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ABSTRACT 

With the arrival of big data in genetics in the past decade, the field has experienced 

drastic changes. One game-changing breakthrough in genetics was the invention of genotyping 

and sequencing technology that allows researchers to examining single nucleotide polymorphisms 

(SNPs) across the entire genome. The other major breakthrough was the identification of 

haplotypes of common alleles in major human populations, which permitted the design of 

genotyping assays that effectively cover entire human genomes at a resolution appropriate for 

genetic mapping. Together, these technology breakthroughs have permitted researchers to carry 

out Genome Wide Association Studies (GWAS) on a wide range of traits including, for example, 

height and disease status. With GWAS, causal SNPs have been identified for some Mendelian 

traits, but for more complex genetic traits, the genetic heritability explained by the associated 

SNPs are low. In addition, high-throughput technologies to generate other types of -omics data 

such as gene expression, DNA methylation, and protein levels data have also emerged recently. 

How to best utilize the SNP data and other multi-omics data to understand genetic traits is one of 

the most important questions in the field today.  

With the increasing prevalence of multi-omics data, new types of analysis schemes and 

tools are needed to handle the additional complexity of the data. In particular, two areas of 

method development are in great need. First, statistical methods employed by GWAS do not 

consider the potential interacting relationships among genetic loci. Thus, methods that can 

explore the joint effect between multiple genetic loci or genetic factors could unveil new 

associations. Second, different types of –omics data may give distinctive representations of the 

overall biological system. By combining multi-omics data, we could potentially aggregate non-

overlapping information from each individual data types. Thus, the focus of this dissertation is on 

developing and improving computational methods that can jointly model multiple types of 
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genomics data. First, an evaluation of an existing method, grammatical evolution neural network, 

was conducted to identify the optimal algorithm settings for the detection of genetic associations. 

It was found that under certain algorithm settings,  the neural networks have been restricted to 

one-layer simple network. Using a parameter sweep approach, the analysis identified optimal 

settings that allow for building more flexible network structures. Then, the algorithm was applied 

to integrate multi-omics data to model drug-induced cytotoxicity for a number of cancer drugs. 

By combining different types of –omics data including SNPs, gene expression and methylation 

levels, we were able to model a higher portion of the observed variability than any individual data 

type alone. However, one drawback of the existing neural network approach is the limited 

interpretability. To this end, a new algorithm based on Bayesian Networks was created. One 

novelty of the approach is the ability to independently fit a distinct Bayesian Network for each 

categories of a phenotype. This allows for identifying category specific interactions as well as 

common interactions across different categories. Analysis using simulated SNP data has shown 

that the Bayesian Network approach outperformed the Neural Network approach in many 

settings, particularly in situation where the data contains multiple interacting loci. When applied 

to a type 2 diabetes dataset, the algorithm was able to identify distinctive interaction patterns 

between cases and controls.  Ultimately, the goal of this dissertation has been to fully take 

advantage of the newly available data to understand the genetic basis of complex traits.  
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Chapter 1*1 
 

Introduction 

Background 

With the rapid development and increasing prevalence of high-throughput multi-

dimensional genomics data, genetic research on complex human traits has seen its natural 

transition to genomics, which concerns with genome-wide interrogation of trait influencing 

genetic factors. With the arrival of big data in genetics research, the field is facing unprecedented 

challenges to utilize and develop appropriate analytical approaches to keep up with the increasing 

growth of data. Thus, the goal for my dissertation is to develop and apply new computational 

tools that can maximize the utilization of “big data” in genetics.   

The straightforward interpretation of “Big data” pertains to the volume of datasets. 

However, big data is also characterized by three additional Vs: variety, velocity, and veracity(1). 

In the past decade, we have seen volume of datasets increasing from a few hundred to millions of 

independent variables. The growth was also observed in a variety of data including, but not 

limited to, sequencing data, imaging data, and electronic health record data. For sequencing data 

alone, double the amount of data are being produced every seven months(2). Accompanied with 

the increasing amount of data is the increase of biases and noise in the data. Thus, more attention 

is needed to deal with the veracity of the data. Recently, it has been estimated that the computing 

resources needed to analyze genomics data will exceed that of YouTube, Twitter and astronomy 

                                                        
1 Portions of the chapter are under preparation for journal submission 
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by 2025(2). As such, the field is experiencing an unusual growth that needs to be met with 

commensurate tools. 

The significant growth of data in genetics was achieved by the maturation of genome-

wide genotyping and sequencing technology, which has led to the development of Genome-Wide 

Association Studies (GWAS). In the context of genetics research, GWAS systematically 

evaluates common single nucleotide polymorphisms (SNPs) throughout the genome for 

association with various phenotypes, such as height(3) and disease status(4). Compared with the 

candidate gene approach, GWAS excels in discovery of novel associations and the ability to 

systematically test a much larger number of hypotheses. Many previous research projects have 

reported successful GWAS studies (5–11). However, while GWAS have identified the most 

strongly associated individual variants, much more information could still be gained from the 

data. In addition, association between observable phenotypes with other intermediate phenotypes 

such as gene expression(12), epigenetic variations(13,14), and protein variations(15) are starting 

to be explored. 

Various computational methods have been developed to handle the increasingly immense 

and complex data in genomics. Owing to the complex architecture of genetic traits, there is not an 

off-the-shelf method that is suitable for all types of data and analysis.  Different methods are 

needed for performing association analysis, identifying genetic epistasis, incorporating prior 

biological knowledge, and carrying out system genomics analysis. In this chapter, I will describe 

the principles of various analytical methods commonly used in genomics research, the strength 

and weakness of these approaches, and some tools that implement these strategies. 



3 

 

Association analysis 

The simplest and most commonly used analysis strategy in genomics research is the 

association analysis. As its name suggests, association analysis aims to identify factor(s) that are 

marginally associated with genetic traits. Example outcomes include whether or not having a 

disease (case-control), height (quantitative trait), and different levels of drug response 

(categorical). In statistical terms, association analysis tests the null hypothesis that no factor(s) are 

associated with the phenotype. Under this null hypothesis, if the observed data lies in the extreme 

ends of the null distribution, the null hypothesis can be rejected and we can conclude a 

statistically significant association. Depending on the types of the phenotype, different statistical 

tests can be used (Table 1-1).   

The most common types of association analysis are candidate gene studies and genome-

wide association studies (23). A genetic study with the candidate gene approach typically 

interrogates up to hundreds of SNPs within carefully selected biological candidate genes. As 

such, the most important factor in determining the success of candidate gene study relies on the 

selection of genes. Selection of candidate genes is generally based on manual search of 

previously published literature; however, there are also computational methods that can 

Table 1-1:  Common statistical tests used in association analysis. 

Phenotype Variable Statistical test References 

Binary (case-control) Pearson 2df, Fisher, Cochran-

Armitage, Logistic regression 

(16–18) 

Continuous (quantitative trait) Linear regression, ANOVA (19,20) 

Categorical (high, 

intermediate, low 

metabolizers) 

Multinomial regression, 

proportional odds regression 

(21,22) 
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automatically select candidate genes, for example, based on gene-gene interactions(24). GWAS 

differs from the candidate gene approach in both scale and interpretation. A typical GWAS 

includes tens-of-thousands to up to millions of SNPs genotyped in both genic and nongenic 

regions. Because of this, it can potentially identify novel associations that are not explored by the 

candidate gene approach. GWAS is also largely “hypothesis free” as opposed to the candidate 

gene approach, which tests for specific genes’ association with the phenotype. Notable examples 

of GWAS include studies on interferon-α(25–27), statin-induced myopathy(8), and various 

chemotherapeutic drug-induced responses(20,28–30). In addition, association analysis using other 

–omics data are also gaining traction. Gene expression has been used to link gene targets to 

complex phenotypic traits(31–33). Metabotype have been shown to affect treatment response to 

SSRIs, Lithium, Aspirin and clopidogrel(34). Other data types including protein levels(35), 

epigenetics(36–38), and copy number variations(39,40) have all demonstrated the power of 

association analysis in genetic research. However, the major challenge in genome-wide 

association analysis is the burden of multiple-testing penalties. The basic idea is that given a fixed 

significance threshold α, the more number of tests being conducted, the more chances of 

obtaining a type I error. For example, using the typical α of 0.05, conducting 100 tests could have 

99.4% probability of finding one significant SNP by random chance ( P(at least one type I error) 

= 1-P(no type I error) = 1-0.95100=0.994). Thus, the α threshold needs to be lowered to control the 

number of false positive results in genome-wide studies. The most stringent method for adjusting 

the α threshold is the Bonferroni correction. In order to achieve the expected α level for all tests, 

we need to estimate a new α’ threshold that satisfy α = 1-(1- α’)n, which leads to the Bonferroni 

corrected α’ that is approximately equal to  α /n. For example, to achieve an α of 0.05 for 1 

million independent tests, the α’ needs to be 5x10-8. The Bonferroni correction is overtly stringent 

because genome-wide SNPs are not independent, thus n is in fact smaller than the number of total 

SNPs and is population specific(41). An alternative and less conservative approach to Bonferroni 
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is the false discovery rate (FDR) approach. FDR controls the proportion of false positive tests 

among all positive tests. Outside of the frequentist paradigm, Bayesian approaches can avoid the 

multiple-testing adjustment because the prior probability of associations do not depend on the 

number of tests performed(42).  

Despite the simplicity of the association analysis, it still occupies an important position in 

the field today. The parsimonious nature of the model enables easy interpretation and replication. 

Because association analysis is carried out one variable at a time, the analysis can easily be 

parallelized. As the size of datasets become in the range of Gigabytes and Terabytes, association 

analysis may be the only viable analysis that can be systematically carried out and compared 

across different studies.  

A number of software packages have been created to perform association analysis. Many 

have the ability to include covariates such as age and gender. Several mixed model based 

methods can also automatically adjust for population sub-structures. Popular software for 

association analysis include Plink(43), PLATO(44), GenABEL(45), GEMMA(46), and FaST-

LMM(47). 

   Epistasis 

Epistasis can be interpreted differently under different contexts, but most falls under the 

distinction between biological and statistical epistasis(48). Briefly, biological epistasis represents 

the physical interactions among molecules in an organism, while statistical epistasis can be seen 

as mathematical deviation from additivity in the collected data. Figure 1-1 is an example of 

statistical epistasis, which is the focus of this section. 
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One question remaining unanswered is whether SNPs affect genetic traits independently 

and additively (Figure 1-1A), two assumptions of association studies, or whether the SNPs’ 

effects are dependent on each other (Figure 1-1B). Exploring epistasis, or gene-gene interactions, 

is a worthwhile complementary strategy in genetics research due to its successes in model 

organisms(49); however, mapping epistasis is no doubt computationally challenging. Imaging 

there are N SNPs of interest. Evaluating all pair-wise interactions would equate to (N choose 2) 

comparisons, thus a typical GWAS of 500,000 SNPs would results in (500,000 choose 2) or 

1.2x1011 comparisons, a difficult yet feasible analysis. However, whole genome sequencing data 

can easily generate tens of millions of variables, a dataset with 10 million SNPs would equate to 

5x1013 or 50,000 billion pairwise comparisons. Using a lower estimate, if a GWAS analysis takes 

one hour of computational time, 50,000 billion comparisons would take about one hundred 

million computer hours. Despite the obvious challenges to identify epistasis from large-scale 

datasets, there have been increased efforts in methodology development in this area.  

 

 
Figure 1-1. Epistasis between two SNPs. Panel A shows the effect of two SNPs on a drug 
response without epistatic effect. Panel B shows the situation where the drug response depends on 
the epistasis effect of two SNPs. 
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Variable filtering is a common strategy to reduce the search space for identifying 

epistasis. Examples of filtering strategies include hypothesis-driven tests of interaction on the 

basis of external knowledge (e.g candidate gene, pathways) or hypothesis-free filtering based on 

the data characteristics (e.g. minor allele frequency threshold or SNPs main effects(50–52)). 

Filtering strategy not only can speed up the analysis, it can also lead to increased power due to the 

lowered multiple testing penalties. However, it is also prone to increase false negatives because 

the causal variants can be filtered out. 

 

Whether or not variable filtering is performed, a regression model can be used to test the 

existence of epistasis. The most common way to test for interactions using regression models is to 

include main effect as well as interaction terms in the model then test if the interaction term’s 

coefficient equals to zero(53). i.e Testing two way interactions involving two SNPs would take 

form of a regression equation Y = b0 + b1(SNP1) + b2(SNP) + b3(SNP1*SNP2) + e with the null 

hypothesis being tested is b3=0. It should be noted that testing all possible interaction models 

would dramatically increase the multiple testing penalties. For higher order interactions, one of 

the most widely used methods is Multifactor Dimensionality Reduction (MDR)(54,55). In a two-

way interaction model involving di-allelic loci, MDR reclassifies the nine possible genotype 

combinations into “high risk” and “low risk” groups based on the case and control ratios of each 

genotype combination. Similarly, any n-way interaction models can be reduced to a one-

dimensional model, effectively lowering the number of parameters of statistical tests. MDR has 

been widely applied to human complex diseases (56,57). Variations of MDR have also been 

developed to be applicable to continuous phenotypes and have the ability to include 

covariates(58). Many other approaches in the realm of machine learning and Bayesian methods 

that were also developed to detect epistatic interactions are shown in Table 1-2. 
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Biological knowledge 

With the arrival of low cost and easily generated big data, the typical genetics research 

has transitioned from candidate gene studies into genome-wide studies. As alluded to previously, 

the main challenges in the analysis methods of big data are the computational burden of exploring 

of a large search space and with it, the increased multiple hypothesis penalty. As a result, many 

Table 1-2:  A partial list of data analysis methods of epistasis. 

Approach Methods Software and/or tools 

Statistical Regression Plink(43) 

Regression Plato(44) 

Regression BOOST(59) 

Regression EPIBLASTER(60) 

Regression eCEO(61) 

Bayesian BEAM(62) 

Machine Learning Neural Networks ATHENA(63) 

Nonparametric MDR(54) 

Bayesian Networks ATHENA(64) 

Bayesian Neural 

Networks 

BNN(65) 

Random Forest Random Jungle(66), 

Ranger(67) 

RELIEF ReliefF/Turf(68,69) 
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variable selection techniques have been developed to reduce the number of total variables. 

Typically, the hypothesis-free variable selection techniques assess the associations of predictor 

variables and the outcome variable. The draw back of using the outcome variable during variable 

selection is that the subsequent analyses are no longer independent, complicating the multiple 

hypothesis adjustment calculation. Alternatively, prior biological knowledge can be incorporated 

into genetics research to help generate and prioritize hypothesis (Table 1-3). Huang et al. used 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) to annotate genes 

and found significant Drug–gene-pathway relationships associated with drug response(70). Lin et 

al. designed an automatic system to extract previously published drug-related experiments from 

Gene Expression Omnibus (GEO) that can be used for meta-analysis(71). A tool named Biofilter 

has been developed to provide a platform to integrate multiple publically available biological 

databases(72) and has been applied to study virologic failure in efavirenz-containing 

treatment(73). Incorporating prior biological knowledge can aid in results interpretation; 

however, researchers should also keep in mind that prior knowledge is limited to what is known 

and published. This may bias the interpretation and limit the opportunity to identify novel 

findings.  
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Table 1-3: Biological knowledge databases in pharmacological research. 

Databases Information URL 

KEGG: Kyoto 

Encyclopedia of Genes 

and Genomes(74) 

Biological 

pathway, 

diseases, drugs, 

chemical 

substances. 

http://www.genome.jp/kegg/ 

GO: Gene 

Ontology(75) 

Gene, gene 

products, 

annotations. 

http://geneontology.org/ 

GEO: Gene Expression 

Omnibus(76) 

Genomics data 

repository 

http://www.ncbi.nlm.nih.gov/geo/ 

PharmGKB: The 

Pharmacogenomics 

Knowledgebase(77) 

Genomics, 

phenotype, and 

clinical 

information 

https://www.pharmgkb.org/ 

Biofilter(72) Variants 

annotation and 

filtering 

https://ritchielab.psu.edu/research/research-

areas/expert-knowledge-

bioinformatics/methods/biofilter 
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Systems genomics 

In addition to the advancement in generation of DNA sequence data, a whole range of 

other multi-omics data including gene expression levels(78,79), epigenetic profiles(80), and 

proteomics(81) have populated the field of genetics (Figure 1-2). 

