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ABSTRACT 
 

The recent change in US Environmental Protection Agency (EPA) surface ozone regulation, 

lowering surface ozone daily maximum 8-hour average (MDA8) exceedance threshold from 75 

ppbv to 70 ppbv, poses significant challenges to US air quality (AQ) forecasters responsible for 

ozone MDA8 forecasts.  The forecasters, supplied by only a few AQ model products, end up relying 

heavily on self-developed tools.  To help US AQ forecasters, this study explores surface ozone 

MDA8 forecasting tool based solely on statistical methods and standard meteorological variables 

from the numerical weather prediction (NWP) models.  The model combines self-organizing map 

(SOM), a clustering technique, with a stepwise weighted quadratic regression using meteorological 

variables as predictors for ozone MDA8.  The SOM method identifies different weather regimes, 

to distinguish between various modes of ozone variability, and groups them according to similarity.  

In this way, when a regression is developed for a specific regime, data from the other regimes are 

also used, with weights based on their similarity to this specific regime.  This approach, regression 

in SOM (REGiS), yields a distinct model for each regime taking into account both the training 

cases for that regime and other similar training cases.  To produce probabilistic MDA8 ozone 

forecasts, REGiS weighs and combines all of the developed regression models based on the weather 

patterns predicted by a NWP model.  REGiS is evaluated over San Joaquin Valley in California 

and northeastern plains of Colorado.  The results suggest that the model performs best when trained 

and adjusted separately for an individual AQ station and its corresponding meteorological site.  

Real-time ozone forecasting using REGiS is demonstrated for the Philadelphia area over a brief 

period of time in 2016. 
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Chapter 1  
 

Introduction  

A string of deadly air pollution episodes during the 1930s-1960s in North America and Europe 

prompted a creation of air pollution regulations, which in turn led to the development of a research 

field known today as the air quality (AQ) forecasting, established to protect public (Zhang et al. 

2012a).  And although the AQ forecasting alone cannot cope with the air pollution problem, it can, 

in many cases, lead to better decision making and reduce losses (Garner and Thompson 2013).  An 

array of forecasting methods to predict AQ was developed, ranging from statistical models to 

advanced, physically-based approaches.  Despite the efforts of scientists from multiple disciplines 

such as meteorology, atmospheric chemistry, mathematics, statistics, computer sciences, etc., the 

new discipline of AQ forecasting met exceptional challenges (Zhang et al. 2012a).  The ever-

changing chemical composition of the atmosphere requires constant and careful updates to the AQ 

models, which in turn require proper expertise (Comrie 1997; Zhang et al. 2012a).  Given the scope 

of the air pollution issue, diverse AQ model development is an important task that can help with 

keeping society well informed about the real-time global air pollution. 

Although the AQ has improved significantly in North America and Europe over the past 

30 years, the same cannot be said about many other places around the globe, especially developing 

countries where air pollution is on the rise (Shahgedanova and Burt 1994; Fenger 2009; Klimont 

et al. 2009; Lamarque et al. 2010).  Regions with improved or worsened AQ alike are faced with 

the issue of constantly changing emissions (Zhang et al. 2012a).  That means that the AQ models 

also need to change continuously.  Therefore, creating a model that can quickly adapt to 

environmental variability is a desirable objective in the field of AQ forecasting. 
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In this thesis, a computationally fast and flexible model for surface ozone prediction is 

presented based on a combination of already well established statistical forecasting approaches 

(Thompson et al. 2001; Zhang et al. 2012a).  

1.1 Ozone Pollution  

A number of studies have shown damaging effects of air pollution on humans, wildlife, and 

materials (Richkind and Hacker 1980; Lee et al. 1996; Greenbaum et al. 2001; Brook et al. 2002).  

In the United States (US), the Environmental Protection Agency (EPA) has established six criteria 

pollutants that are constantly monitored to protect public health.  Of these pollutants, the ones that 

most commonly exceed unhealthy thresholds are surface ozone and particulate matter (PM) with 

aerodynamic diameters less than or equal to 2.5 μm (PM2.5) and 10 μm (PM10) (EPA 2003).  The 

focus of this thesis, however, is the prediction of the surface ozone.  

1.1.1 Ozone Genesis 

Ozone is not emitted into the atmosphere of the Earth, but is produced from various precursors by 

several different chemical mechanisms.  Stratospheric ozone forms through the dissociation of 

molecular oxygen by solar ultraviolet (UV) radiation and subsequent reaction of oxygen atoms with 

O2 in the presence of another molecule M (commonly N2 or O2).  In the troposphere, ozone is 

accumulated by the downward transport form the stratosphere and is generated through the complex 

chain of reactions mainly between nitrogen oxides (NOx), carbon monoxide (CO), methane (CH4), 

and volatile organic compounds (VOCs) in the presence of sunlight.  NOx, CO, CH4, and VOCs 

emissions are both natural and anthropogenic, but generally it is the regions with prevalent 

anthropogenic emissions that are most prone to elevated surface (lower troposphere) ozone 
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concentrations.  Due to the anthropogenic emissions of the ozone precursors, urban and developing 

regions usually exhibit greater surface ozone amounts than rural and remote places.  Exact 

pathways leading to the formation of the surface ozone have been difficult to establish due to the 

continuously changing composition of the lower troposphere (Seinfeld and Pandis 2012). 

 Without any other contributors the reactions involving NO, NO2, O, O3, M, and radiation 

at wavelength < 424 nm form a null cycle: 

NO2 + hv (λ < 424 nm) → NO + O     (R1-1) 

O + O2 + M → O3 + M     (R1-2) 

O3 + NO → NO2 + O2     (R1-3) 

These reactions result in a steady-state, where NO2 is created and destroyed equally.  Given such 

chemistry, ozone concentrations would only be dependent upon the existing NO2 concentrations; 

however, observations show that this is not the case.  It is therefore concluded that other important 

chemical processes take place in the lower atmosphere (Seinfeld and Pandis 2012). 

 Hydroxyl (OH) radical, which forms through the reaction of excited singlet oxygen atom 

and water vapor molecule, has an ability to initiate oxidations of carbon monoxide (CO) and 

volatile organic compounds (VOCs) leading to the production of hydroperoxy radical (HO2) and 

organic peroxy radicals (RO2).  The following reactions are now able to proceed: 

HO2 + NO → OH + NO2     (R1-4) 

RO2 + NO → RO + NO2     (R1-5) 

It is crucial that in this case conversion from NO to NO2 no longer requires an O3 molecule and 

resulting NO2 becomes a net source for additional O3.  In order for the ozone to grow, however, 

there must be a balance between NOx and VOCs.  There are possibilities for VOC-limited and NOx-

limited conditions, where the following reactions are responsible for termination of ozone 

production reaction chain: 

 VOC-limited:  
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 OH + NO2 + M → HNO3 + M      (R1.6) 

 NOx-limited:  

 HO2 + HO2 → H2O2 + O2      (R1-7) 

 RO2 + HO2 → ROOH + O2      (R1-8) 

Reaction (R1-6) competes against the reaction of OH radical with generic saturated hydrocarbon 

(RH) that leads to the production of RO2 needed for NO2 formation, while the reactions (R1-7) and 

(R1-8) compete with the reactions (R1-4) and (R1-5) similarly impairing NO2 production.  This 

simplified description of surface ozone chemistry shows how an environment may significantly 

influence the ozone concentration at a particular location (Jenkin and Clemitshaw 2000). 

 Urban and developing regions are expected to see higher ozone values than rural regions 

as VOCs and NOx are amply available.  Rural places tend to have lesser ozone variability due to 

the absence of local NOx emissions even though VOCs are still present.  These cases can be called 

NOx-limited.  Because ozone formation depends on solar UV radiation to photolyse NO2, the 

diurnal ozone cycle could be irregular for the urban places in comparison with the rural regions.   

1.1.2 Air Quality Index (AQI) 

In the United States, the EPA uses an air quality index (AQI) to communicate air quality forecasts 

to the public (Table 1).  The AQI is divided into six color coded categories ranging from good 

(green) to hazardous (maroon).  For all of the criteria pollutants (such as O3, PM, NO2, CO, SO2, 

etc.) there is a specific way to convert individual concentrations into the AQI.  Each pollutant has 

a capability to elevate AQI into an unhealthy range.  For example, if the ozone daily maximum 8-

hour average (MDA8) mixing ratio exceeds 70 ppb (137 μg/m3) then the day would fall into the 

unhealthy for sensitive groups (USG) category (orange), and would count as an exceedance for a 

particular location.  An exceedance is a violation of National Ambient Air Quality Standard 
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(NAAQS), which was set in 1979 by EPA in the United States to encourage reduction of air 

pollution.  The current exceedance threshold for ozone MDA8 is 70 ppb (EPA 2015).  

 

Table 1-1.  Ozone breakpoints in ppb and AQI along with the corresponding AQ categories. 

O3 (ppb) BPlow-BPhigh AQI Ilow-Ihigh 
Category 

Description 
Color 

0-54 (8-hr) 0-50 Good Green 

55-70 (8-hr) 51-100 Moderate Yellow 

71-85 (8-hr) 101-150 USG Orange 

86-105 (8-hr) 151-200 Unhealthy Red 

106-200 (8-hr) 201-300 Very Unhealthy Purple 

201-500 (8-hr) 301-500 Hazardous Maroon 

 

 As described above, the AQI could be calculated for any of the criteria pollutants using the 

following equation, 

 𝐼𝑝 =
𝐼𝐻𝑖 − 𝐼𝐿𝑜

𝐵𝑃𝐻𝑖 − 𝐵𝑃𝐿𝑜

(𝐶𝑝 − 𝐵𝑃𝐿𝑜) + 𝐼𝐿𝑜 ,             (1-1) 

where 𝐼𝑝 is the index of a pollutant 𝑝, 𝐶𝑝 is the rounded concentration/mixing ratio of pollutant 𝑝, 

𝐵𝑃𝐻𝑖 is the breakpoint that is greater than or equal to 𝐶𝑝, 𝐵𝑃𝐿𝑜 is the breakpoint that is less than or 

equal to 𝐶𝑝, 𝐼𝐻𝑖 is the AQI value corresponding to 𝐵𝑃𝐻𝑖, and 𝐼𝐿𝑜 is the AQI value corresponding to 

𝐵𝑃𝐿𝑜.  In this thesis, AQI is not used because ozone is the only pollutant examined here.  However, 

the AQI category colorings are useful as they clearly convey the state of AQ at a given point in 

time. The colorings displayed in Table 1-1 are used for the MDA8 ozone forecasting products 

explained in Chapter 3. 
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1.2 Surface Ozone Prediction  

To predict surface ozone a great variety of forecasting tools and methods exist (EPA 2003).  Some 

of these approaches are relatively straightforward, while others are convoluted.  Generally 

speaking, less elaborate ozone forecasting procedures are less accurate than more intricate ones; 

however, this is not always the case.  Broadly, surface ozone forecasting approaches can be divided 

into the three groups: basic, statistical, and physically-based (Zhang et al. 2012a).  Sophistication 

level and the cost of an approach are mostly proportional (Figure 1-1).  Typically, an AQ forecaster 

would use an array of these approaches to arrive at the final ozone MDA8 forecast. 

 

 

Figure 1-1.  Various AQ forecasting methods and their characteristics.  The scale at the bottom of 

the figure indicates whether a property of an AQ forecasting approach is favorable or unfavorable.  

