
The Pennsylvania State University

The Graduate School

Eberly College of Science

ROBUST NONPARAMETRIC AND

SEMIPARAMETRIC MODELING

A Dissertation in

Statistics

by

Bo Kai

c© 2009 Bo Kai

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2009



ii

The dissertation of Bo Kai was reviewed and approved* by the following:

Runze Li
Professor of Statistics
Dissertation Co-Adviser
Chair of Committee

David R. Hunter
Associate Professor of Statistics
Dissertation Co-Adviser

Damla Sentürk
Assistant Professor of Statistics

Vernon M. Chinchilli
Distinguished Professor of Public Health Sciences
Professor of Statistics
Chair of Public Health Sciences

Bruce G. Lindsay
Willaman Professor of Statistics
Head of the Department of Statistics

*Signatures are on file in the Graduate School.



iii

Abstract

In this dissertation, several new statistical procedures in nonparametric and

semiparametric models are proposed. The concerns of the research are efficiency,

robustness and sparsity.

In Chapter 3, we propose complete composite quantile regression (CQR)

procedures for estimating both the regression function and its derivatives in fully

nonparametric regression models by using local smoothing techniques. The CQR

estimator was recently proposed by Zou and Yuan (2008) for estimating the regres-

sion coefficients in the classical linear regression model. The asymptotic theory of

the proposed estimator was established. We show that, compared with the classi-

cal local linear least squares estimator, the new method can significantly improve

the estimation efficiency of the local linear least squares estimator for commonly

used non-normal error distributions, and at the same time, the loss in efficiency is

at most 8.01% in the worst case scenario.

In Chapter 4, we further consider semiparametric models. The complex-

ity of semiparametric models poses new challenges to parametric inferences and

model selection that frequently arise from real applications. We propose new ro-

bust inference procedures for the semiparametric varying-coefficient partially lin-

ear model. We first study a quantile regression estimate for the nonparametric

varying-coefficient functions and the parametric regression coefficients. To im-

prove efficiency, we further develop a composite quantile regression procedure for

both parametric and nonparametric components. To achieve sparsity, we develop

a variable selection procedure for this model to select significant variables. We

study the sampling properties of the resulting quantile regression estimate and

composite quantile regression estimate. With proper choices of penalty functions
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and regularization parameters, we show the proposed variable selection procedure

possesses the oracle property in the terminology of Fan and Li (2001).

In Chapter 5, we propose a novel estimation procedure for varying coef-

ficient models based on local ranks. By allowing the regression coefficients to

change with certain covariates, the class of varying coefficient models offers a flex-

ible semiparametric approach to modeling nonlinearity and interactions between

covariates. Varying coefficient models are useful nonparametric regression models

and have been well studied in the literature. However, the performance of existing

procedures can be adversely influenced by outliers. The new procedure provides a

highly efficient and robust alternative to the local linear least squares method and

can be conveniently implemented using existing R software packages. We study

the sample properties of the proposed procedure and establish the asymptotic nor-

mality of the resulting estimate. We also derive the asymptotic relative efficiency

of the proposed local rank estimate to the local linear estimate for the varying

coefficient model. The gain of the local rank regression estimate over the local

linear regression estimate can be substantial. We further develop nonparametric

inferences for the rank-based method. Monte Carlo simulations are conducted to

access the finite sample performance of the proposed estimation procedure. The

simulation results are promising and consistent with our theoretical findings.

All the proposed procedures are supported by intensive finite sample simu-

lation studies and most are illustrated with real data examples.
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Chapter 1

Introduction

With the advent of modern technology, computing facilities have been im-

proved dramatically over the last several decades. Researchers have realized that,

in many real data applications, parametric models are not good enough to capture

the relationship between the response variable and its covariates. Various estima-

tion and inference procedures for nonparametric and semiparametric models have

been proposed and studied in the literature.

Most existing procedures are built on either least-squares-type or likelihood-

type methods. There are two major disadvantages of these methods. The first one

is robustness. It is well known that the least squares or likelihood methods are

not resistant to outliers. In the presence of outliers or contamination, these meth-

ods result in biased estimates and may lead to misleading conclusions. The other

one is efficiency. Although the estimates remain asymptotically normal for a large

class of random error distributions, their efficiency can deteriorate dramatically

when the true error distribution departs from normality. An extreme case is that

the least squares estimate fails to be consistent in the presence of infinite variance

errors such as a Cauchy error distribution. These considerations motivate us to

develop novel procedures. Therefore, this dissertation aims to develop novel statis-

tical methodology and inference procedures for nonparametric and semiparametric

models that are highly efficient, robust and computationally simple.

This dissertation consists of three manuscripts. The work in Chapter 3

is based on Kai, Li, and Zou (2009a), in which we propose the local composite

quantile regression (CQR) procedures for estimating regression function and its

derivatives in the fully nonparametric regression model. The work in Chapter 4
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is based on Kai, Li, and Zou (2009b), in which we propose new estimation and

variable selection procedures for the semiparametric varying-coefficient partially

linear model. The work in Chapter 5 is based on Wang, Kai, and Li (2009),

in which we propose new robust estimation and inference procedures for varying

coefficient models based on local rank regression.

1.1 Local composite quantile regression

The composite quantile regression (CQR) estimator was recently proposed

by Zou and Yuan (2008) for estimating the regression coefficients in the classical

linear regression model. The idea of the CQR is to combine the strength across

multiple quantile regressions by forcing a single parameter for “slope” to further

improve the efficiency. Zou and Yuan (2008) show that the relative efficiency

of the CQR estimator compared to the least squares estimator is greater than

70% regardless the error distribution. Furthermore, the CQR estimator could be

much more efficient and sometimes arbitrarily more efficient than the least squares

estimator. These nice theoretical properties of CQR in linear regression motivate us

to construct the local CQR smoothers as nonparametric estimates of the regression

function and its derivatives.

Contributions

We consider the general nonparametric regression model. Our interest is

to estimate the conditional regression mean function and its derivatives. For an

introduction to nonparametric techniques, see Hastie and Tibshirani (1990), Green

and Silverman (1994), Wand and Jones (1995) or Fan and Gijbels (1996), among

others.

We make several contributions in this work. We first propose the local linear

CQR estimator for estimating the regression function and establish the asymptotic
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theory of the proposed estimator. We show that, compared with the classical lo-

cal linear least squares estimator, the new method can significantly improve the

estimation efficiency of the local linear least squares estimator for commonly used

non-normal error distributions. We further propose the local quadratic CQR es-

timator for estimating the derivative of the regression function. The asymptotic

theory shows that the local quadratic CQR estimator can often drastically improve

the estimation efficiency of its local least squares counterpart if the error distribu-

tion is non-normal, and at the same time, the loss in efficiency is at most 8.01% in

the worst case scenario. For implementation, we adopt the MM algorithm proposed

by Hunter and Lange (2000), which works much faster than linear programming

solvers for large data sets. In the end, we establish the general asymptotic theory

of the local polynomial CQR estimator. Our theory does not require that the error

distribution has a finite variance. Therefore, local CQR estimators can work well

even when local polynomial regression fails due to the infinite variance of the noise.

1.2 New robust statistical procedures for semiparametric regression

models

As researchers are able to collect massive amounts of data without too much

cost, high-dimensional modeling has become one of the most important research

topics (Donoho 2000; Fan and Li 2006b). Analysis of high-dimensional data is very

challenging, and many efforts have been made to develop modeling procedures for

high-dimensional data. In many situations, high dimensional data may contain

outliers or violate the normality assumption on the errors. In the presence of

outliers or contamination, the ordinary least-squares-based methods or likelihood-

based methods may lead to a misleading conclusion. If the error distribution

departs from the normal or other assumed distribution, these estimates may not

be efficient any more.
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For analysis of high-dimensional data, fully nonparametric models are not

feasible for implementation and parametric models may be somewhat rigid. Semi-

parametric regression models can be viewed as a compromise between parametric

and fully nonparametric models and retain the advantages of both models. See

Härdle, Liang, and Gao (2000), Ruppert, Wand, and Carroll (2003) and Yatchew

(2003) for various semiparametric models with estimation and inference proce-

dures. For semiparametric regression models, we can impose variable selection

techniques to select features and reduce model complexity.

Variable selection is fundamental to select important features in high di-

mensional data analysis. Traditional variable selection procedures, such as forward

stepwise, backward elimination, and best subset selection procedures, are difficult

to implement for high-dimensional data due to the heavy computational burden.

Fortunately, there are some modern variable selection procedures developed in

the recent literature. Frank and Friedman (1993) proposed the bridge regression

via the Lq penalty functions and Tibshirani (1996) proposed the Least Absolute

Shrinkage and Selection Operator (LASSO) via the L1 penalty to select signifi-

cant variables. Fan and Li (2001) proposed a unified variable selection framework

via nonconcave penalized likelihood. All these methods are distinguished from the

traditional variable selection procedures in that the methods select significant vari-

ables and estimate their coefficients simultaneously. Numerical algorithms, such

as the MM algorithm (Hunter and Li 2005) and the one-step local linear approxi-

mation (LLA) (Zou and Li 2008), can be used to select significant features. Thus,

the computational cost can be dramatically reduced. This makes feature selection

for high-dimensional data feasible.

Contributions

We consider the semiparametric varying-coefficient partially linear model.

The complexity of semiparametric models poses new challenges to parametric infer-

ences and model selection that frequently arise from real applications. We propose
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new inference procedures for this semiparametric varying-coefficient partially linear

model. We make several contributions in this work. We first study quantile re-

gression estimates for the unknown varying-coefficient functions and the unknown

regression coefficients. To improve efficiency of quantile regression estimates, we

further develop a composite quantile regression procedure for regression functions

and regression coefficients. To achieve sparsity, we further develop a variable se-

lection procedure for this model to select significant covariates in the linear part.

We study the sampling properties of the resulting quantile regression estimates

and composite quantile regression estimates. We derive the asymptotic bias and

variance of the resulting estimate, and further establish their asymptotic normal-

ity. With proper choices of penalty functions and regularization parameters, we

show the proposed variable selection procedure possesses the oracle property in

the terminology of Fan and Li (2001). Again, our theory does not require that the

error distribution has a finite variance. We further address the computation issues

of the proposed variable selection procedures. Extensive Monte Carlo simulation

studies are conducted to examine the finite sample performance of the proposed

procedures. The results are promising and consistent with our theoretical findings.

1.3 Local rank inference for varying coefficient models

As introduced in Cleveland, Grosse, and Shyu (1992) and Hastie and Tib-

shirani (1993), the varying coefficient model provides a natural and useful exten-

sion of the classical linear regression model by allowing the regression coefficients

to depend on certain covariates. Due to its flexibility to explore the dynamic

features which may exist in the data and its easy interpretation, the varying co-

efficient model has been widely applied in many scientific areas. It has also ex-

perienced rapid developments in both theory and methodology, such as Fan and

Zhang (1999), Kauermann and Tutz (1999), Cai et al. (2000), Brumback and Rice
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(1998), Hoover et al. (1998), Wu et al. (1998) and Fan and Zhang (2000), among

others. See Fan and Zhang (2008) for a comprehensive survey.

Estimation procedures in the aforementioned papers are built on either local

least squares or local likelihood methods, which can be adversely influenced when

the true error distribution deviates from normality. Furthermore, these estimators

are very sensitive to outliers. Even a few outlying data points may introduce

undesirable artificial features in the estimated functions. These considerations

motivate us to develop a novel local rank estimation procedure that is highly

efficient, robust and computationally simple.

Contributions

We propose new robust estimation and inference procedures for varying

coefficient models based on local rank regression. The new procedure provides

a highly efficient and robust alternative to the local linear least squares method.

Theoretical analysis and numerical simulations both reveal that the gain of the

local rank estimator over the local linear least squares estimator, measured by the

asymptotic mean squared error or the asymptotic mean integrated squared error,

can be substantial. For example, the ARE is 167% for estimating the regression

coefficient functions when the random error has a t3 distribution, is 240% for an

exponential random error distribution, and is 493% for a lognormal random error

distribution. A striking feature of the local rank procedure is that its pronounced

efficiency gain comes with only a little loss when the random error actually has a

normal distribution. In the normal error case, the asymptotic relative efficiency

for estimating both the coefficient functions and the derivative of the coefficient

functions is above 96%. Even in the worst case scenarios, the asymptotic relative

efficiency has a lower bound of 88.96% for estimating the coefficient functions,

and a lower bound of 89.91% for estimating their derivatives. The new estimator

is able to achieve the nonparametric convergence rate even when the local linear
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least squares method fails due to infinite random error variance. The new estima-

tor proposed in this dissertation minimizes a convex objective function based on

local ranks. The implementation of the minimization can be conveniently carried

out using existing functions in the R statistical software package via a simple al-

gorithm. The objective function has the form of a generalized U -statistic whose

kernel varies with the sample size. We establish the large sample theory of the

proposed procedure by utilizing results from generalized U -statistics, whose kernel

function may depend on the sample size. We also extend a resampling approach,

which perturbs the objective function repeatedly, to the generalized U-statistics

setting; and demonstrate that it can accurately estimate the asymptotic covariance

matrix.

1.4 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2, we provide the

literature review for this dissertation research. Chapter 3 focuses on the local CQR

smoothing techniques in a nonparametric model setting. In Chapter 4, we study

the robust estimation and variable selection procedures for the semiparametric

varying-coefficient partially linear models. Local rank inference procedures are

presented in Chapter 5. Finally, concluding remarks and future research directions

are discussed in Chapter 6.



Chapter 2

Literature Review

This chapter provides a brief literature review of the dissertation research.

This dissertation uses research findings from three topics: first, nonparametric

smoothing techniques; second, robust regression; and third, traditional and modern

variable selection methods for regression models. All of the three areas are classical

but active topics in statistics.

2.1 Nonparametric smoothing techniques

Nonparametric regression is a form of regression analysis that relaxes the

structures we assume on the form of a regression function and uses a flexible

one instead. Nonparametric regression provides us a powerful tool to explore the

data with unknown structure. There are many specific methods of nonparametric

smoothing, such as kernel smoothing, local polynomial smoothing, spline smooth-

ing, wavelets based methods, etc. Most of them assume certain smoothness of the

regression function. In this section, we will briefly review the kernel smoothing and

local polynomial smoothing techniques, which are frequently used in our research.

2.1.1 Kernel smoothing

Kernel smoothing provides a simple way of finding structure in data without

imposing a parametric model. Suppose the bivariate sample {(xi, yi), i = 1, · · · , n}
is collected from the model:

y = m(x) + ε, (2.1)
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where ε is random error with E(ε|X) = 0 and V ar(ε|X = x) = σ2(x). The

mean function m(·) is the object to be estimated in a nonparametric regression

problem. The shape of m(·) describes the underlying relationship between the

response variable Y and the predictor variable X. Usually a point closer to x has

more information about the value of m(x), so a natural idea for estimating m(x)

is to use the running local average.

The Nadaraya-Watson (NW) (Nadaraya 1964; Watson 1964) kernel regres-

sion estimator is defined by

m̂h(x) =

∑n
i=1

K[(Xi − x)/h]Yi∑n
i=1

K[(Xi − x)/h]
, (2.2)

where K(·) is a function usually satisfying
∫

K(x)dx = 1, which is called the

kernel function, and h is a positive number, which is called the bandwidth or

window width or smoothing parameter. We may introduce a rescaling notation

Kh(u) = K(u/h)/h. Then, the NW kernel regression estimator can be rewritten

as

m̂h(x) =

∑n
i=1

Kh(Xi − x)Yi∑n
i=1

Kh(Xi − x)
. (2.3)

By taking the kernel function to be the uniform kernel

K(u) = I(|u| < 1/2), (2.4)

the NW estimator becomes the running local average, which is similar to the K-

nearest neighbor (KNN) estimator.

If we treat the kernel function in (2.3) as a kind of weight function wi(x),

then m̂h(x) can be viewed as a weighted average, that is,

m̂h(x) =

∑n
i=1

wi(x)Yi∑n
i=1

wi(x)
. (2.5)
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It is the solution of minimizing the locally weighted least squares, that is,

m̂h(x) = arg min
mh(x)

n∑
i=1

{Yi −mh(x)}2wi(x). (2.6)

We can obtain different kernel estimators by adjusting the weight function wi(x).

Because the denominator in (2.3) is a random variable, it is not convenient to

derive its asymptotic properties. So Gasser and Müller (1984) introduced another

kernel regression estimator, which is called the Gasser-Müller kernel estimator and

given by

m̂h(x) =
n∑

i=1

∫ si

si−1

Kh(Xi − x)duYi, (2.7)

where si = (X(i) + X(i+1))/2, X(i) is the ith order statistics of X, X(0) = −∞ and

X(n+1) = +∞. Note that the sum of the weights in (2.7) is one and hence there is

no denominator. See Müller (1988) for a detailed discussion of the GM estimator.

A basic comparison of asymptotic properties, including the GM estimator, will be

given later.

In kernel smoothing, the kernel function K is usually chosen to be a uni-

modal probability density function that is symmetric about zero. Sometimes we

also use kernels that are not densities. It is interesting that the choice of the shape

of the kernel function is not a particularly important issue (Marron and Nolan

1988). However, the choice of the smoothing parameter (bandwidth) is critical.

It will directly influence the performance of the estimator. If h is chosen to be

too small, then we will overfit the data and get an undersmoothed estimate. This

estimate pays too much attention to the data in the local neighborhood. On the

contrary, if h is chosen to be too large, then we will underfit the data and get an

oversmoothed estimate. This estimate will miss some fine features of the data.

The optimal choice of the bandwidth h should be guided by some criteria

for performance of the estimator. One choice is the widely used mean squared

error (MSE) criterion. It measures the “distance” between a parameter θ and its
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estimator θ̂ by

MSE(θ̂) = E(θ̂ − θ)2. (2.8)

The advantage of using MSE is that it can simply decomposed into the summation

of variance and the squared bias

MSE(θ̂) = V ar(θ̂) + [E(θ̂)− θ]2. (2.9)

A good choice of bandwidth h should give the estimator an optimal balance be-

tween variance and bias.

