
 

 

The Pennsylvania State University 

 

The Graduate School 

 

Department of Electrical Engineering 

EXTENDING A BIOLOGICAL CELL TRACKING SYSTEM  

TO TRACK RANGE DATA OF PEDESTRIANS 

A Thesis in 

 

Electrical Engineering 

 

by 

 

Ryan James Poore 

 2017 Ryan James Poore 

 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Master of Science 

 

 

May 2017 

 



ii 

 

 

The thesis of Ryan James Poore was reviewed and approved* by the following: 

 

 

William E. Higgins 

Distinguished Professor of Electrical Engineering 

 

Richard L. Tutwiler 

Senior Scientist, Professor of Acoustics 

Applied Research Laboratory Department Head Imaging Systems and Processing 

Thesis Advisor 

 

Kultegin Aydin 

Professor of Electrical Engineering 

Head of the Department of Electrical Engineering 

 

*Signatures are on file in the Graduate School 

 



iii 

 

ABSTRACT 

The challenges faced when constructing a system to track biological cells coincides with the 

challenges when tracking pedestrians: they have complex topological shapes; wide range of 

behaviors; they move abruptly; they interact with other objects; their shape deforms; they leave 

the field of view (FOV) and enter the FOV; they split and merge. The similarities suggest that a 

system for tracking cells potentially works well for pedestrians. 

This work presents an automated tracking system that extends a framework, designed for tracking 

hundreds of biological cells in phase contrast microscopy, to tracking multiple human sized 

objects with LIDAR range data.  It integrates various classic image-processing techniques with an 

adaptive interacting multiple model (IMM) estimator, a topologically constrained active contour, 

and spatiotemporal trajectory optimization.  The framework processes the data with multiple 

independent collaborating modules.  This module design facilitates a straight forward substitution 

of algorithms within a module without affecting the rest of the system. 
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Chapter 1 

Introduction 

1.1     Motivation 

The goal of this work is to autonomously track multiple objects in a real-life scene as they 

interact with their surroundings.  The approach presented in this work is to take an existing 

system designed for tracking hundreds of biological cells, and implement it for tracking 

pedestrians.  The framework and algorithms presented in [1] are adapted for this work because of 

the module architecture and the challenges the author addressed.  The initial detection algorithm 

is modified due to the different type of data processed: range data of people in an outdoor 

environment vs. cells in phase contrast microscopy.  Cells in phase contrast microscopy normally 

appear as dark regions surrounded by bright halo artifacts, while the data analyzed in this paper 

lacks that same distinct contrast. Furthermore, the data collected for this work has a more 

complex background (see figure 1).  However, the rest of the system is replicated without 

significant modification.  The architecture is modular, in that each module processes the data 

independently and they collaborate to produce the trajectories.   This module architecture allows 

for the seamless adjustment in processing a particular aspect without changing the entire system.  

For example, changing the method that process the initial segmentation without effecting the 

components that evolve the contours or manage the lost and occluded objects. 
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1.2     Object Tracking System 

The objective of an object tracker is to generate the trajectory of an object over time by locating 

its position, and often its complete region, in every frame.  The task of determining these 

trajectories can be separated into two approaches: (1) detecting the objects in each frame and then 

establishing correspondence between frames or (2) evolve a model that represents the object from 

frame to frame [12].  The object tracker in this work deploys a combination of both approaches.   

Shape, region, and edge information is utilized for a coarse segmentation while a geometric active 

contour model is implemented to evolve the objects across frames. 

The system described in this paper divides the tasks associated with creating trajectories of 

multiple objects into 5 components: (1) Detection Module, (2) Contour Evolution Module, (3) 

Motion Filter, (4) Track Compiler, (5) Track Linker.  The details of each are explained in chapter 

3.  The detection module uses shape, region, and edge information to detect and provide a rough 

segment of the objects.  The contour evolution module implements a geometric active contour 

model that incorporates topological constraints to govern under what circumstances an object can 

split or merge.  An IMM filter is utilized to enhance the tracking, and a track linking module is 

implemented to assist with complete and long term occlusion.  The track linker is developed to 

consider the objects’ location in space and time, along with their dynamics, when attempting to 

link lost objects or occluded objects. 
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Figure 1-1: (a) Phase-contrast microscopy of putative RCE cells taken from NIH Open-i project. (b) A 

sample range map from the data collect for this work. 

 

1.3     Thesis Outline 

Chapter 2 of this paper provides a brief overview of the sensor equipment along with the 

specifications of the collected data.  Chapter 3 delineates the system implemented for the tracking 

model.  The first section of Chapter 3 discusses the initial segmentation and detection.  The 

second section goes through the object contour and propagator module.  It involves a discussion 

on geometric active contours, contour evolution, topological constraints, and the energy/speed 

equation.  The third section reviews the motion filter along with the interacting multiple models 

(IMM) and Kalman filter, which are used for state predictions and in the motion component of 

the energy term.  The fourth section discusses the object track compilation and the fifth section 

reviews the object track linker module.  Chapter 4 presents the results.  Chapter 5 provides the 

conclusion. 
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Chapter 2 

3D Flash LIDAR/VNIR  

2.1     LIDAR Hardware 

The data utilized in this work was collected from a 3D Flash LIDAR Video Camera built by 

Advanced Scientific Concepts Inc.  Figure 1 below displays the LIDAR sensor used to collect the 

data.  The model name is the modular Portable 3D Flash LIDAR Camera integrated with1.57um, 

air-cooled, diode-pumped laser, and a 9-degree field of view.  The camera can image through 

obscuration (e.g. dust, smoke, fog) and has an effective capture range from 5cm to 1km [11].  The 

short capture time (typically ½ a microsecond or less) emphasizes the camera's ability to capture 

3D images without motion distortion.  Table 1 displays the instrumentation along with it 

specifications. 

 

Advanced Scientific Concepts Inc. 

Portable 3D Flash LIDAR Camera 

 

9º field of view lens and diffuser 

LD-2809-PM: 9º field of view; 128 x 128 pixel resolution 

85mm EFFL (Field of View 8.6º x 8.6º), F/1.4 (60mm 

aperture) @ 1.57 um 

Range ~ 300 meters @ 20% reflectance 
2D IR Camera, co-aligned with Portable 3D FLVC (Part number: 

2D-C015-IR) 

2D visible Camera, co-aligned with Portable 3D FLVC 

(Part number 2D-C00M-VS) 

http://www.advancedscientificconcepts.com/products/older-

products/portable.html 
Table 2-1: Advanced Scientific Concepts Inc. Portable 3D Camera Specifications 
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Figure 2-1: The LIDAR/VNIR sensor ( Picture taken from http://www.advancedscientificconcepts.com). 

2.2     LIDAR/ VNIR Data 

The ASC 3D Flash LIDAR Camera generates a range image, and a reflectivity intensity image at 

128 x128 pixels.  Figure 3 displays an example of the output from the LIDAR (resampled at 600 

x 800) for the (a) range data and (b) the intensity data.  There is also an optional VNIR 

component that generates a RGB image at 640x480 pixels.  Figure 2 (C) displays the output of 

the VNIR data (resampled to 600 x 800).  The intensity and VNIR sensor output is displayed in 

Figure 2 for completeness but only the range is processed for this work.   