 

How to best handle these additional sources of data poses serious challenges due to the 

unique characteristics associated with each of the data type in addition to the computational 

challenges due to the dataset size and the computational complexity due to the combinatorics and 

very large search space. Previous works have showed that a system genomics approach can better 

interrogate the genetic and phenotype associations than analysis methods based on a single data 

 

 
Figure 1-2:  A system genomics view of genomics. Complex biological and statistical relationship 
exists between and within each level of genomics data. Only a comprehensive analysis of all data 
may reveal the true determinant of the genetic outcome, e.g. drug response.  
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type(82–84). Due to the heterogeneity of the data types, methods used in systems genomics 

approaches are extremely varied. To determine the appropriate approaches, the researcher needs 

to first formulate the biological question into an analytical one. As an example, if the biological 

question is to determine subtypes of a disease, the analytical problem would be, if the data is 

stored as individuals x features (N x P), divide N into X groups such that p vectors in the same 

group are closer to each other than in other groups according to some distance measure D. N, P, 

X, and D then becomes important criteria for selecting the appropriate method (Figure 1-3).  

 

 
Figure 1-3:Analytical representation of identifying subtypes of a disease. N represents a 
population of individuals with a disease. P is a vector of measurements taken on each individual, 
e.g. SNPs or gene expression. The goal is to cluster N into X clusters according to the similarities 
between P features. The similarities are measured using a distance measure D. The resulting X 
clusters represent subtypes of the disease. 
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Generally speaking, system genomics approaches can be further divided into 

unsupervised or supervised methods. In the framework of unsupervised learning, the goal is to 

uncover patterns in the data without the presence of a phenotype variable.  An important 

application of unsupervised learning is to infer subtypes of a disease. For instance, iCluster(85) is 

a method that can integratively cluster samples based on multiple source of genomics data. It 

achieves this by first building a latent model for each type of data, then a K-means clustering 

algorithm is applied on the latent models to cluster the samples. Using SNPs, gene expression and 

Copy number variations (CNVs), iCluster was able to come up with new subtypes of breast 

cancer(86). Unsupervised learning has also been used in genetics to identify potential 

confounding factors in the data. Visscher et al. applied principal component analysis to a 

pharmacogenomics study in Canada and they were able to infer patients’ ancestry from a set of 

key biotransformation gene loci(87). Galvan et al. used a clustering method, AWclust(88), to 

group patients based on their ancestry and found that opioid-mediated pain relief is not associated 

with cluster memberships(89). 

In the realm of supervised learning, system genomics approach aim to build models that 

are predictive of the phenotype variable. Traditional association analysis of each individual data 

type separately is not optimal because information that is shared across multiple data types is not 

being explored. In real biological systems, it is likely that multiple layers of complexity are 

underlying the observed phenotype. Being able to model this complexity using multiple sources 

of data offers unprecedented opportunity for a more comprehensive view of the system. 

Integrative analysis of multi-omics data can be broadly categorized into multi-stage analysis and 

meta-dimensional analysis(90,91).  



14 

 

Multi-staged analysis  

Multi-staged analysis, as its name suggests, aims to divide data analysis into multiple 

steps, and signals are enriched with each step of the analysis. The main objective of the multi-

staged approach is to divide the analysis into multiple steps to find associations first between the 

different data types, then subsequently between the data types and the trait or phenotype of 

interest. Examples of multi-staged analyses are shown in Figure 1-4 and described below.  

 

 
Figure 1-4: Categorization of multi-staged analysis. Multi-staged analysis can be divided into 
three categories. a | Analysis of expression quantitative trait loci (eQTLs) analysis involves the 
identification of genetic variation associated with measures  of quantitative gene expression. b | 
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The most commonly used genomic variation integration technique so far has been a three-stage or 

triangle method(91). In the triangle method, the following steps are taken.  

1. SNPs are associated with the phenotype and filtered based on a genome-wide 

significance threshold.    

2. SNPs deemed significant from step 1 are then tested   for association with another 

level of omic data. For example, one option is to look for the association of SNPs with gene 

expression levels. These SNPs are called expression quantitative trait loci (eQTLs). Alternatively, 

methylation QTLs (mQTLs; which are SNPs associated with DNA methylation levels), 

metabolite QTLs (which are SNPs associated with metabolite levels) and protein QTLs (pQTLs; 

which are SNPs associated with protein levels or other molecular traits such as long non-coding 

RNA and miRNA) could be used.    

3. Omic data used in step 2 are then tested for correlation with the phenotype of interest.  

 

  Different methods of analysis can be used to implement this triangle approach, 

including linear or logistic regression (depending on a continuous or a binary dependent variable, 

respectively). The rationale of this approach is based on the assumption that genetic variations are 

the foundation of all other molecular variations. The triangle approach has been used, for example, 

in studies of chemotherapeutic drug response in HapMap cell lines, in which significant eQTLs 

were tested for correlation with the drug response(20,92,93). The difficulty of triangle-based 

Allele-specific expression involves the analysis of whether the maternal or paternal allele is 
preferentially expressed, followed by the association of this allele with cis-element variations and 
epigenetic modifications. c | Domain knowledge overlap involves a two-step analysis in which an 
initial association analysis is performed at the single-nucleotide polymorphism (SNP) or gene 
expression variable followed by the annotation of the significant associations with knowledge 
generated by other biological experiments. This approach enables the selection of association 
results with functional data to corroborate the association. CTCF, CCCTC-binding factor; Pol II, 
RNA polymerase II. (Source: Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods 
of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet) 
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methods comes when a relatively arbitrary threshold, generally a P value, is used to identify the 

significant associations for further analyses. As the P value threshold also needs to be adjusted for 

the number of tests being carried out to combat multiple testing problems, there is likely to be a 

large number of false-negative SNPs, eQTLs, mQTLs and pQTLs being filtered out. This 

approach is often used to find SNPs associated with both a gene expression trait or a methylation 

level and the phenotype of interest to focus on functional SNPs.  

Some researchers have begun to develop causal inference association approaches. For 

example, Schadt et al. have introduced a multistep approach to identify key drivers of complex 

traits that exploit the naturally occurring DNA variation observed in populations(94). DNA 

variation is tested for association with gene expression, and gene expression traits are then 

ordered relative to one another. Analyses then determine whether DNA variants that lead to 

variation in relative transcript abundances are supported statistically as an independent, causative 

or reactive function43 using maximum likelihood approaches. These causal approaches(94,95) 

allow the dissection of the genotype-to-phenotype process in a clear, linear manner.  

 Another approach that links genomic variations to transcript levels is called allele-

specific expression (ASE). In diploid organisms, one of the two alleles is preferentially expressed 

in some genes(96). ASE variants are associated with cis-element variations and epigenetic 

modifications(97). The first step of ASE approaches is to distinguish the gene product of one 

parental allele from the product of the other parental allele. Next, an analysis to associate the 

allele with gene expression (eQTLs) or methylation (mQTLs) can be carried out to compare the 

two alleles. Finally, the resulting alleles can be tested for correlation with a phenotype or an 

outcome of interest. The practicality of this approach depends on the extra resources used for 

experimentally tagging the two alleles and the subsequent mapping of the alleles. ASE and other 

extended methods such as allele-specific transcript structure (ASTS), which looks at the 

frequency of expression of splice transcripts that are allele-specific have been used to identify 
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functional variation(98) and protein–DNA(99) interactions in humans. This allele- specific 

approach has also been used in other contexts. For example, several groups have explored allele-

specific analysis in chromatin state(100) and histone modification(101). More allele-specific 

applications are likely to emerge as we continue to observe these allele-specific effects.  

Other studies have integrated functional and pathway information that is generated and 

consolidated by initiatives such as the Encyclopedia of DNA Elements (ENCODE)(102) and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG)(74) to select and annotate significant results. 

In this approach, the genomic regions of interest are inputs. Various software and databases can 

be used to determine whether the regions are within pathways and/or overlapping with functional 

units, such as transcription factor binding, hypermethylated or hypomethylated regions, DNase 

sensitivity and regulatory motifs. For example, a researcher may take a collection of genotyped 

SNPs and annotate them with domain knowledge from multiple public database resources. The 

subsequent list of SNPs that have functional annotations can then be taken into the next stage, 

during which they are associated with other omic data, such as gene expression data (from 

microarray or RNA-seq) or metabolomic data. The resulting SNPs that have functional 

annotations and that are associated with other omic data can then be evaluated for correlation 

with a phenotype or an outcome of interest. This approach can be similar to the triangle approach 

mentioned above, with the exception that there is another step of annotating the variants and only 

taking those with functional annotations to the next stage of analysis. Adding information from 

diverse data sets can substantially increase our knowledge of our data; however, we are also 

limited and biased by current knowledge.  

Even though multi-staged analysis uses both linear and nonlinear analytical mathematics 

to understand the relationship between two different types of data, there are clear limitations. For 

example, if complex traits are the result of a combination of DNA sequence variants, gene 

expression variability, methylation states and protein structure or expression changes that occurs 
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simultaneously along with environmental perturbations rather than in a stepwise linear model, the 

multi-staged approach will fail to effectively model the complex trait. However, when the 

relationship between genotype and phenotype can be modeled in a linear manner, as is the case 

for SNPs associated with metabolites and subsequently associated with phenotypes, for example, 

a multi-staged analysis would be applicable.  

Meta-dimensional analysis2  

Meta-dimensional analysis combines multiple data types in a simultaneous 

analysis(91,103,104) and is broadly categorized into three approaches: concatenation-based 

integration, transformation-based integration and model-based integration (Figure 1-5). 

  

                                                        
2 Ruowang Li is the secondary author for this section, which was adapted from Ritchie 

MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover 
genotype–phenotype interactions. Nat Rev Genet.   

 

 

Figure 1-5: Categorization of meta-dimensional analysis. Meta-dimensional analysis can be 
divided into three categories. a | Concatenation-based integration involves combining data sets 
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 Concatenation-based integration combines multiple data matrices for each sample into 

one large input matrix before constructing a model. One advantage of concatenation-based 

integration is that, after it is determined how to combine the variables into one matrix, it is 

relatively easy to use any statistical method for continuous and categorical data for analysis. For 

example, Fridley et al.(105) performed concatenation-based integration by incorporating multiple 

types of genomic data into an association analysis with a complex phenotype using a Bayesian 

modelling strategy. Data from SNPs and mRNA gene expression were combined into a single 

data matrix, and the joint relationship of mRNA gene expression and SNP genotypes was then 

modeled using a Bayesian integrative model to predict a quantitative phenotype (for example, 

drug cytotoxicity). Mankoo et al.(106) predicted time to recurrence and survival in ovarian cancer 

using copy number alteration, methylation, miRNA and gene expression data using a multivariate 

Cox LASSO (least absolute shrinkage and selection operator) model. This strategy involves per- 

forming variable selection via LASSO, rather than a stepwise method, and then modelling the 

selected set of variables in a Cox regression. The other main advantage of this approach is that 

concatenation-based integration is particularly useful for considering interactions between 

different types of genomic data. For example, if the underlying model that one is trying to detect 

is a SNP interacting with metabolite to explain disease risk and if the two variables are not 

combined into one model, then the effect may be missed. This approach has been used to 

from different data types at the raw or processed data level before modelling and analysis. b | 
Transformation-based integration involves performing mapping or data transformation of the 
underlying data sets before analysis, and the modelling approach is applied at the level of 
transformed matrices. c | Model-based integration is the process of performing analysis on each 
data type independently, followed by integration of the resultant models to generate knowledge 
about the trait of interest. miRNA, microRNA; SNP, single-nucleotide polymorphism. (Source: 
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover 
genotype–phenotype interactions. Nat Rev Genet) 
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combine SNP and gene expression data to predict high-density lipoprotein cholesterol 

levels(107,108), and to identify interactions between copy number alteration, methylation, 

miRNA and gene expression data associated with cancer clinical outcomes(109).  

The challenge with concatenation-based integration is identifying the best approach for 

combining multiple matrices that include data from different scales in a meaningful way. For 

example, SNP data contain 0, 1 or 2 as values corresponding to the copies of a specific allele per 

individual; copy number data may consist of –2, –1, 0, 1 or 2 as values corresponding to copy 

number status in a given genetic region (although they can also be continuous-scale data); and 

DNA methylation profiles report between 0 and 1 for CpG loci. Identifying a way to 

appropriately integrate or combine these data without biases driven by data type can be 

challenging. Furthermore, this form of data integration can inflate high-dimensionality for the 

data, with the number of samples being smaller than the number of measurements for each 

sample(110). Thus, concatenation-based integration is only suitable if the appropriate way to 

assemble the data matrix for analysis is determined. Subsequently, statistical or computational 

models can be used to analyse the data matrix to consider interactions between different types of 

genomic data. Data reduction strategies as described above may be needed, depending on the 

number of variables in the data matrix. If there are too many variables, the analysis may not be 

computationally feasible; therefore, performing data reduction to limit the number of variables 

would be required to make this analysis possible.  

The second approach, transformation-based integration, combines multiple data sets after 

transforming each data type into an intermediate form, such as a graph or a kernel matrix (a 

symmetrical and positive semi-definite matrix that represents the relative positions of all samples 

conducted by valid kernel functions). Multiple graphs or kernels can then be merged before 

elaborating any models (Figure 1-5). The transformation-based integration approach has the 

advantage of preserving data-type-specific properties from each data set when each type of data is 
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transformed into an appropriate intermediate representation. In addition, this approach can be 

used to integrate many types of data, including continuous or categorical values and sequence 

data, as long as the data contain a unifying feature, such as patient identifiers linking data types. 

Moreover, the transformation-based integration approach is robust to different data measurement 

scales.  

For example, Lanckriet et al.(111) proposed kernel-based integration for protein function 

prediction with multiple types of heterogeneous data, including amino acid sequences, 

hydropathy profiles, gene expression data and known protein–protein interactions, and Borgwardt 

et al.(112) combined structural, sequential and chemical information into one graph model for 

predicting protein function via graph kernels. By contrast, Tsuda et al.(113) and Shin et al.(114) 

predicted protein function with multiple networks using graph-based semi-supervised learning. 

Kim et al.(103) proposed a graph-based integration framework for predicting cancer clinical 

outcomes using copy number alteration, methylation, miRNA and gene expression data. The 

disadvantage of transformation-based integration is that identifying interactions between different 

types of data (such as a SNP and gene expression interaction) can be difficult if the separate 

transformation of the original feature space changes the ability to detect the interaction effect. 

Each data type is transformed independently, which can make it more difficult to detect some 

effects. The goal is to perform a data transformation that maintains the majority of the data-type-

specific properties so that these types of interaction effects are not missed. Thus, transformation-

based integration is suitable if there is a relevant intermediate representation, such as a kernel or 

graph, for each genomic data type, and the goal is to preserve data-type-specific properties while 

integrating them.  

Model-based integration, the third meta-dimensional approach, encompasses methods in 

which multiple models are generated using the different types of data as training sets, and a final 

model is then generated from the multiple models created during the training phase, preserving 
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data-specific properties. This approach can combine predictive models from different types of 

data. For example, model-based integration may allow the integration of data sets in which each 

data type is collected from a different set of patients but all patients have the same disease or 

phenotype. If the goal is to identify genetic, genomic and proteomic associations with ovarian 

cancer, data sets could be extracted from the public domain, where DNA sequence data may be 

available on five sets of patient samples, microarray data on eight sets of patient samples, and 

proteomic data on two sets of patient samples. Model-based integration would allow the 

independent analysis of each of the 15 data sets, followed by an integration of the top models 

from each data set to look for integrative models. This is an area of future work for the Analysis 

Tool for Heritable and Environmental Network Associations (ATHENA) 

methodology(107,115,116). ATHENA is a suite of analysis tools for performing systems 

genomic analyses to integrate different omic data and look for association with clinical outcomes. 

Model-based integration has been performed with ATHENA to look for associations between 

copy number alterations, methylation, microRNA and gene expression with ovarian cancer 

survival(115). A neural network model was constructed for each data type (such as copy number 

aberration and methylation) separately, and the four resulting models were then analysed to create 

an integrative model. As another example, a majority voting approach was used to predict drug 

resistance of HIV protease mutants(117) using structural features of the HIV protease–drug 

inhibitor complex and DNA sequence variants. In most cases, the variables from the top models 

are combined in a subsequent analysis. In addition, ensemble classifiers — such as predicted 

secondary structure, hydrophobicity, van der Waals volume, polarity, polarizability and pseudo-

amino acid composition — have been used to predict protein fold recognition(118). The resulting 

models (from each data type) were combined in a weighted voting scheme to determine the fold 

of the protein. Finally, network- based approaches have been developed in which a Bayesian 

network is constructed using gene expression data, metabolomic data and SNP genotype data, 
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followed by integration to construct probabilistic causal networks(119–121). In each of these 

model-based integration examples, a model is built on each data type individually, and the models 

are then combined in some meaningful way to detect integrative models.  

