots have a frequency range of 1600 Hz, so that there are roughly 16 

points per wavelength for each plot. 

 

Figures 3.4-3.6 show plots for viscous damping = 0.2865 at 200 Hz. 

 

 
 

Figure 3.4.  Transformed frequency-domain representation with 95 Hz modal frequency, 1600 Hz 

frequency range and 10 Hz frequency resolution, compared to Femap time-domain representation. 
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Figure 3.5.  Transformed frequency-domain representation with 96.3 Hz modal frequency, 1600 Hz 

frequency range and 14.8 Hz frequency resolution, compared to Femap time-domain representation. 

 

 
 

Figure 3.6.  Transformed frequency-domain representation with 90 Hz modal frequency, 1600 Hz 

frequency range and 20 Hz frequency resolution, compared to Femap time-domain representation. 

 

 



20 

 

In Figure 3.4, ∆f = 10 Hz and η*f = 12.93.  Since ∆f is less than η*f, the two 

curves match up very well.  In Figure 3.5, ∆f = 14.8 Hz and η*f = 13.29.  Since ∆f is 

slightly larger than η*f, the amplitude of the transformed data is starting to fall in relation 

to Femap’s time-domain data.  In Figure 3.6, ∆f = 20 and η*f = 11.6.  Since ∆f is well 

above η*f, the two curves are clearly very different. 

 

Figures 3.7-3.9 show plots for viscous damping = 0.12 at 200 Hz. 
 

 
 

Figure 3.7.  Transformed frequency-domain representation with 98.75 Hz modal frequency, 1600 Hz 

frequency range and 2.5 Hz frequency resolution, compared to Femap time-domain representation. 
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Figure 3.8.  Transformed frequency-domain representation with 97.5 Hz modal frequency, 1600 Hz 

frequency range and 5 Hz frequency resolution, compared to Femap time-domain representation. 

 

 
 

Figure 3.9.  Transformed frequency-domain representation with 95 Hz modal frequency, 1600 Hz 

frequency range and 10 Hz frequency resolution, compared to Femap time-domain representation. 
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In Figure 3.7, ∆f = 2.5 Hz and η*f = 5.85.  Since ∆f is less than η*f, the two curves 

match up very well.  In Figure 3.8, ∆f = 5 Hz and η*f = 5.7.  Since ∆f has started to creep 

towards η*f, the amplitude of the transformed data is starting to fall in relation to 

Femap’s time-domain data.  In Figure 3.9, ∆f = 10 and η*f = 5.42.  Since ∆f is well above 

η*f, the two curves are clearly very different. 

As a caveat to the above results, it is very important to be aware that frequency 

resolution ∆f in the frequency-domain determines the overall length of the resulting time-

domain waveform once it is transformed.  For example, if a linear spectrum is sampled at 

∆f = 5 Hz, the resulting time-domain waveform will be 0.2 seconds long, or 1/5 of a 

second.  It may be that the system is damped at such a level that the response falls to a 

marginal level before 0.2 seconds.  But, if the system is not damped very much, a 

frequency resolution of 5 Hz in the frequency-domain may not be fine enough to capture 

the entire useful length of the time-domain response.  Thus, it is important to keep in 

mind that trying to be too computationally streamlined with a large frequency resolution 

may result in lost data at the end of a time series.  This issue is further discussed in 

Chapter 5. 

The above results clearly show that adhering to the ∆f  <  η*f rule can serve as a 

solid general guideline for these kinds of analyses.  The point at which the two sides of 

this equation are equal does seem to be where serious degradation in amplitude of the 

time-domain response starts to take place.  However, the degree of acceptable 

degradation is again subject to interpretation and varies depending on the scope and goals 

of individual projects.  But, this relationship does serve as a reasonable starting point for 

selecting a frequency resolution that will yield an accurate result, but is still 

computationally efficient. 

 Now that this method has been tested on the simple one degree-of-freedom mass 

spring system, it can certainly be applied to larger system models which may contain 

many modes and interesting damping conditions across the frequency spectrum.  From 

the results collected from our analysis of the simple spring mass system, it follows that 

the frequency range must be selected based on the highest mode of interest.  For example, 

if there are three modes at 10 Hz, 50 Hz, and 100 Hz, the frequency range must be 

selected based on the 100 Hz mode.  Selecting the frequency range to be 160 Hz will 
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allow the 10 Hz contribution to the time-domain response to have 16 points per 

wavelength, but the 100 Hz contribution will only have 1.6 points per wavelength, which 

is insufficient.  Therefore, the frequency range must be selected based on the highest 

resonance frequency so that the contribution from that mode to the time-domain response 

is clearly and accurately resolved.  And of course, the lower modes will be easily 

resolved by this high frequency range selection.   

For large models with many modes, the frequency resolution selection will be 

determined by the damping of the system.  If the system is viscously damped, where 

viscous damping effects on displacement increase linearly with frequency, the value of 

η*f will increase as the modal frequencies increase and it is suggested that the frequency 

resolution must be selected to be less than the η*f value of the lowest mode.  The same 

rules apply when the damping is modeled as being hysteretic rather than viscous.  If we 

have a constant damping value of η = 0.15, and there are modes at 50 Hz and 100 Hz, the 

width of the peak at 50 Hz will be smaller than the width of the peak at 100 Hz.  So 

again, frequency resolution would be selected to be less than the f*η value for the lowest 

frequency mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

Chapter 4. ANALYSES FOR FINITE ELEMENT 

MODELS 
 

Now that a general guidelines have been established based on a simple one 

degree-of-freedom spring mass system, the analysis will be extended to a more complex 

structure.  The goal is to ensure the results from the simple one degree-of-freedom spring 

mass system apply to more complex structures, as well as exposing any other issues that 

may arise when analyzing a structure with more than one mode. 

