
The Pennsylvania State University

The Graduate School

DATA-DRIVEN PATTERN IDENTIFICATION IN COMPLEX

SYSTEMS USING SYMBOLIC DYNAMIC FILTERING

A Dissertation in

Electrical Engineering

by

Chinmay Rao

c© 2011 Chinmay Rao

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2011

The dissertation of Chinmay Rao was reviewed and approved∗ by the following:

Asok Ray

Distinguished Professor of Mechanical Engineering

Dissertation Advisor, Co-Chair of Committee

W. Kenneth Jenkins

Professor of Electrical Engineering, Head of the Department of Electrical

Engineering

Dissertation Co-Advisor, Co-Chair of Committee

Shashi Phoha

Professor of Electrical and Computer Engineering

Jeffrey Mayer

Associate Professor of Electrical Engineering

Joe Horn

Associate Professor of Aerospace Engineering

∗Signatures are on file in the Graduate School.

Abstract

Symbolic dynamic filtering (SDF) has been recently reported in literature as a
pattern recognition tool for early detection of anomalies (i.e., deviations from the
nominal behavior) in complex dynamical systems. Accurate and computationally
tractable modeling of such complex system dynamics, solely based on fundamentals
of physics, is often infeasible. Hence, it might be necessary to learn the behavior
of the system through times series data obtained from sensors. Symbolic dynamics
provide a useful tool for time series analysis. Symbolic dynamics attempts to model
a continuous time signal by a corresponding symbolized sequence.

This dissertation presents a review of SDF and its performance evaluation rel-
ative to other classes of pattern recognition tools, such as Bayesian Filters and
Artificial Neural Networks, from the perspectives of: (i) anomaly detection capa-
bility, (ii) decision making for failure mitigation and (iii) computational efficiency.
The evaluation is based on analysis of time series data generated from a nonlinear
active electronic system.

This dissertation also addresses statistical estimation of multiple parameters
that may vary simultaneously but slowly relative to the process response in non-
linear dynamical systems. The estimation algorithm is sensor-data-driven and is
built upon this concept of SDF for real-time execution on limited-memory plat-
forms, such as local nodes in a sensor network. In this approach, the behavior
patterns of the dynamical system are compactly generated as quasi-stationary
probability vectors associated with the probabilistic finite-state automata in the
symbolic dynamic setting. The estimation algorithm is validated on nonlinear
electronic circuits that represent externally excited Duffing and unforced van der
Pol systems. It is also evaluated on the NASA C-MAPSS model of an aircraft
engine and the simulation of a permanent magnet synchronous motor. Confidence
intervals are obtained for statistical estimation of two parameters in these systems.

A framework is also presented for sensor-information fusion. In a complex

iii

system such as an aircraft gas-turbine engine, the patterns generated from a single
sensor may not carry sufficient information to identify multiple parameters/faults
because different combinations of component faults may generate similar signatures
in a particular sensor observation. Low dimensional pattern vectors are identified
for the purpose of feature level sensor fusion. The current framework attempts
to fuse information from different sensors at the feature level as opposed to the
frameworks of data level or decision level fusion.

iv

Table of Contents

List of Figures ix

List of Tables xi

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Motivation and Background . 2
1.2 Literature Survey . 5

1.2.1 Symbolic Dynamics Background 5
1.2.2 Parameter Identification in non-linear systems 8

1.2.2.1 Model based methods 9
1.2.2.2 Data driven methods for parameter estimation . . 10

1.2.3 Sensor-data-fusion and optimum sensor selection 12
1.3 Objectives and Contributions . 13
1.4 Organization . 15

Chapter 2
Comparative Evaluation of Symbolic Dynamic Filtering: For-

ward and inverse problem 17
2.1 Introduction . 17
2.2 Review of Symbolic Dynamic Filtering 18

2.2.1 Symbolic Dynamics, Encoding, and State Machine 20
2.2.2 Space Partitioning . 22
2.2.3 State Machine Construction 23
2.2.4 Stopping Rule for Determining Symbol Sequence Length . . 25

v

2.2.5 Anomaly Evolution and Pattern Identification 26
2.3 Construction of Anomaly Detection

Algorithms . 27
2.3.1 Symbolic Dynamic Filtering for Anomaly Detection 27
2.3.2 Bayesian Filtering for Anomaly Detection 28
2.3.3 Neural Networks for Anomaly Detection 29
2.3.4 Statistical methods for Anomaly Detection 30

2.4 Operation of the Symbolic Dynamic Filter 30
2.4.1 Selection of Depth D and Alphabet size |Σ| for SDF 31
2.4.2 Aspects of sampling rate for SDF 35
2.4.3 Aspects of data length - Minimum amount of data required . 36

Chapter 3
Framework of Statistical Estimation of Multiple Parameters 38
3.1 Introduction . 38
3.2 Symbolic Dynamic Filtering and Single parameter Estimation . . . 39

3.2.1 Forward Problem in the Symbolic Dynamic Setting 40
3.2.2 Inverse Problem of Single-parameter Estimation 41

3.3 Overview of Single Parameter Solution of the Inverse Problem . . . 42
3.3.1 Example for single parameter estimation 43

3.4 Framework of Multi-parameter Estimation 44
3.5 Construction of a Statistical Framework for Estimation of Multiple

Parameters . 46
3.5.1 Forward Problem/Training in a multiple parameter setting . 47
3.5.2 Inverse Problem/Testing in a multiple parameter setting . . 49

3.6 Multiple parameter classification using Symbolic Dynamics 52

Chapter 4
Improving estimation using Multiple sensors and sensor selection 54
4.1 Introduction . 54
4.2 Multiple Sensor Methodology using covariance matrix 54

4.2.1 Problem Statement . 54
4.2.2 Forward Problem/Training with Multiple Sensors 56
4.2.3 Inverse Problem/Testing with Multiple Sensors 60

4.3 Sensor selection framework . 62

Chapter 5
Description of Test Beds 63
5.1 Description of Duffing Experiment 63

5.1.1 Duffing System Analysis . 63

vi

5.1.2 Single Parameter experiment 63
5.1.3 Multiple Parameter Experiment 65

5.2 Description of Aircraft Engine Simulation Test Bed 66
5.2.1 Dynamic Model of the Turbofan Engine 67

5.3 Description of the Simulation Test Bed of a Permanent Magnet
Synchrnous Motor . 68

Chapter 6
Results 72
6.1 Superiority of Symbolic Dynamic Filtering over other methods . . . 72
6.2 Results for Statistical Estimation of multiple parameters 76

6.2.1 Results on Duffing system 76
6.3 Results on van der Pol System . 78
6.4 Estimation of multiple parameters for the PMSM 80

6.4.1 Failure Modes . 80
6.4.2 Results on simulation model 82

6.5 Results and discussion on using Sensor Fusion for the estimation of
multiple parameters . 84

6.6 Validation on the C-MAPSS test-bed 85
6.6.1 Discussion . 89

6.6.1.1 Fault estimation in Fan and LPC 90
6.6.1.2 Fault estimation in HPT-LPT 90

Chapter 7
Summary and conclusions 95
7.1 Directions for future work . 96

7.1.1 Extensions to the parameter estimation methodology 96
7.1.2 Theoretical Extension: Non-extensive thermodynamics and

escort probabilities . 97
7.1.3 Fisher information and Application to Sensor Networks . . . 98
7.1.4 Sensor fusion using Cross D-Markov methods 99

Appendix A
Construction of Anomaly Detection Algorithms 100
A.1 Bayesian Filters . 100

A.1.1 Particle Filter (PF) . 102
A.1.2 Unscented Kalman Filter (UKF) 103

A.2 Neural Network Based Methods . 104
A.2.1 Multi Layer Perceptron NN 104
A.2.2 Radial Basis Function NN 105

vii

A.3 Statistical Pattern Recognition Techniques 106
A.3.1 Principal Component Analysis 106
A.3.2 Kernel Regression . 106

Appendix B
Experimental setup for Duffing and Vanderpol equations 109

B.0.3 Description of Experimental Apparatus 109
B.0.4 Implementation of Duffing Equation System 110
B.0.5 Implementation of van der Pol Equation System 111

Appendix C
Review of multi-class classification techniques 115
C.1 Direct Approaches . 115

C.1.1 k-Nearest Neighbors Algorithm 115
C.1.2 Naive Bayes Classifier . 116
C.1.3 Linear methods . 118

C.1.3.1 Perceptron based linear methods 119
C.1.3.2 Support Vector Machines 120

C.2 Generalization of binary classification approaches 120
C.2.1 One vs. All approaches . 120
C.2.2 All vs. All approaches . 121

Appendix D
Motivation from Thermodynamics Principles for Multiple Pa-

rameter Estimation 122
D.1 Gibbs Canonical Distribution . 123
D.2 Escort Probabilities and Distributions 124
D.3 Parameter Estimation using Escort Probabilities 125

Bibliography 127

viii

List of Figures

2.1 Pictorial view of the two time scales: (i) Slow time scale of anomaly
evolution and (ii) Fast time scale for data acquisition and signal
conditioning . 19

2.2 Concept of Symbolic Dynamic Filtering 20
2.3 An Example of Space Partitioning . 21
2.4 Example of Finite State Machine with D=2 and Σ = {0, 1} 23
2.5 Entropy for different depths and alphabet sizes 33
2.6 Time Complexity for different depths and alphabet sizes 33
2.7 Space Complexity for different depths and alphabet sizes 34
2.8 Selection of Optimum Depth and Alphabet Size 34
2.9 Effects of Sampling Rate . 36
2.10 Effects of Sampling Rate . 37

3.1 Contour plot of the deviation measure M 45
3.2 Contour plots of each element of the frequency probability vector

pk for a typical test case in the Duffing system 45
3.3 Contour showing all points where µ ∼ 0.40 46
3.4 Flowchart for statistical estimation of multiple parameters in the

SDF Framework . 48

4.1 Outline of the fault estimation procedure 55

5.1 Phase Plots for the Electronic Circuit 64
5.2 Phase Plots for the Multi-Parameter Experiment 65
5.3 Schematic of turbofan engine model with labeled actuators (italics)

and sensors . 67
5.4 Inverter-driven permanent magnet synchronous motor (PMSM) sys-

tem . 70
5.5 Demagnetization property of Neodymium-Iron-Boron (Nd-Fe-B) [1] 71

6.1 Evolution of anomaly patterns for changes in system dynamics . . . 74
6.2 Evaluation of Gradually Evolving Anomaly Patterns 75

ix

6.3 Joint probability distribution of the parameter pair α1 and β 78
6.4 Zoomed-in contour plots of the parameter pair α1 and β 79
6.5 Anomaly measure in a permanent magnet synchronous motor . . . 84
6.6 C-MAPSS engine simulation test-bed 86
6.7 Throttle resolving angle (TRA) profile 88
6.8 Fault estimation in Fan-LPC based on Ps30 sensor 91
6.9 Fault estimation in HPT-LPT based on Ps30 sensor 92
6.10 Fault estimation in HPT-LPT based on T24 sensor 93
6.11 Fault estimation in HPT-LPT based on Ps30 and T24 sensors 94

B.1 Schematic of Experimental Setup 110
B.2 Circuit for 2nd order systems using op-amps as integrators 113
B.3 Circuit for 2nd order systems using op-amps as integrators 114

C.1 Linear classification methods . 119

x

List of Tables

6.1 Comparison of execution time . 76

6.2 Predicted values of
(

α̂1, β̂
)

for the Duffing Equation 77

6.3 Confidence intervals for the Duffing Equation 78
6.4 Predicted values of (µ̂, ω̂) for the Van der Pol Equation 80
6.5 Confidence intervals for the Van der Pol Equation 80

6.6 Predicted values of
(

λ̂af , B̂
)

for the PMSM 81

6.7 Predicted values of
(

λ̂af , B̂
)

and confidence intervals for the PMSM 82

6.8 Required Engine System Sensors . 88

xi

Acknowledgments

I would like to firstly thank my advisor, Dr. Asok Ray for his guidance, inspiration
and motivation - without which this dissertation would not have been possible.
I faced several personal and technical roadblocks through this journey, and his
presence at each stage has been invaluable.

I would also like to thank Dr. Kenneth W. Jenkins, my co-advisor. I will
especially remember all the healthy discussions that we have shared during the
course of my stay at Penn State. I am grateful to my committee members for their
inputs - Dr. Shashi Phoha, Dr. Jeffrey Mayer and Dr. Joe Horn.

The contribution of my colleagues and co-authors has been invaluable - Soumik
Sarkar, Kushal Mukherjee, Dr. Murat Yasar, Dr. Subhadeep Chakraborty and Dr.
Shalabh Gupta each helped in formulating different parts of this work. In addition,
my lab mates - Eric, Dheeraj, Xin, Abhishek, Yichen, Ishanu, Andrew, Aparna,
Venkatesh all contributed to the excellent learning environment.

I also express my thanks to the sponsors of this research work: The Army
Research Laboratory and the Army Research Office under Grant No. W911NF-
07-1-0376; Office of Naval Research (ONR) under Grant No. N00014-09-1-0688
and NASA under Cooperative Agreement No. NNX07AK49A.

I would like to express my sincere thanks and deep regards for my father - Dr.
Ravi A Rao, mother - Dhvanita Rao and sister Deepna Rao for their support and
faith in me at all times.

Finally, I owe everything to my friends in India and the United States, and last
but not the least, my incredible roommates and friends in State College who have
been a family away from home.

xii

Dedication

I dedicate this thesis to my parents. As a toddler, I kept my father awake while
he was writing out his doctoral dissertation. Hopefully, my parents did not loose
too much sleep during my journey.

xiii

Chapter 1
Introduction

Recent research has extensively explored the development of a signal processing,

data mining and pattern identification tool in the framework of Symbolic Dynamic

Filtering (SDF) ([2–4]). Of particular interest is the problem of parameter esti-

mation using this symbolic dynamic filtering framework, especially in the context

of multiple fault detection and isolation in non-linear dynamical systems.

Complex human engineered systems today are composed of many smaller com-

ponents, and tractable models are not available for each individual block. Hence,

identifying the properties of such a system at a component or parameter level

has not received much attention. Nevertheless, when component-level parameter

estimation is essential, system identification turns out to be of significant impor-

tance. Since most of these systems are highly interconnected, physically, as well

as through the use of feedback control loops, a change in a single component is

often masked by corrective action taken up by other parts of the system. Thus,

the detection and isolation of simultaneously varying parameters and estimation

of the magnitude of these variations pose a challenging problem.

There are several non-linear parameter estimation techniques available, such

as neural networks, which are capable of performing to a reasonable degree of

satisfaction. However, it is recognized that, system identification and parame-

ter estimation in a single component is just a small part of the problem in its

entirety, and in the setting of the bigger problem, complex algorithms and opti-

mization techniques such as neural networks have several inherent drawbacks. The

general framework described in this dissertation is applicable to a variety of perti-

2

nent problems, ranging from monitoring and localizing terrorist threats in complex

urban environments to detection of off-nominal behavior in mechanical systems.

Fortunately, the related issues of the problem, can be explained, without loss of

generality, with examples. In this context, several examples are presented in this

dissertation, ranging from an electronic circuit based on the Duffing equation to a

simulation model of a multi-component aircraft engine.

This chapter is organized into four sections including this one. Section 1.1

presents the motivation and background for the research in this dissertation. Sec-

tion 1.2 surveys existing literature in symbolic dynamics. It also provides a review

of methodologies for parameter estimation and sensor selection. Section 1.3 de-

scribes the contributions made in this thesis. The organization of the dissertation

is presented in Section 1.4.

1.1 Motivation and Background

Recent literature has reported various methods for estimation of multiple param-

eters, such as those based on joint state estimation [5], parity equations [6], gen-

eralized likelihood ratio [7], Karhunen-Loéve and Galerkin multiple shooting [8],

similarity measures [9], and orthogonal Haar transform [10]. Gupta et al have pre-

sented [11] an application of parameter estimation is the detection and mitigation

of evolving faults in interconnected dynamical systems. Often evolution of gradual

deviations from the nominal behavior in individual components of such systems

may lead to cascaded faults because of strong input-output and feedback inter-

connections between the system components. Such faults may eventually cause

catastrophic failures and forced shutdown of the entire system. In such a scenario,

the problem of degradation monitoring of the system reduces to simultaneous es-

timation of several slowly-varying critical parameters.

An important issue in the study of any natural or human-engineered complex

system is primarily whether the dynamics of the underlying process can be ade-

quately described by a mathematical model whose solution procedure for the pro-

cess variables is simple, elegant and computationally tractable. Complex behavior

emerging from high dimensionality of the phase space, the presence of uncertain

chaotic orbits [12], nonlinear stochastic processes, and random noisy excitation

3

often restricts the applications of the fundamental laws of physics to accurately

determine a dynamical model of such systems [13]. Specifically, sole reliance on

physics-based modeling for identification of behavioral patterns in complex sys-

tems has been found to be infeasible because of the difficulties in achieving requi-

site accuracy and precision of the nonlinear spatio-temporal stochastic models [14].

Despite these difficulties, the key problem - identification of statistical patterns,

which constitute the dynamical characteristics of the system, can be formulated in

terms of observation-based estimation of the process variables. In other words, in

the absence of a feasible mathematical model, the inherent dynamics of a complex

nonlinear system can be inferred from time series data generated from a network of

spatially distributed multiple sensing devices which are sensitive enough to capture

the essential details of the dynamics of the system.

The above discussions evince the fact that behavioral information can be ex-

tracted from the response of process variable(s). However, the analysis of observed

time series data for pattern identification is often difficult because of the underlying

complexity of the process and also due to disturbances from noisy environments. As

such, information-based inference of the underlying process becomes a formidable

task. Such complexity issues are of prime concern in engineering applications such

as weather forecasting, structural health monitoring, signal processing, system

identification and adaptive control, which have motivated the study of dynamical

systems [15] from the perspectives of Statistical Mechanics.

Accurate and computationally tractable modeling of complex system dynamics

based solely on the fundamental principles of physics is often infeasible. Hence,

it might be necessary to rely on time series data generated from sensors and

other sources of information. The need to extract relevant information about

the observed dynamics has lead to development of Nonlinear Time Series Analysis

(NTSA) techniques [16]. Analysis of dynamical systems using NTSA techniques is

classified into two areas [17]:

• Behavior identification

• Modeling and Prediction

Identification of nonlinear systems can be achieved using Formal Languages [18].

The first step in this process often involves converting the raw time-series measure-

4

ments, or carefully chosen wavelet domain signals into a corresponding sequence of

symbols. The symbol sequence is then treated as a transform of the original data

that retains much of the important temporal information. Therefore partitioning

of data to create symbols is a crucial aspect of symbolic analysis. Partitions are

created based on information content in the data.

An important practical advantage of working with symbols is increased compu-

tational efficiency. This feature is important for real-time monitoring and control

applications. Also, analysis of symbolic data is often less sensitive to measure-

ment noise. In some cases, symbolization can be accomplished directly in the

instrument by appropriate design of the sensing elements. Such low-resolution

(even disposable) sensors combined with appropriate analysis can significantly re-

duce instrumentation cost and complexity. Applications of symbolic methods are

thus favored in circumstances where robustness to noise, speed, and/or cost are

paramount [19]. A part of this dissertation is aimed at showing a comparison be-

tween symbolic domain filtering and other modern approaches such as Bayesian

Filtering and statistical pattern recognition tools.

Anomaly monitoring in complex systems is formulated as a solution of two

interrelated problems:

1. The forward (analysis) problem - The primary objective of the forward prob-

lem is identification of the statistical changes in the time series data of ul-

trasonic signals due to gradual evolution of fatigue damage.

2. The inverse(synthesis) problem- A major objective of the inverse problem is

to infer the anomalies, and to estimate parameters for forecasting impending

failures. Another objective could be to provide the estimates of the remain-

ing useful life from the observed time series data in real time based on the

information generated during the forward problem.

Statistical patterns of parameter evolution are generated offline during the for-

ward problem using symbolic time series analysis of sensor data. The patterns

obtained here are used in the inverse problem to obtain (possibly online) the esti-

mates of the parameters of the system under test.

5

1.2 Literature Survey

This section is divided into three subsections. The first subsection presents a

background to the topic of symbolic dynamics. The second subsection discusses

different methods employed to study non-linear systems for the purposes of pa-

rameter identification and modeling. The third subsection reviews methods used

for fault detection and isolation, and also discusses the challenges posed for the

optimal selection of sensors.

1.2.1 Symbolic Dynamics Background

An aim of this dissertation is to investigate a relationship between classical sym-

bolic dynamics and symbolic time series analysis for pattern identification in com-

plex systems. A theoretical framework is presented and the methodology is formu-

lated in terms of analogy between obtaining unique patterns for different values

of system parameters and the generating partitions in statistical mechanics [20].

This analogy is a step towards development of a detailed statistical mechanical

formalism of pattern identification in complex systems.

Symbolic dynamics is the practice of modeling a dynamical system by a dis-

crete space consisting of infinite sequences of abstract symbols, each of which cor-

responds to a state of the system, with the evolution given by the shift operator [2].

The basic idea is to take the state space of any system and divide (partition) it

into a finite number of regions, each of which is labeled with a symbol. A point

in the state space then gives rise to an infinite sequence of symbols: the symbol

for the cell of the partition of the original point, the symbol for the cell of its

first iterate, its second, and so forth. This naturally involves a loss of information,

due to the transition from continuous to discrete values, which is referred to as

coarse graining. An aim of this dissertation is to study this loss of information at

various stages, and also apply the techniques of symbolic dynamics to engineering

applications.

The field of symbolic dynamics has connections with mathematics, physics and

engineering. The different emphasis of the applications in the different disciplines

have been summarized by Tuffilaro [21]. In a mathematical setting, the goal is

to identify generating partitions on the phase space for chaotic systems. A def-

6

inite 1 − 1 map is desired between the symbol space and the original dynamic

system, usually consisting of discrete differential equations. In physics, the goal is

somewhat relaxed to creating generating partitions within an experimental error

bound. Also, there is an emphasis on modeling the underlying system for the pur-

poses of tasks such as state identification. These goals are further relaxed in an

engineering study, where a simple and robust map is generated for the reduction

and compression of data. While the primary goal of this dissertation is to employ

the underlying method for current engineering challenges, an important aspect is

also to explore the connection between the physics and engineering methodologies

of symbolic dynamics.

Analysis of dynamical systems through symbolic dynamics consists of two steps:

i) Symbol Generation, ii) Modeling of Symbol Sequences. To set up the symbolic

dynamics of this system, we must first define a partition. Informally, a partition is

the separation of phase space into disjoint regions. This partition is the first step

to go from a continuous description of a physical process to a discrete description

composed of a finite (usually just a few) symbols. One of the first goals of symbolic

dynamics is to understand the connection between continuous systems and discrete

systems with typically a small alphabet. A generating partition is one where

there is a one-to-one correspondence between the continuous states and the symbol

sequences generated. In these cases, studying the symbolic dynamics is completely

equivalent to studying the original dynamics.

Unfortunately, there is no satisfactory general theory for finding a generating

partition for every case. The exception is one dimensional maps (eg. the Logis-

tic map), where partitions are made at the critical points (minima, maxima, or

discontinuities). Davidchack et al [22] had proposed a partition algorithm which

successively colors unstable periodic orbits (UPOs) to ensure unique codings (all

UPOs have unique codes under a generating partition). This is practical only if

the dynamics are already known, since the necessary high-order UPOs are very

difficult to obtain from observed data alone.

A practical method to obtain good partitions from observed data was suggested

by Kennel and Buhl [23]. This technique is referred to as Symbolic False Nearest

Neighbors (SFNN). The criterion for a good partition in SFNN is defined as:

short sequences of consecutive symbols should localize the corresponding continu-

7

ous state space point as well as possible. This is achieved by forming a geometrical

embedding of the symbol sequence under the candidate partition and minimize a

statistic which quantifies the apparent errors in localizing state space points. The

nearest neighbor to each point in the embedding is found in terms of Euclidean

distance of symbolic neighbors. In general, better partitions yield a smaller pro-

portion of symbolic false nearest neighbors. For convenience of implementation,

the partitions are parameterized with a relatively small number of free parameters.

This is accomplished by defining the partitions with respect to a set of radial-basis

influence functions. The statistic for symbolic false nearest neighbors is minimized

over these free parameters. However, this partitioning method may become com-

putationally very inefficient when the dimension of the phase space is large or if

the data set is contaminated by noise.

In this dissertation, the Maximum Entropy (ME) and Uniform partitioning

schemes are utilized to generate symbols. An objective of these partitioning

schemes is to create partitions based on the information content in the data. The

concept of maximum entropy partitioning is that regions with more information are

partitioned finer and those with sparse information are partitioned coarser. Also

with no prior knowledge about the data, it would be prudent to ensure that all

symbols are equally distributed. This approach is particularly effective when infor-

mation about the system is only available at its nominal condition. The chances

of detection of any of the underlying (multiple) parameters are enhanced when

all symbol probabilities are equally sensitive to change. The uniform distribution

of symbols maximizes the entropy and hence the name Maximum Entropy (ME)

partitioning. Another approach involves partitioning the phase space into equal

blocks. This approach is called Uniform partitioning, and provides a computation-

ally simple means of determining the physical locations of the partitions.

The next step in the process is to model the characteristics of this symbol

sequence. In general, a dynamical system may allow only certain concatenations

of symbols to occur as there are many illegal (i.e., physically impossible) sequences.

Among the legal symbol sequences, some symbols may occur more frequently than

others. Therefore, representing symbol sequences with a probabilistic model is

very beneficial in studying their characteristics.

Probabilistic Finite State Automata (PFSA) provide a compact representation

8

to symbol sequences. Finite state automata may be constructed from symbol se-

quences in different ways. One approach, proposed by Crutchfield and Young [24],

is called the ǫ-machine. This approach had several shortcomings, such as lack of

a systematic procedure for choosing algorithm parameters and slow convergence

rates. Sometimes, it may return non-deterministic causal states. Shalizi proposed

a different method for constructing ǫ-machines [25]. This algorithm is called Causal

State Splitting Reconstruction (CSSR) and is based on state splitting instead of

state merging. The CSSR algorithm starts with a simple model for the symbolic

process and elaborates the model components only when statistically justified.

Initially, the algorithm assumes the process to be independent and identically dis-

tributed. This can be represented by a single causal state and hence zero statistical

complexity and high entropy rate. CSSR then uses statistical tests to determine

whether new states should be added to the model. The addition of new states

increases the estimated complexity, while lowering the entropy rate. The CSSR

algorithm suffers from one drawback. It does not provide a guide for selecting the

length of the longest history to be considered, which is left to discretion. Hence an

inaccurate model will be obtained if the maximum length chosen is less than the

inherent memory of the process being modeled. In this dissertation, the D-Markov

machine introduced by Ray [2] is utilized for modeling symbol sequences. An ad-

vantage of D-Markov technique is its simplicity of construction. This dissertation

also provides a procedure for selecting the parameters associated with D-Markov

machine.

1.2.2 Parameter Identification in non-linear systems

Parameter identification in non-linear systems has been a subject of investigation

with various methods. One of the early approaches provided in [26] utilizes statisti-

cal linearization of non-linear systems for parameter estimation. The nonlinearity

is approximated by a series of functions. The parameters of these functions are

determined by correlation techniques. This method is applicable even to systems

where the nonlinearity cannot be separated from the dynamics. However, the esti-

mates are significantly affected by the presence of noise. When the input is noisy,

small changes in covariance had a significant influence on the estimate. Also, the

9

presence of noise in the output tends to bias the estimate. Other techniques used

for parameter estimation include Kalman Filter and its variants, Particle Filtering,

Genetic Algorithms, Probabilistic Methods and Wavelets.

