
The Pennsylvania State University
The Graduate School
College of Engineering

RESOURCE PROCUREMENT IN CLOUD SYSTEMS

A Thesis in
Computer Science and Engineering

by
Sepideh Kamrava

© 2016 Sepideh Kamrava

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

December 2016

The thesis of Sepideh Kamrava was reviewed and approved∗ by the following:

Bhuvan Urgaonkar
Associate Professor of Computer Science and Engineering
Thesis Advisor, Chair of Committee

George Kesidis
Professor of Computer Science and Engineering

Chita R. Das
Distinguished Professor, Interim Head, Department of Computer Science
and Engineering

∗Signatures are on file in the Graduate School.

Abstract

With the growth in complexity of problems needed to be solved, the old fashion
systems cannot meet the user’s requirements. This niche has been identified by
cloud providers offering enough resources with reasonable prices to handle any
requests. The number of companies providing cloud services have been increasing
in recent years. In order to compete with their rivals and attract more users, they
provide more flexible options and plans. This dissertation focuses on one of the
biggest cloud resource providers, i.e., Amazon's EC2 and investigate its structure
and introduce different resource types and plans in details. The cloud users try
to make an optimum decision on how they serve their demand with the available
options. This decision making can be really complex given the degrees of freedom
that exist in selecting among providers and their plans. Narrowing our attention on
a smaller set of plans on Amazon's EC2 provider known as on-demand instances,
reserved instances and the reserved instance marketplace, our goal is to derive a few
guidelines on how different methods of assigning demands to the available plans
can affect the users'total cost. To decrease the service cost, some optimization
techniques including integer linear programming and dynamic programming are
utilized to derive an optimal or sub-optimal decision for many general workloads.
The results illustrate that how adding more plans to the system can further reduce
the cost when the demand is noisier while for pure periodic workloads, the optimal
cost can be achieved by only using on-demand and reserved instances. Moreover,
a threshold based decision method is proposed to determine when a user should
sell their available reserved instances to achieve the maximum benefit. A heuristic
method is further used to incorporate the migration cost as an instance of hidden
costs in the formulation. These techniques are applied to some real and synthetic
workloads to confirm the expectations and derive useful guidelines.

iii

Table of Contents

List of Figures vi

List of Tables vii

Chapter 1
Introduction 1
1.1 Introduction . 1
1.2 Challenges and Motivations . 1
1.3 Objections and Contributions . 3
1.4 Outline of the Thesis . 4

Chapter 2
Background and Related Work 6
2.1 Introduction . 6
2.2 Architecture Model . 6
2.3 Deployment Models . 7
2.4 Amazon's EC2 overview . 8
2.5 Related Works . 11

Chapter 3
System Model 13
3.1 Introduction . 13
3.2 Motivation and Assumptions . 13

3.2.1 Pricing Modeling and Assumptions 15
3.3 Theory Background . 16

3.3.1 Dynamic Programming . 16
3.3.2 Integer Linear Programming 17

Chapter 4
Algorithms 18

iv

4.1 Introduction . 18
4.2 Notations . 18
4.3 Methods . 19

4.3.1 Dynamic Programming Method 19
4.3.2 Generic Method . 23

Chapter 5
Empirical Evaluation 26
5.1 Experimental Setup . 26
5.2 The implications of the reserved instances 28
5.3 The implications of the reserved instance market 30

Chapter 6
Conclusion 33
6.1 Summary . 33
6.2 Future Work . 33

Bibliography 35

v

List of Figures

3.1 Resources provisioning framework view. 14
3.2 Compares simple scenarios where RIM can be useful vs. can’t be

useful . 14
3.3 What is lost if the model does not capture the job continuity(JC). . 15

5.1 Four derivations from Google trace, i.e., periodic, weak noise (real),
medium noise and strong noise. 27

5.2 Four derivations from Facebook trace, i.e., the periodic, low noise
(real), medium noise and high noise. 28

5.3 Optimal and periodic policy used in the on-demand and reserved
instance setup. Top: Facebook, Bottom : Google 29

5.4 Percentage of saved cost when the reserved instance market is
incorporated in addition to reserved and on-demand instances. Left
: Facebook, Right : Google . 31

vi

List of Tables

2.1 Sample of instances'type and configuration offered by Amazon's EC2. 10
2.2 Reserved instance volume discount from Amazon's EC2 11

3.1 Amazon's EC2 options available for 1-year term plan. 16

vii

Chapter 1 |
Introduction

1.1 Introduction
In this chapter, the main motivations for performing research on cloud systems are
described. In the next subsection, the contributions of this thesis are summarized
and at the last subsection is dedicated to the outline of this thesis.

1.2 Challenges and Motivations
With the drastic increase in the amount of data processed, the importance of a
system capable of processing gigantic size data in a reasonable amount of time is
evident [1]. That is where the state of art cloud computing systems become so
functional. The cloud computing can be found quite everywhere from popular social
networking to video streaming sites [2]. It has started a revolutionary path toward
how computing resources are looked at in terms of how they are produced, priced
and utilized. Such systems allow users to access resources and services that are
resided in a remote data center as oppose to traditional systems with local resources
only. They give the impression of unlimited resources to the users; therefore, users
can adjust their resource utilization according to their requirements [3]. The cloud
is explained by both the hardware and software systems that govern the existence
of cloud services which are known as Infrastructures as a Service (IaaS) [4]. The
specific applications performed by IaaS are known as Software as a Service (SaaS)

