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Abstract
This thesis introduces a novel model of Advanced Persistent Threats in a network,

and uses game theory to compute the optimal defense strategies to counter these
attacks. Performance of equilibrium strategies are compared to other intuitive but
sub-optimal strategies as well as their best-responses. Parallels are drawn between
the strategies computed by this novel model and the canonical security paradigms
of Defense-in-Depth and Perimeter Defense. It is shown that defense-in-depth may
not be optimal when the defender is budget constrained. Lastly, two use-cases are
presented to demonstrate how this model can be used in real-world scenarios.
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Chapter 1 |
Introduction

One of the most challenging tasks in managing a network is defending it against
cyber-attack. Attackers have many different skill levels that range from novices to
organizations with the financial support of an entire country. Insider attacks are
especially dangerous since the defense policy of the organization is readily available
to the attacker. Network managers, on the other hand, are severely limited in their
ability to counter attacks. Financial budgets may restrict the type of equipment an
administrator can purchase to make attack identification and recovery easier. Other
budgets, like a user’s tolerance of security policies, also exist. It may be unrealistic
to ask a group of users to change their password every 30 days, or remember a new
lock combination to enter a secure room. Therefore, it is necessary for a network
administrator to find the optimal resource allocation that minimizes risk of attack
as well as unnecessary burden to its users.

1.1 Real World Threats

Advanced cyber-attackers can use multiple stages and a diverse set of techniques
to cover their tracks. Such attackers are called Advanced Persistent Threats (APTs)
and can lie dormant in a network for months before being noticed. In 2013, Target
Corporation was the subject of a cyber attack resulting in the loss of personal
information and credit card numbers of 40 million customers [1]. It was later noted
that attackers first compromised credentials of the HVAC company that serviced
Target’s stores [2]. Malicious code was then uploaded to point-of-sale systems where
credit card numbers were forwarded to a control server set up to be accessed from
the outside [3]. Target was alerted that a breach had occurred only when credit
card processors noticed an increase in fraudulent credit card usage from cards that
had also been used at Target Inc. [4].

If the concern for personal privacy is not enough, attacks on critical infrastructure
pose a more serious threat to a country’s safety. In 2010, the world saw how
destructive and sophisticated cyber attacks could be with the release of the Stuxnet
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virus. Stuxnet was a piece of malware that attempted to destroy nuclear enrichment
centrifuges by operating the motors at destructive speeds. This attack took place
in several stages. First, certificates were stolen to falsely verify malicious firmware.
Then the virus navigated networks that had specific types of industrial equipment
connected and established command and control servers to be updated once in
place [5]. A year later, a small water utility in Illinois was attacked using similar
industrial control intrusion methods [6]. Therefore it is important to consider
security policies that generalize to both the physical and cyber domains, and that
reduce an APT’s success even when detection methods fail.

1.2 Game Theory

Game theory is a method to analyze these security threats that has gained
significant traction in the research community. This method examines how players
or agents might act when trying to optimize a utility function. These agents might
be working together with profits shared among all participants. This case is called a
cooperative game model. In contrast, a non-cooperative game contains participants
who seek to optimize their individual utility functions regardless of the utilities of
the other players involved.

The payoff structure is another aspect that defines the game model. If one
player’s increase in utility causes a decrease in utility for the other players by equal
amounts, the game is called zero sum [7]. For example, in the classic game of
rock-paper-scissors, a winner of the game requires that the other player loses by an
equal amount. This is in contrast to a general sum game where one player doing
well does not necessarily mean that other players must suffer [7]. Some games can
be represented by repeatedly playing smaller games called subgames [7]. When the
actions of one subgame dictate the payoffs and the next subgame played with some
probability distribution, the game is called stochastic [7].

The actions of each player (and therefore their payoffs) are determined by the
knowledge each player has of their opponent’s strategy. If a player knows the
strategy of the opponent, and the opponent knows that their strategy is known
. . . ad infinitum, each player’s strategy is said to be common knowledge. Choosing
an action based on common knowledge provides a defense against an opponent
who plays optimally. That is to say, if an agent plays an equilibrium strategy, their
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payoff will be no worse than when their opponent plays optimally. This does not
mean that the equilibrium strategy will always provide the highest payoff, but
rather that it represents the strategy for which the opponent could do no better
when knowing their strategy.

In the security domain, a typical model includes two adversarial players: an
attacker and a defender. The attacker may attempt to compromise or destroy a
target under the defender’s control. Therefore, the utility function for an attacker
might represent the time spent controlling a resource, or the reward for having
destroyed a target. Likewise, the defender might earn a reward for identifying or
removing an attacker from inside the network, or for controlling resources. Game
theory is useful because the utility functions allow success probabilities to be
weighted by the rewards they bring the agent. An attacker action that succeeds
with a high probability may not be that desired because it brings the attacker little
reward. Game theory allows for a structured reasoning of the actions and rewards
available to agents.

1.3 Problem Statement

The model presented in this thesis involves the adversarial interaction of two
players: an attacker and a defender. The attacker is the player modeling an
APT trying to exfiltrate some amount of data from a network by sequentially
compromising the passwords, credentials, or services in the network. The attacker
acts stealthily allowing their actions to remain unnoticed by the defender. The
defender represents the player who owns and manages the network. They aim to
minimize the amount of information the attacker can steal from the network and
only has one action: reset. This action represents a generalization of any action
that restores a password, credential, or service to a non-compromised state. It is
justified by the fact that this is an action that any defender has at their disposal.

One remedy, albeit extreme, for removing malware from a compromised com-
puter is to re-install the operating system. While more advanced malware exists
where a simple re-install will not remove it, this thesis assumes that a reset-type
action will always return the asset to a non-compromised state. Likewise, compro-
mised passwords can be restored by changing them. Exfiltration of data can be
terminated by resetting the outgoing communication path. In the physical domain,
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a reset action might be changing the combination of the lock on a door.
There are two potential concerns when limiting the defender to the reset action.

First, it promotes the possibility of a denial of service attack by the adversary.
Resetting an operating system or other service will cause downtime and cost the
defender availability. Second, it imposes a potential burden to users. A user may
not tolerate a policy that requires them to change his password every 30 days.
Therefore, the defender must be constrained by a budget that represents both the
user tolerance and availability requirements. The budget considered in this thesis
is an organization wide budget. The defender may mandate that some users reset
their passwords more frequently than others according to the optimal defense policy
as long as the total frequency of resets does not exceed some budget threshold.

The game model is a zero-sum game where the attacker gets a reward for
exfiltrating data located at specific points in the network. This means that the
defender loses this amount in reward for each unit of data successfully stolen by
the attacker. The game takes place on a directed graph structure that represents
the communication links and services of the network. Edges in the graph are the
communication paths that the attacker attempts to compromise by compromising
passwords or credentials. Nodes represent services, host computers, or entire
departments that the attacker must move through to find the rewards in the network.
The defender has the ability to reset the nodes in the network according to a certain
rate that is constrained by their budget. Likewise, the attacker must choose which
communication paths (passwords or credentials) to attempt to compromise as well
as for how long. The longer the attacker attempts a compromise, the higher their
probability of success. However this also increases the risk of being caught or having
their time wasted by the defender resetting the corresponding service. The attacker
will pay a penalty if one of the links they attempt to compromise or has already
compromised leads to a node reset by the defender. The attacker will continue to
attack the network until they successfully exfiltrate some data.

This thesis is organized as follows. In Chapter 2, related work is presented, and
aspects that distinguish this thesis from current research is highlighted. Chapter 3
gives the formal problem statement and its analysis. This includes a description of
the model used and actions considered for both the attacker and defender. In the
analysis, a running example is introduced to analyze algorithms and model behavior.
Chapter 4 introduces four simple networks on which the model is simulated and
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its behavior analyzed. In Chapter 5, two use-cases are introduced and analyzed.
Finally Chapter 6 concludes this thesis by summarizing the results. Future work is
presented and applicability to an additional use-case is demonstrated.
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Chapter 2 |
Related Work

The concepts explored in this thesis have been approached by others from three
primary directions. Work that explores other game theoretical approaches for
defense are first discussed. Next, ways an attacker can move through a network
using attack graphs are presented. Lastly, related research from the Autonomic
Computing domain that focuses on self-protection is given.

2.1 Game Theory

Game theory differs from the other approaches in that it considers multiple
agents acting to maximize or minimize a utility function. In co-operative games,
these agents work together and payoffs can be shared between all participants.
However, most security games examine two adversarial agents: an attacker and a
defender. A general survey of how game theory has been used for security can be
found in [8].

2.1.1 FlipIt

The game FlipIt was introduced in [9] as an attacker-defender game where
players fight for control of a single resource. The game allows each player to take
an action that would flip control of the resource in their favor where it remains
until their opponent acts. A player never knows when their opponent acts and
only learns who controls the resource when they decide to act. Taking an action
requires a player to pay a cost. The objective for each player is to maximize control
over the resource while minimizing their cost. The authors analyze several different
strategies and consider variations of the game where players have a fixed budget,
or may pay an additional cost to see who controls the resource.

This work was then extended in [10] to the case of multiple resources where it
was given the name FlipThem. The authors consider two cases. One where the
attacker receives a reward when they control all resources, and another where they
must only control one out of the many resources. The authors mention possible
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extensions of their to complex scenarios by combining these two cases.
My work extends both of these models by considering the case where the attacker

cannot attack any resource arbitrarily. Their choice of which resource to attack is
a function of those resources currently under their control. Furthermore, each node
can provide the attacker with a different amount of reward.

2.1.2 Stackelberg Games

Stackelberg games have traditionally been used to model leader-follower inter-
actions of large corporations in an economic setting, but have grown quite popular
for their use in the physical security domain. One player, typically the defender,
must commit an amount of security resources to protect several targets. The other
player, an attacker, gets to see the defender’s commitment before they act. These
games have been used in numerous physical security domains for creating schedules
for guards at LAX Airport terminals [11], Federal Air Marshal for flights [12], and
patrol routes for tourist ferries on the New York harbor [13]. A survey of these
types of games can be found in [14]. Unlike the work presented in this thesis thesis,
those models typically do not take place in continuous time, and attackers are not
constrained to attack targets based on what had previously been targeted, i.e.,
there is no progression of attacks.

2.1.3 Advanced Persistent Threat Modeling

Lateral movement of APTs has been studied in [15]. The authors use a zero-sum
game as the basis of a reasoning engine that responds to an attacker’s malicious
communication paths. It is assumed that the network contains an Intrusion
Detection System (IDS) that can identify the currently compromised services in
the network. In a similar manner to this thesis, they use a graph structure where
nodes represent network services and edges represent communication paths. In
contrast to this thesis, the defender selects nodes to disconnect to prevent the
attacker from reaching their target nodes. The game continues for a predefined
number of stage-games, where in each stage-game, the attacker can choose one
node to hop and the defender can choose a number of services to disconnect. The
game ends when one of three events occurs: the attacker reaches their target, it is
impossible for the attacker to reach the target due to the services the defender, or
the number of stage-games has been reached. Note here that disconnected services
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are not brought back online, nor is there a service availability requirement for the
defender. Therefore the attacker could easily trick the reasoning engine into a
denial of service scenario.

The game proposed in [16] studies the use of Defense-in-Depth to counter APTs.
The attacker’s target is the center node surrounded by a number of other node
layers that can be thought of as concentric circles. Each layer consists of a game
where the attacker has the option to stay at the current layer or advance one layer
further. On the other hand, the defender chooses a node to inspect. Inspecting a
node will remove the attacker if compromised. The attacker’s reward is a function
of the number of layers they have penetrated.

2.2 Attack Graphs

Attack graphs aim to model the paths of vulnerable nodes an attacker might
attempt to compromise in a network. In general, each graph consists of a set of
possible states in which the attacker might exist. Each state is connected by a
potential vulnerability the attacker could exploit. Attack graphs differ from game
theory approaches in a few aspects. First, the paths are not typically weighted by
their potential reward. Therefore, for each path, only the probability of success is
calculated, not the likelihood of compromise.