Some traditional methods for parameter estimation in non-linear systems are

briefly described below.

1.2.2.1 Model based methods

Many conventional methods of parameter estimation are model-based. A lot of

recent research has focused on developing linear and non-linear models for complex

engineering systems. Techniques used for parameter estimation include Bayesian

methods such as the Kalman Filter and its variants [27], Particle Filtering [28],

Genetic Algorithms, Probabilistic methods and Wavelets.

Several methods based on the Kalman filter have been developed over the years

for state and parameter estimation in non-linear systems. The Kalman Filter is

limited to estimation in linear systems. Since most systems are nonlinear, some as-

sumptions involved in Kalman Filtering were relaxed to deal with nonlinearities. In

the Extended Kalman Filter (EKF), the state transition and observation models

need not be linear functions of the state but may instead be nonlinear (differen-

tiable) functions. Since these functions cannot be directly applied to covariance,

Jacobians of these functions are used. At each time step Jacobians are evaluated

with current predicted states. This process essentially linearizes the non-linear

function around the current estimate. It is important to note that the EKF is

not an optimal filter. Moreover, the filter gain cannot be computed off-line as in

the Kalman filter, since it depends on previous measurements. Contrary to the

Kalman filter, the EKF may diverge, if the consecutive linearizations are not a

good approximation of the nonlinear model.

The Unscented Kalman Filter (UKF), addresses this problem by using a de-

terministic sampling approach. The state distribution is again approximated by

a Gaussian distribution, but is now represented using a minimal set of carefully

chosen sample points called sigma points. These sigma points completely capture

the true mean and covariance, and when propagated through the nonlinear sys-

tem, captures the posterior mean and covariance accurately to the 3rd order Taylor

series expansion for any nonlinearity. This technique removes the requirement to

10

analytically calculate Jacobians, which for complex functions can be a difficult task

in itself.

Particle Filtering (PF) is another widely used method for estimation in non-

linear systems. Particle Filtering is a sequential Monte Carlo Markov method. In

essence, the particle filter can be interpreted as a large number of simulations,

where each simulation consists of a sample from the distribution that is to be

estimated. There is a weight associated with each sample, which corresponds to

how likely the sample is. These samples together with the corresponding weights

constitute a discrete approximation of the posterior distribution.

1.2.2.2 Data driven methods for parameter estimation

For many systems, first principle models (also known as white-box models) are not

available. A black-box model is a system for which there is no prior information

available. These are data-driven or regressive models, for which the functional form

of relationships between variables and the numerical parameters in those functions

are unknown and need to be estimated. The best known data-driven techniques

are hidden markov models (HMM), artificial neural networks (ANN) and genetic

programming approaches (GP).

Artificial neural networks use highly simplified models composed of neurons

connected together by links of variable weights to form a black-box representation

of the system. These models are trained using sets of input and output data

and ’learn’ complex model functions from examples. The principal advantage

of this technique is that ANNs have the ability to model complex, non-linear

processes without any assumptions between the input and output variables. The

main problems faced in this method are to determine the a-priori structure of the

neural network, and over-fitting. Also, any a-priori information known about the

system cannot be easily incorporated into the neural network.

Genetic programming is another modeling approach currently in vogue. Ge-

netic algorithms imitate the natural selection process to obtain a solution and the

goodness of the solutions improves through successive generations. A frequently

used method in this regime is known as symbolic regression proposed by Koza.

This technique generates a mathematical expression to fit a set of data points us-

ing evolutionary genetic programming. An advantage of this method is that the

11

user can resolve the information required on the system behavior. This gives an

insight into the relationship between input and output data.

Model based approaches discussed above are often inadequate for human-engineered

complex systems due to unavailability of a reliable model of the process dynam-

ics. A major drawback of the data driven methods described above is that their

principal aim is to reconstruct the model from the data. In doing so, the functions

they produce tend to grow in length and complexity over time. The method pre-

sented in this dissertation, Symbolic dynamic filtering (SDF) [2,29] is based on the

concept of symbolic time series analysis (STSA) [19]; SDF belongs to the class of

data-driven statistical pattern recognition and enables compression of information

into pattern vectors of low dimension for real-time execution on limited-memory

platforms, such as small microprocessors in a sensor network. This dissertation

shows the performance of SDF to be superior to that of several pattern classi-

fication techniques such as principal component analysis (PCA), artificial neural

networks (ANN), kernel regression analysis (KRA), particle filtering (PF) and

unscented Kalman filtering (UKF), in terms of early detection of changes, compu-

tation speed and memory requirements.

As an extension of the parameter estimation method of Tang et al. [30], which

is also based on STSA, Piccardi [31] proposed a multiple-parameter estimation

scheme in chaotic systems. Although the symbolic analysis was performed on a

probabilistic finite-state model, the parameter vector was estimated by a genetic

algorithm based optimization in a deterministic setting. The present dissertation,

which is built upon the concept of SDF, presents a more engineering and statistics

based approach to estimation of multiple parameters in a more stochastic setting

in the presence of sensor and process noise.

Repeated diagnosis on complex dynamical systems may often be computation-

ally prohibitive due to expensive simulation requirements. Fault dictionaries are

sometimes used to alleviate this problem, but they may be unfeasible to store be-

cause of their large sizes [32], and more importantly, they typically provide only

a black box view of the system and hence almost no diagnostic flexibility. The

problem also occurs because dictionaries usually only store primary output infor-

mation.

12

1.2.3 Sensor-data-fusion and optimum sensor selection

Several data-driven techniques have been reported in literature for fault detection,

diagnosis and prognosis. These technqiues include statistical linearization [33],

Kalman filtering [27], Unscented Kalman filtering (UKF) [34,35], Particle Filtering

(PF) [28], Markov Chain Monte Carlo (MCMC) [36], Bayesian Networks [37], Arti-

ficial Neural Networks (ANN) [38], Maximum Likelihood Estimation (MLE) [39],

Wavelet-based tools [40], and Genetic Algorithms (GA) [41]. However, system

identification and anomaly detection in a single component is just a small part of

the health monitoring problem in its entirety. In the setting of a more complex

problem of fault detection in multiple components under changing input/operating

conditions, the underlying algorithms and associated optimization techniques may

have certain drawbacks. For example, computationally expensive algorithms may

not be suitable for engineering systems like commercial-scale transport aircraft,

where on-board health monitoring is needed to ensure flight safety. Furthermore,

online ground-based vehicle control requires data communications over wireless

sensor networks, where it is essential to compress packets without any significant

loss of information.

The propulsion systems of modern aircraft engines are comprised of a large

number of complex sub-components where fault detection and health monitoring

at both component and system levels are issues of paramount importance. The

inherent complexity and uncertainties in these systems pose a challenging problem

because pertinent first-principle models are usually unavailable or are oversimpli-

fied as lumped parameter models. Therefore, in the absence of high fidelity models,

the major challenge is fault detection by developing a description of the compo-

nent dynamics primarily from the input output characteristics. These decisions of

fault detection should not only be sensitive to changes in the parameters of the

actual dynamical system but also be invariant to changes in the operating or input

conditions.

The problem of anomaly detection using symbolic dynamic filtering (SDF) [2,

3, 42] with applications to fault diagnosis in aircraft engines [11, 43] has been ad-

dressed; however, the issues of system identification have not been addressed in

SDF -based fault detection. The aircraft engine system is an example of a complex

system where the components are interconnected physically as well as through

13

feedback control loops, and thus the effects of degradation even in a single compo-

nent may affect the input streams to the remaining components. Furthermore, in

many situations (e.g., tactical aircraft in military applications), the system might

need to be operated in different regimes and under diverse operating conditions.

To address the above-mentioned issues and achieve the associated objectives,

this dissertation develops a robust and computationally inexpensive system identi-

fication technique that is built upon formal-language-theoretic formulation, based

on the symbolic information. Specifically, the algorithms are designed to be robust

with respect to sensor noise and, at the same time, simple enough to be embed-

ded in the sensors themselves. This method would also facilitate construction of

a reliable sensor network to serve as a backbone to higher levels in the decision-

making hierarchy of large-scale complex systems (e.g., communication and control

of aircraft’s vehicle health and energy management system).

The real-time fault detection method, developed in this disseratation, has been

validated on a test-bed that is built upon the NASA Commercial Modular Aero

Propulsion System Simulation (C-MAPSS) model. This facility is particularly

relevant for testing and validation of condition-monitoring algorithms as it allows

the users to choose and design operational profiles (e.g., thrust levels), controllers,

and environmental conditions to simulate scenarios of interest. Most importantly,

the test facility allows the users to tune efficiency and flow parameters to simulate

specific fault modes.

1.3 Objectives and Contributions

The objective of this research was to develop a system identification strategy which

can make accurate and reliable assessment of the the parameters of a dynamical

system, and can provide statistical bounds for these parameters. This work focuses

on the development of a method for analyzing complex systems which can be uti-

lized over a sensor network, and can be implemented efficiently with respect to

memory requirements and processing needs. A central step in this kind of identifi-

cation methodology is discretizing the raw time-series measurements from multiple

sensors into a corresponding sequence of symbols. From these perspectives, the

contributions of the thesis can be summarized as follows:

14

1. Assessment of Symbolic Dynamic Filtering in terms of information capturing,

memory requirements and processing time. The Symbolic Dynamic Filter is

compared to several prevailing methods such as the Particle filter, unscented

Kalman filter, neural networks, Principal Component Analysis (PCA) and

Kernel Regression Analysis. The test bed used for this comparison is the

classical Duffing equation that has been implemented on an electronic circuit.

The superior performance of SDF is one of the key motivations to pursue

further applications of this technique to tackle different engineering problems.

2. The operating conditions of the Symbolic Dynamic Filter have been pre-

sented in the framework of Information theory. Specifically, the choice of

depth, number of symbols, alphabet size, wavelet etc. are validated using

classical concepts like entropy and information gain. A conflicting objective

optimization technique is used to determine ideal choices of these values.

3. Development of a scheme using Symbolic Dynamics for classifying multiple

parameters in complex systems. A statistical formalism has been presented

for this method. An important contribution of this method lies in identifying

and developing a mapping from a parameter space to a feature vector space

that captures the changes in the given parameters.

4. Applications to the problem of resource allocation in sensor networks have

been identified. A information theoretic metric is proposed to determine the

relative significance of data generated from one sensor at particular location

with respect to another sensor. This directly relates to the field of sensor

selection and fusion.

5. The results of the theoretical research have been validated by demonstration

on the following test beds: The Duffing and Van der Pol equations simulated

on an electronic circuit. A model of a NASA turbo-fan engine. A simulation

of a Permanent Magnet Synchronous Motor (PMSM). The problem of

multiple parameter estimation is formulated for each of these frameworks

and solved for different test cases; confidence intervals are presented for each

estimate obtained.

15

The methods of parameter estimation and sensor selection developed are de-

signed to be robust with respect to sensor noise, and simple enough to be im-

plemented in mobile platforms or even embedded in the sensors themselves, thus

producing a reliable monitoring network.

1.4 Organization

In addition to this chapter the rest of the dissertation has been divided into the

following sections:

• In chapter 2, a brief introduction to Symbolic Dynamic Filtering is provided.

A study is presented that outlines the selection of various parameters of

the Symbolic Dynamic Filter. Also, this method is compared with other

commonly used methods for parameter estimation and fault detection, and

the superiority is validated.

• Chapter 3 presents the framework for the statistical estimation of multiple pa-

rameters using Symbolic Dynamic Filtering. The problem is also formulated

as a multi-class classification problem, and possible solutions are presented.

• Chapter 4 presents a sensor selection technique in the framework of Sym-

bolic Dynamic Filtering. The forward and inverse problems are framed in a

multiple sensor scenario. Also, a method is presented to select an optimum

subset of sensors.

• In chapter 5, the test beds used in the thesis are elaborated. These are the

Duffing and Van der Pol equations, a model of a gas turbine engine, and the

simulation of a Permanent Magnet Synchronous Motor.

• In chapter 6, the results of the various methods described above have been

presented.

• In the last chapter, the conclusions of various methods presented in this

dissertation are drawn, and directions for future research are discussed.

16

• Four appendices have been added. Appendix A describes various compara-

tive anomaly detection algorithms using Bayesian and Statistical tools. Ap-

pendix B describes the electronic circuit used to generate the Duffing and Van

der Pol equations. Appendix C outlines several techniques used for multi-

class classification. Appendix D presents a thermodynamics based viewpoint

for the estimation of multiple parameters using escort probabilities.

Chapter 2
Comparative Evaluation of Symbolic

Dynamic Filtering: Forward and

inverse problem

2.1 Introduction

The major objective of this chapter is to introduce and evaluate Symbolic Dynamic

Filtering (SDF) with other pattern recognition methods such as Bayesian Filter-

ing (BF), which is both model-based and dynamic data-driven, and is capable of

detecting parametric or non-parametric changes in the model. The Kalman (Ex-

tended Kalman) Filter [44] is often adequate for linear (linearized) systems, but

it may fail to capture the dynamics of a nonlinear system, specifically with non-

additive uncertainties [45]. Recent literature has reported Monte Carlo Markov

Chain (MCMC) techniques, such as Particle Filtering [46] and Sigma Point tech-

niques such as Unscented Kalman filtering [35] that yield numerical solutions to

Bayesian state estimation problems and have been applied for anomaly detection in

nonlinear dynamical systems [47]. In addition to BF, this thesis investigates other

classes of well-known pattern recognition tools such as Artificial Neural Networks

(ANN), Principal Component Analysis (PCA), and Kernel Regression Analysis

(KRA) for pattern change detection [48]. In the class of ANN , mutilayer percep-

tron [49] and radial basis function [50] configurations have been widely used for

18

detection of anomalous patterns, and PCA [51] and KRA [52] are also commonly

used for data-driven pattern recognition. These pattern recognition tools have

been evaluated for comparison with SDF from the following perspectives.

• Performance evaluation in terms of quality of anomaly detection (e.g., en-

hanced detection capability and reduced rate of false alarm)

• Decision making for mitigation of forthcoming failures

• Computational efficiency in terms of execution time and memory require-

ments

2.2 Review of Symbolic Dynamic Filtering

The theory of symbolic dynamic filtering (SDF) for time series data analysis is

built upon the underlying principles of Nonlinear Dynamics [53], Symbolic Dynam-

ics [15], Information Theory [54], and Statistical Pattern Recognition [48]. This

chapter presents the underlying concepts and salient features of symbolic dynamic

filtering (SDF) for anomaly detection in complex dynamical systems. While the

details are reported as pieces of information in previous publications [2,3,42,55,56],

the essential concepts of space partitioning, symbol generation, and construction of

a finite-state machine from the generated symbol sequence are succinctly explained

in this section for completeness.

Detection of anomaly patterns is formulated as a two-time-scale problem. The

fast time scale is related to response time of the process dynamics. Over the span

of a given time series data sequence, dynamic behavior of the system is assumed

to remain invariant, i.e., the process is quasi-stationary at the fast time scale. In

other words, the variations in the behavior of system dynamics is assumed to be

negligible on the fast time scale. The slow time scale is related to the time span over

which parametric or non-parametric changes may occur and exhibit non-stationary

dynamics. The concept of two time scales is illustrated in Fig. 2.1.

An observable non-stationary behavior of the system dynamics can be associ-

ated with the anomalies evolving at a slow time scale. In general, a long time span

in the fast time scale is a tiny (i.e., several order of magnitude smaller) interval

19

Fast time scale

Slow time scale
t1 ti tm

Figure 2.1. Pictorial view of the two time scales: (i) Slow time scale of anomaly
evolution and (ii) Fast time scale for data acquisition and signal conditioning

in the slow time scale. For example, evolution of anomalies (causing a detectable

change in the system dynamics) may occur on the slow time scale in the order of

hundreds of hours of operation; in contrast, the process dynamics may remain es-

sentially invariant on the fast time scale in the order of seconds. Nevertheless, the

notion of fast and slow time scales is dependent on the specific application, loading

conditions and operating environment. From the perspective of anomaly pattern

detection, time series data sets are collected on the fast time scale at different slow

time epochs separated by uniform or non-uniform intervals.

The continuously varying process of system dynamics is often modelled as a

finite-dimensional dynamical system in the setting of an initial value problem as:

dx(t)

dt
= f(x(t), θ(ts); x(0) = x0, (2.1)

where t ∈ [0,∞) denotes the (fast-scale) time; x ∈ R
n is the state vector in the

phase space; and θ ∈ R
ℓ is the (possibly anomalous) parameter vector varying in

(slow-scale) time ts. Sole usage of the model in Eq. (2.1) may not always be feasible

due to parametric and non-parametric uncertainties and noise. A convenient way

of learning the dynamical behavior is to rely on the additional information provided

by (sensor-based and/or model-based) time series data [20] [57], as described in

the following subsections.

20
……��������……

Symbol Sequence

Finite State Machine
(Hidden Markov Model)-1 -0.50 0.5 1

-1
-0.5

0
0.5

1
0
1
2
3
4
5

�

�

�

�

�

�

�

�

Phase Trajectory

0 1 2 3

0.20

0.00

0.40

0.60

State Probability Histogram

Reference
Distribution

0 1 2 3
State Probability Histogram

Current
Distribution

0.20

0.00

0.40

0.60

0

1

�

2
�,�

�

3

�

�

�
�

Figure 2.2. Concept of Symbolic Dynamic Filtering

2.2.1 Symbolic Dynamics, Encoding, and State Machine

This subsection briefly describes the concepts of Symbolic Dynamics, encoding

nonlinear system dynamics from observed time series data, and state machine con-

struction for generation of symbol sequences. It also presents a procedure for online

computation of the machine state probability vectors that are representatives of

the evolving patterns of the system’s dynamical characteristics.

Let Ω ∈ R
n be a compact (i.e., closed and bounded) region, within which

the trajectory of the dynamical system, governed by Eq. (2.1), is circumscribed

as illustrated in Fig. 2.2. The region Ω is partitioned into a finite number of

(mutually exclusive and exhaustive) cells, so as to obtain a coordinate grid. Let

the cell, visited by the trajectory at a time instant, be denoted as a random variable

taking a symbol value from the alphabet Σ. An orbit of the dynamical system is

described by the time series data as {x0, x1, · · · , xk, · · · } with xi ∈ Ω, which passes

through or touches one of the cells of the partition. Each initial state x0 ∈ Ω

generates a sequence of symbols defined by a mapping from the phase space into

the symbol space as:

21

D
at

a
P

oi
n

ts

Time or Scale

�0

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

Figure 2.3. An Example of Space Partitioning

x0 → s0s1s2 · · · sk · · · (2.2)

where each si, i = 0, 1, · · · takes a symbol from the alphabet Σ.

The mapping in Eq. (2.2) is called Symbolic Dynamics as it attributes a legal

(i.e., physically admissible) sequence of symbols to the system dynamics starting

from an initial state. (Note: A symbol alphabet Σ is called a generating partition of

the phase space Ω if every legal sequence of symbols uniquely determines a specific

initial condition x0, i.e., every symbolic orbit uniquely identifies one continuous

space orbit.) Figure 2.2 pictorially elucidates the concepts of partitioning a finite

region of the phase space and the mapping from the partitioned space into the

symbol alphabet. This represents a spatial and temporal discretization of the

system dynamics defined by the trajectories. Figure 2.2 also shows conversion

of the symbol sequence into a finite-state machine as explained in the following

subsections.

Symbolic dynamics can be viewed as coarse graining of the phase space, which

is subjected to (possible) loss of information resulting from granular imprecision

of partitioning boxes. However, the essential robust features (e.g., periodicity and

chaotic behavior of an orbit) need to be preserved in the symbol sequences through

an appropriate partitioning of the phase space [18] [19].

22

2.2.2 Space Partitioning

A crucial step in SDF is partitioning of the phase space for symbol sequence

generation [19]. Several partitioning techniques have been reported in literature

for symbol generation [23], primarily based on symbolic false nearest neighbors

(SFNN), which may become cumbersome and extremely computation-intensive

if the dimension of the phase space is large. Moreover, if the time series data is

noise-corrupted, then the symbolic false neighbors would rapidly grow in number

and require a large symbol alphabet to capture the pertinent information on the

system dynamics. Therefore, symbolic sequences as representations of the system

dynamics should be generated by alternative methods because phase-space par-

titioning might prove to be a difficult task in the case of high dimensions and

presence of noise. The wavelet transform [58] largely alleviates these shortcomings

and is particularly effective with noisy data from high-dimensional dynamical sys-

tems [56]. A comparison of wavelet partitioning and other partitioning methods,

such as SFNN , is reported in recent literature [3], where wavelet partitioning has

been shown to yield comparable performance with several orders of magnitude

smaller execution time. This feature is very important for real-time detection of

anomaly patterns.

In wavelet-based partitioning, the time series data are first converted to wavelet

domain, where wavelet coefficients are generated at different time shifts. The

wavelet space is then partitioned with alphabet size |Σ| into segments of coefficients

on the ordinate separated by horizontal lines. In the illustrative example of Fig. 2.3,

the partitioning has been done to create |Σ| = 10 cells (i.e., intervals along the

ordinate in this case). The choice of |Σ| depends on specific experiments, noise level

and also the available computation power. A large alphabet may be noise-sensitive

while a small alphabet could miss the details of signal dynamics.

Once the partitioning is done with alphabet size |Σ| at the nominal condition

(time epoch t0), it is kept constant for all (slow time) epochs {t1, t2,tk....}, i.e.
the structure of the partition is fixed at the nominal condition. Therefore, the

partitioning structure generated at the nominal condition serve as the reference

frame for data analysis at subsequent slow time epochs.

23

2.2.3 State Machine Construction

The partitioning (see Fig. 2.2) is performed at the slow time epoch t0 of the nominal

condition that is chosen to be the healthy state having zero anomaly measure. A

finite state machine is then constructed, where the states of the machine are defined

corresponding to a given alphabet set Σ and window length D. The alphabet size

|Σ| is the total number of partition segments while the window length D is the

length of consecutive symbol words [2], which are chosen as all possible words of

length D from the symbol sequence. Each state belongs to an equivalence class

of symbol words of length D or more, which is characterized by a word of length

D at the leading edge. Therefore, the number n of such equivalence classes (i.e.,

states) is less than or equal to the total permutations of the alphabet symbols

within words of length D. That is, n ≤ |Σ|D; some of the states may be forbidden

with zero probability of occurrence. For example, if Σ = {0, 1}, i.e., |Σ| = 2 and

if D = 2, then the number of states is n ≤ |Σ|D = 4; and the possible states are

00, 01, 10, and 11, as shown in Fig. 2.4.

Figure 2.4. Example of Finite State Machine with D=2 and Σ = {0, 1}

The choice of |Σ| and D depends on specific experiments, noise level and also

the available computation power. A large alphabet may be noise-sensitive and a

small alphabet could miss the details of signal dynamics. Similarly, while a larger

value of D is more sensitive to signal distortion, it would create a much larger

number of states requiring more computation power.

Using the symbol sequence generated from the time series data, the state ma-

chine is constructed on the principle of sliding block codes [15]. The window of

length D on the symbol sequence . . . σi1 σi2 . . . σik . . . is shifted to the right by

one symbol, such that it retains the last (D-1) symbols of the previous state and

24

appends it with the new symbol σiℓ at the end. The symbolic permutation in

the current window gives rise to a new state. The machine constructed in this

fashion is called the D-Markov machine [2], because of its Markov properties. A

symbolic stationary process is called D-Markov if the probability of the next sym-

bol depends only on the previous D symbols, i.e., P
(

σi0 |σi−1σi−D
σi−D−1

....
)

=

P
(

σi0 |σi−1σi−D

)

.

The finite state machine constructed above has D-Markov properties because

the probability of occurrence of symbol σiℓ on a particular state depends only on

the configuration of that state, i.e., the previous D symbols. Once the alphabet size

|Σ| and word length D are determined at the nominal condition (i.e., time epoch

t0), they are kept constant for all slow time epochs {t1, t2,tk....}. That is, the

partitioning and the state machine structure generated at the nominal condition

serve as the reference frame for data analysis at subsequent slow time epochs.

The states of the machine are marked with the corresponding symbolic word

permutation and the edges joining the states indicate the occurrence of a symbol

σiℓ . The occurrence of a symbol at a state may keep the machine in the same state

or move it to a new state. On a given symbol sequenceσi1σi2 ...σil generated

from the time series data collected at a slow time epoch, a window of length D

is moved by keeping a count of occurrences of word sequences σi1 · · ·σiDσiD+1
and

σi1 · · ·σiD which are respectively denoted by N(σi1 · · ·σiDσiD+1
) and N(σi1 · · ·σiD).

Note that if N(σi1 · · ·σiD) = 0, then the state q ≡ σi1 · · ·σiD ∈ Q has zero proba-

bility of occurrence. For N(σi1 · · ·σiD) 6= 0, the transitions probabilities are then

obtained by these frequency counts as follows:

πjk ≡ P (qk|qj) =
P (qk, qj)

P (qj)
=
P (σi1 · · ·σiDσ)
P (σi1 · · ·σiD)

⇒ πjk ≈
N(σi1 · · ·σiDσ)
N(σi1 · · ·σiD)

(2.3)

where the corresponding states are denoted by qj ≡ σi1σi2 · · ·σiD and qk ≡ σi2 · · ·σiDσ.
The state transition matrix, Π = [π]jk satisfies the Stochastic matrix properties,

i.e. Σkπjk = 1∀j

25

2.2.4 Stopping Rule for Determining Symbol Sequence Length

This subsection presents a stopping rule that is necessary to find a lower bound on

the length of symbol sequence required for parameter identification of the stochastic

matrixΠ. The stopping rule [59] is based on the properties of irreducible stochastic

matrices [60]. The state transition matrix is constructed at the rth iteration (i.e.,

from a symbol sequence of length r) as Π(r) that is an n×n irreducible stochastic

matrix under stationary conditions. Similarly, the state probability vector p(r) ≡
[p1(r) p2(r) · · · pn(r)] is obtained as

pi(r) =
ri

∑n
j=1 ri

(2.4)

where ri is the number of symbols in the ith state such that
∑n

i=1 ri = r for a

symbol sequence of length r. The stopping rule makes use of the Perron-Frobenius

Theorem [60] to establish a relation between the vector p(r) and the matrix Π(r).

Since the matrix Π(r) is stochastic and irreducible, there exists a unique eigenvalue

λ = 1 and the corresponding left eigenvector p(r) (normalized to unity in the

sense of absolute sum). The left eigenvector p(r) represents the state probability

vector, provided that the matrix parameters have converged after a sufficiently

large number of iterations. That is,

p(r + 1) = p(r)Π(r) ⇒ p(r) = p(r)Π(r) as r → ∞ (2.5)

Following Eq. (2.4), the absolute error between successive iterations is obtained

such that

‖ (p(r)− p(r + 1)) ‖∞=‖ p(r) (I−Π(r)) ‖∞≤ 1

r
(2.6)

where ‖ • ‖∞ is the max norm of the finite-dimensional vector •.
To calculate the stopping point rstop, a tolerance of η (0 < η ≪ 1) is specified

for the relative error such that:

‖ (p(r) − p(r + 1)) ‖∞
‖ (p(r)) ‖∞

≤ η ∀ r ≥ rstop (2.7)

The objective is to obtain the least conservative estimate for rstop such that the

dominant elements of the probability vector have smaller relative errors than the

26

remaining elements. Since the minimum possible value of ‖ p(r) ‖∞ for all r is
1
n
, where n is the dimension of p(r), the least of most conservative values of the

stopping point is obtained from Eqs. (2.6) and (2.7) as:

rstop ≡ int

(

n

η

)

(2.8)

where int(•) is the integer part of the real number •. At the (slow time) epoch,

tk, the state probability vector is denoted as pk.

