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Abstract 

  

 The potential of unconventional oil and gas reservoirs is promising to account for 

the declining conventional supplies in the future. However, because of their complex 

nature, it is uneconomical to produce from of these resources with the current state of 

technology. In addition, these resources are relatively new (from the development point 

of view), thus, it is difficult to completely characterize these resources in the absence of 

their respective analogs. This study focuses on tight oil reservoirs. Characterization of 

these resources is a complex problem as tight oil systems are discontinuous hydrocarbon 

sources. Developing these resources by identifying the location to drill, estimating well 

performance and suggesting a completion strategy will be a challenge in the absence of a 

representative reservoir model.  

 An inexpensive and field-deployable expert systems-based tool has been proposed 

in this study to characterize such unconventional reservoirs. A group of inter-assisting 

expert systems are developed, where the individual capabilities lie in suggesting 

completion parameters and predicting quarterly cumulative production of oil, water and 

gas for a two-year period. These expert systems are grouped together to suggest the best 

infill drilling location in the field with a forecast of their respective cumulative 
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productions by the end of two years. The predictions from the expert systems-based tool 

are found to be in good agreement with field performance. Production surfaces generated 

by these expert systems are found to reflect the actual productions obtained in the field. 

In addition, a hybrid optimization method is also developed in this work. The method is 

used to optimize the well completion parameters in a tight oil reservoir.  

 The tools developed in this work will help in a quick evaluation of tight oil 

reservoirs. The results discussed in the dissertation show the accuracy of predictions 

made by the expert systems. The production characteristics and optimized completion 

design parameters of a well predicted by the expert systems will help in developing a 

tight oil reservoir more efficiently and economically. 
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Chapter 1 Introduction 

Meeting the continuously increasing energy demands with depleting conventional 

hydrocarbon resources has proven to be unsustainable. Investigations in developing 

unconventional resources will help in complementing the conventional resources for a 

more stable supply. The unconventional resources are evaluated to be three times the 

proven reserves of conventional resources [Richard, 2010]. However, production from 

these resources is not economical with the current state of technology. Geology of 

unconventional reservoirs is quite complex; making their characterization a challenging 

task. The conventional methodology of characterizing these reservoirs are not effective, 

therefore; alternative methods should be adopted to find probable solution in the near 

future that can efficiently understand the complexities of these reservoirs. 

This research focuses on evaluation of tight oil reservoirs with expert system 

applications. This research proposes a methodology that can be applied in tight oil 

reservoir systems to evaluate the reservoir potential. The capabilities of the expert 

systems developed include predicting cumulative oil, water and gas productions, and 

completion trends by establishing a neural relationship between the geo-physical data, 

completion and production characteristics. Different sets of integrated expert systems are 
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developed and applied in this research program. This dissertation is divided into different 

chapters to describe the development of expert systems. An outline of the different 

chapters is given here as follows: 

 Chapter 2: In this chapter, a background of unconventional resources, their 

characterization, tools utilized and optimization algorithm are discussed.  

 Chapter 3: This chapter states the problem solved in this research 

 Chapter 4: The methodology developed in this research to characterize tight oil 

reservoirs is discussed. 

 Chapter 5: A field application of the methodology developed in Chapter 4 is 

demonstrated. 

  Chapter 6: In this chapter, results obtained and relevant discussions are provided. 

 Chapter 7: This chapter summarizes the work carried and discusses some potential 

future work as a continuation project. 

The results discussed in this dissertation show the ability of artificial expert 

systems in providing probable locations to drill a new well in a discrete tight oil reservoir. 

This work aids in establishing a relationship between geophysical properties and 

production characteristics of a tight oil reservoir. The developed methodology can be 

used in developing tight oil reservoirs efficiently. 
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Chapter 2 Literature Review 

 Unconventional reservoirs are sought to play a major role in the near future in 

meeting constantly increasing global energy needs. It is considered that unconventional 

resources could prove to be complimentary to conventional resources [Vassilellis, 2009]. 

Existence of these resources is known for decades but these accumulations were 

overlooked from economical point of view by various corporations. In general, these 

reservoirs, in a number of ways, have inferior characteristics as compared to conventional 

reservoirs; but have huge hydrocarbon storage capacities [Vassilellis, 2009]. 

Unconventional hydrocarbon resources have attracted different oil and gas operators 

recently due to their location and extent. It is believed that these resources will offer long 

life production [Stark, et al., 2007]. However, characterization and development of these 

resources efficiently possesses technological challenges. This chapter discusses about 

different unconventional resources, challenges posed in developing these formations and 

methods to evaluate them. 

2.1  Unconventional Reservoirs  

 Definition of unconventional resources has changed over time. Earlier the 

definition was based on economics of the production; the reservoirs producing at un-
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economical flow rates were referred as unconventional reservoirs [Lakatos, et al., 2009]. 

This definition will change with time, since; the reservoirs that have not been producing 

at economical rates can be produced economically with the advancement in technology. 

Therefore, more prudent definition of unconventional reservoir is based on the geological 

properties of the reservoirs and physical properties of the fluids [Lakatos, et al., 2009]. 

Based on the current definition, unconventional oil and gas reservoirs are grouped as 

follows: 

 Unconventional oil: oil shale, tight oil reservoirs, heavy oilreservoirs, oil/tar sand 

and pyrobitumen deposits. 

 Unconventional gas: gas shale, gas sand, tight sand gas, basin concentrated gas 

accumulation, associated gas, coalbed methane and methane hydrates. 

 Conventional and unconventional resources can be compared together using a 

resource triangle, where different resources for hydrocarbons are arranged on the basis of 

the complexity involved in producing from these resources as shown in Figure 2.1 

[Holditch, et al., 2007]. The resource triangle is applicable to all the natural resources and 

suggests that theses resources are distributed log-normally in nature. The conventional 

hydrocarbon resources are placed at the top of the triangle, representing the ease with 

which these resources can be produced. In addition, the volumes of these resources are 
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small as compared with unconventional resources, which cover most of the area on the 

resource triangle. As we move towards the base of the triangle, the reservoirs are lower 

grade; which usually means the reservoir permeability is decreasing. An improved 

technology will be required in order to efficiently produce from these resources. Each 

unconventional reservoir has a unique petrophysical property; increasing the complexity 

in analyzing their optimal development plans [Cramer, 2008]. Not only do the resources 

differ from each other, the reservoirs may behave quite differently within their own 

group. Therefore, a unique strategy will be required to develop these reservoirs [Slatt, et 

al., November 2008] [Russum, 2010]. Technical innovations in characterizing and 

optimally developing these resources will be required to make them economical in future 

[Yuko, et al., April, 2001].  

 
Fig.  2.1: Resource triangle (Holditch, et al., 2007) 
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2.1.1 Shale Oil and Gas Reservoirs 

 The origin of shale oil is not well known but it primarily is considered to be the 

remains of algae, spores, pollen, plant cuticle and corky fragments of herbaceous and 

woody plants, and other cellular remains of lacustrine, marine, and land plants [Dyni, 

2006]. Shale oil is a kerogen bearing rock which is considered to be a pre-phase of 

petroleum bearing rock [Erturk, 2011]. Shale reservoirs are one of the largest known 

hydrocarbon resources in the world [Biglarbigi, et al., 2008]. Shale oil bears huge 

resources with an estimation of ~3 trillion barrels of recoverable oil worldwide 

[Klienberg, et al., July 2007]. Global shale oil reserves are listed in Table 2.1 (adapted 

from Dyni 2006). A significant part of global energy supply is expected to come from 

shale oil in the wake of conventional oil peaking [Moritis, 2008]. Development of these 

resources will be crucial to world's economics. Therefore, good investment strategies 

should be in place to maintain the supplies from these reservoirs [Johnson, et al., 2004]. 

Johnson et al. (2004) suggested that nearly 750 billion barrels of oil can be recovered 

from shale in US with 2004's technological standards. Thus, these resources will provide 

oil security for 100 years or more. Potential of these resources is huge, making shale oil 

strategically important for energy security in United States. Green river formation alone 

has ~1.2 trillion barrels of oil [Klienberg, et al., July 2007]. Shale oil and gas reservoirs 

are abundant and scattered in the North America as shown in Figure 2.2. 
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Table 2.1: World shale oil reserves 

Country Reserves (Billion bbl) Date of estimation 

Australia and NewZealand 31.73 1987 

Belarus 7  

Brazil 82 1969 

Canada 15.25 1981 

China 18.3 1985 

Republic of Congo 100 1958 

Egypt 5.7 1984 

Estonia 16.2 1998 

France 7 1978 

Germany 2 1965 

Israel 4 1982 

Italy 73 1978 

Jordan 34.2 1997 

Kazakhstan 2.8 1996 

Morocco 53.3 1984 

Myanmar 2 1924 

Russia 247.9  

Sweden 6.1 1985 

Thailand 6.4 1988 

Turkmenistan & 

Uzbekistan 

7.7  

Turkey 2.24 1993 

Ukraine 4.2 1998 

UK 3.5 1975 

USA 2085 1980 

Uzbekistan 8.4  
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Fig.  2.2: North American shale plays [EIA, 2011] 

 The history of first shale project in U.S. dates back to 1910 and was incorporated 

in naval petroleum reserves [Klienberg, et al., July 2007]. The first shale oil production is 

reported in 1880 by Scotland [Dyni, 2006]. In the past, shale oil has been recovered by 

mining, and currently Shell [Shell oil, 2006] and Chevron [Chevron USA, 2006] are 

testing the feasibility of in-situ conversion processes. It is estimated that shale oil could 

be commercial with $30/bbl oil and production of 500,000 bbl/day could be achieved by 

drilling 150 acres/well [Stark, et al., Dec, 2007]. 
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 Gas production from shale plays will contribute towards ~46% of the total gas 

production in U.S. by the year 2035 as shown in Figure 2.3. Unconventional gas 

resources in US accounts for 43% of the total production. The reported production is 

coming from 30% of the proven reservoirs in the country [Khlaifat, et al., 2010] 

[Khalifat, et al., 2011]. The development of the aforementioned resources is primarily 

carried by mid to small sized companies rather than the majors [Klienberg, et al., July 

2007]. Production of shale gas started with Barnett Shale located in the Bend Arch-Fort 

Worth basins of Texas. The Barnett group is estimated to have over 30 trillion cubic feet 

(Tcf) of resource [Holditch, et al., 2007]. Unconventional hydrocarbon potential in North 

Africa is estimated to be approximately 134 billion barrels of oil equivalent [Chelini, et 

al., 2010]. Tight oil play in North and South Dakota, Montana alone has 3-4.3 billion 

barrels of technically recoverable oil equivalents. This estimate is 25 times the initial 

estimate reported in 1995. Although, it is proven that unconventional resources are huge 

but information about their potential is inconsistent and requires a correct and consistent 

evaluation [Russum, 2010] [Lakatos, et al., 2009].   
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Fig.  2.3: U.S. natural gas supplies [EIA, 2011] 

2.1.2 Tar Sands 

 Sands that contain highly viscous hydrocarbons cannot be produced using 

conventional methods of oil industry are identified as tar sands [Nilsen, et al., 2008]. 

Typically composition of oil sand is 75% inorganic matter, 10% bitumen, 10% silt and 

clay, and 5% water [Humphries, 2008]. The API gravity of the crude oil is less than 10 

[Erturk, 2011]. The first tar sand formation in North America was discovered near 

Athabasca River in 1875 [Sheppard, 2005]; and presently, tar sands account for 46% of 

total oil production in Canada. Tar sands contribute in high hydrocarbon reserves in 
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Canada, making the country second largest with crude reserves after Saudi Arabia 

[Humphries, 2008]. Potential of tar sands is huge around the world as shown in the Table 

2.2 [Meyer, et al., 2003]. However, producing tar sand is a challenging task given the 

extreme properties of the fluid. Presently, based on the depth of the resource, two 

methods are employed to produce from them. If the reservoir is shallow then open pit 

mining is carried and for deeper formations, where mining cannot be carried, in-situ 

methods are used. In-situ methods, in general, include steam assisted gravity drainage 

(SAGD) and cyclic steam stimulation (CSS).  