The Predictive, Probabilistic Cyber Security Modeling Language (P2CySeMoL)
[17] is a tool that aims to identify the most likely paths an attacker might attempt
to compromise in enterprise networks. It contains a predefined set of asset types
(e.g. operating system variants), attacks and defenses, as well as quantitative data
on how these objects interact which was collected from a mixture of literature
searches and interviews with domain experts. However, tuning of these parameters
can be automated with the aid of network scanners. The tool was then evaluated
by modeling two Swedish power utilities with the help of their respective owners.
Some of the results of running the tool are summarized by the authors as follows:
“Reconfigure the rule sets of two critical firewalls . . . Train engineers regarding
IT security awareness . . . Disable USB autorun and web browsing for a few key
computers” [17]. This tool primarily seeks to identify weaknesses in a network and
suggest additional defenses to counter possible attacks. The defender, in this case, is
not constrained. Therefore, this tool aims to identify the missing defenses, whereas
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my model assumes that a defender cannot deploy all defenses all the time. Attacks
are only modeled by their probability of success. There is no utility function that
weights different paths by their expected rewards. Nor does this model consider
how an attacker might respond when the suggested defenses are implemented.

Attack graphs can be extended to include defense countermeasures as in [18].
Normal attack graphs only look at options the attacker has and their paths of
exploitation through a network. This work proposes coupling these graphs with
defender actions for automated response. As with other attack graph based solutions,
the probability of attacker paths are not weighted by the rewards they produce.

K-Zero Day Safety is a metric related to attack graphs [19]. The metric is
used to compute the number of zero-day exploits that must be used before a given
network architecture is compromised. Metrics like these are important in order to
evaluate the effectiveness of defense methods. In this thesis, the Attacker’s reward
could be interpreted as a security metric where lower means more secure.

2.3 Autonomic Computing

In 2001, IBM noted that an increase in complexity would be a growing threat
against creating and managing modern networks. Worried that humans would
not be able to manage the complexity required by networks of the modern era,
they proposed that networks themselves take on this burden. They coined the
term Autonomic Computing to describe these next generation networks, taking
inspiration from a human’s autonomic nervous system whose responsibility is to
manage key functions of the body. [20]

To better understand how such networks would be constructed, [21] expanded
upon the original idea and described four properties that an autonomic system
should include. Named the self-* properties, they include self-configuration, self-
optimization, self-healing, and self-protection. Network architects would be respon-
sible for identifying the business level goals of the network, but the network itself
should decide how to achieve these goals through the self-* properties.

As the self-healing and self-protection properties are most pertinent to the
subject of this thesis, only work related to these properties will be presented. A
good survey of papers can be found in [22]. Since autonomic computing attempts to
achieve a more general goal than the creation of a robust or resilient system, both
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game theory and attack graphs have been used in reasoning engines for autonomic
architectures.

An intrusion response system is presented in [23] that relies on IDS support
for attack detection. For every sequence of events produced by the IDS, a set of
response actions must be identified that would successfully counter the potential
attack. The response engine will then select the best action to deploy based on
a cost-sensitive analysis. A probability threshold value is used to represent the
point at which the sequence of events can be assumed to be malicious. Up until
that threshold, the response could preemptively respond to the events if it decides
the cost of deploying resources now is less than the cost of a successful attack
later. Both the cost estimation of responses as well as the threshold of attack
identification are automatically updated after every response to keep the system
adaptable.

A trust-based system for attack detection in a multi-agent system is presented
in [24]. Here, agents in the network can ask others, or be asked by others, for
some computation. Malicious agents may also join the network, so all agents must
be aware of who they communicate with. Since agents have the choice of whom
they will communicate, providing agents with a trust mechanism allows for the
identification of malicious agents by viewing the communication topology.

The system described in [25] is an architecture based on self-cleaning. By
periodically cleaning the servers on the network, the time available for malware
is significantly decreased. The focus of this research is on a cloud environment
where several servers can be used to serve data to users. Cleansing a server inflicts
downtime, therefore another server must be started to compensate for the loss of
computing power. The number of redundant servers dictates the minimum amount
of time each server must be running. When there is more redundancy, the period
of time before a server goes down for cleaning will decrease. A central controller is
used to determine where incoming traffic will be routed based on which servers are
currently running.

In [26], a distributed multi-agent approach for self-protection is described. Each
agent in the network has the ability to read and understand the reasoning of
another agent. If one agent performs in a manner that is inconsistent with how
another agent thinks it should be acting, the other agent will analyze the reasoning
processes to ensure there was no compromise. This network of introspection creates
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an emergent self-explanation network that can be used to protect against the actions
of malicious agents. The authors introduce an ontology that can be used for this
meta-level reasoning.
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Chapter 3 |
Problem Statement

Cyber attacks can be modeled as games between attackers and defenders. An
adversary attempts to intrude into a network while the system administrator or
defender deploys resources to prevent these attacks. In the model presented in
this thesis, the attacker attempts to compromise credentials for various nodes in a
network. These nodes can represent a computer, a service, or an entire department
that must authenticate a user before they are given access. The credentials that
are susceptible to an adversary’s attacks at any point in time are determined by
the network structure as well as the credentials already compromised. This means
that they cannot compromise any credential arbitrarily.

Unlike the attacker, who always knows which credentials have been compromised,
the defender never knows how many or which credentials are currently in the
attacker’s possession. To counter the attack, the defender chooses a rate at which to
periodically reset all credentials associated with a particular node without knowing
where the attacker is.

However, not all attackers are after information kept inside a network. Some seek
to prevent access to legitimate users. In addition, not all users have a high tolerance
for security. Therefore, the defender must specify a budget that incorporates both
the cost of downtime associated with a reset as well as the users’ frustrations with
needing to change credentials.

The interaction between the attacker and the defender can be modeled as a
zero-sum repeated stochastic game. The attacker stochastically moves through
different sub-games based on the credentials currently compromised, the credentials
attempted, and the probability of success. Since the defender is unaware that
the attacker is in the network, the game state remains unknown to them. The
defender must find the optimal distribution of budget to minimize loss of data to
the attacker.

On the other hand, the attacker must determine which credentials to attempt
to compromise. If the defender resets a node while the attacker is attempting
to compromise it, the attacker must pay an attempt penalty for wasted time.
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Furthermore, the attacker will pay a possession penalty if the defender resets a
node for which the attacker has compromised a credential.

The game only ends when the attacker successfully exfiltrates data from the
network. This means the adversary will repeatedly attack the network until some
data is retrieved.

This chapter is divided into several parts. First, the previous discussion is
formalized, introducing the game model, each player’s action space and knowledge,
and the game’s payoff structure. Second, an example network is introduced to
demonstrate how concepts generalize to arbitrary networks. Lastly, algorithms are
given and analyzed to calculate equilibrium strategies.

3.1 Model

The model takes as input a directed graph G = (N,E) which represents the
communication structure of the network. Each directed edge e ∈ E defines a
credential used by a communication link to access some network host, service,
node n ∈ N . The set of currently compromised credentials identifies the attacker’s
current state. This state determines which credentials the attacker can attempt to
compromise.

Each edge (i.e. credential) has an associated parameter, λX , that specifies
its expected rate of compromise. Compromises are assumed to occur according
to an exponential distribution. If an attacker chooses to attempt to compromise
credential X, they should expect to spend an average of 1/λX time units before the
compromise is successful. An attacker cannot attempt to compromise a credential
arbitrarily; they must follow the structure defined by the network.

Alternatively, the defender controls nodes in the network and decides how
frequently these nodes reset. Resets also occur according to an exponential distri-
bution, and the sum of all reset rates must be below the defender’s budget. For
example, if the network has two resettable nodes and the defender’s budget is 3,
then the defender could choose to reset Node 1 at a rate of λ1 = 0.5 and Node 2 at
a rate of λ2 = 2.5. This means that Node 1 will reset according to an exponential
distribution with an expected value of 0.5 resets per time unit (i.e. one reset every
two time units). Likewise, Node 2 will reset an average of 2.5 times per time unit.

In light of the previous discussion, a stochastic repeated game Γ can be con-
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structed from the smaller sub-games that represent each attacker state. The game
begins in the state where the attacker has not compromised any credentials.

3.1.1 Players

There are two players in this game. The attacker or adversary seeks to exfiltrate
data from the network. Their values will be positive and represent the value gained
from exfiltrated data. The defender or system administrator seeks to keep the
network free of compromise and wants to minimize the data lost to the attacker.

The attacker always knows the state of the game. That is, they always know
what credentials they have compromised and what credentials are available to
compromise next. They are not budget constrained. They do not have to choose
between compromising one of two credentials on the basis of resources. They can
exert equal effort into compromising all possible credentials in a given state. This
assumption makes sense in the context of APTs. Since most APTs have the backing
of nation-states or nation-state level adversaries, it is reasonable to assume that
resources are not an issue.

The attacker will continuously and repeatedly attempt to compromise the
network only until they begin to exfiltrate data. Once the attacker starts to
exfiltrate data, they do not continue to compromise other credentials. Their reward
is the amount of data exfiltrated once exfiltration is possible.

Lastly, credentials are modeled by an exponential probability distribution with
respect to time. This means that the longer the attacker attempts to compromise
a credential, the higher his probability of success. It also increases the probability
that they will be caught and will incur a penalty for attempting a compromise.
Details of the different types of penalties will be presented in the following section.

On the other hand, the defender never knows the state of the game. They must
determine optimal budget allocation to minimize loss of the network.

3.1.2 Payoffs

This game is analyzed from the perspective of the attacker, where a positive value
indicates a positive reward for the attacker. The attacker is the value maximizing
player and the defender is the value minimizing player. The defender aims to
minimize the information gained by the attacker and therefore prefers negative
values. The payoffs in this game can be partitioned according to whom they benefit
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most: those benefiting the defender (negative rewards) and those benefiting the
attacker (positive rewards).

The attacker will pay a penalty for possessing a node when it is reset. This
makes sense from the attacker’s perspective for two reason. (i) It represents wasted
time. This was effort the attacker had exhausted, but is now useless. (ii) There may
be a social cost for being caught inside the network. For example, there may be
geopolitical ramifications if one country is found with valid credentials from another
country’s network. This also makes sense from the perspective of the defender since
they aim to keep their network free of compromise. It is clearly undesirable for
any part of the network to be compromised, so the defender should aim to keep
compromise to a minimum.

The attacker must also pay a penalty for attempting to compromise a credential
when a node is reset. From the attacker’s perspective, this is because they wasted
time and energy. Correspondingly, the defender would like to keep the attacker out.
Changing a password after the attacker has exhausted resources could be viewed as
a success for the defender. These penalties will be denoted as att(X) and pos(X)
for attempting and possessing of credential X, respectively.

Lastly, the attacker receives reward for exfiltrating data from the network.
Each node may have some amount of reward stored inside. How this reward is
distributed is determined by the network layout and could also be considered part
of the defender’s strategy. However, this thesis does not examine optimal reward
location strategies. This thesis assumes that the the reward distribution is fixed for
a particular network.

Each node generates a reward for the attacker at a certain rate RN (t), where N
denotes the node containing this reward and t is the amount of time the attacker has
to exfiltrate the data. The only restriction on RN(t) is that 0 ≤

∫∞
0 RN(t)dt <∞.

That is the total reward stored in the node is non-negative and finite. However,
this thesis will only consider rates that are monotone-decreasing. For example, the
rate 100 ln(2)2−t implies that after one time unit, the attacker has received 50 units
of reward, and after two time units, the attacker has received a total of 75 units of
reward. This continues asymptotically with the attacker receiving 100 units after
exfilitrating data for t =∞.

In order for the attacker to receive this generated reward, they must possess a
set of credentials that creates a path from this particular node to the outside. Any
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node that is reset along this path will end the exfiltration.
The attacker’s value for a given pair of attacker-defender strategies can be

derived from computing the expected value of the reward received for being in
the state where no credentials have been compromised. If the attacker believes
that this value is positive, then it makes sense to attempt to compromise the
network. Otherwise, they gain nothing for playing this game. This means that the
defender can discourage any rational attacker by having a sufficiently large budget,
or ensuring that the attacker’s penalties are large enough.