The challenge is to keep cost, effort and required expertise as low as possible while maintaining 

high accuracy (after EPA 2003).  
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1.2.1 Basic Approaches 

Basic methods include persistence, climatology and criteria.  Persistence forecasting assumes that 

the observed value for today is the forecast for tomorrow.  The method is based on the fact that 

ozone significantly depends on weather conditions and that a typical weather pattern will persist 

for several days.  The approach is fast and works well under the near-stationary and slow-moving 

air masses.  The method does not work well when the weather regimes are rapidly fluctuating.  The 

method’s only requirement is an access to real-time and past day’s ozone data. This method is 

commonly used as a baseline for determining if other methods have any measureable skill. 

 Climatology is not a standalone AQ forecasting procedure, but is used as a guide for an 

AQ forecaster to make sure that the forecast is reasonable.  To create an ozone events climatology, 

historical data going back several years is required.  It is imperative that the emissions during the 

historical record used are consistent with the current emissions.  To utilize a climatology method, 

an AQ forecaster needs to keep a careful log of daily ozone values and compare them with 

climatology to see if their forecast makes sense.  This approach should be used in conjunction with 

the other methods.  

 The criteria approach is based on exceeding thresholds of predicted meteorological 

variables that are typically observed during a high ozone day.  To employ this method observed 

meteorological and ozone data are required as well as the corresponding forecasted meteorological 

data.  This procedure allows a forecaster to get an idea of what to expect with regard to MDA8 

ozone for a forecasted time period, but does not provide any specific values. 

 All of these approaches, persistence, climatology and criteria, are relatively quick and do 

not require high level of expertise.  Consequently, the operational cost of such means is low.  Their 

main drawback is low accuracy due to inability to handle unusual scenarios and sudden changes in 

weather and emissions. 
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1.2.2 Statistical Approaches 

Examples of statistical surface ozone models include various types of least squares regressions and 

artificial neural networks (ANNs) methods (Prybutok et al. 2000).  The main principle behind such 

models is a considerable correlation between weather variables and ozone.  For instance, through 

alteration of OH radical concentrations, the moisture content in air is able to influence ozone 

chemistry, where wetter and cloudy conditions tend to reduce ozone while dryer conditions tend to 

favor ozone formation (Lelieveld and Crutzen 1990; Klonecki and Levy 1997; Murazaki and Hess 

2006).  Clouds may also significantly reduce photochemical processes vital for surface ozone 

production (Thompson 1984; Lelieveld and Crutzen 1990; Flynn et al. 2010).  Air temperature is 

typically cited as one of the closest direct associates with surface ozone as it is able to increase rate 

of photolytic chemistry and also reflects the amount of surface radiation (Sillman and Samson 

1995; Klonecki and Levy 1997; Aw and Kleeman 2003).  Calm conditions are typically more 

advantageous for ozone build up as ozone is not being removed from the location where it has 

formed; however, ozone advection and transport from the free troposphere may present exceptions 

to this rule (Tu et al. 2007).  In summary, there is an ample evidence that supports a strong 

relationship between meteorology and the formation of surface ozone, but there are many ways to 

define ozone dependency on meteorological variables, so many different methods are available.  

The most common statistical AQ approaches include classification and regression trees (CART), 

linear regression, extreme value approaches and artificial neural networks (Burrows et al. 1995; 

Van der Wal and Janssen 2000; Cobourn 2007; Shad et al. 2009). 

 Using various meteorological variables, the CART method generates a decision tree with 

a number of categories, which represent various modes of ozone pollution – some are polluted, 

some are moderate, and others are relatively clean.  To determine critical meteorological variables 

correlation analysis is performed between ozone and various meteorological variables that are 
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believed to influence ozone values the most.  Once these variables are identified, they are used to 

split the ozone data in such a way as to produce two most dissimilar groups.  Then for each group 

the correlation analysis is reapplied and each of these groups is split into another two groups.  This 

process continues until the data becomes sufficiently similar and cannot be divided into distinct 

groups anymore.  CART requires a quality assured set of ozone and meteorological data for its 

development.  Also, it takes modest amount of knowledge and expertise in statistics to make CART 

operational.  The advantage of such approach is that it is quick and is easy to operate.  It gives a 

good idea of what to expect in terms of ozone pollution on a given day, but again, just like the 

methods discussed in the previous section, CART is unable to deal with unusual scenarios. 

 One of the most used methods to predict ozone is linear regression.  The dependency of 

ozone on a meteorological variable could be described with an equation of a line or a curve, which 

then can be used to predict ozone.  Usually, several meteorological variables and sometimes other 

variables, such as previous day ozone and a day of the week, are used to develop multiple linear 

regression equation.  This approach has been widely used in AQ prediction and has shown quite a 

bit of success.  It takes a moderate understanding of meteorology and atmospheric chemistry to 

develop a successful regression model, and although running the model is relatively straight 

forward, the output should be checked for its physical reasonableness.  One of the main limitations 

of the regression equation method is that it tends to predict an average ozone values and does not 

do well with extreme values.    

 To complement the regression equation model, an extreme value approach can be used.  It 

is based on the extreme value theory (Thompson et al. 2001), where a certain threshold or a hazard 

value is defined and probability of exceeding this value is calculated.  Such model would be useful 

if one is particularly interested in predicting ozone exceedances (Cox and Chu 1993).  Although 

the model is designed to identify specific scenarios it would not be able to handle unusual scenarios 

well because the approach still relies on the historical record. 
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 ANNs are a powerful set of algorithms designed to learn and recognize nonlinear 

relationships.  The concept of ANNs is inspired by biological neural networks akin to the ones that 

operate in a human brain.  A number of disciplines have taken advantage of this versatile method 

(Hill et al. 1994, Gardner and Dorling 1998).  In air quality forecasting, development of an ANN 

model requires independent sets of training, validation, and testing data.  The training data is 

supplied into the system of nodes usually containing input, hidden, and output layers.  In the 

training process, the system optimizes the weights of different predictor variables to reduce the 

error of the simulated output compared with the supplied output (part of the training data).  The 

model uses a non-linear, sigmoid, function to adjust the weights.  This is especially useful for the 

prediction of ozone as the ozone relationship with meteorological variables is generally non-linear.  

Validation data is needed to identify optimal tuning parameters during the training to avoid 

overfitting (Figure 1-2).  And finally, testing data is needed to evaluate tuned model.  However, 

production of such a model is costly as it takes a well-rounded understanding of ANNs to develop 

a proper model.  There are various pitfalls that an unexperienced user may fall into (e.g. overfitting) 

if care is not taken when the model is being created.  For that reason, the application of ANNs to 

real-time ozone forecasting has not been widespread.  Nonetheless, once the model of this kind is 

made, it is easy to implement and the tool can perform well, especially during ambiguous 

meteorological conditions.  Just like the other statistical methods, AANs rely on the historical data 

to make a prediction and, therefore, when the emissions are altered the performance of the method 

will correspondingly suffer.   
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Figure 1-2.  An illustration of how a validation data set is used to tune ANNs avoiding the 

overfitting issue.  Parameter t on the x-axis of the plot indicates a number of iterations allowed for 

model optimization (after Gardner and Dorling 1998). 

 

 The advantage of the above mentioned statistical approaches is that they offer moderate to 

high accuracy at a moderate cost (Zhang et al. 2012a).  Some of these methods have been shown 

to perform with significant skill and in some cases even outperformed chemical transport models 

(CTMs, Dutot et al. 2007).  A combination of different statistical tools working together to 

compensate for each other’s weaknesses can lead to even better predictions (Diaz-Robles et al. 

2008).  Although a number of statistical AQ models have been shown to perform well, most have 

weaknesses associated with their underlying assumptions (Thompson et al. 2001; Zhang et al. 

2012a).  They tend to be more accurate than basic methods, but are limited in their applications 

because they are confined to regions with reliable and relatively long-term ozone and 

meteorological measurements.  Also, the nature of statistical modeling typically does not allow an 

understanding of physical and chemical processes that drive air pollution. 
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1.2.3 Physically-Based Approaches 

Physically-based approaches to real-time ozone forecasting rely on deterministic atmospheric 

CTMs that include major meteorological, physical, and chemical interactions that govern formation 

and removal of ozone (Zhang et al. 2012a).  To simulate ozone in such a way it is imperative to 

model the emissions, transport, diffusion, formation and removal of ozone and its precursors.  The 

concept can be summarized with the following equation:  

 
𝜕𝑐𝑂3

𝜕𝑡
+ ∇ ∙ 𝑼𝑐𝑂3

= ∇𝜌𝐷𝑂3
∇(

𝑐𝑂3

𝜌
) + 𝑅𝑂3

(𝑐𝑂3
, 𝑇, 𝐼(𝜆), 𝑒𝑡𝑐. , 𝑡) − 𝑆𝑂3

(𝒙, 𝑡),             (1-2) 

where 𝑐𝑂3
 is the concentration of ozone, 𝑼 is the wind velocity, 𝐷𝑂3

 is the molecular diffusivity of 

ozone, 𝑅𝑂3
 is the concentration change rate of ozone through chemical reactions, which is the 

function of temperature 𝑇 and spectral actinic flux 𝐼(𝜆) among other variables, 𝑆𝑂3
 is ozone sink 

at the location 𝒙, 𝜌 is the density of air. 

 In order to make an ozone prediction using the concepts described above usually three 

different types of models are required.  These models are meteorological, emissions and chemical 

(Figure 1-3).  Meteorological model is responsible for pollutant transport, mixing, and deposition 

calculations.  Various meteorological fields are needed to run emissions and chemical models.  

Emissions models estimate the flux of various chemical species from anthropogenic and natural 

sources into the air for a given region.  To predict ozone, it is crucial for emissions model to 

correctly evaluate precursors needed for ozone formation at a location of interest.  And finally, the 

chemical model combines information from the meteorological and emission models to simulate 

relevant chemical reactions over time and space.  Then the chemical model is able to make an ozone 

prediction for a given grid point and time step. 
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Figure 1-3.  Highly simplified representation of CTM and its structure.  The diagram illustrates 

complex synergy of many different variables. 

 

 CTMs are difficult to operate and maintain, but with a proper proficiency they usually 

provide forecasts with moderate to high accuracy.  Additionally, they can handle well atypical 

scenarios such as a large biomass burning event and are spatially and temporally resolved without 

a need for a large quantity of measurements.  The cost of running and maintaining such models is 

typically high. 

1.3 Motivation and Goals  

In 2015, the EPA reduced the MDA8 exceedance threshold from 75 ppbv to 70 ppbv across the 

United States (US), making the job for AQ forecasters more challenging (Cooper et al. 2015; EPA 

2015).  To help AQ forecasters with the prediction of ozone MDA8, various tools have been 

developed and evaluated over the recent decades.  Despite these research efforts, only a few AQ 

models are available for the US AQ forecasters, the main one being the National Air Quality 

Forecast Capability (NAQFC, Chai et al. 2013; Stajner et al. 2014).  Many AQ forecasters in the 

US also self-develop their own tools, sometimes based on statistical methods, to help them prepare 
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forecasts.  However, this requires considerable experience and knowledge on the part of an 

individual AQ forecaster (Ryan 1995; EPA 2003).  The complexity of making an ozone forecast is 

further augmented by the fact that all of the described methods, in their typical form, are only able 

to make a discrete (single value) prediction meaning that the description of any uncertainty 

regarding a forecast is absent.  Over the past decade this issue has been addressed and probabilistic 

approaches to AQ forecasting have been recommended (Dabberdt et al. 2004; Delle Monache et 

al. 2006a; Delle Monache et al. 2006b; Vautard et al. 2009, Garner and Thompson 2013).   

1.3.1 Uncertainty Quantification in Ozone Modeling  

The quantification of uncertainty is an important part of the forecasting trade.  For instance, if a 

thunderstorm is in the forecast for tomorrow afternoon, how does one decide whether to cancel a 

sporting event or not?  Of course, if the forecast is completely trusted, the event should be canceled.  

