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ABSTRACT 

Self-deception at first thought may appear to be counterintuitive as it 

pertains to evolutionary strategies.  It would seem that in order to best 

adapt, it is first necessary to make an accurate assessment of one’s state.  

Yet, phenomena such as the placebo effect continue to suggest that there is 

some benefit to self-deception when it comes in the form of optimistic belief. 

In previous work, Byrne and Kurland demonstrated that self-deception 

could be fitness enhancing if it enables one to better deceive an opponent 

into not competing for a resource.  However, their model did not consider 

any effect of self-deception on one’s actual performance if the opponent 

competes.  This thesis is a natural extension of Byrne and Kurland’s work.  In 

this work, the relationship between beliefs and performance in fitness 

competition is examined. 

The present work first assumes that belief in victory enhances one’s 

performance and subsequently one’s probability of victory.  It further 

assumes that one’s capacity to believe in victory can be limited by past 

experiences of defeat.  Based on these assumptions, an evolutionary game 

model is used to analyze the relationship between a player’s belief in victory 

and the final outcome of a competitive encounter.  Simulation is employed to 

provide a bridge between Byrne & Kurland’s prior work based on probability 

distributions and future studies in which discrete player histories must be 

tracked. 

  The first step is to study a model where belief in victory enhances 

performance.  Next, the trends of a model where belief does not affect 

performance are examined.  The evolutionarily stable strategies resulting 

from the simulation runs are presented and interpreted.  Comparing the two 

models, conclusions are made about the relationship between beliefs and 

performance.  
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Chapter 1 

 

 

INTRODUCTION 

 

 

Cognitive scientist Marvin Minsky developed the concept of a modular 

mind as a hierarchy of independent agents each seeking a unique interest, 

[Minsky 1986].  Should conflict arise between equally strong agents, Minsky’s 

model passes control to a completely different agent.  However, this shift in 

control could prove detrimental to the host’s survival if the conflict occurs 

within fitness-enhancing agents.  As an example, consider “fear” and 

“hunger” as subordinate agents of a parent “survival” agent.  In Minsky’s 

model, control of the host would pass away from the survival agent if the 

fear and hunger agents were in conflict with one another.  Ultimately this 

shift in control would mean the demise of the host. 

Byrne and Kurland introduce the concept of self-deception as a conflict 

resolution technique, evolved to preserve the life of the host [Byrne & 

Kurland 2001].  By temporarily suppressing one of the fitness-enhancing 

agents in conflict, control of the host remains with the survival agent.  

Ramachandran argued that any potential benefits of self-deception would be 

overshadowed by its cost, [Ramachandran 1996, Ramachandran & Blakeslee 

1998].  Convincing oneself of fearlessness, for example could cause harm.  

Trivers, however, suggested that self-deception could be beneficial if it 

enabled one to better deceive an opponent [Trivers 1976, 1985]. 

The hypotheses of Ramachandran and Trivers were tested in the study 

performed by Byrne and Kurland.  Their model extended evolutionary 

biology’s widely known hawk-dove model.  For a player of size 0.5, 

considered to be an average size player, the authors showed non self-

deceiving players to be eliminated from the population in the evolutionarily 

stable strategies (ESS).  This conclusion supported Trivers’ hypothesis by 

concluding the benefit of enabling the self-deceived players to better deceive 



 

2 

their opponents outweighed the cost of sometimes fighting a much larger 

opponent.  Whether a player’s belief in victory has any impact on the 

outcome of a competition was deferred to future work. 

 

 

Section 1.1 Research Objectives and Expected Contributions 

 

 

This thesis is an extension of the study performed by Byrne and 

Kurland.  The purpose of this extension is to develop and analyze a game 

theoretic model of the effect of belief on performance.  In doing so, two 

trends are identified:  1) Any deviation in the ESS from those reported in the 

original paper and 2) Any sensitivity of these strategies to player sizes.  

Specifically, does self-deception remain fitness-enhancing as previously 

indicated, and are distinct strategies preferable for players of a particular 

size?  Finally, ESS mixtures are compared between a model that is not 

influenced by belief and one in which belief affects performance.  Conclusions 

are made about the effect of belief on performance in fitness competitions. 

The results of this study may offer valuable insight for the fields of 

mental and emotional rehabilitation.  By understanding the effect of belief on 

performance, enhanced assistance can be provided to those in recovery.  

Furthermore, this research is one of the first of its kind in its use of 

mathematics to model sociological behavior.  Researchers in this field may 

use this work as a foundation for similar studies. 

   

 

Section 1.2 Thesis Overview 

 

 

Chapter 2 provides a brief review of the literature most relevant to this 

study.  It begins with a summary of the original paper by Byrne and Kurland, 

highlighting the aspects of their model that are essential to understanding 
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this extension.  An additional work is presented which is necessary for 

understanding the simulation that serves as the medium through which this 

work is performed.  Lastly, some open questions resulting from these two 

studies are presented and this thesis is properly motivated. 

Chapter 3 presents the formal problem statement.  A few examples 

are used in support of the theory that belief affects performance.  The model 

assumptions are listed and explained.  The chapter concludes with the two 

major questions to be answered. 

Next, Chapter 4 details the methodology utilized to answer the 

questions posed in the previous chapter.  A model of the effect of belief on 

performance is first developed.  Then the simulation used to perform the 

experimentation is described.  Finally, the specifications of the experimental 

design are provided. 

The results of the experimentation are provided in Chapter 5. The first 

results examine the average size player’s ESS for any divergence from those 

of the original paper.  These results are then analyzed for sensitivity to 

player sizes by finding the evolutionarily stable strategies of the entire 

population.  The ESS values are also determined for the population of a 

model which does not allow belief to impact performance. 

Chapter 6 concludes this thesis.  This chapter begins with a discussion 

of the results given in Chapter 5.  An overall summary of the background, 

purpose, and results of this study is ultimately provided.  Closing remarks 

raise a few additional questions intended for further study. 
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Chapter 2 

 

 

BACKGROUND 

 

 

This thesis builds upon the substantial work published by previous 

authors concerning the nature of self-deception.  Of particular note for this 

thesis, Byrne and Kurland explored the usefulness of self-deception in an 

evolutionary setting [Byrne & Kurland, 2001].  Their research provides the 

foundation for what follows.  A thorough review of their paper is necessary to 

facilitate the discussion of its extension.  Following is a presentation of that 

review.  

 

 

Section 2.1 Self-Deception in an Evolutionary Game  

 

 

Intuitively, self-deception may seem to be disadvantageous in a 

competitive encounter.  One might think that in order to gain any possible 

advantage, it is first necessary to make an accurate assessment of the 

environment and one’s capabilities.  Cognitive scientist Ramachandran 

additionally argued that any benefit of self-deception would be overshadowed 

by its cost [Ramachandran 1996, Ramachandran & Blakeslee 1998].  In a 

competitive encounter for a resource, for example, a player might devalue 

the resource in order to avoid conflict.  The player avoids the conflict, but 

also loses the resource which was perhaps essential for survival. 

Trivers conversely argued that self-deception could be beneficial if it 

enabled one to better deceive an opponent [Trivers 1976, 1985].  Consider 

that the same player was to deceive herself into believing a resource is 

worthless, perhaps she could trick an opponent into believing the same.  The 
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opponent might then walk away from the encounter.  Thus, the player would 

be left to enjoy the true value of the resource. 

This leads to Byrne and Kurland’s first conjecture, “episodes of self-

deception need not be permanent,” [Byrne & Kurland, 2001].  In the second 

example, the opponent forfeiting the resource effectively terminates the 

encounter.  If at that point the player ends her self-deception, she is able to 

take advantage of the available resource. 

The authors test the hypotheses of Ramachandran and Trivers utilizing 

Minsky’s modular model of the mind as a basis for the definition of self-

deception.  Minsky developed the concept of the mind as a hierarchy of 

independent agents each seeking a unique interest, referred to by the 

authors as daemons [Minsky 1986].  A host’s actions are determined at any 

given time by the most dominant daemon.  Conflicts occurring between 

subordinate daemons lessen the parent daemon’s control over the host’s 

actions.  As a result, Minsky suggests that control will pass away from the 

parent daemon. 

Minsky’s example of a child at play with blocks illustrates this process.  

The child builds towers and then knocks them down.  As shown in Figure 2-1, 

the play, eat, and sleep daemons are positioned at the same level in the 

hierarchy.  If wrecker causes the child to knock down blocks before builder 

has finished a tower, the two daemons would come into conflict.  To resolve 

this conflict, control would pass to the stronger of the remaining two 

daemons at the level of play.  The child might go to sleep, for example, if the 

conflict occurs just before bedtime. 
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Although this solution may be suitable for subordinate play daemons, 

this transfer of control could prove to be detrimental for the host if the 

conflict occurs between fitness-enhancing daemons.  Figure 2-2 presents fear 

and hunger as subordinate survival daemons.  Should these two daemons 

enter conflict and cause control to be transferred away from survival, it 

would mean the demise of the host. 

 

…  Survival   … 

 

 

 

 …  … Fear Hunger …  … 

 

 

Figure 2-1:  Modified image of Minsky’s model of the mind as a hierarchy of “daemons,” 

[Byrne & Kurland, 2001]. 

 

 

Figure 2-2:  Survival daemon with subordinates Fear and Hunger.  Transferring control 

away from survival could be detrimental to the host. 
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Alternatively, one of the conflicting daemons could be temporarily 

suppressed.  This would preserve the life of the host by granting dominance 

to one of the subordinate daemons, and preventing control from being 

transferred away from survival.  Byrne and Kurland hypothesize that this 

resolution of inter-daemonic conflict constitutes self-deception.  The authors 

employ the multi-dimensional dynamic character (MDDC) modeling approach 

to create a game theoretic structure of their cognitive self-deception model 

[Byrne 1995, 1996].  This approach allows a two-way interaction between 

the game and the psychology of the players: 

 

“MDDC defines a meta-structure for models that 

maps…daemons, into player information and strategies, 

enabling cognitive models to determine actions in a game-

theory model.  Reciprocally, the meta-model maps parameters 

and outcomes of game-theory models into states or state 

changes of cognitive models, enabling the game circumstances 

to affect the cognitive states of the players, [Byrne and Kurland 

2001].” 

Evolutionary game theory specifically is used to structure the model.  