A recent publication [61] describes a stopping rule based on Markov chain

Monte Carlo (MCMC) computations. The stopping criterion is obtained via a

relation between the tolerance η and the absolute error bound ǫ, which is generated

offline by the learning algorithm. Subsequently, the stopping rule is executed online

to obtain an adaptive confidence interval of the state probability vector p of the

PFSA for anomaly detection.

2.2.5 Anomaly Evolution and Pattern Identification

Behavioral pattern changes may take place in dynamical systems due to accumula-

tion of faults and progression of anomalies. The pattern changes are quantified as

deviations from the nominal pattern (i.e., the probability distribution at the nom-

inal condition). The resulting anomalies (i.e., deviations of the evolving patterns

from the nominal pattern) are characterized by a scalar-valued function, called

Anomaly Measure µ. The anomaly measures at slow time epochs {t1, t2, . . .} are

obtained as:

µk ≡ d
(

pk,p0
)

(2.9)

where the d(•, •) is an appropriately defined distance function.

The major advantages of SDF for small anomaly detection are listed below:

• Robustness to measurement noise and spurious signals [3]

• Adaptability to low-resolution sensing due to the coarse graining in space

partitions [2]

• Capability for early detection of anomalies because of sensitivity to signal dis-

tortion and real-time execution on commercially available inexpensive plat-

27

forms [42].

2.3 Construction of Anomaly Detection

Algorithms

This section explains how anomaly detection algorithms are constructed for sym-

bolic dynamic filtering (SDF) and several other pattern recognition tools that are

briefly described in A.

2.3.1 Symbolic Dynamic Filtering for Anomaly Detection

The following steps, summarize the procedure of SDF for anomaly detection.

• Time series data acquisition on the fast scale from sensors and/or ana-

lytical measurements (i.e., outputs of a physics-based or an empirical model).

Data sets are collected at different slow time epochs.

• Generation of wavelet transform coefficients [58], obtained with an

appropriate choice of the wavelet basis and scales [3]. The wavelet transform

largely alleviates the difficulties of phase-space partitioning and is particu-

larly effective with noisy data from high-dimensional dynamical systems [56].

• Partitioning [3] of the wavelet space at the nominal condition at time epoch

t0. Each segment of the partitioning is assigned a particular symbol from the

symbol alphabet set Γ. This step enables transformation of time series data

from the continuous domain to the symbolic domain [15]. The partitioning

is fixed for subsequent slow time epochs.

• Construction of a finite state automaton at time epoch t0 (nominal

condition) from alphabet size |Γ| and window length D. The structure of the

finite state machine is fixed for subsequent slow time epochs {t1, t2,tk....},
i.e., the state machine structure generated at the nominal condition serve as

the reference frame for data analysis at subsequent slow time epochs.

• Calculation of the state probability vector p0 at time epoch t0 whose

elements represent the state visiting probabilities of the finite state machine.

28

The probability distribution p0 of damage patterns is recursively computed

as an approximation of the natural invariant density of the dynamical system

at the slow time epoch t0, which is a fixed point of the local Perron-Frobenius

operator.

• Time series data acquisition on fast time scale at subsequent slow

time epochs, t1, t2, ...tk..., and their conversion to the wavelet domain to

generate respective symbolic sequences based on the partitioning at time

epoch t0.

• Generation of the state probability vectors p1,p2, ...pk... at slow time

epochs, t1, t2, ...tk... from the respective symbolic sequences using the finite

state machine constructed at time epoch t0.

• Computation of scalar anomaly measures µ1, µ2, ..., µk, ... at time

epochs, t1, t2, ..., tk, ... based on evolution of these probability vectors and

by defining an appropriate distance function d(pk,p0) with respect to the

nominal condition [2]. Therefore, the pattern changes in the state probabil-

ity vector are quantified as deviations from the nominal behavior and are

characterized by a scalar-valued function, called Anomaly Measure µ. The

distance function is chosen as the standard Euclidean norm.

2.3.2 Bayesian Filtering for Anomaly Detection

Bayesian filtering tracks the states more effectively if the system is closer to the

nominal condition. In other words, and the error would be greater when the

system is in an anomalous condition. To this effect, the innovation sequences are

computed, and their histograms are obtained, where the innovation ǫ is defined as

the difference between the true output y and the predictor output ŷ− [44].

Innovation : ǫ = y − ŷ− = y − Cx̂− (2.10a)

(2.10b)

In the nominal condition, the model is a very close approximation of the data

29

that is generated, and the system is able to estimate the states with the lowest

error. The histogram of the innovation sequence thus resembles a Gaussian se-

quence with very small variance. As the anomaly is increased, the model becomes

less accurate and the estimation errors become higher. Thus, the histogram of the

innovation sequence shows an increase in the variance and the distribution diverges

from Gaussian. Ultimately, the histograms are expected to converge to a uniform

distribution if the filters no longer tracks the system. This increase is character-

ized as a measure of the anomaly. To this effect, the probability density of the

innovation sequences pk(ǫ) are generated at slow time epochs tk and the anomaly

measure at any epoch k is given by an appropriate distance function d(pk(ǫ),p0(ǫ))

between the density functions at epoch tk and at nominal condition at epoch t0.

The distance function is chosen as the standard Euclidean norm.

2.3.3 Neural Networks for Anomaly Detection

The training data set for both types of neural networks, namely, Radial Basis

Function Neural Networks, (RBFNN) and Multi Layer Perceptron Neural Net-

works, (MLPNN) (see A), are prepared in the same manner. In both cases, the

neural networks are trained based on the standard NARX model [62] from the

input-output data sets at the nominal condition. Thus, the training input vector

for the networks contain the current input u(k + 1), the current output y(k + 1)

as well as two past outputs, y(k) and y(k − 1). The target for the network is the

current output y(k + 1). After an error goal is achieved, the neural network is al-

lowed to track the output signal of the system under both nominal and anomalous

conditions. Upon feeding the input of the (possibly) anomalous system, the neural

network generates an output signal estimate ŷ. The innovation ǫk , (yk − ŷk)

serves as a measure for the tracking performance of the neural network filters.

The probability density function (pdf) is created for the innovation sequence. If

at nominal condition the pdf is p0 and the pdf at slow time epoch tk is pk, then

the anomaly measure is given by the distance d(pk,p0). The distance function is

chosen as the standard Euclidean norm.

30

2.3.4 Statistical methods for Anomaly Detection

Two statistical analysis methods, namely, Principal Component Analysis (PCA)

and Kernel Regression Analysis (KRA) (see A) have also been investigated.

Principal Component Analysis serves as a feature selector in the pattern anal-

ysis via dimension reduction from n to m. The n× n covariance matrix, obtained

from the time series data, generates the orthonormal eigenvectors vk and the cor-

responding non-negative real eigenvalues λk. The eigenvalues are arranged in the

increasing order of magnitude. The m largest eigenvalues and associated eigenvec-

tors are selected such that
∑m

i=1 λi > η
∑n

i=1 λi , where η is a real positive number

close to 1 (e.g., η = 0.95). The principal feature matrix F is defined as:

F =
[√

λ1∑m
i=1 λ1

v1 . . .
√

λd∑m
i=1 λd

vd
]

(2.11)

The feature matrix F 0 represents the status of the system derived from the time

series data at the nominal condition t0. Similarly, feature matrix F k is obtained

from time series data at slow time epoch tk. Then, the anomaly measure at tk is

obtained as the distance d(F k, F 0). The distance function is chosen as the standard

Euclidean norm.

In Kernel Regression Analysis At the nominal condition, the kernel estimator

is f̂0(x). For different anomalous conditions, the regression parameters,(µ, θα), are

kept fixed; and the kernel estimator f̂k(x) is evaluated from the data set under

the (possibly anomalous) condition at the slow time epoch tk . Then, the anomaly

measure at the kth epoch is obtained as the distance d(f̂k, f̂0). The distance func-

tion is chosen as the standard Euclidean norm.

2.4 Operation of the Symbolic Dynamic Filter

This section outlines the selection of several operating parameters of the Symbolic

Dynamic Filter. While a number of parameters such as wavelet basis (or the

choice between wavelet and Hilbert transform) are discussed in other publications

([2, 3]), this dissertation in particular deals with the selection of Depth D and

the alphabet size |Σ|. The method is an extension of the information theoretic

procedure followed in [3]. In addition to the depth and alphabet size, two more

31

operating parameters are looked at, namely the data length to be considered, and

the rate of sampling required. The data length deals directly with the stopping

rule when the maximum amount of data required is considered. Also, some aspects

of varying the sampling rate are studied. Much of the following discussion in

this section is in the context of the Duffing equation which is outlined below for

completeness.

d2x(t)

dt2
+ β

dx

dt
+ x(t) + x3(t) = A cos(ωt) (2.12)

The Duffing system is explained in greater detail later in Section 5.1.1 It should

be noted that all operating parameters are chosen for the nominal conditions of

the system under consideration. Here, this represents β = 0.10, and the excitation

input given by A = 22 and ω = 5. The subsequent discussion is for un-processed

Duffing data (i.e. no wavelet analysis). However, a very similar procedure can be

followed if the user chooses to apply the wavelet or Hilbert transforms to the data.

2.4.1 Selection of Depth D and Alphabet size |Σ| for SDF
The depth D and alphabet size |Σ| are selected using a conflicting objective pareto

optimization technique based on the principles of information theory. Choosing a

larger value of depth would imply that the future value of the signal has a higher

dependency on a larger number of past values of the signal. A lower value of depth

implies that the signal has a lower order Markovian nature. Two other aspects

that come into play while selecting both depth and alphabet size are

1. The amount of information lost by coarse graining the analog signal to dis-

crete symbols.

2. The computational cost in terms of memory and space requirements that is

associated with computing the state transition matrix Π.

These are two conflicting objectives, and hence a Pareto-optimization tech-

nique is utilized. A Neyman Pearson technique can then be used to determine the

optimum operating conditions for a given user, and for a given system.

A primary task involves defining a metric to quantify the information lost in the

symbolizing process. The metric used is the information content, or the entropy of

32

the state transition matrix Π̃. It should be noted that this entropy is greater than

that of the entropy of simply the probability vector, since the latter only stores the

state (or symbol) visit probabilities, while the former contains information about

not just the frequency of visits, but also the transitions between different states (or

symbols). The states and symbols are as always, analogous in the case of depth

D = 1.

In order to define the information loss, consider time series data from the duffing

equation given in Eq.2.12. As outlined in Section 2.3, the state transition matrix

Π̃ and the state probability vector p0 are calculated. For ease of notation, this is

referred to simply as p in this section, since all SDF parameters are selected for

the nominal condition of the data (i.e. k = 0). In this case, for a given depth D

and alphabet size |Σ|, the structure of this state probability vector is given as:

p =
[

p1 p2 · · · pm

]

(2.13)

where |Σ| ≤ m ≤ |Σ|D
That is pi are the constituents of the state probability vector, where i ranges

from 1 to |Σ|D. Note that the state probability vector is fundamentally different

from the symbol probability vector which would have only |Σ| elements for all

values of depth D.

Similarly, let each element of the Π̃ matrix be given by πjk where j, the number

of rows ranges from 1 to |Σ|D and k, the number of columns ranges from 1 to D.

Note that πjk represents the probability of transition from state j to state k.

Now, the information contained in the Π̃ matrix, denoted by IΠ̃ is defined as:

IΠ̃ , E

[

∑

k

πjk ln(πjk)

]

= −
∑

j

∑

k

pj × πjk ln(πjk) (2.14)

This represents the standard entropy equation, where the entropy is calculated

over each row of the Π̃ matrix and normalized by the probability of occurence of

that particular state.

Figure 2.5 shows a graph of IΠ̃ for the Duffing data, for different values of

alphabet size and depth D. The blue line shows different values of information for

D = 1 while the green line shows the same quantity for D = 2. A similar trend is

33

expected for larger depths.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of symbols

E
nt

ro
py

Depth 1
Depth 2

Figure 2.5. Entropy for different depths and alphabet sizes

While this quantity IΠ̃ from equation 2.14 should be maximized, its important

to note that there is generally a bound on the memory and computation power

available. Also, it can be noted that even with a large alphabet size, there is always

a loss in information as compared to the original analog signal.

The next aspect involves a brief study of the time and memory requirements

for SDF . Using the tic and toc functions of MATLAB, the actual amount of

time required to compute the state transition matrix for a fixed length of data

was computed for different depths and alphabet sizes. Also, using a profiler, the

memory required to store the different variables was calculated. The following

figures show the results obtained.

0 5 10 15 20 25 30 35
2

3

4

5

6

7

8

9

10

Number of Symbols

T
im

e
co

m
pl

ex
ity

Depth 1
Depth 2

Figure 2.6. Time Complexity for different depths and alphabet sizes

One interesting observation from Figure 2.6 is that SDF shows linearity in

time (and hence computational) complexity with respect to number of symbols,

34

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of Symbols
S

pa
ce

 C
om

pl
ex

ity

Depth 1
Depth 2

Figure 2.7. Space Complexity for different depths and alphabet sizes

for both depth 1 and depth 2. Similar results are expected for higher values of

depth. However, space complexity increases exponentially with an increase in the

number of symbols. It is expected that the order of the exponent is equal to the

numerical value of the selected depth. These parameters are extremely important

when SDF is deployed on a mobile platform with limited computation capacity

and memory.

To select an optimum value of depth and alphabet size, a Neyman Pearson

technique is employed. Basically, the information content needs to be maximized

within a specific computation threshold. The following figure shows a plot of IΠ̃

vs. the time complexity computed above.

2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

Time Complexity

In
fo

rm
at

io
n

Depth 1
Depth 2

Figure 2.8. Selection of Optimum Depth and Alphabet Size

Figure 2.8 shows the tradeoff between entropy and time complexity. The val-

ues of these two quantities are computed for different combinations of depth and

alphabet size. The blue line connects points for different number of symbols for

35

D = 1, while the green line represents D = 2. The fact that the blue line is entirely

over the green line for lower values of time complexity implies that for the same

time complexity (or in other words, available computation power), a selection for

D = 1 would have a higher entropy than the corresponding selection for D = 2. If

a higher amounts of computation power is available, then a higher value of depth

can be selected. Another observation is that for the same alphabet size, increasing

the Depth does not really increase the value of IΠ̃, although there is an increase

in the time complexity involved. This is a very important aspect of SDF that

validates the choice of D = 1 for several previous publications. It can be seen that

a knee point of the D = 1 curve occurs for the number of symbols to be between 8

and 12, after which there is not a significant increase in the amount of information

obtained. For most of this dissertation, the alphabet size selected for the Duffing

data is |Σ| = 8.

2.4.2 Aspects of sampling rate for SDF

One important difference between SDF and methods like the Kalman filter etc.

is that the choice of operating parameters depends on the sampling rate used. If

the data is very coarsely sampled (i.e. very close to Nyquist rate), then it would

become more difficult to make predictions for lower values of depth D. However,

for very finely sampled data, the value of IΠ̃ might appear to be extremely high

since making predictions on the partitioned data would be easier. In such a case,

a higher value of D might need to be selected, or in other words, a larger amount

of history might need to be considered. Thus, it is important to have a rich Π̃

matrix for efficient implementation of the Symbolic Dynamic Filter. Figure 2.9

shows the information contained in the Π̃ matrix for Duffing data that has been

down-sampled at different rates.

It can be seen in Figure 2.9 that the same signal contains different amounts

of information for 2 different sampling rates. This happens since signal dynamics

change at the state machine level for different levels of sampling. It is expected

that for very finely sampled data, the signal would stay in the same state very

often. Hence, the diagonal elements would dominate the Π̃ matrix, while only a

few off diagonal elements are expected to be populated. However, as the signal is

36

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Normal rate of sampling
Downsampled by a factor of 2
Downsampled by a factor of 5

Figure 2.9. Effects of Sampling Rate

downsampled (or more coarsely sampled to begin with), it is expected that the Π̃

matrix has more non-zero elements, and the diagonal terms are non-dominated.

This in turn leads to a higher value of information entropy as defined in Equation

2.14. It should be noted here that while the sampling rate is not a criteria for

future calculations using the Π̃ matrix or the p vector, the selection of Depth and

alphabet size need to be made for data that has the same sampling rate as the test

case data. Also, it should be expected that data sampled at a different rate would

show different stationarity properties at the Π̃ matrix level, even if it is obtained

from the same source. However, the p vector would be similar in the special case

of D = 1 since it records only state visit probabilities.

2.4.3 Aspects of data length - Minimum amount of data

required

Some aspects of the maximum data length required for SDF were discussed in

Section 2.2.4. However, it is possible to observe spurious information in the state

transition matrix (and hence in the state probability vector) if adequate data is not

considered. Here, a necessary condition is defined to ensure that this minimum data

length is met. This condition is that for a similar length of data, the information

content of a purely noisy signal should be very close to zero. It is expected that in

a pure noise case (additive white Gaussian noise), each element is independent of

the previous element. That is, pure white noise is a Markov process of order zero.

Hence, from a given state, transitions to all other states are equally likely. Also,

37

the occurrence of each state should be equally probable. Hence, the information

entropy as defined above should be very close to zero if sufficient data is considered.

However, if less data is used for the computation, it is possible that the state

transition matrix Π̃ does not get completely populated, and has some entries that

have not converged. In this case, such a matrix would indeed result in a non-zero

value of IΠ̃. This aspect must always be considered while implementing SDF on

any system.

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Depth 1
Depth 2

Figure 2.10. Effects of Sampling Rate

Figure 2.10 shows this effect. It can be seen that for white noise, for a sufficient

data length (50000 points), for D = 1, and for low values of alphabet size, the

information content is very close to 0. However, as the alphabet size is increased,

the number of states is increased, and the number of elements in the Π matrix

increases. Hence, a larger amount of data is required to populate the Π̃ matrix.

For D = 2, the number of elements of the Π̃ matrix increases with order |Σ|2.
Hence, for the same alphabet size, much more data is required as compared to

D = 1. This can be seen by the fact that the curve has its knee point for far fewer

symbols, and noise appears to contain information. This is also an important

aspect, since if lesser data is available, this puts an upper bound on the depth and

alphabet size that can be selected for SDF .

Chapter 3
Framework of Statistical Estimation

of Multiple Parameters

3.1 Introduction

The framework of SDF includes preprocessing of time series data by time-frequency

analysis (e.g., wavelet transform [58] and Hilbert transform [63, 64]). The trans-

formed data set is partitioned using the maximum entropy principle [3] to generate

the symbol sequences from the transformed data set without any significant loss

of information. Subsequently, statistical patterns of the evolving system dynamics

are identified from these symbol sequences through construction of probabilistic

finite-state automata (PFSA). An additional advantage of transform space-based

partitioning is reduction of spurious noise in the data set from which the PFSA is

constructed; this feature provides additional robustness to SDF as discussed in [3].

The state probability vectors that are derived from the respective state transition

probability matrices of PFSA serve as behavioral patterns of the evolving dynam-

ical system under nominal and off-nominal conditions.

In a system with multiple fault conditions present, it is important to distin-

guish between the fault conditions. Multiple fault conditions often influence the

conventional criteria by which the degradation of faults are trended. For example,

traditional frequency based methods cannot be used to estimate the presence of

multiple faults [38,65]. A situation may arise where certain fault conditions are sta-

39

ble while the conventional analytical procedures indicate degradation of the fault.

This phenomenon occurs due to the presence of other fault conditions that are

deteriorating. Also, repeated fault diagnosis on complex dynamical systems may

often be computationally prohibitive due to expensive simulation requirements.

Fault dictionaries are sometimes used to alleviate this problem, but they may be

infeasible to store because of their large sizes [32]. The problem occurs because

dictionaries usually only store primary output information.

Parameter estimation algorithms, based on symbolic dynamic filtering (SDF),

have been experimentally validated for real-time execution in different applications,

such as degradation monitoring in electronic circuits [66] and fatigue damage mon-

itoring in polycrystalline alloys [42]. While these applications of SDF have focused

on estimation of only a single parameter, the work reported here addresses sta-

tistical estimation of multiple parameters. Specifically, this work is an extension

of the earlier work [67] on single parameter estimation to estimation of multiple

parameters that may vary simultaneously. The resulting algorithms are validated

on the various testbeds described in Chapter 5.

3.2 Symbolic Dynamic Filtering and Single pa-

rameter Estimation

This section succinctly reviews the underlying concept of single-parameter estima-

tion [67] in the SDF framework.

Extraction of statistical behavior patterns from time series data is posed as a

two-scale problem. The fast scale is related to response time of the process dynam-

ics. Over the span of data acquisition, dynamic behavior of the system is assumed

to remain invariant, i.e., the process is quasi-stationary at the fast scale. In other

words, variations in the statistical behavior of the dynamical system are assumed

to be negligible on the fast scale. The slow scale is related to the time span over

which deviations (e.g., parametric changes) may occur and exhibit non-stationary

dynamics. The parameters are estimated based on the information generated by

SDF of the data collected over the fast scale at a slow scale epoch. This method

is also applicable to estimation of slowly varying parameters. The rationale is

40

that, since the parameters vary slowly, they are treated as invariants at a given

slow scale epoch; accordingly, the fast-scale statistical behavior of the dynamical

system may change at different slow scale epochs (that are simply referred to as

epochs in the sequel).

3.2.1 Forward Problem in the Symbolic Dynamic Setting

This subsection summarizes the Forward Problem for detection of deviation pat-

terns in the SDF setting.

1. Time series data acquisition on the fast scale from sensors and/or analytical

measurements (i.e., outputs of a physics-based or an empirical model). Data

sets are collected at the parameter values as a set {s0, s1, · · · , sk, · · · }, where
sk denotes the value of the parameter at the epoch k.

2. Generation of wavelet transform coefficients with an appropriate choice of

the wavelet basis and scales. The wavelet transform largely alleviates the

difficulties of phase-space partitioning and is particularly effective with noisy

data from high-dimensional dynamical systems.

3. Maximum Entropy Partitioning of the wavelet space at a reference condition.

Each segment of the partitioning is assigned a particular symbol from the

symbol alphabet Σ. This step enables transformation of time series data

from the continuous domain to the symbolic domain [15].

4. Construction of a probabilistic finite state automaton (PFSA) at the reference

condition. The structure of the finite state machine is fixed for subsequent

parameter values until a new reference is selected.

5. Computation of the reference pattern vector p(s0) whose elements represent

state occupation probabilities of the PFSA at the reference condition. Such

a pattern vector is recursively computed as an approximation of the natural

invariant density of the dynamical system, which is a fixed point of the local

Perron-Frobenius operator [60]. Thus, p(s0) ≡ [p1(s
0) p2(s

0) · · · p|Σ|(s
0)],

where |Σ| is the number of states in the PFSA.

41

6. Time series data acquisition on the fast scale at subsequent parameter values,

and their conversion to respective symbolic sequences based on the reference

partitioning at the reference value.

7. Generation of the pattern vectors, p(s1),p(s2), · · · ,p(sk) · · · at parameter

values, s1, s2, ...sk... from the respective symbolic sequences using the state

machine constructed at nominal parameter value s0. Thus,

p(sk) ≡
[

p1(s
k) p2(s

k) · · ·p|Σ|(s
k)
]

, where |Σ| is the number of states in the

PFSA. (Note that only (|Σ| − 1) out of the |Σ| elements of p(sk) are linearly

independent because p(sk) is sum-normalized to unity.) The structure of the

PFSA at all epochs is identical in the SDF framework, while the pattern

vectors p(sk) are possibly different at different parameter values sk.

8. Computation of deviation measures : Evolving deviation measures

M(s1),M(s2), · · · ,M(sk), · · · at parameter values, s1, s2, · · · , sk, · · · , are

computed with respect to the nominal condition at s0, by selecting an ap-

propriate distance function d(•, •) (e.g., the standard Euclidean norm) such

that

M(sk) , d(p(sk),p(s0)) (3.1)

3.2.2 Inverse Problem of Single-parameter Estimation

This subsection focuses on the inverse problem of single-parameter estimation

based on computed values of the deviation measure in the forward problem. The

parameter to be estimated is treated as a random variable at each epoch, for which

the deviation measure is an observable. To account for the inherent uncertainties

in the system components and to ensure robust estimation, a large number of ex-

periments are performed and the deviation measures are calculated from observed

sets of time series data during each experiment, with the objective of estimating

the unknown parameter. The steps for the statistical identification of the system

parameter from the measured value of deviation measure are delineated below.

1. Upon generation of deviation measure profiles in the forward problem, a sta-

tistical relationship is identified between deviation measure and the parameter

42

associated with the deviation. In particular, probability distributions of the

parameter are obtained for various values of the deviation measure. Then,

statistical tests are performed to determine goodness-of-fit of the distribu-

tions. For example, mean and variance associated with a two-parameter

distribution provide adequate statistical information on the bounds and con-

fidence levels of the estimated parameter.

2. Data acquisition on the fast scale at an unknown parameter value. Time

series data are collected (in the fast scale) under operating conditions similar

to those in Step 1 of the forward problem. Data are analyzed to generate

pattern vectors as described in the forward problem. The deviation measure

Mtest at parameter value stest is then calculated by quantifying the deviation

of the current pattern vector ptest from the nominal pattern vector p(s1).

3. Parameter estimation from generated statistics of deviation profile. The esti-

mated value of the parameter and its confidence interval are obtained based

on the computed deviation measure and the probability distribution derived

in Step 1 of the inverse problem.

In the above procedure, the range of the computed deviation measure profile

is discretized into finitely many levels. A statistical distribution is hypothesized

for determining spread of the parameter and goodness-of-fit of the hypothesized

distribution that is assessed with χ2 and Kolmogorov-Smirnov tests [68].

3.3 Overview of Single Parameter Solution of the

Inverse Problem

This section presents the parameter estimation scheme used to estimate the value

of a single parameter, specifically, the parameter β in the Duffing System. At this

stage it is assumed that the steps required for calculating the anomaly measure

from the time series data can be performed, i.e. for a certain input condition and

a certain value of the parameter β, it is possible to come up with an anomaly

measure, which characterizes the health of the system.

43

This section focuses on the inverse problem of parameter estimation based on

computed values of the deviation measure. The parameter is a slowly varying ran-

dom process and is therefore assumed to be a random variable at each slow time

epoch, for which the deviation measures are the only observables. To account for

the inherent uncertainties in the system components and to ensure robust esti-

mation, a large number of experiments are performed and the deviation measures

are calculated from observed time series data during every experiment, with the

objective of estimating the unknown parameter.

The range of the computed deviation measure is discretized into finitely many

levels. A pattern matrix is created where each column represents the spread of

the parameter for a particular value of the deviation measure. A statistical distri-

bution is hypothesized for the spread of the parameter and the goodness-of-fit of

the hypothesized distribution is assessed with χ2 and Kolmogorov-Smirnov tests.

Confidence Intervals are then assessed for confidence levels at 99% and 95%.

3.3.1 Example for single parameter estimation

The Duffing experiement is considered for this example. Time series data is gen-

erated for different values of β, and the experiment is repeated about 40 number

of times to acquire stochastic information on the system dynamics. For each run

of the experiment, deviation measures M are calculated for different values of the

parameter β.

The range of deviation measure is discretized into n = 20 levels. A pattern

matrix is constructed where each column represents the spread of the parameter β

for a particular segment of the deviation measure. For the elements of each column,

a two parameter log−normal distribution is hypothesized, and its goodness-of-fit

is examined by both χ2 and Kolmogorov-Smirnov tests [69]. For each of the 20

data sets, the hypothesis of two-parameter log-normal distribution passed the χ2-

test at 10% significance level [69]. This satisfies the conventional standard of 5%

significance level. Also, for each of the 20 measure levels, the hypothesis passed

the Kolmogorov-Smirnov test at 30% significance level,which again exceeds the

conventional standard of 5% significance level.

