
The Pennsylvania State University
The Graduate School
College of Engineering

COMPUTATIONALLY EFFICIENT ONLINE MODEL-BASED

CONTROL AND ESTIMATION FOR LITHIUM-ION BATTERIES

A Dissertation in
Mechanical Engineering

by
Ji Liu

© 2017 Ji Liu

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2017



The dissertation of Ji Liu was reviewed and approved∗ by the following:

Hosam K. Fathy
Associate Professor of Mechanical Engineering
Dissertation Advisor, Chair of Committee

Christopher D. Rahn
Professor of Mechanical Engineering

Chao-Yang Wang
Professor of Mechanical Engineering

Constantino Lagoa
Professor of Electrical Engineering

Karen A. Thole
Professor of Mechanical Engineering
Department Head of Mechanical and Nuclear Engineering

∗Signatures are on file in the Graduate School.

ii



Abstract

This dissertation presents a framework for computationally-efficient, health-conscious
online state estimation and control in lithium-ion batteries. The framework builds
on three main tools, namely, (i) battery model reformulation and (ii) pseudo-
spectral optimization for (iii) differential flatness. All of these tools already exist
in the literature. However, their application to electrochemical battery estimation
and control, both separately and in an integrated manner, represents a significant
addition to the literature. The dissertation shows that these tools, together, provide
significant improvements in computational efficiency for both online moving horizon
battery state estimation and online health-conscious model predictive battery con-
trol. These benefits are demonstrated both in simulation and using an experimental
case study.

Two key facts motivate this dissertation. First, lithium-ion batteries are widely
used for different applications due to their low self-discharge rates, lack of memory
effects, and high power/energy densities compared to traditional lead-acid and nickel-
metal hydride batteries. Second, lithium-ion batteries are also vulnerable to aging
and degradation mechanisms, such as lithium plating, some of which can lead to
safety issues. Conventional battery management systems (BMS) typically use model-
free control strategies and therefore do not explicitly optimize the performance, life
span, and cost of lithium-ion battery packs. They typically avoid internal damage
by constraining externally-measured variables, such as battery voltage, current,
and temperature. When pushed to charge a battery quickly without inducing
excessive damage, these systems often follow simple and potentially sub-optimal
charge/discharge trajectories, e.g., the constant-current/constant-voltage (CCCV)
charging strategy. While the CCCV charging strategy is simple to implement,
it suffers from its poor ability to explicitly control the internal variables causing
battery aging, such as side reaction overpotentials. Another disadvantage is the
inability of this strategy to adapt to changes in battery dynamics caused by aging.

Model-based control has the potential to alleviate many of the above limitations
of classical battery management systems. A model-based control system can
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estimate the internal state of a lithium-ion battery and use the estimated state
to adjust battery charging/discharging in a manner that avoids damaging side
reactions. By doing so, model-based control can (i) prolong battery life, (ii) improve
battery safety, (iii) increase battery energy storage capacity, (iv) decrease internal
damage/degradation, and (v) adapt to changes in battery dynamics resulting from
aging. These potential benefits are well-documented in the literature. However,
one major challenge remains, namely, the computational complexity associated
with online model-based battery state estimation and control. The goal of this
dissertation is to address this challenge by making five contributions to the literature.
Specifically:

• Chapter 2 exploits the differential flatness of solid-phase lithium-ion battery
diffusion dynamics, together with pseudo-spectral optimization and diffusion
model reformulation, to decrease the computational load associated with
health-conscious battery trajectory optimization significantly. This contribu-
tion forms a foundation for much of the subsequent work in this dissertation,
but is limited to isothernal single-particle battery models with significant
time scale separation between anode- and cathode-side solid-phase diffusion
dynamics.

• Chapter 3 extends the results of Chapter 2 in two ways. First , it exploits
the law of conservation of charge to enable flatness-based, health-conscious
battery trajectory optimization for single particle battery models even in the
absence of time scale separation between the negative and positive electrodes.
Second, it performs this optimization for a combined thermo-electrochemical
battery model, thereby relaxing the above assumption of isothermal battery
behavior and highlighting the benefits of flatness-based optimization for a
nonlinear battery model.

• Chapter 4 presents a framework for flatness-based pseudo-spectral combined
state and parameter estimation in lumped-parameter nonlinear systems.
This framework enables computationally-efficient total least squares (TLS)
estimation for lumped-parameter nonlinear systems. This is quite relevant to
practical lithium-ion battery systems, where both battery input and output
measurements can be quite noisy.

• Chapter 5 utilizes the above flatness-based TLS estimation algorithm for
moving horizon state estimation using a coupled thermo-electrochemical
equivalent circuit model of lithium-ion battery dynamics.

• Chapter 6 extends the battery estimation framework from Chapter 5 to enable
moving horizon, flatness-based TLS state estimation in thermo-electrochemical
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single-particle lithium-ion battery models, and demonstrates this framework
using laboratory experiments.

The overall outcome of this dissertation is an integrated set of tools, all of them
exploiting model reformulation, differential flatness, and pseudo-spectral methods,
for computationally efficient online state estimation and health-conscious control
in lithium-ion batteries.

v



Table of Contents

List of Figures ix

List of Tables xii

Acknowledgments xiii

Chapter 1
Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Key Challenges in Model-Based Battery Estimation and Control . . 3

1.2.1 Challenge 1: The Computational Cost of Model-Based Bat-
tery Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Challenge 2: Battery State of Charge Estimation Accuracy . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2
Flatness-Based Optimization of Lithium-Ion Battery Charging 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Single Particle Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Model Order Reduction . . . . . . . . . . . . . . . . . . . . 19

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Differentially Flat Systems . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Introduction to Differential Flatness . . . . . . . . . . . . . . 25
2.4.2 Definition: Differentially Flat Systems . . . . . . . . . . . . 26
2.4.3 Application to Batteries . . . . . . . . . . . . . . . . . . . . 27

2.5 Flatness-Based Pseudospectral Methods . . . . . . . . . . . . . . . 29
2.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Optimal Charging Strategy . . . . . . . . . . . . . . . . . . 34
2.6.2 Standard Charging Strategy . . . . . . . . . . . . . . . . . . 36

vi



2.6.3 GPM Vs. Flatness-Based GPM . . . . . . . . . . . . . . . . 37
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3
Health-Conscious Nonlinear Model Predictive Control of Lithium-

Ion Batteries 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 SPM-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Thermal Sub-Model . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Model Order Reduction . . . . . . . . . . . . . . . . . . . . 44

3.3 Online Optimal Charging with SPM Model . . . . . . . . . . . . . . 47
3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Differential Flatness of SPM Model . . . . . . . . . . . . . . 49
3.3.3 Flatness-Based Gauss Pseudospectral Method . . . . . . . . 51

3.3.3.1 Redundant Flat Output Approach . . . . . . . . . 51
3.3.3.2 Extended Differential Flatness Approach . . . . . . 53

3.3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 56
3.3.4.1 NMPC Sensitivity to Parameter Uncertainties . . . 58
3.3.4.2 Comparison of Three NMPC Frameworks . . . . . 59

3.4 Online Optimal Charging with SPM-T Model . . . . . . . . . . . . 61
3.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Differential Flatness of SPM-T Model . . . . . . . . . . . . . 62
3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 4
Efficient Total Least Squares State and Parameter Estimation

for Differentially Flat Systems 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Total Least Squares Estimation . . . . . . . . . . . . . . . . . . . . 73
4.3 Flatness-Based Pseudospectral Methods . . . . . . . . . . . . . . . 76
4.4 Estimation Example: Nonlinear Mass-Spring-Damper System . . . 79

4.4.1 Estimation Problem Formulation . . . . . . . . . . . . . . . 79
4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 82

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 5
Total Least Squares State of Charge Estimation for Lithium-Ion

Batteries: An Efficient Moving Horizon Estimation
Approach 86

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Equivalent Circuit Model with Thermal Dynamics (ECM-T) . . . . 88
5.3 Problem Formulation: Total Least Squares SOC Estimation . . . . 90

5.3.1 Moving Horizon Estimation . . . . . . . . . . . . . . . . . . 90
5.3.2 Flatness-Based MHE . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Estimation Results with Only Measurement Uncertainties . 96

5.4.1.1 Comparative Study: MHE Vs. UKF . . . . . . . . 98
5.4.2 Estimation Results with Model and Measurement Uncertainties 101

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 6
Experimental Validation of Total Least Squares SOC Estima-

tion with A Moving Horizon Approach 104
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Total Least Squares Moving Horizon Estimation . . . . . . . 105
6.2.2 Flatness-Based Estimation . . . . . . . . . . . . . . . . . . . 107

6.3 System Identification of SPM-T Model . . . . . . . . . . . . . . . . 107
6.3.1 SOC-OCV Curve . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Parameter Identification . . . . . . . . . . . . . . . . . . . . 109

6.3.2.1 Static Parameters . . . . . . . . . . . . . . . . . . 110
6.3.2.2 Dynamic Parameters . . . . . . . . . . . . . . . . . 112

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 7
Conclusions 119

Appendix A
Model Parameters: Equivalent Circuit Model with Thermal

Dynamics (ECM-T) 121

Appendix B
Model Parameters: Single Particle Model with Thermal Dy-

namics (SPM-T) 122

Bibliography 124

viii



List of Figures

2.1 Single particle model (SPM) . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Simulation results for problem (2.25) applying the flatness-based

GPM with SOCini = 0.5 for two current upper limits: Imax = 9.2A
(4C) and Imax = 4.6A (2C) . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Simulation results for problem (2.25) applying the flatness-based
GPM with SOCini = 0.1 for two current upper limits: Imax = 9.2A
(4C) and Imax = 4.6A (2C) . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Simulation results for problem (2.51) applying the flatness-based
GPM for two current upper limits: Imax = 9.2A (4C) (solid lines)
and Imax = 4.6A (2C) (dashed lines). The initial SOC is 0.5 and
voltage upper bound is 3.6V . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Simulation results for problem (2.51) applying the flatness-based
GPM for two current upper limits: Imax = 9.2A (4C) (solid lines)
and Imax = 4.6A (2C) (dashed lines). The initial SOC is 0.1and
voltage upper bound is 3.6V . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Computational time of the flatness-based GPM and the GPM versus
the number of collocation points . . . . . . . . . . . . . . . . . . . . 40

3.1 Comparison of two charging strategies: health-conscious optimal
charging pattern (CCCη) from problem (3.22) versus CCCV charging
pattern from problem (3.33). umax = 4.6A (2C). . . . . . . . . . . . 53

3.2 Comparison of two charging strategies: health-conscious optimal
charging pattern (CCCη) from problem (3.22) versus CCCV charging
pattern from problem (3.33). umax = 9.2A (4C). . . . . . . . . . . . 54

3.3 Pareto front between charging time and battery degradation. The
optimal charging can achieve high charging C-rate and does not
introduce degradation. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 The NMPC framework is more robust than offline framework. . . . 59

ix



3.5 Average simulation time for each time step. The proposed extended
flatness approach is more efficient than the flatness-based GPM with
two flat outputs proposed in [1]. . . . . . . . . . . . . . . . . . . . 60

3.6 Comparison between online optimal charging trajectory with CCCV
charging patterns with umax = 4C . . . . . . . . . . . . . . . . . . . 66

3.7 Comparison between online optimal charging trajectory umax = 4C
with CCCV charging patterns with umax = 2C . . . . . . . . . . . . 67

3.8 Optimal online optimal charging trajectory with umax = 20C without
temperature constraint . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Comparison between online optimal charging trajectory umax = 4C
with CCCV charging patterns with umax = 2C . . . . . . . . . . . . 69

4.1 Comparison between OLS and TLS estimation. . . . . . . . . . . . 74
4.2 Estimation results using noisy input u = 10sin3t with δu = 0.1 and

δy = 0.1. The estimated parameters are: θ̂ = [0.96, 0.89, 0.99]T . . . 80
4.3 Estimation results using noisy input u = 10sin3t with δu = 1 and

δy = 0.1. The estimated parameters are: θ̂ = [0.96, 0.88, 1.00]T . . . . 81
4.4 Estimation results using noisy input u = 4t with δu = 0.1 and

δy = 0.1. The estimated parameters are: θ̂ = [1.00, 0.94, 1.01]T . . . 82
4.5 Estimation results using noisy input u = 4t with δu = 1 and δy = 0.1.

The estimated parameters are: θ̂ = [1.00, 0.95, 1.00]T . . . . . . . . . 83
4.6 Monte Carlo simulation results with δu = 1 and δy = 0.1. The mean

absolute error (MAE) for k, c, and m are 0.56%, 6.86%, and 1.29%,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Second-order ECM Model . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Diagrams for estimators with uncertainties . . . . . . . . . . . . . . 95
5.3 SOC estimation results comparison at high SOC region (starting

from 95% SOC): MHE (blue dashed lines), UKF (red dash-dot lines),
and true signals (black lines). . . . . . . . . . . . . . . . . . . . . . 96

5.4 SOC estimation results comparison at mid-SOC region (starting
from 50% SOC): MHE (blue dashed lines), UKF (red dash-dot lines),
and true signals (black lines). . . . . . . . . . . . . . . . . . . . . . 97

5.5 Monte-Carlo simulation results from (i) MHE and (ii) UKF. The
initial SOC is 50% and this corresponds to the mid-range SOC where
OCV curve is flat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Monte-Carlo simulation results from (i) MHE and (ii) UKF. The
initial SOC is 95% and this corresponds to the mid-range SOC where
OCV curve has large slope. . . . . . . . . . . . . . . . . . . . . . . . 99

x



5.7 Model uncertainties: the ECM-T model used in the estimator is
identified using the response generated with the SPM-T model which
is considered as the “ture” model in section 5.4.2 . . . . . . . . . . . 100

5.8 SOC estimation results with model uncertainties: MHE (blue dashed
lines), UKF (red dash-dot lines), and true signals (black lines). . . . 101

5.9 Monte-Carlo simulation results from (i) MHE and (ii) UKF. . . . . 102

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Measured OCV curve through slow charging and discharging . . . . 109
6.3 Identification of static parameters: Measured OCV curve through

slow charging and discharging . . . . . . . . . . . . . . . . . . . . . 111
6.4 Response from measurement (Meas) and identified SPM-T model

(Est) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 SOC estimation results using the SPM model, with N = 1, and

without the prior information. . . . . . . . . . . . . . . . . . . . . . 114
6.6 SOC estimation results using the SPM model, with N = 3, and

without the prior information. . . . . . . . . . . . . . . . . . . . . . 115
6.7 SOC estimation results using the SPM model, with N = 1, and with

the prior information. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8 SOC estimation results using the SPM model, with N = 3, and with

the prior information. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.9 SOC estimation results using the SPM-T model, with N = 3, and

with the prior information. . . . . . . . . . . . . . . . . . . . . . . . 117

xi



List of Tables

3.1 Comparison of 3 NMPC frameworks: The proposed framework is
the most efficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 The mean absolute error (MAE) and the root mean square error
(RMSE) of estimators with different scenarios. Left table corresponds
to the results shown in Fig. 5.3 and right table corresponds to the
results shown in Fig. 5.4. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 The mean absolute error (MAE) and the root mean square error
(RMSE) of estimators with model uncertainties and measurement
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 The parameters to be estimated in the SPM-T model . . . . . . . . 110
6.2 The mean absolute error (MAE) and the root mean square error

(RMSE) of SOC estates with the MHE estimator. . . . . . . . . . . 114

A.1 The parameters of 2.3Ah 26650 LiFePO4 cells. . . . . . . . . . . . . 121

B.1 The parameters of 2.3Ah 26650 LiFePO4 cells. e: identified parame-
ters at 25oC ambient temperature. Other parameters are obtained
from [2,3]. Reference potential curve for each electrode is obtained
from [2] and the entropy coefficient curve for each electrode is from [4]. 123

xii



Acknowledgments

Looking back on the experience as a Ph.D. candidate, only now do I realize that
getting a Ph.D. degree is more about a journey than a degree. I would like to
sincerely thank my advisor Dr. Hosam K. Fathy for all the guidance and support
you have given me through my Ph.D. study. I would like to thank you for trusting
me and giving me the prestigious opportunity to join our great, friendly, diverse,
and fun lab. I would like to thank you for giving me continuous technical support
whenever I need and being very patient and tolerant. I would like to thank you for
your encouragement which makes me believe my research could have some positive
impact to our community. I would like to thank you for guiding me to be a better
student, scholar, and collaborator. Without your wisdom, knowledge, guidance,
and support, I would not even be able to enter my favorite area, dynamics control
and optimization and I would not have the opportunity to enjoy my research.
Additionally, I would like to thank my committee members, Dr. Chris Rahn, Dr.
Chao-Yang Wang, and Dr. Constantino Lagoa. With your valuable input, ideas,
and suggestion, this dissertation has become much better.

Second, I would like to thank my families for your endless love, understanding,
support, and encouragement. Without the love, encouragement, and understanding
from my parents, Jiangwei Liu and Xiujuan Ji, I would not be able to be so decided
to pursue the Ph.D. degree at early stage during my undergrad life and I would not
ever be able to finish the Ph.D. study. Without the love and understanding from
my wife, Lejiao Wang, I would not live such a happy, although challenging, life
during my Ph.D. study. My families are the ones of only a few people who know
me very well, who understand why I continue being energetic and conscientious,
and more importantly, who believe that I can reach my dreams and realize my
social values in the future.

Third, I need to say a big thank you to the COOL Lab members and without
you guys, my Ph.D. life would definitely crash. Abdullah, the king, thank you
for being patient and tolerant on me. I wish I could be even as 50% calm as you
are. Donald, you are so nice to me and you are always patient to listen to what

xiii



I said and provide any help I need. Sergio, you do not know how much I learned
from you, not only from your research but also from how you communicate and
negotiate with people. Mohammed, or Cup (thank for coming up with this name,
Sergio!), you are so nice and smart and I do not doubt you will change the world.
Partha, thank you for your support and wisdom on the hardware tests and I am
looking forward to seeing your company for self-balancing setup with photovoltaic
cells, batteries, and everything. Michelle, you do not know how much I learned
from your presentation and writing skills. Oh my God, Wahaba, (I treat you as a
pseudo-member of our lab), as a singular point in the office, thank you for your
stories and introducing me to college football.

Finally, I would like to thank the financial support from the AMPED program
in Advanced Research Projects Agency - Energy (ARPA-E) in U.S. Department of
Energy.

xiv



Chapter 1 |
Introduction

1.1 Motivation
This dissertation examines the fundamental challenge of online health-conscious
model-based control and estimation for lithium-ion batteries. Lithium-ion batteries
are widely used for different applications, such as electronic devices, electric vehicles,
and the smart grid [5]. The popularity of lithium-ion batteries is due to their low self-
discharge rates, lack of memory effects, and high power/energy densities compared to
traditional lead-acid and nickel-metal hydride batteries [6,7]. However, the improper
use of lithium-ion batteries can result in reduced life, reduced capacity/power, and
even catastrophic thermal runaway [8]. Examples highlighting the lithium-ion
battery safety challenge include the thermal runaway accidents of the Boeing 787
Dreamliner fleet [8].

The vulnerability of lithium-ion batteries to abuse and extreme conditions
makes it necessary to design some onboard mechanisms, i.e., battery management
systems (BMS), that can manage lithium-ion batteries properly. Two key roles of a
BMS are (i) to control the usage of battery cells and (ii) estimate their internal
states. The control function in a BMS is needed for protecting the cells from
excessive degradation and guaranteeing their safety while satisfying user demand.
The estimation function is needed for predicting how much charge is left in a cell
and also for estimating the internal states that are not measurable directly through
sensors.

Conventional BMS can limit battery performance, jeopardize safety, and increase
cost unnecessarily. This is because they mostly use model-free control strategies
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that fail in constraining the internal variables responsible for aging (e.g., side
reaction overpotentials). These algorithms also suffer from poor adaptation to
battery aging. More specifically, traditional BMSs typically avoid internal damage
by constraining externally-measured variables such as battery voltage, current, and
temperature. When pushed to charge a battery as fast as possible without inducing
excessive damage, these systems often follow simple charge/discharge strategies
such as the constant-current/constant-voltage (CCCV) strategy [9]. The advantage
of traditional control strategies is their simplicity: they do not need a battery model,
and any constraints they use for ensuring safety are imposed on directly-measured
signals. However, the literature shows that these traditional control strategies
can be conservative for new batteries and aggressive (hence damaging) for old
batteries [10]. For instance, with constant cell voltage bounds, a fresh battery can
reach the voltage limit while there is still space for safe operation. However, when
the battery ages, it can be dangerous to use the same voltage bounds, since the
aged electrodes can experience dangerous side reactions while within those bounds.
From the estimation perspective, conventional BMS systems estimate available
charge by integrating input current: a method known as Coulomb counting. While
simple and model-free, Coulomb counting suffers from significant estimation error
due to (i) incorrect initial state of charge (SOC) estimates, (ii) current sensor bias,
and (iii) incorrect cell capacity estimates. To alleviate the above estimation/control
challenges, battery packs are typically oversized [5]. This typically improves battery
safety and longevity, at the expense of increased cost.

The literature shows that model-based control is superior to the traditional
model-free approach with regard to battery performance, lifespan, and cost. The
use of battery models makes it possible to predict battery dynamics and internal
variables that are related to battery aging phenomena, such as solid-electrolyte
interface (SEI) layer growth and lithium plating [10]. Physics-based battery models
are also able to predict degradation in terms of parameters and variables that have
physical significance. The literature shows that model-based battery control can
prolong effective battery life by about 20-40% [11], improve battery safety [9, 12],
increase battery energy-storing capacity [13], and decrease damage and degradation
[12]. Moreover, model-based control has the ability to adapt to variations in battery
health with time by charging new batteries more aggressively and old batteries more
safely [9]. To develop and implement a model-based controller in BMS in real time,
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one needs (i) a parameterized battery model that can capture battery dynamics;
(ii) an estimation algorithm to estimate state variables; (iii) a model-based control
algorithm for online battery control.

1.2 Key Challenges in Model-Based Battery Estima-
tion and Control
Model-based battery state estimation and control may, as explained above, have
many potential benefits, but it also comes a price. Two potential challenges that
motivate this dissertation are: (i) the computational cost associated with model-
based battery control; and (ii) the estimation accuracy required for such control.
Theses challenges are discussed below.