It is important to note that model-based integration requires a specific hypothesis and 

analysis for each data type, and a mechanism to combine the resulting models in a meaningful 

way. Consider a data set of cancer tumour tissue and normal tissue with DNA sequence, 

methylation and metabolomic data measured. Each of the three data types can be analysed for 

association with cancer. The resultant DNA sequence model, methylation model and 

metabolomics model can then be integrated to identify a meta-dimensional model. As the only 

variables that are incorporated into the integrative analysis are the ones that are detected in the 

data- type-specific modelling process, it is possible to miss some of the interactions between 

different data types if they do not have effects to identify within the data type. For example, if 

there is a pattern of methylation and another pattern of protein expression that are not associated 

with the outcome independently but only associated through their interaction, then their effects 

will be missed in model-based integration. Moreover, these forms of ensemble-based approaches 

are well known for overfitting(122). Therefore, model-based integration is particularly suitable if 

each genomic data type is extremely heterogeneous, such that combining the data matrix 

(concatenation-based integration) or performing data transformation to a common intermediate 

format (transformation-based integration) is not possible.  

Future direction 

There is a strong hope that genetics research can lead to personalized treatment in the 

future. Many analytical approaches have been developed to take advantage of the increasing 

breath and depth of the next generation genomics data. Despite the surge of new computational 
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methods development, it is safe to say that no method can comprehensively decipher all of the 

data on its own. The genetic architecture of complex traits is likely formed by the combination of 

individual and/or interactive effects from multiple sources of molecular factors. As an example, 

the NCI-DREAM drug sensitivity prediction challenge asked participants to use multi-omics data 

to predict drug sensitivity in breast cancer cell lines. The top performer used a Bayesian multitask 

multiple kernel learning method, which combines kernelized regression, multiview learning, 

multitask learning, and Bayesian inference(123). Thus, an ensemble approach where results from 

association analysis, epistasis, and system genomics study that are jointly analyzed would be 

immensely useful for the success of future genomics research (Figure 1-6).  

 

 
Figure 1-6:An ensemble approach to genomics research. Underneath a genomics data, there are 
potential causal individual genetic variants (red), epistatic interactions (green), and regulatory 
gene networks (orange). Individual methods are designed to capture one aspect of the total true 
signal. An ensemble approach can leverage the power of multiple approaches 
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Therefore, in relation to the above-mentioned challenges in this field, the main 

contributions of my dissertation are: 1. Evaluating and improving an existing tool (ATHENA) 

that has been developed to analyzed multi-omics data (Chapter 2). 2. Applying ATHENA to 

analyze multi-omics datasets in relation to a chemotherapeutic-induced drug response (Chapter 

3). 3. Developing an ensemble analysis approach that combines multiple sources of information 

to understand a complex genetic trait (Chapter 4). 4. Developing a new Bayesian Network 

algorithm that improves upon the existing methods implemented in ATHENA and evaluating the 

algorithm on simulated as well as real biological data (Chapter 5). Finally, I will summarize and 

discuss future directions (Chapter 6). 
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Chapter 2*3 
 

Evaluation of parameter contribution to neural network size and fitness in 
ATHENA for genetic analysis 

Abstract 

The vast amount of available genomics data provides us an unprecedented ability to 

survey the entire genome and search for the genetic determinants of complex diseases. Until now, 

Genome-wide association studies have been the predominant method to associate DNA variations 

to disease traits. GWAS have successfully uncovered many genetic variants associated with 

complex diseases when the effect loci are strongly associated with the trait. However, methods 

for studying interaction effects among multiple loci are still lacking. Established machine 

learning methods such as the grammatical evolution neural networks (GENN) can be adapted to 

help us uncover the missing interaction effects that are not captured by GWAS studies. We used 

an implementation of GENN distributed in the software package ATHENA (Analysis Tool for 

Heritable and Environmental Network Associations) to investigate the effects of multiple GENN 

parameters and data noise levels on model detection and network structure. We concluded that 

the models produced by GENN were greatly affected by algorithm parameters and data noise 

levels. We also produced complex, multi-layer networks that were not produced in the previous 

study. In summary, GENN can produce complex, multi-layered networks when the data require it 

for higher fitness and when the parameter settings allow for a wide search of the complex model 

space.  

                                                        
3 Adapted from Li	R,	Holzinger	ER,	Dudek	SM,	Ritchie	MD.	Evaluation	of	Parameter	

Contribution	to	Neural	Network	Size	and	Fitness	in	ATHENA	for	Genetic	Analysis.	Genet	
Program	Theory	Pract	XI.	2014 
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Introduction 

With the rapid advancement of the genomics field, huge amounts of biological data are 

being generated. One beneficiary of the technology advancement is the exponential growth of 

genotype data, which measures single nucleotide variations across the genome. In fact, recent 

assays provide up to 5-million SNVs on every person for relatively low cost. The most widely 

used method for analyzing the genotyping data has been the genome-wide association study 

(GWAS). GWAS employs a statistical test at each individual locus across the genome to 

determine whether the locus is associated with the outcome (phenotype). GWAS has successfully 

revealed the genetic determinants for many complex human diseases(124). However, analysis of 

the genotyping data has been a great challenge because of the complex underlying relationships 

that exist in the data and many of the current GWAS analyses do not test the effect of interactions 

among multiple loci on the phenotype. Performing an exhaustive search of all possible 

combinations of loci is also not feasible with the current computational power, as the 

combinatorics for 5-million SNVs explodes. To mine the missing genetic variations of the data, 

we utilized and modified machine-learning techniques to search for interactions among genetic 

factors(125,126). We developed the ATHENA package, which utilizes grammatical evolution 

neural networks (GENN), to uncover the genetic network models underlying the disease or 

phenotype.  

Previously, we reported that the final network models produced by grammatical evolution 

neural networks (GENN) with three variables were simple, 1-layer neural networks(127). Various 

parameter optimizations were attempted, but yielded little change in the depth of the neural 

networks. While 1-layer networks decrease the probability of finding false positives, it also raises 

the question of whether GENN can successfully model more complex interactions that are 

typically found in genomics data. Theoretically, GENN models should be quite capable of 
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building multilayer network structures, but empiric evidence based on (127) led to concern. 

Specifically, three hypotheses were considered: 1) the GENN grammar is biased toward 1-layer 

networks, 2) the parameters selected for the GENN analysis was not capable of building multi-

layer networks, 3) the data simulation models did not warrant multi-layer networks.  

The goal of this study is to examine these hypotheses and determine if one or more of 

them are true. To further examine these ideas, we assessed factors that may influence the network 

structure and true model detection. We used two types of simulated effect models to investigate 

the effect of grammar, population size, number of generations, and maximum grammar tree depth 

on network structure and detection power. Our findings suggest that the previously reported bias 

towards 1-layer network size was not due to a limitation of the GENN algorithm or an error in the 

program. Rather, combinations of grammar and maximum network depth affect network structure 

and detection power. Furthermore, the amount of noise (or non-informative variables) in the 

dataset also plays a role in networks identified by GENN. As such, it was a combination of 

parameter optimization and data simulation models that led to the results in (127). In this chapter, 

we will explain the compendium of simulations performed to address this question, demonstrate 

the results, and discuss future directions.  

Grammatical Evolution Neural Networks  

Neural networks (NNs) were designed to imitate neurons in the brain so that the net- 

works can process information in parallel. NNs are widely used data mining methods in scientific 

research to detect underlying models in data to predict the desired outcome. NNs consist of nodes 

that can receive inputs from other nodes or from external independent variables. Each input is 

associated with a coefficient (or weight) which is multiplied and then the NN processes the 

weighted inputs through some activation function to produce an output signal (128). Generally, 
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the most popular method for training feed-forward multilayer NN is the gradient descent 

algorithm back-propagation (BPNN). BPNN randomly initializes weights associated with each 

node and gradually adjusts the weights with the goal of minimizing an error function (128). 

However, if the underlying fitness landscape is unknown, BPNN is an insufficient optimization 

method. In genomics studies of complex diseases, the fitness landscape is always unknown and 

complex. Thus, in order to avoid defining the fitness landscape a priori, a method has been 

proposed to apply genetic programming to optimize the structures and weights of the NN (129). 

A version of genetic programming neural networks (GPNN) has been implemented specifically 

for genetic association studies (130).  

Grammatical evolution neural networks (GENN), an extension of GPNN, uses GE as the 

evolutionary algorithm. GE is a type of genetic programming (131,132) that uses Backus-Naur 

Form(BNF) grammar to create a model based on a genetic algorithm. The grammar translates an 

array of bits into a model, e.g. NN, based on its set of rules. At each generation, the finesses of 

the NNs are evaluated and the fittest networks are more likely to be selected to reproduce in the 

following generation. The genetic algorithm evolves for a specified number of generations and 

outputs the most optimal solution in the final generation (Figure 2-1). GENN optimizes variable 

selections, node coefficients, the number of hidden layers, and the number of nodes per layer 

simultaneously (116), so it can be applied to any data sets regardless of their underlying fitness 

landscape.  
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Methods  

Data Simulation  

We simulated the XOR model because it is commonly used as a benchmark for neural 

network models; in addition, it also describes a potential type of epistasis interaction that may be 

observed in biological data. There are also several bioengineering and biochemical applications 

that have utilized XOR relationship in designing the experiment (133,134). In addition, in the 

XOR model, neither of the two predictor variables have a main effect; rather, interactions 

 
Figure 2-1: Schematic of GENN algorithm 
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between the variables determine the outcome. Thus, the model cannot be solved with 1-layer 

additive neural networks. Lastly, the result of experimenting with the XOR model can be 

extended to genotyping data because of the similarities of data formats. We simulated datasets 

under the XOR model with two possible outcomes (such as case and control). The model is 

detailed in Table 1. Random variables were generated using genomeSIMLA (135) such that both 

outcomes contain 1000 individuals (for a total of 2000 individuals in the dataset). 

In order to detect the effect of noise on network structure and detection power, we 

simulated two different types of datasets. The first type consisted of only two predictor variables 

with no noise variables (xor). The second type consisted of 100 predictor variables – two 

functional variables and 98 non-functional, or noise, variables (xor+noise). For both types of 

datasets, the two functional variables perfectly predicted the binary outcome using the XOR 

model shown in (Table 2-1). While this is unrealistic for complex trait epistasis in biology, it 

gives us a clean benchmark to explore these hypotheses.  

ATHENA 

The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is 

a versatile software package that includes various analysis techniques. One of the modeling 

Table 2-1:  Description of the XOR model  
Phenotype VARIABLE1 VARIABLE2 

0 0 0 

1 1 0 

1 0 1 

0 1 1 
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methods in ATHENA is GENN, which uses grammatical evolution to optimize artificial neural 

networks (ANNs). The GENN algorithm has previously been described in detail (127). The 

algorithm is briefly described as follows:  

Step 1: The data is equally divided into 5 parts with 4/5 for training and 1/5 for testing. 

Different non-overlapping training and testing data are used for 5-fold cross validations.  

Step 2: Under population size constraint, a random population of binary strings are 

generated to be ANNs using a Backus-Naur grammar. The ANNs are guaranteed to be functional 

per sensible initialization (131,132). During sensible initialization, an expression tree is created 

using the specified grammar by randomly selecting grammar rules to construct the tree. The 

software recursively checks the expression tree to make sure the selected rule would not make the 

expression tree exceed the maximum depth (Maxdepth) allowed. Half of the expression trees are 

built to the maximum grammar tree depth and the other half are built with a random depth less 

than the maximum depth. Finally, the expression trees are converted into corresponding codons. 

This step concurrently occurs at all demes (computer CPUs).  

Step 3: All ANNs are evaluated with training data and the solutions with highest balanced 

accuracies are selected for crossover and reproduction. The new population is composed of 

mutated original solutions and new random solutions.  

Step 4: Step 3 is repeated until it reaches the set generation number. Migrations of the 

best solutions occur at specified intervals between CPUs.  

Step 5: The best solution at the final generation is tested on the testing data and the 

balanced accuracy is recorded.  

Step 6: Steps 2-5 are repeated each time with a different set of training and testing data.  

We ran the GENN algorithm within ATHENA using the parameters settings in (Table 2-

2).  
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The parameters for generations, population size, and maxdepth are selected through 

empirical studies. Different grammar sets are designed to test the effects of different search 

spaces: add (linear), bool2 (linear, logical), bool, (linear, logical, multiplicative). Each 

combination of the values for the varying parameters (36 unique combinations) was assessed 

using 10 xor datasets and 10 xor+noise datasets for a total of 720 experiments.  

 

 

Maxdepth would more likely to produce a more complex grammar tree, which in turn 

correlates with the higher complexity of the neural networks. With a Maxdepth of 9, the average 

Table 2-2: ATHENA GENN parameters 

 
 



34 

 

accuracies of models for both types of datasets were approximately 75%-85% with an average 

neural network depth of 1. When the Maxdepth was 12, the average accuracies for the xor 

datasets reached 100%, indicating that the maximum depth of the grammar tree was correlated 

with model detection. Higher Maxdepth also allowed production of multilayer neural networks 

(Figure 2-2).  

 

 
Figure 2-2:Average accuracy and average depth of neural networks  
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GENN grammar specifies how the nodes connect to each other, e.g. multiplying grammar 

multiplies the inputs and then feed it into the activation function. We compared three sets of 

grammars in this study: Bool {+, -, *, /, OR, NOR, AND, NAND}, bool2 {+, -, OR, NOR, AND, 

NAND}, and add {+, -}. Upon random initializing of the population, each individual was 

generated based on its grammar set. Thus, individuals had access to different building blocks 

when they have different grammars. Models built with bool2 grammar achieved higher accuracy 

than that of bool and add grammar. Using bool2 or bool grammar in conjunction with Maxdepth 

of 12 allowed the production of multi-layer neural networks (Figure 2-2).  

The noise level of the datasets fell into two distinct groups. One group of data set only 

contained two functional variables (xor), which can perfectly predict the simulated XOR model. 

The other group contained the same two variables and 98 randomly generated noise variables 

(xor+noise). The differences between the two groups are clear as shown in Figure 2-2. In all cases, 

data sets without noise signals achieved equal or higher prediction accuracies and generated more 

complex neural networks than xor+noise data sets.  
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To further understand the effect of each GENN parameter on model detection, we 

compared the accuracies for each set of GENN parameters on two types of models. Xor data set 

produced more accurate models than that of xor+noise data sets regardless of the population size. 

Also, there was no clear difference between population size of 1000 and 2000 on model detection 

(Figure 2-3). Similarly with population size, longer generations of evolution did not affect model 

detection. The prediction accuracies were only affected by data noise level (Figure 2-4). The 

maximum depth of grammar tree significantly improved model detection for both types of data. 

In particular, under Maxdepth of 12, xor data achieved perfect predictability in almost all data 

sets (Figure 2-5). In the order of add grammar, bool grammar, and bool2 grammar, model 

detection has shown an improvement in both data types. This is evident by the increasingly higher 

number of models at 100% accuracy in the above order (Figure 2-6).  

 
Figure 2-3:Comparison of population sizes on model detection  
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From these results, we drew three main conclusions. First, the addition of noise variables 

results in overall lower testing accuracy, which is not surprising and in some ways serves as a 

positive control experiment. Second, higher maximum grammar tree depth resulted in more 

predictive models for both dataset types. Third, grammar types have an effect on accurate 

modeling for both dataset types.  

 

 

 
Figure 2-4:Comparison of generations on model detection  
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To further investigate the factors that influence network size, we studied the effect of 

each parameter across generations. The average depths of the neural network for xor datasets 

were higher than that of xor+noise datasets as shown by darker shades at the top portion of the 

panels. However, there was no clear difference of network depth between the two population 

sizes (Figure 2-7). Similarly, xor dataset produced more complex neural networks than xor+noise 

dataset regardless of the number of generations. The depth of the network stayed relatively flat 

after the initial oscilla- tion (Figure 2-8). The maximum depth of grammar tree had a clear effect 

on the network structure. With a grammar Maxdepth of 9, GENN produced mostly single layer 

neural net- works. Increasing the grammar Maxdepth to 12 resulted in more complex neural 

networks (Figure 2-9). With add grammar, neither data set produced complex neural networks. 

Add grammar also differs from the other two grammars in that the depth drops very quickly and 

 
Figure 2-5:Comparison of maximum depth of grammar tree on model detection  
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never recovered. Both bool and bool2 grammar were able to produce multilayer neural networks 

(Figure 2-10).  