The structure chosen for the analysis is one of the example finite element models 

provided in the Femap software package.  This particular structure was chosen because it 

contains multiple modes, but is still small enough that computation times are reasonable 

given limited available computational resources.  The structure is described as a “hinge 

plate” made of ¼” thick AISI 4340 Steel, and has been modeled as 288 nodes with 240 

elements, as illustrated in Figure 4.1.  The nodes around the edge of the hole in the upper 

left portion of the hinge are constrained in all translational and rotational directions, while 

the rest of the nodes are free to move in all translational and rotational directions. 

 

 
 

Figure 4.1.  Femap “hinge plate” model, broken into 288 nodes with 240 elements. 
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The first step is to perform a NASTRAN “normal modes/eigenvalue” analysis.  

The resonance frequencies extracted from this analysis will then dictate the time-domain 

and frequency-domain analysis parameters.  The resonance frequencies for the hinge 

plate are listed in Table 4.1. 

 
Table 4.1.  Display of the 1

st
 10 modes of vibration for the hinge model. 

 

Mode Number Frequency [Hz] 

1 89.82 

2 243.53 

3 568.16 

4 665.34 

5 1012.37 

6 1529.47 

7 1986.73 

8 2095.91 

9 2102.15 

10 2770.99 

 

The subsequent analysis will focus on the 89.82 Hz, 243.53 Hz and 568.16 Hz 

modes to simplify the analysis and shorten computation times, yet it will still effectively 

highlight the intricacies involved with these types of analyses.  Figure 4.2 displays the 

mode shapes of the hinge for the first three modes. 
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Figure 4.2.  Deformed and contoured representations of the mode shapes for the first three modes of 

vibration of the hinge plate. 
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 As with the simple one degree-of-freedom spring mass system, it is necessary to 

first perform a time-domain analysis as a basis of comparison.  Based on the lessons 

learned from the spring mass system, about 16 points per wavelength are needed to 

accurately represent a waveform for the highest mode of interest. To accurately represent 

568.16 Hz, the time spacing must be at least ∆t = 0.00011 second.  To reduce any effects 

of a start-up transient due to the forcing function, ∆t in Femap is selected to be 0.000025 

second.  However, the output interval for the data will only be 4.  That is, only every 

fourth data point will be output.  Therefore, the real ∆t is 0.0001 second, which still falls 

within the ∆t < 0.00011 second limitation imposed by the highest mode of interest.  The 

resulting impulse forcing function for the structure is shown graphically in Figure 4.3. 

 

 
 

Figure 4.3.  Representation of the time-domain forcing function for the hinge plate. 

 

This forcing function will be applied at node 44 on the hinge plate model in the 

positive translational z-direction, which is normal to the plate surface.  Node 44 is located 

at the bottom right corner of the hinge plate, as illustrated in Figure 4.4. 
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Figure 4.4.  Hinge plate model shown with constraints around the hole and forcing function at node 44. 

 

The final two parameters to set are the damping and the total length of the time 

record.  The damping is assumed to be viscous, and is set to η = 0.05 at 600 Hz.  The total 

length of the sample is important because the total length in the time-domain is 

equivalent to the frequency resolution ∆f in the frequency-domain.  A longer time sample 

equates to a finer frequency resolution.  Having a longer time sample is useful since 

comparisons need to be made between the time-domain data and the frequency-domain 

data in the frequency-domain.  This longer time sample will provide a more accurate 

answer when the data is transformed to the frequency-domain.  The time analysis is taken 

to be 5 seconds long, which yields a frequency resolution of 0.2 Hz in the frequency-

domain.   

 The system is now solved using NASTRAN’s “direct transient” solver.  The 

resulting time-domain output has 50,000 points with ∆t = 0.0001 second, for a total 

duration of 5 seconds.  This output is displayed in Figure 4.5. 
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Figure 4.5.  Full time-domain response of hinge plate. 

 

When this time-domain result is transformed into the frequency-domain using the 

Fourier transform, the first three modes are clearly present, as well as the fact that with 

viscous damping, the peaks widen out as frequency increases.  This is an important point 

to illustrate since in the frequency-domain analyses, ∆f must be selected based on the 

sharpest peak.  The resulting frequency-domain spectrum is shown in Figure 4.6. 

 

 
 

Figure 4.6.  Frequency-domain representation of hinge plate time-domain results. 
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Zooming in on Figure 4.4, the next three plots display portions of the time-

domain data associated with the first three modes of the hinge.  The response in Figure 

4.7 is dominated by the 89.82 Hz frequency which makes up the bulk of the time-domain 

plot.  Over the range shown in Figure 4.8, the second mode at 243.53 Hz dominates the 

response.  Figure 4.9 is the most important and shows the data heavily influenced by the 

third 568.16 Hz mode.  Even at this high frequency, the 568.16 Hz waveform is still 

represented by about 16 points per wavelength, and can serve as a clean comparison for 

the transformed frequency-domain results.  

 

 
 

Figure 4.7.  Time-domain representation of hinge plate solution highlighting the first mode, where the 

period T = 0.0111 second, whose reciprocal equals 89.82 Hz. 
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Figure 4.8.  Time-domain representation of hinge plate solution highlighting the second mode, where the 

period T = 0.004 second, whose reciprocal equals 243.53 Hz. 

 

 
 

Figure 4.9.  Time-domain representation of hinge plate solution highlighting the third mode, where the 

period T = 0.00176 second, whose reciprocal equals 568.16 Hz. 

 

Similar to the simple spring mass system, comparisons will be made between the 

time-domain data found above, and transformed frequency-domain data computed using 

NASTRAN’s “modal frequency” solver.  To make a direct comparison, the forcing 

function and damping conditions are taken to be the same for the frequency-domain 
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analyses as they were for the time-domain analysis.  For the time-domain analysis, the 

viscous damping condition was set to η = 0.05 at 600 Hz.  For the frequency-domain 

analyses, a damping function must be created that is equivalent to the time-domain 

damping.  Table 4.2 contains the values selected to represent viscous damping in the 

system. 