1.2.1 Challenge 1: The Computational Cost of Model-Based
Battery Control

Model predictive control (MPC) is one particularly attractive approach for online
battery management. It has the advantages of being well-suited for enforcing
health-related battery control constraints. It also has the attractive feature of
re-optimizing the battery charge/discharge trajectory at every sampling instant,
thereby potentially achieving some degree of robustness to battery modeling un-
certainties. The tools used in this dissertation are useful for many battery control
design methods, including both MPC and other design approaches (e.g., offline
trajectory optimization, model-reference adaptive control, etc.). However, MPC is
particularly useful for illustrating the fundamental need for computational efficiency
in model-based battery control. An MPC controller must be capable of using a
battery model for trajectory optimization at every time step of controller operation.
Moreover, this optimization must be completed in less than one time step. This is
quite problematic for the following reasons:

Challenge 1.1: Physics-based battery models are computationally
complex. It is necessary for model-based control purposes to adopt battery
models that can represent the underlying dynamics governing battery performance
and aging as accurately as possible. There is a broad spectrum of lithium-ion
battery models in the literature, with many different levels of fidelity and complexity.
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At one end of this spectrum are lumped-parameter equivalent-circuit models (ECM),
which represent battery dynamics using simple circuit elements such as resistors
and capacitors. These models are limited in their ability to provide direct physical
insights into internal battery phenomena, such as solid- and solution-phase diffusion
dynamics. This motivates the literature’s exploration of higher-fidelity, physics-
based models such as single-particle models (SPMs), extended single particle models
(ESPMs), and porous pseudo-two dimensional (P2D) models such as the well-known
Doyle-Fuller-Newman (DFN) model [7, 14]. The distinctions between these models
can be explained, quite simply, as follows: a single-particle model represents each
battery electrode’s solid-phase diffusion dynamics by modeling the behavior of
just one representative solid particle per electrode, neglecting the dynamics of
the battery’s electrolyte. An enhanced single-particle model also represents each
electrode’s solid-phase dynamics by a single particle, but adds electrolytic diffusion
effects between the representative particles in the negative and positive electrodes.
Finally, a porous pseudo-2D model allows solid-phase diffusion dynamics to be
different at different points along the thickness of the battery, and also accounts for
solution-phase diffusion dynamics. This leads to a “pseudo”-2D model because there
are now two dimensions in which diffusion can occur: the thickness of the electrode,
and the radius of each solid-phase particle. These solid- and solution-phase diffusion
processes are governed by one-dimensional partial differential equations (PDEs),
with coupling at the boundaries between these PDEs [15]. All of these models can
be enhanced to capture not just electrochemical battery behavior, but also the
coupling between thermal and electrochemical behaviors, leading to models such as
the temperature-enhanced single-particle battery model (SPM-T) [16].

An important question in model-based lithium-ion battery control is: which
of the above models should one use for control? All of the above models certainly
have value for optimization and control studies. However, one can argue that only
the physics-based, rather than equivalent-circuit, models are suitable for predicting
internal battery variables associated with aging and degradation phenomena, e.g.,
the side reaction overpotentials responsible for lithium plating and solid electrolyte
interphase (SEI) layer growth. One can also observe that physics-based lithium-ion
battery models, such as the SPM, ESPM, SPM-T, and DFN models, typically utilize
partial differential equations (PDEs) to describe internal battery diffusion dynamics.
This makes the models infinite-dimensional, thereby making model-based control
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potentially computationally challenging.
There is a rich existing literature on discretizing, or “reformulating”, PDE-

based lithium-ion battery models to reduce them into lumped-parameter models
with finite numbers of state variables. The spatial dimension can be discretized
using finite difference or finite element methods, which often furnish high-order
lumped-parameter models [17]. Subramanian et al. approximate the solid phase
concentration profile using parabolic and quadratic polynomials, respectively [18].
Long et al. reduce battery models using the orthogonal collocation on finite
elements, which is shown to be better than the finite volume approach with equal
discretization points [19]. Smith et al. approximate the diffusion dynamics using
the residue grouping method, which has good spatial resolution even with a low
order model [17]. Forman et. al. apply the Padé approximation tool to the
spherical diffusion centered at low frequency, thereby obtaining analytic reduced-
order transfer function representation of solid-phase diffusion dynamics [20]. Both
the residue grouping and the Padé approximation are important in the sense that
the residue grouping method is more robust to a wide frequency window and the
Padé approximation is more accurate at a target frequency [21]. Finally, Kehs
et al. and Mayhew et al. adopt projection-based model reduction techniques for
solid-phase diffusion dynamics [22,23].

The above use of model reformulation is quite valuable for extracting accurate
finite-dimensional representations of lithium-ion battery dynamics from the under-
lying infinite-dimensional diffusion PDEs. This reduces the computational cost of
model-based lithium-ion battery control significantly, and model reformulation is
in fact an important foundation for the work in this dissertation. However, even
with model reformulation, accurately capturing the dynamics of lithium-ion battery
behavior - particularly at high charge/discharge rates - often requires reformulated
models with a significant number of state variables. This can be quite challenging
for optimization and control applications.

Challenge 1.2: Battery trajectory optimization problems are com-
putationally difficult to solve. Battery dynamics are typically nonlinear [24].
For the single-particle model with temperature dynamics (SPM-T), for instance,
the nonlinearity is introduced by at least five factors. First, the Butler-Volmer
equation which relates the intercalation rates in the positive and negative battery
electrodes to the corresponding overpotentials is nonlinear. Second, heat generation
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in a lithium-ion battery is also nonlinear in terms of the battery’s internal states
and inputs. This is true for both reversible heating, which is a function of input
current squared, and irreversible heating, which is a bilinear function of input
current and temperature. Third, the Arrhenius equation, which expresses the
dependency of battery model parameters on temperature, is also nonlinear. Fourth,
the relationship between solid-phase ion concentrations and electrode reference
potentials in both the positive and negative electrodes is also nonlinear for most
battery chemistries, especially over a broad range of states of charge. Finally,
lithium-ion battery electrode entropy coefficients, which govern reversible internal
heat generation during charge/discharge, also typically vary in a nonlinear manner
with state of charge. The nonlinearity of battery dynamics, and non-convexity of
the resulting model-based optimal battery control problems, can make model-based
optimal battery control computationally very challenging even for low-order battery
models.

The literature presents at least five different families of algorithms for model-
based battery charge/discharge trajectory optimization, grounded in: (i) dynamic
programming [25], (ii) genetic algorithm [26,27], (iii) reference governor methods
[5,12], (iv) direct transcription [28,29], and (v) pseudospectral optimization [30,31].
All of these algorithms are valuable, in the sense that they contribute to a growing
literature showing the potential benefits of model-based battery control. However,
in light of the above discussion on nonlinearity/non-convexity, it is natural to ask
whether these approaches are well-suited for online model-based optimal battery
control. Dynamic programming and evolutionary optimization algorithms are
both appealing for non-convex optimization problems, but their computational
cost is prohibitive for most online control applications. This raises the question
of whether other trajectory optimization methods from the literature, such as
pseudo-spectral methods, can be used for solving model-based optimal battery
control problems in a manner that is computationally tractable and does, indeed,
improve battery performance and longevity compared to classical BMS controllers.
A key goal of this dissertation is to explore the degree to which pseudo-spectral
optimization, in particular, can be combined with battery model reformulation
and differential flatness to enable computationally tractable, nonlinear health-
conscious battery control. In pursuing this goal, the dissertation does not attempt
to provide mathematical guarantees of global control optimality or proximity to
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global optimality. However, it does explore the degree to which one can use the
above tools for computationally tractable, health-conscious online battery control.

1.2.2 Challenge 2: Battery State of Charge Estimation Accu-
racy

To fully achieve the benefits of model-based battery control, one must be able to
estimate the state variables of underlying battery models accurately. Inaccurate
estimation of internal battery state variables can lead to accidental cell damage and
reduced battery life. The state variables are used to describe the internal dynamics
of charge diffusion and accumulation in a lithium-ion battery. For instance, one
particularly important state variable in any battery model is the battery’s state of
charge (SOC), defined as the amount of charge stored in the battery divided by
its nominal charge capacity. Because there is no sensor that can “measure” SOC
directly, one has to estimate it.

There is a significant existing literature that examines both battery SOC
estimation and the factors affecting SOC estimation accuracy. Examples of these
factors include sensor noise, mismatch between the order of a battery model
and the order a battery’s true dynamics, and inaccuracy in battery parameter
estimation [32–34]. One can classify existing SOC estimation algorithms into open-
loop and closed-loop algorithms [35]. Open-loop SOC estimation, also known as
Coulomb counting, is vulnerable to at least three major sources of estimation error,
namely: (i) incorrect initialization of the SOC estimate, (ii) current sensor bias, and
(iii) incorrect estimation of cell charge capacity. Closed-loop estimation algorithms
are typically less sensitive to these three sources of error. Some of the methods
used for closed-loop battery SOC estimation in the literature include Luenberger
filtering [36, 37], backstepping [38], recursive least squares estimation [39], Kalman
filtering [40–46], and optimization-based estimation [47,48].

The SOC estimation literature is quite rich and mature, in the sense that it
offers many different algorithms for SOC estimation and also different perspectives
on the accuracy of these algorithms. However, one critical challenge remains
relatively unexplored in this literature. To estimate a battery’s SOC, one typically
measures physical quantities such as battery input current, terminal voltage, and
temperature (ambient, surface, and/or internal). All of these measurements can be
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quite noisy in practical battery applications: a fact that motivates the use of total
least squares (TLS) for the online estimation of battery state variables (including
SOC). A key goal of this dissertation is to perform nonlinear TLS battery state
estimation online, in a computationally efficient manner, using a moving-horizon
approach. A closely-related goal is to validate the resulting estimation algorithm
experimentally. The use of nonlinear total least squares for moving-horizon online
battery state estimation, in a computationally efficient manner, using a physics-
based combined thermo-electrochemical battery model, is in and of itself a novel
addition to the literature. There is some existing work in the literature, for example,
on moving-horizon battery SOC estimation using simple equivalent-circuit models,
rather than physics-based ones [49–51]. The work in this dissertation expands
significantly beyond this existing work, and also validates the resulting estimation
algorithm experimentally.

1.3 Contributions
The overarching goal of this dissertation is to address the above challenges and
furnish a computationally tractable framework for online health-conscious model-
based battery control and state estimation estimation. In pursuing this goal, the
dissertation builds on three key tools from the literature.

First, the dissertation exploits the differential flatness of lithium-ion battery
dynamics, including the flatness of Fick’s second law of diffusion, to optimize
the trajectory of a small number of flat output variables that capture all of the
underlying battery dynamics. The concept of the differential flatness originated
in a seminal work by Fliess et al. [52]. A dynamic system is differentially flat
if there exists a flat output such that the system’s states and the inputs can be
directly expressed in terms of the flat output and a finite number of its derivatives.
The concept of flatness can be considered an extension of the classical notion of
controllability from linear system theory to nonlinear systems [52] and has been
used in optimization, trajectory planning, and control design [53–56]. Fick’s second
law of diffusion is a special case of the generalized heat diffusion equation presented
in [57], and is therefore differentially flat [1, 58, 59]. One major benefit of adopting
differential flatness in optimization is that only the flat output trajectory needs
to be optimized and all the states and inputs can be expressed as functions of
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the flat output and a finite number of its derivatives. As a result, the number of
continuous-time optimization variables is reduced significantly: a fact that boosts
computational efficiency significantly, especially for nonlinear battery dynamics,
e.g., electrochemical-thermal battery models.

Second, the dissertation employs an efficient model order reduction technique
(namely, Legendre polynomial-based orthogonal projection) to represent the dy-
namics of each battery electrode using a small number of state equations. For
orthogonal projection-based model order reduction, lithium-ion concentration is
expressed as a sum of Legendre spatial basis functions following [22]. Since the only
unknown variables are the coefficients associated with Legendre polynomials, the
dissertation reformulates the dynamics using 3 state variables in an efficient and
accurate way. The specific choice of spatial basis functions for model reformulation
does not limit the work presented in this dissertation: other choices (e.g., Chebyshev
polynomials) can be used with equal ease [60]. For Padé approximation, the PDEs
governing spherical diffusion are Laplace transformed and approximated using a
rational polynomial transfer function centered at a low frequency.

Third, the dissertation optimizes the above flat output trajectory using pseu-
dospectral methods because such methods: (i) have high convergence rates, are
computationally very efficient, and (ii) can solve nonlinear and nonconvex optimiza-
tion problems [61,62]. Originally developed for the numerical solution of differential
equations, pseudospectral methods have been recently adopted as efficient tools for
solving optimal control problems [63,64]. These methods transform a continuous
optimization problem into a nonlinear programming (NLP) problem which can be
solved using well-developed NLP algorithms [61,63].

The above three tools, together, constitute a framework that makes it possible,
in this dissertation, to solve two interconnected optimization problems, namely: (i)
optimal battery state estimation and (ii) health-conscious optimal battery control.
The dissertation solves both of these problems using an online, moving-horizon
approach. For the health-conscious model-based battery control problem, the
work in this dissertation furnishes a nonlinear model-predictive control (NMPC)
algorithm.The fact that NMPC involves re-optimizing the battery control trajectory
every time step can be quite attractive in the presence of modeling uncertainties [65,
66]. For battery SOC estimation, the work in this dissertation furnishes a moving-
horizon estimation (MHE) technique with a total least squares (TLS) estimation
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objective. One particularly appealing feature of MHE is its ability to explicitly
incorporate constraints on state estimates [67].

All of the above tools build on established concepts from the control literature,
such as differential flatness, pseudo-spectral optimization, and model reformulation.
This dissertation applies these tools in a unified framework for more efficient and
better battery model-based control and estimation. Specifically, the dissertation
makes 5 contributions to the literature:

1. Chapter 2 exploits the differential flatness of solid-phase lithium-ion battery
diffusion dynamics, together with pseudo-spectral optimization and diffusion
model reformulation, to decrease the computational load associated with
health-conscious battery trajectory optimization significantly. This contribu-
tion forms a foundation for much of the subsequent work in this dissertation,
but is limited to isothermal single-particle battery models with significant
time scale separation between anode- and cathode-side solid-phase diffusion
dynamics.

2. Chapter 3 extends the results of Chapter 2 in two ways. First , it exploits
the law of conservation of charge to enable flatness-based, health-conscious
battery trajectory optimization for single particle battery models even in the
absence of time scale separation between the negative and positive electrodes.
Second, it performs this optimization for a combined thermo-electrochemical
battery model, thereby relaxing the above assumption of isothermal battery
behavior and highlighting the benefits of flatness-based optimization for a
nonlinear battery model.

3. Chapter 4 presents a framework for flatness-based pseudo-spectral combined
state and parameter estimation in lumped-parameter nonlinear systems.
This framework enables computationally-efficient total least squares (TLS)
estimation for lumped-parameter nonlinear systems. This is quite relevant to
practical lithium-ion battery systems, where both battery input and output
measurements can be quite noisy.

4. Chapter 5 utilizes the above flatness-based TLS estimation algorithm for
moving horizon state estimation using a coupled thermo-electrochemical
equivalent circuit model of lithium-ion battery dynamics.
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5. Chapter 6 extends the battery estimation framework from Chapter 5 to enable
moving horizon, flatness-based TLS state estimation in thermo-electrochemical
single-particle lithium-ion battery models, and demonstrates this framework
using laboratory experiments.

The remainder of this dissertation highlights these above contributions in battery
model-based control and estimation and Chapter 7 concludes the dissertation with
a brief summary of the completed work.
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Chapter 2 |
Flatness-Based Optimization of
Lithium-Ion Battery Charging

2.1 Introduction
This chapter examines the problem of optimizing the charge trajectory of a lithium-
ion battery cell to meet a desired target state of charge (SOC) while avoiding
damaging side reactions such as lithium plating. The degradation side reaction
emphasized in this chapter is lithium plating. Unlike the CCCV strategy with fixed
voltage constraint, this chapter places physics-based constraints on the overpotential
governing the lithium plating side reaction. This leads to optimized input protocols
that can increase battery life and safety by protecting the battery from lithium
plating. 1

Traditional battery management systems typically avoid internal damage by con-
straining externally-measured variables such as battery voltage and current. When
pushed to charge a battery as fast as possible without inducing excessive damage,
these systems often follow the simple and well-known constant-current/constant-
voltage (CCCV) charging strategy [9]. This is an excessively conservative approach.
In fact, the literature shows that compared to this traditional approach, model-
based control can prolong effective battery life by about 20-40% [11], improve
battery safety [9, 68], increase battery energy-storing capacity [13], and decrease
damage/degradation [69]. Moreover, model-based control has the ability to adapt to

1 The work presented in this chapter is based on a peer-reviewed journal publication by the
dissertation’s author. The publication has already appeared in the ASME Journal of Dynamic
Systems, Measurement and Control [58].
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variations in battery health with time by charging new batteries more aggressively
and old batteries more safely [9].

The above advantages of model-based battery management come at a price.
Physics-based battery trajectory optimization problems can be computationally
expensive for at least two reasons:

• First, battery trajectory optimization problems are typically nonlinear and
nonconvex. In this chapter, for instance, the Butler-Volmer equation relating
the rates of intercalation reactions to the overpotentials driving these reactions
is nonconvex. Additional nonlinearity and nonconvexity are introduced by the
relationship between solid-phase concentrations and reference potential in the
positive electrode. Moreover, the side reaction overpotential governing lithium
plating is a nonconvex function with respect to the solid-phase concentrations.

• Second, the dynamics of lithium-ion batteries are governed by coupled partial
differential equations describing effects such as diffusion, migration, and
intercalation. When these dynamic systems are discretized in space, the
resulting models can be high-order, which furnishes optimization problems
with large numbers of variables.

The literature presents at least four different families of algorithms for battery
model-based charge/discharge trajectory optimization, grounded in (i) dynamic
programming [25], (ii) genetic algorithms [26,27], (iii) direct transcription [28,29],
and (iv) pseudospectral optimization [30]. All of these algorithms are valuable, in
the sense that they contribute to a growing literature showing the potential benefits
of model-based battery control. However, these algorithms also have limitations.
The tools of dynamic programming and genetic algorithms are computationally
expensive: a fact that limits their suitability to extensive optimization and control
studies. Additionally, while pseudospectral methods are known for their compu-
tational advantages [61, 63], the use of pseudospectral methods and other direct
transcription methods in the literature fails to exploit the additional computational
benefits attainable because of the differential flatness of battery diffusion dynamics.

This chapter addresses these computational limitations and proposes a tractable
framework for battery charge/discharge trajectory optimization by combining
four key tools. First, the chapter exploits time scale separation to obtain a
singularly perturbed single particle model (SPM) that neglects the electrode with
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faster diffusion dynamics. Specifically, this model represents the faster electrode’s
dynamics using an integrator while retaining the dynamics of the slower electrode.
This reduces the number of state variables required for the trajectory optimization
by half.

Second, the chapter employs efficient orthogonal projection techniques to rep-
resent the dynamics of the slow battery electrode using only 3 state equations.
The lithium ion concentration is expressed as a sum of Legendre spatial basis
functions following [22]. Since the only unknown variables are the coefficients
(which are functions of time) associated with the Legendre polynomials, the chapter
reformulates the dynamics using 3 state variables in an efficient and accurate way.
The specific choice of spatial basis functions for model reformulation does not limit
the work presented in this chapter: other choices (e.g., Chebyshev polynomials)
can also be used [60].

Third, the chapter exploits the differential flatness property of Fick’s second
law of diffusion to optimize a single scalar trajectory of a flat output variable
that captures all of the battery’s dynamics. The concept of differential flatness
is introduced by Fliess et al. [52]. A dynamic system is differentially flat if there
exists a flat output such that the states and the inputs can be directly expressed in
terms of the flat output and a finite number of its derivatives. Fick’s second law of
diffusion is a special case of the generalized heat diffusion equation presented in [57],
and is known to be differentially flat. One major benefit of adopting differential
flatness in optimization is that only the flat output trajectory needs to be optimized
and all the states and inputs can be expressed as functions of the flat output and
a finite number of its derivatives. As a result, the number of continuous-time
optimization variables is reduced to one: a fact that boosts computational efficiency
significantly.

Finally, the chapter optimizes the above flat output trajectory using pseu-
dospectral methods because such methods: (i) have high convergence rates and
are computationally efficient, (ii) can solve nonlinear and nonconvex optimization
problems [61,62]. Originally developed for the numerical solutions of differential
equations, pseudospectral methods have been recently adopted as efficient tools
for solving optimal control problems [63, 64]. When solving battery trajectory
optimization problems using traditional discretization methods, one can easily end
up with hundreds or thousands of optimization variables. Pseudospectral methods,
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in contrast, discretize problems using a set of unevenly distributed collocation points
and are known to be very efficient [70]. These methods transform a continuous
optimization problem into a nonlinear programming (NLP) problem which can be
solved using well-developed NLP algorithms [61,63].

All of the above tools build on established concepts from the control literature,
but this chapter combines them into a single, unified framework for computationally
efficient battery charge/discharge trajectory optimization. The end product is a
toolset that makes it possible to solve nonconvex battery charge/discharge trajectory
optimization in a manner that accounts for physics-based side reaction constraints
and is 5 times more computationally efficient than pseudospectral optimization
alone. In addition to this important computational benefit, this chapter exploits
differential flatness for electrochemical battery trajectory optimization. Further
work building on this chapter extends this research to online battery model predictive
control, and is discussed in subsequent chapters [1].

The remainder of the chapter is structured as follows. Section 2.2 presents
the assumptions and governing equations for the SPM. Section 2.3 formulates
the optimization problem with a physics-based side reaction constraint. Section
2.4 briefly introduces differentially flat systems and demonstrates that battery
diffusion dynamics are differentially flat. Section 2.5 briefly describes the Gauss
pseudospectral method and the flatness-based Gauss pseudospectral method. In
Section 2.6, the results and discussion are presented and compared to the standard
charging strategy. We also demonstrate the efficiency of the proposed framework.
Finally, the chapter is concluded in Section 2.7.

2.2 Single Particle Model
It is necessary for model-based control to adopt battery models which can represent
the dynamics of lithium-ion batteries with enough accuracy and computational
efficiency. The dynamics of a lithium-ion battery can be described by several
models with different assumptions and fidelities. Commonly used models include
equivalent circuit models (ECM), the SPM model, extended SPM model, and the
Doyle-Fuller-Newman (DFN) model [1,14–16]. This chapter utilizes the SPM model
to achieve different levels of tradeoff between accuracy and computational efficiency.

In this section, the assumptions and governing equations of the SPM model
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Figure 2.1: Single particle model (SPM)

are briefly described. Then model order reduction techniques are introduced to
transform the partial differential equations into ordinary differential equations.
Model parameters are obtained from [3] for a commercial A123 LiFePO4 (LFP)
26650 2.3Ah cell and the reference potential curve for each electrode is obtained
from [2].

The SPM assumes that [6, 71]:

1. Electrolytic diffusion is sufficiently fast, and the electrolyte is sufficiently
concentrated, such that electrolyte concentration ce can be treated as constant
throughout the spatial and temporal domains;

2. Ohmic effects in both the solid and electrolyte phases can be represented by
a single lumped resistance;

3. The spatial distribution of charge across the thickness of each electrode is
almost uniform, such that representing each electrode by an “averaged" single
particle is justified.