Applying the MSE criterion to the kernel regression estimator, we will no-

tice that MSE{m̂h(x)} depends on x. This means that it can only measure the

performance of m̂h(x) at a fixed point x. Therefore, it will be more appropriate to

analyze the integration of MSE{m̂h(x)} over the entire real line. Such a criterion

is called the mean integrated squared error (MISE):

MISE{m̂h(·)} =

∫
MSE{m̂h(x)}dx. (2.10)

The optimal choice of bandwidth h is the one that minimizes the MISE.

Because the exact MSE or MISE depends on the bandwidth in a complicated

way, we may calculate the asymptotic MSE or MISE instead and get the asymptotic

MISE-optimal bandwidth h.

2.1.2 Local polynomial smoothing

In the previous section we have indicated that both the Nadaraya-Watson

and the Gasser-Müller estimators are local constant fits, which means that we

locally approximate the mean function m(·) by a constant θ. This idea can be

naturally extended to local polynomial fit, in which we approximate the mean

function m(·) by a polynomial rather than a constant. This method was first
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proposed by Stone (1977) and Cleveland (1979). And then Stone (1980, 1982) ,

Fan (1992, 1993) and Ruppert and Wand (1994) studied it systematically. Fan

and Gijbels (1996) is a very useful reference book on local polynomial regression.

Suppose that {(Xi, Yi), i = 1, · · · , n} is a random sample from

Y = m(X) + ε, (2.11)

where ε is random error with E(ε|X) = 0 and V ar(ε|X = x) = σ2(x).

Assume that the mean function m(x) is smooth and its (p + 1)th derivative

at point x0 exists. Then we can locally approximate m(x) by the Taylor expansion

at point x0 as

m(x) ≈ m(x0) + m′(x0)(x− x0) + · · ·+ m(p)(X0)

p!
(x− x0)

p. (2.12)

This suggests that we consider a locally weighted polynomial regression problem,

that is, minimizing

n∑
i=1

{Yi −
p∑

j=0

βj(Xi − x0)
j)}2Kh(Xi − x0), (2.13)

where Kh(·) is the rescaled kernel function defined in the last section and h is a

bandwidth. Denote by β̂j (j = 0, · · · , p) the solution to the weighted least squares

problem (2.13). It is easy to see from (2.12) that

m̂ν(x0) = ν!β̂ν , (2.14)

which is an estimator for m(ν)(x0), the νth derivative of m(x) evaluated at point

x0.
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Let us use matrix notation for convenience. Denote X as the design matrix

in the problem (2.13),

Xn×(p+1) =




1 (X1 − x0) · · · (X1 − x0)
p

...
...

...
...

1 (Xn − x0) · · · (Xn − x0)
p


 ,

and denote

y
n×1

=




Y1

...

Yn


 and β

(p+1)×1
=




β
0
...

β
p


 .

Further, let W be the n× n diagonal weight matrix

W = diag{K
h
(X

i
− x

0
)}.

Then the weighted least squares problem (2.13) could be rewritten as

min
β

(y −Xβ)
T
W(y −Xβ). (2.15)

The solution to (2.15) is given by

β̂ = (X
T
WX)

−1
X

T
Wy, (2.16)

which is the desired local polynomial estimator. When the order p = 1, we usually

call it the local linear estimator.

By using local polynomial regression, we can estimate not only the mean

function m(·), but also the first p
th

derivatives of m(·). This is an advantage of

local polynomial regression compared to the NW and GM kernel estimators. Fur-

thermore, local polynomial estimators have better asymptotic properties than NW

and GM estimators. The basic asymptotic properties of these three nonparametric



14

estimators have been summarized in Table (2.1) (adopted from Fan and Gijbels

(1996), page 17)

Table 2.1. Pointwise asymptotic bias and variance comparison among nonpara-
metric regression estimators

Method Bias Variance

NW estimator {m′′
(x) +

2m
′
(x)f

′
(x)

f(x)
}b

n
V

n

GM estimator m
′′
(x)b

n
1.5V

n

Local linear estimator m
′′
(x)b

n
V

n

Here, b
n

=
1

2

∫
+∞

−∞
u

2
K(u)duh

2
and V

n
=

σ
2
(x)

f(x)nh

∫
+∞

−∞
K

2
(u)du.

2.2 Robust regression

It is well known that ordinary least squares estimation (OLS) for regression

is sensitive to outliers or deviation from model assumptions. Instead of OLS, we

should consider robust regression if there are strong suspicions of heteroscedasticity

or presence of outliers in the data. Outliers can be generated by simple operational

mistakes or including a small portion of sample from a different population. The

presence of outliers may have a serious effect on statistical inference.

A popular alternative estimating method in a regression model that is less

sensitive to outliers is to use least absolute deviation (LAD) regression. The LAD

estimator is defined by minimizing the sum of the absolute values of the residuals.

The primary purpose of robust analysis is to provide methods that are

competitive with classical methods but are not seriously affected by outliers or

other small departures from model assumptions. As described in Huber (1981,
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page 5), a good robust statistical procedure should possess the following desirable

features:

1. It should have a reasonably good (optimal or nearly optimal) efficiency at

the assumed model.

2. It should be robust in the sense that small deviation from the model as-

sumptions should impair the performance only slightly, that is, the latter

(described, say, in terms of the asymptotic variance of an estimate, or of the

level and power of a test) should be close to the nominal value calculated at

the model.

3. Somewhat larger deviations from the model should not cause a catastrophe.

Good reference books on robust statistics include those by Huber (1981),

Hampel et al. (1986) and Rousseeuw and Leroy (1987).

2.2.1 Measures of robustness

In order to quantify the robustness of a method, it is necessary to define

some measures of robust technique performance in a theoretical sense. The most

common of these are the relative efficiency, the breakdown point and the influence

function, which will be described below.

Relative efficiency can tell us how well a robust procedure performs relative

to the least squares one on data from a certain distribution. High relative efficiency

is desirable in estimation. A simple example (Huber 1981, page 2) shows that when

the underlying distribution is a mixture of N(µ, σ
2
) and N(µ, 9σ

2
) with proportions

1 − ε and ε, the mean absolute deviation (MAD) has larger asymptotic relative

efficiency (ARE) than the mean square error (MSE) for all ε between 0.002 and

0.5. It means that only 2 outliers in a sample of size 1000 suffice to neutralize the

advantage of the MSE.
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The breakdown point is defined as the minimum fraction of outliers which

may produce an infinite bias (Hampel 1975). For example, the sample mean has a

breakdown point of 0 because we can make the sample mean arbitrarily large just

by changing any single observation. However, the sample median has a breakdown

point of 0.5 because moving half of the data to infinity will not change the estima-

tor. The higher the breakdown point of an estimator, the higher the robustness.

A breakdown point will never exceed 0.5 because if more than half of the data

are contaminated, we cannot distinguish between the underlying distribution and

the contaminating distribution. For more details, see Huber (1981) and Maronna

et al. (2006).

The influence function was first introduced by Hampel (1968, 1974). It is

a popular tool to describe the infinitesimal stability of estimators. For a real-

valued statistic T (F ) at a fixed distribution F , Hampel considered a mixture of

two distributions F and 4
x

(the probability measure which puts mass 1 at the

point x), with the form of (1 − t)F + t4
x
. The influence function of T at F is

defined to be

IF (x; T, F ) = lim
t→0+

T ((1− t)F + t4
x
)− T (F )

t
. (2.17)

It describes the effect of an infinitesimal contamination at the point x on the

estimator T , standardized by the mass t of the contamination.

2.2.2 Huber’s M-estimator

Robust regression estimators were first introduced by Huber (1973, 1981)

and they are well known as M-type (Maximum likelihood type) estimators. There

are three major types of estimators. Besides M-type estimators, the other two are

R-type (Rank tests based type) and L-type (Linear combination of order statistics)
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estimators. However, M-type estimators are the most popular one because of their

generality, high breakdown point, and their efficiency (see Huber 1981).

M-estimators are a kind of generalization of maximum likelihood estima-

tors (MLEs). We know that an MLE maximizes
n∏

i=1

f(θ; x
i
) or, equivalently, min-

imizes
n∑

i=1

− log f(θ; x
i
). Huber proposed to generalize this to the minimization

of
n∑

i=1

ρ(θ; x
i
), where ρ is a function with certain properties. Thus, MLEs are a

special case of M-estimators with ρ = − log f .

In a linear regression context, the M-estimator is defined by

β̂ = argmin
β

n∑
i=1

ρ(y
i
− x

T

i
β). (2.18)

If ρ is differentiable, minimizing
n∑

i=1

ρ(y
i
− x

T

i
β) is equivalent to solving

n∑
i=1

ψ(y
i
− x

T

i
β)x

i
= 0, (2.19)

where ψ(x) =
dρ(x)

dx
. This can be done based on the following argument. Define

the weight matrix W = diag(w
i
) with w

i
=

ψ(y
i
− x

T

i
β)

(y
i
− xT

i
β)

, then (2.19) can be

written as
n∑

i=1

w
i
(y

i
− x

T

i
β)x

i
= 0. (2.20)

The above equations can be combined into the following single matrix equation:

X
T
WXβ = X

T
Wy. (2.21)
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Therefore, the estimator is

β̂ = (X
T
WX)

−1
X

T
Wy. (2.22)

In practice, the weight matrix W involves β and is unknown. So we should use

an iterative algorithm to solve this problem, that is, use the estimator of β in the

last iteration to calculate W and then use it to obtain the estimator of β in the

current iteration. The algorithm stops when the estimator converges. This is the

so-called iteratively reweighted least-squares (IRLS) algorithm.

In the 1980s, several alternatives to M-estimators were proposed. Rousseeuw

(1984) introduced the least median of squares (LMS) and the least trimmed squares

(LTS) estimators. These estimators minimize the median and the trimmed mean

of the squared residuals, respectively. They are very high-breakdown-point es-

timators. However, both of these methods are inefficient, producing parameter

estimates with high variability. Moreover, computing any of these estimators ex-

actly is impractical except for small data sets. They are based on resampling

techniques and their solutions are determined randomly (Rousseeuw and Leroy

1987), and then they can even be inconsistent. Another proposed solution was

S-estimation (Rousseeuw 1984). This method finds a line that minimizes a robust

estimate of the scale of the residuals, which is highly resistant to leverage points,

and is robust to outliers in the response. But unfortunately, this method was also

found to be inefficient.

2.2.3 Quantile regression

Quantile regression is a special type of M-type regression. It is well known

that ordinary least squares regression (OLS) estimates the conditional mean func-

tion. And least absolute deviation regression (LAD) estimates the conditional
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median function. In the seminal paper of Koenker and Bassett (1978), they gener-

alized the idea of LAD and proposed quantile regression (QR), which estimates the

conditional quantile function of the response. By using quantile regression, one can

easily study the whole percentile path of the conditional distribution of a response

variable. So over the last three decades, quantile regression has been widely used

in many different fields, such as economics (Koenker and Hallock 2001), survival

analysis (Koenker and Geling 2001) and others.

The ρ function for quantile regression is the ‘check’ function, which is given

by

ρ
τ
(r) =





τr if r > 0,

−(1− τ)r otherwise,
(2.23)

where 0 < τ < 1.

Consider the sample {(x
1
, y

1
), . . . , (x

n
, y

n
)} of size n from the linear model

y
i
= x

T

i
β + ε

i
, (2.24)

where P (ε
i

< 0) = F (0) = τ and ε
i

are independent. Then quantile regression

estimates β by solving the following minimization problem:

min
β

n∑
i=1

ρ
τ
(y

i
− x

T

i
β). (2.25)

It is well known that under mild regularity conditions (Koenker 2005), the quantile

regression estimates have asymptotic normality, that is,

√
n(β̂ − β

0
)

D−→ N

(
0,

τ(1− τ)

f 2(0)
Σ
−1

)
, (2.26)

where Σ = lim
n→∞

1

n
X

T
X.



20

2.3 Variable selection for regression models

Variable selection plays very important roles in statistical learning, espe-

cially in high-dimensional cases. At the initial stage of statistical modeling, we

may include a large number of prediction variables to reduce possible model biases

because we do not know which among them will have an effect on the response

variable. However, many of them may have little effect on the response. Therefore,

a major task is to find a parsimonious model, which is a model with as few pre-

dictors as possible while still achieving a good fit. Typically, parsimonious models

are desirable because they will significantly improve the prediction accuracy of the

fitted model. Even when we are not sure about the complexity of the true under-

lying model, selecting significant variables can also improve the interpretability of

a model and speed up the learning process.

Suppose that our dataset contains n observations {(x
i
, y

i
), i = 1, · · · n},

where x
i
= (x

i1
, · · · , x

id
)
T

are d prediction variables for the i
th

observation. Con-

sider the linear regression model

y
i
= x

T

i
β + ε

i
, i = 1, · · · n, (2.27)

where ε
i

are independent and identically distributed (i.i.d.) random errors with

mean zero.

If we denote y = (y
1
, · · · , y

n
)
T
, X = (x

1
, · · · ,x

n
)
T

and ε = (ε
1
, · · · , ε

n
)
T
,

then the model above can be expressed in matrix form as

y = Xβ + ε. (2.28)

Here, X is usually called the design matrix for the regression problem.
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2.3.1 Classical variable selection criteria

There are various variable selection criteria in the literature. Detailed re-

views can be found in Breiman (1996), Shao (1997) and Miller (2002).

A selection criterion is a statistic calculated from the fitted model. In least

squares settings, most of them are built on the residual sum of squares (RSS),

which is defined by

RSS =
n∑

i=1

(y
i
− ŷ

i
)
2

= ‖y − ŷ‖2
, (2.29)

where ŷ
i

is the predicted value for the i
th

observation and ŷ = (ŷ
1
, · · · , ŷ

n
)
T
.

Denote RSS
p

to be the residual sum of squares when there are p (0 ≤ p ≤ d)

predictors in the model.

Based on different statistical perspectives, these selection criteria could be

broadly divided into three classes, namely,

• Prediction criteria

• Information (or likelihood) criteria

• Bayesian criteria (maximizing Bayesian posterior probabilities)

We will mainly focus on the first two classes now.

Prediction sum of squares (PRESS) is a prediction-based criterion proposed

by Allen (1974). For a given subset of p predictors, each observation is predicted in

turn from the model fitted by the other n−1 observations. Let ŷ
ip

be the predicted

value for y
i
. Then the PRESS statistic for a particular subset of p predictors is

defined as

PRESS
p

=
n∑

i=1

(y
i
− ŷ

ip
)
2
. (2.30)

In calculating (2.30), a different set of regression coefficients is calculated for each

case with the same subset of p predictors. So this procedure involves a large

amount of computation.
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In theory, it can be shown that when n is much larger than p, the PRESS

statistic has an asymptotic approximation

PRESS
p
≈ RSS

p

n
2

(n− p)2 . (2.31)

The PRESS statistic is closely related to the cross-validation (CV) ap-

proach. The idea of cross-validation is that we set a small part of set-aside data

and then use the model fitted from the remainder to predict the set-aside data.

This is done repeatedly by setting aside a different part of the data until all the

observations have been set aside. If we set aside one observation each time, it is

called leave-one-out cross-validation, which is exactly PRESS. If we equally divide

the whole dataset into K parts and leave out one part at a time, it is called K-fold

CV. Usually K is chosen to be 5 or 10. In these cases, the computation costs

are much cheaper compared to leave-one-out cross-validation, especially when the

sample size n is large. These cross-validation approaches provide us a good way

to estimate the prediction error of models, which will be introduced in the next

subsection.

Craven and Wahba (1979) proposed the generalized cross-validation statis-

tic, which is defined by

GCV =

1

n
‖y − ŷ‖2

1− (df/n)2 , (2.32)

where ŷ is a linear estimator in terms of y, that is, there exists a matrix A such

that ŷ = Ay. The df in (2.32) is defined to be trace(A). When ŷ is the least

squares estimator with p predictors, it is easy to see that df = p. Now nGCV is

equal to
RSS

p

1− (p/n)2 , which is asymptotically equal to the PRESS statistic.

There is another well-known prediction-based criterion named Mallows’ C
p

(Mallows 1973). It is defined as

C
p

=
RSS

p

σ2 − (n− 2p). (2.33)
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In practice, we use the unbiased estimate

σ̂
2

=
RSS

d

n− d
, (2.34)

for the full model to substitute for σ
2

in (2.33).

Among the information criteria, the most famous two could be the Akaike’s

information criterion (AIC, Akaike 1973, 1974) and the Bayesian information cri-

terion (BIC, Schwarz 1978).

The AIC was developed by considering the Kullback-Leibler distance of a

model from the true likelihood function. It is defined to be

AIC = RSS
p
+ 2pσ

2
. (2.35)

Thus, the AIC is equivalent to Mallows’s C
p

in least squares settings.

The BIC is defined as

BIC = RSS
p
+ log(n)pσ

2
. (2.36)

It has been shown that the BIC is a consistent criterion in the sense that if the true

model exists and contains only finitely many parameters, the BIC can determine

the true model as the sample size goes to infinity. On the contrary, the AIC tends

to overfit the model.

Many other classical variable selection criteria are of the form:

RSS
p
+ cpσ

2
. (2.37)

where c is a regularization parameter. For example, the ψ-criterion (Hannan and

Quinn 1979) is

ψ
p

= RSS
p
+ c log(log(n))pσ

2
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for some constant c, and the risk inflation criterion (RIC, Foster and George 1994)

is

RIC
p

= RSS
p
+ 2 log(d)pσ

2
.

2.3.2 Prediction and model error

In regression analysis, prediction accuracy usually serves as the “gold stan-

dard”, namely, the model with higher prediction accuracy is better. Prediction

and model error are such kinds of measures of prediction accuracy for models.

The prediction error is defined as the average error in predicting y from x

for future cases, which are not used in fitting the regression equation. We know

that the design matrix X could either be random or controlled. In the X-controlled

situation, the design matrix {x
i
} are selected by the experimenter and only y is

random. In the X-random situation, both y and X are randomly selected. The

definitions of prediction error are a little different for these two situations.

