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Abstract 

Given recent advances in data processing, information technology and machine learning 
techniques, condition-based maintenance (CBM) has increasingly been used on high-cost assets 
as a way to improve product reliability and decrease long-term maintenance costs. While long 
established, CBM is often applied in a primitive manner using simple threshold monitoring and 
trending techniques. As such, there are opportunities for expanding this work using more 
intelligent methods which are now viable in practical settings as sensor and IT solutions decrease 
in cost. Mechanical systems worth monitoring include the control valve, which is used in a 
myriad of industries, including both commercial and military applications, and is particularly 
valuable in many settings. As an example, control valves are critical components in submarine 
subsystems, such as carbon removal units, which can require precise valve movements. In this 
and related applications, ensuring that movements are fully realized is crucial to the control 
process in question. 

This thesis explores a variety of techniques for classifying valve movements with the goal of 
detecting two specific types of blockages in control valves. Objects with different material 
properties can produce vastly different dynamic responses in a control valve when blocking the 
valve stroke. Therefore, it is the goal of this work to detect two types of these blockages in order 
to cover a broad range of potential obstructive sources. To do this, seeded-fault testing is 
performed to simulate these behaviors with the resulting dynamic responses captured by both 
external sensor instrumentation and inherent control system outputs. Both data sources are used 
separately for analysis. 

Classification using these data is tested using fuzzy inference systems (FIS’s), artificial neural 
networks (ANN) and a variety of geometric and instance-based statistical classification methods. 
Discriminating features are identified, extracted and subsequently input to these classifiers to test 
for overall accuracy. Furthermore, multiple approaches to processing these data are used, 
including real-time monitoring simulations and post-hoc movement analysis. In most cases, 
accurate blockage detection and classification is achieved from these analyses. As a result, it is 
hoped that this work can serve as the foundation for future research in the area of fault detection 
and identification on control valves which govern flow loops in important process control 
applications.  
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Chapter 1. Introduction 

Motivation 

In the realm of mechanical systems and engineering, there has always been a focus on 

developing processes and equipment in an efficient manner, with the goals of both reducing cost 

and increasing overall ability to a reasonable point. Specifically, engineers strive to strike a 

balance between cost and performance in the research and development of the work they 

produce. However, these goals are not always pursued in the most effective manner once the 

work itself is finished. Mechanical systems deal with power and force and are thus subject to 

fatigue, degradation and, eventually, failure. Maintaining their performance has arguably been, in 

recent years, a higher priority for organizations who depend vitally on their operation. There are 

many reasons for this, but the foremost is recent advances in information technology and related 

methods of data acquisition and analysis that allow engineers and scientists to view the 

performance of these systems in new and innovative ways [2].  

Maintenance has always been a critical component in the successful operation of mechanical 

systems, and as such has continued to evolve in nature. In the traditional sense, maintenance 

takes place only once a system has clearly failed and is not working properly. Workers locate the 

fault manually, sometimes with the use of primitive data, and then perform maintenance actions 

accordingly. While simple in nature, this process relies almost entirely on human-based 

judgements and therefore can lead to critical errors in the repair mechanisms or even the 

diagnoses that lead to them. Furthermore, it can take a considerable amount of time to make the 

relevant diagnoses and repairs necessary to bring the system back online for operation. Other 

related “traditional” methods include constant-interval maintenance and age-based maintenance 

which, as their names suggest, involve the replacement or repair of certain components at a 

specific age or interval [3]. While this can help prevent potentially disastrous failures, it could 

still require significant, albeit scheduled, downtime. Ideally, the onset of a fault can be predicted 

before it actually takes place or detected immediately so that downtime can be reduced or 

eliminated and the associated costs can be recovered. This desirable scenario has led to the 

development of analysis techniques and other general processes with the goal of achieving it. 
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Shin et al. describes the distinct classification of three maintenance policies: breakdown 

maintenance, preventive maintenance and condition-based maintenance (CBM) [1]. Breakdown 

maintenance, as described above, can roughly be defined as taking corrective action after a 

failure has occurred in some mechanical asset, while preventive and condition-based 

maintenance policies are focused on the use of quantitative variables to describe the health state 

of some system. As noted by Kothamasu et al., these variables and monitoring algorithms will 

often be tailored to not only a specific system but specific faults as well. He defines CBM as a 

decision-making strategy where “the decision to perform maintenance is reached by observing 

the ‘condition’ of the system and/or its components” [3]. For the purposes of the work described 

in this thesis, this is a suitable definition.  

CBM provides some very clear advantages over other types of maintenance that are immediately 

obvious. For one, it can provide warnings of critical failures before they take place if 

implemented correctly. Shin et al. note that the continuous advancement of available 

technological capabilities has enabled organizations to gather and use data in ways which make it 

possible to pinpoint the status of a product or asset more exactly [1]. Kothamasu similarly notes 

that CBM is helpful in diagnosing the failures of specific components through the monitored 

variables. Over time, as sensor and IT solutions decrease in cost while products become 

continuously more complex, CBM solutions can save money in maintenance budgets and have 

been reported to do so [4]. The primary disadvantage of CBM implementation is that it requires a 

period of relatively rigorous research and development to create algorithms and fit the solutions 

to specific systems, which comes at a large initial cost. A mass shift towards a CBM policy can 

also lead to a complete organizational overhaul of the maintenance structure and budget for an 

enterprise.  

Nevertheless, the benefits are clear and explain why CBM continues to be pursued by those who 

employ high-cost assets. The industrial, manufacturing and military sectors alike use this policy 

to maintain a level of confidence in product reliability. While different in nature, both a complex 

piece of manufacturing machinery and a hard-to-reach submarine component can benefit from 

CBM technology. This versatility enabled by CBM in general is, in turn, the leading motivation 

for this work. 
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Background 

Those in the manufacturing, industrial and oil and gas industries, along with nuclear and others, 

are generally familiar with control valves because of their pervasiveness in process plants. These 

plants, as noted by Fisher’s Control Valve Handbook, consist of hundreds or thousands of control 

loops that are often interconnected in some manner to control pressure, flow or other related 

process variables. In order to compensate for load disturbance and, more importantly, maintain a 

set point for a given process variable, control valves are used in scores throughout industrial 

plants, pipelines and other applications where control of flow is necessary [5]. 

Given the widespread use of control valves and their importance as key components in process 

control, they are well suited for CBM research. The breakdown of a single control valve could 

jeopardize a much larger process, and there are certain parameters that can help indicate if 

something has gone wrong. For example, valves leave a well-defined signature during a 

movement when comparing flow and travel components as shown below in Figure 1.1 [5].  

 
Figure 1.1: Visualization of the inherent characteristics of some control valves [5]. 
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In most control valves, there is a range over which the input signal to the controller can be varied 

without any movement taking place. There can also be differences in the output value, or flow, 

of a valve from cycle to cycle. These two phenomena are referred to as dead band and hysteresis, 

respectively, and are shown below in Figure 1.2 [6].  

 
Figure 1.2: Hysteresis and dead band in control valves [6]. 

Ideally, these phenomena are minimized or kept within an acceptable range so that the process 

variable in question does not vary significantly from cycle to cycle. Organizations such as 

Emerson Process Management have marketed digital valve controllers (DVCs) with the 

capability of monitoring these variables and indicating to operators if the valve in question is 

falling outside of the acceptable range of performance. The software used can also monitor the 

values of certain parameters, such as supply pressure, and create notifications if there are 

discrepancies from an expected level, as well as trend the values over time. Other more 

sophisticated research has been performed to use this type of dynamic response data and its 

statistical properties for monitoring control valves [12]. 

This sort of condition monitoring is helpful and certainly more effective for maintenance 

purposes than breakdown maintenance policies. However, it fails to address the actual cause of 

the process variable differences or the severity of the issue, i.e. whether it is an impending 

catastrophic fault, a fully-realized minor one, or even an incorrect calibration. In addition, this 

approach leaves engineers vulnerable to a lack of understanding with regard to specific failure 

modes and what may cause them.  
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Indeed, research has been done into more advanced methods of fault diagnosis in control valves. 

Simani and others have referred to three basic model-based fault diagnosis methods using the 

following: output observers, parity equations and parameter estimation techniques [7]. Karpenko 

et al. note that the latter two methods, particularly state estimation techniques, require 

mathematical models of the systems in question. Therefore, they are generally restricted to linear 

systems and not as useful for dynamic systems such as control valves that exhibit nonlinear 

behavior [8]. As Simani notes, often only output signals are able to be measured through the use 

of sensors and analyzed through methods such as spectral analysis or mean and variance 

estimation. From there, classification techniques such as statistical methods, artificial neural 

networks (ANN) and fuzzy inference systems (FIS) or fuzzy clustering are used to perform the 

actual fault diagnosis using these data as inputs [7]. 

Much of the existing literature surrounding CBM on control valves involves the use of ANNs to 

take input data and classify it accordingly. Subbaraj et al. used a neural network-based approach 

to detect and classify an array of 19 different faults on a pneumatic valve in a cooler water spray 

system, four of which took place on or inside the valve itself and the others corresponding to 

external, motor or positioner faults [13]. Sundarmahesh et al. expanded on this work with a more 

detailed discussion of the algorithm used as well as the use of principal components analysis 

(PCA) to aid in dimension-reduction [14]. McGhee et al. also used an ANN approach to fault 

diagnosis and identification (FDI) for control valves and considers faults related to leakage due 

to corrosion and wear in seals and seats, blockage and sticking due to debris build-up and poor 

maintenance, and other failures related to the spring and diaphragm [15].  Karpenko uses an 

ANN with process variable data from the DVC to assess valve performance [8], allowing for the 

identification of faults related to the air supply, input air vents and leakage from the actuator 

diaphragm. 

The use of fuzzy models and fuzzy logic is also prevalent in work related to fault diagnosis for 

process control valves. Fuzzy capabilities have been added to neural network models to create a 

“neuro-fuzzy” model with the goal of improving the interpretability of results [16]. Bocaniala et 

al. introduce a fuzzy classifier as a way of performing FDI on control valve actuators while 

Mendonca et al. used a similar analytic approach to fault detection but using parameter 

estimation techniques to predict outputs, which are then input to fuzzy models for each defined 
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fault [17, 18]. Carneiro and Porto use arguably the most straightforward approach by taking basic 

DVC data and using a fuzzy model to assess valve stroke performance, similar to [8], enabling 

the diagnostics to improve beyond that of those provided by some major suppliers as noted 

above [19]. 

In addition to the work described above, CBM efforts on control valves and related systems have 

been proposed using statistical classification algorithms for the detection and classification of 

faults. Nair et al. describe a feature selection method and subsequent fault detection using the 

simple naïve Bayes classifier [11], and a similar approach was applied to an air-handling unit by 

House et al. [10]. Support vector machines (SVMs) have been shown to be effective in the 

detection and classification of faults on control valves in particular [20, 21]. Perhaps most 

relevant, at least in process, is the recent work performed by Adams et al., who rigged a 

hydraulic actuator with sensors and used the resulting data streams to record faults and test a 

variety of classifiers to determine the best performers in terms of accuracy and power usage [9]. 

This work in particular shows how data can be gathered and intuitive features extracted for input 

into relatively simple statistical classifiers for FDI purposes. 

 

Research Question 

All things considered, it is clear that process control valves are not only instinctively suited for 

CBM research, but have a demonstrated responsiveness to it with room for more investigation. 

This is particularly important to first uncover given previous suggestions that close to 30% of 

industrial equipment is not particularly receptive to CBM [1]. Results from the studies in the 

previous subsection combine to lay a solid foundation from which more testing and analysis in 

multiple different directions is possible. Some of these works, such as those in [9] and [20], rely 

on simulated data using software models, while most of the works focus on one type of analysis 

approach. Furthermore, the “faults” analyzed in each of the studies are scattered with little 

overlap. This leaves room for exploration into different types of faults entirely or different ways 

that these faults may present themselves. Table 1.1 below, taken from Lee’s Loss Prevention in 

the Process Industries [22], gives a broad survey of faults seen in control valves. Clearly, there 

are a wide variety of scenarios to be considered. 
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Table 1.1: Some failure modes for a control valve [22]. 

 

One particular mode of interest, covered in some of the works above but as part of wider studies 

and without significant detail, is the blockage of a control valve. Table 1.1 shows that blockages 

accounted for a meaningful amount of the failures seen in the survey of control valves. However, 

thinking intuitively about the effects of a potential blockage, the issue could introduce many 

more of the modes given above. Leakage, for example, is arguably the most significant concern 

with respect to process control. Given that blockages will lead to leakage in a particular valve, 

combined with the no-flow conditions under which testing will be performed, blockages are 

thought of as a surrogate of sorts for detecting leakage in this case. 

For the purposes of this work, we will define a valve blockage as some object or mechanism that 

prevents the valve from properly completing an expected movement. Considering a blockage 

under this definition, many of the faults included in Table 1.1 can be regrouped. A blockage that 

prevents a valve from fully closing, for example, would likely lead to the valve not seating 

correctly, leakage occurring and flow not being completely shut off, to name a few. Revisiting 

the table, over 70% of the failure modes are directly referred to or could directly result from a 

valve blockage. Also, while a slight “blockage” may not be particularly important to a large 

valve in, say, an oil and gas pipeline, it can be very critical in other applications such as carbon 

removal units and air purification components. In this case, even a slight leak caused by a small 

blockage could contaminate the process that, for example, allows submariners or astronauts to 

breath for extended periods of time. 
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As a result, the work presented in this thesis concerns the identification and subsequent 

classification of blockages in multiple types of control valves using a variety of approaches. By 

comparing the “black box” nature of the artificial neural network with the more easily 

interpretable fuzzy inference system and statistical classification methods, the three main sources 

of sensor-based fault diagnosis techniques will be explored and compared. Given the extensive 

work previously done with ANNs and the inherent limitations of a fuzzy logic structure that arise 

when certain relationships aren’t clear, statistical classification methods will end up as the 

primary focus.  

This research intends to shed light on a few key questions regarding CBM for control valves. 

The following are some examples. 

 Are there different types of blockages?  

 Are blocked movements distinguishable from baseline movements?  

 What external sensors can be used to detect them?  

 What are the key features to focus on in the data?  

 What kind of accuracy is achievable?  

 Are the methods used transferable to valves of a different size or with a different 

controlling mechanism?  