2.2.1 Governing Equations

The governing equations for the SPM are presented as follows. Solid phase diffusion
dynamics are central to a SPM, and are represented by Fick’s second law of diffusion.
The governing differential equation is

∂cs,j(r, t)
∂t

= Ds,j

r2
∂

∂r

(
r2∂cs,j(r, t)

∂r

)
(2.1)

where cs,j is the lithium-ion concentration in the solid particles, Ds,j(T ) is the solid
phase diffusion coefficient, r is the radial coordinate, j = p corresponds to the
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positive electrode, and j = n corresponds to the negative electrode.
The boundary conditions at the particle center (r = 0) and particle surface

(r = Rj) are

∂cj(r, t)
∂r

∣∣∣∣
r=0

= 0 (2.2)

∂cj(r, t)
∂r

∣∣∣∣
r=Rj

= − Jj(t)
FDs,jaj

(2.3)

where F is Faraday’s number and aj is the specific interfacial area defined as

aj = 3εj
Rj

(2.4)

The term Rj is the particle radius and εj is active material volume fraction.
The molar flux of lithium ions Ji is defined as

Jn(t) = − I(t)
SnLn

for negative electrode

Jp(t) = I(t)
SpLp

for positive electrode
(2.5)

where I is the input current, defined as positive for charging, Sj is the sheet area of
electrode j, and Ln and Lp are the thickness of the negative and positive electrode,
respectively.

The bulk state of charge (SOC) is defined as

SOCj(t) = cs,j,avg(t)
cs,j,max

(2.6)

where cs,j,avg(t) is the average lithium-ion concentration of the electrode, i.e.,

cs,j,avg(t) =
∫ Rj

0
cs,jdr (2.7)

and cs,j,max is the maximum concentration of lithium-ions of electrode.
The surface SOC is defined as

SOCsurf
j (t) =

csurfs,j (t)
cs,j,max

(2.8)
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where csurfs,j (t) = cs,j(Rj, t) is the surface lithium-ion concentration of electrode.
Battery SOC, SOCcell, is related to the electrode bulk SOC, SOCj, using the

stoichiometry relationship shown below:

SOCcell = SOCn(t)− θn,0
θn,100 − θn,0

(2.9)

SOCcell = θp,100 − SOCp(t)
θp,100 − θp,0

(2.10)

where the stoichiometry values θn,0, y0, θn,0, and θp,100 are defined as follow

θn,0 =cs,n,avg,0%(t)
cs,n,max

, θn,100 = cs,n,avg,100%(t)
cs,n,max

(2.11)

θp,0 =cs,p,avg,0%(t)
cs,p,max

, θp,100 = cs,p,avg,100%(t)
cs,p,max

(2.12)

where cs,j,avg,0%(t) is the minimum concentration of electrode j and cs,j,avg,100%(t) is
the maximum concentration of electrode j. For instance, when the battery is empty,
the negative electrode concentration is cs,n,avg,0% and positive electrode concentration
is cs,p,avg,100%. The stoichiometry value is the ratio of bulk concentration in each
electrode to the max concentration.

The Butler-Volmer equation describes the relationship between the molar flux
of lithium ions and the potential difference between the solid and solution phases
at the reaction boundary and can be expressed as

Jj(t) = i0,j(t)
[
exp

(
αaF

RT
ηj(t)

)
− exp

(
−αcF
RT

ηj(t)
)]

(2.13)

where αa is the negative electrode transfer coefficient, αc is the positive electrode
transfer coefficient, R is the ideal gas constant, T is the cell temperature, and η is
the overpotential. The exchange current density i0 is defined as

i0,j(t) = ajkj(cs,j,max − csurfs,j )αa(csurfs,j (t))αccαae (2.14)

where kj is the reaction rate constant and ce is the lithium-ion concentration in
solution.

The overpotential ηj is defined as the difference between the solid and solution
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potential minus the open-circuit potential (OCP) of electrode

ηj(t) = φ1,j(t)− φ2,j(t)− Uj(SOCsurf
j (t)) (2.15)

where φ1,j is the solid phase potential, and φ2,j is the solution phase potential. The
term Uj is the OCP as a function of surface SOC.

The potential drop in the solution phase between two electrodes is

φ2,p(t)− φ2,n(t) = I(t)Rcell (2.16)

where Rcell(T ) is a lumped parameter.
The cell voltage is defined as the potential difference between positive and

negative electrode
Vcell(t) = φ1,p(t)− φ1,n(t) (2.17)

This chapter adopts a physics-based side reaction constraint from [9] for health-
conscious optimal charging. This side reaction represents lithium plating and can
be expressed as

ηsr(t) = φ1,n(t)− φ2,n(t)− Usr(SOCsurf
n (t)) ≥ 0

= ηn(t) + Un(SOCsurf
n (t))− Usr(SOCsurf

n (t)) ≥ 0
(2.18)

where ηsr is the side reaction overpotential and Usr denotes the equilibrium potential
of the side reaction and is zero due to the deposit of metallic lithium for lithium-ion
batteries [9, 10].

2.2.2 Model Order Reduction

For efficient optimization we first employ time-scale separation for the SPM. For
the model parameters used in this study, the dynamics of the positive electrode are
much (about 100 times) faster than the negative electrode, as seen by comparing
the eigenvalues of the dynamics of the two electrodes. This makes it possible
to retain the electrode with slower dynamics while modeling the electrode with
faster diffusion dynamics as a pure integrator. To achieve this, we consider the
differential equation (2.1) and its boundary conditions (2.2)-(2.3) only for the
negative electrode. The lithium-ion concentration of the positive electrode is
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recovered using the law of conservation of lithium-ions. The concentration of
lithium ions in the positive electrode is, therefore, described only by the bulk SOC.
The fact that bulk SOC is computed for both electrodes means that the pure
integration dynamics associated with bulk SOC occur twice in a SPM. Elimination
of this redundancy in state variables furnishes a minimal realization of battery
dynamics where only the dynamics of the slower electrode are modeled, and bulk
SOC for the faster electrode is an algebraic function of the slower electrode’s bulk
SOC. This reduces the total number of state variables by half.

Fick’s law of diffusion (2.1) is a partial differential equation, and needs to
be discretized into a set of ordinary differential equations before a SPM can be
used for control studies. This discretization process is often referred to as “model
reformulation” in the electrochemistry literature [60]. We achieve this reformulation
by projecting Fick’s law onto Legendre spatial basis functions using a Galerkin
method, as presented in [22]. The reformulated SPM represents diffusion dynamics
using only 3 state variables. The above process is briefly shown below and more
details on how to implement Legendre polynomials and orthogonal projection can
be found in [22].

The lithium-ion concentration in the negative electrode cn(r, t) can be approx-
imated by a linear combination of Legendre polynomials, which separates the
temporal and spatial dynamics as

cn(r, t) ≈
NL∑
i=0

Pi(r)βi,j(t) (2.19)

where Pi(r) with even subscripts i = 0, 2 . . . , NL are Legendre polynomials, and βi,j
is the unknown coefficient for the negative electrode n. Because of the boundary
condition (2.2), we can only adopt the symmetric Legendre polynomials, i.e.,
i = 0, 2 . . . , NL.

The Legendre polynomials are then normalized such that

∫ Rn

0
Pi(r)Pk(r)dr =

 0 if i 6= k

1 if i = k
(2.20)

where Rn is the radius of the particles in the negative electrode.
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Substituting Eq. (2.19) into Eq. (2.1) gives

NL∑
i=0

Pi(r)β̇i,j(t) = Ds,n

2
r

NL∑
i=0

dPi(r)
dr

βi,j(t) +
NL∑
i=0

d2Pi(r)
dr2 βi,j(t)

 (2.21)

where β̇i,j(t) is the derivative with respect to time. Then we use the orthogonal
projection techniques by pre-multiplying both sides of (2.21) by

[
P0, P2, . . . , PNL

]T
and then integrating both sides in space from 0 to Rn. This furnishes the dynamics
of the coefficients

[
β0,j, β2,j, . . . , βNL,j

]T
.

In this chapter, we employ 4 symmetric Legendre polynomials, as suggested
in [72], to represent the negative concentration, i.e., NL = 6. In [72], the Legendre-
based projection method is used to discretize the PDE diffusion dynamics. It shows
that in the radial dimension one can approximate diffusion dynamics relatively
accurately with only 4 polynomials. There is little improvement in accuracy with
more polynomials than 4. Therefore, in this chapter, four polynomials are chosen.

The diffusion dynamics Eq. (2.1) can then be expressed as the following

β̇0,n

β̇2,n

β̇4,n

β̇6,n

 = Ds,n

R2
n


0, 9

√
5, 20, 29.4

√
13

0, 0, 35
√

5, 16.8
√

65
0, 0, 0, 46.2

√
13

0, 0, 0, 0




β0,n

β2,n

β4,n

β6,n

 (2.22)

Similarly, the boundary condition in Eq. (2.3) can be expressed as

3
Rn

√
5

2Rn

β2,n + 10
Rn

√
9

2Rn

β4,n + 21
Rn

√
13

2Rn

β6,n = − Jn(t)
Ds,nan

(2.23)

From Eq.(2.22), it can be seen that the term β6 does not have dynamics and
can be expressed as a function of β0,n, β2,n, β4,n using the Eq. (2.23). Since current
I is chosen to be the input of the battery in this chapter, one needs to substitute
Eq. (2.5) into Eq. (2.23). Then based on (2.22) and (2.23), we can derive the state
space model describing the dynamics of the negative electrode as

ẋn = Anxn +Bnu (2.24)

where the state vector is defined as xn = [β0,n, β2,n, β4,n]T , and the input u is the
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current I. Different outputs can be computed algebraically from these state and
input variables, including the expansion coefficient β6,n and the electrode surface
concentration cn(R, t). Computing the surface concentration is important because
the main and side reaction reference potentials are defined with respect to it.

Note that the diffusion model (2.24) only represents the negative electrode
(the one with slower dynamics). The SPM using time-scale separation relates the
positive electrode (representee using an integrator) to the negative electrode via
the fact that the current going through both electrodes is the same. Specifically, we
assert that because of conservation of charge, there is an affine relationship between
the bulk ion concentrations in the negative and positive electrodes. This furnishes
a dynamic model for the whole battery.

2.3 Problem Formulation
While the chapter proposes an efficient framework for general battery trajectory
optimization, the optimal charging problem is used to for demonstration purposes.
To charge a battery in a health-conscious manner, the optimization problem is
constrained by a side reaction constraint governing the rate of degradation via
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lithium-ion plating

min
u(t)

J =
∫ tf

t0
(SOCcell(t)− SOCref )2 dt

s.t:

ẋn(t) = Anxn(t) +Bnu(t)

SOCcell = SOCn(t)− θn,0
θn,100 − θn,0

SOCn(t) = cs,n,avg(t)
cs,n,max

SOCsurf
n (t) =

csurfs,n (t)
cs,n,max

cs,n,avg(t) =
∫ Rn

0
cs,ndr

cn(r, t) ≈
M∑
i=0

βn,i(t)Pi(r)

Jn(t) = i0,n(t)
[
exp

(
αaF

RT
ηn(t)

)
− exp

(
−αcF
RT

ηn(t)
)]

ηsr(t) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ I(t) ≤ Imax

SOCcell(t0) = SOCini

(2.25)

where ηsr is side reaction overpotential, Imax is the maximum allowed current,
SOCref is the reference SOC level, and SOCini is the known initial SOC.

The goal of this problem is to charge the cell to a desired SOC, SOCref , while
avoiding internal charge concentrations and overpotentials conducive to damaging
side reactions such as lithium plating. While there is no explicit constraint on
SOC, the fact that lithium plating is more likely to occur at higher SOCs [73]
means that the above formulation provides implicit protection against overcharging.
We adopt the physics-based constraint Eq. (2.18) governing the reaction rate of
lithium plating which is essentially is a function of the state variables. This side
reaction constraint is very valuable compared to the standard CCCV charging
strategy which uses only voltage and current limits. Chaturvedi et al. show that
with this side reaction constraint, one can charge cells in a more robust manner
in the sense that one can charge new cells more aggressively and aged cells more
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safely compared to the CCCV strategy [10].
It is challenging to solve problem (2.25) efficiently for at least two reasons.

First, the underlying dynamic model can make the optimization problem (2.25)
computationally expensive. Electrochemistry-based battery models need to be
discretized or reformulated for control purposes. Traditional discretization methods,
such as the finite difference method, furnish very large state-space representations of
battery dynamics to achieve reasonable levels of accuracy. The model reformulation
approach used here is more computationally efficient. However, even after employing
model reformulation techniques from Section 2.2 there are still 3 state variables.
This can lead to hundreds of optimization variables using traditional nonlinear
optimization techniques (e.g., input parameterization method), since these methods
need to discretize each optimization variable in the time domain, which will produce
high-dimensional optimization problems. Second, problem (2.25) is nonconvex due
to its nonconvex constraint set. The side reaction overpotential ηsr is a nonconvex
function with respect to the negative SOC. This makes the problem difficult to
solve.

To address these challenges, this chapter adopts 2 more tools besides time-scale
separation and orthogonal projection-based model reformulation. First, we further
reformulate the SPM from the previous section by exploiting the differential flatness
property, thereby expressing all of the battery’s dynamics in terms of a single scalar
trajectory of the flat output. Second, we use the Gauss pseudospectral method
(GPM) to optimize the trajectory of the flat output. The resulting nonlinear
programming problem remains nonconvex. We address this challenge numerically
using a multi-start NLP algorithm, but other approaches are possible, including
evolutionary optimization techniques.

2.4 Differentially Flat Systems
We begin this section by providing an “intuitive” discussion of differential flatness,
then proceed to a formal mathematical definition of the differential flatness.
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2.4.1 Introduction to Differential Flatness

To understand the concept of differential flatness, consider Fick’s law of diffusion
over a spherical medium. If charge concentration as a function of time, t, and
radius, r, is cj(t, r), and if the diffusion medium has a constant diffusivity, then
Fick’s law translates to the PDE shown in Eq. (2.1). The PDE, in and of itself, is
not necessarily differentially flat. Differential flatness relates to both the governing
differential equations for a given dynamic system and the boundary conditions
acting on this system. In applying Fick’s law of diffusion to a spherical medium,
one must set the spatial gradient of concentration at the center of the given sphere
to zero to satisfy Eq. (2.2). This ensures that no diffusion takes place into or out
of the zero-volume center point of the sphere. Moreover, the concentration gradient
at the sphere’s surface is related to an input forcing term (i.e., an intercalation
rate) through a Neumann boundary condition.

Given Fick’s law of diffusion and its boundary conditions, suppose that the
concentration of charge at the center of the sphere , cj(0, t), is known completely
as a function of time. In other words, the function, cj(0, t) together with all of its
time derivatives is known. What additional information can be derived from this
knowledge? For example, can charge concentration at some infinitesimal radius δr,
be computed from the above information?

To answer this question, one can express the concentration at δr using the
Taylor series expansion at the center r = 0

cj(δr, t) = cj(0, t) + ∂cj(0, t)
∂r

δr + 1
2
∂2cj(0, t)
∂r2 δ2

r +H.O.T (2.26)

where the term H.O.T stands for higher-order terms which can be neglected for a
sufficiently small δr. Moreover, the first-order term in the above expansion is zero
by virtue of the center point boundary condition on concentration gradient in Eq.
(2.2). Thus,

cj(δr, t) ≈ cj(0, t) + 1
2
∂2cj(0, t)
∂r2 δ2

r (2.27)

where the approximation becomes more and more accurate as δr → 0. Additionally,
applying Fick’s law of diffusion in Eq. (2.1) to the center concentration gives

∂cj(0, t)
∂t

= Ds,j
∂2cj(0, t)
∂r2 (2.28)
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Substituting Eq. (2.28) into Eq. (2.27) gives

cj(t, δr) ≈ cj(t, 0) + 1
2Ds,j

∂cj(0, t)
∂t

δ2
r (2.29)

Equation (2.29) is interesting, because it shows that knowledge of charge con-
centration at the center of the spherical diffusion medium as a function of time is
enough for predicting charge concentration in the “neighborhood" of that center
point as a function of time. In fact, further mathematical analysis (omitted here
for brevity) shows that knowledge of the charge concentration at the center of the
spherical diffusion medium as a function of time is sufficient for predicting charge
concentration everywhere in the diffusion medium as a function of time. Moreover,
this knowledge is also sufficient for predicting the boundary input to the diffusion
process and thus the input current using Eq. (2.3) and Eq. (2.5).

The above mathematical property is called differential flatness, and is central to
this chapter. Differential flatness is a attractive mathematical property because it
makes it possible to optimize the entire time history of all solid-phase concentrations
in the SPM by optimizing only the center point concentration as a function of time.
This is true for diffusion processes governed by both linear and nonlinear versions
of Fick’s law of diffusion. In fact, the literature shows that Fick’s law, as a special
case of the heat equation, is differentially flat even in the nonlinear case where the
diffusion coefficient, Ds,j, is concentration-dependent [58].

2.4.2 Definition: Differentially Flat Systems

Mathematically, a system is differentially flat if there exists a fictitious variable,
the flat output z, such that

1. the state x and input u can be expressed in terms of the trajectory of the flat
output z and a finite number of its derivatives

x = fx(z, ż, . . . , z(α)) (2.30a)

u = fu(z, ż, . . . , z(β)) (2.30b)

2. the flat output z can be expressed in terms of state x, input u, and a finite

26



number of the input’s derivatives

z = fz(x, u, u̇, · · · , u(γ)) (2.31)

where α, β, γ are integers which vary for different systems and z(r) is the rth

derivative with respect to time [52,74]. The dimension of the flat output vector z
is the same as the number of the inputs to the system [52].

2.4.3 Application to Batteries

Lithium-ion battery diffusion dynamics can be shown to be differentially flat by
comparing battery dynamics with the flat linear diffusion equation representing
heat dynamics shown in [57]. Laroche et al. proved the following one-dimension
linear diffusion equation is differentially flat [57]

∂θ(x, t)
∂t

= f1(x)∂
2θ(x, t)
∂x2 + g1(x)∂θ(x, t)

∂x
+ h1(x)θ(x, t) (2.32)

where x ∈ [0, 1], f1(θ) > 0, g1 and h1 are analytic functions. The boundary
conditions are

∂θ(x, t)
x

∣∣∣∣
x=0

= 0 (2.33)

θ(x, t)
∣∣∣∣
x=1

= u(t) (2.34)

where u is the control input, θ is the temperature along x coordinate and t is the
time.

Battery diffusion dynamics are governed by Fick’s second law of diffusion (2.1).
It can be expressed in a more general form as below

∂cs,j(r, t)
∂t

= f(r)∂
2cs,j(r, t)
∂r2 + g(r)∂cs,j(r, t)

∂r
, r ∈ [0, Rj] (2.35)

where cs,j is the lithium-ion concentration, r is the radial coordinate, and f(r) > 0.
The boundary conditions at particle center (r = 0) and particle surface (r = Rj)
are
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∂cs,j(r, t)
∂r

∣∣∣∣
r=0

= 0

∂cs,j(r, t)
∂r

∣∣∣∣
r=Rj

= au(t)
(2.36)

where a is a constant.
Comparing with Eq. (2.32) and its boundary condition Eq. (2.33), it is apparent

that Eq. (2.35) is a special case of Eq. (2.32) and therefore the battery diffusion
dynamics in each electrode are flat.

Differential flatness can be seen as an extension of the concept of controllability
to nonlinear systems. In fact, for linear systems, a system is differentially flat if and
only if it is controllable [52]. The diffusion dynamics in each electrode of battery
are controllable and hence differentially flat. As a result, only one flat output
trajectory (rather than all state and input variables) is required to represent the
system dynamics in each electrode. The state and inputs can then be recovered
using the flat output trajectory.

The flat output for the single electrode SPM is found by transforming the
reformulated diffusion sub-model for each electrode into the controllable canonical
form. According to the definition of differential flatness shown in Eq. (2.30)
and Eq. (2.31), one needs one flat output z ∈ R1 to represent the dynamics of
single electrode SPM. Suppose the state vector x = [β0,j, β2,j, β4,j]T corresponds to
diffusion dynamics of slower electrode (i.e., negative electrode in this dissertation).
One can transform the original state space representation Eq. (2.24) into the
controllable canonical form

˙̄xn(t) =


0 1 0
0 0 1
−α1,n −α2,n −α3,n

 x̄n(t) +


0
0
1

u(t) (2.37)

where αi,n are the coefficients of characteristic equation of the state matrix An in
Eq. (2.24) and x̄n is transformed state vector for the electrode, defined as

x(t) = Mnx̄n(t) (2.38)

The matrix Mn is the similarity transformation matrix required to obtain a con-
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trollable canonical state representation [75]. Given this state representation, one
can define the following flat output:

z(t) = x̄1(t) (2.39)

The remaining state variables can then be expressed using the flat output and a
finite number of its derivatives

x(t) = fx(z(t), ż(t), z̈(t)) = M




1 0 0
0 1 0
0 0 1



z(t)
ż(t)
z̈(t)


 (2.40)

where the product in parentheses is the transformed state x̄j. The terms ż, z̈, and
...
z represent the first, second, and third derivatives of the flat output with respect
to time. The input can be expressed similarly as well

u(t) = fu(z(t), ż(t), z̈(t), ...z (t))

= [−α1,−α2,−α3, 1]


z(t)
ż(t)
z̈(t)
...
z (t)


(2.41)

The above equations demonstrate how one can use differential flatness property
to represent diffusion dynamics of each electrode using one flat output.

2.5 Flatness-Based Pseudospectral Methods
Pseudospectral methods are a class of direct methods which transform the original
problem into a nonlinear programming (NLP) problem that can be solved using well-
developed NLP algorithms. The Gauss pseudospectral method (GPM) is adopted
in this chapter. The collocation points τi in the GPM are the Legendre-Gauss (LG)
points which are the roots of N th degree Legendre polynomials PN(τi) and are
located in the interior of the range [−1, 1], i.e., τi ∈ (−1, 1) [61]. The discretization
points are collocation points plus the boundaries, i.e., τ0 = −1 and τN+1 = 1. The
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remainder of this section describes how to use the GPM to optimize the flat output
trajectory for differentially flat systems.

First, the time t ∈ [t0, tf ] needs to be mapped into τ domain to use collocation
points

t = (tf − t0)τ + (tf + t0)
2 (2.42)

The GPM approximates the trajectories of flat output as a linear combination of
N + 1 Lagrange polynomials at N collocation points and the initial point τ0 = −1.
The flat output zj (the subscript represents the electrode j) is approximated

zj(τ) ≈ zj(τ) =
N∑
k=0

Lk(τ)zj(τk) (2.43)

where zj(τ) is the approximated trajectory of the flat output in the electrode j and
Lk(τ) is the Lagrange polynomial bases. The property of Lagrange polynomials
leads to

zj(τk) = zj(τk) (2.44)

as stated in [1].
One benefit of using pseudospectral methods is that one can express the deriva-

tives of variables analytically by differentiating Eq. (2.43). The first derivative of
the flat output evaluated at collocation points gives

z(l)
j (τi) =

N∑
k=0

L
(l)
k (τi)zj(τk) (2.45)

where the term Llk(τi) represents the l-th derivative of Lagrange polynomials
evaluated at time τi and can be expressed using the differentiation matrix Dl(i, k) =
L

(l)
k (τi).
Therefore, the l-th derivative of the flat output in Eq. (2.45) can be expressed

using a more compact way
Z

(l)
j = DlZj (2.46)

where Zj := [zj(τ0), zj(τ1), · · · , zj(τN)]T and Z(l)
j is a vector of the l-th derivative

of zj(τi). Therefore, the following equations holds X̄j,1 = Zj, X̄j,2 = D1Zj, and
X̄j,3 = D2Zj, where X̄j,k := [x̄j,k(τ1), x̄j,k(τ2), · · · , x̄j,k(τN)]T , where the x̄j,k is the
kth transformed state defined in (3.23).
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As a result, the trajectory of the state xj evaluated at collocation points can
be expressed using the flat output trajectory with Eq. (2.40). Equation (2.41)
provides the mapping from zj to u

U = [u(τ0), u(τ1), · · · , u(τN)]T

= −αj,1INZj − αj,2D1Zj − αj,2D2Zj − αj,3D3Zj
(2.47)

where IN is an identity matrix.
Moreover, pseudospectral methods integrate the cost function J using the LG

quadrature rule

J =
∫ tf

t0
(SOCn(τ)− SOCref )2 dτ

≈ tf − t0
2

N∑
i=1

wi (SOCn(τi)− SOCref )2
(2.48)

The Gauss weights wi are determined by

wi = 2
1− τ 2

i

[
ṖN(τi)

]2
(2.49)

The term ṖN(τi) is the first derivative of the Nth degree of Legendre polynomials
PN(τi) evaluated at collocation point τi.