 

As previously reported, the average depth of the networks decreased at the beginning of 

the evolution. Except for experiments where the maximum depth was 9 or with add grammar, the 

average neural network depth increased after the initial drop. Datasets without noise variables 

generally had higher average network depth, indicating that the noise level was a strong 

determinant of network depth. Higher maximum depth, bool and bool2 grammar were also 

correlated with higher average network depths.  

 

 

 
Figure 2-6:Comparison of grammars on model detection  
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Discussion 

In the previous report, we observed that GENN preferentially produced 1-layer neural 

networks based on the three variables simulated in the model. The reason for producing 1-layer 

networks remained unclear as to whether it was due to the inherited characteristics of GENN, the 

GENN parameter settings, or the complexity of the simulated datasets. While simple 1-layer 

networks offer the advantage of better interpretability, it might not be sufficient to model 

complex biological processes because there are non-additive epistasis effects in many biological 

 

 
Figure 2-7:Comparison of population sizes on average network sizes  
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systems (136,137). To be sure that GENN can produce multilayer network if it is required by data, 

we experimented with GENN parameters to understand under which parameter combinations can 

we obtain multilayer networks. We believe that parameter settings should not favor either 1-layer 

networks or multilayer networks because the evolution process will determine the most fit model 

structures. However, when the parameters settings are limiting or unnecessarily expanding the 

search space, it will have a great impact on the generated models. Most importantly, our goal is to 

apply GENN on biological data with unknown underlying relationships. Through this 

experimentation, we can eliminate biases due to parameter settings and have more confidence in 

our result. In this study, we simulated two types of xor models: xor and xor+noise to test the 

effect of various GENN parameters on model detection and network structures. These results 

have shown that the noise level in a dataset was the most significant determinant of model 

detection and network depth. In noisy data, GENN has to perform  

 

 
Figure 2-8:Comparison of generations on average network sizes  
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both variable selection and network modeling as opposed to only network modeling in the 

noiseless data. The existence of the noise variables decreased the probability of true variable 

detection, which in turn made it more difficult to maintain multilayer networks through evolution 

because most of the variables are non-informative. Maximum depth of the grammar tree was also 

an important factor in model detection. In our simulations, lower Maxdepth limited the possibility 

of producing multilayer networks, which in turn limited the ability of GENN to produce 

multilayer network structures necessary to detect interaction effects. However, the one-layer 

model still correctly identified one of the simulated variables in most simulation settings, which 

resulted in higher than 50% accuracy. Lastly, different grammars also affected model detection 

and network depth. Bool and bool2 grammar outperformed add grammar because they included 

more operators that can detect interaction relationships among variables. However, having more 

operators did not produce the best model as evidenced by the better modeling with bool2 

grammar compared to bool grammar. If the additional operators did not add more informative 

variable relationships, it will unnecessarily increase the search space, which could explain the 

lower accuracies produced by bool grammar. In conclusion, we have determined that GENN does 

not inherently produce 1-layer networks. The combination of noise level, maximum grammar tree 

depth and grammar determines the model detection and network sizes in GENN. Due to the 

simplicity of the XOR model, the highest average NNs depth is only around 2. In future 

experimentation, we can simulate more complex models and use higher Maxdepth value. 

Software optimization might be needed because higher Maxdepth significantly requires more 

computational resources during evolution process.  
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Figure 2-9:Comparison of maximum depth of the grammar tree on average network sizes  

 

 
Figure 2-10:Comparison of grammars on average network sizes  
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Chapter 3*4 
 

An integrated analysis of genome-wide DNA methylation and genetic variants 
underlying etoposide-induced cytotoxicity in European and African 

populations  

Abstract 

Genetic variations among individuals account for a large portion of variability in drug 

response. The underlying mechanism of the variability is still not known, but it is expected to 

comprise of a wide range of genetic factors that interact and communicate with each other. Here, 

we present an integrated genome-wide approach to uncover the interactions among genetic 

factors that can model some of the inter-individual variation in drug response. The International 

HapMap consortium generated genotyping data on human lymphoblastoid cell lines of (Center 

d’Etude du Polymorphisme Humain population - CEU) European descent and (Yoruba 

population - YRI) African descent. Using genome-wide analysis, Huang et al. identified SNPs 

that are associated with etoposide, a chemotherapeutic drug, response on the cell lines. Using the 

same lymphoblastoid cell lines, Fraser et al. generated genome-wide methylation profiles for gene 

promoter regions. We evaluated associations between candidate SNPs generated by Huang et al 

and genome-wide methylation sites. The analysis identified a set of methylation sites that are 

associated with etoposide related SNPs. Using the set of methylation sites and the candidate 

SNPs, we built an integrated model for etoposide response observed in CEU and YRI cell lines. 

This integrated method can be extended to combine any number of genomics data types to model 

many phenotypes of interest. 
                                                        
4 Adapted from Li	R,	Kim	D,	Dudek	SM,	Ritchie	MD.	An	integrated	analysis	of	genome-

wide	DNA	methylation	and	genetic	variants	underlying	etoposide-induced	cytotoxicity	in	
European	and	African	populations.	Springer	Berlin	Heidelberg;	2014 
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Introduction 

Genome-wide analysis is a step forward from candidate gene based approaches because it 

reduces biases associated with candidates’ selections. While candidate gene approaches have 

successfully identified genes involved in cellular mechanisms of drugs, they failed to uncover 

interactive relationships among the genetic factors that may be explaining much of the variations 

in drug effects. The cellular susceptibility of the drug is potentially affected by multiple genetic 

components through non-linear interactions among the components. However, due to the 

exponential increases of computational calculations when modeling interactive relationships, 

most research have been focused on finding linear models associated with drug 

response(20,28,93,138,139). To uncover the unsolved variances, we propose an integrated 

genome-wide analysis that identifies interactions among genetic factors from multiple types of 

genomic data to model the drug response. 

The International HapMap Consortium genotyped cell lines of various population groups 

including trios of European descent (CEU) and Yoruba descent (YRI)(140). Because these cell 

lines are publicly available, they have also been used to study methylation patterns at gene 

promoter regions(141). Together, genotype variations and methylation levels enable us to study 

the relationship between these genetic components and drug responses. Previously, through 

genome-wide analysis, Huang et al. have identified a set of genetic variants that are associated 

with chemotherapeutic drug induced cytotoxicity in CEU and YRI cell lines, respectively(20). 

We used the set of SNPs as dependent variables and methylation levels as independent variables 

and applied regression models for each unique SNP-methylation combination. We identified 

SNPs that are correlated with methylation levels, or methylation quantitative trait loci (mQTLs), 

across the genome using publicly available genome-wide methylation data, generated on the same 

cell lines(141). Together, using the genetic variants and correlated methylation levels at gene 
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promoters, we found interactive genetic models that can explain a portion of variability in 

chemotherapeutic drug response in CEU and YRI cell lines. The integrative models achieved 

higher explanatory power of drug response in these cell lines than previously published linear 

models. 

Etoposide is a topoisomerase II inhibitor(142) and is used in treatment of cancers 

including testicular cancer, lung cancer, germinal cancer, endometrial carcinoma, and Kaposi’s 

sarcoma. Treatment with etoposide can lead to severe side effects such as fatigue, bone marrow 

suppression, diarrhea and acute promyelocytic leukemia(143–145). Thus, our goal is to identify 

SNPs and methylation interactions that can best model the differential etoposide responses in 

CEU and YRI cell lines. This result paves the way for better understanding of genetic 

components involved in drug responses, which is a necessary step towards personalized drug 

prescription for cancer patients. 

Methods 

Genetic variants correlated with etoposide IC50  

CEU and YRI population, respectively. The inhibition of cell line growth is measured as 

IC50, which is the drug concentration required to stop cell growth by 50%. The method for 

identifying the SNPs is as follows. A total of 87 and 89 cell lines from HapMap CEU and YRI 

populations, respectively, were exposed to increasing concentrations of etoposide. SNP genotypes 

were obtained from the International Hapmap website (HapMap.org) (release 21). Genotyping 

errors and extreme outliers were removed and only SNPs within 10kb up or downstream of a 

gene were retained. Quantitative transmission disequilibrium test (QTDT) analysis was 

performed on Box-Cox transformed IC50 values and filtered SNPs with sex as a covariate. Using 
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p < 0.0001 as threshold for significance, 122 and 51 SNPs were significantly associated with 

etoposide IC50 in CEU and YRI, respectively(20). The associated SNPs were used for subsequent 

downstream analysis. 

Candidate SNPs and methylation levels association 

Gene promoter regions methylation data were generated by Fraser et al.(141). The data 

was downloaded from Gene Expression Omnibus database, accession number [GSE27146]. A 

total of 84 CEU and all (89) YRI cell lines that were tested for etoposide response were used to 

measure promoter region methylation levels. Over all, methylation levels at 27,578 CpG sites 

near transcription start sites were measured using the quantitative BeadChip assay (Illumina, San 

Diego, CA, USA). Several steps, which are described in detail in Fraser et al.(141). were taken to 

account for the background noise. Briefly, first, the average background intensity was subtracted 

from the raw intensity to adjust for sample variations. Then, to minimize batch effects of different 

arrays, background adjusted raw data were quantile normalized(141).  

Regression models were used to test for possible candidate SNPs and methylation level 

association. Significant CEU and YRI SNPs were tested for their association with methylation in 

the same respective population. To remove the effect of gender, sex was used as a covariate in the 

regression model. Using a p-value cut off of 0.0003, 1109 methylation-SNP pairs were 

significantly associated for CEU and 270 methylation-SNP pairs were significant for YRI, of 

which 385 and 176 methylation sites were unique, respectively. 
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Interactive model of SNPs and methylation levels to predict etoposide IC50 

We used ATHENA as described in Chapter 2. Additional steps taken here are: 

Step 7:  SNPs and methylation probes that appear in at least 3 out 5 cross validation 

models are saved as consistent variables 

Step 8: All consistent variables will be modeled over the entire dataset and results in a 

final model 

The fitness of the model aims to measure how well the model can explain the etoposide 

drug response, a continuous value. We used R-squared as our fitness metric to represent the 

percentage of drug response explained by the model. The drug response predicted by the model is 

scaled using the sigmoid function so that the value is between 0 and 1. As a result, we also scaled 

the original drug response to be between 0 and 1 using min-max scaling, where  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷- =
𝐷- − min 𝐷

max 𝐷 − min 𝐷
(1) 

And the R2 is calculated as: 

𝑅9 =
(𝐷:;<=->?	- − 𝐷)9@

- 	
(𝐷- − 𝐷)9@

- 	
(2) 

 

D- = 𝑡ℎ𝑒	𝑖𝑡ℎ	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑑𝑟𝑢𝑔	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

 

The final model is an artificial neural network (ANN). ANNs are widely used in data 

mining field to predict desired outcome. ANNs consist of nodes of input and an output. Each 

input node is associated with a weight and the weight is generally determined through back-

propagation(128). ANNs can have multiple layers, which make it possible for input nodes to have 

interactive relationships among themselves. Traditionally, the structure of the network and the 

input variables need to be defined before optimizing the network. However, this is not the case 
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for genetic analysis because neither the fitness landscape nor the correct variables are known. 

Evolutionary algorithms can eliminate this deficiency as the network structure and correct 

variables are evolved automatically, driven by the data(129). 

If the variables in the model contain missing values, the samples contain missing values 

will be removed for that evaluation. To eliminate sample loss, missing values in the SNP 

genotype data were replaced with 0, making the particular SNP homozygous for its corresponding 

sample. For 84 CEU samples, there were 176 missing values within 122 SNPs; and for 89 YRI 

samples there were 86 missing values within 51 SNPs. The replacement represents less than 2% 

of the data. 

Result  

To ensure validity of the result, each analysis was repeated with a different random seed and 
GENN population size (Table 3-1).  
 

Using GENN to identify the most informative SNPs to predict etoposide response, the 

analysis resulted in several SNPs that consistently appeared in different cross validations with 

different random seeds and population sizes (Table 3-2). Each cross validation returned a SNP 

interaction model that was found to be the best for a subset of cell lines. SNPs that appeared in 

three out of five cross validations were considered to be interesting. 

Table 3-1:  GENN parameter settings. 
Parameter                            Sample analysis 
Number of processors 16 

20000 
2000 

40 
0.9 

0.01 
Random1 

/Random 2 

16 
3000 
2000 

40 
0.9 

0.01 
Random 3/ 
Random 4 

Population size/ processor 
Number of generations 
Number of migrations 
Crossover probability 
Mutation probability 
Random seed 
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For YRI, the interesting SNPs were rs4770877, rs9730073, rs16905691, rs12113878, and 

rs9507577. We then integrated SNPs and methylation data so that we could explore interactions 

between SNPs and methylation levels. Using the same criteria, we identified SNPs rs647955, 

rs2605593, rs6944165, rs16905691 and methylation probe cg21931212 were consistently 

associated with etoposide. Sex was included as an input variable, but it was not incorporated in 

the fittest model. When we analyzed all of the consistent SNPs and methylation probes together, 

rs647955, rs2605593, rs9730073, rs12113878, rs16905691, and cg21931212 were selected in the 

final model. The r-square for the final model was R2 = 53.75%, indicating that the model can 

explain around 54% etoposide IC50 variations in the YRI population. Our model outperformed 

previous linear SNPs model, which attained a R2 around 40%(20). Figure 3-1 shows the 

interaction model between SNPs and methylation for YRI population.   

Table 3-2: Associated SNPs and methylation in the best model 
Probe name Population Chromosome Host gene ID 

rs647955 YRI Chr1 C1QB 

rs2605593 YRI Chr11 C11orf75 

rs6944165 YRI Chr7 LOC647017 

rs16905691 YRI Chr10 PCDH15 

cg21931212 YRI Chr12 C12orf57 

rs403029 CEU Chr10 GATA3 

rs1884679 CEU Chr14 SLC24A4 

rs2607839 CEU Chr10 GRID1 

rs9299075 CEU Chr9 PTPRD 
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We did not identify any consistent SNPs and methylation interactions in CEU population. 

For SNPs only interactions, rs403029, rs1884679, rs2607839, and rs9299075 showed consistent 

association with etoposide IC50. We again used all of the consistent variables as input to train the 

final model and the final model included all four SNPs. The r-square for the final model was R2 = 

46.16%, indicating that the model can explain 46% etoposide IC50 variations in the CEU 

population. Figure 3-2 shows the SNPs interaction model for etoposide IC50 in CEU.  

 

 
Figure 3-1: Final model of SNPs and methylation interactions to predict etoposide IC50 in YRI (w: 
multiplication between constant and variable, PADD: additive node, PSUB: subtractive node) 
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Conclusion and Discussion 

In this study, we explored interaction relationships among SNPs and between SNPs and 

methylation levels to model etoposide IC50 on HapMap CEU and YRI cell lines. The integrated 

genome-wide approach demonstrated the ability to combine multiple types of genomics data and 

identify interactive relationships within and between data sources. Due to the small sample size in 

this study, the results should be viewed as a proof-of-concept or pilot project for this type of data 

integration.  Future directions will evaluate alternative data fusion techniques with ATHENA on 

multi-omics data to build meta-dimensional models. 

 
Figure 3-2: Final model of SNPs interactions to predict etoposide IC50 in CEU (w: multiplication 
between constant and variable, PADD: additive node, PSUB: subtractive node, PMULT: 
multiplicative node) 



53 

 

Etoposide is a widely used cancer drug for testicular cancer, lung cancer, germinal 

cancer, endometrial carcinoma, and Kaposi’s sarcoma. However, the drug also has severe side 

effects for the patients(143–145). Better understanding of the mechanism of the drug is a crucial 

step towards personalized prescription of the drug based on patients’ genetic makeup. Genetic 

variations are the most fundamental and the most widely studied genetic factor in relation to the 

drug response, as Huang et al. previously reported that a group of SNPs were correlated with 

etoposide IC50 in CEU and YRI population. Using the correlated SNPs, they built a linear additive 

model to explain the variability of IC50 in the two populations. Stemming from their multi-genic 

model, it is logical to hypothesize that etoposide’s cellular mechanism could also be comprised of 

interactive relationship among SNPs. Recent study also suggested that phenotype associated 

SNPs tend to fall into function-associated regions(146). Methylation pattern is an important 

marker for DNA regulatory functions and this led us to explore the interactive relationships 

between SNPs and methylation levels. Using SNPs and correlated methylation levels, we were 

able to identify several SNPs and methylation sites that consistently appeared in our models. We 

applied GENN on these consistent variables to build a final model for each population. For YRI 

population, we built an interactive model between SNPs and methylation and achieved a R2 of 

54%, exceeding models that only examined linear additive relationships between SNPs. For CEU 

population, we only identified consistent interactive SNPs variables. Our interaction model with 

four SNPs resulted in a R2 of 46%, slightly lower than previously reported R2 of 55%; potentially 

due to less number of variables in our model. Based on these results, our genome-wide integrative 

analysis identified novel interaction relationships between SNPs and methylation sites. This 

approach can be extended to integrate any number of genomics data to predict or classify a wide 

range of phenotypes of interest. 

