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ABSTRACT

The overriding theme of this thesis is the characterization of thin polymer films synthesized
on gold and silicon substrates using a variety of Fotraasforminfrared(FTIR) techniquesWe
demonstrated that the peak shifts observed in surface overlayer attenuated total refleetion (SO
ATR) were a result of the changing polarization in tkexis of the experimental geometiye
leveraged the signal enhancemembvided by SGATR and reflection absorption infrared
spectroscopy (RAIRS) to obtain high quality spectra of samples below 50nm thick. By combining
this signal enhanced spectroscopy with transmission and ATR we were able to obtain chemical and

structural ifiormation whichwe report in this thesis.

Spin cast NAFION samples were prepared on silicon native oxide and gold substrates with
film thicknesses ranging from 5 nm to 250 nm. The influence of NAFION film thickness on the
infrared spectrum of the polymerwinvestigateth SO-ATR geometry at incident angles between
60° and 65°. In the grazing angle &0R geometry, the thickness of the film significantly affected
the position and absorbance of characteristic peaks in the FTIR spectrum of NAFION. Two major
peaks in the NAFION spectrum at 1220 t(predominantlyw.{CF,) andvas(SOs)) and 1150 cm
! (predominantlyv.{CF,)), appeared to systematically blueshift to 1256*cand 1170 cm,
respectively, as the thickness of the film decreased from 250 nnrmmo. he changes in the
NAFION thin film FTIR spectrum can be attributed to two factors; (1) ordering of NAFION at the
interface during spin coating and film formation and (2) the increase inghlapzation character
of the infrared evanescent waveths polymer film became thinner between the attenuated total
reflection (ATR) crystal and the film substrate overlayer. The increaspatepization resulted in
an increase in characteristic peak absorbance of dipoles aligned normal to the substoateedue

overlayer enhancement of the electric field with NAFION films on Si or Au film substrates. These
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results show that the specific thin film sampling geometry, especially in ATR experiments, must

be considered to rationally quantify changes in NAFI@N film infrared spectra.

Highly crosslinked aromatic polyamides are of significant importance due their use in water
treatment membranes. We present an FTIR study of polyamide films prepared by interfacial
polymerization and molecular layer by layer dgifion that are used as reverse osmosis (RO)
membranes. We assign the aromatic ring modes that occur in the fingerprint region and demonstrate
that the peak at 1492 cis duesolely totheB1 bending stretch mode of the meta bi functionalized
ring that giginates fromthe mphenylendiamine(MPD) molecule. We assign the peak at 1243
cn1! to the amide NH vibration and demonstrate that it is a good alternative to the Amide Il peak
for swelling studies on polyamide films. The free acid peak in mLbL sampt@sases in intensity

as film thickness increases which is indicative of increasing crosslink density. The free acid content
in mLbL films was found to be higher than that observed in interfacially polymerized films. The
growth of the initial layers of mihlL polyamide film differs on gold and silicon substrates with
MPD displacing the initial monomer on gold. At cycle numbers beyond 10 however film growth
on the two substrates was found to be indistinguishable. The growth rate of mLbL films is also
affectedby the solvent selected to rinse excess polymer with thicker films consistently observed

for isopropyl alcohol rinsed films.

Molecular layer by layer assembled polyamide films were synthesized on smooth gold and
silicon wafer with native oxide substratdhe orientation of the amide C=0O and disubstituted
aromatic rings were analyzed using surface overlayer attenuated total reflecti&TR3@nd
reflection absorptioninfrared spectroscopy (RAIRS). It was determined that on both substrates
there was stramordering for films 10 cycles thick or loweri t h an average tildt

the surface norr mal.Thisailt angleitransi&es © argoriemtatipn watmtlte 8 4
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aromatic ring laying close to f FARandONEXAFh e sur f
measurements furthehowed high anisotropy at low cycle numbers which completely disappeared

at cycle numbers greater th&0. The acid concentration in mLbL films welsaracterized by
interpolating integrated absorbance values of the free acid band at 17ib8zma @libration

curve line generated from interfacially polymerized samples of known acid content. The acid
content in samples synthesized on silicon was found to be higher than that for samples generated
on gold at low cycle number§he acid content rangdtbm 0.13 mmol.d for 60 cycles to 0.56
mmol.g?* for 5 cycles on silicon substrates. On gold however, the acid content ranged from 0.12
mmol.g*at 5 cycles to 0.35 mmoligat 12 cyclesOn both substrates the acid content decreased

as the cycle numbémcreased and as the cycle number increased and at higher cycle numbers there

was very little difference between the acid content of samples synthesized on gold and silicon.
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Chapter 1

Introduction

1.1 Background

Clean energy and reliable access to potable vemeeamong the biggest challengbs t
world faces todayWhile the recent advances in hydraulic fracturing have gone a long way in
addresmg the availability of energy, these technologies have done little to abate concerns about
the effecs of fossil energpn theE a r tedosyssenmDue tothese concernslectrochemical energy
productionand storagesuch as fuel cells and batteries as alternativdossil fuels has garnered
significant attention. According to the environmental protection agencyahsportation sector
contributes 14%fahe global greenhouse gas emissions and these concerns have led to significant
interest in developinéa fuel cell electric vehicleSince 1996 there has been a significant increase
in research output supported tmajor motor vehicle manufacturesid government agencias
developing fuel cell, lithium batteries and polynsipercapacitorsThe over the last 20 year
great strides have been made in bring a commercial fuel cell electric vehicle into fruition
culminating in the 2016 launch of the first consumer fuel cell vehicles the Toyota Mirai and Hundai
Tuscon®

However the cost of fuel cells is still high compared to internal combustion engine vehicles
due to the planum group metals (PGM) used in fuel cells and the high manufacturing cost of
membrane materials and electrochemical stacks. The US department of energy has set a PGM target
of 11.3 gem by the year 2020 which is still much higher than the less thagu%g current gas
vehicles catalytic convertetdn fuel cells, platinum is the main PGM used while in gasoline cars

it has mostly been replaced by less expensive PGMs in catalytic convgotmesresearchers have
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suggested that for large scale adoption of fuel cell electric leshio become a reality these
vehicles must be affordable and this is only possible if approximately 6 g of Pt are used pef vehicle.
According to the DOE, in the last decatie automotive fuel cell system cost has dropped from
$124/KW to $55/kWhbut is still above the target $30/k%Another contributing factor to the
expense of PEMFCs is thHagh cost of production and degradation at high temperatfres
NAFION, one of its integral components.aPEMFC NAFION acts as a binder for the Pt catalyst

as well as a separator between the two electratlesjng only the transport of protons to complete

the half rections’ NAFION demonstrates a combinationafidative and chemical stability while

also possessing high conductivitylaw relative humidityunrivaled by itsalternative$ Two lines

of research prevail as it pertains to fuel cells, one focused on finding alternatNAEHKON and

PEMs in general, and another focused understanding and improving on current PEM technology.
To this end it has been widely accepted that understandingNAFION interacts with the
platinum catalyst hold the key to reducing the amount a&fuired infuel cells and increasing

their performance.

It is estimated thakeks than one percent of the freshwater on earth is suitable for human
consumptiot? The removal of salts from sea water and brackish watéihe most advanced
technology used to address theramsing demand for fresh watBesalination offers a source of
water otherwise not accessilite irrigational, industrial and municipal usehe multi-stage flash
(MSF) distillationt®, multi-effect distillation(MED)?, electrodialysis(ED)'?, nanofiltration (NF)
and reverse osmosis (R®have all been used to desalinate sea water with RO making up 50%
global installationsdue to its lower energy consumptiolrhe greatest demand for desalination
installations is the in Middle East where historically thermal based technologies such as MSF have

dominated due to availability and low cost of fossil fuels. In recent years however the Middle East
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has seen a surd@e demand for RO technologies which is mirrored by similar growths in demand
for RO installations in Asia and Europe.