44

3.4 Framework of Multi-parameter Estimation

In general, extension of single-parameter estimation [67] to multiple-parameter

extension is not a straight-forward task as explained below.

Let us consider the Duffing system in Eq. (5.1), where the parameters to be

estimated are chosen as α1 and β; and the deviation measure M (see Eq. (3.1)

is obtained for the parameter pair s , (s1, s2) = (α1, β). Fig. 3.1 shows a plot

with α1 on the x-axis, β on the y-axis and the contours of the deviation measure

M. Each contour is constructed by joining points with the same value of deviation

measure M; this is indicated by the gray scale (color) corresponding to the vertical

bar on the right hand side of the plot. Values of deviation measure M are chosen

in steps of 0.1 and a plane parallel to the x-y axis is constructed at these values

of M to join points of equal values of deviation measure. As the system deviates

in either direction from the nominal condition of α1 = 1.0 and β = 0.1, the

deviation measure M increases until bifurcation occurs (e.g., α1 = 1.0 and β ≈
0.32). It is obvious that the inverse image of a singleton set of M may contain

infinitely many combinations of α1 and β. Hence, the information on M alone is

insufficient for uniquely identifying the parameters α1 and β that characterize the

system. It demonstrates that non-uniqueness of estimation could occur if a scalar-

valued function is chosen as the cost functional for optimized estimation of multiple

parameters. This problem is resolved by considering the individual elements of

the frequency probability vector for statistical estimation of the parameters as

explained below.

It is shown that the estimation problem is non-convex in the sense that the

the scalar distance between two frequency probability vectors could be zero for

(possibly infinitely) many different combinations of a pair of system parameters.

The problem of non-convexity is resolved by considering the individual components

of the frequency probability vectors.

If the estimation of multiple parameters is set as an optimization problem with

deviation measure M being the cost functional, then non-convexity may arise due

to existence of contours; this situation could occur even if the range of optimization

is narrow. Therefore, instead of relying on the deviation measure for parameter

estimationM(sk), as it was done in [30,31,67], variations in the individual elements

45

0.1

0.1

0.
1

0.2

0.
2

0.2

0.
3

0.
3

0.3

0.30.4

0.
4

0.4

0.4

0.4

0.
40.
5

0.
5

0.5 0.5

0.5

0.5 0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.
8

0.8

0.8

0.8

0.
8

0.8

Parameter α
1

P
ar

am
et

er
 β

0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3.1. Contour plot of the deviation measure M

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2

0.6

0.8

1

Parameter β

P
ar

am
et

er
 α

1

0.150.20.250.3

0.4

0.6

0.8

1

1.2

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

Parameter β
P

ar
am

et
er

 α
1

0.1 0.2 0.3

0.4

0.6

0.8

1

1.2

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2 0.3

0.8

1

1.2

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2 0.3

0.6

0.7

0.8

0.9

1

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2 0.3

0.8

1

1.2

Parameter β

P
ar

am
et

er
 α

1

0.1 0.2 0.3
0.7

0.8

0.9

1

1.1

Figure 3.2. Contour plots of each element of the frequency probability vector pk for a
typical test case in the Duffing system

of p(sk) , [p1(s
k), p2(s

k), · · · , p|Σ|(s
k)] are used in this dissertation. That is, the

parameter estimation problem is reduced to identification of contours for (|Σ| −
1) independent elements of the state probability vector p(sk). The information

derived from these (|Σ|−1) independent contours would yield a statistical estimate

of the parameter vector sk. This approach circumvents the aforementioned non-

convexity problem.

46

0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

α
1

β

0

0.2

0.4

0.6

0.8

1

Figure 3.3. Contour showing all points where µ ∼ 0.40

For a given parameter pair of the Duffing system having values sk = (αk
1, β

k),

the pattern vectors are generated as p(sk) ≡ [p1(s
k) p2(s

k) · · · p|Σ|(s
k)]. Having

|Σ| = 8, eight plates in Fig. 3.2 shows contours for each of the 8 elements of p(sk)

for a given value of (αk
1 = 0.75, βk = 0.23).

It is clear from Figure 3.1 that a single value of µ would contribute to infinitely

many combinations of (β, α1). For example, taking a section along µ = 0.4 gives

a contour shown in Figure 3.3. Now, every point (β, α1) along this contour yields

the same value of µ and hence the current information does not help in isolating

the exact values of (β, α1) that describe the system at the present case.

The following two sections describe a method that makes use of the ensemble

of information in different contours to arrive at a more precise estimation of the

parameters.

3.5 Construction of a Statistical Framework for

Estimation of Multiple Parameters

Let S denote the collection of (finitely many) points in the n-dimensional param-

eter space, where the positive integer n is the number of parameters that are to

47

be estimated. That is, S =
{

s1, s2, · · · , s|S|
}

, on which the training process is

executed. Let Ω be the convex hull of S, which represents the range over which

the parameters take values. It is noted that Ω is a convex and compact subset of

the separable space R
n.

Let each element sk ,
(

sk1, s
k
2, · · · , skn

)

represent a particular set of parameters.

For the Duffing system in Eq. (5.1), the set S consists of different values of pa-

rameters α1 and β in the range where the experiments have been conducted; for

example, a permissible value of s is (α1, β) = (0.3, 0.4). Given an experimental

time series data set Υ, the problem at hand is to identify the conditional proba-

bility density f(s|Υ), where s ∈ Ω. The procedure of multi-parameter estimation

consists of the forward problem and the inverse problem that are analogous to, but

much more involved than, the single-parameter estimation procedure described in

Section A.

3.5.1 Forward Problem/Training in a multiple parameter

setting

For the forward problem, sets of time series data are generated by experimental

runs at parameter values sk, ∀k = 1, 2, · · · , |S|. A symbolic dynamic filter is con-

structed to analyze each data sequence as outlined in Section A. For |Σ| being the

number of automaton states, the n-dimensional pattern vector p
(

sk
)

is generated

for every sk ∈ S. The procedure for data acquisition and storage for statistical

analysis is described below.

For each sk ∈ S, L different samples of the random parameter vector were

collected, which were realized as identically manufactured but different electronic

cards in experimental apparatus [67]. This implies that L× |S| experiments need

to be conducted on the apparatus. In this dissertation, there were L = 40 different

realizations of the experimental apparatus.

In the specific case of the Duffing and van der Pol experiments, |S| = 50 and

hence the total number of experiments was 40× 50 = 2000. Each experiment had

an average duration of 3 minutes, implying that each realization with 50 different

parameter pairs took about 2.5 hours. Experiments were conducted in parallel

with different electronic cards on identical apparatuses. The entire task of data

48

Dynamical
System

Symbolic
Dynamic

Filter

Deviation
Measure
Profile

Offline Forward Analysis

Instantaneous
Deviation
Measure

Probabilistic
Contour

Intersection

Estimation of
multiple

parameters

Online Inverse Analysis

Ensemble of deviation

measures from

experimental observations

Figure 3.4. Flowchart for statistical estimation of multiple parameters in the SDF
Framework

acquisition and storage was completed within 10 days by a team of two researchers.

The entire process of the forward and inverse problem is outlined in the flowchart

in Figure 3.5.1

Let the elements pj(s
k), j = 1, 2, · · · , |Σ| of the state probability vector p(sk), k =

1, 2, · · · , |S| be modeled as a random variable qj(s
k) that is constructed from the

ensemble of data points. The resulting random vector is obtained as

q(sk) ≡
[

q1(s
k) q2(s

k) · · · q|Σ|(s
k)
]

(3.2)

where qj(s
k) ∼ N

[

mj(s
k), σ2

j (s
k)
]

, i.e., qj(s
k) is modeled to be Gaussian with

mean mj(s
k) and variance σ2

j (s
k), as explained below from the perspectives of

state machine construction in the SDF setting. The equation for the modeled

distribution is given as

fqj |S
(

pj|sk
)

=
1

√

2πσ2
j (s

k)
exp

(

−
(

pj −mj(s
k)
)2

2σ2
j (s

k)

)

(3.3)

The underlying dynamical system is modeled as an irreducible Markov process

49

via SDF, where the state probability vector is the sum-normalized eigenvector of

the state transition matrix corresponding to the unique unity eigenvalue. Hence,

no element in the state probability vector is either 0 or equal to 1. However, due

to process noise and sensor noise, the random variable qj(s
k) fluctuates around

its mean mj(s
k). While analyzing the experimental data, the standard deviation

σj(s
k) of the random variables qj(s

k) was found to be very small compared to its ex-

pected value mj(s
k), i.e., the ratio

σj(s
k)

mj(sk)
≪ 1 ∀k = 1, 2, · · · , |S| ∀j = 1, 2, · · · , |Σ|.

Therefore, a parametric or non-parametric two-sided unimodal distribution should

be adequate to model the random variable qj(s
k). The choice of Gaussian distri-

bution for qj would facilitate estimation of the statistical parameters and involve

only second order statistics. This assumption has been validated by using the

χ2 and Kolmogorov-Smirnov tests for goodness of fit [68] of each qj for Gaussian

distribution.

Remark 3.5.1. The random variables qj(s
k) must satisfy the following two con-

ditions:

• Positivity, i.e., qj(s
k) > 0 ∀s ∈ S ∀j = 1, 2, · · · , |Σ|,. This is made possible

by truncating the far end of the Gaussian distribution tail on the left side.

The goodness of fit of the distribution as Gaussian still remains valid at a

very high significance level.

• Unity sum of the state probabilities, i.e.,
∑|Σ|

j=1 qj(s
k) = 1 ∀s ∈ S. This is

achieved by sum-normalization.

Remark 3.5.2. The automaton states are analogous to energy states in statistical

mechanics of ideal gases [70]. This fact is used formulating the inverse problem as

explained below.

3.5.2 Inverse Problem/Testing in a multiple parameter set-

ting

Let time series data be generated from a new test on the experimental apparatus.

The task at hand is to identify, from this data set, the unknown parameter vector

50

s ∈ Ω; however, it is possible that s /∈ S. The data are analyzed using the same

symbolic dynamic filter constructed in the forward/training problem (see Section

3.5.1), and the resulting probability vector p ≡ [p1 · · · p|Σ|] is a realization of a

random vector q ≡ [q1 · · · q|Σ|]. The density function fΩ|q(s|p) is obtained as

fΩ|q(s|p) =
fq|Ω (p|s) fΩ(s)

fq (p)

=
fq|Ω (p|s) fΩ(s)

∫

Ω
fq|Ω (p|s̃) fΩ(s̃)ds̃

(3.4)

In the absence of a priori information, an assumption is made that all operating

conditions are equally likely, i.e., fΩ(s) = fΩ(s̃) ∀s, s̃ ∈ Ω. With this assumption

of uniform probability, Eq. (3.4) reduces to

fΩ|q(s|p) =
fq|Ω (p|s)

∫

Ω
fq|Ω (p|s̃)ds̃ (3.5)

It is noted that accuracy of the above distribution would be improved if the actual

prior mapping, i.e., fΩ(s̃) is known.

The integral in the denominator of Eq. (3.5) is approximated by a Reimann

sum as

fΩ|q(s|p) ≈ κ
fq|Ω (p|s)

∑

S fq|Ω (p|s̃) (3.6)

where κ is a constant. This approximation converges to the exact solution as the

training set S approaches a (countable) dense subset of Ω ⊂ R
n.

The density function in Eq. (3.6) is now sampled at the points sk in the training

set S to construct the following sampled density to yield

fΩ|q(s|p)
∣

∣

s=sk
≈ κ

fq|Ω
(

p|sk
)

∑

s̃∈S fq|Ω (p|s̃) ∀sk ∈ S (3.7)

The derivation till this stage (i.e. Eq. 3.7) does not use any information that

was gathered during the forward problem. Depending upon the underlying dis-

tribution of fΩ|q(s|p), this equation can be further simplified. A natural choice

for the distribution based on Remark 3.5.1 would be to use the Dirichlet distribu-

51

tion [71]. The support of the Dirichlet distribution is a vector of real numbers in

the range (0, 1), all of which sum to 1, a property that is satisfied by the feature

vectors q. An advantage of this distribution is that it would be parametrized by

only |Q| values. For D = 1, this would reduce to |Σ| parameters. However, verify-

ing the goodness of fit for a multi-parameter Dirichlet distribution is a challenging

problem that makes this approach difficult.

In this dissertation, the data is fitted to a Gaussian distribution, as given in

Eq. 3.2. A co-ordinate transformation can be used to diagnolize the co-variance

matrix to make the individual components of the vector orthogonal (and hence, in-

dependent). However, in doing so, the physical attributes of the state probabilities

would cease to hold. In the case that the fluctuations of the first |Σ| − 1 com-

ponents of the probability vector are assumed to be independent, Eq. 3.7 can be

simplified further. That is, the joint density function of the Gaussian random vec-

tor p is reduced to the product of individual Gaussian distributions of the random

variables pj . That is,

fΩ|q (s|p)
∣

∣

s=sk
≈ κ

∏|Σ|−1
j=1 fqj |Ω

(

pj|sk
)

∑

s̃∈S

∏|Σ|−1
j=1 fqj |Ω

(

pj |s̃k
)

(3.8)

The density functions in the numerator and denominator of Eq. (3.8) are obtained

from Eqs. (3.7) and (3.3), which were determined in the training phase. A most

likely estimate of the parameter vector s is obtained from the probabilistic map in

Eq. (3.8). It should be noted that the nature of the density function fqj |Ω
(

pj|sk
)

does not depend on the constant κ.

The probability mass functions are obtained by evaluating the probability den-

sity function in Eq. (3.7) at points sk ∈ S.

P (sk|p) ,
fΩ|q

(

sk|p
)

∑|S|
j=1 fΩ|q (sj |p)

≈ fq|Ω
(

p|sk
)

∑|S|
j=1 fq|Ω (p|sj)

(3.9)

52

Substitution of Eqs. (3.3) and (3.8) in Eq. (3.9) yields

P (sk|p) ≈

∏|Σ|−1
j=1

1√
2πσ2

j (s
k)
exp

(

−(pj−mj(sk))
2

2σ2
j (s

k)

)

∑|S|
l=1

∏|Σ|−1
j=1

1√
2πσ2

j (s
l)
exp

(

−(pj−mj(sl))
2

2σ2
j (s

l)

) (3.10)

where the probability vector p ≡ [p1 · · ·p|Σ|] is calculated from the observed time

series data; and the remaining parameters are already evaluated in the training

phase.

Estimated mean ŝ and estimated covariance matrix Ĉs of the parameter vector

s are obtained directly from Eq. (3.10) as

ŝ(p) ,

|S|
∑

k=1

sk P (sk|p) (3.11)

Ĉs(p) ,

|S|
∑

k=1

(

sk − ŝ(p)
)

P (sk|p)
(

sk − ŝ(p)
)T

(3.12)

Since the statistical information is available in the form of probability mass func-

tions, the third and higher moments of the parameter vector can be estimated in a

similar way; however, third and higher moments are redundant because the inher-

ent distribution is assumed to have a Gaussian structure that carries full statistical

information in the first two moments.

3.6 Multiple parameter classification using Sym-

bolic Dynamics

The problem of estimation of multiple parameters can be simplified to that of a

classification problem.

The flowchart for this approach is represented in Figure 3.6. In this dissertation,

the k nearest neighbors technique is used. Other techniques such as support vector

machines or Naive Bayes classifiers can also be used effectively. The different

classification approaches that can be used are outlined in Appendix C. SDF is

used to generate a feature vector that is unique for each of the classes, and is

53

Determine

D, ∑

State Machine

Construction

Nominal Data Partitions

Pattern

Vectors

HyperplaneSDF

Classification

Results

Training Data

Testing Data

Testing Stage

Training Stage

State Machine

Construction

Pattern

Vectors
SVM/KNN

SVM/KNN

robust to noise.

As in the previous section, let S denote the collection of (finitely many) points

in the n-dimensional parameter space, where the positive integer n is the number

of parameters that are to be estimated. That is, S =
{

s1, s2, · · · , s|S|
}

, on which

the training process is executed. Let Ω be the convex hull of S, which represents

the range over which the parameters take values. It is noted that Ω is a convex and

compact subset of the separable space R
n. In this approach, the hull Ω is parti-

tioned into finitely many regions. The forward and inverse problems get simplified

as follows - In the forward problem, it is required to obtain statistics for each of

the regions of the hull Ω. In the inverse problem, it is required to determine which

region has the closest matching pattern to the pattern obtained during testing.

Chapter 4
Improving estimation using Multiple

sensors and sensor selection

4.1 Introduction

In a complex system such as an aircraft gas-turbine engine, the patterns gener-

ated from a single sensor may not carry sufficient information to identify multiple

parameters/faults because different combinations of component faults may gener-

ate similar signatures in a particular sensor observation. A key contribution of

this section is the compression of data into pattern vectors of low-dimension for

feature-level sensor fusion as needed for onboard vehicle health monitoring and

resilient control.

4.2 Multiple Sensor Methodology using covari-

ance matrix

4.2.1 Problem Statement

In general, the fault scenarios in major engine components can be categorized into

three different types based on their mode of occurrence. These types are:

1. Gradual deterioration,

55

���������	�

�����	��������������

������
���

�����
����������

��
�����������

��������

���

������

������	�����
������������� ��
����

������ ���������

!�"���������
���������� � �
����

�������
��������������
��������

�����
����������

��
�����������

!�"���������
���������� � �
����

Figure 4.1. Outline of the fault estimation procedure

2. Intermittent faults, and

3. Abrupt large faults.

However, no matter what type of fault occurs in a particular component, the

problem can be reduced to a parameter identification problem from the point of

view of fault estimation as presented in Chapter 3.

Let S denote a collection of (finitely many) data points in the n-dimensional

parameter space, where the positive integer n is the number of parameters that are

to be estimated. That is, S =
{

s0, s1, · · · , s |S|−1
}

, on which the training process

is executed. In the context of gas-turbine engines, sk signifies a particular faulty

condition in the set of fault conditions S under consideration. Let s0 denote the

nominal condition of the engine, and Y be the set of sensors for the engine system

consisting of sensors yj for j = 1, 2, ..., |Y|. Let Ω be the convex hull of S, which
represents the range over which the parameters take values. It is noted that Ω is

a convex and compact subset of the separable space R
n. The problem at hand is

to statistically estimate fault condition s ∈ Ω, given an experimental data set Υ,

i.e., to identify the conditional probability density f(s |Υ). It is noted that s ∈ Ω

may not be one of the points in set S.
The multiple-fault estimation procedure is divided into two steps, which are: (i)

Forward Problem/Training, and (ii) Inverse Problem/Testing, as shown in Fig. 4.1.

The following subsections 4.2.2 and 4.2.3 describe the two steps in detail.

56

4.2.2 Forward Problem/Training with Multiple Sensors

In the forward problem, a database of patterns is created at parameter values,

sk, ∀k = 0, 1, · · · , (|S| − 1), by collecting time-series data from sensors yj ∈ Y ,

as shown in Fig. 4.1. Generation of statistical patterns from time series data is

posed as a two-scale problem [2] [11]. The fast scale is related to the response

time of the process dynamics, over the span of which the process is assumed to be

quasi-stationary. The slow scale is related to the time span over which deviations

(e.g., parametric or non-parametric changes) may occur and exhibit non-stationary

dynamics. In the present context, time-series data are collected with the system

being quasi-stationary at a particular slow-scale epoch sk. The procedural steps

of the forward problem are presented below.

• Time series data acquisition on the fast scale from the available sensors :

Time series data sets from each sensor yj ∈ Y are collected for each epoch

sk ∈ S.

• Wavelet/Hilbert transform pre-processing of the time-series data: The wavelet

or Hilbert transforms largely alleviate the difficulties of phase-space parti-

tioning and are particularly effective with noisy data from high-dimensional

dynamical systems [3] [64].

• Maximum Entropy Partitioning of the transformed space at the reference

condition of epoch s0: This step enables transformation of the pre-processed

time series data from the continuous domain to the symbol domain [2] by

partitioning the transformed phase space, where the data set from each sensor

yj, j = 1, · · · , |Y|, has its own alphabet; for each sensor, a specific symbol is

assigned to each partition segment from the respective alphabet. Maximum

entropy partitioning [3] [64] is constructed separately for different sensor

data sets at epoch s0. These partitions are kept invariant for analysis at

subsequent epochs s1, s2, ..., s |S|−1 of respective sensor data.

• Construction of a probabilistic finite state automaton (PFSA) at the reference

condition s0 and Computation of state probabilities : PFSA are constructed

for every sensor data at epoch s0 and their structures remain invariant for

subsequent epochs of each sensor data. Let the Nj , be the number of states

57

in the PFSA corresponding to the sensor yj, j = 1, · · · , |Y|. The sum of

the probabilities of all states is equal to unity, i.e.,
∑Nj

i=1 p
j
i (s

k) = 1 ∀j ∈
{1, · · · , |Y|} ∀k ∈ {0, · · · , |S|−1}, where pji (sk) denotes the probability of the

ith state of the PFSA constructed fron time series of jth sensor at epoch sk;

at most Nj − 1, out of the Nj elements of the state probability vector can be

independent. Therefore, the pattern for each sensor labeled by j = 1, · · · , |Y|
is represented by a (Nj − 1)-dimensional row vector pj ,

[

pj1 · · · pjNj−1

]

∀j ∈
{1, · · · , |Y|}; this notation holds for all epochs sk ∀k ∈ {0, · · · , |S| − 1}.

• Computation of the pattern vectors : A concatenated reference pattern vector

P is generated whose elements represent state occupation probabilities of the

PFSA at the reference condition s0 for data from the respective probability

vectors pl(s0) from all the sensors yℓ ∈ Y . Thus, p(s0) has an element plj(s
0),

where the superscript l ∈ {1, 2, ..., |Y|} corresponds to the sensor yl ∈ Y and

the subscript j ∈ {1, 2, ..., Nl} corresponds to the jth state of the PFSA

generated from the time series data of the lth sensor at epoch s0. Therefore,

the total number of elements in p(s0) is N = N1+N2+ · · ·+N|Y|. Similarly,

p(s1),p(s2), ...,p(si), ...,p(s|S|) are generated at epochs s1, s2, ..., s|S|−1 from

the respective symbol sequences based on the same structure of the PFSA

constructed at epoch s0. Note that the structure of the PFSA at all epochs

for a particular sensor is identical while the pattern vectors p(sk) are possibly

different at different sk ∈ S due to parametric changes in the process.

• Construction of the pattern database: A reference pattern array P(s0) is

constructed by vertical stacking of the reference row vectors, pj(s0), j ∈
{1, · · · , |Y|}, as shown below.

P(s0) ,

p1(s0)

p2(s0)

· · ·
· · ·
p|Y|(s0)

=

[

p11(s
0) · · · p1N1−1(s

0)
]

[

p21(s
0) · · · p2N2−1(s

0)
]

· · ·
· · ·
[

p
|Y|
1 (s0) · · · p|Y|

N|Y|−1(s
0)
]

58

P(s0) ,

p1(s0)

p2(s0)

· · ·
· · ·
p |Y|(s0)

=

p11(s
0) · · ·p1N1−1(s

0)

p21(s
0) · · ·p2N2−1(s

0)

· · ·
· · ·
p
|Y|
1 (s0) · · · p|Y|

N|Y|−1(s
0)

Note that the individual rows in the array P may have different lengths

because the PFSA corresponding to different sensors may have different state

cardinalities; hence, P should not be viewed as a matrix but it is a two-

dimensional array of positive fractions, where the total number of elements

is (N1+· · ·+N|Y|−|Y|). Similarly, P(s1),P(s2), ...,P(s |S|−1) are computed at

epochs s1, s2, ..., s |S|−1 from the respective patterns. Note that the structure

of the PFSA at all epochs for a particular sensor is identical while the pattern

arrays P(sk) are possibly different at different sk ∈ S due to parametric or

non-parametric changes in the process.

• Computation of pattern statistics : Different units of identically manufactured

engines are different in behavior or performance; this inevitable uncertainty

is modeled as the process noise. Therefore, several runs are performed for

each fault condition, with a certain value of process noise along with an a

priori determined sensor noise (e.g., calculated from instrumentation man-

ufacturer’s specifications) to obtain the pattern vector statistics. Let the

pattern array P(sk) be modeled as a random array Q(sk), whose elements

are qli(s
k) that is constructed from the ensemble of realizations pli(s

k). Con-

sidering up to second order statistics, elements of the random array Q(sk)

are modeled to have multivariate structures from the perspectives of state

machine construction in the SDF setting, as explained later in Remark 4.2.1.

Thus, for each epoch sk, a mean pattern vector µ(sk) and a corresponding

covariance matrix Γ(sk) of the pattern are calculated from the elements of

Q(sk). An element of µ(sk) is expressed as ml
i(s

k), ∀l ∈ {1, 2, · · · , |Y|} and

∀i ∈ {1, 2, ..., Nl−1}, which signifies the mean values of pli(s
k) generated from

the data sets of different runs. Similarly, an element of the covariance matrix

Γ(sk) is expressed as γlℓij(s
k), ∀l, ℓ ∈ {1, 2, ..|Y|} and ∀i ∈ {1, 2, ..., Nl − 1},

59

and ∀j ∈ {1, 2, ..., Nℓ − 1}, which signifies the value of cross-covariance be-

tween pli(s
k) and pℓj(s

k), which is also generated from the data sets of differ-

ent runs. Note that, for l = ℓ, the covariance matrix terms yield correlation

among the states i and j of the PFSA generated from the same sensor data

and, for l 6= ℓ, the covariance matrix terms yield correlation among the states

i and j of different PFSA corresponding to different sensors.

For the purpose of book-keeping in statistical calculations, each of the (two-

dimensional) arrays P(sk) is rearranged as a single row vector p(sk) by horizontally

concatenating the row vectors pj(sk), j ∈ {1, · · · , |Y|}, i.e., the random pattern

array Q(sk) is rearranged as the random pattern vector q(sk). The mean pattern

vector µ(sk) and covariance matrix Γ(sk) are constructed correspondingly. The

covariance matrix Γ(sk) is comprised of several blocks of elements. The square

diagonal blocks correspond to the covariance among states of same sensor data,

where as the off-diagonal possibly non-square (due to possible different alphabet

size for different sensor data) blocks correspond to the covariance among states of

different sensor data.

Remark 4.2.1. The underlying dynamical system is modeled as an irreducible

Markov process via SDF, where the state probability vector is the sum-normalized

eigenvector of the state transition matrix corresponding to the unique unity eigen-

value. Hence, no element in the state probability vector is either 0 or equal to 1.

However, due to process noise and sensor noise, the random vector q(sk) fluctu-

ates around its mean µ(sk). Analyzing the experimental data, the terms of the

covariance matrices of the random vectors q(sk) was found to be very small com-

pared to the mean. Therefore, a parametric or non-parametric two-sided uni-modal

distribution should be adequate to model the random vector q(sk). The choice of

Gaussian distribution for q would facilitate estimation of the statistical parame-

ters and involve only second order statistics. Also, the elements of q(sk) have to

be positive, which is made possible by truncating the far end of the Gaussian dis-

tribution tail on the left side. The goodness of fit of the distribution as Gaussian

still remains valid at a very high significance level. For a particular sensor yj sum-

mation of the elements qji (s
k), ∀i ∈ {1, 2, ..., Nj} has to be unity, which is achieved

by sum-normalization.