 

   

Figure 2-2 : LIDAR sensor output of Rick Tutwiler’s graduate students, resampled to 600 x 800 (a - left) 

Range, 128 x128 pixels (b - right) Intensity, 128 x 128  (c) VNIR sensor output resampled to 600 x 800: RGB, 

640x480x3 pixels.  
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Chapter 3  

Object Tracking System 

The system processes data sequentially and filters through the different modules as display in 

figure 3-1.  The final output is recorded to a Elasticsearch database and a flat file.  The output 

consists of the trajectories for each object, along with their states and parameters (the details are 

presented in 3.5).   

Data is first processed by the Detection Module utilizing various classic image processing 

techniques.  The output of the module is a map of segmented regions (χ) that represents its region 

energy.  This map of potential object regions is distributed to the Contour Evolution Module, as 

well as, the Track Compiler module.   

The Contour Evolution module generates an initial coarse map of the labeled object regions 

(ψ̂(x, y)).  The labels represent their corresponding track assignments, so the map is essentially 

the initial attempt at propagating the objects tracked in the last frame to the current frame.  The 

module performs this task by using the active contour model framework, this is further explored 

in section 3.2.  Topological constraints are also incorporated into the framework; the constraints 

are formulated to allow the contours to split while preventing the contours of different objects 

from merging.  The speed function that is used to drive the evolution of the contour incorporates 

components associated with the objects’ region features, edges, and dynamics.  The region 

component is based on the object region map (ψ̂(x, y)) passed by the Detection Module.  The 

Motion filter provides the past dynamics while the edge calculation is performed given the 

original input data.  

The Track Compiler Module receives the initial coarse map of the labeled object regions 

(ψ̂(x, y))  from the Contour Evolution Module, along with the initial object region map (χ) from 
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the Detection Module.  It then determines how to classify each object track: update an existing 

track, terminate a track, create a new track, or split a track into child tracks.  The result is an 

updated map of the labeled object regions (ψ̂(x, y)) along with the intermediate track segments 

(also called tractlets) for the current frame (discussed further in 3.3). 

The Track Linker Module attempts to link the tracks that were split in the past by analyzing the 

objects in the spatiotemporal image volume along with their past dynamics.  Any successful 

merging of tracks is fed back to the track compiler for reference in the next frame. 

 

 

Figure 3-1: System overview 
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3.1     Object Detection Module Overview 

The system starts with the detection and segmentation of object regions from the input data.  The 

image is initially filtered to remove the image plane using a Random Sample Consensus 

(RANSAC) algorithm, as displayed in figure 3-2.  Threshold filtering is implemented to eliminate 

object regions that possess properties inconsistent with the physical constraints for a given target 

(such as objects size, intensity, or range).  The segmentation is enhanced by utilizing a Bayesian 

maximum a posteriori probability (MAP) classifier; followed by a coarse shape filter to match 

human sized and shaped objects, along with a range filter to filter out objects that are “too close” 

or “too far.”  The output is a binary map of segmented regions (χr).  

In parallel to the above processes, the original input is sent through a canny edge detector to 

produce an edge map.  The edge map is further processed to fill in enclosed regions and then 

filtered based on the mean and standard deviation of neighboring pixels.  The output of these two 

processes are combined with a binary “or” operation to produce the initial segmentation of 

potential object regions (χ).   

3.1.1     RANSAC 

The Random Sample Consensus (RANSAC) algorithm was first published by Fischler and Bolles 

at SRI International in 1981 [14].  In the RANSAC algorithm, an assumption is made that the 

data contains inliers whose distribution can be explained by a mathematical model, along with 

noise and outliers whose distribution does not fit the model.  The algorithm separates outliers of 

the observation data from the inliers.  To implement the RANSAC algorithm, the following two 

steps are repeated in an iterative fashion [23]: 
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(1) Hypothesize: Select a random sample set from the input and use that set to compute the 

model parameters 

(2) Test: test which datum are consistent with the model estimated in the previous step.  A 

data element will be considered as an outlier if it does not fit the fitting model instantiated 

by the set of estimated model parameters within some error threshold that defines the 

maximum deviation attributable to the effect of noise. 

The set of inliers obtained for the fitting model is called consensus set. The RANSAC algorithm 

will iteratively repeat the above two steps until the obtained consensus set in certain iteration has 

enough inliers. 

The Detection Module implements the RANSAC method with least squares orthogonal distance 

minimization to find the ground plane.  Orthogonal minimization is selected since it is assumed 

that there is error in all three dimensions of our irregularly spaced data [13].  Principal component 

analysis is used to further refine the ground plane estimate.  Once the estimation for the ground 

plane is finished, the pixels associated with the ground plane are removed.  The objects are in the 

outliers of the data along with some noise.  The process of removing the plane will result in the 

loss of some object pixels.  This will manifest as holes in the objects.   The holes are closed with 

a simple combination of dilation and erosion.   Figure 3-2 displays an example from the collected 

data set.   

   

Figure 3-2: Detection Module processing: (a) The range image of a frame. (b) The Range Image with the 

ground plane removed (c) The output of the Detection Module, denoted as the propagated region labeling 

map,(�̂�(𝑥, 𝑦)).  
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3.2     Contour Evolution Module 

This module is responsible for propagating any object associated with an identification in the last 

frame, to the current frame.  Since the goal is to simultaneously track multiple objects (such as 

multiple people or groups of people in a scene), a model that allows for significant deformation, 

while handling separation and merging is desired.  To achieve this condition, geometric active 

contours are utilized. 

3.2.1     Geometric Active Contours 

Active contours are generally classified as either parameterized active contours (explicit 

contours) or geometric active contours (implicit contours) based on their representation and 

implementation.  They are often used in image processing for edge detection, shape modeling, 

segmentation, and motion tracking.  Parametric active contours were introduced by Kass et al. in 

1988 [24].  They defined active contours as energy-minimizing splines guided by external 

constraint forces that pull them toward features such as lines and edges.  An internal energy term 

was also defined to impose a smoothness constraint on the moving curve. The primary issue with 

parameterized contours is their lack of topological handling. 

Geometric active contours were independently introduced by Caselles et al. [4] and Malladi et al. 

[5].  They are based on the theory of curve evolution and the level set method [15].  In this 

method, a curve evolves using only geometric measures, resulting in a contour evolution that is 

independent of the curve’s parameterization. This avoids the need to repeatedly reparametrize the 

curve or to explicitly handle changes in topological [16].    
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3.2.2     Level Set Framework 

The Level Set Method is a computational technique for tracking moving interfaces that depend on 

an implicit representation of the interface whose equation of motion is numerically approximated 

using schemes built from those for hyperbolic conservation laws [25].   It was introduced by 

Osher and Sethian [7] for computing the solution to fluid interface problems. 

The classic level set method consists of three main components: an implicit data representation of 

a hypersurface, a set of PDEs that govern how the surface moves, and the corresponding 

numerical methods for implementing [17].  

Following the derivation presented by Sethian [7].  Given a closed N −1 dimensional 

hypersurface Γ(t), the goal is to evolve this hypersurface over time as it propagates along its 

normal direction with speed F.   

