

The Pennsylvania State University

The Graduate School

Department of Electrical Engineering

EXTENDING A BIOLOGICAL CELL TRACKING SYSTEM

TO TRACK RANGE DATA OF PEDESTRIANS

A Thesis in

Electrical Engineering

by

Ryan James Poore

 2017 Ryan James Poore

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2017

ii

The thesis of Ryan James Poore was reviewed and approved* by the following:

William E. Higgins

Distinguished Professor of Electrical Engineering

Richard L. Tutwiler

Senior Scientist, Professor of Acoustics

Applied Research Laboratory Department Head Imaging Systems and Processing

Thesis Advisor

Kultegin Aydin

Professor of Electrical Engineering

Head of the Department of Electrical Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

The challenges faced when constructing a system to track biological cells coincides with the

challenges when tracking pedestrians: they have complex topological shapes; wide range of

behaviors; they move abruptly; they interact with other objects; their shape deforms; they leave

the field of view (FOV) and enter the FOV; they split and merge. The similarities suggest that a

system for tracking cells potentially works well for pedestrians.

This work presents an automated tracking system that extends a framework, designed for tracking

hundreds of biological cells in phase contrast microscopy, to tracking multiple human sized

objects with LIDAR range data. It integrates various classic image-processing techniques with an

adaptive interacting multiple model (IMM) estimator, a topologically constrained active contour,

and spatiotemporal trajectory optimization. The framework processes the data with multiple

independent collaborating modules. This module design facilitates a straight forward substitution

of algorithms within a module without affecting the rest of the system.

iv

TABLE OF CONTENTS

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

ACKNOWLEDGEMENTS .. ix

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.1 Object Tracking System .. 2

1.1 Thesis Outline .. 3

Chapter 2 3D Flash LIDAR/VNIR ... 4

2.1 LIDAR Hardware ... 4
2.2 LIDAR/VNIR Data ... 5

Chapter 3 Object Tracking System ... 6

3.1 Object Detection Module Overview .. 8

3.1.1 RANSAC ... 8
 3.2 Contour Evolution Module ... 10

3.2.1 Geometric Active Contours .. 10
3.2.2 Level Set Framework ... 11
3.2.3 Two Cycle Algorithm ... 14

3.2.3.1 Initialization .. 16

3.2.3.2 Update Cycle ... 16

3.2.3.3 Stopping Condition .. 17

3.2.3.4 Regularization Cycle ... 17

3.2.3.5 Finalization ... 18

3.2.4 Topological Constraints .. 21
3.2.5 Speed Equation .. 21

3.2.5.1 Region Component .. 22

3.2.5.2 Edge Component ... 22

3.2.5.3 Motion Component .. 23

3.2.6 Interacting Multiple Models (IMM) .. 24
3.2.6.1 State Equations .. 24

3.2.6.2.1 Kalman Filter ... 25

3.2.6.2.2 Kalman Update/Correction ... 27

3.3 Track Compiler ... 30

3.4 Track Linker ... 33

3.5 Object Database .. 36

Chapter 4 Results ... 37

v

4.1 Detection, Segmentation, and Tracking Results ... 37

Chapter 5 Conclusion ... 44

Bibliography ... 46

vi

LIST OF FIGURES

Figure 1-1: Compare Input Data Type (a) Phase-contrast microscopy of putative RCE

cells taken from NIH Open-i project. (b) A sample range map from the data

collect for this work. .. 3

Figure 2-1: The LIDAR/VNIR sensor (Picture taken from

http://www.advancedscientificconcepts.com). .. 5

Figure 2-2: LIDAR sensor output of Rick Tutwiler’s graduate students, resampled to 600

x 800 (a - left) Range, 128 x128 pixels (b - right) Intensity, 128 x 128 (c)

VNIR sensor output resampled to 600 x 800: RGB, 640x480x3 pixels. 5

Figure 3-1: System overview. ... 7

Figure 3-2: Detection Module processing: (a) The range image of a frame. (b) The Range

Image with the ground plane removed (c) The output of the Detection

Module, denoted as the propagated region labeling map,(ψ ̂(x,y)). 9

Figure 3-3: Level Set Method: (a) Level Set hypersurface (b) the 2D boundary 12

Figure 3-4: The level set function, ϕk(x, y) for (a) an arbitrary shape. (b) for the

LIDAR/VNIR image data displayed in Figure 2-1 and Figure 3-1, the red

represents the background or exterior pixels (value = 3), the yellow

represents the outside boundary (value =1), the light blue represents the

inside boundary (value =-1), and the dark blue represents all the object pixels

or interior pixels (value =-3). .. 16

Figure 3-5: Graphic representation of the Transition Probabilities 27

Figure 3-6: The Block diagram of the IMM structure and equations. Note: M equals 3 in

the case of this paper: (1) random motion, (2) constant velocity (3) constant

acceleration .. 29

Figure 3-7: Track Compiler diagram ... 30

Figure 4-1: Segmentation example, Range Cutoff: (Left) The contours displayed on the

intensity image. (Right) The segmentation of the input frame 38

Figure 4-2: Segmentation example, contour cycle limit: (Left) The contours displayed on

the intensity image. (Right) The segmentation of the input frame 38

Figure 4-3: Example of Elliptical approximation of contours used in the motion filter 38

vii

Figure 4-4: 3-D Tracks for multiple objects (vertical axis is the frame number). Object 1

is dark blue, 2 is light blue, 3 is yellow, 4 is orange, r is maroon. (a) Frame 1

(b) Frame 4 (c) Frame 6 (d) Frame 8 (e) Frame 9 (f) Frame 10 (g) Frame 11 39

Figure 4-5: The predicted and measured positions from the IMM motion filter. The

dashed line is the predicted data and the solid line is the measured. 40

Figure 4-6: Object Track and Link (top) A segment of the center positions for the frames

listed below the plot (top). A series of the Intensity images with the contours

overlaid (middle). A series of the Range images with the contours overlaid

(bottom). .. 41

Figure 4-7: Segmentation of object that is initially split and later is detected as a single

object. .. 43

viii

LIST OF TABLES

Table 1-1: Advanced Scientific Concepts Inc. Portable 3D Camera Specifications. 4

Table 3-1: Pseudo code for Two-Cycle algorithm (adapted from k. Li). 19

Table 3-2: Pseudo code for Two-Cycle algorithm aux functions (adapted from k. Li) 20

Table 3-3: Pseudo code for Track Compiler (adapted from k. Li).. 31

Table 3-4: Pseudo code for Track Compiler auxilary functions (adapted from k. Li). 32

Table 3-5: Pseudo code for Track Linker (adapted from k. Li). ... 35

Table 3-6: Pseudo code for Track Linker auxiliary functions (adapted from k. Li). 35

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation and gratitude to my

advisor, Dr. Richard Tutwiler, for his expertise and guidance. I thank my committee Chair, Dr.

William Higgins, for stepping into that role and taking on the responsibility. I thank SherryDawn

Jackson for dealing with all my last-minute atypical request. I thank Donald Natale, Matthew

Baran, and John Durkin for collecting the LIDAR data.

1

Chapter 1

Introduction

1.1 Motivation

The goal of this work is to autonomously track multiple objects in a real-life scene as they

interact with their surroundings. The approach presented in this work is to take an existing

system designed for tracking hundreds of biological cells, and implement it for tracking

pedestrians. The framework and algorithms presented in [1] are adapted for this work because of

the module architecture and the challenges the author addressed. The initial detection algorithm

is modified due to the different type of data processed: range data of people in an outdoor

environment vs. cells in phase contrast microscopy. Cells in phase contrast microscopy normally

appear as dark regions surrounded by bright halo artifacts, while the data analyzed in this paper

lacks that same distinct contrast. Furthermore, the data collected for this work has a more

complex background (see figure 1). However, the rest of the system is replicated without

significant modification. The architecture is modular, in that each module processes the data

independently and they collaborate to produce the trajectories. This module architecture allows

for the seamless adjustment in processing a particular aspect without changing the entire system.

For example, changing the method that process the initial segmentation without effecting the

components that evolve the contours or manage the lost and occluded objects.