The objective is not only to demonstrate how this failure mode can be identified but to make the 

case that the methods used, particularly the statistical classifiers previously mentioned, can be 

effective in the fault detection of control valves and in CBM as a whole.  
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Chapter 2. Analysis Techniques 

Introduction 

The purpose of this chapter is to provide an overview of the methods used for the analysis of data 

collected for this work. As described in the previous chapter, the use of sensors to gather output 

signals from the mechanical system of interest is often the only feasible way to perform fault 

diagnosis in practical applications. This research details the use of sensors to gather data though 

baseline and seeded-fault testing and subsequent feature extraction methods for input into 

various classifiers. As a result, the classifiers themselves will be described in more detail to 

provide full context. 

There are three primary classification techniques used for blockage detection and classification 

in the control valves used in this study. They are fuzzy logic, artificial neural networks and 

statistical classifiers, and all three are explored to some degree. A variety of statistical and other 

instance-based classifiers are available through MATLAB’s Classification Learner application, 

part of the Statistics Toolbox, but only the handful that showed promising levels of classification 

accuracy are described. These are discriminant analysis, k-nearest-neighbor, support vector 

machines, and ensemble classifiers. The three techniques vary in terms of simplicity, 

performance, interpretability and accuracy. Therefore, they will be compared qualitatively in this 

manner to highlight key differences.  

 

Fuzzy Logic Structures 

To fully understand fuzzy inference systems and their applicability to CBM research, it is 

particularly important to first understand the concept of crisp logic. Crisp logic is something that 

most engineers and scientists have knowledge of, if not under that specific title. It is equivalent 

to the concept of Boolean logic, i.e. a rule-based logic structure which takes an input and 

classifies the associated rule as true or false.  

Crisp logic is intuitive and easy to implement at a basic level with a small amount of rules. 

However, its complexity increases exponentially as inputs are added and rules become more 

complex to handle them. This makes it difficult to manually code and can quickly lead to 

classification errors if the entire space of rules is not deeply understood by the coder. 
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Furthermore, given the nature of this type of logic, discrete boundaries are required between 

classes. In other words, a set of observations belonging to a certain class must be clearly defined 

in the n-dimensional feature space in order to be suitable for crisp logic classification. As these 

clusters of observational data spread out, mix and become less distinct, classification error rates 

begin to rise and get quickly out of hand. A classic example is shown below in Figure 2.1, where 

two variable measurements on iris flower types explain three classes of flower.  

 
Figure 2.1: Data which may not be suited for crisp logic classification methods [27]. 

Given these two predictor variables and the scatterplot they produce, this data will probably not 

benefit from a crisp logic structure. In particular, the blending between the versicolor and 

virginica variables make it difficult to define a distinct set of rules for classifying these three 

flower types. It should be noted, however, that the addition of more predictor variables could 

help in creating a scenario that is more subject to classification using this method.  

When working with datasets where variable values fall on a more continuous spectrum and 

classes are not as clearly defined, fuzzy logic emerges as a more suitable option for many 

reasons. The first is that fuzzy logic structures, by nature, are more flexible to imprecise data 

inputs and can deal with uncertainty more effectively than crisp logic systems. With respect to 

fault detection, there are often different levels of severity associated with specific faults. In these 
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cases, fuzzy logic intuitively prevails because of its ability to define classifications along a 

continuum of class membership [28].  

The primary concept tied to the use of fuzzy inference systems is that of the membership 

function. As described by Zadeh, membership functions associate a vector of inputs with a 

continuous output along a [0, 1] interval as opposed to crisp logic structures which output either 

0 or 1 with no in-between [28]. This is useful because it allows the system to express more 

linguistic concepts such as “hot” versus “cold”, or “large” versus “small” by varying the degrees 

of membership mathematically [29].  

Membership functions can vary in shape, with common types including triangular, trapezoidal, s-

shape and Gaussian. MATLAB’s Fuzzy Logic Toolbox, which aided in the creation of the fuzzy 

inference systems used in this research, enables the use of these and others. Equation 2.1 below 

describes how a Gaussian membership function can be created by specifying statistical 

parameters (mean and standard deviation) to define its exact shape. 

𝑓𝑓(𝑥𝑥;  𝜎𝜎, 𝑐𝑐) =  𝑒𝑒
−(𝑥𝑥−𝑐𝑐)2

2𝜎𝜎2             [2.1] 

By specifying the parameters associated with the membership function(s) in question, one can 

create a relatively detailed structure covering a range of potential inputs for a particular variable. 

A generic example is shown in Figure 2.2 below. 

 
Figure 2.2: Use of Gaussian membership functions to provide a smooth surface for classifying a particular input [30]. 
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The flexibility attained by defining this sort of control surface, as referred to by Hameed et al. 

[30], allows researchers to develop logic structures to deal with parameter uncertainty while 

simultaneously being able to define a clear set of rules for classification. Tools made available by 

developers such as MATLAB allow for the easy development of an FIS, both the control 

surfaces and corresponding rules, through interactive interfaces and simple functions.  

Fuzzy sets such as the one shown in Figure 2.2 can be made for each variable of interest and 

combined to create an n-dimensional surface that represents the entire set of n features being 

used as inputs for classification. This allows a vector of crisp values to be input to the system and 

“fuzzified” according to the membership functions. These fuzzified values are then input into the 

fuzzy logic structure before being “de-fuzzified” into a crisp output. This configuration is 

summarized in Figure 2.3 below [31]. 

 
Figure 2.3: Fuzzy logic system configuration taken from de Abreu et al [31]. 

Overall fuzzy logic structures are not very dissimilar to crisp logic structures, but allow room for 

uncertainty in the inputs. While the advantages to this type of classification system have been 

described, mainly as compared to crisp logic, there are inherent disadvantages. For one, 

increasing the number of inputs quickly complicates the system and the number of rules 

involved. Furthermore, a single system is generally only helpful for describing the level of 

membership of one output or, for the purposes of this discussion, fault. Therefore separate 

systems are usually needed for describing different types of behavior. While this is expected 

from typical logic-based classification, the following classifiers discussed in this chapter provide 

additional flexibility in this domain. 
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Artificial Neural Networks 

The artificial neural network (ANN) is a powerful tool that, while applicable in a myriad of 

fields, has been increasingly used in CBM research for fault diagnosis in past years. As described 

in the previous chapter, existing research includes work on control valves [13 – 16]. Their 

relevance to this work in particular concerns their ability to perform pattern recognition, not just 

for images and alpha-numeric characters but for classifying vectors of input data as well. The 

connectionist nature of the parallel-node structure of neural networks allows for enormous 

flexibility in application [32]. In other words, one is not bound by linearity, distribution types or 

other assumptions typically associated with probabilistic classifiers. 

The most basic visual representation of an arbitrary feedforward ANN is shown below in Figure 

2.4 [33]. At the highest level, inputs enter a hidden layer of nodes where weights are applied and 

bias is added. In supervised learning methods, common for CBM applications, a training set of 

data is supplied to the network where the output classifications are known. As the network trains, 

the weights within each node adjust. A simple example, provided by Shiffman [32], explains 

how the error from each prediction can subsequently be used to adjust the weight on a given 

node during training. Typically, the network will train until it converges on an error rate or a 

maximum number of training cycles (or epochs) has been reached. 

 
Figure 2.4: Neural network with a single hidden layer [33]. 
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The hidden layer(s) of a neural network are essentially the backbone of the structure where most 

of the computation takes place. Each node in the hidden layer will take a linear combination of 

the inputs supplied and apply an activation function with the purpose of transforming it to some 

output. The activation function is usually one that is nonlinear, real-valued, continuously 

differentiable and relatively simple such as the sigmoid function shown in Equation 2.2 below 

[26, 36]. 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =  1
1+ 𝑒𝑒−𝑥𝑥

            [2.2] 

The adaptive nature of ANNs through the training process allows them to effectively “learn” 

from their mistakes, given a supervised learning strategy. Widespread research has been 

performed concerning the development of fast and efficient training algorithms [37], many 

utilizing the backpropagation algorithm to calculate cost function gradients. These training 

algorithms vary in the mechanics used to adjust weights and biases [38]. A common training 

method is the scaled conjugate gradient (SCG) algorithm, which removes the need for user-

defined parameters that can affect convergence [34]. This is the algorithm used to train pattern 

recognition ANNs described in Chapter 5.  

Many neural networks are designed to continuously adapt to new data points. However, for the 

purposes of this research and CBM in general, it makes more sense to train an ANN on a 

representative training set of data and use the resulting network with stored training patterns for 

future inputs. Neural networks of identical structure will train differently even with the same 

training set since initial conditions (i.e. weights and biases) will be reinitialized and changed. 

Thus it is often useful to train them many times until a suitable level of performance is achieved. 

The foundational mathematics behind ANNs and training algorithms have been extensively 

described [34 – 37], and thus will not be explored in great detail, as the focus of this work is on 

their application to CBM research for control valves. In fact, given the complexity of these 

mathematics, combined with the inherent difficulty in understanding the way in which ANNs 

classify inputs, neural networks are often referred to as “black boxes” [24, 39]. So while ANNs 

have been shown to be effective in modeling complex nonlinear behavior and making decisions 

not easily made by standard computers, this gap of understanding can lead to misinterpretation or 

overtraining.  



15 
 

Statistical Classifiers 

In the area of machine learning, classifiers can be grouped into different subsets that describe 

them more distinctly, i.e. probabilistic vs. non-probabilistic or parametric vs. non-parametric. 

Through the use of MATLAB’s Classification Learner Toolbox, classifiers of different types are 

available and were used for this work. The broadest term that can describe these classifiers, less 

general than machine learning, is statistical classifier, and therefore will be used to reference 

these methods as a whole. The reason this is suitable is that a classifier can be non-Bayesian, 

non-probabilistic and non-parametric (SVMs, for example) and still use statistical inference or 

geometric distance calculations in its general procedure. There is literature that makes a 

distinction between statistical and geometric classifiers or instance-based learners [26, 53], but 

we will treat them as one and the same for simplicity. 

As mentioned at the beginning of the chapter, the 4 general statistical classification methods that 

are considered in this work are discriminant analysis, k-nearest-neighbor (kNN), support vector 

machines, and ensemble classifiers. Discriminant analysis is a probabilistic classification method 

derived from Bayes’ Theorem, while kNN and SVM methods use distance calculations to create 

separating hyperplanes or boundaries. Ensemble classifiers combine multiple classifier 

algorithms in an attempt to reach higher levels of classification accuracy, often at the cost of 

computational memory.  

Equations 2.3 and 2.4 below provide some groundwork for these methods. Equation 2.3 is a 

modification of Bayes’ Rule which states, in words, that the probability of membership to group 

i (designated by 𝜋𝜋𝑖𝑖), given the input x, is equal to the probability that an observation belongs to 

group i and has the value x, divided by the total likelihood that we observe x. This formula 

provides the basis for discriminant analysis. 

𝑝𝑝(𝜋𝜋𝑖𝑖 | 𝒙𝒙) =  𝑝𝑝𝑖𝑖𝑓𝑓(𝒙𝒙 | 𝜋𝜋𝑖𝑖)
∑ 𝑝𝑝𝑗𝑗𝑓𝑓(𝒙𝒙 | 𝜋𝜋𝑗𝑗)𝑔𝑔
𝑗𝑗=1

            [2.3] 

Equation 2.4 is a generalized, or Mahalanobis, distance between two vectors which adjusts for 

variance through the addition of the variance-covariance matrix S. The Mahalanobis distance is a 

common measurement used in classifiers which utilize distance for classification purposes. 

𝑑𝑑(𝑥⃑𝑥, 𝑦⃑𝑦) =  �(𝑥⃑𝑥 − 𝑦⃑𝑦)𝑇𝑇𝑆𝑆−1(𝑥⃑𝑥 − 𝑦⃑𝑦)            [2.4] 
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Discriminant Analysis 

The discriminant analysis procedure is a probabilistic classification method which involves the 

development of “score functions” derived from Bayesian probability equations.  One of the key 

restrictions with this method comes from the assumption of a multivariate normal distribution 

among predictor variable data. In general, discriminant analysis for classification is robust to 

relatively small deviations from normality. However, there is no guarantee of normality when 

taking data and extracting certain features for classification purposes, so it is worth monitoring 

the distribution before continuing with classification using this strategy. 

The general algorithm for discriminant analysis is as follows. Functions of the predictor 

variables, the score functions, are calculated for each class using a training data set to estimate 

certain parameters such as mean vectors and covariance matrices. Subsequently, new data can be 

input into these functions for classification. In general, the class with the highest score function 

value will be the one in which the new data point will be placed. The values of these scores can 

be further used to estimate misclassification probabilities. 

The theoretical basis for discriminant analysis comes from Bayes’ Rule, a modification of which 

is shown in Equation 2.3, which poses conditional probabilities calculated using probability 

density functions (PDFs). Equation 2.5 below gives the PDF of a multivariate vector 𝒙𝒙��⃑  with a 

Gaussian distribution for population 𝜋𝜋𝑖𝑖. 

𝑓𝑓(𝒙𝒙��⃑  |𝜋𝜋𝑖𝑖) = 1
(2𝜋𝜋)𝑝𝑝/2|Σ|1/2  exp [−1

2
(𝒙𝒙��⃑ −  𝜇𝜇𝚤𝚤���⃑ )′Σ𝑖𝑖−1(𝒙𝒙��⃑ −  𝜇𝜇𝚤𝚤���⃑ )]           [2.5] 

This formula identifies the population covariance matrix to be Σ with a population mean vector 

𝜇𝜇𝚤𝚤���⃑ . There are p total classes to be classified into. Using Equations 2.3 and 2.5, we can simplify to 

the general form of a score function [44], summarized in Equation 2.6 for a single class i. 

𝑄𝑄𝑖𝑖 =  (𝒙𝒙��⃑ −  𝜇𝜇𝚤𝚤���⃑ )′Σ𝑖𝑖−1(𝒙𝒙��⃑ −  𝜇𝜇𝚤𝚤���⃑ ) + log|𝛴𝛴𝑖𝑖| − 2 log𝜋𝜋𝑖𝑖           [2.6] 

As it stands, Equation 2.6 expands to a score function which is quadratic in 𝒙𝒙��⃑ , hence the label Q 

for the equation. In this general form of the scores, the method is known as quadratic 

discriminant analysis. However, this form allows for varying covariance matrices for each class, 

giving the i designation for each Σ. A common additional assumption is that each class has 
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approximately equivalent covariance matrices, or homoscedasticity among classes. With this in 

mind we can further simplify to Equation 2.7. 

𝐿𝐿𝑖𝑖 = (𝒙𝒙��⃑ ′Σ−1𝜇𝜇𝚤𝚤���⃑ ) −  1
2

(𝜇𝜇𝚤𝚤���⃑
′
Σ−1𝜇𝜇𝚤𝚤���⃑ ) + log𝜋𝜋𝑖𝑖           [2.7] 

This gives a linear score function in 𝒙𝒙��⃑ , and is known as linear discriminant analysis. In general, 

while the quadratic analysis is able to create more sophisticated boundaries between classes 

which can improve accuracy, it requires more statistical parameters to be estimated as a result of 

the relaxed homoscedasticity assumption [44, 45].  