In two-dimensions (although not limited to only two-dimensions), a closed contour can divide a 

three-dimensional space into two separate subdomains consisting of the inside regions, the 

outside regions, and the interface. These are denoted: 

Ω+ = region outside Γ(t)

∂Ω = Γ(t)                              
Ω− = region outside Γ(t)

  3-1 

 

Embed the hypersurface (Γ) as the zero level set of a higher dimensional function, ϕ(x̅, t).  

Let ϕ(x̅, t = 0), for  x̅  ∈ ℝN be defined by 

ϕ(x̅, t = 0) = ±d 3-2 

 

Where d is the distance from the position, x̅, to Γ(t=0).  The positive d is chosen if x̅ is outside 

(Ω+) and the negative d if the point is inside (Ω−).   

Therefore,  ϕ(x̅, t = 0): ℝn → ℝ   such that 
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Γ(t = 0) = (x̅|ϕ(x̅, t = 0) = 0).   3-3 

 

Figure 3-3 depicts this relationship. 

  

Figure 3-3: Level Set Method: (a) Level Set hypersurface (b) the 2D boundary 

 

Consider a point on the propagating interface, and let x(t) be the path of the point on the 

propagating interface Γ(t = 0).  For each x̅  ∈  ∂Ω , apply the constraint ϕ(x̅, t) = 0: 

dϕ(x̅, t)

dt
= 0 3-3 

 

Apply the chain rule  

dϕ(x̅, t)

dt
=
∂ϕ

δt
+ ∇ϕ(x̅, t) ∙  ( 

dx̅

dt
) 3-4 

 

(
dx̅

dt
) in equation 3-4 is the velocity at the point (x̅) on the hypersurface.   Set equation 3-4 to zero 

to achieve a Euler-Lagrange equation (representing the steady state of the contour): 

∂ϕ

δt
+ ∇ϕ(x̅, t) ∙  

dx̅

dt
= 0 3-5 
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In equation 3-2, the initial surface (ϕ)  was defined as the Euclidean distance from x̅ to Γ: 

ϕ(x̅, t = 0) = ±d      x̅  ∈   ℝn 3-6 

The distance from a point x̅ to a set ∂Ω: 

d(x̅) =  min
x̅C∈∂Ω

|x̅ − x̅C| 3-7 

 

The ϕ takes on the distance from the boundary with a sign depending on which region it resides: 

ϕ(x̅) = {

−d(x̅)     x̅  ∈  Ω−

0                  x̅  ∈  ∂Ω
d(x̅)         x̅  ∈  Ω+

 3-8 

 

There are an infinite number of choices for the level set function, but in practice the signed 

distance function is preferred for its stability in numerical computations [15]. 

In the level set method, it is assumed the curve moves in the normal direction to itself.  If the 

velocity (
dx̅

dt
 ) is constrained to the normal direction, then the speed, F, which corresponds to the 

movement of the contour in the normal direction with respect to time, is defined as: 

F = (
dx̅

dt
 ) ∙ n̅ 3-9 

 

Where n̅  is the unit normal and can be defined on the contour as 

n̅ =  
∇ϕ(x̅, t)

|∇ϕ(x̅, t)|
 3-10 

 

Since ∇ϕ(x̅, t) is normal to the surface, its inner product with a vector tangential to the 

surface is zero and therefore 
dx̅

dt
 from equation 3-9 will be in the normal direction. Furthermore, 
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∇ϕ(x̅, t)  ∙  ∇ϕ(x̅, t) = |∇ϕ(x̅, t)|2 and 
|∇ϕ(x̅,t)|2

|∇ϕ(x̅,t)|
= |∇ϕ(x̅, t)| .  Combining equations 3-5, 3-9, 

and 3-10: 

∂ϕ

δt
+ F |∇ϕ(x̅, t)| = 0 3-11 

 

As indicated from equation 3-11 above, the important decision lies with the construction of the 

speed function.  That is the component that guides the contour evolution. 

3.2.3     Two-Cycle Algorithm  

The classic implementation of a level set method requires evaluating partial differential equations 

using computational expensive numerical methods.  To reduce the computational complexity, this 

work implements a two-cycle algorithm with smoothness regulation adapted from [1,2,17].  In 

addition to reducing the computation burden, the algorithm is relatively straightforward to 

implement and it allows for easy integration of topological constraints into the contour evolution.  

The method implemented by [18] gains additional reduction in computational cost by careful 

consideration of data types, for example, using integer valued arrays, performing integer only 

calculations, and only saving the sign of the calculated speed function. 

 

A two-dimensional map is created to store the location of all the objects; the map is called a 

region labeling map (ψk(x, y)) and is defined by: 

ψk(x, y) = {
n, if pixel (x, y) is part of the object n        

0, if pixel (x, y) is part of the background
} 3-12 
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The two linked-list that describe the inside and outside of an object’s boundary are labeled Lin and 

Lout, respectively.  They are initialized according to the region labeling map (ψk(x, y)) and are 

defined as follows: 

 

Lout(n) = { (x, y) | ψ(x, y) = n and ∃(x
′, y′) ∈  N4(x, y) where ψ(x

′, y′) ≠ n } 3-13 

Lin(n) = { (x, y) | ψ(x, y) = n and ∃(x
′, y′) ∈  N4(x, y) where (x′, y′)  ∈  Lout(n) } 3-14 

 

Figure 3-4 shows how they fit around an objects contour. 

In this implementation, one level set function is defined to represent all the objects’ contours.  

The level set function (ϕ(x, y)) is used in conjunction with the region labeling map (ψk(x, y)) to 

indicate what region of the function belongs to a given tracked object.  It approximates the signed 

distance function and is defined as: 

 

ϕ(x, y) =  

{
 

 
  3  if (x, y) is an exterior pixel 

        1 if (x, y) is ∈ outside boundary

     −1 if (x, y) is ∈ inside boundary   

−3 if (x, y) is  an interoir pixel  }
 

 
 3-15 

 

The algorithm has two cycles: update cycle and a regularization cycle.  The update cycle moves 

the contour while regularization cycle provides smoothing.  The movement of the contour is 

realized by iteratively switching elements between the two linked-list that represent the adjacent 

sides of the contour.  This can be viewed as an extreme case of the narrow band scheme with a 

two-pixel resolution [1,2,18].  The algorithm is described in the next four subsections and the 

pseudo code is presented in table 3-1 and table 3-2. 
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Figure 3-4: The level set function, 𝜙𝑘(𝑥, 𝑦) for (a) an arbitrary shape. (b) for the LIDAR/VNIR image data 

displayed in Figure 2-1 and Figure 3-1, the red represents the background or exterior pixels (value = 3), the yellow 

represents the outside boundary (value =1), the light blue represents the inside boundary (value =-1), and the dark blue 

represents all the object pixels or interior pixels (value =-3).   

3.2.3.1     Initialization  

The two arrays of linked-lists that represent the inside (Lin(n)) and outside (Lout(n)) of the 

contours are initialize based on the Region Labeling Map from the previous frame (ψk−1(x, y)).    