Table 2.2: Regional distribution of heavy oil and natural bitumen 

 Heavy Oil Natural bitumen 

Region Recovery 

factor 

Technically 

recoverable BBO 

Recovery 

factor 

Technically 

recoverable BBO 

North America 0.19 35.3 0.32 530.9 

South America 0.13 265.7 0.09 0.1 

W. Hemisphere 0.13 301 0.32 531.0 

     

Africa 0.18 7.2 0.10 43.0 

Europe 0.15 4.9 0.14 0.2 

Middle East 0.12 78.2 0.10 0.0 

Asia 0.14 29.6 0.16 42.8 

Russia 0.13 13.4 0.13 246.1 

E. Hemisphere 0.13 133.3 0.13 332.1 

     

World  434.3  863.1 
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2.1.3 Tight Oil and Gas Reservoirs 

 Reservoirs with very low porosity and permeability are considered to be tight 

reservoirs [Tang, 2009]. Typically, the permeability of these reservoirs is lower than 0.1 

md [Wattenbarger, 2002] and may range to micro Darcy level. These reservoirs are 

usually very thick, the net pay of these reservoirs can be several hundred feet. These 

resources are vast and widely dispersed. Production from individual wells in these 

reservoirs is not considered to be significant as compared to conventional oil and gas 

reservoirs but have much longer producing lives [Khalifat, et al., 2011]. In general, these 

reservoirs have natural fractures; which helps for the wells to flow for long terms 

[Arevalo-Villagram, et al., 2005]. Properties of these reservoirs provide challenging 

conditions for improved oil recovery by water or gas injection; however the depletion 

drive is proven to be more efficient than conventional reservoirs [Legrand, et al., 2010]. 

Improved technology is foreseen in order to increase production from these resources. 

Recent advances in hydraulic fracturing improved the production in Bakken play. 

Increased production and reassessment of the play led the belief that this area has the 

potential to become "the next Saudi Arabia" [Miller, et al., 2008].  

 Bakken formation is a tight formation with characteristics of low permeability and 

porosity shale. The depth of the formation ranges from 8000 to 12000 ft. This formation 

is considered to be the most significant tight oil reservoir in the United States in the last 
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decade. USGS re-estimated the potential of the Bakken play in 2008 where the 

technically recoverable oil was identified to be 4-4.3 billion barrels. This estimate was 25 

times higher than the 1995 estimate of 151 million barrels [USGS, 2008]. Advancements 

in technology, mainly, geological modeling, exploration techniques, drilling and 

completion technologies have helped in making Bakken as the largest oil play in the 

Continental U.S. This estimate is expected to increase with improvement in the current 

practices and technology for production from these resources. These resources have been 

identified to be important for U.S. energy needs; therefore, analyzing production has 

gained considerable interest over the past few years [Kabir, et al., 2010]. However, 

production analysis and forecasting is a daunting task due to the complex geology, 

completion and fracture complexities, and absence of representative hard computing 

methodologies. 

2.1.4 Coal Bed Methane 

 Methane stored in coal seams is referred as coal-bed methane. Coal bed is a 

sedimentary rock that contains more than 50% of organic matter [Jenkins, et al., 2008]. 

Methane in the formation is generated by bacterial and/or geochemical action on the 

organic matter. Production of methane gas from coal mines has changed the fate of 

energy industry and coal mining industry. Methane was considered as a hazard in the coal 
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mines from early 1800's to mid 1950's [Flores, 1998]. Initial investigations in coalbed 

methane in U.S. started by Bureau of Mines and DOE in 1970 [Clarkson, et al., 2010]. 

According to USGS survey carried in 2000, U.S. has ~700 TCF in coal bed methane and 

~100 TCF is economically recoverable with existing technology [USGS, 2000].  

 With the advancement in technology and increased number of wells, coalbed 

contributes ~8% of the total gas production in U.S. Production from individual basins in 

U.S. have increased significantly over the last 3 decades as shown in Figure 2.4 

[Chakhmakhchev, et al., 2008]. CBM is being produced from shallower coal seams 

making the CBM wells cheaper [Palmer, 2010] (costs ~$300K-$1,200K/well) as a result 

nearly 40,000 CBM wells are employed to produce methane from coal beds.  Currently, 

coal bed methane is produced majorly in U.S., Canada, Australia, China and India as 

shown in Figure 2.5 [Chakhmakhchev, et al., 2008]. The detailed reserves of CBM in the 

world are shown in Table 2.3 [Clarkson, et al., 2010]. It can be seen in the table that the 

potential of CBM is huge but the recovery with the current state of technology is low. 

CBM reservoirs are considered as potential storage sites for sequestering CO2 and to 

enhance the CBM production [Mazzotti, et al., 2009].  
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Fig.  2.4: Production history of major coalbed reservoirs in U.S. [Chakhmakhchev, et al., 2008] 
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Fig.  2.5: CBM producing countries [Chakhmakhchev, et al., 2008] 

 

Table 2.3: World CBM resources 

Country/ Region CBM Resource in place 
(TCF) 

CBM Recoverable 
Resource (TCF) 

Russia 450-2000+ 200 

China 700-1270 100 

United States 500-1000 140 

Canada 360-460 120 

Indonesia 340-450 90 

Southern Africa 90-220 50 

Western Europe 200 30 

Ukraine 170 20 

Turkey 50-110 10 

India 70-90 20 

Kazakhstan 40-60 10 

South America + Mexico 50+ 10 

Poland 20-50 5 
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2.1.5 Gas Hydrates 

 At low temperature and high pressure, light natural gas combines with water to 

form gas hydrates.  Methane is a dominant component, besides other natural gases. The 

hydrates are stored underground in deepwater and permafrost regions [Saeki, et al., 

2008]. Methane hydrates are abundant on the Earth and have potential to solve world's 

energy needs for centuries [Demirbas, 2010].  Current estimates of the amount of gas in 

the world‟s marine and permafrost gas hydrate accumulations are in rough accord at 

about 20,000 trillion m
3
 (706,300 trillion ft

3
) [Collett, 2002]. The known sources of 

methane hydrates are scattered around the globe as shown in Figure 2.6 [Collett, 2002]. 

 Unlocking the potential of methane hydrates will require massive research in the 

future. The stability of gas hydrates depends on pressure, temperature and composition of 

the gas in the hydrates [Majorowicz, et al., 2001]. Studies targeting changes in existing 

pressure, temperature and composition conditions to dissociate the hydrates from its 

natural form have been conducted [Majorowicz, et al., 2001]. Dissociating methane from 

hydrates is an endothermic reaction. Use of fossil fuels to heat and break these hydrates 

will not be an economical process [Ikegawa, et al., 2010]. Recent research suggests use of 

CO2 for breaking the hydrates and releasing methane gas. The process will form CO2 

hydrates (an exothermic process) and the chemical reaction will release the heat, that will 

be used in-situ by methane hydrates [Ikegawa, et al., 2010].  
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Fig.  2.6: Locations of known gas hydrates [Collett, 2002] 
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2.2 Unconventional Reservoir Characterization 

 The process of assigning reservoir properties quantitatively is known as reservoir 

characterization [Mohaghegh, et al., 1996]. Gaining elaborative information about a 

reservoir is important for maximizing benefits from the reservoir in the development 

stages of the reservoir. The first stage of reservoir characterization is to gather seismic 

information of the reservoir and evaluate the quality of the data [Decker, 2004]. The 

seismic data is humongous and is extracted in the form of seismic attributes. In the 

second stage, an exploratory well is drilled with reference to the seismic data to gather 

information about the reservoir quality and fluid properties. Typical information gathered 

includes core data, formation pressure data, micro-seismic data, well logging data, well 

images, fluid samples etc [Samuel, et al., 2000] [Vefring, et al., 2002] [Artun, et al., 

2005]. The information gathered is collectively used to characterize the properties of the 

reservoir to optimally develop the field; thus maximizing the production from the 

reservoir. Traditionally, empirical relationships and hard computing methods are used to 

characterize and optimize production from the reservoirs. However, for unconventional 

reservoirs the standard methods for evaluation are not suitable because of the complex 

geology [Lee, et al., 1994]. 

 Different techniques have been developed in the past to characterize the 

reservoirs. Vefring et al. (2002) developed a method to estimate permeability and 
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pressure of the reservoir along the well by evaluating the data collected during 

underbalanced drilling. Artificial expert systems have been used to predict the 

permeability of a reservoir using well log data [Aminian, et al., 2005] [Molnar, et al., 

1994] [Babadagli, et al., 2002]. Artun et al. (2005) developed a method to predict gamma 

ray logs using seismic data. Production has been tied with seismic and completion data, 

and the method was later used to identify top gas producer in a tight gas reservoir 

[Thararoop, et al., 2008].  

2.3 Artificial Neural Networks 

 Artificial neural networks (ANN) are information processing mathematical 

models that attempt to simulate biological central nervous systems for processing 

information [Graupe, 2007]. Artificial neural networks were first introduced in the late 

1950s first by McCulloch and Pitts (1943) [Mcculloch, et al., 1943] and later with the 

invention of perceptrons by Rosenblatt (1962) [Rosenblatt, 1962]. However, for more 

than twenty years, interest in artificial neural networks diminished before works by 

scholars such as Hopfield [Hopfield, 1982], Kohonen [Kohonen, 1982] and Hecht-

Nielsen [Hecht-Nielsen, 1987] reinvigorated the use of artificial neural networks. 
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 The information in a biological nervous system is processed and transferred 

through smaller units. Figure 2.7 shows a typical example of the process. A biological 

neuron has three major parts: a body (or soma), axon and dendrites [Yegnanarayana, 

1999]. The cell contains the nucleus. The action of the cell is to gather all the information 

from dendrites and once enough information is received, an output signal is fired through 

axon [Fausett, 1994]. Axon is a cylindrical structure that generates a cell action potential. 

axon transfers the information from its neuron to next higher neuron. Dendrites are the 

tree like structure of the neuron. Dendrites act as input receivers for the neuron via a 

synaptic connection with the axon of the previous neuron  [Schalkoff, Robert J., 2009]. In 

a biological environment, a synapse converts a presynaptic electrical signal into a 

chemical signal and back into a postsynaptic electrical signal [Shepherd, 2004]. This 

chemical reaction modifies the input signal into the final form that will add information 

to the output neurons in the brain [Fausett, 1994]. Gathering, processing and transmitting 

the signals takes ~1 millisecond in a bio-logical neuron. On the other hand, a silicon logic 

gate takes 1 nanosecond for processing similar information [Haykin, 1994]. However, 

brain makes up for the difference in the speed by making massive interconnections via 

the nearly 10 billion neurons and 60 trillion synapses or connections.  
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Fig.  2.7: A biological neuron's input and output structure [Yegnanarayana, 1999] 

 

 In an ANN, the simplest processing unit is called neuron and the structure of the 

unit is shown in Figure 2.8 (adapted from [Priddy, et al., 2005]). The neuron used in 

ANN is analogous to the biological neuron. As shown in Figure 2.8, functioning of input 

streams is similar to the dendrites, neuron is similar to body or soma (nucleus) and output 

stream is similar to axon. Signals are attenuated by weights as opposed to chemical 

filtering the nervous system. The assumptions made in developing ANNs are: 

1) Information is passed between neurons over connections links. 

2) Each link has some associated weight which is multiplied by the signal 

transmitted. 
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3) The capabilities and robustness of the neural network depend upon the learning 

abilities and can be applied to pattern recognition problems and optimization 

techniques. 