In the X-controlled situation, future data are assumed gathered using the

same {x
i
, i = 1, · · · n} as in the sample data in hand. So they have the form

{(ynew

i
,x

i
), i = 1, · · · n}. Let µ̂(x) be the fitted regression equation. Then the

prediction error is defined as

PE(µ̂) = E

[
1

n

n∑
i=1

(y
new

i
− µ̂(x

i
))

2

]
. (2.38)

Note that y
i
= µ(x

i
) + ε

i
and {ε

i
} are iid with mean zero and variance σ

2
, so

PE(µ̂) = σ
2
+

1

n

n∑
i=1

(µ(x
i
)− µ̂(x

i
))

2
. (2.39)

The first component of (2.39) is due to the noise. The second component is due

to lack of fit to an underlying model, which is called model error and denoted by
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ME(µ̂). If µ(x) = x
T
β, then

ME(µ̂) = (β̂ − β)
T
(
1

n
X

T
X)(β̂ − β). (2.40)

In the X-random situation, it is assumed that the sample is from a parent

distribution V = (y,x). If µ̂(x) is the fitted regression equation, the prediction

error is defined as

PE(µ̂) = E [y − µ̂(x)]
2
. (2.41)

We can further decompose PE as

PE(µ̂) = E [y − E(y|x)]
2
+ E [E(y|x)− µ̂(x)]

2

= σ
2
+ E[µ(x)− µ̂(x)]

2
. (2.42)

The first component of (2.42) is due to the noise. The second component is due

to lack of fit to an underlying model, which is the model error in the X-random

situation and is also denoted by ME(µ̂). In the linear regression model, µ(x) =

x
T
β,

ME(µ̂) = (β̂ − β)
T
E(xx

T
)(β̂ − β). (2.43)

In this dissertation, we will focus on the X-random situation only. All the

results could be extended to the X-controlled situation without essential difficul-

ties.

2.3.3 Variable selection via penalized likelihood

Classical stepwise subset selection methods are widely used in practice, but

actually they suffer from several drawbacks. First, their theoretical properties are

hard to understand because they ignore stochastic errors in the variable selection

process. Second, best subset selection may become infeasible for high-dimensional

data due to the expensive computational cost. Third, as analyzed in Breiman
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(1996), subset selection methods lack stability in the sense that a small change in

the data could lead to a large change in the fitted equation. To overcome these de-

ficiencies, modern penalized likelihood estimation methods were introduced gradu-

ally beginning in the 1990s. By adding a continuous penalty term to the likelihood

and then maximizing the penalized likelihood, we can select variables and obtain

estimates simultaneously. This enables us to study theoretical properties and make

statistical inferences on the model.

The penalized least squares method is a special case of penalized likelihood,

in which our aim is to minimize the least squares with some penalty. The well-

known ridge regression (RR) method (Hoerl and Kennard 1970) is just a solution

of penalized least squares. The penalty term used in ridge regression is the L
2

penalty, namely p
λ
(|θ|) = λ

2
|θ|2. Ridge regression shrinks coefficients but does not

select variables because it does not force coefficients to zero. So actually it is not a

proper method for variable selection. Frank and Friedman (1993) proposed bridge

regression via the L
q

penalty functions, namely, p
λ
(|θ|) = λ

q
|θ|q. And Tibshirani

(1996) proposed the Least Absolute Shrinkage and Selection Operator (LASSO)

via the L
1

penalty to select significant variables. More recently, Fan and Li (2001)

proposed a unified approach via nonconcave penalized likelihood and first intro-

duced the oracle property. They showed that the nonconcave penalized likelihood

estimators may perform as well as the oracle estimator in variable selection, that is,

they work as well as if we knew the true underlying submodel in advance. About

the choice of penalty functions, they pointed out that a good penalty function

should result in an estimator with three nice properties:

1. Unbiasedness: The penalized estimator should be unbiased or nearly unbi-

ased when the true parameter is large.

2. Sparsity: The penalized estimator should be a thresholding rule and set small

estimates to zero.



27

3. Continuity: The penalized estimator should be a continuous function in the

data, that is, a small change in the data will not result in a large change in

the estimates.

And they introduced a family of penalty functions that satisfy all three properties

above. The smoothly clipped absolute deviation (SCAD) penalty function is a

representative among them with a simple form but good performance.

Fan and Li (2001) also mentioned that there are close connections between

classical stepwise subset selection and penalized least squares methods. The clas-

sical stepwise selection methods may be viewed as special cases of penalized least

squares with the so-called L
0

penalty, which is zero at point 0 and a positive

constant everywhere else. Furthermore, when the design matrix is orthonormal,

the penalized least squares estimators with the hard thresholding penalty function

(defined in 2.47) and a proper tuning parameter λ are equivalent to ones obtained

by best subsets selection.

The penalized least squares function is defined to be

1

2n
‖y −Xβ‖2

+
d∑

j=1

p
λj

(|β
j
|). (2.44)

Note that the penalty functions p
λj

(·) in (2.44) are not necessarily the same for all

j. For the sake of simplicity, we assume that the penalty functions are the same

for all coefficients and denote it by p
λ
(| · |).

To see clearly the variable selection effect for penalized least squares, we first

assume the columns in design matrix X/
√

n to be orthonormal, i.e. X
T
X = nI

p×p
.
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Then we have

1

2n
‖y −Xβ‖2

+
d∑

j=1

p
λ
(|β

j
|)

=
1

2n
‖y −Xβ̂‖2

+
1

2
‖β̂ − β‖2

+
d∑

j=1

p
λ
(|β

j
|)

=
1

2n
‖y −Xβ̂‖2

+
d∑

j=1

[
1

2
(β̂

j
− β

j
)
2
+ p

λ
(|β

j
|)
]

. (2.45)

The first term in (2.45) does not involve β. So the minimization problem (2.45) is

equivalent to minimizing the second term componentwise. Thus we only need to

consider the following equivalent minimization problem

min
θ

{
1

2
(z − θ)

2
+ p

λ
(|θ|)

}
. (2.46)

Fan and Li (2001) thoroughly studied the conditions for penalties satisfying the

three properties in the orthonormal case. Figure 2.2 clearly displays the solution

to (2.46) for four different choices of penalty functions.

The choice of penalty function will directly influence the properties and

performance of the resulting estimates. Let’s examine in detail the typical and

newly proposed choices of penalty functions and their individual properties.

• L
2

penalty:

p
λ
(|θ|) =

λ

2
|θ|2.

The L
2

penalty leads to ridge regression directly (Frank and Friedman 1993;

Fu 1998). The solution to (2.46) with the L
2

penalty is θ̂ = z/(λ+1). Ridge

regression shrinks the coefficient but does not select variables (sparsity does

not hold). However, ridge regression is still important in statistical history
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because it brought about the idea of shrinkage. Shrinkage via ridge regres-

sion provides regularization and stabilization and a favorable bias-variance

tradeoff for the estimates (Breiman 1996).

• L
0

penalty:

p
λ
(|θ|) =

1

2
λ

2
I(|θ| 6= 0).

The L
0

penalty is special because it is not even continuous. It is easy to see

that if we adjust the value of λ, the L
0

penalty will lead to a best subset

selection with AIC, BIC, etc. So we can see that traditional subset selection

methods are actually a special type of penalized least squares with the L
0

penalty. The L
0

penalty is also called the entropy penalty in the literature.

• Hard thresholding penalty:

p
λ
(|θ|) = λ

2 − (|θ| − λ)
2
I(|θ| < λ). (2.47)

The hard thresholding penalty was introduced in the discussion of Fan (1997)

and Antoniadis (1997). The solution to (2.46) with this penalty is a hard

thresholding rule

θ̂ = zI(|z| > λ), (2.48)

which coincides with best subset selection for orthonormal designs, but this

penalty is a smoother penalty than the entropy penalty, which also results

in (2.48).

• L
q

penalty:

p
λ
(|θ|) =

λ

q
|θ|q.

The L
q

penalty will lead to the bridge regression introduced by Frank and

Friedman (1993). The solution to (2.46) is sparse only when q ≤ 1 and is

continuous only when q ≥ 1. So the L
1

penalty is the only one with both
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sparsity and continuity in this family. For detailed discussion about the L
q

penalty, readers are referred to Fu (1998) and Fan and Li (2006b).

• L
1

penalty:

p
λ
(|θ|) = λ|θ|.

The L
1

penalty function is famous in the family of L
q

penalties because of

LASSO, which was proposed by Tibshirani (1996). The solution to (2.46)

with the L
1

penalty yields a soft thresholding rule

θ̂ = sgn(z)(|z| − λ)
+
. (2.49)

The LASSO is very popular in the literature because it possesses both spar-

sity and continuity. Another important reason is that it can be solved ef-

ficiently by the least angle regression (LAR) algorithm (Efron et al. 2004).

But the problem of LASSO is that the solution is biased and results of vari-

able selection may be inconsistent, which was first conjectured by Fan and

Li (2001) and recently showed by Leng et al. (2006) and Zou (2006).

• SCAD penalty:

p
′
λ
(|θ|) = λ

{
I(|θ| ≤ λ) +

(aλ− |θ|)
+

(a− 1)λ
I(|θ| > λ)

}
, (2.50)

where a is a constant that is greater than 2. The SCAD penalty was proposed

by Fan and Li (2001). It combines the merits of the Hard thresholding

penalty and the L
1

penalty and has all three nice properties: unbiasedness,
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sparsity, and continuity. The solution to (2.46) with SCAD is given by

θ̂ =





0 if |z| ≤ λ

(|z| − λ)sgn(z) if λ < |z| ≤ 2λ

1
a−2

[(a− 1)z − sgn(z)aλ] if 2λ < |z| ≤ aλ

z if |z| > aλ

, (2.51)

which can be seen clearly from Figure 2.2. Another important fact argued

by Fan and Li (2001) is that the SCAD enjoys the oracle property, that is,

it works as well as if the true underlying model is known in an asymptotic

sense. Actually, the SCAD is only a representative among a large family of

penalties with all the three properties above. For detailed discussion, readers

are referred to Fan and Li (2001).

• Adaptive LASSO penalty: The adaptive LASSO is a new penalized likelihood

method newly proposed by Zou (2006). It starts from the weighted LASSO

arg min
β
‖y −Xβ‖2

+ λ

d∑
j=1

w
j
|β

j
|, (2.52)

and defines the adaptive LASSO as

arg min
β
‖y −Xβ‖2

+ λ

d∑
j=1

1

|β̂
j
|γ |βj

|, (2.53)

where γ > 0 and β̂ = (β̂
1
, · · · , β̂

d
)
T

is a root-n-consistent estimator of β
0
. A

possible choice for β̂ is the OLS estimator β̂
OLS

. The author showed that

the adaptive LASSO estimator also has the oracle property, which is a major

improvement for LASSO. Meanwhile, the adaptive LASSO estimator can be

solved by the same efficient algorithm (LARS) used for solving LASSO. So

it could become a favorable alternative for LASSO. Zou (2006) also showed
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that the nonnegative garotte (Breiman 1995) is closely related to a special

case of adaptive LASSO, and hence the nonnegative garotte is also consistent

for variable selection.

Here is a summary on these penalty functions. The L
2
penalty (ridge regres-

sion) shrinks the coefficients but is not a thresholding rule and not appropriate for

variable selection. The L
0

penalty (best subset selection) and hard-thresholding

estimators (Antoniadis 1997) are unbiased and sparse but discontinuous. The

LASSO gives continuous and sparse estimate but introduces bias. The SCAD and

adaptive LASSO give continuous, sparse and unbiased models.

2.3.4 Algorithms for penalized likelihood optimization problems

Because the penalty functions may be nonsmooth, nonconcave and high-

dimensional, optimizing penalized least squares or penalized likelihood is a chal-

lenging problem.

Tibshirani (1996) proposed LASSO, which can be solved efficiently by the

least angle regression (LAR) algorithm (Efron et al. 2004). Fan and Li (2001)

proposed a unified algorithm, LQA (local quadratic approximation), for optimizing

penalized likelihood. LQA locally approximates p
λ
(|θ|) by a quadratic function

p
λ
(|β

j
|) ≈ p

λ
(|β

j0
|) +

1

2

p
′
λ
(|β

j0
|)

|β
j0
| (β

2

j
− β

2

j0
), (2.54)

for β
j
≈ β

j0
. And then the optimization problem can be reduced to a quadratic

minimization problem, which can be solved by the Newton-Raphson algorithm.

Hunter and Li (2005) proposed a new class of algorithms for finding a max-

imizer of the penalized likelihood for a broad class of penalty functions. These

algorithms are named MM, which stands for majorize and minimize in minimiza-

tion context and minorize and maximize in maximization context. The well-known

EM algorithm is a special case of this more general class of MM algorithms. Wu
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and Liu (2009) proposed to use the difference convex algorithm (DCA) to solve

the SCAD penalized likelihood, which is an instance of the MM algorithm. Re-

cently, Zou and Li (2008) proposed a new unified algorithm based on the local

linear approximation (LLA) for maximizing the penalized likelihood for a broad

class of penalty functions. A distinguished feature of the LLA algorithm is that at

each LLA step, the LLA estimator can naturally adopt a sparse representation. So

the authors suggest using the one-step LLA estimator with good initial estimators

from the LLA algorithm as the final estimates. They also demonstrate that the

LLA is the best convex MM algorithm.



Chapter 3

Local CQR Smoothing:

An Efficient and Safe Alternative to

Local Polynomial Regression

3.1 Introduction

Consider the general nonparametric regression model

Y = m(T ) + σ(T )ε, (3.1)

where Y is the response variable, T is a covariate, m(T ) = E(Y |T ), which is

assumed to be a smooth nonparametric function, and σ(T ) is a positive function

representing the standard deviation. We assume ε has mean 0 and variance 1.

Local polynomial regression is a popular and successful method for nonparametric

regression, and it has been well studied in the literature (Fan and Gijbels 1996). By

locally fitting a linear (or polynomial) regression model via adaptively weighted

least squares, local polynomial regression is able to explore the fine features of

the regression function and its derivatives. Although the least squares method

is a popular and convenient choice in local polynomial fitting, we may consider

using different local fitting methods. For example, in the presence of outliers,

one may consider local least absolute deviation (LAD) polynomial regression (Fan

et al. 1994; Welsh 1996). When the error follows a Laplacian distribution, the local

LAD polynomial regression is more efficient than the local least squares polynomial

regression. Of course, the local LAD polynomial regression can do much worse than

the local least squares polynomial regression in other different settings. The aim of

this chapter is to develop a new local estimation procedure that can significantly
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improve upon the classical local polynomial regression for a wide class of error

distributions, and has comparable efficiency in the worst case scenario.

Our proposal is built upon the composite-quantile-regression (CQR) esti-

mator recently proposed by Zou and Yuan (2008) for estimating the regression

coefficients in the classical linear regression model. Zou and Yuan (2008) show

that the relative efficiency of the CQR estimator compared to the least squares

estimator is greater than 70% regardless the error distribution. Furthermore, the

CQR estimator could be much more efficient and sometimes arbitrarily more effi-

cient than the least squares estimator. These nice theoretical properties of CQR

in linear regression motivate us to construct the local CQR smoothers as nonpara-

metric estimates of the regression function and its derivatives.

We make several contributions in this chapter.

• We propose the local linear CQR estimator for estimating the nonparametric

regression function. We establish the asymptotic theory of the local linear

CQR estimator and show that, compared with the classical local linear least

squares estimator, the new method can significantly improve the estimation

efficiency of the local linear least squares estimator for commonly used non-

normal error distributions.

• We propose the local quadratic CQR estimator for estimating the deriva-

tive of the regression function. The asymptotic theory shows that the local

quadratic CQR estimator can often drastically improve the estimation effi-

ciency of its local least squares counterpart if the error distribution is non-

normal, and at the same time, the loss in efficiency is at most 8.01% in the

worst case scenario.

• The general asymptotic theory of the local p-polynomial CQR estimator is

established. Our theory does not require the error distribution to have a
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finite variance. Therefore, local CQR estimators can work well even when

local polynomial regression fails due to the infinite variance in the noise.

It is a well-known fact that the local linear (polynomial) regression is the

best linear smoother in terms of efficiency (Fan and Gijbels 1996). There is no

contradiction between this fact and our results, because the proposed local CQR

estimator is a nonlinear smoother.

The rest of this chapter is organized as follows. In Section 2, we introduce

the local linear CQR for the nonparametric regression and study its asymptotic

properties. In Section 3, we propose the local quadratic CQR for estimating the

derivative of the nonparametric regression, which can further reduce the estimation

bias by the local linear CQR. Monte Carlo studies and a real data example are

presented in Section 4. In Section 5 we present the general theory of the local

p-polynomial CQR and technical proofs. The results for the infinite variance case

are presented in Section 6. In Section 7, we also address the boundary behavior of

the new estimators. Discussions are included in Section 8.

3.2 Estimation of the regression function

Suppose that (t
i
, y

i
), i = 1, · · · , n, is an independent and identically dis-

tributed random sample. Consider estimating the value of m(T ) at t
0
. In local

linear regression we first approximate m(t) locally by a linear function m(t) ≈
m(t

0
) + m

′
(t

0
)(t− t

0
) and then fit a linear model locally in a neighborhood of t

0
.

Let K(·) be a smooth kernel function. Then the local linear regression estimator

of m(t
0
) is â, where

{â, b̂} = argmin
a,b

n∑
i=1

{
y

i
− a− b(t

i
− t

0
)
}2

K

(
t
i
− t

0

h

)
, (3.2)

where h is the smoothing parameter. Local linear regression enjoys many good

theoretical properties, such as its design adaptation property and high minimax
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efficiency (Fan and Gijbels 1992). However, local least squares regression breaks

down when the error distribution does not have finite second moment, for the

estimator is no longer consistent. Local least absolute deviation (LAD) polynomial

regression (Fan et al. 1994; Welsh 1996) replaces the least squares loss in (3.2) with

the L
1
loss. By doing so, the local LAD estimator can deal with the infinite variance

case, but for finite variance cases its relative efficiency compared to the local least

squares estimator can be arbitrarily small.

We propose the local linear CQR estimator as an efficient alternative to the

local linear regression estimator. Let ρ
τk

(r) = τ
k
r − rI(r < 0), k = 1, 2, . . . , q, be

q check loss functions at q quantile positions: τ
k

= k
q+1

. In the linear regression

model the CQR loss is defined as (Zou and Yuan 2008)

q∑

k=1

n∑
i=1

ρ
τk

(
y

i
− a

k
− bt

i

)
.