RO based separation relies on a semi permeable membrane which under an applied
pressure obstructs salt permeation hence preferentikdlyia) water molecules to pass through
it. The performance of these membranes is characterized by the water flux and salt rejection with
an ideal membrane possessing a high water flux and salt rejection higher that88#iplishing
these metrics while sgsting chloride degradation is possible by developing chemistries that allow
the fine tuning of acid concentration (which is tied to water flux) crosslink density (which is tied to
salt rejection)While decades of research have been dedicated to umdigngtand improving RO
technology, the gains thus far have been relatively marginal primarily due to local chemical
inhomogeneity and high surface roughness. The recent development of smooth, chemically
homogeneous molecular layer by layer synthesized B@branes on planar nonporous substrates
by NIST opens up FTIR as a route to research both RO and NF membranes and make meaningful

progress in improving the current technologies.

1.2 Motivation

In both PEMFC and RO membrane research, the problem of paigimdilm analysis has
limited the tools available to probe the structural and chemical properties of these systems. FTIR
is often the method of choice when studying the structure and chemistry of polymer films due to
the ease of sample preparation amelwealth of knowledge that exists in literature to aid spectral
interpretationHowever,when the thickness of the polymer film falls below 100 nm, orflared
reflection absorption spectroscoffRRAS) becomes the only feasible optignkey motivationof

this work is the development of an alternative FTIR sampling geometry that provides signal quality
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equivalent or superior to IRRAS without the substrate limitation of IRRAS wprddide a
valuable alternative to interrogate thin film systems.

A PEMFCconsists of an anode and a cathode, which provide the oxidation and reduction
half reactions, a gas diffusion layer (GDLS), catalyst layers and a PEM, which acts as a separator
to prevent the mixing of the reactants, a conductor for protons, and prettidetiral support
Figure X1. While the structure and processes in the PEM are well studied relatively less is known

about ionomers in the catalyst layer.

Fuel (H,)

2H* 2H*

L - 5.

Figurel-1. Schematic of a PEMFC. The proton eange membrane is shown in blue, the catalyst
layer is shown in grey, the gas diffusion layer is shown in black and the anode and cathode are
labeledwith a zoom in box showing the catalyst and gas diffusion layers where electron transport
takes placé®

The majority of FTIR work orfuel cell ionomers has been focused on understanding
hydration effects in NAFIONiIms and hence haseen limited to spectral regions fundamental to
understanding hydratioft!®*FTIR has been used to study NAFION thin films in attenuated total
reflection (ATR), infrared reflection absorption spectayscIRRAS and transmission geometries
and yet it seems that there is no consensus on understanding the structure and function of ionomers
at the electrochemical interface. The main reason for this lack of understanding is the fact that the

spectrum of NAFDN appears different depending on the sampling geometig problem has
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been heightened by the fact that studie®dNAFION thin films have been conducted on model
substrates such as silicon in order to take advantage of alternative characterizatiqnéscuth
transmission electron microscopy (TEM), neutron scattering and contact angle measurements.
While silicon may be convenient for studying ultrathin films, it presents several complications as
a substrate for FTIR studies. A motivation of this agsk is to obtain high quality vibrational
information on silicon substrates which can rationally be compared to spectra collected on

alternative substrates and geometries to obtain structural information.

Fa!ric \
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Figure 1-2.Cartoonrepresentation of thin film composite membrane consisting of a polyamide
active layer, polysulfone porous support and polyesteiwmren fabric.

Typically, commercial and residentiRIO and NF water treatment systems are constructed
as thin film composite(TFC) membranes with an wéthin thin active layer (2200 nm)
synthesized on a microporous polysulfone substrate which in turn lies above of a reinforcing
polyestemonwovensupport fabri¢c Figuret2. The morphology, compositicend density of the
active layer has significant influence on the transport properties of the menit@ace great effort
has beerexpendedo understand this layer in the hopes of optimizing membrane chemistry and
increasing performanc€urrently the agte layer in thin film composite RO and NF membranes
are based on a PA thfitm made by interfacial polymerization of an aromatic polyamine such as

m-phenylenediamine (MPD) with aromatic polyacyl halides such as trimesoyl chloride (TMC).
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There is still arhiguity about three important properties of these films, the monomer ratio, the cross
link density and the orientation.

Detailed information on the nanostructurettod PA active layer is required to achieve a
beter understanding of the sa#fjection ad watertransportin RO and NF films By studying
mLbL synthesized RO films where it is possible to precisely control the chemistry, we can obtain
crucial information about monomer ratio, free acid concentration and orientati@nFTIR which
is directly relatable to transport properties. Studying such a model system provides the control
required to establish unambiguous structure property relationships. The analytical framework
developed in studying mLbL membranes can be extended to real compositeamesnhiding in
interpreting vibrational data for these films and ultimately leading to a better understanding of how
both chemical and structural properties affect the transport characteristics.

Although the focus of this thesis is thin film analysis featerials relevant PEMFC and
RO applicationsthe problem of how to pra&bpolymer films less than 100 rima comma theme

across several fields hent¢etstrategies introduced here can be applied to a variety of systems.
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Chapter 2

Literature Review

2.1 Introduction

As previously established, thin polymarembranes have wide applications in energy
technologies and membrafegilitated water treatment applicatiodssurvey of the literature will
reveal that there are host of weBtablished sensitive techniques that have been used to study thin
films even down to the angstrom level. Many of these methods. while excellémirfganic films,
prove challenging when applied to organic polymers, which at times may be fragile, prone to
contamination or difficult to handle under ulnagh vacuum.

Vibrational spectroscopy is a powertaekchniqueto identify molecules and to stydheir
structures and reactiorgg the molecular level. In terms of polymers used in fuel cells and RO
membranes, several research groups have used a variety of vibrational spectroscopic methods
ranging from nodinear techniques to static methods to grdioth structure and function. Fayer
has published numerous articles using ultrafast infrared methods to study the structure and
dynamics of water in fuel cell membrartéd/atanab&has developed an-situ ATR method to
study water transport and structural changes in membrane electrode assemblies (MEA) similar to
those found in real fuel celfs.

The work of Fayer and Watanabe has provided the basis of studying bulk mesanal
our understanding of these films and publications on them are ever increasing. The situation is
somewhat different for films below 200 nm where we are still far from understanding the structure

property relationships of thin iecontaining polymefilms. One problem in studying these thin
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films using vibrational spectroscopy has been sensitivity with the standard transmission FTIR or
Raman scattering sampling methods simply not being sensitive enough®>@aswane extensive

work on surface enhanced infrared absorption (SEIRA) using a thin metal layers to enbance th
signal in various experimental geometriésThe use of metal layers in SEIRA is particularly
convenient as thmetal layer can be used as an electrode to facilitsituispectroelectochemical
measurements. SEIRA however is still poorly understood and substrates are difficult to fabricate.
As aresult, only a handful of research groups have been successiplementing it to study film
properties. Milosevic discovered that under specific conditions ATR spectra can be enhanced even
in the absence of a metal layer when a grazing angle ATR (GAATR) geometry i%\¥tid.
GAATR as with SEIRA, spectral interpretation is complicated by the incomplete understanding of
spectral enhancement and band distortions as adartifilm thickness.

The following sections will survey the current research strategies employed to study thin
films with an emphasis of vibrational methods and the state of understanding with respect to signal
enhancements in FTIR. An overview the kéyakenges and outcomes in fuel cell, NAFION and
RO membrane research will also be presented to highlight areas where signal enhanced FTIR can

bridgegaps in understanding.
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2.2 Current Approaches b Thin Film Research

2.2.1 Analytical methods and challeges

The problem of thin films analysis of often approached by using surface sensitive
techniques such as-pay photoelectron spectroscopy (XPS), Auger electron spectroscopy, (AES
electron probe Xay microanalysis (EPMA), secondary ion mass spectromEams)
spectroscopic ellipsometry (SE) and Rutherford back scattering (RB8g of these techniques
is intrinsically better than the rest for all studies but each has its own benefits and disadvantages.
Typically, two or more of these techniques are coratl to provide useful water transport and
morphology information.