After the score functions have been defined for each class, they can then be used for 

classification and estimating misclassification probabilities as explained previously. Graphically, 

the difference between the two methods, linear and quadratic, is demonstrated in Figure 2.5 

below. Generally, an assumption of equal probability of membership to each class is made, 

though this assumption can be changed and adjusted for expected probabilities accordingly. 

 
Figure 2.5: Comparing linear and quadratic discriminant analysis [46]. 

Given the advantages and disadvantages between the two methods, there are scenarios that where 

each one prevails over the other. As a result, both are tested in this work.  
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K – Nearest – Neighbor 

The kNN classification problem is commonly known as one of the simplest machine learning 

applications and involves the classification of inputs based on the closest known value in the 

feature space [40, 41]. Therefore, as with the other classifiers discussed in this section, it is 

necessary to have access to a quality training data set that is as representative of the population 

of features as possible. For the purposes of CBM, the kNN algorithm is, at the very least, a very 

attractive starting point in fault classification because it requires no prior knowledge of the 

distribution of the data used [41]. This enables the process of data acquisition, feature extraction 

and subsequent classification to take place in a relatively streamlined manner, since little 

additional study or analysis is needed before training classifiers. 

Given quality training data, kNN is quite simple and computationally efficient even for larger 

training sets. In general, the algorithm first calls for creating a distance matrix which stores the 

distance between all combinations of samples. As mentioned previously, there are a variety of 

distance measures that have been defined for statistical purposes. Peterson notes that the 

Euclidean distance, displayed in Equation 2.5 below, is often used for the calculation of this 

distance matrix [40]. 

𝑑𝑑(𝑥⃑𝑥, 𝑦⃑𝑦) =  �(𝑥⃑𝑥 − 𝑦⃑𝑦)𝑇𝑇(𝑥⃑𝑥 − 𝑦⃑𝑦)            [2.8] 

Note that this formula is identical to that of the Mahalanobis distance given in Equation 2.4, sans 

the inclusion of the variance-covariance matrix S. When information regarding the distribution of 

the data is not known, it is difficult to make assumptions about the use of certain hypothesis tests 

in statistical theory, such as Bartlett’s test for equal covariance matrices. As such, distance 

measures that involve these sorts of assumptions are avoided to maintain validity with respect to 

the chosen statistical methods. Euclidean distance is the default distance metric used in 

MATLAB-based kNN classifiers and is used in this work. 

The feature data to be used in training and future testing of the classifiers may be on remarkably 

different scales, leaving room for potential bias. For example, if frequency magnitude data from 

an FFT is used and on the order of one one-thousandth along with time data on the order of 4-7 

seconds, the data of higher magnitude (time data in this case) could have greater influence. The 

standardization of variables through calculation of the z-score is commonly used to alleviate this 
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issue. This simple calculation is shown in Equation 2.9 below, where i is the sample in question 

and j is the feature it belongs to. In this case, z would replace x in Equation 2.8. 

𝑧𝑧𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑖𝑖𝑖𝑖− 𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

            [2.9] 

Once the distance metric is defined and any necessary feature transformations have been 

performed, the distance matrix can be quickly calculated and used for classification. The “k” in 

k-nearest-neighbor stands for the number of neighbors that the test sample is to be compared to. 

In other words, once the distance matrix is calculated including the test sample in question, the k 

training points of closest proximity are collected. The test point is then classified into whichever 

class represents a majority of these points. A simple example is illustrated in Figure 2.6 below. 

 
Figure 2.6: Visual example of kNN classification [40]. 

Since k is equal to 4 in this case, and Class A represents 3 neighbors compared to just 1 for Class 

B, the test point is classified into Class A. In an effort to avoid ties, an odd value is often chosen 

for k.  

Most variations of the kNN classification strategy involve changing the distance metric used for 

calculations. Some have proposed the use of a kernel function to increase computational speeds 

[42]. Others have described the use of weighting functions to give more influence to closer data 

points, i.e. the distance-weighted kNN rule [43]. A variety of methods are tested in this research. 
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Support Vector Machines 

The concept of support vector machines is a machine learning technique that is more 

mathematically complex than the kNN or discriminant-based classifiers discussed previously. 

The idea is simple enough; we aim to construct some hyperplane that separates the classes of 

training data as cleanly as possible before applying this boundary to new testing data. This is 

done by taking each class and maximizing the margin between them with this hyperplane and 

associated support vectors [49].  

This process is relatively easy when the classes in question have distinct boundaries between 

them. When this is the case, linear SVM classifiers solve the problem of optimizing the 

separating boundary in order to minimize future classification error. An optimal hyperplane is 

found and the training observations that lie on the boundary that maximizes the margin between 

classes designate the location of the support vectors [47]. This basic case is illustrated in Figure 

2.7 below. 

 
Figure 2.7: Linear SVM visualization [47]. 

However, many realistic scenarios yield data that is not easily separated by linear hyperplanes. 

Often times the data may be mixed, as in Figures 2.1 and 2.5, and it is impossible to define this 

plane. When this is the case, the SVM algorithm attempts to instead minimize the number of 

observations that lie on the incorrect side of the proposed hyperplane. As a result, the margin 

created by the support vectors in this scenario is commonly referred to as a soft margin because 

of the points that violate the boundary. In these types of mixed data, the violating points are often 

also used as support vectors [48]. 
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While linear SVMs can be used in mixed data samples, there exist situations which do not lend 

themselves to linear separation boundaries. When this is the case, nonlinear transformations are 

used to develop boundaries that can classify more accurately than a simple linear hyperplane. To 

aid in this process, the kernel trick is used to expand the feature space to a larger dimension 

where it is possible to separate the data in a linear fashion [47, 48, and 50]. A variety of kernels 

exist for SVM classification, with quadratic, cubic and Gaussian variations available in 

MATLAB and used in this study.  

It should also be noted that the methods developed for performing SVM classification are for 

binary data sets, i.e. sets with only 2 response variables. As is often the case, the data collected 

for this research corresponds to more than 2 distinct classes. Support vector strategies extended 

to more than 2 classes are referred to as multiclass SVMs, and there are multiple approaches to 

this problem. The two most common are one-against-all and one-against-one. In the former case, 

given k total classes, k binary classifiers are developed where each class is compared against all 

others and the best performing class is chosen. For the latter, all possible pairs of classes are 

combined and used to create distinct binary SVMs, with the class that wins the majority being 

chosen. In general, the one-against-one approach is the preferred method [47], but is also 

increasingly expensive from a computational standpoint as k increases in size. However, the 

number of predictors is purposely limited in this research and therefore the one-against-one 

strategy to multiclass SVM is used in all cases. 

Overall, SVMs bring a nice balance with respect to classification accuracy, efficiency and 

computational performances. Furthermore, their approach to separating classes is flexible and is 

likely the primary reason for the promising results produced. 

Ensemble Methods 

Ensemble classifiers have been created with the goal of combining the results of multiple 

individual classifiers and weighting their results to achieve more accurate classification rates. 

Although often referred to as weak learners in the context of classifier ensembles, the individual 

learners used can be accurate alone. Therefore, when an ensemble is created from them, their 

averaged results can improve performance stability and reduce the possibility of overfitting the 

training data [54]. 
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Generally, ensemble methods utilize the decision tree classifier as the baseline weak learner and 

combine many of them to make a final classification. Decision trees were utilized as classifiers at 

the genesis of the classification analysis performed for this work, but their predictive accuracy 

compared to other classifiers led them to be omitted from the final results. However, they were 

shown to be quite effective in certain configurations as part of boosting and bootstrap-

aggregation (bagging) ensemble classifiers.  

The concept of a decision tree is well-known because of their use for displaying a process or 

algorithm in a more visual manner. Decision tree learning comes from the idea of applying this 

concept to a training set of data in order to create a “tree” of rules for classifying new data. They 

are commonly constructed using top-down greedy splits, i.e. creating tree “branches” by 

recursively dividing a feature space until the nodal (leaf) values become constant and splitting 

becomes ineffective [56]. Using this general approach, there many algorithms which use the 

supplied training sets to systematically create a decision tree [55, 56]. A general example of a 

decision tree is shown in Figure 2.8 below. 

 
Figure 2.8: Decision tree for determining the state of a control valve. 

The tree in this figure represents a generic logic structure used to determine the state of a control 

valve early in the research process for this thesis. While this logic structure was created manually 

and coded as such, the top-down decision tree induction process would ideally take the data 
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associated with the three parameters used above (time-series movement, frequency 1 and 

frequency 2) and automatically determine the respective thresholds instead of defining them 

manually. 

While simple in nature, intuitive and easy to interpret, decision trees are generally not as accurate 

as other machine learning classification methods and thus are commonly used in ensembles. 

There are multiple ensemble learning capabilities available in MATLAB which include the 

bagging and boosting methods referenced above along with random discriminant methods which, 

as the name suggests, combine discriminant classifiers.  

Bagging trees refers to the process of taking the training data and resampling, with replacement, 

in order to create a set of subsampled decision trees [54]. All the decision trees in this set are 

subsequently used to classify new test data with the final classification made by majority rule. 

Boosting with decision trees, on the other hand, creates a sequence of trees and weights them 

based off of the error rates of the previous ones, in effect making it an intelligent averaging of all 

trees [57]. In this case, hundreds or thousands of trees are created, making the decision tree’s 

tendency to train quickly a particularly attractive feature for ensemble classifiers. Multiple 

algorithms have been developed for boosting purposes with the most common being the 

AdaBoost method, used for this work. 

Given the scale on which individual classifiers, often decision trees, are produced for inclusion in 

classification ensembles, it makes sense that ensembles underperform in terms of computational 

efficiency compared to other machine learning methods. However, the way in which they are 

able to harness the typical accuracy of a single classifier with many others to create a more 

intelligent learner makes them worth exploring in the realm of CBM research and fault detection 

purposes. In particular, the way in which some are able to be adaptive in nature, as with 

AdaBoost boosted tree classifiers, makes them especially attractive if computing power is not a 

major concern.  
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Chapter 3. Hardware, Instrumentation & Test Setup 

Introduction 

This chapter stands to provide a detailed description of the valves used for testing and sensors 

used for data collection in this work. Additionally, the test plans for data acquisition on each 

valve will be given. For this research, three generic process control valves, graciously supplied 

by Emerson Process Management, were used for the simulation of baseline and seeded-fault 

testing. Two individual sensors, a high sample-rate accelerometer (ACCEL) and a more 

primitive, Arduino-powered inertial measurement unit (IMU), were used to collect response data 

along with basic control-system data (CS) supplied by the valve controllers. 

By manually inducing blockages in the valve stroke, seeded-fault testing enabled response 

behavior to be recorded and used for subsequent feature extraction and classification purposes. 

By comparing this data to baseline valve movements, specific discrepancies between typical and 

atypical movements (i.e. those that result from a blockage) can be identified in the frequency and 

time domains. Further information regarding the evolution of the feature identification and 

extraction processes are provided in the following chapter.  

Finally, specific descriptions of the actual faults are provided within this chapter. This work 

intends to discriminate specifically between a typical valve movement and two types of 

blockages, hard and soft that result in distinct behaviors. Relevant schematics are given to 

supplement the description of the seeded-fault methods.  

 

Rotary Valves 

Of the three valves used in this research, two were rotary ball valves. The valves are 

pneumatically actuated, indicating that air pressure is used as primary source of energy for 

controlling valve movement. Pneumatic valves are particularly common in the chemical, paper 

and petroleum industries [58] and are able to turn relatively little air pressure into a significant 

amount of output force for the valve stroke. The Fisher Vee-Ball V150 rotary control valve was 

used in two different sizes, five-inch and one-inch inlets, so that analysis methods could be 

compared in an attempt to demonstrate consistency as valve size is scaled. 
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Figure 3.1: Computer rendering of the Fisher V150 rotary ball valve used [58]. 

Figure 3.1 above gives a schematic which displays some of the internal mechanics used by these 

types of valves. An air supply is connected to the diaphragm actuator (green) and is used to 

pressurize the diaphragm in order to provide a linear force to the spring-shaft within. This force 

is then translated to rotary motion through the use of a scotch-yoke mechanism. As a result, the 

valve can complete and full opening or closing movement with a quarter turn of the drive shaft. 

The spring-diaphragm actuator allows for an emergency response in the event of a loss of 

pressure or power to the control system. These events would cause the spring to decompress and 

close the valve automatically.  

Figure 3.2 below provides actual images of the smaller of the two ball valves used. For scale, the 

visible inlet hole is one inch in diameter. While the inlet to the larger rotary valve is five inches 

in diameter, the entire body of the valve and diaphragm of the actuator is much more massive. It 

should also be noted that no flow loops were constructed using these valves. As a result, the 

testing performed took place under no-flow conditions with no pressure gradient across the valve 

inlets. 
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Figure 3.2: Images of the smaller notched rotary ball valve. 

 

Sliding – Stem Valve 

The third valve used for testing was a Fisher EZ Sliding-Stem valve, also provided by Emerson 

Process Management. Two views are provided below in Figure 3.3. 

 
Figure 3.3: Images of the standing sliding-stem valve. 
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This valve was also equipped with a spring-diaphragm actuator supplied with air pressure to 

control movement. Similar to the mechanics of the rotary valves, the diaphragm is pressurized 

and the spring shaft compresses and releases to open and close the valve. However, instead of 

being translated into rotary motion, the linear force is applied directly to the drive shaft to plug 

the valve. Figure 3.4 below provides a general schematic for this type of actuator. 

 
Figure 3.4: Internal schematic of the actuator for the sliding-stem valve used [59]. 

The purpose of performing testing on this valve, other than the fact that is was made available, 

was part of an effort to see if certain features carried over from valve to valve. From a more 

general standpoint, the goal was to show that certain analysis techniques discussed in the 

previous chapter could be applied to different types of valves. While the basic mechanical 

processes in each type are fundamentally different in certain ways, it would be important to 

discover that certain data streams are particularly effective in supplying features which 

discriminate between typical movements and blockage events. 
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Sensor Instrumentation 

As mentioned in the introduction for this chapter, there were two sensors used for data 

acquisition during testing. The primary instrument which provided data that was critical to the 

continued development of this work was a USB-powered accelerometer from Digiducer, shown 

in Figure 3.5 below. The USB capabilities of this sensor allowed for easy data capture using 

MATLAB and effectively streamlined the process from acquisition to analysis.  

 
Figure 3.5: Digiducer USB-accelerometer used for collection of vibration data. 