The CQR combines strength across multiple quantile regressions by forcing a single

parameter for the “slope”. Since the nonparametric function is approximated by

a linear model locally, we consider minimizing the locally weighted CQR loss

q∑

k=1

[
n∑

i=1

ρ
τk

{
y

i
− a

k
− b(t

i
− t

0
)
}
K

(
t
i
− t

0

h

)]
. (3.3)

Denote the minimizer of (3.3) by (â
1
, · · · , â

q
, b̂). Then we let

m̂(t
0
) =

1

q

q∑

k=1

â
k

and m̃
′
(t

0
) = b̂. (3.4)

We refer to m̂(t
0
) as the local linear CQR estimator of m(t

0
). As an estimator of

m
′
(t

0
), m̃

′
(t

0
) can be further improved by using the local quadratic CQR estimator

which is discussed in the next section.
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Remark 1. It is worth mentioning here that although the check loss function

is typically used to estimate the conditional quantile function of y given T (see

Koenker (2005) and references therein), we simultaneously employ several check

functions to estimate the regression (mean) function. So the local CQR smoother

is conceptually different from nonparametric quantile regression by local fitting

which has been studied in Yu and Jones (1998) and chapter 5 of Fan and Gijbels

(1996).

Remark 2. In a short note Koenker (1984) studied the Hogg estimator as the

minimizer of the weighted sum of check functions in the framework of parametric

linear models. The focus there is to argue that the Hogg estimator is an alternative

to L-estimators. The CQR loss can be regarded as a weighted sum of check func-

tions with uniform weights and uniform quantiles (τ
k

= k
q+1

, k = 1, 2, . . . , q). When

q is large, such a choice leads to nice oracle-like estimators in the oracle model se-

lection theoretic framework (Zou and Yuan 2008). Koenker (1984) did not discuss

relative efficiency of the Hogg estimator relative to the least squares estimator. In

this work we consider minimizing the locally weighted CQR loss and show that

the local CQR smoothers have very interesting asymptotic efficiency properties.

To our best knowledge, none of these has been studied in the literature.

Remark 3. Zou and Yuan (2008) assume parallel quantile lines, whereas our

method allows for heteroscedasticity.

3.2.1 Asymptotic properties

To see why local linear CQR is an efficient alternative to local linear re-

gression, we establish the asymptotic properties of the local linear CQR estima-

tor. Some notation is necessary for the discussion. Let F (·) and f(·) denote the

density function and cumulative distribution function of the error distribution, re-

spectively. Denote by f
T
(·) the marginal density function of the covariate T . We
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choose the kernel K(·) as a symmetric density function and let

µ
j
=

∫
u

j
K(u)du and ν

j
=

∫
u

j
K

2
(u)du, j = 0, 1, 2, . . . , .

Define

R
1
(q) =

1

q2

q∑

k=1

q∑

k′=1

τ
kk′

f(c
k
)f(c

k′)
, (3.5)

where c
k

= F
−1

(τ
k
) and τ

kk′ = τ
k
∧ τ

k′ − τ
k
τ
k′ . The quantity R

1
(q) plays a

fundamental role in the theory. In the following theorem, we present the asymptotic

bias, variance and normality of m̂(t
0
), whose proof is given in section 5. Let T be

the σ-field generated by {T
1
, · · · , T

n
}.

Theorem 3.1. Suppose that t
0

is an interior point of the support of f
T
(·). Under

the regularity conditions (A)—(D) in section 5, if h → 0 and nh → ∞, then the

asymptotic conditional bias and variance of the local linear CQR estimator m̂(t
0
)

are given by

Bias(m̂(t
0
)|T) =

1

2
m
′′
(t

0
)µ

2
h

2
+ o

p
(h

2
), (3.6)

V ar(m̂(t
0
)|T) =

1

nh

ν
0
σ

2
(t

0
)

f
T
(t

0
)

R
1
(q) + o

p
(

1

nh
). (3.7)

Furthermore, conditioning on T, we have

√
nh{m̂(t

0
)−m(t

0
)− 1

2
m
′′
(t

0
)µ

2
h

2} L−→ N

(
0,

ν
0
σ

2
(t

0
)

f
T
(t

0
)

R
1
(q)

)
. (3.8)

where
L−→ stands for convergence in distribution.

We see from Theorem 3.1 that the leading term of the asymptotic bias for

the local linear CQR estimator is the same as that for the local linear least squares

estimator, while their asymptotic variances are different. The mean squared error
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of m̂(t
0
) is

MSE{m̂(t
0
)} =

{
1

2
m
′′
(t

0
)µ

2

}
2

h
4
+

1

nh

ν
0
σ

2
(t

0
)

f
T
(t

0
)

R
1
(q) + o

p

(
h

4
+

1

nh

)
.

By straightforward calculations we can see that the optimal variable bandwidth

minimizing the asymptotic mean squared error of m̂(t
0
) is

h
opt

(t
0
) =

[
ν

0
σ

2
(t

0
)R

1
(q)

f
T
(t

0
){m′′(t

0
)µ

2
}2

]
1/5

n
−1/5

.

In practice, one may select a constant bandwidth by minimizing the mean inte-

grated squared error

MISE(m̂) =

∫
MSE{m̂(t

0
)}w(t) dt

for a weight function w(t). Similarly, the optimal bandwidth minimizing the

asymptotic MISE(m̂) is

h
opt

=

[
ν

0
R

1
(q)

∫
σ

2
(t)f

−1

T
(t)w(t)dt

µ2

2

∫ {m′′(t)}2w(t)dt

]1/5

n
−1/5

.

The above calculations indicate that the local linear CQR estimator still enjoys

the optimal rate of convergence n
2/5

.

3.2.2 Asymptotic relative efficiency

In this section, we study the asymptotic relative efficiency of the local lin-

ear CQR estimator with respect to the local linear least squares estimator by

comparing their mean squared errors. The role of R
1

becomes clear in the relative

efficiency study.
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The local linear least squares estimator for m(t
0
) has the mean squared

error

MSE{m̂LS(t0)} =

{
1

2
m
′′
(t

0
)µ

2

}
2

h
4
+

1

nh

ν
0

f
T
(t

0
)
σ

2
(t

0
) + o

p

(
h

4
+

1

nh

)
,

and the optimal variable bandwidth minimizing the asymptotic mean squared error

is h
opt

LS
(t

0
) =

[
ν

0
σ

2
(t

0
)

f
T
(t

0
){m′′(t

0
)µ

2
}2

]
1/5

n
−1/5

. Similarly, if considering the mean inte-

grated squared error, the optimal bandwidth is h
opt

LS
=

[
ν

0

∫
σ

2
(t)f

−1

T
(t)w(t)dt

µ2

2

∫ {m′′(t)}2w(t)dt

]1/5

n
−1/5

with a weight function w(t). Therefore, we have

h
opt

(t
0
) = R

1
(q)

1/5
h

opt

LS
(t

0
), h

opt
= R

1
(q)

1/5
h

opt

LS
. (3.9)

We use MSEopt{m̂(t
0
)} and MSEopt{m̂LS(t0)} to denote the mean squared

errors of m̂(t
0
) and m̂LS(t0) evaluated at their own optimal bandwidth. Then it is

easy to see that
MSEopt{m̂LS(t0)}
MSEopt{m̂(t

0
)} −→ R

1
(q)

−4/5
.

It is interesting to note that the above ratio does not depend on the location

t
0
. Similarly, if we compare the mean integrated squared errors with the optimal

bandwidths, we also have

MISEopt{m̂LS(t0)}
MISEopt{m̂(t

0
)} −→ R

1
(q)

−4/5
.

Thus, the asymptotic relative efficiency (ARE) of the local linear CQR estimator

with respect to the local linear least squares estimator is by definition

ARE(m̂, m̂LS) = R
1
(q)

−4/5
. (3.10)
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The ARE depends on the error distribution in a rather complex way. How-

ever, for many commonly seen error distributions, we can obtain the ARE by

straightforward calculations. Table 3.1 displays the ARE(m̂, m̂LS) for some com-

monly seen error distributions. The trends of the ARE(m̂) over q are displayed in

Figure 3.1 (a).

Table 3.1. Comparisons of ARE(m̂, m̂LS)

Error Distribution ARE(m̂, m̂LS)

q = 1 q = 5 q = 9 q = 19 q = 99

N(0, 1) 0.6968 0.9339 0.9659 0.9858 0.9980
Laplace 1.7411 1.2199 1.1548 1.0960 1.0296
t-distribution with df = 3 1.4718 1.5967 1.5241 1.4181 1.2323
t-distribution with df = 4 1.0988 1.2652 1.2377 1.1872 1.0929

.95N(0, 1) + .05N(0, 3
2
) 0.8639 1.1300 1.1536 1.1540 1.0804

.90N(0, 1) + .10N(0, 3
2
) 0.9986 1.2712 1.2768 1.2393 1.0506

.95N(0, 1) + .05N(0, 10
2
) 2.6960 3.4577 3.4783 3.3591 1.3498

.90N(0, 1) + .10N(0, 10
2
) 4.0505 4.9128 4.7049 3.5444 1.1379

Several interesting observations can be made from Table 3.1. First, when

the error distribution is N(0, 1), for which the local linear least squares estimator

is expected to have the best performance, the ARE(m̂, m̂LS) is very close to 1

as long as q > 2 in the local linear CQR estimator. When q = 5 the the local

linear CQR only loses at most 7% efficiency, while it performs as well as the local

linear least squares estimator when q = 99. Secondly, for all the other non-normal

distributions listed in Table 3.1, the local linear CQR estimator can have higher

efficiencies than the local linear least squares estimator when a small q is used.

The mixture of two normals is often used to model the so-called contaminated

data. For such distributions, the ARE(m̂, m̂LS) can be as large as 4.9 and even

more. Table 3.1 also indicates that, except for the Laplace error, the local CQR
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Fig. 3.1. Graphs showing ARE(m̂, m̂LS) and ARE(m̂
′
, m̂

′
LS

) as a function of

q for some commonly seen error distributions. (a) for ARE(m̂, m̂LS), and (b)

ARE(m̂
′
, m̂

′
LS

). Mixture
v
, v = 1, 2, 3 and 4 stand for 0.95N(0, 1) + 0.05N(0, 3

2
),

0.90N(0, 1) + 0.10N(0, 3
2
), 0.95N(0, 1) + 0.05N(0, 10

2
) and 0.95N(0, 1) +

0.05N(0, 10
2
), respectively.
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with q = 5 or q = 9 is significantly better than the one with q = 1, which becomes

the local LAD for these distributions. Finally, we observe that the ARE values for

a variety of distributions are very close to 1 when q is large (q = 99). It turns out

that this phenomenon is true in general, as demonstrated in the following theorem.

Theorem 3.2. lim
q→∞ R

1
(q) = 1, and thus lim

q→∞
ARE(m̂, m̂LS) = 1.

Theorem 3.2 provides us insights into the asymptotic behavior of the local

linear CQR estimator and implies that the local linear CQR estimator is a safe

competitor against the local linear least squares estimator, for it will not lose

efficiency when using a large q. On the other hand, substaintial gain in efficiency

could be achieved by using a relatively small q such as q = 9, as shown in Table 3.1.

3.3 Estimation of derivative

In many situations we are interested in estimating the derivative of m(t).

The local linear CQR also provides an estimator m̃
′
(t

0
) to the derivative of m(t).

The asymptotic bias and variance of the estimate m̃
′
(t

0
) in (3.4) are given in

(3.31) and (3.32) in section 5. The local linear CQR estimator and the local linear

regression estimator have the same leading bias term which depends on the intrinsic

part m
′′′
(t

0
) and the extra part m

′′
(t

0
)f
′
T
(t

0
)/f

T
(t

0
). In Chu and Marron (1991)

and Fan (1992), the authors already argued that the bias of Nadaraya-Watson

estimator (also involves similar term) could be very large in many situations. So

m̃
′
(t

0
) may not be an ideal estimator because of the relatively large bias. The local

quadratic regression is often preferred for estimating the derivative function, since

it reduces the estimation bias without increasing the estimation variance (Fan and

Gijbels 1992). We show here that the same phenomenon is true in local CQR

smoothing.

We consider the local quadratic approximation of m(t) in the neighborhood

of t
0
: m(t) ≈ m(t

0
) + m

′
(t

0
)(t − t

0
) + 1

2
m
′′
(t

0
)(t − t

0
)
2
. Let a = (a

1
, · · · , a

q
) and
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b = (b
1
, b

2
). We solve

(â, b̂) = argmin
a,b

n∑
i=1

[
q∑

k=1

ρ
τk

(
y

i
− a

k
− b

1
(t

i
− t

0
)− 1

2
b
2
(t

i
− t

0
)
2
)

K

(
t
i
− t

0

h

)]
.

(3.11)

Then the local quadratic CQR estimator for m
′
(t

0
) is given by

m̂
′
(t

0
) = b̂

1
. (3.12)

3.3.1 Asymptotic properties

Denote

R
2
(q) =

(
q∑

k=1

q∑

k′=1

τ
kk′

)/(
q∑

k=1

f(c
k
)

)
2

. (3.13)

The asymptotic bias, variance and normality are given in the following theorem.

Theorem 3.3. Suppose that t
0

is an interior point of the support of f
T
(·). Under

the regularity conditions (A)—(D) in section 5, if h → 0 and nh
3 →∞, then the

asymptotic conditional bias and variance of m̂
′
(t

0
), defined in (3.12), is given by

Bias(m̂
′
(t

0
)|T) =

1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
+ o

p
(h

2
), (3.14)

V ar(m̂
′
(t

0
)|T) =

1

nh3

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)
R

2
(q) + o

p

(
1

nh3

)
. (3.15)

Furthermore, conditioning on T, we have the following asymptotic normal distri-

bution

√
nh3

(
m̂
′
(t

0
)−m

′
(t

0
)− 1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
)

L−→ N

(
0,

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)
R

2
(q)

)
. (3.16)

Comparing (3.31) and (3.14), we see that the extra part m
′′
(t

0
)f
′
T
(t

0
)/f

T
(t

0
)

is removed in the local quadratic CQR estimator. Comparing the local quadratic
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CQR and the local quadratic least squares estimators for m
′
(t

0
), we see that they

have the same leading bias term, while their asymptotic variances are different.

From Theorem 3.3, the mean squared error of local quadratic CQR estima-

tor m̂
′
(t

0
) is given by

MSE{m̂′
(t

0
)} =

(
1

6
m
′′′
(t

0
)
µ

4

µ
2

)
2

h
4
+

1

nh3

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)
R

2
(q) + o

p

(
h

4
+

1

nh3

)
.

Thus, the optimal variable bandwidth minimizing MSE{m̂′
(t

0
)} is

h
opt

(t
0
) = {R

2
(q)}1/7

(
27ν

2
σ

2
(t

0
)

f
T
(t

0
){m′′′(t

0
)µ

4
}2

)
1/7

n
−1/7

.

Furthermore, we consider the mean integrated squared error

MISE(m̂
′
) =

∫
MSE{m̂′

(t)}w(t) dt

with a weight function w(t). The optimal constant bandwidth minimizing the

mean integrated squared error is given by

h
opt

= {R
2
(q)}1/7

(
27ν

2

∫
σ

2
(t)f

−1

T
(t)w(t) dt

∫ {m′′′(t)}2w(t) dt µ2

4

)1/7

n
−1/7

.

The above calculations indicate that the local quadratic CQR estimator enjoys the

optimal rate of convergence n
2/7

.

3.3.2 Asymptotic relative efficiency

In what follows we study the asymptotic relative efficiency of the local

quadratic CQR estimator with respect to the local quadratic least squares estima-

tor.
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Note that the mean squared error of the local quadratic least squares esti-

mator m̂
′
LS

(t
0
) is given by (Fan and Gijbels 1996)

MSE{m̂′
LS

(t
0
)} =

(
1

6
m
′′′
(t

0
)
µ

4

µ
2

)
2

h
4
+

1

nh3

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)

+ o
p

(
h

4
+

1

nh3

)
,

and the mean integrated squared error is

MISE(m̂
′
LS

) =

∫
MSE{m̂′

LS
(t)}w(t) dt

with a weight function w(t). Thus, by straightforward calculations, we notice that

h
opt

(t
0
) = h

opt

LS
(t

0
)R

2
(q)

1/7
, h

opt
= h

opt

LS
R

2
(q)

1/7
, (3.17)

where h
opt

LS
(t

0
) and h

opt

LS
are the corresponding optimal bandwidths of local quadratic

least squares estimator for the derivative of the regression function. With the op-

timal bandwidths, we have

MSEopt{m̂
′
LS

(t
0
)}

MSEopt{m̂′(t
0
)} −→ R

2
(q)

−4/7

at each t
0

and

MISEopt(m̂
′
LS

)

MISEopt(m̂
′)
−→ R

2
(q)

−4/7
.

Therefore, the asymptotic relative efficiency (ARE) of the local quadratic CQR

estimator (m̂
′
) with respect to the local quadratic least squares estimator (m̂

′
LS

)

is by definition

ARE(m̂
′
, m̂

′
LS

) = R
2
(q)

−4/7
. (3.18)

The ARE only depends on the error distribution and it is scale invariant.



50

Table 3.2. Comparisons of ARE(m̂
′
, m̂

′
LS

)

Error Distribution ARE(m̂
′
, m̂

′
LS

)

q = 1 q = 5 q = 9 q = 19 q = 99 q = ∞
N(0, 1) 0.7726 0.9453 0.9625 0.9708 0.9738 0.9740
Laplace 1.4860 1.2812 1.2680 1.2625 1.2608 1.2607
t-distribution with df = 3 1.3179 1.4405 1.4435 1.4435 1.4430 1.4431
t-distribution with df = 4 1.0696 1.2038 1.2104 1.2123 1.2125 1.2125

.95N(0, 1) + .05N(0, 3
2
) 0.9008 1.0867 1.1019 1.1073 1.1077 1.1077

.90N(0, 1) + .10N(0, 3
2
) 0.9990 1.1869 1.1982 1.1999 1.1987 1.1987

.95N(0, 1) + .05N(0, 10
2
) 2.0308 2.4229 2.4466 2.4482 2.4415 2.4415

.90N(0, 1) + .10N(0, 10
2
) 2.7160 3.1453 3.1430 3.1135 3.1094 3.1093

To gain insights into the asymptotic relative efficiency, we consider the limit

when q is large. Zou and Yuan (2008) showed that

lim
q→∞

R
2
(q)

−1
>

6

eπ
= 0.7026.