Kosoglu, et al. have studied water uptake and swelling for NAFION films on platinum,
gold and carbon substrates by combining SE which gives changes in film thickness with QCM
which gives nass gairf.SE measurement require fitting changes in wave amplitude and phase shift
to optical models to characterize the thickness and complex reéramtiex of thin polymer films
and this fitting procedure requires that the substrate is adequately optically charack&iaed.

QCM measurement however cannot provide the molecular level detail about the changes in the
film during swelling the vibratioal methods can provide.

X-ray techniques are perhaps the most prevalent methods used to elucidate the
morphologicabifferences arising from surfadeteractions and processing conditions for fuel cell
ionomer thin films. Grazing incidence small angleay scattering (GISAX) has been used to study
the morphology of thin NAFDN films as a function of filnthickness, substrate type and relative
humidity >1°XPS haseen used to study degradation of both fuel cell ionomers and RO membranes
and has proven a popular choice in studying variations in RO membrane chemical composition and

surface coatings. XPS measurement however cannot be carried out in situ to charctieges
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in the transport characteristics which are of importance in both fuel cell and RO thin films. Soles,
et al. has usedearedge Xray adsorption spectroscopy fine struct(iE=EXAFS) to assess the
impact of surface structure on permeability arah$port of water and solutes across the water
membrane interfacen LBL films. Additionally, in-situ X-ray relectometry has been used to
measure the swellingf LBL films and construct transport modéldNEXAFS can determine the
orientation of aromatic rings in the polyamide polymer but is unable to distinguish between
aromatic rings belonging to each of the monom€RS also does notlalv nondestructive probing
of chemical composition gradients in in films being limited only to less than 10 nm of the film.

RBS can probe a greater dépinto the sample than XPS and deterntime elemental
composition and depth profil®&BS experimentsrolaboratorymade RO membranes have shown
that theelemental composition of membrane eetiayers could be &unction of layer depth
throughout the entire crosection'>**Tof-SIMS has been proposed to study surface coatings on
RO membrané$ and degradation of both RO membranes and fuel cell ionomers, however the
destructive nature afepth profiling and the difficulty of spectral interpretation has resulted in very
few groups attempting this technique.

Vibrational spectroscopy and FTIR specifically can allow the study-sitinwater uptake
and dynamics which permits researchercaaclude which functional groups in the polymer
interact with water and the nature of the interactions. FTIR can also facilitate nondestructive depth
profiling to analyze chemical heterogeneities in the sample. The ease of sample preparation, low
cost of hstrumentation, and the versatility and speed of measurements has made has vibrational

methods a popular choice to study thin films for fuel cells and RO membranes as is outlined below.
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2.2.2 Mbrational methods in fuel cell and RO thin film research

Surface vibrational spectroscopic techniques probe the structure and composition of
interfaces at the molecular level in a typically nondestructive manner and with a versatility not
easily replicated with other techniques. Vibrational sum frequency genergtemtrascopy
(VSFG) has been used to study thin perfluorosulfonate ionomer (PFSI) films used in fuel cells.
VSFGwas employed by Yagi, et al. to probe fPESI/Pt interfacé> Yagi, et al. concluded that
NAFION thin films thicker than 5 nm form either a macroscopically centrosymmetric orientation
or dimer configuration. Noguchi, et al. used VSFGttalg the humidity dependent structure of
water on thinPFSIfilm surfaces and demonstrated water molecules adsqmteddrentially at
sulfonate sites on thAFION surfacebut at elevated RH ice like water was detected even at
fluorocarbon site$?

Moilanen, et alemployed ultrafast spectroscopy$tudying the vibrational lifetime of the
OD stretch of dilute HOD in KO, characterizethe changes of the hydrogen bond netwasgka
function of hydrationor increased water content in NAFION films. They concluded thedter
occupiegwo distinctly different environments within the polymene in the solvation shell of the
sulfonate group characterized by slow OD stretch relaxation, and anothefastitrelaxation
asso@ted with bulk watef.!’

Smotkin, et al. has used ATR and PRRAS to study the longerm durability of ion
exchange membranes used in fuel cells. Smotkin
time the ionomer binder in the catalyst layer was studied in operando usiiBFAS. The
resulting spectra were interpreted oe thasis of DFT calculations and observations from ATR
measurements on bulk membranes leading to surprising conclusions about the adsorption of

NAFION on metal surfaces.
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While there are many parallels in the properties of interest for fuel cell ionontkvgader
treatment membranes (e.g. water transport and degradation) there are very few vibrational studies
on RO membranes analogous to those on fuel cell ionomers. The primary reason for this dearth in
vibrational studies on RO membranes is the multilagastruction of TFC membranes. The recent
development of layer by layer RO membranes promises to open vibrational spectroscopy as a viable
option to study water transport, chemistry and structure in these membranes and will be addressed

later in this chater.

2.2.3.Signal enhanced FTIRmethods

FTIR and Raman scattering are two complementary vibratgpedtroscopimethods thia
are often used for surface film and interfacial anlyia general, Raman spectroscopyést at
probingsymmetric vibrations of nepolar groups while IR spectroscopy is besblagining high
signal fromthe asymmetric vibt&gons of polar groups. Howevesensitivityin thin films is a big
challenge, due tthe fact that the number of moldes under study is typically very small. This
problem was first overcome in Raman spectroséopfie 1960y the discovery of the surface
enhanced Raman scattering (SERS) effect, and subsequently by the discovery of the surface
enhanced infrared absoigt effect (£IRA) for infrared spectroscopy. Much of what we know
about SEIRA comes from research about the SERS effentm@n £atures shared by SERS and
SEIRAtechniques are that rough or nastaucture substrates are necessary and the signal intensity
can be related to surface orientation of moleculestd surface selection ruléBhese common
features result from the similarity in the mechanisms that contribute to SERSEIRA
enhancement effects.

This research has led to the more widesprea@iUSE&IRA in secalled Kretchmann and

Otto ATR geometries, Figure®



Bl CWRE { I YLIX ! 28§ f

h &0

Figure2-1. Schematic of three geometries used in SEIRA experiments
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In all these methods, the signal is enhanced up to 10 timésebgresence of a metal
layer!® The improved signal in all these techniques results frdectremagneticfield
enhancementsSEIRA enhancement effects have the following character®St8EIRA activity
strongly depends on the morphology of the metal and the surface rougfrigasd intensities
depend on the polarization and angle of incidgrféand he enhancement is significant for the
first monolayer directly attached to the sudagecayingsharply as disince from the surface
increases and odes that have surface normal dipole moment componeatpraferentially
enhanced giving rise to a surface selection #At.lt is generally accepted tha@BEIRA
enhancement arises from a long range electromagnetic (EM), effect and short range chemical
effects. The enhancement dandescribed in ters four contributing effectshé resonare particle
plasmon effect, the lightning rod effect, the image dipole effectl@dhemical effecf?*These

effects are discussed in turn below.
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2.2.3.1Resonanceplasmonand lightning rodeffects

Suzuki, et al. demonstrated that there is a direct relationship between absorbance and the
electromagnetidield which resulted from collective electron resonance of metal island films and
surface plasmon polaritons of continuous fifhhese eects are now known as resonance
plasmon effects in whictoupling of the incident radiation field with local surface plasmons (LSP)
of the roughened metal surface results in an amplification of the EM field. Atomic force microscopy
experiments confirm thahis roughened metallic film can be modelled as ellipsoidal metal islands
on a substrate as shown in Fig@r2. If the metal particle is smaller than the wavelength of light
incident upon it, the particle will become polarized as a result of localiasthpn excitation. The

dipole induced at the center of the isldRdifilm can be represented as:

P YH (1)

whereUis the polarizability of the metal islan¥,is the volume of the metal island aRcthe
amplitude of the incident electric field. This dipole generates an EM field arbansland which

is greater than the incident light alone and excites adsorbed molecules. The enhanced electric field
is estimated to be 10 times greater than that of the incident light. The enhancement is short ranged
due to the intensity of the local etgc field decaying rapidly the as the distance from the surface

increases. The relation of field strength witktdnce from the metal island Haeenexpressed as:

OL s — %)
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Figure 2-2. Model interaction of incident radiation with metal island substrate with dielectric
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rod effect on an ellipsoidal particle. The electric field intensifies along major axis resulting in
electric field hot spots between metal islands

wherel is the disance from the center of the island. This explains the requirement for surface

roughness and the spatial resolution of the enhancement, but does not explain the apparent

dependence of the enhancement on the metal surface morphology. The influence ofagyprphol

on the enhancement can best be explained in terms of the lightning rod or antennae effect.

While Bocalis symmetrically distributed on spherical surfaces, it is concentrated at the tip

ends of prolate ellipsoids.hE tip enhancemetaads to increas;m y e | d

enhancement

islands with high aspect ratid)( d is defined as a/b as shownHRigure2-2. There is no relation to

the incident wavelength and is not necessarily related to LSP generation because it is a morphology

effect and not a resance effectGenerally ag] increasesnfrared absorbance also increase, and

this is related to the field intensity at the i, as follows?®

©)
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whereE; is the applied electric field along the major axis of the ellipdgiis, the dielectric constant

of the metal island and. is the deplarization factor which is inversely proportionaldolt is

reasonable to believe that plasmon resonance effects and lightning rod effects aretcergiigd

amplifying the plasmon resonance effect. However, the relationship between these effiicts is st

not fully understood. Experimental evidence suggests that resonance plasmon effects dominate for

SERS which explains why only coinage metals are SERive substrates. For SEIRASen non

SERS active substrates provide significant enhancements armrdughness and texture of the

surface is more important which suggest the lightning rod effect dominates.

2.2.3.2Image dipoleand chemicaleffects

The image dipole effect is perhaps the best known enhancement mechanism due to the

surface selection rulér$t described by Greenlerin 1980Gr eenl er 6's

put is that only surface normal dipoles are visible in reflection IR experiments.
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Figure 2-3. Image dipole effect, the surface parallel induced dipole is annihilated by the image
dipole in the metal wike the surface normal induced dipole is enhanced.
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In the description of the image dipole effect the electrode is envisaged as a mirror and the
molecule is taken as a point dipole. The electric field of the EM wave E induces Hattingci
dipole in the dsorbatee™" %which in turn induces an image dipole in the met&which has

an electric fieldEimageassociated with itEimageiS given by:

(4)

where 92 i s a const ancbnstdné pfehe chetahand adsorbatelared d i e |
R is the distance of thdipole from its imagé’
Eimage @dds constructively with E and enhances the overall field experienced by the

molecule. This makes""“*Y|larger as described in equatior) Eading to increased IR absorbance.

‘ | © O ©)

Figure 23 shows this additive effect ef"®®on surface normal dipoles and he##%has
the effect of cancelling out surface parallel dipoles. From this description it idleadne image
dipole effect is only important when dipoles are oriented surface normal, and this amenofati
dipolestypically arises from chemical effects.

Generally,the chemical contribution tthe SEIRA effect is much less than the EM
contribution.One of the chemical origins of SEIRA is the orientation of molecules on a metal
surface. Chemisorption on metal surfaces results in ordering of molecules on the surface. Molecules
with ordered orientation give larger intensities than randomly orderecutedefor vibrations that

give dipole changes normal to the surface due to the dipole being in line with the local electric field.
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2.2.3.5 Electric field enhancements on nonetallic substrates

Due to its high refractive index and high surface reflesgtasiliconsubstrates may
seemamenable to grazing angle reflection spectroscdpyever,a grazingincident angle above
70isnear its Br(&ws t7rer) 6 dsaeesulsthedreflectanne. fronAsilicon for-p
polarized light at grazing angle is lowdditionally, the peak interpretation of thin films at grazing
angle on silicon substratearcbe complicated due to band distortions and peak shifts that are not
yet fully understoodAt grazing angles however, under conditions where the ATR crystal has a
high refractive index, it is possible to obtain high quality spectra for thin films @orsiliThis
grazing angle ATR (GAATR) geometry only gives signal enhancement when a suitable substrate
acts as an overlayer for the sample being analyzed and so we have termed it substrate over ATR
(SO-ATR). The enhancement is believed to originate fromdtestructive interference of the
evanescent wave within the sample film and is characterized a strong dependence on the thickness
of the sample layer. The enhancement results in atypical unpolarized FTIR spectra where
unexpected peak appearance cannotsibgply explained as @&srahlen band$ or spectral
distortions?3°

Although the development of ATR dates back to the beginning of the widespread use of
FTIR, GAATR has remained relativelplk nown unt il the early 19906s
began to explore th&00 fold enhancement in spectral intensity sometimes observed in this
geometry.Only in the last 20 years have research articles been published utilizing GAATR
somewhat regularlyWe have also studied the enhancements observed in this geometry as a path
to understanding the orientation of NAFION thin films on NAFION. A detailed description of the

origin enhancement and its implications on spectral interpretation are presentegterGh
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2.3 Current State Fuel Cell lon Exchange Membrane Research

2.3.1 Proton exchange membranes

NAFION is a trademark perfluorinated sulfonic acid (PFSA) of Dupont and finds
applications inelectrochemical devices. The chemical structure of NAFION istn®f a
hydrophobic backbone with perflourinated ether sidechains terminated by sulfonic acid groups as
shown in Figure 2. The combination of &xtremely hydrophobic Teflelike backbone which
provides structural integrity, with the very drgphilic sufonic acid, results inwell-defined

nanochannel within NAFIOMembranes when hydratdeigure 24b.

a) b)

Teflon backbone

perflourinated ether sidechain

Figure 2-4. a) Repeat unit oNAFION and b) schematic representation of the phase separated
morphologyof NAFION with well-defined nanechannels?

The sulfonic acid grqus provide protonic charge carsgeria dissociation, and proton
conductance is assisted by water dynamics through the percolatingilleaderavities In a PEFC
catalyst layer, NAFION acts as a binder in the anode and cathode layers where it forms20film 2

nm thick on the aggregatesif nanoparticles, Figure®3! At low pH, the performance is limited
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by the cathode oxygen reduction reaction (ORR) which is at least six orders of magnitude slower
than the anode hydrogen
oxidation reation (HOR).Kocha, et al. demonstrated that the presence of NAFION as a

binder on Pt/C cathode electrodes reduces the ORR catalytic activity 1.8%imes.

Figure2-5. Catalyst layer carbon supported Pt nanopartiockted withNAFION. 3!