The resulting optimization problem with the application of differential flatness
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is shown as follows

min
Zn

J = tf − t0
2

N∑
i=1

ωi (SOCcell(τi)− SOCref )2

s.t:

xn = fx(z(τi), ż(τi), . . . , z(α)(τi))

un = fun(z(τi), ż(τi), . . . , z(β)(τi))

z = fz(x(τi), u(τi), u̇(τi), · · · , u(γ)(τi))

SOCcell = SOCn(τi)− θn,0
θn,100 − θn,0

SOCn(τi) = cs,n,avg(τi)
cs,n,max

SOCsurf
n (τi) =

csurfs,n (τi)
cs,n,max

cs,n,avg(τi) =
∫ Rn

0
cs,ndr

cn(r, τi) ≈
M∑
i=0

βn,i(τi)Pn,i(r)

Jn(τi) = i0,n(τi)
[
exp

(
αaF

RT
ηn(τi)

)
− exp

(
−αcF
RT

ηjn(τi)
)]

ηsr(τi) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ u(τi) ≤ umax

ηsr(τi) ≥ 0

SOCcell(τ0) = SOCini

where i = 1, 2, · · · , N

(2.50)

where the optimization variable is Zn ∈ RN .
This problem formulation explicitly optimizes the trajectories of zn, subject

to model dynamics and inequality constraints. The term N is the number of
collocation points in the prediction horizon. Additionally, unlike the formulation
in problem (2.25), there is no explicit model dynamic constraint Eq. (2.24). This
is because model dynamics are automatically satisfied by exploiting the flatness
property using Eq. (2.40) and Eq. (2.41). The resulting NLP is then solved with
well-developed algorithms.
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Figure 2.2: Simulation results for problem (2.25) applying the flatness-based GPM
with SOCini = 0.5 for two current upper limits: Imax = 9.2A (4C) and Imax = 4.6A
(2C)

2.6 Results and Discussion
This section presents simulation results for problem (2.25). To show the advantages
of model-based control we formulate and solve a standard charging problem, whose
results are compared with the ones of problem (2.25). In addition, we demonstrate
the efficiency of the proposed flatness-based GPM by solving problem (2.25) using
the GPM alone. All optimization problems are solved using the Fmincon function
in Matlab.
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Figure 2.3: Simulation results for problem (2.25) applying the flatness-based GPM
with SOCini = 0.1 for two current upper limits: Imax = 9.2A (4C) and Imax = 4.6A
(2C)

2.6.1 Optimal Charging Strategy

For the problem (2.25), the reference SOC is set to 0.98 (SOCref = 0.96). The
current lower bound is zero and two current upper bounds are used, i.e., Imax = 2C
and Imax = 4C. The problem is formulated and solved in MATLAB. The entire
simulation-based optimization takes about 7s on an 2.4GHz CPU with 30 collocation
points.

Figure 2.2 and Fig. 2.3 depict the results for problem (2.25). With Imax = 2C,
the charging strategy in Figure 2.2 can be divided into 3 stages. First, the input
current constraint is active, meaning that the input current equals the maximum
value at the beginning of the optimal charging trajectory. At the second stage,
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the side reaction overpotential constraint (2.18) becomes active, which forces the
charging current to decrease until the SOC reaches the target value. At the last
stage, the battery reaches the desired SOC value and the input currents further
decreases to avoid overcharging. The nature of the solution is slightly different for
the case with Imax = 4C in Figure 2.2. Due to the side reaction constraint, the
upper limit on charging current is not reached at the beginning of charging process.
This can prevent the battery from excessive degradation even given a high current
limit, which demonstrates the advantages of adopting the physics-based constraint.

It is necessary to emphasize that the number of collocation points is highly
related to the computational speed. Additionally, it is important to choose a proper
number of collocation points to get accurate and efficient results. The choice of
the number of collocation points is a case-by-case decision which depends on both
optimization duration and system dynamics.
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2.6.2 Standard Charging Strategy

The standard CCCV charging strategy adopts only voltage and current limits
instead of physics-based constraints. The problem can be defined as

min
u(t)

J =
∫ tf

t0
(SOCcell(t)− SOCref )2 dt

s.t:

SOCcell = SOCn(t)− θn,0
θn,100 − θn,0

SOCn(t) = cs,n,avg(t)
cs,n,max

SOCsurf
n (t) =

csurfs,n (t)
cs,n,max

cs,n,avg(t) =
∫ Rn

0
cs,ndr

cn(r, t) ≈
M∑
i=0

βn,i(t)Pi(r)

Jn(t) = i0,n(t)
[
exp

(
αaF

RT
ηn(t)

)
− exp

(
−αcF
RT

ηn(t)
)]

ηj(t) = φ1,j(t)− φ2,j(t)− Uj(SOCsurf
j (t))

φ2,p(t)− φ2,n(t) = I(t)Rcell

Vcell(t) = φ1,p(t)− φ1,n(t)

ηsr(t) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ I(t) ≤ Imax

Vcell(t) ≤ Vmax

SOCcell(0) = SOCini

(2.51)

where Vmax is the cell voltage upper bound used in the CCCV strategy.
The results of problem (2.51) are shown in Figure 2.4 and Figure 2.5. Note

that while the side reaction overpotential is shown in Figure 2.4 and 2.4, it is not
constrained in this problem. The input profiles first charge the battery with the
maximum charging rate until the maximum voltage is reached. Then the voltage
is held constant, and the remainder of the battery charging process proceeds at
that constant voltage. Therefore, the optimal charging profiles are basically the

36



CCCV strategy, as one would expect given the optimization problem formulation
with only current and voltage constraints (2.51).

Comparing the results of problem (2.25) and (2.51) confirms the established fact
from the literature that model-based control is superior to CCCV charging: it is able
to charge the battery while avoiding lithium plating. The input profiles in Figure 2.4
and Figure 2.5 can be damaging for batteries due to the fact that the side reaction
overpotential is negative for substantial durations of time for both Imax = 2C and
Imax = 4C cases. This makes the battery lose lithium ions irreversibly, which
can induce some capacity loss - not to mention the safety hazard that results
from the fact that these ions can precipitate dendritically, potentially piercing the
battery’s separator and inducing internal short circuits [10,76]. The resulting input
trajectories in problem (2.25), however, are grounded in physics-based constraint
and are better in the sense of degradation.

Please note that the health-conscious optimal charging strategy requires a
battery model: side reaction overpotentials cannot be measured directly, and
therefore cannot be constrained using simple current/voltage sensor measurements.
The degree to which model-based battery management is robust to battery modeling
and parameter estimation errors is an interesting research topic, which is not
addressed in this chapter and is addressed in other work by the author [77].

2.6.3 GPM Vs. Flatness-Based GPM

To further show the efficiency of the proposed framework, we also solve problem
(2.25) using the GPM without exploiting differential flatness. The computational
time for applying two methods is recorded with a different number of collocation
points. While the GPM is known for its computational advantages [61], Figure
2.6 shows that the proposed flatness-based GPM is much more efficient than the
traditional GPM. The difference in computational efficiency is more substantial
with a larger number of collocation points.

The computational benefits of exploiting differential flatness for battery trajec-
tory optimization are twofold. First, when using pseudospectral optimization alone
- without exploiting differential flatness - one must translate the state equations
governing the battery model into equality constraints. The same pseudospectral
optimization problem, formulated using differential flatness,eliminates these equality
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Figure 2.4: Simulation results for problem (2.51) applying the flatness-based GPM
for two current upper limits: Imax = 9.2A (4C) (solid lines) and Imax = 4.6A (2C)
(dashed lines). The initial SOC is 0.5 and voltage upper bound is 3.6V

constraints. State and input trajectories are expressed directly in terms of the flat
output’s trajectory, and can be derived from it through post-processing, after the
optimization is complete. Second, with the differential flatness approach there are
fewer optimization variables. For classical pseudospectral methods, each dimension
of state space x and input space u has to be parameterized, which produces an NLP
problem with N(n+m) (i.e., 4N in problem (2.25)) optimization variables, where n
and m are the number of state and input variables. This can lead to high-dimension
optimization problems and can be computationally expensive, especially for high
order systems or with a large number of collocation points. However, since battery
electrode dynamics can be shown to be differentially flat, the only trajectory that
needs to be parameterized is the trajectory of the flat output z. Thus for a flat
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Figure 2.5: Simulation results for problem (2.51) applying the flatness-based GPM
for two current upper limits: Imax = 9.2A (4C) (solid lines) and Imax = 4.6A (2C)
(dashed lines). The initial SOC is 0.1and voltage upper bound is 3.6V

system, the resulting NLP problem has only N optimization variables instead of
4N .

2.7 Conclusions
This chapter proposes a framework for the more efficient solution of battery
charge/discharge trajectory optimization problems. This framework achieves this by
combining four key tools: time-scale separation, orthogonal projection, differential
flatness, and pseudospectral methods. The efficiency of this framework is mainly
due to two facts: (i) the number of optimization variables is decreased to N, where
N is the number of collocation points and (ii) there are no explicit dynamic equality
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constraints in the resulting NLP.
While the proposed framework can be adopted for general battery control, it is

demonstrated in this chapter via two lithium-ion battery optimal charging problems.
The first one includes physics-based constraints to prevent lithium plating and
the second problem is the standard CCCV charging problem. The results clearly
show the advantages of using model-based control with physics-based constraint.
In addition, to further show the efficiency of the proposed method, we solve
problem (2.25) using two methods: the traditional Gauss pseudospectral method
(i.e., without using the flatness) and a flatness-based Gauss pseudospectral method.
The computational time of two methods is compared and the computational speed
applying the proposed framework can be improved by a factor of 5 compared to
using the GPM alone.

The work in this chapter serves as a foundation for much of this dissertation.
However, this chapter is limited by the assumption that there exists a significant
difference in diffusion time scale between the battery’s positive and negative elec-
trodes. Subsequent chapters extend the work from this chapter by removing this
assumption.
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Chapter 3 |
Health-Conscious Nonlinear Model
Predictive Control of Lithium-
Ion Batteries

3.1 Introduction
This chapter proposes a computationally efficient nonlinear model predictive control
(NMPC) framework for health-conscious lithium-ion battery management. 1. The
chapter extends the work shown in chapter 2 where battery electrode dynamics
are shown to be differential flat, and this flatness property is exploited for efficient
trajectory optimization. The chapter’s main contributions compared to that work
are twofold. First, the chapter represents the charge dynamics of a full battery
cell using a single flat output variable, rather than one flat output variable per
electrode. Second, instead of an electrochemistry-based single particle model (SPM),
this chapter adopts an electrochemical-thermal SPM with temperature dynamics
(SPM-T), where the diffusion and thermal dynamics are nonlinear and coupled.
The flat output trajectory is optimized using a pseudospectral method. The use of
NMPC can compensate for unmodeled effects [66], which is attractive compared to
the implementation of charge/discharge trajectories optimized offline.

The degradation mechanism emphasized in this chapter is lithium plating.
1 This chapter is based on a peer-reviewed publication by the dissertation’s author. The

publication has already appeared in the IEEE Transactions on Control System Technology [59].
The chapter extends the above publication by incorporating temperature dynamics into the
publication’s NMPC framework
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Unlike the CCCV strategy with a fixed voltage constraint, we constrain the physics-
based overpotential governing the lithium plating side reaction. We also constrain
cell temperature which protects from overheating and thermal runaway. This leads
to optimized input protocols that can increase battery life and safety by protecting
batteries from overheating, lithium plating, and dendrite growth due to plating.
The NMPC strategy improves the robustness of the optimized input protocols to
uncertainties, such as unmodeled dynamics, battery model parameter uncertainty,
and sensor noise.

The control literature offers a fundamental tool that makes battery trajectory
optimization problems significantly more tractable, namely, differential flatness [52].
Solid-phase battery diffusion dynamics are governed by Fick’s second law of diffusion
in each electrode. Fick’s law is known to be differentially flat [1, 58]. This concept
makes it possible to capture all of the diffusion dynamics in each electrode using one
trajectory of a single flat output variable instead of all of the state and input variables.
Chapter 2 demonstrates the computational benefits of exploiting differential flatness
for battery trajectory optimization. However, one major drawback remains: the
dynamics of a full electrochemical battery model are not differentially flat. One
way to solve this issue is to exploit time-scale separation by using a battery model
which only models the electrode with slower diffusion dynamics and neglects the
faster dynamics in the other electrode, as shown in chapter 2. This is not always
desirable, since the single-electrode model fails to capture full battery transient
dynamics accurately.

This chapter’s novel and unique contribution is the development of an “extend-
edâĂŸâĂŹ differential flatness approach for optimal lithium-ion battery charging
and discharging. The approach recovers differential flatness by expressing the flat
output trajectory of one battery electrode explicitly as a function of the other
electrode’s flat output. We optimize the flat output trajectories using a computa-
tionally efficient pseudospectral method [61]. We perform the optimization within
an NMPC framework and demonstrate framework’s performance in the presence of
parameter uncertainties.

The remainder of this chapter is organized as follows. Section 3.2 presents
the governing equations and model reduction for the SPM-T model. Section 3.3.1
formulates the health-conscious battery optimal charging problem. Section 3.3.2
introduces the differential flatness property. In addition, the proposed differential
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flatness-based Gauss pseudospectral method is introduced in Section 3.3.3. Section
3.3.4 shows the results of battery optimal control problem and compares them to an
optimized benchmark CCCV protocol. Additionally, the sensitivity of the proposed
NMPC framework to parameter uncertainties is studied. Section 3.4 presents the
optimal charging protocol using the SPM-T model. Finally, section 3.5 concludes
the chapter.

3.2 SPM-T Model

3.2.1 Thermal Sub-Model

In this section, the governing equations of the thermal model of the SPM-T are
briefly introduced. The SPM-T model shares the same electrochemical dynamics
with the SPM, i.e., Eq. (2.1)-Eq. (2.17), except that in the SPM-T model the
diffusion coefficient Ds,j, reaction rate constant kj, and effective resistance Rcell

are temperature-dependent. The electrochemical parameters of the SPM-T used
in this chapter are obtained from [3] and the reference potential curves for both
electrodes are from [2] for a commercial LiFePO4 (LFP) 26650 2.3Ah cell. The
parameters of the thermal submodel of the SPM-T model are obtained from [78].

The diffusion coefficient Ds,j(t) and reaction rate constant kj(t) are updated
through the Arrhenius equation as follows:

Ds,j(t) = Dref
s,j exp

(
EaD,j
R

(
1

T (t) −
1
Tref

))
(3.1)

kj(t) = krefj exp
(
Eak,j
R

(
1

T (t) −
1
Tref

))
(3.2)

(3.3)

where Dref
s,j and krefj are the diffusion coefficient and reaction rate constant at the

reference temperature Tref . The symbols EaD,j and Eak,j are the activation energy
of diffusivity and reaction rate constant.

The first-order lumped parameter thermal model is adopted in this chapter to
describe the thermal behavior of lithium-ion batteries [71, 79]:

mCpṪ (t) = −hA(T (t)−Tref (t)) + I(t)T (t)S + I(t)(ηp(t)− ηn(t) + I(t)Rcell) (3.4)
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where battery entropy coefficient, S, is defined as

S =
(
∂Up
∂T

(SOCsurf
p (t))− ∂Un

∂T
(SOCsurf

n (t))
)

(3.5)

The term ∂Uj/∂T (SOCsurf
j ) is the entropy coefficient for the electrode j and

is a function of electrode surface SOC. The term mCp is the thermal mass of the
battery, h is the convection heat transfer coefficient, and A is the cell surface
area. The first term on the right hand side of Eq. (3.4) is the convection heat
transferred from the surface of the battery to the surroundings. The second term
is the reversible or entropic heat generation term. The last term is the irreversible
heat component due to ohmic losses.

3.2.2 Model Order Reduction

Since the electrochemical sub-model in the SPM-T model is governed by partial
differential equations (PDE) , for control purposes, the PDE needs to be discretized
in space into ordinary differential equations (ODE). The model order reduction
process shown below is similar to the one shown in Section 2.2.2. The difference
is that since the diffusion coefficient and reaction rate constant are temperature-
dependent, the resulting ODEs representing electrochemical dynamics are also
temperature-dependent. Therefore, the whole SPM-T model is nonlinear and
coupled. The model order reduction process of the electrochemical sub-model in
the SPM-T model is described as below.

We approximate the lithium ion concentration profile cj(r, t) along the particle
radius using as a linear combination of some unknown coefficients βj(t) (as functions
of time t) and known Legendre polynomials Pj,i(r) with degree i (as a function of
radius r)

cj(r, t) ≈
M∑
i=0

βj,i(t)Pj,i(r) (3.6)

where M is the degree of Legendre polynomials and is an even integer to satisfy the
boundary condition (2.2), Pj,i is the i-th degree Legendre polynomial corresponding
to the term cj for electrode j, and βj,i(t) is the i-th unknown coefficient for electrode
j.
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The Legendre polynomials are normalized such that

∫ Rj

0
Pj,i(r)Pj,k(r)dr =

 0 if i 6= k

1 if i = k
(3.7)

where Rj is the radius of particles.
Substituting Eq. (3.6) into Eq. (2.1) gives

M∑
i=0

Pj,i(r)β̇j,i(t)

= Ds,j(t)
[

2
r

M∑
i=0

dPj,i(r)
dr

βj,i(t) +
M∑
i=0

d2Pj,i(r)
dr2 βj,i(t)

] (3.8)

where β̇j,i(t) is the derivative with respect to time. Note that in the SPM-T model
the diffusion coefficient is temperature dependent.

Galerkin projection is used to get the unknown coefficients βj,i(t). This is
achieved by multiplying both sides of (3.8) by Pj,i(r) and integrating over the radial
coordinate. This furnishes the dynamics of the coefficients [βj,0, βj,2, . . . , βj,M ]T .

The number of Legendre polynomials decides the accuracy and the efficiency of
the model reduction method and we choose M = 6 in this chapter. The diffusion
dynamics Eq. (2.1) in each electrode can then be expressed as follows


β̇j,0(t)
β̇j,2(t)
β̇j,4(t)
β̇j,6(t)

 = Ds,j(t)
R2
j


0, 9

√
5, 20, 29.4

√
13

0, 0, 35
√

5, 16.8
√

65
0, 0, 0, 46.2

√
13

0, 0, 0, 0




βj,0(t)
βj,2(t)
βj,4(t)
βj,6(t)

 (3.9)

Similarly, the boundary condition Eq. (2.3) can be expressed as

3
Rj

√
5

2Rj

βj,2(t) + 10
Rj

√
9

2Rj

βj,4(t)+ 21
Rj

√
13

2Rj

βj,6(t)

= − Jj(t)
Ds,j(t)aj

(3.10)

From Eq. (3.9) and Eq. (3.10), it can be seen that the term βj,6 does not
have dynamics and can be expressed as a function of other unknown variables.
Therefore, it is not considered as a state variable. As a result, we achieve a standard
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state-space representation for the dynamics of the electrode j

ẋd,j(t) = Aj(T )xj(t) +Bj(T )I(t) (3.11)

where Aj and Bj are the state and input matrix for diffusion sub-model. The state
vector for electrode j is

xd,j = [βj,0(t), βj,2(t), βj,4(t)]T (3.12)

where xd,j ∈ R3×1 are the states describing diffusion dynamics for electrode j and
the input current is I.

Note that in the SPM-T model the state matrix Ad,j and input matrix Bd,j are
functions of temperature due to the temperature-dependent nature of the diffusion
coefficient Ds,j as in Eq. (3.11). For the SPM model without temperature dynamics
in Eq. (2.24), the diffusion dynamics are linear time-invariant. In the SPM-T
model, however, the diffusion dynamics in each electrode in the SPM are coupled
with temperature dynamics. Therefore, the state space representation of diffusion
sub-model in the SPM-T can be expressed as

ẋd(t) = A(T )xd(t) +B(T )I(t) (3.13)

The state variable describing the diffusion dynamics of full SPM model is defined as

xd(t) = [xTd,n(t), xTd,p(t)]T

= [βn,0(t), βn,2(t), βn,4(t), βp,0(t), βp,2(t), βp,4(t)]T
(3.14)

The state matrix in Eq. (3.13) corresponding diffusion dynamics is

A(t) =
An(T ) 0

0 Ap(T )

 (3.15)

where 0 is a 3× 3 zero matrix and the input matrix is

B(t) =
Bn(T )
Bp(T )

 (3.16)

Additionally, one needs a state variable describing cell thermal dynamics. In this
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chapter, this variable is bulk temperature, T (t). The dynamics of this temperature
can be found in Eq. (3.4).

Therefore, the state vector of the entire SPM-T model can be expressed as
below:

x(t) =
xd(t)
T (t)

 (3.17)

The input vector can be defined as

u(t) =
 I(t)
Tref (t)

 (3.18)

The output vector is defined as

y(t) =
Vcell(t)
T (t)

 (3.19)

The state space representation of the full SPM-T model is

ẋ(t) = f(x(t), u(t)) (3.20)

y = g(x(t), u(t)) (3.21)

where x ∈ Rnx , y ∈ Rny and u ∈ Rnu with nx = 7, ny = 2, and nu = 2 in this
chapter.

3.3 Online Optimal Charging with SPM Model

3.3.1 Problem Formulation

The proposed NMPC framework can be applied to solve general battery trajectory
optimization problems, such as optimal charging and discharging in the presence
of different aging and degradation constraints. In the remainder of this chapter,
we focus on optimal charging in the presence of a lithium plating side reaction
constraint as an illustrative example, and our focus on charging (rather than
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discharging) is justified by the fact that plating is more likely to occur during
charging.