Equation 3-15 displays this assignment.  The level set function (ϕ(x, y)) is initialized based on the 

two arrays of linked list as described in equations 3-13 and 3-14.  The pixels for the outside 

linked list are set to zero (Lout is not part of the object).  The object identification numbers from 

last frame are combined with the current frame’s temporary identification numbers to create a 

complete list of objects to process (Nk−1  ∪ {n}).  Table 3-1 shows the pseudo code, under the 

initialization section of the code. 

3.2.3.2     Update Cycle 

The update cycle is responsible for calculating the speed function and evolving the contours 

based on its sign (only the sign is needed for the determination).   The speed values should be 

positive for all pixels in Linand negative for all pixels in Lout, thus any pixel in Loutwith F  > 0 
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gets switched to Linand vice versa if F  <  0.  The cycle basically scans through the two linked-

list; first outward, then inward.  During each evolution, redundant elements of Linand Loutare 

removed.   Table 3-1 shows the pseudo code for this algorithm, under the section marked Update 

Cycle. 

3.2.3.3     Stopping Condition 

To regulate the time and resources allocated to the contour evolution process, a stopping 

condition is enforced.  The contour evolves until the boundary stops progressing or a maximum 

number of iterations is achieved.  The following rules define it: 

(a) The Speed, F̂(x, y), at each neighboring pixels satisfies:  

F̂(x, y) ≤ 0 ∀ (x, y) ∈ Lout   and  F̂(x, y) ≥ 0 ∀ (x, y) ∈ Lin                                          

(b) A specified maximum number of iterations are reached 

If rule (a) is satisfied, this indicates that the two boundaries, Lin and  Lout, differ on the direction 

the curve should evolve and thus signifying convergence is attained.  If the maximum iterations 

are reached, then convergence may not be possible:  real data is infused with noise and may not 

always converge. 

3.2.3.4     Regularization Cycle 

The second cycle provides the smoothness to the contour, In the traditional level set method, the 

curvature-based terms that are associated with the speed function are often used to regularize the 

level set function.  Since ϕ(x, y) is the signed distance function, |∇ϕ(x, y)| = 1, the regularized 

term can be rewritten as the Laplacian of the level set function: ∆ϕ(x, y).  The evolution of a 
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function according to its Laplacian is equivalent to Gaussian filtering [1].  Thus, a Gaussian 

filtering process is implemented to regularize the level set function.   

This regularization has a similar effect as the curvature-dependent terms in the speed function but 

avoids the computational expense associated with the curvature calculations. 

As outlined in table 3-1, (under the regularization cycle) the cycle applies the Gaussian filter to 

the level-set function ϕ(x, y) and then update the linked lists ( Lout and  Lin) based on the sign of 

the result. Similar to the update cycle, the smoothing evolution will generate redundant points that 

are removed at the end of each evolution step.  Table 3-1 shows the pseudo code for this 

algorithm, under the section marked Regularization Cycle.  The discrete Gaussian kernel, G in 

table 3-1, is approximated with:  G = [
1 2 1
2 4 2
1 2 1

].  The distance in table 3-1, is calculated with: 

distance(n∗, n|x, y) = |Ik(x
∗, y∗) − Ik(x, y)|, where (x∗, y∗)  ∈  N4(x, y), ψ(x

∗, y∗) =

n∗, and ψ(x, y) = n. 

3.2.3.5     Finalization 

After the stop condition is attained and the regulation cycle completes, the algorithm performs a 

likelihood test to determine the final region labeling map assignments for the values at the Lout 

locations.  The pseudo code is presented in Table 3-1, finalization section. 
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Region Labeling Map ψ̂k−1(x, y), U, V, Tmax 
Initialize 

     ψ̂k−1(x, y) ← ψ̂k−1(x, y) 
     Nk−1 ←  ∅ 

     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 LabeledRegion Ωn  ⊂ ψ̂k−1(x, y) 
          Initialize ϕ(x, y), Lin(n), Lout(n) 
          𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n) { ψ̂k−1(x, y) ←  ∅ } 𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 

𝐌𝐚𝐢𝐧 𝐋𝐨𝐨𝐩: 𝐓𝐰𝐨 𝐂𝐲𝐜𝐥𝐞𝐬 
     𝐟𝐨𝐫 t = 1: Tmax      

     𝐔𝐩𝐝𝐚𝐭𝐞 𝐂𝐲𝐜𝐥𝐞 
          𝐟𝐨𝐫 u = 1: Umax                 
               𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1   
                    // Calculate the Speed values inside/outside the contour 

                    𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n)  ∪  Lout(n) { Compute F̂(x, y) } 𝐞𝐧𝐝 

                   // Outward evolution 

                    𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n) 
                        𝐢𝐟 F̂(x, y) > 0 {SwitchLoutToLin(x, y)} 𝐞𝐧𝐝                             

                    𝐞𝐧𝐝 

                      UpdateLin(Lin(n)) 
                   // Inward evolution 

                    𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lin(n) 
                          𝐢𝐟 F̂(x, y) < 0 {SwitchLinToLout(x, y)} 𝐞𝐧𝐝 

                      UpdateLout(Lout(n)) 
                    𝐞𝐧𝐝 

                      𝐢𝐟 StopConditionTrue() { Exit Update Cycle } 𝐞𝐧𝐝 

               𝐞𝐧𝐝 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝  // End Update 

     𝐑𝐞𝐠𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐂𝐲𝐜𝐥𝐞 //Smooth to account for curvature 

          𝐟𝐨𝐫 υ = 1: Vmax                 
               𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1   

                    𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n) 
                         𝐢𝐟 (G ∗ ϕ)(x, y) < 0 {SwitchLoutToLin(x, y)} 𝐞𝐧𝐝                            

                    𝐞𝐧𝐝 

                      UpdateLin(Lin(n)) 
                    𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lin(n) 
                          𝐢𝐟  (G ∗ ϕ)(x, y) > 0 {SwitchLinToLout(x, y)} 𝐞𝐧𝐝 

                      UpdateLout(Lout(n)) 
                    𝐞𝐧𝐝 

               𝐞𝐧𝐝 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝  // End Regulation 

      𝐢𝐟 StopConditionTrue() { Exit  Main loop } 𝐞𝐧𝐝 

𝐞𝐧𝐝 

Finalize 

     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1 
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          𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n) 
                ψ̂k−1(x, y) ← argminn∗∈N∗distance(n

∗, n|x, y) 
          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 
Table 3-1: Pseudo code for Two-Cycle algorithm (adapted from k. Li) 

 

SwitchLinToLout(x, y) 
     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lin(n) 
          remove (x, y) from Lin(n) and add it to Lout(n) 
          𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x∗, y∗) ∈ N4(x, y) with ϕ(x

∗, y∗) = −3 

               Add (x∗, y∗) to Lin(n);  ϕ(x
∗, y∗) ← −1 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝  
 

SwitchLoutToLin(x, y) 
     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n) 
          𝐢𝐟 Tr(x, y) ≠ 1 {Exit} 𝐞𝐧𝐝 

          remove (x, y) from Lout(n) and add it to Lin(n) 
          𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x∗, y∗) ∈ N4(x, y) with ϕ(x