However, as known from experience thunderstorms are often scattered, but that is not always the 

case as they could be associated with a mesoscale convective system and that is why knowing the 

probability of a thunderstorm passing over a region becomes crucial.  Although at times subjective, 

evaluating the probability of an event leads to better decision making, which reduces costs (Keith 

and Leyton 2007).   

 In meteorology, it is possible to produce probabilistic forecasts with the help of ensembles 

(Kalnay 2003).  An ensemble can be comprised from different models predicting the same variable 

or it could be generated from the same model by varying inputs such as initial and boundary 

conditions.  Ensembles help to quantify uncertainty and to reduce forecast error of a particular event 

by simulating different but plausible scenarios of this event (Delle Monache and Stull 2003).  

Applications of ensembles to AQ have been slow to develop as modern AQ CTMs contain 

numerous chemical and meteorological variables presenting computational challenges (Dabberdt 
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and Miller 2000).  Nevertheless, recent work regarding the use of ensembles in AQ forecasting is 

promising (Zhang et al. 2012b). 

Multi-model approaches have been used in several studies (Delle Monache and Stull 2003; 

McKeen et al. 2005; Delle Monache et al. 2006a) showing significant improvements in reducing 

forecasting error with ensemble averaging.  The application of multi-model ensemble is complex, 

however.  It requires running several different CTMs simultaneously, which may not be 

operationally feasible.  Another limitation of this approach is that the number of members typically 

ranges from 4 to 10 models, precluding a thorough uncertainty quantification.  To generate a large 

ensemble of AQ predictions, a single CTM can be used by reasonably varying input variables and 

model parameters in order to account for intrinsic model uncertainty.  This can be done with Monte 

Carlo (MC) simulations method, which randomly perturbs input model data based on the 

probability distributions chosen by the user.  Although straightforward in theory, the MC simulation 

method is computationally demanding.  Therefore, limiting perturbations to just meteorological 

variables presents a more realistic scenario with regard to real-time AQ forecasting.  In some 

studies, the approaches described above have been combined with statistical post processing 

techniques to quantify the uncertainty of AQ forecasts. and lead to encouraging results (Zhang et 

al. 2012b; Garner and Thompson 2013; Djalalova et al. 2015).  

Although the AQ modeling methods described above are promising, for real-time operation 

they may require sustained computing power currently not readily available (Carmichael et al. 

2008; Wilks 2011; Zhang et al. 2012b).  The alternative to using CTMs to produce surface ozone 

probabilistic forecasts is based on statistical AQ modeling (Zhang et al. 2012a).  An AQ statistical 

model can greatly benefit AQ forecasters because its predictions can be readily produced for most 

of the AQ monitoring stations in the US, informing the forecasters the range of likely MDA8 ozone 

outcomes.  Combining CTMs and statistical AQ probabilistic MDA8 ozone forecasts would allow 
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US AQ managers to make robust decisions by taking into account the forecast uncertainty (Garner 

and Thompson 2012, 2013).   

1.3.2 Presented Approach  

This thesis presents a statistical model that is not computationally as demanding as the methods 

described in the previous section.  It encompasses a few of the mentioned statistical approaches to 

generate a probabilistic ozone MDA8 forecasts that quantify the uncertainty inherent to AQ 

prediction.  The resultant hybrid statistical model combines self-organizing map (SOM) (Kohonen 

2013), a type of ANN, with a stepwise weighted quadratic regression, a special case of a multiple 

linear regression model (Wilks 2011).  SOM brings to this union an ability to distinguish synoptic-

scale weather patterns (Hewitson and Crane 2002), while the linear regression is exploited to 

evaluate local weather effects on ozone variability.  Together they capture the range of weather 

impacts on local ozone amounts. 

 The SOM algorithm performs vector quantization, a process that reduces a large set of data 

into a more compact representation such that the transformed data is organized with respect to its 

similarity, which makes it an effective tool for clustering weather maps (Pearce et al. 2011).  In the 

presented method, different synoptic-scale weather patterns are first identified using SOMs and 

then a regression equation is developed for each of the patterns.  The clustering of spatial 

meteorological data (e.g. weather maps) with SOM captures distinct synoptic patterns, where every 

synoptic pattern modulates surface ozone in its own unique way (Wilczak et al. 2009). 

 Local weather variables affecting ozone variability are not, however, exclusively 

controlled by the synoptic patterns.  Therefore, to improve forecast accuracy, a linear regression 

equation is developed for each SOM-identified synoptic pattern.  AQ station-specific 

meteorological and chemical variables are used as predictors to capture local effects. 
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To make a forecast, the upcoming weather pattern is predicted with a numerical weather 

prediction (NWP) model.  The similarity of this predicted pattern to each SOM-derived weather 

pattern is quantified using a generalization of the Cressman weighting function (see Chapter 2).  

The regression equation forecasts corresponding to these SOM-derived weather patterns are 

combined together using weighted kernel density smoothing resulting in a probabilistic forecast of 

the ozone MDA8 (Wilks 2011).  The calibration of this probability density function (PDF) depends 

upon the weights chosen for each regression and is, thus, tunable via the parameters of the 

generalized Cressman weighting function.  This method is similar in some ways to an NWP 

ensemble forecasting method, as explained in section 1.3.1 and by Wilks (2011).  It differs, 

however, in that each “ensemble member” is not driven by an equally likely NWP model run, but 

rather by historical weather patterns that resemble to a greater or lesser degree the pattern predicted 

by a deterministic NWP model (Greybush et al. 2008).   

An advantage of this approach is that it does not require any input from CTMs, but instead 

relies solely on a deterministic NWP forecast along with a series of site-specific meteorological 

and ozone observational records.  This forecasting method is referred to herein as regression in 

SOM or REGiS.  Not only does REGiS allow for a classification of various ozone pollution 

scenarios and evaluation of their likelihood for a given deterministic weather forecast, it also 

provides insight into which weather patterns are favorable for ozone pollution episodes and which 

are not.  The physical logic of the system is thus accessible to the forecaster, a trait not shared by 

other nonlinear probabilistic forecast tools such as ANNs.  Besides serving as an additional, 

uncertainty quantifying guidance for US AQ forecasters, REGiS is well-suited to international AQ 

forecasting where a regional CTM may not be available (Frost and Meagher 2010).  

 The main goal of this thesis is to explain REGiS mechanics and to test the feasibility of the 

REGiS design.  In the first part of this work (Chapters 2 and 3), it is assumed that the meteorology 

is known perfectly and hence reanalysis and observation data are used to generate ozone MDA8 
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predictions during the evaluation process.  In real-time forecasting example (Chapter 4), 

meteorological data is supplied by NWP systems:  Global Forecasting System (GFS, 

Environmental Modeling Center 2003) and Model Output Statistics (MOS, Carter et al. 1989) in 

order to run REGiS.  By itself, REGiS may not provide an AQ forecaster with a precise guidance, 

but together with NAQFC and possibly other tools, it would be easier to make a well-informed 

decision regarding the predicted air quality. 

In the subsequent Chapters, the foundation, implementation, tuning and performance of 

this statistical model are explored in detail.  The model is first developed, and then evaluated using 

a standard set of skill metrics using ozone data from several AQ stations in the San Joaquin Valley 

(SJV) of California, a region well-known for poor AQ (Beaver and Palazoglu 2009).  To 

demonstrate applicability of REGiS to various geographic regions the model is also applied to two 

AQ sites in northeastern Colorado (CO):  long-term station and short-term DSICOVER-AQ 

campaign site (Crawford and Pickering 2014).  The advantages and drawbacks of the proposed 

approach are illustrated.  The brief operational period of REGiS is also discussed.  Chapter 2 

methodically describes the foundations and workings of the model as well as the data that is used 

for testing and training of the model.  The operational aspects of the model and how it is tuned for 

optimal performance are also discussed.  The results of the first part of this research are presented 

in Chapter 3, where the model is evaluated using several sets of independent data.   In Chapter 4, a 

recent operational REGiS experiment is described.  Chapter 5 summarizes this work and suggests 

the route for further investigation and application of the method. 
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Chapter 2  
 

Developing Regression in SOM - REGiS 

REGiS is inspired by tree-based and stratified models that are based on the idea that the association 

between an air pollutant and meteorology may be different in different meteorological regimes 

(Thompson et al. 2001).  Instead of regression trees, meteorological regimes are identified by SOM 

(Kohonen 2013), a technique related to ANNs.  Once regimes are identified, a stepwise weighted 

quadratic regression equation for ozone MDA8 is developed for each weather pattern.  Finally, the 

regression forecasts are weighted, based on their SOM node’s similarity to the predicted weather 

pattern, to obtain a PDF for ozone MDA8. 

2.1 Self-Organizing Maps (SOMs) 

Originally, SOMs were inspired by the problems of pattern recognition in images and speech, but 

over time they became used for numerous other applications such as linguistics, cryptography, and 

geoscience to name a few (Lindblom et al. 1983; Agarwal and Skupin 2008; Abdulkader and 

Roviras 2012).  The ability of SOMs to extract and visualize patterns from high-dimensional data 

is especially useful for meteorology and there are a number of examples of this in the published 

literature (Hewitson and Crane 2002; Pearce et al. 2011; Jensen et al. 2012).  For instance, SOMs 

have been helpful in studying variability of different synoptic events as well as in understanding 

how weather patterns change throughout the seasons in general circulation models (GCMs) 

(Hudson and Hewitson 2001; Hewitson and Crane 2006).  An important feature of SOMs, that 

distinguishes it from the other clustering algorithms such as K-means or Hierarchical, is the ability 
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to arrange a 2-D lattice of clusters according to their similarities, rather than just grouping data 

cases into randomly positioned categories (Agarwal and Skupin 2008).  This meta-grouping is 

accomplished by using a neighborhood function ℎ (shown in (2-4)), which allows clusters located 

next to each other in the lattice (neighbors) to influence each other’s position.  This component of 

SOMs provides a training advantage compared to the other mentioned methods because it allows 

each pattern to be defined by a larger sample of input data. 

2.1.1 SOMs Algorithm 

One way to explain the process of pattern recognition with SOMs is through a demonstration.  First, 

2-D data in the range [0,1] is generated.  To make the example more interesting, the data is not 

normally distributed – the 50% of the x-coordinates of the data are sampled randomly from the 

[0.001,0.45] range, while the other 50% of the x-coordinates of the data are sampled from the 

[0.01,1] range.  The dataset is visualized in the Figure 2-1.  Now the goal is to identify related 

groupings in these data.  The question is, what is the best way to cluster the points so that the 

distinct patterns are identified? 
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Figure 2-1.  Semi-randomly generated data to demonstrate the mechanics of SOM.  For more 

details, see text. 

 

 The SOMs algorithm begins with the initialization of the clusters, which are called nodes. 

The size and shape of nodes must be pre-determined.  Because the results may be sensitive to the 

size and arrangements of nodes in the map, the dimensions of the node map (𝑆𝑂𝑀𝑑𝑖𝑚) have been 

one of the most frequently discussed topics in the SOMs literature (Kohonen 2013).  This question 

does not have a “right” answer because the optimal dimensions of a SOM depend on the 

application.  Based on a problem at hand, a compromise has to be found between resolution and 

statistical accuracy of the map (Kohonen 2013; Stauffer et al. 2016).  In the example shown here, 

the size and shape of the nodes are chosen to be 9 and 3x3 respectively.  

The next step is to initialize SOM nodes before the iterative training begins.  Figure 2-2 

shows linearly initialized nodes along the dimensions of the SOM through a uniform sampling from 

a subspace spanned by the first and second principal components of the input data (Johnson et al. 