Given the historical importance of vibration data to CBM-related research, a quality 

accelerometer was sought at the beginning of this study. Specifically, the goal was to use sensors 

that are both easy to interface with software such as MATLAB and sample vibrations at 

relatively high frequencies so that a large range can be analyzed in the frequency domain. This 

accelerometer is capable of sampling at 48 kHz, a range deemed acceptable for this work. In 

many CBM applications, power usage and cost are often critical components to the selection of 

hardware components, so frequencies above 24 kHz were not of particular concern. 

This Digiducer unit was identified as a good fit and was used to capture vibration on the valve 

actuators during baseline and seeded-fault testing with the goal of uncovering key discrepancies 

in the structural response of the valve and actuator to certain blockages. Figure 3.6 below shows 

the location of this sensor on one of the actuators. While not shown, it should be noted that 

approximately the same location was used on all three valve setups. 
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Figure 3.6: Location of Digiducer (red) and IMU (blue) on small rotary valve actuator. 

The second sensor package used for data acquisition was a 6 degree-of-freedom inertial 

measurement unit purchased from Pololu (LSM6DS33). The IMU is capable of measuring 

acceleration in all three axial directions and can also measure angular velocity in these 

directions, giving it a total of 6 axes of measurement. The package itself is a breakout board 

which was wired to an Arduino Uno microcontroller for translation and calibration of output data 

for analysis. This connection is presented below in Figure 3.7. 

 
Figure 3.7: Arduino-IMU connective wiring. 
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The primary limitation to this sensor was the way in which data was collected from it. C code 

was provided for the IMU that allows the user to adjust the sample rate through simple 

commands. However, for both visualization and feature extraction purposes it was necessary for 

the data to come in some tabular or matrix format so that it could be saved in a spreadsheet and 

imported into MATLAB for analysis. This forced the use of Arduino’s serial monitor to output 

data as it was read. As a result, although the baud rate for the serial monitor was maximized, the 

memory needed to print each value limited the sample rate to approximately 330 Hz. While this 

did not significantly affect the time domain analysis used on angular velocity measurements, for 

example, detailed analysis could not be performed in the frequency domain of this data. Low 

resolution in the data contributed further to this issue. As a result, potential underlying 

frequency-based characteristics were not explored using these data streams.  

Given this limitation, the IMU was used primarily as a gyrometer to measure the angular velocity 

of the drive shaft in the rotary valves. It’s placement on the turning indicator of these valve types 

is circled in blue in Figure 3.6. In an attempt to capture the translational velocity of the drive 

shaft on the sliding-stem valve, the IMU was positioned as indicated in Figure 3.8. The goal with 

this placement was to record lateral acceleration and integrate the signal to approximate velocity. 

As discussed in the following chapter, the lack of resolution posed problems to this approach. 

 
Figure 3.8: IMU location on sliding-stem valve. 
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Finally, it should be noted that for the majority of this testing, control system data was collected 

from the valves controllers which could provide it. In particular, the small rotary and sliding-

stem valves were equipped with digital capabilities that allowed for both the calibration of the 

valve as well as control of specified movements. When these valves were controlled in this 

matter, three parameters, defined as Travel %, Drive % and Supply Pressure, are recorded at a 

low sample rate of just under 7 Hz. As a result, each movement results in 15-20 unique data 

points for each of these variables. While the low sample rate seems to imply that this is primitive 

data, it was shown to be remarkably consistent among movements of the same “type” as defined 

for this work. What makes this data particularly attractive is that it can be acquired without the 

use of external sensors. So from a practical perspective, it could be useful in applications that 

might be limited to no additional sensor instrumentation whatsoever. The following chapters 

discuss how it was used for classification purposes.  

 

Description of Faults 

The comparison of baseline data to those data associated with specific faults is critical to this 

work, and as such a brief discussion of the faults explored is warranted. As previously discussed, 

the scope of this work focuses on the idea of a valve blockage. To repeat the definition provided 

in the first chapter, a blockage is best described as some object or mechanism that prevents the 

valve from properly completing an expected movement. Given the potential consequences that 

can arise if a valve is not properly controlling flow, it might be valuable to identify when this 

abnormal behavior is occurring or worsening. 

There is little doubt that, given the relatively broad definition of a blockage above, a myriad of 

events could occur that may be classified as a blockage. Considering foreign objects and internal 

mechanisms, we may see vastly different responses both between and among them, and it is 

likely possible to detect and classify these to high level of detail given the proper sensor 

instrumentations. However, taking into account both the resource limitations of this work and the 

impracticality of rigging control valves with many sensors in the real world, this research aims to 

take a more general approach which serves as a proof of concept as well as a foundation for 

future work. Therefore, it is proposed that two generic types of blockages, hard and soft 

blockages, be detected and classified against baseline movements, or no blockage. 
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The notation hard block is used to describe the object or internal mechanism failure which is so 

robust that it immediately stops the valve from continuing movement. Although the 

pneumatically controlled valves in question can exert a substantial amount of force, it is not out 

of the question that some object, such as one made from steel or rock, might find its way into the 

flow path. Trim and drain systems on submarines, for example, rely on the ability to pump water 

from the open ocean into their ballast tanks to control depth. Valves in situations such as this are 

more vulnerable to being compromised by some foreign object. Other valves are more intricate 

in their movements and might be stopped by smaller, weaker objects in a similar fashion. 

Smaller butterfly valves in submarine carbon removal units, for example, might be prevented 

from properly seating if even a very thin shim-type object slips in the wrong spot. 

Furthermore, there are mechanisms within some valves which purposefully exist in order to 

affect movements. Valve stops exist in rotary valves, for example, to control where a valve might 

stop if desired. If these stops are improperly calibrated with the control system, the valve may 

not open and close as instructed. Figure 3.8 below provides a basic schematic.  

 
Figure 3.9: Rotary valve stops. 
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While a hard blockage may have many different causes, the commonality is that it always stops 

the valve stroke abruptly by striking an object, foreign or internal, before it has finished its 

movement. There are two key results from this happening. The first is that the impact will send a 

vibration throughout the valve body and actuator that could, ideally, be detectable. The second is 

that the movement will be shorter than expected. Using these two principles, the sensors 

described in the previous subsection could theoretically detect a hard blockage with relative ease. 

When dealing with a hard blockage and the idea of simulating it in a controlled environment, the 

hardness of the objects used to block the valve must be considered. In order to avoid causing 

damage to the ball valve and its seat, the valve stops described above were used for introducing 

hard blockages in the two rotary valves used in this work. The continuous nature of these screw-

based stops allows for many “levels” of blockage to be tested, and for open movements to be 

blocked as well as closings. 

For the sliding stem valve, aluminum blocks of different sizes were cut and placed between the 

base of the valve actuator and a moving indicator connected to the stem as shown in Figure 3.10. 

While no objects were fit in the valve stroke because of the relatively complex flow path 

geometry, the same theorized general principles, induction of vibration and shorter movement 

time, still apply. It should be noted that only closing movements can be blocked using this 

approach. However, it is argued that these movements are more important because of the 

subsequent leakage that might be caused if they are blocked. 

 
Figure 3.10: Location of hard blockage-inducing aluminum blocks and soft blockage-inducing die springs. 
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The concept of a soft blockage, as introduced by this work, is fundamentally different than a hard 

blockage and is thus worth distinguishing. The soft block is one in which a less robust object or 

mechanism interferes with a valve movement, causing the valve to eventually stop, possibly 

before the movement is complete, but not before working to push through the object in question. 

This results in a slower, crushing movement that will leave a much different travel signature than 

present in a hard block.  

As with a hard blockage, there are two theoretical results from this type of movement. For one, 

the interfering object or mechanism being overcome will slow the movement down, increasing 

the overall time it takes to finish the movement, whether or not it ends up fully blocked. The 

second is that, as noted previously, the velocity profile of the soft-blocked movement will be 

drastically different from a typical movement in that it will be slowed and then potentially 

ramped back up if the object is fully overcome. A potential third result, as is the case with any 

fundamental change in a mechanical process, is that the frequency response from a soft blockage 

may excite or attenuate specific frequencies that can also be used for classification purposes. 

Again, as with the hard blockages described above, the simple two-sensor instrumentation used 

for this testing should theoretically be able to uncover key differences between this type of 

movement and a baseline run.  

 
Figure 3.11: Objects used for soft blockage testing in small rotary valve. From left to right: zip ties (4), polyflex tubing, plastic 

coupling (1/2" ID), polyethelene tubing (3/8" OD), wire, polyethelene tubing (1/2" OD), PVC tubing (0.594" OD). 
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Given the nature of soft blocks and the weaker materials that may lead to them, they could be 

introduced to the valves used without the worry of damaging them. To test for the proposed 

behavior of the soft blocks, a variety of materials were inserted directly into the valve stroke path 

and closed on. Figure 3.11 above shows the different objects used in the initial testing on the 

small rotary valve, while Figure 3.12 below shows the objects used for soft blockages in the 

larger rotary valve.  

 
Figure 3.12: Objects used for soft blockage testing in large rotary valve. From left to right: 1.5” OD plastic sink tailpipe, 1.75” 

OD plastic sink tailpipe, 2” OD PVC pipe. 

Given the smaller clearance in the sliding-stem valve and the curvature of the flow path within it, 

it was more difficult to select objects that would fit properly. Therefore a varied set of 5 heavy 

duty compression springs were placed in the position indicated in Figure 3.10 to induce this 

behavior. These springs are described in Figure 3.13 below. In much of the subsequent testing, 

the materials succeeded in stopping the valve movement before it was complete, particularly the 

more robust materials and the industrial die springs used with the sliding-stem valve. However, 

particularly in the case of the smaller rotary valve, some materials were weak enough to be 

eventually punched through. These cases are still of interest, however, because they still suggest 

some blockage occurring. It should also be noted that only closing movements could be impeded 

with these materials and thus the response of opening movements to soft blockage phenomena 

was not studied. 
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Figure 3.13: Compression springs used for soft blockage testing in the sliding-stem valve. From left to right: medium-duty 

(blue), medium-heavy-duty (dark red), heavy-duty (red), half-size extra-strong (yellow), full-size extra strong (yellow). 

 

Description of Tests 

The progression of the testing performed for this research is as follows. The initial bulk of tests 

were performed on the small rotary valve with the objective of comparing analysis techniques 

and experimenting with different feature extraction processes. Technical issues also made it 

difficult to control the other two valves in the beginning months of this work, lending focus to 

this valve in particular. All tests performed for the evaluation of the fuzzy logic and neural 

network classifiers were performed on this valve. The discovery that statistical classifiers and 

their corresponding feature extraction procedures produced the most promising results, led to 

their removal from the analysis of test data from the large rotary and sliding-stem valves. It is 

also noted that only the single USB accelerometer was used in data acquisition for these tests. 

The primary reason for this lies in specific methods used for extracting features (real-time vs. 

post hoc) and will be expanded upon in the following chapters. 

Following the initial testing on the small rotary valve and evaluation of the fuzzy logic and 

neural network classification methods using this data, a posterior analysis evaluating the 

procedures was performed. Three primary decisions were made as a result. The first was that the 

IMU sensor would be added to the valve and used for data acquisition and subsequent analysis. 

The second was that all classifications would be made by analyzing movements in a post hoc 

manner as opposed to the attempted real-time simulations used for the fuzzy logic and neural 

network classifiers. Finally, it was decided that statistical classification methods would be the 
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focus of further classification efforts for this work. These decisions enabled the ensuing tests to 

be performed in a more organized manner with a collective focus. After these decisions were 

made, a set of tests was performed on each valve simulating all three conditions (hard block, soft 

block, and no-block) and capturing the same data with the same sensors. Additionally, control 

system data output during these tests was pulled from the small rotary and sliding-stem valves. 

Because of compatibility issues, this data was unavailable for the large rotary valve. 

Given the discrepancies and gaps in these testing procedures, an attempt at organizing them in a 

format which is easier to understand is given in Tables 3.1 and 3.2. These tables separate testing 

for the fuzzy logic and neural network classifiers from the test for the statistical classifiers. The 

numbers in Table 3.2 includes tests that were eventually used for training sets. 

Table 3.1: Summary of test data collected for evaluation of FIS and ANN classifiers. 

Fuzzy Logic & Neural Network Testing 

  Hard Blocks 
Analyzed 

Soft Blocks 
Analyzed 

No-Blocks 
Analyzed 

Small Rotary 30 17 50 

Large Rotary N/A N/A N/A 

Sliding-Stem N/A N/A N/A 

 

Table 3.2: Summary of test data collected for evaluation of statistical classifiers. 

Statistical Classifier Testing 

  Hard Blocks Analyzed Soft Blocks Analyzed No-Blocks Analyzed 

Small Rotary 
Two-Sensor 31 Two-Sensor 23 Two-Sensor 56 

Control System 12 Control System 25 Control System 57 

Large Rotary 
Two-Sensor 30 Two-Sensor 15 Two-Sensor 65 

Control System N/A Control System N/A Control System N/A 

Sliding-Stem 
Two-Sensor 15 Two-Sensor 35 Two-Sensor 70 

Control System 15 Control System 35 Control System 70 
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Two final takeaways from these numbers will be noted. First, no-blocks were more populous in 

general because any movement that didn’t directly result in a blockage was classified as a no-

block, and every test that was performed included two movements. For example, a test which 

included a slow block would also include an opening movement after closing on the object in 

question. Such a test would therefore consist of one slow block and one no-block. Secondly it 

must be clarified that the number of classifications actually made for the fuzzy logic and neural 

network classifiers is not actually as low as it appears. As explained in the next chapters, these 

classifiers looped through data and made classifications continuously to simulate a more real-

time collection and classification of movements. As such, one test could contain more than 100 

individual classifications. A total of 44 tests (97 movements) were selected for this process. 
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Chapter 4. Feature Extraction Methodology 

Introduction 

Since a typical supervised learning classifier requires a set of inputs to both train and test its 

prediction performance, the selection of those inputs must be addressed. This chapter is provided 

to give an overview of the data supplied by the ACCEL, IMU and CS and the relevant extracted 

features for classification. Given the clear differences between the approach to classification with 

the ANN and FIS classifiers and the approach with statistical classifiers, the chapter will be 

divided accordingly to address them both. 

First, a more detailed description of the specific differences in approach using these methods is 

warranted. It was mentioned in Chapter 3 that the ANN and FIS classifiers took a real-time 

simulation approach to diagnosis while the statistical classifiers took a more post hoc approach. 