∗, y∗) = 3 

               Add (x∗, y∗) to Lout(n);  ϕ(x
∗, y∗) ← 1 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝  
 

UpdateLin(Lin(n)) 
     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lin(n) 
          𝐢𝐟 ϕ(x∗, y∗) < 0, ∀(x∗, y∗)  ∈ N 4(x, y) 
               remove (x, y) from Lin(n);  ϕ(x, y) ← −3 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 

 

UpdateLout(Lout(n)) 
     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈  Lout(n) 
          𝐢𝐟 ϕ(x∗, y∗) > 0, ∀(x∗, y∗)  ∈ N 4(x, y) 
               remove (x, y) from Lout(n);  ϕ(x, y) ← 3 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 

 

Table 3-2: Pseudo code for Two-Cycle algorithm aux functions (adapted from k. Li) 
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3.2.4     Topological Constraints  

Since multiple objects are tracked simultaneously, multiple contours will need to be 

simultaneously evolved.  When multiple contours evolve, there is potential for the contours to 

incorrectly merge.  Similar to the biological cells in [1], the two primary goals here are to: (1) 

allow the contours to split: (2) allow contours that came from the same original identification to 

merge while preventing contours from different objects to merge.  To protect against this splitting 

and incorrect merging of contours that do not belong to the same object, topological constraints 

are employed. 

The relaxed topological number, adapted from [1], is used to test if a pixel should evolve based 

on the aforementioned requirements.  It is calculated by: 

Tr(x, y) = min [α(x, y),max (Tobj(x, y), Tbg(x, y))] 3-16 

 

α(x, y) is the number of overlapping object regions, Tobj(x, y) is the number of 4-connected 

components in the set ΩN ∩ N8(x, y) and Tbg(x, y) is the number of 8-connected components in 

the set ΩO ∩ N8(x, y).   The  max (Tobj(x, y), Tbg(x, y)) is from the definition of a “simple” point; 

it prevents merging of objects.  The α(x, y) is the added component that allows objects to merge 

if they have the same object ID.  Figure x shows an example from the data sets collected. 

3.2.5     Speed Equation  

The speed function (F̂) is responsible for driving the contour towards the correct boundary.  In 

this work, the function utilized incorporates information derived from each object’s region, edge, 

and motion. 
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F̂(x, y) =  F̂region(x, y) + wedge F̂edge(x, y) + wmotion F̂motion(x, y) 3-17 

 

Where wedge and wmotion are the weights associated with the edge component and the motion 

component, respectively.   

3.2.5.1     Region Component 

To calculate the region component of the speed function, the initial segmentation (χ) from section 

2.1 is utilized.  The output from the segmentation module is based on the binary union of a 

region-based detection and an edge-based detection.  It is derived from a region energy term 

presented by [19].  It represents the joint posterior probability that each pixel in frame k belongs 

to a certain propagated region, subject to a penalty on the total length of the boundary. 

The region component of the speed function is calculated by: 

F̂region(x, y) = {
1, if χ (x, y) > 0
0,                  otherwise

} 3-18 

3.2.5.2     Edge Component 

The edge component is a measure of the “edgeness” at the boundary; it is inspired by geodesic 

active contours [20].  This can be interpreted as the length of a curve in a Riemannian Space 

where the metric is induced by image edges [1].  It is calculated by: 

 

F̂edge(x, y) =  −(e(x + 1, y) − e(x − 1, y))(ϕ(x + 1, y) − ϕ(x − 1, y)) + 

(e(x, y + 1) − e(x, −1))(ϕ(x, y + 1) − ϕ(x, y − 1)) 

3-19 

 



23 

 

Where e(x,y) is defined as the Euclidean distance transform of the edge map of the intensity.  The 

canny edge detector is used to calculate the edge map of the range.  This technique is used 

because the definition induced fewer local minima as opposed to the gradient-based definition 

[1]. 

3.2.5.3     Motion Component 

The motion component is included to incorporate past (and predicted future) dynamics of the 

object into the energy equation.  It represents the joint probability that the object regions reside at 

the locations predicted by their respective motion filters.  It is calculated by: 

 

F̂(x, y)motion = ∑ ( logN(x, y | ẑn,k|k−1 ,Sn,k−1 ,) −  τ) Rn(ψ(x, y))

n∈Nk−1

 3-20 

Where,  Rn(ψ(x, y)) =  {
1 if ψ(x, y) = n

0 if ψ(x, y) ≠ n
} 3-21 

 

ẑn,k|k−1 and Sn,k−1 are the mean and covariance, respectively, of the bivariate normal 

distribution, N(∙|x, S). The mean is the predicted centroid position for object n.  It is calculated 

using the combined predicted state (ŝk|k−1)  as follows: 

ẑn,k|k−1 = H ŝk|k−1. 3-22 

 

Sn,k−1 can be considered an elliptical approximation of the objects shape by second moment 

matching.  It is calculated by: 

 

Sn,k−1 = cov{(x, y) | ψk−1(x, y) = n} 3-23 
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3.2.6     Interacting Multiple Models (IMM) 

An Interacting multiple models (IMM) motion filter is implemented for the motion-based 

calculation of the speed function from equation 3-17.  The IMM filter operates multiple Kalman 

filters in parallel, each of which is matched to a unique motion model. A Markov chain governs 

the model transitions with a probability that is associated with switching from one model to the 

next.  The result is a filter that computes an optimal weighted sum of the Kalman filter outputs.  

The stages of the IMM process consists of a mixing step, followed by filtering, and then 

combining.  The IMM acts as the high-level architecture, to help fuse the different motion 

models.   

3.2.6.1     State Equations 

To model the dynamics of the objects a motion model is utilized.  The motion model is defined 

as: 

sk = F
i sk−1 + vk−1

i  , i ∈ {1,2…M},  where M is the number of motion models 3-24 

 

Where, sk, is the state vector of an object in frame k, and contains the position  (x y), velocity 

 (ẋ ẏ), and acceleration ( ẍ ÿ): sk = (x ẋ ẍ y ẏ ÿ).  F
i is the state transition matrix for model i and 

vk−1
i  is the process noise vector (zero-mean Gaussian process with covariance Qi) for model i.   

To relate the states to the measurements, a measurement model is defined as:   

zk = Hsk + wk 3-25 
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Where zk is the measurement vector that contains the measured centroid position of the object.  H 

is the measurement matrix and wk is the measurement noise vector (zero-mean Gaussian process 

with covariance R). 

Three different motion models are implemented for the state transition matrix: constant speed 

(F1), constant acceleration (F2), and random walk (F3).  By fixing these values instead of 

estimating them with an EM algorithm, the model weights can be used to indicate a dominate 

type of motion [1]. 

 

F1 =

[
 
 
 
 
 
1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0]

 
 
 
 
 

      F2 =

[
 
 
 
 
 
1 Ts 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 Ts 0
0 1 0
0 0 0

 

]
 
 
 
 
 

 

F3 =

[
 
 
 
 
 
 
 1 Ts

Ts
2

2
0 1 Ts
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 Ts
Ts
2

2
0 1 Ts
0 0 1 ]

 
 
 
 
 
 
 

 

(

3-26 

 

The measurement matrix is defined as: 

 

H = [
1 0 0 0 0 0
0 0 0 1 0 0

] 3-27 

3.2.6.2     Kalman Filter: Prediction 

The predictions are calculated with a Kalman filter (note: other predicting filters can be used here 

because of the modality of the IMM).   
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The initial combined covariance, γk−1
0j

, and state ŝk−1
0j

 are calculated given the weights, ρk−1
i , 

states, ŝk−1
i , and covariance, γk−1

i , of the previous frame. 