The problem is formulated as follows

min
u(t)

J =
∫ tf

t0
(SOCcell(t)− SOCref )2 dt

s.t:

ẋ(t) = Ax(t) +Bu(t)

SOCcell = SOCn(t)− θn,0
θn,100 − θn,0

SOCj(t) = cs,n,avg(t)
cs,n,max

SOCsurf
j (t) =

csurfs,j (t)
cs,j,max

cs,j,avg(t) =
∫ Rj

0
cs,jdr

cj(r, t) ≈
M∑
i=0

βj,i(t)Pj,i(r)

Jj(t) = i0,j(t)
[
exp

(
αaF

RT
ηj(t)

)
− exp

(
−αcF
RT

ηj(t)
)]

ηsr(t) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ I(t) ≤ Imax

SOCcell(0) = SOCini

(3.22)

The goal of this problem is to bring battery state of charge to a level as
close as possible to some target, SOCref , given the initial SOC, SOCini, within
the time duration [t0, tf ]. This optimization problem is subject to constraints
imposed by: battery dynamics, maximum and minimum current limitations, and
the desire to avoid side reaction overpotentials conducive to lithium plating. The
side reaction constraint Eq. (2.18) distinguishes the problem from the traditional
CCCV strategy which charges batteries using pre-determined voltage and input
constraints. Additionally, the side reaction overpotential ηsr in Eq. (2.18) is a
nonlinear and nonconvex function with respect to x and u.

The NMPC strategy is used as the online optimization framework. The nonlin-
earity of the optimization problem is mainly due to the side reaction constraint
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(2.18). The input charging trajectory is optimized at each sampling time and only
the first value of this trajectory is utilized. The optimization is then repeated using
the updated state variables at the next sampling time. The use of the NMPC
strategy can compensate for uncertainties (e.g., parameter uncertainty) and noise by
re-optimizing the problem at each sampling time, which is demonstrated in Section
3.3.4.1. Due to the complexity of the NMPC problem, stability analysis is beyond
the scope of this chapter. Note that the optimization problem assumes that all SPM
state variables are known. Battery parameter and state estimation is an interesting
research topic that is already addressed extensively in the literature [80–83] and
will be examined in Chapter 5-6 of this dissertation.

3.3.2 Differential Flatness of SPM Model

The concept of differential flatness is introduced in chapter 2. This section briefly
introduces how one can use differential flatness to represent the SPM model and
SPM-T model.

The flat output for the electrode j, zj , is found by transforming the reformulated
diffusion sub-model for each electrode into the controllable canonical form:

˙̄xj(t) =


0 1 0
0 0 1
−α1,j −α2,j −α3,j

 x̄j(t) +


0
0
1

u(t) (3.23)

where αi,j are the coefficients of characteristic equation for electrode j and x̄j is
transformed state vector for the electrode j, defined as

xj(t) = Mjx̄j(t) (3.24)

where the matrix Mj is the similarity transformation matrix. One can define the
flat output as the first transformed state:

zj(t) := x̄j,1(t) (3.25)

where x̄j is transformed state vector for the sub-model of electrode j.
The transformed state variables x̄j can then be expressed using the flat output
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and a finite number of its derivatives

x̄j(t) =


1 0 0
0 1 0
0 0 1



zj,1(t)
żj,1(t)
z̈j,1(t)

 (3.26)

Therefore, the original state variables xj can be expressed by

xj(t) = fx(zj(t), żj(t), z̈j(t)) = Mjx̄j(t) (3.27)

where Mj is the transformation matrix for the controllable canonical form. The
input can be expressed similarly as well

uj(t) = fuj(zj(t), żj(t), z̈j(t),
...
z j(t))

= [−αj,1,−αj,2,−αj,3, 1]


zj(t)
żj(t)
z̈j(t)
...
z j(t)


(3.28)

where αj,i are the coefficients of characteristic equation of the state matrix Aj in
Eq. (3.15).

The existence of one flat output per battery electrode creates a problem for
both the SPM and SPM-T models. The law of conservation of charge imposes
the constraint that the currents flowing through the two electrodes are always
equal. For any given temperature, T , at any given time instant, t, this constraint
creates an affine relationship between the two electrodes’ flat outputs. Thus, the
full SPM model, and also the electrochemical component of the SPM-T model, is
not differentially flat, even when the individual electrode diffusion dynamics are flat.
For the SPM-T model, temperature, T, serves as a flat output, but the challenge
remains that the underlying diffusion dynamics of the two battery electrode are
not flat. The following section examines two different approaches for handling this
difficulty.
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3.3.3 Flatness-Based Gauss Pseudospectral Method

This section examines the problem of health-conscious battery trajectory optimiza-
tion for a single-particle battery model (SPM) where one cannot assume significant
time-scale separation between the two battery electrodes. As indicated above, this
problem suffers from the fact that while each electrode’s dynamics are individually
differentially flat, the overall battery dynamics are not flat, because the conser-
vation of charge creates a redundancy between the two electrodes’ flat outputs.
We address this challenge using two different methods. The first, perhaps more
straightforward method, is to perform trajectory optimization with respect to the
two flat outputs simultaneously, while using the law of conservation of charge to
impose an additional equality constraint linking the two flat output trajectories.
We refer to this as the “redundant flat output” approach. The second approach
is to explicitly solve for one flat output trajectory a priori in terms of the other
flat output trajectory, essentially be inverting the constraint created by the law of
conservation of charge. The resulting nonlinear programming (NLP) problem will
therefore be expressed in terms of only one flat output, and the differential flatness
of battery diffusion dynamics will therefore be recovered. We refer to this as the
“extended differential flatness” approach.

3.3.3.1 Redundant Flat Output Approach

Using the proposed framework in chapter 2, two flat outputs are required for
the optimization problem (3.22). The resulting optimization problem with the
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application of differential flatness is shown as follows

min
zn(τi),zp(τi)

J = tf − t0
2

N∑
i=1

ωi (SOCcell(τi)− SOCref )2

s.t:

xj = fx(zj(τi), żj(τi), . . . , z(α)
j (τi))

uj = fu(zj(τi), żj(τi), . . . , z(β)
j (τi))

zj = fzj(xj, uj, u̇j, . . . , u
(γ)
j )

un(τi) = up(τi)

SOCcell = SOCn(τi)− θn,0
θn,100 − θn,0

SOCn(τi) = cs,n,avg(τi)
cs,n,max

SOCsurf
j (τi) =

csurfs,j (τi)
cs,j,max

cs,j,avg(τi) =
∫ Rj

0
cs,jdr

cj(r, τi) ≈
M∑
i=0

βj,i(τi)Pj,i(r)

Jj(τi) = i0,j(τi)
[
exp

(
αaF

RT
ηj(τi)

)
− exp

(
−αcF
RT

ηj(τi)
)]

ηsr(τi) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ u(τi) ≤ umax

ηsr(τi) ≥ 0

SOCcell(τ0) = SOCini

where i = 1, 2, · · · , N

(3.29)

This problem formulation explicitly optimizes the trajectories of both zn and
zp, subject to model dynamics and inequality constraints. The term N is the
number of collocation points in the prediction horizon. Additionally, unlike the
formulation in problem (3.22), there is no explicit model dynamic constraint Eq.
(3.13). This is because model dynamics are automatically satisfied by exploiting
the flatness property using Eq. (3.27) and Eq. (3.28). Note that there is an extra
equality constraint on the current in each electrode, which is required to satisfy the
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conservation of charge.
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Figure 3.1: Comparison of two charging strategies: health-conscious optimal
charging pattern (CCCη) from problem (3.22) versus CCCV charging pattern from
problem (3.33). umax = 4.6A (2C).

3.3.3.2 Extended Differential Flatness Approach

While the approach described above is efficient, it is necessary to use two trajectories
of the flat outputs, zn(t) and zp(t), to represent full battery dynamics. This doubles
the number of optimization variables needed for determining the optimal battery
trajectory, and also introduces linear equality constraints between these variables.
In contrast, this chapter shows that the dynamics of the entire battery can be
forced to be differentially flat by eliminating one of the redundant flat outputs.
Typically, the battery only has one input, i.e., the input current, and hence one flat
output variable is enough to represent the dynamics of the entire SPM. We achieve
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Figure 3.2: Comparison of two charging strategies: health-conscious optimal
charging pattern (CCCη) from problem (3.22) versus CCCV charging pattern from
problem (3.33). umax = 9.2A (4C).

this using the law of conservation of charge: the amount of charge transferring
through each electrode per unit time is the same, and therefore the current through
both electrodes is the same

un(t) = up(t) (3.30)

Equations (2.47) and (3.30) give the relationship between the flat outputs Zp
and Zn

Zp = (−αp,1IN − αp,2D1 − αp,2D2 − αp,3D3)−1

(−αn,1IN − αn,2D1 − αn,2D2 − αn,3D3)Zn
(3.31)

where IN is an identity matrix, IN ∈ RN×N . Therefore, the trajectory of zp(t) can
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be expressed using an affine function of the trajectory of zn(t).
While the matrix inversion in Eq. (3.31) takes some computational time,

this matrix inversion can be performed offline a priori, and does not affect the
computational burden of online MPC. As a result, the problem (3.22) can be
formulated and solved in a more efficient way

min
zn(τi)

J =
∫ tf

t0

tf − t0
2

N∑
i=1

ωi (SOCcell(τi)− SOCref )2

s.t:

xj = fx(zj(τi), żj(τi), . . . , z(α)
j (τi))

uj = fu(zj(τi), żj(τi), . . . , z(β)
j (τi))

zj = fzj(xj, uj, u̇j, . . . , u
(γ)
j )

Zp = (−αp,1IN − αp,2D1 − αp,2D2 − αp,3D3)−1

(−αn,1IN − αn,2D1 − αn,2D2 − αn,3D3)Zn

SOCcell = SOCn(τi)− θn,0
θn,100 − θn,0

SOCn(τi) = cs,n,avg(τi)
cs,n,max

SOCsurf
j (τi) =

csurfs,j (τi)
cs,j,max

cs,j,avg(τi) =
∫ Rj

0
cs,jdr

cj(r, τi) ≈
M∑
i=0

βj,i(τi)Pj,i(r)

Jj(τi) = i0,j(τi)
[
exp

(
αaF

RT
ηj(τi)

)
− exp

(
−αcF
RT

ηj(τi)
)]

ηsr(τi) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ u(τi) ≤ umax

ηsr(τi) ≥ 0

SOCcell(τ0) = SOCini

where i = 1, 2, · · · , N

(3.32)

This problem formulation only requires the optimization of Zn, the flat output
variable zn evaluated at each collocation point. Therefore, the resulting optimization
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problem using the extended approach only needs half of the optimization variables
and no equality constraints compared to the NLP in Eq. (3.29). This makes the
proposed framework computationally very efficient.

3.3.4 Results and Discussion

Problem (3.22) is set to start at t0 = 0 with the initial SOC as 0.5 and with the
sampling time as 10s (i.e., ∆t = 10s). The sampling time is chosen such that
it is about 5 times faster than the fastest time constant (about 60s) of battery
diffusion dynamics. But the sampling time can be smaller. The prediction horizon
is Tp = 100s and at each time step the optimization problem is solved with 4
collocation points, i.e., N = 4. Due to the computational benefits, the proposed
NMPC framework is able to solve the problem during each sampling time. The
optimization is solved at each sampling time and the battery cell is then charged
using the first optimized input trajectory. The optimization is repeated at next
sampling time until the final time is reached. The hot-start strategy is used: the
solution of previous sampling instance is used as the starting point (i.e., initial
guess) for the current problem. All of simulations are solved in MATLAB using
the Fmincon function on a laptop with a 2.4GHz CPU.

Figure 3.2 and Fig. 3.1 depict the results of problem (3.22) using two current
upper bounds, 2C and 4C (1C corresponds to 2.3A current). Focusing on Fig.
3.2, i.e., the trajectory with umax = 9.2A, one can see the input trajectory first
charges the battery with the maximum rate, because when a cell has low SOC the
overpotential of lithium plating (2.18) can be positive even with high current. This
is due to the fact that batteries at low SOC tend to have high positive electrode
reference potentials. Once the side reaction constraint reaches zero, the charging
current is tapered to satisfy the side reaction constraint. This charging process
terminates when the battery SOC reaches the desired SOC. From the results, one
can see the charging profiles have the following pattern: batteries are charged
first with constant maximum current rate and then the current is decreased to
keep constant overpotential. We call this charging profile as constant current
constant overpotential (CCCη) strategy. The other trajectory shown in Fig. 3.1
demonstrates a similar pattern as described above.

To compare with the health-conscious optimal charging results, this chapter
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also solves a standard CCCV charging problem with only voltage and current limits

min
u
J =

∫ tf

t0
(SOCcell(t)− SOCref )2 dt

s.t:

ẋ(t) = Ax(t) +Bu(t)

y(t) = g(x(t), u(t))

0 ≤ u(t) ≤ umax

y(t) ≤ ymax

(3.33)

where this problem has the same SOC reference and current limits as problem
(3.22) and ymax is voltage limit. The problem is solved using the proposed NMPC
framework with the moving horizon Tp = 100s, sampling time ∆t = 10s, ymax =
3.6V and the number of collocation points N = 4.

The dashed lines in Fig. 3.2 and Fig. 3.1 depict the simulation results of
problem (3.33): the traditional CCCV strategy. The CCCV protocol first charges
the battery with the constant maximum charging rate until the voltage upper limit
is reached. Then voltage is kept constant by charging the battery using reduced
current. Note that while the side reaction overpotential is shown in Fig. 3.2 and
Fig. 3.1, it is not considered as a constraint in the optimization.

The benefits of health-conscious battery optimal charging can be seen by
comparing two charging trajectories in either Fig. 3.1 or Fig. 3.2. The side reaction
overpotentials are negative for substantial durations of time for CCCV charging.
Therefore, CCCV charging can lead to excessive lithium-ion loss through lithium
plating. The charging patterns in problem (3.22), i.e., the CCCη charging, however,
can charge the battery without excessive degradation and reach the targeted charge
capacity at the same time, even if the current upper limit is set to be aggressive.

This section also compares the charging time using the optimal charing and the
traditional CCCV charging. Figure 3.3 depicts the trade-off between the charging
time and battery degradation (i.e., the overpotential governing lithium plating
in this study) . From the Pareto front of CCCV charing, it shows that faster
charging leads to faster degradation due to larger side redaction overpotential. For
the specific battery model and parameters used in this study, for the charging
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current rate larger than 7C can not increase the charging time significantly. This is
because that the high C-rate can lead to high voltage across the internal resistance
and hence cell voltage can reach the constant voltage the beginning of charging.
Moreover, the optimal charing solution can achieve comparable charging time with
about 5C but without any degradation. This demonstrates the benefits of using
the proposed optimal charging protocol, i.e., it can charge the cell (i) fast and (ii)
does not introduce lithium plating degradation.
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Figure 3.3: Pareto front between charging time and battery degradation. The opti-
mal charging can achieve high charging C-rate and does not introduce degradation.

3.3.4.1 NMPC Sensitivity to Parameter Uncertainties

This section demonstrates the robustness of the proposed NMPC framework with
respect to SOH parameters by comparing with an offline optimal charging solution.
The volume fraction of the active material εj in Eq. (2.4) is one of the SOH
parameters relating to electrode capacity in SPM and hence cell capacity, which
changes with aging for a given battery [77]. Suppose the controller assumes each
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Figure 3.4: The NMPC framework is more robust than offline framework.

electrode has its original capacity, while the actual capacity is only 90% of the
original due to aging.

Fig. 3.4 demonstrates the robustness of the NMPC framework. Both online
and offline solutions do violate lithium plating overpotential constraints due to
the uncertain SOH parameter εj. However, the online solution has much smaller
lithium plating overpotential violation over a shorter duration and therefore exhibits
less lithium plating. This is because the NMPC framework updates the optimal
trajectory at every sampling time based on the updated state variables.

3.3.4.2 Comparison of Three NMPC Frameworks

The efficiency of the proposed framework in this chapter is demonstrated by solving
problem (3.22) online using 3 approaches: i) the GPM, ii) the flatness-based GPM
with two redundant flat outputs shown in problem (3.29) (differential flatness only
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Table 3.1: Comparison of 3 NMPC frameworks: The proposed framework is the
most efficient.

NMPC Framework Optimization variables Equality constraints
GPM (nx + nu)×N = 7N nx ×N = 6N

Two flat outputs GPM 2nu ×N = 2N nu ×N = N
One flat output GPM nu ×N = N 0

4 6 8 10 12 14

Number of collocation point N
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Flatness-based GPM with one flat output
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Figure 3.5: Average simulation time for each time step. The proposed extended
flatness approach is more efficient than the flatness-based GPM with two flat
outputs proposed in [1].

applies to each electrode but not the entire battery), and iii) the flatness-based GPM
with one flat output in problem (3.32) (the approach proposed in this chapter). All
three simulations are conducted using the same set of parameters (i.e., ∆t = 5s,
Tp = 400s, SOC(t0) = 0.4, t0 = 0s, and tf = 2100s). Fig. 3.5 depicts the average
simulation time for one time step as a function of the number of collocation points.
The average simulation time is calculated by dividing the simulation time for
the entire optimization by the number of time steps. While all three approaches
produce the same charging profile, the extended flatness-based approach proposed
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in this paper can reduce the computational time by a factor of 5 compared to online
pseudospectral optimization alone.

The proposed NMPC framework is computationally efficient mainly for two
reasons. First, by using the differential flatness property, it automatically satisfies
system dynamic constraints. Therefore the resulting NLP problem does not have
any explicit dynamic constraints. This holds for both methods using differential
flatness. Second, the proposed extended flatness-based method reduces the number
of optimization variables significantly. Specifically, the proposed extended flatness-
based method only requires N optimization variables, since the differential flatness
for the full SPM is recovered.

3.4 Online Optimal Charging with SPM-T Model

3.4.1 Problem Formulation

Instead of using the SPM model, this chapter also extends the problem proposed
in problem 3.22 by using the SPM-T model. The added thermal model enables
the controller to protect the cell from overheating or thermal runaway, which can
happen during fast charging. Additionally, it can model the dynamics of battery
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more accurately. The problem is formulated as follows:

min
u(t)

J =
∫ tf

t0
(SOCcell(t)− SOCref )2 dt

s.t:

ẋ(t) = f(x(t), u(t))

SOCcell = SOCn(t)− θn,0
θn,100 − θn,0

SOCj(t) = cs,n,avg(t)
cs,n,max

SOCsurf
j (t) =

csurfs,j (t)
cs,j,max

cs,j,avg(t) =
∫ Rj

0
cs,jdr

cj(r, t) ≈
M∑
i=0

βj,i(t)Pj,i(r)

Jj(t) = i0,j(t)
[
exp

(
αaF

RT
ηj(t)

)
− exp

(
−αcF
RT

ηj(t)
)]

ηsr(t) = ηn(T ) + Un(SOCsurf
n (t)) ≥ 0

0 ≤ I(t) ≤ Imax

Tmin ≤ T (t) ≤ Tmax

SOCcell(0) = SOCini

(3.34)

Compared to the problem formulated in problem 3.22, the SPM-T model makes
it possible to constrain temperature in addition to the side reaction exponential
and current constraints in problem 3.22.

3.4.2 Differential Flatness of SPM-T Model

The details on the exploitation of the differentially flat nature of the SPM-T model
are briefly introduced as below. First, one needs to identify the flat output vector.
One needs two flat outputs to fully represent the electrochemical-thermal dynamics
of the SPM-T model, according to the definition of the differential flatness, i.e.,
the number of flat outputs should be the same as the number of inputs. The two
flat outputs can be chosen as: one representing the electrochemical dynamics, i.e.,
the variable used in Sec. 3.3.2 and another one representing thermal dynamics.
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Note that the diffusion and thermal dynamics are coupled through temperature-
dependent parameters. Due to the bi-directional coupled nature of the SPM-T
model, one needs to identify two flat outputs together.

First, the flat output corresponding to the diffusion dynamics can be found
using the same procedures shown in Sec. 3.3.2

z1(t) := x̄n,j,1(t) (3.35)

where x̄d,n is transformed state vector for diffusion sub-model of electrode n.
Another independent flat output is needed to describe the dynamics of the bulk

temperature T . The bulk temperature T can be chosen as the second flat output,
i.e.,

z2(t) = T (t) (3.36)

Therefore, the flat output vector for the SPM-T model is defined as

z(t) =
x̄d,n,1(t)
T (t)

 (3.37)

Second, the transformed diffusion-related state variables x̄d,j can then be ex-
pressed using the flat output and a finite number of its derivatives.

x̄d,j(t) =


1 0 0
0 1 0
0 0 1



z1(t)
ż1(t)
z̈1(t)

 (3.38)

Therefore, the original state variables x = [xTd,j, T ]T can be expressed by
xd,j(t)
T (t)

 =fx(zj,1(t), żj,1(t), z̈j,1(t), z2(t))

=
Mj (z2(t)) x̄d,j(t)

z2(t)

 (3.39)

where Mj(z2(t)) is the transformation matrix for the controllable canonical form.
This matrix is a function of temperature z2(t), because the state matrix Ad(t) is a
function of temperature governed by Arrhenius equation Eq. (3.1).

63



Additionally, the input vector needs to be expressed using the flat output
variables. In the SPM-T model, the input is a two dimensional vector, i.e., u =
[I, Tref ]T . The first element in the input vector corresponds to the input current
and the second one is ambient temperature. The input current u1, calculated from
the diffusion sub-model of the electrode j, can be expressed as shown below

u1(t) =fu1(zj,1(t), żj,1(t), z̈j,1(t), ...z j,1(t), z2(t))

= [−αj,1(z2(t)),−αj,2(z2(t)),−αj,3(z2(t)), 1]


zj,1(t)
żj,1(t)
z̈j,1(t)
...
z j,1(t)


(3.40)

where u1 is the input current and, αj,i(t) is the I th coefficient of characteristic
equation of the state matrix Aj(t) in Eq. (3.11). Unlike the SPM model, the
dynamics of the SPM-T model change with temperature and hence the coefficients
of above equation αj,i also change with temperature z2(t). The relationship is based
on the Arrhenius equation. Thermal dynamics in Eq. (3.4) are used to derive the
relation between u, and z

u2(t) =fu2(z(t), ż(t), z̈(t), ...z (t))

= 1
hA

(mCpż2(t)− u1(t)u2(t)S(t)− u1(t)(ηp(t)− ηn(t)− u1(t)Rcell))

+ z2(t)

(3.41)

where the entropy coefficient S and overpotential ηj(t) are functions of state and
input variables and therefore can be expressed using the output z(t).