2008).  Each node forms a Voronoi region around them, determined by Euclidian distance from a 

node to a point.  The points in these Voronoi regions (of the nodes) are indicated with different 

colors.  The way nodes are positioned in the Figure 2-2 is not optimal because the outliers are not 
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well represented, which can be deduced from the visual examination.  The purpose of SOMs, 

therefore, is to rearrange the nodes to a more meaningful configuration using an unsupervised 

learning algorithm.    

 

 

Figure 2-2.  Linear initialization of the SOM applied to the data shown in the Figure 1-1. 

 

 To perform the unsupervised learning procedure with a map, batch training algorithm is 

used (Vesanto et al. 2000).  This process is iterative, where at each step the input data are partitioned 

into Voronoi groups (as shown in Figure 2-2).  The assignment of each data point to a particular 

node is based on the minimum Euclidian distance between an input point 𝑗, represented by vector 

𝐱𝑗, and a reference node 𝑖, represented by vector 𝐦𝑖: 

 ‖𝐱𝑗 − 𝐦𝑐‖ = min
𝑖

{‖𝐱𝑗 − 𝐦𝒊‖} ,            (2-1) 
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where index 𝑐 denotes the Best-Matching Unit (BMU), the node that is the closest to the input 

vector 𝐱𝑗.  Once all of the input data are mapped to the nodes, the nodes are updated based on a 

neighborhood (i.e. similarity) weighted average of the input data:     

 𝐦𝒊(𝑡 + 1) =
∑ ℎ𝑖𝑘(𝑡)𝐬𝑘(𝑡)

𝑚
𝑘=1

∑ 𝑛𝑘ℎ𝑖𝑘(𝑡)𝑚
𝑘=1

,             (2-2) 

where ℎ𝑖𝑘(𝑡) is the neighborhood function, 𝑡 is an epoch or a count of iterations, 𝑛𝑘 is a number of 

training cases in node vectors in node 𝑘 and 𝐬𝑘(𝑡) is the sum of these training cases, where each 

training case of node 𝑘 is denoted by 𝐱p:   

 𝐬𝑘(𝑡) = ∑ 𝐱𝑝

𝑛𝑘

𝑝=1

.           (2-3) 

 The neighborhood function, ℎ𝑖𝑘(𝑡), measures the distance between two nodes.  Its value 

ranges from 0 to 1, with value 1 when 𝑖 = 𝑘 and lesser values as 𝑘 moves farther away from 𝑖 on 

the map.  Different neighborhood functions are available.  Here, the Epanechikov neighborhood 

function is chosen because it was shown to have the lowest quantization error compared to the other 

standard neighborhood functions that are used in SOMs (Liu et al. 2006; Stauffer et al. 2016).  The 

Epanechikov neighborhood function has the following mathematical representation: 

 ℎ𝑖𝑘(𝑡) =  max {0,1 − (
‖r𝑖 − r𝑘‖

𝜎(𝑡)
)

2

} ,            (2-4) 

where ‖r𝑖 − r𝑘‖ is the distance between units  𝑖 and 𝑘 on the SOM grid and 𝜎(𝑡) is the 

neighborhood radius at iteration 𝑡.  Over the course of training, 𝜎(𝑡) is decreased linearly with each 

repetition 𝑡 until it becomes 1.  The training is started with a fairly large  𝜎(𝑡), at least half the 

diameter of the network (Kohonen 2001).  In this way, a well-organized map of patterns is formed, 

resulting in a gradual transition from one pattern to the next as one moves across the map allowing 

for a smooth transition between adjacent regimes.  The SOMs implementation used in this thesis is 

the SOM toolbox for MATLAB developed and written by the research group from the Laboratory 
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of Information and Computer Science in the Helsinki University of Technology (available at 

http://www.cis.hut.fi/somtoolbox/). 

 Using the above-described training algorithm, the nodes, shown in Figure 2-2, are adjusted 

to optimally represent 200 data points with only 9 points.  The process is demonstrated in Figure 

2-3, where the initialization along with 10 iterations and the 100th iteration of the training are 

presented.  Most of the training is accomplished over the first 5 iterations; however, it takes longer 

to get a more precise SOM representation of the data as is evident from the 100th epoch image.  In 

particular, the dark grey node adjusts slowly to the right to improve the characterization of its 

Voronoi region.  And comparison of the initialization step with the 100th epoch reveals that the 

outliers, which are blue, dark gray and red, benefit the most from the training.  

 

http://www.cis.hut.fi/somtoolbox/
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Figure 2-3.  SOM training process showing linear initialization of the nodes, first 10 iterations 

(epochs), and the 100th iteration – fully organized map. 

 

2.1.2 SOMs as a part of REGiS 

In REGiS, SOMs serve to classify ozone-relevant synoptic-scale weather patterns over the region 

of interest.  Similar to the example above, SOM uses pre-determined number of nodes to describe 

the inputted data.  However, instead of 2-D points the input data consists of the vectors containing 
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spatial weather variables such as 500 hPa geopotential height, 2-m T, 2-m Td, 10-m wind 

components, etc.  Because all of these variables have different magnitudes they need to be 

normalized for fair comparison during the SOM procedure.  The SOM process is illustrated in the 

Figure 2-4.  In steps 1 and 2, spatial weather variables are combined into an array representing the 

meteorological data for a single day.  Steps 3 and 4 summarize the SOM training process, where 

the daily arrays are compared with the predetermined node arrays and the SOM map gets adjusted 

based on array similarity (for the details on this training process see section 2.1.1).  And finally, 

step 5 indicates the SOM map after the training is finished.      

 

 

Figure 2-4.  A schematic indicating major steps in the SOM algorithm to cluster daily synoptic 

fields into the distinct weather patterns (after Richardson et al. 2003). 

 

Because of the high ozone pollution, the SJV in California serves as a good location to test 

REGiS.  In order to distinguish between ozone-relevant synoptic-scale weather patterns using the 
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SOM method, daily 500 hPa geopotential height, 2-m T, 2-m Td, 10-m V, 10-m U, and 850-hPa T 

fields on a 0.75° x 0.75° latitude/longitude grid at 0000 UTC are utilized from ERA-Interim 

reanalysis (Dee et al. 2011).  The data is generated by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) and is available free of charge at the following website:  

http://apps.ecmwf.int/datasets/.  These variables are selected because they capture transport (500 

hPa height and 10 m wind components) and stability (500 hPa height, 850 hPa temperature, 2-m 

temperature and 2-m dewpoint), which primarily provide links between synoptic-scale weather and 

local ozone concentration.  To capture these local effects, it is imperative to define appropriately 

the domain over which the synoptic patterns are determined.  The domains used in the first part of 

this study are centered on the states of CA and CO (Figure 2-5).  The second part of the study looks 

at AQ in Philadelphia region and uses corresponding domains (for more details see Chapter 4).  

Because 500 hPa can be thought of as a steering level (Carlson 1991), meaning that the synoptic 

systems close to the surface move in response to the larger-scale wind patterns at 500 hPa, the 

domains for 500-hPa geopotential height fields (Figures 2-5a and 2-5c) are slightly larger than that 

for the other 5 variables (indicated by green rectangles in Figure 2-5).  The SOM of the mentioned 

variables for June-July-August (JJA) of 1987-2012 is shown in Figure 2-6.   

 

http://apps.ecmwf.int/datasets/
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Figure 2-5.  Domains used by SOM when identifying synoptic patterns for REGiS with AQ and 

meteorological stations relevant to this study.  (a) Domain over SJV (outlined by the purple 

contour) that is used for 500 hPa geopotential height fields.  (b) Domain (also indicated by the 

green rectangle in (a)) used for 2-m T, 2-m Td, 10-m V, 10-m U and 850 hPa T fields. (c) Domains 

as described in (a) and (b), but located over CO.   
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Figure 2-6.  4x6 SOM of daily 500 hPa geopotential height, 2-m T, 2-m Td, 10-m V, 10-m U, and 

850 hPa T fields from JJA over 1987-2012, centered on the Western United States (domain 

shown in Figure 2-5). Note: only 500 hPa geopotential height fields (in meters) are shown in the 

full SOM.  The data used for this analysis come from ERA-Interim reanalysis. 

2.2 Regression  

Once the distinct synoptic regimes are established via SOMs (Figure 2-6), a stepwise weighted 

quadratic regression equation is developed for each regime using local meteorological and chemical 

variables as predictors for ozone MDA8 (Comrie 1997).  The regression method used in REGiS is 

akin to the one described in section 1.2.2.  The difference is that REGiS contains as many regression 

equations as there are SOM nodes.  The idea is that each equation will correspond to a particular 

meteorological setting, better capturing ozone-meteorology sensitivity given a specific weather 

regime.  When making a forecast, REGiS will typically use most of the equations, but the higher 
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weights will be given to the equations representing weather patterns that closer resemble the 

predicted pattern.  

2.2.1 Predictand and Predictors  

The production of surface ozone is significantly affected by meteorology as has been discussed in 

section 1.2.2.  This fact allows for ozone MDA8 prediction using causal meteorological variables 

shown in Table 2-1.  Surface temperature affects the rate of chemical reactions and considered to 

be one of the most important meteorological predictors of ozone, where higher temperatures tend 

to lead to higher ozone concentrations (Sillman and Samson 1995).  Dew point temperature 

predictor is used as a proxy for atmospheric moisture content that alters hydroxyl radical 

concentrations, where wetter conditions tend to reduce ozone while dryer conditions tend to 

increase ozone formation (Lelieveld and Crutzen 1990).  Another commonly used pair of predictors 

for ozone are wind direction and speed (Tu et al. 2007).  Certain wind directions are more favorable 

for the development of a pollution episode because they carry ozone precursors from the emission-

heavy regions.  Often, light wind speeds are indicative of stagnation as they allow for the pollutants 

to accumulate in the atmospheric boundary layer.  Because ozone formation is dependent on 

photochemistry, cloud cover plays an important role in regulating ozone and is frequently used as 

a predictor (Thompson 1984).  The two additional predictors employed by REGiS are zenith angle 

and the previous day ozone. 

 

Table 2-1.  Predictors used in REGiS.  Analysis (not shown here) indicates that the ozone MDA8 

period most often occurs either from 1000-1800 or from 1100-1900 local time. 

Variable Time Scale Units 

Zenith angle   Daily at 1200 degrees 
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Surface temperature Mean over 1000–1800 °C 

Dew point  temperature Mean over 1000–1800 °C 

Wind direction Mean over 1000–1800 degrees 

Wind speed Mean over 1000–1800 meters/second 

Sky cover Mean over 1000–1800 oktas 

Previous day ozone Previous day MDA8  ppbv 

 

The reason for the inclusion of zenith angle is that the angle at which solar radiation strikes 

the surface of the Earth influences the photolysis process that is responsible for generation of ozone 

(Seinfeld and Pandis 2012).  In summer, the zenith angle is smaller and more energy is available 

for NO2 photolysis, but in fall and spring zenith angle is larger and less energy reaches the surface 

of the Earth.  The zenith angle is potentially an important predictor when the regression training 

period occurs between summer and fall or between spring and summer.  Although a day in July 

and September may experience similar high temperatures the photolysis rate usually differs and 

correspondingly affects ozone production.   

The previous day ozone MDA8 is a powerful predictor because of the episodic nature of 

ozone pollution (EPA 2003).  Sometimes an AQ forecaster would use previous day ozone MDA8 

as a next day ozone forecast.  Such process is known as persistence forecasting.  Adding previous 

day ozone to the multiple linear regression model usually increases the skill of the model, but 

sometimes this may lead to a large error.  The described predictor tends to influence ozone 

prediction significantly.  To weaken the effect of the previous day ozone predictor on the final 

forecast it is possible to request REGiS to perform two regressions:  one with the previous day 

ozone and another without.  For instance, if SOM identified 24 patterns then there would be 48 

regression equations – two equations for each pattern.  In this way, possible ozone MDA8 scenarios 
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are better represented.  The option with the two regression equations per regime is used in this 

thesis.     