ŝk−1
0j

=  ∑ρk−1
i | j

i

 ŝk−1
i  3-28 

 

γk−1
0j

=∑ρk−1
i | j

i

 [γk−1
i + (ŝk−1

i − ŝk−1
0j
)(ŝk−1

i − ŝk−1
0j
)
′
] , 

where ρk−1
i | j

=
Pij ρk−1

i

ρk|k−1
j

 and ρk|k−1
j

= ∑Pijρk−1
i

i

 

3-29 

 

The weights, ρk|k−1
i , control the amount a given motion model will contribute to the final 

prediction (along with its covariance).  They are a function of all the transition probabilities from 

all the other motion models.  It utilizes the probability that the motion model will switch from a 

different model to the one currently under considered.  The states predication for each model 

(ŝk|k−1
j

) and the covariance predication for each model (γk|k−1
j

) are calculated given the 

combined initial covariance (γk−1
0j

) and the combined initial state (ŝk−1
0j

).   

ŝk|k−1
j

= Fjŝk−1
0j

 3-30 

 

γk|k−1
j

= Fj γk−1
0j

 (Fj)′ + Qj 3-31 

 

Pij, in equation 3-29, is the Markovian transition probability of switching from motion model i to 

motion model j of the current frame.  The transition probabilities are often combined into a matrix 

to make the Transition Probability Matrix (TPM).  The TPM is defined as: 

Pij = [

P11 P12 P13
P21 P22 P23
P31 P32 P33

] 3-32 
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A fixed matrix is chosen empirically although in the case of [1], online minimum mean-square 

error estimation of the TPM is implemented with the idea that a fixed TPM would impede 

discovery of unknown cell behavioral variations. 

Figure 7-2 displays the State diagram of the transition probabilities. 

 

Model 1

Random walk

Model 2

Constant 

Velocity

Model 3

Constant 

Acceleration 

P 12

P 21

P
31

P
13

P32

P23

 

Figure 3-5: Graphic representation of the Transition Probabilities 

 

The combined predicted state (ŝk|k−1) and the combined predicted covariance 

(γk|k−1) are calculated by combining the filter outputs from equations 3-30 and 3-31.  The 

combining is performed as follows: 

ŝk|k−1 = ∑ρk|k−1
j

 ŝk|k−1
j

j

 3-33 

 

γk|k−1 = ∑ρk|k−1
j

j

[γk|k−1
j

+ (ŝk|k−1
j

− ŝk|k−1)(ŝk|k−1
j

− ŝk|k−1)′] 3-34 

3.2.6.3     Kalman Filter: Update/Correction 

Given the predicted states from equation 3-30 (ŝk|k−1
j

), covariance from equation 3-31 (γk|k−1
j

), 

and measured Centroid (zk) the Kalman filters are utilized to obtain the updated states (sk
j
) and 

covariance (γk
j
). 
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sk
j
= sk|k−1

j
+ Kk

j
(Zk − Hsk|k−1) 3-35 

 

γk
j
= γ̂k|k−1

j
− Kk

j
(Zk − Hŝk|k−1

j
) , Kk

j
= γk|k−1

j
H′ (Hγk|k−1

j
H′ + R)

−1

 3-36 

 

K is known as the Kalman gain.  Note Ẑk|k−1 = Hŝk|k−1 is the predicted centroid that is used for 

the motion component of the speed function (equation 3-17).  The likelihood that a model j is 

activated in the current frame (k) is 

 

λk
j
=
exp [−

1
2
(yk
j
)′(𝐒k

j
)
−1
(yk

j
)]

√2πdet (𝐒k
j
)

 3-37 

 

Where yk
j
= Zk − Ẑk|k−1 ; this is known as the innovation of the Kalman filter j. Note the 𝐒k

j
 in 

equation 22 is the associated measurement covariance matrix.   The combined state and 

covariance is computed using equations 18 and 19, however ρk|k−1
j

 is replaced with ρk
j
=

ρk|k−1
j

λk
j

∑ ρk|k−1
i λk

i
i

. 

The algorithm sets the weight of the motion filter to zero for the first five frames, so that the 

Kalman filter can build up history.  The initial model weights are set equal to indicate that they 

are all equally likely. 
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Figure 3-6:  The Block diagram of the IMM structure and equations.  Note: M equals 3 in the case of this 

paper: (1) random motion, (2) constant velocity (3) constant acceleration 

 



30 

 

3.3     Track Compiler 

 

Figure 1-7: Track Compiler diagram 

 

The track compiler module is responsible for creating the track segments for each of the objects 

and updating the map of labeled regions (ψk(x, y)).  Once the contour evolution is complete, the 

tracking algorithm confirms or adjusts each of the identifications and matches it up with its track, 

if one exists.  Any object that does not match to a single track is further processed to determine 

what occurred. 

Let Nkrepresent the set of labels for all track segments created up to the current frame, k.  A track 

segment is labeled “active” in frame k if it was successfully tracked in frame k-1, otherwise it is 

labeled “inactive”. 

The algorithm starts by comparing the map of labeled regions (ψk(x, y)) with the map of 

potential object regions (χ (x,y)).  Any region that does not overlap between the two maps is 

considered either a new object or a lost object.    If only one object from the map of labeled 

regions overlaps (ψk(x, y)) with a region from the potential object region map (χ (x,y)), then that 

object is assigned the same track segment.  If multiple regions overlap and are separated by a 

minimum distance (dmin), the track compiler considers the following options: (1) the object split 

into multiple objects, so assigned it a “child” id that is associated to the original parent object: (2) 
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the object is a previously occluded object, so assign it the occluded object’s id number: (3) it is a 

new object that has entered the FOV so assign it a new track id number.  