2

1.2 Object Tracking System

The objective of an object tracker is to generate the trajectory of an object over time by locating

its position, and often its complete region, in every frame. The task of determining these

trajectories can be separated into two approaches: (1) detecting the objects in each frame and then

establishing correspondence between frames or (2) evolve a model that represents the object from

frame to frame [12]. The object tracker in this work deploys a combination of both approaches.

Shape, region, and edge information is utilized for a coarse segmentation while a geometric active

contour model is implemented to evolve the objects across frames.

The system described in this paper divides the tasks associated with creating trajectories of

multiple objects into 5 components: (1) Detection Module, (2) Contour Evolution Module, (3)

Motion Filter, (4) Track Compiler, (5) Track Linker. The details of each are explained in chapter

3. The detection module uses shape, region, and edge information to detect and provide a rough

segment of the objects. The contour evolution module implements a geometric active contour

model that incorporates topological constraints to govern under what circumstances an object can

split or merge. An IMM filter is utilized to enhance the tracking, and a track linking module is

implemented to assist with complete and long term occlusion. The track linker is developed to

consider the objects’ location in space and time, along with their dynamics, when attempting to

link lost objects or occluded objects.

3

Figure 1-1: (a) Phase-contrast microscopy of putative RCE cells taken from NIH Open-i project. (b) A

sample range map from the data collect for this work.

1.3 Thesis Outline

Chapter 2 of this paper provides a brief overview of the sensor equipment along with the

specifications of the collected data. Chapter 3 delineates the system implemented for the tracking

model. The first section of Chapter 3 discusses the initial segmentation and detection. The

second section goes through the object contour and propagator module. It involves a discussion

on geometric active contours, contour evolution, topological constraints, and the energy/speed

equation. The third section reviews the motion filter along with the interacting multiple models

(IMM) and Kalman filter, which are used for state predictions and in the motion component of

the energy term. The fourth section discusses the object track compilation and the fifth section

reviews the object track linker module. Chapter 4 presents the results. Chapter 5 provides the

conclusion.

4

Chapter 2

3D Flash LIDAR/VNIR

2.1 LIDAR Hardware

The data utilized in this work was collected from a 3D Flash LIDAR Video Camera built by

Advanced Scientific Concepts Inc. Figure 1 below displays the LIDAR sensor used to collect the

data. The model name is the modular Portable 3D Flash LIDAR Camera integrated with1.57um,

air-cooled, diode-pumped laser, and a 9-degree field of view. The camera can image through

obscuration (e.g. dust, smoke, fog) and has an effective capture range from 5cm to 1km [11]. The

short capture time (typically ½ a microsecond or less) emphasizes the camera's ability to capture

3D images without motion distortion. Table 1 displays the instrumentation along with it

specifications.

Advanced Scientific Concepts Inc.

Portable 3D Flash LIDAR Camera

9º field of view lens and diffuser

LD-2809-PM: 9º field of view; 128 x 128 pixel resolution

85mm EFFL (Field of View 8.6º x 8.6º), F/1.4 (60mm

aperture) @ 1.57 um

Range ~ 300 meters @ 20% reflectance
2D IR Camera, co-aligned with Portable 3D FLVC (Part number:

2D-C015-IR)

2D visible Camera, co-aligned with Portable 3D FLVC

(Part number 2D-C00M-VS)

http://www.advancedscientificconcepts.com/products/older-

products/portable.html
Table 2-1: Advanced Scientific Concepts Inc. Portable 3D Camera Specifications

5

Figure 2-1: The LIDAR/VNIR sensor (Picture taken from http://www.advancedscientificconcepts.com).

2.2 LIDAR/ VNIR Data

The ASC 3D Flash LIDAR Camera generates a range image, and a reflectivity intensity image at

128 x128 pixels. Figure 3 displays an example of the output from the LIDAR (resampled at 600

x 800) for the (a) range data and (b) the intensity data. There is also an optional VNIR

component that generates a RGB image at 640x480 pixels. Figure 2 (C) displays the output of

the VNIR data (resampled to 600 x 800). The intensity and VNIR sensor output is displayed in

Figure 2 for completeness but only the range is processed for this work.

Figure 2-2 : LIDAR sensor output of Rick Tutwiler’s graduate students, resampled to 600 x 800 (a - left)

Range, 128 x128 pixels (b - right) Intensity, 128 x 128 (c) VNIR sensor output resampled to 600 x 800: RGB,

640x480x3 pixels.

6

Chapter 3

Object Tracking System

The system processes data sequentially and filters through the different modules as display in

figure 3-1. The final output is recorded to a Elasticsearch database and a flat file. The output

consists of the trajectories for each object, along with their states and parameters (the details are

presented in 3.5).

Data is first processed by the Detection Module utilizing various classic image processing

techniques. The output of the module is a map of segmented regions (χ) that represents its region

energy. This map of potential object regions is distributed to the Contour Evolution Module, as

well as, the Track Compiler module.

The Contour Evolution module generates an initial coarse map of the labeled object regions

(ψ̂(x, y)). The labels represent their corresponding track assignments, so the map is essentially

the initial attempt at propagating the objects tracked in the last frame to the current frame. The

module performs this task by using the active contour model framework, this is further explored

in section 3.2. Topological constraints are also incorporated into the framework; the constraints

are formulated to allow the contours to split while preventing the contours of different objects

from merging. The speed function that is used to drive the evolution of the contour incorporates

components associated with the objects’ region features, edges, and dynamics. The region

component is based on the object region map (ψ̂(x, y)) passed by the Detection Module. The

Motion filter provides the past dynamics while the edge calculation is performed given the

original input data.

The Track Compiler Module receives the initial coarse map of the labeled object regions

(ψ̂(x, y)) from the Contour Evolution Module, along with the initial object region map (χ) from

7

the Detection Module. It then determines how to classify each object track: update an existing

track, terminate a track, create a new track, or split a track into child tracks. The result is an

updated map of the labeled object regions (ψ̂(x, y)) along with the intermediate track segments

(also called tractlets) for the current frame (discussed further in 3.3).

The Track Linker Module attempts to link the tracks that were split in the past by analyzing the

objects in the spatiotemporal image volume along with their past dynamics. Any successful

merging of tracks is fed back to the track compiler for reference in the next frame.

Figure 3-1: System overview

8

3.1 Object Detection Module Overview

The system starts with the detection and segmentation of object regions from the input data. The

image is initially filtered to remove the image plane using a Random Sample Consensus

(RANSAC) algorithm, as displayed in figure 3-2. Threshold filtering is implemented to eliminate

object regions that possess properties inconsistent with the physical constraints for a given target

(such as objects size, intensity, or range). The segmentation is enhanced by utilizing a Bayesian

maximum a posteriori probability (MAP) classifier; followed by a coarse shape filter to match

human sized and shaped objects, along with a range filter to filter out objects that are “too close”

or “too far.” The output is a binary map of segmented regions (χr).

In parallel to the above processes, the original input is sent through a canny edge detector to

produce an edge map. The edge map is further processed to fill in enclosed regions and then

filtered based on the mean and standard deviation of neighboring pixels. The output of these two

processes are combined with a binary “or” operation to produce the initial segmentation of

potential object regions (χ).

3.1.1 RANSAC

The Random Sample Consensus (RANSAC) algorithm was first published by Fischler and Bolles

at SRI International in 1981 [14]. In the RANSAC algorithm, an assumption is made that the

data contains inliers whose distribution can be explained by a mathematical model, along with

noise and outliers whose distribution does not fit the model. The algorithm separates outliers of

the observation data from the inliers. To implement the RANSAC algorithm, the following two

steps are repeated in an iterative fashion [23]:

9

(1) Hypothesize: Select a random sample set from the input and use that set to compute the

model parameters

(2) Test: test which datum are consistent with the model estimated in the previous step. A

data element will be considered as an outlier if it does not fit the fitting model instantiated

by the set of estimated model parameters within some error threshold that defines the

maximum deviation attributable to the effect of noise.

The set of inliers obtained for the fitting model is called consensus set. The RANSAC algorithm

will iteratively repeat the above two steps until the obtained consensus set in certain iteration has

enough inliers.