 The data to fit the regression equations come from an AQ station and the nearest 

meteorological station.  Figure 2-5 shows the map of all the stations that are used to evaluate 

REGiS.  Additionally, Table 2-2 summarizes the AQ and correpsonding meteorological stations 

used in the REGiS evaluation process.  Fresno Air Terminal (KFAT) data are used for Clovis, 

Fresno-Drummond, Fresno-SSP and Parlier.  Visalia Municipal Airport (KVIS) data are used for 

Hanford and Visalia – N. Church.  Meadows Field Airport (KBFL) is used for Oildale and Shafter.  

Greeley-Weld County Airport (KGXY) is used for Greeley – Weld County Tower (WTC) and 

Platteville.  The air quality data are acquired from the EPA’s Air Quality System (AQS) database 

(http://www.epa.gov/ttn/airs/airsaqs/) and the meteorological data are downloaded from the 

National Oceanographic and Atmospheric Administration’s (NOAA) National Climatic Data 

Center (NCDC) (https://www.ncdc.noaa.gov/).  

 

Table 2-2.  AQ stations used to evaluate REGiS and correpsonding meteorological (METEO) 

stations along with the related basic information. 

Station Name WBAN/AQS ID Type Latitude Longitude Elevation (m) 

Fresno Air Terminal 

(KFAT) 

93193 MET 36.78° -119.72° 100 

Clovis 06-019-5001 AQ 36.82° -119.72° 86 

Fresno-Drummond 06-019-0007 AQ 36.70° -119.74° 89 

Fresno-SSP 06-019-0242 AQ 36.84° -119.87° 65 

Parlier 06-019-4001 AQ 36.60° -119.50° 78 

Visalia Municipal 

Airport (KVIS) 

93144 MET 36.32° -119.39° 90 

http://www.epa.gov/ttn/airs/airsaqs/
https://www.ncdc.noaa.gov/
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Hanford 06-031-1004 AQ 36.31° -119.64° 99 

Visalia – N. Church 06-107-2002 AQ 36.33° -119.29° 97 

Meadows Field 

Airport (KBFL) 

23155 MET 35.43° -119.05° 151 

Oildale* 06-029-0232 AQ 35.44° -119.02° 180 

Shafter** 06-029-6001 AQ 35.50° -119.27° 126 

KGXY 24051 MET 40.44° -104.63° 1432 

Greeley – WTC  08-123-0009 AQ 40.39° -104.74° 1484 

Platteville N/A AQ 40.18° -104.73° 1522 

*Full name of Oildale AQ station is 3311 Manor St., Oildale. 

**Full name of Shafter AQ station is 548 Walker St., Shafter, CA., 93263.   

2.2.2 Detrending Ozone MDA8 Data 

In order to partially account for the changes in ozone precursors emissions over the years (Jhun et 

al. 2015), MDA8 ozone data are detrended after the data have been separated by the SOM (Figure 

2-7).  The process of data detrending occurs before it is used by REGiS for the regression model 

development.  First, a best-fit line is generated for a given MDA8 ozone time series using the least-

squares method.  Detrending is performed by subtracting the mean of the best-fit line from the 

MDA8 ozone data (Figure 2-8a).  Once the detrended data is calculated the entire detrended MDA8 

time series are adjusted up by the difference between the last value in the original MDA8 ozone 

data and the last value in the detrended MDA8 ozone data to generate the final detrended data 

(Figure 2-8b).   
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Figure 2-7.  Ozone MDA8 at AQ station Fresno-SSP corresponding to 4x6 SOM over 1995-2012.  

Blue graph shows original ozone data and red graph is detrended ozone.  Figure 2-8 illustrates the 

process of detrending for pattern 19.  
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Figure 2-8.  (a) Process of detrending 1995-2012 ozone MDA8 data at AQ station Fresno-SSP for 

pattern 19 identified by SOM method (see Figure 2-7).  Original MDA8 ozone data is shown in 

blue with the red linear trend line.  Green indicates detrended ozone.  (b) Comparison of the original 

MDA8 ozone (blue) and final detrended data used in REGiS (red). 

 

2.2.3 Regression Model Properties  

Once the data is detrended for each SOM pattern, the regression equations are developed for the 

corresponding data.  Note that the use of too many predictors in a regression equation is not 

recommended as this may lead to an unstable result when applied to independent data (Wilks 2011), 

i.e. over fitting.  Therefore, a forward and backward stepwise regression is performed here, where 

the terms are added to or removed from a regression model based on the p-value for an F-test of 

the change in the sum of squared errors (Wilks 2011).  The regression model is made quadratic 
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rather than linear to allow for the nonlinearity of the meteorology-ozone relationship (Comrie 

1997).   

When a regression is developed for a specific regime, training data from all the other 

regimes may also be used, with weights based on their similarity to this specific regime.  The 

weights 𝜔𝑗𝑖, of the data at nodes 𝑗, for the regression centered on the node 𝑖 are calculated as 

follows:      

 𝜔𝑗𝑖 =

[
 
 
 (

1
𝑑𝑗𝑖

)
𝛼

∑ (
1
𝑑𝑗𝑖

)
𝛼

𝑚
𝑗=1 ]

 
 
 
𝛽

ℎ𝑖𝑗 ,            (2-5) 

where 𝛼 and 𝛽 are the tuning parameters, 𝑑𝑗𝑖 is the Euclidean distance between the node centroids 

and ℎ𝑖𝑗 is the neighborhood function defined in (2-4).  The neighborhood function is used here to 

make the distribution of the node weights consistent with the initial SOM training process.  The 

neighborhood radius 𝜎 determines the extent to which training cases from the surrounding nodes 

are used.  When 𝛼 → ∞ and 𝛽 → ∞ the weights spread out more evenly among the nodes.  This 

process allows for a distinct model for each node (i.e. synoptic weather pattern) while still taking 

into account relevant information from all training cases. 

2.3 Tuning and Verification 

Before REGiS is used for operational forecasting, it must be trained, tuned and tested on historical 

data (Gardner and Dorling 1998).  The training and tuning stages are performed with the historical 

reanalysis and observational data.  In this study, the tuning of REGiS is undertaken at a single AQ 

site in the SJV (Figure 2-5) – Parlier – using four different training periods during June-July-August 

(JJA): 1987-2012, 1995-2012, 2000-2012 and 2005-2012.  REGiS is uniquely tuned for each of the 

mentioned training periods using JJA 2013-2014 validation data set.  The use of the multiple 
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training periods is motivated by the change in emissions over time (McDonald et al. 2012).  Only 

JJA is addressed in this work as ozone MDA8 tends to maximize in US over this time period.   

 To maintain independence, the Parlier site is not included in the final testing of REGiS 

performance.  Subsequent REGiS training for the independent AQ sites is conducted using the 

configuration determined from Parlier and the nearby meteorological site KFAT. In the testing 

stage, forecasts for these AQ sites are made for periods independent from their respective training 

periods, which vary from station to station.  The results of these tests are evaluated in Chapter 3.   

2.3.1 Forecasting Procedure 

In order to produce probabilistic ozone MDA8 forecasts, REGiS combines regression forecasts 

from the SOM nodes that have weather patterns similar to the predicted pattern (predicted by NWP 

model) for a time of interest.  The steps in this process are thus: identification of the forecast 

weather pattern, assessment of its similarity to each of the SOM nodes, and combination of the 

regression forecasts from these nodes to produce an ozone PDF forecast.  The process is 

summarized in Figure 2-9. 
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Figure 2-9.  The REGiS forecasting procedure schematic showing the steps that the model takes to 

produce a probabilistic forecast. First, the synoptic variables are extracted from a numerical weather 

prediction model (such as the Global Forecasting System) for the desired forecast time.  These 

synoptic variables are compared with SOM-identified synoptic patterns using a Euclidean distance 

metric.  Then the similarity between predicted pattern and identified patterns is presented in terms 

of weights.  The higher the weight of a SOM pattern, the more similar it is to the predicted pattern.  

Finally, the regression equations of each pattern are solved and combined according to the 

estimated pattern weights to produce continuous probability density function (using kernel density 

estimation) of the ozone MDA8 forecast.  

 

Recall that the weather pattern (i.e. SOM node) is determined based on the spatial 

distribution of several meteorological variables on the two domains (see section 2.1.2).  For the 

prediction these fields are extracted from the NWP (such as GFS) deterministic forecast for the 

desired lead time.  

This predicted weather pattern is then compared with all of the patterns identified by SOM 

(for the example of identified SOM patterns see Figure 2-6) using Euclidean distance metric 𝑑.  
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Because some forecast-to-node distances 𝑑 are smaller and others are greater, it is possible to assign 

a similarity weight 𝑊 between a predicted pattern and a SOM pattern.  This is accomplished by 

using a generalization of the Cressman weighting function (Cressman 1959)  

 𝑊 = (
𝑅𝑐

2 − 𝑑2

𝑅𝑐
2 + 𝑑2

)

𝛾

,            (2-6) 

where 𝑅𝑐 is an adjustable radius of influence around the predicted pattern and 𝛾 is a tuning 

parameter (Figure 2-10).  Note: 𝑊 is set to zero if 𝑅𝑐 > 𝑑.  In other words, 𝑅𝑐 determines the cutoff 

threshold beyond which the regression equation of a SOM-pattern is not considered in making a 

prediction of the ozone PDF.  Fine-tuning 𝑅𝑐 and 𝛾 allows for various weight configurations, which 

influence the forecast probability distributions of MDA8 ozone.  These two parameters must, 

therefore, be tuned in order for REGiS to produce reasonably well calibrated probabilistic forecasts 

of ozone MDA8. 
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Figure 2-10.  Diagram illustrating Cressman radius 𝑅𝑐, which is set by a user.  𝑅𝑐 is the influence 

radius of the predicted weather pattern 𝑖 on the weight of SOM weather patterns 𝑚 (nodes).  It takes 

a value of some Euclidian distance 𝑑𝑚𝑖 (distance between patterns 𝑖 and 𝑚) from 𝑑𝑚𝑖 = 0 to 

𝑚𝑎𝑥{𝑑𝑚𝑖}. 

 

These regression forecasts and their weights, therefore, are used as input into the kernel 

density smoothing function (Wilks 2011) to produce a PDF for ozone MDA8: 

 𝑓(𝑥0) =
∑ 𝐾 (

𝑥0 − 𝑊𝑖𝑥𝑖
ℎ

)𝑛
𝑖=1

𝑛ℎ ∑ 𝑊𝑖
𝑛
𝑖=1

,           (2-7) 

where 𝑓(𝑥0) is the probability density as a function of 𝑥0, which represents all ozone MDA8 

possibilities for a given probability density function, 𝑛 is the number of forecasts, 𝑊𝑖 is a weight 

of a regression forecast 𝑥𝑖, 𝐾 is a smoothing kernel function, and ℎ is a bandwidth.  Kernel density 

smoothing is accomplished by stacking modeled kernel shapes at each of the available values.  For 
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 𝐾, a Gaussian smoothing kernel is used here because in this way the distribution tails are not cut 

abruptly so more extreme scenarios are considered.  The kernel density is sensitive to  ℎ, which is 

estimated using an optimizing algorithm described in Bowman and Azzalini (1997).     

2.3.2 Tuning 

Tuning REGiS consists of finding optimal values for the parameters 𝛼, 𝛽, 𝜎, 𝛾, 𝑅𝑐 and 𝑆𝑂𝑀𝑑𝑖𝑚 in 

the above-described model using a data set independent of the one used to train the SOM and the 

regression models.  The goal here is to ensure that the PDF forecast represents a true distribution 

of a predicted variable.  The verification rank histogram (Hamill 2001) is used for this purpose.  