 
Table 4.2.  Values representing the viscous damping function for the frequency-domain analyses of the 

hinge plate. 

 

Frequency [Hz] Loss Factor η 

0 0 

600 0.05 

2000 0.16666 

 

Since we are only interested in the first three modes of the hinge plate, it is 

necessary to extend the damping function up to a much higher frequency than the final 

mode of interest.  This ensures that the higher modes we aren’t interested in will be 

sufficiently damped by the viscous damping condition.  Figure 4.10 is a graphical 

representation of the viscous damping function. 

 

 
 
Figure 4.10.  Graphical representation of the viscous damping function for the frequency-domain analysis 

of the hinge plate. 

 

The forcing function for the hinge plate is very similar to the forcing function for 

the simple spring mass system.  To capture the three modal frequencies of interest, the 

system is forced with a flat frequency response force of 1 N from 0 Hz to 600 Hz, as 
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shown in Figure 4.11.  As with the time-domain analysis, the system is forced at node 44 

in the lower right hand corner of the hinge plate.  Node 44 is also where the displacement 

of the system is sampled. 

 

 
 

Figure 4.11.  Forcing function for the frequency-domain analysis of the hinge plate. 

 

Since the frequency range in the frequency-domain determines the sample rate ∆t 

in the time-domain, it is important to choose the upper frequency appropriately so the 

highest mode of interest is accurately represented after transformation to the time-

domain.  The highest mode of interest is 568.16 Hz.  Since we determined earlier that 16 

points per wavelength is an appropriate number of points to accurately represent a 

waveform, multiplying 568.16 Hz by 16 will result in the frequency range for the 

frequency-domain analyses.  This multiplication gives a result of about 9000, so the 

frequency range of all further frequency-domain analyses will be 9000 Hz, which sets the 

actual upper frequency for the NASTRAN analysis to 4500 Hz.  The complex conjugate 

of the NASTRAN output is then reflected across the y-axis to produce the full linear 

spectrum as described in Chapter 2. 

As displayed previously in Figure 4.6, the mode with the sharpest peak is the first 

mode at 89.82 Hz.  Since ∆f for frequency-domain analyses should be set by the sharpest 

peak, its value must be calculated at this point.  For the first mode, f = 89.82 Hz, and 

since η = 0.05 at 600 Hz, η = 0.0075 at 89.82 Hz.  So given the equation ∆f < η*f, 

multiplying η and f results in a value of ∆f = 0.67 Hz.  Based on the results of the spring 
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mass system from Chapter 3, it is expected that the amplitude of the transformed 

frequency-domain data will begin to decrease near the point where ∆f = 0.5(0.67) Hz for 

a frequency-domain analysis.    

Given this information, three frequency-domain analyses are performed that show 

the breakdown in the overall amplitude of the time-domain waveforms for an increasing 

∆f.  The parameters for the first analysis are ∆f = 0.2 Hz with a frequency range of 9000 

Hz.  Figure 4.12 shows a portion of this first analysis, transformed into the time-domain 

using the ifft command in Matlab, compared to the original “direct transient” time-

domain results. 

 

 
 
Figure 4.12.  Transformed frequency-domain representation with ∆f = 0.2 Hz and frequency range = 9000 

Hz, compared to Femap time-domain representation. 

 

Figure 4.12 shows the two curves to be nearly identical.  The parameters for the 

second analysis are ∆f = 0.6666 Hz with a frequency range of 9000 Hz.  This ∆f value is 

very close to the ∆f value of 0.67 Hz specified by the ∆f < η*f equation. 
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Figure 4.13.  Transformed frequency-domain representation with ∆f = 0.6666 Hz and frequency range = 

9000 Hz, compared to Femap time-domain representation. 

 

The upper limit for the time has been reduced in Figure 4.13 to highlight the fact 

that the amplitude of the transformed frequency-domain curve starts to decrease in 

relation to the time-domain curve.  The parameters for the third analysis, shown in figure 

4.13, are ∆f = 1.3333 Hz with a frequency range of 9000 Hz.  Since this ∆f value is well 

above ∆f = 0.67, a severe degradation of the amplitude is clearly visible. 

 

 
 

Figure 4.14.  Transformed frequency-domain representation with ∆f = 1.3333 Hz and frequency range = 

9000 Hz, compared to Femap time-domain representation. 
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For Figures 4.12, 4.13 and 4.14, the response is dominated by the first mode at 

89.82 Hz.  But even as ∆f is increased from 0.2 Hz to 1.3333 Hz, the amplitudes of the 

higher mode components of the waveform are not affected.  This fact is certainly not 

obvious in the time-domain, so it will be demonstrated in the frequency-domain by 

transforming NASTRAN’s “direct transient” time output into the frequency-domain 

using Matlab’s fft command.  Figure 4.15 compares the transformed time-domain 

solution, and the ∆f = 0.6666 Hz frequency-domain solution for the first three modes of 

the hinge plate.  As expected, the two curves resemble each other very closely.   

 

 
 

Figure 4.15.  Frequency-domain comparison between frequency-domain data at ∆f = 0.6666 Hz and 

transformed time-domain data. 

 

Figure 4.16 contains the same two curves as Figure 4.15, but is zoomed in on the 

first mode to show the differences in resolution near the first resonance peak for the two 

curves. 
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Figure 4.16.  Frequency-domain comparison between frequency-domain data at ∆f = 0.6666 Hz and 

transformed time-domain data focused on the first mode. 

 

Similarly, Figure 4.17 shows the two curves for the third resonance peak.  The 

slight difference in the curves is likely due to mode truncation for the modal frequency 

response calculations since the transformed time-domain data was calculated using a 

“direct transient” response analysis that includes all the modes and represents the correct 

solution.  However, this slight variation does not affect the comparisons between the 

amplitudes of the two curves. 