Jomori et al, after conducting cyclic voltammetry experimemi®posed that the ionomer
may adsorb on the surface and decrease the available catalytic surface area available or
alternatively, conformational changes in the polymer layer may block incoming oxygen molecules
thereby decreasing catalytic activify

The nanemorphology of NAFION bulk membranes has been studied thoroughly using
smallangle XRay scattering and a phase separated steiceported. However, the character of
NAFION in thecatalyst layer is still poorly understood with several models being propasged a
periodically revised*® The effect of confinement and sufzgé identity on water uptake proton
conductivity and structure have been studied usiagyXspecular reflection (XRR) grazing

incidence small xay scattering (GBAXS)**"3° and neutron reflectometry (NRj#2
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properties

catalyst layemwith a porousomposite structure resultedstudies of thin ionomr films on welt

defined planasubstratesuch as Si@or Au/Pt coated silicon wafers. These studies have suggested

that he maphology of an ionomer on an electrode plays a significant role in the catalytic processes

taking place in the MEA and thus influences the overall fuel cell efficiefbgre is strong

evidence that the morphology of NAFION is tied to its thickness atidctishanges in properties

such as water uptake and conductifftyn fluorescence experiments, Dishari and Hickner

demonstrated that NAFIOMin films at the SiQ interface had higher water uptake thhitker

films*3which is consistent with thguartzcrystal microbalancQCM), ellipsometry, and graziag

incidence Xray scatteringbservations of Kosoglu, et al. on films380 nm thick®

Sio
Multi-lamellar films
(10-55 nm)

Si0
Single layer film
(4 nm)

Ultra-thin (<55 nm) hydrophilic films Thin (>55 nm) hydrophobic films
o —— Water-rich of & R A =
Fluorocarbon inter-lamellar layer e " H
backbone B i . §
. :
» A

~55 nm

Mixed layer films

(>55-300 nm)

Figure 2-6. Proposed morphologiesf NAFION thin films on silicon substrates at different
thickness regimes rangjrfrom highly oriented single layers below 4 nm to mixed morphology

films above 55 nm®

The wateruptake trends appear to be substrate dependent as Konganand, et al. in QCM

observed a decrease in water uptake as film thickness deceased for films poepgodd™

Eastman, et afound that the swelling ratio, volumetric water fraction, and effective diffusivity of

films are relatively constant fops-coated films thicker than approximat&@ nm but gradually

decreased with decreasing thickn&Baul, et alprepared a series of NAFION samples onsSiO
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substrates ranging from 4 nm to 300 nm and used surface wettability tests and AFM as a function
of thickness to probe morphgyp change$> They proposed the existence of three distinct
morphologies depending on thickness regime; a single layer morphology at 4 nm and below, a
multilamellar morphology between 1055 nm, and a mixed morphology for thicknesses greater
than 55 nm, Figure-8. This mophology change at 55 nm would explain observation tthet

proton conductivity of sts5 nmNAFION thin films was found to be independent of thickness
whereas that of the thicker films was thickndspendent, approaching that of the membféne.

a similar more recent study, Paul, et al. investigated thermally induced changes in surface
wettability and proton conductivity of 4 rR800 nm films on Si@substrates. It was found that
proton conductivity decreases significantly upon annealing with a stronger thickness dependence

on conductivity for annealed filn{s.

2.3.2FTIR analysis of NAFION thin films

FTIR has routinely been used to study NAFION membranes in the micron thickness range
to probe its water transport properties in its role as a separator membrane in fitéf exlise
majority of these studies have been centered on the transpatenfthrough bulk films. Extending
this work to encompass thin films is complicated by changes in the appearance of the NAFION
spectrum when the sampling geometry is changed, and the ambiguity in some of the peak
assignments relevant to interpreting fipectra, Figure 27.

Kunimatsu, et al. conducted an ATRudy of water in several micron thick NAFION
NRE211 membrane combined with proton conductivity measurements during

hydrationbehydration gcle.>! In this study, the authors suggested that there are two kinds of water

in a NRE211 membrane with di st itandtheothdrt#fi@3®) f r e q
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Figure 2-7. ATR spectrum of bulk NAFIONnembrane similar to that used in MEA hydration
studies overlagd with the corresponding NAFIOtin film spectrum on a gold substrate. The
water peaksind 1260 cm peak discussed in the text are labelled.

The initial hydration of the dry membrane results in the dissociation of thd §®@up
with the resultant proton being hydrated to yield thé H Oddnd at 1740 crh As hydration
continued, water associated with Sions represented by tiiie( H Cbeind at 1630 crhincreased
as does the associatpdr ot on conducti vity. I n Kuni mat su, e
NAFION articles publishe, the focus is on proton conductivity and hydration in an MEA and the
only water peaks and the 8®@ymmetric stretch is considergth*
While OH peaks can inform us about water transport and in part explain the differences
between bulk anchtn film physical propertieanuch more detailed information can be obtained
from the fingerprint regioof the polymerNumerous experimental and theoretical research articles

have been published attempting to explain the NAFION fingerprint régéf>->*Unfortunately,
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absolute clarity about the exact contribution of individual vibrational modes to the overall spectrum

has eluded researchers. The best illustnaifchis ambiguity is the 1260 chpeak. In PMIRRAS

experiments, Davis, et al. assigned the 126¢ peak to v(CER)®’, while also in PMIRRAS
Kendrick, et al. assigned t Yiratioh modé®Kazerwskit o t he
from transmission experimeftand Malevich from deconvolutdd situ IRRAS data, assigned

the same 1260 chpeak to S@.%8 Zeng, et al. in surface enhandedman experiments assigned

this 1260 crt peak to vas(C#°° while Ono, et al. assignedtd v(CR) and SGQ groups:°

Until recently, however, very little research on thin films of NAFION has beélighed
in the literature. Davis, et al. have used in situ, time resolvedRRAS in an attempt to elucidate
water transport mechanisms in 153 nm NAFION fifritotably this study revealed that the
effective diffusion coefficient of water in NAFION thin films is betweénand 5 orders of
magnitude lower than in bulk NAFION. As with the ATR work on bulk membranes, Davis, et al.
focused on OD and OH peaks in the spectrum of NAFION exposed to humidified air and provided
information that can be thought of as complimentayuid film studies.

Recently Ono and Nagao usegpolarized multipleangle incidence resolution
spectrometry (fMAIRS) technique was used to investigate thplame (IP) and owbf-plane (OP)
NAFION spectra on silicon and thin Pt surfadé§! MAIRS is a relatively new technique
developed by Hasegawa to evaluate molecular orientation of films based on band shifts that result
from the splitting of transverse optical and longitudinal optical méd@ased on the increase of
the intensity of the 1260 chOP peak that Ono and Nagao assigned to a mixture cI@FSQ
, they concluded thathé degree of orientation on thed&posited surface depends on the thickness.
This conclusion is consistewith the observations of Kendrick, et al. based on in operando PM
IRRAS of catalyst layer NAFION coated Pt which showed strong ordering of NAFION thin films
on Pt!8. Based on the assignment of the 1266 peak to mechanically coupled modes dominated

by the Ck asymmetric stretch, Kendik, et al. concluded that NAFIO&bsorbs on Pt surfaces via
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both the S@and Ck. While these two studies provide strong evidence for ordering of NAFION

thin films they also exemplify the conflict of opinion with regatd the orientation of NAFION

on the electrode surface.

2.3.3Perspective onion exchange membraneesearchbeyond NAFION

One promising alternative to NAFION based fuel calis fuel cells based omlfonated
block copolymerdecause the combination iohic and nonionic blocks provideke potential for
highly orderednorphologies where transpgitoperties can be tailored irreiable fashiorf® One
notable example of this research is the worBag, et al. whaynthesized aeries of sulfonated
poly(arylene ether sulfone)s (SPES) block copolyragis measured the proton conductivity as a
function of hydration at elevated temperati¥eBae, et & demonstrated that at high hydration
where acidity difference is less important, block copolymers display higher conductivity than
NAFION. Block copolymer micro domain size, andentation have been showm significantly
improve protonconductivity conpared to random copolymer analdgst are yet to outperform
NAFION at low humidity?®

Yeh, et al. used periodic density functional theory (DFT) methods to study theptidso
of sulfate and bisulfateolecules on RtL11) surfaces as a model process for interfacial chemistry
related toNAFION sulfonic group adsorption on Pt electrocatalysiéeh, et al.determined that
there is a linear correlation betweee gulfonate proton affinitand the equilibrium potential of
the sulfonate aniofThis insight shows that the charge density on the sulfonate groupicéleés
adsorption, which may be related to how different polymers perform in fuel cell electrodes.