The real-time simulations stemmed from an early effort to show how ACCEL data could be used 

to determine if a valve was opening or closing. While this effort will be expanded on in the 

following subsection, the general idea was to take data from ACCEL and input it into an 

algorithm which would then loop through, in intervals of 5000 data points or about 10 

milliseconds, and perform quick analyses to flag specific behaviors. The resulting flags would be 

part of a logic structure to determine the direction of movement. 

 
Figure 4.1: Example of a real-time simulation which determines whether the valve is opening or closing. 
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An example of this is shown in Figure 4.1 above. In this figure, the first plot shows the time-

series vibration data while the second plot shows an updating FFT as the algorithm loops through 

the data. The final two plots show the binary values of two flags, one for time-domain analysis 

and the other for frequency-domain analysis, and combines their values in a crisp logic structure 

which outputs a movement direction given at the bottom. In this case, the valve was closing as 

indicated. The ability to monitor some mechanical system in real-time is advantageous because it 

removes the need for manually going back and checking the data after it was recorded. It was 

also particularly effective for detecting movement direction since it helped expose potential 

flaws in the simple classification logic structure used. 

Once blockage testing began, it made sense to continue with this approach since it was shown to 

be effective up to that point. The data that was initially captured was then used to experiment 

with the neural network and fuzzy inference systems, and the results from this evaluation are 

shown in the next chapter. The focus then shifted towards statistical classifiers using the 

Classification Learner application in MATLAB. For this approach it was determined that it 

would likely be more effective to classify using a single vector of features from an entire 

movement as opposed to looping through and grabbing small chunks within each movement. 

This is the reason for the discrepancy in each approach.  

 

ANN & FIS Features 

As briefly mentioned in the previous chapter, data collected by the ACCEL sensor served as the 

only data stream which was used for feature extraction and classification using the ANN and 

FIS. The primary reason for this was that the IMU’s slow sample rate posed problems with 

respect to looping through the data sets of both sensors simultaneously. Furthermore, there was 

no available mechanism which provided the ability to record data from both sensors over 

identical intervals, making it nearly impossible to align the data in time. Therefore, it was 

attempted to detect and classify blockages with this single accelerometer placed on top of the 

control valve actuator. While limited in scope, this provided an opportunity to explore the 

frequency characteristics of these movements in particular detail. Given the multiple classes of 

movements that were looked at, a variety of discriminating features needed to be identified to 

assure a reasonable level of classification accuracy. 
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Conclusions drawn from the open-close detection study referenced above confirmed the fact that 

open and close movements in these valves leave different signatures in the frequency domain. As 

a result, distinguishing between them was important in the detection of blockages. Figure 4.2 

below provides two plots comparing the frequency content of an open and close movement. The 

spike in magnitude around 5500 Hz, shown circled, was used as the focus of a frequency flag for 

the open-close decision logic.  

 
Figure 4.2: Comparison of frequency content in an open movement (left) and close movement (right). FFT magnitudes are 

normalized by FFT gain, and the spike at 5500 Hz was consistently seen in all comparisons.  

Using this discovery, the resulting algorithms looked for the strength of frequency components in 

the 5100-5900 Hz frequency band. By taking a subset of the largest magnitudes within this range 

and averaging them, a single value describing this band could be obtained and used for 

subsequent classification.  

While the frequency analysis helped in distinguishing between open and close, a simple time-

domain analysis was performed to quantify whether or not the valve was moving in the first 

place. Recalling that the algorithm will loop through the data at 5000-point intervals, the 

standard deviation of those points was calculated and used to determine if the valve was moving 

or stationary. The reason for this approach is demonstrated in Figure 4.3 below. As the valve 

begins to move and vibrations increase in magnitude around 0, the overall standard deviation of 

each data subset increases dramatically as shown in the plot to the right. This gives a reliable 

gauge of movement in a single feature value. 
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Figure 4.3: Simple open/close test (left) and standard deviation calculation over time (right). 

Therefore, the results of this analysis provided two specific inputs, one describing frequency 

content and the other a simple time-domain calculation, which could be used to predict whether 

the valve was opening, closing or not moving at any point in time. These values could then be 

input to an ANN or FIS for quick classification.  

The results of this open-close detection were then used in conjunction with additional frequency-

based inputs to detect blockages. FFTs were once again used to study the frequency signatures of 

different movements in order to locate discrepancies. In particular, frequency spikes unique to 

movements resulting in either a soft block or hard block were searched for. The first obvious 

discovery was made by comparing a hard blockage to no-blocks and soft blocks. As theorized, 

the impact caused by a hard blockage appeared to be detectable in the 300-500 Hz range as 

demonstrated in the bottom plot of Figure 4.4 below. The spike visible in these hard-blocked 

movements and its absence in all other scenarios was consistently seen in weeks of collected 

data. The magnitude of frequencies in this band was quantified in a similar manner to the 

parameter used to distinguish between open and closing movements.  

Given the smaller subsets of points that are analyzed in each loop using this real-time simulation 

approach, the detectable spikes in both hard blockages and soft blockages, as shown below, were 

much more prominent. As seen in the next subsection, performing analysis on an entire 

movement as one entity posed challenges to locating these discriminating characteristics. 
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Figure 4.4: Comparison of a run with a hard blockage to runs with no blockage or a soft blockage over the 300-500 Hz band. 

In an attempt to further divide the movements into distinct classes, an additional frequency spike 

unique to soft blockages was identified and similarly quantified for classification purposes. Seen 

in the bottom plot in Figure 4.5 below, the spike was consistently visible in the lower 10-30 Hz 

range as a slow blockage was occurring.  

This additional analysis results in a total of four parameters to be input to both the ANN and FIS 

developed for this work. To summarize, the first two parameters described previously are used to 

first identify the movement status of the valve. The second two are frequency-based variables 

which aid in the subsequent classification of movement as a hard block, soft block or no-block. 

Within the algorithm used to process the data, extract features and make classifications, separate 

classifiers for open-close detection and blockage classification were created, with the result 

combined into a single final classification. One of the drawbacks of using a single accelerometer, 

therefore, is the need to identify movement direction because of how these identified 

characteristics change with it. This resulted in the need for the results of multiple fuzzy logic 

systems and neural networks to be combined into a final prediction. While only performed on 

one valve, it is sensible to assume that similar characteristics, albeit in different frequency 

ranges, could be found in other types or sizes of control valves. 
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Figure 4.5: Comparison of a run with a soft blockage to runs with no blockage or a hard blockage over the 10-30 Hz frequency 

band. 

 

Statistical Classifier Features  

Following the training and evaluation of the ANN and FIS classifiers, the focus of this research 

turned to the use of a wider variety of classifiers, such as statistical, geometric and instance-

based methods, given the work published by Adams et al. [9]. At this point, a more structured 

approach to testing and analysis took form. For each valve, the tests discussed in the previous 

chapter were performed and the resulting data was then analyzed individually. The overall 

objective was to find a small set of features that, in general, could be used in some form to 

accurately classify movements into types of blockages that may have occurred. For example, 

while it was not expected that each valve would show frequency spikes in identical bands for 

hard blocks, the fact that some discerning spike did exist was anticipated. Ideally, a feature 

template could be created which could be retrofit to any existing control valve with little 

additional research.  
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ACCEL Features 

Features taken from the ACCEL data stream for this analysis were strictly frequency-based, 

unlike for the ANN and FIS classifiers that required additional time-domain features which were 

only relevant to open-close detection and not to actual blockage classification. This was the 

result of adding the IMU sensor package to this set of tests, as it was particularly useful for time-

based feature selection. The analytical process for determining key features using this data was 

similar to that used for the ANN and FIS classification portion of this work. Specifically, 

frequency domain data taken from each movement was compared both to other movements of 

the same type as well as ones which would be classified differently with the goal of identifying 

specific frequency spikes that could be quantified in some manner. For blocked movements, 

frequency bands that were either excited or attenuated when compared to baseline testing were 

studied. 

Testing was repeated for the small rotary valve and the distinguishing frequency-based features 

discovered were, as expected, consistent with the results from the previous set of tests. That is, a 

significant rise in magnitude over the 300-500 Hz frequency band was consistently seen during 

hard block movements. This can be seen again in Figure 4.6 below, which contains plots 

comparing the frequency content of a hard block (left) and a movement which took place directly 

after a hard block (right) with FFTs consisting of 8192 points. Given the time-based features 

described in the following subsection, it was particularly important to find a quantifiable 

frequency-based discriminator which was perfectly unique to hard blocks. Although not pictured, 

this excitation was also absent from soft block movements. 

 
Figure 4.6: Comparison of a run with a hard blockage (left) to one with no blockage (right) for the small rotary valve. 
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A possible frequency feature was also discovered in first-glance looks at soft block data when 

compared to baseline and some hard blocks. Figure 4.7 below shows a soft block (left) with 

strong magnitudes around 50 Hz compared to a standard movement (right). As a result, this 

feature was also included in the extraction algorithm which aided in gathering training and test 

data. However, as discussed later, this feature was not shown to be completely unique to soft 

blocks from all tested materials and was ultimately not included in final classification testing. 

 
Figure 4.7: Comparison of a run with a soft blockage (left) to one with no blockage (right) for the small rotary valve. 

Data from the large rotary valve yielded some different results, but ones which were useable 

nonetheless. While hard blockages revealed some frequency excitations, they were either not 

distinct enough to extract or not completely unique to a hard blockage. However, multiple bands 

were found to actually be attenuated during the hard blockage movements when compared to 

baseline. Specifically, spikes around 59, 340 and 2850 Hz were found in baseline movements 

and soft blocks that were not present to nearly the same extent in either hard blocks. Figures 4.8 

and 4.9 below demonstrate the behavior of the 59 and 340 Hz spikes. 

The discovery that discriminating features for the large rotary valve were only truly unique to 

baseline movements and some soft blocks is not ideal. In theory, this could lead to some 

ambiguity in classifying hard blockages correctly. However, the features taken from the IMU 

combined helped explain the differences between all movements when combined with these two 

features. Furthermore, an analysis of variance showed statistically that these features varied with 

class at a suitable significance level to be included in the final analysis. This process is discussed 

further in the final subsection of this chapter. 
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Figure 4.8: Comparison of a run with a baseline movement (left) to one with a hard blockage (right) for the large rotary valve. 

Note the spike around 350 Hz on the left plot. 

 
Figure 4.9: Comparison of a run with a baseline movement (left) to one with a hard blockage (right) for the large rotary valve. 

Note the spike at 59 Hz on the left plot. 

Finally, data from the sliding-stem valve provided multiple features unique to both hard and soft 

blockages which could be leveraged for classification. Again, individual FFTs were analyzed 

then compared to movements of different class to identify quantifiable differences in the data. 

Two of these specific features are displayed in Figures 4.10 and 4.11 below. 

During hard blockages, many spikes were seen in approximate 50 Hz intervals starting around 

150 Hz and continuing to 400 Hz as shown in Figure 4.10. This behavior was consistent among 

all hard blockages and was not present to this extent in most other movements. Also discovered 

was a spike between 650 and 700 Hz which was often present in hard-blocked movements. This 

feature is not shown in the figures below but was collected during feature extraction for analysis. 

However, it was not as clear of a predictor as the magnitude spikes between 150 and 400 Hz. 
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Figure 4.10: Comparison of a run with a hard blockage (bottom) to runs with no blockage (top left) or a soft blockage (top right) 

over the 150-400 Hz frequency band. 

 

Soft blockages also produced unique behavior seen in Figure 4.11 below. There was, at the very 

least, a slight spike in the 1800-1900 Hz frequency band in all movements. However, it was 

significantly accentuated in soft blockage data as seen in example comparisons below. This 

feature was seen consistently across all soft blockage data sets, even in comparisons between the 

weakest soft blockages and strongest hard blockages. Overall, compared to both rotary valves, 

the sliding-stem valve seemed to provide the clearest distinguishing features for classification.  
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Figure 4.11: Comparison of a run with a soft blockage (bottom) to runs with no blockage (top left) or a hard blockage (top right) 

over the 1800-1900 Hz frequency band. 

 

IMU Features 

The IMU sensor package was initially set up to provide two outputs: angular velocity around the 

z-axis (rotational direction of ball valve) in degrees/second and lateral acceleration. The lateral 

acceleration parameter was chosen primarily as an attempt to verify the accuracy of the yaw rate 

measurement in determining the beginning and end of a movement. Since the acceleration 

parameters read 1 if the axis in question is stood vertically (corresponding to 1g of acceleration) 

and 0 if horizontal, the output in this case was expected to read 1 when the rotary valves were 

closed and 0 when they were open. Refer back to Figure 3.6, where the long edge of the IMU 

circled in blue indicates the x-axis. 

Example data is provided in Figure 4.12 below, which shows both data streams plotted over a 

two-movement test. Note how the acceleration measurement goes from 1 to 0 as the valve opens 
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and then back to 1 as it closes again. For the angular velocity measurements, a spike is seen at 

the onset of a movement which then gradually decreases as the valve comes to a stop. Clearly, as 

seen particularly at the onset of the first “open” movement in this plot, both parameters line up in 

their indication of the beginning and end of a movement. 

 
Figure 4.12: Yaw rate and X-Accel data gathered over two movements, an open followed by a close. 

The next step was to define and extract simple features to be used for classification purposes. 

Figure 4.13 below provides a comparison of the yaw rate data for closing movements in each 

class considered for the small rotary valve. If we take where the movement lifts from 0 as the 

start point and where it reaches 0 again as the end point, we can make a rough calculation of 

movement time, or MoveTime. The approximations for these three movements are given in 

Figure 4.13. Clearly, there is a discrepancy between each movement. It makes sense intuitively 

for a hard-blocked movement to be shorter than a baseline movement since the valve stroke is 

abruptly stopped before expected. Likewise, the time taken by the valve as it attempts to push 

through material in a soft block would naturally extend the time of the movement. Although in 

the latter case there might be some crossover as the material in question varies in strength, 

overall it is reasonable to expect MoveTime to be a quality predictor and it was included as a 

result. 
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Figure 4.13: Comparison of the Yaw rate data stream for the 3 classes of close movements. Data taken from small rotary valve. 

Looking at these three movements, it is also clear that the time-series signatures are significantly 

different. The angular velocity in the hard block just barely starts to even out and is immediately 

stopped before it has time to descend to 0. For the soft block, the behavior induced by the valve 

pushing through the blocking material causes a great deal of variation in the velocity. Finally, the 

no-block signature is similar to that of the hard block but with the addition of a gradual descent 

to 0 degrees/second as anticipated at baseline. Given that there is little variation in the hard 

block, a significant amount in the soft block and somewhere in the middle for the no-block, the 

standard deviation of this data for each movement was extracted for use as a predictor in the 

classifiers. The mean angular velocity was also calculated for convenience. These two 

parameters were also extracted for the x-acceleration data. Comparisons of the 3 movement 

classes for this data stream are shown in Figure 4.14 below. 
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Figure 4.14: Comparison of the X-Accel data stream for the 3 classes of close movements. Data taken from small rotary valve. 