In each generation of the evolution model, a multi-period game is played 

between members of the population.  The game of each period is an 

asymmetric hawk-dove game [Maynard Smith & Price, 1973].  The encounter 

is such that two players simultaneously discover a valuable resource.  A 

player applying the hawk strategy will fight for the resource if the other 

player is unwilling to forfeit it.  The dove strategy begins with an attempt to 

intimidate the opponent, yet will always yield as opposed to engaging in an 

actual fight. 

During the encounter, the two players are each controlled by a survival 

daemon with subordinate fear and hunger daemons.  The fear daemon is 

responsible for maintaining the physical safety of its host, the player, and 

accordingly influences the player to play dove.  The hunger daemon ensures 
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adequate nourishment is provided for its host and thus influences the player 

to play hawk. 

As previously noted, Byrne and Kurland characterize self-deception as 

a mechanism for resolving inter-daemonic conflict without jeopardizing the 

fitness of the host.  They distinguish three types of players according to their 

variations on this mechanism.  In response to inter-daemonic conflict, the 

fear daemon is suppressed in a type SDF player.  This player’s fear is 

rendered “unconscious,” and the now hunger-dominated daemon will play 

hawk.  Conversely, a type SDH player suppresses the hunger daemon.  This 

player’s hunger is thus rendered “unconscious” and the fear-dominated 

player plays dove.  A third player type, NSD, does not enter self-deception.  

For this player, the inter-daemonic conflict persists and the player plays 

either hawk or dove with some positive probability.  The authors show that 

the final results are not dependent on the exact value of this probability. 

The interaction between the two players engaged in an encounter 

consists of a series of assessments and belief updates.  At the start of the 

encounter, the hunger and fear daemons of each player form respective 

initial assessments about the value of the resource and the cost of a fight 

with the opponent.  Ambivalence, or conflict between the two daemons, 

occurs when the difference between the value of the resource and the cost of 

the fight does not exceed some  - referred to as the cognitive resolution 

parameter.  A self-deceiving player experiencing ambivalence will enter self-

deception and remain in that state for the duration of the encounter. 

During the display phase the players signal their beliefs to each other.  

If a player has entered self-deception, the new beliefs are signaled.  

Otherwise a player signals the initial assessments.  After receiving the 

signaled beliefs of the opponent, a player updates his assessments based on 

how sensitive he is to the opponent’s signal.  This sensitivity is governed by 

, the susceptibility parameter.  Here, players have another prospect of 

entering self-deception, if their updated assessments cause the difference 

between the resource’s value and the fight’s cost to fall below .  Once beliefs 
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are updated, the players’ actions are determined by daemon dominance as 

influenced by their player type. 

In each generation, the players engage in numerous two-player 

games, each time matched with a different member of this three-type 

population and a different resource value.  Beta distributions on the resource 

value and the expected cost of the fight are used as continuous 

approximations of these “real life” encounters.  As standard in an 

evolutionary model, the composition of the population in the next generation 

depends on the individual success of the respective types. 

The entire encounter space of individual hawk-dove encounters are 

analyzed for a player of average stature, size 0.5, through the use of beta 

distributions modeling the likelihood of encountering an opponent inflicting a 

given cost (C1 on player 1) and a resource of a given value, V.   

 

“That is, we assume that in a reproductive lifetime, a player 

encounters the game a large number of times, with expected V and C1 

determined by the probability distributions.  We integrate the payoff 

function of V and C1, against the probability distributions of V and C1, 

over the encounter space, to compute a 3x3 type vs. type expected 

lifetime fitness matrix, [Byrne & Kurland 2001].” 

 

This integrand is the basic asymmetric hawk-dove payoff function used in the 

standard replicator dynamic, which computes the subsequent population 

dynamics based on the expected lifetime fitness matrix.  The expected 

lifetime fitness matrix provides the expected payoff in the given generation 

for each player type.  The average expected payoff in a given generation is 

computed by summing the products of the proportion of players of each type 

and the expected payoff for that type.  In the next generation, the proportion 

of players of a given type will be equal to the product of the proportion of 

players of that type and the expected payoff for that type, divided by the 

average expected payoff for that generation.  The equations from the paper 

are given below. 
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P  = proportion of type  players in the population in generation (1a) 

 

P = (PNSD , PSDF , PSDH )        (1b) 

 

(P = the payoff to type  in generation t     (1c) 

 

ave(P ) = PNSD, NSD(P ) + PSDF, SDF(P ) + PSDH, SDH(P )   (1d) 

 

P ,t+1 = P t (P ) / ave(P )        (1e) 

 

Byrne and Kurland proved that for all values of  and  tested, the NSD 

type is eliminated from the population in the ESS.  Furthermore, the resulting 

SDF-SDH population has a unique mixed-strategy ESS.  The ESS is purely 

SDF when the ratio of /  is very high.  Figure 2-3 displays the sensitivity of 

the ESS values to  and .   

In conclusion, the results support Trivers’ hypothesis.   Self-deception 

can be fitness-enhancing when it enables a player to better deceive his 

opponent. 
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Figure 2-3:  The sensitivity of the ESS to  and .  The shades of gray represent 10% 

increments in the SDF-content of the ESS SDF-SDH population, [Byrne & Kurland 2001]. 
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Section 2.2 Additional Work 

 

 

 One additional reference is noteworthy for the purposes of this thesis.  

While the theoretical and numerical analysis provided by Byrne and Kurland 

was insightful, a computer model is needed in order to provide the flexibility 

to further explore the implications of their results.  Specifically, a finite 

population is needed to examine belief capacity dynamics in order to track 

individual encounter histories.  Haney developed a computer simulation 

model that reproduces the results of Byrne and Kurland, [Haney 2007].  This 

model can be easily modified to analyze the results of variations applied to 

the original model, variations in the model parameters for example.  

 In Haney’s Matlab simulation program, the population of players is 

initialized with a sampled beta distribution.  Information about the players is 

stored in a matrix, with each row containing the information for a single 

player.  The columns of the matrix contain the player’s size, the player’s 

type, the value of , and the value of .  The same values for  and  are 

shared by the entire population.  In this model there is a finite approximation 

of the beta distribution that is a continuous approximation of reality.  

Whereas the original paper integrated the entire encounter space, here the 

expected cumulative fitness values of the players are calculated by summing 

the sampled points weighted by the value of the beta distribution at that 

point.   

 As in the original paper, player one, the prototype player, is set to be 

the average size player at 0.5 [Byrne & Kurland 2001].  The sampled points 

of opponent player sizes range linearly from 0.01 to 0.99.  The cost to player 

one is simply the size of the opponent.  In every encounter, the value of the 

resource is set to equal the cost to player one.  Haney follows the original 

model and equates the opponent size with the cost to player one [Haney 

2007].  As a result, the opponent size and the value of the resource in an 

encounter both follow beta distributions.  This characteristic is important for 

comparison with the original paper.   
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 For each player type, the prototype player engages every 

representative player of the sampled beta distribution in a hawk-dove game.  

Each of these games is repeated for all representative resource values, and 

for all possible types of the opponent.  Expressions (2a) and (2b) present the 

cumulative fitness value calculations for Byrne & Kurland’s and Haney’s 

models respectively.   

 

         (2a) 

 

        (2b) 

 

In the expressions, the player characteristics p1 = (0.5, ) and p2 = (c1, ), 

where  represents the player’s self-deception type.  Moreover,  is the 

payoff of each encounter, and in (2b) the  distribution is distinctly called for 

the value of the resource and the cost of the fight.  Results of each game 

contribute to the cumulative lifetime fitness value of the prototype player for 

each player type.  After playing an entire population, the overall fitness score 

for the prototype player is stored in a matrix.  The final result is a 3x3 matrix 

of payoff values for each combination of types.  Standard replicator dynamics 

initialize the next population following each generation.   

 The results for the prototype players are compared against those of 

the original paper for validation.  The graph of ESS values from Haney’s 

model is given in Figure 2-4.    It shows the percentage of SDF players in the 

evolutionarily stable strategies.  This figure should be compared to Figure 2-3 

which shows the ESS values of the original paper.   

 

 



 

14 

 

 

 These results are found to closely match those of Byrne and Kurland, 

with deviations minor enough to attribute to the difference in methodology 

(i.e. sampling versus integration).  Haney successfully reproduces the results 

of the original paper employing a computer model [Haney 2007]. 
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Figure 2-4:  Haney’s ESS Results [Haney 2007]. 
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Section 2.3 Motivation  

 

  

 With validated results, Haney’s computer model can be modified to 

answer some of the questions raised by Byrne and Kurland at the end of 

their paper, while maintaining an analytical bridge to their results.  As 

mentioned, self-deception was found to be fitness enhancing when it enables 

one to better deceive an opponent into not competing for a resource.  

However, the model of Byrne and Kurland does not consider any effect of 

self-deception on one’s actual performance if the opponent competes.  An 

examination of the effect of beliefs on performance is the first possible 

extension of their work.  

Furthermore, the original paper considers only the encounter space of 

an average size player against a sampled beta distribution of opponents.  For 

the average size player, the NSD type is eliminated from the ESS, with an 

implicit assumption of the independence of type and size.  A worthwhile 

exercise would be to analyze the encounters of a sampled distribution of 

player sizes against opponents from the same distribution.  Perhaps some 

noteworthy trends would arise. 

This thesis is an extension of Byrne and Kurland’s original work 

designed to address these two issues. 
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Chapter 3 

 

 

PROBLEM STATEMENT 

 

 

 Athletes often observe strict rituals before playing in a game.  They 

may always wear the same undershirt, carry a special trinket, or mismatch 

their socks.  These athletes believe that following these rituals will place the 

odds of winning the game in their favor.  Patients participating in medical 

experiments may be issued a placebo rather than the actual treatment being 

tested.  Nevertheless, these patients will often report an improvement in 

their condition.  Authors of self-help books generally stress the importance of 

positive thinking.  They suggest that what one believes to happen plays a 

major role in determining what actually does happen.  All of these scenarios 

seem to support the same conclusion:  belief affects performance. 

 Consider a competitive game between two players in which the size of 

a player directly relates to his or her chance of winning the game.  A larger 

player is more likely to win and a smaller player is more likely to lose.  In 

boxing and wrestling, for example, matches are coordinated based on one’s 

weight class.  A match pairing two players of considerable size difference is 

deemed unfair in that the larger player is likely to dominate the smaller one. 