The Detection Module implements the RANSAC method with least squares orthogonal distance

minimization to find the ground plane. Orthogonal minimization is selected since it is assumed

that there is error in all three dimensions of our irregularly spaced data [13]. Principal component

analysis is used to further refine the ground plane estimate. Once the estimation for the ground

plane is finished, the pixels associated with the ground plane are removed. The objects are in the

outliers of the data along with some noise. The process of removing the plane will result in the

loss of some object pixels. This will manifest as holes in the objects. The holes are closed with

a simple combination of dilation and erosion. Figure 3-2 displays an example from the collected

data set.

Figure 3-2: Detection Module processing: (a) The range image of a frame. (b) The Range Image with the

ground plane removed (c) The output of the Detection Module, denoted as the propagated region labeling

map,(�̂�(𝑥, 𝑦)).

10

3.2 Contour Evolution Module

This module is responsible for propagating any object associated with an identification in the last

frame, to the current frame. Since the goal is to simultaneously track multiple objects (such as

multiple people or groups of people in a scene), a model that allows for significant deformation,

while handling separation and merging is desired. To achieve this condition, geometric active

contours are utilized.

3.2.1 Geometric Active Contours

Active contours are generally classified as either parameterized active contours (explicit

contours) or geometric active contours (implicit contours) based on their representation and

implementation. They are often used in image processing for edge detection, shape modeling,

segmentation, and motion tracking. Parametric active contours were introduced by Kass et al. in

1988 [24]. They defined active contours as energy-minimizing splines guided by external

constraint forces that pull them toward features such as lines and edges. An internal energy term

was also defined to impose a smoothness constraint on the moving curve. The primary issue with

parameterized contours is their lack of topological handling.

Geometric active contours were independently introduced by Caselles et al. [4] and Malladi et al.

[5]. They are based on the theory of curve evolution and the level set method [15]. In this

method, a curve evolves using only geometric measures, resulting in a contour evolution that is

independent of the curve’s parameterization. This avoids the need to repeatedly reparametrize the

curve or to explicitly handle changes in topological [16].

11

3.2.2 Level Set Framework

The Level Set Method is a computational technique for tracking moving interfaces that depend on

an implicit representation of the interface whose equation of motion is numerically approximated

using schemes built from those for hyperbolic conservation laws [25]. It was introduced by

Osher and Sethian [7] for computing the solution to fluid interface problems.

The classic level set method consists of three main components: an implicit data representation of

a hypersurface, a set of PDEs that govern how the surface moves, and the corresponding

numerical methods for implementing [17].

Following the derivation presented by Sethian [7]. Given a closed N −1 dimensional

hypersurface Γ(t), the goal is to evolve this hypersurface over time as it propagates along its

normal direction with speed F.

In two-dimensions (although not limited to only two-dimensions), a closed contour can divide a

three-dimensional space into two separate subdomains consisting of the inside regions, the

outside regions, and the interface. These are denoted:

Ω+ = region outside Γ(t)

∂Ω = Γ(t)
Ω− = region outside Γ(t)

 3-1

Embed the hypersurface (Γ) as the zero level set of a higher dimensional function, ϕ(x̅, t).

Let ϕ(x̅, t = 0), for x̅ ∈ ℝN be defined by

ϕ(x̅, t = 0) = ±d 3-2

Where d is the distance from the position, x̅, to Γ(t=0). The positive d is chosen if x̅ is outside

(Ω+) and the negative d if the point is inside (Ω−).

Therefore, ϕ(x̅, t = 0): ℝn → ℝ such that

12

Γ(t = 0) = (x̅|ϕ(x̅, t = 0) = 0). 3-3

Figure 3-3 depicts this relationship.

Figure 3-3: Level Set Method: (a) Level Set hypersurface (b) the 2D boundary

Consider a point on the propagating interface, and let x(t) be the path of the point on the

propagating interface Γ(t = 0). For each x̅ ∈ ∂Ω , apply the constraint ϕ(x̅, t) = 0:

dϕ(x̅, t)

dt
= 0 3-3

Apply the chain rule

dϕ(x̅, t)

dt
=
∂ϕ

δt
+ ∇ϕ(x̅, t) ∙ (

dx̅

dt
) 3-4

(
dx̅

dt
) in equation 3-4 is the velocity at the point (x̅) on the hypersurface. Set equation 3-4 to zero

to achieve a Euler-Lagrange equation (representing the steady state of the contour):

∂ϕ

δt
+ ∇ϕ(x̅, t) ∙

dx̅

dt
= 0 3-5

13

In equation 3-2, the initial surface (ϕ) was defined as the Euclidean distance from x̅ to Γ:

ϕ(x̅, t = 0) = ±d x̅ ∈ ℝn 3-6

The distance from a point x̅ to a set ∂Ω:

d(x̅) = min
x̅C∈∂Ω

|x̅ − x̅C| 3-7

The ϕ takes on the distance from the boundary with a sign depending on which region it resides:

ϕ(x̅) = {

−d(x̅) x̅ ∈ Ω−

0 x̅ ∈ ∂Ω
d(x̅) x̅ ∈ Ω+

 3-8

There are an infinite number of choices for the level set function, but in practice the signed

distance function is preferred for its stability in numerical computations [15].

In the level set method, it is assumed the curve moves in the normal direction to itself. If the

velocity (
dx̅

dt
) is constrained to the normal direction, then the speed, F, which corresponds to the

movement of the contour in the normal direction with respect to time, is defined as:

F = (
dx̅

dt
) ∙ n̅ 3-9

Where n̅ is the unit normal and can be defined on the contour as

n̅ =
∇ϕ(x̅, t)

|∇ϕ(x̅, t)|
 3-10

Since ∇ϕ(x̅, t) is normal to the surface, its inner product with a vector tangential to the

surface is zero and therefore
dx̅

dt
 from equation 3-9 will be in the normal direction. Furthermore,

14

∇ϕ(x̅, t) ∙ ∇ϕ(x̅, t) = |∇ϕ(x̅, t)|2 and
|∇ϕ(x̅,t)|2

|∇ϕ(x̅,t)|
= |∇ϕ(x̅, t)| . Combining equations 3-5, 3-9,

and 3-10:

∂ϕ

δt
+ F |∇ϕ(x̅, t)| = 0 3-11

As indicated from equation 3-11 above, the important decision lies with the construction of the

speed function. That is the component that guides the contour evolution.

3.2.3 Two-Cycle Algorithm

The classic implementation of a level set method requires evaluating partial differential equations

using computational expensive numerical methods. To reduce the computational complexity, this

work implements a two-cycle algorithm with smoothness regulation adapted from [1,2,17]. In

addition to reducing the computation burden, the algorithm is relatively straightforward to

implement and it allows for easy integration of topological constraints into the contour evolution.

The method implemented by [18] gains additional reduction in computational cost by careful

consideration of data types, for example, using integer valued arrays, performing integer only

calculations, and only saving the sign of the calculated speed function.

A two-dimensional map is created to store the location of all the objects; the map is called a

region labeling map (ψk(x, y)) and is defined by:

ψk(x, y) = {
n, if pixel (x, y) is part of the object n

0, if pixel (x, y) is part of the background
} 3-12

15

The two linked-list that describe the inside and outside of an object’s boundary are labeled Lin and

Lout, respectively. They are initialized according to the region labeling map (ψk(x, y)) and are

defined as follows:

Lout(n) = { (x, y) | ψ(x, y) = n and ∃(x
′, y′) ∈ N4(x, y) where ψ(x

′, y′) ≠ n } 3-13

Lin(n) = { (x, y) | ψ(x, y) = n and ∃(x
′, y′) ∈ N4(x, y) where (x′, y′) ∈ Lout(n) } 3-14

Figure 3-4 shows how they fit around an objects contour.

In this implementation, one level set function is defined to represent all the objects’ contours.