60

The (jointly Gaussian) conditional probability distribution of a random pattern

vector q is given as

fq|Ω
(

p|sk
)

=
1

(2π)N/2|Γ(sk)|1/2 ·

exp
(

− 1

2
(p− µ(sk))(Γ(sk))−1(p− µ(sk))T

)

(4.1)

where N = N1 + · · ·+N|Y| − |Y|.

4.2.3 Inverse Problem/Testing with Multiple Sensors

The objective here is to identify the probabilistic location of the fault in the multi-

dimensional parameter space, i.e., identification of the unknown parameter vector

s ∈ Ω; however, it is possible that s /∈ S. Therefore, for a particular test case,

time series data are collected from different sensors. The data are analyzed using

the same symbolic dynamic filter constructed in the forward problem/training (see

Section 3.5.1), and the resulting row vector p is a realization of a random pattern

vector q. The density function fΩ|q(s |p) is obtained as

fΩ|q(s |p) =
fq|Ω (p|s) fΩ(s)

fq (p)

=
fq|Ω (p|s) fΩ(s)

∫

Ω
fq|Ω (p|̃s) fΩ(s̃)ds̃

(4.2)

In the absence of a priori information, an assumption is made that all operating

conditions are equally likely, i.e., fΩ(s) = fΩ(s̃) ∀s̃ , s̃ ∈ Ω. With this assumption

of uniform probability, Eq. (4.2) reduces to

fΩ|q(s |p) =
fq|Ω (p|s)

∫

Ω
fq|Ω (p|̃s)ds̃ (4.3)

It is noted that accuracy of the above distribution would be improved if the actual

prior mapping, i.e., fΩ(s) is known. The integral in the denominator of Eq. (4.3)

is approximated by a Reimann sum as

61

fΩ|q(s |p) ≈ κ
fq|Ω (p|s)

∑

S fq|Ω (p|̃s) (4.4)

where κ is a constant. This approximation converges to the exact solution as the

training set S approaches a countable dense subset of Ω ⊂ R
n.

The density function in Eq. (4.4) is now sampled at the points sk in the training

set S and the following sampled density is constructed as to yield

fΩ|q(s|p)
∣

∣

s=sk
≈ κ

fq|Ω
(

p|sk
)

∑

s̃∈S fq|Ω (p|̃s) ∀sk ∈ S (4.5)

The density functions in the numerator and denominator of Eq. (4.5) are ob-

tained from Eq. (4.1), which were determined in the training phase. It is noted

that the nature of the density function fΩ|q

(

sk|p
)

does not depend on the constant

κ.

The probability mass functions are obtained by evaluating the probability den-

sity function in Eq. (3.8) at points sk ∈ S.

P (sk|p) ,
fΩ|q

(

sk|p
)

∑|S|
j=1 fΩ|q (sj |p)

≈ fq|Ω
(

p|sk
)

∑|S|
j=1 fq|Ω (p|s j)

(4.6)

which is expressed in terms of Eq. (4.1) as

P (sk|p) ≈
1

(2π)N/2|Γ(sk)|1/2
exp

(

X(sk)
)

∑|S|
l=1

1
(2π)N/2|Γ(sl)|1/2

exp
(

X(s l)
)

(4.7)

where X(•) = −1
2
[p− µ(•)][Γ(•)]−1[p− µ(•)]T

The above equation signifies a statistical pattern matching by calculating the

Mahalnobis distance [48] between the test and the training patterns; therefore,

smaller the Mahalnobis distance, better is the match between these two patterns.

It has been observed from experimental data that fluctuations of the pattern

vectors are very weakly correlated among different symbols and different sensors.

Therefore, the jointly Gaussian distribution of all fq|Ω
(

p|sk
)

’s can be reduced to

62

the product of individual Gaussian distributions fq|Ω
(

pji |sk
)

of different symbols

∀j ∈ {1, 2, .., |Y|} and ∀i ∈ {1, 2, ..., Nj − 1}. Therefore, instead of using the

multi-variate jointly Gaussian distribution, univariate Gaussian distribution is used

for each symbol, (the variance being the corresponding diagonal element of the

covariance matrix) to calculate P (sk|p). Thus, Eq. (4.7) is expressed as follows.

∀j ∈ {1, 2, .., |Y|} and ∀i ∈ {1, 2, ..., Nj − 1},

P (sk|p) ≈
∏

j

∏

i
1

(2π)1/2(γjj
ii (s

k))1/2
exp

(

Xj
i (s

k)
)

∑|S|
l=1

∏

j

∏

i
1

(2π)1/2(γjj
ii (s

l))1/2
exp

(

Xj
i (s

l)
)

(4.8)

where Xj
i (•) , −1

2
[pji −mj

i (•)][γjjii (•)]−1[pji −mj
i (•)]

Once the probability mass function P (sk|p) is obtained, there can be different

estimates ŝ ∈ Ω depending upon the cost function of estimation. For example, the

median of the distribution yields the estimated value by minimizing the root mean

square value of the deviations. Again, most likely parameter value can be obtained

from the mode of the distribution. In this paper, estimated mean is considered

which minimizes the average of the square of the absolute deviations around the

estimated point. Estimated mean ŝ and estimated covariance matrix Ĉs of the

parameter (column) vector s are obtained directly from P (sk|p) as

ŝ(p) ,

|S|
∑

k=1

sk P (sk|p) (4.9)

Ĉs(p) ,

|S|
∑

k=1

(

sk − ŝ(p)
)

P (sk|p)
(

sk − ŝ(p)
)T

(4.10)

Since the statistical information is available in the form of probability mass func-

tions, the third and higher moments of the parameter vector can be estimated in a

similar way; however, third and higher moments are redundant because the inher-

ent distribution is assumed to have a Gaussian structure that carries full statistical

information in the first two moments.

4.3 Sensor selection framework

Chapter 5
Description of Test Beds

5.1 Description of Duffing Experiment

This chapter provides a description of the electronic circuit for simulating the

Duffing Equation. Experiments were conducted on the test bed [72] described in

Appendix B. For the purpose of the experiment, a parameter is allowed to vary

continuously by a small amount. This parametric change simulates a change in

the health condition of the dynamical system. The objective of the experiment is

to distinguish these small variations and estimate the value of the parameter. The

experiments are repeated a number of times, by replacing a component (resistor)

in the experimental setup each time with a similar component. This is done to

establish robustness of the estimate with respect to component uncertainties.

5.1.1 Duffing System Analysis

The Duffing equation [73] is a second-order forced differential equation with a cubic

non-linearity . It is given by

d2x(t)

dt2
+ β

dx

dt
+ x(t) + x3(t) = A cos(ωt) (5.1)

5.1.2 Single Parameter experiment

The dissipation parameter β(ts), realized as a resistance in the circuit, varies with

the slow time ts and is treated as a constant in the fast time scale at which the

64

−2 0 2
−10

−5

0

5

10

Phase variable y
P

ha
se

 v
ar

ia
bl

e
dy

/d
t

−2 0 2
−10

−5

0

5

10

Phase variable y

P
ha

se
 v

ar
ia

bl
e

dy
/d

t

−2 0 2
−10

−5

0

5

10

Phase variable y

P
ha

se
 v

ar
ia

bl
e

dy
/d

t

−2 0 2
−10

−5

0

5

10

Phase variable y

P
ha

se
 v

ar
ia

bl
e

dy
/d

t

β=0.10 β=0.30

β=0.32 β=0.34

Figure 5.1. Phase Plots for the Electronic Circuit

dynamical system is excited. The goal is to detect, at an early stage, changes

in β(ts), which are associated with the anomaly. The first task is selection of

appropriate input stimuli. For illustration purposes, we show the response of a

stimulus with amplitude A = 22 and frequency ω = 5 . Changes in the stationary

behavior of the electronic circuit in Figure 5.1 take place starting from β(ts) = 0.10,

with a significant disruption occurring in the narrow range of 0.32 to 0.34. The

stationary behavior of the system response for this input stimulus is obtained

for several values of in the range of 0.10 to 0.40. The four plates in Figure 5.1

exhibit four phase plots for the values of the parameter at 0.10, 0.30, 0.32, and 0.34,

respectively. Each plate in Figure 5.1 relates the phase variable of electrical charge

that is proportional to the voltage across one of the capacitors in the electronic

circuit, with its time derivative (i.e., the instantaneous current). While a small

difference between the phase plots for β = 0.1 and β = 0.3 is noticeable, there is

no clearly visible difference between the plots for β = 0.30 and β = 0.32 in Figure

5.1. However, the phase plots for β = 0.32 and β = 0.34 display a very large

difference, indicating period doubling possibly due to onset of bifurcation.

65

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.1 β=0.1

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.1 β=0.14

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.1 β=0.28

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.1 β=0.3

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.1 β=0.32

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.8 β=0.1

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.8 β=0.14

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.8 β=0.28

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.8 β=0.3

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=0.8 β=0.32

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1 β=0.1

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1 β=0.14

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1 β=0.28

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1 β=0.3

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1 β=0.32

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.1 β=0.1

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.1 β=0.14

−2 0 2
−10

0
10

y(t)
dy

(t
)/

dt

α=1.1 β=0.28

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.1 β=0.3

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.1 β=0.32

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.4 β=0.1

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.4 β=0.14

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.4 β=0.28

−2 0 2
−10

0
10

y(t)
dy

(t
)/

dt

α=1.4 β=0.3

−2 0 2
−10

0
10

y(t)

dy
(t

)/
dt

α=1.4 β=0.32

Figure 5.2. Phase Plots for the Multi-Parameter Experiment

5.1.3 Multiple Parameter Experiment

In this experiment, the dissipation parameters are chosen as β and α1. The input

stimulus are chosen as A = 5 and ω = 5. The stationary behavior of the system

is obtained with several combinations of values, with β ranging from 0.10 to 0.40,

and α1 ranging from 0.10 to 1.50. The plots are shown in Figure 5.2. The third line

of plots corresponds to a value of α1 = 1.0 which is exactly the same as considered

in Section 5.1.2. It can be seen that increasing (decreasing) the value of α1 causes

an early (late) onset of bifurcation. Also, a bifurcation is associated simply with

a rise in α1 for low values of β as can be seen in the first row of plots. It is also

clear that there is very little visible difference in most plots before the onset of

bifurcation. The challenge of this experiment is to determine the values of both α1

and β by looking at data gathered at a slow time scale.

66

5.2 Description of Aircraft Engine Simulation Test

Bed

The aircraft engine simulation test bed consists of three networked computers using

the client/server concept. One of the three computers will host the propulsion-

driven system for health monitoring of the engines. The other two computers

execute separate copies (which may or may not be different depending on the

health of the individual engines) of the gas turbine engine model including its

continuously varying gain-scheduled feedback control system. These models are

described by ordinary differential equations and supporting algebraic equations

and look-up tables [74].

The test bed is capable of simulating steady-state and dynamical conditions for

individual engines under different operating conditions. Each of the engine simu-

lation models integrates the time-driven continuous dynamics and communicates

through continuous-to-discrete interfaces. This software architecture is flexible to

adapt different models and controller designs for other types of engine systems.

Each major function in the simulation program has a modular structure as imple-

mented on the three networked computers of the simulation test bed. The C ++

code is superimposed on the existing FORTRAN simulation code of the turbo-

fan engine model to be able to utilize C + + network communication routines.

Specifically, the C ++ wrapper program interfaces the major inputs and outputs

of the FORTRAN simulation code and works as a data acquisition module. This

approach takes advantage of the available FORTRAN models as individual parts

of the integrated C ++ program without making any significant changes.

The FORTRAN code of the turbofan engine simulation program, which con-

sists of high-order nonlinear differential and difference equations and supporting

algebraic equations, has been designed for both steady-state and transient opera-

tions of a generic jet engine*. This simulation code is a stand-alone program with a

gain-scheduled feedback controller. The engine simulation model provides various

sensor data (e.g., combustion chamber temperature and high-pressure and low-

pressure turbine speeds) together with other critical information (e.g., simulation

step size and simulation cycle number), which are collected by the C + + wrap-

per program and exchanged with the FDI computer through a typical message

67

Figure 5.3. Schematic of turbofan engine model with labeled actuators (italics) and
sensors

application protocol interface (API) communication routine. This communica-

tion protocol sends and receives message packages through TCP and/or UDP

networks. The delay in this protocol interface is mainly due to the network com-

munications and the typical value is found to be less than a fraction of millisecond.

Since engine simulations use integration step sizes in the order of 20ms, the com-

munication delays do not have a significant bearing on performance of the FDI

algorithms that are implemented in the MATLAB 7.1 environment.

5.2.1 Dynamic Model of the Turbofan Engine

Details of the mathematical model of the two-spool, low bypass turbofan engine

is reported in the cited references [75, 76]. The structure of the engine model,

simulated as a FORTRAN program, is depicted in Figure 5.3 that, along with

a diagram of the implemented engine model, lists the actuators. The actuators

are: (i) Fan variable inlet stator vane angle (STP2), (ii) Forward blocker door area

(A14), (iii) High-pressure compressor stator vane angle (STP27), (iv) High-pressure

booster hub stator vane angle (STP27d), (v) Combustor fuel flow (wf36), (vi) Aft

variable bypass area (A16), (vii) Afterburner fuel flow (wf6), (viii) Nozzle throat

area (A8), (ix) Upper nozzle exit area (A9,hi), and (x) Lower nozzle exit area (A9,lo).

Given the appropriate inputs of throttle position, also known as power lever

angle (PLA), and ambient conditions (e.g., altitude (h), Mach number (M), ambi-

68

ent temperature (Ta)), nonlinear dynamics of real-time turbofan engine operation

are represented as a component level model in the simulation test bed. Both

steady-state and transient operations of the gas turbine engine are simulated in

the continuous-time setting. Overall performance maps are used to provide steady-

state representations of the engine’s rotating components. Fluid momentum in the

bypass duct and the afterburner, mass and energy storage within control volumes,

and rotor inertias are also included to provide capability for simulating transient

operations. The components of the engine model consist of a single stage high-

pressure ratio fan with variable inlet stator vanes, booster with independent hub

and tip stator vanes, high-pressure mixed flow compressor, double-annular combus-

tor, high-pressure and low-pressure turbines, afterburner, and nozzle components.

The components of the engine model and station numbering are provided in Figure

5.3. The stations are numbered at the exit condition of each component starting

from the flight conditions and inlet as the first station. The health of the engine

is described by eleven quality parameters that include the efficiency scalar of the

combustor (η4) and the flow scalars and efficiency scalars of the fan (ζ2 and η2),

the compressor (ζ27 and η27), the booster (ζ27d and η27d), and the high pressure

and low pressure turbines (ζ41, η41, ζ49, and η49). The open-loop engine model

has three state variables, which are the low-pressure and the high-pressure rotor

speeds, as well as the average metal (wall) temperature. Together with its ten

actuators, each of which is modeled by a second order differential equation, total

number of states associated with the augmented plant model is twenty three.

5.3 Description of the Simulation Test Bed of a

Permanent Magnet Synchrnous Motor

This section describes the simulation test bed that is a representation of an inverter-

driven permanent magnet synchronous motor (PMSM) [77], as depicted in Fig. 5.4.

The simulation model of a generic PMSM , without a damper winding, is similar

to that of a wound-rotor synchronous machine under the following simplifying

assumptions:

• Negligible magnetic field saturation;

69

• Negligible eddy current loss and hysteresis loss;

• Negligible field current dynamics;

• Sinusoidal induced electromotive force (EMF);

In rotor reference frame, the governing equations of the stator voltage are given

as:

vq = Riq +
dλq
dt

+ ωsλd (5.2)

vd = Rid +
dλd
dt

− ωsλq (5.3)

where the subscripts q and d have their usual significance of quadrature and direct

axes in the equivalent 2-phase representation; and

λq = Lqiq and λd = Ldid + λaf (5.4)

with v, i, and L being the corresponding axis voltages, stator currents and in-

ductances; R and ωs are the stator resistance and inverter frequency, respectively,

while λaf is the flux linkage of the rotor magnets with the stator.

The generated electromagnetic torque is expressed as:

Te = 1.5P [λaf iq + (Ld − Lq)idiq] (5.5)

and the equation of motor dynamics is given by:

Te = TL +Bωr + J
dωr

dt
(5.6)

where P is the number of pole pairs, TL is the load torque, B is the damping

coefficient, ωr is the rotor speed, and J is the moment of inertia. The rotor speed

ωr = ωs/P .

In state-space setting, the governing equations of the PMSM take the following

form:

diq
dt

= (vq − Riq − ωsLdid − ωsλaf) /Lq (5.7)

70

va

vb

vc

Torque

iq,ref

id,ref

i0,ref

θ

iabc,ref

dq2abc

va

iabc,ref

iabc

vb

vc

PWM

Inverter

PI+
-

N

iabcω

PMSM

Controller

Σ

Commanded

RPM

Measurements

θ

Figure 5.4. Inverter-driven permanent magnet synchronous motor (PMSM) system

did
dt

= (vd −Rid + ωsLqiq) /Ld (5.8)

dωr

dt
= (Te − TL − Bωr) /J (5.9)

In the control scheme shown in Fig. 5.4, id is forced to be zero. Consequently,

λd = λaf and Te = 1.5Pλaf iq (5.10)

In the above equation, the torque Te is proportional to the quadrature axis current

because the magnetic flux linkage λaf is constant.

In the simulation test bed, the motor model is a three-phase four-pole device

rated at 1.1 kW , 220 V , 3000 rpm and is fed by a pulse-width-modulated (PWM)

inverter. The stator resistance of the motor is Rs = 0.05 Ω; the quadrature-axis

and direct-axis inductances are: Lq = Ld = 6.35×10−4H ; the nominal flux linkage

λaf = 0.192 Wb; the rotor inertia J = 0.011 kg m2; and the friction factor is

B = 0.001889 kgm2 s.

71

A simple hysteresis current controller has been employed for controlling the

power circuit that drives the PMSM , as seen in Fig. 5.4. Two control loops have

been employed. The inner loop regulates the motor’s stator currents, while the

outer loop uses a proportional-integral controller to regulate the motor’s speed.

In this control scheme, the line currents ia, ib and ic are measured. The reference

values are compared with the actual values of the currents, and the error signal,

thus constructed is used for generating the gate turn on/off commands. In the

present scenario a hysteresis band of 0.25A on either side of the reference current

i is employed.

Figure 5.5. Demagnetization property of Neodymium-Iron-Boron (Nd-Fe-B) [1]

Chapter 6
Results

6.1 Superiority of Symbolic Dynamic Filtering

over other methods

Fig. 6.2(a) compares the performance of SDF with Bayesian filter-based methods

(i.e., particle filter (PF) and unscented filter (UKF)). These filters are calibrated

to the nominal condition of β = 0.1, and the filter is designed to track both states

(e.g., y(t) and ẏ(t)), where 50 particles are used for the particle filter, as a tradeoff

between tracking performance in the nominal conditions and CPU execution time

and memory requirements. For unscented filtering, the parameter κ is set equal to

3 (see A), which is reported to be optimal for Gaussian priors [78]. For both PF

and UKF, the variance of the zero-mean Gaussian process noise is set to 0.01 and

the variance for zero-mean Gaussian measurement noise is 0.05. The Monte Carlo

Markov Chain (MCMC) analysis has been carried out on 10, 000 data points,

sampled at a rate of Ts = 0.01.

Figure 6.2(b) compares SDF for detection of anomaly patterns to MLPNN and

RBFNN neural networks as well as Principal Component Analysis (PCA). and

Bayesian Filter-based methods (PF and UKF). The Multilayer Percepron Neural

Network (MLPNN) consists of three hidden layers with 50 neurons in each one

of them and an output layer with one neuron (as the number of output is one).

Tangent sigmoid functions have been used in the hidden layers as transfer functions,

while the output layer uses a linear function. On the other hand, the Radial Basis

73

Function Neural Network (RBFNN) uses only one hidden layer and one output

layer (with one neuron) as described earlier. Optimal training was obtained using

100 neurons in the hidden layer. The hidden layer uses radial basis function,

whereas the output layer uses linear function as transfer functions. For training

of the network, two thousand data points are chosen from the input-output time-

series data set of the nominal system, i.e., with β = 0.1 at steady state.

The same input and target vectors are used for training of MLPNN and

RBFNN . In both cases, the error goals are chosen so that the network could

follow the target with reasonable accuracy. In the estimation step of the networks,

four thousand data points have been chosen from the steady-state input-output

time series data of the system. The error sequence is generated by taking point

by point difference between the system output and the output generated from the

neural networks. The anomaly measure µ is calculated as described in Section 2.3.

Figures 6.2(a) and Fig. 6.2(a) exhibit a family of normalized profiles of anomaly

measure µ versus the dissipation parameter β, where each profile show gradual

increase in µ until the bifurcation at β ≈ 0.33. Changes in the value of µ, its slope

(i.e., ∂µ
∂β
), and its curvature (i.e., ∂2µ

∂β2) provide early warnings for a forthcoming

major change in the system dynamics. From this perspective, the performance of

SDF is superior to that of Bayesian filtering, both types of Neural networks, and

other statistical methods (i.e., PCA and KRA). It is also noted that the profile of

SDF is smoother than those of PF and UKF. The smoothness of SDF reduces false

alarms particularly for small changes in β from the nominal condition. Similarly,

SDF outperforms RBFNN , MLPNN , PCA, and KRA.

Table 6.1 provides a comparison of execution time and memory requirement

of the afore-mentioned seven methods for computation of the anomaly measure µ.

In each case, the CPU time for a single operation cycle at a time epoch, listed in

Table 6.1, is obtained from the average of execution time for operation cycles at

16 consecutive slow time epochs on a 3.40 GHz Pentium 4 processor in the Matlab

7.0.1 environment. As seen in Table I, the execution time varies from a fraction

of millisecond for KRA to hundreds of seconds for PF. Execution time for Neural

Network-based methods and SDF are comparable although RBFNN is faster than

MLPNN and SDF. However, Bayesian filters UKF and PF are one and two orders

of magnitude slower than SDF, respectively. The requirement of (random access)

74

−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)
S

ta
te

 V
ar

ia
bl

e
dy

(t
)/

dt

(a) Phase plot for β =
0.10

−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)

S
ta

te
 V

ar
ia

bl
e

dy
(t

)/
dt

(b) Phase plot for β =
0.30

−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)

S
ta

te
 V

ar
ia

bl
e

dy
(t

)/
dt

(c) Phase plot for β =
0.32

−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)

S
ta

te
 V

ar
ia

bl
e

dy
(t

)/
dt

(d) Phase plot for β =
0.34

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

State Probability Histogram

P
ro

ba
bi

lit
ie

s

(e) SDF Histogram for
β = 0.10

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

State Probability Histogram

P
ro

ba
bi

lit
ie

s

(f) SDF Histogram for
β = 0.30

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

State Probability Histogram

P
ro

ba
bi

lit
ie

s

(g) SDF Histogram for
β = 0.32

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

State Probability Histogram

P
ro

ba
bi

lit
ie

s

(h) SDF Histogram for
β = 0.34

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10

12

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(i) RBFNN Density for
β = 0.10

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10

12

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(j) RBFNN Density for
β = 0.30

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10

12

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(k) RBFNN Density
for β = 0.32

−0.2 −0.1 0 0.1 0.2
0

2

4

6

8

10

12

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(l) RBFNN Density for
β = 0.34

−2 −1 0 1 2
0

2

4

6

8

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(m) PF Density for
β = 0.10

−2 −1 0 1 2
0

2

4

6

8

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(n) PF Density for β =
0.30

−2 −1 0 1 2
0

2

4

6

8

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(o) PF Density for β =
0.32

−2 −1 0 1 2
0

2

4

6

8

Innovation

P
ro

ba
bi

lit
y

D
en

si
ty

(p) PF Density for β =
0.34

Figure 6.1. Evolution of anomaly patterns for changes in system dynamics

memory in each case is more or less similar (less than 5MB), which is insignificant

for a commercially available laptop computer. However, for RBFNN and MLPNN,

the training phase requires 45MB to 60 MB of memory, which is also reasonable.

75

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Dissipation parameter β

N
or

m
al

iz
ed

 A
no

m
al

y
M

ea
su

re
 µ

PCA
RBFNN
MLPNN
SDF

(a) Comparison of SDF , ANN , and PCA

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Dissipation parameter β

N
or

m
al

iz
ed

 A
no

m
al

y
M

ea
su

re
 µ

PF
UKF
KRA
SDF

(b) Comparison of SDF , Bayesian filtering, and KRA

Figure 6.2. Evaluation of Gradually Evolving Anomaly Patterns

76

Table 6.1. Comparison of execution time
Anomaly detection Execution Memory
method time requirement

KRA 2.23× 10−3 sec 2.95 MB
PCA 4.30× 10−2 sec 2.88 MB
RBFNN 8.09× 10−1 sec 4.05 MB
MLPNN 4.60× 100 sec 4.15 MB
SDF 4.65× 100 sec 2.94 MB
UKF 5.10× 101 sec 4.19 MB
PF 2.74× 102 sec 4.69 MB

6.2 Results for Statistical Estimation of multiple

parameters

This section presents the test results of multiple-parameter estimation on two elec-

tronic circuits, namely the externally excited Duffing system [73] and the unforced

van der Pol system [79], on the test apparatus described in a previous publica-

tion [67].

6.2.1 Results on Duffing system

This subsection analyzes and presents the experimental results for multiple pa-

rameter estimation in the Duffing system described by Eq. (5.1). For the forward

problem/training (see Subsection 3.5), training data sets were generated with α1

ranging from 0.10 to 1.50 in steps of 0.05, and β ranging from 0.10 to 0.40 in steps

of 0.02, and; the nominal condition was chosen as α1 = 1.0 and β = 0.1; and an

SDF was constructed with the number of states in the automaton |Σ| = 8. This

information on time series data was then fed into the SDF to compute the compo-

nents pj of pattern vectors p at different values of the parameter pair (α1, β). As

the dynamics of the Duffing system changed due to variations in the parameters α1

and β, the statistics of the symbol sequences were altered and so were the pattern

vectors.

For the inverse problem/testing (see Subsection 3.5.2), experiments were con-

ducted at the assigned values of the parameters that were different from those in

the forward problem of SDF but within the range of α1 and β where the training

77

was conducted. The components pj of pattern vectors p at different values of the

parameter pair (α1, β) were computed from the data sets that were generated with

these assigned values of parameters. For a typical test at α1 = 0.75 and β = 0.23,

the 3-dimensional plot in Fig. 6.3 shows the bivariate probability distribution, fol-

lowed by a close-up view of the contour plots in Fig. 6.4. The parameter pair

(α1, β) is crisply identified by a single, sharp spike in the probability distribution

plot of Fig. 6.3, where the estimates α̂1 and β̂ lie in the ranges of (0.745, 0.755)

and (0.235, 0.240), respectively, as seen in Fig. 6.4. Table 6.2 shows the results for

mean, standard deviation, and confidence intervals of the parameter estimates, α̂1

and β̂ for test runs with four different pairs of αtest
1 and βtest that do not belong

to the set S of training data. It is seen that the estimated mean values of both α1

and β are orders of magnitude greater than their respective standard deviations

σ̂α1 ,

√

Ĉα1α1 and σ̂β ,

√

Ĉββ. This observation suggests that the estimates are

relatively close to the true values of the parameters. It is also seen in Table 6.2

that the correlation coefficient
Ĉα1β

σ̂α1 σ̂β
is a positive fraction, which implies that the

parameters α1 and β are positively correlated. The rationale for this correlation

is that variations even in a single component of a dynamical system may cause

simultaneous variations in several parameters of its governing equations. In the

Duffing system, usage of different but identically manufactured electronic cards

caused simultaneous variations of both parameters α1 and β in Eq. (5.1).

Table 6.2. Predicted values of
(

α̂1, β̂
)

for the Duffing Equation

Test
Num.