Modeling genetic interactions is a complex task, especially when there are a large number 

of variables. Models produced by GENN are dependent on parameter settings, but they generally 
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contained around ten variables. Evaluating all possible combinations of interactions is impossible 

given the current computational power, so GENN uses a guided random search to make the 

search more feasible. In addition, there is variability between samples partitioned in each cross 

validation. As a result, the fittest model in each cross validations may suffer from inadequate 

modeling and may not be applicable to other subsets of data. Thus, we utilized a strict 

requirement to minimize this bias by only keeping variables that appeared in at least 3 out of 5 

cross validations, ensuring that the true signal is strong and applicable to different subsets of the 

data. The trade off of this approach is increased number of false negatives. This is evident when 

we evaluated SNPs and methylation interactions in CEU population. Because there is a higher 

number of SNPs and correlated methylation probes in CEU compared to YRI population, the 

search space exponentially increased. As a result, when modeling interactions between SNPs and 

methylation, there were many SNPs and methylation probes that appeared in 2 out of 5 cross 

validations, but none appeared in at least 3. We could potentially miss some true signals by 

employing a strict consistency requirement, but we are also more confident about our true signals. 

For YRI population, our final interactive model of SNPs and methylation resulted in a R2 of 54%, 

exceeding the previously reported 40% identified in linear model(20). 

One should be aware that the interactive relationships produced by GENN are only 

statistical relationships. Our model uncovered potential genetic variants and methylation sites that 

could be further validated by functional studies. Some of the genetic variants are unknown but 

others are found to be relevant through literature search. Genetic variant of rs647955 is located in 

the C1QB gene. C1QB is known to be involved in systemic lupus erythematosus, an autoimmune 

disease(147). The function of variant rs9730073 is not known, but it was also selected by Huang 

et al. as one of the final four SNPs used in their linear model for YRI. SNP rs12113878 is located 

within KLRG2 gene. KLRG2 gene has been found to be associated with prostate cancer 

aggressiveness and is expressed on subsets of NK/T cells(148). Interestingly, rs16905691 is 
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associated with the PCDH15 gene, which is also expressed on NK/T cells. NK/T cells are known 

to play a key role in defense against tumor development(149). Methylation probe cg21931212 

lies in C12orf57 gene, which has no known functions. However, recent genome-wide studies 

have identified the gene to be associated with brain and vision development(150,151). CEU 

model SNPs rs9299075 and rs1884679 are located in genes PTPRD and SLC24A4, respectively 

and both are associated with tumor suppression and identification(152,153). Many of our 

modeled genetic variants are associated with cancer and development, which is related to 

etoposide’s drug mechanism. Further study is needed to confirm these relationships. 

 There are limitations to this study that warrants more future studies on the subject. The 

study separately analyzed etoposide’s response on CEU and YRI cell lines. Previous report has 

shown that the two cell lines behaved similarly under etoposide(20). Future analysis plan should 

include combining the two populations with race adjustment in order to find generalizable models 

across different cell lines, which will also greatly increase sample size and thus statistical power. 

It is also known that some of the model SNPs and methylations have linkage disequilibrium (LD) 

or correlation with each other. Exploring these related genetic factors could reveal more insights 

on etoposide response. eQTL analysis using gene expressions generated on the HapMap cell lines 

has also shown significant associations with various chemotherapeutic drug responses(20,139). It 

would be interesting to integrate gene expression data as well as methylation data to model the 

etoposide response in future analysis. Lastly, the method for imputing missing SNPs could 

incorporate LD information in the future. However, the result in this study should not be affected 

because less than 2% of the data was missing. 

The ultimate goal of this study is to identify potential models that can model etoposide 

drug or toxicity response in order to better prescribe treatments to patients and improve clinical 

knowledge of the treatment. The integrated analysis used in this study has shown that it can 

identify novel interactions among genetic factors. This approach can also be applied to uncover 
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genetic factors underlying a wide range of other phenotype and diseases. For example, we can use 

integration analysis to see if similar genetic models are underlying different chemotherapeutic 

drugs. In the following chapter, the integration analysis was applied to five chemotherapeutic 

drugs in two populations in order to comparatively analyze the genetic factors influencing 

cytotoxic response.   
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Chapter 4*5 
 

Integration of genetic and functional genomics data to uncover 
chemotherapeutic induced cytotoxicity 

Abstract 

Identifying genetic variants associated with chemotherapeutic induced toxicity is an 

important step towards personalized treatment of cancer patients. However, annotating and 

interpreting the associated genetic variants remain challenging because each associated variant is 

a surrogate for many other variants in the same region. The issue is further complicated when 

investigating patterns of associated variants with multiple drugs. In this chapter, we used 

biological knowledge to annotate and compare genetic variants associated with cellular sensitivity 

to mechanistically distinct chemotherapeutic drugs, including platinating agents (cisplatin, 

carboplatin), capecitabine, cytarabine, and paclitaxel. Top SNPs from genome wide association 

studies of cellular sensitivity to each drug in lymphoblastoid cell lines derived from populations 

of European (CEU) and African (YRI) descent were analyzed for their enrichment in biological 

pathways and processes. We annotated genetic variants using higher-level biological annotations 

in efforts to group variants into more interpretable biological modules. Using the higher-level 

annotations, we observed distinct biological modules associated with cell line populations as well 

as classes of chemotherapeutic drugs. We also integrated genetic variants and gene expression 

variables to build predictive models for chemotherapeutic drug cytotoxicity and prioritized the 

network models based on the enrichment of DNA regulatory data. Several biological annotations, 

often encompassing different SNPs, were replicated in independent datasets. By using biological 

                                                        
5 This chapter has been submitted for journal publication 
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knowledge and DNA regulatory information, we propose a novel approach for jointly analyzing 

genetic variants associated with multiple chemotherapeutic drugs. 

Introduction 

A better understanding of genetic variation contributing to cellular sensitivity to 

chemotherapeutic drugs can lead to more precise and personalized treatment of cancer 

patients(154). Lymphoblastoid cell lines (LCLs) have been established as a model system to 

study the genetic components of drug-induced cytotoxicity by measuring cell growth inhibition 

following drug exposure(155). Previous genome-wide association analyses (GWAS) have 

identified numerous genetic variants and gene expression variables associated with drug 

cytotoxicity(20,28,29,93). However, a comprehensive study of multiple drugs in different 

populations can reveal new insights into the genetic susceptibility of cytotoxicity.  

We studied genetic factors associated with cytotoxicity of five mechanistically distinct 

chemotherapeutic drugs: cisplatin, carboplatin, capecitabine, cytarabine, and paclitaxel. 

Cytotoxicity was measured for all drugs in two HapMap populations: Utah Residents with 

European ancestry (CEU) and African individuals from Yoruba in Ibadan, Nigeria (YRI). 

Platinum-based compounds, including cisplatin and carboplatin are the most widely applied 

group of cytotoxic drugs worldwide, used to treat head and neck, testicular, lung, endometrial and 

ovarian cancers(156–158). Capecitabine is mainly used to treat colorectal and breast 

cancers(159). Patients with acute myeloid leukemia have long been treated with cytarabine(160). 

Paclitaxel is commonly used for the treatment of lung, breast, and ovarian cancers(161). Previous 

studies have shown that drugs in the same class have common genetic loci associated with drug 

induced cytotoxicity, for example, cisplatin and carboplatin(29). An individual’s ancestral 

background has also been linked to differential risks for cytotoxicity(162). Thus, a more 
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comprehensive understanding of the distinct and shared genetic components associated with 

cytotoxicity between drugs and populations would be valuable to identify new treatment options. 

However, a molecular understanding of individual genetic variations is challenging 

because there are a large number of genetic variations that can be associated with drug 

cytotoxicity and each variant is a surrogate for many other variants in the same region. To address 

these issues, we evaluated genetic variants using higher-level biological annotations in efforts to 

group variants into more interpretable biological modules. Comparing CEU to YRI, we found 

population specific annotations for each drug. Within individual populations, we observed drugs 

that treat similar types of cancers are enriched for the same biological annotations. In some cases, 

we identified similar biological annotations across CEU and YRI, as well as across multiple 

drugs.  

Previous studies relied on GWAS to identify genetic variants that have the strongest 

independent genetic effects on drug-induced cytotoxicity and incorporated gene expression levels 

through studies of expression quantitative trait loci (eQTL) analysis(163). This	work	led	to	the	

important	observation	that	pharmacological	GWAS	SNPs	are	enriched	in	eQTLs	for	many	

cytotoxic	drugs(139). While the eQTL method can capture a linear relationship between SNPs 

and gene expression, it omits the possibility that interactions among SNPs or gene expression 

could also play a crucial role in drug cytotoxicity. To identify these non-linear interactions, we 

applied a grammatical evolution neural network (GENN) algorithm to build interaction networks 

consisting of SNPs and gene expression variables. Although the identification of associated SNPs 

and gene expression variables is an important first step in understanding drug cytotoxicity, a 

challenge remains on how to interpret the functional relevance of the interaction models. It has 

been shown that many regulatory elements can aid in identifying important functional 

SNPs(124,164). To this end, we used DNAseI and genome segmentation data published by the 

ENCODE consortium to prioritize the network models. Our studies suggest that combining 
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genetic and functional genomics information could be a useful approach for interpreting genetic 

factors contributing to chemotherapeutic drug responses. 

Methods 

Genetic variants and gene expression data 

Genetic variants data for Utah residents with Northern and Western European ancestry 

(CEU) and African individuals from the Yoruba in Ibadan, Nigeria (YRI) were downloaded from 

the 1000 Genome project (phase1_release_v3.20101123)(165). RNAseq gene expressions on the 

same individuals were downloaded from the gEUVADIS project(98).The gene expression data 

were normalized by library depth and transcripts length (RPKM). Gene expressions with 0 counts 

in more than half the samples were removed and technical variations were adjusted by PEER 

normalization. The detailed normalization process was described in(98).  

Cytotoxicity data 

Lymphoblastoid cell lines from HapMap phase 1 CEU and YRI populations were treated 

with increasing concentrations of capecitabine(166), carboplatin(93), cisplatin(28), 

cytarabine(92), and paclitaxel(167) as previously reported. For carboplatin and cisplatin, their 

IC50, concentration required to inhibit 50% of the cell growth, were calculated and log2 

transformed to normality. The areas under the survival curve (AUC) were calculated for 

capecitabine, cytarabine, and paclitaxel. All AUC values were also log2 transformed to allow for 

normal distribution. For replication studies, HapMap phase 3 YRI and CEU cell lines were 

treated with four of the drugs: capecitabine, carboplatin, cisplatin, and cytarabine.  
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Quality control for genetic variants and gene expression data 

SNP data were first transformed into a variant call format (VCF) format. Only SNP data 

from the autosomes were used for the GWAS analyses. To minimize error accompanied with the 

sequencing technology, only SNPs with 100% call rate were retained using GATK(168). To 

remove extreme outliers and increase statistical power, we limited our analysis to SNPs that have 

all three possible genotypes and each genotype has at least 2 representing samples. Between 2.7 

and 4.7 million SNPs have passed the quality control. Gene expressions were filtered so that 90% 

samples have non-zero expression values. This resulted in around 20,000 gene expression probes 

being retained (Table 4-1).  

 

Table 4-1:  SNP and gene expression quality control (QC) 

Drugs Population SNP QCed 
(million) 

Expression QCed 

Cisplatin CEU 3.87 19,919 

YRI 4.69 20,380 

Carboplatin CEU 3.87 19,923 

YRI 4.64 20,427 

Cytarabine CEU 3.87 19,911 

YRI 4.68 20,380 

Capecitabine CEU 3.88 19,859 

YRI 4.66 20,421 

Paclitaxel CEU 2.71 19,683 

YRI 2.99 20,045 
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GWAS analyses of drug susceptibility 

In order to perform subsequent integration analyses using genetic variants and gene 

expression data, only samples that are common between cytotoxicity data, 1000 Genome genetic 

variants data, and gEUVADIS gene expression data were used for GWAS analyses. As a result, 

the number of samples is different for each drug (Table 4-2) and all of the study samples are 

unrelated. To control for potential confounding effects due to population	structure,	SNPs	that	

passed	quality	control	criteria	were	first	LD-pruned	(--indep	50	5	2)	using	PLINK 

software(43). The principal components of the pruned SNP data were estimated using 

Eigenstrat(169). Along with individual’s gender, significant principal components (2 or 3) were 

adjusted in the association analysis for each SNP. For gene expression data, Individual’s sex was 

adjusted for each expression probe. 

a	denotes	p<0.0005	
 

Table 4-2:  Genotype and gene expression associations with chemotherapeutic drugs 
Drugs Population Discovery 

LCLs 
Discovery 
Associated 

SNPs 

Discovery 
Associated 
Expression 

Hapmap 3 
Replication 

LCLs 

Replicated 
SNPs 

Cisplatin CEU 72 1945 121 40 324 
YRI 77 2157 76a 46 270 

Carboplatin CEU 72 2530 169a 40 304 
YRI 75 2364 194 44 248 

Cytarabine CEU 72 2156 126 40 276 
YRI 77 2749 106a 46 725 

Capecitabine CEU 73 2014 65a 40 137 
YRI 76 2485 295 46 306 

Paclitaxel CEU 29 1230 94 NA NA 
YRI 29 1466 80 NA NA 
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Functional meta-analysis of associated SNPs 

To determine the biological annotations that are associated across populations and drugs, 

we used Biofilter (v2.2)(72) to separately map the associated SNPs of each cytotoxicity 

phenotype to functional groups including genes regions, Pfam, GO term, KEGG pathway, and 

Reactome. Then, for each of the functional groups, we investigated whether any of its functional 

terms were shared in multiple populations and drugs. To evaluate the significance of the sharing, 

we carried out one thousand permutation tests, where we permuted each drug’s cytotoxicity and 

performed GWA on the permuted outcome. If less than 5 out of 1000 permutations resulted in 

equal or larger number of sharing for a function term, the term was deemed significant (p < 

0.005). After permutation, 63 genes, 35 GO terms, 2 KEGG pathways, 12 Pfam, and 39 

Reactome were determined to be significant. 

Integration analysis using ATHENA 

We used ATHENA as described in Chapter 2.  

Linkage disequilibrium patterns exist in the associated SNPs because many are 

proximately located. Even though they may have distinct biological functions, they are 

indistinguishable in regards to their association with cytotoxicity because they are highly 

correlated.  To reduce the correlated signals resulting from LD, for each cytotoxicity phenotype, 

pairwise LD among all associated SNPs were estimated. r2 > 0.7 was used as a threshold to form 

LD clusters among the associated SNPs and if a cluster has more than one SNP, the SNP that is 

the most significantly associated with cytotoxicity was selected as the tag SNP for the cluster. To 

reduce multi-collinearity in the gene expression data, Pearson correlation was calculated for all 
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possible gene pairs. Genes that have correlation coefficient r > 0.8 were grouped into a cluster. 

One gene from each cluster was selected as the tag gene for the cluster. 

   

We first used ATHENA to perform variable selections on tagging SNPs and gene 

expressions. SNPs and gene expressions were integrated together to build neural networks that 

model the data. We selected SNPs and gene expressions that were included in a minimum of 2 

out of 5 models built from different cross validations. The variable selection step did not take into 

consideration of the testing R squared to avoid over-fitting. Using the selected SNPs and gene 

expressions, we used ATHENA to build five models, one for each cross validation, for each 

cytotoxicity phenotype.  