Given this plot, it is clear that there are some differences between the 3 examples used. The 

maximum x-acceleration for the blocked movements, for example, never comes close to 1, which 

would be the value if the closing movement was fully realized in this case. There are also some 

slight differences in how each case rises to its maximum value. And furthermore, the decent back 

to zero (the second, open movement) is relatively consistent as expected since there were no 

blockages during open movements for any of these 3 examples. Overall, however, the 

differences between the 3 distinct cases are not very obvious, and become even less obvious 

when quantified in standard deviation and mean calculations. As a result, they ultimately were 

not found to be useful predictors and this acceleration data was not acquired from the rotary 

valve in an attempt to boost the sample rate from the Arduino serial monitor. The statistical 

justifications behind this choice are described in the last subsection of this chapter. 

Although data from the IMU lent itself well to feature extraction for the rotary valves, it was 

found to be almost unusable for the sliding-stem valve. As described in the previous chapter, the 

IMU was attached to the stem of this valve with the goal of recording acceleration in the 

direction of stem travel and potentially integrating to obtain a velocity profile. Figure 4.15 below 

gives an example set of this data which was collected from the sliding-stem valve in this manner. 
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Figure 4.15: Lateral acceleration data obtained from IMU’s location on sliding-stem valve shaft. 

While there is some indication of each of the two movements in this dataset, this data overall is 

essentially worthless. The lack of resolution and noise makes integration an afterthought, and it 

is almost impossible in some other cases to obtain a reasonable estimate of the beginning and end 

indices for each movement. When physically observing this valve move, it was noted that the 

total range of movement is actually quite small given the small size of the valve. Furthermore, it 

does not appear to travel very fast during any given movement. As a result, the IMU barely 

registered the movements and produced the data above. Because of this, no IMU data was used 

in classifications for the sliding-stem valve, making it the lone valve subject to classification 

with only frequency-based features in this work.  

Finally, it must be noted how exactly the feature extraction processes were performed in the 

algorithm developed to aid in the automation of this work. Given the relatively low resolution of 

the IMU data, it was difficult to program a procedure which could accurately locate the start and 

end points of each movement. The fact that each test contained two movements added to this 

difficulty. As a result, it was required that the user of the algorithm manually identify the start 

and end indices of each movement using the ginput function in MATLAB. These points were 

then organized accordingly so that the movement time, mean and standard deviation calculations 

could take place. This process was performed individually on the ACCEL and IMU data for each 

test set.  
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For the calculation of movement time, the yaw rate data was used as it made identifying these 

indices relatively easy as seen in Figure 4.13. Specifically, it is not particularly difficult to see 

where each movement begins and ends by observing this data. By approximating the start and 

end points of each movement, a simple subtraction can be performed to calculate total movement 

time. However, as particularly evident in the soft block data in Figure 4.13, and to a lesser extent 

in the no-block data, there were not always clear cutoffs for finding the end point of the 

movements. The potential for human error in this identification process could introduce 

significant variation to the parameters from test to test.  

As a result, the process was performed multiple times on the training datasets to confirm that this 

variation did not significantly affect the training results. Furthermore, it was repeated 3 times for 

each test dataset to check for significant differences in test classification accuracy. Finally, the 

file names of each set of movements were not displayed during this process in an attempt to 

reduce potential bias in the index selections. While this procedure is not ideal, it provides an 

opportunity to test if the classifiers used could not only be accurate in training but robust to 

variation in feature data from future tests. 

CS Features 

While the ACCEL and IMU data were used together for feature extraction and blockage 

classification, control system data from the DVC was gathered and used in a separate 

classification study using the same general classifiers. As part of the primitive diagnostic 

capabilities built-in to the software provided with some of these valves, 3 parameters can be 

output during each test for monitoring. These variables are Travel%, Drive% and Supply 

Pressure. Travel% quantifies how open the valve is as a percentage, i.e. 100% indicates that the 

valve is completely open and 0% indicates that it is completely closed. Drive% is a measure of 

how hard the processor is pushing the current-to-pressure transducer in the DVC. Supply 

Pressure indicates just that – the air pressure being supplied to the actuator. This data is supplied 

at a low sample rate of 6.67 Hz. By only receiving data every fifteen hundredths of a second, the 

data for an entire blocked movement could consist of as few as 6-7 data points for each 

parameter. 
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For typical movements, these parameters appear to be remarkably consistent over time. Figure 

4.16 below gives the plots of 3 separate 2-movement tests done at baseline (i.e. with no 

blockages). This data appears to line up almost exactly aside from a deviation in supply pressure 

in one of the tests. 

 
Figure 4.16: Three baseline tests plotted on top of each other for each CS parameters. 

Figure 4.17 below provides the same plots as Figure 4.16 but for hard and soft blockages as 

indicated. Aside from some specific differences in the Drive% parameter, there do not appear to 

be many obvious discriminating features aside from stop points in the Travel % parameter. 

 
Figure 4.17: Three soft block (left) and hard block (right) tests plotted on top of each other for each CS parameters. 
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However, for consistency purposes, the mean and standard deviation of these three parameters 

were collected as classification predictors. To ensure that the calculations which took place only 

occurred over the interval during which the valve was actually moving, code was written to 

automate a process which could find the start and end points of each movement. Given the low 

sampling frequency of the data in question, this was able to be done with relative ease by taking 

the interval in the Travel% parameter which is not constant. An example showing the results of 

this analysis is given below in Figure 4.18. Along the x-axis, green points indicate the start of a 

movement while red points indicate the completion of one. Note that these intervals line up well 

with the apparent movement interval seen in the Travel% plot. 

 
Figure 4.18: CS data from a baseline test with asterisks indicating the beginning (green) and end (red) of each movement as 

calculated by the algorithm. 

Using these calculated intervals, a movement time calculation can easily be made and was added 

to the list of features to be predictors. As a result, a total of 7 features, the means and standard 

deviations of each CS parameter in addition to movement time, were collected for classification 

over the movement intervals found. Lastly, it is noted again that the CS data was only collected 

for the small-rotary and sliding-stem valves, as the diagnostic capabilities of the large rotary 

valve were inaccessible. 
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Final Selection for Statistical Classification 

Once a complete set of potential predictors was defined and collected for each valve and each set 

of sensors, the logical next step would be to optimize the combinations of these parameters 

which yield the best results. While having more predicting variables can help further describe 

differences between classes, variables can be shown to have no effect on what class a dataset 

belongs in. When this is the case, the variable can actually add confusion to the classifier and 

reduce classification accuracy. As a result, it is in the best interest of researchers to remove these 

parameters which fail to explain data variance. 

In order to do this, an analysis of variance (ANOVA) can be performed on each variable to 

determine whether or not it helps determine the correct class. More specifically, ANOVA can be 

used as a test for equal class means, or the hypothesis test that the mean of a single variable does 

not change regardless of what class each specific observation belongs to. Using software such as 

Statistical Analysis System (SAS), these hypothesis tests can be performed and the variables for 

which there is the most evidence for group mean discrepancies can be singled out for inclusion in 

the classifier models. An example ANOVA being performed on this data is shown below in 

Figure 4.19. 

 
Figure 4.19: ANOVA boxplot results for movement time with hypothesis test results given also (top right).  
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Data taken from small rotary valve. 

The boxplots shown correspond to the collection of MoveTime observations for each respective 

class. Given the discussion in the IMU features subsection regarding movement time, these 

results seem to make sense in that hard blocks are shorter movements than baseline and soft 

blocks are longer. This analysis takes a step further by applying the hypothesis test of equal 

group means, with the results given at the top right of Figure 4.19. The p-value resulting from 

this test is less than 0.0001, indicating that there is significant statistical evidence at the 99.999% 

confidence level that the null hypothesis of equal group means can be rejected. In other words, 

we are extremely confident that the MoveTime parameter varies significantly in at least one of 

the classes. By observation, this parameter appears to vary in all three classes. This doesn’t need 

to be the case in order to yield a significant result, however, as shown in Figure 4.20 below. 

 
Figure 4.20: ANOVA boxplot results for standard deviation of Drive% with hypothesis test results given also (top right).  

Data taken from small rotary valve. 

While the p-value resulting from this test is still extremely small, it is clear that the no-block 

versus soft block distinction is the source of this result. The conclusion is that only one class 

needs to vary from the others in order to yield a significant test result. Although it isn’t ideal that 

all three classes do not vary from one another in these variables, they can still be effective 
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predictors when combined with other parameters if there is only a single key distinguishing 

class. 

With this concept in mind, two sets of ANOVA testing were performed on the data from each 

valve. One set was on the combined ACCEL/IMU feature data and the other on the CS data. The 

notable exceptions include the CS data for the large rotary valve, which was not available, and 

the lack of IMU data for the sliding-stem valve. Using the ANOVA results, the parameters which 

yielded the most significant test results were then chosen for classification. In some cases, many 

of these tests yielded significant results for a single set of parameters. Different combinations 

were subsequently used for training, with the best one for each set chosen for inclusion in this 

thesis. This process will not be expanded upon, but it further lends to the point that there is a 

level of intuitive, observation-based decision-making involved in the choosing of quality 

predictor variables for classification. A summary of the variables chosen for each test set and 

each valve is given in Tables 4.1 – 4.3. 

Table 4.1: Summary of features used in final classifier training and testing exercises for the small rotary valve. 

Small Rotary Valve 

ACCEL/IMU Data CS Data 

Frequency A             
(300-500 Hz Spike) MoveTime 

STDYaw DriveSTD 
MoveTime PressSTD 

 

Table 4.2: Summary of features used in final classifier training and testing exercises for the large rotary valve. 

Large Rotary Valve 

ACCEL/IMU Data CS Data 

Frequency Base             
(~ 59 Hz Spike) 

N/A 

Frequency A                
(~ 340 Hz Spike) 

Frequency B                
(~ 2850 Hz Spike) 

STDYaw 
MoveTime 
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Table 4.3: Summary of features used in final classifier training and testing exercises for the sliding-stem valve. 

Sliding-Stem Valve 

ACCEL Data CS Data 

Frequency A             
(150-400 Hz Spikes) MoveTime 

Frequency B             
(650-700 Hz Spike) DriveSTD 

Frequency C             
(1800-1900 Hz Spike) DriveMean 

  PressSTD 
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Chapter 5. Classification Results & Discussion 

Introduction 

This chapter serves to describe the results of the 3 classification methods, FIS, ANN and 

statistical, for the respective valves they were performed on. To begin, the results of the FIS and 

ANN classifiers, which served as groundwork analyses for the later efforts, are given. More 

detailed explanations of the statistical classification results for each of the 3 valves are then 

provided. Given the classification accuracy and procedural parallels of the statistical classifier 

methods for each valve, these approaches are the focus of the results and discussion as indicated 

in the introductory chapter. This was intended once the analysis pivoted to considering features 

representing entire movements as opposed to smaller segments.  

 

FIS Results 

As described in previous chapters, classification using fuzzy inference systems was performed in 

a real-time simulation manner. ACCEL datasets which were pre-recorded at 48 kHz were taken 

and looped through in intervals of 5000 data points. At each interval, calculations were made and 

features were mined before being input into the FIS systems. This approach provided the 

opportunity to observe whether or not real-time data inputs were useful in small segments, given 

the potential advantages that could arise. For example, a CBM-based solution may not be 

properly equipped to determine the beginning and end of a random valve movement in time. 

However, if the data could be continuously analyzed without manual interventions, this problem 

potentially becomes irrelevant.  

Unlike the ANN and statistical classification methods, no training sets of data are required when 

using an FIS for classification. Inputs and membership functions are simply defined as described 

in the chapter on analysis techniques. For this work, two distinct fuzzy logic structures, one for 

distinguishing between open and close movements and the other for classifying the movements, 

plus a separate mechanism for handling soft blocks, were needed. As a result, the first FIS 

determines movement status, and this status is further used as an input to the classifying FIS. The 

Gaussian membership functions described for the hard blockage portion of this structure are 

shown below in Figure 5.1. 
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Figure 5.1: Input membership functions for the input to the hard blockage FIS for a closing movement. 

As described in Table 3.1, a total of 97 movements from 44 data sets were analyzed for 

classification using both the FIS and ANN methods. These consisted of 30 hard blocks, 17 soft 

blocks and 50 no-blocks. Once the relevant fuzzy structures were defined, these data were input 

to an algorithm which looped through the data and made classifications after every loop. Two 

main flags were monitored for accuracy evaluation: movement direction and blockage 

classification. Since movement direction was a key input to the classification FIS, it was 

important to know if it was being determined correctly. An example of the monitoring for this 

testing is shown below in Figure 5.2. 

 
Figure 5.2: Example of the real-time monitoring setup algorithm for a test set of two hard blockages. 
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The configuration of the plots displayed in Figure 5.2 is as follows. The first plot contains the 

raw time-series vibration data of the movements associated with the data file in question, and the 

second plot contains an FFT of the current data subset being analyzed in the algorithm loop. In 

this case, the FFT was set in the 0-100 Hz range for observing some of the low frequency spikes 

seen in slow blockages as discussed previously. The third plot gives the flags associated with 

each type of block. In this case, a value of 1 indicates there is no blockage, 2 and 3 indicate 

various levels of hard blockage, and 4 indicates a soft blockage. For the data being analyzed in 

this plot, both movements recorded contained hard blockages which stopped the valve 

significantly before its intended stop point. As a result, the moments during which each hard 

blockage occurs are properly flagged by the fuzzy logic algorithm. 

Finally, the fourth plot exists to monitor the movement direction of the valve. The yellow points 

with a value of 1 indicate no movement, the green points with a value of 3 indicate that the valve 

is opening, and the red points with a value of 2 indicate that it is closing. On the tail ends of 

many open movements, some points were seen to be classified as closing. This is likely the result 

of certain vibration-based classification parameters drop in magnitude as the valve just begins or 

ends a movement.  

For the set of 97 movements, total classification accuracy was calculated for both movement 

direction and blockage classification since there were separate fuzzy logic structures for each. 

Movement direction accuracy was calculated by observing the points associated with actual 

movements from the fourth plot in Figure 5.2 and determining how many points were incorrect 

(i.e. a “close” flag occurring during an opening movement). This resulted in 1291 individual 

classifications, or approximately 13 for each movement. Classifications for “no movement” were 

not included since they are very simple for the classifier to determine and would inflate the 

reported accuracies. 