1

[4]. A large number of companies including Amazon, Microsoft, Google providing
cloud services [5,6,7].
The cloud providers on one side offer variety type of services suitable to different
type of users. On the other side, users try to find a provider that can best fulfill
their demands and cost criteria. There are lots of issues raised in the interaction
between these two sides. Due to the enormous options offered by providers, it can
be a complicated decision for users to choose the best option for themselves. This
issue has let to the emergence of cloud brokers who are acting like a middle man
between providers and users. Moreover, the providers have their own interest to
maximize their revenue, so an obvious solution would be to accommodate as many
virtual machines as possible on a single real machine. In contrast, the users expect
a guaranteed quality of service. Thus, the providers have some restriction on how
many virtual machines they can put on a real machine without reducing the quality
of their services below a threshold usually known as service level agreement (SLA).
However, such an architecture that multiple users are accessing same physical
resources without knowing each other can increase the chance that they experience
lower performance due to the lack of information of the type of tasks each user
performs. Therefore, it is possible that a machine ends up performing CPU bound
tasks while the other machine is piled up with memory intensive tasks. The
performance would be more satisfactory if the CPU and memory intensive jobs
were distributed more evenly on these two physical machines. That is the reason
some service providers deliberately offer instances with no performance guarantee
at a lower price than a normal instance. One example can be the Spot instances
that are offered by Amazon's EC2. To obtain these types of instances, the user
should assign a bid which is usually much smaller than the normal instance price.
As long as the bid succeeds the amazon price of the instance, the user have access
to the instance. If Amazon experiences a high demand and needs more instances
for normal users, they will increase the price so some of the bids may drop below
the amazon price. At this point the instance is automatically preempted from the
user.
Among the many challenging issues in the cloud, a number of important ones are
mentioned here. It has been observed that cloud systems suffer from scalability.[8]
Even though the cloud system is defined by an unlimited resources, in reality
there is a limitation. Outages can happen on peak hours. Inconsistent pricing

2

meaning that if a virtual machine with a size of two times bigger than another
one is requested, the price may not change linearly in terms of the sizes. Network
bottleneck may happen when a large chunk of data is being transferred over the
internet. Therefore, the providers usually have a limitation on the size of a data
chunk for transferring. Cloud systems are highly heterogeneous because of being
formed of multiple generation of equipment as technology advances during the time.
Thus, the cloud providers feel the urge for incorporating the new technologies to
compete with their rivals in the market. All of these factors contribute to the
unpredictability of cloud systems performance on the provider's side.
On the user's side, cloud providers offer different type of instances varying in CPU
and memory sizes that are optimized for a specific type of jobs. Obviously, users are
charged differently based on the instance type they choose. In addition to multiple
instance types, each individual instance type is available through different plans
(options). One can obtain a same instance type as an on-demand instance denoting
a plan where the price is normally calculated based on the number of hours it has
been used, or as a reserved instance which is a kind of discount plan for sustainable
users who needs to access to the instance for a longer period of time. A one year
contract is an example and the award for their loyalty is a lower price per hour
compared to an on-demand plan. In addition, there are many hidden cost for the
users such as data transfer cost between regions, migration cost and etc. We will
provide more details on this later in Chapter 2.
Based on these properties of cloud, resource provisioning from the user side is a
topic demanding more investigation on both cost and performance perspectives.
By cost, it means that choosing a combination of plans and instance types that
minimizes the cost while satisfies the user's demand, and by performance denotes
that not always the most cost efficient policy have the best performance or even it
may not have a reasonable performance. In other words, we are looking for a policy
to procure resources with the lowest cost without sacrificing the performance too
much.

1.3 Objections and Contributions
The main challenge in the resource procurement problem is the workload pre-
dictability. How well the user can forecast their future demand can highly affect

3

the optimization policy behavior. The following items are investigated in this
dissertation.

• Addressing the predictability of workload and its impact on the decision that
leads to the minimum cost.

• Proposing a threshold policy for a specific but common scenario to decide
the proper time to sell reserved instances over their lifespan.

• Providing an optimizing algorithm based on Integer Linear Programming
(ILP) to find the minimum cost given the providers options.

• Incorporating reserved instance marketplace in the ILP formulation which is
expected to reduce cost for less predictable workloads.

• Proposing a heuristic method in the ILP to take the migration costs into
account.

• Demonstrating that for periodic demands the optimal policy can be obtained
without solving the ILP directly.

1.4 Outline of the Thesis
The rest of this thesis is organized as follow

In Chapter 2, information on the cloud architecture model are provided
in details. Then, the Amazon's EC2 structure, options and terminologies
are studied. At the end, previous works that are related to this work are
identified.

In Chapter 3, the system model is developed and the assumptions that are
made are explained. The theories related to problems in resource provisioning
going to be used in later chapters are presented as well as a basic introduction
on dynamic and linear programming.

In Chapter 4, the dynamic programming formulation for the problem is
proposed then for a specific common case a threshold based algorithm is
proposed to help users to determine the best time to sell their instances to

4

avoid extra charges. Then, a generic algorithm based on linear programming is
proposed which can be used with a wide range of cloud providers' configuration
and is flexible enough to later be updated with feature provider's plan

In Chapter 5, experimental results are illustrated and compared to different
based lines to demonstrate the effectiveness of the proposed algorithm.

Finally, Chapter 6 concludes this dissertation and provides the future works.

5

Chapter 2 |
Background and Related Work

2.1 Introduction
In this chapter, the cloud systems are studied more deeply focusing on the aspects
that are related to the target problem, i.e. cloud resource provisioning. Further-
more, related works regarding resource procurement and workload prediction are
addressed.
Cloud computing systems are designed to make computing and storage resources
such as CPU and memory available to everyone without requiring to possess a
real system composing of manifold resources. Thus, virtualization[9] is the main
basic block for this quite new technology. In this way, the cost for acquiring and
maintaining necessary infrastructures can be extremely reduced, and users can
concentrate more on the main topic of their business without concerning IT barriers.
Cloud as it is known today has been gone through a revolutionary path; thus,
its architecture bears some resemblance to other system models and yet has a
key distinction to each of them. As an illustration, we can think of it as a grid
computing system which has been evolved by adding concepts such as Quality of
Service (QoS) and reliability. [4]

2.2 Architecture Model
A commonly used cloud architecture is defined by National Institute of Science and
Technology, NIST, consisting of three standard models as follow [10]

6

1. Software as a Service (SaaS) SaaS is the capability provided to the
user to exploit the provider's applications running on a cloud infrastructure.
The applications are accessible from various client devices through either
a thin client interface, such as a web browser (e.g., web-based email) or
a program interface. The user does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, storage or
even individual application capabilities with the possible exception of limited
user-specific application configuration settings.

2. Platform as a Service (PaaS) PaaS is defined as the capability provided to
the user to deploy the user-created cloud infrastructure or acquire applications
created using programming languages, libraries, services and tools supported
by the provider. The user does not manage or control the underlying cloud
infrastructure including network, servers, operating systems or storage, but
has control over the deployed applications and possibly configuration settings
for the application-hosting environment.