Similar to the flatness-based process shown in section 3.3, the health-conscious
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optimal charging problem in Eq. (3.34) is transformed to the following form

min
zn(τi)

J =
∫ tf

t0

tf − t0
2

N∑
i=1

ωi (SOCcell(τi)− SOCref )2

s.t:

x(τi) = fx(z(τi), ż(τi), . . . , z(α)(τi))

u(τi) = fu(z(τi), ż(τi), . . . , z(β)(τi))

z(τi) = fz(x(τi), u(τi), u̇(τi), · · · , u(γ)(τi))

Zp = (−αp,1(t)IN − αp,2(t)D1 − αp,2(t)D2 − αp,3(t)D3)−1

(−αn,1(t)IN − αn,2(t)D1 − αn,2(t)D2 − αn,3(t)D3)Zn

SOCcell = SOCn(τi)− θn,0
θn,100 − θn,0

SOCn(τi) = cs,n,avg(τi)
cs,n,max

SOCsurf
j (τi) =

csurfs,j (τi)
cs,j,max

cs,j,avg(τi) =
∫ Rj

0
cs,jdr

cj(r, τi) ≈
M∑
i=0

βj,i(τi)Pj,i(r)

Jj(τi) = i0,j(τi)
[
exp

(
αaF

RT
ηj(τi)

)
− exp

(
−αcF
RT

ηj(τi)
)]

ηsr(τi) = ηn + Un(SOCsurf
n (t)) ≥ 0

0 ≤ u(τi) ≤ umax

Tmin ≤ T (t) ≤ Tmax

ηsr(τi) ≥ 0

SOCcell(τ0) = SOCini

where i = 1, 2, · · · , N

(3.42)

3.4.3 Results and Discussion

Figure 3.6 and Fig. 3.7 present the results of health-conscious charging using the
SPM-T model. For this case study, two comparison are made. First, Fig. 3.6
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Figure 3.6: Comparison between online optimal charging trajectory with CCCV
charging patterns with umax = 4C

depicts the online optimal charging strategy using the SPM-T model with 4C
maximum current versus the CCCV charging strategy with 4C maximum current
limit. Second, Fig. 3.7 presents the online optimal charging strategy using the
SPM-T model with 4C maximum current versus CCCV charging strategy with 2C
maximum current limit.

In Fig. 3.6, one can see the optimal charging trajectory (solid lines) first charges
the cell with the maximum current rate. This is due to the fact that when a cell has
low SOC the overpotential of lithium plating (2.18) can be positive even with high
current and the cell temperature is near room temperature. Once cell temperature
reaches the temperature bound, the input current is decreased to about 2C to
satisfy the bound. After about 20 minutes, the side reaction constraint reaches zero
and the charging current is tapered again to satisfy the side reaction constraint.
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Figure 3.7: Comparison between online optimal charging trajectory umax = 4C
with CCCV charging patterns with umax = 2C

This charging process terminates when the battery SOC reaches the desired SOC.
From the results, one can see the charging profiles have the following pattern: the
cell is charged first with constant maximum current rate and then the current
is decreased to keep constant temperature and then is further decreased to keep
constant zero side reaction overpotential.

Figure 3.8 depicts the results with 20C as the current upper bound without
adding temperature constraint. Although the SPM-T model may not be accurate
with large current, the results can provide some insights. Even given a large current
bound and even without temperature constraint, the optimal charging trajectory
does not reach the bound due to the fact that at the beginning of the charging
process, the overpotential constraint is active. Therefore, the proposed framework
can still provide health-conscious charging protocol even given large current bound.

67



5 10 15 20 25 30
0

0.5

1

S
O

C
n

5 10 15 20 25 30

3.6

3.8

V
ol

ta
ge

 (
V

)

5 10 15 20 25 30
0

20

40

C
ur

re
nt

 (
A

)

5 10 15 20 25 30
25
30
35
40
45

T
em

p 
(o

C
)

5 10 15 20 25 30

Time (min)

0
0.01
0.02
0.03

η
sr

 (
V

)

Figure 3.8: Optimal online optimal charging trajectory with umax = 20C without
temperature constraint

The charging power density can be seen by comparing Fig. 3.6 and Fig. 3.7. At
the beginning, the optimal charing strategy and the CCCV pattern with 4C share
the same charging power density, since both of them reach the maximum current
rate. However, due to the temperature and overpotential constraints, the charging
power density has to decrease. Therefore, among the three strategies: (i)optimal
charging, (ii) CCCV with 4C current, and (iii) CCCV with 2C current, the optimal
charging pattern is not the fastest and has similar charing power density with
CCCV charging with 2C current. A key advantage, however, is that the optimal
charging strategy does not violate battery safety constraints, where as both CCCV
strategies do.
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Figure 3.9: Comparison between online optimal charging trajectory umax = 4C
with CCCV charging patterns with umax = 2C

3.5 Conclusions
This chapter proposes a computationally efficient nonlinear model predictive control
(NMPC) framework to solve battery trajectory optimization problems online. This
framework extends the differential flatness approach in chapter 2 to recover the
flatness of the SPM and SPM-T model, respectively, which makes it possible
to represent the dynamics of the entire battery using only one flat output (for
diffusion dynamics). The trajectory of the resulting flat output is optimized using
pseudospectral methods. This chapter demonstrates the proposed NMPC framework
by applying it to solve an online health-conscious battery optimal charging problem
with a temperature constraint and a physics-based side reaction constraint. The
robustness of the NMPC framework is demonstrated for specific SOH parameter
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uncertainties. The proposed framework improves computational efficiency by a
factor of 5 compared to pseudospectral optimization alone.
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Chapter 4 |
Efficient Total Least Squares State
and Parameter Estimation for
Differentially Flat Systems

4.1 Introduction
To fully achieve the benefits of model-based battery control, one must be able to
estimate the state variables of the underlying battery models accurately. This
chapter presents a framework for flatness-based pseudospectral combined state and
parameter estimation in lumped-parameter nonlinear systems. This framework
enables computationally-efficient total least squares (TLS) estimation for lumped-
parameter nonlinear systems. This is quite relevant to practical lithium-ion battery
systems, where both battery input and output measurements can be quite noisy.
Instead of using battery examples, this chapter adopts a classical nonlinear mass-
spring-damper system to demonstrate the proposed framework. The proposed
framework is applied to battery state estimation in chapter 5. 1

Least squares methods are widely used in the literature for solving problems
including curve fitting, state estimation, and system identification [77,85–87]. There
are two categories of least squares problems: ordinary least squares (OLS) and
TLS. The OLS problem assumes that only the output variables of a given system
are corrupted by noise, while true input values are known. The TLS problem, in

1 The work in this chapter has appeared in a peer-reviewed American Control Conference
paper by the dissertation’s author [84].
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contrast, assumes both input and output measurements to be noisy.
Linear TLS problems can be solved using well-developed singular value decom-

position (SVD) approaches [87, 88]. Additionally, in the control literature many
researchers formulate linear system identification problems as TLS problems, which
can be solved using tools such as Hankel matrix and subspace identification [89,90].

It is challenging to solve TLS estimation problems for nonlinear systems [91].
Since both the input and output measurements in these problems are assumed to be
noisy, one must optimize both of these trajectories, rather than treating the inputs
as known. This can easily furnish nonlinear optimization problems with hundreds
of decision variables, quickly compromising computational tractability. Moreover,
the underlying system dynamics translate to equality constraints in nonlinear TLS
estimation.

Given the above challenges, the overall goal of this chapter is to solve TLS
estimation problems for differentially flat systems in an efficient manner. The
concept of differential flatness was first introduced by Fliess et al. [52]. A system is
differentially flat if it possesses flat output variables, equal in number to its input
variables, such that the state and input variables can be expressed in terms of the
flat outputs and a finite number of their derivatives, and the flat outputs can be
expressed in terms of the state and input variables and a finite number of their
derivatives. Differential flatness is attractive because it makes it possible to express
all system state, input, and output trajectories in terms of time histories of the flat
output variables. This simplifies trajectory optimization problems significantly: a
fact that can be very beneficial in optimal control applications [1, 92].

This chapter solves TLS problems for flat systems using a pseudospectral
approach. The chapter examines the TLS estimation of both system trajectory
variables and constant parameters. We use a pseudospectral method to express
the trajectory variables (i.e., the state, input, and output variables) in terms of the
values of a flat output trajectory at specific collocation points. This transforms the
TLS problem into a nonlinear programming (NLP) problem, which can be solved
using well-developed NLP algorithms [1,63]. The choice of collocation points has
significant computational advantages compared to the use of evenly distributed
discretization points in the time domain [63].

State and parameter estimation problems for nonlinear systems are widely
studied in the literature. Extended Kalman filters (EKF), Unscented Kalman
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filters (UKF), and nonlinear observers are widely used [7, 93]. The fact that our
estimation approach relies on nonlinear programming rather than classical feedback-
based state and parameter estimation makes it possible to account for physical
constraints on the estimated state variables, input variables, and parameters. This
can potentially improve estimation accuracy and convergence for systems exhibiting
such constraints [67].

The literature already examines the use of pseudospectral methods and dif-
ferential flatness for estimation. Gong et al., for instance, build a state observer
for nonlinear systems using pseudospectral methods [64]. Moreover, both Fliess
et al. and Mahadevan et al. exploit differential flatness for OLS state estimation
problems [94, 95]. Compared to the above work, this chapter’s focus is on total
(rather than ordinary) nonlinear least squares state and parameter estimation for
differentially flat systems using pseudospectral methods. We demonstrate the
proposed estimation framework using a nonlinear mass-spring-damper state and
parameter estimation example. The results of this simple demonstration study
are very encouraging: the proposed framework converges to accurate state and
parameter estimates with very low computational cost.

The remainder of this chapter is organized as follows. Section 2 introduces
general total least squares problems. Section 3 reviews the concept of a differentially
flat system. The Legendre pseudospectral method (LPM) combined with the
differential flatness property is introduced in Section 4, and serves as a foundation
for the computationally efficient TLS state and parameter estimation framework
presented in this chapter. The chapter demonstrates this framework on a nonlinear
mass-spring-damper TLS state and parameter estimation problem in Section 5.
Finally, Section 6 concludes the chapter and summarizes its contributions.

4.2 Total Least Squares Estimation
This section introduces TLS estimation, and formulates a generic TLS state and
parameter estimation problem. The problem assumes that the input and output
noise processes are both independent, identically distributed (i.i.d.). However, the
overall contributions of this chapter can be easily extended to drop this assumption.
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Figure 4.1: Comparison between OLS and TLS estimation.

Consider a general continuous-time dynamic system:

ẋ = f(x, u, θ),

y = g(x, u, θ)
(4.1)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , and θ ∈ Rnθ are the state, input, output,
and unknown parameter vectors, respectively, so that f : Rnx × Rnu 7→ Rnx and
g : Rnx × Rnu 7→ Rny .

Our goal is to estimate the parameters θ and state trajectories x(t) including
the initial states, given measurements of the inputs and outputs. This problem
can be formulated as an OLS or TLS problem. The difference between the OLS
and TLS formulations is highlighted in in Fig. 4.1: OLS problems assume that
only the output variables are corrupted by noise, and treat the input variables
as known exactly. In contrast, TLS problems assume that both the input and
output measurements are noisy. Therefore, TLS estimation attempts to minimize
the “orthogonal distance” (rather than vertical distance) between the estimated
system trajectory and the input-output measurement pairs.

Suppose that the dynamics of the system in Eq. (4.1) are discretized in time,
to furnish a model of the form:

xk+1 = f(xk, uk + wk, θ)

ym,k = g(xk, uk, θ) + vk
(4.2)

where k = 1, 2, . . . , n, n is the number of data points, wk ∈ W is the input noise,
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and vk ∈ V is output measurement noise, respectively. The noise processes are
assumed to be zero-mean and Gaussian.

If we assume that the input measurement is accurate (i.e., wk = 0) and the
output noise is iid, this furnishes the OLS problem. It minimizes the sum of squared
vertical distances from each data point to the estimated curve as shown in Fig. 4.1.
The OLS problem can be formulated as

min
x̂k,θ̂

J =
n∑
k=1
‖ŷk − ym,k‖2

2

subject to: x̂k+1 = f(x̂k, uk, θ̂)

ŷk = g(x̂k, uk, θ̂)

(4.3)

where ‖·‖2 represents the L2 norm of the corresponding vector and ·̂ is the estimated
value.

In contrast, the TLS problem assumes that neither the input nor output variables
can be measured perfectly and there are noise signals associated with these variables.
The measured input um,k consists of the true but unknown input uk corrupted with
noise. TLS minimizes the sum of orthogonal squared distance from data points to
the estimated curve, as shown in Fig. 4.1. Mathematically, this translates to:

min
x̂k,ûk,θ̂

J =
n∑
k=1

(
Q‖ŷk − ym,k‖2

2 +R‖ûk − um,k‖2
2

)
subject to: x̂k+1 = f(x̂k, ûk + wk, θ̂)

ŷk = g(x̂k, ûk, θ̂) + vk

(4.4)

The cost function J has two weighted squared errors: (i) the difference between
the estimated output yk and the measured output ym,k (ii) the difference between
true but unknown input uk and the measured input um,k. The weights Q and R
represent the confidence the estimator puts on input and output data and can be
chosen according to the variance of measurement noise.

There are two challenges when one solves the estimation problem in Eq. (4.4).
First, the number of optimization variables can be very large, especially when
the number of measurements n is large. More specifically, the set of optimization
variables includes all of the input values uk and state variable values xk at each
sampling time, which results an optimization problem with n× (nu + nx) variables.
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This can quickly lead to intractability. Second, the dynamic equality constraint
Eq. (4.2) makes the problem more difficult to solve, especially for nonlinear systems.
The proposed framework can transform the TLS estimation problem (4.4) into an
unconstrained optimization problem with only N × nu variables, where N is the
number of collocation points and is typically much smaller than the number of data
points.

4.3 Flatness-Based Pseudospectral Methods
The concept of differential flatness is widely used in different fields [1, 56, 92, 96].
The details on differential flatness can be found in chapter 2. The flatness-based
Legendre pseudospectral method is briefly introduced as below.

This chapter uses pseudospectral methods to optimize the trajectory of the
flat output z, which furnishes an efficient parameterization method compared to
traditional methods using evenly distributed discretization points. This section
briefly introduces the implementation of the Legendre pseudospectral method
(LPM) for differentially flat systems.

The LPM uses Legendre-Gauss-Lobatto (LGL) points as collocation points.
These are the roots of the first derivative of (N−1)th degree of Legendre polynomial,
PN−1 [63], where N is the number of discretization points (which are the same as
collocation points). The LGL points are located in the range [−1, 1] in a transformed
temporal domain. Thus, to use this set of collocation points as discretization points,
time should be mapped from t ∈ [t0, tf ] to τ ∈ [−1, 1] with τ1 = −1 and τN = 1

t = (tf − t0)τ + (tf + t0)
2 (4.5)

where t0 and tf are the initial time and final time of the optimization.
The flat output trajectory z(τ) is approximated by a basis of N Lagrange

polynomials based on the N collocation points

z(τ) ≈ z(τ) =
N∑
j=1

Lj(τ)z(τj) (4.6)

where z is the interpolated flat output trajectory and the Lagrange polynomial
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bases are
Lj(τ) =

N∏
i=0
i 6=j

τ − τi
τj − τi

(4.7)

These Lagrange polynomials have the property

Lj(τi) =

 1 if i = j

0 if i 6= j
(4.8)

which gives accurate interpolated flat output at collocation points, i.e.,

z(τj) = z(τj) (4.9)

One benefit of pseudospectral methods is that time derivatives can be calculated
analytically using the Lagrange polynomials. The first order derivation of flat
output z, for instance, can be expressed as

ż(τi) =
N∑
j=1

L̇j(τi)z(τj) =
N∑
j=1

D1(i, j)z(τj) (4.10)

where D1 ∈ RN×N is the pseudospectral differentiation matrix defined as D1(i, j) =
L̇j(τi). The differentiation matrix can be calculated either using Eq. (4.7) or using
the following formula

D1(i, j) =



PN−1(τj)
PN−1(τi)

1
τj−τi if k = i

− (N−1)N
4 if k = i = 1

(N−1)N
4 if k = i = N

0 otherwise

(4.11)

The rth order derivative of flat output z can be expressed as

z(r)(τi) =
N∑
j=1

L
(r)
j (τi)z(τj) =

N∑
j=1

Dr(i, j)z(τj) (4.12)

where Dr(i, j) = L
(r)
j (τi). Therefore,

Z(r) = DrZ (4.13)

Z := [z(τ1), . . . , z(τN)]T and Z(r) = [z(r)(τ1), z(r)(τ2), · · · , z(r)(τN)] is the vector of
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rth derivative of . It is shown that the high order differentiation matrix Dr can be
expressed as the rth power of D1, i.e., Dr = Dr

1 [74].
Substituting Eq. (4.10) into Eq. (2.30) gives the mappings from z to x and u

x(τi) = fx(Z) (4.14a)

u(τi) = fu(Z) (4.14b)

The mappings are φx,i : RN 7→ Rnx and φu,i : RN 7→ Rnu .
Moreover, the cost function is calculated. Traditional pseudospectral methods

calculate the cost function using the quadrature rule at collocation points [61,
97]. This requires the values of input and output variables at collocation points.
Typically, these values are available for optimal control problems because the state
and input variables evaluated at collocation points are the optimization variables.
For estimation problems, however, the measured input and output values are
typically available at each sampling time. There are two ways to calculate the
cost function in problem (4.4): (i) one can use interpolation to approximate the
measured data at the collocation points [97]; (ii) one can calculate the summation
of squared errors at each sampling time by interpolating the flat output z(τi)
using collocation points following (4.6). This chapter chooses the second approach.
This guarantees that the data used for cost function calculation represent real
measurements without interpolation among these measurement.

Finally, the optimization problem (4.4) can be transformed into an unconstrained

78



NLP problem

min
Ẑ,θ̂

J =
n∑
k=1

(
Q‖ŷk − ym,k‖2

2 +R‖ûk − um,k‖2
2

)
s.t:

x̂(τi) = fx(Ẑ, ˆ̇Z, · · · )

û(τi) = fu(Ẑ, ˆ̇Z, · · · )

ŷk = g(x̂k, ûk, θ̂) + vk

x̂k ≈
N∑
j=1

Lj(τk)x̂(τj)

ûk ≈
N∑
j=1

Lj(τk)û(τj)

Z(r) = DrZ

(4.15)

with optimization variable as Ẑ ∈ RNnu and θ̂ ∈ RNnθ . System dynamics (4.1) are
automatically satisfied by the exploitation of differential flatness using (2.30). If
the problem (4.4) is solved using the traditional way (i.e., optimizing the state and
input variables at each sampling time), the total number of optimization variables
would be n× (nu + nx) where n� N , which is computationally very expensive.

Note that the proposed framework can solve the TLS problem with other
constraints, such as the state and input constraints, although classical TLS esti-
mation problems do not have these constraints. This has the potential to improve
estimation accuracy for problems with physical constraints [67].

4.4 Estimation Example: Nonlinear Mass-Spring-Damper
System

4.4.1 Estimation Problem Formulation

This chapter demonstrates the proposed flatness-based pseudospectral framework
by solving a state and parameter estimation problem for a nonlinear second order
mass-spring-damper system. The dynamics of the nonlinear mass-spring-damper
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Figure 4.2: Estimation results using noisy input u = 10sin3t with δu = 0.1 and
δy = 0.1. The estimated parameters are: θ̂ = [0.96, 0.89, 0.99]T

system in state-space form are

ẋ1 = x2

ẋ2 = − k
m
x3

1 −
c

m
x2 + 1

m
(u+ w)

ym = x1 + v

(4.16)

where x1 and x2 are the displacement and velocity of the mass, respectively. The
parameter vector θ = [k, c,m]T comprises the mass m = 1kg, the spring constant
k = 1N/m, and the damping coefficient c = 1N · s/m. The input and output
measurements are corrupted with additive Gaussian white noise w ∼ N(0, σ2

u) and
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Figure 4.3: Estimation results using noisy input u = 10sin3t with δu = 1 and
δy = 0.1. The estimated parameters are: θ̂ = [0.96, 0.88, 1.00]T .

v ∼ N(0, σ2
y), respectively.

The goal in this problem is to estimate the velocity x2 and all parameters
(i.e., k, c, and m) given noisy input measurement um and output measurement ym.
This problem has the same formulation as problem (4.4). To solve this estimation
problem, the proposed flatness-based pseudospectral framework is adopted. The
system (4.16) is differentially flat with the displacement i.e., z = x1, serving as the
flat output. The trajectory of the flat output z is optimized using the pseudospectral
methods. The resulting NLP problem is solved using the Fmincon function in
Matlab.
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Figure 4.4: Estimation results using noisy input u = 4t with δu = 0.1 and δy = 0.1.
The estimated parameters are: θ̂ = [1.00, 0.94, 1.01]T

4.4.2 Results and Discussion

This chapter adopts two inputs to test the TLS estimator: a sine wave and a ramp
input. The variables x̂1, x̂2, û, and θ̂ are the estimated displacement, velocity, input,
and parameters respectively. The duration of the problem is t ∈ [0s, 5s] with the
sampling rate ∆t = 0.01s, which implies the number of sampling points n = 500.
The number of collocation points is set to be N = 30. This example adopts the
true initial condition as x1 = [0, 0]T and the initial guess for TLS estimator to be
x̂1 = [−10,−10]T .

Two inputs are adopted to demonstrate the proposed framework. Figure 4.2
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Figure 4.5: Estimation results using noisy input u = 4t with δu = 1 and δy = 0.1.
The estimated parameters are: θ̂ = [1.00, 0.95, 1.00]T .

and Fig. 4.3 use a sine wave as the input and Fig. 4.4 and Fig. 4.5 use a linear
input. The term err(·) represents the estimation error, i.e., the difference between
estimated value and the true value. Figure 4.3 and Fig. 4.5 have larger input sensor
noise and therefore the estimated input has larger absolute error compared to Fig.
4.2 and Fig. 4.4. However, the estimated parameter θ̂ and velocity x̂2 are still very
accurate.

Additionally, this chapter demonstrates the proposed framework for the TLS
estimator using a Monte-Carlo simulation. We use the root-mean-square error
(RMSE) and mean absolute error (MAE) as the metric for the accuracy of the TLS
estimator. We simulate the estimator for 100 runs using the same set of parameters
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Figure 4.6: Monte Carlo simulation results with δu = 1 and δy = 0.1. The mean
absolute error (MAE) for k, c, and m are 0.56%, 6.86%, and 1.29%, respectively.

as the one used in Fig. 4.2 The average simulation time for each run is 1.54s on a
laptop with a 2.4GHz CPU. The results shown in Fig. 4.6 represent the RMSE of
the estimator. The state estimation error of the velocity is within about 5% and
the parameter estimation error is about 0.5% to 7%, even with a large input noise
and moderate output noise.

It is computationally efficient to solve state and parameter estimation problems
using the proposed framework for estimation problems. The resulting problem is an
unconstrained NLP problem with N+3 = 33 optimization variables (including three
parameters). If the problem is discretized using the finite difference method, it would
result in a constrained nonlinear optimization problem with n×(nu+nx)+3 = 1503
optimization variables and n× nx = 1000 dynamical equality constraints.
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4.5 Conclusions
This chapter proposes a general computationally efficient framework for total
least squares (TLS) nonlinear state and parameter estimation for differentially flat
dynamics systems. This framework transforms the original system into the flat
output space by exploiting the differential flatness property. The trajectories of the
resulting flat output variables are then optimized using pseudospectral methods.
The end product is an unconstrained nonlinear programming (NLP) problem which
is relatively easy to solve. This significantly reduces the number of optimization
variables and eliminates explicit equality constraints to make TLS estimation
problems more tractable. This chapter demonstrates the proposed framework by
solving a nonlinear TLS state and parameter estimation problem with a nonlinear
mass-spring-damper system. The results show the framework to be very efficient
and accurate.
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Chapter 5 |
Total Least Squares State of
Charge Estimation for Lithium-
Ion Batteries: An Efficient Mov-
ing Horizon Estimation Approach

5.1 Introduction
This chapter proposes a computationally efficient total least squares (TLS) frame-
work for online state of charge (SOC) estimation with a moving horizon approach.
1 This chapter extends the TLS framework in chapter 4 by (i) adopting a moving
horizon estimation approach which is practical for online implementation and (ii)
applying the online differential flatness-based TLS framework to battery SOC
estimation. The TLS framework in Chapter 4 performs state estimation for the
entire trajectory of a dynamic system at once. This means that the framework’s
computational complexity will grow with time. In contrast, the work in this chapter
modified the above framework to enable moving-horizon estimation.