Using functional data to prioritize Neural Network models 

In order to distinguish Neural Network models that have similar predictable power of 

cytotoxicity, we utilized functional data produced by the ENCODE project(146) to quantify the 

functional relevance of each model. We downloaded 128 DNase-I hypersensitivity samples from 

the ENCODE project  

(http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/opench

rom/jan2011/combined_peaks/ ). The data contains merged DNAse-I peaks from UW and Duke 

that passed FDR 1% cutoff. Genome segmentations of six ENCODE cell lines was obtained from 

(http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/segme

ntations/jan2011/hub/ ). We used the combined segmentations calls based on the consensus 

calling of ChromHMM and Segway algorithms. The combined segmentations splits the genome 

into non-overlapping regions of CTCF enriched element, enhancer, weak enhancer, promoter 

flanking region, promoter region including TSS, transcribed region, and repressed region. For 
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every SNP in the neural network model, we determined whether it is located in DNase-I 

hypersensitive regions or genome segmentation regions across all cell types. Because the network 

models only include tagging SNPs, we also determined the functional region overlaps for SNPs 

that are in LD with the tagging SNP. The functional score for each model is calculated as the sum 

of overlap for each individual SNP, normalized by the model size. In case when SNPs in LD with 

the tagging SNP has a higher number of overlaps, the tagging SNP was replaced with the LD 

SNP. In order to select the final model, we first selected 3 models that have the best prediction 

accuracy (R2). Of those, we selected the model with highest functional score as the final model. 

Once we had the final model, we used SNPs and gene expressions to separately build SNP and 

gene expression only models. In case the models have negative R2 value, the R2 value was 

replaced with 0. The mean of testing R2s for SNP and gene expressions models are shown in 

Table 4-4. 

Results 

Chemotherapeutic drug genetic associations  

Cell growth inhibition was measured previously on unrelated CEU and YRI LCLs 

following treatment with increasing concentrations of cisplatin(28), carboplatin(93), 

cytarabine(92), capecitabine(166) or paclitaxel(170). Their dose-dependent inhibition was 

calculated as IC50, concentration required to inhibit 50% of cell growth, or AUC, area under the 

survival-drug concentration curve for up to 77 LCLs (Table 4-2).  

Genome-wide SNP data for the LCLs were obtained from the 1000 Genomes Project 

(http://www.1000genomes.org/) and were evaluated for their association with each drug’s 

cytotoxicity. We adjusted for sex and significant principal components of ancestry (2 or 3) in the 



66 

 

linear regression model. We identified between 1,230 and 2,749 SNPs significantly associated 

with each drug response at P < 0.0005, respectively (Table 4-2). Gene expression levels for the 

LCLs, measured by RNA-Seq, were downloaded from the gEUVADIS consortium 

(http://www.geuvadis.org/). Normalized RPKM (reads per kilobase per million) values for 

~20,000 genes were tested for association with each drug’s IC50 or AUC. To keep the number of 

associated genes similar across drugs, we used P < 0.005 or P < 0.0005 to select candidate genes. 

We identified between 65 and 295 genes whose expression levels were associated with drug 

outcome (Table 4-2). A list of all associated SNPs and gene expression levels can be found in the 

supplemental materials (Appendix Table 4-1:5, page 115). 

To replicate the SNP associations, we exposed an independent set of HapMap phase 3 

LCLs to four of the five chemotherapeutic drugs: cisplatin, carboplatin, cytarabine, and 

capecitabine. We performed an association analysis on the independent LCLs and using the same 

p-value threshold (P < 0.0005), we replicated between 137 and 725 SNPs that were associated in 

the original samples (Table 4-2). 

Pan-drug analysis of associated SNPs reveals distinct patterns of functional enrichment 

To get a better understanding of the biological processes involved in the differential 

cytotoxicity, we annotated all SNPs that are associated with each drug response using gene 

regions, KEGG pathways, GO terms, REACTOME, and protein families (Pfam) using 

Biofilter(72). We observed that many biological annotations were shared across different drugs 

and/or populations. To remove annotations that were shared due to random chance, we performed 

a permutation test (1000x) for each drug’s IC50 or AUC. Using the permuted IC50 or AUC, we 

identified associated SNPs using the same criteria as our original analysis. For each permutation, 
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we calculated how many times an annotation is shared across the drug and population. We then 

removed any annotations that are over-represented in the permutations (P < 0.005).  

Cellular sensitivity to drugs is a broad phenotype that include cell cycle arrest, cell 

damage, and cell death through apoptotic and non-apoptotic mechanisms(171,172). Cytarabine, 

cisplatin and paclitaxel were evaluated for chemotherapeutic-induced apoptosis because they 

cause a significant increase in cellular caspase-3/7 activation, a measure of apoptosis(167). Table 

4-3 lists the drug, population and sample size for this phenotype.  

 

We identified SNPs that are associated with drug induced caspase 3/7 activation (S2 

Table) and mapped them using biological annotations. To obtain the most stringent list of 

biological annotations that are shared between different drugs and populations, we kept only the 

annotations that passed the permutation test and were also identified in the replication or 

apoptosis dataset (Figure 4-1).  

Table 4-3: Apoptosis phenotype measured in LCLs 
Drug Population Sample size 

Cytarabine 

5uM 

    CEU                                 30 

YRI 35 

Cytarabine 

40uM 

CEU 30 

YRI 35 

Cisplatin    

5uM 

CEU 30 

YRI 35 

Paclitaxel 

12.5nM 

CEU 30 

YRI 35 
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When we compared the associated functional annotations across CEU and YRI LCLs, we 

observed that some annotations are population specific. For gene annotations, a group of genes 

including HUNK, MTMR9, PRAMEF4, and ACACA were only associated in the CEU population 

for at lease 2 chemotherapeutics (Figure 4-1a). Meanwhile, Spermatogenesis family BioT2, 

GNS1/SUR4 family, Translin family, and Leukotriene A4 hydrolase C-terminal in pfam (Figure 4-

1e), IKK related terms in REACTOME (Figure 4-1d), and several neuronal development and 

leukocytes GO terms (Figure 4-1b) were only identified in the YRI population. On the other 

hand, there is a common group of functional terms associated in both CEU and YRI populations. 

This group consists of mostly fatty acid related functional terms clustered together in GO term, 

REACTOME, and KEGG pathway. One notable example is the NF-kappa B signaling pathway 

in the KEGG pathway. This pathway was associated with all of the drugs in both populations 

(Figure 4-1c). 

Within each population, we observed that drugs within the same class have similar 

associated annotation patterns. In particular, cisplatin and carboplatin, both platinating agents 

have many functional annotations in common. Cytarabine and capecitabine, both antimetabolites, 

have a number of overlapping annotations (Figure 4-1).  

We also observed overlapping annotations between drug cytotoxicity and apoptosis. 

TSNAX-DISC1 and DISC1 gene was associated with cytarabine and paclitaxel for both cell 

cytotoxicity and apoptosis. A number of triglyceride and fatty acid GO terms and REACTOME 

pathways were shared for cytarabine, paclitaxel and cisplatin. Both Fatty acid elongation and NF-

kappa B signaling pathway in KEGG are enriched for both processes. In Pfam, GNS1/SUR4 

family, Translin family, and RFX DNA binding domain were enriched for cytotoxicity and 

apoptosis. 
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Figure 4-1. Pan-drug analysis of functional annotations. For each drug in CEU and YRI, 
associated SNPs were mapped to various functional annotations. A colored square indicates 
SNP(s) were mapped to that functional term (Cisplatin: Red, Carboplatin: Blue, Cytarabine: 
Orange, Capecitabine: Purple, Paclitaxel: Black). Only functional terms that have significant 
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Network modeling identified interactions between SNPs and gene expression variables 
important in cytotoxicity 

Starting with the SNPs and gene expression variables that were associated with each 

drug’s cytotoxicity, we calculated pairwise correlations among SNPs or gene expression.  Using 

cutoffs of r2 > 0.7 for SNPs and Pearson's r > 0.8 for gene expression, we grouped SNPs and 

gene expression variables that are highly correlated to the same clusters. To reduce multi-

colinearity for the network analysis, we selected one tag SNP or tag expression that had the 

highest association with cytotoxicity to represent each cluster. We integrated the tag SNPs and 

gene expressions using GENN and built interaction network models for each drug and population 

combinations.   

Using ENCODE data to prioritize network models  

It is possible that a number of network models can be similarly predictive for each drug’s 

cytotoxicity. To prioritize these models, we selected the model that contains variables with 

evidence of functional relevance from ENCODE. Previous studies suggest that SNPs that lie in 

the open chromatin and regulatory regions are more likely to be functional(146). Thus, we used 

DNAseI hypersensitivity sites from 124 cell lines and genome segmentation data from 6 cell lines 

produced by the ENCODE project to give functional relevance for each model. The DNAseI data 

marks genomic regions that are not occupied by heterochromatin and the genome segmentation 

data divides the genome into enhancer, transcription start sites, promoter-flanking regions, CTCF 

enrichment across drugs and populations (permutation analysis p < 0.005) were shown. 
Functional terms were grouped using hierarchical clustering according to its enrichment.  a. Gene, 
b. GO term, c. KEGG pathway, d. REACTOME, e. Pfam 
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binding sites, and repressed regions. For each network model, we first identify the full set of 

features by including SNPs that are in the same clusters as the tag SNPs in the model. We then 

calculated a functional score for each feature that is proportion to the number of functional 

elements it overlaps with in all of the cell lines. The final score for a network model is the 

summation of the individual score for each feature normalized by network size (Figure 4-2). 

Using the functional score, we were able to prioritize models that have similar predictive power 

in terms of R2 (amount of variability explained by the model) and identified one final model for 

each drug and population (Table 4-4 & Appendix Figure 4:1-10, page 105).  

 

 
Figure 4-2:  Schematic for functional score calculation. Functional score of a model is calculated 
as the sum of scores of individual SNP or SNPs in LD normalized by the model size. Individual 
score was determined by its positional overlap with functional regions. In this example, yellow 
squares represent DNAseI or genome segmentation regions. The score for a network model of 
SNP A, B, C, D is (7+3+5+1)/4 = 4. 
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Drugs Population R2 

 
SNPs (LD) DNAseI Genome Segmentation Gene 

Integration SNP Expression     
Capecitabine CEU 67.9 67.9 NA rs4855025 NA R, R, R, R, R, R NA 

rs28444711 NA  R, R, R, R, R, R 
rs7153327 11 R, R, R, R, R 
rs75202456 NA R, R, R, R, R 
rs1596124 NA R, R, R, R, R, R 
rs2570317 NA R, R, R, R, R, R 

YRI 64.3 64.3 NA rs11204113  NA R, R, R, R, R, R  
NA rs10760086 NA R, R, R, R, R, R 

rs9303059 NA R, R, R, R, R, R 
rs9661131 NA R, R, R, R, R, R  
rs6671214 NA CTCF, CTCF, CTCF, CTCF, CTCF, R 

Carboplatin CEU 60.4 62.1 23.1 rs11233413 9 T, E TMEM14E 
 rs12816395 NA T, T, R, R, R, R 

rs79062064 NA T, T, R, R, R, R 
YRI 66.2 66.2 NA rs16823342 NA R, R, R, R, R, R NA 

rs2553650 5 WE, R, R, R 
rs2079192 3 T, T, T, T, WE 
rs7325063 NA

  
T, R, R, R, R, R  

rs916396 NA T, T, R, R, R, R 
Cisplatin CEU 66.6 46.3 14.0 rs11715866 NA T, R, R, R, R, R FABP6 

HCFC1 
TAS2R30 
ZNF192P1 

rs344946 NA R, R, R, R, R, R 
rs11628331 NA R, R, R, R 
rs77859257 NA R, R, R, R, R, R 
rs557453 NA T, T, R, R, R, R 
rs9422887 9 CTCF, CTCF, CTCF, CTCF, CTCF, 

CTCF 
rs8074638 5 R, R, R, R, R, R 
rs557453 NA T, T, R, R, R, R 
rs812652 NA R, R, R, R, R, R 
rs4750139 5 TSS, TSS, R 
rs7257166 2 WE, T, R, R, R, R 

YRI 52.4 36.8 12.7 rs12255911 NA T, T, T, T, R, R IL27 
rs6814234 9 WE, T, T, R, R 
rs10426529 NA E, R, R, R, R, R 

Cytarabine CEU 47.7 42.9 0 rs1281461 NA R, R, R, R, R, R RP11-
463J10.3 
IL11RA 

rs2780788 NA T, R, R, R, R, R 

rs593525 11 T, T, T 

rs4910512 2 T, R, R, R 

rs7962806 NA R, R, R, R, R, R 

YRI 72.2 28.2 45.4 rs7666224,  NA R, R, R, R, R, R MAB21L3  
RP11-
134G8.8 

rs9564627 NA R, R, R, R, R, R 
rs2216926 NA R, R, R, R, R, R 
rs10913404 NA R, R, R, R, R, R 

Paclitaxel CEU 67.1 67.1 NA rs2116796 NA R, R, R, R, R, R NA 
rs28634858 2 WE, R, R, R, R, R 
rs10773683 3 R, R, R, R, R, R 

YRI 87.8 57.0 19.0 rs10478863 NA R, R, R, R, R, R  MAPKBP1 
LPP 
 

rs10094960 NA R, R, R, R, R, R 
rs446139 NA R, R, R, R, R, R 
rs9905351 8 T, T, T, R, R, R 
rs28570663 NA R, R, R, R, R, R 
rs10948390 NA T, T, R, R, R, R 
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Discussion  

Understanding a patient’s genetic susceptibility to chemotherapeutic drugs will provide 

important information for precision medicine. Previous studies have evaluated genotype 

associations to an individual chemotherapeutic drug; however, a comparative study of multiple 

drugs in different populations could reveal common or unique mechanisms that can be exploited 

in terms of therapy. Here, we present the first study to analyze the genetic associations of 

cytotoxicity induced by five chemotherapeutic drugs (cisplatin, carboplatin, capecitabine, 

cytarabine, and paclitaxel) in LCLs derived from two populations (CEU and YRI).  To 

comparatively analyze the associated genetic variants across multiple drugs in two populations, 

higher-level biological knowledge was used to group variants into functional modules. We 

discovered that mechanistically distinct drugs are enriched in the same functional modules such 

as NF-kB pathway. We also set to identify biomarkers that are predictive of the drug cytotoxicity.  

To this end, we found that integrated networks of SNP and gene expression performed better than 

either data type alone. Finally, we used DNA regulatory information to select network models 

that are both predictive and functionally important. 

 

Table 4-4: Network model identified by GENN. For each drug and population, we listed R2 and 
variables for integration, snp, and gene expression model. Genome segmentations abbreviations 
are: Enhancer (E), weak Enhancer (WE), CTCF binding (CTCF), transcribed region (T), 
repressed region (R), transcription start site (TSS) 

 



75 

 

We performed genome-wide SNP association analysis for each of the 5 drugs in both 

populations to identify significant genetic associations with drug-induced cytotoxicity. A major 

challenge to interpreting significant SNP associations across different drugs and populations is 

that comparing individual SNPs alone can be misleading. A slight change in allele frequency 

could result in any of the SNPs in linkage disequilibrium to be identified, however SNPs in LD 

are likely located in the same genes or regions. We, therefore, annotated the associated SNPs to 

higher-level biological processes using gene regions, GO term, KEGG pathway, REACTOME 

pathway, and Pfam. We found that biological annotations are considerably different between 

LCLs derived from individuals of European and African ancestry. Interestingly, ancestry has also 

been reported to affect gene expression(163), modified cytosines(173) and	sensitivity	to	

chemotherapy(174). The disparities might lie in the differences in population susceptibility to 

cancer, which could also affect cytotoxicity-induced response.  HUNK and ACACA genes were 

associated only in the CEU population and are both related to breast cancer(175,176) (Figure 1a). 

A previous report has shown that differences exist between African Americans and European 

American women in the nature of breast cancer(177). SEMA4D and CCDC7 genes were 

associated in the YRI population (Figure 4-1a). Expressions of the genes have been reported to 

correlate with poor outcome in cervical cancer(178,179). In addition, a recent survey has found 

that African American are more likely to develop cervical and lung cancer(180). These candidate 

genes could be further validated in their respective population. Several IKK related REACTOME 

pathways were associated with YRI population (Figure 4-1d). IKK is a central regulator of NF-kB 

pathway(181) and activation of NF-kB pathway has been observed in many solid tumors(182). 

Interestingly, NF-kB pathway is associated in both CEU and YRI population (Figure 4-1c), but 

IKK is only associated with the YRI population. This suggests a possible alternate regulator of 

NF-kB pathway for cytotoxic response.  