3. Infrastructure as a Service (IaaS) IaaS denotes the capability provided
to the user to provision processing, storage, networks, and other fundamental
computing resources where the user is able to deploy and run arbitrary
software including operating systems and applications. The user does not
manage or control the underlying cloud infrastructure but has control over
operating systems, storage, and deployed applications; and possibly limited
control of select networking components (e.g., host firewalls).

In this work, the cloud that we refer to is IaaS unless otherwise specified. The other
two tires although equally important, they are beyond the scope of this dissertation.

2.3 Deployment Models
Clouds are deployed in one of these three methods.[11]

1. Private cloud: Private cloud is merely used by a single organization. Ironically,
these types of cloud's users still have to purchase and maintain a physical
system

7

2. Public cloud: It is employed when the services are delivered over a public
network. In terms of the architecture, private and public clouds are identical.
Amazon's EC2, Microsoft Azure, Racket space and many more are examples
from public clouds which are accessible over the internet.

3. Hybrid cloud: Finally, hybrid cloud is a combination of two or more clouds.

The focus of this dissertation is on public clouds. Although the method in this
dissertation can be extended to any public platform, the solutions are embodied
in the Amazon's EC2 platform. Thus, it is required to be familiar with basic
concepts and definitions that are widely used by Amazon's EC2. The next section
is dedicated to accomplish this goal. It is worth mentioning that quite the same
concepts exist in other providers, so the idea can be utilized on other platforms
after a one to one conversion between corresponding terminologies used by both
platforms.

2.4 Amazon's EC2 overview
First of all, it should be noted that the Amazon's EC2 offer many services. Never-
theless, only the parts that are relevant to this work are indicated.
Amazon Web Services (AWS) is one of the providers that own the hardware required
for providing cloud computing services to the users and they constantly extend
their facility to better serve their customers. AWS are located in multiple places.
The computing section is Amazon's EC2 which stands for Elastic Compute Cloud.
It provides resizable computing resources. The three main types of instances in
Amazon's EC2 are explained below.

On-Demand Instances are charged hourly without long-term commitment.
So, it removes the large cost for planning, buying and maintaining hardware
and converts it to smaller variable costs over a time span.

Reserved Instances are designed to be used for a longer period of time.
Users can reserve them for 1 or 3 years and receive a noticeable discount on
hourly rate, usually up to 75%. Furthermore, these instances can be sold on
Reserved Instance Marketplace if the user does not need them anymore for
some reasons such that their task ends earlier than the term expires.

8

Spot Instances allow users to bid on the unused capacity of the Amazon's
EC2 and run the instance as long as their bid is greater than the spot
instance price. The Spot instance price is not fixed and can change at any
time depending on the supply and demand. The spot instances prices are
much lower than the correspondence on-demand instances in exchange of
the unpredictability of granting an access to them and their preemptive
characteristic. Users who have some jobs that are not time sensitive and are
stateless resulting in recovering each time the task is preempted can save a
lot by utilizing these instances.

Reserved Instance Marketplace is not quite similar to other options.
This options allows user to resell their own reserved instance to a third party
or buy from a third party if the user wants so. It makes it easier for users to
take a risk and purchase reserved instances since they can sell them whenever
their prediction on future demand does not work well. On the other hand,
users can expect to find a better deal in this market. Imagine a user, who
well predicts their demand, say needs an instance for the whole two months,
but not reserved or on-demand option works for them. The reserve instance
market makes it possible for such users to buy reserved instances consequently
and pay based on reserved instance rate while they really do not have the 1-3
years commitment. They can look for an instance with only two months left
on its term. The pricing in this market can be an interesting research topic;
however, there are a few rules. (1)The instance must be at least one month
old and has one month left on the term to be placed in the market. (2) The
life of the instance will be rounded down to the nearest month.

There are many other type of resources that AWS offers such as Storage and
Databases. Upon requesting any of them, the user is charged based on some policy
regardless of the different functionality of each resource.. Similar to what mentioned
for computing resources, there can be multiple plans to charge users.
Another aspect of resources are their types. The type of an Amazon's EC2 instance
is usually defined by the number of CPUs, memory size, storage type and size, and
whether it is optimized for a specific type of workloads or not. For a complete
list of available types, please refer to [12]. For example, T2 sub-category refers to
burstable performance instances and M4 refers to the latest generation of general

9

Model vCPU Mem(GiB) CPU
Credit-
s/hour

SSD Storage
(GB)

Bandwidth
(Mbps)

t2.nano 1 0.5 3 EBS only -
t2.medium 2 4 24 EBS only -
m4.large 2 8 - EBS only 450
m4.4xlarge 16 64 - EBS only 2000

Table 2.1. Sample of instances' type and configuration offered by Amazon's EC2.

purpose instances. This sub-category provides a good balance of compute, memory
and network resources. Moreover, C4 and X1 sub-categories are referred to compute
optimized memory and optimized instances, respectively. Table 2-1 shows a few
types offered by Amazon's EC2.

In addition to choose the plan, deciding on the instance type makes the problem
even more complicated. There can be many scenarios that needs subtle investigation
to decide what combination is the best. For example, consider a use who needs
16 CPUs and 64 gigabytes of memory, should they go for one m4.4xlarge instance
or 8 instances of type m4.large? Assuming that Amazon's EC2 hourly rate for
m4.large instance is $0.12 and $0.958 for m4.4xlarge. Moreover, assume that the
execution time does not change, if they go for m4.large, they have to pay $0.96; on
the other hand, if they go for m4.4xlarge instance, the hourly cost would be $0.958.
In terms of cost, it appears that it is not important for Amazon's EC2 what users
decide otherwise they would incentivize users to pick one option. However, the
performance is still in question. Answering this question can be the topic of another
study, but in this work it is assumed that there is only one type of instances and
focus on determining the optimum plan results in a minimum cost.
According to the studies that are going on in the cloud, the problems can be mainly
divided into three groups (i) provider-side problems such as meeting the quality of
service, coming up with a pricing strategy and maximizing the revenue (ii) user-side
problems including resource allocation and finding optimal bid for Spot Instances.
(iii) broker-side problems dealing with middleman that tries to generate a more
predictable workload by aggregating workloads from multiple users in order to be
qualified for more discount from the providers since. Table 2-2 shows the discount

10

Total Reserved Instances Upfront Discount Hourly Discount
Less than $500,000 0% 0%
$500,000 to $4,000,000 5% 5%
$4,000,000 to $10,000,000 10% 10%
More than $10,000,000 ? ?