Immediately, we know that if using a large q, the ARE is bounded below by

0.7026
4/7

= 0.8173. Having a universal lower bound is very useful because it

prohibits severe loss in efficiency when replacing the local quadratic least squares

estimator with the local quadratic CQR estimator. One of our contributions in

this work is to provide an improved sharper lower bound, as shown in the following

theorem.

Theorem 3.4. Let F denote the class of error distributions with mean 0 and

variance 1. Then we have

inf
f∈F

lim
q→∞

R
2
(q)

−1
= 0.864. (3.19)



51

The lower bound is reached if and only if the error follows the rescaled Beta(2,2)

distribution with mean zero and variance one. Thus

lim
q→∞

ARE(m̂
′
, m̂

′
LS

) ≥ 0.9199. (3.20)

It is interesting to note that Theorem 3.4 provides us the exact lower bound

of ARE(m̂
′
, m̂

′
LS

) as q → ∞. Theorem 3.4 indicates that if q is large, even in the

worst scenario the potential efficiency loss for the local CQR estimator is only

8.01%.

Theorem 3.4 implies that the local quadratic CQR estimator is a safe alter-

native to the local quadratic least squares estimator. It concerns the worst case

scenario. There are many optimistic scenarios as well in which the ARE can be

much bigger than 1. We examine the ARE(m̂
′
, m̂

′
LS

) for the error distributions

considered in Table 3.1. The trends of the ARE(m̂
′
) over q are displayed in Figure

3.1 (b). We also list the results in Table 3.2, where the column labeled q = ∞
shows the theoretical limit of the ARE(m̂

′
, m̂

′
LS

). Obviously, these limits are all

larger than the lower bound 0.9199. The local quadratic CQR estimator only loses

less than 4% efficiency when the error distribution is normal and q = 9. It is

interesting to see that for the other non-normal distributions the ARE(m̂
′
, m̂

′
LS

)

is larger than 1 and its value is insensitive to the choice of q. For example, with

q = 9, the AREs are already very close to their theoretical limits.

It is worth emphasizing here that the local LAD estimator does not enjoy

such a nice property, for its relative efficiency with respect to the local linear least

squares estimator can be arbitrarily small.
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3.4 Numerical comparisons and examples

In this section, we first use Monte Carlo simulation studies to assess the

finite sample performance of the proposed estimation procedures and then demon-

strate the application of the proposed method by using a real data example.

Throughout this section we use the Epanechnikov kernel, i.e., K(z) = 3
4
(1− z

2
)
+
.

We adopt the MM algorithm proposed by Hunter and Lange (2000) for solving the

local CQR smoothing estimator. All the numerical results are computed using our

MATLAB code, which is available upon request.

3.4.1 Bandwidth selection in practical implementation

Bandwidth selection is an important issue in local smoothing. Here we

briefly discuss the bandwidth selection in the local CQR smoothing estimator by

using an existing bandwidth selector for the ordinary local polynomial regression.

Here we consider two kinds of bandwidth selectors.

1. The “pilot” selector. The idea is to use a pilot bandwidth in local cubic CQR

(defined in section 5) to estimate m
′′
(t) and m

′′′
(t). The fitted residuals can

be used to estimate R
1
(q) and R

2
(q). Thus, we can estimate the optimal

bandwidth and then refit the data.

2. A short-cut strategy. In our numerical studies, we compare the local CQR

and local least squares estimators. Note that in (3.9) and (3.17) we obtain

very neat relationships between the optimal bandwidths for the local CQR

and local least squares estimators. The optimal bandwidth for the local

least squares estimators can be selected by existing bandwidth selectors (see

Chapter 4 of Fan and Gijbels (1996)). In addition, we are able to infer

the factors R
1
(q) and R

2
(q) from the residuals of the local least squares

fit. Sometimes, we even know the exact values of the two factors (e.g., in

simulations). Therefore, after fitting the local least squares estimator with
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the optimal bandwidth, we can estimate the optimal bandwidth for the local

CQR estimator.

We used the short-cut strategy in our simulation examples. However, if

the error variance is infinite or very large, then the local least squares estimator

performs poorly. The “pilot” selector is a better choice than the short-cut strategy.

3.4.2 Simulation examples

In our simulation studies, we compare the performance of the newly pro-

posed method with the local polynomial least squares estimate. The bandwidth is

set to the optimal one in which the h
opt

LS
is selected by a plug-in bandwidth selector

(Ruppert et al. 1995).

The performance of estimator m̂(·) and m̂
′
(·) is assessed via the average

squared error (ASE), defined by

ASE(ĝ) =
1

ngrid

ngrid∑

k=1

{ĝ(u
k
)− g(u

k
)}2

,

with g equal to either m(·) or m
′
(·), where {u

k
, k = 1, . . . , ngrid} are the grid

points at which the functions {ĝ(·)} are evaluated. In our simulation, we set

ngrid = 200 and grid points are evenly distributed over the interval at which the

m(·) and m
′
(·) are estimated. We summarize our simulation results using the ratio

of average squared errors (RASE),

RASE(ĝ) =
ASE(ĝLS)

ASE(ĝ)
, (3.21)

for an estimator ĝ, where ĝLS is the local polynomial regression estimator under

the least squares loss. We considered two simulation examples.
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Example 3.4.1. We generated 400 data sets, each consisting of n = 200 observa-

tions, from

Y = sin(2T ) + 2 exp(−16T
2
) + 0.5ε, (3.22)

where T follows N(0, 1). This model is adopted from Fan and Gijbels (1992). In

our simulation, we considered five error distributions for ε: N(0, 1), Laplace, t
3

distribution, a mixture of two normals (0.95N(0, 1)+0.05N(0, σ
2
) with σ = 3, 10).

For the local polynomial CQR estimator, we consider q = 5, 9 and 19, and estimate

m(·) and m
′
(·) over [−1.5, 1.5]. The mean and standard deviation of RASE over

400 simulations are summarized in Table 3.3. To see how the proposed estimate

behaves at a typical point, Table 3.3 also depicts the biases and standard deviations

of m̂(t) and m̂
′
(t) at t = 0.75. In Table 3.3, CQR

5
, CQR

9
and CQR

19
correspond

to the local CQR estimate with q = 5, 9 and 19, respectively.

Example 3.4.2. It is of interest to investigate the effect of heteroscedastic errors.

To this end, we generated 400 simulation data sets, each consisting of n = 200

observations, from

Y = T sin(2πT ) + σ(T )ε, (3.23)

where T follows U(0, 1), σ(t) = {2 + cos(2πt)}/10, and ε is the same as that

in Example 3.4.1. In this example, we estimate m(t) and m
′
(t) over [0,1]. The

mean and standard deviation of RASE over 400 simulations are summarized in

Table 3.4, in which we also show the biases and standard deviations of m̂(t) and

m̂
′
(t) at t = 0.4. The notation of Table 3.4 is the same as that in Table 3.3.

Table 3.3 and Table 3.4 show very similar messages, although Table 3.4

indicates that the local CQR has more gains over the local least squares method.

When the error follows the normal distribution, the RASEs of the local CQR

estimators are slightly less than one. For non-normal distributions, the RASEs of

the local CQR estimators can be greater than one, indicating the gain in efficiency.

For estimating the regression function, CQR
5
and CQR

9
seem to have better overall
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performance than CQR
19

. For estimating the derivative, all three CQR estimators

perform very similarly. These findings are consistent with the theoretical analysis

of AREs.

3.4.3 A real data example

As an illustration, we now apply the proposed local CQR methodology to

the U.K. Family Expenditure Survey data subset with high net income, which

consists of 363 observations. The scatter plot of data is depicted in the left panel

of Figure 3.2. The data set was collected in the U.K. Family Expenditure Survey

in 1973. Of interest is to study the relationship between the food expenditure and

the net income. Thus, we take the response variable Y to be the logarithm of the

food expenditure, and the predictor variable T is the net-income.

We first estimated the regression function using the local least squares es-

timator with the plug-in bandwidth selector (Ruppert et al. 1995). We further

employed the kernel density estimate to infer the error density f(·) based on the

residuals from the local least squares estimator. Based on the estimated density,

we estimated both R
1
(q) and R

2
(q), which were used to compute the bandwidth

selector for the CQR estimator. For this example, the estimated ratios are close to

1, so we basically use the same bandwidths for these two methods. The selected

bandwidths are 0.24 for regression estimation and 0.4 for derivative estimation.

The CQR estimates with q = 5, 9 and 19 with the selected bandwidths are eval-

uated. The CQR estimates with three different q’s are very similar, so we only

present the CQR estimate with q = 9 in Figure 3.2.

It is interesting to see from Figure 3.2 that the overall patten of the local

least squares and the local CQR estimate are the same. The difference between the

local least squares estimate and the local CQR estimate of the regression function

becomes large when the net income is around 2.8. From the scatter plot, there are
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Table 3.3. Simulation results for example 3.4.1

m̂ m̂
′

RASE t = 0.75 RASE t = 0.75

Mean(SD) Bias Std Mean(SD) Bias Std

Standard Normal
LS — -0.0239 0.1098 — -0.0539 0.6871
CQR

5
0.9314

(0.1190)
-0.0224 0.1161 0.9518

(0.1087)
-0.0508 0.7257

CQR
9

0.9588
(0.0888)

-0.0236 0.1133 0.9614
(0.1019)

-0.0530 0.7165

CQR
19

0.9802
(0.0592)

-0.0228 0.1117 0.9646
(0.0998)

-0.0513 0.7178

Laplace
LS — -0.0146 0.1215 — -0.1108 0.6988
CQR

5
1.1088

(0.1985)
-0.0171 0.1155 1.1014

(0.1679)
-0.0774 0.6916

CQR
9

1.0717
(0.1351)

-0.0154 0.1195 1.1025
(0.1565)

-0.0834 0.6678

CQR
19

1.0346
(0.0856)

-0.0141 0.1214 1.1005
(0.1500)

-0.0934 0.6529

t-distribution with df = 3
LS — -0.0214 0.1266 — -0.0701 0.7254
CQR

5
1.2752

(0.5020)
-0.0182 0.1103 1.2104

(0.4584)
-0.0559 0.6635

CQR
9

1.1712
(0.3356)

-0.0158 0.1137 1.2133
(0.4526)

-0.0520 0.6537

CQR
19

1.0710
(0.2086)

-0.0186 0.1222 1.2182
(0.4403)

-0.0540 0.6431

.95N(0, 1) + .05N(0, 9)
LS — -0.0007 0.1256 — -0.0382 0.8540
CQR

5
1.0685

(0.2275)
-0.0060 0.1202 1.0479

(0.1773)
-0.0182 0.8098

CQR
9

1.0621
(0.1740)

-0.0049 0.1219 1.0531
(0.1727)

-0.0154 0.8085

CQR
19

1.0280
(0.1125)

-0.0018 0.1251 1.0532
(0.1687)

-0.0198 0.8062

.95N(0, 1) + .05N(0, 100)
LS — 0.0034 0.1283 — -0.0456 0.8667
CQR

5
2.1548

(1.5318)
0.0002 0.0888 1.7671

(0.7607)
0.0022 0.5953

CQR
9

1.5240
(0.8360)

-0.0009 0.1181 1.7527
(0.7535)

0.0024 0.6030

CQR
19

1.1600
(0.8776)

0.0069 0.1365 1.7560
(0.7382)

0.0044 0.5927
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Table 3.4. Simulation results for example 3.4.2.

m̂ m̂
′

RASE t = 0.4 RASE t = 0.4

Mean(SD) Bias Std Mean(SD) Bias Std

Standard Normal
LS — -0.0177 0.0263 — 0.0329 0.2753
CQR

5
0.9574

(0.1699)
-0.0166 0.0271 0.9376

(0.3587)
0.0289 0.3019

CQR
9

0.9783
(0.1286)

-0.0165 0.0266 0.9458
(0.3092)

0.0283 0.3013

CQR
19

0.9838
(0.0815)

-0.0168 0.0266 0.9491
(0.2952)

0.0278 0.2962

Laplace
LS — -0.0175 0.0249 — 0.0236 0.2718
CQR

5
1.1938

(0.3279)
-0.0145 0.0237 1.2063

(0.6794)
0.0106 0.2701

CQR
9

1.1405
(0.2523)

-0.0150 0.0243 1.2046
(0.6413)

0.0079 0.2719

CQR
19

1.0857
(0.1584)

-0.0157 0.0248 1.2019
(0.6035)

0.0098 0.2693

t-distribution with df = 3
LS — -0.0167 0.0261 — 0.0025 0.3068
CQR

5
1.5974

(1.0324)
-0.0120 0.0229 1.6099

(1.7558)
0.0004 0.2503

CQR
9

1.4247
(0.8170)

-0.0132 0.0228 1.5975
(1.8047)

-0.0002 0.2560

CQR
19

1.2111
(0.4330)

-0.0140 0.0242 1.5948
(1.8291)

0.0006 0.2567

.95N(0, 1) + .05N(0, 9)
LS — -0.0175 0.0247 — -0.0130 0.2916
CQR

5
1.1788

(0.6248)
-0.0157 0.0228 1.2268

(2.0608)
-0.0050 0.2778

CQR
9

1.1507
(0.4715)

-0.0157 0.0230 1.2132
(1.8791)

-0.0048 0.2754

CQR
19

1.0835
(0.2603)

-0.0159 0.0234 1.2104
(1.8546)

-0.0066 0.2742

.95N(0, 1) + .05N(0, 100)
LS — -0.0162 0.0260 — 0.0335 0.3728
CQR

5
3.1661

(2.4820)
-0.0077 0.0173 3.0593

(5.6699)
0.0245 0.2420

CQR
9

2.4179
(1.7012)

-0.0080 0.0171 3.0287
(5.3433)

0.0209 0.2533

CQR
19

1.3469
(0.5075)

-0.0085 0.0241 3.0146
(5.2728)

0.0234 0.2452
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two possible outlier observations: (2.7902,−2.5207) and (2.8063,−2.6105) (cir-

cled in the plot). To understand the impact of these two possible outliers, we

re-evaluated the local CQR and the local least squares estimates after excluding

these two possible outliers. The resulting estimates are depicted in the top panel of

Figure 3.3, from which we can see that the local CQR estimate remains almost the

same, while the local least squares estimate changes a lot. We also note that after

removing these two possible outliers, the local least squares estimator becomes very

close to the local CQR estimator. Furthermore, as a more extreme demonstration,

we kept these two possible outliers in the data set and moved them to more extreme

cases, i.e, we moved (2.7902,−2.5207) and (2.8063,−2.6105) to (2.7902,−6.5207)

and (2.8063,−6.6105), respectively. After perturbing (distorting) the two obser-

vations, we re-calculated the local CQR and the local least squares estimate. The

resulting estimates are depicted in the bottom panel of Figure 3.3, which clearly

demonstrates that the local least squares estimate changes dramatically. In con-

trast, the local CQR estimate is nearly un-affected by the artificial data distortion.

3.5 Local p-polynomial CQR smoothing and proofs

In this section we establish asymptotic theory of the local p-polynomial

CQR estimators. We then treat Theorems 3.1 and 3.3 as two special cases of the

general theory. As a generalization of the local linear and local quadratic CQR

estimators, the local p-polynomial CQR estimator is constructed by minimizing

q∑

k=1

[
n∑

i=1

ρ
τk

{
y

i
− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j
}

K

(
t
i
− t

0

h

)]
, (3.24)

and the local p-polynomial CQR estimators of m(t
0
) and m

(r)
(t

0
) are given by

m̂(t
0
) =

1

q

q∑

k=1

â
k
, and m̂

(r)
(t

0
) = r!b̂

r
, r = 1, · · · , p. (3.25)
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Fig. 3.2. The left panel is the scatter plot of data, the middle panel is the estimated
regression function, and the right panel is the estimated derivative function.

For the asymptotic analysis, we need the following regularity conditions:

(A) The regression function m(t) has a continuous (p + 2)
th

derivative in the

neighborhood of t
0
.

(B) The marginal density function f
T
(·) of T is differentiable and positive in the

neighborhood of t
0
.

(C) The conditional variance σ
2
(t) is continuous in the neighborhood of t

0
.

(D) Assume that the error has a symmetric distribution with density f(·), and

f(·) is positive in the neighborhoods of {c
k
}.

We choose the kernel function K such that K is a symmetric density func-

tion with finite support [−M,M ]. The following notation is needed to present the

asymptotic properties of the local p-polynomial CQR estimator. Let S
11

be a q×q

diagonal matrix with diagonal elements f(c
k
), k = 1, · · · , q; S

12
a q × p matrix
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Fig. 3.3. Plot of estimated regression function and its derivative. The top panel
is for the estimate removing the two possible outliers, and bottom panel is for
the estimate moving the two possible outliers to more extreme cases. The left
panel is for the estimated regression function, and the right panel is the estimated
derivative function.
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with (k, j)-element f(c
k
)µ

j
, k = 1, · · · , q and j = 1, · · · , p; S

21
= S

T

12
; and S

22
a

p × p matrix with (j, j
′
)-element

∑q

k=1
f(c

k
)µ

j+j ′ , for j, j
′
= 1, · · · , p. Similarly,

Let Σ
11

be a q × q matrix with (k, k
′
)-element ν

0
τ
kk′ , k, k

′
= 1, · · · , q; Σ

12
a q × p

matrix with (k, j)-element ν
j

∑q

k′=1
τ
kk′ , k = 1, · · · , q and j = 1, · · · , p; Σ

21
= Σ

T

12
;

and Σ
22

a p× p matrix with (j, j
′
)-element (

∑q

k,k′=1
τ
kk′)νj+j ′ , for j, j

′
= 1, · · · , p.

Define

S =


S

11
S

12

S
21

S
22


 , and Σ =


Σ

11
Σ

12

Σ
21

Σ
22


 .