3.1.3 Justification

Note that this formulation is general enough to apply to both the cyber and
physical domains. In the physical domain, it is not uncommon to have an employee
‘badge in,’ as well as ‘badge out’ of a space. Since these identification badges
typically have a small microcomputer inside them, it is plausible that different
codes are required to to enter and exit a location.

By modeling state as the set of compromised edges, rather than compromised
nodes, the defender can easily see both the nodes that are likely to be compromised
as well as the direction of the compromise. This can help the defender focus defense
resources on those ingress and egress points.

Directed edges are important because communication is not always bidirectional.
For example, a SQL server may be susceptible to query injection, but not all servers
report the output of commands. The result of the injected command could instead
be retrieved by a vulnerability that displays log files.

Using the exponential probability distribution for expected attacker rates and
defender resets has several advantages. First, it has been shown in [27] that an
exponential distribution is a reasonable approximation when attacks take less than
400 days. It was also shown in [9] that an exponential strategy performs moderately
well against several other strategy classes in the FlipIt game model, even though it
is not strictly dominant.

Lastly, the exponential distribution has the advantage of the memoryless prop-
erty [28]. That is, the probability of success is independent of the amount of energy
previously exerted: P{X > s+ t|X > t} = P{X > s} ∀s, t ≥ 0. This allows for a
reduction in the number of states required. Without the memoryless property, the
state would also need to represent the amount of time spent previously attempting
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a compromise. Take, for example, a state where there are two potential credentials,
A and B. Say the attacker attempts to compromise both but compromises A first.
Since state transitions occur by events, the attacker is sent into state {A}. However,
from this state, credential B could still be available to compromise. Since the
attacker has already spent time tA attempting to compromise credential B, this
effort should be represented in the probability of success to compromise B in this
new state, i.e. P (B|tA). The use of the exponential distribution is a simplifying
assumption that allows the the same probability to be used since the likelihood of
compromise for a particular credential does not change with effort exerted.

3.2 Analysis

To understand how all the pieces fit together, a running example is introduced.
After each stage, the methodology is abstracted to the general case, with algorithms
given when necessary. Figure 3.1 shows a network architecture with four edges and
three nodes, called the 3n4e Network. Two of the nodes are defender controlled,
with Node 1 contains a reward earned at a rate R1(t), and Node 2 contains a reward
earned at a rate of R2(t).

ls
Figure 3.1: 3n4e Network Architecture

The attacker begins with control of the outside node out and can only access
the network through compromise of credential A, which occurs with a rate of
λA. After the successful compromise of edge A, the attacker then has the choice
of compromising edge B or edge C. If they choose to compromise edge C and
the reward stored at Node 1 is non-zero (i.e.

∫ t
0 R1(x)dx > 0), then the game

enters a terminal state, and attacker ends the game with the amount of information
successfully exfiltrated for time t at rate R1(t) while Node 1 has not yet reset. When
such a state is reached, the attacker does not continue to attempt to compromise
credentials.
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If instead, the defender resets Node 1 before the successful compromise of edge
C then two things occur. The attacker pays a penalty for possessing edge A.
Possession of credential A is lost, and the attacker is sent back to the state with no
credentials compromised.

With the intuition based on the previous discussion, an attacker state graph
can be generated. This graph shows the next possible states to which the attacker
could advance. The attacker state graph for network 3n4e is shown in figure 3.2

Figure 3.2: Attacker State Graph for 3n4e Network

The attacker state graph unsurprisingly represents the graph of all possible
attacker states. Each node in this graph represents a set of compromised credentials,
and edges correspond to events that occur during game play. Either a credential is
successfully compromised (and the attacker advances to the state with that edge
added), or a node is reset. Depending which credential is compromised, a node
reset may or may not remove an edge from set of compromised credentials. For
example, in the previous network, a Node 2 reset when the attacker is in state
A will not cause a state change. At every state, the attacker must decide if they
should continue. The attacker can cut their losses and quit early if they believe the
cost of continuing outweighs any reward they might eventually receive. In this case,
the attacker accepts the losses generated thus far from attempt and possession
penalties, and the game ends.

In the general case, Algorithm 3.1 is used to generate attacker state graphs
from various communication architectures. The algorithm builds the attacker state
graph using a depth-first search approach, and maintaining two lists: states already
explored, and states to explore next. Exploring a state means determining what
edges can be compromised from this state, which state those edge-events will lead
to, and likewise for nodes and node-events. Since terminal states signal the last
state of game play, they do not need to be expanded.
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Algorithm 3.1 Attacker State Graph Generation
Input: G . Network communication graph G
Output: ASG . Attacker State Graph ASG

1: procedure ASG_Generate(G)
2: Initialize stack, a stack with a state with node out compromised
3: Initialize a list of completed states, done
4: while stack is not empty do
5: s← stack.pop()
6: if s is a terminal state then
7: Move it to done
8: end if
9: Create a list of possible edge events

10: Create a list of possible node events
11: for all edge events do
12: Create a new state with this additional edge compromised
13: if This state does not already exist in done then
14: Add it to stack
15: end if
16: end for
17: for all node events do
18: Create a new state with this node and all incoming edges removed
19: if This state does not already exist in done then
20: Add it to stack
21: end if
22: end for
23: end while
24: end procedure

3.3 Computing State Values

The game starts in the state where the attacker has control of node out, but no
credentials have been compromised.The attacker must decide if this game is worth
playing. If the expected value of being in this initial state is positive, then they
would expect to win more then they lose, and they should play the game. However,
if the expected value is negative, then it does not make sense to play the game, and
a rational player should not attempt to compromise the network. Therefore, the
attacker must compute the value of this state to determine if the game is worth
playing.

Computation of this value for a particular pair of attacker-defender strategies
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can be computed using conditional expectation and the value of all subsequent
states. To do this, the set of all possible states are divided into two categories:
transition states, where the attacker continues to attempt to compromise credentials,
and terminal states, where the attacker generates reward and no credentials are
further compromised. In the sequel, the term event will be used to describe one of
three actions: the attacker successfully compromise of a credential, the attacker
giving up a compromise attempt, or the defender resetting a node.

3.3.1 Transition States

To compute the value of a transition state, conditional expectation is used.
The value for being in a particular state can be written as the product of the
value of advancing to the next and the probability this event occurs, summed
over all possible events that could occur in the network. For example, the value
of being in the state where no credentials have been compromised, denoted V∅ is
PA
∅ VA + P 1

∅ (att(A) + V∅) where PA
∅ and P 1

∅ are the probabilities that credential
A is compromised and Node 1 is reset first respectively, att(A) is the penalty for
attempting to compromise credential A while it was reset, and VA is the value of
being in state {A}. All transition states in the 3n4e network yield the following set
of equations:

V∅ = PA
∅ VA + P 1

∅ (att(A) + V∅)

VA = PB
A VAB + PC

A VAC + P 1
A (pos(A) + V∅) + P 2

A (att(B) + VA)

VB = PA
B VAB + P 1

B (att(A) + VB) + P 2
B (pos(B) + V∅)

VAB = PC
ABVABC + PD

ABVABD + P 1
AB (att(D) + pos(A) + VB) + P 2

AB (pos(B) + VA)

VAD = PB
ADVABD + PC

ADVACD + P 1
AD (pos(A,D) + V∅) + P 2

AD (att(B) + VAD)

VABD = PC
ABDVABCD + P 1

ABD (pos(A,D) + VB) + P 2
ABD (pos(B) + VAD)

The probability of transition from the current state to the next state is a function
of both the probability that this event occurs first, and the amount of time the
attacker is willing to compromise a credential.

Take, for example, the initial state, ∅. In this state, one of three events could
occur: the attacker successfully compromises credential A, the defender resets Node
1, or the attacker gives up before either Node 1 is reset or the credential is compro-
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mised. Call the amount of time the attacker is willing to spend on a compromise
of credential A in state ∅, tA∅ . Let A denote the random variable representing
the time at which credential A is compromised if the attacker spends sufficient
time attempting to compromise. Likewise, let N1 denote the random variable
representing time at which Node 1 will reset. Then the probability that the at-
tacker advances to state {A}, PA

∅ , can be derived from the three independent events:

PA
∅ = Pr[{A < tA∅ }{A < N1}{N1 < tA∅ }

∪{A < tA∅ }{A < N1}{ta∅ < N1}|{A = a}] Pr[A = a]

= Pr[{a < tA∅ }{a < N1}
(
{N1 < tA∅ } ∪ {tA∅ < N1}

)
] Pr[A = a]

= Pr[{a < tA∅ }{a < N1}] Pr[A = a]

=
∫ tA∅

0
λAe

−a(λA+λ1)

=
(
1− e−tA∅ (λA+λ1)

) λA
λA + λ1

Where the last equality holds because A and N1 are exponential random variables
that are only defined for t ≥ 0. A similar equation can be constructed for P 1

∅ . Note
that, in the derivation for V∅, PA

∅ + P 1
∅ may be less than one. If the attacker quits

before either of these events occur, they receive zero reward. Since the value for
this action is zero, the probability term has been dropped for legibility. However,
discussion in the subsequent sections will demonstrate that quitting early is a
sub-optimal strategy for the class of penalty functions considered, and all state
transition probabilities discussed in the sequel will sum to unity.

Complexity of calculating the transition probabilities grows with the number of
possible credentials. This is because the possible penalties incurred are determined
by which credentials are currently compromised and which ones are attempted. A
possession penalty will always be a possibility as long as the attacker attempts
at least one credential. However, an attempt penalty is only a possibility if the
attacker attempts a credential. To see this, look at state {A}. From this state, the
attacker can attempt credential B, or credential C. Therefore PB

A is determined in
part by the strategy component tBA and likewise PC

A , tCA. However, a Node 1 event
will incur a possession penalty as long as at least one of tBA or tCA is large enough,
and similarly, a Node 2 event will only incur an attempt penalty if the attacker
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attempts credential B.
To understand how to compute the probability for a particular event the general

case, imagine a timeline that describes the order in which each possible event would
have occurred if the state did not change. These orderings include only compromise
events X, and node events Ni. Define the target event as the event for which the
probability is currently being calculated. Each target event has a set of continuation
criteria that the attacker’s strategy must satisfy in order for this event to occur
first. For compromise events, the attacker must still be attempting to compromise
the credential when event occurs (i.e {X < tX}). The continuation criteria for node
events are split into two cases. If the node reset would cause an attempt penalty,
then the associated credential must still be attempted (i.e. {Ni < tX} for X an
incoming edge to node i). This is the case for Node 1 when the attacker is in state
∅. An an example timeline for the Node 1 target in state {A} is given in Figure 3.3.

Figure 3.3: Sample Timeline for State {A} and Target Event N1

This timeline shows all possible orderings of events with respect to the target
event. The first row states that if no events occur (i.e., ∅), then the events B,C,N2

must occur after the target event. Order within the sub-groups for a particular
ordering does not matter. That is, if events B,C,N2 occur afterN1, all combinations
of events (e.g. B < C < N2, B < N2 < C, C < B < N2 . . .) must be considered
and can be simplified by only mandating that these events occur after the target
event N1.

Therefore the set of all orderings is mutually disjoint and their probabilities
can be calculated independently and summed. However, due to the continuation
criteria, several ordering probabilities will be zero. The continuation criteria for N1
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to impose a possession penalty requires at least one of tB or tC occur after N1. The
ordering for which both events B and C occur before N1 requires that tB < B and
tC < C in order for N1 to be possible, however the continuation criteria require
that N1 < tB or N1 < tC . This is an impossibility thus the probability of this
ordering is zero.

With this methodology in mind, the probability P 1
A is worked out in full. Note

that the orderings where events (B,C), (B,N2), and (B,C,N2) occur before N1

have zero probability and will be omitted for legibility.