Table 2.2. Reserved instance volume discount from Amazon's EC2

amount the user will receive based on the total reserved instances cost. As can be
seen, if at least 6,667 t2.micro instances are purchased, the user is qualified for 5%
discount.Therefore, users with less sustainable demands can benefit from a lower
rate than what providers offer.
The focus of this work is to address some user-side problems.

2.5 Related Works
Many researches have been conducted on resource allocation in the cloud systems.
With the vast options that cloud providers offer, there is always a question for users
which options is the best for them. Most of the researches have oversimplified the
provider's interface in a way that only includes one or two resource types. In this
theme, Jain et al. [13] attempts to find the optimum plan in the realm of batch jobs
with two possible options, i.e. on-demand and spot instances. The former would
be more expensive while the later increases the chance of interruption due to the
bidding mechanism. To address the tradeoff between cost and performance, they
propose an online adaptive algorithm which is learning from the previous perfor-
mance and the history of spot prices. Their algorithm shows that the average regret
approaches to zero with the time. However, this work does not consider reserved
instances and reserved instance marketplace. Also, in many cases, the workloads
show a high level of predictability especially in batch jobs. This predictability can
be incorporated in non-online algorithms.
There are other works adding more constraints on job specifications for example
assuming they are time sensitive and assigning a value to each job to indicate how
important finishing the job before due date is.[14] However, they skip the variety
options of computing resources.
On the other hand some works focus on the bidding strategy for spot instances

11

without considering other resource options. [15-16]. In [17] Wang et al. propose
stochastic and deterministic online algorithms to decide between on-demand and
reserved instances. They show that their algorithms achieve the best competitive
ratio in both cases compared to the offline deterministic case where the future
demand is known; however, they did not still consider the reserved instance mar-
ketplace.
None of the above works consider the hidden cost of relocating from one virtual
machine to another known as migration cost. Migration cost can happen when
the reserved instance term is expired but the task is not finished, so it must be
moved to another VM, or for some reasons the user decides to sell a busy instance.
Although there are works address reducing migration cost, they do not study this
issue in the context of resource provisioning for minimum cost. For example, in
[18] they proposed a method to reduce the migration cost for spot instances.

12

Chapter 3 |
System Model

3.1 Introduction
In this Chapter, the big picture of the system is described, and the assumptions that
are made will be stated. Finally, a brief overview of theory required for developing
the algorithms are presented.

3.2 Motivation and Assumptions
Figure 3-1 illustrates the resource provision framework. The public cloud providers
such as Amazon EC2 and Microsoft Azure have different interfaces. Among the
providers, the Amazon EC2 is picked for this research which has variety of instance
types as we mentioned earlier. Here, it is assumed one instance type for simplicity,
but the instance type can be accessed via different options, i.e., on-demand and
reserved and can be also sold on reserved instance market. Spot instances are not
the focus of this work since they add another dimension of uncertainty resulting in
the work diverges from its main point. We have mentioned earlier the benefits of
using reserved instance market. However, it is also worth mentioning when it does
not work. Figure 3-2 compares type of workload where one is in favor of reserved
instance market while the other is not. It should be noted that there is not such a
good or bad option, and it all depends on the application. Some types of workloads
may fit better with a specific option while may not fit good enough with another.
Nevertheless, having more options is beneficial since by combining them we can

13

Figure 3.1. Resources provisioning framework view.

Figure 3.2. Compares simple scenarios where RIM can be useful vs. can’t be useful .

expect to achieve a better policy. These observations lead to explore whether the
combination of available options generates the most cost efficient policy.
On the other hand, the user interface is located. Some simplifications have done on
this side. Modeling the user's demand has been a wide research area to decide how
to translate the real resources usage such as CPU and memory to how many and
what type of virtual machines are required. Note that, it is assumed earlier that one
instance type is available. This assumption helps user to utilize a simpler model in
order to map the CPU and memory usage to the number of virtual machines they
need. Otherwise, the user must consider different types in their mapping. It is also
assumed in this mapping that the job continuity is discarded meaning that after

14

Figure 3.3. What is lost if the model does not capture the job continuity(JC).

the mapping there is no information about any relation between tasks at different
time slots. In future works it can be investigated if they are sequences of a bigger
task, or they are independent. Figure 3-3 depicts the effect of not considering the
job continuity. In addition, it is assumed that the user's tasks show at least some
level of predictability. Consequently, the raw demand which is based on user's tasks
can also be predictable. Beside the raw demand generator and provider interface,
there is another component in the system which is the decision maker where the
proposed algorithm will reside.

3.2.1 Pricing Modeling and Assumptions
• On-demand InstanceWithout loss of generality, t2.micro instance on Linux

platform in US East is selected as a reference with the rate $0.013 per hour
as of time being used.

• Reserved Instance Amazon EC2 has a table like Table 3-1 for each instance
type stating how user is charged for the reserved option. This table includes
1-year term options. The pattern in these tables can be summarized as follow,

Regardless of the instance type, paying all upfront will save you 34%
compared to using the same instance type purchased using on-demand
option for 1 year, partial upfront saves 32%. and no upfront saves 31%.

For three years plan, there is not no upfront option, so users must either
pay all upfront or partially upfront and save 56% and 53%, respectively,
compared to 3 years of on-demand purchase.

15

1-YEAR TERM
Payment
Option

Upfront Monthly Effective
Hourly

Saving over
On-Demand

On-Demand
Hourly

No Upfront $0 $6.57 $0.009 31% 004
Partial Up-
front

$0 $6.57 $0.009 31% 004

All Up-
front

$0 $6.57 $0.009 31% 004

Table 3.1. Amazon's EC2 options available for 1-year term plan.