This chapter is motivated by the need for accurate SOC estimation for model-
based control. The literature shows that battery model-based control is critical
for battery management system (BMS) in terms of safety and longevity [1, 36,37].
However, to fully achieve the benefits of model-based control strategies, BMS

1 The work in this chapter has been accepted by a peer-reviewed World Congress of the
International Federation of Automatic Control (IFAC WC) paper by the dissertation’s author [98]
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requires accurate state of charge (SOC) estimation.
Battery SOC estimation problems are studied extensively in the battery control

and estimation literature. The tools used for SOC estimation in the literature can be
categorized into two classes: (i) open-loop estimation using coulomb counting and
open circuit voltage (OCV) lookup table and (ii) closed-loop estimation [35]. The
closed-loop SOC estimation techniques can be further classified into two categories:
(i) model-based approaches: such as Luenberger observers [36, 37], backstepping
observers [38], recursive least squares estimation [39], Kalman filters [40–42,44–46],
optimization-based estimators [47,48], and (ii) data-driven estimators which may
not need a battery model [99,100]. All of above studies are valuable, in the sense
that they contribute to a growing literature showing the challenges and benefits of
accurate SOC estimation.

This chapter focuses on battery TLS SOC estimation using a moving horizon
approach for the following two reasons. First, we adopt the TLS estimation
framework since it explicitly assumes both input and output measurements are
corrupted with noise, instead of assuming perfect input measurements and noisy
output measurements. Although the TLS estimation for the cell capacity is studied
in [101], there are few studies on nonlinear battery TLS SOC estimation. Second, our
use of moving-horizon estimation makes it relatively straightforward to incorporate
constraints into the estimation process. For example, while this is not done in this
chapter, a moving-horizon estimator can constraint its estimates of internal charge
concentration within a lithium-ion battery to always remain non-negative.

However, it is computationally challenging to solve the TLS SOC estimation
problem online. First, the TLS estimation requires one to estimate all of the input,
state, and output variables since both input and output measurements are noisy
and therefore need to be estimated. Second, similar to the model predictive control
(MPC) strategy, the MHE estimates the battery SOC at each sampling time with
the data in the moving horizon. Therefore, the MHE requires the BMS to finish
estimating battery SOC within a sampling instant.

Given the above challenges, the overall goal of this chapter is to solve battery
TLS SOC estimation problem online in an efficient manner using the differential
flatness property. Differential flatness has been adopted in battery online model-
based control recently and is quite promising in terms of computational efficiency
[1, 58]. Differential flatness makes it possible to express system dynamics using

87



algebraic equations consisting of only one variable, the flat output, without explicit
integration [52]. It is true that there are other techniques (e.g., Carleman embedding
as in [102, 103]) that can also increase the computational speed. However, the
differential flatness property is the property of a system and the transformation
using differential flatness is exact and does not involve approximation. Since battery
dynamics are shown to be flat [1, 58], the battery SOC estimation problem can be
transformed into a static optimization problem with fewer decision variables and no
battery dynamics constraint. Recently, several studies adopt the MHE to estimate
battery SOC with equivalent circuit models (ECM) [49–51]. However, none of these
studies exploit the additional computational gains arising from of the differential
flatness property. To the best of authors’ knowledge, this work is the first to study
battery online TLS SOC estimation problem with differential flatness.

The remainder of this chapter is organized as follows. Section 5.2 introduces
a battery equivalent circuit model with thermal dynamics (ECM-T). Section 5.3
formulates the TLS SOC estimation problem and introduces the MHE approach.
Additionally, the problem is further formulated using differential flatness. The
SOC estimation results with the proposed framework are presented in Section
5.4. Additionally, Monte-Carlo simulation is used for comparing two estimators
(i) a flatness-based MHE without constraints, and (ii) a benchmark UKF. Finally,
Section 5.5 concludes the chapter and discusses related future work.

5.2 Equivalent Circuit Model with Thermal Dynamics
(ECM-T)

Figure 5.1: Second-order ECM Model
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This section describes the governing equations of the ECM-T model used to rep-
resent battery thermal and electrochemical dynamics. The ECM-T model consists
of an second-order equivalent circuit model (ECM) with first-order thermal dynam-
ics. The battery parameters are identified using commercial A123 26650 lithium
iron phosphate (LFP) batteries with 2.3 Ah nominal capacity. The parameters can
be found in Table A.1 in Appendix A.

The governing equations for the ECM-T model are shown as below:

ẋ1 = 1
Q
u1 (5.1a)

ẋ2 = − 1
R1C1

x2 + u1 (5.1b)

ẋ3 = − hA

mCp
(x3 − u2) + 1

mCp
u1x3S(x1) + 1

mCp
u2

1R2 (5.1c)

y =
 OCV (x1) + 1

C1
x2 +R2u1

x3

 (5.1d)

The ECM-T model is a unidirectional model: the diffusion dynamics Eq.(5.1a)
and Eq.(5.1b) are not affected by the temperature x3, but the temperature sub-
model Eq.(5.1c) is a function of x1, x2, and x3. The state is x ∈ R3×1 with x1

as battery SOC, x2 the amount of charge in the capacitor C1, and x3 cell bulk
temperature. The term Q is battery charge capacity, and R1C1 is battery diffusion
time constant representing battery diffusion dynamics. The term mCp is the
thermal mass of the battery, h is the convection heat transfer coefficient, A is
cell surface area, and R2 is the effective ohmic resistance of the battery. The
resistance R2 couples the electrochemical dynamics of the battery. The input
u ∈ R2×1 to this model are current u1 and ambient temperature u2, and the output,
y ∈ R2×1, includes the terminal voltage across the battery and bulk temperature.
Battery terminal voltage y1 consists of three components: OCV as a function of
x1, OCV (x1), the voltage from the RC pair, and the voltage from the internal
resistance. The second output is battery bulk temperature.

The first-order lumped parameter thermal model is adopted in this chapter to
describe the thermal behavior of lithium-ion batteries [71,79,104,105]. The first
term on the right hand side is the convection heat transferred from the surface of
the battery to the surroundings. The second term is the reversible or entropic heat
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generation term. The last term is the irreversible heat component due to ohmic
losses.

The entropy coefficient in electrochemical model is a function of the SOCs
in both electrodes [71]. However, this chapter approximates the overall battery
entropy coefficient as a fourth-order polynomial as a function of bulk SOC x1:

S(x1) = θ1 + θ2x1 + θ3x
2
1 + θ4x

3
1 + θ5x

4
1 (5.2)

The entropy coefficient curve (i.e., the θi) is identified using least squares estimation
from voltage and temperature measurements using experimental data. The identified
entropy coefficient curve matches the one from electrochemical model in [106] very
well. Details on the identification of entropy coefficient curve can be found in [78].

5.3 Problem Formulation: Total Least Squares SOC
Estimation

5.3.1 Moving Horizon Estimation

The MHE strategy is adopted for battery TLS SOC estimation. Although the
full-information estimation includes all information using all of the past data as
proposed in [84], the problem dimension grows with time. This may not be practical
for online battery SOC estimation. Instead, in the literature, a moving horizon
approach is adopted for online state estimation. Similar to the model predicative
control (MPC) strategy, the MHE approach uses the measurements at each sampling
instant within the horizon and implicitly incorporates the prior information. The
state estimation problem at time k (k > N , where N is the length of the moving
horizon) using the MHE strategy can be formulated as follows:
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min
{x̂}k

i=k−N ,{û1}ki=k−N

Jk = ‖x̂k−N − x̄k−N‖2
Π−1 +

k∑
i=k−N

‖û1,i − um1,i‖2
Q−1

+
k∑

i=k−N
‖ŷi − ymi ‖2

R−1

s.t.:

ˆ̇x1 = 1
Q
û1

ˆ̇x2 = − 1
R1C1

x̂2 + û1

ˆ̇x3 = − hA

mCp
(x̂3 − û2) + 1

mCp
û1x̂3S(x̂1) + 1

mCp
û2

1R2

ŷk =
OCV (x̂1,k) + 1

C1
x̂2,k +R2û1,k

x̂3,k


u2,i = Tref

(5.3)

where ‖ · ‖ represents the 2-norm. The input and output are corrupted with noise,
i.e., uk = û+ wk and output yk = ŷ + vk, where wk is the input noise added to the
input channel, and vk is the output noise. In this chapter, the input noise wk and
output noise vk are assumed to be independent and identically distributed (i.i.d.)
zero-mean Gaussian noise, i.e., wk ∈W, vk ∈ V.

The goal of the optimization is to minimize the estimation error in input and
output channels by estimating the state and input trajectories, {x̂}Ti=k−N and
{û}Ti=k−N . The error is defined as the difference between the estimated values, û1,i

and ŷi, and the measured values, um1,i and ymi . Note that for simplicity, this chapter
assumes that the ambient temperature u2 is constant and known, Tref . One can
choose to estimate the ambient temperature by adding another term in the cost
function to minimize the measured and estimated ambient temperature. Moreover,
to incorporate the previous information that is not included in the moving horizon,
the arrival cost is added. The first term in the cost function, ‖(x̂i−N − x̄i−N)‖2

Π−1 ,
is the arrival cost. The arrival cost approximates prior information contained in
the data outside of the moving horizon, i.e., the past information contained from
time i = 0 to time i = k −N − 1. Specifically, in this chapter we adopt the “filter”
update for the arrival cost: it penalizes the deviations of the initial estimate in the
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horizon, x̂i−N , from an a priori estimate x̄i−N [107].
The matrices Π, Q, R are tuning parameters with positive definite structures.

These matrices represent the confidence for the initial guess, input measurements,
and output measurements in the cost function Jk, respectively. The weight Π−1 for
the arrival cost can be (i) a constant positive definite matrix as in [108,109] or (ii)
can be updated as the covariance matrix from the EKF [110]. When the weight
Π−1 is a zero matrix, it means that the prior information is ignored completely.
The inequality constraints can be used to incorporate more information, such
as the bounds on the variables with physical values and the known statistical
characteristics of the measurement noise [47,67].

The MHE problem in Eq. (5.3) can be computationally expensive for TLS
SOC estimation for two main reasons. First, due to the assumption of the TLS
estimation problem that both input and output measurements are noisy, one needs
to estimate all of the input, output, and state variables. This can lead to a high
dimensional optimization problem. Second, battery SOC estimation problem in
Eq. (5.3) is a nonlinear and nonconvex optimization problem. The nonlinearity
is due to the nonlinear temperature dynamics in Eq. (5.1c) and the nonconvexity
comes from the SOC-OCV curve and the entropy curve in Eq. (5.2). Note that
the nonconvexity can lead to local minimum for the MHE problem. Therefore,
the differential flatness property of the ECM-T model is exploited to increase the
computational speed of battery TLS SOC estimation problem in Eq. (5.1).

5.3.2 Flatness-Based MHE

The dynamics of the ECM and ECM-T model are shown to be differentially
flat [98,111]. In this section, the details on how to identify the flat output vector
of the ECM-T model is presented. In addition, the resulting MHE problem using
differential flatness is formulated.

Similar to the SPM-T model, the ECM-T model needs two flat outputs as
well, i.e., z ∈ R2×1, to represent the dynamics of the ECM-T model, since the
model has two inputs, i.e., the input current u1 and the ambient temperature
u2. The unidirectionally-coupled structure of the ECM-T model can help one to
identify the flat output variable: battery electrical dynamics are decoupled from
temperature dynamics. Intuitively, one can identify one flat output for battery
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diffusion subsystem and second one for the temperature dynamics. Note that the
choice of flat output vector may not be unique.

Note that the continuous system in Eq. (5.1) is first used to identify Eq. (2.30)
and Eq. (2.31). The first flat output z1 is chosen to be the first state after one
transforms the subsystem of x1 and x2 into the controllable canonical form [1]. The
state transformation has the following form:x1(t)

x2(t)

 = M

x̄1(t)
x̄2(t)

 (5.4)

where [x̄1, x̄2]T are the transformed state variables and M is the transformation
matrix for the controllable canonical form. For the subsystem of x1 and x2 describing
the decoupled electrical dynamics of the battery, the flat output can be found to
be the first state variable of the transformed state, i.e.,

z1(t) = x̄1(t) (5.5)

Since in the controllable canonical form the states are a chain of integrator except
for the last state, the first two states of ECM-T model can be expressed as followsx1(t)

x2(t)

 = fx(z(t), ż(t)) = M

1 0
0 1

 z1(t)
ż1(t)

 (5.6)

The second flat output needs to describe the dynamics of the bulk temperature
and therefore the bulk temperature x3 can be another flat output, i.e.,

z2(t) = x3(t) (5.7)

Similarly, the input current u1 can be expressed using the second flat output
based on the subsystem of x1 and x2 as follows:

u1(t) = [−α1,−α2, 1]


z1(t)
ż1(t)
z̈1(t)

 (5.8)

where αi are the coefficients of the characteristic equation of the subsystem.
Additionally, the dynamics of the temperature x3 can be expressed as an
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algebraic function in terms of z and u2. Therefore, the second input u2, the ambient
temperature, can be expressed as a function of z by solving the algebraic equation
in terms of flat output vector z

u2(t) = h(z(t), ż(t), z̈(t)) (5.9)

Similarly, the battery output vector y can be expressed as

y =
g1(z(t), ż(t), z̈(t))

z2

 (5.10)

where g1(·) is the output equation for cell voltage.
Therefore, the online SOC estimation problem in Eq. (5.3) can be transformed

into:

min
{ẑ1}ki=k−N

Jk = ‖(x̂k−N − x̄k−N)‖2
Π−1 +

k∑
i=k−N

‖û1,i − um1,i‖2
Q−1

+
k∑

i=k−N
‖ŷi − ymi ‖2

R−1

s.t.:

z1(t) = x̄1(t)

z2(t) = x3(t)

x(t) = fx(z(t), ż(t))

u1(t) = [−α1,−α2, 1]


z1(t)
ż1(t)
z̈1(t)


u2(t) = h(z(t), ż(t), z̈(t))

ŷk =
g1(ẑk, ˆ̇zk, ˆ̈zk)

ẑ2,k


u2,k = Tref

(5.11)

The estimated state at the beginning of the moving window x̂k−N , input and
output noise are expressed as functions of the flat output trajectory and its deriva-
tives. One benefit of using the flatness property is that the system dynamics Eq.
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(5.1) are automatically satisfied by adopting Eq. (5.6), Eq. (5.8) - Eq. (5.10).
Therefore, compared to the problem in Eq. (5.3), the transformed problem in
Eq. (5.11) does not have battery dynamic equality constraints. Essentially, the
battery TLS SOC estimation problem is now transformed into a static optimization
problem in which one only needs to optimize the trajectory of the flat output.

(a) Only include measurement uncertainties (b) Include model and measurement uncer-
tainties

Figure 5.2: Diagrams for estimators with uncertainties

To solve the problem in Eq. (5.11), the highest order derivative of the flat output
is parameterized as a piecewise constant function over the moving horizon [55].
The flat output and its lower order derivatives are then calculated by integrating
its highest order derivatives. For each integration, one introduces an integration
constant which is treated as one of the decision variables. According to authors’
experience and the literature, the integration procedure is numerically more stable
than directly differentiating the flat output trajectory [95,112].

5.4 Results and Discussion
This section demonstrates the proposed flatness-based MHE approach for battery
SOC estimation. As shown in Fig. 5.2, two uncertainties are considered: i)
measurement uncertainties and ii) model uncertainties. In the first section, only
measurements uncertainties are considered as shown in Fig. 5.2a. The data used
in the estimator is generated by simulating a ECM-T model and adding Gaussian
noise to the measurements. In the section section, both model and measurement
uncertainties are considered as illustrated in Fig. 5.2b. The SPM-T model is
considered as the “true” battery which provides battery response. The ECM-T
model is used in the estimator.
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Figure 5.3: SOC estimation results comparison at high SOC region (starting from
95% SOC): MHE (blue dashed lines), UKF (red dash-dot lines), and true signals
(black lines).

5.4.1 Estimation Results with Only Measurement Uncertainties

This section considers only the uncertainties due to measurement noise. This section
conducts the Monte-Carlo simulation using two estimation algorithms (i)MHE,
and (ii) a benchmark UKF. Moreover, the Monte-Carlo simulation results are
presented and compared, which shows the difference in SOC estimation accuracy
and convergence rate.

Each estimation scheme shares the same simulation parameters which are shown
as follows. The parameters of the ECM-T model used in this chapter come from [78].
The battery’s input current trajectory is produced by simulating the battery pack
load associated with a 100-mile range electric vehicle (i.e., EV-100), then scaling
the resulting simulated current down to match the capacity of the battery cell used
in this study. The Federal Test Procedure 75 (FTP-75) cycle is adopted for the
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Figure 5.4: SOC estimation results comparison at mid-SOC region (starting from
50% SOC): MHE (blue dashed lines), UKF (red dash-dot lines), and true signals
(black lines).

simulation study. The measurements are sampled at every second (i.e., dt = 1s).
The length of the moving horizon is chosen to be 3, i.e., N = 3. The measurement
noise is zero-mean Gaussian noise, i.e., wk ∼ N(0, σw) and vk ∼ N(0, σv). The
standard deviation for the noise is: σw = 0.02A and σv = [0.02V, 0.02K]T . The
problem (5.11) is solved in MATLAB with the fmincon function.

Table 5.1: The mean absolute error (MAE) and the root mean square error (RMSE)
of estimators with different scenarios. Left table corresponds to the results shown
in Fig. 5.3 and right table corresponds to the results shown in Fig. 5.4.

Error type MHE UKF
MAE 7.0393×10−4 0.0132
RMSE 0.0859 1.4269

Error type MHE UKF
MAE 0.0058 0.0163
RMSE 0.8895 1.8442
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Figure 5.5: Monte-Carlo simulation results from (i) MHE and (ii) UKF. The initial
SOC is 50% and this corresponds to the mid-range SOC where OCV curve is flat.

5.4.1.1 Comparative Study: MHE Vs. UKF

The SOC estimation accuracy of two estimators (MHE and UKF) are compared.
The Kalman filters are widely used in battery SOC estimation. An introduction to
UKF-based estimation can be found in [113]. The MHE and UKF share the same set
of parameters to have a “fair” comparison. Note that although the computational
efficiency of the TLS estimator is significantly improved with differential flatness,
it still needs to solve optimization problem. Compared to the MHE, UKF does
not need to solve optimization problem. Therefore, from the simulation time, the
UKF is more efficient than the MHE. It takes about 26s computer time to give the
estimated SOC for a 9000s simulation, compared to about 2000s computer time by
MHE.

Figure 5.3 and Fig. 5.4 depict the state estimation results of the proposed moving
horizon TLS estimation framework and the benchmark UKF. Figure 5.3 corresponds
to the case starting at 95% SOC with the initial guess for each estimator to be
x̂0 = x0 + [−0.05, 1, 0.1]T , where x0 is the true initial state. Figure 5.4 corresponds
to the case starting at 50% SOC with the initial guess for each estimator to be
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Figure 5.6: Monte-Carlo simulation results from (i) MHE and (ii) UKF. The initial
SOC is 95% and this corresponds to the mid-range SOC where OCV curve has
large slope.

x̂0 = x0 + [0.05, 1, 0.1]T , where x0 is the true initial state. The MHE estimator
provides relatively accurate SOC estimation and input current estimation. There
is larger SOC error for this case due to the fact the SOC-OCV slope is flatter than
the case at 95% SOC. The mean absolute error (MAE) and root mean square error
(RMSE) for each case are listed in Table 5.1. For both cases (i.e., mid-SOC region
and high SOC region), the MHE gives more accurate results in terms of the MAE
and RMSE.

Additionally, this chapter conducts the Monte-Carlo simulation to further
demonstrate the accuracy of both estimators with two initial SOCs: (i) 50% SOC
(where the OCV-SOC curve is relatively flat) and (ii) 95% SOC (where the OCV-
SOC curve has relatively large slope). Figure 5.5 and Fig. 5.6 show that the MHE
scheme can provide the most accurate SOC estimation for both cases. This relates
to the fact that (i) the MHE strategy includes the data from several sampling steps
instead of one; and (ii) the weigh on the prior information in the MHE helps to
estimate SOC with smaller variance (i.e., RMSE) and estimation bias (i.e., MAE).
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Figure 5.7: Model uncertainties: the ECM-T model used in the estimator is
identified using the response generated with the SPM-T model which is considered
as the “ture” model in section 5.4.2 .

Comparing the results shown in Fig. 5.5 and Fig. 5.6, the estimation results in the
mid-SOC region are jeopardized by the slope of OCV curve. This relates to the fact
that battery SOC is more observable in high SOC region than in the mid-range
SOC region where SOC-OCV curve is flat, which is the same with the conclusions
from some studies in the literature [32–34].

Table 5.2: The mean absolute error (MAE) and the root mean square error (RMSE)
of estimators with model uncertainties and measurement uncertainties.

Error type MHE UKF
MAE 0.1205 0.2008
RMSE 5.4356 09.4653
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Figure 5.8: SOC estimation results with model uncertainties: MHE (blue dashed
lines), UKF (red dash-dot lines), and true signals (black lines).

5.4.2 Estimation Results with Model and Measurement Uncer-
tainties

This section investigates the effects of both measurement uncertainties and model
uncertainties on estimation accuracy as illustrated in Fig. 5.2b. The SPM-T model
is considered as the “true” battery model which generates the data by simulating
the SPM-T model and the ECM-T model is used in the estimator. The parameters
of the ECM-T are identified using the response from the SPM-T model. The
identified ECM-T is used in the estimator to predict voltage. Figure 5.7 shows that
using the ECM-T model in the estimator leads to relatively large voltage prediction
error compared to the SPM-T model, which is considered as the true battery model.

Figure 5.8 depicts the simulation results of this study. The results show that
the estimated SOC from the MHE is more accurate than the ones from the UKF.
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Figure 5.9: Monte-Carlo simulation results from (i) MHE and (ii) UKF.

Compared to the ones shown in Fig. 5.3 and Fig. 5.4, the estimation results shown
in Fig. 5.8 has much larger estimation error. This is due to the fact that not only
measurements are corrupted noise but also the model is not accurate any more.
However, it shows that the MHE can still provide relative more accurate SOC
estimates compared to the UKF. Moreover, this section also conducts a Monte
Carlo simulation study using the same set of parameters for the MHE and UKF to
study the accuracy of two estimators. The Monte Carlo results are shown in Fig.
5.9 and estimation error is shown in Table 5.2. The MHE is shown to give better
estimates compared to the UKF.