 

Fig.  2.8: Comparison of biological and mathematical neuron 

  

 As shown in Figure 2.8, all the inputs are gathered by the neurons along with their 

respective weights are processed using an activation function before emitting an output 

signal. The output of the activation function acts as the input for the next hidden layer 

neurons and subsequently for the output layer. In general, the activation is same for all 
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the neurons in a particular hidden layer [Fausett, 1994]. The most common functions 

used to transfer the data are: 

 Linear function: This function converts the net input to an output value linearly 

between -1 and 1 as shown in Figure 2.9(a).  

 

 Tansig function: This function is also known as bipolar sigmoid function as 

shown in Figure 2.9(b). In this function the net input is converted between -1 and 

1 by the equation  
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 Logsig function: This function is also known as binary sigmoid function as 

shown in Figure 2.9(c). In this function the net input is converted between 0 and 

1 by the equation  
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2.3.1 General Architecture of an ANN 

 A typical architecture of ANN has three components: an input layer, an output 

layer and one or more hidden layers and each layer contains different number of neurons 

that varies from problem to problem. The information of the system is entered through 

the input layer and simplified by the hidden layers. The outermost layer that provides the 

output of the neural network is called as the output layer. Each neuron is connected to 

other neurons by means of a communication link which has an associated weight with it. 

(a) Pure 

linear 

(b) 

tansig 

(c) 

logsig Fig.  2.9: Most common activation functions [MATLAB, 2011] 
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Each neuron sends one signal at a time although the signal is broadcasted to several other 

neurons in the next layer.  

 A network has to be optimized for the number of the hidden layers and the 

number of neurons in each of the layers. The optimization process is based on the error 

observed during the training of the network; and then updating the weights of the 

neurons. The number of hidden layer neurons, number of layers, transfer functions, 

learning and training algorithm are independent variables used to optimize the network. 

Once any of the parameter is changed, the weights of each of the neurons are again 

optimized by minimizing the error. However, there is no fixed rule to define the entire 

structure of a neural network. To start the training procedure by selecting total number of 

neurons, different rule-of-thumbs can be used [Wardsystems, 1998] [Xu, et al., 2008]. 

The most popular rule to start network training is as follows [Wardsystems, 1998]: 

   TP
OI

HN N
NN

N 



2

    (2.3) 

where, NI is the total number of input neurons, NO is the total number of output neurons, 

NTP is the total number of training patterns and NHN is the total number of hidden 

neurons. Changing the number of neurons, hidden layers etc. is a heuristic method which 

starts with one hidden layer and neurons equal to the number of output neurons 

(alternately, NHN in equation 2.1). Then, we gradually increase or decrease the number of 
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neurons in the hidden layers. The structure that gives the least error on the testing sets is 

chosen as the final architecture of the neural network. A typical fully connected neural 

network looks like the one shown in Figure 2.3.  

 
Fig.  2.10: Typical topology of ANN 

2.3.2 Feedforward Networks 

 The earliest and simplest neural network type is the feedforward network.  The 

input data is processed in a layer-by-layer manner [Yegnanarayana, 1999]. Each layer in 
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this network receives information from the previous layer and transfers the information to 

the next layer in the network. There are no backward links created in the network.  

Feedforward networks can consist of a single input and output layer (known as a 

perceptron) or as many subsequent layers or perceptrons as needed.  The network shown 

in Figure 2.9 is an example of simple feedforward network, where the information is 

flowing from input layer to the output layer. 

2.3.3 Feedforward Back Propagation Networks 

 Backpropagation is a gradient decent algorithm in which weights and biases of the 

network are updated in the direction of the decreasing performance function or the 

negative of the gradient. Backpropagation network is also known as the generalized delta 

rule. This algorithm is based on other optimization techniques like conjugate gradient 

method and the Newton methods. One of the iteration of the algorithm can be written as: 

   XK+1 = XK - αKgK       (2.4) 

 In Equation 2.4, XK is a vector of current weights and biases, gK is the current 

gradient and αK is the current learning rate. The process in feedforward backpropagation 

network can be divided into three stages [Schalkoff, 1997]: 
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 Transfer information from input to the output layer using the feedforward network 

approach. Flow of information is from input layer to hidden layer 1; hidden layer 

1 to hidden layer 2 and finally to the output layer. 

 Estimate the error in the calculated output and known output during training phase 

of the network.  

 Use the errors to update the weights of the network from last layer to the first 

layer (backward propagation of error) 

The objective of the process mentioned above is to minimize the error by adjusting the 

weights of the output neurons, hidden layer neurons and input layer neurons in the same 

hierarchy as discussed earlier.  

2.3.4 Cascade Feed forward Networks 

 Cascade feed forward networks are feedforward networks employing supervised 

learning algorithm for artificial neural networks. The output of the network has input 

from all the neurons in the network. Information is cascaded from input layer to all the 

subsequent layers in the network [Schalkoff, 1997]. Figure 2.10 shows a typical 

architecture of a cascade feedforward network. In this example, there are two hidden 

layers with 3 and 4 neurons, respectively. The input and output layers have two neurons 

each. As shown in the figure, information from input layer is transmitted to hidden layer 
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1, hidden layer 2 and the output layer. Information from hidden layer 1 is transmitted to 

hidden layer 2 and the output layer, and so on. Thus, the output layer gathers information 

from all the preceding layers. 

 

Fig.  2.11: Typical architecture of cascade feedforward network 

2.3.5 Examples of Neural Network Applications 

 Neural networks have been successfully applied in the various fields. The most 

common applications have been in stock market trading [Vanstone, et al., 2009], food 
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processing industry [Torrecilla, et al., 2007], material research for defense applications 

[Ramaiaha, et al., 2010], traffic control [Kalyoncuoglu, et al., 2004], and in the oil 

industry.  

 Use of artificial neural networks, fuzzy logic systems, and expert systems started 

in mid 1980's in the oil and gas industry [Gharbi, et al., 2005]. Applications developed 

using the three artificial intelligence methods have a major impact in the petroleum 

industry. ANNs are suitable for identifying pre-existing complex relationships. The 

successful applications in oil industry include forecasting gas production [Al-Fattah, et 

al., 2001], evaluating inter-well connectivity [Lim, et al., 1999], infill drilling strategies 

[Thararoop, et al., 2008], optimal well drilling [Morooka, et al., 2001], formation analysis 

and evaluation [Ertekin, et al., 2005], enhance oil recovery applications [Artun E. F., 

2008], [Karambeigi, et al., 2011] [Elkamel, 1998] etc.  

2.4 Ensemble Based Optimization (EnOpt) 

 The EnOpt is based on Kalman Filter, and the formulation of the methodology 

started in 1994 [Evensen, G., 1994]. The method is used in the industry for history 

matching problems [Jafroodia, et al., 2011], production optimization and field 

development [Chaudhri, et al., An improved approach for ensemble-based production 
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optimization, 2009], [Chaudhri, et al., 2009]. EnOpt is an iterative procedure to optimize 

an objective function [Chen, et al., 2008]. This method has two distinct features 

 In order to search for an optimum objective function, search direction is 

approximated by an ensemble. In addition, the magnitude of improvement in the 

input parameter is based on individual sensitivity of the parameters; also 

calculated from the ensemble. 

 Uncertainty of the parameters affecting the objective function can also be 

modeled in the algorithm. 

The methodology starts with identifying the objective function and the key parameters 

that are essential for the objective functions. Input vector can be referred to as control 

variables and can be defined as  

   NxxxxxxX ,...,,, 4321     (2.5) 

where, Nx represents the number of control variables in the system. The optimization 

procedure starts with setting the upper and lower limits to individual variables and 

defining a starting vector of these variables (X0). Normally, an average value of the 

minimum and maximum value of a variable can be selected. Objective function (F0) is 

evaluated using the control variable (X0). Sensitivity of the control variable with the 

objective function is approximated by the equation 



33 

 

 

 

       
ljl

N

j

ljl

e

Fx xFxFxx
N

C
e




 


 ,

1

,
1

1
  (2.6) 

where, Ne is the size of the ensemble and F(xl,j) is the objective function for the j
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This method is adapted from Chen et al. (2008) and Chaudhri et al. (2009). In the original 

method the control variables are permitted to change over time. To counter the problem 

of uncertainty in the variables (such as operational conditions changing with time), a 

smoothening parameter is used. A smoothening parameter in updating controls will not 

be required for a system with fixed control parameters that do not change with time 

during the time of study. The updating technique is based on the steepest ascent method 

formulated as 
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where xl+1 is the updated control parameters at iteration index of l+1, α is the standard 

deviation of the objective function F calculated for the ensemble of size Ne.  

2.5 Hybrid ANN-Optimization Algorithm Approach 

 Researchers in the past have tied neural network applications with an optimization 

protocol for making the process time efficient. Algorithms like EnKF, EnOpt and Genetic 

algorithm (GA) have been used with hard-computing software to optimize a given 

problem. The coupling of optimizations algorithms with hard computing tools have been 

successfully used in history matching problems [Evensen, et al., 2007], closed loop 

production optimization with EnOpt [Chen, et al., 2008], production optimization with 

CGEnOpt [Chaudhri, et al., 2009] [Chaudhri, et al., An improved approach for ensemble-

based production optimization, 2009] production scheduling with GA [Harding, et al., 

1998] and pipeline optimization using GA [Goldberg, et al., 1985]. Applications of soft 

computing tools coupled with GA for optimizing reservoir engineering problems have 

been studied in the past [Artun E. F., 2008].  
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Chapter 3 Problem Statement 

As the global demand for energy continues to grow, it is known that the energy 

needs cannot be fulfilled solely by conventional resources for oil and gas. It is expected 

that the demand for energy will quadruple in the 21st century (Lakatos et al, 2009). 

Specifically, it is projected that the energy demand will soar by 50% within the first 

quarter of the century and most of this demand will come from Eastern countries viz. 

India, China and Indonesia (Stark, et al., December 2008). It is also expected that the 

current production of hydrocarbons from conventional resources will decline at a rate of 

4.5% annually against an expected 1.4% steady increase in demand (Stark, et al., 

December 2008). Peak production from the conventional oil reservoirs will be observed 

in 2025 [Mohr, et al., 2009]. Whereas, some researchers have projected an increase in 

total liquid production from conventional reservoirs by incorporating ramped-up 

production and new estimated reservoir discoveries around the world as shown in Figure 

3.1 [Richard, 2010]. At the present time, global hydrocarbon (HC) potential of 

unconventional resources are evaluated to be nearly three times that of conventional 

resources, though with existing technology these resources are projected to contribute no 

more than 12% of the HC liquid production by the year 2035 as shown in Figure 1 

[Richard, 2010]. It is also believed that because of large resources unconventional 
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reservoirs can fill the energy gap between the demand and supply represented in Figure 

3.2. 

 
Fig.  3.1: Production potential of unconventional and conventional reservoirs 

[Richard, 2010] 

 

  
Fig.  3.2: World oil production and demand 
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 The potential of unconventional hydrocarbon resources is estimated to be 

nearly seven times that of proven and unproven conventional hydrocarbon resources 

(Stark and Fryklund 2007). Despite of high potential of unconventional resources, 

production from these reservoirs is not economical with the current state of technology 

(Khalifat, et al., November 2010). For unconventional oil, nearly 20% of the oil in place 

is technologically recoverable and only 2% is economically recoverable (Kawata, et al., 

2001). These resources possess huge future potential provided they are exploited 

effectively, which will require a representative characterization of a complex reservoir. 

Given the nature of these resources, it will be a challenging task (if not impossible) to 

characterize these reservoirs with the conventional methods for e.g., distribution of 

reservoir properties using core data gathered at selected locations or by using pressure 

transient analysis based on volumetrically averaged permeability (Mohaghegh, et al., 

1996). Traditionally, empirical relationships are used to relate geo-physical data with 

reservoir properties like porosity, permeability, saturation etc. However, these 

relationships are mainly developed for conventional reservoirs  where grain size, 

porosity, permeability values do not change drastically, thus often characterize the 

conventional reservoirs well and contrary pose challenges in characterizing 

unconventional reservoirs (Aminian, et al., May 2005). 