Another approach to improving NAFIObBsed fuel cells is the use of anion exchange
membrane (AEM) based fuel cells. The Hickner group has done extensikestdying the

synthesis, performance and stability of novel AEM materials. AEM fuel cells promise to solve one
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critical shortfall of PEM fuel cells; the need for expensive catalysts. The oxygen reduction reaction
e is more facile in alkaline conditiongvere AEMFCs operate compared to the acidic environment
where PEMFCs operate and more possibilities exist for cathode catalysts thus eliminating the need
for noble metal catalysts to achieve similar performance to PEMFCs. One major drawback of
AEMs howeveris degradation of cationic groups at low hydration due to nucleophilic attack.
Poly(phenylene oxide) (PP@pased AEMS with quaternary ammonium ionic groups provide the
best stability and performancedate. The performance however is yet to exceed tHdABION
at low hydration without suffering excessive alkaline degradation. The precise degradation
mechanism for these membranes remains unknown and hence research is ongoing to understand
the degradation mechanisms and improve stability.

Pan, et al. dégned a series of sefimterpenetrating network AEMs which contained both
a rigid and a flexible componeftftThese membranes displayed improved mechanical strength and
flexibility over conventional QAPPO membranes in addition to high conductivities and improved
chemical stability. Zhu, etlahave reported that a polymer motif withultiple cations per side
chain sitecan boost both the condugty and stability of poly(2,&limethyt1,4-phenylene oxide)
based AEMS’ Other strategies such as moving the cationic group further from the batduame
reducing backbone functializatio®® have been suggested but a breakthroingimproving

stability after prolonged exposure to alkaline conditions is yet to be realized.

2.4 Probing Microstructure i n Reverse Osmosis Membranes

2.4.1 Current state of polyamide RO membrane research

Thin film composite (TFC) reverse osmosis membramiés aromatic polyamide active

layers dominate the RO market due to itt@sonable tolerance to impurities, enhanced durability
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and easy cleaning characteristafsthese membranes. The TFC design also allows the distinct
layers to be finely tuned to acki various mechanical, transport and filtration properties. The
typical synthesis of the active layer ¥éa interfacial polymerizatiorwhere highly porous
polysulfone is coated witm-phenylendiamine (MPD)and then reacted with trimesoyl chloride

(TMC).”%72The two monomers can react forming linear chains.

H HN@(NHOC\E@/CO HN@,NHOC\@co OH
co COOH
NH  m n
cocl

TMC in Organic o 7| -
g’
IP Reaction e ‘

H,N NH, PES Microporous Support

MPD in Aqueous
Solution

Figure2-8. Schematic for typical interfacial polymerization synthesis of aromatic polyafRiéle
on polysulfane (PES) support to form derBa film.”?

The two remaining unreacted acyl chlorides of the TMC monomer can either undergo
hydrolysis and form carboxylic acid or can react with additiddPD monomers and form a highly
crosslinked structure Figure 28. Manufactures of these films aim to control surface roughness,
thickness, crosslink density, monomer ratio and unreacted end group concentration. The biggest
challenge in studying these parameters is that they are often intricately interconrakitegl itn
difficult to delineate their individual contributions to transport.

Although interfacial polymerization is very @fient, the fast polymerizatioand reaction
conditions produce rough films with significant chemical heterogenéitgger analyzedhe
structural changes during interfacial polymerization and demonstrated that there exists a direct
correlation between the thickness of the film and surface roughhiesthe same study, Freger

demonstrated the process of interfacial polymerization proceeds in three distinct kinetic phases
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which have implications on the structure of teeultant film. The conclusions drawn by Freger
implies that being able to control the kinetics of film growth can lead to controlling film structure.

Using XPSand Rutherford backscatterisgectrometry (RBS) Coronell, et al. prolied
surface and volme average properties of commercial RO membranes and observed heterogeneity
in the concentration and pKa distribution of carboxylic goas well as thdegree of polymer
crosslinking.t® By using RBS, Coronell, et al. were algjaantify the ratio of carboxylic acid
groups (RCOOH) to ionized groups (ROO) by neutralizing the charged species with" Aans
and analyzing the resulting RBS spectra for the X§S'*and streaming potentfd@measurements
indicated that polyamide TFC membranes possess a significant negative charge which originates
from up to 11% of the acyl groups on TMC not being converted to afhides observation is in
contrast to ATR data that indicates that the concentration of unreacted acyl groups is negligible
Based on TEM images arttldeoretical models, Freger has suggested that the PA layer in RO and
NF membranes prepared by interfacial polymerization possess a double layer structure in which
the outermost layer is negatively charged and is separated from the porous support l&y a dens
positively charged layef?.

Positron annihilation lifetime spectroscopy (PALS)s been applied by Kim, et al. to

explain the war flux in TFC membrane<$Kim, et al. were the first to experimentally demonstrate

that the PA membranes are composed of network pores of radipgt31and aggregate pores of

radius 3.54.4 A, Figure 29.77Kim, et al. concluded that for interfaciallplymerized films
as the degree of crefinking increases the number of network pores increases resulting in an
increase of water flux. The mechanism of water transport in these proposed pores however, remains

unexplored
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Figure2-9. Network ad aggregate pores proposed by kim et al. Network pores are formed within
highly crosslinked chains while aggregate pores are formed between loosely crosslinked chains.

Puffr and Sebenda studied the mechanism of wadgrisport in amorphous aliphatic
polyamide (Nylon) membranes. In this study, the infrared absorbance of these membranes as a
function of relative humidity was recorded and the authors of this ean&luded that water binds
to the amide groups, first foing a double hydrogen bond between carbonyl group (termed firmly
bound water) and then forming bridging hydrogen bonds between amide C=Otargiaudps
(termed loosely bound wa)e Based ora similar study on Nylon-6 by Lim, et al., three sites
for water binding were identified; a strongly bound water site, a loosely bound water site, and a site
for capillary condensed water which is only indirectly redtito the C=0 and M groups’® While
the aforementioned work on aliphatic polyamide systems may provide the basis for naddegsta
transport in aromatic systems, not enough work has been done on the aromatic polyamide systems
to draw any meaningful conclusions.

Leckie, et al. has published a ser@dspapersthat comprehensively characterized the
physiochemical properties obmmercial RO and NF membranes using XPS, TEM, ATR and

streaming potential measuremetft& while the work of the Leckie group provided useful insights
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about membramchemistry and structure, the fabrication of many commercial membranes involves
proprietary steps such as the application of a surface coating which strongly affects membrane
properties.

While peaks were assigned by Tang and Leckie to the ATR spectranomgtic PA
membranesthese assignmentsere limited to the Amide | and Il regions and were heavily
convoluted with bands from the underlying polysulfone layer or surface coating. Even when
delaminated uncoated films are analyzed there has to date b@emplete peak assignment of
the aromatic polyamide fingerprint region resulting in some ambiguity and misinterpretation of
spectral changes. Kang, et al. in a study of the chlorine degradation assigned the peak at 1610 cm
1to hydrogen C=0 of the amideayip®® Based on the disappearance of this peak, they concluded
that the hydrogen bonds between C=0 ard Were completely destroyed during dtite attack
which proceeded by chlorine replacing the hydrogen-id troups to form NCIL.8 In a similar
chlorine degradation study, Anthony, at assigned the 1610 énpeak to aromatic ring C=C
vibrations® Based on the disappearance of this peak they concluded that chlorine attack was via
ring insertion in the ortho or para positi¢in.