P 1
A = Pr[{N1 < B}{N1 < C}{N1 < N2}

(
{N1 < tBA} ∪ {N1 < tCA}

)
∪ {B < N1}{tBA < B}{N1 < C}{N1 < N2}{N1 < tCA}

(
{N1 < tBA} ∪ {N1 < tCA}

)
∪ {C < N1}{tCA < C}{N1 < B}{N1 < N2}{N1 < tBA}

(
{N1 < tBA} ∪ {N1 < tCA}

)
∪ {N2 < N1}{tCA < N2}{N1 < B}{N1 < C}{N1 < tBA}

(
{N1 < tBA} ∪ {N1 < tCA}

)
∪ {C < N1}{tCA < C}{N2 < N1}{tCA < N2}{N1 < B}{N1 < tBA}]

=
∫ max(tBA ,t

C
A)

0
e−λBn1e−λCn1eλ2n1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(∫ n1

tBA

λBe
λBbdb

)
e−λCn1e−λ2n1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(∫ n1

tCA

λCe
λCcdc

)
e−λBn1e−λ2n1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(∫ n1

tCA

λ2e
λ2n2dn2

)
e−λBn1e−λCn1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(∫ n1

tCA

λCe
λCcdc

)(∫ n1

tCA

λ2e
λ2n2dn2

)
e−λBn1λ1e

−λ1n1dn1

=
λ1
(
1− e−max(tBA ,t

C
A)(λB+λC+λ1+λ2)

)
λB + λC + λ1 + λ2

+
∫ max(tBA ,t

C
A)

0

(
e−λBt

B
A − e−λBn1

)
e−λCn1e−λ2n1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(
e−λCt

C
A − e−λCn1

)
e−λBn1e−λ2n1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(
e−λ2tCA − e−λ2n1

)
e−λBn1e−λCn1λ1e

−λ1n1dn1

+
∫ max(tBA ,t

C
A)

0

(
e−λCt

C
A − e−λCn1

) (
e−λ2tCA − e−λ2n1

)
e−λBn1λ1e

−λ1n1dn1
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In general, Algorithm 3.2 can be used to construct a function that will be
integrated to compute the probability for the possession penalty when the target
event is a node reset. Similar algorithms can be constructed for the other cases.

Algorithm 3.2 Possession Penalty Probability Generation
Input: A target event and all possible events in a state
Output: The probability that event leads to a possession penalty

1: Construct the powerset, P of all non-target events
2: for all s ∈ P do
3: for all events in s do
4: Let t̂ be the variable of integration
5: Add the term (CDF (u)− CDF (l))
6: where CDF is the cumulative distribution function
7: if event is a compromise event then
8: l = tE for E this edge event . the lower bound
9: u = max(t̂, tE) . the upper bound

10: else . Event is a node reset
11: l = maximum of all incoming edges
12: u = max(t̂, l)
13: end if
14: end for
15: for all events in sc do
16: Add the term (1− CDF (t̂))
17: end for
18: Add the term PDF (t̂)
19: where PDF is the probability density function.
20: Integrate the product of all terms added with respect to t̂
21: end for
22: return The sum of all integrations performed

The algorithm presented in Algorithm 3.2 will calculate the probability for
the general case. However, when probabilities are restricted to the exponential
distribution, the equations are greatly simplified. This will be described in Section
3.3.3. The next section describes how to compute the value for a terminal state.

3.3.2 Terminal States

The value of a terminal state is derived from the reward nodes and credentials
along the exfiltration path. There are four terminal states in the attacker state
graph representation of the 3n4e network: {AC}, {ABC}, {ACD}, and {ABCD}.
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State {AC} only has one node compromised, and data is exfiltrated only along
edge C. Therefore, data will be exfiltrated through this path as long as Node 1 has
not yet reset. The expected value of this state is then:

VAC =
∫ tAC

0
e−tλ1R1(t)dt

Where tAC is the amount of time the attacker continues to exfiltrate data, and the
term e−tλ1 is the probability that Node 1 has not yet reset. Since there are no more
penalties for being caught at this point, this function is monotone-increasing and
the optimal strategy for the attacker in this state is tAC =∞.

Correspondingly, the value for the state {ABCD} is as follows.

VABCD =
∫ tABCD

0
e−tλ1R1(t) + e−t(λ1+λ2)R2(t)dt

Since the reward stored in Node 2 must pass through Node 1, the amount that can
be exfiltrated is dependent on probability that both Node 1 and Node 2 have not
yet reset. However, as in the case of state {AC}, the reward stored in Node 1 only
depends on Node 1.

In general, the reward for a node i in a terminal state can be written as:
∫ t

0
(1− F (t))Ri(t)dt

Where the attacker continues exfiltrating for time t and F is the cumulative
distribution function for the path (i.e. the probability exfiltration has stopped at
time t due to a node reset).

It should be noted that a node can have multiple paths through which reward
can be exfiltrated. Information will be exfiltrated as long as at least one path has
not yet been reset. The cumulative distribution (CDF ) of this event can be defined
as follows. Denote the CDF of a node i reset by Fi. Let Wj be the event that path
j, made up of of nodes Ni, 0 ≤ i ≤ mi is reset. Then Wj = min(Ni) ∀i ∈ 0 . . .mj,
and CDFW (t) = Pr[Wj ≤ t]. Likewise, let Z denote the event that at lest one path
has not yet been reset. Then Z = max(Wj), and CDFZ(t) = Pr[Z ≤ t]. Therefore,
for a node with M possible exfiltration paths can be expressed in terms of each
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node’s CDF as follows:

Pr[Z ≤ t] = Pr
j=M⋂
j=0
{Wj ≤ t}

 = Pr
 M⋂
j=0

mj⋃
i=0
{Ni ≤ t}


Note that the events {Wj ≤ t} are not independent because a node may be

involved with more than one path. However, the events {Ni ≤ t} are independent
since node resets are assumed to occur independently. This implies a naïve approach
to computing Pr[Z ≤ t] by repeated use of the principle of inclusion-exclusion.
Recall that the principle of inclusion-exclusion states the probability of dependent
events can be evaluated by adding and subtracting combinations of subsets of
events. For the case of three events A1 and A2, the principle states:

Pr[A1 ∪ A2 ∪ A3] = Pr[A1] + Pr[A2] + Pr[A3]− Pr[A1 ∩ A2]

− Pr[A1 ∩ A3]− Pr[A2 ∩ A3] + Pr[A1 ∩ A2 ∩ A3]

This expression can be rearranged to define the intersection of all events in terms
of the intersection of a smaller number of events and the union of all events. The
smaller subsets of intersection pairs can be computed by another rearrangement of
the principle. However, this approach becomes intractable as the number of paths
and nodes in each path increases.

Instead, note that probabilities of unions are easier to compute probabilities
intersections. For example, consider a reward node has two paths, W1 and W2,
where path W1 depends on nodes N1, N2, N3, and path W2 depends on nodes
N1, N4:

Pr[Z ≤ t] = Pr[max (W1,W2) ≤ t] = Pr[max (min(N1, N2, N3),min(N1, N4)) ≤ t]

However:

Pr[min (W1,W2) ≤ t] = Pr[min (min(N1, N2, N3),min(N1, N4)) ≤ t]

= Pr[min(N1, N2, N3, N4) ≤ t]

= 1−
4∏
i=1

(1− Fi(t))

Where the last equality holds because all node resets are independent.
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Therefore, a version of the principle of inclusion-exclusion that defines the
probability of the intersection of events in terms of the probabilities of unions is
used.

Lemma 3.3.1 (Principle of Inclusion-Exclusion for Intersections).
For events Ai, i ∈ {1 . . . n}:

Pr
[
n⋂
i=1

Ai

]
=

n∑
i=1

Pr[Ai]−
∑
i<j

Pr[Ai ∪ Aj] +
∑
i<j<k

Pr[Ai ∪ Aj ∪ Ak]− . . .

+ (−1)n+1 Pr
[
n⋃
i=1

Ai

]

Proof by Induction.

Base Case: n = 2

Pr[A1 ∩ A2] = Pr[A1] + Pr[A2]− Pr[A1 ∪ A2]

This is true by the normal definition of the principle of inclusion-exclusion.

Induction Step: Assume true for case n, show it also holds for n + 1. The
inductive hypothesis states that:

Pr
[
n⋂
i=1

Ai

]
=

n∑
i=1

Pr[Ai]−
∑
i<j

Pr[Ai ∪ Aj] + . . .+ (−1)n+1 Pr
[
n⋃
i=1

Ai

]

Take the left hand side and add one more event, An+1:

Pr
[(

n⋂
i=1

Ai

)
∩ An+1

]
= Pr

[
n⋂
i=1

Ai

]
+ Pr[An+1]− Pr

[(
n⋂
i=1

Ai

)
∪ An+1

]

Where equality holds from the base case with A1 = (⋂Ai) and A2 = An+1.
Invoke the inductive hypothesis to expand ⋂Ai twice on the right hand side:

Pr
[(

n⋂
i=1

Ai

)
∩ An+1

]
=

n+1∑
i=1

Pr[Ai]−
∑
i<j

Pr[Ai ∪ Aj] + . . .+ (−1)n+2 Pr
[
n+1⋃
i=1

Ai

]

QED
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With Lemma 3.3.1, Algorithm 3.3 can be used to construct the probability
function to be integrated with the reward function. In a similar manner to Algorithm
3.2, this algorithm creates the cumulative distribution function by summing terms
for each subset of a powerset. Given a set of exfiltration paths, Algorithm 3.3
iterates over the powerset of paths and adds each partial probability according to
the principle of inclusion-exclusion.

Algorithm 3.3 Reward Node Exfiltration Probability
Input: The set of all paths from a given reward node to the outside
Output: The CDF of the maximum of all such paths

1: Compute the powerset of all paths excluding the empty set, P
2: Initialize l: a list of CDF functions; one for each s.
3: for all s ∈ P do
4: if s has even cardinality then
5: Add the negative of the product of the CDF of all nodes in this path
6: else
7: Add the product of the CDF of all nodes in this path
8: end if
9: end for

10: return The sum of all sign adjusted products in l

3.3.3 Optimality of the 0−∞ Strategy

In this section, it is shown that the attacker’s value for any state is maximized
for either t = 0 or t = ∞. That is, if an attacker should choose to attempt a
compromise, they should only stop when the compromise is successful or when the
node resets.

This is easily seen in the terminal states. In these states, there is no penalty for
exfiltrating more data. The value of these states are always monotone increasing
with respect to t. Therefore, the value is always maximized for t =∞. This means
that the value for terminal states can be computed in advance.

For transition states, this thesis only considers constant penalty functions (e.g.
pos(X) = −0.5). Note that the transition probability functions are increasing with
respect to t; the more time the attacker spends attempting a compromise, the
more likely they will either succeed or be caught. A attacker should only attempt
a compromise if it leads to a state with positive reward value. An attacker can
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choose states that have only non-negative reward values because they always have
the option of quitting and receiving zero reward.

Mathematically, this can be seen by taking the derivative with respect to t to
see where values are maximized. Recall that transition probabilities have the form:

λi∑
λj

(
1− exp(−t

∑
λj)
)

The derivatives with respect to t will then have the form:

β exp(−t
∑

λj)

for some positive constant β. Note that the derivative is positive for t ≥ 0. This
means that the value for each state has extrema only at the bounds. The bounds
for this case are 0 and ∞. Therefore, when the penalty functions are constant, the
attacker strategy represents the states and credentials to attempt, not how long to
attempt to compromise.

3.3.4 Computing the value for a particular strategy pair

As was previously discussed, the value for a particular pair of strategies is equiv-
alent to the value of state ∅. The value of this state, as well as all other transition
states, was computed using conditional probability. While this is mathematically
true, this formulation leads to some issues computationally. For example, in the
3n4e network, the value of state ∅ depends on the value of state {A}, and the value
of state {A} depends on the value of state ∅. These recursive relationships exist
manifold across the states. While it is theoretically feasible to symbolically define
closed form solutions for sets of equations for arbitrary networks, it becomes rapidly
intractable.

Therefore, each state value can be computed using a fixed-point iteration method.
Each state value equation represents one row in a vector valued function ~g(v). The
element v∅ at the fixed point ~v∗ = ~g(~v∗) is the solution to the system of equations.
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Chapter 4 |
Simulation and Analysis of Simple Networks

In this chapter, simple networks are introduced. From these networks, the
performance of equilibrium strategies is compared to the performance of suboptimal
strategies as well as the best response strategies for the sub-optimal strategies.
Lastly, this chapter examines how the canonical security paradigms of Defense-
in-Depth and Perimeter Defense come into play with respect to the equilibrium
strategies.