 In order to characterize unconventional resources, special evaluation 

methods will need to be developed and applied. These reservoirs can be studied with 
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simple mathematical models, complex models or pattern-recognition techniques 

(Nikravesh, et al., 2001). Simple models may become inaccurate because of the 

assumptions made in simplifying the problem especially for unconventional resources. 

Inaccuracies in complex models arise due to uncertainties associated with additional layer 

of data required by the model (Nikravesh, et al., 2001). The third category involves 

artificial intelligence methodologies like fuzzy logic, genetic algorithm, neural networks, 

their combinations etc. The third category methods started gaining popularity in oil and 

gas industry in mid-nineties. Neural networks have been widely tested to study and 

mimic experimental data in laboratories. Some extensive work has been carried in 

relating seismic data and rock properties of sandstone (Nikravesh, 1998), predicting 

density logs using vertical seismic data (Artun, et al., 2005), predicting relative 

permeability characteristics for three-phase systems (Silpngarmlers, et al., 2002), 

enhanced oil recovery (Surguchev, 2000), assisted history matching techniques 

(Ramgulam, et al., 2007; ), well test analysis (Dakshindas, et al., 1999) etc. 

 As mentioned earlier, an inexpensive and field deployable expert system 

based tool to characterize tight oil reservoir is developed in this study. In order to 

characterize the unconventional reservoirs the following questions will need to be 

answered from development point of view: 

 Is the new well going to be economical? 

 What will be the production for a new well location?  
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 Can the decline of production be predicted? 

 What should the completion pattern be at a new location? 

 What are the optimum completion parameters for a new well? 

Artificial expert systems (AES) are developed in this research to provide a 

methodology useful in answering the aforementioned questions. These AES are validated 

in the ATM region of the Wolfcamp play in West Texas. These expert systems are 

divided into three different groups listed as follows: 

 Completion parameters expert system: Completion network predicts 

suggestive completion parameters based on an overall trend and practices of 

the completion parameters observed in the ATM region. As a next step, 

optimization of completion parameters is proposed where completion strategy 

will be suggested so as to maximize the production from a proposed well. 

 Performance prediction expert system: Two-year cumulative production 

values for oil, water and gas volumes are predicted using these networks. 

These expert systems are seen as an aid to identify the potential infill drilling 

locations based on the performance predicted by these networks. 

 Hybrid ANN-EnOpt approach: A methodology is developed along the idea of 

neuro-genetic approach [Artun E. F., 2008]. This methodology is used to 

optimize the completion parameters. 
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Chapter 4 Methodology 

In this chapter, the details of the expert system development is discussed. The 

methodology is based on developing inter-assisting expert systems suitable for 

understanding the existing complex relationships between geological data and the 

production characteristics of a well.  

4.1 Data Availability  

 Data from a reservoir can be broadly classified into well information, geological 

data, drilling and completion data, and production data as shown in Figure 4.1. Well 

information, like the co-ordinates, can be used to evaluate the production interference 

effects of other surrounding wells. Geologic data have information related to the 

production potential of the hydrocarbon bearing rock. Completion data has information 

about the productivity of the completed well. The three categories of the data mentioned 

have information about the productivity of a well. On the other hand, production data 

bears the information of the general properties of the reservoir like permeability, porosity, 

formation damage, presence of fracture etc. Therefore, the first step in developing an 

expert system to characterize a reservoir involves the analysis of the available data.  
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 The identified data is divided into three groups; training, testing and validation 

data. The dataset is randomly selected for each group by a random data generator. The 

expert is trained with the training data set. The weights and biases set in the activity are 

used to compare results with validation data set for adjustments in the calculations. 

Finally, the testing group cases are used to check the performance of the established 

network.  

 

Fig.  4.1: Reservoir information classification 

Reservoir Information 

Well 
information 

Well name, type 

API10 

Field name, basin 

Completion date 

Well status (oil or gas) 

Well configuration type 
(Vertical, etc) 

Original KB Elevation (ft) 

Ground Elevation (ft) 

X Coordinate 

Y Coordinate 

Geologic 

Seismic: 

Type of seismic 

Data is migrated or 
not 

Format of data 

2D and/or 3D 

Well logs: 

Gamma ray 

Density 

Neutron porosity 

Resistivity 

SP log etc 

Well 
Completion 

Drilling and Completion 
date  

Casing size 

top and bottom of 
formation 

pump depth 

Shut in pressure 

perforation information 

Stimulation information 

Production 

Well test 

well history 

artificial lift 

oil, water, gas rates 



42 

 

 

 

4.2 Scope of Expert Systems  

The capabilities of artificial expert systems (AES) have to be pre-defined since 

they play an important role in identifying the initial topology of the AES. The work 

focuses on the development of a methodology to predict cumulative production at 

undeveloped locations. The results generated by the proposed AES are expected to help 

in identifying the sweet-spots in the reservoir for infill drilling strategies. In addition, a 

hybrid optimization approach has been developed combining AES and EnOpt. The entire 

scope of study has been divided into different sub-sections with an overall objective to 

predict production characteristics with the available information. 

4.2.1 Production Prediction Expert System (PPES) 

It is believed that the geological data has information about the hydrocarbon 

productivity of the well. The geological data is broadly classified as seismic data and well 

log data as shown in Figure 4.1. The other broad factors that affect the production from a 

well include interference of the nearby wells and completion strategy. Therefore, the 

initial topology of the expert system will utilize well information, seismic data, well logs, 

completion data and production characteristics as shown in Figure 4.2. The input data of 

the network is grouped into two different classes. The data readily available at an 
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undrilled location is assigned into 'Group A', whereas; the data unavailable before drilling 

is assigned into 'Group B'. The information for 'Group B' data is generated through 

individual expert systems as shown in Figure 4.3. Well logs are correlated with seismic 

data and well information [Mohammadnejad, 2011]. The expert systems to predict 5 

types of well logs developed by Mohammadnejad (Ongoing work) are incorporated into 

the workflow shown in Figure 4.3. The completion information at an undrilled location is 

predicted by the completion networks. The network represented in Figure 4.2 is used to 

develop separate expert systems for oil (OPES), water (WPES) and gas (GPES) volumes. 
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Fig.  4.2: Data structure for well performance networks 
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Fig.  4.3: Overall topology of the production expert systems 
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4.2.2 Completion Prediction Expert System (CPES) 

The completion data network is used to predict the best practice completion 

parameters at any selected undrilled location. Completing a hydrocarbon zone will 

involve decisions related to geology of the formation. The main factors that are correlated 

with completion parameters are well information, seismic data and well logs. A 

generalized approach will involve arranging the information as shown in Figure 4.4.  The 

sub-categories of these data ranges will be different for different fields, for example, the 

seismic data processing by different operators may result in different attributes for 

different fields. But the overall, methodology is expected to remain same in predicting 

the generalized trend for completion parameters in a given field. As described before, for 

an undrilled location well logs are generated using the synthetic well log tool 

[Mohammadnejad, 2011]. 

 

Fig.  4.4: Generalized design for completion prediction network 
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4.3 Optimizing Completion Parameters 

An ANN-EnOpt hybrid approach is used to optimize the completion parameters. 

A net present value (NPV) function is defined that combines cost of different completion 

parameters, operating cost, royalty and revenue generated with oil production. The 

method presented here is general and can be used for other optimization problems. The 

algorithm is summarized in Table 4.1. The protocol starts with a known value of the 

input parameter in the optimization function. The method described here is modified 

from the original EnOpt. Figure 4.5 shows the hybridization of ANN and EnOpt to 

calculate NPV. Here, oil production expert system is used to predict production with new 

completion parameters predicted by EnOpt algorithm in steps 1, 3 and 7. 
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Fig.  4.5: Hybridization of ANN and EnOpt 
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Table 4.1: Implementation of ANN-EnOpt 

 

1. Define completion parameters needs to be optimized and define mean value xl for l=0. 

Initial values of the parameters are observed values in the field. To start the procedure, 

an average value of the upper and lower bound is used 

2. Calculate NPV,l for control variable xl. 

Iterative loop to satisfy convergence criteria 

 

3. Generate an ensemble of control variables xl,Ne with a size of Ne. Here, xl,Ne is generated 

by adding a uniform distribution with a  desired variance around xl. 

4. Calculate NPV,Ne for xl,Ne. 

5. Find the highest value of the objective function i.e. NPV,Ne and check if it is higher than 

NPV,l. If we are able to find a higher NPV within the ensemble generated then we swap 

xl,min and  NPV,max with xl and NPV,l and move to step 6. Else, do not swap and 

move to step 6. 

6. Compute cross-variance Cx-LC and standard deviation, α of LC-HC,Ne. 

Ensemble based optimization loop 

7. Update the control variable by the following equation 


LCx

ll

C
xx 

 1
 

8. Calculate NPVl+1. 

9. If NPV,l+1  is higher than or equal to NPV,l then exit the ensemble based optimization 

loop. Else, increase α and go to step 7. 

If convergence criteria (0.01% in our case) is met then xl+1 represents the completion 
parameters that will provide the optimum net present value, otherwise go to step 3 and 
repeat the process until NPV is maximized.  
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Chapter 5 Case Study 

 In this chapter, a field case study is presented and discussed. A brief introduction 

of the reservoir is discussed in the beginning, followed by data availability and selection. 

Finally, developments of different expert systems are discussed. 

5.1 Introduction - ATM  

 ATM is a field in the Wolfcamp play. The Wolfcamp play is located in the 

Delaware and Midland basins as shown in Figure 5.1 [Mongomery, 1996]. The initial 

exploration started in 1960s with intermediate success because of the complex nature of 

the play. The reservoir lithology is a combination of detrital carbonates, siltstones and 

black shales. The reservoir is reported as a discontinuous formation with unconnected oil 

pockets, making the characterization of the reservoir a challenging task. As a result, a 

representative simulation model for the reservoir is not available. The gross thickness is 

observed to be ~600-1500 feet. The black shales are likely the source rock and provide 

the seal for the complex reservoir. It is reported that pay determination is difficult and at 

present the best estimate seems to be “clean carbonate” denoted by lower than 75 API 

units of gamma ray signature. The reservoir is rich in data, where 3D seismic, well logs, 

micro-seismic (at couple of locations), extensive completion and production data. An 
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average value of air permeability is suggested to be ~0.013 millidarcy as obtained from 

43 core samples. The expected value of the play is reported to be 250 MMBOE.  

 This resource is a good prospect for the study because of the limited data 

availability. Conventional techniques of evaluating and further developing this field are 

reported to be inefficient. There are ~600 wells drilled in this reservoir with partial 

success. Currently, patterns are used in order to identify a new location (see Figure 5.2) 

and this field lacks a formulated methodology for further development.  

 

 
Fig.  5.1: Wolfcamp and ATM location 
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Fig.  5.2: Well patterns in the ATM field
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5.2 Data Availability 

 There are over 600 wells in the entire Wolfcamp play, whereas seismic data is 

available only for the ATM region shown in Figure 5.3. There are 144 wells in this 

region with production history of more than 1 year and have completion parameters and 

87 wells with production history of 2 years or more with consistent completion 

information and 5 different types of well logs (PHIN, LONG, SHORT, GR and GKUT). 

The seismic data is collected over a thickness range of ~6000 ft which is divided into 7 

horizons shown in Figure 5.4. Each seismic horizon has 30 attributes.  In addition, 46 

completion parameters and production data (oil, water and gas) are also available.  