 However, suppose that size is not the only characteristic that impacts 

the players’ chances of winning.  Suppose the players’ beliefs about their 

performances in the game will have an impact on the outcome as well.  The 

smaller player might be convinced that she is stronger than her size would 

suggest, and that she therefore has a 50-50 chance of beating her opponent.  

The larger player might be rebounding from a series of losses and doubting 

his abilities at the moment.  Is the larger player still more likely to emerge as 

the winner? 
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 The fundamental problem addressed in this thesis relates to the study 

of the relationship between self-deception and the outcome of a competitive 

encounter.  Particularly, the effect of a player’s belief in victory on his or her 

actual performance is examined.   

 Two assumptions serve as the foundation for this study.  The 

assumptions made are: 

 

1) Belief in victory enhances one’s actual performance.  

 

2) One’s capacity for belief in victory is influenced by personal history.  

 

 The first assumption expresses the view that belief indeed affects 

performance.  This assertion holds for both the affirmative and negative 

cases.  A player who believes he will win a competitive encounter is more 

likely to do so.  Similarly, a player who believes she will lose a competitive 

encounter increases her chances of defeat.  

 However, if it were that simple people would just maintain an infinite 

belief in victory.  The second assumption is that one’s ability to believe in 

victory is affected by past experiences; i.e. previous experiences have the 

potential to both expand and restrict one’s capacity for belief.   

 Based on these assumptions, the objective is to learn more about the 

effect of belief on performance.  In order to study this problem the following 

questions are answered: 

 

1) Is self-deception still fitness-enhancing as indicated by the original 

paper? 

 

2) Do the results display size sensitivity?  

 

Recall that Byrne and Kurland demonstrated self-deception could be 

fitness enhancing if it enables one to better deceive an opponent into not 

competing for a resource.  However, in this thesis the case is considered 
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where self-deception has the potential to both positively and negatively affect 

one’s performance.  The first question addresses whether this additional 

aspect of self-deception changes the results of the original paper.  Perhaps 

now in the ESS for the average size player NSD types are no longer 

eliminated from the population. 

 Secondly, trends in the results are discussed as it pertains to size.  

This step is necessary to obtain an accurate image of the evolutionarily 

stable strategies.  It may be that it is more beneficial for smaller players to 

enter self-deception.  This would be consistent with phenomena such as the 

“Napoleon complex” and small dog behavior.  The Napoleon complex 

describes the theory that smaller men are more aggressive in an effort to 

dominate larger men.  Small dogs often noticeably bark in encounters more 

frequently and for longer periods of time than their larger counterparts.  As 

another example of size dependence perhaps large players stand to gain 

more, or at least lose less, by being realistic.  Yet, large players risk less by 

inflating their beliefs. 

 Finally, the ESS results of this model are compared to a model that 

does not allow belief to affect performance.  Addressing all of these issues 

will enable a full appreciation of the relationship between belief and 

performance.  What is the effect of belief on performance in fitness 

competitions?  The subsequent chapter details our methodology for 

discovering the answer.   
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Chapter 4 

 

 

METHODOLOGY 

 

 

At the foundation of this work are the assumptions that belief in 

victory enhances performance, and that one’s ability to believe in victory is 

limited by past experiences of defeat.  Based on these assumptions, an 

evolutionary game model of the effect of belief on performance is formulated.  

With this model as the basis, the simulation used to produce the player 

fitness values for analysis is described.  Finally, the technical details of the 

experimental runs are provided. 

 

 

Section 4.1 Model Formulation 

 

  

Player sizes range exclusively from 0 to 1, s  (0, 1), with 0 

considered to be a player of small stature and 1 considered to be a player of 

large stature.  The baseline probability of victory, (s1, s2), is a function of 

the two player sizes.  Consistent with the work of the original paper, the 

players’ probabilities of losing a fight are equal to the cost, C, they incur in 

the fight [Byrne & Kurland, 2001].   

In the present model, however, the fight probability and costs are a 

function of the two player sizes.  This allows the consideration of payoffs to 

any size player.  The cost of a fight is equal to the difference in player sizes, 

normalized to (0, 1) to maintain a probability. 

A player’s belief in victory ranges from [0, 1].  This is a belief about his 

or her baseline probability of victory.  A belief close to zero is considered to 

be weak and a belief close to one is considered to be strong.  The two 
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players’ beliefs, 1 and 2, need not sum to unity.  Their beliefs are based on a 

number of factors, including their baseline probabilities of victory, their 

opponent’s signal, and/or their self-deception type.  Furthermore, a player’s 

belief in victory is affected by his or her current capacity (upper limit) for 

belief, .  The capacity for belief in victory is fixed in this model.  However, it 

will be dynamic in the future.  Note that in Byrne and Kurland, capacity was 

implicitly 1, as SDF players had complete belief in victory when in self-

deception. 

 In the present model of the effect of belief on performance, 

beliefs lead to an adjusted probability of victory, , for each player 

throughout their competitive encounters.  The weighted average of each 

player’s believed and baseline probabilities of victory are normalized to 

calculate this adjusted probability.  The normalization accounts for the 

opponent’s belief based advantage or disadvantage.  The parameter f is 

utilized to denote the weight placed on belief in victory.  All variables and 

parameters along with the final model of the adjusted probability of victory 

are listed below.  It may be seen that C1 + C2 = 1, and 1 + 2 = 1. 

 

s1 = player 1’s size         (3a) 

s2 = player 2’s size         (3b) 

1(s1, s2) = 
2

)(

2

1 21 ss
 = baseline probability of victory for player 1 (4a) 

2(s1, s2) = 
2

)(

2

1 12 ss
 = baseline probability of victory for player 2  (4b) 

1 = player 1’s belief in victory        (5a) 

2 = player 2’s belief in victory        (5b) 

= player 1’s capacity (upper limit) for belief in victory   (6a) 

 = player 2’s capacity (upper limit) for belief in victory   (6b) 

f = weight placed on belief in victory      (7) 

C1 = 2(s1, s2)         (8a)  

C2 = 1(s1, s2)         (8b) 
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1 =  
2211

11

11

1

ffff

ff
       (9a) 

2 =  
2211

22

11

1

ffff

ff
       (9b) 

 

 

Section 4.2 Simulation  

 

  

 Both the original and present models are deterministic and can be 

largely analyzed utilizing numerical methods.  However, anticipated 

additional features of future models will shift the model to a dynamic one 

that requires a more sophisticated analysis.  Therefore, Matlab is used to 

simulate the present model with the collaboration of Haney.  His previous 

work in creating a computer model that accurately reproduces the results of 

Byrne and Kurland serves as the foundation for the present model. 

 The simulation engages two players in a hawk-dove encounter.  

Encounters are characterized by the two players, the baseline cost of the 

fight, the value of the resource, and the weight that is placed on the beliefs 

of the players.  Each player has five attributes:  size, self-deception type, 

cognitive resolution, susceptibility, and belief capacity.  Both the cognitive 

resolution and susceptibility parameters are shared by the entire population.  

This could be examined for further extensions. 

 As in the work of Byrne and Kurland, a player who is not in 

ambivalence will play hawk if the value of the resource exceeds the cost of a 

fight.  Such a player will play dove if the cost of a fight is greater than the 

value of the resource.  Otherwise, the player will enter ambivalence when the 

difference between the value of the resource and the cost of the fight is less 

than the player’s cognitive resolution.  This ambivalence is defined in the 

inequality given below. 
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Ambivalence => |V – C|       (10) 

 

 Upon encountering a resource and an opponent, each player makes an 

initial assessment about the value of the resource and the cost of a fight with 

the opponent.  The present model defines this cost to be C1a, the maximum 

between C1 and 1 - .  In this way, the model reflects the fact that a player’s 

capacity for belief in victory (or lack thereof) has the potential to increase the 

actual cost incurred by the player.  As noted above, belief capacity is 

implicitly equal to 1 in Byrne and Kurland’s model.  In this model the belief 

capacity of each player is fixed.  Further note that when belief capacity is 

introduced to the model, all players are affected regardless of self-deception 

type.  The fixed capacity of the present model is an interim step toward 

analyzing dynamic capacities. 

 Following the initial assessment, the players signal their beliefs to each 

other.  Players of the non self-deceiving type or not in ambivalence 

accurately signal a value of V for the resource and of C1a for the cost of the 

fight.  The signal of players in ambivalence will vary based on the 

assessments resulting from their self-deception types.  A list of self-

deception types and corresponding assessments is provided in Table 4-1. 

 

 

Table 4-1:  Self-Deception Types and Corresponding Assessments. 

 

Self-Deception 

Type 

Hunger 

Assessment 

Fear 

Assessment 

SDF V 1- 1 

SDH 0 C1a 

 

 

 Based upon their individual susceptibilities, the players then update 

their assessments in accordance with the signals received from their 

opponents.  The updates are calculated with a simple convex sum, weighting 
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the opponent’s signal by the susceptibility parameter .  This period of 

updated assessments provides another opportunity for players to enter 

ambivalence.  Since ambivalence once entered lasts the duration of an 

encounter, ambivalent players from the initial assessment remain ambivalent 

throughout the update phase of play.  Ambivalence occurs in the update 

phase if the difference between the updated hunger and fear beliefs is less 

than .  The players entering ambivalence during this phase also share the 

assessment values listed in Table 4-1. 

 Players not in ambivalence choose to play hawk when their hunger 

exceeds their fear and play dove otherwise.  An ambivalent player facing a 

non-ambivalent opponent will play hawk if he is an SDF player and dove if he 

is SDH.  Ambivalent NSD players play either hawk or dove with equal 

probability.  The various strategies of two ambivalent players are listed in 

Table 4-2.  In each entry, the first strategy refers to player 1 and the second 

strategy refers to player 2. 

 

Table 4-2:  Ambivalent Player Strategies. 