 

 
 

Figure 4.17.  Frequency-domain comparison between frequency-domain data at ∆f = 0.6666 Hz and 

transformed time-domain data focused on the third mode. 



38 

 

 

Figure 4.18 shows a comparison between the transformed time-domain solution 

and the frequency-domain solution with ∆f = 1.3333 Hz near the first mode of the hinge 

plate.  Since the frequency spacing is larger than the η*f value at this peak, the amplitude 

difference between the transformed time-domain solution and the frequency-domain 

solution is greater than that shown in Figure 4.16, where the ∆f value for the frequency-

domain solution was very close to the η*f value. 

 

 
 

Figure 4.18. Frequency-domain comparison between frequency-domain data at ∆f = 1.33333 Hz and 

transformed time-domain data focused on the first mode. 

 

Figure 4.19 shows the same two curves as Figure 4.18, but is zoomed in on the 

third mode. 

 



39 

 

 
 

Figure 4.19.  Frequency-domain comparison between frequency-domain data at ∆f = 1.33333 Hz and 

transformed time-domain data focused on the third mode. 

 

A frequency spacing of ∆f = 1.3333 Hz is clearly adequate to resolve the third 

peak, as is expected because η*f = 29.9 for this mode.  Although not shown, the same is 

true for the second mode, where η*f = 4.94.  Values of 4.94 and 29.9 are obviously much 

higher than 0.67, which is the calculated η*f value for the first mode.  So in order to 

accurately represent the components of the second and third modes in the time-domain 

waveform, ∆f must be less than 4.94 Hz for the second mode and ∆f must be less than 

26.9 Hz for the third mode.  Therefore, it is clear why the second and third modes would 

still be accurately represented when the frequency domain analysis has a ∆f of 1.3333 Hz. 

 The above process demonstrates why it is very important to concentrate on the 

sharpest peak, which is the mode with the lowest η*f value.  As long as the ∆f < η*f 

condition is met for that peak, the other modes will be accurately represented in the time-

domain waveform. 
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Chapter 5. OTHER CONSIDERATIONS 
 

Possible Effects of a Larger Frequency Resolution 
 

When dealing with the modes associated with a system such as the hinge plate as 

described in Chapter 4, a convenient way to further reduce computation times seems to 

present itself.  The system’s first mode of vibration occurs at 89.82 Hz, and choosing ∆f = 

1.3333 Hz in the frequency-domain produces an insufficient time-domain response as 

illustrated in Figure 4.13.  The shortcomings of this ∆f value are also apparent in the 

frequency-domain as illustrated in Figure 4.17.  The frequency response is sampled at 

89.3333 Hz and 90.6666 Hz, which essentially cuts off the peak of the response at 89.82 

Hz.   

 Given this unfortunate frequency spacing, it may be tempting to simply increase 

∆f to 1.5 Hz, which would place a sample point exactly at 90 Hz, which is very close to 

89.92 Hz.  Perhaps having a point very close to the modal peak will produce a better 

answer than the previous analysis despite the larger ∆f.  Figure 5.1 displays a frequency-

domain comparison at the first mode between the transformed time-domain result and a 

frequency-domain response where ∆f = 1.5 Hz.  This figure contrasts with Figure 4.17 in 

that the peak of the mode is more closely resolved. 
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Figure 5.1.  Frequency-domain comparison between frequency-domain data at ∆f = 1.5 Hz and transformed 

time-domain data focused on the first mode. 

 

Since the peak of the frequency-domain data is now closer to the peak of the 

transformed time-domain data, it might be assumed that this will produce a better 

correlation between the two response curves in the time-domain as opposed to the 

response at ∆f = 1.3333 Hz.  However, this is unfortunately not true.  The time-domain 

comparison is illustrated in Figure 5.2. 
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Figure 5.2.  Transformed frequency-domain representation with ∆f = 1.5 Hz and frequency range = 9000 

Hz, compared to a time-domain in Femap. 

 

The results in Figure 5.2 show that changing the frequency resolution for the 

frequency-domain solution to a value of ∆f = 1.5 Hz increases its amplitude in the time-

domain beyond that of the correct time-domain solution.  This appreciable increase is due 

to how broad the peak ends up being in the frequency domain when ∆f is larger.  This can 

be seen in Figure 5.1, where the frequency-domain response is actually greater than the 

transformed time-domain response from about 87 Hz – 88.5 Hz, and from 90 Hz – 93 Hz.   

 The results in Figures 5.1 and 5.2 show that picking a larger ∆f value to save 

computation time and assuming it will produce a good answer simply because one of the 

frequency points lands squarely on a peak is typically not a good practice.  However, 

where a mode falls in relation to the frequency sample point has an impact on solution 

accuracy and being aware of this can assist in achieving a more accurate solution.  Since 

the mode that contains the lowest η*f value is known from doing NASTRAN’s “normal 

mode/eigenvalue” analysis prior to the frequency response analysis, certain simple 

observations make it much easier to select an appropriate value for ∆f.   

 In the analysis of the simple spring mass system, when the ∆f value is very close 

to the η*f value in Figure 3.5, the amplitude is close to, but clearly less than the time-

domain amplitude.  In contrast, for the hinge plate analysis, when the ∆f value is very 
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close to the η*f value in Figure 4.12, the amplitude is almost exactly the same as the 

time-domain amplitude.  The explanation is that the spring mass system analysis involves 

the worst case scenario, where the peak in the response falls directly in between two 

frequency sample points, while the peak in the response for the first mode of the hinge 

plate is very close to a frequency sample point.  In regards to the ∆f < η*f rule established 

earlier, if the peak is directly between two frequency sample points, picking ∆f < η*f 

should produce a reasonably accurate transformed frequency-domain solution, with the 

amplitude decreasing in relation to the time-domain solution the closer ∆f approaches η*f.  