Jin and Su used ATR to study the effectspolymerization conditions ohydroghilic
groups in aromatigolyamide thin filmsusing the 1720 crhshoulder assigned to unreacted
carboxylic group$® This band overlaps with the Amide | band which is predominantly the amide
C=0 and is sensitive to hydrogen bonding. Ip@ssible that a systematic study of this spectral
region along with the amide Il region can provide insights about the state of water in polyamide
films but as yet no papers have been published primarily due the difficulty in accurately
deconvoluting ovedpping bands.

Characterization of the polyamide layer in TFC membranes is greatly complicated by
contributions from the underlying layers. One approach to solve this problem is to analyze

delaminated films where the nevoven fabric is physically removeahd the polysulfone support
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dissolved in a suitable solvent to leave the isolated polyamide layer. It can be argued that the process
of isolating the polyamide layer alters the physical properties of the film making correlations to
properties in the TFC mebrane difficult. Another approach is to fabricate the membrane on a
substrate suitable for the characterization technique to be used, which has led to the development

of molecular layer by layer membraffes

2.4.2molecular Layer by Layer synthesized polyamide RO membranes

Johnson, et al. developed a molecular layer by ldgdrbl) deposition process to

synthesizecrosslinked polyamide films on planar nonporous substfates.

) NH
7 I 7 4
7 7 NH,
1° cl it a° NH
7 0 7 0
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7 Cl % it
?; o ?/ N
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Z Cl ?// NH
77 7
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Figure2-10. Schematic representation of the mLbL synthesis process on silicon substrates, using
TMC and MPD as the monométs.

In this process TMC is dissolved in toluene and spin @ast silicon substrate. Excess
monomer is washed of using acetone before the subsequent spin casting of a solution of MPD in
toluene to complete one polymerization cycle, Figul® 2Typicalythe terms cycle and layer are
used interchangeably to referdne complete reaction of TMC with MPD monomeishnson, et

al. demonstrated that this process produces conformal coatings at linear growth rate of ~0.9 nm per
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cycle. The surface chemistry of the surface lbarcontrolled based on wh reaction step was
performediast, leading to amine or carboxylic acid rich surfadée reaction between the MPD

and TMC is so fast that it is difficult to control the diffusion of the monomers, and thus interfacial
polymerization fabricated PA layer are characterizedidply tiepthheterogeneity and rough ridge
andvalley structuresConsi stent with the i mplZithe atilityons of
control film growth in mLbL films results in films 70 times smoothemtiv@erfacial polymerized

films. Figure 211.

500 nm

250 nm

100um 1

7.5

0 nm

Figure 2-11. Comparison of AFM heigt images of 30 cycle mLbL polyamide (Right) and
commercial polyamide (Left) plotted using the same height &tale.

Chan, et al. studied the swelling of mLbL films usingay reflectivity and showed that
the swelling behavior ahese ultrathin filmss consstent with Xdimensional sweithg, with the
maximum swelling ratio highly sensitive to thgecific diamine chemist}.Chan, etl. were able
to show that simply selecting ortipdylenene diamine over mephienelene diamine reduces the
swelling ratio and the crosslink density.

Wei, et al. demonstrated that in interfacial polymerized films the ratio of TMC to MPD has

a significantinfluence on membrane performancel&C membranes prepared with higher MPD
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concentrations or lower TMC concentrations had lower water permeability but better salt
rejection®’Layer by layemssembled film have been shown to have improved biofouling resistance
which is as a result of the improved surface roughness. Ishigami, et aQGbétb study foulant
adsorption on LbL assembled films and found that BSA adsorbed only weakly on 6llagehfe

to the increased smoothness of the fitm.

Gu, et al. demonstrated that in composite membranes fabricated via mLbL, the water flux
gradually decreases and the salt régacgradually increases with increasing cycle number. At a
cycle number of 10, the mlbL membrane exhibited a salt rejection similar to interfacially
polymerized membranes and a water flux approximately 82% higher than the interfacially
polymerized analog.

Solvent basedLbL synthesis of RO membranes is relatively new and very little is work
has been published characterizing these films. The improved homogeneity and control of
membrane chemistry combined with the absence of a porous support makes mLbL Bramem
an ideal model to study structure property relationships in aromatic polyamide RO membranes. It
is apparent that mLbL films display superior water flux, salt rejection and antifouling properties
and there is keen interest in transferring these ptiepgeo commercial TFC membranes. We have
conducted the first FTIR study of mLbL films in order to explain the growth of the initial layers,
the orientation and chemical differences as a function of layer number which will be presented in

subsequent chags.

2.5 Conclusion

There are parallels in the questions researchers segisteer instudying both fuel cell
i onomers and RO membranes, namely, 0 how is wat

is their orientation on different substrates aow/ldo variations in orientation and chemistry affect
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the transport of water through these fil ms?29
guestions for bulk membranes, little of this knowledge can be transferred to thin films due to
confinemeneffects and the influence of underlying layers. Numerous characterization techniques
exist to probe the transport, structure and chemistry of these materials, key among them being X
ray techniques, neutron scattering and optical spectroscopy. Amongntké&sads, vibrational
spectroscopy and FTIR, in particular, has been demonstrated to be a powerful tool that can answer
most of the outstanding research questions either as aadtar@technique or in conjunction with

other methods.For FTIR to be succsfully applied in thinfilm researchthere is a need for the

signal to be enhanced and for the mechanism of the enhancement to be fully understood in order to
rationalize changes in spectral features associated with the enhancement.

The literature survead in this chapter represents a fraction of what is published, but
demonstrates that a wealth of knowledge exists pertaining to signal enhancement on metal substrate
but currently much less is known about signal enhanced FTIR on silicon substrates.biieitog a
collect high quality thin film spectra on silicon would allow easier comparison with the findings of
alternative methods such as TEM as well as a better understanding of existing bulk film FTIR data.

In the ensuing chapters, the mechanism of FTgRat enhancement on silicon substrates
shall be presented demonstrating how this enhancement can be useliiR$@ometry to probe
the orientation of thin films. The fingerprint region of aromatic polyamide systems which has until
now been poorly undamod will be analyzed in detail and IR will be applied to these
aromatic polyamide films and NAFION to understand the orientation of these film on plarar non

porous substrates.
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Chapter 3

Experimental Techniques: Theory And Applications

3.1 Introduction

This chapter introduces the methods used to prepare spin cast samples on goltband sili
substrates for FTIR analysis as well as the sampling geometries we used to chahatde
and polyamide thin films. Transmission, ATR and RAIRS are mature characterization geometries
that are well discussed in literatdréHence only a brief summary of the experimental parameters
shall be presented here. 20R on the other hand is still poorly understood and we shall present
the theoretical basis for the use of this method in determining molecular orienidtida.ATR
hasbeen used to determine orientation by changing polarizations and calculating the dichroic
ratio>* we required a method that would be equally capable of orientation of very thin films on

gold, platinum or silicon substrates.

3.2 Materials and Sample Preparation

3.2.1NAFION thin films

Thin film samples were prepared by dilution of a 20 weight % NAFION solution (DE2020,
lon Power, Inc., New Castle, DE) with isopropyl alcohol to achieve the desired polymer
concentrations for thin fih formation by spin coating. Double polished undoped silicon wafers
(Silicon Valley Microelectronics, Inc., Santa Clara, CA) with native oxaleesistivity above

10,000 ohrcmand a thickness of 300nu These waferarere cleaved into 2 cm x 2 cm pieces,
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rinsed with methanol, dried under flowing air, and-0xbne treated for 60 min. Gold substrates
were prepared on silicon wafers using thermal evaporation with chromium as an adhesion layer. A
bake out process for contaminant removal was used for chromiud® fmin and gold for 60 min

prior to deposition. The thermal evaporation process took place at a base pressurg 7@t 0

a rate of 3 A/sec until a thickness of 20 nm and 50 nm was achieved for chromium and gold,
respectively. The spinoating sped was held constant at 3000 rpm (Headway Research, 1
PM101DR, Garland, TX) and the weight percentage of NAFION in solution was varied to yield

the desired polymer film thicknesses.