Note that while rank histograms have frequently been applied to ensemble forecasts, the approach 

is equally applicable to PDF forecasts.  To construct such a rank histogram, the PDF of a forecast 

is divided into 𝑁 + 1 segments of equal probability.  This process creates 𝑁 + 1 categories into 

which the verifying observation may fall.  The predicted PDF is statistically indistinguishable from 

the verifying observation if these observations fall with an equal probability in each of those 𝑁 + 1 

categories.  Thus, in order for the REGiS prediction system to be reliable, i.e. produce a well-

calibrated PDF, the corresponding rank histogram must be relatively flat.  The departure from 

flatness of a rank histogram can be estimated by  

 𝑅𝑀𝑆𝐷 = √
1

𝑁 + 1
∑ (𝑠𝑘 −

𝑀

𝑁 + 1
)
2𝑁+1

𝑘=1

,           (2-8) 

where RMSD is the root-mean-square deviation from complete rank histogram flatness, 𝑁 + 1 is 

the number of equal-percentile regions, 𝑀 is the total number of observations, and 𝑠𝑘 is the number 

of observations in each particular percentile region (Wilson et al. 2007).  The smaller a RMSD is, 
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the flatter is a corresponding rank histogram.  The idea is to tune REGiS parameters in such a way 

as to keep the verification rank histogram as flat as possible.  

The objective of the tuning process is to minimize RMSD to ensure that the probabilistic 

forecasts are reliable.  The tuning of the probabilistic REGiS is sequential.  First, values for 𝛼, 𝛽, 

𝜎, 𝛾, 𝑅𝑐 and 𝑆𝑂𝑀𝑑𝑖𝑚 are assigned by an educated guess.  Then one of the parameters is iterated 

over, while the other five parameters are held constant.  The optimal value for each of the 

parameters is based on minimizing RMSD.  The example of the tuning process at Parlier for the 

time period of JJA 1987-2012 is shown in Figure 2-11.  RMSD is determined using the validation 

data over JJA 2013-2014.  To begin, an educated guess is made for the six parameters.  Then for 

𝜎 = 2 and 𝜎 = 3,  𝛼 and 𝛽  are tested.  For 𝜎 = 1, 𝛼 and 𝛽 make no impact.  Lowest RMSD occurs 

when 𝜎 = 2, 𝛼 = 0 and 𝛽 = 0.5.  Next 𝛾 is adjusted, while all of the other parameters are held 

constant.  Minimum RMSD happens when 𝛾 = 0.  Using the same approach 𝑅𝑐 is determined to 

be 100.  Finally, iteration over different 𝑆𝑂𝑀𝑑𝑖𝑚 is performed.   

Four tuning processes are completed in this work using the procedure described above for 

four different time periods using the Parlier data.  Figure 2-12 shows the results of the final tuning 

step.  The color plot shows RMSDs for probabilistic daily REGiS forecasts (for JJA 2013-2014) 

given various 𝑆𝑂𝑀𝑑𝑖𝑚. The color bar represents RMSD in terms of cases (observation points).  

Figure 2-13 presents 10 of the best REGiS SOM configurations from Figure 2-12 sorted by RMSD.  

Results indicate that in theory, using training periods JJA 1995-2012 and JJA 2000-2012 should 

yield better REGiS performance than when using the other two periods. 
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Figure 2-11.  Example of the REGiS tuning process at Parlier AQ station.  In the given example, 

the training data period is JJA 1987-2012 and the validation data period is JJA 2013-2014.    
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Figure 2-12.  REGiS tuning process where 𝛼, 𝛽, 𝜎, 𝛾 and 𝑅𝑐 parameters are held constant while 

iterations over different   and evaluations of the following RMSD values are performed.  The tuning 

is accomplished over four different time periods: (a) 1987-2012, (b) 1995-2012, (c) 2000-2012 and 

(d) 2005-2012.  Note that the values for the first column are not computed.   
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Figure 2-13.  Sorted 10 minimum RMSD values from Figure 2-15.  The tuning is performed over 

four different time periods: (a) 1987-2012, (b) 1995-2012, (c) 2000-2012 and (d) 2005-2012. 

 

2.3.2 Verification 

While rank histograms and the associated RMSD can determine if a probabilistic forecast is well 

calibrated, it does not quantify forecast accuracy.  This latter role is filled by continuous rank 

probability score (CRPS) which is designed to evaluate reliability, resolution and uncertainty of a 

probabilistic forecast for which 𝐹(𝑦) is the cumulative probability function defined over 

predictand 𝑦: 
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 𝐶𝑅𝑃𝑆 = ∫[𝐹(𝑦) − 𝐹0(𝑦)]2𝑑𝑦,

∞

−∞

           (2-9a) 

where 

 𝐹0(𝑦) = {
0, 𝑦 < 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
1, 𝑦 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

           (2-9b) 

is a step function that switches from 0 to 1 at the observation point (Hersbach 2000).  Lower CRPS 

indicates a better model performance for a given set of data.  CRPS rewards cases where an 

observation falls closer to the mean of predicted PDF.  In this work, CRPS is used as an additional 

skill metric when comparing REGiS performance among different stations. 
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Chapter 3  
 

REGiS Evaluation 

When the REGiS completes its forecasting process, the product in a form of PDF is generated.  This 

product is essentially a probabilistic forecast.  The goal of this Chapter is to evaluate this type of 

forecasts.  REGiS is tested using the 2013-2014 JJA data from 6 different stations independent 

from Parlier.  The model settings used, however, are tuned using Parlier as explained in the Chapter 

2.   

3.1 The Product 

Figure 3-1 shows a sample forecast produced by REGiS – the PDF of ozone MDA8 forecast for 

the AQ station Fresno-Drummond (FD) on June 11th, 2014.  In the figure, ozone MDA8 runs along 

the x-axis and the probability density is along the y-axis.  The black line indicates PDF, the area of 

which adds up to one.  Shaded areas inside the PDF are the color-coded ozone pollution air quality 

index (AQI) categories, converted to ozone mixing ratios (ppbv) from the AQI (see Chapter 1) as 

designated by EPA (EPA 2006, EPA 2015), where green, yellow, orange and red indicate good (0-

54 ppbv), moderate (55-70 ppbv), unhealthy for sensitive groups (USG) (71-85 ppbv) and 

unhealthy (86-105 ppbv) AQI categories respectively.  The probability of each AQI category 

occurring for a predicted day is indicated in the legend located in the upper left corner.  In the given 

example, there is a probability of about 87% that the ozone MDA8 exceedance (ozone MDA8 

above 70 ppbv) will not occur, and indeed, on the mentioned day the observed ozone MDA8 is 

about 67 ppbv (blue dashed line), falling in the upper end of moderate category.  
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Figure 3-1.  An example of the REGiS product providing probabilistic ozone MDA8 

forecast at FD AQ station for June 11th, 2014. 

 

3.2 Verification Results 

To evaluate REGiS, the procedure described above has been carried out for the summers (JJA) of 

2013-2014 at AQ sites in the SJV and northeastern plains of CO (Table 3-1).  This evaluation period 

is independent from that used for training (see Chapter 2 for more details).  Different training 
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periods are tested at each station, while the tuning parameters determined in the Chapter 2 for 

Parlier are used.  Various training periods are examined because of constantly changing ozone 

precursor emissions at each site.  Although in this study the ozone MDA8 time series are linearly 

detrended before they are used in the development of the regression equations, many of the 

emission changes are not linear and may not be well captured with the assumption of a linearly 

decreasing trend.  Choosing a shorter training period allows for more relevant ozone precursor 

emissions to be considered in the prediction regression equations.  For this reason, REGiS is tested 

four times, decreasing its training period every time in order to understand the dependency of 

REGiS performance on the length of the training period.  To evaluate how REGiS does at each of 

the stations, skill metrics of CRPS and RMSD are shown in the 5th and 6th columns of Table 3.      

 

Table 3-1.  Summary of the REGiS evaluation at 9 different stations over the SJV and 

northeastern CO. 

Station SOMdim Training Period Evaluation 

Period 

CRPS 

(ppbv) 

RMSD 

(cases) 

Clovis (a) 4 x 6 1995-2012 JJA 2013-2014 JJA 4.95 12.0 

Clovis (b) 7 x 7 2000-2012 JJA 2013-2014 JJA 4.71 10.4 

Clovis (c) 5 x 3 2005-2012 JJA 2013-2014 JJA 4.71 12.0 

Fresno-Drummond 

(a) 

6 x 11 1985-2012 JJA 2013-2014 JJA 4.69 12.9 

Fresno-Drummond 

(b) 

4 x 6 1995-2012 JJA 2013-2014 JJA 4.38 6.9 

Fresno-Drummond 

(c)  

7 x 7 2000-2012 JJA 2013-2014 JJA 4.63 11.5 

Fresno-Drummond 

(d)  

5 x 3 2005-2012 JJA 2013-2014 JJA 5.46 21.8 
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Fresno-SSP (a) 6 x 11 1985-2012 JJA 2013-2014 JJA 4.70 19.8 

Fresno-SSP (b) 4 x 6 1995-2012 JJA 2013-2014 JJA 4.03 5.6 

Fresno-SSP (c) 7 x 7 2000-2012 JJA 2013-2014 JJA 4.45 15.8 

Fresno-SSP (d) 5 x 3 2005-2012 JJA 2013-2014 JJA 4.45 14.7 

Hanford (a) 4 x 6 1994-2012 JJA* 2013-2014 JJA 4.32 7.7 

Hanford (b) 7 x 7 1998-2012 JJA* 2013-2014 JJA 4.68 10.6 

Hanford (c) 9 x 6 1998-2012 JJA* 2013-2014 JJA 4.50 6.3 

Hanford (d) 3 x 7 1998-2012 JJA* 2013-2014 JJA 4.19 6.6 

Hanford (e) 5 x 3 2003-2012 JJA* 2013-2014 JJA 4.21 7.7 

Visalia – N. 

Church (a) 

6 x 11 1985-2012 JJA 2013-2014 JJA 5.34 23.6 

Visalia – N. 

Church (b) 

4 x 6 1995-2012 JJA 2013-2014 JJA 5.20 28.9 

Visalia – N. 

Church (c) 

7 x 7 2000-2012 JJA 2013-2014 JJA 6.10 32.3 

Visalia – N. 

Church (d) 

5 x 3 2005-2012 JJA 2013-2014 JJA 5.14 22.5 

Oildale (a)  6 x 11 1986-2012 JJA** 2013-2014 JJA 6.30 33.2 

Oildale (b)  4 x 6 1994-2012 JJA** 2013-2014 JJA 6.33 42.1 

Oildale (c)  7 x 7 1999-2012 JJA** 2013-2014 JJA 6.10 35.6 

Oildale (d)  5 x 3 2004-2012 JJA** 2013-2014 JJA 5.09 29.2 

Greeley-WTC (a)  3 x 7 2002-2012 JJA 2013-2014 JJA 3.61 7.9 

Greeley-WTC (b) 5 x 3 2005-2012 JJA 2013-2014 JJA 3.71 8.5 

Platteville (a) 3 x 7 2002-2012 JJA 2014 JA*** 3.85 4.7 

Platteville (b) 5 x 3 2005-2012 JJA 2014 JA*** 3.78 4.7 

*Here years 2008 and 2009 are missing.  

**Here year 2005 is missing. 
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***Here JA stands for July 13th - August 11th. 