 

  Opponent 

  NSD SDF SDH 

P
la

y
e
r
 1

 

NSD 

0.25*(Hawk, Hawk) + 

0.25*(Hawk, Dove) + 

0.25*(Dove, Hawk) + 

0.25*(Dove, Dove) 

Dove, 

Hawk 

Dove, 

Dove 

SDF Hawk, Dove 
Hawk, 

Hawk 

Hawk, 

Dove 

SDH Dove, Dove 
Dove, 

Hawk 

Dove, 

Dove 

 

 

The final fear assessments of the update phase of play are used in the 

calculation of the players’ beliefs.  For each player, belief is set to equal one 
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minus the final fear assessment.  These belief values are then entered in the 

adjusted probability of victory equations (9a) and (9b).  Lastly, the adjusted 

probability of victory is used to determine the fitness value of each player for 

a single generation of play.  These fitness values are broken out by a player’s 

performance against various opponent sizes.  The next section describes the 

computation of these fitness values, preceded by a discussion of the variable 

and parameter levels employed in this study. 

 

 

Section 4.3 Experimental Design  

 

 

 Experiment One 

  

 Recall that in the present model, belief has the potential to both 

positively and negatively affect one’s performance.  The first question 

addressed pertains to the ESS of the type(s) of average size players.  Does 

this additional aspect of the model prevent the NSD player type from being 

eliminated from the population in the ESS as was the case in the original 

Byrne and Kurland model?   

 To this end, an average size player of each player type engages 

opponents of each size of a 99-point sampled beta distribution.  The value of 

the resource in these encounters is also taken from a 99-point sampled beta 

distribution.  An initial weight of f = 0.5 is given to the players’ beliefs in 

victory.  Setting f = 0.5 results, before normalization to account for the 

opponent,  in a player’s adjusted probability of victory being a simple 

average of the players’ believed and baseline probabilities of victory.   

 Epsilon is held constant at a value of 0.1.  With reasonable epsilon 

values ranging from 0.01 to 0.16, this value is about average for the 

cognitive resolution.  Yet, it is high enough to frequently force players into 

ambivalence.   
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 Referring back to Figure 2-3, there is more sensitivity in the ESS to 

the variation of the lambda parameter than to the variation of epsilon.  For 

this reason the encounters are repeated at the lambda values of 0.2, 0.45, 

and 0.7.  These values sufficiently sample the lambda range of 0.05 to 0.95. 

 Finally, the belief capacity of each player is tested at 0, 0.25, 0.5, 

0.75, and 1.  The experiments test every possible combination of belief 

capacity for player 1 and player 2.  The output of these experiments is 25 

3x3 matrices for each level of lambda.  The matrices contain fitness values 

for player 1 resulting from the play of each player type against an opponent 

of each player type.  An example of the output from the experiments is 

provided in Table 4-3.  The lower case letters are constants representing the 

fitness values for player 1 resulting from each encounter.  Player 1 is the row 

player and the opponent (player 2) is the column player. 

 

 

Table 4-3:  Example Output of the Average Size Player’s Encounter Payoffs. 

 

  NSD SDF SDH 

NSD a b c 

SDF d e f 

SDH g h i 

 

 

 The fitness values are computed by summing the payoff functions of V 

and (1- 1) against the sampled probability distributions of V and (1- 1).  

Consider the case where both players are ambivalent.  In this case NSD 

players choose to play either hawk or dove with equal probability.  For a 

hawk-hawk encounter, the payoff is the value of the resource times the 

adjusted probability of victory, minus the adjusted cost.  The hawk receives 

the value of the resource at no cost in a hawk-dove encounter.  In a dove-

dove encounter, the payoff is the value of the resource times the adjusted 
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probability of victory, again at no cost.  These equations may be seen in 

Table 4-4. 

 

 

Table 4-4:  Payoff Matrix for two Ambivalent Players. 

 

 
NSD SDF SDH 

NSD 
0.25*[ 1*V-(1- 1)] + .25*V 

+ .25*(0) + .25*( 1*V) 
0 1*V 

SDF V 1*V - (1- 1) V 

SDH 1*V 0 1*V 

 

 

 Using these fitness results, the equilibrium values are calculated by 

solving for the proportions of each type in the population that render the 

fitness of each type equal, the types being the three varieties of self-

deception: SDF, SDH, and NSD.  The system of equations for Table 4-3 is 

provided below.  Define x1, x2, and x3 to be the NSD, SDF, and SDH 

strategies respectively.  As the strategies are the probabilities of playing each 

type, their values must sum to unity. 

 

ax1 + bx2 + cx3 = dx1 + ex2 + fx3 = gx1 + hx2 + ix3   (11a) 

x1 + x2 + x3 = 1         (11b) 

 

Similarly, a system of two equations and two unknowns are solved to 

calculate a two-type ESS whenever one of the strategies is strictly 

dominated.  A pure strategy ESS results whenever one of the strategies 

strictly dominates the other two. 
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 Experiment Two 

 

 The second study addresses the question of size sensitivity in the 

results.  Do players benefit more from particular strategies depending on 

their sizes?  These experiments include two additional player sizes to 

consider a population of small, medium, and large players, each of whom can 

exhibit any of the three types of self-deception.  For fitness calculations, the 

full sampled beta distribution of opponent sizes is preserved and the 

distribution is divided in thirds such that opponents greater than 0.66 in size 

are considered large, those less than 0.33 in size are considered small, and 

the rest are considered medium.  This allows for direct comparison of the 

results of the three sample size players to the ESS results of the simulated 

version of Byrne and Kurland’s model.   

 Originally, 11 different player sizes were tested, resulting in 33 size-

type pairs.  These sizes ranged from 0.05 to 0.94 in increments of 0.09.  

Preliminary testing showed the resulting trends to be the same for three sets 

of players:  smaller, average, and larger players.  A sample of three player 

sizes was found to be sufficient to describe the trends found in the entire 

space while reducing the complexity of the model.  Avoiding the endpoints, 

the player 1 sizes of 0.14, 0.5, and 0.85 were chosen for examination.   

 For comparison with that model, the ESS values of the population are 

examined with belief capacity set to 1 = 2 = 1.  Having observed the affect 

of lambda variation in the first experiment, lambda is held constant in this 

experiment at the middle value of 0.45.  All other levels for the model 

variables and parameters remain the same as in experiment one. 

 The key to analyzing size dependence of the ESS results is to allow 

self-deception types to evolve separately for each size, while holding the 

distribution of sizes constant and continuing to match each player (of any 

size and type) with the full distribution of opponent sizes and types.  The 

three possible types for each size bin result in 27 extreme points of the 

convex set of mixed populations.  For example, a population in which all 

small players have type NSD, all medium players have type SDF and all large 
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players have type SDF is one extreme.  Another would be type SDH small 

players, type SDH medium and type SDF large.  A mixture these extremes 

would feature a mix of NSD and SDH in the small players, a mix of SDF and 

SDH in the medium players, and SDF in the large players.  Any population 

featuring a mix of types for each player size is in the convex hull of the 27 

extreme points, which will be used to search for any ESS of the population.  

It should be noted that not every mixed population has a unique 

representation as a convex combination of the extreme points, which 

becomes evident in the analysis section.   

 By analogy, there is a “payoff” to each extreme point (triple) of the 

population paired with any other triple, resulting in a 27 x 27 matrix of 

payoffs to which standard evolutionary game methodology can be applied.  

The payoff of one triple matched with another is computed as the sum of the 

payoffs to each size-type combination represented by the pair of triples.  This 

models each size player having to play the entire population (all sizes of 

players) in his or her lifetime.  Therefore, nine payoff values are summed to 

calculate the total payoff to each triple versus each other triple.  Table 4-5 

provides a blank example of the triple payoff matrix that is summed to 

calculate a single entry in the total triple payoff matrix.  When all player size, 

opponent size and type combinations have been exhausted, 729 such 

matrices are produced.  

 

Table 4-5:  Blank Triple Payoff Matrix. 

 

  
Opponent 

 
  

Small, 
Type 

Medium, 
Type 

Large, 
Type 

P
la

ye
r 

1
 

S1 = 0.14, Type       

S1 = 0.5, Type       

S1 = 0.85, Type       
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The total triple payoff matrix is extensively analyzed to identify the 

evolutionarily stable strategies.  Payoffs are first evaluated for pure 

strategies and then to identify all mixed-strategy equilibria.  The matrix is 

evaluated for pure ESS values by inspecting the payoffs of each triple versus 

itself to determine whether they are the maximum payoff in their columns.  A 

maximum triple versus itself payoff effectively indicates a pure ESS.  

Otherwise the population will gravitate towards the higher paying strategy. 

Mixed strategy equilibria are found by exhaustively checking all 

possible combinations of types and solving the system of linear equations 

that equate the payoffs of every type in the combination.  To narrow the 

search, any strategy that is strictly dominated in the total triple payoff matrix 

is eliminated because it will not be part of an ESS.  Considering this to be a 

one population model of players versus other players, only the diagonal 

entries are checked for equilibria.  On the diagonal, the row player takes on 

the role of each pure strategy and the column player represents the entire 

population. 

Identified equilibria are tested for stability, leading to the discovery of 

the ESS.  Stability is proven by showing that the disruption of an equilibrium 

in any direction within a given neighborhood leads to a return to the 

equilibrium.  ESS values are observed across the full range of parameter 

values to confirm local or global attraction. 

We repeat this process for a model where beliefs have no influence 

over performance by setting the belief parameter to f=0.  The results of 

these experiments are provided in the following chapter. 
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Chapter 5 

 

 

RESULTS 

 

 

This chapter provides the results of experiment one and experiment 

two.  Experiment one examines whether non self-deceiving players are 

eliminated from the population in the evolutionarily stable strategies.  The 

second experiment finds identifies any sensitivity in the results to distinct 

player sizes.  Experiment two also compares the ESS results of the present 

model to a model where belief has no impact on the performance of a player. 

 

 

Section 5.1 Experiment One 

 

 

Utilizing the simulation, an average size player competed in hawk-dove 

encounters against opponents from a 99-point sampled beta distribution.  

The value of the resource in each encounter was also taken from a 99-point 

sampled beta distribution.  While  was held constant at 0.1, the encounters 

were repeated for  values of 0.2, 0.45, and 0.7.  The beliefs of both players 

varied across all combinations of the values 0, 0.25, 0.5, 0.75, and 1.  Tables 

5-1 (a), (b), and (c) list the resulting fitness and ESS values of these 

encounters at the belief level 1 = 1, for the three  values.  This belief value 

is used to facilitate the comparison of this model to the work of Byrne and 

Kurland in which all self-deceiving players have a belief level of one [Byrne 

and Kurland 2001].  As in the paper, no size sensitivity is assumed in the 

ESS results.  Fitness and ESS values for all belief levels of both players are 

provided in Appendix B. 
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Table 5-1(a):  Fitness (in thousands) and ESS Values for the 0.5 Player at  = 0.2. 