 

Fig.  5.3: ATM seismic region and wells 
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Fig.  5.4: Seismic horizon used in ATM region 

5.2.1 Seismic Data 

 Any quantity calculated from seismic data is called a seismic attribute [Barnes, 

2001]. These attributes are subsets of total seismic information which can be decomposed 

from seismic data in numerous ways. In addition there are no defined rules on what these 

parameters are or relate to [Barnes, 2001]. In this study, the following 30 attributes are 

used for each seismic horizon: 
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Attribute 1- RMS Amplitude (50 ms sliding window): This value is calculated in a 

specified time window of 50 ms. Amplitude is one of the fundamental parameters of the 

seismic wavelet information gathered at geophones. This value provides a scaled estimate 

of the trace envelope. RMS value is calculated as: 

      
 

 
   

 

 

   

 

 

Attribute 2- Amplitude Acceleration: This value is the second derivative of the 

logarithmic value or reflection strength. Variation of the value should be read 

qualitatively and not quantitatively.  

Attribute 3- Dominant Frequency (average over 100 ms): Instantaneous dominant 

frequency 'fd' is defined as the square root of the sum of squares of instantaneous 

frequency 'f(t)' and bandwidth 'σ' and can be calculated as:  

                   

Attribute 4- Instantaneous Frequency (average over 100 ms): Instantaneous 

frequency 'f(t)' is defined as the rate of change of instantaneous phase as a function of 

time, in other words, it  measures the slope of the phase trace. 
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Attribute 5- Reflection Strength: It is also known as instantaneous amplitude. It can be 

calculated as the square root of the total energy of the seismic signal at an instance of 

time.  

Attribute 6- Quadrature Trace: It is identical to the recorded trace but phase-shifted by 

90 degrees. This value can be thought of as representing potential energy while recorded 

trace represents the kinetic energy of particles moving in response to the seismic wave. 

Attribute 7- Thin Bed Indicator (window length 100 ms): It is defined as the absolute 

value of the instantaneous frequency minus weighted average instantaneous frequency. 

This value indicates overlapped events Invalid source specified.. 

Attribute 8- Bandwidth (window length 200 ms): Instantaneous bandwidth 'σ' is 

defined as the time rate of change of natural logarithm of the instantaneous amplitude 

'a(t)' divided by '2π', as shown below. This value can be considered as a measure of half 

bandwidth. 

     
 

  
 
 

  
           

       

       
 

Attribute 9- Response Frequency: It is defined as instantaneous frequency calculated at 

the peak of the amplitude envelope (reflection strength). 

Attribute 10- Instantaneous Q Factor (average over 200 ms): This value indicates 

local variation of Q factor. It is similar to the relative acoustic impedance computation 
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from the seismic trace. This value may indicate liquid content by analyzing pressure 

versus shear wave section Q factors Invalid source specified..  

Attribute 11- Amplitude Change (average over 100 ms): It is calculated in a similar 

way as instantaneous bandwidth. It highlights the places where amplitude changes in the 

data; the value is positive with an increase in amplitude and it is negative when the 

amplitude decreases. 

Attribute 12- Energy Half-time (average over 100 ms): It is a relative measure of the 

location where energy is concentrated in the specified time window. The average time 'ta' 

of the trace power is  

   
     

  
   

   
  

   

 

where, 'x' are the window trace samples, this value is referenced from time interval 't1'. 

Energy half time 'Eht' at the end of time interval 'tN' can be calculated as 

        
     
     

 

Attribute 13- Energy Half-time (average over 50 ms): Same as before, time interval is 

changed to 50 ms. 

Attribute 14- Thin Bed Indicator (window length 50 ms): Please refer to Attribute 7, 

here time interval is changed to 50 ms. 
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Attribute 15- Differentiation: Trace is differentiated using Fourier transform. It 

represents a trace value as the difference between the preceding sample and the 

succeeding sample divided by the difference in time.  

Attribute 16- Integration: Trace is integrated using Fourier transform. It represents a 

trace value as the sum of the original samples.  

Attribute 17- RMS Amplitude (25 ms sliding window): Same as attribute 1. This value 

is calculated in a specified time window of 25 ms. 

Attribute 18- Reflection Curvature: This value is based on a simplified formula that 

employs second derivatives in X and Y directions. 

Attribute 19- Absolute Amplitude: It is an absolute value of all the amplitudes. 

Attribute 20- Amplitude Change (average over 50 ms): Same as attribute 11. This 

value is calculated in a specified time window of 50 ms. 

Attribute 21- Amplitude Change (average over 200 ms): Same as attribute 11. This 

value is calculated in a specified time window of 200 ms. 

Attribute 22- RMS Amplitude (100 ms sliding window): Same as attribute 1. This 

value is calculated in a specified time window of 100 ms. 
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Attribute 23- Cosine of Phase: This value describes a normalized trace and is calculated 

as a ratio of the recorded trace with the amplitude (reflection strength) of the trace . 

Before scaling, value of cosine phase ranges between -1 to +1 

Attribute 24- Bandwidth (window length 100 ms): Same as attribute 8. This value is 

calculated in a specified time window of 100 ms. 

Attribute 25- Instantaneous Q Factor (average over 100 ms): Same as attribute 10. 

This value is calculated in a specified time window of 100 ms. 

Attribute 26- Dominant Frequency (average over 50 ms): Same as attribute 3. This 

value is calculated in a specified time window of 50 ms. 

Attribute 27- Arc Length (50 ms sliding window): Arc length is sometimes called 

reflection heterogeneity. 

Attribute 28- Arc Length (100 ms sliding window): Same as attribute 27. 

Attribute 29- Amplitude Variance (3 traces, 3 lines, 5 samples): Reflection amplitude 

variance is how much seismic amplitude varies from the average amplitude. 

Attribute 30- Amplitude Variance (7 traces, 7 lines, 5 samples): Same as attribute 29. 
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5.2.2 Well logs 

 In this study, neutron porosity (PHIN), long spaced neutron (LONG), short spaced 

neutron (SHORT), gamma ray (GR) and normalized gamma ray (GKUT) are consistently 

available in the ATM region. These wells logs are used in the training the completion 

prediction and well performance networks. Whereas, well log prediction networks are 

used to generate the above mentioned well logs during prediction of completion 

parameters and well performance at an undrilled location. The entire well log is divided 

into 50 equal intervals after identifying the top and bottom depths of each well log, an 

average well log response for each interval is then selected as input for the expert system.  

These depths were identified by matching the well logs with depth of seismic trace given 

at that location.  

5.2.3 Completion Parameters 

 Completion data were screened in order to identify the maximum possible 

information in the development of an effective expert system. According to the data 

supplied in September, 2009; 149 different completion parameters were identified for 612 

wells in the Wolfcamp region. The information for the aforementioned completion 

parameters was not consistently available for all the wells, therefore; only uniformly 

available parameters were used in the analysis. In addition, the expert system discussed in 

the study is focusing on ATM region where only 87 wells out of 612 wells were 
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identified in ATM region with a production history of more than 2 years. During the 

quality check of the data for the expert system, some anomalous data were observed for 

completion parameters as shown in Figure 5.5. Therefore, similar data types were 

removed from further analysis to reduce the noise in the database.  

 
Fig.  5.5: An example of anomalous data observed in completion parameters 

 

In addition, some of completion parameters were constant for the wells under study. Such 

constant parameters do not add any useful information to the expert system thus they are 

not incorporated in the model (please note that, any constant parameter is automatically 

removed by the network during the training stage).  

 A total of 46 completion parameters are identified after the above mentioned 

screening criteria. These parameters were consistently available for 87 wells with two 
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years of production history in ATM region (as per data supplied in Sep, 2009). The 

parameters are grouped in the following categories: 

– Well header data 

– Fracture summary data 

– Perforations data 

– Rod string data 

– Tubing string data 

– Pump data 

– Solution treatment data 

 A detailed list of individual well completion category is shown in Table 5.1. This 

table also shows the ranges of parameters observed in the ATM region (complete 

descriptive information for each of the individual parameter was not available). Details of 

individual important parameters and value selection are given in Appendix A. 

Table 5.1: List of completion parameters 

Completion category Completion Parameter Minimum Maximum 

    Well Header Original KB Elevation 2631 2839 

Well Header Ground Elevation 2613 2822 

Fracture Information Fracture stages 8 18 

Fracture Information Total proppant used (lb) 276701 1734307 

Fracture Information Max Btm Depth (ftKB) 9600 10360 

Fracture Information min Btm Depth (ftKB) 3856 8942 

Fracture Information Q (end) Max (gpm) 2562 3444 

Fracture Information P (tub-st) Min (psi) 46 4800 

Fracture Information Min Top Depth (ftKB) 9690 10340 

Fracture Information Min Top Depth (ftKB) 6944 8932 
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Fracture Information Total proppant recovered 1.87E+04 7.76E+04 

Casing Summary Set Depth (ftKB) 9925 10630 

Casing Summary String OD (in) 5.5 13.375 

Casing Summary String Wt (lbs/ft) 17 48 

Casing Summary Len (ft) 8.72E+03 10611 

Casing Summary OD Max (in) 5.5 13.38 

Casing Summary ID Min (in) 4.892 12.715 

Casing Summary String ID (in) 4.892 12.715 

Casing Summary Top (ftKB) 9 20 

Rod String String OD (in) 0.75 1 

Rod String Set Depth (ftKB) 5066 1.04E+04 

Rod String Set Depth (ftKB) 324 1.03E+04 

Rod String OD Max (in) 1.5 2.5 

Tubing String String wt (lbs/ft) 4.7 6.5 

Tubing String Set depth (ftKB) 7.00E+03 1.06E+04 

Tubing String OD MAX (in) 2.375 5.5 

Tubing String Stick up (ftKB) -63.9 -9 

Tubing String Len (ft) 7.00E+03 1.06E+04 

Tubing String Top (ftKB) 9 63.9 

Pump Data Max. OD (in) 2.375 2.875 

Pump Data Min. OD (in) 2.375 2.875 

Pump Data Max. Top (ftKB) 6.94E+03 1.05E+04 

Pump Data Min. Top (ftKB) 82 1.03E+04 

Pump Data Max. Btm (ftKB) 6.94E+03 1.05E+04 

Pump Data Min. Btm (ftKB) 83 1.03E+04 

Pump Data Cum Len (ft) 1.1 182.5 

Pump Data Cum Vol Disp (bbl) 1 1.1 

Solution Treatment Sum of proppant frm (lb) 276701 1734307 

Solution Treatment Max top Depth (ftKB) 9690 10340 

Solution Treatment Min top Depth (ftKB) 6944 8932 

Solution Treatment Max Btm Depth (ftKB) 9600 10360 

Solution Treatment Min. Btm Depth (ftKB) 3856 8942 

Solution Treatment EOS ISIP (psi) 2530 4750 

Solution Treatment Q (end) Max (gpm) 2562 3444 

Solution Treatment P (tub-st) Min (psi) 46 4800 

Solution Treatment Total vol recovered(bbl) 1.87E+04 7.76E+04 
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5.3 Completion Prediction Expert System (CPES) 

 The completion data network is used to predict the best practice completion 

parameters at any selected undrilled location. The network described in this section is 

trained on the existing completion practices in the ATM region; thus captures the general 

trends of the current practices. This network uses the geological coordinates of the 

location, seismic data for 10 horizons with 30 attributes as described earlier in the report 

(synthetic well log generation section) and 5 well logs (PHIN, Long, Short, GR and 

GKUT) to predict the completion parameters. Selection of completion parameters to be 

predicted by this network was based on the availability of the consistent information for 

the parameters. The expert system discussed requires an existing database to understand 

the patterns and identify the existing relationship between inputs and outputs; upon a 

successful training of the expert system.  

 A total of 46 completion parameters were identified as discussed in Section 5.2.3. 