Estimates

Parameter α1 Parameter β

αtest
1 α̂1 σ̂α1 Ĉα1β βtest β̂ σ̂β

1 0.30 0.30 8.4e− 4 2.67e−7 0.10 0.10 4.0e− 4

2 0.45 0.46 0.015 5.15e−4 0.20 0.20 0.057

3 0.15 0.15 3.3e− 3 2.465e−5 0.14 0.14 8.0e− 3

4 0.65 0.65 3.0e− 3 8.16e−6 0.35 0.36 7.0e− 3

78

0.1
0.2

0.3
0.4

0.5

1

1.5
0

0.5

1

Parameter βParameter α
1

P
ro

ba
bi

lit
y

Figure 6.3. Joint probability distribution of the parameter pair α1 and β

Table 6.3. Confidence intervals for the Duffing Equation

Test
num

Estimates

95 % Confidence Interval 90 % Confidence Interval

(α1min
, α1max) (βmin, βmax) (α1min

, α1max) (βmin, βmax)

1 (0.30, 0.30) (0.30, 0.30) (0.10, 0.10) (0.10, 0.10)

2 (0.45, 0.46) (0.20, 0.20) (0.45, 0.46) (0.20, 0.20)

3 (0.15, 0.15) (0.14, 0.14) (0.15, 0.15) (0.14, 0.14)

4 (0.65, 0.65) (0.36, 0.36) (0.65, 0.65) (0.36, 0.36)

6.3 Results on van der Pol System

This subsection analyzes and presents experimental results for multiple-parameter

estimation in the van der Pol system described by Eq. (B.4). For the forward

problem/training (see Subsection 3.5), training data sets were generated with both

parameters µ and ω ranging from from 0.5 to 4.0 in increments of 0.5; and an

SDF was constructed with the number of states in the automaton |Σ| = 8. This

information on time series data was then fed into the SDF to compute pattern

79

Parameter β

P
ar

am
et

er
 α

1

0.235 0.237 0.239 0.24

0.725

0.735

0.745

0.755

0.765

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4. Zoomed-in contour plots of the parameter pair α1 and β

vectors p and deviation measures M at different values of the parameter pair

(µ, ω). As the dynamics of the van der Pol system changed due to variations in

the parameters µ and ω, the statistics of the symbol sequences were altered and so

were the pattern vectors. However, unlike the Duffing system, no abrupt change

(e.g., bifurcation) in the dynamic behavior was observed as µ and ω were varied

from the nominal condition.

For the inverse problem/testing (see Subsection 3.5.2), experiments were con-

ducted at the assigned values of the parameters that were different from those in

the forward problem of SDF, i.e., they do not belong to the set S of training data.

Pattern vectors p and the associated deviation measures M were estimated from

of the data sets generated with these assigned values of parameters. Table 6.4

shows the results for mean, standard deviation, and confidence intervals of the pa-

rameter estimates, µ̂ and ω̂ for test runs with four different pairs of µtest and ωtest.

It is seen that the estimated mean values of both µ and ω are orders of magnitude

greater than their respective standard deviations σ̂µ ,

√

Ĉµµ and σ̂ω ,
√

Ĉωω.

This observation suggests that the estimates are relatively close to the true values

80

of the parameters. It is also seen in Table 6.4 that the correlation coefficient Ĉµω

σ̂µσ̂ω

is close to 0, implying that the parameters µ and ω are very weakly correlated.

Table 6.4. Predicted values of (µ̂, ω̂) for the Van der Pol Equation

Test
Num.

Estimates

Parameter µ Parameter ω

µtest µ̂ σ̂µ Ĉµω ωtest ω̂ σ̂ω

1 2.50 2.50 0.006 −6.7e−6 1.00 1.00 0.028

2 3.30 3.32 0.059 3.0e−4 3.40 3.42 0.035

3 4.00 3.99 0.069 1.1e−5 2.50 2.49 0.087

4 3.50 3.51 0.016 2.5e−4 4.00 3.99 0.220

Table 6.5. Confidence intervals for the Van der Pol Equation

Test
num

Estimates

95 % Confidence Interval 90 % Confidence Interval

(µmin, µmax) (ωmin, ωmax) (µmin, µmax) (ωmin, ωmax)

1 (2.49, 2.51) (0.99, 1.01) (2.49, 2.50) (0.99, 1.00)

2 (3.29, 3.35) (3.39, 3.43) (3.30, 3.33) (3.40, 3.42)

3 (3.98, 4.02) (2.46, 2.52) (3.99, 4.00) (2.48, 2.50)

4 (3.48, 3.52) (3.75, 4.12) (3.49, 3.51) (3.89, 4.08)

6.4 Estimation of multiple parameters for the

PMSM

6.4.1 Failure Modes

Failure due to demagnetization of the permanent magnet in both surface-mounted

and buried-magnet PMSMs have been widely studied in literature [1]. Demagneti-

zation can occur due to several reasons, notable among which are demagnetization

due to a strong opposing magnetic field, and also due to high temperature.

81

A strong opposing magnetic flux can be created in the event of a short circuit

between one terminal of the machine and the (normally) isolated neutral point

of the machine, short circuit between two or three terminals of the machine and

short circuit in one of the diodes or electronic valves of the inverter, giving rise to

a direct current (DC) in the machine even in short circuit steady state.

Risk of irreversible demagnetization is present if the counter-acting flux lowers

the flux density in the magnet to a point (HD, BD) that is just above the so-called

critical knee of the magnet’s BH-curve, which has been illustrated in Fig. 5.5.

The common method to check the demagnetization of the permanent magnets

due to armature reaction is described in [80]. The disadvantage of this method is

the assumption that the permanent magnet pole has uniform saturation. A more

accurate way to check the demagnetization is with the finite element method.

Partial or complete demagnetization can also result from high temperature of

the magnets and the winding insulation. The temperature increases the resistance

of the winding wires and the increased resistance affects the applied current to

the motor. At higher temperatures (∼ 1000C), an appreciable deterioration in

acceleration might be noticed, as the torque generated by a reduced magnetic flux

drops below its nominal value.

Table 6.6. Predicted values of
(

λ̂af , B̂
)

for the PMSM

Test
Num.

Estimates

Parameter λaf Parameter B

λtestaf λ̂af σ̂λaf
Btest B̂ σ̂B

1 0.075 0.075 1.6e− 7 0.60 0.60 1.6e− 8

2 0.09 0.09 6.2e− 7 0.80 0.80 1.2e-8

3 0.11 0.11 1.5e− 9 0.70 0.70 2.3e− 8

4 0.10 0.10 3.8e− 9 0.90 0.90 7.0e− 9

Fatigue failure of bearings is quite common even under normal operating con-

ditions with balanced load. Factors which affect smooth operation of the bearing

are normal internal operating stresses caused by vibration, inherent eccentricity,

82

Table 6.7. Predicted values of
(

λ̂af , B̂
)

and confidence intervals for the PMSM

Test
No.

Estimates

95 % Confidence Interval 90 % Confidence Interval
(

λafmin
, λafmax

)

(Bmin, Bmax)
(

λafmin
, λafmax

)

(Bmin, Bmax)

1 (0.60, 0.60) (0.075, 0.075) (0.60, 0.60) (0.075, 0.075)

2 (0.09, 0.09) (0.80, 0.80) (0.09, 0.09) (0.80, 0.80)

3 (0.11, 0.11) (0.70, 0.70) (0.11, 0.11) (0.70, 0.70)

4 (0.10, 0.10) (0.90, 0.90) (0.10, 0.10) (0.90, 0.90)

and bearing currents due to solid state drives [81], as well as external causes, such

as abnormal mounting. Ball bearing related defects manifest themselves as outer

bearing race defect, inner bearing race defect, ball defect, and train defect. Specific

information concerning the bearing construction is indispensable for predicting the

exact failure characteristics. However it may be safely assumed, that all such per-

formance deteriorations principally manifest themselves as increase in the bearing

friction.

6.4.2 Results on simulation model

In this dissertation, health-monitoring of permanent magnet synchronous motors

has been proposed by a nonlinear time series analysis technique called symbolic

dynamic filtering in conjunction with Hilbert Transform Space Partitioning [64].

The motor described in Section 5.3 is assumed to undergo a steady deterioration in

terms of permanent magnet flux linkage, due to either of the two reasons mentioned

above. The flux linkage λaf drops from its nominal value of 0.192Wb to 0.007Wb.

At the same time the friction in the bearing increases from the nominal value of

B = 0.5Nms to a value of B = 1Nms. The line current signals ia, ib, ic, which

in principle reflect both these deteriorations are collected from the motor output

at each of these off-nominal partially-demagnetized state of the rotor running on

bearings with gradually increasing friction.

This data is then Hilbert Transformed and converted into discrete symbols.

83

Maximum Entropy partitioning is employed in the radial direction while the data

is uniformly partitioned in the angular direction. The discretization procedure has

been briefly discussed in Section A and follows the procedure described in Section

2.4. Here an alphabet size of |Σ| = 15 and a depth of D = 1 has been employed.

This information on time series data was then fed into the SDF to compute the

components pj of pattern vectors p at different values of the parameter pair λaf , B.

The pattern vector obtained by constructing the D-Markov machine representation

of the motor characterizes the health condition of the motor in general. As the

dynamics of the PMSM system changed due to deterioration in flux linkage, as

well as friction coefficient, the statistics of the symbol sequences were altered and

so were the pattern vectors.

The angle-measure described in [2] is used to obtain the departure of the system

from its nominal operating condition. The resulting measure has been plotted

in Fig. 6.5 against the slowly deteriorating permanent magnet flux linkage. The

concave nature of the anomaly measure curve at incipient fault conditions is highly

desirable to suppress excessive false warnings, while the convex nature in the later

part, when the system is near-critical condition guarantees high sensitivity. the

flattening out of the curve after the flux linkage drops below the threshold indicates

that hereafter the motor is almost inoperable.

For the inverse problem, experiments were conducted at several random pre-

determined values of the parameters that were different from those in the forward

problem/training of SDF. The components pj of pattern vectors p at different val-

ues of the parameter pair were computed from the data sets that were generated

with these assigned values of parameters. The parameter pair is crisply identified

by a single, sharp spike in the probability distribution plot. Table 6.2 shows the

results for mean and confidence intervals of the parameter estimates for four dif-

ferent test runs that did not belong to the set of training data. It is seen that the

estimated mean values of the flux linkage (λaf) and friction coefficient (B) are very

close to their true values and are orders of magnitude greater than the respective

standard deviations σ̂λaf
and σ̂B.

84

0.080.10.120.140.160.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flux Linkage λ
af

N
or

m
al

iz
ed

 A
no

m
al

y
M

ea
su

re

Figure 6.5. Anomaly measure in a permanent magnet synchronous motor

6.5 Results and discussion on using Sensor Fu-

sion for the estimation of multiple parame-

ters

The above formulation of the inverse problem uses information from all the sensors

yj for j = 1, 2, ..., |Y|, i.e., the information from all sensors are fused together to

estimate the fault level in the engine test case. However, this fusion technique

allows the user to choose the number and the combination of sensors to be used

for the multiple fault estimation. For example, let us assume that the user just

wants to use only one sensor, say, Sensor y1. Then, only blocks pertaining to y1 are

to be selected from the forward problem pattern database. Thus, elements mj
i (s

k)

for j = 1 and ∀i ∈ {1, 2, ..., N1 − 1} are selected from µ(sk) and elements γmn
xy (sk)

for m,n = 1 and ∀x, y ∈ {1, 2, ..., N1 − 1} are selected from Γ(sk) ∀sk ∈ S. Note,

85

that the selected block of the covariance matrices signify the correlation among

symbols for data from s1. However, to use more than one sensor information,

correlation among sensors also have to be considered along with correlation among

symbols, which is explained in the following example. In another example, if

both sensors s1 and s3 are to be used. Then, elements mj
i (s

k), ∀j ∈ {1, 3} and

∀i ∈ {1, 2, ..., Nj−1} are selected from µ(sk) and elements γmn
xy (sk), ∀m,n ∈ {1, 3}

and ∀x ∈ {1, 2, ..., Nm−1}, ∀y ∈ {1, 2, ..., Nn−1} are selected from Γ(sk) ∀sk ∈ S.
It follows from the above two examples that the elements of the test patterns need

to be selected corresponding to the sensors under consideration.

Remark 6.5.1. The current framework attempts to fuse information from different

sensors at feature level as opposed to the frameworks of data level or decision level

fusion. The advantages of the present sensor information fusion framework are

delineated below.

• Data level fusion techniques often encounter scaling problem while fusing in-

formation from sensors of different modality. However, the present technique

fuses the probability vector patterns, which does not have any scaling issue.

• Decision level fusion generally provides too coarse diagnosis of faults and also

requires in depth understanding of the physical system.

• Multi-dimensionality of the parameter space has been taken care of without

the use of product automata which leads to state explosion.

6.6 Validation on the C-MAPSS test-bed

The C-MAPSS simulation test-bed, developed at NASA, is built upon the model of

a commercial-scale two-spool turbofan engine and its control system. The engine

under consideration produces a thrust of approximately 400,000 N and is designed

for operation at (i) altitudes from sea level up to 12,200 m, (ii) Mach numbers from

0 to 0.90, and (iii) sea-level temperatures from approximately −50oC to 50oC. The

throttle resolving angle (TRA) can be set to any value in the range between 0◦

(minimum power) and 100◦ (maximum power).

86

(a) Gas turbine engine schematic

FAN LPC

HPC

+

DUCT

HPT

+

DUCT

LPT

P
2

T
2

P
21

T
21

P
24

T
24

BURNER

P
30

T
30

P
40

T
40

P
S30

P
48

T
48

P
50

T
50

DUCT

+

BYPASS

NOZZLE

Nc

Nf

(b) Gas turbine engine model configuration

Figure 6.6. C-MAPSS engine simulation test-bed

As seen in Figures 6.6(a) and 6.6(b), the simulation test-bed of the gas turbine

engine system consists of high pressure compressor (HPC), combustor, and high

pressure turbine (HPT), which form the core of the engine model; this subsystem

is also referred to as the gas generator. In the turbofan engine, the engine core is

surrounded by the fan and Low pressure compressure (LPC) in the front and an

additional low pressure turbine (LPT) at the rear; and fan, LPC and LPT are me-

chanically connected by an additional shaft. The fan shaft passes through the core

shaft and, due to this type of arrangement, the engine is called a two spool engine.

In contrast to gas turbine engines for military aircraft [11], a relatively small part

of the incoming air at the engine inlet passes through the fan and continues on

87

into the core compressor and then into the combustor, where it is mixed with fuel

and combustion occurs; therefore, this type of engine is known as a high-bypass

engine. The hot exhaust gas, called the core airflow, passes through the core and

LPT and then exits through the nozzle; and the rest of the incoming air passes

through the fan and bypasses, or flows around the engine. A gain-scheduled con-

trol system is incorporated in the engine system, which consists of (i) a fan-speed

controller for a specified throttle-resolver angle (TRA), (ii) three high-limit regula-

tors that prevent the engine from exceeding its design limits for core-spool speed,

engine-pressure ratio, and HPT exit temperature, (iii) the fourth limit regulator

that attempts to prevent the static pressure at the HPC exit from dropping too

low, (iv) acceleration and deceleration limiters for the core-spool speed, and (v) a

comprehensive logic structure that integrates these control-system components in a

manner similar to that used in real engine controllers such that integrator-windup

problems are avoided. To achieve fast execution of simulation runs, the sensors

and actuators are approximated to have instantaneous response, no computational

time delays, and no drift and or bias. Given the inputs of TRA, altitude (a) and

Mach number (M), the interactively controlled component models at the simula-

tion test-bed compute nonlinear dynamics of real-time turbofan engine operation.

Both steady-state and transient operations are simulated in the continuous-time

setting. Performance maps are used to provide steady-state representations of the

engine’s rotating components. Fluid momentum in the bypass duct and the aug-

mentor, mass and energy storage within control volumes, and rotor inertias are

also included to model transient operations. The entire test-bed code is written

on Matlab and Simulink platform.

As indicated earlier, this dissertation addresses estimation of those faults that

cause efficiency degradation in engine components. In the current configuration of

the C-MAPSS simulation test-bed, there are 13 health parameter inputs, namely,

efficiency health parameters (ψ), flow health parameters (ζ) and pressure ratio

modifiers, that simulates the effects of faults and/or degradation in the engine

components. Ten, out of these 13 health parameters, are selected to modify effi-

ciency (η) and flow (φ) which are defined [82] as

• η , the ratio of actual enthalpy change and ideal enthalpy change

88

• φ , the ratio of tip rotor velocity and axial fluid flow velocity

For the engine’s five rotating components (i.e., Fan, LPC, HPC, HPT and

LPT), the ten health parameters are: (a) fan (ψF , ζF), (b) low pressure compres-

sure (ψLPC , ζLPC), (c) high pressure compressor (ψHPC , ζHPC), (d) high pressure

turbine (ψHPT , ζHPT), and (e) low pressure turbine (ψLPT , ζLPT). Table 6.8 lists

the (commercially available) sensors and their locations (see Fig. 6.6(b)) that have

been used for multiple fault estimation in C-MAPSS engine test-bed.

Table 6.8. Required Engine System Sensors

Sensors Description
P24 LPC exit/ HPC inlet pressure
T24 LPC exit/ HPC inlet temperature
Ps30 HPC exit static pressure
T30 HPC exit/ Burner inlet temperature
T50 LPT exit temperature

7.5 15 22.5 30
77

78

79

80

81

82

83

Time(sec)

T
R

A
 (

de
g)

Figure 6.7. Throttle resolving angle (TRA) profile

89

6.6.1 Discussion

Time series data have been collected for different sensors under persistent excita-

tion of TRA inputs that have truncated triangular profiles with the mean value

of 80◦, fluctuations within ±2◦ and frequency of 0.056 Hz as shown in Fig. 6.7.

The ambient conditions are chosen to be at the sea level (i.e. altitude a = 0.0,

Mach numberM = 0.0) when the engine is on the ground for fault monitoring and

maintenance by the engineering personnel. The engine simulation is conducted

at a frequency of 66.67 Hz (i.e., inter-sample time of 15ms) and the length of the

simulation time window is 150 seconds, which generate 10, 000 data points for each

training or test case.

An engine component C is considered in nominal condition when both ψC and

ζC are equal to 1. Fault is injected in the component C by simultaneously reduc-

ing both ψC and ζC by same amount in the results reported here. Although the

algorithm described above, does not have any restriction on the dimension of the

parameter space, the result presented here considers simultaneous degradation of

two different components. Subsection 6.6.1.1 describes a fault condition, where

Fan and LPC are degraded simultaneously, whereas Subsection 6.6.1.2 analyzes

simultaneous degradation in HPT and LPT . For both training (i.e., forward prob-

lem) and testing (i.e., inverse problem), time series data from all sensors, listed in

Table 6.8, are generated with ψ and ζ ranging from 1.0 to 0.96 (i.e., 4% relative

loss in efficiency) in steps of 0.005 for the engine components under consideration.

For SDF analysis, the number of states in the PFSA is selected to be 15 for each

sensor after pre-processing the time series data by Hilbert transform and pattern

vectors are generated for each of the possible fault conditions. For example, in the

first case, patterns are generated for all possible combinations of the Fan and LPC

efficiency values with points in the square grid made by efficiency parameter val-

ues ranging from 1.0 to 0.96 in steps of 0.005. Fifty repetitions of each simulation

have been conducted to generate pattern vector statistics with injected process

and sensor noise. For testing (i.e., inverse problem), fault conditions are chosen

within the range of training data such that they do not coincide with the training

grid points.. The results of multiple-fault estimation are presented in the following

two subsections along with discussions on sensor fusion.

90

6.6.1.1 Fault estimation in Fan and LPC

A test pattern is generated for a given fault condition, ψF = ζF = 0.973 and

ψLPC = ζLPC = 0.981. The 3-dimensional plot in Fig. 6.8(a) shows the bivariate

probability distribution of the estimated fault condition, followed by a close-up

view of the contour plots in Fig. 6.8(b), where the results are generated from time

series of a single sensor, namely, Ps30. The estimates lie within the ±3σ bound

around the estimated mean (see Eq. (4.9)), where the variance σ2 is obtained as

a diagonal element of the estimated covariance matrix Ĉs (see Eq. (4.10)). In this

case, the estimates range from 0.9606 to 0.9704 for ψF and ζF , and from 0.9805

to 0.9813 for ψLPC and ζLPC, respectively. This indicates that the correct region

is located in the parameter space, which assigns highest probability to the nearest

training grid point.

6.6.1.2 Fault estimation in HPT-LPT

This example shows the result for a fault condition, ψHPT = ζHPT = 0.977 and

ψLPT = ζLPT = 0.985. In contrast to the previous example of fan and LPC, the

plots in Fig. 6.9(a) and Fig. 6.9(b) show that there is an ambiguity in estimation

when using information from only one sensor, namely Ps30. Although, it identifies

the correct region with significant probability, another fault condition is seen to

be identified with higher probability. Similar is the result if sensor T24 is used

as seen in Fig. 6.10(a) and Fig. 6.10(b). To resolve this ambiguity, the sensor

information fusion framework makes use of both Ps30 and T24 to correctly identify

the fault in the parameter space without any ambiguity, as seen in Fig. 6.11(a)

and Fig. 6.11(b). The estimates lie in the ranges (±3σ bound) of 0.9747 to 0.9753

for ψHPT and ζHPT and 0.9847 to 0.9853 for ψLPT and ζLPT , respectively; in this

case, highest probability is assigned to the training grid point that is nearest to

the test point.

91

0.96
0.97

0.98
0.99

1.00

0.96
0.97

0.98
0.99

1.00

0

0.2

0.4

0.6

0.8

1

LPC EfficiencyFan Efficiency

P
ro

ba
bi

lit
y

(a) Surface plot of fault estimation

LPC Efficiency

F
an

 E
ffi

ci
en

cy

0.960.970.980.991.00

0.96

0.97

0.98

0.99

1.00 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Contour plot of fault estimation

Figure 6.8. Fault estimation in Fan-LPC based on Ps30 sensor

92

0.96
0.97

0.98
0.99

1.00

0.96
0.97

0.98
0.99

1.00

0

0.1

0.2

0.3

0.4

0.5

LPT EfficiencyHPT Efficiency

P
ro

ba
bi

lit
y

(a) Surface plot of fault estimation

LPT Efficiency

H
P

T
 E

ffi
ci

en
cy

0.960.970.980.991.00

0.96

0.97

0.98

0.99

1.00 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Contour plot of fault estimation

Figure 6.9. Fault estimation in HPT-LPT based on Ps30 sensor

93

0.96
0.97

0.98
0.99

1.00

0.96
0.97

0.98
0.99

1.00

0

0.2

0.4

0.6

0.8

LPT EfficiencyHPT Efficiency

P
ro

ba
bi

lit
y

(a) Surface plot of fault estimation

LPT Efficiency

H
P

T
 E

ffi
ci

en
cy

0.960.970.980.991.00

0.96

0.97

0.98

0.99

1.00 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Contour plot of fault estimation

Figure 6.10. Fault estimation in HPT-LPT based on T24 sensor

94

0.96
0.97

0.98
0.99

0.10

0.96
0.97

0.98
0.99

1.00

0

0.5

1

LPT EfficiencyHPT Efficiency

P
ro

ba
bi

lit
y

(a) Surface plot of fault estimation

LPT Efficiency

H
P

T
 E

ffi
ci

en
cy

0.960.970.980.991.00

0.96

0.97

0.98

0.99

1.00 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Contour plot of fault estimation

Figure 6.11. Fault estimation in HPT-LPT based on Ps30 and T24 sensors

Chapter 7
Summary and conclusions

This dissertation presents an extension of Symbolic Dynamic Filtering (SDF) for

the statistical estimation of multiple parameters in nonlinear dynamical systems.

It also presents a methodology to perform parameter estimation when the system

is tapped by multiple sensors. The parameter estimation tool is sensor-data-driven

and is suitable for applications such as early detection of parametric faults for prog-

nosis of catastrophic failures in human-engineered systems. It has been shown that

the training process of the SDF -based parameter estimation method is significantly

less time-consuming than those of multi-layer-perceptron and radial-basis-function

neural networks. This is so because the underlying algorithm of SDF makes use of

a stopping rule [59,61,66] to limit the length of the time series and then compresses

the pertinent information into pattern vectors of low dimension.

A method is described in the dissertation that provides a closed form solution

of the estimated expected value and estimated covariance matrix of the parameter

vector. This parameter estimation method can be implemented in a sensor network

for real time execution on limited-memory small microprocessors, and also on the

sensor itself, in the case of smart sensors.

This dissertation also presents a methodology for multiple-fault estimation in

aircraft Gas turbine engines. It also proposes and validates a sensor-information-

fusion framework to alleviate certain problems of data-level (i.e., related to scaling)

and decision-level (i.e., resolution of detection) techniques for information fusion.

The proposed fault estimation tool is sensor-data-driven and is apparently appli-

cable for early detection of multiple faults for prognosis of catastrophic failures

96

in aircraft gas turbine engines. The underlying algorithm enables compression

of information into pattern vectors of low dimension for real-time execution on

limited-memory platforms.

The major contributions of this dissertation are listed below.

• Demonstration of the superiority of symbolic dynamic filtering to other meth-

ods commonly used such as Bayesian filtering, neural networks and statistical

methods.

• Information fusion of observed evidence to obtain a statistical estimate of

simultaneously varying parameters.

• Demonstration of possible non-uniqueness in parameter estimation, which

may result due to selection of a scalar deviation measure as a cost functional

in the multiple-parameter estimation problem.

• Using an underlying stopping rule to limit the length of the time series data

used, to obtain real time parameter estimation

• Robustness to process noise, sensor noise and small fluctuations in parameter

values, as discussed extensively in [3]

• Closed form solutions of estimated statistical parameters allowing for real-

time execution on limited-memory platforms.

7.1 Directions for future work

While there are many other issues that need to be addressed before the proposed

estimation method can be considered for industrial applications. The following

research topics are being currently pursued.

7.1.1 Extensions to the parameter estimation methodology

Several extensions are possible for the parameter estimation methodology pre-

sented in this dissertation. The technique can be extended for different types of

nonlinearities with structured and unstructured uncertainties. For example, only

97

one chaotic regime of the Duffing equation is presented. The technique can be

extended to estimate parameters over a much larger range of parameter values of

such a system. It is possible that different partitioning schemes would be required

for different regions of the parameter space. Different fault types, such as sensor

faults and actuator faults can be incorporated. Also, in this dissertation only the

state probability vector has been used for estimation. This only measures the state

occupation probabilities and does not take into account the transition probabili-

ties between the different states. Using this information can possibly improve the

robustness of the parameter identification framework.

An important extension would be to investigate the distribution used for the

state probability vector. In this dissertation, the feature vector is fitted only to

a Gaussian distribution. It is expected that the Dirichlet distribution [71] would

provide a better fit for a probability vector. The Dirichlet distribution is the

multivariate generalization of the beta distribution. It would also require fewer

parameters to fit a Dirichlet distribution to a state probability vector than to fit

a Gaussian dsitribution. For an n-dimensional feature vector, the Dirichlet distri-

bution would require n independent parameters, while a full Gaussian distribution

would require (n−1)(n+2)
2

parameters. However, it is a challenge to determine the

multi-variate goodness of fit for a given Dirichlet distribution.