4.1 Simple Networks

Four simple networks of increasing complexity are used to analyze how equi-
librium strategies compare to sub-optimal strategies. These networks are listed
in Figure 4.1. For each network, the outside attacker-controlled node is the left
most node of the network. Attacker rates for each edge are chosen uniformly at
random from integers in the interval [1,5], and a defender budget was fixed at 3.
While these parameters were arbitrarily chosen, their impact will be studied in the
following sections.

(a) 3n4e (b) 3n6e (c) 4n8e (d) 4n10e

Figure 4.1: Simple Communication Networks of Increasing Complexity

Each network is named by the total number of nodes and edges. As an example,
the network 3n4e as three nodes and four edges. While there exist other network
configurations to which these names apply, this thesis will only examine one
particular instance of each class as demonstrated in Figure 4.1. Therefore, the
names are unique in the context of this thesis.
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4.2 Sub-Optimal Strategies

Several sub-optimal strategies were chosen for both the attacker and the defender.
These strategies are used as a baseline to compare the performance of the equilibrium
strategies. In addition, if a player knows their opponent plays with a sub-optimal
strategy, they can optimize against that particular strategy. This class of strategies
will be called Best Response (BR) strategies. The performance of the equilibrium
strategies is also compared to that of this class of BR strategies.

By comparing the performance of sub-optimal, BR, and equilibrium strategies,
the importance of player knowledge is demonstrated. This chapter shows how one
player can improve their reward if they know and optimize against their opponent’s
strategy. For the attacker, the following sub-optimal strategies are considered:

All The attacker never quits. If a credential can be compromised, the attacker will
attempt to do so.

Fast The attacker never quits. They only choose the one credential with the fastest
expected compromise time to attempt. If this rate is tied with another, both
are attempted.

Short The attacker compromises credentials along the shortest path to a particular
reward node. Shortest path is defined by the fastest rate of compromise.

Marginal Reward (MR) Average reward per state is calculated. Only those
links that lead to states with the highest reward are attempted. For example,
if compromising a credential where three terminal states are possible with an
average reward of 40 units each, but attempting another credential will lead
to a state where two terminal states each with an average 50 units of reward,
then the later credential will be chosen.

Weighted Marginal Reward (WMR) The same as Marginal Reward, only the
rewards are weighted by the expected compromise weight.

Random An arbitrary but fixed strategy

These sub-optimal attacker strategies were selected for their somewhat intuitive
appeal. That is, an attacker that has not performed any optimization calculations
might think that these are intelligent strategy choices. The random strategy
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was included to provide a baseline for sub-optimal strategies; if no thought went
into a strategy, how might the rewards compare. The fast and short strategies
represent two different opportunistic approaches. The fast strategy can be thought
of a smash-and-grab approach where the attacker quickly attempts to grab as
much information as they can readily get. On the other hand, the short strategy
represents a calculated and targeted approach. The attacker has identified one node
contains the reward they most value. They take a targeted approach to attack that
specific node by compromising credentials in a shortest-path manner with respect
to expected compromise times.

The strategies MR and WMR represent a more holistic approach. The attacker
knows their capabilities and attempts to seek out those states for which their reward
is maximized. In a similar manner, four sub-optimal strategies are considered for
the defender:

Proportional The defender distributes their budget proportionally according to
the total reward located at each node

MaxN The defender distributes their budget equally among all N -most nodes
containing the valuable data

Equal The defender distributes their budget equally among all nodes

Random The defender arbitrarily distributes their budget

As was the case for the attacker strategies, a fixed but arbitrary strategy random
provides a baseline to see how other sub-optimal strategies perform. It should be
noted that the the MaxN strategy is the same as equal when N is all the defender
resettable nodes.

4.3 Simulation

Simulations for the entire game are performed by simulating each state. The
attacker moves through the states according to their strategy, collecting penalties
until the game ends with them quitting or collecting their reward. The time until
an event occurs is represented by a sampling of the exponential distribution. In
each state, all possible events are ordered by the time at which they will occur. The
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event occurring first will determine the next state, and this time will be subtracted
from all remaining events.

To make this more concrete, consider a case where the attacker attempts to
compromise two credentials, A and B. These credentials lead to two different
nodes, N1 and N2 respectively. If this is the first time the attacker has attempted
credentials A, and B, then new values, tA and tB, are sampled for each credential
with parameters λA and λB respectively. These values represent the true amount
of time required to compromise each credential. Likewise, N1, and N2 are sampled
at rates λ1, and λ2 to determine the amount of time (t1 and t2) until these nodes
reset. Say, for example, the ordering tA < t1 < t2 < tB occurs. Then the simulator
transitions into the state with credential A added, and remaining times are updated
as follows: t1 ← t1− tA, t2 ← t2− tA, and tB ← tB − tA. In this new state, N1, N2,
and B are not sampled again because they still have time left. However, if this
state exposes a new potential credential, C, that the attacker would like to attempt,
then C will be sampled with parameter λC . In this state, all events are reordered,
with t1, t2, tB as their previously updated values and tC a newly sampled variable.

Note that simulations do not take advantage of the simplifying assumption of
the memoryless property. This allows the simulation engine to use any probability
distribution for node resets or credential compromises. In addition, since time is
recorded, the expected time of compromise can also be calculated. Therefore, it
can be seen how the length of time an attacker is in the network corresponds to
the average amount of reward they receive.

In addition to providing insights about the time-reward trade-off, simulation
data also shows the distribution of rewards for a particular strategy pair. Because
the game is stochastic, the value received for any instance of attack is a sampling of
distribution of rewards defined by both players’ strategies. For the results given in
the following sections, the quartiles (as calculated from 10,000 simulation runs) of
this distribution will be given for a particular strategy pair. Lastly, simulations are
also used to verify the algorithms used to calculate the expected value as described
in Chapter 3

In the rest of this section, simulation results and calculated values are presented
in graphs like Figure 4.2. Attacker strategies identified by groups on the x-axis
and defender strategies are identified by colors. For each pair of strategies, the bar
shows the mean value as calculated with the algorithms as described in Chapter 3,
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and the simulated quartiles are shown on the error lines.

Figure 4.2: Sample Graph Demonstrating Simulated and Calculated Data

The decision to use 10,000 simulation runs for each strategy pair is justified by
the tradeoff between simulation time and accuracy as demonstrated in Figure 4.3.
The calculated and simulated means were computed for 49 pairs of strategies for
several different number of simulation trials. The differences between the calculated
and the simulated means are shown in Figure 4.3a. This plot demonstrates two
important points. First, it verifies the correctness of the algorithms derived in
Chapter 3. Second, it shows the diminishing returns in the number of simulation
runs. As the number of simulation runs increases by a factor of 10, the spread of
differences decreases only by about half.

The execution times shown in Figure 4.3b were gathered from an Intel Core Duo
with a 2.66 GHz clock. Note that a tenfold increase in the number of simulation
trials corresponds with a tenfold increase in execution time. This linear increase
makes sense because simulations were performed sequentially. Therefore, using
10,000 trials to simulate a pair of strategies offers a good trade-off between accuracy
and runtime.
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(a) Accuracy as a Function of the Number of Trials

(b) Simulation Time as a Function of Number of Trials

Figure 4.3: Tradeoff between Accuracy and Time

4.3.1 3n4e Network

An instance of the 3n4e network is presented in Figure 4.4. In this network,
λA = 4, λB = 2, λC = 4, λD = 3, R1(t) = 30 ln(2)2−t, and R2(t) = 40 ln(2)2−t. The
defender budget is fixed at 3.

The first simulation run demonstrates how the equilibrium strategies perform
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Figure 4.4: 3n4e Network Architecture Instance

compared to the defender’s other best response strategies. Figure 4.5 shows the
results after 10,000 simulation trials. The bar graph shows the calculated expected
value. The error bars show the distribution of rewards for each of the runs. The
ends of the bar show the lower and upper quartiles, and the dot is the median.

Figure 4.5: 10,000 Simulation Trials for Different Defender Best-Response Strategies

The colored bars in the figure demonstrate two important concepts. First,
the defender’s best response to any of the attacker’s sub-optimal strategies is
approximately the same as their equilibrium strategy. For a particular attacker
strategy, there is not much variation in attacker value across the different defender
strategies. Although the advantages for the defender playing equilibrium are
not obvious in this particular network, it will become more apparent later in this
section. This suggests that a defender who optimizes against any particular attacker
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strategy, when the network is simple enough, might reasonably approximate the
equilibrium strategy.

Second, the attacker’s value for playing MR is about the same as the value received
for playing the equilibrium strategy. Note that these two strategies dominate the
other attacker strategies. Regardless of how the defender plays, the attacker receives
the highest values when they play either MR or equilibrium. However, a rational
attacker should play equilibrium because playing MR would potentially allow the
defender to optimize against this strategy, as seen by the small dip in value for the
yellow bar.

The quartile lines for each strategy pair show an interesting relationship between
means and the medians. The medians are consistently lower for this network. In the
extreme case, WMR and short have positive expected values, but negative medians.
This means that 50% of attackers would earn a negative reward if they attempted
to play the game with those strategies, but if they played enough times an attacker
would come out ahead. It is interesting to note that an attacker who’s rationality
depends on the mean should play this game, but one who’s rationality depends
on the median should not. However, this discussion is left for future work as the
computation of the median, in the general case, is significantly more complex and
does not have guarantees for uniqueness [29].

The skewness of the attacker’s value distribution for the pair of strategies, WMR
and BR(WMR), can be seen in Figure 4.6. On expectation, the high rewards that
occur with low probability are able to make up for the numerous low rewards with
high probability. This shows that the game has an element of high-risk, high-reward.

Figure 4.6: Distribution of Rewards for WMR Vs. BR(WMR) Strategy Pair
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The previous figures showed the interaction between the a sub-optimal attacker
and a defender who knows the attacker’s strategy and plays their best response.
Both the attacker’s and defender’s equilibrium strategies were given for comparison.
On the other hand, Figure 4.7 shows how a baseline comparison between an attacker
and defender who both play sub-optimal strategies with the equilibrium strategies
again given for reference.

Figure 4.7: Performance of Sub-Optimal Strategies for Both Attacker and Defender

Some of the same trends previously seen in Figure 4.5 for a best-response
defender also hold for a sub-optimal defender. The attacker’s strategies of all,
random, and fast all perform approximately the same. This is most likely because
of the simplicity of the network. There are only a handful of states the attacker
can decide to play, so for this network, these strategies are almost identical. The
strategies of WMR and short are dominated by the other attacker strategies. However,
the performance of equilibrium is more easily seen. If the defender plays sub-
optimally, the attacker’s strategy of equilibrium will produce significantly more
reward.

From the defender’s perspective, their strategy of equilibrium performs the
best regardless of the attacker strategy. That is, the red bar is the lowest of all
attacker strategy groupings. The two strategies, equal and max2, are the same for
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this graph. This is why Figure 4.7 shows these strategies yield the same value. It is
interesting to note that proportional is the worst sub-optimal strategy. Although
it might be counterintuitive that a strategy that resets according the value of
the reward in the node is outperformed by one that resets all nodes equally, this
phenomena is discussed later in Section 4.4.

Two final cases are shown in Figure 4.8. In 4.8a, the performance of a best-
response attacker playing against a sub-optimal defender is given. In 4.8b, both
players are best-response players who incorrectly anticipate their opponent’s strate-
gies.

(a) Best-Response Attacker Vs. Sub-Optimal Defender

(b) Best-Response Attacker and Defender

Figure 4.8: Best-Response Attacker Vs. Sub-Optimal and Best-Response Defenders
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As seen in Figure 4.8a, there is not much variation performance of attacker
strategies. This is because the best-response attacker strategies closely approximate
the equilibrium strategy. However, this figure does demonstrate the importance of
optimizing for the defender. Picking an intuitive, but sub-optimal, strategy will
perform worse than a calculated equilibrium strategy.