5.5 Conclusions
This chapter proposes a computationally efficient framework for lithium-ion battery
total least squares (TLS) state of charge (SOC) estimation. The proposed framework
exploits the differential flatness property of battery dynamics, which makes it
possible to represent battery dynamics using only flat output trajectories. An
equivalent circuit model with thermal dynamics (ECM-T) is used to predict battery
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dynamics. With the moving horizon strategy (MHE), the proposed TLS SOC
estimation framework is demonstrated by comparing the results to a benchmark
UKF. The results show that the MHE can achieve higher SOC estimation accuracy
with (i) only measurement uncertainties and (ii) both measurement and model
uncertainties.
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Chapter 6 |
Experimental Validation of To-
tal Least Squares SOC Estima-
tion with A Moving Horizon Ap-
proach

6.1 Introduction
This chapter experimentally validates the proposed flatness-based total least squares
(TLS) state of charge (SOC) estimation framework.1 In addition, this chapter ex-
tends the proposed framework in Chapter 5 by using a physics-based electrochemical-
thermal single particle model with thermal dynamics (SPM-T), instead of the
ECM-T model.

Recently, several studies adopt MHE to estimate battery SOC with equivalent
circuit models (ECM) [49–51]. There are two unique contributions of the work in
this chapter. First, none of the MHE work exploits the additional computational
gains with the exploitation of the differential flatness property. Additionally, the
use of ECM, although simple, can bring a critical challenge for battery health
management: unlike the physics-based battery models, ECM models are not
designed to predict battery physical variables, such as electrode potentials, reaction
rates or SEI layer thickness. Without estimating the physical variables, it is difficult
to design health-conscious battery control algorithms.

1 The work in Chapter 6 is in preparation for peer-reviewed publication.
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To the best of authors’ knowledge, this work is the first to study and experimen-
tally validate battery TLS SOC estimation problem by (i) exploiting the differential
flatness property of battery and (ii) using physics-based electrochemical-thermal
battery model with a moving horizon estimation approach. Based on the literature
and the simulation results using the ECM-T model in chapter 5, this chapter
proposes several hypotheses to be validated via experimental data. The proposed
hypotheses are listed as follows:

• State of charge estimation accuracy will increase as the size of the moving
horizon used for estimation is increased: a hypothesis which, if validated
experimentally, also suggests that the selection of the moving horizon’s size
involves a tradeoff between estimation accuracy and computational cost.

• The incorporation of prior information in the MHE strategy increases the
accuracy of SOC estimation.

• The use of temperature measurements, in addition to current/voltage mea-
surements (and therefore the use of a temperature-dependent model such as
the SPM-T model), improves the accuracy of SOC estimation.

The remainder of the chapter is organized as follows. The TLS SOC estimation
problem is first formulated in Section 6.2. Section 6.3 presents the details of the
SPM-T model’s system identification using experimental data. In Section 6.4, the
SOC estimation results are compared to the experimental data and the hypotheses
proposed in Section 1 are discussed. Finally, this chapter is concluded in Section
6.5

6.2 Problem Formulation

6.2.1 Total Least Squares Moving Horizon Estimation

This section formulates the TLS SOC estimation problem using the SPM-T model
with a moving horizon estimation approach. The governing equations of the
nonlinear SPM-T model can be found in chapter 3.

The MHE strategy is adopted for battery TLS SOC estimation in this chapter.
Similar to the TLS SOC estimation problem using the ECM-T proposed in Chapter
5, the TLS SOC estimation problem can be formulated as follows
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min
{x̂}Ti=T−N ,{û1}ki=k−N

Jk = ‖(x̂k−N − x̄k−N)‖2
Π−1 +

k∑
i=k−N

‖ûi − umi ‖2
Q−1

+
k∑

i=k−N
‖ŷi − ymi ‖2

R−1

s.t:
ˆ̇x(t) = f(x̂(t), û(t))

ŷk = f(x̂k, ûk)

(6.1)

where the subscript k represents the corresponding values at k-th sampling instant.
The symbol ‖ · ‖ represents the 2-norm. The goal of the optimization is to minimize
the estimation error in input and output channels by estimating the state and
input trajectories, {x̂}Ti=k−N and {û}Ti=k−N . The error is defined as the difference
between the estimated values, ûi and ŷi, and the measured values, umi and ymi .
One can choose to estimate the ambient temperature by adding another term in
the cost function to minimize the difference between the measured and estimated
ambient temperature. Moreover, to incorporate the previous information that
is not included in the moving horizon, the arrival cost is added. The matrices
Π, Q, R are tuning parameters with positive definite structures. These matrices
represent the confidence for the initial guess, input measurements, and output
measurements in the cost function Jk, respectively. The weight Π−1 for the arrival
cost can be (i) a constant positive definite matrix as in [108, 109] or (ii) can be
updated as the covariance matrix from the EKF [110]. The input noise is added to
the input channel and the measured input is the true input utk with noise wk, i.e.,
umk = utk + wk and vk is the output noise.

The MHE problem in Eq. (6.1) can be computationally expensive for TLS
SOC estimation for two main reasons. First, due to the assumption of the TLS
estimation problem that both input and output measurements are noisy, one needs
to estimate all of the input, output, and state variables. This can lead to a high
dimensional optimization problem. Second, battery SOC estimation problem in Eq.
(6.1) is a nonlinear and nonconvex optimization problem. The nonlinearity is due
to the coupled electrochemical-thermal dynamics of the SPM-T model shown in
Chapter 2.2 and the nonconvexity comes from the the Butler-Volmer kinetics in Eq.
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(2.13), the SOC-OCV curve, and the entropy curve (5.2). Therefore, the differential
flatness property of the ECM-T model is exploited to increase the computational
speed of battery TLS SOC estimation problem in Eq. (6.1).

6.2.2 Flatness-Based Estimation

The concept of differential flatness and how one can apply this concept to the
SPM-T model are introduced in chapter 3. Based on the flatness-based analysis,
the problem in Eq. (6.1) can be further transformed into the following problem

min
{x̂}Ti=T−N ,{û}

k
i=k−N

Jk = ‖(x̂k−N − x̄k−N)‖2
Π−1 +

k∑
i=k−N

‖ûi − umi ‖2
Q−1

+
k∑

i=k−N
‖ŷi − ymi ‖2

R−1

s.t:

x̂(τi) = fx(ẑ(τi), ˆ̇z(τi), . . . , ẑ(α)(τi))

û(τi) = fu(ẑ(τi), ˆ̇z(τi), . . . , ẑ(β)(τi))

ẑ(τi) = fz(x̂(τi), û(τi), ˆ̇u(τi), · · · , û(γ)(τi))

ŷk = f(x̂k, ûk)

where i = 1, 2, · · · , N

(6.2)

6.3 System Identification of SPM-T Model
This chapter briefly presents the details on system identification of the SPM-T
model of commercial A123 26650 lithium iron phosphate (LFP) cells. Battery cells
are placed in the thermal chamber which provides approximately constant ambient
temperature. The Arbin battery cycler is used to measure input current and output
voltage accurately. Additionally, battery surface temperature is measured with
one thermocouple attached to the surface of the cell and the temperature data is
collected with Arduino board and Matlab using a laptop computer.
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Figure 6.1: Experimental setup

6.3.1 SOC-OCV Curve

First, the SOC-OCV curve is measured and battery capacity is calculated by the
following steps.

• First, the cell is discharged to empty, defined as 2V in this chapter.

• Second, the cell is charged with the CCCV strategy, where the constant
current is 0.1C (i.e., 0.24A) and the cut off current is 0.01A, until the cell
reaches 3.8V.

• Third, the cell is similarly discharged with the CCCV strategy until the cell
reaches 2V.

• Fourth, battery charge and discharge capacity are calculated by integrating
the current during the second and the third step, respectively. Battery SOC is
calculated by dividing the charge in the cell by the charge/discharge capacity.
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Figure 6.2: Measured OCV curve through slow charging and discharging

• Finally, the SOC-OCV curve is calculated by averaging the voltage responses
during discharging and charging.

Figure 6.2 depicts the resulting experimental results of the above process and the
resulting OCV curve.

6.3.2 Parameter Identification

This subsection presents the details on the parameter identification of the SPM-T
model that is used in the online TLS SOC estimator. First, we introduce the
parameters to be identified. Second, least squares estimation is adopted to identify
the parameters using a set of different experiments.

Table 6.1 lists all the parameters that need to be estimated and other parameters
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Table 6.1: The parameters to be estimated in the SPM-T model

Parameter Type
Active material volume fraction εj Static
Stoichiometry, θn,0, θp,0, θn,100, θp,100 Static

Solid state lithium diffusion coefficient, Ds,j Electrochemical & Dynamic
reaction rate constant, kj Electrochemical & Dynamic

Effective internal resistance, Rcell Electrochemical & Dynamic
Activation Energy, EaD,j Thermal & Dynamic
Activation Energy, Eak,j Thermal & Dynamic

Thermal time constant, hA
mCp

Thermal & Dynamic
Thermal capacity, mCp Thermal & Dynamic

not listed are obtained from the literature.
In this chapter, as shown in Table 6.1, the parameters are grouped into 3

categories: (i) static parameters; (ii) electrochemical & dynamics parameters, and
(iii) thermal & dynamics parameters. The parameters (including the identified
ones) for the SPM-T model are shown in Table B.1. The details on the parameter
identification are shown as below.

6.3.2.1 Static Parameters

Static parameters are the ones that can be estimated using only the SOC-OCV
curve and do not need the data from battery dynamic tests. To identify the
stoichiometry values of the tested cells, one needs to calculate the OCV curve using
the reference potential curve from each electrode, Uj and match the measured
OCV curve shown in Fig. 6.2. We formulate a least squares estimation problem to
achieve this as follows:

min
θn,0,θp,0,θn,100,θp,100

J =
N∑
i=1

(OCVmeas,i −OCVest,i)2

s.t.: SOCn,i = SOCcell,i(θn,100 − x0) + θn,0

SOCp,i = −SOCcell,i(θp,100 − θp,0) + θp,100

OCVest,i = Up(SOCp,i)− Un(SOCn,i)

(6.3)
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Figure 6.3: Identification of static parameters: Measured OCV curve through slow
charging and discharging

Basically, one needs to discretize the range of cell SOC, SOCcell ∈ [0, 1] into N
values. For each SOCcell,i, one can calculate a corresponding OCV value, OCVest,i.
The goal of this optimization is to optimize the stoichiometry values such that the
overall least squares error between the measured OCV, OCVmeas, and the optimized
OCV, OCVest is minimum. Figure 6.3 shows the estimated OCV OCVest, measured
OCV, OCVmeas, and the OCV estimation error. The problem is solved with using
the fmincon function in Matlab with multiple initial guesses, which is known as
multi-start strategy. This strategy is used for all the parameter identification
optimization in this chapter, in order to increase the chance of reaching global
optimum.

With the estimated stoichiometry values optimized in problem (6.3), one can
calculate the active material volume fraction εn using the following relationship.
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Qdis = εn(θn,100 − θn,0)SnLnFcs,n,max (6.4)

Qch = εp(θp,100 − θp,0)SpLpFcs,p,max (6.5)

6.3.2.2 Dynamic Parameters

A dynamic cycling experiment is used for estimating the parameters pertaining to
both the thermal and electrochemical battery parameters simultaneously. In this
case, we solve the following least-squares parameter estimation problem:

min
Ds,j ,kj ,Rcell,EaD,j ,Eak,j ,

hA
mCp

,mCp
J =

n∑
i=1

(
Q(Vmeas,i − Vest,i)2 +R(Tmeas,i − Test,i)2

)
s.t:

Vest = y1

Test = y2

ẋ(t) = f(x(t), u(t))

y = g(x(t), u(t))

SOC(0) = SOCini

(6.6)

where n is the number of data points in the experiment, Vm and Tm are
measured voltage and temperature, and Vest and Test are the simulated voltage
and temperature from the SPM-T model. The terms Q and R are the weights for
voltage and temperature error. The optimization is subject to the dynamics of the
SPM-T model presented in chapter 3. We use least squares estimation to minimize
the sum of the squared difference between the measured voltage and the output
voltage from simulation at each data point. Before conducting the test, the cell is
preconditioned to the initial SOC, SOCini, by (i) discharging the cell to empty (i.e.,
2V) and (ii) then charging the cell to the target SOCini by coulomb counting using
the Arbin battery cycler. Due to the high accuracy of the cycler, the initial SOC,
SOC(0) is assumed to be known a priori. A sequence of battery current pluses is
used for parameter estimation. The optimization problem is scaled in MATLAB to
avoid numerical issues due to very different ranges among estimated parameters.
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Figure 6.4: Response from measurement (Meas) and identified SPM-T model (Est)

The parameters that are not estimated in this chapter are obtained from [2,3].
Figure 6.4 presents voltage and temperature response from measurements and

model prediction error for both battery temperature and voltage. The model
prediction error is defined as:

Model Error = yest − ymeas (6.7)

where yest is the estimated or model predicted output and ymeas is the measured
output in the tests. The means absolute error (AE) of the identified SPM-T model
for the voltage and temperature is 9.5 mV and 0.07oC, respectively. The root mean
square error (RMSE) are 11.3 mV and 0.09oC for the voltage and temperature,
respectively. Figure 6.4 also depicts model errors in voltage (second subplot) and
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temperature (fourth subplot) as a function of time. The identified parameters and
other model parameters can be found in Table B.1.

6.4 Results and Discussion

Table 6.2: The mean absolute error (MAE) and the root mean square error (RMSE)
of SOC estates with the MHE estimator.

Model Prior info Moving horizon SOC range MAE RMSE
SPM No, Π−1 = 0 N = 1 0.25-0.45 0.1413 0.1758
SPM No, Π−1 = 0 N = 3 0.25-0.45 0.0586 0.0835
SPM No, Π−1 6= 0 N = 1 0.25-0.45 0.0519 0.0640
SPM Yes, Π−1 6= 0 N = 3 0.25-0.45 0.0192 0.0226

SPM-T Yes, Π−1 6= 0 N = 3 0.25-0.45 0.0175 0.0217

This section presents the SOC estimation results using the framework proposed
in Sec. 6.2. The proposed hypotheses in Sec. 1 are examined using different setups
of the MHE and different experiments. Table 6.2 summaries the mean AE and
RMSE of different scenarios.
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Figure 6.5: SOC estimation results using the SPM model, with N = 1, and without
the prior information.
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Figure 6.6: SOC estimation results using the SPM model, with N = 3, and without
the prior information.

First, the effect of the size of the moving horizon (i.e., the number of measure-
ments included) is studied. To make the comparison easier, we only change the
moving horizon length from N = 1 to N = 3. The MHE uses the SPM model and
does not include any prior information, i.e., Π−1 = 0. Although the SPM model is
used, both scenarios share the same setup except N . One can see the difference
from Fig. 6.5 and Fig. 6.6. Figure 6.5 depicts the estimation results and error with
N = 1 and no prior information. One can see that in Fig. 6.5 the SOC estimation
error is large and has very similar trend with the model voltage error. Since no
prior information is used, every iteration is independent, and SOC estimates are
essentially determined from instantaneous vltage/current measurements. Since
the Arbin battery cycler is quite accurate, model prediction error dominates and
shows up in SOC error. When three measurements are used (N = 4), as shown in
in Fig. 6.6, the accuracy of the SOC estimation is significantly improved. When
the length of the moving horizon is larger than one (N > 1), the MHE minimizes
the estimation error in input and output measurements collected at each sampling
time within the horizon. This averages the error due to model prediction and
measurement at one time step. Therefore, by having longer horizon, one can
estimate battery SOC more accurately.

Second, the effect of the inclusion of prior information is studied. The comparison
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Figure 6.7: SOC estimation results using the SPM model, with N = 1, and with
the prior information.
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Figure 6.8: SOC estimation results using the SPM model, with N = 3, and with
the prior information.

is made by including the prior information for N = 1 and N = 3, respectively. The
SOC estimation error is significantly decreased by adding the prior information.
For N = 1, by comparing the results shown in Fig. 6.5 and Fig. 6.7, one can see
by adding the prior information, both the mean AE and RMSE of estimated SOC
are decreased. Similar improvement can be seen in Fig. 6.6 and Fig. 6.8. The
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improvement is due to the inclusion of prior information, which penalizes deviations
of the initial estimate in the horizon at the current step from a prior estimate. The
use of prior information is particularly valuable in mid-range SOCs, where the slope
of the OCV-SOC curve is smaller and less conducive to accurate SOC estimation.
In that scenario, propagation SOC estimates forward based on prior information
provides an attractive accuracy benefit.
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Figure 6.9: SOC estimation results using the SPM-T model, with N = 3, and with
the prior information.

Third, the effect of adding the temperature model is investigated. Figure
6.9 presents the SOC estimation results using the SPM-T model. It may be
difficult to observe apparent improvement from the plots, compared to the results
shown in Fig. 6.8. It can be seen from Table 6.2 that the mean AE and the
RSME are decreased slightly by adding the thermal sub-model. There are two
possible factors contributing to this improvement. The first one is related to the
fact that temperature and voltage measurements provide more information for
the estimator than using only voltage measurement. At the region where only
voltage measurement cannot achieve accurate SOC estimate, the added temperature
measurement can provide extra information for the estimator. Specifically, the
entropic heat generation term, which relates to electrode SOC, affects the thermal
dynamics and hence battery temperature as shown in [114]. The second factor is
that the SPM-T model gives smaller voltage model prediction error than the SPM
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model. Based on the results, using the SPM-T model instead of the SPM model
can improve the SOC estimation accuracy.

6.5 Conclusions
This chapter experimentally validates the previously proposed flatness-based total
least squares (TLS) SOC estimation framework. The SPM-T model is identified
with experimental data and used in the MHE. Four hypotheses are proposed
and examined using the experiments. The conclusions of the hypotheses can be
summarised as follows:

• Multiple measurements in the moving horizon can significantly improve the
accuracy of SOC estimation.

• The incorporation of the prior information in the MHE strategy can signifi-
cantly improve the accuracy of SOC estimation.

• The temperature measurement (i.e., using the SPM-T model instead of the
SPM model) can slightly improve the accuracy of the SOC estimation.
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Chapter 7 |
Conclusions

This dissertation presents an online framework for computationally efficient health-
conscious model-based battery control and estimation by exploiting the differential
flatness property. Each chapter of this dissertation is summarized in the follow list.

1. Chapter 1 presents the background and motivation of health-conscious model-
based control and estimation and the literature review that emphasizes the
importance of this dissertation. More specifically, this dissertation builds on
the literature that highlights the fundamental challenge of (i) the computa-
tional complexity of online model-based battery control and estimation and
(ii) accurate battery SOC estimation.

2. Chapter 2 presents a framework for the computationally-efficient, health-
conscious optimization of battery charge trajectories. This framework brings
together ideas from the battery model reformulation, differential flatness,
and pseudo-spectral optimization literatures. The framework is 5 times
faster than pseudo-spectral optimization alone, and generates battery charge
trajectories that, unlike classical CCCV charging, are able to avoid side
reaction overpotentials conducive to lithium plating: a critical degradation
mechanism in lithium-ion batteries.

3. Chapter 3 extends the framework from Chapter 2 in three important ways.
First, unlike Chapter 2, it does not assume significant time-scale separation
between the diffusion dynamics of the positive and negative battery electrodes.
This creates a redundancy between these electrodes’ respective flat output
variables. The law of conservation of charge is used for eliminating this
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redundancy a priori, leading to an “extended” differential flatness-based
optimization approach. Second, unlike Chapter 2, the battery model used
for optimization is no longer assumed to be isothermal, and the optimization
framework is extended to combined thermo-electrochemical models. Finally,
Chapter 3 also utilizes the proposed framework for nonlinear model predictive
control (NMPC), as opposed to offline optimization.

4. Chapter 4 presents a framework for the computationally efficient total least
squares (TLS) combined state and parameter estimation in differentially flat
systems. This framework forms a foundation for subsequent work in Chapters
5 and 6, but is initially demonstrated on a simple nonlinear mass-spring-
damper problem.

5. Chapter 5 solves the battery state of charge (SOC) estimation problem with
a total least squares (TLS) framework and a moving horizon approach. The
battery TLS SOC estimation problem is then solved using the proposed
flatness-based framework with a ECM-T model. It is shown in simulation
that the moving horizon estimation (MHE) can achieve better accuracy than
a benchmark unscented Kalman filter (UKF).

6. Chapter 6 validates the proposed TLS SOC online estimation framework
presented in chapter 5 using experimental data. Instead of the ECM-T
model, the chapter also extends the previous framework by using the SPM-T
model. The SPM-T model parameters are first identified and then used in the
moving horizon estimator for battery TLS SOC estimation. The experimental
results show that it is possible to estimate battery SOC accurately using the
flatness-based MHE.
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Appendix A|
Model Parameters: Equivalent
Circuit Model with Thermal Dy-
namics (ECM-T)

This appendix provides the parameters for the ECM-T model used in chapter 5.
The parameters are identified using commercial A123 26650 lithium iron phosphate
(LFP) cells. The entropy coefficient curve is identified by measuring the voltage
difference at different teesquares when the cell is at equilibrium. The details on the
parameter identification can be found in [78].

Table A.1: The parameters of 2.3Ah 26650 LiFePO4 cells.

Parameter Value
Q (As) 8174.3
R1C1(s) 120.4
C1 (F) 3960.9
R2(ω) 0.0192

hA/mCp(s) 0.0009
mCp (J/oK) 50.8

θ1 −2.43× 10−4

θ2 3.325× 10−4

θ3 2.3× 10−3

θ4 −4.9× 10−3

θ5 2.6× 10−3

S(SOC) = θ1 + θ2SOC + θ3SOC
2 + θ4SOC

3 + θ5SOC
4
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Appendix B|
Model Parameters: Single Par-
ticle Model with Thermal Dy-
namics (SPM-T)

This appendix provides the parameters for the SPM-T model used in chapter 6.
The parameters are identified using commercial A123 26650 lithium iron phosphate
(LFP) cells. The parameters of the thermal dynamics shown in A.1 and B.1 are
different. This is due to the fact that the parameters presented in Table B.1
correspond to the cells that are put in the thermal chamber whereas Table A.1
corresponds to the cells that are put in the test bed outside of the thermal chamber.
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Table B.1: The parameters of 2.3Ah 26650 LiFePO4 cells. e: identified parameters
at 25oC ambient temperature. Other parameters are obtained from [2,3]. Reference
potential curve for each electrode is obtained from [2] and the entropy coefficient
curve for each electrode is from [4].

Parameter Negative electrode Positive electrode
Lj (µm) 70 34
Aj (cm2) 1694 1755
Rj (nm) 36.5 3500

cs,j,max (mol/m3) 22806 31370
Ds,j (m2/s) 1.26× 10−15e 1.6.48× 10−15e

kj (A/m2(mol/m3)1.5) 8.692× 10−7 1.127× 10−7

EaD,j (kJ/mol) 79.8e 30.2e
Eak,j (kJ/mol) 55.6e 174e

αj 0.5 0.5
εj 0.35e 0.45e
θj,0 0e 0.82e
θj,100 0.02e 0.90e

ce (mol/L) 1
Rcell (mΩ) 9e
F (C/mol) 96487

R (J/(mol· K)) 8.3143
hA/mCp (1/s) 0.0026e
Tref (oC) 25
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