For simplicity, in this work, the price for reserved instances is modeled
according to all upfront pattern. So basically, once a reserved instance is
bought, user pays the upfront amount and it is all done.

• Reserved Instance Marketplace is modeled by assuming reserved in-
stances can have one of the 12 states corresponding to each month. Those
that are assigned to state 1 or 12 cannot be sold for compatibility with the
Amazon's rule. Although there can be some interesting pricing models, it
is not the focus of this work. A simple rational pricing model that a seller
would have is asking for the proportion of the term left plus the tax. Thus,
for a t2.micro instance with all upfront 1-year term, the price pattern is
75× m

12+tax, where m represents the number of months left on the term.

3.3 Theory Background

3.3.1 Dynamic Programming
Dynamic programming is a technique in optimization that to solve a complex
optimization problem, breaks it down to a bunch of smaller sub-problems and uses
the result of the sub-problems to achieve the solution for the main problem. This
process is done by defining value function Jt(s) of being at state s at time t. By
moving backward the value functions for earlier points in time, t − 1, t − 2 and
etc. can be found. All that must be done is to write a recursive function known as
Bellman equation [19] that relates the current value function to the previous one.
For more detailed information please refer to [20].

16

3.3.2 Integer Linear Programming
Let us first focus on what the linear programming is, and then we explain Integer
Linear Programming.
The linear programming, also known as LP, is an optimization technique that tries
to find the optimum solution for a mathematical model which can be expressed
with linear terms. There are two types of terms in the LP model where both types
must be linear to fit in this definition. The model has an objective function which
needs to be either minimized or maximized. In this case the objective function
must be a linear function. The second type is the constraints which define the
relationship among variables. Put these all together, any problem that can be
expressed as below is a LP.

min cTx

s.t :

Ax ≤ b

x ≥ 0

where x is the vector of variables and b and c are vectors of constant coefficients.
Finally, matrix A is a matrix of coefficients.
If the variables are further restricted to hold integer values, then them problem
becomes integer linear programming , ILP. To learn more about the linear program-
ming please refer to [21].
There are many solvers that can be used to solve this type of problems. For example,
JOptimizer, OpenOpt and Pyomo are all free and open-source.

17

Chapter 4 |
Algorithms

4.1 Introduction
In this chapter, a few techniques are used to model the problem. First, the notations
used in the rest of this dissertation are defined. In the second section, the model is
built based on dynamic programming and an especial case of the problem is further
studied. In the third section, a more general model is proposed based on linear
programming, and it is shown that for a specific type of workload, the problem is
reduced to a simple binary search problem.

4.2 Notations
Before delving into the proposed algorithm, the notations that are used in this
work are described as follow.
The demand at time slot t is represented by dt, and the number of the hours in
the optimization is shown by T which is also known as optimization horizon. D
refers the number of the discrete levels for reserved instances. For example, as
mentioned earlier, for one year term, the Amazon's EC2 has 12 levels corresponding
to months. The number of the hours in each discrete length is denoted by gamma.
po represents the on-demand instance hourly rate while element pt in vector p
refers to the reserved instance rate in the reserved instance marketplace. The first
element in p represents the price for instance with one time of discrete length term,
and the second price is for instance with two times of discrete length term and
so forth. pm denotes the migration cost. Vector at refers to the actions at time t.

18

Depending on the problem formulation, the vector's size can have various lengths.
If only on-demand and reserved options are available, then the action vector has
size of one representing the number of the purchased reserved instances. On the
other hand, if the reserved instance marketplace is also included, the action vector
size is equal to size D. Consequently, column t in matrix A represents the action
vector for time t. Moreover, vector s refers to the state of the system with size of τ .
Each element in vector s captures the number of reserved instances as well as the
number of hours left in their term. Finally, et represents the numbers of unexpired
reserved instance at time t regardless of their left over term.

4.3 Methods

4.3.1 Dynamic Programming Method
Using dynamic programming technique, the cost-to-go function is defined as

ct(at, st) = aᵀ
tp + (dt −

τ∑
i=1

sit)+po (4.1)

where the cost is a function of the current state st and the current action at. The
first term is the cost (income) imposed by the reserved instances that are either
purchased directly from Amazon's EC2 or purchased (sold) from(in) the reserved
instance marketplace. The second term represents the on-demand cost for handling
demands exceeding purchased and existing reserved instances.
With each feasible action, the state space is updated. Actions is feasible only if
the updated state is positive since it is not possible to sell more than available
resources. Mathematically this can be written as

st(iγ) = at(i) + st(iγ) ∀i ∈ 1, 2, ..., D (4.2)

Note that only those elements of the state corresponding to storing instances with
full number of discrete terms are updated . The action is a valid if after updating
to the current state, the following two conditions hold.

st ≥ 0 ∀i ∈ 1, 2, ..., τ (4.3)

19

at(D) ≥ 0 (4.4)

where the first condition guarantees the positivity of the state. The second condition
denotes that the last element in action vector corresponding to number of full
term instances required to buy must always be positive due to the assumption
made earlier indicating that it is not possible to sell them in the instance reserved
marketplace. Before moving to time t+ 1, the state is updated according to

st+1 = [st(2 : τ), 0] (4.5)

which simply shifts the state one element up and adds a zero at the end. The
bellman equation is given by

Jt(st) = max
at

ct(at, st) + Jt−1(st−1) (4.6)

where Jt(s) is the minimum cost of being in state s at time t.
In this model, only instances with a term of multiple times of discrete length can be
sold as oppose to the Amazon's EC model where the term of the instance is rounded
down to the closest full number of months left on the instance. For example, if a
user has a reserved instance with 2 months and 16 days left on it, they can put it for
sale on Amazon's EC2 as an instance with 2 months term but in this formulation
this instance cannot be sold until it has exactly 2 months left on its term.
Even though the proposed model takes into account many properties of the system,
it has a big drawback. The time and space complexity for solving such problems
can grow exponentially considering the size of the state and the number of the
options that must be considered at each step. Therefore, despise the theoretical
value, it has limitation in practical implementation. To eliminate this complexity,
a very useful special case of the above formulation is investigated in the following
subsection.