Partition S
−1

into four submatrices as follows

S
−1

=


S

11
S

12

S
21

S
22



−1

=


(S

−1
)
11

(S
−1

)
12

(S
−1

)
21

(S
−1

)
22


 ,

where hereafter, we use (·)
11

to denote the left-top q × q submatrix and use (·)
22

to denote the right-bottom p× p submatrix.

Furthermore, let u
k

=
√

nh{a
k
−m(t

0
) − σ(t

0
)c

k
} and v

j
= h

j√
nh{j!b

j
−

m
(j)

(t
0
)}/j!. Let x

i
= (t

i
− t

0
)/h, K

i
= K(x

i
) and ∆

i,k
=

u
k√
nh

+

p∑
j=1

v
j
x

j

i√
nh

. Write

d
i,k

= c
k
[σ(t

i
)− σ(t

0
)] + r

i,p
with r

i,p
= m(t

i
)−∑p

j=0
m

(j)
(t

0
)(t

i
− t

0
)
j
/j!. Define

η
∗
i,k

to be I(ε
i
≤ c

k
− di,k

σ(ti)
) − τ

k
. let W

∗
n

= (w
∗
11

, · · · , w
∗
1q

, w
∗
21

, · · · , w
∗
2p

)
T

with

w
∗
1k

= 1√
nh

∑n

i=1
K

i
η
∗
i,k

and w
∗
2j

= 1√
nh

∑q

k=1

∑n

i=1
K

i
x

j

i
η
∗
i,k

.

The asymptotic properties of the local p-polynomial CQR estimator are

based on the following theorem.

Theorem 3.5. Let θ̂
n

= (û
1
, · · · , û

q
, v̂

1
, · · · , v̂

p
) be the minimizer of (3.24). Then

under the regularity conditions (A)—(C), we have

θ̂
n

+
σ(t

0
)

f
T
(t

0
)
S
−1

E(W
∗
n
|T)

L−→ MV N

(
0,

σ
2
(t

0
)

f
T
(t

0
)
S
−1

ΣS
−1

)
.

To prove theorem 3.5, we first establish Lemmas 3.6—3.7.



62

Lemma 3.6. Minimizing (3.24) is equivalent to minimizing

q∑

k=1

u
k

(
n∑

i=1

K
i
η
∗
i,k√

nh

)
+

p∑
j=1

v
j




q∑

k=1

n∑
i=1

K
i
x

j

i
η
∗
i,k√

nh


 +

q∑

k=1

B
n,k

(θ)

with respect to θ = (u
1
, · · · , u

q
, v

1
, · · · , v

p
)
T
, where

B
n,k

(θ) =
n∑

i=1

{
K

i

∫
∆i,k

0

[
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)]
dz

}
.

Proof. To apply the identity (Knight 1998)

ρ
τ
(x− y)− ρ

τ
(x) = y(I(x ≤ 0)− τ) +

∫
y

0

{I(x ≤ z)− I(x ≤ 0)}dz, (3.26)

we write

y
i
− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j
= σ(t

i
)ε

i
+ m(t

i
)− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j

= σ(t
i
)(ε

i
− c

k
) +

(
σ(t

i
)− σ(t

0
)
)
c
k
+ r

i,p
− u

k√
nh

−
p∑

j=1

v
j
x

j

i√
nh

= σ(t
i
)(ε

i
− c

k
) + d

i,k
−∆

i,k
.

Minimizing (3.24) is equivalent to minimizing

L
n
(θ) =

n∑
i=1

{
K

i

q∑

k=1

[
ρ

τk

(
σ(t

i
)(ε

i
− c

k
) + d

i,k
−∆

i,k

)− ρ
τk

(
σ(t

i
)(ε

i
− c

k
) + d

i,k

)]
}

.
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Using the identity (3.26) and with some straightforward calculations, it follows

that

L
n
(θ) =

n∑
i=1

{
K

i

q∑

k=1

∆
i,k

[
I(ε

i
≤ c

k
−

d
i,k

σ(t
i
)
)− τ

k

]}

+
n∑

i=1

{
K

i

q∑

k=1

∫
∆i,k

0

[
I(ε

i
≤ c

k
−

d
i,k

σ(t
i
)

+
z

σ(t
i
)
)− I(ε

i
≤ c

k
−

d
i,k

σ(t
i
)
)

]
dz

}

=

q∑

k=1

u
k

(
n∑

i=1

K
i
η
∗
i,k√

nh

)
+

p∑
j=1

v
j




q∑

k=1

n∑
i=1

K
i
x

j

i
η
∗
i,k√

nh


 +

q∑

k=1

B
n,k

(θ).

This completes the proof.

Let S
n,11

be a q×q diagonal matrix with diagonal elements f(c
k
)
∑n

i=1

Ki

nhσ(ti)
,

k = 1, · · · , q; S
n,12

be a q × p matrix with (k, j)-element f(c
k
)
∑n

i=1

Kix
j

i

nhσ(ti)
, j =

1, · · · , p; S
n,22

be a p× p matrix with (j, j
′
) element

∑q

k=1
f(c

k
)
∑n

i=1

Kix
j+j

′
i

nhσ(ti)
. De-

note

S
n

=


S

n,11
S

n,12

S
T

n,12
S

n,22


 .

Lemma 3.7. Under Conditions (A)—(C), L
n
(θ) = 1

2
θ

T
S

n
θ + (W

∗
n
)
T
θ + o

p
(1).

Proof. Write L
n
(θ) as

L
n
(θ) =

q∑

k=1

u
k

(
n∑

i=1

K
i
η
∗
i,k√

nh

)
+

p∑
j=1

v
j




q∑

k=1

n∑
i=1

K
i
x

j

i
η
∗
i,k√

nh




+

q∑

k=1

E
ε
[B

n,k
(θ)|T] +

q∑

k=1

R
n,k

(θ),

where R
n,k

(θ) = B
n,k

(θ)− E
ε
[B

n,k
(θ)|T].
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Using F (c
k
+ z)− F (c

k
) = zf(c

k
) + o(z), then

∑q

k=1
E

ε
[B

n,k
(θ)|T] equals

q∑

k=1

n∑
i=1

[
K

i

∫
∆i,k

0

{
z

σ(t
i
)
f

(
c
k
−

d
i,k

σ(t
i
)

)
+ o(z)

}
dz

]

=

q∑

k=1

n∑
i=1


K

i
∆

2

i,k

f(c
k
− di,k

σ(ti)
)

2σ(t
i
)


 + o

p
(1)

=

q∑

k=1

n∑
i=1

[
K

i
∆

2

i,k

f(c
k
)

2σ(t
i
)

]
+ o

p
(1)

=
1

2
θ

T
S

n
θ + o

p
(1).

We now prove R
n,k

(θ) = o
p
(1). It is sufficient to show V ar

ε
[B

n,k
(θ)|T] = o

p
(1).

V ar
ε
[B

n,k
(θ)|T]

= V ar
ε

[
n∑

i=1

{
K

i

∫
∆i,k

0

[
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)]
dz

}
|T

]

=
n∑

i=1

V ar
ε

[{
K

i

∫
∆i,k

0

[
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)]
dz

}
|T

]

≤
n∑

i=1

E
ε

[{
K

i

∫
∆i,k

0

[
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)]
dz

}2

|T
]

=
n∑

i=1

K
2

i

∫
∆i,k

0

∫
∆i,k

0

E
ε

[{
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z
1

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)}

{
I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

+
z
2

σ(t
i
)

)
− I

(
ε
i
≤ c

k
−

d
i,k

σ(t
i
)

)}
|T

]
dz

1
dz

2

≤
n∑

i=1

K
2

i

∫ |∆i,k|

0

∫ |∆i,k|

0

[
F

(
c
k
−

d
i,k

σ(t
i
)

+
|∆

i,k
|

σ(t
i
)

)
− F

(
c
k
−

d
i,k

σ(t
i
)

)]
dz

1
dz

2

= o

(
n∑

i=1

K
2

i
∆

2

i,k

)
= o

p
(1)

This completes the proof.
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Proof of Theorem 3.5. Similar to Parzen (1962), we have 1
nh

∑n

i=1
K

i
x

j

i

P−→ f
T
(t

0
)µ

j
,

where
P−→ stands for convergence in probability. Thus,

S
n

P−→ f
T
(t

0
)

σ(t
0
)

S =
f

T
(t

0
)

σ(t
0
)


S

11
S

12

S
21

S
22


 .

This, together with Lemmas 3.6, 3.7, leads to

L
n
(θ) =

1

2

f
T
(t

0
)

σ(t
0
)

θ
T
Sθ + (W

∗
n
)
T
θ + o

p
(1).

Since the convex function L
n
(θ)− (W

∗
n
)
T
θ converges in probability to the convex

function
1

2

f
T
(t

0
)

σ(t
0
)

θ
T
Sθ, it follows from the convexity lemma (Pollard 1991) that for

any compact set Θ, the quadratic approximation to L
n
(θ) holds uniformly for θ in

Θ, which leads to

θ̂
n

= − σ(t
0
)

f
T
(t

0
)
S
−1

W
∗
n

+ o
p
(1).

Denote η
i,k

= I(ε
i
≤ c

k
) − τ

k
and W

n
= (w

11
, · · · , w

1q
, w

21
, · · · , w

2p
)
T

with w
1k

=

1√
nh

∑n

i=1
K

i
η

i,k
and w

2j
= 1√

nh

∑q

k=1

∑n

i=1
K

i
x

j

i
η

i,k
. By the Cramér-Wald theorem,

it is easy to see that the CLT for W
n
|T holds:

W
n
|T− E[W

n
|T]√

V ar[W
n
|T]

L−→ MV N(0, I
(p+q)×(p+q)

). (3.27)

Note that

Cov(η
i,k

, η
i,k′) = τ

kk′ , Cov(η
i,k

, η
j,k′) = 0, if i 6= j.

And similar to Parzen (1962), we have 1
nh

∑n

i=1
K

2

i
x

j

i

P−→ f
T
(t

0
)ν

j
, Therefore,

V ar[W
n
|T]

P−→ f
T
(t

0
)Σ. Combined with (3.27), we have

W
n
|T L−→ MV N(0, f

T
(t

0
)Σ).
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Moreover, we have

V ar(w
∗
1k
−w

1k
|T) =

1

nh

n∑
i=1

K
2

i
V ar(η

∗
i,k
−η

i,k
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n∑
i=1

K
2

i
{F (c
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+
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|

σ(t
i
)
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k
)} = o
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V ar(w
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− w
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nh
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K
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i
x

j

i
V ar(

q∑

k=1

η
∗
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− η

i,k
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≤ q
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nh
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K
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i
x

j

i
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k
{F (c

k
+
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i,k
|

σ(t
i
)
)− F (c

k
)} = o

p
(1).

Thus

V ar(W
∗
n
−W

n
|T) = o

p
(1).

So by Slutsky’s theorem, conditioning on T, we have

W
∗
n
|T− E(W

∗
n
|T)

L−→ MV N(0, f
T
(t

0
)Σ).

Therefore,

θ̂
n

+
σ(t

0
)

f
T
(t

0
)
S
−1

E(W
∗
n
|T)

L−→ MV N

(
0,

σ
2
(t

0
)

f
T
(t

0
)
S
−1

ΣS
−1

)
. (3.28)

This completes the proof.

Proof of Theorem 3.1. The asymptotic normality follows Theorem 3.5 with p = 1.

Let us calculate the conditional bias and variance, respectively. Denote by e
q×1

the vector that contains q 1’s. When p = 1, S is a diagonal matrix with diagonal

elements f(c
1
), · · · , f(c

q
), µ

2

∑q

k=1
f(c

k
). So the asymptotic conditional bias of
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m̂(t
0
) = 1

q

∑q
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â

k
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)|T) =
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q ·
√
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σ(t
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)

q∑

k=1

c
k
− 1
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c
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d
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σ(t
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− F (c
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}
.

Note that the error is symmetric, thus
∑q

k=1
c
k

= 0, and furthermore, it is easy to

check that 1
q

∑q

k=1

1
f(ck)

{F (c
k
− di,k

σ(ti)
)− F (c

k
)} = − ri,p

σ(ti)
{1 + o

p
(1)}. Therefore,

Bias(m̂(t
0
)|T) =

1

nh

σ(t
0
)

f
T
(t

0
)

n∑
i=1

K
i

r
i,p

σ(t
i
)
{1 + o

p
(1)}.

By using the fact that

1

nh

n∑
i=1

K
i

r
i,p

σ(t
i
)

=
f

T
(t

0
)m

′′
(t

0
)

2σ(t
0
)

µ
2
h

2{1 + o
p
(1)},

we obtain

Bias(m̂(t
0
)|T) =

1

2
m
′′
(t

0
)µ

2
h

2
+ o

p
(h

2
). (3.29)

Furthermore, the conditional variance of m̂(t
0
) is

V ar(m̂(t
0
)|T) =

1

nh

σ
2
(t

0
)

f
T
(t

0
)

1

q2 e
T

q×1
(S

−1
ΣS

−1
)
11

e
q×1

+ o
p

(
1

nh

)

=
1

nh

ν
0
σ

2
(t

0
)

f
T
(t

0
)

R
1
(q) + o

p

(
1

nh

)
, (3.30)

which completes the proof.

By using Theorem 3.5, we can further derive the asymptotic bias and vari-

ance of m̃
′
(t

0
) given in (3.4):

Bias(m̃
′
(t

0
)|T) =

1

6

(
m
′′′
(t

0
) + 3m

′′
(t

0
)
f
′
T
(t

0
)

f
T
(t

0
)

)
µ

4

µ
2

h
2
+ o

p
(h

2
), (3.31)
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V ar(m̃
′
(t

0
)|T) =

1

nh3

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)
R

2
(q) + o

p

(
1

nh3

)
. (3.32)

Proof of Theorem 3.2. Note that

lim
q→∞

R
1
(q) =

∫
1

0

∫
1

0

s
1
∧ s

2
− s

1
s
2

f(F−1(s
1
))f(F−1(s

2
))

ds
1
ds

2

=

∫ ∞

−∞

∫ ∞

−∞

(
F (z

1
) ∧ F (z

2
)− F (z

1
)F (z

2
)
)
dz

1
dz

2
. (3.33)

by change of variables. Define functions

G(s) =

∫
s

−∞
F (t)dt, H(s) =

∫
s

−∞
G(t)dt.

We have

G(s) =

∫
s

−∞

( ∫
t

−∞
f(x)dx

)
dt =

∫
s

−∞

( ∫
s

x

f(x)dt
)
dx (3.34)

=

∫
s

−∞
(s− x)f(x)dx = sF (s)− k

1
(s),

where k
1
(s) =

∫ s

−∞ xf(x)dx. Similarly, we obtain

2H(s) = 2

∫
s

−∞

( ∫
t

−∞
(t− x)f(x)dx

)
dt =

∫
s

−∞

( ∫
s

x

2(t− x)f(x)dt
)
dx

=

∫
s

−∞
(s− x)

2
f(x)dx = s

2
F (s)− 2sk

1
(s) + k

2
(s), (3.35)
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where k
2
(s) =

∫ s

−∞ x
2
f(x)dx. For the integral in (3.33) we have

∫ ∞

−∞

∫ ∞

−∞

(
F (z

1
) ∧ F (z

2
)− F (z

1
)F (z

2
)
)
dz

1
dz

2

= 2

∫ ∞

−∞

(
1− F (z

1
)
)( ∫

z1

−∞
F (z

2
)dz

2

)
dz

1

= 2

∫ ∞

−∞

( ∫ ∞

z1

f(t)dt
)
G(z

1
)dz

1

= 2

∫ ∞

−∞
f(t)

( ∫
t

−∞
G(z

1
)dz

1

)
dt

=

∫ ∞

−∞
2f(t)H(t)dt. (3.36)

By the definition of G and H, we know d(2H(t)F (t)−G
2
(t))

dt
= 2H(t)f(t); and combining

(3.34) and (3.35) yields 2H(t)F (t)−G
2
(t) = k

2
(t)F (t)−k

2

1
(t). Now it is easy to see

that the integral in (3.36) equals 1, by the facts that
∫∞
−∞ x

2
f(x)dx = E

F
[ε

2
] = 1

and
∫∞
−∞ xf(x)dx = E

F
[ε] = 0.

Proof of Theorem 3.3. We apply Theorem 3.5 to get the asymptotic normality.

Denote by e
r

the p-vector (0, 0, · · · , 1, 0, · · · , 0)
T

with 1 in the r
th

position. When

p = 2, S
12

and S
22

have the following forms:

S
12

=

(
0

q×1
µ

2

(
f(c

k
)
)

q×1

)
, S

22
=


µ

2

∑q

k=1
f(c

k
) 0

0 µ
4

∑q

k=1
f(c

k
)


 .

Thus,

(S
−1

)
22

= (S
22
− S

21
S
−1

11
S

12
)
−1

=




1

µ
2

∑
q

k=1
f(c

k
)

0

0
1

(µ
4
− µ2

2
)
∑

q

k=1
f(c

k
)


 ,

(S
−1

)
21

= −(S
−1

)
22

S
21

S
−1

11
=




0
1×q( µ
2

(µ
4
− µ2

2
)
∑

q

k=1
f(c

k
)

)
1×q


 ,
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since S
11

= diag
(
f(c

1
), · · · , f(c

q
)
)
. By Theorem 3.5,

Bias(m̂
′
(t

0
)|T) = − σ(t

0
)

hf
T
(t

0
)

1√
nh

e
T

1

{
(S

−1
)
21

E(W
∗
1n
|T) + (S

−1
)
22

E(W
∗
2n
|T)

}

= − σ(t
0
)

hf
T
(t

0
)

1

µ
2

∑
q

k=1
f(c

k
)

1√
nh

E(w
∗
21
|T).