For blockage flags, the movement as a whole was considered. In other words, if a hard blockage 

was correctly indicated for a movement in which one occurred, the movement would be 

considered to be classified correctly. If no blockage was expected but some blockage flag was 

raised, the movement would be considered to be classified incorrectly. Using these methods, 

Table 5.1 was constructed to summarize the results of the fuzzy logic testing for movement 

determination and blockage classification. 
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Table 5.1: High-level results from FIS testing. 

  Classifications 
Made 

Incorrect 
Classifications 

Percent 
Correct 

Open/Close 1291 110 91.5 

  Movements 
Classified 

Incorrect 
Classifications 

Percent 
Correct 

Blockages 97 14 85.6 

Overall, we find the fuzzy logic structures to be effective in determining valve movement 

direction and relatively accurate for classifying blockages, though with room for improvement. 

There were a few stand-out statistics that help explain many of the inaccurate classifications seen 

in the above testing. 

A handful of the movements used in this set of classifications were partial movements, meaning 

that the valve’s intended stop point was not one which opened or closed the valve completely. 

For example, some commands had the valve open to 50%, then close back to 0%. These two 

movements would be considered partial. Partial movements were an interesting wrinkle since the 

typical time and frequency magnitudes which were used as predictors would not reach the same 

values associated with complete movements. As a result, they proved to be more difficult to 

handle, with 41% of the total incorrect open/close classifications corresponding to partial 

movements although only 27% of the total movements classified were partial. It should be noted 

that partial movements were not analyzed after FIS and ANN classification and were assumed to 

be atypical in normal control valve operation for simplicity. 

As discussed briefly above and seen in Figure 5.2, it was common for misclassifications with 

respect to movement direction to occur at the beginning and end of open movements which 

resulted in lowered frequency magnitudes. This explains the majority of misclassified movement 

directions, with 95% of those attributed to this issue.  

For the 14 misclassified blockages, 5 were misses and 9 were false positives. The misses are 

attributed to hard blockages for which the valve stops were set to a point very close to the 

intended end point of the movement. In cases such as these, the valve has already slowed 

movement significantly by the time it is blocked and certain frequency magnitudes are not 

excited to the extent generally associated with most other hard blockages. When the valve is 
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being blocked within 5% of its intended stop point, leakage and related consequences would be 

minimal, and all hard blockages that would result in significant leakage were detected and 

classified correctly. The majority of the false positives seen were from baseline open movements 

directly following a closing soft blockage. In these cases, the valve had to still open out of the 

crushed objects, and these interactions are likely the cause of the false flags. In fact, one could 

make the argument that these objects are still, in effect, blocking the valve and these movements 

could be considered to be correctly classified.  

 

ANN Results 

The ANN was originally proposed in an effort to seek more accurate results once the FIS testing 

was completed. Although relatively accurate, the drawbacks of fuzzy logic structures make them 

unsuitable for classification with many inputs and classes. Soft blockages, for example, required 

a separate logic structure from hard blockages since the predictors used to classify them were 

different and thus could not be mixed with other classes. Additional faults would likely require 

additional logic structures to accommodate them. Neural networks, on the other hand, provide a 

more general approach and are relatively easy to implement for classification. While a separate 

ANN was made for identifying movement direction for consistency, both hard and soft 

blockages could be part of their own network as in most classifiers.  

The neural networks developed for movement identification and blockage classification 

consisted of a single hidden layer of 20 neurons given the relative simplicity of the data sets 

being used. A sample of approximately 1000 data points were supplied to each for training, and 

resulted in quick and efficient training times (< 1000 epochs). The training data consisted of all 

frequency and time domain features needed to identify movement direction and detect blockages 

to a reasonable point of accuracy in the FIS’s. Subsequently, the same 44 data sets of 97 

movements were supplied to the trained networks and evaluated in a manner identical to that 

which was described for the previous section, with outputs similar to those given in Figure 5.2 

monitored as well. The results were gathered in Table 5.2 below. 
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Table 5.2: High-level results from ANN testing. 

  Classifications 
Made 

Incorrect 
Classifications 

Percent 
Correct 

Open/Close 1230 21 98.3 

  Movements 
Classified 

Incorrect 
Classifications 

Percent 
Correct 

Blockages 97 14 85.6 

 

Immediately observed is the marked improvement in the classification of movement direction. 

The use of training data to help the networks learn to recognize data at the tail ends of opening 

movements, which proved to be an issue with the FIS testing, clearly improved overall 

classification in this regard. 

The ANN did not provide additional accuracy in classifying movements into respective classes 

of blockages, as it yielded identical results to the FIS classifier. However, misclassifications did 

not correspond to the exact same set from FIS classification done before it. Overall, the amount 

of misses increased while the number of false positive decreased. Once again, all misses took 

place during hard blockages which happened very close to movement completion, and all soft 

blockages were correctly classified. 

Given these results, as well as those from the FIS’s, there is still room for improvement 

particularly in the domain of blockage classification. Furthermore, the real-time simulation 

approach used with these two sets of classifiers comes with some significant drawbacks. For one, 

the individual analysis of many small segments of data within a movement may mask key 

features which are more evident over an entire movement. Additionally, this approach is very 

computationally intensive because of the need to continuously monitor if transitioned to a more 

realistic setting. Many control valves may sit idle for a very long time, and recent efforts have 

shifted focus to more power-friendly approaches to CBM technology [9]. As a result, the 

approach of identifying the beginning and end of a movement and treating it as a single entity for 

feature extraction and FID is not only simpler but could prove to be more effective as well. With 

this in mind, this research transitioned to this approach using the statistical classifiers described 

in Chapter 2 for classification.  
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Statistical Classification Results 

As summarized in the final pages of the previous chapter, there were 5 main sets of results which 

came from the analysis of test data using the geometric, instance-based and statistical classifiers 

previously introduced. These results correspond to the two-sensor instrumentation data from 

each of the 3 valves used, plus control system data from the small-rotary and sliding-stem valves 

(recall this data was not available for the large rotary valve). This section serves to describe these 

results, organized by valve, and discuss what they mean in some detail.  

An overview of statistical classification process is as follows. Classification using data from each 

valve, both sensor-based and control system-based, was performed by first taking a 

representative sample of data for training. The training results were characterized by an 

estimated-actual error rate (EAER), found by performing a 5-fold cross-validation process. This 

procedure partitions the sample 5 times, with 4 being used as training data and the final being 

used as test validation data. This is performed 5 times, once for each subsample to obtain a final 

EAER. The cross-validation process is used to prevent model over-fitting common in simple re-

substitution validation procedures, which often overestimate accuracy rates [60]. The classifiers 

which performed best in this training process were then exported for use.  

The remaining test data was input to an algorithm which collected extracted features for input to 

these chosen classifiers. Given the manual element of this process described in the IMU features 

section in the previous chapter, this testing procedure was performed 3 times for the two-sensor 

data from each valve. The output classifications from the tests were then compared to the actual 

known classifications and an error rate for each of the 3 repetitions was calculated. From here, 

the final accuracy rate was found by averaging the rates from the 3 repetitions. The nature of the 

CS feature extraction process was more algorithmic in nature and thus was not subject to 

repeated testing to confirm consistency. This gives a set of accuracy rates (one for each classifier 

chosen) for each data type (sensor or CS) and each valve (small rotary, large rotary and sliding-

stem). Since the large rotary valve did not provide CS data, a total of 5 sets of results, 

summarized by Tables 4.1 – 4.3, were subsequently created to summarize this data. This process 

of evaluating performance on training data followed by validation using test data is standard in 

machine learning applications. 
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Small Rotary Valve 

Of the recorded movements described for the small rotary valve in Table 3.2, there were 8 hard 

blocks, 5 soft blocks and 15 no-blocks selected for a training set of sensor-based data. These data 

were selected in a manner which was representative of all sensor-based data collected for this 

valve. Figure 5.3 below gives a scatterplot comparing the STDYaw and FrequencyA parameters, 

with data colored by class to observe separation. Clearly, there is some visible separation 

between the classes when visualizing the data in the context of these two variables. Furthermore, 

this plot does not include the MoveTime parameter which was also used for classification of this 

data. Given the ANOVA results outlined in the previous chapter, it was hoped that this variable 

made the classes boundaries seen in Figure 5.3 even more distinct.  

 
Figure 5.3: Scatter plot of sensor-based training data from 2 parameters for the small rotary valve. 

Using the Classification Learner application in MATLAB, one is able to quickly use this data to 

train classifiers and view error rates as well as which data points in particular are being 

misclassified. After utilizing all available multi-class methods, the 4 classifiers which gave the 

lowest EAER were exported for classifying the rest of the data. For this data, the best classifiers 

were fine kNN (k = 1), quadratic discriminant, Gaussian SVM and bagged tree ensemble 

methods.  
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The rest of this data was subsequently input to an algorithm which took the ACCEL and IMU 

data from each test, extracted relevant features and input to these four classifiers for 

classification. As explained previously, this process was done 3 times because of the manual 

movement-selection component for identifying the beginning and end of movements. The final 

results for the sensor-based small rotary valve data are given below in Table 5.3. All classes are 

included in these results. 

Table 5.3: Sensor-based small rotary valve accuracy rates. 

Small Rotary Valve: Two-Sensor % Accuracy 

  Fine KNN Quadratic 
Discriminant 

Gaussian 
SVM 

Bagged Tree 
Ensemble 

Run 1 98.8 97.6 98.8 97.6 

Run 2 100.0 96.3 96.3 97.6 

Run 3 100.0 98.8 98.8 97.6 

Averaged 99.6 97.6 98.0 97.6 

Clearly, the chosen classifiers were very accurate in classifying the remaining 82 movements not 

utilized in training, with only about 2 misclassified movements on average. In all cases, the 

misclassifications corresponded to soft-blocked movements which were classified as no-blocks. 

These errors came from soft blocks induced with very light, flexible tubing which was the most 

easily crushed by the valve. As a result, the valve response recorded by the sensors was not very 

different from a baseline movement and could not, in these limited cases, be distinguished from 

one. 

For the CS data, 5 hard blocks, 7 soft blocks and 20 no-blocks were compiled as a training set. 

Using these data, the same procedure was performed with respect to the training, selection and 

testing of final classifiers. Figure 5.4 below gives a scatter plot of this training data comparing 

the DriveSTD and MoveTime parameters (PressSTD was also used for classification). At first 

glance, there does appear to be some separation given by these two variables. Given the very low 

6.67 Hz sampling frequency at which this data was collected, there was concern that the 

algorithm written to extract MoveTime might blur the line between no-blocks and soft blocks. 

This appears to be the case, although it was able to uncover a distinction between these 

movements and hard blocks, with the latter clearly giving a smaller total movement time. 
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Figure 5.4: Scatter plot of CS-based training data from 2 parameters for the small rotary valve. 

The classifiers which trained with the best EAER were the fine kNN, weighted kNN, Gaussian 

SVM and bagged tree ensemble methods. Final results are given in Table 5.4 below. KNN 

methods clearly proved superior in classifying the remaining 62 movements, although all final 

classifiers performed well, with the only misclassifications once again attributed to soft 

blockages with particularly weak material that was cut through entirely.  

Given the low sampling rate of this data, which results in few data points to consider for each 

movement, the validity of these results are put into question as there did not appear to be many 

visible differences in the data as Figures 4.16 and 4.17 suggest. However, movements of the 

same class were seen to be remarkably consistent in nature, indicating that the control system 

supplies pressure and current in similar patterns given these different types of induced faults. 

This would be a good thing, but also means that these classifiers are at risk of being over-trained. 

It should be re-stated, however, that a variety of materials with different properties were used in 

the seeded-fault testing of soft blocks and different levels of hard blocks were also tested in an 

effort to provide variation to the data sets. Furthermore, the lack of observational variation in this 

data does not mean that there are not underlying characteristics uncovered by the standard 

deviation and movement time calculations which separate classes effectively. 
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As a result, there are two main interpretations that can be made. The first is that these seemingly 

over-accurate results suggest that soft blocks from a range of materials and hard blocks of 

different levels can all be classified accurately as these results suggest at first glance. The other is 

that there was not enough test data to provide sufficient variation in the data sets, which in turn 

provided over-fit models which could be vulnerable to misclassifying future data. Interpretations 

such as these which are unclear require future testing and analysis to be done under more 

realistic conditions in order to verify them. Regardless, the steps taken in this testing and 

analysis, as well as the consistency in the final results, provide a promising takeaway. 

Table 5.4: CS-based small rotary valve accuracy rates. 

Small Rotary Valve: CS % Accuracy 

  Fine KNN Weighted KNN Gaussian SVM Bagged Tree 
Ensemble 

Final % 100.0 100.0 95.2 96.8 

 

Large Rotary Valve 

Of the 110 total movements analyzed from the large rotary valve, 12 hard blocks, 6 soft blocks 

and 26 no-blocks were taken as a training set and trained in a manner identical to that which was 

described for the small rotary valve. Although there were discriminating features identified 

through manual observation of ACCEL and IMU data as summarized in Table 4.2, the class 

separation was found to be significantly more blurred when compared to features taken from the 

small rotary valve.  

An example of this is shown in Figure 5.5 below. For the small rotary valve, it was relatively 

easy to find a scatter plot of two variables which uncovered clear class boundaries. By adding the 

additional features, accurate classification could be achieved. Figure 5.5 shows the clearest case 

of this for the large rotary valve data, with most other pairs of variables giving class boundaries 

which were much more mixed. While the complete 5D feature space cannot be visualized, it is 

difficult to determine whether or not the complete set of features selected will separate classes 

effectively, and the ANOVAs performed on this data only uncover univariate separations in the 

data. Therefore, high accuracy levels are hoped for but not necessarily expected. 
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Figure 5.5: Scatter plot of sensor-based training data from 2 parameters for the large rotary valve. 

The two most accurate classifiers found from the training data were kNN methods, fine and 

weighted. A third less accurate but sufficient cubic SVM classifier was also selected for testing. 

The final blockage classification results for the large rotary valve using these three classifiers are 

given in Table 5.5 below. Clearly, there is a significant drop in accuracy, with minimum error 

rates just getting under 15% as seen with the weighted kNN classifier.  

Further investigation shows that these misclassifications primarily came from baseline 

movements which were incorrectly classified as hard blockages. There are multiple likely 

reasons for this. While MoveTime is an important parameter in determining whether or not a 

blockage occurred, Figure 5.5 shows how there is a mix between baseline movements and hard 

blocks with respect to movement time. This is because many of the recorded baseline 

movements occurred directly following a hard blockage. Thus, although no blockage occurred in 

these movements, the total time to move was smaller. This was the case in all valve testing and 

was one of the key reasons why additional parameters other than MoveTime were important in 

the classification process. In particular, the frequency-based parameters typically were chosen to 

further distinguish between these two classes of movements. Given that the classifiers were 

successful in doing this for the other valves, it can be reasoned that the chosen frequency-based 
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parameters were simply not effective enough, possibly because of overlooked behavior which 

masked the differences between the two classes (no-block and hard block). In other words, the 

reduction in accuracy seen in the large rotary valve data is likely the fault of the feature 

selections rather than classifiers themselves.  