After spin casting the samples were dried in a vacuum oven at 40 t@Gighte All
samples were analyzed in the as cast form with no annealing. For bulk membrane measurements,
commercial NAFION 117 membranes (IEC = 0.91 meq/g) were used (Sigiriah, St. Louis,
MO).
Thickness values foMAFION films were measured using &JWoollam AlphaSE spectroscopic
ellipsometer (Lincoln, NEYThe wave amplitude ( Q) and phase
wavelengths over a spectral range of -860 nm (1.3743.44 eV) at 65°, 70°, and 75° for 30
seconds at each anglehe samples were modeled as a stacked multilayer system with silicon as
the sibstrate and an oxide layer where the thickness was fit using measurements of the bare
substrate prior to thin film depositioithe polymer thin film was then modeled as a uniform
Cauchy layer with no surface roughness where the thickness and opticaltpes@rend C in the

two term Cauchy equatidrelowwere allowed to fit.

5 5 — — (3-1)

C

<
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3.2.2. Polyamide thin film composite membranes

Commercial thin film composite membranes with different chemical compositions and
properties were obtaidecourtesy of Dow Water & Process Solutions. The supported active layers
of the membranes were removed from the nonwoven fabric such that just the poly(sulfone) and
polyamide layer remained. The polyamide layer was transferred to a silicon substratéuan cal
fluoride window as follows. The membrane was placed polyamide side down on the substrate or
window which had been previously wetted by a drop of ethanol to promote adhesion. The substrate
supported membrane was then washed with sufficient dimethyfoide (DMF) to remove the
poly(sulfone) layerTo remove the DMF, the sample was washed with water followed by methanol
and then allowed to dry at 50 °C under vacuum for 20 h.

mLbL samples on gold and silicon were prepared at NIST in-apuse developeghulti
deposition unassisted spin assembly (MDUSA) spin coagiger a constant dry nitrogen purée.

1% wt/vol solution of each monomer in was prepared usiigfree toluene. The silicon and gold
substrates were prepared as described above for the piapafdNAFION samples. In the spin
coating process, the TMC solution was spin coated on substrate first followed by a brief rest step
before the substrate was spun dry. This was followed by a rinse widHrée acetone. This
constituted a half layer (dvalf cycle). Following the rinse step The MPD solution was coated on
top of the TMC half layer followed by a rest step to allow the monomers to react. The sample was
again spun dry before a rinse with acetone to complete the first cycle. The processmweysdated

for each subsequent cyél®esearch is still ongoing to understand and optimize rinse times, rinse
solvents, rest times and initial monomer concentrations. The thickinesmshosample prepared was

measured using SE as described abovblAFFION samples.
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3.3Fourier Transform Infrared Spectroscopy (FTIR) Sampling Methods

All experiments were carried out on a Bruker vertex 70 spectrometer equipped with a wide
band mercury @dmium telluride (MCT) detector which provided a wide spectral window with a
detecti vity Y8AW Bhe specttonéter anchdxtdrnal optics were purged with CO
free, dry air or nitrogen gas. Measurements were carried out at an optical vefottiey order of
3. 9 -‘andBpectrawere converted to absorbance and processed using Opus 6.0 software. Unless
otherwise stated, a Nortddeer medium apodization function was applied to allow quantitative
measurements if needed as it provides the llmestrity of absorbance versus concentratidA
Mertz phase correction function was apg along with a zero filling factor of 8. A ZnSe wire grid
polarizer was used to set the polarization of the incident beam tosodainzed.

Transmission spectra were recorded for pressed disk samples of dispersions of the pure
material in KBr. 100 sans were averaged at a resolution of 4 @md an aperture settinggiop
value) of 0. 5mm. The correspondi ngfgwherp€antd r a l
T, are the transmitted peak power through KBr disks with and without the polymed,add
respectively.

Reflectance absorbance infrared spectroscopy (RAIRS) experiments were carried out on a
Veemax variable angle Accessory (Pike technologies) with a 2 cm sooted specular mask. The
accessory was aligned and optimized using a pristine goldmfiefore each experimermn
incidence angle of between 65° and 80° was selected depending on sample thickness and signal
requirements. Irgeneral,when a comparison was required betweenAS® and RAIRS an
incident angle of 65° was selected and whem daialysis was bases solely on RAIRS data an
incident angle closer to 80° was selected. 500 to 1000 scans were averagedolatizpd light

and the instrument resolution set to 4' éwith an aperture setting of 5 mm. Reflection spectral
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intensities areeported aslog(R/R0), where R is the power reflectivity of the IR beam an$ R
the reflectivity of a bare gold reference sample.

Brewster angle experiments were carried out using a rotating transmission sample holder
(Harrick Scientific, City) at annicident angle of 74° which is the Brewster angle for silicon.
Samples for Brewster angle experiments were prepared on optically pure undoped double side
polished silicon substrates. 100 to 400 scans were averaged with unpolarized -sobarizgd
light and the instrument resolution set to 5'cmith an aperture setting of 6 mm.

ATR experiments were carried out on a Harrick Scientific variGATR accessory with a
germanium hemisphere at 65° incident anglaigital readout force meter was employed for
measirement of the force applied to achieve contact between the ATR crystal and the sample. The
force applied was replicated within 5 N for all experiments to minimize effects of variable physical
contact’ When varying the incident angle beyond-@5%° wasrequired, a VeeMax variable angle
accessory modified to accept 2 cm diameter hemispherical ATR element was used. 100 to 400
scans were averaged with unpolarized, s apdlarized light and the instrument resolution set to
4 cm twith an aperture setting of 5 mms the film thickness was typically less than the
penetration depth no ATR correction algorithms were reqdiB$dATR experiments were carried
out on a variGATR accessory using the same experimental parameters as ATR. Thegsamplin

geometry and theoretical aspects related to it are described below.

3.4 SOATR Sampling Geometry

In SOATR, the experimental geometry consists of a germanium hemisphere, sample, and a high
refractive index overlayer with the infrared beam at an incidegle of 60 65°, Figure 31. An

evanescent wave propagates through the sample and can be divided into x, y and z components
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(Figure 31), with the y component constitutingpslarized electric field and the sum of x and z

components constituting thepolarized electric field.

Si Substrate

Polymer

Ge Crystal

IR

Figure3-1. the experimental geometry of an 3R experiment the evanescent wave propagating
through the sample can be envisaged as comprisisgnoé components x y and z diretions
labelled.

In an ATR experiment, the observed signal is in the form of reflectance. At a given wavelength,
the reflectivity of ahreelayersystem consisting of a prism (layer 1), sample (layer 2) and substrate
over layer (layer 3) with the geomgtshown in Figure3-1, can be calculated using the Fresnel
equations. Wherdis the incident angley is the refractive index of layérd; the thickness of layer
i, and the Fresnel coefficients for reflectance and transmittance between &ndjrare rj andt;,

respectively.
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Figure 3-2. Threelayer optical system of the S@BTR geometry showing reflection and
transmission of an incident beam through the thager system, only one of the multiplgernal
reflections within the film is shown

To calculate the reflectivity in the three layer system used for the ATR experiment, the
Fresnel coefficients for the reflection must be calculdtéd.the calculation of the Fresnel
coefficients the dielectric constam) (s taken to be the square of the complex refractive imgex (
The p and s Fresnel coefficients for the crystal samplefateiare given by equations-23 and

(3-3), respectively®

J— (3-2)



























































































































































































































































































































