The Pseudo code is presented in table 3-3.  The Pseudo code for the additional function calls are 

presented in table 3-4 

 

Ω0 ← {(x, y)|ψ̂k(x, y) = 0} 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂  χk 

     𝐢𝐟 w ⊂  χk 𝐭𝐡𝐞𝐧 AddTrack(Nnew, k, w)  
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 ActiveTrack n ∈  Nk−1 

     Ωn ← {(x, y)|ψ̂k(x, y) = n} 

     𝐢𝐟 Ωn =  ∅ 𝐭𝐡𝐞𝐧 DeactivateTrack(n) 
     𝐞𝐥𝐬𝐞 𝐢𝐟 MultipleObjectsOverlap( Ωn)𝐭𝐡𝐞𝐧 

          𝐢𝐟 ObjectSplit(Ωn)𝐭𝐡𝐞𝐧  
               𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂  Ωn 

                    CreateChildTrack(nchild, n, k, ω) 

          𝐞𝐥𝐬𝐞 

               ω̂ ←  SelectBestMatch(n, k, Ωn) 
               UpdateTrack(n, k, ω̂) 
               𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂ Ωn \ ω̂ 

                     AddTrack(nchild, ω, k) 
               𝐞𝐧𝐝 

          𝐞𝐧𝐝 

     𝐞𝐥𝐬𝐞 

          UpdateTrack(n, k, ω̂) 
     𝐞𝐧𝐝 

𝐞𝐧𝐝 
 

Table 3-3: Pseudo code for Track Compiler (adapted from k. Li) 
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/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//// AddTrack creates a new track segment labeled nnew; fills region ω with nnew; and initializes the   

//// cell state based on measurements of ω. 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 AddTrack(ω, nnew, k) 
     CreateNewTrackSegment(nnew) 
     FillRegion(ω,ψ, nnew) 
     CalculateDynamics(ω) 
Send 

𝐞𝐧𝐝 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

////  updates the track segment n using the features of region ω, including the centroid 

////  location, mean intensity, area, and eccentricity. The centroid and the mean intensity are 

////  fed to the motion filter to obtain a filtered state of object n in frame k.   

//// 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

UpdateTrack(n, k, ω) 
     CalculateDynamics(ω) 
     UpdateTrackSegment(n ) 
𝐞𝐧𝐝 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

////  Add a child track for the object n with a unique label nchild, and fills the region ω with nchild.  

////  Calculate the object state based on the measured centroid location and mean intensity of ω,  

////  and the predicted state of object  n (parent). 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

AddChildTrack(nchild, ω, n, k) 
     CreateNewTrack(nnew) 

      CalculateDynamics(ω) 
𝐞𝐧𝐝 

 

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//// Selects component  ω̂  ∈  Ωn that best matches the dynamics of object n.  Use the innovation   

//// likelihood and select the one which maximizes it. 

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

SelectBestMatch(nchild, ω, n, k) 
     CreateNewTrack(nnew) 

      CalculateDynamics(ω) 
     SelectMaxInnovationLikelihood() 
𝐞𝐧𝐝 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

////  returns true if region Ωn has multiple  connected components and the minimum distance  

////  between any two points in different components is greater than a preset threshold dmin 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

ObjectSplit(Ωn) 
     𝐅𝐨𝐫𝐞𝐚𝐜𝐡 ConnectedComponent cc in  Ωn 

          𝐅𝐨𝐫 𝐢 =  cc  ∶  NumberOfConnectComponents 
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               DoMultipleComponentsOverlapRegion(cc) 

          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 

 
Table 3-4: Pseudo code for Track Compiler auxiliary functions (adapted from k. Li) 

3.4     Track Linker 

The main goal here is to find tracks that split and came back together or reemerge in accordance 

to the following physical parameters: 

(1) No object is removed unless it leaves the FOV or is considered noise. 

(2) No new object is added unless it enters from outside the FOV or it is matched to a 

previously occluded object.   

The track linker attempts to match lost or previously occluded tracks by using the following 

method: 

Let  Nfound = {nf|f = 1,2… , F}, denote the set of track segments that start after the first frame.   

Nlost = {nl|l = 1,2… , L} denote the set of track segments that end before the current frame. 

For each node pair, (nl, nf), an arc <nl, nf> is created between the two nodes if the last centroid of 

nlis within the double cone centered at the first centroid location of nf. 

√(xl − xf)
2 + (yl − yf)

2 ≤ |Kl − Kf|R + R0   3-38 

 

With |Kl − Kf| ≤
D

2
.  The |kl − kf| is to account for the number of frames that past with an object 

track lost.  D, R, and R0 are fixed parameters.  kland kfare the frames when the referenced object 

was lost and found, respectively.  Each arc is assigned a weight (ωlf) and is defined as the 

maximum innovation likelihood (ωlf = λnl,kf
max(nf)) of track nl on the measurement of track nfin 

frame kf.  It is calculated using equation 3-37: 
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λnl,kf
max (nf) =

exp [−
1
2
(yk
max)′(𝐒k

max)−1(yk
max)]

√2πdet (𝐒k
max)

 3-39 

 

A maximum-likelihood matching algorithm is computed between tracks nl and nf.  The 

maximum innovation likelihood is also calculated for the one-to-two matching.  In this case, the 

spatial temporal mean of the two found objects (nf1 and nf2 for example) is assigned as the 

starting point. The problem is solved as an integer programming problem: 

 

max
x
𝐟T 𝐱 subject to 𝐀T𝐱 ≤ 𝐛 3-40 

 

Where A be a constraint matrix of size H x (L+F), b is an (L+F) x 1 vector of ones, and f is a 

likelihood vector of size H x 1.  H is the total number of matchings hypotheses, both one-to-one 

and one-to-two.  L and F are the number of elements in Nlost and Nfound. The constraint matrix 

contains the different hypotheses between the elements of Nlost and Nfound.  The likelihood 

vector holds the corresponding maximum innovation likelihood for the hypotheses in A. The 

constraint matrix and likelihood vector are constructed according to the pseudo code in table 3-6 

and equation 3-41 ( one-to-one match) ,3-42 (one-to-two match). The solution selects the 

matching hypotheses with the greatest maximum innovation likelihood that conforms to the 

constraints imposed by C.  Since this method utilizes the spatial temporal cone to filter and the 

maximum innovation likelihood to match, both the location and the dynamics are incorporated 

into the linking of lost tracks.   
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Nlost ← ∅ and Nfound ← ∅ 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track n ∈  Nk 

     𝐢𝐟 LostTrack(n, k)  { Add n to Nlost } 
     𝐞𝐥𝐬𝐞 𝐢𝐟 FoundTrack(n, k) { Add n to Nfound} 
𝐞𝐧𝐝 

MatchTracks(Nlost, Nfound) 
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nl  ∈  Nlost 
     𝐢𝐟 IsMatchedToOne(nl, nf  ∈  Nfound)  { LinkTracks( nl, nf) } 
     𝐞𝐥𝐬𝐞 𝐢𝐟 IsMatchedToTwo(nl; nf1 , nf2  ∈  Nfound)  { LinkTracks( nl, nf) } 

𝐞𝐧𝐝 

 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track n  ∈  Nk 

     𝐢𝐟 IsShort(n, k)  { DeleteTrack(n) } 
𝐞𝐧𝐝 

Table 3-5: Pseudo code for Track Linker 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//// MatchTracks 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

MatchTracks(Nlost, Nfound) 
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nl  ∈  Nlost 
     𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nf  ∈  Nfound 

          𝐢𝐟 InsideDoubleCone(nl, nf, kl,kf)  

                    ωlf = CalculateMaxInnovationLikelihood(nl, nf, kl,kf); 
                    // Store connections to test for one-to-two connections after this loop 

                    PotentialSelection.Append(nl, nf, kl,kf, ωlf)    
                    ConstraintMatrix.Append(nl, nf,);                     
                    LikelihoodVector.Append(ωlf);  
          𝐞𝐧𝐝 

     𝐞𝐧𝐝 

𝐞𝐧𝐝 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡  OneToTwoMatches(nl)  h′ ∈  PotentialSelection 