In the extreme case, the best-response defender strategies approximate the
equilibrium strategies and thus all pairs of strategies shown in Figure 4.8b are all
the same (with the exception of BR(MR)). This explains why there is little variation
in value for the different strategy pairs. However, as the complexity of the network
grows, and as parameters change, this will no longer be the case.

4.3.2 3n6e Network

The 3n6e network with sample parameters is shown in Figure 4.9. As before,
the defender’s budget is fixed at 3, and there are a total of 70 units of reward that
the attacker could receive. However, this network is more connected which gives
the attacker more avenues for compromise and exfiltration.

Figure 4.9: 3n6e Network

The next two figures show the interaction between two classes of players (i.e.
sub-optimal and best-response) compared to the equilibrium strategies. Figure
4.10 shows that equilibrium is best for both sub-optimal attackers and defenders.
This makes sense because the equilibrium strategy considers the best-response of
the opponent whereas the sub-optimal strategies demonstrate strategies that might
have intuitive appeal. However, the magnitude of difference between sub-optimal
and equilibrium strategies might not be as large as expected. This makes sense for
smaller networks since each player’s strategy search space is significantly smaller.
For example, proportional approximates equilibrium for the defender. This
suggests a heuristic where an increase in network connectivity corresponds with an
approximation of equilibrium.
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Figure 4.10: Sub-Optimal Attacker and Defender

Figure 4.11: Sub-Optimal Attacker and Best-Response Defender

The attacker’s all strategy consistently performs well regardless of the defender’s
strategy considering the little amount of computation required to calculate this
strategy. This is be because the penalties are relatively low. Recall that there
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are 70 total units to be earned in this network, but each penalty is only 0.5. The
importance of modeling the penalties will be further discussed in Section 4.4.

Figure 4.11 shows the best the defender can do when they know the attacker’s
strategy. This graph demonstrates how knowledge of the opponent’s strategy can
give a player an advantage. When the defender plays equilibrium, they can be
certain that no other attacker strategy can yield a higher value. This strategy
provides a bound on the worst case scenario. Looking at the fast attacker strategy,
if the defender knows the attacker will play fast, the defender’s best response
yields a value around 7 units. However, if the defender is wrong and the attacker
instead plays equilibrium, then the defender yields a value of around 20 units.

The sub-optimal and best-response attacker strategies are shown in Figure
4.12. Figure 4.12a shows the interaction between a best-response attacker and a
sub-optimal defender. The reason for the lack of variation in reward for a particular
attacker strategy is because the defender strategies are mostly the same. Both the
network and the defender’s action space are still quite small, so there is not much
variation between sub-optimal defender strategies. Therefore the best-response to
those strategies will be similar.

Figure 4.12b shows the interaction between a best-response attacker and best-

(a) Best-Response Attacker and Sub-Optimal Defender
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(b) Best-Response Attacker and Defender

Figure 4.12: Simulation Results for Players on the 3n6e Network

response defender. This figure highlights the dangers of incorrectly guessing an
opponent’s strategy. A defender who anticipates an attacker that plays fast, short,
or random will perform significantly worse against an attacker that prepares for a
defender that plays proportional.

4.3.3 4n8e Network

Figure 4.13 shows a network with four nodes and eight edges. Unlike the previous
two networks, this network has 100 units of reward. The attacker’s rates in this
network were chosen to generalize what might occur in a real network. A thorough
discussion of parameter modeling is presented in Section 5.1. Since communication

Figure 4.13: 4n8e Network

43



tends to be bidirectional, the difficulty for the attacker is establishing the incoming
connection. The returning edge is compromised with relative ease. Node 1 can
be compromised from the outside at a rate of 2 times per hour, while the reverse
occurs twice as fast.

As a more concrete example, this network might represent a company with two
departments and a secret project. Node 1 is the administrative staff that does not
need access to the secret project room, Node 3. Node 2 represents the engineering
department that needs access to the secret room. Assuming the engineering
department is more security-minded than the administrative department, it is
much more difficult to steal their credentials than an administrator’s credentials.
However, credentials are commonly checked only on entry rather than exit, so it is
easier to leave an area than enter.

The four classes of interactions are given in the four figures of Figure 4.14.
These graphs demonstrate that the defender’s equilibrium strategy is almost as
good as their best response strategies for a particular attacker strategy. That is,
the equilibrium defense performs well (although not optimally) against sub-optimal
and best-response attacker strategies, and gives an upper bound for how well an
attacker could possibly do.

(a) Sub-Optimal Attacker and Defender
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Note that an attacker who anticipates a defender that plays proportional
yields a payoff close to that of an attacker who plays equilibrium. This means
that the attacker’s strategy of BR(proportional) is a good approximation of
equilibrium. Therefore, an attacker who does not have time to compute the
true equilibrium strategy might consider playing BR(proportional) or using this
strategy as an initial guess to find the true equilibrium strategy.

(b) Sub-Optimal Attacker and Best-Response Defender

(c) Best-Response Attacker and Sub-Optimal Defender
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(d) Best-Response Attacker and Defender

Figure 4.14: Simulation Results for Players on the 4n8e Network

Lastly, note how poorly the defender’s strategy of BR(fast) performs. This
makes sense because the attacker’s strategy of fast goes after the reward in Node
1 since this credential is compromised the fastest. Therefore, the defender’s best
response to this strategy is to put the entire budget on Node 1. This strategy only
performs well for the defender when the attacker plays fast. It leaves the rest of
the network wide open for other attacker strategies, hence the high reward values
in Figures 4.14b and 4.14d.

4.3.4 4n10e Network

The last network considered is shown in Figure 4.15. This network expands
the previous case to include edges connecting Node 1 and Node 3. In the example
introduced in the previous section, this means that the administrative department
(Node 1) now has access to the secret room (Node 3). However, administrators rarely
have a need to access the secret room, so any time they do, their credentials might
be scrutinized more than an engineers. This is the reason for a lower compromise
rate with these credentials.
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Figure 4.15: 4n10e Network

The four plots in Figure 4.16 show the simulation results between the two classes
of players. Figures 4.16a and 4.16b demonstrate the importance of optimizing for
the attacker. No other attacker strategy comes close to the reward received when
the attacker plays equilibrium.

Note how the magnitude of the reward increases from the previous 4n8e network
to this 4n10e network. The graphs that show a best-response attacker, Figures
4.16c and 4.16d, mostly receive above 20 units of reward. For the previous 4n8e
network, these strategies were yielding under 20 units of reward. This hints at the
importance of reducing the surface of attack and will be explored further in Section
4.4. The more ways that an attacker can compromise a network, the harder it is to
defend.

(a) Sub-Optimal Attacker and Defender
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(b) Sub-Optimal Attacker and Best-Response Defender

(c) Best-Response Attacker and Sub-Optimal Defender
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(d) Best-Response Attacker and Defender

Figure 4.16: Simulation Results for Players on the 4n10e Network

4.4 Defense In Depth

Defense-in-Depth is the security principle that a network should be defended
in layers [30]. A network should be segmented and resources should be deployed
at each segment to catch intrusions that make it through earlier defenses. It is
interesting to note that not all equilibrium strategies demonstrate this security
principle. In the context of this thesis, a strategy that demonstrates defense-in-
depth should allocate a small portion of the budget to most nodes in the network.
However, some equilibrium strategies do not recommend this strategy.

Take, for example, a modified version of the 3n4e network shown in Figure 4.17
where all reward is pushed to the ‘back’ of the network (i.e. the reward only resides
in Node 2). A defense-in-depth strategy would suggest that some of the budget be

Figure 4.17: Modified 3n4e Network
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allocated to both Node 1 and Node 2. Equilibrium strategies were then computed
for various budgets to see which strategies demonstrate defense-in-depth. Since
the defender’s strategy for this network only has two nodes, it can be represented
entirely by the amount of budget allocated for Node 2. Allocating nothing to Node
2 (λ2 = 0) would imply allocating the entire budget to Node 1 since it is assumed
the defender uses their entire budget (λ1 + λ2 = Budget). Figure 4.18 shows how
the equilibrium strategy and attacker reward changes as the defender’s budget
grows.

Figure 4.18: Attacker Reward and Node 2 Equilibrium Reset Rate Vs. Budgets

The blue line shows that the attacker’s expected reward decreases as the budget
grows. This is intuitive because a larger budget means the defender has more
resources available to protect their network. The red line shows that for small
budgets (i.e. B < 3), the defender puts their entire budget on Node 1 (i.e. λ2 = 0).
However, as the defender increases their budget from 3 to 6, the equilibrium strategy
suggests putting more weight on Node 2. This suggests that defense-in-depth may
not be an optimal strategy when the defender is severely budget constrained.

It should be noted that when the budget is large enough (B > 6 in this case),
no rational attacker should attempt to compromise the network. The fact that the
defender’s equilibrium strategy jumps around in this region is an artifact from the
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optimization solver. When the budget is large enough, there are many strategies
that can dissuade an attacker from playing. The equilibrium solver only picks one
of these strategies.

Furthermore, the defender’s equilibrium strategy suggests that a perimeter
defense is near optimal for this network. This is demonstrated in Figure 4.19 where
three different defender strategies are plotted. The red line shows the performance
of the pure perimeter-defense strategy where the defender assigns their entire budget
to Node 1. The blue line shows the performance of allocating the entire budget to
Node 2, and the dotted line shows the performance of the equilibrium strategy.

Figure 4.19: Performance of Different Defender Strategies for Various Budgets

Since the perimeter of this network consists only of Node 1, it makes sense that
a perimeter-defense is near optimal. The attacker must go in and out through Node
1 in order to earn their reward.

However, as the defender’s budget grows, the perimeter-defense can be improved
by employing defense-in-depth. This can be seen in Figure 4.20 where the budget
is fixed at 5. The x-axis shows the entire defender’s action space with respect to
Node 1. Each point on the x-axis is a reset rate of Node 1, the reset rate for Node
2 can be calculated by subtracting the Node 1 rate by 5 (the budget).
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Figure 4.20: Defender’s Action Space When Budget is Fixed at 5

This suggests that it is more important to have a secure perimeter than defense-
in-depth. If the defender has a large enough budget, then they can start to consider
deploying defense-in-depth.

Increasing the defender’s budget is not the only change that can cause the
defender’s equilibrium strategy to demonstrate defense-in-depth. Adding an extra
edge to the network can significantly change the equilibrium strategy. The previous
3n4e network is further modified with the addition of an outgoing edge from Node
2 to the outside as shown in Figure 4.21

Figure 4.21: Modified 3n4e With Extra Credential E

The addition of this edge means that once the attacker has compromised Node
2, they can find a path back to the outside without going through the perimeter
Node 1. This is justified by the fact that firewall rules may be more permissive for
communication paths leaving the network than they are for incoming connections.
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One example of this is DNS tunneling [31] where data is exfiltrated through a clever
use of DNS queries.

To see how the addition of this edge affects the equilibrium strategy, the budget
is fixed at 2 with all other parameters are kept the same as before and λE is increased
from 0.001 to 0.12. The budget is fixed at 2 because the previous configuration did
not demonstrate defense-in-depth at this budget level. Note that this value is an
order of magnitude less than the other edges in the network. Figure 4.22 shows the
defender’s equilibrium strategy and corresponding attacker reward as a function of
this new edge.

Figure 4.22: Equilibrium Strategy and Attacker Reward Vs. Edge E Rate

Even at such low compromise rates, there is a drastic change in equilibrium
defender strategy. With an edge E compromise rate of 0.08, the equilibrium strategy
suggests putting 75% of the budget on Node 2. Recall that the equilibrium strategy
for previous configuration without edge E recommended allocating nothing to this
node at this budget level.

This suggests two important ideas. First, adding an outgoing edge such as
edge E increases the perimeter. Second, monitoring outgoing connections is just as
important as restricting incoming connections.

These security principles can be better understood mathematically by looking
at a smaller network. Consider the simple network and corresponding attacker
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state graph presented in Figure 4.23.