 



76 

 

Many annotation terms were also associated in both populations. Fatty acid and 

triglyceride related functional terms were identified in GO term, KEGG pathway, and 

REACTOME (Figure 4-1b,c, d). In Pfam, GNS1/SUR4 family is also involved in fatty acid 

elongation systems(183). Fatty acid synthase is an important process for cancer cells to expand 

and proliferate. High expression of fatty acid synthase was observed in colon, prostate, ovary, 

breast and endometrium cancers(184,185). Altered growth is one of the direct results of cytotoxic 

response, so it is likely that fatty acid synthase is also involved in the observed differential drug 

responses. Positive regulation of endothelial cell migration was associated with all 5 drugs. In 

addition, it was reported that during metastasis, cancer cells extravasate metastasis	sites	by	

attaching to endothelial cells(186). We also observed drugs that were known to treat similar 

cancers have high overlap of biological annotations. In particular, cisplatin and carboplatin are 

both platinum compounds that treat lung, head and neck, testicular, and ovarian cancer(29,158). It 

can be seen that cisplatin and carboplatin have high overlap in all annotations, especially in the 

YRI population (Figure 4-1).  

LCLs’ cellular sensitivity to drugs is a broad phenotype that encompasses many sub-

phenotypes including drug-induced apoptosis. Cell apoptosis, as measured by caspase activity, 

was shown to be weakly correlated with cytotoxicity(167). Despite	the	weak	correlation	at	the	

phenotypic	level,	we	found	that	many	functional	terms	enriched	for	cell	cytotoxicity	are	also	

associated	with	cell	apoptosis	(Figure 4-1), indicating shared biological mechanism for the two 

responses. As an example, SNPs in RFX2 gene were identified in a clinical trial evaluating 

paclitaxel-induced neuropathy of breast cancer patients and shown to be functionally important in 

paclitaxel-induced cytotoxicity using siRNA(170). In our analysis, RFX DNA binding domain 

was associated with both paclitaxel-induced cytotoxicity and apoptosis (Figure 4-1e). 
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The integration of SNP and gene expression data yielded higher predictive R2 than SNP 

or gene expression data alone (Table 4-4), which supports the potential value for combining 

multiple types of genomics data(33,90,187). Because we prioritized our model based on overlaps 

with DNA regulatory regions, many of our models contain SNPs that are located in the DNAseI 

region and functional genome segmentation regions. This information can provide additional 

interpretability to our models compared with using R2 alone. 

Due to the small sample size of LCLs in the original analysis, we sought for replication in 

independent HapMap3 LCLs to confirm our result. Of note, we found a large number of 

biological annotations were replicated in the independent datasets. Of annotations/drug pairs 

identified in the discovery analysis, between 15-100% were also significant in the respective 

HapMap3 replication population. This confirms that the associated SNPs might not be identical 

between discovery and replication studies, but the underlying biological mechanisms are the 

same. Our results show that many genetic variants and genes are involved in chemotherapeutic 

drugs cytotoxicity. By mapping genetic variants to higher-level biological processes, we were 

able to encapsulate variants in the same genomic region into more informative units. Comparing 

biological processes groups showed population specific patterns between CEU and YRI. 

However, as CEU LCLs were derived from an earlier time point(188), further studies are needed 

to verify whether some of the observed differential patterns might be due to time in culture. 

Nonetheless, a previous study showed that the cellular proliferation rate was not significantly 

different between CEU and YRI and no widespread genetic differences on common SNPs were 

observed between phase 2 and phase 3 YRI LCLs(188). Also, there are common processes across 

all drugs as well as between drugs that belong to the same class. These results could identify new 

drug repositioning candidates based on sharing of biological processes. We built predictive 

network models for drug cytotoxicity that are also functionally relevant. Future work can include 

additional types of functional data to better reflect the functional relevance of the models.  



 

 

 

Chapter 5*6 
 

Identification of genetic interaction networks via an evolutionary algorithm 
evolved Bayesian Network 

Abstract 

The future of medicine is moving towards the phase of precision medicine, with the goal 

to prevent and treat diseases by taking inter-individual variability into account. A large part of the 

variability lies in our genetic makeup. With the fast paced improvement of high-throughput 

methods for genome sequencing, a tremendous amount of genetics data have already been 

generated. The next hurdle for precision medicine is to have sufficient computational tools for 

analyzing large sets of data. Genome-Wide Association Studies (GWAS) have been the primary 

method to assess the relationship between single nucleotide polymorphisms (SNPs) and disease 

traits. While GWAS is sufficient in finding individual SNPs with strong main effects, it does not 

capture potential interactions among multiple SNPs. In many traits, a large proportion of variation 

remain unexplained by using main effects alone, leaving the door open for exploring the role of 

genetic interactions. However, identifying genetic interactions in large-scale genomics data poses 

a challenge even for modern computing. For this study, we present a new algorithm, Grammatical 

Evolution Bayesian Network (GEBN) that utilizes Bayesian Networks to identify interactions in 

the data, and at the same time, uses an evolutionary algorithm to reduce the computational cost 

                                                        
6 Adapted from Li	R,	Dudek	SM,	Kim	D,	Hall	MA,	Bradford	Y,	Peissig	PL,	et	al.	

Identification	of	genetic	interaction	networks	via	an	evolutionary	algorithm	evolved	
Bayesian	network.	BioData	Mining 



79 

 

associated with network optimization. GEBN excelled in simulation studies where the data 

contained main effects and interaction effects. We also applied GEBN to a Type 2 diabetes (T2D) 

dataset obtained from the Marshfield Personalized Medicine Research Project (PMRP). We were 

able to identify genetic interactions for T2D cases and controls and use information from those 

interactions to classify T2D samples. We obtained an average testing area under the curve (AUC) 

of 86.8%. We also identified several interacting genes such as INADL and LPP that are known to 

be associated with T2D. Developing the computational tools to explore genetic associations 

beyond main effects remains a critically important challenge in human genetics.  Methods, such 

as GEBN, demonstrate the utility of considering genetic interactions, as they likely explain some 

of the missing heritability.   

Background 

Over the past decade, development in large-scale, high-throughput methods to 

characterize the human genome has dramatically improved our ability to assess the relationship 

between an individuals’ genome and diseases(189). With the ever-increasing generation of 

genomic data, development of computational methods necessary to analyze the vast amount of 

data are becoming increasingly important(90). The genome-wide association study (GWAS) was 

the pioneering method to interrogate the genotypic and phenotypic relationship and is still being 

widely used today(124,190). However, despite GWAS’ wide success in finding associated SNPs 

in many common diseases, it lacks the power to detect more complex genetic architectures such 

as genetic interactions(191). Therefore, a more comprehensive analysis method that can detect 

both main effects as well as genetic interactions is needed. 

Much variability in human diseases and traits remain unexplained by using GWAS 

alone(191). It is hypothesized that some of the missing variability could stem from complex 
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genetic interactions that are unexplored by traditional association analysis. Furthermore, studies 

that do explore genetic interactions are often limited to two-way interactions due to the 

exponential increase of computational burden associated with higher-way interactions(192).  A 

number of analytic methods have been proposed and implemented to explore interactions using 

statistical and data mining strategies.  For example, MDR(54,55) can exhaustively evaluate all 

possible n-way interactions for a given n and selects the best model based on cross validations. 

Network based methods such as Neural Networks (63), (65) and Bayesian Networks(193) use 

their respective network structures to model interactions. Other notably machine learning 

methods including random forest(194) and SURF(195) use variable importance score to select 

potential interacting variables that are predictive of the outcome. However, strategies that employ 

exhaustive search are difficult to scale up due to the exponentially increasing search space. 

Machine learning methods are more flexible but they often suffer in model interpretability. 

Typically, the underlying pattern in data is not known a priori, thus it is important to develop a 

flexible method to model different types of genetic architecture. In previous chapters, we have 

used GENN to model complex integrations with some success. However, GENN also suffers 

from the issue of limited interpretability, especially with complex multi-layer networks. 

Compared with Neural Networks, Bayesian Networks are more interpretable in their network 

structures. Thus, we designed a new algorithm that is based on Bayesian Networks. 

 

To capture main effects of genetic variants as well as complex genetic interactions, we 

created the Grammatical Evolution Bayesian Network (GEBN) algorithm. The algorithm can 

simultaneously identify marginal effects as well as interaction effects without exponentially 

increasing the search time. GEBN can also identify interactions that occur between different sets 

of genetic variants in different groups (i.e. cases and controls). This flexibility allows discovery 

of non-overlapping genetic architectures in multiple groups. Previous Bayesian Networks 
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methods to detect genetic interactions(193,196) have been limited to a small set of input SNPs. 

Here, we specifically chose to implement an evolutionary computation strategy to evolve the 

structure of the Bayesian Network because it allows us to model a larger number of SNPs while 

controlling for the computational time.  

 

We implemented GEBN algorithm in the software package ATHENA. We tested the 

algorithm on various simulation datasets. We also applied GEBN to a case-control dataset for 

type 2 diabetes obtained from the Marshfield Personalized Medicine Research Project Biobank 

(Marshfield PMRP)(197).  The network models identified novel interaction networks for type 2 

diabetes cases and healthy individuals, respectively. Using the interaction networks for the two 

groups, we built prediction models that have an average AUC of 86%.   In the following sections, 

we describe the GEBN algorithm, data simulations and the application in type 2 diabetes.  Our 

results demonstrate the promise of methods like GEBN. 

Methods 

 Grammatical Evolution Bayesian Network (GEBN) 

Bayesian Network is a multivariate modeling method that expresses the relationship of 

variables through a series of conditional distributions. The use of Bayesian Networks is becoming 

very important in biology because of their ability to infer biological networks(198), model 

signaling pathways(199), and classifications(200,201). The current obstacle for the application of 

Bayesian Networks in large-scale genomics data is the exponentially increase of search space 

with the increase of input variables. Thus, we used a grammatical evolution (GE) algorithm to 

evolve Bayesian Networks in order to reduce computational time. GE is a type of genetic 
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programming(131,132) that uses Backus-Naur Form (BNF) grammar to create a model based on 

a genetic algorithm. The advantage of GE algorithm lies in its guided random search so that the 

search space is greatly reduced. The steps of the GE algorithm is the following: 

1. Divide the data into five equal parts for cross-validations 

2. For each cross validation: 

Populations of binary string are randomly generated and translated into functional 

Bayesian Networks by the grammar. For each individual genome, the binary string is divided into 

consecutive codons. The codons are then translated according to the grammar (Figure 5-1).  

 

 

 
Figure 5-1: Generation of BN using the grammar 
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3. Calculate the fitness of the Bayesian Networks using the K2 scoring function(202). 

 

Where D is the dataset, B is Bayesian Network, n is total number of variables, qi is the 

number of different values of Xi’s parents, ri is the number of values of Xi. The score calculates 

the probability of observing the network given the data. 

4. Select the Bayesian Networks that have the highest fitness, which will then undergo 

crossover and mutations. During crossover and mutation, parts of the different Bayesian 

Networks are exchanged or mutated to create new networks.  

5. Repeat 3-4 for a set number of generations 

6. Save the best model in the final generation and evaluate it on testing data 

 

The final Bayesian Network is composed of connected and unconnected variables. 

Variables that are connected in the network are directly dependent with each other, while 

unconnected variables are conditionally independent. The advantage of GEBN over the more 

traditional network construction is that it can explore a wider search space, thus more suitable for 

large-scale genomics data. In addition, using an evolutionary search strategy removes the 

dependency on human trial and error to create optimal network structures and instead relies on 

the data and computation along with evolutionary learning to find optimal structures.  
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Discriminant analysis 

The above GEBN method is applied to the case group and the control group 

independently. To prevent over-fitting, we used Bayesian Information Criteria (BIC)(203) to 

control the model complexity. The BIC is calculated as: 

𝐵𝐼𝐶 = −2 ∗ ln 𝐿 + 𝑘 ∗ ln	(𝑛) 

Where L is the maximum likelihood of data given a network, k is the number of free 

parameters, and n is the sample size. We iteratively removed each edge in the case or control 

network and calculated BIC for the reduced model. If the reduced model had higher BIC value, 

the edge was retained, and vice versa.  

Finally, we used the discriminant analysis to assign an individual into either the case 

group or the control group. Using Bayes theorem, the probability of the sample belonging to a 

case group is calculated by: 

𝑃(𝑌 = 𝐶𝑎𝑠𝑒|𝐷𝑎𝑡𝑎) =
𝑃 𝐷𝑎𝑡𝑎|𝑌 = 𝐶𝑎𝑠𝑒 ∗ 𝑃(𝑌 = 𝐶𝑎𝑠𝑒)

𝑃 𝐷𝑎𝑡𝑎|𝑌 = 𝐶𝑎𝑠𝑒 ∗ 𝑃 𝑌 = 𝐶𝑎𝑠𝑒 + 𝑃 𝐷𝑎𝑡𝑎|𝑌 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ∗ 𝑃(𝑌 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙)
 

Where 𝑃(𝑌 = 𝐶𝑎𝑠𝑒) and 𝑃(𝑌 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) are given by their proportions in the total 

sample and 𝑃(𝐷𝑎𝑡𝑎|𝑌 = 𝐶𝑎𝑠𝑒) is calculated as: 

𝑃 𝐷𝑎𝑡𝑎 𝑌 = 𝐶𝑎𝑠𝑒 = 𝑃 𝐷𝑎𝑡𝑎 𝑌 = 𝐶𝑎𝑠𝑒, 𝐶𝑎𝑠𝑒	𝑁𝑒𝑡 = 𝑃(𝐺-|𝐶𝑎𝑠𝑒	𝑁𝑒𝑡)
:

-

 

p = total number of variables. 𝑃(𝐷𝑎𝑡𝑎|𝑌 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) was calculated in the same fashion.  

Genetic data simulation 

To test our approach, we simulated data that contains functional SNP variables with main 

effects and interaction effects. For main effect simulation, we simulated data that consist of 

different numbers of functional SNPs with varying degrees of association to a binary outcome. 
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For interaction effects, we separately simulated a number of interaction effects in case and control 

groups. We purposely made the interaction effects different in case and control groups to mimic 

different genetic architectures in two groups (Figure 5-2).  

 

To simulate different degrees of main effect, for a functional SNP, we altered the allele 

frequencies in the case data (Fcase) using a weighted average of allele frequencies in the control 

data (Fcontrol) and the extreme allele frequencies (Feffect) that were defined as (AA=100%, Aa=0%, 

aa=0%). Thus, the allele frequencies of the functional SNP in the case data is obtained by Fcase = 

 

 
Figure 5-2:  Schematic of data simulation. Main effect models have different allele frequencies in 
case and control datasets at the simulated SNPs. In interaction effect models, cases and control 
datasets have different simulated interacting SNPs without main effects.  
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w*Feffect + (1-w)*Fcontrol, where w is the weight index – larger w indicating more discrepancy 

between the case frequencies and control frequencies.  

The interaction effects were simulated as follows: Let Find denotes the joint frequencies of 

a pair of uncorrelated SNPs, which is calculated as the product of marginal frequencies between 

SNPs. The correlation can be increased by relocating the frequencies from the off-diagonal to the 

diagonal in the frequency table, and an extreme case is that only the diagonal have non-zero 

frequencies, which is denoted by Fdiag. Different strength of interactions can be simulated by 

w*Fdiag + (1-w)* Find.  

For each dataset, we used the simulated frequency tables with sampling with replacement 

to determine the genotype of the functional SNPs. Then, we embedded the functional SNPs into a 

dataset with random SNPs to make it comparable to real biological datasets. Details of simulation 

parameters are shown in Table 5-1. 

 

Table 5-1:  Data simulation details 

 

 Functional 
SNPs in Case 
data 

Functional 
SNPs in Control 
data 

Weight 
(W) 

No. 
Datasets 
for each W 

Total 
SNPs 

Sample 
size 

Main effect SNP A SNP A 0.1, 0.5, 
0.9 

10 100, 
500 

4000 

SNP A, B, C, D SNP A, B, C, D 0.1, 0.5, 
0.9 

10 100, 
500 

4000 

Interaction 
effect 

SNP A * SNP B None 0.1, 0.5, 
0.9 

10 100, 
500 

4000 

SNP A * SNP B 

SNP C * SNP D 

SNP W * SNP X 

SNP Y * SNP Z 

0.1, 0.5, 
0.9 

10 100, 
500 

4000 
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Marshfield PMRP Type 2 Diabetes Dataset 

The Marshfield PMRP is a biobank that has collected ~20,000 adult subjects’ biological 

samples and electronic health records(197). We obtained SNPs data of type 2 diabetes cases and 

controls who were genotyped on Illumina Human660W-Quad BeadChip. We only retained 

individuals who are European Americans because they account for over 95% of samples and we 

also removed related samples. For SNP quality control (QC), we kept SNPs that have 100% call 

rate and minor allele frequency > 5%. The cleaned data consists of 267, 209 SNPs in 800 cases 

and 2465 controls. We then performed a GWAS using logistic regression to identify a set of 

candidate SNPs with main effects for GEBN analysis (this is a main effects filtering step(204)). 