As previously discussed, 87 wells were used in this expert system. These available 

dataset were randomly classified as training (77 wells), testing (5 wells) and validation (5 

wells) dataset. Once data screening was completed, the network was designed to train 

completion parameters using well coordinates, seismic data and available well logs as 

shown in Figure 5.6. 
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Fig.  5.6: Completion data network design 

 Once the appropriate data was identified, expert system structure was optimized 

to identify the weights and biases for each neural link. In the optimization of the 

structure, weights of each individual inputs and hidden neurons were analyzed to simplify 

the network architecture. Optimizing the network structure is a heuristic procedure where 

number of hidden layers, number of neurons in each hidden layer, transfer function, 

training and learning algorithm and error minimization method are studied to find the 

most optimum structure for a given complex problem. Different combinations of number 

of neurons and number of hidden layers were tested. All the architectures were tested on 

different transfer functions between the layers to optimize the performance of the 

network. The addition of functional links improved the performance of the network 

significantly in the training phase. The functional links used in the network are 

 Mean of well log record (1 value for each well log; total 5 more inputs) 
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 Standard deviation of well log record (1 value for each well log; total 5 more 

inputs) 

 Figure 5.7 shows the final architecture to predict completion parameters. In this 

architecture three hidden layers having 49, 38, and 22 neurons in each layer with 'logsig', 

„tansig‟ and „tansig‟ as transfer functions for each layer were used, respectively. The 

training algorithm used in this network is 'trainscg', learning algorithm is 'learngdm' and 

error minimization function is 'msereg' (Details can be seen in Appendix A). The expert 

system developed in this part of the study was tested with 5 randomly selected wells to 

predict the completion parameters with an average error of 8%. This network will be 

useful in predicting completion parameters at an undrilled location based on the trend of 

completion strategy followed in the ATM region. The outcome of this network will be 

used in predicting the performance of an infill drilling well as discussed in the next 

section. 

 
Fig.  5.7: Final architecture of the Completion network 
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 The importance of individual parameters was analyzed in the completion expert 

system. Figure 5.8 shows the relative impact of individual groups of input parameters to 

evaluate the suggested completion parameters at a given location. This figure shows that 

the importance of all the seismic data is 53.6%, and all the well logs contribute ~46% in 

making the prediction at a given location. It can also be seen that all the well logs 

contribute nearly same to predict the outcomes. Figure 5.9 illustrates the relative 

importance of seismic attribute when normalized on 53.6%. The highest impact in the 

seismic data is observed for 'RMS amplitude (50 ms)', 'Energy half time (50 ms) and 

'Amplitude change (200 ms)'. The observations ties along with the initial assumptions in 

relationship with the seismic data.  

 
Fig.  5.8: Relevancy chart for completion prediction network 
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Fig.  5.9: Relative Relevancy of Seismic data for completion network 
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5.4 Performance Prediction Expert System (PPES) 

 In this section, an expert system was developed for each of the three volumes (oil, 

gas and water). The expert systems discussed in this section uses geographical 

coordinates, seismic data, well logs and completion parameters to predict two year 

performance of a planned well at intervals of 3 months.  

5.4.1 Oil Production Prediction Network (OPPN) 

 In the oil performance network, well coordinates (X and Y DMS values), seismic 

data (10 horizons with 30 attributes each), well logs (PHIN (50 intervals), Long (50 

intervals), Short (50 intervals), GR (50 intervals) and GKUT (50 intervals)) and 

completion strategy (46 parameters) are trained against the oil production data for 87 

wells as shown in Figure 5.10. Different networks were designed before finalizing this 

structure; some of the expert systems were based on all the producing wells in the ATM 

region. The expert system are listed below 

– Predicting maximum initial production rate 

– Predicting average rates for wells 

 Uses 100 wells in training and 43 in testing 

 Well logs not used in training 

 One well selected for testing and rest for training  

– Used decline curve parameters for wells 
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– 2 year data at intervals of 3 month (8 values) 

 The first approach, only initial maximum production rate was used as an output, 

was not proven to be useful as, in general, wells in ATM region decline rapidly within 

during initial 3 months of production. Therefore, a decision on infill drilling cannot be 

made solely on the initial maximum production rate at a specified location. Similarly, 

average production rate approach was discarded where different approaches were used to 

obtain a good level of accuracy in predicting average flow rates at a given location. In 

addition, decline curve parameters were also studied to understand the performance of a 

given well. In this approach decline curve parameters were used as the output of the 

network without a good level of success. Finally, predicting 2 years of production data 

were used in the network. However, according to the data supplied in Sep, 2009, only 87 

wells were observed to have a production history of 2 years or more. The final design is 

shown in Figure 5.10. 

 
Fig.  5.10: Design of the Oil performance network 
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 The network training strategy was the same as followed in completion data 

network. In this approach 87 wells were used including: 77 training wells, 5 testing wells, 

and 5 validation wells. An accuracy of ~8% error in the testing cases and 2.5% in the 

training cases was observed. Figure 5.11 shows the final architecture with 87 wells. In 

this architecture three hidden layers having 49, 42, and 29 neurons in each layer with 

'logsig', „tansig‟ and „logsig‟ as transfer function, respectively were used. Training 

algorithm, learning algorithm and error minimization function are the same as were 

discussed in completion network. 

 

Fig.  5.11: Architecture of the Oil performance network 

 

 Figure 5.12 shows the relevancy of the inputs used in the oil performance 

network. This figure shows that seismic data is ~30% important in predicting two year oil 
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performance of a well at a given location. The relevancies of the completion parameter 

are observed to be at ~16% and well logs at ~53% in estimating the performance of the 

well. 

 

Fig.  5.12: Relevancy of inputs used in oil performance network 

 

 Figure 5.13 shows the new wells were added with 2 years of production or more, 

this dataset was updated in Oct 2010. Table 5.2 shows the production history of the wells 

in the ATM region. Upon further investigation it was found that 134 new wells were 

available in ATM region that had more than 2 years of production history. These new 

wells were incorporated in the analysis and were used to update the structure of the 
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network. The original design of the oil performance was preserved to predict 2 years of 

oil production at intervals of 3 months using well coordinates, seismic, completion and 

well log data.  

 
Fig.  5.13: Updated dataset for ATM region 

 

Table 5.2: Production history of wells in ATM region 

Years of production 
# of wells 

0.5 272 

1 249 

2 213 

3 169 

4 130 

5 95 
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 The updated network architecture is shown in Figure 5.14. The network was 

slightly modified in terms of number of neurons in the hidden layer and transfer function 

for each hidden layer. In this architecture three hidden layers having 50, 28, and 19 

neurons in each layer with ' tansig', „logsig' and „tansig‟ as transfer were used. An 

accuracy of ~13% average error in the testing cases and ~ 5% in the training cases was 

observed for this network. This network topology was accepted as the final architecture 

for predicting oil production in the ATM region. 

 

Fig.  5.14: Updated final architecture of the Oil performance network 

5.4.2 Gas Production Prediction Network (GPPN) 

 The network design for gas network is same as was discussed in case of oil 

performance network as previously shown in Figure 5.10. Initially this network was also 
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built with 87 wells in ATM region and was updated as new data became available. In this 

new network 50 more wells (out of 136 new wells) were added randomly to the existing 

87 wells. In terms of accuracy a ~13% error in the testing cases and ~6% error in the 

training cases were observed. Figure 5.15 shows the final architecture with 87 wells. In 

this architecture three hidden layers having 62, 43, and 12 neurons in each layer with 

'tansig', „logsig‟ and „tansig‟ as transfer function were used. Figure 5.16 shows the 

relevancy of the inputs used in the oil performance network. This figure shows that 

seismic data is ~32% important in predicting two year oil performance of the well at a 

given location. The relevancies observed in this network are similar to the relevancies 

observed for the oil network. The completion parameter is observed to be at ~12% and 

well logs at ~55% in estimating the performance of a well. 

 

Fig.  5.15: Architecture of the gas performance network 
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Fig.  5.16: Relevancy of inputs used in gas performance network 

5.4.3 Water Production Prediction Network (WPPN) 

 The WPPN discussed in this section also uses the same design as for oil and gas 

networks.  This network was also built with 87 wells in the ATM region with an accuracy 

of ~10% error in the testing cases and a ~2.5% error in the training cases were observed. 

Figure 5.17 shows the final architecture with 87 wells. In this architecture three hidden 

layers having 33, 25, and 15 neurons in each layer with 'tansig', „logsig‟ and „logsig‟ as 

transfer functions respectively for each layer were used. Figure 5.18 shows the relevancy 

of the inputs used in the oil performance network. This figure shows that seismic data is 

~32% important in predicting two-year water performance of the well at a given location. 
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Although the network structure is different as compared with oil and gas network, the 

relevancies observed in this network are similar to the relevancies observed for the oil 

and gas network. This shows that the information available in terms of geophysical and 

completion data is somehow related to the fluid produced at a given location, and the 

networks developed in this study are able to comprehend that information.  

 

Fig.  5.17: Architecture of the water performance network 
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Fig.  5.18: Relevancy of inputs used in water performance networkl 

5.5 Optimizing Completion Parameters 

 The hybrid ANN-EnOpt methodology described in Section 4.2.3 is implemented 

to optimize the number of stages and amount of proppant used in stimulating a well. The 

approach is based on identifying a cost function that incorporates operating cost of well, 

cost of fracturing a well, royalty on production etc. have been considered. Two year oil 

production is used to calculate the net present value of the well. The cost data for 

individual parameters are taken from literature. It is assumed that the total cost of 

fracturing a well is mainly driven by the net amount of proppant used. The cost of 

proppant used in fracturing ranges ~20%-65% of the total cost of the proppant 
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[Huckabee, et al., 2005]. In this study, proppant cost is assumed to be 30% of the total 

cost of the fracturing; an average value expected by an operator in Huckabee's et al. 

(2005) study. The other important factor for optimization is the number of fracture stages. 

The cost of first stage is assumed to be $5000 in addition to other completion costs and 

this cost is assumed to decrease for subsequent stages. 

 The dollar amounts for individual commodity are time sensitive, therefore; a 

general cost function is developed. This will allow changing the cost for individual 

parameter in future. The costs for individual parameter used in the function is described 

in the Table 5.3 and 'Net Present Value (NPV)' function used in this work is defined as  

           

    
       

   
       

                 
   

       

   

 

      
                     

     
 
 

 

   

 

           

where, 'Cost' represents the total production cost, 'CC' is the completion cost, 'OC' 

represents the operating cost and royalty, 'P' is total proppant used, 'Pcost' is the cost of 
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proppant, 'Rpf' is the proppant's contribution in the total completion cost, 'CTFS' is the total 

cost due to fracture stages, 'Cfs' is the cost of first fracture (owing to equipment cost etc.), 

'Rrf' is the stage reduction factor, 'Nstage' is the total number of fracture stages, 'NPR' is net 

present revenue and 'NPV' is net present value, and 'i' is the annualized discounted factor. 

Here, 'P' and 'Nstage' are a part of the optimization function.  
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Chapter 6  Results and Discussion 

 The expert systems discussed in Chapter 5 are utilized to make the respective 

predictions for the entire field. In this chapter the results obtained from individual expert 

systems are discussed. The order of the discussion is same as the expert systems 

introduced in Chapter 5. 