The level set function (ϕ(x, y)) is used in conjunction with the region labeling map (ψk(x, y)) to

indicate what region of the function belongs to a given tracked object. It approximates the signed

distance function and is defined as:

ϕ(x, y) =

{

 3 if (x, y) is an exterior pixel

 1 if (x, y) is ∈ outside boundary

 −1 if (x, y) is ∈ inside boundary

−3 if (x, y) is an interoir pixel }

 3-15

The algorithm has two cycles: update cycle and a regularization cycle. The update cycle moves

the contour while regularization cycle provides smoothing. The movement of the contour is

realized by iteratively switching elements between the two linked-list that represent the adjacent

sides of the contour. This can be viewed as an extreme case of the narrow band scheme with a

two-pixel resolution [1,2,18]. The algorithm is described in the next four subsections and the

pseudo code is presented in table 3-1 and table 3-2.

16

Figure 3-4: The level set function, 𝜙𝑘(𝑥, 𝑦) for (a) an arbitrary shape. (b) for the LIDAR/VNIR image data

displayed in Figure 2-1 and Figure 3-1, the red represents the background or exterior pixels (value = 3), the yellow

represents the outside boundary (value =1), the light blue represents the inside boundary (value =-1), and the dark blue

represents all the object pixels or interior pixels (value =-3).

3.2.3.1 Initialization

The two arrays of linked-lists that represent the inside (Lin(n)) and outside (Lout(n)) of the

contours are initialize based on the Region Labeling Map from the previous frame (ψk−1(x, y)).

Equation 3-15 displays this assignment. The level set function (ϕ(x, y)) is initialized based on the

two arrays of linked list as described in equations 3-13 and 3-14. The pixels for the outside

linked list are set to zero (Lout is not part of the object). The object identification numbers from

last frame are combined with the current frame’s temporary identification numbers to create a

complete list of objects to process (Nk−1 ∪ {n}). Table 3-1 shows the pseudo code, under the

initialization section of the code.

3.2.3.2 Update Cycle

The update cycle is responsible for calculating the speed function and evolving the contours

based on its sign (only the sign is needed for the determination). The speed values should be

positive for all pixels in Linand negative for all pixels in Lout, thus any pixel in Loutwith F > 0

17

gets switched to Linand vice versa if F < 0. The cycle basically scans through the two linked-

list; first outward, then inward. During each evolution, redundant elements of Linand Loutare

removed. Table 3-1 shows the pseudo code for this algorithm, under the section marked Update

Cycle.

3.2.3.3 Stopping Condition

To regulate the time and resources allocated to the contour evolution process, a stopping

condition is enforced. The contour evolves until the boundary stops progressing or a maximum

number of iterations is achieved. The following rules define it:

(a) The Speed, F̂(x, y), at each neighboring pixels satisfies:

F̂(x, y) ≤ 0 ∀ (x, y) ∈ Lout and F̂(x, y) ≥ 0 ∀ (x, y) ∈ Lin

(b) A specified maximum number of iterations are reached

If rule (a) is satisfied, this indicates that the two boundaries, Lin and Lout, differ on the direction

the curve should evolve and thus signifying convergence is attained. If the maximum iterations

are reached, then convergence may not be possible: real data is infused with noise and may not

always converge.

3.2.3.4 Regularization Cycle

The second cycle provides the smoothness to the contour, In the traditional level set method, the

curvature-based terms that are associated with the speed function are often used to regularize the

level set function. Since ϕ(x, y) is the signed distance function, |∇ϕ(x, y)| = 1, the regularized

term can be rewritten as the Laplacian of the level set function: ∆ϕ(x, y). The evolution of a

18

function according to its Laplacian is equivalent to Gaussian filtering [1]. Thus, a Gaussian

filtering process is implemented to regularize the level set function.

This regularization has a similar effect as the curvature-dependent terms in the speed function but

avoids the computational expense associated with the curvature calculations.

As outlined in table 3-1, (under the regularization cycle) the cycle applies the Gaussian filter to

the level-set function ϕ(x, y) and then update the linked lists (Lout and Lin) based on the sign of

the result. Similar to the update cycle, the smoothing evolution will generate redundant points that

are removed at the end of each evolution step. Table 3-1 shows the pseudo code for this

algorithm, under the section marked Regularization Cycle. The discrete Gaussian kernel, G in

table 3-1, is approximated with: G = [
1 2 1
2 4 2
1 2 1

]. The distance in table 3-1, is calculated with:

distance(n∗, n|x, y) = |Ik(x
∗, y∗) − Ik(x, y)|, where (x∗, y∗) ∈ N4(x, y), ψ(x

∗, y∗) =

n∗, and ψ(x, y) = n.

3.2.3.5 Finalization

After the stop condition is attained and the regulation cycle completes, the algorithm performs a

likelihood test to determine the final region labeling map assignments for the values at the Lout

locations. The pseudo code is presented in Table 3-1, finalization section.

19

Region Labeling Map ψ̂k−1(x, y), U, V, Tmax
Initialize

 ψ̂k−1(x, y) ← ψ̂k−1(x, y)
 Nk−1 ← ∅

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 LabeledRegion Ωn ⊂ ψ̂k−1(x, y)
 Initialize ϕ(x, y), Lin(n), Lout(n)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n) { ψ̂k−1(x, y) ← ∅ } 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

𝐌𝐚𝐢𝐧 𝐋𝐨𝐨𝐩: 𝐓𝐰𝐨 𝐂𝐲𝐜𝐥𝐞𝐬
 𝐟𝐨𝐫 t = 1: Tmax

 𝐔𝐩𝐝𝐚𝐭𝐞 𝐂𝐲𝐜𝐥𝐞
 𝐟𝐨𝐫 u = 1: Umax
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1
 // Calculate the Speed values inside/outside the contour

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n) ∪ Lout(n) { Compute F̂(x, y) } 𝐞𝐧𝐝

 // Outward evolution

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n)
 𝐢𝐟 F̂(x, y) > 0 {SwitchLoutToLin(x, y)} 𝐞𝐧𝐝

 𝐞𝐧𝐝

 UpdateLin(Lin(n))
 // Inward evolution

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lin(n)
 𝐢𝐟 F̂(x, y) < 0 {SwitchLinToLout(x, y)} 𝐞𝐧𝐝

 UpdateLout(Lout(n))
 𝐞𝐧𝐝

 𝐢𝐟 StopConditionTrue() { Exit Update Cycle } 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐞𝐧𝐝 // End Update

 𝐑𝐞𝐠𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐂𝐲𝐜𝐥𝐞 //Smooth to account for curvature

 𝐟𝐨𝐫 υ = 1: Vmax
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n)
 𝐢𝐟 (G ∗ ϕ)(x, y) < 0 {SwitchLoutToLin(x, y)} 𝐞𝐧𝐝

 𝐞𝐧𝐝

 UpdateLin(Lin(n))
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lin(n)
 𝐢𝐟 (G ∗ ϕ)(x, y) > 0 {SwitchLinToLout(x, y)} 𝐞𝐧𝐝

 UpdateLout(Lout(n))
 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐞𝐧𝐝 // End Regulation

 𝐢𝐟 StopConditionTrue() { Exit Main loop } 𝐞𝐧𝐝

𝐞𝐧𝐝

Finalize

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 n ∈ Nk−1

20

 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n)
 ψ̂k−1(x, y) ← argminn∗∈N∗distance(n

∗, n|x, y)
 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝
Table 3-1: Pseudo code for Two-Cycle algorithm (adapted from k. Li)

SwitchLinToLout(x, y)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lin(n)
 remove (x, y) from Lin(n) and add it to Lout(n)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x∗, y∗) ∈ N4(x, y) with ϕ(x

∗, y∗) = −3

 Add (x∗, y∗) to Lin(n); ϕ(x
∗, y∗) ← −1

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

SwitchLoutToLin(x, y)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n)
 𝐢𝐟 Tr(x, y) ≠ 1 {Exit} 𝐞𝐧𝐝

 remove (x, y) from Lout(n) and add it to Lin(n)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x∗, y∗) ∈ N4(x, y) with ϕ(x

∗, y∗) = 3

 Add (x∗, y∗) to Lout(n); ϕ(x
∗, y∗) ← 1

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

UpdateLin(Lin(n))
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lin(n)
 𝐢𝐟 ϕ(x∗, y∗) < 0, ∀(x∗, y∗) ∈ N 4(x, y)
 remove (x, y) from Lin(n); ϕ(x, y) ← −3

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

UpdateLout(Lout(n))
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (x, y) ∈ Lout(n)
 𝐢𝐟 ϕ(x∗, y∗) > 0, ∀(x∗, y∗) ∈ N 4(x, y)
 remove (x, y) from Lout(n); ϕ(x, y) ← 3

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

Table 3-2: Pseudo code for Two-Cycle algorithm aux functions (adapted from k. Li)

21

3.2.4 Topological Constraints

Since multiple objects are tracked simultaneously, multiple contours will need to be

simultaneously evolved. When multiple contours evolve, there is potential for the contours to

incorrectly merge. Similar to the biological cells in [1], the two primary goals here are to: (1)

allow the contours to split: (2) allow contours that came from the same original identification to

merge while preventing contours from different objects to merge. To protect against this splitting

and incorrect merging of contours that do not belong to the same object, topological constraints

are employed.