Special Case: Threshold Based Method

The first technique is inspired from [22]. Given that R is the number of brand
new reserved instances with τ term, the goal is when and how many of reserved
instances must be sold in the reserved instance market to reduce the cost assuming
that the demand sequence has independent identical distribution (i.i.d.). The idea

20

behind this problem is that, the reserved instances are viewed as a depreciation
asset. The predicament is whether to sell the instance given the offers from the
buyers or keep the instance to achieve the optimum cost. Note that the user must
satisfy the future demand in the optimization horizon. Thus, if they decide to sell
the asset (the reserved instance), they have to buy on-demand instances in order to
handle the future demand. A threshold based solution is proposed for this problem
such that at each time, the user compares the offered prices, and if there is any one
exceeding the threshold, they decide to sell a number of instances associated with
that threshold. Otherwise, they keep them. More details on how this algorithm
works are explained below.
Using dynamic programming, the cost-to-go function is defined as

Jt (r) = max0≤a≤R {Jt+1 (r − a) + E (apt)− E (dt − (r − a)) po}

with these two base cases:

Jt (0) =
τ∑
k=t

E (dt) po

Jτ (R) = E (dτ −R) po

Next, the expressions for finding the thresholds from selling no instances to selling
any arbitrary amount of instances are derived.

• No sell at all at time t
To not sell the reserved instances at time t given r instances, the following r
inequalities must be hold simultaneously.

Jt+1 (r)− E (dt − r) po
> Jt+1 (r − 1) + E (pt)− E (dt − (r − 1)) po,

> Jt+1 (r − 2) + 2E (pt)− E (dt − (r − 2)) po,

> Jt+1 (r − 3) + 3E (pt)− E (dt − (r − 3)) po,
...

21

> Jt+1 (r − r) + rE (pt)− E (dt − (r − r)) po

After some mathematical manipulation, this is obtained

pt < Jt+1 (r)− Jt+1 (r − 1) + po = αt,0,1

pt <
1
2 (Jt+1 (r)− Jt+1 (r − 2) + po) = αt,0,2

...

pt <
1
r

(Jt+1 (r)− Jt+1 (r − r) + r.po) = αt,0,r

So if

pt < min1≤a≤r {αt,0,a}

the optimum decision is to not sell any instances at time t.

• Selling one instance at time t
In this case, the following conditions must be hold simultaneously.

Jt+1 (r − 1) + E (pt)− E (dt − (r − 1)) po
> Jt+1 (r)− E (dt − r) po,

> Jt+1 (r − 2) + 2E (pt)− E (dt − (r − 2)) po,

> Jt+1 (r − 3) + 3E (pt)− E (dt − (r − 3)) po,
...

> Jt+1 (r − r) + rE (pt)− E (dt − (r − r)) po

After simplifying the above conditions, it is obtained

pt > − (Jt+1 (r − 1)− Jt+1 (r)− po) = αt,1,0

pt < Jt+1 (r − 1)− Jt+1 (r − 2) + P = αt,1,2
...

pt <
1

r − 1 (Jt+1 (r − 1)− Jt+1 (r − r) + (r − 1) po) = αt,1,r

22

Therefore, in this case, the threshold is given by

pt < min1<a′≤r {αt,1,a′}
⋂
pt > max0≤a′<1 {αt,1,a′}

where αt,a,a′ represents the threshold at time t for choosing to sell one instance
from a′ ≤ r available instances. This value can be evaluated using the following
expression.

αt,a,a′ = 1
a′ − a

(Jt+1 (r − a)− Jt+1 (r − a′) + (a′ − a) po)

• Selling a instances at time t
In general, at time t, selling a instances will be chosen from a′ possibilities, if

pt < mina<a′≤r {αt,a,a′}
⋂
pt > max0≤a′<a {αt,a,a′}

4.3.2 Generic Method
In this part, an algorithm based on integer linear programming (ILP) is proposed
for the main problem taking migration cost into account. The ILP formulation is
given by

min
A

D∑
i=1

T∑
t=1

aitpi +
T∑
t=1

(dt − et)+po +
D∑
t=1

T∑
t=1

a+
itpm

s.t:

ait ∈ Z, ∀i, t

ait > −sit,∀i, t

sit =
D∑
j=i

t−τ(i−j)∑
t′=

t−τ(i−j+1)+1

ajt′

sit ≥ 0,∀i, t
D∑
i=1

ait < dmax − et,∀t

et =
D∑
i=1

sit,∀t

23

In the objective function, the first term takes into account the money exchanged
for the reserved instance whether those are bought or sold in the reserved instance
market. Note that the negative actions correspond to sell instances. The second
term is the cost imposed by on-demand requests, and the last term represents the
migration cost assuming that each purchased reserved instance has a hidden cost
for migrating some tasks to the new virtual machine. The goal is to find the actions
such that the total cost is minimized given the constraints mentioned above. The
first constraint denotes that actions must be real number, and the second one says
that it is not feasible to sell an instance type more than the available instances
from that type. The third constraint defines the number of instances from each
type available at a given time. The fact that it is not possible to have negative
instances is considered in fourth condition. The fifth condition further defines the
upper bound on the number of instances of a specific type that can be purchased
at a given time minus the total number of available instances regardless of their
type. This last quantity, total number of available instances, is defined by the last
condition.
To convert the formula to ILP format, the max operation must be removed. Thus,
two slack variables are defined as

bt ≥ 0,∀t

bt ≥ dt − et,∀t

cit ≥ ait,∀i, t

cit ≥ 0,∀i, t

The objective function can be then written as

min
A

D∑
i=1

T∑
t=1

aitpi +
T∑
t=1

btpo +
D∑
t=1

T∑
t=1

citpm

Special Case: Binary Search Method

As a special case, if the demand is periodic with a period much smaller than the
reserved instance term and the on-demand and reserved instances are available,
the optimal solution is reduced to finding one number representing the number of

24

reserved instances. Since the pattern repeats after some time, whatever decision
made at the time is valid for later as well. The cost of increasing the number of
reserved instances is a polynomial of degree two. In other words, the cost function
is convex, and as the number of the reserved instances increases, the cost decreases
up to some point and then increases. . The minimum point determines the number
of reserved instances that are required to achieve the optimal policy. Therefore, in
this case, it is not necessary to solve the integer linear programming. Instead, a
binary search method can be used to find the optimal policy.