 

    X2 = 1   

 X1 = 1 NSD SDF SDH ESS 

NSD 0.81 0.04 1.2962   

SDF 1.34 0.00 2.00 0.64 

SDH 1.04 0.33 1.42 0.36 

 

 

Table 5-1(b):  Fitness (in thousands) and ESS Values for the 0.5 Player at  = 0.45. 

 

    X2 = 1   

 X1 = 1 NSD SDF SDH ESS 

NSD 0.76 0.15 1.11   

SDF 1.69 0.19 2.22 0.78 

SDH 1.13 0.44 1.37 0.22 

 

 

Table 5-1(c):  Fitness (in thousands) and ESS Values for the 0.5 Player at  = 0.7. 

 

    X2 = 1   

 X1 = 1 NSD SDF SDH ESS 

NSD 0.77 0.26 1.03   

SDF 1.92 0.81 2.13 1 

SDH 1.22 0.61 1.37   

 

 

 Figures 5-1 (a), (b), and (c) show the type dominance for these 

encounters.  These figures display the type dominance for a player 1 belief 

level of 1 = 1 as the belief level of player 2 varies across all five values. 
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Figure 5-1(a):  Player 1 Type Dominance for  = 0.2. 

 

Figure 5-1(b):  Player 1 Type Dominance for  = 0.45. 

 

Figure 5-1(c):  Player 1 Type Dominance for  = 0.7. 
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Section 5.2 Experiment Two  

 

 

 In experiment two, the distribution of opponent sizes is divided into 

thirds to manage complexity while analyzing size dependence in the results 

of the evolutionarily stable strategies.  The opponents are classified as small, 

medium and large respectively with the thirds in ascending order, (i.e. sizes 

0.01 to 0.33, 0.34 to 0.66, and 0.67 to 0.99).  Having now understood the 

effect of variation, the susceptibility parameter is held constant at 0.45 in 

this experiment. 

 Original experimentation was performed with 11 different player one 

sizes.  These preliminary results showed the same general player type trends 

for three categories of players:  smaller, average, and larger.  That being the 

case, the player one sizes of 0.14, 0.5, and 0.85 serve as a sufficient sample 

of the encounter space.  Graphs of the preliminary results are provided in 

Appendix C. 

 The total triple payoff matrix for the present model did not produce a 

pure strategy ESS.  Before exhaustively searching the matrix for mixed 

equilibria, dominated strategies were eliminated.  Following this elimination, 

five triple size and type strategies remained.  These five strategies and their 

payoffs are listed in Table 5-2.  In Tables 5-2 and 5-3, F refers to the SDF 

strategy, H to the SDH strategy, and N to the NSD strategy.  The first letter 

is the strategy of the small player, the second is that of the medium player, 

and the final letter is the large player’s strategy. 

 

Table 5-2:  Non-dominated Strategies. 

 

 
FFF FHN FHF HHF HFF 

FFF 1541.36 5095.52 4311.23 5755.18 2985.31 

FHN 1713.55 4157.67 3868.21 5114.68 2960.02 

FHF 1787.60 4551.42 3997.06 5243.13 3033.67 

HHF 2154.17 4360.51 3807.16 4722.82 3069.83 

HFF 1907.93 4904.60 4121.32 5234.87 3021.47 
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 The five strategies were examined for mixed equilibria by checking all 

possible combinations of types and solving the system of linear equations 

that equates the payoffs of every type in the combination.   Table 5-3 

provides the equilibria identified as a result of this search.  These equilibria 

were calculated utilizing Mathematica software.  Appendix D contains the 

calculations. 

 

 

Table 5-3:  Equilibrium Strategies. 

  

Mix A FFF FHN 
 

Mix D FHN HHF 
 

Mix G FFF HHF HFF 
 

 
0.84 0.15 

  
0.66 0.34 

  
0.09 0.12 0.79 

 

             Mix B FFF FHF 
 

Mix E FHF HFF 
 

Mix H FHF HHF HFF 
 

 
0.56 0.44 

  
0.09 0.91 

  
0.09 0.03 0.88 

 

             Mix C FFF HHF 
 

Mix F HHF HFF 
 

Mix I FFF FHF HHF HFF 

 
0.63 0.37 

  
0.09 0.91 

  
0.09 0.00 0.12 0.79 

 

 

 In search of stability, the member strategies of identified equilibria 

were first examined for maximum payoff among all the strategies.  An 

equilibrium in which the positively weighted pure strategies do not have the 

maximum payoffs among all strategies is not stable.  The population will 

eventually move from such an equilibrium toward the strategies with better 

payoffs.  This initial criterion eliminated all but Mix G, H, and I.  Furthermore, 

mixes G, H and I are actually all the same mixed population; that is, G, H 

and I are merely different representations of the same underlying population 

as convex combinations of extreme points.  The equilibrium population is 9% 

SDF and 91% SDH for the small player, 88% SDF and 12% SDH for the 

medium player, and 100% SDF for the large player.   
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To confirm the stability of this population mix, it must be shown that there 

exists a neighborhood within which no matter how the strategies are 

perturbed, the population always returns to the mixed strategy of interest.   

 The large player employs a pure strategy SDF in all of the 

aforementioned mixed strategies.  This pure strategy SDF strictly dominates 

SDH and NSD and is therefore stable.  Furthermore, SDF and SDH strictly 

dominate NSD for the small and medium players.  Consequently, only the 

perturbation of the mix of SDF and SDH are considered for the small and 

medium player strategies.  

 Figures 5-2 (a), (b), and (c) chronicle the examination of such 

perturbations for Mix G.  The first two figures graph the difference between 

the payoffs of the SDF and SDH strategies for the small and medium players 

respectively.  It may be seen that the lines in each graph cross the x-axis at 

the equilibrium.  Where the lines are in the positive region, the SDF strategy 

will continue to increase.  Once it surpasses the equilibrium, it enters the 

negative region and will return to the equilibrium.  Thus the mixed strategy 

remains stable as the small or medium player changes strategy given the 

other player is held constant. 

 The third figure displays a graph of the equilibria for both the small 

and medium player.  With this figure one may examine the effect of 

simultaneously perturbing the strategies of these two players.  In the figure 

the blue line represents the small player and the medium player is 

represented in red.  The arrows in the graph illustrate the direction in which 

the mixed strategies will move when they are in various combinations of 

small and medium player strategies.  One may observe that the mixed 

strategies will ultimately return to the equlibrium point.   
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Figure 5-2(a):  Difference in Payoffs between Small SDF and SDH Players in Mix G. 

 

 

Figure 5-2(b):  Difference in Payoffs between Medium SDF and SDH Players in Mix G. 
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Figure 5-2(c):  Equilibria of the Small and Medium Players in Mix G. 

 

 

 This process was repeated for a model that does not allow a player’s 

belief to impact his or her performance, referred to as the original model.  

Again there was not a pure ESS.  Table 5-4 provides the payoffs for the three 

strategies which were non-dominated in the total triple payoff matrix.  These 

strategies were evaluated for equilibria – the Mathematica calculations may 

be reviewed in Appendix E.   

 

 

Table 5-4:  Original Model Non-dominated Strategies. 

 
 FFF HHF HFF 

FFF 1529.14 5273.71 2639.97 

HHF 3134.98 4741.41 3372.62 

HFF 2451.98 5140.57 3211.05 
 

 

 Table 5-5 lists the resulting equilibria.  After inspecting the payoffs for 

stability, Mix B is determined to be the only possible stable strategy.  In this 
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model, both small and large players have pure strategies.  The small player 

is pure SDH and the large player is pure SDF.  Therefore only the mixed 

strategy of the medium player is examined for stability.  Figure 5-3 shows 

that perturbations of the mixed strategy will lead to a return to the 

equilibrium. 

 

Table 5-5:  Original Model Equilibrium Strategies. 

 

Mix A FFF HHF 

 
0.2490 0.7510 

   Mix B HHF HFF 

 
0.2881 0.7119 

 

 

 

 

Figure 5-3:  Original Model Difference in Payoffs between Medium SDF and SDH Players. 

 

 

 The evolutionarily stable strategy for this comparative model is 100% 

SDH for the small player, 71% SDF and 29% SDH for the medium player, 

and 100% SDF for the large player.  Since both models are observed over 

the full range of parameter values, both of these ESS results are global 
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attractors.  This fact will be very instrumental in making predictions about 

the population composition. 

 In the next and final chapter these results are discussed, along with 

their implications.  This study is summarized, and a few issues are 

highlighted which remain open for future work.
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Chapter 6 

 

 

CONCLUSION 

 

 

Section 6.1 Discussion 

 

 

 The tables for experiment one in Appendix B show that for all belief 

levels and all values of , the fitness values of non self-deceiving players are 

strictly dominated.  This means that non self-deceiving players again will be 

eliminated from the evolutionarily stable strategies.  The figures for this 

experiment also show that the NSD type is always dominated, in these cases 

by the SDF type. 

 A few additional trends are evident in the fitness and ESS values 

provided in Appendix B.  As  increases, the SDF strategy becomes more 

dominant.  This trend is true for all belief levels.  Furthermore, as one might 

expect, player 1’s overall fitness increases as his or her belief level increases.  

Conversely, player 1’s overall fitness decreases as the opponent’s belief level 

increases.  These trends occur almost monotonically across all parameters, 

with the exception of a few irregularities at = 0.75.  At this high level of 

susceptibility, the irregularities may be the result of a player either engaging 

in or restraining from fights which otherwise should have been surrendered 

or engaged respectively.  Finally, there is very little change in the fitness of 

NSD and SDH players as the belief levels (of either player) increase from 

0.75 to 1.  This may hint at an approaching ceiling to the effect belief can 

have on these two player types. 

In experiment two, the equilibria in both the belief influenced and 

belief neutral models were found to be stable and were confirmed as the 

evolutionarily stable strategies.  From these two models follows a discussion 
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of the effect of belief on performance.  Whereas without beliefs affecting 

performance small players would all be SDH, 9% of small players become 

SDF with belief effects.  This phenomenon provides evidence in support of 

the effectiveness of the Napoleon complex and small dog behavior.  Medium 

players also experience an increase in SDF types in the model influenced by 

belief.  Large players, however, do not appear to be much affected by the 

inclusion or exclusion of belief in the self-deception model. 