If the peak happens to fall very close to one of the frequency points, picking ∆f = η*f 

should produce a very good solution.  In this same situation where the peak falls very 

close to one of the frequency points, if ∆f is slightly greater than η*f, the amplitude of the 

transformed frequency-domain solution will increase in relation to the time-domain 

solution.  And if ∆f isn’t increased too far above η*f, the difference in amplitude between 

the two curves won’t be any greater than the difference in amplitude between the two 

curves when ∆f is slightly less than η*f for the scenario where the peak is directly 

between frequency sample points.  This point is illustrated by the fact that in Figure 4.12, 

∆f is nearly identical to η*f, and the amplitudes are essentially the same.  But in Figure 

3.8, ∆f is less than η*f, but the amplitude of the transformed frequency-domain response 

is visibly slightly less than the time-domain response.   

 So essentially, it is possible to get away with ∆f being slightly greater than η*f, 

but only if the modal peak is very close to a frequency sample point.  Knowing this can 

give us additional insight when choosing a ∆f value.   For example, if the mode of a 

system exists at f = 99 Hz, where η = 0.05 at that frequency, this makes η*f = 4.95 Hz.  

Choosing ∆f = 4.83 Hz which is less than 4.95 Hz to adhere to the ∆f < η*f rule, 

frequency samples points occur at 96.6 Hz and 101.43 Hz.  This selection places 99 Hz 

almost directly in between the two frequency sample points, and there will most likely be 

a visually apparent difference between the transformed frequency-domain curve and the 

time-domain curve, with the transformed frequency-domain curve having slightly lower 

amplitude.  However, if ∆f is increased to 5 Hz, which is only slightly higher than the η*f 

value of 4.95 Hz, the transformed frequency-domain curve will still be very accurate in 

relation to the time-domain curve, but its amplitude will be slightly higher than the time-
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domain curve.  So, both solutions will be relatively accurate, but the solution using ∆f = 5 

Hz is less computationally expensive.  But again, as stated earlier, the required solution 

accuracy will also depend on the particular application, and depending on whether the 

analysis is used for design iterations or final numerical computations. 

 

Further Reduction of Computation Times 
 

As noted previously, the frequency range for the frequency-domain solution 

determines the time resolution in the time-domain.  Allowing the analysis to be 

completed up to a specified frequency range ensures that the highest mode of interest will 

be accurately represented once the result is transformed to the time-domain.  For the 

hinge plate analysis, the third mode at 568.16 Hz is the highest mode of interest, and 

requires a frequency range of 9000 Hz to fully represent the shape of the waveform with 

about 16 points per wavelength in the time-domain.  Of course, the analysis in Femap 

only includes frequencies up to 4500 Hz.  The rest of the linear spectrum was obtained by 

mirroring this data and taking the complex conjugate to fill it out to 9000 Hz.  Once the 

full linear spectrum is established, the Matlab ifft command can be performed to obtain a 

time-domain result.   

 Fortunately, it is not necessary to actually perform the analysis all the way up to 

4500 Hz in Femap.  Taking advantage of this can save a significant amount of 

computation time.  While precise documentation of the savings in computation time 

would be advantageous, this example problem is so small in relation to real-world 

problems that it doesn’t make sense to establish time savings based on such a small 

model.  Figure 5.3 displays the full linear spectrum for the Femap output of the 

frequency-domain analysis with ∆f = 0.6666 Hz.   
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Figure 5.3. Linear spectrum for the Femap output of the frequency-domain analysis with ∆f = 0.6666 Hz. 

 

Since the frequency range of interest only includes the first three modes, based on 

Figure 5.3, it should follow that any response between about 1000 Hz and 8000 Hz is 

negligible and should have no bearing on the final time-domain representation of this 

data.  To show that this is true, the linear spectrum will be reconstructed using only the 

data collected from 0 Hz to 1200 Hz.  The new spectrum will include the original data 

from 0 Hz to 900 Hz.  Then, to ensure a smooth transition, the original data from 900 Hz 

to 1200 Hz is multiplied by the shape of the second half of a Hanning window.  That is, 

the data point at 900 Hz is multiplied by 1, and the data point at 1200 Hz is multiplied by 

0, with the points in between essentially following the smooth and gradual decline of the 

second half of the Hanning window.  Between 1200 Hz and 7800 Hz, the spectrum is 

filled in with zeros for all data points.  The final section between 7800 Hz and 9000 Hz is 

the mirrored complex conjugate of the section between 0 Hz and 1200 Hz of the new 

reconstructed linear spectrum.  Figure 5.4 illustrates the new reconstructed spectrum. 
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Figure 5.4.  Linear Spectrum of frequency-domain data with ∆f = 0.6666 Hz, with Femap frequency 

sampled up to 1200 Hz. 

 

When the linear spectra in Figures 5.3 and 5.4 are transformed into the time-

domain, they produce the same result, which is illustrated in Figure 5.5. 

 

 
 

Figure 5.5. Comparison of time signals computed with the original transformed spectrum and the 

reconstructed transformed spectrum. 

 

The small discrepancy between the curves at the very beginning of the response in 

Figure 5.5 occurs because higher frequencies weren’t completely damped in Femap for 
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the original frequency-domain analysis.  Otherwise, as expected, the response of the two 

time-domain curves is exactly the same, and is why the plot appears to show only one 

curve.  The similarity discovered between the two curves in Figure 5.5 has a very 

profound impact on the amount of computation time needed to produce accurate results.  

For this specific example, the frequency range sampled in Femap only needs to be about 

one quarter of the original frequency range.  The rest of the linear spectrum can be easily 

constructed from Femap’s output using a simple Matlab routine.  Therefore, once the 

highest mode of interest is determined, the maximum analysis frequency in Femap can be 

chosen to be about 1.6 times higher than the peak of this highest mode, and then the rest 

of the spectrum can be fabricated in Matlab up to the frequency range required to 

accurately display the waveform of the highest mode of interest in the time-domain.      