25

Chapter 5 |
Empirical Evaluation

5.1 Experimental Setup
As we use the proposed algorithm to obtain the optimal decision, some kind of
demand sequence is required. The demand sequences that are deployed in this
work consist of both real and synthetic traces. The real demand traces are from
Facebook and Google. To generate synthetic traces, the periodic components of real
traces are extracted. The residual, i.e., the difference between the real trace and its
periodic component, is used to construct the noise. This noise is then multiplied
by a constant factor, c to illustrate different noise levels. Thus, the real traces are
considered as weak-noise, the synthetic traces generated by adding two times of
the residual to the periodic component are defined as medium-noise traces, and
finally, tripling the residual plus the periodic component is called the high-noise
traces. Obviously, except from the low-noise traces which are directly taken from
real data, the other derivations are synthetic workloads. As discussed earlier, these
traces do not provide any information about the job continuity and only give us
information on demands in terms of the number of the virtual machines at each
time slot. Figures 5.1 and 5.2 present some samples of the real and synthetic traces
from Facebook and Google, respectively.

Inputs: As it was mentioned earlier, under some circumstances, users of Ama-
zon EC2 can benefit from 35% to 75% discount. The discount ratios for reserved
instances, rd, are assigned 35%, 55% and 75%. We use three different values to
consider the effect of rd,i.e, r − d = 0.35,0.55,0.75. Moreover, without loss of

26

0 20 40 60 80 100 120
1000

1200

1400

1600

1800

2000

2200

2400

hours

d
e
m

a
n
d
s

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

hours

d
e
m

a
n
d
s

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

hours

d
e
m

a
n
d
s

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

hours

d
e
m

a
n
d
s

Figure 5.1. Four derivations from Google trace, i.e., periodic, weak noise (real), medium
noise and strong noise.

generality, the on-demand price, po is assigned to one. The price for the partial
reserved instances have two elements. One is the cloud provider commission plus
the tax to allow you to sell your reserved instance which is 12% of the instance
price. Another element is proportional to the instance term left.
Parameters: We explore many combinations of the parameters such as the noise
multiplier and the discount ratio, rd. α is a scalar between 0 and 1 representing
the possibility of having switching cost when an instance is started. We pick two
values for α equal to 0 and 1 corresponding respectively to very short jobs where
there is no switching cost and very long jobs such that always there is a switching
cost. For a given demand, we calculate the cost for three cases as below

• There are only on-demand instance which is equivalent to force the action
matrix to zero, A = 0.

• There are on-demand and full reserved instances corresponding to assign the
action matrix indexes for partial buying to zero.

• We have on-demand and reserved instances as well as the reserved instance
marketplace to sell partial used instances. In this case A can take any values
to minimize the cost.

27

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

hours

d
e
m

a
n
d
s

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

hours

d
e
m

a
n
d
s

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

hours

d
e
m

a
n
d
s

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

hours

d
e
m

a
n
d
s

Figure 5.2. Four derivations from Facebook trace, i.e., the periodic, low noise (real),
medium noise and high noise.

The optimization horizon is T = 4 months and a full reserve instance life cycle, τ
is 2 months. We also have the option of buying an instance with one month length.
Thus, D = 2 corresponds to a full instance or a half life time instance.
Baseline: Given the problem definition, the best strategy is to pay the reserved
instance rate for each task. This will produce the lowest cost, but in reality, this
may not be possible due to the conditions that must be met to have a reserved
instance. However, it is clear that no algorithm can ever produce a result better
than this. Therefore, the lower baseline is calculated assuming all the jobs are
served with the reserved instance rate. On the other hand, the worst scenario that
can happen if the demand pattern is such that only the on-demand instances can
be used. In this case, as no algorithm can improve the efficiency, the upper bound
is calculated assuming all the tasks are served by the on-demand rate.

5.2 The implications of the reserved instances
In this evaluation, the perfect knowledge of the demand sequence is assumed. Also,
it is assumed that no switching cost and no reserved instance marketplace are incor-
porated. Thus, the last term in objective function is zero, and the elements in the

28

0.35 0.55 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discount ratio

A
v
er

ag
e

co
st

 p
er

 u
n
it

Periodic

low noise
OPT

(Facebook)

low noise
SUBOPT

Medium noise
OPT

Medium noise
SUBOPT

High noise
OPT

High noise
SUBOPT

0.35 0.55 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discount ratio

A
v
er

ag
e

co
st

 p
er

 u
n
it

Periodic

low noise
OPT

(Google)

low noise
SUBOPT

Medium noise
OPT

Medium noise
SUBOPT

High noise
OPT

High noise
SUBOPT

Figure 5.3. Optimal and periodic policy used in the on-demand and reserved instance
setup. Top: Facebook, Bottom : Google

action matrix can only be positive while the on-demand and reserved instances are
possible options. The experiment is repeated for each of three levels of the discount
ratio per each demand sequence mentioned earlier. In other words, corresponding
to each discount ratio, we have four results for each of the four demand cases from
Facebook and Google traces. Note that there are eight results for each discount
ratio rather than four in Figure 5.3. Those with SUBOPT index indicate that the
optimal policy for the periodic result is used on other types of workloads. The
reason for doing it is, that finding the optimal policy for periodic demands can be
reduced to a simple threshold problem as mentioned earlier. Therefore, this extra

29

experiment demonstrates what happens if accuracy is sacrificed by simplicity, or
how diverging from the periodically affects the cost while the policy has not been
changed. The normalized costs have been shown in the results. Thus, the value of
one represents the upper bound, and the dot lines represent the lower bound in
each case.

Performance expectation

• It is expected to observe less cost efficiency when the periodic optimal policy
used for non periodic demands.

• As the discount ratio increases, the total cost increases compared to the
same experiment with a lower discount rate.

• With a fixed discount rate, it is presumed that the cost increases by
increasing the noisiness level due to increase of unpredictability.

Key insights

1. It can be inferred from the results that as the level of noise increases while
the discount ratio decreases, the reserved instances become less useful. So,
the on-demand instances can work as good as the reserved instances. In other
words, this can help users with a high noisy demand to not bother themselves
with the reserved instances.