The relaxed topological number, adapted from [1], is used to test if a pixel should evolve based

on the aforementioned requirements. It is calculated by:

Tr(x, y) = min [α(x, y),max (Tobj(x, y), Tbg(x, y))] 3-16

α(x, y) is the number of overlapping object regions, Tobj(x, y) is the number of 4-connected

components in the set ΩN ∩ N8(x, y) and Tbg(x, y) is the number of 8-connected components in

the set ΩO ∩ N8(x, y). The max (Tobj(x, y), Tbg(x, y)) is from the definition of a “simple” point;

it prevents merging of objects. The α(x, y) is the added component that allows objects to merge

if they have the same object ID. Figure x shows an example from the data sets collected.

3.2.5 Speed Equation

The speed function (F̂) is responsible for driving the contour towards the correct boundary. In

this work, the function utilized incorporates information derived from each object’s region, edge,

and motion.

22

F̂(x, y) = F̂region(x, y) + wedge F̂edge(x, y) + wmotion F̂motion(x, y) 3-17

Where wedge and wmotion are the weights associated with the edge component and the motion

component, respectively.

3.2.5.1 Region Component

To calculate the region component of the speed function, the initial segmentation (χ) from section

2.1 is utilized. The output from the segmentation module is based on the binary union of a

region-based detection and an edge-based detection. It is derived from a region energy term

presented by [19]. It represents the joint posterior probability that each pixel in frame k belongs

to a certain propagated region, subject to a penalty on the total length of the boundary.

The region component of the speed function is calculated by:

F̂region(x, y) = {
1, if χ (x, y) > 0
0, otherwise

} 3-18

3.2.5.2 Edge Component

The edge component is a measure of the “edgeness” at the boundary; it is inspired by geodesic

active contours [20]. This can be interpreted as the length of a curve in a Riemannian Space

where the metric is induced by image edges [1]. It is calculated by:

F̂edge(x, y) = −(e(x + 1, y) − e(x − 1, y))(ϕ(x + 1, y) − ϕ(x − 1, y)) +

(e(x, y + 1) − e(x, −1))(ϕ(x, y + 1) − ϕ(x, y − 1))

3-19

23

Where e(x,y) is defined as the Euclidean distance transform of the edge map of the intensity. The

canny edge detector is used to calculate the edge map of the range. This technique is used

because the definition induced fewer local minima as opposed to the gradient-based definition

[1].

3.2.5.3 Motion Component

The motion component is included to incorporate past (and predicted future) dynamics of the

object into the energy equation. It represents the joint probability that the object regions reside at

the locations predicted by their respective motion filters. It is calculated by:

F̂(x, y)motion = ∑ (logN(x, y | ẑn,k|k−1 ,Sn,k−1 ,) − τ) Rn(ψ(x, y))

n∈Nk−1

 3-20

Where, Rn(ψ(x, y)) = {
1 if ψ(x, y) = n

0 if ψ(x, y) ≠ n
} 3-21

ẑn,k|k−1 and Sn,k−1 are the mean and covariance, respectively, of the bivariate normal

distribution, N(∙|x, S). The mean is the predicted centroid position for object n. It is calculated

using the combined predicted state (ŝk|k−1) as follows:

ẑn,k|k−1 = H ŝk|k−1. 3-22

Sn,k−1 can be considered an elliptical approximation of the objects shape by second moment

matching. It is calculated by:

Sn,k−1 = cov{(x, y) | ψk−1(x, y) = n} 3-23

24

3.2.6 Interacting Multiple Models (IMM)

An Interacting multiple models (IMM) motion filter is implemented for the motion-based

calculation of the speed function from equation 3-17. The IMM filter operates multiple Kalman

filters in parallel, each of which is matched to a unique motion model. A Markov chain governs

the model transitions with a probability that is associated with switching from one model to the

next. The result is a filter that computes an optimal weighted sum of the Kalman filter outputs.

The stages of the IMM process consists of a mixing step, followed by filtering, and then

combining. The IMM acts as the high-level architecture, to help fuse the different motion

models.

3.2.6.1 State Equations

To model the dynamics of the objects a motion model is utilized. The motion model is defined

as:

sk = F
i sk−1 + vk−1

i , i ∈ {1,2…M}, where M is the number of motion models 3-24

Where, sk, is the state vector of an object in frame k, and contains the position (x y), velocity

 (ẋ ẏ), and acceleration (ẍ ÿ): sk = (x ẋ ẍ y ẏ ÿ). F
i is the state transition matrix for model i and

vk−1
i is the process noise vector (zero-mean Gaussian process with covariance Qi) for model i.

To relate the states to the measurements, a measurement model is defined as:

zk = Hsk + wk 3-25

25

Where zk is the measurement vector that contains the measured centroid position of the object. H

is the measurement matrix and wk is the measurement noise vector (zero-mean Gaussian process

with covariance R).

Three different motion models are implemented for the state transition matrix: constant speed

(F1), constant acceleration (F2), and random walk (F3). By fixing these values instead of

estimating them with an EM algorithm, the model weights can be used to indicate a dominate

type of motion [1].

F1 =

[

1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0]

 F2 =

[

1 Ts 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 Ts 0
0 1 0
0 0 0

]

F3 =

[

 1 Ts

Ts
2

2
0 1 Ts
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 Ts
Ts
2

2
0 1 Ts
0 0 1]

(

3-26

The measurement matrix is defined as:

H = [
1 0 0 0 0 0
0 0 0 1 0 0

] 3-27

3.2.6.2 Kalman Filter: Prediction

The predictions are calculated with a Kalman filter (note: other predicting filters can be used here

because of the modality of the IMM).

26

The initial combined covariance, γk−1
0j

, and state ŝk−1
0j

 are calculated given the weights, ρk−1
i ,

states, ŝk−1
i , and covariance, γk−1

i , of the previous frame.

ŝk−1
0j

= ∑ρk−1
i | j

i

 ŝk−1
i 3-28

γk−1
0j

=∑ρk−1
i | j

i

 [γk−1
i + (ŝk−1

i − ŝk−1
0j
)(ŝk−1

i − ŝk−1
0j
)
′
] ,

where ρk−1
i | j

=
Pij ρk−1

i

ρk|k−1
j

 and ρk|k−1
j

= ∑Pijρk−1
i

i

3-29

The weights, ρk|k−1
i , control the amount a given motion model will contribute to the final

prediction (along with its covariance). They are a function of all the transition probabilities from

all the other motion models. It utilizes the probability that the motion model will switch from a

different model to the one currently under considered. The states predication for each model

(ŝk|k−1
j

) and the covariance predication for each model (γk|k−1
j

) are calculated given the

combined initial covariance (γk−1
0j

) and the combined initial state (ŝk−1
0j

).

ŝk|k−1
j

= Fjŝk−1
0j

 3-30

γk|k−1
j

= Fj γk−1
0j

 (Fj)′ + Qj 3-31

Pij, in equation 3-29, is the Markovian transition probability of switching from motion model i to

motion model j of the current frame. The transition probabilities are often combined into a matrix

to make the Transition Probability Matrix (TPM). The TPM is defined as:

Pij = [

P11 P12 P13
P21 P22 P23
P31 P32 P33

] 3-32

27

A fixed matrix is chosen empirically although in the case of [1], online minimum mean-square

error estimation of the TPM is implemented with the idea that a fixed TPM would impede

discovery of unknown cell behavioral variations.