 

Extended Period 
 

When selecting frequency resolution for analyses in the frequency-domain, it is 

not only important to consider the error in the resulting time-domain amplitude, but to 

also consider the total length of the transformed results, since frequency resolution in the 

frequency-domain determines overall length in the time-domain.  The term “extended 

period,” as described in Martins et al,
3
 comes from the idea that the Fourier transform 

assumes a system is both forced and responds periodically in time.  In order to transform 

data from the time-domain into the frequency-domain using the FFT, the total time 

sample must be extended until it is completely damped so that it obeys the causality 

condition for responses to a non-periodic loading.  However, the idea of an extended 

period is also helpful in selecting the frequency resolution for frequency-domain 

analyses.  The extended period Tp may be predicted using: 

 

𝑇𝑝 ≥
ln (100/ℎ)

2𝜋∗𝑓∗𝜂
 ,                                           Eq. (5.1) 

 

where η is the loss factor, f is the dominant mode of the system, and h is a percentage of 

the initial displacement contribution of the dominant mode.  Most often, 1% is considered 

an acceptable value for h, but can be set based on the goals of an individual project.  

Equation 5.1 allows us to predict a value for frequency resolution based on what 

percentage of the original displacement amplitude we want remaining at the end of the 
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time-domain response.  To illustrate the usefulness of this equation, the simple spring 

mass system with a viscous damping condition will be used.  The modal frequency of the 

system is 100 Hz, and the damping at 100 Hz equals 0.14325.   The η*f value is 14.325 

Hz, which means Δf should be less than 14.325 Hz.  Therefore, values of Δf = 8.3333 Hz 

and Δf = 12.5 Hz should each produce accurate amplitudes for the responses when 

transformed into the time-domain.   

 If we assume that h = 0.01, or 1 %, is an acceptable percentage, solving for Tp 

with f = 100 Hz and η = 0.14325, Tp = 0.102 seconds.  That is, the response of the system 

must be calculated for 0.102 seconds after the initial force impulse for the displacement 

amplitude of the dominant mode to dampen to 1% of its initial contribution.  Taking the 

reciprocal of 0.102 second yields a frequency resolution of Δf = 9.8 Hz.  Therefore, the 

frequency resolution for the frequency-domain analyses must be less than or equal to 9.8 

Hz in order to yield a time-domain response where the contribution from the dominant 

mode is damped to 1% of its original amplitude.  So it is evident that while the values of 

Δf = 8.3333 Hz and Δf = 12.5 Hz can both produce accurate amplitudes, only the Δf = 

8.3333 Hz frequency resolution produces a sufficient extended period, which is 

demonstrated in Figure 5.6.   
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Figure 5.6.  Transformed frequency-domain representation with 100 Hz modal frequency and 12.5 Hz and 

8.3333 Hz frequency resolutions, where extended periods = 0.08 seconds and 0.12 seconds. 

 

The simple example displayed in Figure 5.6 demonstrates the fundamental 

difference between the two frequency resolutions and how they alter the total length of 

the time sample.  So even though the response generated with a frequency resolution of 

12.5 Hz may obey the η*f requirement, it does not meet the extended period condition of 

the mode damped to 1% of its original contribution at 0.102 second.  Instead, the 

frequency resolution will have to be decreased to uphold the residual amplitude 

requirement.  
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Chapter 6. CONCLUSIONS 
 

It is very important to be able to effectively compute the response of a structure to 

time-varying loads.  Given the existing infrastructure which utilizes frequency-domain 

matrices for structural radiation problems, the purpose of this thesis was to generate 

general guidelines for deriving accurate time-domain responses from frequency-domain 

calculations.  Unique factors that affect the analysis for these types of problems include 

the damping in the system, the modal frequencies and the frequency range of interest for 

the analysis.   

 When running a “modal frequency” analysis, the general guideline is to choose 

the upper frequency for the “normal modes/eigenvalue” analysis to be at least about 1.6 

times the highest frequency of interest.  The highest mode of interest will have the 

smallest period of all the modes once the response is transformed to the time-domain.  

Therefore, the frequency range for the “modal frequency” analysis must be selected 

based on the highest mode of interest.  The reciprocal of the frequency range is equal to 

the sample rate in the time-domain.  As illustrated in Chapter 3, a frequency range that is 

16 times that of the highest mode of interest will produce a nicely shaped representation 

of the waveform for the highest mode in the time-domain response.  This specification 

can be increased or decreased based on the needs of a particular research project.  This 

would initially seem to be a severe limitation due to the dramatic increase in the 

frequency range required for the normal mode analysis compared to the typical 

specification.  However, the results from Chapter 5 indicate that “zero-padding” can be 

used to obtain the desired sampling rate in the time-domain without causing a significant 

increase in the frequency range for the modal frequency response calculations.  Applying 

a low-pass filter to the response also eliminates the possibility of aliasing.  Therefore, 

time-domain resolution can easily be increased by simply increasing the size of the 

middle zero-valued portion of the linear spectrum in Matlab, such that the desired time 

resolution has little or no bearing on computational efficiency within NASTRAN. 

 The other important factor that affects the solution efficiency is the frequency 

spacing for the modal frequency response analysis.  Based on the discussion in Chapter 3, 

the frequency resolution should be chosen based on the mode with the lowest η*f value.  
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For most cases, if frequency resolution ∆f is less than η*f, the time-domain response will 

be relatively accurate in terms of amplitude, and since the ∆f value was chosen based on 

the mode with the lowest η*f value, the components of the time-domain waveform that 

correspond to the other modes will be accurately represented as well.  However, since the 

fast Fourier transform generally requires uniform frequency spacing, an increase in 

computational efficiency could be obtained by deriving some of the frequency domain 

response from interpolation rather than direct calculation.  An initial analysis could be 

performed using non-uniform frequency spacing with just enough frequencies to resolve 

the spectrum, and a secondary analysis performed to fill in the response at the required 

frequency spacing.  While this would undoubtedly reduce the computation times, the 

modal frequency response calculations are not typically the most time-consuming part of 

the analysis, so the overall increase in computational efficiency will likely be small. 