Association analysis was performed while adjusting for sex, median BMI, and birth decade.  

Case-control status for T2D was determined using Mount Sinai’s diabetes algorithm(205) from 

the Diabetes HTN CKD algorithm(206).   

Results and discussion 

Simulation Results 

In the simulation study, we compared the performance of GEBN to that of the traditional 

GWAS approach based on logistic regression and another widely used method for detecting 

interactions, grammatical evolution neural network (GENN)(107,108). The prediction 

performance is summarized by the respective receiver operating characteristic (ROC) curves and 

the area under the curve (AUC). For each setting, we show the prediction performance averaged 

over 10 simulations. Regression models that include the exact simulated model (MAX) are also 

used to show the upperbound of prediction performance. 
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For main effect models, GEBN achieved close to maximum prediction performance in 

datasets with 100 SNPs. Logistic regression showed similar power, while GENN showed lower 

power. With 500 SNPs, the performance advantage of GEBN is even more visible (Figure 5-3a-

d). The performance of all methods were improved by increasing the number of functional SNPs 

and increasing the effect size.  

When case data and control data only differ by SNP interactions, logistic regression 

failed to separate two types with ROC curve fluctuating along the 45 degree line which 

corresponds to random guesses. GENN showed some power in detect interactions. However, 

GEBN showed improved ROC especially when the effect size is large (Figure 5-3e-h). The 

excution time for GEBN depends on the parameter settings. With the current settings of 

population size of 3000 and 300 generations of evolution, the average running time is 1.5±0.07 

hrs for 100 SNPs and 0.97±0.1 hrs for 500 SNPs and the running time is not dependent on the 

underlying model. The average AUC for all the models are listed in Table 5-2. 

 
 

 
a 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9



89 

 

 

 

 

 

 
b 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9



90 

 

 

c 

 

 

 
d 

 

 

 
e 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9



91 

 

 

 

 

 

 

 

 

 
f 

 

 
g 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

GENN_0.1
GENN_0.5
GENN_0.9
Logistic_0.1
Logistic_0.5
Logistic_0.9
Max_0.1
Max_0.5
Max_0.9
GEBN_0.1
GEBN_0.5
GEBN_0.9



92 

 

 

 

 

 
h 

 
 

Figure 5-3: Simulation results for additive and interaction models using grammatical evolution 
Bayesian Network (GEBN), grammatical evolution neural network (GENN), logistic regression, 
and logistic regression with the exact simulated model (MAX). The colors represent 
different  weight indexes (red = 0.9, blue = 0.5, green = 0.1). These weight indices correspond to 
strength of the simulated effects. a. Main effect model: SNP A (100) b. Main effect model: SNP 
A (500)  c. Main effect model: SNP A, B, C, D (100)  d. Main effect model: SNP A, B, C, D 
(500) e. Interaction model: SNP A<->B  (100)  f. Interaction: SNP A<->B (500)  g. Interaction 
model: SNP A<->B, C <->D, W<->X, Y<->Z (100) h. Interaction model: SNP A<->B, C <->D, 
W<->X, Y<->Z (500) 
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Type 2 diabetes results 

We first performed association analysis using logistic regression for 267,209 SNPs 

associations with type 2 diabetes, using p < 0.001 as threshold, we identified 259 SNPs associated 

with type 2 diabetes. The top associated SNP was rs7903146 (p=2.997e-06), which maps to 

TCF7L2 gene. To remove SNPs that are correlated, we used PLINK software(43) to prune the 

associated SNPs based on linkage disequilibrium (--indep 50 5 2). 202 SNPs remained after LD 

pruning. We applied GEBN on the 202 SNPs, together with sex, median BMI, and birth decade, 

Table 5-2:  Comparison of AUC for GEBN and logistic regression 

 

 Functional 
SNPs in 
Case data 

Functional 
SNPs in 
Control 
data 

Weight 
(W) 

MAX Regression GENN GEBN  

100 100 500 100 500 100 500 

Main effect SNP A SNP A 0.1 55 52 51 54 54 53 52 

0.5 71 71 64 70 71 71 67 

0.9 88 88 72 88 88 88 87 

SNP A, B, 
C, D 

SNP A, B, 
C, D 

0.1 61 57 53 54 54 58 54 

0.5 90 89 72 73 73 89 87 

0.9 99 96 87 98 98 99 99 

Interaction 
effect 

SNP A * 
SNP B 

None 0.1 53 50 50 50 50 50 50 

0.5 67 50 49 56 53 65 60 

0.9 89 50 50 60 59 80 77 

SNP A * 
SNP B 

SNP C * 
SNP D 

SNP W * 
SNP X 

SNP Y * 
SNP Z 

0.1 56 50 50 50 50 52 51 

0.5 82 50 50 57 55 81 67 

0.9 97 49 50 62 60 97 89 
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to separately build interaction networks for type 2 diabetes cases and controls. We then used the 

final network from cases and controls to perform discriminate analysis on the independent testing 

data. The average prediction AUC of 5-fold cross validation was 86.8% (Figure 5-4). 

 
Figure 5-5 shows the best Bayesian Network models for cases and controls. The AUC for 

the best model was 88.7%. The networks also include the rest of the SNPs as marginal variables, 

but for clarity, they were not shown. The cases and controls share there common interactions: 

rs13127347 and rs2333452, rs9851100 and rs710563 (both in P3H2 gene), rs2666504 and 

rs1475563 (INADL gene). There was also one unique interaction for cases, which is rs10065876 

 

 
Figure 5-4: Testing ROC curve for type 2 diabetes. Each color represents a single cross-
validation.  

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



95 

 

and rs11741322 and two for controls, which are rs4477348 and rs6480213 (both in CTNNA3 

gene), and rs11707430 and rs6444295 (both in LPP gene). 

 

 

 
a.  

 

 
b. 

 
 

Figure 5-5: Best Bayesian Network models for cases and controls. Left panel shows network 
structure before BIC pruning. Right panel shows network structure after BIC pruning, and the red 
edges indicate interactions only found in the case data or the control data, but not both cases and 

rs11741322( rs10065876(

rs2333452( rs13127347(

rs710563( rs9851100(

rs1475563( rs2666504(

rs6480213* rs4477348*
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rs9851100* rs710563*

rs13127347* rs2333452*
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Conclusions 

In this study, we presented a novel algorithm that can efficiently capture marginal and 

interaction effects present in the genetic data. We demonstrated in simulation data that GEBN 

performed equal or better than the standard GWAS analysis method using logistic regression as 

well as GENN on data with only main effect functional SNPs. In data with interacting SNPs, 

logistic regression failed to capture the true model which is shown by the ~50% AUC (Figure 5-

2). GENN was able to capture simulated interactions, however, the predictive power were 

significantly lower than the MAX models, which gives the upper bound of prediction 

performance. On the other hand, GEBN were able to separately identify the unique interactions in 

cases and controls and use that information to distinguish the two groups. The performance of 

GEBN was close to the maximum prediction power in data with 100 and 500 SNPs. One concern 

was that GEBN can potentially over fit the data because networks were trained separately for 

each group. However, our testing AUCs showed that we did not over fit the model. As a further 

validation, GEBN was applied to the xor dataset from Chapter 2. The xor dataset contains two 

simulated xor variables and 98 noise variables. GEBN was able to achieve 100% power in all 

datasets. 

Using main effect filtering followed by GEBN analysis, we replicated canonical 

associations and also identified novel genetic interactions for type 2 diabetes. The most 

significant association was rs7903146, which is located in the TCF7L2 gene. We also identified 

rs12255372, which is in LD with rs7903146, as a significant association. TCF7L2 gene has been 

controls. a. Case data network  b. Control data network                 
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implicated for type 2 diabetes in many studies(4,207). We limited the network analysis to the top 

202 associated SNPs because it is a comparable size to our simulation study. It is interesting that 

the top case and control networks have common as well as unique edges. The common edges 

include two non-coding SNPs on chromosome 4, two SNPs within P3H2 gene and one SNP in 

INADL gene and one SNP in the non-coding region of chromosome 1. The INADL gene is part of 

the hippo signaling pathway(74). The pathway has been shown to regulate pancreas 

development(208) and adipocyte development(209). Interestingly, a prior study has found that 

INADL was associated with children’s weight(210). It is difficult to interpret the unique 

interaction for case group because both of the SNPs are located in non-coding regions. These 

could be further analyzed by looking into the ENCODE and GTEx regulatory data for possible 

functions.  For controls, CTNNA3 were found to be associated with Alzheimer(211) and heart 

disease(212). LPP gene has shown a robust association with type 2 diabetes in multiple 

ethnicities as well as combined meta-analysis(213). Taken together, we have shown that GEBN 

have identified several known genes associated with type 2 diabetes. Using logistic regression, 

we also obtained a similar prediction AUC of 86.5%. The similar performance was mostly due to 

the candidate SNPs were selected using a main effect filtering. Despite the similarity in the 

AUCs, GEBN was able to identify more complex genetic structures in diabetes cases and controls 

than logistic regression. 

  

This paper presents the first step of the algorithm development that aims to address the 

pressing need for tools to identify complex relationships within the genetics data. Due to the 

flexibility of the Bayesian networks, the algorithm could be applied to datasets with more than 

two outcomes.  For example, drug response phenotypes might be categorized as high responder, 

low responder, and non-responder.  This would be possible to analyze with GEBN.   
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The utility of GEBN will be even greater in those settings because traditional statistical 

approaches are generally limited to binary outcomes. We also plan to integrate other –omics data 

such as transcriptomic and methylomic data into the network. The potential interactions between 

factors from different data types could reveal novel biological insights not seen at any individual 

data alone. The ultimate goal of individually identifying networks for different groups or subtypes 

of disease is to more precisely understand the disease so that we can improve detection and 

treatment of the disease. The method presented in this chapter will help further elucidate the 

complex biological relationship present in the genetics data. 
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Chapter 6 Conclusion 

While the pace of data generation in genetic research has skyrocketed in recent years, the 

development of appropriate tools has comparably lacked behind. Therefore, this dissertation was 

particularly focused in the areas of methods development for analyzing large-scale genomics 

dataset. In this chapter, the author will provide summaries for the previous chapters and provide 

several future development plans.   

Chapter 1 has provided an important rationale for this dissertation, namely, the biological 

system is a complex system and it needs diverse datasets and methods to model it. Genomics data 

is no longer restricted to genotyping or sequencing data. As Figure 6-1 shows, multiple layers of 

data already exist between the genome level to the phoneme level. The additional layers of data 

allow researchers to paint a fuller picture of the genetic association to the phenotype.  
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The most widely used analysis technique in detecting associations between genotype and 

phenotype is the GWAS. However, with the addition of other layers of data, GWAS is no longer 

sufficient on its own. Chapter 1 reviewed several analysis approaches in addition to association 

analysis including: identifying epistasis interactions, using prior biological knowledge, and 

performing system genomics analysis. The author concluded that an ensemble approach that can 

integrate multiple methods would likely to be the most successful in the future.  

 
Figure 6-1 Biological systems multi-omics from the genome, epigenome, transcriptome, 
proteome and metabolome to the phenome. Heterogeneous genomic data exist within and 
between levels, for example, single-nucleotide polymorphism (SNP), copy number variation 
(CNV), loss of heterozygosity (LOH) and genomic rearrangement, such as translocation, at the 
genome level; DNA methylation, histone modification, chromatin accessibility, transcription 
factor (TF) binding and micro RNA (miRNA) at the epigenome level; gene expression and 
alternative splicing at the transcriptome level; protein expression and post-translational 
modification at the proteome level; and metabolite profiling at the metabolome level. Arrows 
indicate the flow of genetic information from the genome level to the metabolome level and, 
ultimately, to the phenome level. The red crosses indicate inactivation of transcription or 
translation. CSF, cerebrospinal fluid; Me, methylation; TFBS, transcription factor-binding site. 
(Source: Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data 
to uncover genotype–phenotype interactions. Nat Rev Genet)  
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One ensemble approach, ATHENA, was the focus of Chapter 2. A neural network 

approach (GENN) implemented in ATHENA was consistently producing simple 1-layer networks 

in many different datasets. One drawback of the small network is the reduced ability to model 

complex relationships that are commonly present in the genomics data.  Using a simulated XOR 

model that requires multi-layer neural network to model, the author found the optimal algorithm 

settings that would allow GENN to build multi-layer networks.  

Using the knowledge gained from Chapter 2, the author applied GENN to a 

pharmacological phenotype, etoposide IC50. The analysis integrated two types of data: SNPs and 

DNA methylations to predict drug responses on CEU and YRI cell lines. The analysis identified 

networks of SNPs and methylation levels that are predictive of the drug response. The study, 

however, was limited by the lack of replications and comparisons with other drug response 

phenotypes. 

With the limitations of the previous study in mind, a more comprehensive analysis on 

drug-induced cytotoxicity was carried out in Chapter 4. The new study included 5 different drug’s 

IC50, a related pharmacological phenotype, cell apoptosis, and an independent set of samples for 

replication. The analysis also featured an ensemble approach that included using biological 

databases, ENCODE annotations, and network analysis of genetic factors to compare models 

across drugs and cell lines. This approach is also not limited to pharmacological phenotypes; any 

traits or phenotypes can be interchanged with IC50. 

Neural Network (NN) models used in the previous chapters have been widely applied to 

many genetic traits. However, it has several limitations with the primary being poor 

interpretability. In Chapter 5, a Bayesian Network (BN) based algorithm was created to address 

this issue. Bayesian Networks has better interpretability than Neural Networks as the network 

edges in BN represent direct relationship among variables. The disadvantage of Bayesian 

Networks is that it requires much more computational time to model. To circumvent this problem, 
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an evolution algorithm approach was fused with BN to create GEBN. GEBN was tested in 

simulation data and applied to a type 2 diabetes dataset.  

Currently, a new version of Bayesian Network algorithm is being developed. The new 

algorithm Genetic Algorithm Bayesian Networks (GABN) differs from GEBN in one important 

aspect (Figure 6-2). GABN would able to identify multiple sub-connected networks in the data 

compared to only one for GEBN. 

Other areas of future development include the ability to use prior knowledge when 

constructing edges of the networks, the capacity to include continuous variables into the network, 

and the ability to model multi-level phenotypes, such as cancer subtypes.  

 

 
Figure 6-2 Differences between GEBN and GABN. GEBN only allows identifying one connected 
network, while GABN allows multiple sub-networks. In this example, the two sub-networks were 
forced to be connected in GEBN 

 

GEBN% GABN%
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In summary, this dissertation represents only a small step towards using multi-omics data 

to understand genetic traits. While many diverse data types have been used, two other important 

data: copy number data and rare genetic variants data have not been explored. It is for certain that 

additional data sets will be discovered and implemented in the future. However, the central theme 

should remain unchanged, that is, in order to understand the complexity of the biological system, 

information from multiple facets of the biological system needs to be integrated and interrogated.   
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Appendix  
 
 

 

 
Appendix Figure 4-1:  Neural Network model for capecitabine chemotherapeutic response in 
CEU.   W is a weight node, PADD is an addition activation node 
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Appendix Figure 4-2: Neural Network model for capecitabine chemotherapeutic response in YRI. 
W is a weight node, PADD is an addition activation node 
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Appendix Figure 4-3:  Neural Network model for cisplatin chemotherapeutic response in CEU. W 
is a weight node, PADD is an addition activation node 
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Appendix Figure 4-4: Neural Network model for cisplatin chemotherapeutic response in YRI. W 
is a weight node, PADD is an addition activation node 
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Appendix Figure 4-5: Neural Network model for carboplatin chemotherapeutic response in CEU. 
W is a weight node, PADD is an addition activation node 
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Appendix Figure 4-6:  Neural Network model for carboplatin chemotherapeutic response in YRI. 
W is a weight node, PADD is an addition activation node 
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Appendix Figure 4-7: Neural Network model for cytarabine chemotherapeutic response in CEU. 
W is a weight node, PADD is an addition activation node, PDIV is a division node 
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Appendix Figure 4-8: Neural Network model for cytarabine chemotherapeutic response in YRI. 
W is a weight node, PADD is an addition activation node  
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Appendix Figure 4-9: Neural Network model for paclitaxel chemotherapeutic response in CEU. 
W is a weight node, PADD is an addition activation node  
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Appendix Figure 4-10: Neural Network model for paclitaxel chemotherapeutic response in YRI. 
W is a weight node, PADD is an addition activation node, PMULT is a multiplication node 
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Appendix Table 4:  Associated SNPs and gene expression for chemotherapeutic drugs 

 
Deposited at https://scholarsphere.psu.edu/collections/ns064615m 
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