 Of final note, Byrne and Kurland’s implicit denial of interdependence 

between type and size is not necessarily valid.  The results indicate that the 

evolutionarily stable strategies are sensitive to the size of the player.  Large 

players are comprised entirely of SDF types in the ESS while small and 

medium players have a mixed ESS of SDF and SDH types. 

 

 

Section 6.2 Summary  

 

 

Byrne and Kurland demonstrated that self-deception could be fitness 

enhancing if it enables one to better deceive an opponent into not competing 

for a resource [Byrne and Kurland 2001].  This thesis extension of that work 

examines the relationship between beliefs and performance.  It specifically 

studies the effect of belief on one’s actual performance in competition. 

Two major assumptions form the foundation of the model.  The first 

states that belief in victory enhances one’s performance and subsequently 

one’s probability of victory.  The second assumption states that one’s 

capacity to believe in victory is limited by past experiences of defeat.  Based 

on these assumptions, evolutionary game theory is utilized to model and 

analyze the relationship between a player’s belief in victory and the final 

outcome of a competitive encounter.  Given its inherent ability to adapt to 

chaotic dynamics necessary for future study, simulation is employed to 

connect between Byrne and Kurland’s continuous model with future discrete 

models. 
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This study sought first to answer whether self-deception remained 

fitness-enhancing as indicated in the original work of Byrne and Kurland, as 

self-deception now has the potential to both positively and negatively affect 

one’s performance.  It showed that notwithstanding the additional aspects of 

the present model, non self-deceiving players are still eliminated from the 

population in the equilibrium strategies.  Thus, self-deception remains 

fitness-enhancing. 

Secondly, this study addressed the issue of whether there would be 

size sensitivity in the results.  To this end the evolutionarily stable strategies 

of players small, medium, and large in stature were examined.  The results 

showed that there is indeed size sensitivity when considering the distribution 

of opponents from each player size.  Small players will be comprised of 91% 

SDH types and 9% SDF types.  The majority of medium size players will be 

SDF types, at 88%, and 12% SDH types.  Large players are comprised 

entirely of SDF types, making it their pure ESS. 

Finally, in order to formulate a conclusion about the effect of belief on 

performance, these results are compared to the evolutionarily stable 

strategies of a model in which belief has no influence on performance.  For 

this model, both the small and large players have a pure ESS.  The small 

players will be made up completely of SDH types, and the large players again 

are comprised of all SDF types.  The medium players have a decreased SDF 

strategy of 71% and an increased SDH strategy of 29%.   

In summary, the incorporation of the effect of belief in a self-deception 

model effectively strengthens the strategy of SDF.  One will be more 

successful in fitness competitions if he or she believes in victory.  The SDF 

strategy is the beneficiary of belief as the present model considers 

performance.  An analogous scenario for the SDH strategy would be whether 

a devalued resource is actually worth less if it is received. 
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Section 6.3 Future Work  

 

 

 Recall that the first major assumption of this study is that one’s 

capacity for belief in victory is influenced by past experiences.  If a player 

loses a fight he thought he would win, he is more likely to be skeptical about 

his chances of victory in the future.  Conversely, winning a fight one thought 

she would lose may encourage her to believe more in the future.  The 

present model fixes the players’ belief capacities at static levels.  

Furthermore, it is memory less in that there is no mechanism for tracking the 

encounters of the players.   

 Future work will examine the nature of the limit that experience places 

on belief.   Two adjustments will be made to the present model in order to 

facilitate this study.  First, a history-dependent model will be developed.   

From such a model an observation of the effect of past experiences on a 

player’s belief will be possible.  Secondly the model will be dynamic, enabling 

the belief capacities of the players to increase and decrease as they 

experience victory and defeat respectively.   

   Perhaps several factors determine the effect personal history will 

have on a player’s belief.  Primarily, belief is effected by the accuracy of 

one’s past predictions of victory or defeat.  Secondly, belief is effected by the 

magnitude of past wins or losses.  A player might accurately predict a loss, 

but not lose as badly as he thought he would.  Or, perhaps a player 

accurately predicted a win, but won barely.  Both scenarios would influence 

belief level.  As a final note, it is presumed that early and recent experiences 

form lasting impressions upon a player.  First impressions are commonly 

hard to forget.  Additionally, what occurred last week for the most part is 

more prominent than what occurred last year.  All of these factors of past 

experiences affect one’s capacity to believe in victory. 

  Employing these assumptions, several issues will be addressed.  It 

would seem that below a certain belief level a player with a low capacity for 

belief in victory would cease to engage in competitive encounters.  
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Considering past experiences of defeat, it would also seem that there is an 

upper limit to a player’s ability to believe in victory.  The first issue addresses 

whether there is ultimately an upper and/or lower bound to a player’s 

capacity for belief in victory.  A belief level may be reached where additional 

losses no longer decrease a player’s capacity for belief.  Additionally, the 

possibility of an optimal level of overconfidence is examined.  Pessimism is 

classified as negative overconfidence, realism as zero overconfidence, and 

optimism as positive overconfidence.  Finally, given a history of persistent 

defeat, what is required for one to return to any optimal overconfidence 

level?  This final question searches for an optimal path of victorious 

experiences which will lead a player to recovery from a low belief capacity.
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Appendix A 

 

VARIABLES AND PARAMETERS 

 

P  = proportion of type  players in the population in generation (1a) 

P = (PNSD , PSDF , PSDH )        (1b) 

(P = the payoff to type s in generation t     (1c) 

ave(P ) = PNSD, NSD(P ) + PSDF, SDF(P ) + PSDH, SDH(P )   (1d) 

P ,t+1 = P t (P ) / ave(P )        (1e) 

s1 = player 1’s size         (3a) 

s2 = player 2’s size         (3b) 

1 = C2 = baseline probability of victory for player 1   (4a) 

2 = C1 = baseline probability of victory for player 2    (4b) 

1 = player 1’s belief in victory        (5a) 

2 = player 2’s belief in victory        (5b) 

current belief capacity of player 1      (6a) 

current belief capacity of player 2      (6b) 

f = weight placed on belief       (7) 

C1 = 
2

)(

2

1 12 ss
         (8a)  

C2 = 
2

)(

2

1 21 ss
         (8b) 

1 =  
2211

11

11

1

ffff

ff
       (9a) 

2 =  
2211

22

11

1

ffff

ff
       (9b) 

C1a = max(C1, 1- 1)         

 = cognitive resolution parameter 

 = susceptibility parameter 
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

Lambda = 0.2 
 

Epsilon = 0.1 
  

S1 = 0.5 
    

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 2.35 2.35 2.57   
 

NSD 1.02 1.06 1.75   

SDF 2.49 2.35 2.64 0.93 
 

SDF 0.86 1.05 1.73   

SDH 2.43 2.36 2.50 0.07 
 

SDH 1.21 1.11 1.79 1 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 3.26 2.78 3.78   
 

NSD 1.57 1.24 2.55   

SDF 3.74 3.64 3.89 1 
 

SDF 2.37 1.06 3.07 0.74 

SDH 3.05 2.96 3.21   
 

SDH 1.88 1.36 2.22 0.26 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 4.31 4.18 4.43   
 

NSD 2.50 1.74 3.52   

SDF 4.44 4.32 4.54 1 
 

SDF 2.94 2.16 3.95 1 

SDH 3.89 3.78 4.00   
 

SDH 2.29 1.67 3.02   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 4.38 4.25 4.49   
 

NSD 2.67 1.87 3.65   

SDF 4.49 4.38 4.59 1 
 

SDF 3.10 2.35 4.03 1 

SDH 4.02 3.90 4.12   
 

SDH 2.52 1.88 3.25   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 4.38 4.25 4.49   
 

NSD 2.67 1.87 3.65   

SDF 4.49 4.38 4.59 1 
 

SDF 3.11 2.42 4.03 1 

SDH 4.02 3.90 4.12   
 

SDH 2.52 1.88 3.25   
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 0.52 0.40 0.95   
 

NSD 445.13 347.59 822.84   

SDF 0.48 0.37 0.92   
 

SDF 412.07 316.00 791.25   

SDH 0.57 0.46 1.00 1 
 

SDH 506.38 407.36 882.61 1 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 0.42 0.20 0.92   
 

NSD 0.50 0.29 0.94   

SDF 0.88 0.00 1.66 0.28 
 

SDF 0.78 0.00 1.33   

SDH 0.96 0.53 1.45 0.72 
 

SDH 1.02 0.64 1.42 1 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 0.78 0.21 1.41   
 

NSD 0.93 0.31 1.45   

SDF 1.45 0.00 2.26 0.65 
 

SDF 1.39 0.00 2.12 0.47 

SDH 1.07 0.45 1.42 0.35 
 

SDH 1.22 0.65 1.54 0.53 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 0.94 0.32 1.54   
 

NSD 0.81 0.12 1.30   

SDF 1.58 0.28 2.34 0.79 
 

SDF 1.26 0.00 1.96 0.59 

SDH 1.17 0.49 1.58 0.21 
 

SDH 1.04 0.37 1.42 0.41 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 0.94 0.32 1.54   
 

NSD 0.76 0.07 1.25   

SDF 1.63 0.45 2.35 0.95 
 

SDF 1.29 0.12 1.95 0.75 

SDH 1.17 0.49 1.58 0.05 
 

SDH 1.00 0.32 1.37 0.25 
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 1   
 X1 = 0 NSD SDF SDH ESS 

NSD 445.09 347.57 822.773   

SDF 412.05 316.00 791.2071   

SDH 506.36 407.36 882.5659 1 

         X2 = 1   
 X1 = 

0.25 NSD SDF SDH ESS 

NSD 0.57 0.35 1.0082   

SDF 0.85 0.00 1.3938   

SDH 1.09 0.71 1.4915 1 

         X2 = 1   
 X1 = 0.5 NSD SDF SDH ESS 

NSD 1.10 0.42 1.6167   

SDF 1.56 0.00 2.29 0.42 

SDH 1.39 0.81 1.70 0.58 

         X2 = 1   
 X1 = 

0.75 NSD SDF SDH ESS 

NSD 0.98 0.21 1.467   

SDF 1.43 0.00 2.13 0.52 

SDH 1.21 0.50 1.59 0.48 

         X2 = 1   
 X1 = 1 NSD SDF SDH ESS 

NSD 0.81 0.04 1.2962   

SDF 1.34 0.00 2.00 0.64 

SDH 1.04 0.33 1.42 0.36 
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

Lambda = 0.45 
 

Epsilon = 0.1 
  

S1 = 0.5 
    

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 2.35 2.35 2.57   
 

NSD 0.57 1.04 1.72   

SDF 2.49 2.35 2.64 0.93 
 

SDF 0.50 1.04 2.04 0.73 

SDH 2.43 2.36 2.50 0.07 
 

SDH 0.91 1.11 1.86 0.27 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 2.55 2.01 3.26   
 