 The final thing to remember regarding the selection of frequency resolution is that 

its reciprocal is the total length of the time-domain signal.  When dealing with transient 

situations, a response and its decay are the central focus.  Capturing the full decay may 

become a problem when frequency resolution becomes too large.  So even though a 

particular frequency resolution selection is adequate for resolving the sharpest modal 

peak, it may not be small enough to capture the entire decay of the time-domain 

waveform.  Thus, the frequency resolution should be chosen to balance the resolution of 

the sharpest peak and the overall length of the time signal.   

 Systems that are lossless or nearly lossless i.e. have very low damping, will most 

likely have very sharp modal peaks in the frequency-domain.  A very small frequency 

resolution in a “modal frequency” analysis will be required to resolve these peaks and 

produce accurate amplitudes once transformed into the time-domain.  Even after 

employing the techniques found in this thesis, there may be a point where the system is 

so close to being lossless that it becomes more computationally efficient to use 

NASTRAN’s “direct transient” solution sequence, rather than solve for a transformed 

frequency-domain solution where the frequency resolution is especially small.    

 The main accomplishment of the thesis is showing that transient calculations can 

be accurately performed by transforming harmonic frequency-domain calculations to the 

time-domain.  Guidelines have also been developed to choose the sample rate and 
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frequency spacing to ensure accurate results.  Thus, it should be possible to use existing 

frequency-domain methods for structural and acoustic computations and there is no need 

to develop time-domain versions of the codes.  It also ensures that within the realm of 

transient problems, systems represented using complex-valued matrices can be resolved 

in the time-domain, and systems that are analyzed in the frequency-domain in general can 

also yield accurate time-domain responses. 
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Appendix A: Summary of Transformed Frequency-Domain Solution Guidelines 

 

Based on the analysis in this thesis, the following steps will yield accurate time-domain 

results from transformed modal frequency response calculations: 

1. Perform a normal modes analysis to compute the resonance frequencies and loss 

factors over the frequency range of interest.   

2. Compute the full frequency range required by multiplying the highest mode of interest 

by the number of points per wavelength desired in the time-domain. 

3. Determine the frequency resolution required by finding the product of damping and 

frequency for each mode.  Take the smallest value and set the preliminary frequency 

resolution to a convenient value less than this product.   

4. Compute the time required for the dominant mode to damp out to a selected percentage 

of its original contribution using Equation 5.1. 

5. If the reciprocal of the time value computed in step 4 is less than the frequency 

resolution value computed in step 3, set the frequency resolution to the step 4 value.  If 

the step 4 value is greater than the step 3 value, set the frequency resolution to the step 3 

value.   

6. Perform a modal frequency analysis from 0 Hz to a selected value slightly higher than 

the frequency range of interest with frequency sample points at the interval specified in 

step 5. 

7. Use the real and imaginary components of the modal frequency analysis output to 

construct the full linear spectrum from 0 Hz to the upper frequency required to resolve 

the highest mode of interest in the time-domain.  The output data forms the first portion 

of the full spectrum, and once this data is inverted and the complex conjugate is taken, 

this new vector of data forms the final portion of the linear spectrum.  The middle portion 

is filled in with zeros. 

8. Take the inverse Fourier transform of the full linear spectrum formed in step 7 to 

compute the time-domain response. 
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Appendix B: Matlab Code 

 
%%% This Matlab code illustrates the basic process of transforming  

%%% Femap's frequency-domain output into time-domain data and making a 
%%% comparison plot between the transformed frequency-domain data and 

%%% Femap output time-domain data.  This code and other simple  

%%% variations of this code are used frequently to produce plots for 
%%% this thesis. 

  
%%% hingefreqreal = Femap output of the real part of the frequency- 

%%% domain data 

  
%%% hingefreqimag = Femap output of the imaginary part of the 
%%% frequency-domain data 

  
%%% hingetime = Femap output of time-domain data obtained through a  

%%% "direct transient" analysis 

  
%%% The following code combines the real and imaginary vectors into one 
%%% complex number, mirrors the data across the y-axis, takes the  

%%% complex conjugate, and then tacks it onto the end of the original 
%%% data, forming one vector which represents the linear spectrum  

%%% 'hingefull'.  Then the Inverse Fourier Transform is taken to obtain 

%%% the time-domain response, 'hingeifft'. 

  
hingefreq = hingefreqreal + i*hingefreqimag; 
hingeflip = flipud(hingefreq); 
hingefull = [hingefreq; (conj(hingeflip(2:11250)))]; 
hingeifft = ifft(hingefull); 

  
Ntime = 0:50000; %%% Number of points in Femap's time-domain output 
delt = 0.0001; %%% Time resolution for Femap's time-domain output 
forceerror = 20000; %%% Correction factor for forcing the system with a  
                    %%% less than ideal impulse 

  
Nshort = 0:8999; %%% Number of points in desired transformed  
                 %%% frequency-domain vector 
delft = 9000^-1; %%% Time resoltuion for transformed frequency-domain        

%%% vector 
N = 13500; %%% Number of points in the frequency vector 
delf = (2/3); %%% Frequency resolution selected in femap 
freqmult = N*delf; %%% Multiplication factor for transformed  
                   %%% frequency-domain vector 

                    
%%% The following code produces a comparison plot between Femap output 
%%% time-domain data, and transformed frequency-domain data. 