7.1.2 Theoretical Extension: Non-extensive thermodynam-

ics and escort probabilities

Constantino Tsallis replaces Gibbs entropy with a non-extensive quantity, popu-

larly known as Tsallis Entropy. For long range interactions, such as gravity, it is

shown that energy is not extensive. This formalism is believed to be a natural

framework for studying systems with fractal structure. In this framework, entropy

is defined as:

Sq =
1−∑i p

q
i

q − 1
=
∑

i

β [bi] p
q
i (7.1)

where q is the degree of non-extensivity, and [bi] is defined as the bit-variance.

Similarly, the escort probabilities are defined as:

98

Pi =
{1− (1− q)β [bi]}1/(1−q)

∑

i {1− (1− q)β [bi]}1/(1−q)
(7.2)

Now, these escort probabilities, defined in a non-extensive sense can provide a

stronger basis for estimation than the normal case when q = 1. The reason for this

is that differences in the Kullback distance are amplified by taking higher values

of q, and the manifolds can be spread out in the higher dimensional space, thus

making it easier to make estimates.

7.1.3 Fisher information and Application to Sensor Net-

works

The function gµ,ν described in Section D.3 supplies a local coordinate in the n-

dimensional submanifold of the functional space of distributions. The Fisher metric

is merely an induced metric on this manifold. Now, we can regard the order of

the escort distribution q as a parameter in a one family distribution
(

P
(q)
i

)

. Now,

measure the Fisher distance between
(

P
(q)
i

)

and
(

P
(q+dq)
i

)

to obtain:

∂P
(q)
i

∂q
= (FqI − Ii)P

(q)
i (7.3)

FqI is the expected value of the information content, and Ii = − ln pi is the infor-

mation content. In the one dimensional case, we find:

D
[

P (q), P (q+dq)
]

= (∆qI)
2dq2 (7.4)

The Fisher metric (∆qI)
2 is the generalized variance of he bit content.

(∆qI)
2 =< I2 >q − < I >2

q (7.5)

The ordinary bit variance is recovered in the limit as q → 1. The Fisher

information is related to the problem of statistical parameter estimation. For an

unbiased estimator of q, the error δq obeys the Cramer Rao inequality:

(δq)2 × (∆qI)
2 ≥ 1 (7.6)

99

Hence, the generalized bit variance as the metric gives the fundamental limit

for the precision of estimate of the order of the escort distribution.

There are two major challenges in sensor networking for information fusion

• The sensors generate more time series data than the network is capable of

transmitting to the base station.

• Relative significance of data generated at a particular location could be highly

variable

The first issue is addressed through the use of the symbolic domain, and a

comprehensive evaluation has been provided in this proposal showing the benefits

of working with symbols. The second issue is being addressed through thermody-

namic quantities such as Fisher information and bit variance. The Cramer Rao

inequality can be interpreted as follows: For each probability, there is a trade-off

between sensitivity of the thermodynamic state to the system parameters, and

the sensitivity of the probability to parameters such as sensor noise. Resource

allocation can be determined using the formalism outlined above.

7.1.4 Sensor fusion using Cross D-Markov methods

There is an inherent loss of information when moving from a symbol sequence

to a probabilistic finite state automaton (PFSA). The D-Markov machine is one

method that is used in this dissertation, for both single and multiple sensors.

However, several hierarchical fusion schemes can provide tractable solutions. One

such method is the Cross D-Markov method being developed for co-dependence

aware sensor fusion. Let A1 and A2 be the PFSAs corresponding to symbol

streams ω1 and ω2 respectively. The cross D-Markov machine A12 consists of:

• The states Q1 from A1 and the alphabet set Σ2 from A2.

• The symbol generation matrix Π̃12 is of size |Q1| × |Σ2|.

• The distance measure can be defined as µ = d(Π̃, Π̃0) with respect to a

reference symbol generation matrix.

This method can exploit access to symbol level co-dependence between different

modalities to reduce information loss.

Appendix A
Construction of Anomaly Detection

Algorithms

This appendix briefly reviews the rudimentary principles of commonly used pattern

recognition tools that have been compared with SDF in Chapter 2.

A.1 Bayesian Filters

Bayesian filters provide a framework for state estimation for both linear and non-

linear problems [46]. It is assumed that the states evolve according to a generalized

model and generate discrete-time observations as:

xk+1 = f(xk, wk, uk); yk = g(xk, vk, uk) (A.1)

where xk is the state vector; yk is the observation vector; uk is the deterministic

input; vk is the observation noise; and wk is the process noise. Given noisy observa-

tions, the state estimation problem involves determining a probability distribution

for the system states, i.e., to determine p(xk|yk). The following information is

assumed to be available:

1. Initial probability distribution of the states p(x0)

2. Functional form of the probability density p(xk|yk)

3. Probability distribution of the observation noise

101

Bayesian techniques largely follow a recursive predictor/corrector determina-

tion of the probability density function (pdf). The predictor stage forms the es-

timate p(xk|yk−1) while the corrector stage uses the most current observation and

yields p(xk|yk). The recursive determination implies that p(xk|yk) is constructed

from p(xk−1|yk−1). In a non-Markov setting, multiple observations generate the

estimate, and construct p(xk|Yk) where Yk represents all observations from time 1

to k i.e. Yk = y1:k. Generalized recursive Bayesian state estimation is executed as:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(A.2)

where

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (A.3)

depends on the density function p(yk|xk) defined by measurement model and the

known statistics of vk. In the corrector stage, the measurement yk is used to modify

the prior density to obtain the required posterior density of the current state.

The recurrence relations in Eqs. (A.2) and (A.3) constitute a formal solution

to the Bayesian state estimation problem. In general, these equations are not

analytically solvable; hence, numerical approximations are sought. Note that an

analytic solution exists for f and h being linear functions with additive white

Gaussian noise v and w. This issue has been addressed by numerical approaches

that include Particle Filtering and Sigma Point Kalman Filtering. These two

methods are succinctly described below.

Particle Filtering attempts to approximate each distribution using a series of

particles, and updates the distribution at each step, depending on the observation.

Sigma Point Filtering makes a Gaussian assumption, and tries to model how the

mean and covariance travel through a non-linear process using a series of points

known as Sigma Points and an Unscented Transform. Due to this, the process is

also known as Unscented Kalman Filtering. The steps needed to solve the Bayesian

state estimation problem are succinctly described below.

102

A.1.1 Particle Filter (PF)

The particle filter [83] is a commonly used model based approach for anomaly

detection. Two forms of the Particle Filter have been investigated - Sampling Im-

portance Resampling (SIR), and Sampling Importance Sampling (SIS) [45]. Both

algorithms involve generating a number of particles according to an initial distri-

bution, and then passing these particles through an initial model of the system.

After the first observation, the particles are weighted according to their Euclidean

distance from the true observation. SIS and SIR filters differ in the stage where

the particles are resampled. In SIR filtering, the particles are redistributed with

particles of greater weight being given higher probabilities. In SIS filtering, the

distribution is allowed to evolve without the effect of these weights. The histogram

of these particles represents a multi-point approximation of the density function of

the physical process evolving with time, and the mean and confidence intervals for

the state estimates can be determined from this distribution. The particle filter

algorithm is presented below.

1. Initialize time at t = 0 and sample N particles
{

x(t)(i)
}N

i=1
from an initial

distribution can be assumed to be Gaussian.

2. Generate N observations
{

y(t+ 1)(i)
}N

i=1
using the system and observation

model.

3. Obtain the true observation y(t+ 1) and compute weights

q(t)(i) = p(y(t)|x(t|t−1))(i) according to the distribution of the measurement

noise, and normalize the weights: q̃(t) = q(t)(i)
∑

q(t)(i)

4. Resample the particles according to a new distribution that is specified by

the normalized importance weights: Pr(x(t|t))(i) = Pr(x(t|t−1)(i)) = q̃(t)(i)

5. Generate a new set of updated particles according to the distribution p(x(t+

1|t)|x(t|t)(i), y(t)).

6. Increase t by 1 and repeat from step 2.

103

A.1.2 Unscented Kalman Filter (UKF)

The unscented Kalman filter [35] takes a different approach from the extended

Kalman filter [44] in state estimation. In general, it is more convenient to approx-

imate a probability distribution than it is to approximate an arbitrary nonlinear

function or transformation. Following this argument, it is possible to generate a

set of points whose sample mean and sample covariance are x̂k|k and Pk|k respec-

tively. The nonlinear function is applied to each of these points in turn to yield a

transformed sample, and the predicted mean and covariance are calculated from

the transformed sample. The objective is to determine the output distribution by

passing a few deterministically chosen points through the system, rather than a

large number of stochastically chosen particles. Although this approach apparently

resembles a Monte Carlo method, the samples are not drawn at random. Rather,

the samples are deterministically chosen so that they capture specific information

about the distribution. The system provides a Gaussian assumption of the output

distribution, and hence is a form of a Kalman filter. One point is chosen for the

mean of the system, and two points are chosen for calculating the variance in each

dimension. These points are known as Sigma Points, and the principle involved is

known as the Unscented Transform. Given the dimension n of the state space of

the process, the equations for the Unscented Kalman Filter (UKF)are presented

below.

1. Initialize:

x̂0 = E[x0] (A.4a)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T] (A.4b)

2. For k ∈ {1, 2, . . . ,∞}, calculate the sigma points

(a) Sigma points update: χk−1 =
[

x̂k−1 x̂k−1 ±
√

(n+ κ)Pk−1

]

(b) Time update: χk|k−1 = f(χk−1, uk−1, k)

104

(c) Predicted mean: χ̂k|k−1 =Wχk|k−1

(d) Predicted covariance update: Pk|k−1 =W.(χk|k−1 − x̂k|k−1)

where κ is the scale factor for output state dimension. This is set to be 3 for a two

state system.

A.2 Neural Network Based Methods

Neural Network based fault detection and isolation techniques have been exten-

sively investigated for last two decades. Generally neural networks are used to

create a black-box model of the nominal system [84] to capture the possible fault

signature(s) in the system [85]. An adaptive neural-network-based fault detection

technique in nonlinear systems is presented in [86]. Liu and Scherpen presented

a different fault detection technique for nonlinear systems based on probabilistic

neural network filtering [49]. This paper investigates two different types of Neu-

ral Network algorithms, namely Multilayer Perceptron Neural Network (MLPNN)

and Radial Basis Function Neural Network (RBFNN), for the detection of anomaly

patterns.

A.2.1 Multi Layer Perceptron NN

A Multilayer Perceptron Neural Network is one of the simplest implementations

of the back-propagation algorithm. It consists of a finite number of hidden layers

of interconnected neurons and an output layer. The number of neurons in the

output layer is same as the number of outputs from the network. Multilayer

networks typically use sigmoid transfer functions, such as the logarithmic and

tangent sigmoid functions, in the hidden layers. In the case of a neuron model

with logarithmic sigmoid (LS) transfer function, LS takes an input vector {pi}
with associated weights vector {wi} fori = 1, 2 . . . n, then the output, a from the

neuron will be, a = LS (
∑n

i=1wipi + b) where bias to the neuron is b.

Output layer generally uses linear transfer functions. Networks with biases,

sigmoid hidden layers, and a linear output layer are capable of approximating any

105

function with a finite number of discontinuities. Input vectors and targeted output

vectors are used to train the network until it estimates the functional relation

between the input and output up to a required accuracy. The training starts

with an initial guess of weights and biases for each neuron. There are several

types of back-propagation training algorithm. In each case, the network weights

and biases are updated in the direction where the performance function decreases

most rapidly, i.e. in the direction of the negative of the gradient. Normally, the

performance function for feed-forward networks is the mean square error (MSE),

i.e., the average squared error between the network outputs and the target outputs.

For example, let xj be the vector of weights and biases for one neuron layer, gj be

the gradient and αj be the learning rate after the jth iteration. Then, the (j+1)th

iterated value of the weights and bias vector are: xj+1 = xj − αjgj.

Among different types of back-propagation algorithms, gradient descent or gra-

dient descent with momentum are slow for certain problems [87]. In this paper,

a relatively fast resilient back-propagation algorithm has been chosen, which uses

only the sign of the gradient to determine the direction of the weight update. The

advantage is that if the magnitude of the gradient becomes very small, the updat-

ing process continues in the correct direction until the weights and biases reach

their optimal values [88].

A.2.2 Radial Basis Function NN

A Radial Basis Function Neural Network uses only one hidden layer and one output

layer. It may require more number of neurons for the hidden layer compared to

that required by a standard feed-forward network. However, it usually takes less

time for training. Linear transfer function is used in the output layer and Radial

Basis Function is used for the hidden layer. The transfer function for radial basis

neuron is [50]: f(x) = e−x2
. In this neural network algorithm the input to the

radial basis transfer function is the vector distance between its weight vector w

and the input vector p, multiplied by the bias b, i.e x = d(w, p) × p. Sufficient

number of neurons are added in the hidden layer to bring the sum-squared error

below a threshold.

106

A.3 Statistical Pattern Recognition Techniques

There are many statistical pattern recognition techniques, of which two most com-

mon methods, namely, Principal component analysis (PCA) and Kernel Regression

Analysis (KRA), have been investigated in this paper.

A.3.1 Principal Component Analysis

Principal component analysis (PCA), also known as proper orthogonal decompo-

sition, is commonly used to reduce the dimensionality of a data set with a large

number of interdependent variables [51]; PCA is the optimal linear transforma-

tion with respect to minimizing the mean square reconstruction error but it only

considers second-order statistics [89].

Given a set of observed n-dimensional data points {x1, x2 . . . xn}, the goal of

PCA is to reduce the dimensionality of the observed vector x. This is realized

by finding m principal axes {(p)1, (p)2 . . . (p)m} onto which the retained variance

under projection is maximal.

The best known linear feature extraction technique, Principal Component Anal-

ysis (PCA) that makes use of Karhunen-Loéve transformation [89] to compute the

m largest eigenvectors of the covariance matrix of the N patterns, each of which

is m-dimensional. Since PCA uses the most expressive features (eigenvectors with

the largest eigenvalues), it effectively approximates the data on a linear subspace

using the mean squared error criterion.

A.3.2 Kernel Regression

Kernel regression method has been used to estimate the posteriori density function

of the measurements and is proven to be superior to histogram density apprais-

ers [90]. The kernel estimators are unbiased and smooth functions which are differ-

entiable. Kernel functions are also used in conjunction with neural networks [90]

and principal component analysis [51] in various fault detection and isolation ap-

plications.

A function K(x) : Rd → R is called a kernel function if K(x) is limited and

Borel measurable , i.e. if for |x| → ∞, the following relation holds:

107

∣

∣

∣

∣

∫

Rd

K(x)

∣

∣

∣

∣

<∞ (A.5)

K(x) is called normalized kernel function if K is unimodal, symmetric and non-

negative i.e. K(x) ≥ 0∀x ∈ R
d and the following condition holds :

∫

Rd K(x)dx = 1.

Therefore, a normalized kernel function has the necessary properties of a density

function. The following kernel functions are common:

1. Boxcar:

K(x) =

{

0.5 |x| ≤ 1

0 otherwise
x ∈ R (A.6)

2. Cosine:

K(x) =

{

π
4
cos
(

xπ
2

)

|x| ≤ 1

0 otherwise
x ∈ R (A.7)

3. Gaussian:

K(x) =
1√
2π
exp

(

−x
2

2

)

x ∈ R (A.8)

Let {x1, . . . xn} be sampled from a distribution with density f : Rd → R and

K(x) be a normalized kernel function. Then, the univariate kernel estimator for

the density f(x) is defined as:

f̂(x) =
1

Nh

N
∑

i=1

K

(

x− xi
h

)

(A.9)

where h is known as the window width or smoothing parameter and plays a similar

role to the bin width in the case of a histogram.

Kernel regression technique provides a suite of nonlinear functions for density

estimation [52]. They are also implicitly equivalent to radial basis functions in

neural network literature. In the case of fault detection and isolation, kernel func-

tions can essentially be used as a nearest neighbor type of classifier, where the

activation of a cluster is determined by the distance between the input vector and

the prototype vector. The kernel regression technique used herein for the fault

108

detection is extended to form a statistical model of the nominal data in terms of

probability density estimate of the measurements.

As new data enters into the anomaly detection system, it is compared with

the kernel regression of the density function of the nominal data. If it falls within

the boundaries defined by the kernel estimator model, then it is considered as a

nominal data; otherwise, the data is considered as faulty. A key requirement for

kernel regression technique is appropriate selection of the kernel function and the

order of the statistics of the model. From this perspective, a kernel function for

fault detection is chosen as:

K(x) = exp

(

− 1

θα

∑

i

|xi − µ|α
)

x ∈ R (A.10)

where the parameters α ∈ (0,∞) and (µ, θα) are the center and α
th central moment

of the data set, respectively., and are computed as:

µ =
1

N

N
∑

i=1

xi (A.11a)

θα =
N
∑

i=1

|xi − µ|α (A.11b)

For α = 1, K(.) becomes logistic; and for α = 2, K(.) becomes Gaussian.

Appendix B
Experimental setup for Duffing and

Vanderpol equations

This appendix provides a description of the electronic circuit for simulating the

Duffing Equation. Experiments were conducted on the test bed [72] described in

Section B.0.3. For the purpose of the experiment, a parameter is allowed to vary

continuously by a small amount. This parametric change simulates a change in

the health condition of the dynamical system. The objective of the experiment is

to distinguish these small variations and estimate the value of the parameter. The

experiments are repeated a number of times, by replacing a component (resistor)

in the experimental setup each time with a similar component. This is done to

establish robustness of the estimate with respect to component uncertainties.

B.0.3 Description of Experimental Apparatus

The experimental setup is a combination of electronic circuit designed with resistors

(R), capacitors (C) and operational amplifiers and a computer interfaced with the

circuit. The circuit consists of R-C networks which model the linear dynamics of

the process, adders and voltage amplifiers. The nonlinearity is generated in the

computer. The adder sums up the input signal and the terms generated by the

computer, thereby making the overall system nonlinear.

Linear IC LM-741 chips were chosen to build the voltage amplifier and adder

circuits since the operating frequencies are low (< 10 rad/sec). The R-C values of

110

both the networks were chosen to be equal. The resistance R was chosen to be 500

Ω and the capacitance C to be 1.00 mF. The software controlling the setup is coded

in MATLAB. The software utilizes functions from the Data Acquisition toolbox of

MATLAB. A single module of the test bed can model differential equations of order

four. Multiple modules in cascade can be used to realize higher order equations.

Figure B.1. Schematic of Experimental Setup

Keithley KPCI1801− HC plug-in board was used to interface the computer

with the circuit. This board has the maximum sampling rate of 333 KSamples/sec,

64 A/D channels (12 bit), 2 D/A channels and operates in the range of −5V to

+5V. The 12 bit A/D converters provide quantization levels of approximately

2.5mV. The process dynamics in the experiments were of the order of hertz(< 5

Hz). The process is sampled at 2000 Hz. The derivative and other terms were

computed numerically using such samples. This plug-in board can be used in

conjunction with the Data Acquisition toolbox of MATLAB. Figure B.1 provides

the schematic of the test bed. Figures B.2 and B.3 provide the circuit diagrams.

B.0.4 Implementation of Duffing Equation System

The linear circuit is described by Equation (B.1)

τ 2
d2v(t)

dt2
+ 2τ

dv(t)

dt
+ v(t) = Ã cos(ωt) (B.1)

111

where v(t) is the voltage across the second capacitor, τ = RC is the time constant

and Ã = 5.5.

The terms generated in the computer are:

1. (2τ − βτ 2)dv(t)
dt

2. (1.0− τ 2)v

3. −τ 2v3

By adding these terms to the input,we get

τ 2
d2v(t)

dt2
+2τ

dv(t)

dt
+v(t) = Ã cos(ωt)+(1.0−τ 2)v+(2τ−βτ 2)dv(t)

dt
−τ 2v3 (B.2)

Rearranging the terms and dividing by τ 2,we obtain the duffing equation

d2v(t)

dt2
+ β

dv

dt
+ v(t) + v3(t) = A cos(ωt) (B.3)

B.0.5 Implementation of van der Pol Equation System

The same circuit described above is also used to generate terms for the van der

Pol equation. The equation for this is given below:

d2x(t)

dt2
− µ(1− x2(t))

dx(t)

dt
+ ω2x(t) = 0 (B.4)

where nominal values of the parameters, to be estimated, are: µ = 1.0 and ω = 1.0.

The linear circuit is described by Equation (B.5)

τ 2
d2v(t)

dt2
+ 2τ

dv(t)

dt
+ v(t) = Ã cos(ωt) (B.5)

where v(t) is the voltage across the second capacitor, τ = RC is the time constant

and Ã = 5.5.

The terms generated in the computer are:

1. (2τ − βτ 2)dv(t)
dt

2. (1.0− τ 2)v

112

3. −τ 2v3

By adding these terms to the input,we get

τ 2
d2v(t)

dt2
+2τ

dv(t)

dt
+v(t) = Ã cos(ωt)+(1.0−τ 2)v+(2τ−βτ 2)dv(t)

dt
−τ 2v3 (B.6)

Rearranging the terms and dividing by τ 2,we obtain the duffing equation

d2v(t)

dt2
+ β

dv

dt
+ v(t) + v3(t) = A cos(ωt) (B.7)

113

Figure B.2. Circuit for 2nd order systems using op-amps as integrators

114

Figure B.3. Circuit for 2nd order systems using op-amps as integrators

Appendix C
Review of multi-class classification

techniques

This appendix provides a review of multi-class classification techniques. Multi-class

classification is a problem in machine learning which studies the assignment of one

of several class labels to an input object. Unlike a better understood problem of bi-

nary classification, which requres discerning between the two given classes, the mul-

ticlass one is a more complex and less researched problem. Two broad approaches

to the problem are direct approaches, or generalization of binary classification ap-

proaches. Direct approaches include nearest/k-nearest neighbor methods, naive

bayes methods, and linear approaches such as perceptrons, polychotomous regres-

sion and support vector machines. Generalized binary classification approaches

include ”One versus All” (OvA) and ”All versus All” (AvA) methods.

C.1 Direct Approaches

C.1.1 k-Nearest Neighbors Algorithm

In pattern recognition, the k-nearest neighbours algorithm (k-NN) is a method

for classifying objects based on closest training examples in the feature space.

k-NN is a type of instance based learning, or lazy learning where the function

is only approximated locally and all computation is deferred until classification.

The k-nearest neighbor algorithm is amongst the simplest of all machine learning

116

algorithms: an object is classified by a majority vote of its neighbors, with the

object being assigned to the class most common amongst its k nearest neighbors

(k is a positive integer, typically small). If k = 1, then the object is simply assigned

to the class of its nearest neighbor.

The k-NN algorithm can also be adapted for use in estimating continuous

variables. One such implementation uses an inverse distance weighted average of

the k-nearest multivariate neighbors. This algorithm functions as follows:

1. Compute Euclidean or Mahalanobis distance from target plot to those that

were sampled.

2. Order samples taking for account calculated distances.

3. Choose heuristically optimal k nearest neighbor based on RMSE done by

cross validation technique.

4. Calculate an inverse distance weighted average with the k-nearest multivari-

ate neighbors.

The optimal k for most datasets is 10 or more. That produces much better

results than 1-NN. Using a weighted k-NN, where the weights by which each of the k

nearest points class (or value in regression problems) is multiplied are proportional

to the inverse of the distance between that point and the point for which the class

is to be predicted also significantly improves the results.

C.1.2 Naive Bayes Classifier

A Bayes classifier is a simple probabilistic classifier based on applying Bayes the-

orem with strong independence assumptions. A more descriptive term for the

underlying probability model would be independent feature model. That is, the

naive Bayes classifier assumes that the presence or absence of a particular feature

of a class is unrelated to the presence or absence of any other feature.

Depending on the precise nature of the probability model, naive Bayes classifiers

can be trained very efficiently in a supervised learning setting. In many practical

applications, parameter estimation for naive Bayes models uses the method of

maximum likelihood; in other words, one can work with the naive Bayes model

117

without believing in Bayesian probability or using any Bayesian methods. An

advantage of the naive Bayes classifier is that it requires a small amount of training

data to estimate the parameters i.e. the means and variances of the variables

necessary for classification. Because independent variables are assumed, only the

variances of the variables for each class need to be determined and not the entire

covariance matrix.

Assume that the dependent class variable is denoted as C with a small number

of outcomes or classes. The observed features F are denoted as F1, F2 · · ·Fn. The

probability model for the classifier is then the conditional model P (C|F1, . . . , Fn).

The problem is that if the number of features n is large or when a feature can

take on a large number of values, then basing such a model on probability tables

is infeasible. Bayes rule is used to reformulate this model.

P (C|F1, . . . , Fn) =
P (C)P (F1, . . . , Fn|C)

P (F1, . . . , Fn)
(C.1)

The denominator does not depend on C and the values of the features Fi are

given, so the denominator is effectively constant. The numerator is equivalent to

the joint probability model P (C, F1, . . . , Fn). This can be rewritten as follows,

using repeated applications of the definition of conditional probability.

P (C, F1, . . . , Fn) = P (C)P (F1|C)P (F2|C, F1) · · ·P (Fn|C, F1, F2 · · · , Fn−1) (C.2)

Now the ”naive” conditional independence assumptions come into play: assume

that each feature Fi is conditionally independent of every other feature Fj for j 6= i.

This can be stated as follows:

P (Fi|C, Fj) = P (Fi|C) (C.3)

So, the joint model simplifies to

P (C, F1, · · · , Fn) = P (C)P (F1|C)P (F2|C)P (F3|C) · · · (C.4)

This means that under the above independence assumptions, the conditional

118

distribution over the class variable C can be expressed like this:

P (C|F1, · · · , Fn) =
1

Z
P (C)

n
∏

i=1

P (Fi|C) (C.5)

where Z is the evidence which is a scaling factor dependent only on F1, . . . , Fn,

i.e., a constant if the values of the feature variables are known. The total number

of parameters of the naive Bayes model is 2n+1, where n is the number of binary

features used for classification and prediction.

The above equations represent the naive Bayes probability model. The naive

Bayes classifier combines this model with a decision rule. One common rule is

to pick the hypothesis that is most probable; this is known as the maximum a-

posteriori or MAP decision rule. The corresponding classifier is the function defined

as follows:

classify(f1, . . . , fn) = argmax
c

P (C = c)

n
∏

i=1

P (Fi = fi|C = c). (C.6)

C.1.3 Linear methods

The goal of classification is to use an object’s features to identify which class

it belongs to. A linear classifier achieves this by making a classification decision

based on the value of a score, which is simply a linear combination of the underlying

features. An object’s characteristics are typically presented to the machine in a

vector called a feature vector. If the input feature vector to the classifier is a real

vector −→x , then the output score is:

y = f(−→w · −→x) = f

(

∑

j

wjxj

)

(C.7)

where w is a real vector of weights and f is a function that converts the dot

product of the two vectors into the desired output. The weight vector −→w is learned

from a set of labeled training samples. Often f is a simple function that maps all

values above a certain threshold to the first class and all other values to the second

class. A more complex f might give the probability that an item belongs to a

certain class. For a two-class classification problem, one can visualize the operation

119

Figure C.1. Linear classification methods

of a linear classifier as splitting a high-dimensional input space with a hyperplane:

all points on one side of the hyperplane are classified as ”yes”, while the others are

classified as ”no”. A linear classifier is often used in situations where the speed of

classification is an issue, since it is often the fastest classifier, especially when −→x
is sparse. The different types of linear classifiers are summarized in Figure C.1.

Perceptron based methods and support vector machines are further elaborated

in the following subsections.

C.1.3.1 Perceptron based linear methods

In this method, first the feature vector is multiplied by a weight vector −→w , but

now the resulting score is used to choose among many possible outputs.