Note that

E(w
∗
2j
|T) =

1√
nh

n∑
i=1

K
i
x

j

i

q∑

k=1

{
F

(
c
k
−

d
i,k

σ(t
i
)

)
− F (c

k
)

}

Similarly, under condition (D), we have
∑q

k=1
{F (c

k
− di,k

σ(ti)
)−F (c

k
)} = −∑q

k=1
f(c

k
)·

ri,p

σ(ti)
{1+ o

p
(1)}. Therefore, Bias(m̂

′
(t

0
)|T) is equal to 1

nh2

σ(t0)

fT (t0)

∑n

i=1
K

i
x

i

ri,p

σ(ti)
{1+

o
p
(1)}. Still using the fact that with p = 2

1

nh

n∑
i=1

K
i
x

i

r
i,p

σ(t
i
)

=
f

T
(t

0
)m

′′′
(t

0
)

6σ(t
0
)

µ
4

µ
2

h
3{1 + o

p
(1)},

we obtain

Bias(m̂
′
(t

0
)|T) =

1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
+ o

p
(h

2
). (3.37)

Furthermore, the conditional variance of m̂(t
0
) is

V ar(m̂
′
(t

0
)|T) =

1

nh3

σ
2
(t

0
)

f
T
(t

0
)
e

T

1
(S

−1
ΣS

−1
)
22

e
1
+ o

p
(

1

nh3 )

=
1

nh3

ν
2
σ

2
(t

0
)

µ2

2
f

T
(t

0
)
R

2
(q) + o

p
(

1

nh3 ), (3.38)

which completes the proof.
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Proof of Theorem 3.4. From Zou and Yuan (2008), we know that

lim
q→∞

( q∑

k=1

f(c
k
)
)

2

q∑

k=1

q∑

k′=1

τ
kk′

= 12E
2

F
[f(ε)] = 12

(∫
f

2
(x)dx

)
2

.

Thus

lim
q→∞

1

R
2
(q)

= 12

(∫
f

2
(x)dx

)
2

.

We notice that 12
(∫

f
2
(x)dx

)
2

is also the asymptotic Pitman efficiency of the

Wilcoxon test relative to the t-test (Hodges and Lehmann 1956). For the rest of

the proof, readers are referred to Hodges and Lehmann (1956).

3.6 Infinite variance case

Suppose that

Y = m(T ) + ε,

where ε has a density f with mean 0 and variance infinity.

Suppose that t
0

is an interior point of the support of f
T
(·). Note that the

local p-polynomial CQR estimator is constructed by minimizing

q∑

k=1

[
n∑

i=1

ρ
τk

{
y

i
− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j
}

K(
t
i
− t

0

h
)

]
, (3.39)

and the local p-polynomial CQR estimators of m(t
0
) and m

(r)
(t

0
) are given by

m̂(t
0
) =

1

q

q∑

k=1

â
k
, and m̂

(r)
(t

0
) = r!b̂

r
, r = 1, · · · , p. (3.40)
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Let u
k

=
√

nh{a
k
− m(t

0
) − c

k
}, v

j
= h

j√
nh{j!b

j
− m

(j)
(t

0
)}/j!. Let

x
i

= (t
i
− t

0
)/h, K

i
= K(x

i
) and ∆

i,k
=

u
k√
nh

+

p∑
j=1

v
j
x

j

i√
nh

. Write r
i,p

= m(t
i
) −

∑p

j=0
m

(j)
(t

0
)(t

i
− t

0
)
j
/j!. Define η

∗
i,k

to be I(ε
i
≤ c

k
− r

i,p
) − τ

k
. let W

∗
n

=

(w
∗
11

, · · · , w
∗
1q

, w
∗
21

, · · · , w
∗
2p

)
T

with w
∗
1k

= 1√
nh

∑n

i=1
K

i
η
∗
i,k

and w
∗
2j

= 1√
nh

∑q

k=1∑n

i=1
K

i
x

j

i
η
∗
i,k

. The asymptotic properties of the local p-polynomial CQR estima-

tor are based on the following theorem.

Theorem 3.8. Let θ̂
n

= (û
1
, · · · , û

q
, v̂

1
, · · · , v̂

p
) be the minimizer of ( 3.39). As-

sume that f
T
(t

0
) > 0, f

T
(·) and m

(p+2)
(·) are continuous in a neighborhood of t

0

and f(·) is positive in the neighborhoods of {τ
k
}. Then we have

θ̂
n

+
1

f
T
(t

0
)
S
−1

E(W
∗
n
|T)

L−→ MV N

(
0,

1

f
T
(t

0
)
S
−1

ΣS
−1

)
.

Proof. To apply the identity

ρ
τ
(x− y)− ρ

τ
(x) = y(I(x ≤ 0)− τ) +

∫
y

0

[I(x ≤ z)− I(x ≤ 0)]dz, (3.41)

we write

y
i
− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j
= ε

i
+ m(t

i
)− a

k
−

p∑
j=1

b
j
(t

i
− t

0
)
j

= (ε
i
− c

k
) + r

i,p
− u

k√
nh

−
p∑

j=1

v
j
x

j

i√
nh

= (ε
i
− c

k
) + r

i,p
−∆

i,k
,

Minimizing ( 3.39) is equivalent to minimizing

L
n
(θ) =

n∑
i=1

{
K

i

q∑

k=1

[
ρ

τk

(
(ε

i
− c

k
) + r

i,p
−∆

i,k

)− ρ
τk

(
(ε

i
− c

k
) + r

i,p

)]
}

.



73

Using the identity ( 3.41) and with some straightforward calculations, it follows

that

L
n
(θ) =

n∑
i=1

{
K

i

q∑

k=1

∆
i,k

[
I(ε

i
≤ c

k
− r

i,p
)− τ

k

]}

+
n∑

i=1

{
K

i

q∑

k=1

∫
∆i,k

0

[
I(ε

i
≤ c

k
− r

i,p
+ z)− I(ε

i
≤ c

k
− r

i,p
)
]
dz

}

=

q∑

k=1

u
k

(
n∑

i=1

K
i
η
∗
i,k√

nh

)
+

p∑
j=1

v
j




q∑

k=1

n∑
i=1

K
i
x

j

i
η
∗
i,k√

nh


 +

q∑

k=1

B
n,k

(θ),

where

B
n,k

(θ) =
n∑

i=1

{
K

i

∫
∆i,k

0

[
I(ε

i
≤ c

k
− r

i,p
+ z)− I(ε

i
≤ c

k
− r

i,p
)
]
dz

}
.

Let S
n,11

be a q×q diagonal matrix with diagonal elements f(c
k
)
∑n

i=1
K

i
/nh,

k = 1, · · · , q; S
n,12

be a q × p matrix with (k, j)-element f(c
k
)
∑n

i=1
K

i
x

j

i
/nh, j =

1, · · · , p; S
n,22

be a p× p matrix with (j, j
′
) element

∑q

k=1
f(c

k
)
∑n

i=1
K

i
x

j+j
′

i
/nh.

Denote

S
n

=


S

n,11
S

n,12

S
T

n,12
S

n,22


 .

We write L
n
(θ) as

L
n
(θ) =

q∑

k=1

u
k

(
n∑

i=1

K
i
η
∗
i,k√

nh

)
+

p∑
j=1

v
j




q∑

k=1

n∑
i=1

K
i
x

j

i
η
∗
i,k√

nh




+

q∑

k=1

E
ε
[B

n,k
(θ)|T] +

q∑

k=1

R
n,k

(θ),

where R
n,k

(θ) = B
n,k

(θ)− E
ε
[B

n,k
(θ)|T].
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By similar arguments, we can show that
∑q

k=1
E

ε
[B

n,k
(θ)|T] = 1

2
θ

T
S

n
θ +

o
p
(1) and R

n,k
(θ) = o

p
(1). Together with

∑n

i=1
K

i
x

j

i
/nh

P−→ f
T
(t

0
)µ

j
and

S
n

P−→ f
T
(t

0
)S = f

T
(t

0
)


S

11
S

12

S
21

S
22


 ,

we have

L
n
(θ) =

f
T
(t

0
)

2
θ

T
Sθ + (W

∗
n
)
T
θ + o

p
(1).

Since the convex function L
n
(θ)− (W

∗
n
)
T
θ converges in probability to the convex

function
f

T
(t

0
)

2
θ

T
Sθ, it follows from the convexity lemma that for any compact set

Θ, the quadratic approximation to L
n
(θ) holds uniformly for θ in Θ, which leads

to

θ̂
n

= − 1

f
T
(t

0
)
S
−1

W
∗
n

+ o
p
(1).

Denote η
i,k

= I(ε
i
≤ c

k
) − τ

k
and W

n
= (w

11
, · · · , w

1q
, w

21
, · · · , w

2p
)
T

with w
1k

=

1√
nh

n∑
i=1

K
i
η

i,k
and w

2j
=

1√
nh

q∑

k=1

n∑
i=1

K
i
x

j

i
η

i,k
. By the Cramér-Wald theorem, it

is easy to see that the CLT for W
n
|T holds:

W
n
|T− E[W

n
|T]√

V ar[W
n
|T]

L−→ MV N(0, I
(p+q)×(p+q)

). (3.42)

Note that

Cov(η
i,k

, η
i,k′) = τ

kk′ , Cov(η
i,k

, η
j,k′) = 0, if i 6= j.

and
∑n

i=1
K

2

i
x

j

i
/nh

P−→ f
T
(t

0
)ν

j
, Therefore, V ar[W

n
|T]

P−→ f
T
(t

0
)Σ. Combined

with (3.42), we have

W
n
|T L−→ MV N(0, f

T
(t

0
)Σ).
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Moreover, we have V ar(w
∗
1k
−w

1k
|T) = 1

nh

∑n

i=1
K

2

i
V ar(η

∗
i,k
−η

i,k
) ≤ 1

nh

∑n

i=1
K

2

i
{F (c

k
+

|r
i,p
|)−F (c

k
)} = o

p
(1) and also V ar(w

∗
2j
−w

2j
|T) = 1

nh

∑n

i=1
K

2

i
x

j

i
V ar(

∑q

k=1
η
∗
i,k
−

η
i,k

) ≤ q
2

nh

∑n

i=1
K

2

i
x

j

i
max

k
{F (c

k
+ |r

i,p
|)− F (c

k
)} = o

p
(1), thus

V ar(W
∗
n
−W

n
|T) = o

p
(1).

So by Slutsky’s theorem, conditioning on T, we have

W
∗
n
|T− E(W

∗
n
|T)

L−→ MV N(0, f
T
(t

0
)Σ).

Therefore,

θ̂
n

+
1

f
T
(t

0
)
S
−1

E(W
∗
n
|T)

L−→ MV N(0,
1

f
T
(t

0
)
S
−1

ΣS
−1

). (3.43)

This completes the proof.

The asymptotic properties of the local CQR estimators m̂(t) and m̂
′
(t) are

two special cases of the general result.

Theorem 3.9. Under the regularity conditions in Theorem 3.8, if the error ε

follows a symmetric distribution and h → 0, nh → ∞ as n → ∞, the asymptotic

conditional bias and variance of the local linear CQR estimator m̂(t
0
) are given by

Bias(m̂(t
0
)|T) =

1

2
m
′′
(t

0
)µ

2
h

2
+ o

p
(h

2
), (3.44)

V ar(m̂(t
0
)|T) =

1

nh

ν
0

f
T
(t

0
)
R

1
(q) + o

p

(
1

nh

)
. (3.45)

Furthermore, conditioning on T, we have

√
nh

{
m̂(t

0
)−m(t

0
)− 1

2
m
′′
(t

0
)µ

2
h

2
}

L−→ N

(
0,

ν
0

f
T
(t

0
)
R

1
(q)

)
. (3.46)
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Remark. The symmetric error condition is only used to eliminate the non-vanishing

bias term 1
q

∑q

k=1
c
k
. If this condition is removed, the asymptotic bias would be

Bias(m̂(t
0
)|T) =

1

q

q∑

k=1

c
k
+

1

2
m
′′
(t

0
)µ

2
h

2
+ o

p
(h

2
), (3.47)

Proof of Theorem 3.9. The asymptotic normality follows Theorem 3.8 with p =

1. Let us calculate the conditional bias and variance, respectively. Denote by

e
q×1

the vector that contains q 1’s. When p = 1, S is a diagonal matrix with

diagonal elements f(c
1
), · · · , f(c

q
), µ

2

∑q

k=1
f(c

k
). So the asymptotic conditional

bias of m̂(t
0
) = 1

q

∑q

k=1
â

k
is

Bias(m̂(t
0
)|T) =

1

q

q∑

k=1

c
k
− 1

q ·
√

nh

1

f
T
(t

0
)
e

T

q×1
(S

−1
)
11

E(W
∗
1n
|T)

=
1

q

q∑

k=1

c
k
− 1

q · nh

1

f
T
(t

0
)

n∑
i=1

K
i

q∑

k=1

1

f(c
k
)
{F (c

k
− r

i,p
)− F (c

k
)}

=
1

nh

1

f
T
(t

0
)

n∑
i=1

K
i
r
i,p
{1 + o

p
(1)}.

By using the fact that

1

nh

n∑
i=1

K
i
r
i,p

=
f

T
(t

0
)m

′′
(t

0
)

2
µ

2
h

2{1 + o
p
(1)},

we obtain

Bias(m̂(t
0
)|T) =

1

2
m
′′
(t

0
)µ

2
h

2
+ o

p
(h

2
). (3.48)

Furthermore, the conditional variance of m̂(t
0
) is

V ar(m̂(t
0
)|T) =

1

nh

1

f
T
(t

0
)

1

q2 e
T

q×1
(S

−1
ΣS

−1
)
11

e
q×1

+ o
p
(

1

nh
)

=
1

nh

ν
0

f
T
(t

0
)
R

1
(q) + o

p
(

1

nh
), (3.49)
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which completes the proof.

Theorem 3.10. Under the regularity conditions in Theorem 3.8, if h → 0, nh
3 →

∞ as n → ∞, the asymptotic conditional bias and variance of m̂
′
(t

0
) from local

quadratic CQR are given by

Bias(m̂
′
(t

0
)|T) =

1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
+ o

p
(h

2
), (3.50)

V ar(m̂
′
(t

0
)|T) =

1

nh3

ν
2

µ2

2
f

T
(t

0
)
R

2
(q) + o

p
(

1

nh3 ). (3.51)

Furthermore, conditioning on T, we have the following asymptotic normal distri-

bution

√
nh3

(
m̂
′
(t

0
)−m

′
(t

0
)− 1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
)

L−→ N

(
0,

ν
2

µ2

2
f

T
(t

0
)
R

2
(q)

)
. (3.52)

Proof of Theorem 3.10. We apply Theorem 3.8 to get the asymptotic normality.

Denote by e
r

the p-vector (0, 0, · · · , 1, 0, · · · , 0)
T

with 1 on the r
th

position. When

p = 2, S
12

and S
22

have the following forms

S
12

=

(
0

q×1
µ

2

(
f(c

k
)
)

q×1

)
, S

22
=


µ

2

∑q

k=1
f(c

k
) 0

0 µ
4

∑q

k=1
f(c

k
)


 .

Thus,

(S
−1

)
22

= (S
22
− S

21
S
−1

11
S

12
)
−1

=




1

µ
2

∑
q

k=1
f(c

k
)

0

0
1

(µ
4
− µ2

2
)
∑

q

k=1
f(c

k
)


 ,

(S
−1

)
21

= −(S
−1

)
22

S
21

S
−1

11
=




0
1×q( µ
2

(µ
4
− µ2

2
)
∑

q

k=1
f(c

k
)

)
1×q


 ,
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since S
11

= diag
(
f(c

1
), · · · , f(c

q
)
)
. By Theorem 3.8

Bias(m̂
′
(t

0
)|T) = − 1

hf
T
(t

0
)

1√
nh

e
T

1

{
(S

−1
)
21

E(W
∗
1n
|T) + (S

−1
)
22

E(W
∗
2n
|T)

}

= − 1

hf
T
(t

0
)

1

µ
2

∑
q

k=1
f(c

k
)

1√
nh

E(w
∗
21
|T).

Note that

E(w
∗
2j
|T) =

1√
nh

n∑
i=1

K
i
x

j

i

q∑

k=1

{F (c
k
− r

i,p
)− F (c

k
)}

Therefore, Bias(m̂
′
(t

0
)|T) is equal to 1

nh2
1

fT (t0)

∑n

i=1
K

i
x

i
r
i,p
{1+o

p
(1)}. Still using

the fact that with p = 2

1

nh

n∑
i=1

K
i
x

i
r
i,p

=
f

T
(t

0
)m

′′′
(t

0
)

6

µ
4

µ
2

h
3{1 + o

p
(1)},

we obtain

Bias(m̂
′
(t

0
)|T) =

1

6
m
′′′
(t

0
)
µ

4

µ
2

h
2
+ o

p
(h

2
). (3.53)

Furthermore, the conditional variance of m̂(t
0
) is

V ar(m̂
′
(t

0
)|T) =

1

nh3

1

f
T
(t

0
)
e

T

1
(S

−1
ΣS

−1
)
22

e
1
+ o

p
(

1

nh3 )

=
1

nh3

ν
2

µ2

2
f

T
(t

0
)
R

2
(q) + o

p
(

1

nh3 ), (3.54)

which completes the proof.

Now let us use a simulation example to demonstrate the performance of the

local CQR estimate when the error follows a Cauchy distribution.

Example 3.6.1 (Infinite error variance). We generated 400 data sets, each con-

sisting of n = 200 observations, from

Y = sin(2T ) + 2 exp(−16T
2
) + 0.5ε, (3.55)
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where T follows N(0, 1). In our simulation, the error ε follows the Cauchy distribu-

tion. Thus, the error variance is infinite. For the local polynomial CQR estimator,

we consider q = 5, 9 and 19, and estimate m(·) and m
′
(·) over [−1.5, 1.5]. The

mean and standard deviation of RASE over 400 simulations are summarized in Ta-

ble 3.5. To see how the proposed estimate behaves at a typical point, Table 3.5

also depicts the biases and standard deviations of m̂(t) and m̂
′
(t) at t = 0.75. In

Table 3.5, CQR
5
, CQR

9
and CQR

19
correspond to the local CQR estimate with

q = 5, 9 and 19, respectively. From Table 3.5, we can see that the RASE of the

local CQR estimate is much less than that of local LS estimate. This is because the

local LS estimator is not a consistent estimator for the regression function, while

the local CQR estimator is. This is also evidenced from the standard deviation of

the local estimator at t = 0.75.