6.1 Completion Data Network 

 The completion network was developed using 3 hidden layers with 49, 38 and 22 

neurons and the transfer functions 'logsig', 'tansig' and 'tansig', respectively. An average 

error of ~8% during the testing cases was observed with this architecture. During the 

analysis of the data, the highest errors are observed in tubing string data prediction and 

pump data predictions as shown in Figure 6.1. This may be attributed to the ranges of 

these parameters exposed to the expert system during the training of the system. Figure 

6.2 shows the histogram of the "minimum cum length (ft)" in the pump data group where 

maximum errors are observed while testing the expert system. It can be seen that out of 

87 wells 84 wells have values below 80 ft for this parameter and 2 values are above 150 

which is twice the normal range of the parameter. The expert system is able to predict the 

values within an error range of 12% for this parameter also.  
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Fig.  6.1: Average error for individual completion parameters predicted by expert 

system 

 

Fig.  6.2: Minimum cum length (Pump data) values used in training the expert 

system 



83 

 

 

 

 Figure 6.3 shows an example of the comparison between the actual completion 

parameters observed in the field with the completion parameters predicted by the expert 

system. All the parameters predicted by the expert system show a good quality match. It 

was previously shown in Table 5.1 that these parameters had different ranges. The 

parameters represented here vary from each other by several orders of magnitude, 

therefore; logarithmic scale is chosen to represent all the parameters on a same figure. 

The parameter values represented in Figure 6.3 are in the same order as shown in Table 

5.1.  

 The expert system developed in this section provides an overall trend for the 

ATM region at an undrilled location. These parameters are based on the geological 

properties of the formation and the location of a well. Results presented here show a good 

accuracy in predicting these parameters for unused wells, thus, increases the confidence 

in this network. This expert system is used to predict the completion parameter for the 

entire ATM region as shown in Figures 6.4-6.6 as examples. These completion 

parameters are then used along with synthetic well logs [Mohammadnejad, 2011] to 

predict well performances using 'production performances network'. This network will 

help in a quick assessment of the completion parameters at proposed wells in the field.  
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Fig.  6.3: Comparison of results predicted by expert system 
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Fig.  6.4: Total volume recovered (Solution treatment) as predicted by expert system 

 

 

Fig.  6.5: Total proppant used (Fracture summary) as predicted by expert system 
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Fig.  6.6: Total proppant recovered (Fracture summary) as predicted by expert 

system 

6.2 Well Performance Prediction Networks 

 In this section oil, gas and water production performance networks are discussed 

in detail. The first part of the discussion is based on the network developed with 87 wells 

initially used and the second part of the discussion is based on testing the network with 

additional wells and results obtained after improving the architecture of the oil and gas 

production performance networks. 
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6.2.1 Oil Production Prediction Network (OPPN) 

 The oil network discussed in Chapter 5 predicts the cumulative oil production 

with an average error of ~8% with the testing cases is observed with this architecture. 

Figure 6.7 shows that highest errors are observed for the first 3 months production 

period. The highest errors are possible in the initial life of the well because of the 

presence of extensive noise in the data due to human intervention (for e.g. unexpected 

shut down, cleaning etc).  As the production in the field was observed to stabilize with 

time, error is also observed to reduce with time as can be seen in the cross plots in 

Figures 6.7-6.10. The initial error is observed as ~21% for the first 3 month prediction, 

and reduces to ~3% for predictions at 21 and 24 months.  

 

6.7: Cross plot comparing 3 and 6 month of oil production 
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Fig.  6.8: Cross plot comparing 9 and 12 month of oil production 

 

 

Fig.  6.9: Cross plot comparing 15 and 18 month of oil production 

 
Fig.  6.10: Cross plot comparing 21 and 24 month of oil production 
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 The cross plots show a consistency in forecasting oil production with reduced 

error for the second year of production. OPPN predicts cumulative production from a 

well, thus, the production predicted by the network will help in economical evaluation of 

a well prior to the drilling. Therefore, this network is expected to help in improving the 

economical production from the tight oil reservoir. The prediction values can also be 

compared on a bar plot where one-to-one correspondence can be seen better as shown in 

Figures 6.11 and 6.12. The results show a good quality match with the field production 

data. 

 
Fig.  6.11: Comparison of oil production for the first year 
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Fig.  6.12: Comparison of oil production for the second year 

 One year cumulative oil production was compared with the field values (note that 

1 year field data was interpolated in Midland using the well information). Figure 6.13 

shows the one year cumulative oil prediction made by expert system and Figure 6.14 

shows the cumulative production observed in the field. It can be seen that the expert 

system developed in this study is able to predict the overall trend in the oil production for 

the ATM region. The expert system is able to identify and distinguish the prolific regions 

in the ATM region. As it can be seen in Figure 6.13, the North-East and South-East 

region of ATM is prolific while the area is still unexplored as shown in the original 

production map (Figure 6.14).  
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Fig.  6.13: 1 year cumulative oil production (STB) predicted by the expert system 

 
Fig.  6.14: 1 year cumulative oil production (STB) observed in the field 
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 In addition, this expert system was tested with the data provided later in the 

course of study (October 2010) with updated production history for wells in the ATM 

region. The average error in predicting the oil production was observed to be ~65% 

which is much higher than the error obtained in testing wells originally provided. Upon 

analysis of the production data it was found that the new wells are low producing wells 

and they fall outside the bounds of previously used production data as it can be seen in 

Figure 6.15 and 6.16.  Figure 6.15 shows the histogram of the 2-year cumulative 

production data used in the training (87 wells), (which shows a range of ~2-14 units of oil 

in the training and testing wells); whereas the new wells have a cumulative production 

ranging between ~1.8-2.8 units of oil as shown in Figure 6.16.  

 The previous network was not trained with low producing wells and thus the 

reason for a high error in predicting this production range. In order to make the OPPN 

more robust, and to reduce the prediction error for low producing wells, 50 wells were 

randomly selected and introduced during re-training of the network. The original network 

architecture was used as the base network. The current architecture is shown in Figure 

5.14 which is a slightly modified version of the previous OPPN (Figure 5.11). This 

network is able to predict the cumulative oil production with an average error of ~13%. 

In this network, a total of 137 wells (87 old wells + 50 new wells) were used, where 111 

wells were used in training, 13 wells were used each for testing and validations.  

 The new wells added to the OPPN increased the range of cumulative oil 

production, while the geological properties at these locations lies in the similar ranges as 
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for old wells used in OPPN. As can be compared in Figure 5.12 and Figure 5.14, the 

modified OPPN is a similar architecture; suggesting OPPN (Figure 5.12 and Figure 5.14) 

to be stable networks. Figures 6.17-6.24 show the comparison of actual and predicted 

cumulative production predicted by modified OPPN. These results show a major 

improvement as the average error is reduced from ~65% to ~13%. Thus, it can be 

inferred, adding more information to the network improved the neural relationship in 

predicting the oil production. Therefore, it is also possible to improve the OPPN even 

further by adding more information of the wells and may also help in improving the 

expertise of the network outside ATM region.  

 
Fig.  6.15: Histogram showing the production ranges of well in September 2009 

dataset 



94 

 

 

 

 
Fig.  6.16: Histogram showing the production ranges of well in October 2010 dataset 

 
Fig.  6.17: Cross plot comparing quarterly oil production for the first year with the 

updated network 
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Fig.  6.18: Cross plot comparing quarterly oil production for the second year with 

the updated network 

 
Fig.  6.19: Comparison of quarterly production (oil) during the first year 
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Fig.  6.20: Comparison of quarterly production (oil) during the second year 

 
Fig.  6.21: Comparison of predicted vs actual production for each testing well (1-4) 
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Fig.  6.22: Comparison of predicted vs actual production for each testing well (5-8) 

 
Fig.  6.23: Comparison of predicted vs. actual production for each testing well (9-12) 
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Fig.  6.24: Comparison of predicted vs. actual production for each testing (well 13) 

 

 The expert system (Shown in Figure 5.14) is used to predict the 

performance of the network at every location in the ATM region. At an undrilled location 

only geological coordinates and seismic data are available and in order to generate two 

year cumulative oil production curves, well logs and completion parameters are also 

required. Well logs and completion parameters are generated by the expert system 

discussed earlier. Once the complete information is available at a given location, the oil 

production expert system is used to generate completion surfaces. Figures 6.25 through 

6.28 show the oil production at each location within the ATM region predicted by the 

expert system. As can be observed in Figure 6.28, North-East and South-East regions 

show potential locations for further drilling. This observation is consistent with the 

results generated by expert system shown in Figure 5.12.  

 The oil expert system is also tested with new wells in the ATM region. Eighty 

four wells were reserved by the sponsoring company to test the working of the expert 
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systems. The predictions from the expert systems are very good as 70% of the wells 

predict close results with less than 10% error compared with the actual field results as 

shown in Figure 6.29. As can be seen more than 90% of the wells predict oil prediction 

with less than 20% error. These results show the robustness of the expert system 

developed for a tight oil reservoir. The methodology developed in this work show 

promising results for developing tight oil reservoir. 

Error histogram presented in Figure 6.29, shows the robustness of the OPPN. This 

network can be used for finding infill drilling locations in the ATM region. The results 

predicted by the expert system are used to identify the best 100 locations in the ATM 

region as shown in Figure 6.30.  These locations have been selected by sorting the 

cumulative oil production at the end of second year forecasted for each location in the 

reservoir. This network helps in identifying the sweet spots in the reservoir and less 

prolific regions in the reservoir. The AES based methodology developed in this work will 

enable in finding the locations that could have been missed by pattern drilling mostly 

used in complex reservoirs, viz., tight oil reservoirs.  Thus, this methodology is expected 

to help in efficient development of tight oil reservoir by selecting prolific locations of 

proposed wells.  
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Fig.  6.25: 6 month cumulative oil production predicted by expert system 

 
Fig.  6.26: 12 month cumulative oil production predicted by expert system 
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Fig.  6.27: 18 month cumulative oil production predicted by expert system 

 
Fig.  6.28: 24 month cumulative oil production predicted by expert system 
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Fig.  6.29: Error histogram in predicting oil production with new wells in ATM 
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Fig.  6.30: Top 100 oil producing locations in ATM region 

6.2.2 Gas Performance Prediction Network (GPPN) 

 The GPPN discussed in Chapter 5 predicts the cumulative gas production with an 

average error of ~13% using the testing cases observed with this architecture. Figure 

6.31 shows that highest errors are observed again for the first 3-months production 

prediction. The reason may be attributed to human interventions as previously stated. 

Figure 6.32 shows that average error in predicting cumulative gas prediction stabilizes at 

10% for the second year production, unlike oil production network where errors in 

prediction were observed to decrease with time.  
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Fig.  6.31: Cross plot comparing 3 and 12 month of gas production with updated 

network 

 
Fig.  6.32: Cross plot comparing 15 and 24 month of gas production with updated 

network 
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 Figures 6.33 and 6.34 compare the quarterly productions predicted by the 

network for the testing wells. It can be seen that the expert system is able to predict the 

gas production closely for the testing case. Finally, production for each testing well is 

also compared in Figures 6.35 and 6.36. 

 
Fig.  6.33: Comparison of quarterly gas production (first year) 
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Fig.  6.34: Comparison of quarterly gas production (second year) 

 
Fig.  6.35: Comparison of cumulative gas production (MCF) for individual wells 
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Fig.  6.36: Comparison of cumulative gas production (MCF) for individual wells 

  

 The gas production expert system was also tested with the additional production 

data provided in October 2010 using the updated production history for wells in the ATM 

region. The errors observed in predictions made by the gas production expert system 

were of the range of ~80-100%. Figure 6.36 and 6.37 shows that the new wells are 

higher gas producing wells as they again fall outside the range of production values 

shown to the network during the training phase of the original expert system. It can be 

seen that gas network was exposed to a cumulative production range of ~ 0-35 units of 

gas whereas the new wells have cumulative gas production ranging between ~30-600 

units of gas as shown in Figure 6.37. The difference in range of cumulative production is 

one order of magnitude larger than the initial training range. The previous network had 

not been trained with such wells with high gas production and thus the reason for a high 

error in predicting this production range.  
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 This analysis suggested in retraining the network with these new wells to make 

the expert system more robust. The training strategy followed in gas network is the same 

as oil production network, where 50 wells were randomly selected and introduced during 

re-training of the network. The current architecture is shown in Figure 5.15. This network 

is able to predict the cumulative gas production with an average error of ~15% for the 

testing cases. In this network 6 wells were used each for testing and validations and 124 

wells were used for training the network. Figures 6.38 and 6.39 show the cross plot of 

the predictions made by expert system. Figures 6.40 and 6.41 compare the quarterly 

production predicted by the network for the testing wells. It can be seen that the expert 

system is able to predict the gas production closely for the testing case. Finally, 

production for each testing well is also compared in Figure 6.42.  