Figure 7-2 displays the State diagram of the transition probabilities.

Model 1

Random walk

Model 2

Constant

Velocity

Model 3

Constant

Acceleration

P 12

P 21

P
31

P
13

P32

P23

Figure 3-5: Graphic representation of the Transition Probabilities

The combined predicted state (ŝk|k−1) and the combined predicted covariance

(γk|k−1) are calculated by combining the filter outputs from equations 3-30 and 3-31. The

combining is performed as follows:

ŝk|k−1 = ∑ρk|k−1
j

 ŝk|k−1
j

j

 3-33

γk|k−1 = ∑ρk|k−1
j

j

[γk|k−1
j

+ (ŝk|k−1
j

− ŝk|k−1)(ŝk|k−1
j

− ŝk|k−1)′] 3-34

3.2.6.3 Kalman Filter: Update/Correction

Given the predicted states from equation 3-30 (ŝk|k−1
j

), covariance from equation 3-31 (γk|k−1
j

),

and measured Centroid (zk) the Kalman filters are utilized to obtain the updated states (sk
j
) and

covariance (γk
j
).

28

sk
j
= sk|k−1

j
+ Kk

j
(Zk − Hsk|k−1) 3-35

γk
j
= γ̂k|k−1

j
− Kk

j
(Zk − Hŝk|k−1

j
) , Kk

j
= γk|k−1

j
H′ (Hγk|k−1

j
H′ + R)

−1

 3-36

K is known as the Kalman gain. Note Ẑk|k−1 = Hŝk|k−1 is the predicted centroid that is used for

the motion component of the speed function (equation 3-17). The likelihood that a model j is

activated in the current frame (k) is

λk
j
=
exp [−

1
2
(yk
j
)′(𝐒k

j
)
−1
(yk

j
)]

√2πdet (𝐒k
j
)

 3-37

Where yk
j
= Zk − Ẑk|k−1 ; this is known as the innovation of the Kalman filter j. Note the 𝐒k

j
 in

equation 22 is the associated measurement covariance matrix. The combined state and

covariance is computed using equations 18 and 19, however ρk|k−1
j

 is replaced with ρk
j
=

ρk|k−1
j

λk
j

∑ ρk|k−1
i λk

i
i

.

The algorithm sets the weight of the motion filter to zero for the first five frames, so that the

Kalman filter can build up history. The initial model weights are set equal to indicate that they

are all equally likely.

29

Initial Mixed State and Covariance

1
1

ˆ , 1
1

ˆ
 kk

s 2
1

ˆ , 2
1

ˆ
 kk

s M
k

M
k

s
1

ˆ ,
1

ˆ

01
1

ˆ , 01
1

ˆ
 kk

s 02
1

ˆ , 02
1

ˆ
 kk

s
M

k
M

k
s 0

1
ˆ , 0

1
ˆ

Transition

Probability Matrix

(TPM)

The State and Covariance

from last frame

Kalman

Prediction for

model 1

Kalman

Prediction for

model 2

Kalman

Prediction for

model M

1
1|

ˆ , 1
1|

ˆ
 kkkk

s 2
1|

ˆ , 2
1|

ˆ
 kkkk

s M
kk

M
kk

s
1|

ˆ ,
1|

ˆ

The State and Covariance

Prediction

Calculate each

Model Weights

The State and Covariance

Mixed with the model weights

Kalman

Update for

model 1

Kalman

Update for

model 2

Kalman

Update for

model M

Predicted Mixed State and Covariance à Mixed Predicted

state used for motion component of speed function

Given the updated

measured centroid

Weights for

current frame

1ˆ , 1ˆ
kk

s
2ˆ , 2ˆ
kk

s M
k

M
k

s ̂ , ˆ

Updated State and Covariance

for the next frame

Figure 3-6: The Block diagram of the IMM structure and equations. Note: M equals 3 in the case of this

paper: (1) random motion, (2) constant velocity (3) constant acceleration

30

3.3 Track Compiler

Figure 1-7: Track Compiler diagram

The track compiler module is responsible for creating the track segments for each of the objects

and updating the map of labeled regions (ψk(x, y)). Once the contour evolution is complete, the

tracking algorithm confirms or adjusts each of the identifications and matches it up with its track,

if one exists. Any object that does not match to a single track is further processed to determine

what occurred.

Let Nkrepresent the set of labels for all track segments created up to the current frame, k. A track

segment is labeled “active” in frame k if it was successfully tracked in frame k-1, otherwise it is

labeled “inactive”.

The algorithm starts by comparing the map of labeled regions (ψk(x, y)) with the map of

potential object regions (χ (x,y)). Any region that does not overlap between the two maps is

considered either a new object or a lost object. If only one object from the map of labeled

regions overlaps (ψk(x, y)) with a region from the potential object region map (χ (x,y)), then that

object is assigned the same track segment. If multiple regions overlap and are separated by a

minimum distance (dmin), the track compiler considers the following options: (1) the object split

into multiple objects, so assigned it a “child” id that is associated to the original parent object: (2)

31

the object is a previously occluded object, so assign it the occluded object’s id number: (3) it is a

new object that has entered the FOV so assign it a new track id number.

The Pseudo code is presented in table 3-3. The Pseudo code for the additional function calls are

presented in table 3-4

Ω0 ← {(x, y)|ψ̂k(x, y) = 0}

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂ χk

 𝐢𝐟 w ⊂ χk 𝐭𝐡𝐞𝐧 AddTrack(Nnew, k, w)
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 ActiveTrack n ∈ Nk−1

 Ωn ← {(x, y)|ψ̂k(x, y) = n}

 𝐢𝐟 Ωn = ∅ 𝐭𝐡𝐞𝐧 DeactivateTrack(n)
 𝐞𝐥𝐬𝐞 𝐢𝐟 MultipleObjectsOverlap(Ωn)𝐭𝐡𝐞𝐧

 𝐢𝐟 ObjectSplit(Ωn)𝐭𝐡𝐞𝐧
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂ Ωn

 CreateChildTrack(nchild, n, k, ω)

 𝐞𝐥𝐬𝐞

 ω̂ ← SelectBestMatch(n, k, Ωn)
 UpdateTrack(n, k, ω̂)
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 connected component ω ⊂ Ωn \ ω̂

 AddTrack(nchild, ω, k)
 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐞𝐥𝐬𝐞

 UpdateTrack(n, k, ω̂)
 𝐞𝐧𝐝

𝐞𝐧𝐝

Table 3-3: Pseudo code for Track Compiler (adapted from k. Li)

32

///

//// AddTrack creates a new track segment labeled nnew; fills region ω with nnew; and initializes the

//// cell state based on measurements of ω.

///

 AddTrack(ω, nnew, k)
 CreateNewTrackSegment(nnew)
 FillRegion(ω,ψ, nnew)
 CalculateDynamics(ω)
Send

𝐞𝐧𝐝

///

//// updates the track segment n using the features of region ω, including the centroid

//// location, mean intensity, area, and eccentricity. The centroid and the mean intensity are

//// fed to the motion filter to obtain a filtered state of object n in frame k.

////
//

UpdateTrack(n, k, ω)
 CalculateDynamics(ω)
 UpdateTrackSegment(n)
𝐞𝐧𝐝

///

//// Add a child track for the object n with a unique label nchild, and fills the region ω with nchild.

//// Calculate the object state based on the measured centroid location and mean intensity of ω,

//// and the predicted state of object n (parent).

///

AddChildTrack(nchild, ω, n, k)
 CreateNewTrack(nnew)

 CalculateDynamics(ω)
𝐞𝐧𝐝

//

//// Selects component ω̂ ∈ Ωn that best matches the dynamics of object n. Use the innovation

//// likelihood and select the one which maximizes it.