  
plot(Ntime'.*delt,hingetime.*forceerror,Nshort'.*delft,(real... 
    (hingeifft3(1:9000)).*freqmult),'r','LineWidth',2); 
legend('Time-Domain','Transformed Frequency-Domain'); 
xlabel('Time [s]'); 
ylabel('Response [m/N]'); 
grid 
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Appendix C: NASTRAN Input Deck for Figure 2.4 Time Analysis 
 

INIT MASTER(S) 

NASTRAN SYSTEM(319)=1 

ID SingleDOF,Femap 

SOL SEDTRAN 

TIME 10000 

CEND 

  TITLE = Direct Transient Analysis 

  ECHO = NONE 

  DISPLACEMENT(SORT1,PLOT) = ALL 

  ACCELERATION(SORT1,PLOT) = ALL 

  SPCFORCE(SORT1,PLOT) = ALL 

  SPC = 1 

  DLOAD = 1 

  TSTEP = 1 

BEGIN BULK 

$ *************************************************************************** 

$   Written by : Femap with NX Nastran 

$   Version    : 9.31 

$   Translator : NX Nastran 

$   From Model : C:\FEMAP931\SingleDOF.MOD 

$   Date       : Fri Apr 02 11:16:27 2010 

$ *************************************************************************** 

$ 

PARAM,POST,-1 

PARAM,OGEOM,NO 

PARAM,AUTOSPC,YES 

PARAM,MAXRATIO,1.E+8 

PARAM,GRDPNT,0 

CORD2C         1       0      0.      0.      0.      0.      0.      

1.+FEMAPC1 

+FEMAPC1      1.      0.      1. 

CORD2S         2       0      0.      0.      0.      0.      0.      

1.+FEMAPC2 

+FEMAPC2      1.      0.      1. 

$ Femap with NX Nastran Load Set 1 : Transient Load 

PARAM,G,0.2865 

PARAM,W3,1256.64 

$ Femap with NX Nastran Function 1 : Unit Impulse 

TABLED2        1      0.                                                +        

+             0.      0.   1.E-5     0.5   2.E-5      1.   3.E-5     0.5+        

+          4.E-5      0.   5.E-5      0.ENDT 

TLOAD1       102     101            LOAD       1 

FORCE        101       2       0      1.      1.      0.      0. 

DLOAD          1      1.      1.     102 

TSTEP          1    1499   1.E-5       1 

$ Femap with NX Nastran Constraint Set 1 : Fixed 

SPC1           1  123456       1 

SPC1           1   23456       2 

$ Femap with NX Nastran Property 1 : DOF SPRING Property 

GRID           1       0      0.      0.      0.       0 

GRID           2       0      1.      0.      0.       0 

CELAS2         1   2910.       1       1       2       1    0.15 

CONM2          2       2       07.371E-3      0.      0.      0.        +EL    

2 

+EL    2      0.      0.      0.      0.      0.      0. 

ENDDATA f4ec8938 
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Appendix D: NASTRAN Input Deck for Example Frequency Analysis 

 
RESTART 

ASSIGN MASTER='C:\FEMAP931\singl005.MASTER' 

ASSIGN DBALL='C:\FEMAP931\singl005.DBALL' 

NASTRAN SYSTEM(319)=1 

ID SingleDOF,Femap 

SOL SEMFREQ 

TIME 10000 

CEND 

  TITLE = Modal Frequency Analysis 

  ECHO = NONE 

  DISPLACEMENT(SORT1,PLOT,REAL) = ALL 

  ACCELERATION(SORT1,PLOT,REAL) = ALL 

  SPCFORCE(SORT1,PLOT,REAL) = ALL 

  SPC = 1 

  DLOAD = 1 

  METHOD = 1 

  SDAMPING = 3 

  FREQUENCY = 1 

BEGIN BULK 

/,1,999999 

$ *************************************************************************** 

$   Written by : Femap with NX Nastran 

$   Version    : 9.31 

$   Translator : NX Nastran 

$   From Model : C:\FEMAP931\SingleDOF.MOD 

$   Date       : Fri Apr 02 11:46:11 2010 

$ *************************************************************************** 

$ 

PARAM,POST,-1 

PARAM,OGEOM,NO 

PARAM,AUTOSPC,YES 

PARAM,MAXRATIO,1.E+8 

PARAM,GRDPNT,0 

CORD2C         1       0      0.      0.      0.      0.      0.      

1.+FEMAPC1 

+FEMAPC1      1.      0.      1. 

CORD2S         2       0      0.      0.      0.      0.      0.      

1.+FEMAPC2 

+FEMAPC2      1.      0.      1. 

EIGRL          1                      10       0                    MASS 

$ Femap with NX Nastran Load Set 1 : Transient Load 

$ Femap with NX Nastran Function 1 : Viscous Damping 

TABDMP1        1       G                                                +        

+             0.      0.    100. 0.14325    200.  0.2865ENDT 

$ Femap with NX Nastran Function 2 : Transient Load 

TABLED2        2      0.                                                +        

+             0.      1.    200.      1.ENDT 

RLOAD2       102     101                       2            LOAD 

FORCE        101       2       0      1.      1.      0.      0. 

DLOAD          1      1.      1.     102 

FREQ1          1     10.     10.     159 

FREQ           1 100.001 

$ Femap with NX Nastran Constraint Set 1 : Fixed 

SPC1           1  123456       1 

SPC1           1   23456       2 

$ Femap with NX Nastran Property 1 : DOF SPRING Property 

GRID           1       0      0.      0.      0.       0 

GRID           2       0      1.      0.      0.       0 

CELAS2         1   2910.       1       1       2       1    0.15 
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CONM2          2       2       07.371E-3      0.      0.      0.        +EL    

2 

+EL    2      0.      0.      0.      0.      0.      0. 

ENDDATA 26a2c571 