     ωlf1f2 = CalculateMaxInnovationLikelihoodWithSpatialTemporalMean (nl, nf1 , nf2 , kl,kf); 

     ConstraintMatrix.Append(nl, nf1 , nf2) 

     LikelihoodVector.Append(ωlf1f2);  

𝐞𝐧𝐝 
 

// Solve for the solution vector x from the integer programming problem 

x = intlinprog(LikelihoodVector, ConstraintMatrix,1) 

𝐞𝐧𝐝 
 

Table 3-6 Pseudo code for Track Linker auxiliary functions (adapted from k. Li). 
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A(h, i) =  {
1,      if i = l, i = L + f
0,           otherwise      

 

d(h) = ωlf 

3-41 

 

A(h, i) =  {
1,      if i = l, i = L + f1, i = L + f2
0,                        otherwise               

 

d(h) = ωlf1f2 

3-42 

 

3.5     Object Database 

After the tracks are finalized, a new entry is sent to the object database.  The database is a 

Elasticsearch database using the open source Elastic Stack [https://www.elastic.co/products].  The 

data is also stored as csv format flat file post-analysis.  The database stores the following 

information: Track (“Parent”) ID, Child ID, Centroid, Area, Covariance, Predicted Centroid, 

motion filter statistics, and all the state vector information.  
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Chapter 4 

Results 

4.1     Detection, Segmentation, and Tracking Results 

The system discussed in chapter 3 was tested with Flash LIDAR data.  The Range data is the only 

component processed, any intensity image displayed is only for the sake of showing the objects 

and background.  It is sometimes difficult to visually discern the objects and background in the 

range data image, in those situations the results are overlaid on top of the intensity image.   

 

Figure 4-1 shows a few examples of the detection and segmentation of a frame.  The contours are 

layered on top of the intensity image.  The top two images show an example where the lower 

limit range filter was set to high.  This is why there is a straight line cutting where the contours 

stop growing on their legs.  The bottom set shows an example where the max iterations of the 

two-cycle algorithm should be increased since some of the contours did not completely grow.  In 

both cases, the segmentation works well and the contours approximate the objects. 
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Figure 4-1: Segmentation example, Range Cutoff: (Left) The contours displayed on the intensity image. 

(Right) The segmentation of the input frame 

 

  
Figure 4-2: Segmentation example, contour cycle limit: (Left) The contours displayed on the intensity image. 

(Right) The segmentation of the input frame 

 

Figure 4-3 shows another segmentation along with a graphical representation of how the elliptical 

approximation used in the motion filter fits to a segmented object. 

 

 

Figure 4-3: Example of Elliptical approximation of contours used in the motion filter 
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Figure 4-4 presents a short sequence of frames along with its track assignments.  The sequence 

shows that the topological constraint correctly prevented objects 2 and 3 from merging.  It also    

automatically identified object 5 as it enters the frame.  Since object 5 is detected near the FOV 

boarder, it is assigned it a new ID.   

 

 

    

  
 

 

Figure 4-4: 3-D Tracks for multiple objects (vertical axis is the frame number). Object 1 is dark blue, 2 is 

light blue, 3 is yellow, 4 is orange, r is maroon.  (a) Frame 1 (b) Frame 4 (c) Frame 6 (d) Frame 8 (e) Frame 9 (f) Frame 

10 (g) Frame 11 
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Figure 4-5 displays the predicted positions from the IMM motion filter as the objects move.  The 

solid line is the measured position and the dotted is the predicted.  The predicted position is able 

to converge within a few frames unless an abrupt change occurs. 

 

Figure 4-5: The predicted and measured positions from the IMM motion filter.  The dashed line is the 

predicted data and the solid line is the measured. 

 

Figure 4-6 presents a short sequence of frames along with its track assignments.  This sequence 

displays two main points.  First, object 5 gets partially occluded by object 4 and causes a split.  

The tracking system correctly identifies the situation and assigns two child IDs to object 5.  

Second, in the next frame, it is completely occluded and the tracking system flags them as 

occluded and propagates their position based on the predicted position.   In the following frame, 

child 2 emerges and is tracked.   
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Frame 12 Frame 13 Frame 14 

   

Frame 15 Frame 16 Frame 17 

   

   

Frame 12 Frame 13 Frame 14 
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Frame 15 Frame 16 Frame 17 

Figure 4-6: Object Track and Link (top) A segment of the center positions for the frames listed below the plot 

(top).  A series of the Intensity images with the contours overlaid (middle).  A series of the Range images with the 

contours overlaid (bottom). 

 

 

The topological constraint that stopped objects with different IDs from merging caused issues in 

two scenarios: (1) if the object enters a vehicle, (2) if the object initially is segmented into two 

objects.   Consider the scenario where a person enters a car, the car drive somewhere and the 

person gets out.  If the person and the vehicle have separate track ID’s, they will not be able to 

merge when the person enters the car; it will be flagged as occluded.  The car then drives off, the 

person gets out and they are now either assigned a new ID (or potentially get assigned a false 

association if they exit the vehicle close to other tracked objects).  Either way, at that point the 

connection to the original object track is broken.  If the topological constraints allowed the 

objects to merge, then the track could persist through that situation. The system implemented for 

tracking split objects could be extended to account for linking merged objects.  The second 

scenario is displayed in Figure 4-7, the person on the right has an item across their waist.  This 

item causes the segmentation to split the initial detection into two objects.  A few frames later the 

person is segmented as a single object.  Since the object properties are significantly different than 

either one of the small objects, the algorithm flagged the two smaller objects as occluded and 

assigned it a new temporary id. This case can also be avoided if the objects of different ID’s are 

allowed to merge. 
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Figure 4-7: Segmentation of object that is initially split and later is detected as a single object. 



44 

 

Chapter 5 

Conclusion 

The system performed with a varying degree of success.  It is able to segment the image to at 

least a close approximation for the majority of the frames.  However, if often picks up a few false 

detections and sometimes completely misses people in the scene.  If the segmentation step works, 

then the tracker behaves as expected.  The IMM adapts quickly to changing motion and assists 

the contour evolution, as well as, the track linking.  There are cases when the tracker assigns the 

incorrect id to an object but that is normally explained by the detection module providing a false 

object. 

 The most significant issue was dealing with large displacements between frames, or equivalently, 

large relative velocity.   If the frame rate is not high or the objects are moving too fast, it can 

cause false assignments and dropped tracks.  If the motion filter correctly models the dynamics, it 

helps since it can influence the evolution via the speed function from the predicted dynamics.  

However, in the data tested for this work, it normally would drop the track and create the object 

as a new temporary object.   

The data processed consisted of scenes where the camera was stationary, as well as, panning.  In 

the case where the camera was panning, objects that were moving in the opposite direction of the 

camera’s rotation had a large positional displacement between frames.  The large jump normally 

caused the tracker to drop the track.   

In the future, other detection and segmentation algorithms can be introduced to assist with the 

initial detection.  Other rules can be incorporated to deal with large relative velocities or the 

camera motion can be determined and included in the calculations.  Also, it would be interesting 
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to analyze the IMM filters to look for abnormal behavior indicators or to incorporate all the 

different data components of the LIDAR output to see what benefit it provides. 
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