//

SelectBestMatch(nchild, ω, n, k)
 CreateNewTrack(nnew)

 CalculateDynamics(ω)
 SelectMaxInnovationLikelihood()
𝐞𝐧𝐝

//

//// returns true if region Ωn has multiple connected components and the minimum distance

//// between any two points in different components is greater than a preset threshold dmin

//

ObjectSplit(Ωn)
 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 ConnectedComponent cc in Ωn

 𝐅𝐨𝐫 𝐢 = cc ∶ NumberOfConnectComponents

33

 DoMultipleComponentsOverlapRegion(cc)

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

Table 3-4: Pseudo code for Track Compiler auxiliary functions (adapted from k. Li)

3.4 Track Linker

The main goal here is to find tracks that split and came back together or reemerge in accordance

to the following physical parameters:

(1) No object is removed unless it leaves the FOV or is considered noise.

(2) No new object is added unless it enters from outside the FOV or it is matched to a

previously occluded object.

The track linker attempts to match lost or previously occluded tracks by using the following

method:

Let Nfound = {nf|f = 1,2… , F}, denote the set of track segments that start after the first frame.

Nlost = {nl|l = 1,2… , L} denote the set of track segments that end before the current frame.

For each node pair, (nl, nf), an arc <nl, nf> is created between the two nodes if the last centroid of

nlis within the double cone centered at the first centroid location of nf.

√(xl − xf)
2 + (yl − yf)

2 ≤ |Kl − Kf|R + R0 3-38

With |Kl − Kf| ≤
D

2
. The |kl − kf| is to account for the number of frames that past with an object

track lost. D, R, and R0 are fixed parameters. kland kfare the frames when the referenced object

was lost and found, respectively. Each arc is assigned a weight (ωlf) and is defined as the

maximum innovation likelihood (ωlf = λnl,kf
max(nf)) of track nl on the measurement of track nfin

frame kf. It is calculated using equation 3-37:

34

λnl,kf
max (nf) =

exp [−
1
2
(yk
max)′(𝐒k

max)−1(yk
max)]

√2πdet (𝐒k
max)

 3-39

A maximum-likelihood matching algorithm is computed between tracks nl and nf. The

maximum innovation likelihood is also calculated for the one-to-two matching. In this case, the

spatial temporal mean of the two found objects (nf1 and nf2 for example) is assigned as the

starting point. The problem is solved as an integer programming problem:

max
x
𝐟T 𝐱 subject to 𝐀T𝐱 ≤ 𝐛 3-40

Where A be a constraint matrix of size H x (L+F), b is an (L+F) x 1 vector of ones, and f is a

likelihood vector of size H x 1. H is the total number of matchings hypotheses, both one-to-one

and one-to-two. L and F are the number of elements in Nlost and Nfound. The constraint matrix

contains the different hypotheses between the elements of Nlost and Nfound. The likelihood

vector holds the corresponding maximum innovation likelihood for the hypotheses in A. The

constraint matrix and likelihood vector are constructed according to the pseudo code in table 3-6

and equation 3-41 (one-to-one match) ,3-42 (one-to-two match). The solution selects the

matching hypotheses with the greatest maximum innovation likelihood that conforms to the

constraints imposed by C. Since this method utilizes the spatial temporal cone to filter and the

maximum innovation likelihood to match, both the location and the dynamics are incorporated

into the linking of lost tracks.

35

Nlost ← ∅ and Nfound ← ∅

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track n ∈ Nk

 𝐢𝐟 LostTrack(n, k) { Add n to Nlost }
 𝐞𝐥𝐬𝐞 𝐢𝐟 FoundTrack(n, k) { Add n to Nfound}
𝐞𝐧𝐝

MatchTracks(Nlost, Nfound)
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nl ∈ Nlost
 𝐢𝐟 IsMatchedToOne(nl, nf ∈ Nfound) { LinkTracks(nl, nf) }
 𝐞𝐥𝐬𝐞 𝐢𝐟 IsMatchedToTwo(nl; nf1 , nf2 ∈ Nfound) { LinkTracks(nl, nf) }

𝐞𝐧𝐝

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track n ∈ Nk

 𝐢𝐟 IsShort(n, k) { DeleteTrack(n) }
𝐞𝐧𝐝

Table 3-5: Pseudo code for Track Linker

///

//// MatchTracks
//

MatchTracks(Nlost, Nfound)
𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nl ∈ Nlost
 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 track nf ∈ Nfound

 𝐢𝐟 InsideDoubleCone(nl, nf, kl,kf)

 ωlf = CalculateMaxInnovationLikelihood(nl, nf, kl,kf);
 // Store connections to test for one-to-two connections after this loop

 PotentialSelection.Append(nl, nf, kl,kf, ωlf)
 ConstraintMatrix.Append(nl, nf,);
 LikelihoodVector.Append(ωlf);
 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 OneToTwoMatches(nl) h′ ∈ PotentialSelection

 ωlf1f2 = CalculateMaxInnovationLikelihoodWithSpatialTemporalMean (nl, nf1 , nf2 , kl,kf);

 ConstraintMatrix.Append(nl, nf1 , nf2)

 LikelihoodVector.Append(ωlf1f2);

𝐞𝐧𝐝

// Solve for the solution vector x from the integer programming problem

x = intlinprog(LikelihoodVector, ConstraintMatrix,1)

𝐞𝐧𝐝

Table 3-6 Pseudo code for Track Linker auxiliary functions (adapted from k. Li).

36

A(h, i) = {
1, if i = l, i = L + f
0, otherwise

d(h) = ωlf

3-41

A(h, i) = {
1, if i = l, i = L + f1, i = L + f2
0, otherwise

d(h) = ωlf1f2

3-42

3.5 Object Database

After the tracks are finalized, a new entry is sent to the object database. The database is a

Elasticsearch database using the open source Elastic Stack [https://www.elastic.co/products]. The

data is also stored as csv format flat file post-analysis. The database stores the following

information: Track (“Parent”) ID, Child ID, Centroid, Area, Covariance, Predicted Centroid,

motion filter statistics, and all the state vector information.

37

Chapter 4

Results

4.1 Detection, Segmentation, and Tracking Results

The system discussed in chapter 3 was tested with Flash LIDAR data. The Range data is the only

component processed, any intensity image displayed is only for the sake of showing the objects

and background. It is sometimes difficult to visually discern the objects and background in the

range data image, in those situations the results are overlaid on top of the intensity image.

Figure 4-1 shows a few examples of the detection and segmentation of a frame. The contours are

layered on top of the intensity image. The top two images show an example where the lower

limit range filter was set to high. This is why there is a straight line cutting where the contours

stop growing on their legs. The bottom set shows an example where the max iterations of the

two-cycle algorithm should be increased since some of the contours did not completely grow. In

both cases, the segmentation works well and the contours approximate the objects.

38

Figure 4-1: Segmentation example, Range Cutoff: (Left) The contours displayed on the intensity image.

(Right) The segmentation of the input frame

Figure 4-2: Segmentation example, contour cycle limit: (Left) The contours displayed on the intensity image.

(Right) The segmentation of the input frame

Figure 4-3 shows another segmentation along with a graphical representation of how the elliptical

approximation used in the motion filter fits to a segmented object.

Figure 4-3: Example of Elliptical approximation of contours used in the motion filter

39

Figure 4-4 presents a short sequence of frames along with its track assignments. The sequence

shows that the topological constraint correctly prevented objects 2 and 3 from merging. It also

automatically identified object 5 as it enters the frame. Since object 5 is detected near the FOV

boarder, it is assigned it a new ID.

Figure 4-4: 3-D Tracks for multiple objects (vertical axis is the frame number). Object 1 is dark blue, 2 is

light blue, 3 is yellow, 4 is orange, r is maroon. (a) Frame 1 (b) Frame 4 (c) Frame 6 (d) Frame 8 (e) Frame 9 (f) Frame

10 (g) Frame 11

40

Figure 4-5 displays the predicted positions from the IMM motion filter as the objects move. The

solid line is the measured position and the dotted is the predicted. The predicted position is able

to converge within a few frames unless an abrupt change occurs.

Figure 4-5: The predicted and measured positions from the IMM motion filter. The dashed line is the

predicted data and the solid line is the measured.