 

 To illustrate the testing process with an example, the time series of REGiS probabilistic 

ozone MDA8 forecasts and the corresponding observations at station FD are presented in Figure 

3-2.  The prediction is generated from the 1995-2012 training data set (see Table 3-1).  Figure 3-2a 

shows REGiS probabilistic forecasts in terms of percentiles, where grey and yellow colors highlight 

5-95 and 25-75 percentiles of the PDFs, respectively.  The blue line denotes observations and red 

dashed line is EPA’s exceedance threshold for ozone MDA8.  The Figure 3-2b displays the 

corresponding rank histogram revealing into which percentile regions the observations fall across 

the PDFs.  There are 5 percentile regions that divide the percentiles in the following way: 1-20, 21-

40, 41-60, 61-80 and 81-100.  The bars of the histogram show how many specific observation 

points (cases), out of all the days in JJA 2013-2014, fall into the abovementioned five percentile 

regions.  For the station FD, the rank histogram is slightly skewed to the left (the model is biased 

high), with a RMSD of 6.9 cases.  The CRPS, which indicates reliability, resolution and uncertainty 

of a forecast, is 4.38 ppbv and is on the lower side when compared with the CRPSs from the other 

stations used in this work. 
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Figure 3-2. (a) Time series of REGiS probabilistic ozone MDA8 forecast for independent data set 

of JJA 2013-2014 at FD AQ station.  (b) A rank histogram corresponding to the probabilistic 

forecasts in (a). 

 

 Further examination of Table 3-1 reveals that the RMSD and CRPS generally increase 

(skill lowers) for the stations that are farther away from the KFAT and Parlier, sites used to initially 

tune REGiS parameters 𝛼, 𝛽, 𝜎, 𝛾, 𝑅𝑐 and 𝑆𝑂𝑀𝑑𝑖𝑚.  Specifically, the 2 lowest RMSD values belong 

to AQ stations FD and Fresno-SSP, where the lowest CRPS occurs at the latter station.  These two 

stations used KFAT as their meteorological reference (see Table 2-2).  The RMSD begins to 

increase as we apply REGiS to other AQ stations, where KVIS and KBFL are used as 

meteorological references.  One potential reason for this RMSD increase is examined below by 

looking more closely at AQ site Oildale.  

Figure 3-3 presents REGiS evaluation at Oildale for the two training periods.  Oildale (b) 

REGiS (see Table 3-1) is developed using 1994-2012 JJA data in contrast to Oildale (d) REGiS 

that is developed using 2004-2012 JJA data.  From Figures 3-3a and 3-3b it is possible to notice 

that Oildale (b) REGiS forecast is biased high, with observations mainly falling into percentile 

regions 1 and 2 leading to RMSD = 42.1 cases, the highest RMSD in this study (Figure 3-3b).  The 

likely cause of this bias is the sudden decrease in ozone MDA8 levels at Oildale beginning in 2009, 
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which seem to be noticeably lower than in the years before.  Detrending the 1994-2012 MDA8 data 

does not help in this case because the change in ozone MDA8 with time is not gradual.  Figures 3-

3c and 3-3d still indicate a significant positive bias in REGiS with RMSD = 29.2 cases; however, 

the bias is decreased by over 10 cases in comparison with Oildale (b) REGiS.  Ozone MDA8 data 

from 2004-2012 JJA seem to be more representative of the ozone MDA8 observations in 2013-

2014 JJA.  So, although the REGiS tuning process at Parlier implied that the best training periods 

are 1995-2012 and 2000-2012, that may not always be the case as the current example with Oildale 

AQ site illustrates. 

 

 

Figure 3-3.  (a) Same as in Figure 3-2a but for AQ station Oildale (b) as specified in Table 3-1. (b) 

Same as in Figure 3-2b but for AQ station Oildale (b) as specified in Table 3-1. (c)  Same as in 

Figure 3-2a but for AQ station Oildale (d) as specified in Table 3-1. (d) Same as in Figure 3-2b but 

for AQ station Oildale (d) as specified in Table 3-1. 

 

(a) REGiS Probabilistic Ozone MDA8 Forecast for Oildale (b) vs. Observation 
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(c) REGiS Probabilistic Ozone MDA8 Forecast for Oildale (d) vs. Observation 
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Using the settings determined at Parlier, REGiS is also evaluated for northeastern CO at 

Greeley-WTC, a long-term AQ station, and a short-term DSICOVER-AQ campaign site – 

Platteville (Crawford and Pickering 2014).  Platteville is used to test whether REGiS ozone MDA8 

predictions for an AQ station (in this case Greeley-WTC) are representative of its surroundings.  It 

is located about 30 km south of Greeley-WTC (Figure 2-5) with available ozone data from July 

13th to August 11th of 2014.  For both stations REGiS is trained using Greeley-Weld County Airport 

(KGXY) meteorological station and Greeley-WTC AQ site.  At Greeley-WTC, RMSD and CRPS 

values are comparable to those of the sites at SJV (Table 3-1) indicating that REGiS is able to 

perform in CO at least as well as it does in SJV.  Although RMSD values at Platteville indicate a 

better REGiS skill than at Greeley-WTC, these values are less reliable for the skill comparison 

because of the smaller testing data sample size available.  Therefore, in this case CRPS is used for 

the evaluation.  Similar CRPS at both of the stations suggests that REGiS ozone prediction for 

Greeley-WTC is applicable to its surroundings.     

Examples described above underscore the importance of the initial REGiS tuning process 

and the length of the training data.  Although tuning REGiS settings at a single AQ station (in this 

case Parlier) works well for some stations (e.g. FD, Hanford and Greeley-WTC), it does not seem 

to be the best way to operate REGiS.  As illustrated by the Oildale case, for the stations with sudden 

changes in ozone MDA8 REGiS may perform better using smaller and more recent training periods.  

In real-time forecasting situations, it would be ideal to tune REGiS separately for each AQ station 

of interest for the best results.  That would entail running the sensitivity analysis presented in 

Chapter 2.  Various sets of training data could be tested, but it is recommended to use at least 4 

years of data to make sure that the sample size is sufficient for SOMs clustering procedure.  It is 

best to train REGiS on a specific season, such as here where the summer data is used.  Similarly, 

the data could be separated into the other seasons: Autumn, Winter and Spring.  The meteorological 
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station that supplies predictors of MDA8 ozone for REGiS should be supported by MOS products 

to allow REGiS to run operationally.   

In the presented REGiS testing experiment presented here, it is assumed that the 

meteorology is known perfectly and hence ERA-Interim and NCDC observations are used to make 

MDA8 ozone predictions.  In operational forecasting this would not be the case and the 

meteorological data would have to be supplied by NWP systems such as GFS and MOS in order to 

run REGiS.  This process is demonstrated in Chapter 4; here the feasibility of the REGiS design is 

demonstrated.  The results of this analysis indicate that REGiS could be useful to a forecaster if 

properly tuned.  The RMSD values at the tested sites suggest that generally REGiS is able to 

estimate reliable distribution of potential MDA8 ozone mixing ratios.  By itself, REGiS may not 

provide an AQ forecaster with a definitive guidance, but together with NAQFC and possibly other 

tools, it would be easier to make a well-informed decision regarding the predicted AQI category 

for a specific station. 
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Chapter 4  
 

Operational REGiS 

Because REGiS is meant to be a real-time ozone forecasting model, it is important to evaluate the 

model in its operational mode.  Although the model as described below has been operational only 

for a few months, it is still possible to glean some useful information from the verification analysis.  

The analysis presented here is preliminary; nevertheless, it lays out the foundation for the further 

study that is imperative if REGiS is to become a fully operational model.      

 

4.1 Operational REGiS Configuration 

To verify REGiS in an operational environment the model is applied to the Philadelphia area, which 

is also referred to as Southeast PA.  Currently the region contains eight AQ sites that measure 

hourly ozone.  The goal of an AQ forecaster assigned to Philadelphia area is to predict MDA8 

ozone for the region as a whole.  The station with the highest MDA8 ozone counts as the verifying 

observation for the region.  Every day the forecasters provide a two-day forecast.  The reason for 

choosing Southeast PA as a verification location for REGiS is based on the author’s familiarity 

with the region’s AQ forecasters.  

 In their typical routine on a given day, AQ forecasters produce a forecast for the following 

two days and submit it to https://www.airnow.gov/.  The AQ forecast considers possible 

exceedances for all of the criteria pollutants and expresses its prediction using AQI metric (see 

https://www.airnow.gov/
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Chapter 1), where the most common pollutants are PM and ozone.  As of now REGiS is only able 

to predict surface ozone, so the other pollutants are not considered in the presented evaluation. 

 To test the feasibility of REGiS design, the one-day MDA8 ozone forecasts developed by 

REGiS were sent to the region’s AQ forecasters by the early afternoon on a given day, allowing 

them to incorporate REGiS’ guidance into their final forecast.  As mentioned previously, the 

Southeast PA region contains eight AQ monitoring sites.  Based upon personal communication 

with AQ forecasters, Northeast Philadelphia Airport AQ station (NEA) has been selected as a 

representative site of the region.  The ozone data from NEA and meteorological data from the 

Philadelphia Northeast Airport weather station (KPNA) are used to configure REGiS.  

Configuration of this version of REGiS consists of the training and prediction data. 

 

 

Figure 4-1.  Domain of the operational Southeast PA region used by REGiS.  The red square 

outlines the secondary REGiS domain (for more details see Chapter 2).  The red triangle indicates 

location of the meteorological station KPNE and the blue triangle indicates the location of NEA 

AQ site. 
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 Meteorological and ozone training data come from NCDC and AQS databases 

respectively.  Synoptic training data comes from the 2nd-generation NOAA Global Ensemble 

Forecast System (GEFS) Reforecast control run, which provides consistency because the prediction 

synoptic data also comes from the GFS (operational).  GFS is a 4-D weather prediction model that 

is operated by the National Centers for Environmental Prediction (NCEP, Environmental Modeling 

Center 2003).  GEFS Reforecast v2 is a dataset with historical weather forecasts; it is available at 

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/.  The domains used by REGiS with GEFS 

Reforecast v2 are shown in Figure 4-1.  Training data is used to train the model as described in 

Chapter 2.  The training period used for the predictions is May-June 2004-2014 before the July of 

2016 and June-July-August 2004-2014 after July of 2016 (see section 4.2 for more details).    

 Prediction data is used as an input for the REGiS to produce MDA8 ozone forecast (Figure 

2-9).  Prediction data for the meteorological regression predictors comes from GFS and the National 

American Mesoscale Forecast System (NAM) MOS (Carter et al. 1989; Rogers et al. 2005).  MOS 

method applies a regression model trained on the archived model data from GFS and NAM to 

adjust the station-specific meteorological forecasts from operational GFS and NAM.  REGiS 

averages afternoon relevant meteorological variables that are produced by MOS output.  An 

example of the GFS MOS output for KPNE is illustrated in the Figure 4-2.  Current MOS data are 

available at http://www.weather.gov/.  Spatial GFS data for pattern determination can be acquired 

from http://www.emc.ncep.noaa.gov/.  Operational REGiS configuration is summarized in the 

Figure 4-3. 

 

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/
http://www.weather.gov/
http://www.emc.ncep.noaa.gov/
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Figure 4-2.  An example of the GFS MOS output for KPNE.     

 

 

Figure 4-3.  Diagram summarizing the process that REGiS performs in order to generate a 

probabilistic MDA8 ozone forecast. 
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4.2 REGiS Philadelphia Experiment 

For the following experiment, the REGiS domain is shown in Figure 4-1 where the AQ monitoring 

station is NEA and the meteorological station is KPNE.  The model has been operated in two 

phases:  for May-June of 2016 and for July-August-September of 2016.  Although in principle the 

model has been operational over the five months, many of the forecasts are missing.  The main 

reason for the missing forecasts is the lack of the automation in the model.  Although the model 

only takes a few minutes to produce a forecast, the process has to be launched by an operator.  