2. Although the cost reduction due to using the optimal algorithm is higher
than using periodic optimal decision, given that the sub-optimal solution can
be achieved without solving the integer linear programming, the periodic
optimal decision can still be a satisfactory solution. In other words, it all
depends on users how important the difference is for them.

3. In contrast to (1), as the discount ratio increases, users can save a lot if they
deploy reserve instances.

5.3 The implications of the reserved instance market
In this section, the reserved instance market is added to the previous settings as
well. Note that, there is no migration cost. The mathematical effect of the reserved

30

0.35 0.55 0.75
0

0.5

1

1.5

2

2.5

3

3.5

Discount ratio

S
a
v
e
d

 C
o

st
(%

)

Periodic

low noise(Faebook)

Medium noise

hight noise

0.35 0.55 0.75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Discount ratio

S
a
v
e
d

 C
o

st
(%

)

Periodic

low noise(Google)

Medium noise

hight noise

Figure 5.4. Percentage of saved cost when the reserved instance market is incorporated
in addition to reserved and on-demand instances. Left : Facebook, Right : Google

instance market is that the actions can also take negative integers. Figure 5.4 the
results for this setup.

Performance expectation

• Even more cost reduction is expected compared to the previous setup, i.e.,
no reserved instance marketplace. This can be justified by having an extra
option. Therefore, the result should be at least as good as the previous setup.

Key insights

1. As the results show, the reserved instance marketplace does not have any
impact when the demand is periodic, so the optimal solution for the periodic
signal is the same as the previous case.

2. The reserved instance market is more appealing when demand is noisier. On
the other hand, it is not useful at all when we have a poor periodic demand.

3. For the same demand, using a higher discount ratio reduces the cost more
when we have the reserved instance market.

4. For some demands such as Google, there is no need to solve the ILP problem.
In these cases, using the binary search method proposed for the periodic
demand and the optimal policy for the real demand results in almost the
same cost where the difference can be neglected. However, it is not true for
Facebook trace. This can be attributed to the period of the demand sequence.
Google trace has a smaller period than the Facebook trace. Since the τ is

31

fixed, this implies that the shorter period, the better optimal policy of the
periodic demand works on noisy demands.

32

Chapter 6 |
Conclusion

6.1 Summary
In this dissertation, the resource procurement in cloud systems have been addressed
in order to decide on how and when the various options of reserved instances should
be used to minimize the users'cost.
The problem has been approached from different aspects. We have focused on the
user's side of the problem as oppose to the provider's side. From Several different
algorithms have been proposed to help users to decide on the available options.
To deal with uncertainty in workload, a threshold based method has been used to
avoid extra losses in case of a bad decision making in the first place.
Our solutions have been based on the abstract representation of demand given
exact knowledge of demand for a long enough length. Our proposed methods can
be used as building blocks for more general scenarios.

6.2 Future Work
The methods proposed for resource provisioning in this work do not incorporate
the spot instances which is one of the powerful plans offered by Amazon's EC2.
Adding this extra option can make our algorithm more efficient.
Moreover, if the information about the job continuity is available, it can affect the
optimization by using a better prediction of migration. Another direction that
can be investigated is the workload prediction and how that can be integrated
with the proposed algorithms. Our proposed algorithms can handle a quite short

33

optimization horizon while the demand sequence can have infinite length. Since
the prediction of demand in far future can be less accurate, the best approach
would be to update the prediction every other days or so. Incorporating prediction
along with providing an algorithm for infinite length job demands has not been
well addressed and needs more investigation.

34

Bibliography

[1] Armbrust, Michael, et al. "A view of cloud computing." Communications of
the ACM 53.4 (2010): 50-58.

[2] https://aws.amazon.com/solutions/case-studies/

[3] Vaquero, Luis M., et al. "A break in the clouds: towards a cloud definition."
ACM SIGCOMM Computer Communication Review 39.1 (2008): 50-55.

[4] https://en.wikipedia.org/wiki/Cloud_computing

[5] https://aws.amazon.com/

[6] https://cloud.google.com/

[7] https://azure.microsoft.com/en-us/

[8] Furht, Borivoje, and Armando Escalante. Handbook of cloud computing. Vol.
3. New York: Springer, 2010.

[9] https://en.wikipedia.org/wiki/Virtualization

[10] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing."
Communications of the ACM 53.6 (2010): 50.

[11] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing."
(2011).

[12] https://aws.amazon.com/ec2/instance-types/

[13] Menache, Ishai, Ohad Shamir, and Navendu Jain. "On-demand, spot, or
both: Dynamic resource allocation for executing batch jobs in the cloud."11th
International Conference on Autonomic Computing (ICAC 14). 2014.

[14] Jain, Navendu, et al. "Near-optimal scheduling mechanisms for deadline-
sensitive jobs in large computing clusters." ACM Transactions on Parallel
Computing 2.1 (2015): 3.

35

[15] Zafer, Murtaza, Yang Song, and Kang-Won Lee. "Optimal bids for spot vms
in a cloud for deadline constrained jobs." Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on. IEEE, 2012.

[16] Song, Yang, Murtaza Zafer, and Kang-Won Lee. "Optimal bidding in spot
instance market." INFOCOM, 2012 Proceedings IEEE. IEEE, 2012.

[17] Menache, Ishai, Ohad Shamir, and Navendu Jain. "On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud." 11th
International Conference on Autonomic Computing (ICAC 14). 2014.

[18] Yi, Sangho, Artur Andrzejak, and Derrick Kondo. "Monetary cost-aware check-
pointing and migration on Amazon cloud spot instances." IEEE Transactions
on Services Computing 5.4 (2012): 512-524.

[19] https://en.wikipedia.org/wiki/Bellman_equation

[20] https://www.topcoder.com/community/data-science/data-science-
tutorials/dynamic-programming-from-novice-to-advanced/

[21] Garfinkel, Robert S., and George L. Nemhauser. Integer programming. Vol. 4.
New York: Wiley, 1972.

[22] Bertsekas, Dimitri P., et al. Dynamic programming and optimal control. Vol.
1. No. 2. Belmont, MA: Athena Scientific, 1995.

36