NSD 1.06 1.29 2.36   

SDF 3.65 3.65 3.89 1 
 

SDF 2.73 1.06 3.07 0.74 

SDH 2.97 2.92 3.14   
 

SDH 2.07 1.36 2.22 0.26 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 4.17 3.97 4.53   
 

NSD 2.00 1.17 3.45   

SDF 4.34 4.31 4.54 1 
 

SDF 2.78 2.21 3.95 1 

SDH 3.80 3.76 4.00   
 

SDH 2.09 1.67 2.65   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 4.27 4.05 4.58   
 

NSD 2.37 1.56 3.60   

SDF 4.43 4.36 4.59 1 
 

SDF 3.00 2.46 4.03 1 

SDH 3.99 3.92 4.15   
 

SDH 2.41 1.88 2.94   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 4.27 4.05 4.58   
 

NSD 2.37 1.56 3.60   

SDF 4.43 4.36 4.59 1 
 

SDF 3.00 2.60 4.03 1 

SDH 3.99 3.92 4.15   
 

SDH 2.41 1.88 2.94   
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 0.29 0.35 0.89   
 

NSD 218.13 291.64 729.73   

SDF 0.27 0.39 0.95   
 

SDF 194.37 329.57 787.32   

SDH 0.46 0.46 1.00 1 
 

SDH 408.73 407.36 845.86 1 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 0.03 0.16 0.86   
 

NSD 0.27 0.31 0.91   

SDF 1.05 0.00 2.71 0.59 
 

SDF 1.23 0.00 2.50 0.47 

SDH 1.07 0.57 1.88 0.41 
 

SDH 1.18 0.74 1.84 0.53 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 0.57 0.17 1.19   
 

NSD 0.61 0.13 1.08   

SDF 1.81 0.08 2.29 0.71 
 

SDF 1.66 0.00 2.26 0.64 

SDH 1.12 0.45 1.37 0.29 
 

SDH 1.09 0.50 1.38 0.36 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 0.87 0.39 1.37   
 

NSD 0.76 0.18 1.11   

SDF 1.94 0.43 2.39 0.87 
 

SDF 1.65 0.19 2.22 0.77 

SDH 1.32 0.56 1.51 0.13 
 

SDH 1.13 0.45 1.37 0.23 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 0.87 0.39 1.37   
 

NSD 0.76 0.18 1.11   

SDF 1.97 0.60 2.39 1 
 

SDF 1.69 0.36 2.22 0.91 

SDH 1.32 0.56 1.51   
 

SDH 1.13 0.45 1.37 0.09 
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 1   
 X1 = 0 NSD SDF SDH ESS 

NSD 217.37 290.98 727.46   

SDF 194.28 327.97 785.72   

SDH 408.63 407.36 844.26 1 

         X2 = 1   
 X1 = 

0.25 NSD SDF SDH ESS 

NSD 0.41 0.45 1.05   

SDF 1.37 0.00 2.64 0.43 

SDH 1.32 0.89 1.98 0.57 

         X2 = 1   
 X1 = 0.5 NSD SDF SDH ESS 

NSD 0.78 0.27 1.25   

SDF 1.83 0.00 2.43 0.57 

SDH 1.26 0.67 1.55 0.43 

         X2 = 1   
 X1 = 

0.75 NSD SDF SDH ESS 

NSD 0.76 0.15 1.11   

SDF 1.65 0.03 2.22 0.67 

SDH 1.13 0.44 1.37 0.33 

         X2 = 1   
 X1 = 1 NSD SDF SDH ESS 

NSD 0.76 0.15 1.11   

SDF 1.69 0.19 2.22 0.78 

SDH 1.13 0.44 1.37 0.22 
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

Lambda = 0.7 
 

Epsilon = 0.1 
  

S1 = 0.5 
    

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 2.35 2.35 2.57   
 

NSD 0.33 1.04 1.72   

SDF 2.49 2.35 2.64 0.93 
 

SDF 0.53 1.04 2.08 0.71 

SDH 2.43 2.36 2.50 0.07 
 

SDH 0.46 1.11 1.91 0.29 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 2.04 2.00 2.22   
 

NSD 1.06 1.33 2.22   

SDF 3.65 3.65 3.89 1 
 

SDF 2.98 1.06 3.07 0.74 

SDH 2.97 2.92 3.09   
 

SDH 2.22 1.36 2.22 0.26 

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 3.77 3.34 4.30   
 

NSD 1.54 0.87 3.12   

SDF 4.34 4.33 4.54 1 
 

SDF 2.60 2.22 3.55 1 

SDH 3.80 3.73 3.97   
 

SDH 1.90 1.67 2.65   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 4.00 3.68 4.39   
 

NSD 2.11 1.43 3.30   

SDF 4.42 4.40 4.59 1 
 

SDF 2.91 2.45 3.77 1 

SDH 4.00 3.91 4.14   
 

SDH 2.34 1.86 2.91   

               X2 = 0   
  

    X2 = 0.25   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 4.02 3.71 4.39   
 

NSD 2.11 1.43 3.30   

SDF 4.43 4.42 4.59 1 
 

SDF 2.91 2.55 3.77 1 

SDH 4.03 3.93 4.16   
 

SDH 2.34 1.86 2.91   
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0 NSD SDF SDH ESS 

 
X1 = 0 NSD SDF SDH ESS 

NSD 0.09 0.45 0.99   
 

NSD 0.02 0.32 0.75   

SDF 0.00 0.46 1.32 0.66 
 

SDF 0.00 0.35 1.04 0.54 

SDH 0.50 0.56 1.13 0.34 
 

SDH 0.37 0.46 0.91 0.46 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.25 NSD SDF SDH ESS 

 
X1 = 0.25 NSD SDF SDH ESS 

NSD 0.00 0.38 1.07   
 

NSD 0.00 0.26 0.83   

SDF 1.57 1.39 3.17 1 
 

SDF 1.69 1.02 2.97 0.96 

SDH 1.49 1.28 2.19   
 

SDH 1.30 1.06 1.92 0.04 

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.5 NSD SDF SDH ESS 

 
X1 = 0.5 NSD SDF SDH ESS 

NSD 0.40 0.11 1.1147   
 

NSD 0.42 0.00 0.92   

SDF 1.91 0.50 2.18 0.93 
 

SDF 1.80 0.57 2.13 1 

SDH 1.11 0.56 1.37 0.07 
 

SDH 1.01 0.55 1.28   

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 0.75 NSD SDF SDH ESS 

 
X1 = 0.75 NSD SDF SDH ESS 

NSD 0.81 0.42 1.2772   
 

NSD 0.77 0.26 1.03   

SDF 2.09 0.79 2.238 1 
 

SDF 1.92 0.81 2.13 1 

SDH 1.38 0.67 1.5105   
 

SDH 1.22 0.61 1.37   

               X2 = 0.5   
  

    X2 = 0.75   
 X1 = 1 NSD SDF SDH ESS 

 
X1 = 1 NSD SDF SDH ESS 

NSD 0.81 0.42 1.28   
 

NSD 0.77 0.26 1.03   

SDF 2.11 0.89 2.24 1 
 

SDF 1.92 0.88 2.13 1 

SDH 1.38 0.67 1.51   
 

SDH 1.22 0.61 1.37   
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Appendix B 

 

FITNESS VALUE AND ESS RESULTS 

 

    X2 = 1   
 X1 = 0 NSD SDF SDH ESS 

NSD 0.02 0.34 0.74   

SDF 0.00 0.35 1.05 0.5 

SDH 0.39 0.49 0.91 0.5 

         X2 = 1   
 X1 = 

0.25 NSD SDF SDH ESS 

NSD 0.00 0.26 0.83   

SDF 1.69 0.92 2.97 0.88 

SDH 1.30 1.06 1.92 0.12 

         X2 = 1   
 X1 = 0.5 NSD SDF SDH ESS 

NSD 0.43 0.00 0.94   

SDF 1.82 0.48 2.14 0.91 

SDH 1.02 0.57 1.30 0.09 

         X2 = 1   
 X1 = 

0.75 NSD SDF SDH ESS 

NSD 0.77 0.26 1.03   

SDF 1.92 0.73 2.13 1 

SDH 1.22 0.61 1.37   

         X2 = 1   
 X1 = 1 NSD SDF SDH ESS 

NSD 0.77 0.26 1.03   

SDF 1.92 0.81 2.13 1 

SDH 1.22 0.61 1.37   
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Appendix C 

 

PRELIMINARY SIZE RESULTS 

These graphs display fitness values on the y-axis and the eleven original 

player one sizes on the x-axis, which ranged from 0.05 to 0.94 in increments 

of 0.09.  Note that for the most part the trends are the same for three 

categories of players:  smaller, average, and larger. 
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Appendix C 

 

PRELIMINARY SIZE RESULTS 
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Appendix D 

 

MATHEMATICA EQUILIBRIA CALCULATIONS 

 

p={{1541.36, 5095.52, 4311.23, 5755.18, 2985.31}, 

   {1713.55, 4157.67, 3868.21, 5114.68, 2960.02}, 

   {1787.60, 4551.42, 3997.06, 5243.13, 3033.67}, 

   {2154.17, 4360.51, 3807.16, 4722.82, 3069.83}, 

   {1907.93, 4904.60, 4121.32, 5234.87, 3021.47}}; 

 

MatrixForm[p] 

( { 

  {1541.36, 5095.52, 4311.23, 5755.18, 2985.31}, 

  {1713.55, 4157.67, 3868.21, 5114.68, 2960.02}, 

  {1787.6, 4551.42, 3997.06, 5243.13, 3033.67}, 

  {2154.17, 4360.51, 3807.16, 4722.82, 3069.83}, 

  {1907.93, 4904.6, 4121.32, 5234.87, 3021.47} 

 } ) 