Additionally, in its initial stages the model experienced a number of crashes for various reasons 

that had to be addressed.  The constant modifications to the model and the limited availability of 

an operator contributes significantly to the reduced number of the available REGiS forecasts.  For 

the verification of REGiS only the data from phase one is used consisting of May-June from 2016.  

The second phase of REGiS operation has been marred with too many errors to qualify for proper 

evaluation.  Nevertheless, the data is briefly analyzed in the next section helping to establish the 

goals for future studies.              

 For the experiment with the phase one data, the model is not tuned as has been done for 

the CA REGiS evaluation (see Chapter 2).   Ideally the REGiS needs to be tuned before it is used, 

but this has not been possible in the current situation due to the logistical reasons.  Therefore, 

various settings are tried throughout the experiment.  For the planned future applications, the model 

will be tuned using the method explained in Chapter 2.  Because of the conditions under which the 

REGiS application is tested, the results are preliminary and do not serve as a proper quantification 

of the REGiS performance.     

 The results of the experiment are shown in the Figure 4-4.  Although considerable data is 

missing, the model is able to capture the general ozone variability with a remarkably low RMSD 

score of 3.6 cases.  CRPS is on the high side in comparison with the results in Table 3-1.  The likely 
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reason for the high CRPS in the given situation is the small sample size of the data used for 

verification.  CRPS can be separated into the three terms known as reliability, resolution and 

uncertainty (Hersbach 2000).  Low RMSD implies that the reliability is not the main issue in CRPS 

meaning that the resolution and uncertainty are the components of CRPS that are keeping it high 

(Wilks 2011).  Low number of exceedances in the evaluation data supports this line of thinking:  

there are not enough observations of exceedances and the corresponding REGiS forecasts to further 

“resolve” our knowledge regarding the model skill.  More data is needed to make any additional 

conclusions regarding the REGiS performance, but the available data implies that REGiS 

potentially could be useful (i.e. compete with skill against other methods).    

 

 

Figure 4-4.  (a) Same as in Figure 3-2a but for AQ station NEA.  The dates refer to year 2016. (b) 

Same as in Figure 3-2b but for AQ station NEA. 
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4.3 Future Directions 

The main goal of this thesis has been the assessment of the REGiS feasibility.  The natural 

continuation trajectory of this work, however, would be to compare REGiS with the other ozone 

forecasting methods in order to determine if the REGiS forecasts are useful operationally.  

Although it is not possible to carry out such complete analysis with the given data, it is possible to 

gain an idea of how to go about making such analysis.  

In the previous section, it has been mentioned that the REGiS completed forecasts for July-

August-September of 2016.  Initially these forecasting data were not intended for the analysis, so 

the available predictions are intermittent.  For about the third of these forecasts, NAM MOS 

guidance was not available on NOAA File Transfer Protocol (FTP) server and thus has been 

omitted from the list of the REGiS inputs.  Nevertheless, the data can help to increase the sample 

size of the REGiS probabilistic predictions and give more information regarding the REGiS 

performance. 

As discussed in Chapter 1, an ozone exceedance occurs when MDA8 ozone crosses the 

threshold of 70 ppbv.  Using REGiS probabilistic forecasts (PDFs) it is possible to estimate the 

probability of this exceedance given the forecast.  This process is completed for all of the available 

REGiS forecasts using the data (N = 73) from the two phases of the REGiS Philadelphia experiment 

(May through September of 2016).  The results are visualized using the attributes diagram, which 

is shown in the Figure 4-5.  The attributes diagram captures the full joint distribution of the 

probabilistic forecasts for a binary event (in this case exceedance or non-exceedance) and the 

conditional distribution of the observations given the corresponding probabilistic forecast (Hsu and 

Murphy, 1986).  The 1:1 line in the figure indicates forecasts with the perfect reliability – the 

forecasted frequency of an event is matched by the observed frequency.  The line labeled “no skill” 

indicates that the resolution of the forecast is smaller than the reliability of the forecast as defined 
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by the Brier Skill Score (for more details see Chapter 8 in Wilks, 2011).  “No resolution” horizontal 

line marks the region where the forecast is unable to give more information than the climatology.  

From the figure it is possible to observe some serious problems with the REGiS forecasts.  In the 

dataset used, there are only a few cases available where the probabilistic forecasts indicate the 

chance of an exceedance to be above 70% and none of these forecasts verify.  There are more 

indications of the overconfidence in the forecasts in the 30-50% range.  Although this analysis is 

only exploratory, as mentioned previously, there is enough evidence here to see that the REGiS has 

a tendency of over-prediction.  One reason for this is the unbalanced proportion of non-exceedances 

to exceedances in the dataset.  It is possible that with the larger sample size the result would 

improve.                                                 

 

 

Figure 4-5.  Attributes diagram for the REGiS probabilistic forecasts carried out for Southeast PA 

region during the selected days from May-September of 2016.  The values shown above or below 

the red circles indicate the frequency of the data available for that particular evaluation.  The three 

unlabeled red points have the values of 0.014, 0.041 and 0.014 respectively.  For more details see 

text.  
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 It is possible to compare REGiS with the NAQFC (for more details see Chapter 1).  The 

data for the NAQFC (the same dates as used by the REGiS above) is supplied by the Southeast PA 

AQ forecasters.  The discrete NAQFC MDA8 ozone forecasts are converted into binary forecasts 

where, NAQFC > 71 ppbv forecasts are counted as probability = 1 and NAQFC ≤ 71 ppbv forecasts 

are counted as probability = 0 (based on the methodology by Garner and Thompson 2013).  The 

results are illustrated in the Figure 4-6 and indicate that the NAQFC model is unable to skillfully 

predict exceedances.  The forecast of an exceedance verifies only about 30% of the time.      

 

 

Figure 4-6.  Attributes diagram as in the Figure 4-5 but for the NAQFC modeling system. 

 

 Because the comparison between the models performed above is generated using only a 

limited dataset, it is difficult to make any strong conclusions regarding the results.  Nonetheless, 

such analysis indicates that the more structured study in this direction can be useful in comparing 
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the skill level of the REGiS and NAQFC.  There is a suggestion that both of the models struggle 

with capturing the exceedances effectively; however, using only the attributes diagram to diagnose 

the models of interest may be insufficient and the other methods would have to be explored (Wilks 

2011).          

 Another possible direction for comparing REGiS with other ozone prediction approaches 

lies in transforming REGiS forecasts into discrete values.  Figure 4-7 shows the evaluation of the 

four different MDA8 ozone forecasting methods for the selected data from May-September of 

2016.  Discrete REGiS forecasts are the combination of the ozone MDA8 prediction PDFs averages 

and the multivariate linear regression equation that uses REGiS training data to produce its 

forecasts.  NOAA model refers to NAQFC.  Human forecasts are the integrated forecasts generated 

by the Southeast PA region AQ forecasters.  Statistical guidance is the multivariate linear regression 

model developed by the Southeast PA region AQ forecasters. 

 The comparison of the models demonstrates that the human forecasters are noticeably more 

skillful than the other three approaches with the mean square error (MSE, Wilks 2011) being around 

64, while the other methods are in the 103-105 range.  Although the discrete REGiS differs from 

the probabilistic REGiS, it is possible to note that it produces false alarms (overforecasting) more 

than any of the other forecasting approaches.  This is consistent with what has been observed in the 

attributes diagram in the Figure 4-5 for the probabilistic REGiS, which is also overconfident.  On 

the positive side, MSEs for the discrete REGiS, NAQFC and the statistical guidance are comparable 

meaning that the current REGiS is not necessarily worse than the current operational methods. 
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Figure 4-7.  Evaluation of the MDA8 ozone forecasts for the selected days in May-September of 

2016 generated by discrete REGiS, NAQFC (or NOAA model), humans and statistical guidance 

(developed by Philadelphia region AQ forecasters).   

 

To further investigate the question of the REGiS verification, another separate study is 

required.  In that study the REGiS needs to be properly tuned as described in Chapter 2 before it is 

subjected to an evaluation.  Improvements to the REGiS methodology such as domain and predictor 

variable choice should also be explored.  In the current version of the REGiS the uncertainty of the 

meteorological inputs has not been addressed, even though the REGiS relies on the accurate 

meteorology to make a skillful prediction.  It is recommended that the inputted meteorological data 

is perturbed in some way to account for the intrinsic uncertainty in the atmospheric processes.                                       

 

\ 



67 

 

 

Chapter 5  
 

Conclusion 

In this thesis, a novel statistical approach is developed to produce probabilistic daily surface ozone 

MDA8 forecasts.  The model draws an inspiration from the tree-based and stratified models that 

exploit the fact that the association between an air pollutant and meteorology may be different in 

different meteorological regimes.  Meteorological regimes are identified by SOM, an ANN 

technique for pattern recognition.  Once regimes are identified, a stepwise weighted quadratic 

regression equation is developed for each weather pattern.  The SOM method allows both 

identification of different meteorological regimes and the grouping of them according to similarity.  

In this way, when a regression is developed for a specific regime, data from all the other relevant 

regimes can also be used, with weights based on the similarity between the regimes.  This approach 

yields a distinct model for each regime while still taking into account all relevant training cases 

when building each regime’s model.  All of the resultant regression models are combined together 

to produce a PDF of a MDA8 ozone forecast using kernel density smoothing.  The model is named 

REGiS and derives its name from the three words: regression in SOM. 

REGiS is evaluated at SJV, CA, a location known for its poor AQ in the US, and 

northeastern CO to demonstrate diverse applicability of the model.  Before REGiS can be evaluated 

it needs to be tuned.  REGiS is tuned at the Parlier AQ station using the meteorological data from 

the nearby meteorological station KFAT.  Four training periods are used to study REGiS sensitivity 

to the change in emissions.  Once tuned, REGiS is tested at the several independent AQ stations in 

order to verify its ability to produce reliable probabilistic forecasts.  Two skill metrics are used to 

evaluate REGiS:  CRPS and RMSD from flat rank histogram.  CRPS determines reliability, 
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resolution and uncertainty of a forecast, while RMSD determines whether a predicted PDF is 

representative of the true distribution.  Results indicate that for AQ stations located near Parlier, 

which used KFAT to develop regressions, REGiS achieves lower RMSD values than for the 

stations that are further away and which used other meteorological sites for the regressions.  CRPS 

behaves similarly with the exception of Hanford AQ station.  This implies that tuning REGiS for 

each station separately would generate a more robust model for the probabilistic MDA8 ozone 

prediction.    

Additionally, the real-time forecasting experiment is performed in the Southeast PA region 

(Philadelphia area) using the NEA AQ monitor next to the KPNE meteorological station.  The 

results are promising, with a low RMSD value indicating that the REGiS is able to capture some 

of the MDA8 ozone variability due to meteorology.  There is some preliminary evidence indicating 

that the REGiS tends to over-predict ozone MDA8 leading to more “false alarm” forecasts than 

other ozone MDA8 prediction approaches.  However, further study is required to properly evaluate 

REGiS. 

The uniqueness of the REGiS is its ability to generate probabilistic MDA8 ozone forecasts.  

Uncertainty quantification using a PDF gives an advantage to a probabilistic forecast over discrete 

deterministic forecast.  The PDF allows an AQ forecaster to see whether a given meteorological 

setting is favorable or not for an ozone pollution episode.  REGiS is not designed to account for 

sudden local emission changes or events such as biomass fires, but by using its large historical 

database REGiS is well suited for informing the probability of an AQI category given a particular 

meteorological set up.  This thesis underlines the value of the REGiS ozone MDA8 probabilistic 

forecasts and their ability to aid AQ forecasters by quantifying the uncertainty of the real-time 

ozone prediction.  
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