The obvious solution to this issue would be to introduce signal processing techniques such as 

filtering and enveloping in an attempt to uncover features which may have been masked by noise 

in each movement. The size of the large rotary valve, for example, results in more force in the 

valve stroke and more air being used for pressure. As a result, movements were generally much 

louder. This could have affected the vibration data collected during each movement. However, it 

should be noted that band-pass filters were applied to a variety of important frequency ranges, 

and no potential features of note were uncovered. More advanced techniques could aid in this 

process in future work if similar issues are encountered. 

In the end, the feature described in Figure 4.9, which shows how a frequency spike in baseline 

movements is not present in hard blocked movements, was in retrospect found to also be absent 

in baseline open movements following a hard blockage. As a result, these movements were 

misclassified as hard blockages, causing the dive in accuracy rate. However, true hard blockages 

and soft blockages, as well as data sets consisting only of baseline movements (i.e. ones which 

did not include any hard blockages) were classified correctly. This stresses the need for complete 

verification when defining features which are claimed to be unique to a certain class. 

Table 5.5: Sensor-based large rotary valve accuracy rates. 

Large Rotary Valve: Two-Sensor % Accuracy 

  Fine KNN Weighted KNN Cubic SVM 

Run 1 78.8 84.8 72.7 

Run 2 80.3 86.4 72.7 

Run 3 78.8 78.8 66.7 

Averaged 79.3 83.3 70.7 
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Sliding-Stem Valve 

The sliding-stem valve, which was the final valve used in this analysis, provided only frequency-

based predictors because of the lack of IMU data quality as previously described. Data 

acquisition from this valve yielded both sensor-based and control system data for separate use in 

classification. A scatter plot of two of the three frequency parameters used for training of the 

sensor-based classifiers is given below is Figure 5.6. 

 
Figure 5.6: Scatter plot of sensor-based training data from 2 parameters for the sliding-stem valve. 

Once again, promising separation boundaries are revealed and give some confidence that these 

two parameters, along with the third which was also shown to vary with blockage type with 

ANOVA, can be used for accurate classification. For the sensor-based (vibration only) data 

collected during testing, the most accurate trained classifiers chosen for testing were fine kNN, 

cubic kNN (cubic distance metric), Gaussian SVM and quadratic discriminant analysis. After 

training, the remaining 41 data sets (82 movements) were input for classification. The final 

results from this analysis is given in Table 5.6 below. 
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Table 5.6: Sensor-based sliding-stem valve accuracy rates. 

Sliding-Stem Valve: Two-Sensor % Accuracy 

  Fine KNN Cubic KNN Gaussian SVM Quadratic 
Discriminant 

Run 1 96.1 90.2 93.1 94.1 

Run 2 96.1 90.2 93.1 94.1 

Run 3 96.1 90.2 93.1 94.1 

Averaged 96.1 90.2 93.1 94.1 
 

At first glance, a return to error rates under 10% is seen, suggesting that the chosen classifiers 

were effective in processing new data. Once again, the fine kNN classifier provides the highest 

accuracy out of the test classification methods. For all 4 methods, the majority of misclassified 

test data corresponded to baseline movements which were classified as hard blockages. Although 

this is similar to the problem seen in the large rotary valve, it was not an issue to nearly the same 

extent (3 or 4 misclassifications on average). The most likely reason for some overlap here is the 

fact that no movement time parameter was extracted for classification. Since only vibration data 

was analyzed, clear beginning and end points of each movement could not be deciphered 

accurately. Assuming that none of the frequency-based predictors could create a distinct 

boundary between these two classes, a level of misclassification should not be particularly 

surprising. However, this does indicate that improvement in either the frequency bands selected 

as features or the calculation algorithm which quantifies them into predictors may be warranted.  

For the control system data, the same three parameters were used for classification as in the 

small rotary valve, with the addition of a fourth DriveMean predictor. It was hoped that the same 

three predictors alone could be used for both valves to demonstrate consistency between two 

valves with different internal mechanisms, but this additional parameter was shown to help 

stabilize prediction accuracy at a high level. An example of this is shown in a scatter plot of the 

training data in Figure 5.7 below, with DriveMean on the horizontal axis. While there is some 

overlap between no-blocks and soft blocks seen around 65%, there is clearly a reasonable 

amount of separation between classes. This is therefore a visual supplementation of the ANOVA 

results which assert that DriveMean changes with class and could therefore be an effective 

predictor for future test data. 
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Figure 5.7: Scatter plot of CS-based training data from 2 parameters for the sliding-stem valve. 

The final classifiers selected after the training process for test data were fine kNN, weighted 

kNN, quadratic discriminant analysis and a bagged tree ensemble. The results from the final 

classification of the remaining 40 data sets (80 total movements) are given below in Table 5.7. 

Table 5.7: CS-based sliding-stem valve accuracy rates. 

Sliding-Stem Valve: CS % Accuracy 

  Fine KNN Weighted KNN Bagged Tree 
Ensemble 

Quadratic 
Discriminant 

Final % 98.8 97.5 100.0 97.5 

 

High accuracy rates are seen similar to the analysis performed on the small rotary valve. Given 

that different materials were used to simulate similar behavior in each of the two valves, these 

results further validate those provided previously using CS data. This suggests that, although 

primitive in nature, the CS data analyzed in this work is useful in detecting valve stroke 

blockages in a variety of control valve setups. 
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Chapter 6. Summary & Conclusions 

Procedural Overview & Discussion 

Since this research has explored a variety of methods to quantify predictors for control valve 

movement classification, a number of important takeaways can be observed. Health management 

systems continue to take on a more standard, structured identity as seen in, for example, 

integrated vehicle health management (IVHM) systems. Figure 6.1 summarizes the SAE 

standard for these types of systems, clearly defining distinct levels of system intelligence. 

Although prognostics and self-adaptive health management techniques can be the ideal solution 

to maintenance issues, they are often not achievable given the significant research investment 

which can involve complex test rigs and large amounts of time to fully understand system 

behaviors and implement solutions accordingly. However, enhanced manual diagnostic 

solutions, such as those given by levels 0-2 in Figure 6.1, are much more manageable and 

encompass the scope of this work. Although some of the terminology in the figure may not be 

directly applicable, the goal of this research was to explore solutions which fall in the range of 

levels 1 and 2, i.e. post-hoc analysis and real-time data monitoring. 

 
Figure 6.1: IVHM capability levels [61]. 
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The very first steps in this work, taken even before the analysis included in this thesis, aimed to 

simulate the real-time gathering of vibration data with a goal of detecting valve blockages via 

construction of simple crisp logic structures. As new inputs and predictors to these structures 

were proposed, the difficulty of implementing changes to accommodate them increased 

dramatically. Furthermore, the tendency for these predictors to not necessarily follow distinct 

class boundaries made it difficult to develop these crisp logic structures effectively.  

These issues led to the development of the fuzzy inference systems (FIS) described in the 

previous chapters. Fuzzy logic systems were seen to be easily implementable and gave promising 

test results. However, they still failed to alleviate some of the issues which were present in the 

crisp logic structures. For one, an FIS is still, at its core, a simple structure which hopes to 

improve results by deciphering the “fuzziness” of continuous-scale inputs. Because of this, there 

are no sophisticated mathematical mechanisms at play which could be utilized for classification 

purposes. This requires the classification structures be built completely from the ground up, since 

there are no model templates to be leveraged. In other words, while it could be easier to 

implement given tools such as MATLAB’s Fuzzy Logic Toolbox, the results may not show 

dramatic increases in accuracy overall, and they certainly did not in this research. The issues of 

handling new inputs and fault types still exist and further complicate structure development. 

With these points in mind, artificial neural networks (ANN) were explored as a possible 

improvement to the FIS’s. While more mathematically advanced, ANN’s can in theory provide a 

more streamlined approach to classification in that they can simply collect inputs and classify 

accordingly. No internal structures need to be developed on a case-by-case basis, and multiple 

networks are not required to handle different faults or types of the same fault. A properly trained 

ANN with a relatively simple set of predictors should be expected to classify accurately. 

However, for this application there was no tangible improvement in blockage classification 

accuracy. Movement direction was seen to be detected more accurately, but this isn’t particularly 

useful in practical applications since it can be known by the control system at all times. Given 

the results, it became clear that some part of the entire classification process up to that point was 

holding back the error rates that could be achieved. 
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The hypothesized reason for hitting an accuracy plateau using both the FIS and ANN was the 

actual approach used to classification. As described previously, there are many advantages to 

real-time data monitoring, the foremost being that it can simply be more intelligent by nature. 

Having a constant data stream to analyze could intuitively reduce the harmful effects of any 

unexpected event, whether or not the system in question is actually dynamic at the time. 

Therefore, this approach was used in conjunction with the first two classification methods, with 

the idea being that small segments of data could be analyzed as they are brought into the 

monitoring software. However, by focusing in on a small subset of data without taking into 

account the data before or even after it, features that require more data points to uncover may be 

hidden. These features, in turn, may be particularly important or effective discriminators for 

classification.  

This train of thought led to the procedural change of leveraging the data associated with 

movements as a whole, rather than treating it in small segments, and this approach was used with 

the variety of statistical classifiers described in Chapter 2. While different, it is not intended to 

suggest that it could not be used as part of a “real-time” monitoring process in practical 

applications. Rather, the aim is to separate the two approaches. Additionally, the manual element 

of this procedure described in Chapter 4, where the beginning and end of each movement must 

be manually identified, suggests a process in which the data is being reviewed post-hoc by some 

technician or engineer.  

By analyzing each movement as a single entity and, in the case of the rotary valves, adding an 

additional sensor, a clear improvement in classification accuracy was achieved. Furthermore, 

many types of classifiers were able to predict accurately, specifically k-nearest-neighbor (kNN) 

based methods as well as support-vector machines and bagged tree ensembles. In particular, the 

fine kNN classifiers checking only the single nearest neighbor seemed to consistently give some 

of the highest accuracy rates regardless of the predictors used. Given the relatively small test data 

sets (< 100 tests) and the distinct but nonlinear class boundaries seen in Figures 5.3-5.7, this is of 

no surprise. Support-vector machines (SVM) were effective but, for the most part, inferior to 

kNN. Bagged tree ensembles, while very accurate in a few test sets, are very computationally 

intensive. Overall, the simplicity and accuracy of kNN methods seem to suggest that it is the best 
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resulting classifier for this application. However, kNN methods have their own issues with 

computational power given the number of calculations involved for large training sets.  

These findings reinforce the importance of considering the specific application of the CBM 

solution when performing necessary research. In unmanned systems, for example, computational 

power might be a concern, so the constant gathering of data and use of classifiers with larger 

processing requirements are methods to be avoided. Computing power is of particular concern if 

the health monitoring is to be embedded with the mechanical system of interest. This makes the 

results of classification using only high-level control system data, given in Chapter 5, to be very 

attractive. Utilizing data outputs which are baked into the system of interest adds a layer of 

efficiency to the process as a whole. Given the results presented in the previous chapter, this is 

certainly an area to be explored when a more bare-bones approach is warranted.  

 

Future Work 

While the testing and analysis presented in this thesis is relatively “clean” and easy to interpret, it 

should be recognized that there have been a handful of assumptions and purposefully omitted 

conditions which should provide a basis for future work in this area. Testing in the most realistic 

possible context is important specifically to capturing vibration data, as environmental influences 

could affect the data being collected by these sensors. Furthermore, there should be attempts to 

verify and stay adherent to test settings such as supplied air pressure and current which can affect 

the behavior of the dynamic system in question. For example, a constant air supply at 60 PSI was 

supplied to all valves used in this study (not to be confused with the Supply Pressure CS variable 

which measured the air pressure actually supplied to the actuator). It was shown early in this 

study that the speed with which a valve movement was made began to slow as this pressure was 

adjusted significantly below this value. A supply pressure of 40 PSI would therefore completely 

change frequency magnitudes and potentially the excited frequency bands themselves. These 

operational conditions are therefore of great interest not only in the context of this research but in 

CBM work in general. 
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The most immediate logical next step for this work would be to expand to a more realistic 

environment. Specifically, future test rigs would ideally have a fully operational flow loop so 

that fluid could flow through the valves during testing. This would allow researchers to observe 

how fluid flow affects the acoustic characteristics associated with specific blockages or faults in 

general. Pressure gradients within the flow loop itself may also affect this data. Additionally, the 

presence of flow through the valves brings new sensor instrumentation opportunities. For 

example, sound recordings or pressure sensors could be used to detect leaks in the valves which 

may be caused by a blockage or related issues. 

Once a level of analysis has been performed on data corresponding to more realistic operating 

environments, efforts would shift to integrating the hardware and software needed to perform the 

analysis to some concentrated package for use in relevant industries. There are a variety of 

approaches to this type of work and would depend entirely on the sensors involved, software 

required and other spatial, computational and logistical requirements.  

Further expansion upon this work should also be pursued in the area of prognostics. It stands to 

assume that many blockages in control valves may not be an instantaneous event and that there 

could be build-up over time which may eventually present itself as a blocking force. As a result, 

detailed study of the progression of faults may provide crucial information into how they form 

and how to effectively respond to or prevent them. From an analytical standpoint, density 

estimation techniques may be explored to better understand the frequency and circumstances 

under which these types of blockages may form. 

 

Final Summary 

At the highest level, the analysis and results presented in this thesis outline how a variety of data 

inputs and analysis techniques can be utilized for the detection and subsequent classification of 

blockages in process control valves. Given the wide range of control valve applications and the 

previous CBM research performed on them, it is argued that the motivation for this work is well 

founded and provides a foundation for future research for FDI not only in control valves but for 

other mechanical systems as well. Specifically, the completed testing and analysis suggests that 

vibration data is particularly helpful in identifying the types of valve blockages proposed, and the 

use of motion-detecting sensors such as gyrometers may also be useful supplementary data 
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sources. It was shown how control system data can be leveraged for classification purposes as 

well. While classification accuracy rates were shown to have a legitimate dependence on the 

predictors being used as inputs, it was also shown how a variety of classification methods could 

accurately perform fault detection given the quality of these predictors, regardless of what type 

of sensor data they represent. As such, control valves have been shown to be quality candidates 

for this type of health monitoring from the data presented here from simple test environments.   
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