 

(* mixA *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]==x1 p[[2,1]]+x2 p[[2,2]]&&x1+x2 1] 

{{x1 0.844879,x2 0.155121}} 

 

(* mixB *) 

Solve[x1 p[[1,1]]+x3 p[[1,3]]==x1 p[[3,1]]+x3 p[[3,3]]&&x1+x3 1] 

{{x1 0.560607,x3 0.439393}} 

 

(* mixC *) 

Solve[x1 p[[1,1]]+x4 p[[1,4]]==x1 p[[4,1]]+x4 p[[4,4]]&&x1+x4 1] 

{{x1 0.62751,x4 0.37249}} 

 

(* mixD *) 

Solve[x2 p[[2,2]]+x4 p[[2,4]]==x2 p[[4,2]]+x4 p[[4,4]]&&x2+x4 1] 

{{x2 0.65892,x4 0.34108}} 

 

(* mixE *) 

Solve[x3 p[[3,3]]+x5 p[[3,5]]==x3 p[[5,3]]+x5 p[[5,5]]&&x3+x5 1] 

{{x3 0.0894035,x5 0.910597}} 

 

(* mixF *) 

Solve[x4 p[[4,4]]+x5 p[[4,5]]==x4 p[[5,4]]+x5 p[[5,5]]&&x4+x5 1] 

{{x4 0.086294,x5 0.913706}} 
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(* mix123 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x3 p[[1,3]]==x1 p[[2,1]]+x2 p[[2,2]]+x3 p[[2,3]]==x1 

p[[3,1]]+x2 p[[3,2]]+x3 p[[3,3]]&&x1+x2+x3 1] 

{{x1 0.394525,x2 -0.404794,x3 1.01027}} 

 

(* mix124 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x4 p[[1,4]]==x1 p[[2,1]]+x2 p[[2,2]]+x4 p[[2,4]]==x1 

p[[4,1]]+x2 p[[4,2]]+x4 p[[4,4]]&&x1+x2+x4 1] 

{{x1 0.680616,x2 -0.293828,x4 0.613212}} 

 

(* mix125 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x5 p[[1,5]]==x1 p[[2,1]]+x2 p[[2,2]]+x5 p[[2,5]]==x1 

p[[5,1]]+x2 p[[5,2]]+x5 p[[5,5]]&&x1+x2+x5 1] 

{{x1 -0.150934,x2 -0.0603757,x5 1.21131}} 

 

(* mix134 *) 

Solve[x1 p[[1,1]]+x4 p[[1,4]]+x3 p[[1,3]]==x1 p[[4,1]]+x4 p[[4,4]]+x3 p[[4,3]]==x1 

p[[3,1]]+x4 p[[3,4]]+x3 p[[3,3]]&&x1+x4+x3 1] 

{{x1 0.882436,x3 -0.793876,x4 0.91144}} 

 

(* mix135 *) 

Solve[x1 p[[1,1]]+x5 p[[1,5]]+x3 p[[1,3]]==x1 p[[5,1]]+x5 p[[5,5]]+x3 p[[5,3]]==x1 

p[[3,1]]+x5 p[[3,5]]+x3 p[[3,3]]&&x1+x5+x3 1] 

{{x1 -0.028999,x3 0.117567,x5 0.911432}} 

 

(* mixG *) 

Solve[x1 p[[1,1]]+x4 p[[1,4]]+x5 p[[1,5]]==x1 p[[4,1]]+x4 p[[4,4]]+x5 p[[4,5]]==x1 

p[[5,1]]+x4 p[[5,4]]+x5 p[[5,5]]&&x1+x4+x5 1] 

{{x1 0.0885595,x4 0.117564,x5 0.793876}} 

 

(* mix235 *) 

Solve[x5 p[[5,5]]+x2 p[[5,3]]+x3 p[[5,3]]==x5 p[[2,5]]+x2 p[[2,2]]+x3 p[[2,3]]==x5 

p[[3,5]]+x2 p[[3,2]]+x3 p[[3,3]]&&x5+x2+x3 1] 

{{x2 -0.160658,x3 -0.4026,x5 1.56326}} 

 

(* mix245 *) 

Solve[x4 p[[4,4]]+x2 p[[4,2]]+x5 p[[4,5]]==x4 p[[2,4]]+x2 p[[2,2]]+x5 p[[2,5]]==x4 

p[[5,4]]+x2 p[[5,2]]+x5 p[[5,5]]&&x4+x2+x5 1] 

{{x2 -0.106707,x4 0.199101,x5 0.907605}} 

 

(* mixH *) 

Solve[x4 p[[4,4]]+x5 p[[4,5]]+x3 p[[4,3]]==x4 p[[5,4]]+x5 p[[5,5]]+x3 p[[5,3]]==x4 

p[[3,4]]+x5 p[[3,5]]+x3 p[[3,3]]&&x4+x5+x3 1] 

{{x3 0.0885661,x4 0.029002,x5 0.882432}} 
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(* mix1234 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x3 p[[1,3]]+x4 p[[1,4]]==x1 p[[2,1]]+x2 p[[2,2]]+x3 

p[[2,3]]+x4 p[[2,4]]==x1 p[[3,1]]+x2 p[[3,2]]+x3 p[[3,3]]+x4 p[[3,4]] x1 p[[4,1]]+x2 

p[[4,2]]+x3 p[[4,3]]+x4 p[[4,4]]&&x1+x2+x3+x4 1] 

{{x1 0.495173,x2 -0.38358,x3 0.628014,x4 0.260393}} 

 

(* mix 1235 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x3 p[[1,3]]+x5 p[[1,5]]==x1 p[[2,1]]+x2 p[[2,2]]+x3 

p[[2,3]]+x5 p[[2,5]]==x1 p[[3,1]]+x2 p[[3,2]]+x3 p[[3,3]]+x5 p[[3,5]] x1 p[[5,1]]+x2 

p[[5,2]]+x3 p[[5,3]]+x5 p[[5,5]]&&x1+x2+x3+x5 1] 

{{x1 0.234807,x2 -0.383584,x3 0.888427,x5 0.260349}} 

 

(* mix1245 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x5 p[[1,5]]+x4 p[[1,4]]==x1 p[[2,1]]+x2 p[[2,2]]+x5 

p[[2,5]]+x4 p[[2,4]]==x1 p[[5,1]]+x2 p[[5,2]]+x5 p[[5,5]]+x4 p[[5,4]] x1 p[[4,1]]+x2 

p[[4,2]]+x5 p[[4,5]]+x4 p[[4,4]]&&x1+x2+x5+x4 1] 

{{x1 1.12306,x2 -0.383554,x4 0.888329,x5 -0.627835}} 

 

(* mixI *) 

Solve[x1 p[[1,1]]+x5 p[[1,5]]+x3 p[[1,3]]+x4 p[[1,4]]==x1 p[[5,1]]+x5 p[[5,5]]+x3 

p[[5,3]]+x4 p[[5,4]]==x1 p[[3,1]]+x5 p[[3,5]]+x3 p[[3,3]]+x4 p[[3,4]] x1 p[[4,1]]+x5 

p[[4,5]]+x3 p[[4,3]]+x4 p[[4,4]]&&x1+x5+x3+x4 1] 

{{x1 0.0885595,x3 2.0305×10
-23

,x4 0.117564,x5 0.793876}} 

 

(* mix2345 *) 

Solve[x5 p[[5,5]]+x2 p[[5,2]]+x3 p[[5,3]]+x4 p[[5,4]]==x5 p[[2,5]]+x2 p[[2,2]]+x3 

p[[2,3]]+x4 p[[2,4]]==x5 p[[3,5]]+x2 p[[3,2]]+x3 p[[3,3]]+x4 p[[3,4]] x5 p[[4,5]]+x2 

p[[4,2]]+x3 p[[4,3]]+x4 p[[4,4]]&&x5+x2+x3+x4 1] 

{{x2 -0.383589,x3 1.12327,x4 -0.234808,x5 0.495132}} 

 

(* mix12345 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x3 p[[1,3]]+x4 p[[1,4]]+x5 p[[1,5]]==x1 p[[2,1]]+x2 

p[[2,2]]+x3 p[[2,3]]+x4 p[[2,4]]+x5 p[[2,5]]==x1 p[[3,1]]+x2 p[[3,2]]+x3 p[[3,3]]+x4 

p[[3,4]]+x5 p[[3,5]] x1 p[[4,1]]+x2 p[[4,2]]+x3 p[[4,3]]+x4 p[[4,4]]+x5 p[[4,5]] x1 

p[[5,1]]+x2 p[[5,2]]+x3 p[[5,3]]+x4 p[[5,4]]+x5 p[[5,5]]&&x1+x2+x3+x4+x5 1] 

{{x1 0.739607,x2 -0.38358,x3 0.38358,x4 0.504827,x5 -0.244434}} 
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Appendix E 

 

MATHEMATICA ORIGINAL MODEL EQUILIBRIA CALCULATIONS 

 

p={{1529.14, 5273.71, 2639.97}, 

   {3134.98, 4741.41, 3372.62}, 

   {2451.98, 5140.57, 3211.05}}; 

 

MatrixForm[p] 

( { 

  {1529.14, 5273.71, 2639.97}, 

  {3134.98, 4741.41, 3372.62}, 

  {2451.98, 5140.57, 3211.05} 

 } ) 

 

(* mixA *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]==x1 p[[2,1]]+x2 p[[2,2]]&&x1+x2 1] 

{{x1 0.248955,x2 0.751045}} 

 

(* mixB *) 

Solve[x2 p[[2,2]]+x3 p[[2,3]]==x2 p[[3,2]]+x3 p[[3,3]]&&x2+x3 1] 

{{x2 0.288142,x3 0.711858}} 

 

(* mix123 *) 

Solve[x1 p[[1,1]]+x2 p[[1,2]]+x3 p[[1,3]]==x1 p[[2,1]]+x2 p[[2,2]]+x3 p[[2,3]]==x1 

p[[3,1]]+x2 p[[3,2]]+x3 p[[3,3]]&&x1+x2+x3 1] 

{{x1 1.21465,x2 1.41766,x3 -1.63231}}
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