(a) Simple Network Architecture (b) Attacker State Graph

Figure 4.23: Simple Network and State Graph to Study Defense-in-Depth

In this network, the attacker only has two strategies that could yield a positive
reward. The first strategy is to play every state. The second strategy is to give
up if caught in state {B}. That is, if the attacker is in state {AB}, and Node 1 is
reset, the they must decide if it is worth it to continue or to quit.

Recall that the attacker will choose the strategy that will yield the highest
reward. Therefore, the attacker will choose σ ∈ Σ such that v(λ̂, σ) is maximized
where Σ is the attacker’s strategy space and λ̂ is the defender’s budget allocation.
For this particular instance, Σ = {ContinueB, StopB} where ContinueB is the
strategy where the attacker continues their compromise if caught in state {B} and
StopB is the strategy where the attacker ceases compromise if caught in state {B}.

Alternatively, the defender must find a budget allocation λ̂ = (λ1, λ2, . . . λn)
subject to ∑i λi ≤ B for a budget B that minimizes the attacker’s value. The
defender’s goal is to min f(λ̂) where f(λ̂) = max v(λ̂, σ). For this particular
network, f(λ̂) = max(v(λ̂, ContinueB), v(λ̂, StopB)). Note that since λ1 + λ2 = B,
the defender’s strategy can written in terms of λ1 for a fixed budget. Figure 4.24
shows both attacker strategies for all possible defender strategies when the budget
is 3. All attacker parameters are fixed at λA = λB = λC = 1, and both nodes have
the reward function R1(t) = R2(t) = 50 ln(2)2−t.

This figure shows that ContinueB is always better than StopB for the attacker
because ContinueB will always yield a higher reward, and the smallest value the
defender can achieve occurs at the boundary where λ1 = 0, λ2 = 3. For this choice
of parameters, the defender shows neither defense-in-depth nor perimeter-defense
because the entire budget is located only at Node 2.
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Figure 4.24: Strategy Space for Attacker and Defender on the Simple Network

The value for the strategy ContinueB can be explicitly written as:

Where Att(A), Att(B), Pos(A), Pos(B) are the attempt and possession penalties
for credentials A, and B respectively. Since all penalties are negative, the only
positive term is that of the terminal state VABC which can be explicitly written as:

VABC =
∫ ∞

0
e−t(λ1+λ2)R1(t)dt+

∫ ∞
0

e−tλ2R2(t)dt

Here, it can be seen that the only positive value in the expression for the
attacker’s strategy can be minimized by the defender by putting their entire budget
on Node 2. Since λ1 + λ2 = B and is fixed, the reward due to Node 1, R1(t) is
constant. Therefore, the defender’s best strategy is to allocate the entire budget to
Node 2 to minimize the second term.

Because the penalties considered throughout these examples have been relatively
small compared to the rewards stored in the nodes (0.5 vs 100), it makes sense that
the defender should try to minimize the expected reward earned by the attacker.

This is also why the defender’s equilibrium strategy changes drastically when
the extra edge E was added to the modified 3n4e network discussed earlier. Adding
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this link created another state whose value is determined only by the reset rate
of Node 2. The reward for the attacker when exfiltrating data through Node 1
depends one the reset rate of both Node 1 and Node 2 is fixed since the budget is
fixed. Therefore, It makes sense for the defender to allocate resources to Node 2 to
minimize the amount of reward the defender could earn.
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Chapter 5 |
Use Case

To demonstrate how the algorithms and strategies apply to realistic networks,
two use-cases are presented. First a discussion is presented concerning realistic
attacker rate parameters. Next, two use-case networks are introduced and modeled
using realistic parameters, and results are analyzed. The first network, a simple
enterprise network, compares the performance of the equilibrium strategies to two
best-response strategies. The second network, a Navy shipboard network, provides
a similar comparison, but goes further to examine the time until data exfiltration
is possible. This chapter is then concluded with a summary of the results found for
the two use-case networks and discussion of how the model might be extended to
consider time-sensitive attackers.

5.1 Parameter Selection

The attackers modeled in this thesis are those that are actively attempting to
compromise a network. This means the parameters need to model the expected
time it takes to compromise a credential when the attacker is diligently working in
a live environment. The time expended by the attacker off-line is not considered.

There has been some work on empirical measurements of a network’s Mean
Time to Compromise (MTTC) [32] and Time to First Compromise (TFC) [27].
This section gives a brief survey of those results and derives three attacker rate
classes based on those existing empirical studies.

Virtual Machines (VMs) in a cloud environment have been shown to leak
cryptographic keys in co-location attacks. In these attacks, a malicious VM uses a
side channel attack to eavesdrop on the keys used by another VM residing on the
same hardware [33]. The authors in [34] demonstrated that a 3072 bit El Gamal key
could be extracted in 12-27 minutes. Another shared cache attack demonstrated
that 150-600 encryptions are necessary to correctly identify a 128 bit AES key [35].

In addition to side channel attacks, phishing attacks have also been studied. In
2005, a university conducted a phishing experiment on its students [36]. They found
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that 70% of all credentials stolen occurred in the first 12 hours. This corresponded
to a total of 145 credentials during this period; therefore, an average of 5 minutes
per credential was assumed.

A red-team experiment in 2010, called the Baltic Cyber Shield Exercise, analyzed
the behavior of a red team (attackers) and blue team (defenders) in a mock live-fire
environment [37]. The group of attackers consisted of 16 professional penetration
testers and were asked to attack a typical critical national infrastructure architecture
that included SCADA systems over the course of two days. They found that the
average attack time was 2 hours with the fastest compromise occurring after 22
minutes and longest taking 7 hours.

Lastly, United States Department of Defense published the standard Trusted
Computer System Evaluation Criteria (TSEC) in 1985 [38]. It was stated that
covert channels that leak information up to 0.1 bits per second were acceptable.
Furthermore, those channels that leak information at rates between 0.1 and 1 bits
per second were also acceptable, but must be audited. Given a 2048 bit key, this
means that it would be acceptable to leak a key every 34 minutes to 5.7 hours.
The Common Criteria replaced the TCSEC standard in 2003, however, it did not
provide recommendations on newer acceptable information leakage rates.

Based on these results, credentials were partitioned into three classes. Creden-
tials that can be compromised in less than an hour are considered high compromise
rates. Although the fastest compromise was a phishing attack, taking 5 minutes, a
lower bound of 10 minutes is used. Therefore credentials with high compromise rates
will take on values λ ∈ [1, 6] and are used to describe those communication paths
normally allowed by the network architecture. Medium compromise rate credentials
will take on average 1 to 4 hours to compromise. They take on values λ ∈ [1, 0.25],
and describe the typical case with the ‘normal’ number of security vulnerabilities.
Finally, low compromise rate credentials represent those credentials that have gone
through some sort of hardening or provide access to security critical appliances like
firewalls. They might also represent unknown or zero-day vulnerabilities present in
the network. These rates take on values λ ∈ [0.125, 0.25], meaning that it takes an
attacker an average of 4-8 hours per credential.
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5.2 Enterprise Network

This use-case network shows a simple enterprise scenario as was considered
in [19,39]. It consists of an attacker controlled host, a firewall, and two defender
controlled hosts: an HTTP server, and a host that uses SSH to configure the HTTP
server. This network, as the authors analyzed it, is presented in Figure 5.1.

Figure 5.1: Enterprise Network Considered in Related Work

Note that the internal computer is protected from the rest of the Internet by the
firewall. The Internet should not be able to access the internal computer directly.
However, this can be converted into a more expressive authentication network as
presented in Figure 5.2.

Figure 5.2: Full Enterprise Authentication Network

Here, the security appliance (a firewall) becomes an attackable node in the
network. If an attacker has access to an account in the firewall itself, it is likely
this account can communicate with both the web server and internal computer.
Furthermore, there is an additional directed edge connecting the Internet to the
internal computer. This is justified by two possible scenarios: the firewall could be
misconfigured, or there could be a zero day vulnerability that bypasses the firewall
completely.
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5.2.1 Results

Equilibrium strategies were evaluated on this enterprise network using several
sets of parameters. Four different attacker rate parameter profiles were considered.
First, all credentials are sampled from the low compromise rate class as described
in the previous section. This models a hardened system where compromise of nodes
requires discovering unknown vulnerabilities or finding zero-day exploits. Likewise,
two other profiles consider the case where all credentials are sampled from the
medium and high rate classes. In addition, a mixed-rate case is considered where
each edge in the graph is given a compromise-rate class based on its role in the
network. This case aims to more closely model a realistic scenario. Figure 5.3
shows the rate classes assigned to each credential. The abbreviation ‘med’ is used
to describe the medium compromise-rate class.

Figure 5.3: Mixed-Rate Attacker Profile

The firewall in Figures 5.2 and 5.3 is a security appliance. It is assumed that
some amount of hardening went into its configuration to make it more difficult
to compromise. Therefore, compromises coming from the outside and attacking
the firewall directly are successful at low rates. In a similar manner, the internal
computer is protected by the firewall. Zero-day vulnerabilities and misconfigurations
in the firewall may exist that allow the attacker to bypass the firewall and access
the internal computer directly. However, this should not typically happen and the
compromise rate is assumed to be low through this edge. The web server, on the
other hand, has a larger attack surface, making it easier to compromise than either
the firewall or the internal computer from the outside internet. This means that
the incoming edge from the outside to this web server node should be compromised
at a medium rate. All of these nodes have edges that lead to the outside at high
rates. This makes sense for several reasons. First, communication is typically
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bidirectional, so establishing an SSH session will also provide an avenue for data
exfiltration if the attacker chooses this path. Second, data leaving the network is
not monitored as strictly as it is coming into the network. Once inside the network,
the ‘normal’ number of vulnerabilities exist. Therefore, all credentials used for
communication between the firewall, web server, and internal computer all have
medium compromise rates.

Five different budgets are used to demonstrate the performance of the three
strategy pairs. Budgets of 0.375, 1, 3, 6, and 9 are chosen because this allows the
defender to reset each node once every 8 and 4 hours as well as 1, 2, and 3 times
an hour respectively.

The equilibrium strategies are compared against two other strategy pairs. The
strategy pair where the attacker plays equilibrium and the defender plays BR(all)
describes the interaction between an equilibrium attacker and a defender who
anticipates an attacker that plays all. The strategy pair where the attacker plays
BR(proportional) and the defender plays equilibrium describes the interaction
between an attacker who anticipates a defender that plays proportional and an
equilibrium defender. These two strategies were chosen based on their performance
demonstrated in Chapter 4 as well as their intuitive appeal.

Figure 5.4 shows the performance of these three strategy pairs for all four
attacker profiles when the budget is fixed at 0.375. In the figure, the solid blue line
shows the value awarded to the attacker when both players play their equilibrium
strategy. The dotted orange line, denoted Eq - BR(all), shows the performance
of the strategy pair where the attacker plays equilibrium and the defender plays
BR(all). Likewise, the dashed gray line shows the performance of the strategy pair
where the attacker plays BR(proportional) and the defender plays equilibrium.

It is expected that the strategy pair Eq - BR(all) yields a higher reward to the
attacker than the Eq - Eq strategy pair since the defender’s best-response to an
attacker that plays equilibrium is equilibrium, not BR(all). However, Figure
5.4 shows that when the compromise rates are mixed, the pair Eq - BR(all) yields
a lower value to the attacker making it appear that the BR(all) strategy is better
for the defender than equilibrium because of a lower attacker value. Despite this
lower attacker value, BR(all) is not an optimal strategy for the defender because
they are at risk of the attacker learning their strategy and optimizing against it. If
the attacker that knows that the defender plays BR(all), they can optimize against
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Figure 5.4: Performance of Strategies for a Budget of 0.375

this strategy and receive a value of 75.683 (not shown), which yields a higher value
to the attacker (which is worse for the defender) than the Eq - Eq strategy pair.

A similar argument explains why the BR(proportional) - Eq strategy pair
should yield a lower value to the attacker than the Eq - Eq strategy pair. The
attacker’s strategy of BR(proportional) is not a best response to an equilibrium
defender, meaning that the attacker should generally expect to earn lower rewards
than those earned when playing equilibrium.