Figure 4-6 presents a short sequence of frames along with its track assignments. This sequence

displays two main points. First, object 5 gets partially occluded by object 4 and causes a split.

The tracking system correctly identifies the situation and assigns two child IDs to object 5.

Second, in the next frame, it is completely occluded and the tracking system flags them as

occluded and propagates their position based on the predicted position. In the following frame,

child 2 emerges and is tracked.

41

Frame 12 Frame 13 Frame 14

Frame 15 Frame 16 Frame 17

Frame 12 Frame 13 Frame 14

42

Frame 15 Frame 16 Frame 17

Figure 4-6: Object Track and Link (top) A segment of the center positions for the frames listed below the plot

(top). A series of the Intensity images with the contours overlaid (middle). A series of the Range images with the

contours overlaid (bottom).

The topological constraint that stopped objects with different IDs from merging caused issues in

two scenarios: (1) if the object enters a vehicle, (2) if the object initially is segmented into two

objects. Consider the scenario where a person enters a car, the car drive somewhere and the

person gets out. If the person and the vehicle have separate track ID’s, they will not be able to

merge when the person enters the car; it will be flagged as occluded. The car then drives off, the

person gets out and they are now either assigned a new ID (or potentially get assigned a false

association if they exit the vehicle close to other tracked objects). Either way, at that point the

connection to the original object track is broken. If the topological constraints allowed the

objects to merge, then the track could persist through that situation. The system implemented for

tracking split objects could be extended to account for linking merged objects. The second

scenario is displayed in Figure 4-7, the person on the right has an item across their waist. This

item causes the segmentation to split the initial detection into two objects. A few frames later the

person is segmented as a single object. Since the object properties are significantly different than

either one of the small objects, the algorithm flagged the two smaller objects as occluded and

assigned it a new temporary id. This case can also be avoided if the objects of different ID’s are

allowed to merge.

43

Figure 4-7: Segmentation of object that is initially split and later is detected as a single object.

44

Chapter 5

Conclusion

The system performed with a varying degree of success. It is able to segment the image to at

least a close approximation for the majority of the frames. However, if often picks up a few false

detections and sometimes completely misses people in the scene. If the segmentation step works,

then the tracker behaves as expected. The IMM adapts quickly to changing motion and assists

the contour evolution, as well as, the track linking. There are cases when the tracker assigns the

incorrect id to an object but that is normally explained by the detection module providing a false

object.

 The most significant issue was dealing with large displacements between frames, or equivalently,

large relative velocity. If the frame rate is not high or the objects are moving too fast, it can

cause false assignments and dropped tracks. If the motion filter correctly models the dynamics, it

helps since it can influence the evolution via the speed function from the predicted dynamics.

However, in the data tested for this work, it normally would drop the track and create the object

as a new temporary object.

The data processed consisted of scenes where the camera was stationary, as well as, panning. In

the case where the camera was panning, objects that were moving in the opposite direction of the

camera’s rotation had a large positional displacement between frames. The large jump normally

caused the tracker to drop the track.

In the future, other detection and segmentation algorithms can be introduced to assist with the

initial detection. Other rules can be incorporated to deal with large relative velocities or the

camera motion can be determined and included in the calculations. Also, it would be interesting

45

to analyze the IMM filters to look for abnormal behavior indicators or to incorporate all the

different data components of the LIDAR output to see what benefit it provides.

46

Bibliography

[1] Li, K., Miller E.,Chen M., Smith, A. S., Kanade T., Weiss L., Campbell P., “Cell population

tracking and lineage construction with spatiotemporal context,”, Medical Image Analysis,

546-566 (2008).

[2] Shi Y., Karl W., "Real-Time Algorithm for the Approximation of Level-Set-Based Curve

Evolution," IEEE Transactions on image processing, VOL. 17, NO. 5, 645-656 (May,

2008).

[3] Natale, D., Tutwiler, R., “3DSF: Three-dimensional Spatiotemporal Fusion,” Defense

Transformation and Net-Centric Systems 2011, Vol. 8062 80620E-1

[4] V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in

image processing”, Numer. Math., vol. 66, pp. 1-31, 1993.

[5] R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape modeling with front propagation: a level

set approach”, IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, pp. 158-175, 1995.

[6] Osher, Stanley. "Level set methods." Geometric level set methods in imaging, vision, and

graphics. Springer New York, 2003. 3-20

[7] S. Osher and James A. Sethian. Fronts propagating with curvature dependent speed:

Algorithms based on Hamilton-Jacobi formulations. J. Computational Physics, 79(1):12-49,

1988

[8] Shi, Yonggang, and William Clement Karl. "Real-time tracking using level sets." 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR'05). Vol. 2. IEEE, 2005

[9] Osher S, Sethian J. Fronts propagation with curvature-dependent speed: Algorithms based

on Hamilton–Jacobi formulations. J Comput Phys. 1988;79:12–49

47

[10] Shi, Yonggang, and William Clem Karl. “A Real-Time Algorithm for the Approximation

of Level-Set-Based Curve Evolution.” IEEE transactions on image processing: a

publication of the IEEE Signal Processing Society 17.5 (2008): 645–656. PMC. Web. 26

Nov. 2016.

[11] T. Laux, "ASC's 3D Flash LIDAR™ Camera: The Science behind ASC's 3D Depth

Imaging Video Camera," SMPTE International Conference on Stereoscopic 3D for Media

and Entertainment, New York, NY, USA, 2010, pp. 1-10. doi: 10.5594/M001404

[12] Luo, Wenhan, et al. "Multiple Object Tracking: A Literature Review." arXiv preprint

arXiv:1409.7618 (2014).

[13] D. J. Natale, R. L. Tutwiler, M. S. Baran and J. R. Durkin, "Using full motion 3D Flash

LIDAR video for target detection, segmentation, and tracking," 2010 IEEE Southwest

Symposium on Image Analysis & Interpretation (SSIAI), Austin, TX, 2010, pp. 21-24.

[14] Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Commun.

ACM 24, 6 (June 1981), 381-395.

[15] Han, Xiao, Chenyang Xu, and Jerry L. Prince. "A topology preserving level set method for

geometric deformable models." IEEE Transactions on Pattern Analysis and Machine

Intelligence 25.6 (2003): 755-768.

[16] Xu, Chenyang, Anthony Yezzi, and Jerry L. Prince. "A summary of geometric level-set

analogues for a general class of parametric active contour and surface models." Variational

and Level Set Methods in Computer Vision, 2001. Proceedings. IEEE Workshop on. IEEE,

2001.

[17] Tsai, Richard, and Stanley Osher. "Review article: Level set methods and their

applications in image science." Communications in Mathematical Sciences 1.4 (2003): 1-

20.

48

[18] Shi, Yonggang, and William Clem Karl. "A real-time algorithm for the approximation of

level-set-based curve evolution." IEEE transactions on image processing 17.5 (2008): 645-

656.

[19] Zhu, Song Chun, and Alan Yuille. "Region competition: Unifying snakes, region growing,

and Bayes/MDL for multiband image segmentation." IEEE transactions on pattern analysis

and machine intelligence 18.9 (1996): 884-900.

[20] Caselles, Vicent, Ron Kimmel, and Guillermo Sapiro. "Geodesic active contours."

International journal of computer vision 22.1 (1997): 61-79.

[21] Cremers, Daniel, Mikael Rousson, and Rachid Deriche. "A review of statistical approaches

to level set segmentation: integrating color, texture, motion and shape." International

journal of computer vision 72.2 (2007): 195-215

[22] Goldenberg, Roman, et al. "Fast geodesic active contours." IEEE Transactions on Image

Processing 10.10 (2001): 1467-1475

[23] Zuliani, Marco. "RANSAC for Dummies." Vision Research Lab, University of California,

Santa Barbara (2009).

[24] Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. "Snakes: Active contour

models." International journal of computer vision 1.4 (1988): 321-331.

[25] Sethian, James A. "Evolution, implementation, and application of level set and fast

marching methods for advancing fronts." Journal of computational physics 169.2 (2001):

503-555.