 
Fig.  6.37: Histogram showing the gas production ranges of well in September 2009 

dataset 



109 

 

 

 

 
Fig.  6.38: Histogram showing the gas production ranges of well in October 2010 

dataset 

 
Fig.  6.39: Cross plot of quarterly production (gas- MCF) with updated network 
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Fig.  6.40: Cross plot of quarterly production (gas- MCF) with updated network 

 
Fig.  6.41: Comparison of quarterly production with updated network (first year) 
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Fig.  6.42: Comparison of quarterly production with updated network (second year) 
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Fig.  6.43: Comparison of cum. gas production for individual wells with updated 

network 

6.2.3 Water Performance Prediction Network (WPPN) 

 The WPPN discussed in Chapter 5 predicts the cumulative oil production with an 

average error of ~10% with the testing cases as generated by the architecture shown in 

Figure 5.17. Figure 6.43 shows that highest errors are observed again for the first 3-
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months production period. Figure 6.44 shows that average error in predicting cumulative 

gas prediction stabilizes at ~10% for the second year production.  

 
Fig.  6.44: Cross plot comparing cumulative water production (first year) 
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Fig.  6.45: Cross plot comparing cumulative water production (second year) 

 Figures 6.45 and 6.46 compare the quarterly cumulative water production 

predicted by the network for the testing wells. It can be seen that the expert system is able 

to predict the water production closely for the testing case. Finally, production for each 

testing well is also compared in Figures 6.47 and 6.48. 
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Fig.  6.46: Comparison of quarterly water production (first year) 

 
Fig.  6.47: Comparison of quarterly water production (second year) 
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Fig.  6.48: Comparison of cumulative water production for testing wells 

 
Fig.  6.49: Comparison of cumulative water production for testing well 

6.3 Optimizing the Completion Design 

Methodology explained in Section 5.5 is used to optimize the completion parameters. 

The cost of parameters used to calculate NPV are listed in the Table 6.1. Major 
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parameters affecting the objective function were identified as the total number of stages 

and amount of proppant used. However, the objective function is subject to changes in 

future and plays a critical role in optimizing the completion parameters. It is observed 

that lowering the total amount of proppant used in fracturing the well, reduces the overall 

cost of completing the well, whereas the loss in production is not observed. The process 

simultaneously increases the NPV of the well for duration of two years. The method is 

tested for an expert system, with an expertise to predict two year production for a given 

well. The results of the analysis will change when the production decline in the third year 

is significant, and stimulating the well could not be ignored.  

Table 6.1: Costs for NPV calculations 

Parameter Cost Units 

Pcost 0.25 $/lb 

OC 25 $/bbl 

Rpf 0.5 fraction 

Cfs 5000 $/stage 

Rrf 15 % 

Poil 90 $/bbl 

Royalty 15 % of production 

 

As an example, one well is used to optimize the completion parameter. With this 

methodology, it took a total of 281 neuro-simulations to identify a best case scenario. 

Figure 6.50 shows the results iteration-by-iteration in improving NPV of the well. In this 

figure, 'iteration-0' represents the value of NPV calculated by the algorithm with the 
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mean values of the completion parameters. The mean values are calculated by 

arithmetical average of the upper and lower bounds of a given completion parameter.  

 
Fig.  6.50: Improvement in NPV with ANN-EnOpt algorithm 

 

 The completions are compared for a well in Table 6.2. It can be seen from the 

table that ANN-EnOpt efficiently improves the value of the well by adjusting completion 

parameters. In this example, a production is increased by 1.5% where as the NPV is 

increased by 37%. The reason of high increase in the NPV value is attributed to the 

decrease in the amount of proppant used while increasing number of stages. This method 
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is implemented for all the 87 wells initially used for ANN-study in the ATM region. 

Figure 6.51-6.52 shows the increase in the NPV and two-year cumulative production of 

each well respectively. 

Table 6.2: Example in optimizing completion (Well-1) 

 
Completion value 

Completion parameter Field Average Optimized 

'fracture stages' 13 13 18 

'total proppant used (lb)' 817983 1466751 332041.2 

'Max Max Btm Depth (ftKB)' 9884 9980 10360 

'Max Q (end) Max (gpm)' 2940 4120.2 5166 

'Max P (tub-st) Min (psi)' 4300 2423 4800 

'Max Min Top Depth (ftKB)' 9864 10015 10340 

'Max Set Depth (ftKB)' 10077 10277.5 10630 

'Max String ID (in)' 4.892 8.8035 12.715 

'Max set depth (ftKB)' 9947.4 8785.45 10569.8 

'Max OD MAX (in) ' 2.875 3.9375 5.5 

'Max OD (in)' 2.875 2.625 2.875 

'Max Top (ftKB) ' 9910.9 8734.35 10533.2 

'Max Btm (ftKB)' 9911.9 8735.45 10534.3 

'Max Cum Vol Disp (bbl)' 1 1.425 1.65 

'Max EOS ISIP (psi)' 3412 3640 4750 

    
NPV ($) 697670.3 376554.8 956486.8 

% improvement in NPV over field 
 

-46.0268 37.09724 



 

 

 

 
Fig.  6.51: Optimized NPV for 87 wells in ATM 
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Fig.  6.52: Optimized production for 87 wells in ATM 

 



 

 

 

Chapter 7 Summary of Findings 

 This research represents a general methodology to characterize tight oil plays with 

the use of expert systems. In this work, a field example is discussed where the developed 

methodology is applied and tested with the field results. The expert systems developed in 

Chapter 5 are field specific expert systems. Precautions must be taken while extending 

the expert system over to another field and/or extrapolating. It is observed that these 

networks work as effective interpolation tools, but a slightly larger error is observed for 

regions that fall outside the training range of these expert systems. However, the 

developed methodology can be applied for different tight oil reservoirs around the world. 

It was also observed that by improving the range of dataset, expertise of the networks can 

be improved. Following conclusions are drawn from the study: 

 A quick assessment of completion design can be correlated using geological 

properties and the current completion design practices on the existing wells in a tight 

oil reservoir. This network is expected to reduce time and resources for designing 

completion parameters in a tight oil reservoir. 

 New potential locations for further drilling are identified in the field application. 
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 The methodology developed in this work is expected to assist in developing complex 

tight oil reservoir economically by identifying the more promising infill drilling 

locations. 

 Hybridization of ANN-EnOpt has shown some promising results. The method can be 

useful in developing fast-optimization protocols. By coupling of these two methods, a 

complex problem can be analyzed much more rapidly. For example, it takes ~1 

minute to optimize the completion parameters by this method, which represents only 

a fraction of the time that will be required for full scale models. 

 

The methodology developed in this work is not limited to tight oil reservoirs. The 

work has the potential to establish a framework in developing models for shale gas 

reservoirs. Development of shale gas reservoirs is a challenging task and artificial expert 

systems can play an important role in unlocking the extensive resources that exist in these 

formations. This work is based on vertical wells a given reservoir and, it can be extended 

to horizontal well application such as developments in Bakken play. The field application 

developed in this work is restricted to a two-year production period with cumulative 

production as the output of the network. Production decline characteristics can be 

incorporated into the existing methodology that forecasts cumulative production over an 

elongated period of time. While developing field application for ATM region, it was 
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observed that the expert systems work well for the field specific problems. Possibility of 

generalizing expert systems can also be studied to develop a universal expert system. In 

such expert systems utilization of raw measurements for seismic data instead of 

processed seismic data will be necessary to avoid operator specific biases. In this way, it 

will be possible to expand the applications of the expert system to nearby fields. 
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Appendix A 

Completion Parameters 

 

 Out of 46 parameters discussed in Chapter 5, 15 parameters were identified as 

important by field completion engineers in Chevron ETC. Parameters that are considered 

to be important are described in details and their respective value from the completion 

file. An example is also shown describing the value extracted for a given well.  

 

Fracture stages These are the total number of stages that are planned/carried at a 

given location. 

For e.g. well "ABBY #4509" has 8 different stages for fracture 

carried at different times. Therefore the input value for this well 

will be used as 8 

 
 
Total proppant used (lb) 

 

This is the total amount of proppant used in all the fracture stages 

at a given location.  

For e.g. well "ABBY #4509" has 8 different stages for fracture 

carried at different times. Where total amount of proppant used is 

704844 lb 

 
 
Max Btm depth (ftKB) 
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In case of a multiple stage fracture, this value represents the 

lowest depth where fracture was carried. 

For e.g. well "ABBY #4509" has 8 different stages for fracture 

carried at different depths. Where the maximum depth observed 

was 10365 ft (stage 1) 

 
 
Max Q (end) Max (gpm) 
 
 
 

 

This value represents the max flow rate achieved during any 

fracturing job.  

For e.g. well "ABBY #4509" has 8 different stages for fracture, 

where different flow rates were observed in each of the fracture 

stage. In this the maximum flow rate observed was 2801 gpm 

which was observed in 'stage 5' 

 
 
Max P (tub-st) Min (psi) 
 

 
 
It is the maximum pumping pressure that was reached during 

fracturing. This value varies with every stage of fracturing. In our 

analysis we used the maximum value observed in all the stages. 

For e.g. well "ABBY #4509" has 8 different stages for fracture. In 

this the maximum pressure observed was 4760 psi which was 

observed in 'stage 1' and 'stage 4' 

 
 
Total proppant recovered 
(bbl) 

 
 
This parameter indicates the formation quality and flow back 
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 effects on the pump. In our analysis we use the total amount of 

fluids recovered in all the stages i.e. clean volume recovered and 

slurry recovered. 

For e.g. in well " ABBY #4509" a total of 24472.02 bbl of fluid is 

recovered 

 
 
Max Set Depth (ftKB) 
 

 
 
This parameter determines which all formations; the well has been 

drilled through (and completed). In this case it represents the 

lowest depth of the formation the well has been drilled to.  

 
 

 
 
Max String ID (in) 
(Casing) 

 
 
This is the string ID value in inches. For e.g. in well " ABBY #4509" it 

is 8.921 inches 

 
 
Max set depth (ftKB) 
(Tubing String) 

 
 
This parameter indicates from which formation the fluids are 

produced. 

For e.g. in well " ABBY #4509" it is 7477 feet 

 
 
Max OD MAX (in)  
(Tubing String) 

 
 
If different strings are used then this value will represent the 

maximum of the two values. For e.g. in well " ABBY #4509" it is 

2.375 inches 
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Max OD (in) 
(Pump data) 

OD of the pump is used.  For e.g. in well " ABBY #4509" it is 2.375 

inches 

Max Top (ftKB)  
(Pump data) 

The MD to the top of the installed SRP pump for a given location.  

For e.g. in well " ABBY #4509" it is 7407 feet 

 
 
Max Btm (ftKB) 
(Pump data) 

 
 
The MD to the bottom of the installed SRP pump for a given 

location.  

For e.g. in well " ABBY #4509" it is 7408 feet 

 
 
Max Cum Vol Disp (bbl) 
(Pump data) 

 
 
This value represents the cumulative value dispersed by the pump.  

For e.g. in well " ABBY #4509" it is 0.4 bbl 

 
 
Max EOS ISIP (psi) 
(Solution Treatment) 
 

 
 
End of Stage Initial Shut In Pressure value. This value will be 

different for different stages. In our analysis we used the 

maximum ISIP value observed in all the stages. 

For e.g. in well " ABBY #4509" it is ~3820 psi 
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