It can therefore be seen that the strategy pair Eq - Eq defines bounds on
the worst case scenario for both players. Any attacker that deviates from play-
ing equilibrium will receive a lower reward when the defender either plays
equilibrium or learns the attacker’s strategy and optimizes against it. Like-
wise, any defender that deviates from playing equilibrium will yield a higher
reward to the attacker when facing an attacker that plays equilibrium or an
attacker that learns and optimizes against the defender’s strategy.

Figure 5.5 shows similar results for budgets of 1, 3, 6, and 9. Note that the
magnitude of the reward yielded to the attacker significantly decreases as the budget
grows. Tripling the budget from 1 to 3 decreases the reward from 33 units, when
the compromise rates are low, to completely dissuading the attacker from even
trying to compromise. A budget of 6 is enough to prevent attacks for low and
medium rates and provides marginal benefits for the mixed-rate scenario.
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(a) Performance of Strategies for a Budget of 1

(b) Performance of Strategies for a Budget of 3

(c) Performance of Strategies for a Budget of 6
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(d) Performance of Strategies for a Budget of 9

Figure 5.5: Enterprise Network Performance for Budgets 1, 3, 6, and 9

Recall that a rational attacker should not attempt to compromise a network
when their expected payoff is non-positive. This is why the two strategy pairs where
the attacker plays equilibrium (solid blue and dotted orange lines) never receive
a value less than zero. An attacker who expects to lose would rather not play.
However, when the attacker plays BR(proportional), they receive a negative value
when playing against a defender that plays equilibrium. This makes sense since
the attacker was anticipating that the defender plays a different strategy. On the
other hand, equilibrium sets a lower bound on what the attacker could possibly
receive, thus defending themselves against incorrectly guessing their opponent’s
strategy.

5.3 Navy Shipboard System

In 2013, a news article reported that one of the Navy’s newest ships, runs an
IP network that is partitioned into different subnets [40]. This network is shown
in Figure 5.6. Each subnet contains a collection of systems related to one of five
specific tasks: external communications, central command, sensors, ship control,
and weapons control.

There are several different ways to represent this network. One way is to
represent each subnet as a node in the network. The authentication structure
follows from the arrangement of the subnets and is shown in Figure 5.7. Note that
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Figure 5.6: Shipboard Communication Network

the outside node has an edge connecting to the weapons control node. This is to
represent the possibility of a zero day attack on one of the components of this
subsystem. Both the sensor and the ship control nodes can also be compromised
from the outside by similar means as well as physical attacks that might result in a
vulnerable state. For example, an attacker may deploy a physical object that sends
fake or malformed GPS data to a control sensor resulting in a buffer overflow in
that sensor’s software.

Figure 5.7: Navy Shipboard Network

However, these extreme attacks will have probabilities of success different than
those described for a traditional enterprise network. Therefore, it is important to
find attacker parameters that better model these types of complex attacks. Domain
specific knowledge is required to understand the potential vulnerabilities that might
exist in these networks as well as the likelihood that these vulnerabilities will be
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exploited. For demonstration purposes Figure 5.8 shows the sample parameters
that will be used for simulations.

Figure 5.8: Shipboard Network with Parameters

In this configuration, the External Coms, Sensors, and Ship Control all have 10
units of reward. The Weapons Control subsystem has 40 units, and the Central
Command (Node 2) subnet has 30 units of reward. Once inside the network, most
compromise rates are similar. It should be easier to compromise each subsystem
from Central Command than visa versa, therefore the rates leaving Node 2 are
higher than those incoming. External Coms (Node 1) has many possible avenues of
attack, therefore the probability of compromise from the outside is slightly higher
coming into this node, at a rate of 4. Finally, zero-day exploits are modeled with
rates of 0.01 coming into and leaving from the perimeter nodes: Sensors, Weapons
Control, and Ship Control subsystems.

5.3.1 Results

As before, the three strategy pairs of Eq - Eq, BR(proportional) - Eq, and
Eq - BR(all) are analyzed. Figure 5.9 shows simulation results of 10,000 runs
comparing the reward awarded to the attacker for each strategy pair fixing the
defender’s budget at 3 units.

As before, the similarity in performance for these three strategy pairs can be
seen. Note that when the attacker anticipates a defender who plays proportional,
the spread of rewards is larger. This means that it is slightly more risky for the
attacker to play this strategy. Although the average value for this distribution
of simulated rewards is about the same when they play equilibrium, there is a
possibility that both higher and lower rewards can be earned. When the defender
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Figure 5.9: Distribution of Simulated Rewards for Different Strategy Pairs

anticipates an attacker who plays all, the distribution of rewards has a more
narrow spread, but the average values are slightly higher. For this strategy pair,
the defender can be more confident that the attacker will receive a lower reward,
but on average, the reward is slightly greater than if the defender were to play
equilibrium.

The time until exfiltration was also recorded. This is the amount of time the
attacker spends in the network before exfiltration is possible and the attacker starts
generating reward. Figure 5.10 shows the distribution of these times for the three
strategy pairs on the same 10,000 trials. Each plot shows a histogram of the number
of trials that spent a given amount of time before exfiltration was possible.

It is interesting to note that Figure 5.10b, depicting the distribution of times
for the BR(proportional) - Eq strategy pair, is an order of magnitude faster
than either of the other two strategy pairs. This suggests that the notion of time
should play a larger role than originally hypothesized. If two strategies yield similar
rewards with one producing the reward an order of magnitude faster, then this
faster strategy should be chosen. The model can easily be extend to include a
discount factor to take in the time dimension, but this is left as future work.

From these graphs, it can be seen that the equilibrium strategies considered do
not account for the speed at which the reward is earned. Although the equilibrium
strategies still yield the best value for each player, there may be better strategies
when a player is time constrained. In a shipboard system, where the network itself
is mobile, time becomes a critical factor for compromise.
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(a) Distribution of Times for Equilibrium vs Equilibrium

(b) Distribution of Times for BR(proportional) vs Equilibrium

5.3.2 Results Summary

This chapter has shown how equilibrium strategies perform compared to two
best-response strategies for the attacker and defender on two realistic use-case
networks: a simple enterprise network, and a Navy shipboard system. It was shown
that the BR(proportional) strategy is a good approximation of the equilibrium
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(c) Distribution of Times for Equilibrium vs BR(all)

Figure 5.10: Distribution of Times Until Exfiltration

strategy for the attacker. This means that if the attacker does not have the time
or computation power to find the true equilibrium strategy, it might be worth
playing BR(proportional) instead. Likewise, the strategy BR(all) is a good
approximation of the defender’s equilibrium strategy.

The Navy shipboard network demonstrated that time-to-compromise is a factor
that should be considered when evaluating strategies. If a network is only physically
present for a certain amount of time due to mobility, an attacker strategy that
results in a complete compromise but takes three times as long is not feasible. One
way to resolve this issue is to discount rewards that are earned later in time. After
every time unit, the rewards are worth a fraction of what they were before. The
magnitude of the discount factor determines the attacker’s patience. The higher
the discount factor, the more the attacker is willing to wait for rewards that are
earned later in time.
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Chapter 6 |
Conclusion

In this thesis, a novel model for calculating the optimal defense strategy was
proposed. The performance of equilibrium strategies was compared to other best-
response strategies as well as intuitive but sub-optimal strategies for several simple
networks. These simple networks demonstrated that the equilibrium strategies
provide a bound for the worst case scenario for both the attacker and defender. If
it is too computationally expensive to compute the equilibrium strategy, a defender
that anticipates an attacker who plays all performs reasonably well. Likewise,
an attacker that anticipates a defender who plays proportional also performs
reasonably well.

Next, the relationship between the equilibrium strategies and the canonical
security paradigms of defense-in-depth and perimeter-defense was explored. It was
shown that defending the perimeter seems to be the most important. However,
when the budget allows, adding defense-in-depth can improve the strategy. This
means that when the defender is budget constrained, it may not make sense to
deploy a defense-in-depth strategy.

Furthermore, a defender who has a sufficiently high budget can completely
dissuade an attacker from attempting to intrude into a network. Increasing the
budget increases the probability the attacker will incur penalties for intruding into
the network. It is further hypothesized that this can occur if the defender has
a mechanism for enforcing higher penalties for the attacker. For example, if the
defender has a sufficient geopolitical power, they might be able to impose penalties
in the form of heavy economic sanctions, rather than just bad press.

Lastly, two real-world use-cases were presented. These use-cases were introduced
with a discussion of appropriate parameters for modeling attacker compromise
rates. In this discussion, three classes of rates were described: those that can
be compromised between 6 and 1 times per hour (high rates), those that can be
compromised once every 1-4 hours (medium rates), and those that take 4-8 hours
to compromise (low rates). These rates were combined to model different attacker
capabilities called attacker profiles. Creating an attacker profile for a specific
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network remains an open question, but an intuitive approach was given to describe
how a profile might be constructed.

The enterprise use-case analyzed four profiles at five different defender budget
levels. Again, it was shown that a sufficiently high budget can deter an attacker
from attempting to compromise a network. In addition, the best-response strategies
proved to perform well compared to the equilibrium strategies.

The Navy shipboard system demonstrated that time is a crucial factor when
defining optimality. The same three strategy pairs were simulated on this network,
and performance of these strategies with respect to attacker reward was found
to similar to that of the enterprise network. However, the BR(proportional) -
Eq strategy pair yielded reward to the attacker at times that were an order of
magnitude faster than that of the other two strategy pairs. To account for this
discrepancy, a discussion of the use of discount factors was presented.

6.1 Additional Use Case

To show applicability to a wider range of use cases, this section describes how
the model can be applied to a SCADA system. There are many ways to model
these systems, but only one example is presented.

SCADA system architectures tend to mirror architectures of enterprise networks
more so than a shipboard system. Since most SCADA systems exist as a subnet of
a corporate network, SCADA systems are susceptible to many of the same types of
vulnerabilities that enterprise networks are. The authors in [41] describe a simple
SCADA architecture arranged in a bus configuration. This means that all nodes
behind the firewall can communicate with each other. Figure 6.1 shows a sample
network representing the SCADA architecture style.

A more expressive architecture can be created by adding links that bypass
the firewall; however, domain specific knowledge is required to validate which
vulnerabilities could be exploited in this scenario.

For these networks, the question may not be determining the optimal allocation
of defense resources. Instead, it may make sense to consider what defense budget is
required to deter attack. The model presented in this thesis provides a framework
to answer this question.

One of the shortcomings of the algorithms presented with the model in this
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Figure 6.1: Simple SCADA Network

thesis is time complexity. The algorithms scale exponentially with the number of
edges. This means that the larger networks quickly become intractable. However,
the equilibrium strategy rarely visits all states in the attacker state graph. This
means that heuristics may exist to shorten the search space when finding the
attacker’s equilibrium strategy.

6.2 Future Work

There are several places where this work could be expanded. This thesis made
several assumptions that could eventually be relaxed to provide a more expressive
model.

First, probability distributions were assumed to be exponential. While this
distribution has been shown to be sufficient to model attacker rates [27], there
may exist better distributions for the defender strategy. For example, the FlipIt
model [9] demonstrated that a delayed exponential strategy outperforms the pure
exponential strategy. This comes at the cost of more expressive states and more
complex probability calculations.

Second, attacker penalty functions could be expanded to non-constant functions.
This would increase complexity of the optimal attacker strategy because each
credential would have an optimal compromise time associated with it. The attacker
no longer can consider the discrete action space of attempt or not attempt, but
instead would have a continuum of strategies t ∈ [0,∞) for every t associated with
each credential.

Third, a Bayesian Stackelberg approach could be used to model the non-zero
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sum game version where attackers of different types value the data stored at nodes
differently. To do this, the defender must optimize over a probability distribution
of these different attacker types.

Lastly, this game could be formulated as a competitive partially observable
Markov decision process. Each time the attacker is caught attempting or in
possession of a credential, the defender could be alerted to the attacker’s current
estimated position. This would allow the defender to adapt their strategy. With
this formulation, it might make sense to consider an additional attacker strategy
parameter: intensity. The attacker could to choose the intensity of an attack at
the risk of becoming more observable to the defender.
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