ŷi = argmax
y

wT
y x

i (C.8)

Learning again iterates over the examples, predicting an output for each, leav-

ing the weights unchanged when the predicted output matches the target, and

changing them when it does not. The update becomes:

wt+1 = wt + α (f(x, y)− f(x, ŷ)) (C.9)

α is the learning rate of the perceptron. The advantages of this method include

extremely simple updates (i.e. there is no need to calculate a gradient). Also, it

is not required to store all the data in memory. However, for data sets that are

120

not perfectly seperable, the value of α would need to be very small to get a well

trained perceptron.

C.1.3.2 Support Vector Machines

A support vector machine (SVM) constructs a hyperplane or set of hyperplanes

in a high dimensional space, which is then used for classification. Intuitively, a

good separation is achieved by the hyperplane that has the largest distance to

the nearest training datapoints of any class (so-called functional margin), since in

general the larger the margin the lower the generalization error of the classifier.

The training set consists of L training points, where each input xi is D dimensional

and is in one of two classes yi = 1 or +1.

The aim is to find the maximum margin hyperplane that divides the points

having yi = 1 from those having yi = 1. Any hyperplane can be written as the set

of points satisfying

−→w .−→x − b = 0 (C.10)

The vector −→w is a normal vector, that is, it is perpendicular to the hyperplane.

The parameter b
||−→w ||

determines the offset of the hyperplane from the origin along

the normal vector −→w . Support Vectors are the examples closest to the separating

hyperplane and the aim of Support Vector Machines (SVM) is to orientate this

hyperplane in such a way as to be as far as possible from the closest members of

both classes.

Implementing a SVM boils down to selecting the variables −→w and b. If the

training data points are linearly separable, the two hyperplanes of the margin can

be selected in a way that there are no points between them and then their distance

can be maximized.

C.2 Generalization of binary classification approaches

C.2.1 One vs. All approaches

One of the simplest multiclass classification schemes built on top of real-valued

binary classifiers is to train N different binary classifiers, each one trained to

121

distinguish the examples in a single class from the examples in all remaining classes.

When it is desired to classify a new example, the N classifiers are run, and the

classifier which outputs the largest(most positive) value is chosen. This scheme

will be referred to as the one-vs-all or OVA.

C.2.2 All vs. All approaches

Another scheme used for multiclass classification is the all-pairs, or AVA (all-vs- all)

scheme. In this approach,
(

n
2

)

binary classifiers are trained; each classifier separates

a pair of classes. This scheme, like the OVA scheme, has a simple conceptual

justification, and can be implemented to train faster and test as quickly as the

OVA scheme.

Classification of new instances for one-versus-all case is done by a winner-takes-

all strategy, in which the classifier with the highest output function assigns the class

(it is important that the output functions be calibrated to produce comparable

scores). For the AVA approach, classification is done by a max-wins voting strategy,

in which every classifier assigns the instance to one of the two classes, then the

vote for the assigned class is increased by one vote, and finally the class with most

votes determines the instance classification.

Appendix D
Motivation from Thermodynamics

Principles for Multiple Parameter

Estimation

In order to solve the problem of estimation of multiple parameters, the principles

of thermodynamics and statistical mechanics [20] can be used. In statistical me-

chanics, a few macroscopic parameters (e.g. pressure and temperature) are used

to describe the intrinsic dynamics of the entire system in terms of the estimates

derived from the distribution of the elementary particles in various micro states.

In the same fashion, the behavior of a dynamical system can be investigated both

from microscopic and macroscopic points of view. In the study of a dynamical sys-

tem, the measured time series data of the observable parameters on the fast time

scale can be analyzed to generate the pattern vectors in terms of the probability

distributions, which can be used to describe the macroscopic or global behavior of

the system at a particular slow time epoch. The information derived from these

pattern vectors can be further compressed into a few macroscopic parameters such

as entropy, Kullback distance, and Euclidean norm. This analogy is further ex-

plained below.

Statistical Mechanics ⇒ distribution of microstates → macroscopic properties

Dynamical System⇒ pattern vectors from time series data → System Parameters

A window of time series data points, chosen on a fast time scale at a particular

123

slow time epoch, can be considered to be analogous to a thermodynamic system

consisting of the elementary particles. The activities of these individual particles

in the thermodynamic system and their possible interactions with each other deter-

mine the behavior of the entire system which can be defined by a few macroscopic

parameters (e.g., pressure and temperature). Similarly, in the case of a dynamical

system, the macroscopic behavior can be derived from the configuration of these

time series data points inside the window. At a particular slow time epoch, the

properties of a dynamical system can be expressed by a few parameters which can

be estimated by the statistical patterns in the time series data points.

The pattern identification procedure of a quasi-stationary dynamical process

is recognized as a two-time-scale (i.e., fast and slow time scale) problem. The

thermodynamic interpretation of this two-time-scale approach is that, on the fast

time scale, the analogous thermodynamic system stays on the same energy surface,

i.e. the characteristics of the system can be described by one equivalence class.

Therefore, the macroscopic properties remain constant over the fast time scale.

However, on the slow time scale, the macroscopic properties of the system change

due to the evolution of multiple anomalies (if any) and therefore the behavior of

the system is described by different equivalence classes.

D.1 Gibbs Canonical Distribution

A canonical ensemble in statistical mechanics is an ensemble (a large number of

mental copies of a system, representing in effect a probability distribution for the

exact microscopic state of the system), that is characterised by the proportion pi

of members of the ensemble occupying the state i being given by the Boltzmann

distribution.

p(E) = exp(G− βE) (D.1)

where G is a normalization constant, and β is the inverse temperature.

It can be shown that this is the distribution which is most likely, if each system

in the ensemble can exchange energy with a heat bath, or alternatively with a large

number of similar systems. Equivalently, it is the distribution which has maximum

124

entropy for a given average energy Ei.

It is also referred to as an NVT ensemble: the number of particles (N), the

volume (V), of each system in the ensemble are the same, and the ensemble has

a well defined temperature (T), given by the temperature of the heat bath with

which it would be in equilibrium.

The quantity k is Boltzmann’s constant, which relates the units of temperature

to units of energy i.e. β = 1/kT .

The quantities G and Z are constants for a particular ensemble, which ensure

that Σpi is normalised to 1. Z is therefore given by:

Z =
∑

exp(−Ei/kT) =
∑

exp(−βEi) (D.2)

This is called the partition function of the canonical ensemble. Specifying this

dependence of Z on the energies Ei conveys the same mathematical information as

specifying the form of pi above. The canonical ensemble (and its partition function)

is widely used as a tool to calculate thermodynamic quantities of a system under

a fixed temperature.

D.2 Escort Probabilities and Distributions

Escort distributions scan the attributes of the original distribution, while describ-

ing the features of a non-linear dynamical system. [91]. Let {pi} be the original

distribution. Then its escort is given by:

Pi =
φ(pi)

∑

j φ(pj)
(D.3)

where φ is a positive function.

This equation comes about when we consider that the Renyi information is a

monotonically increasing function of β [20]. An important case occurs if φ(s) = sq,

for 0 < s ≤ 1 and q > 0 then P
(q)
i ≡ Pi and

P
(q)
i =

(pi)
q

∑

j(pj)
q

(D.4)

Expectations with respect to the original distribution p are denoted as Ep. Also,

125

expectations with respect to the escort distribution P (q) are denoted as Fq. More

formally,

Epf =

∫

Ω

dµ(x)p(x)f(x) (D.5)

and

Fqf =

∫

Ω

dµ(x)P (q)(x)f(x) (D.6)

Now, pi
q→ P

(q)
i can be regarded as a transformation.

P
(q)
i

r→=
(pi)

qr

∑

j(pj)
qr

= P
(qr)
i (D.7)

This transformation forms a one-parameter Abelian group with the identity

transformation corresponding to the order unity. The parameter is obviously, q.

In the context of Symbolic Dynamics, it is proposed that the State Probability

Vector corresponds to the original distribution, {pi}, while the escort distribution

is P
(q)
i = (pi)

q
∑

j(pj)
q where q is defined as the Tsallis degree of non-extensivity of the

complex dynamical system. In the two cases considered in this proposal, q = 1

and the original distribution and the escort distribution are the same.

D.3 Parameter Estimation using Escort Proba-

bilities

The concept of Fisher information is introduced in a thermodynamic sense, which

is then applied to the problem of parameter estimation. The discussion follows

the principles embodied in [20,91]. In statistics and information theory, the Fisher

information (denoted I(β)) is the variance of the score. The Fisher information is

the amount of information that an observable random variable X carries about an

unknown parameter β upon which the likelihood function of X , I(β) = f(X ; β),

depends. The likelihood function is the joint probability of the data, the Xs,

conditional on the value of β, as a function of β. Since the expectation of the score

is zero, the variance is simply the second moment of the score, the derivative of

126

the log of the likelihood function with respect to β.

I(β) = E

{

[

∂

∂β
ln f(X ; β)

]2
∣

∣

∣

∣

∣

β

}

, (D.8)

This implies 0 ≤ I(β) <∞.

To introduce a thermodynamic formalism based definition of the Fisher in-

formation, it is necessary to first define Kullback information and the Kullback

Distance.

The Kullback Liebler relative entropy is defined for two distributions π and πa

as:

K [π ‖ πa] =
∑

i

πi ln
πi
πa
i

(D.9)

This is positive definite and vanishes only if πi = πa
i ∀i.

The Kullback Liebler divergence is defined for the same two distributions as:

D [π, πa] = K [π ‖ πa] +K [πa ‖ π] (D.10)

Let πi depend on a set of parameters q. That is, let πi = πi(q), where q =

(q1, q2, . . . , qn).

Let πa
i represent πi(q+ dq). D[π, πa] is calculated as:

D [π, πa] =

n
∑

µ,ν=1

gµν(q)dqµdqν (D.11)

where gµν is given as:

gµν(q) =
∑

i

∂µπi(q)∂νπi(q)

πi(q)
(D.12)

gµν is defined as the Fisher Information, or the Fisher metric, and ∂µ = ∂
∂qµ

.

q supplies a local coordinate in the n-dimensional submanifold of the functional

space of distributions. The Fisher metric is merely an induced metric on this

manifold.

Bibliography

[1] Thelin, P. (2002) “Short circuit fault conditions of a buried PMSM investi-

gated with FEM,” in NORPIE/2002, Stockholm, Sweden.

[2] Ray, A. (2004) “Symbolic Dynamic Analysis of Complex Systems for

Anomaly Detection,” Signal Processing, 84(7), pp. 1115–1130.

[3] Rajagopalan, V. and A.Ray (2006) “Symbolic Time Series Analysis via

Wavelet-Based Partitioning,” Signal Processing, 86(11), pp. 3309–3320.

[4] Khatkhate, A., A. Ray, S. Chin, V. Rajagopalan, and E. Keller

(June-July 2004) “Detection of Fatigue Crack Anomaly: A Symbolic Dynamic

Approach,” Proceedings of American Control Conference, Boston, MA, pp.

3741–3746.

[5] Ding, Y., Z. Wu, and Y. Zhang (2001) “Multi-fault diagnosis method

based on a joint estimation of states and fault parameters,” Journal of Ts-

inghua University, 41(12), pp. 92–94.

[6] Isermann, R. (2005) “Model-based fault-detection and diagnosis - status

and applications,” Annual Reviews in Control, 29(1), pp. 71–85.

[7] Aitouche, A., D. Maquin, and F. Busson (1-4 Sep 1998) “Multiple sensor

fault detection in heat exchanger systems,” Proceedings of the 1998 IEEE

International Conference on Control Applications, 2, pp. 741–745.

128

[8] Ghosh, A., V. Kumar, and B. Kulkarni (2001) “Parameter estimation

in spatially extended systems: The Karhunen-Loeve and Galerkin multiple

shooting approach,” Physical Review E, 64, p. 056222.

[9] Huang, H.-P., C.-C. Li, and J.-C. Jeng (2007) “Multiple Multiplicative

Fault Diagnosis for Dynamic Processes via Parameter Similarity Measures,”

Industrial & Engineering Chemistry Research, 46(13), pp. 4517–4530.

[10] Koh, C., J. Shi, W. Williams, and J. Ni (1999) “Multiple Fault Detec-

tion and Isolation Using the Haar Transform, Part 1: Theory,” Journal of

Manufacturing Science and Engineering, 121(2), pp. 290–294.

[11] Gupta, S.,A. Ray, S. Sarkar, andM. Yasar (2008) “Fault Detection and

Isolation in Aircraft Gas Turbine Engines: Part I - The Underlying Concept,”

Proceedings of the IMechE-Part G: Journal of Aerospace Engineering,, 222(3),

pp. 307–318.

[12] Ott, E. (1993) Chaos in dynamical systems, Cambridge: Cambridge Univer-

sity Press, 1993.

[13] Abarbanel, H. D. I., R. Brown, J. J. Sidorowich, and L. S. Tsimring

(1993) “The analysis of observed chaotic data in physical systems,” Reviews

of Modern Physics, 65, pp. 1331–1392.

[14] Dragoman, D. (1999) “Complexity: Hierarchical Structures and Scaling in

Physics, by R. Badii and A. Politi,” Optics & Photonics News, 10, pp. 55–+.

[15] Lind, D. and M. Marcus (1995) An Introduction to Symbolic Dynamics

and Coding, Cambridge University Press.

[16] H.Kantz and T.Schreiber (1997) “Nonlinear Time Series Analysis,” Cam-

bridge University Press.

[17] Abarbanel, H. D. I. (1996) The Analysis of Observed Chaotic Data,

Springer-Verlag, New York.

[18] Badii, R. and A. Politi (1997) Complexity, Hierarchical Structures and

Scaling in Physics, Cambridge University Press, Cambridge, U.K.

129

[19] C.S.Daw, C.E.A.Finney, and E.R.Tracy (2003) “A review of symbolic

analysis of experimental data,” Review of Scientific Instruments, 74(2), pp.

915–930.

[20] Beck, C. and F. Schögel (1993) Thermodynamics of Chaotic Systems: An

Introduction, Cambridge University Press.

[21] N.Tufillaro (1999) “Symbolic Dynamics in Mathematics, Physics, and En-

gineering,” HP Labs Technical Reports, HPL-1999-28.

[22] R.L.Davidchack, Y.C.Lai, E.M.Bolt, and H.Dhamala (2000) “Esti-

mating generating partitions of chaotic systems by unstable periodic orbits,”

Physical Review, 75, pp. 1353–1356.

[23] Kennel, M. B. and M. Buhl (2003) “Estimating Good Discrete Partitions

from Observed Data: Symbolic False Nearest Neighbors,” Physical Review

Letters, 91(8), p. 084102.

[24] J.P.Crutchfield and K.Young (1989) “Inferring Statistical Complexity,”

Physical Review Letters, 63, pp. 105–108.

[25] C.R.Shalizi, K.L.Shalizi, and J.P.Crutchfield (2002) “An Algorithm

for Pattern Discovery in Time Series,” SFI Working Paper 02-10-060.

[26] P.M.T.Broersen (1976) “Estimation of Parameters of Non-linear Dynam-

ical Systems,” Int. J. Non-linear Mechanics, 9, pp. 355–361.

[27] Van Lith, P., H. Witteveen, B. Betlem, and B. Roffel (2001) “Mul-

tiple nonlinear parameter estimation using PI feedback control,” Control En-

gineering Practice, 9, pp. 517–531.

[28] J.Ching, J.L.Beck, and K.A.Porter (2006) “Bayesian state and param-

eter estimation of uncertain dynamical systems,” Probabilistic Engineering

Mechanics, 21(1), pp. 81–96.

[29] Gupta, S. and A. Ray (2007) Symbolic Dynamic Filtering for Data-Driven

Pattern Recognition, Chapter 2 in Pattern Recognition: Theory and Applica-

tion, Editor- E.A. Zoeller, Nova Science Publisher, Hauppage, NY, USA.

130

[30] Tang, X. Z., E. R. Tracy, and R. Brown (1997) “Symbol statistics and

spatio-temporal systems,” Physica D: Nonlinear Phenomena, 102(3-4), pp.

253–261.

[31] Piccardi, C. (2006) “On parameter estimation of chaotic systems via sym-

bolic time-series analysis,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, 16(4), 043115.

[32] Boppana, V., I. Hartanto, and W. K. Fuchs (1996) “Fault diagnosis

using state information,” in FTCS ’96: Proceedings of the The Twenty-Sixth

Annual International Symposium on Fault-Tolerant Computing (FTCS ’96),

IEEE Computer Society, Washington, DC, USA, p. 96.

[33] Broersen, P. (1974) “Estimation of parameters of non-linear dynamical

systems,” International Journal of Non-linear Mechanics, 9, pp. 355–361.

[34] E.Wan and R. Merwe (2000) “The Unscented Kalman Filter for Nonlin-

ear Estimation,” Proc. of IEEE Symposium 2000 (AS-SPCC), Lake Louise,

Alberta, Canada.

[35] Julier, S. and J. Uhlmann (1997) “A new extension of the Kalman filter

to nonlinear systems,” in Proceedings of SPIE, vol. 3068, pp. 182–193.

[36] C.L.Bremer and D.T.Kaplan (2001) “Markov chain Monte Carlo estima-

tion of nonlinear dynamics from time series,” Physica D, 160, pp. 116–126.

[37] Wang, Y. and L. Geng (2006) “Bayesian network based fault section estima-

tion in power systems,” in IEEE Region 10 Annual International Conference,

TENCON, Hong Kong, China.

[38] Hoffman, A. J. and N. T. van der Merwe (2002) “The application

of neural networks to vibrational diagnostics for multiple fault conditions,”

Comput. Stand. Interfaces, 24(2), pp. 139–149.

[39] David, B. andG. Bastin (2002) “Parameter estimation in nonlinear systems

with auto and crosscorrelated noise,” Automatica, 38, pp. 81–90.

131

[40] R.Ghanem and F.Romeo (2001) “A wavelet-based approach for model and

parameter identifcation of non-linear systems,” Int. J. Non-linear Mechanics,

36, pp. 835–859.

[41] L.Yao and W.A.Sethares (1994) “Nonlinear Parameter Estimation via the

Genetic Algorithm,” IEEE Transactions on Signal Processing, 42(4), pp. 927–

935.

[42] Gupta, S., A. Ray, and E. Keller (2007) “Symbolic time series analysis

of ultrasonic data for early detection of fatigue damage,” Mechanical Systems

and Signal Processing, 21(2), pp. 866–884.

[43] Sarkar, S., M. Yasar, S. Gupta, A. Ray, and K. Mukherjee (May

2008) “Fault Detection and Isolation in Aircraft Gas Turbine Engines: Part

II - Validation on a Simulation Test Bed,” Proceedings of the I Mech E Part

G: Journal of Aerospace Engineering, 222(3), pp. 319–330.

[44] Jazwinski, A. H. (1970) Stochastic processes and filtering theory, Academic

Press, New York.

[45] Arulampalam, M. S., S. Maskell,N. Gordon, andT. Clapp (2002) “A

tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track-

ing,” IEEE Transactions on Signal Processing, 50(2), pp. 174–188.

[46] C.Andrieu, A.Doucet, S.S.Singh, and V.B.Tadic (2004) “Particle

Methods for Change Detection, System Identification, and Control,” Invited

Paper, Proceedings of the IEEE, 92(3), pp. 423–438.

[47] Li, P. and V. Kadirkamanathan (2001) “Particle filtering based likeli-

hood ratio approach to fault diagnosis in nonlinear stochastic systems,” IEEE

Transactions on Systems, Man and Cybernetics, 31(3), pp. 337–343.

[48] R.Duda, P.Hart, and D.Stork (2001) “Pattern Classification, 2/e,” John

Wiley, New York, pp. 915–930.

[49] Liu, J. and J. M. A. Scherpen (2002) “Fault detection method for non-

linear systems based on probabilistic neural network filtering,” International

Journal of Systems Science, 33(13), p. 1039 1050.

132

[50] Haykin, S. (1999) Neural Networks: A Comprehensive Foundation, Prentice-

Hall.

[51] Fukunaga, K. (1990) “Statistical Pattern Recognition, 2nd ed.” .

[52] Shawe-Taylor, J. (2004) “Kernel Methods for Pattern Analysis,” .

[53] Eckmann, J. P. and D. Ruelle (1985) “Ergodic Theory of Chaos and

Strange Attractors,” Reviews of Modern Physics, 57(3), pp. 617–656.

[54] Cover, T. M. and J. A. Thomas (1991) Elements of Information Theory,

John Wiley, New York.

[55] Gupta, S., A. Ray, and A. Mukhopadhyay (2006) “Anomaly detection in

thermal pulse combustors using symbolic time series analysis,” Proc. IMechE

Part I: Journal of Systems and Control Engineering, 220(5), pp. 339–351.

[56] Rajagopalan, V., A.Ray, R. Samsi, and J. Mayer (2007) Pattern iden-

tification in dynamical systems via symbolic time series analysis.

[57] Kantz, H. and T. Schreiber (2004) Nonlinear Time Series Analysis, 2nd

ed, Cambridge University Press, United Kingdom.

[58] Mallat, S. (1998) A Wavelet Tour of Signal Processing, 2 ed., Academic

Press, Boston, MA.

[59] A.Ray (2005) “Signed real measure of regular languages for discrete-event

supervisory control,” Int. J. Control, 78(12), pp. 949–967.

[60] Bapat, R. andT. Raghavan (1997)Nonnegative Matrices and Applications,

Cambridge University Press.

[61] Wen, Y. and A. Ray (2010) “A stopping rule for symbolic dynamic filter-

ing,” Applied Mathematics Letters, 23(9), pp. 1125–1128.

[62] Nrgaard, M., O. Ravn, N. K. Poulsen, and L. K. Hansen (2000)

Neural Networks for Modelling and Control of Dynamic Systems, Springer-

Verlag, London.

133

[63] Cohen, L. (1995) Time-Frequency Analysis, Prentice Hall PTR.

[64] Subbu, A. and A. Ray (2008) “Space Partitioning via Hilbert Transform for

Symbolic Time Series Analysis,” Applied Physics Letters, 92(8), p. 084107.

[65] Aminian, F. and M. Aminian (2001) Fault Diagnosis of Nonlinear Ana-

log Circuits Using Neural Networks with Wavelet and Fourier Transforms as

Preprocessors, vol. 17, Kluwer Academic Publishers, Norwell, MA, USA.

[66] Rao, C., A. Ray, S. Sarkar, and M. Yasar (2008) “Review and Com-

parative Evaluation of Symbolic Dynamic Filtering for Detection of Anomaly

Patterns,” DOI 10.1007/s11760-008-0061-8.

[67] Rajagopalan, V., S. Chakraborty, and A. Ray (2008) “Estimation of

slowly varying parameters in nonlinear systems via symbolic dynamic filter-

ing,” Signal Processing, 88(2), pp. 339–348.

[68] Brunk, H. (1995) An introduction to mathematical statistics,3rd Edn., Xerox

Publishing,Lexington, MA.

[69] H.D.Brunk (1975) “An Introduction to Mathemeatical Statistics, 3/e,” Xe-

rox College Publishing, MA.

[70] Pathria, R. (1996) Statistical Mechanics, Elsevier Science and Technology

Books.

[71] Wilks, S. S. (1962) Mathematical Statistics, John Wiley and Sons,, New

York, NY.

[72] V.Rajagopalan, R.Samsi, A.Ray, J.Mayer, and C.Lagoa (2004) “A

Symbolic Dynamics Approach For Early Detection of Slowly Evolving Faults

in NonLinear Systems,” IASTED-CSS, Clearwater, FL.

[73] Thompson, J. and H. Stewart (1986) Nonlinear Dynamics and Chaos,

John Wiley, Chichester, United Kingdom.

[74] Diao, Y. andK. Passino (2001) “Stable fault-tolerant adaptive fuzzy/neural

control for a turbine engine,” .

134

[75] Adibhatla, S. andK. Johnson (1993) “Evaluation of Nonlinear PSC Algo-

rithm on a Variable Cycle Engine,” in AIAA 29th Joint Propulsion Conference

and Exhibit, Monterey, CA.

[76] Parker, K. I. and T. H. Guo (2002) “Development of a Turbofan En-

gine Simulation in a Graphical Simulation Environment,” in JANNAF Aero-

Propulsion Subcommittee Meeting, Destin, FL.

[77] Pillay, P. and R. Krishnan (1989) “Modeling, Simulation, and Analy-

sis of Permanent-Magnet Motor Drives, Part I: The Permanent-Magnet Syn-

chronous Motor Drive,” IEEE Transactions on Industry Applications, 25(2),

pp. 265–273.

[78] Julier, S., J. Uhlmann, and H. F. Durrant-Whyte (2000) “A new

method for the nonlinear transformation of means andcovariances in filters

and estimators,” IEEE Transactions on Automatic Control, 45(3), pp. 477–

482.

[79] M.Vidyasagar (1993) Nonlinear Systems Analysis.

[80] Hendershot, J. and T. Miller (1996) Design of Brushless Permanent-

Magnet Motors, Oxford University Press.

[81] Chen, S. and T. A. Lipo (Sep./Oct. 1998) “Bearing currents and shaft volt-

ages of an induction motor under hard- and soft-switching inverter excitation,”

IEEE Trans. Ind. Appl, 34(5), pp. 1042–1048.

[82] Kobayashi, T. and D. L. Simon (2001) “A hybrid neural network-genetic

algorithm technique for aircraft engine performance diagnostics,” in 37th Joint

Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE,

and ASEE, Salt Lake City, Utah.

[83] Doucet, A., S. Godsill, and C. Andrieu (2000) “On sequential Monte

Carlo sampling methods for Bayesian Filtering,” Statistics and Computing,

10, pp. 197–208.

135

[84] Tan, K. K., S. Huang, andT. H. Lee (2006) “Fault detection and diagnosis

using neural network design,” in Third International Symposium on Neural

Networks, ISNN 2006, Proceedings - Part III, pp. 364–369.

[85] Patton, R. J. and J. Chen (1996) “Neural networks in fault diagnosis of

nonlinear dynamic systems,” Engineering Simulation, 13, pp. 905–924.

[86] Sreedhar, R., B. Fernandez, and G. Y. Masada (1995) “Neural net-

work based adaptive fault detection scheme,” in Proceedings of the American

Control Conference, vol. 5, pp. 3259–3263.

[87] Hagan, M., H. Demuth, and M. Beale (1996) Neural Network Design,

PWS Publishing.

[88] Riedmiller, M. and H. Braun (1993) “A direct adaptive method for faster

backpropagation learning: The RPROP algorithm,” in Proceedings of the

IEEE International Conference on Neural Networks.

[89] Kerschen, G. and J.-C. Golinval (2002) “Non-linear generalization of

principal component analysis: From a global to a local approach,” Journal of

Sound and Vibration, 254(5), pp. 867–876.

[90] Jakubek, S. M. and T. Strasser (2004) “Artificial neural networks for

fault detection in large-scale data acquisition systems,” Engineering Applica-

tions of Artificial Intelligence, 17, pp. 233–248.

[91] Abe, S. (2003) “Geometry of escort distributions,” PHYSICAL REVIEW,

68(3), pp. 031101–+, arXiv:cond-mat/0305231.

Vita

Chinmay Rao

Chinmay Rao was born in Mumbai, India on August 18, 1981. He received his
baccalaureate degree in Electronics Engineering from the Vivekanand Education
Societies’ Institute of Technology, Mumbai in the year 2003. He joined The Penn-
sylvania State University (UP) in 2003. He joined Prof. Asok Rays research group
in 2006 and received two concurrent masters degrees in Electrical and Mechan-
ical Engineering from Penn State. His general research interests include: signal
processing, control systems theory and pattern recognition. His specific areas of
interest include system identification, sensor selection and fusion and data-driven
signal and image processing. He also enjoys reading and several sports such as
badminton, squash, running and cycling.