Table 3.5. Simulation results for example 3.6.1

m̂ m̂
′

RASE t = 0.75 RASE t = 0.75

Mean(SD) Bias Std Mean(SD) Bias Std

Cauchy
LS — -0.0881 7.8740 — 5.1324 87.7494
CQR

5
10228

(125981)
-0.0241 0.2965 14386

(160902)
0.0716 1.5997

CQR
9

4798
(51545)

-0.0713 0.9690 14243
(158913)

0.0686 1.6133

CQR
19

1120
(12889)

-0.0929 1.2995 14224
(159441)

0.0727 1.6064
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3.7 Boundary behavior of local CQR estimators

Back to the general nonparametric regression model

Y = m(T ) + σ(T )ε, (3.56)

now we study the behavior of the estimator at the boundary of the support of T .

Without loss of generality, assume f
T
(·) has support on [0, 1]. We consider the left

boundary point t = ch, where c is a positive constant. let

µ
j
(c) =

∫ ∞

−c

u
j
K(u)du and ν

j
(c) =

∫ ∞

−c

u
j
K

2
(u)du, j = 0, 1, 2, . . .

Note that the local p-polynomial CQR estimator at the boundary point t is

constructed by minimizing

q∑

k=1

[
n∑

i=1

ρ
τk

{
y

i
− a

k
−

p∑
j=1

b
j
(t

i
− t)

j
}

K

(
t
i
− t

h

)]
, (3.57)

and the local p-polynomial CQR estimators of m(t) and m
(r)

(t) are given by

m̂(t) =
1

q

q∑

k=1

â
k
, and m̂

(r)
(t) = r!b̂

r
, r = 1, · · · , p. (3.58)

We first establish asymptotic theory of the local p-polynomial CQR estima-

tors at t = ch, and then discuss the special case of p = 1 and 2.

For the asymptotic analysis, we need the following regularity conditions:

(A) The regression function m(t) has a right continuous (p + 1)
th

derivative at

the point 0.

(B) The marginal density function f
T
(·) is right continuous and positive at the

point 0.
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(C) The conditional variance σ
2
(·) is right continuous at the point 0.

(D) The error has a symmetric distribution with positive density f(·).

We also need some new notations. Let S
11

(c) be a q × q diagonal matrix

with diagonal elements f(c
k
), k = 1, · · · , q; S

12
(c) be a q × p matrix with (k, j)-

element f(c
k
)µ

j
(c), k = 1, · · · , q and j = 1, · · · , p; S

21
(c) = S

T

12
(c); and S

22
(c)

be a p × p matrix with (j, j
′
)-element

∑q

k=1
f(c

k
)µ

j+j ′(c), for j, j
′

= 1, · · · , p.

Similarly, let Σ
11

(c) be a q×q matrix with (k, k
′
)-element ν

0
(c)τ

kk′ , k, k
′
= 1, · · · , q;

Σ
12

(c) be a q × p matrix with (k, j)-element ν
j
(c)

∑q

k′=1
τ
kk′ , k = 1, · · · , q and

j = 1, · · · , p; Σ
21

(c) = Σ
T

12
(c); and Σ

22
(c) be a p × p matrix with (j, j

′
)-element

(
∑q

k,k′=1
τ
kk′)νj+j ′(c), for j, j

′
= 1, · · · , p. Define

S(c) =


S

11
(c) S

12
(c)

S
21

(c) S
22

(c)


 , and Σ(c) =


Σ

11
(c) Σ

12
(c)

Σ
21

(c) Σ
22

(c)


 .

Partition S
−1

(c) into four submatrices as follows

S
−1

(c) =


S

11
(c) S

12
(c)

S
21

(c) S
22

(c)



−1

=


(S

−1
(c))

11
(S

−1
(c))

12

(S
−1

(c))
21

(S
−1

(c))
22


 ,

where we use (·)
11

to denote the left-top q × q submatrix and use (·)
22

to denote

the right-bottom p× p submatrix.

Furthermore, let u
k

=
√

nh{a
k
− m(t) − σ(t)c

k
} and v

j
= h

j√
nh{j!b

j
−

m
(j)

(t)}/j!. Let x
i
= (t

i
− t)/h, K

i
= K(x

i
) and ∆

i,k
=

u
k√
nh

+

p∑
j=1

v
j
x

j

i√
nh

. Write

d
i,k

= c
k
[σ(t

i
) − σ(t)] + r

i,p
with r

i,p
= m(t

i
) − ∑p

j=0
m

(j)
(t)(t

i
− t)

j
/j!. Define

η
∗
i,k

to be I(ε
i
≤ c

k
− di,k

σ(ti)
) − τ

k
. let W

∗
n

= (w
∗
11

, · · · , w
∗
1q

, w
∗
21

, · · · , w
∗
2p

)
T

with

w
∗
1k

= 1√
nh

∑n

i=1
K

i
η
∗
i,k

and w
∗
2j

= 1√
nh

∑q

k=1

∑n

i=1
K

i
x

j

i
η
∗
i,k

.
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Theorem 3.11. Denote θ̂
n

= (û
1
, · · · , û

q
, v̂

1
, · · · , v̂

p
) be the minimizer of (3.57).

Under the regularity conditions (A)—(C) listed in this section, we have

θ̂
n

+
σ(0+)

f
T
(0+)

S
−1

(c)E(W
∗
n
|T)

L−→ MV N

(
0,

σ
2
(0+)

f
T
(0+)

S
−1

(c)Σ(c)S
−1

(c)

)
.

The proof is quite similar to the one for interior points, so we omit it here.

Now let’s look at the asymptotic behavior of local CQR estimators m̂(t) and m̂
′
(t)

at the boundary.

Theorem 3.12. Under the regularity conditions (A)—(D), if h → 0, nh → ∞
as n → ∞, the asymptotic conditional bias and variance of the local linear CQR

estimator m̂(t) are given by

Bias(m̂(t)|T) =
1

2
a(c)m

′′
(0+)h

2
+ o

p
(h

2
), (3.59)

V ar(m̂(t)|T) =
1

nh

b(c)σ
2
(0+)

f
T
(0+)

R
1
(q) + o

p

(
1

nh

)
. (3.60)

where a(c) =
µ

2

2
(c)− µ

1
(c)µ

3
(c)

µ
0
(c)µ

2
(c)− µ2

1
(c)

and b(c) =
µ

2

2
(c)ν

0
(c)− 2µ

1
(c)µ

2
(c)ν

1
(c) + µ

2

1
(c)ν

2
(c)

{µ
0
(c)µ

2
(c)− µ2

1
(c)}2 .

Furthermore, conditioning on T, we have

√
nh

{
m̂(t)−m(t)− 1

2
a(c)m

′′
(0+)h

2
}

L−→ N

(
0,

b(c)σ
2
(0+)

f
T
(0+)

R
1
(q)

)
. (3.61)

Proof of Theorem 3.12. The asymptotic normality follows Theorem 3.11 with p =

1. Let us calculate the conditional bias and variance, respectively. Denote by e
q×1

the vector that contains q 1’s. The asymptotic conditional bias of m̂(t) = 1
q

∑q

k=1
â

k
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is

Bias(m̂(t)|T) =
1

q
σ(t)

q∑

k=1

c
k
− 1

q ·
√

nh

σ(0+)

f
T
(0+)

(e
T

q×1
0)S

−1
(c)E(W

∗
n
|T)

Note that the error is symmetric, thus
∑q

k=1
c
k

= 0, and similarly we can show

that

E(w
∗
1k
|T) = f(c

k
)
f

T
(0+)m

′′
(0+)

2σ(0+)
µ

2
(c)h

2{1 + o
p
(1)} k = 1, · · · , q,

and

E(w
∗
21
|T) = {

q∑

k=1

f(c
k
)}f

T
(0+)m

′′
(0+)

2σ(0+)
µ

3
(c)h

2{1 + o
p
(1)}.

Therefore,

Bias(m̂(t)|T) = − 1

q ·
√

nh

σ(0+)

f
T
(0+)

(e
T

q×1
0)S

−1
(c)E(W

∗
n
|T)

=
1

2

µ
2

2
(c)− µ

1
(c)µ

3
(c)

µ
0
(c)µ

2
(c)− µ2

1
(c)

m
′′
(0+)h

2
+ o

p
(h

2
)

=
1

2
a(c)m

′′
(0+)h

2
+ o

p
(h

2
).

Furthermore, the conditional variance of m̂(t
0
) is

V ar(m̂(t)|T) =
1

nh

σ
2
(0+)

f
T
(0+)

1

q2 e
T

q×1
(S

−1
(c)Σ(c)S

−1
(c))

11
e

q×1
+ o

p

(
1

nh

)

=
1

nh

σ
2
(0+)

f
T
(0+)

µ
2

2
(c)ν

0
(c)− 2µ

1
(c)µ

2
(c)ν

1
(c) + µ

2

1
(c)ν

2
(c)

{µ
0
(c)µ

2
(c)− µ2

1
(c)}2 R

1
(q) + o

p

(
1

nh

)

=
1

nh

b(c)σ
2
(0+)

f
T
(0+)

R
1
(q) + o

p

(
1

nh

)
, (3.62)

which completes the proof.
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From Theorem 3.12, it can be seen that the leading team of the asymptotic

bias of the local linear CQR estimator is the same as that of the local linear

LS estimator. This relationship is the same as that when x is an interior point.

Furthermore, the relationship between the asymptotic variances of the local CQR

and that of LS estimators at boundary is also the same as that for interior points,

i.e., they are different by the factor R
1
(q). Thus, Theorem 3.12 clearly indicates

that the local CQR estimator shares the property of the automatic boundary

correction, a nice property of local linear least squares estimator.

Theorem 3.13. Under the regularity conditions (A)—(D), if h → 0, nh
3 →∞ as

n → ∞, the asymptotic conditional bias and variance of the local quadratic CQR

estimator m̂
′
(t) are given by

Bias(m̂
′
(t)|T) =

1

2
a
∗
(c)m

′′
(0+)h

2
+ o

p
(h

2
), (3.63)

V ar(m̂
′
(t)|T) =

1

nh3

b
∗
(c)σ

2
(0+)

f
T
(0+)

R
2
(q) + o

p

(
1

nh3

)
, (3.64)

where a
∗
(c) and b

∗
(c) are constants that depend only on c and the kernel K.

Furthermore, conditioning on T, we have

√
nh3

{
m̂
′
(t)−m(t)− 1

6
a
∗
(c)m

′′′
(0+)h

2
}

L−→ N

(
0,

b
∗
(c)σ

2
(0+)

f
T
(0+)

R
2
(q)

)
.

(3.65)

Proof of Theorem 3.13. We apply Theorem 3.11 to get the asymptotic normality.

Denote by e
r

the p-vector (0, 0, · · · , 1, 0, · · · , 0)
T

with 1 in the r
th

position. When

p = 2, we have

E(w
∗
1k
|T) = f(c

k
)
f

T
(0+)m

′′′
(0+)

6σ(0+)
µ

2
(c)h

3{1 + o
p
(1)} k = 1, · · · , q,
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and

E(w
∗
2j
|T) = {∑q

k=1
f(c

k
)}fT (0+)m

′′′
(0+)

6σ(0+)
µ

2+j
(c)h

3{1 + o
p
(1)} j = 1, 2.

Therefore,

Bias(m̂
′
(t)|T) = − σ(0+)

hf
T
(0+)

1√
nh

e
T

1

{
(S

−1
(c))

21
E(W

∗
1n
|T) + (S

−1
(c))

22
E(W

∗
2n
|T)

}

=
1

6
a
∗
(c)m

′′′
(0+)h

2
+ o

p
(h

2
).

Furthermore, the conditional variance of m̂
′
(t) is

V ar(m̂
′
(t)|T) =

1

nh3

σ
2
(0+)

f
T
(0+)

e
T

1
(S

−1
(c)Σ(c)S

−1
(c))

22
e
1
+ o

p

(
1

nh3

)

=
1

nh3

b
∗
(c)σ

2
(0+)

f
T
(0+)

R
2
(q) + o

p

(
1

nh3

)
. (3.66)

This completes the proof.

From Theorem 3.13, it can be seen that the asymptotic bias of the local

CQR estimator at the boundary is of order h
2
, and its asymptotic variance is of

order 1/nh
3
. Thus, the orders of the asymptotic bias and variance are the same

as those of local quadratic regression. Thus, the local quadratic CQR estimator

possesses the property of automatic boundary correction.

Now let us use a simulation example to compare the boundary behavior of

the local CQR estimator and the local least squares estimator.

Example 3.7.1 (Boundary behavior). We generated 400 data sets, each consisting

of n = 200 observations, from

Y = sin(2T ) + 2 exp(−16T
2
) + 0.5ε, (3.67)
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where T follows N(0, 1). In our simulation, the error ε follows 0.95N(0, 1) +

0.05N(0, 10
2
). Figure 3.4 depicts the 400 estimated coefficient functions of CQR

9

for all 400 simulations. Results for CQR
5

and CQR
19

are similar, so we opt not to

present them here. Figure 3.5 depicts the plots of the estimate of the regression

function and its derivative based on a typical data set. From Figures 3.4 and 3.5,

it can be clearly seen that the local CQR estimator improves over the local least

squares estimator for both interior and boundary points.
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x

y

(a) m(x) with 400 m̂LS(x)
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(b) m(x) with 400 m̂CQR9(x)
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′

LS(x)
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−50
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(d) m
′(x) with 400 m̂

′

CQR9
(x)

Fig. 3.4. (a) and (c) are plots of 400 local least squares estimators of m(·) and
m
′
(·) over 400 simulation, respectively. (b) and (d) are plots of 400 local CQR

estimators of m(·) and m
′
(·), respectively.

3.8 Discussion

In this Chapter, we have proposed the local linear and quadratic CQR

estimators for estimating the nonparametric regression function and its derivative,
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Fig. 3.5. (a) and (c) are plots of a typical local least squares estimators of m(·)
and m

′
(·), respectively. (b) and (d) are plots of a typical local CQR estimators of

m(·) and m
′
(·), respectively.
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respectively. We have shown that, compared with the classical local least squares

estimators, the new methods enjoy advantages in terms of estimation efficiency

measured by MSE or MISE. The theoretical analysis of the two AREs in Theorem

3.2 and Theorem 3.4 provides useful insights into the behavior of the local CQR

estimators. Theorem 3.2 indicates that, if using a large number of quantiles, the

local linear CQR estimator neither loses nor gains estimation efficiency, compared

with the local linear least squares estimator. On the other hand, an interesting

phenomenon emerges when a relatively smaller q is used, for the ARE(m̂, m̂LS)

could be much greater than 1 for some non-normal distributions and is almost 1

when the error follows a normal distribution. Theorem 3.4 tells us that, if using

a large number of quantiles, ARE(m̂
′
, m̂

′
LS

) can be much greater than 1 for many

non-normal error distributions and is 0.97 when the error follows the standard

normal distribution. Further study has shown that the value of ARE(m̂
′
, m̂

′
LS

) for

a small q is very close to the theoretical limit. All these results suggest that the

local CQR could be a much more efficient alternative to the local least squares

regression for estimating both the regression function and its derivative. The

theory and numerical results suggest that q = 9 can be a good default choice for

constructing local CQR smoothers.

Although we have assumed the error has mean zero and variance one for

convenience in this work, the validity of the local CQR estimator does not require

that the error distribution has a finite variance, unlike the local least squares

estimator. This property can be important for real applications, since we have no

information on the error distribution in practice. Suppose the error distribution is

Cauchy, then the local least squares estimator fails to be consistent, but the local

CQR estimator still has consistency and asymptotic normality.

Finally, we would like to point out that the local CQR procedure is efficiently

implemented using the MM algorithm. Our experiences show that for q = 9 and

sample size n = 7000, the local CQR fit at a given location can be computed within
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0.32 seconds on an AMD 1.9GHz machine. The MM implementation seems to be

more efficient than the standard linear programming algorithm.



Chapter 4

New Robust Statistical Procedures

for Semiparametric Regression Models

4.1 Introduction

Semiparametric regression modeling has become popular in the recent liter-

ature. The partially linear model, the most commonly-used semiparametric regres-

sion model, keeps the flexibility of nonparametric models for the baseline function,

while maintaining the explanatory power of parametric models. Thus, it has re-

ceived a lot of attention in the literature. See Härdle, Liang, and Gao (2000),

Yatchew (2003) and references therein for theory and application of partially lin-

ear models. Various extensions of the partially linear model have been proposed in

the literature. See Ruppert, Wand, and Carroll (2003) for applications and theory

developments of semiparametric regression models. As an important extension of

the partially linear model, the semiparametric varying-coefficient partially linear

model is becoming popular in the recent literature.

Let Y be a response variable, and {U,X,Z} be its covariates. The semi-

parametric varying-coefficient partially linear model is defined to be

Y = α
0
(U) + X

T
α(U) + Z

T
β + ε, (4.1)

where α
0
(U) is a baseline function, α(U) = {α

1
(U), · · · , α

d1
(U)}T

consists of d
1

unknown varying coefficient functions, β = (β
1
, · · · , β

d2
)
T

is a d
2
-dimensional co-

efficient vector, and ε is random error. In this chapter, we will focus on univariate

U only, although the proposed procedure is directly applicable for multivariate U.

Zhang, Lee, and Song (2002) proposed an estimation procedure for model (4.1)
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based on local polynomial regression techniques. Xia, Zhang, and Tong (2004) pro-

posed a semi-local estimation procedure to further reduce the bias of the estimator

for β suggested in Zhang, Lee, and Song (2002). Fan and Huang (2005) proposed

a profile least squares estimator for model (4.1), and demonstrated that their es-

timator is semiparametrically efficient. Fan and Huang (2005) further developed

statistical inference procedures for model (4.1). Li and Liang (2008) proposed

model selection procedures for model (4.1) under the framework of generalized

linear models. As an extension of Fan and Huang (2005), a profile likelihood es-

timation procedure was developed in Lam and Fan (2008) under the generalized

linear model framework with diverging number of covariates.

Existing estimation procedures for model (4.1) were built on either least

squares or likelihood based methods. Thus, the existing estimation procedures

are expected to be sensitive to outliers, and their efficiency may be significantly

improved for many commonly-used non-normal errors. There is little work on ro-

bust estimation and inference procedures for model (4.1), although some robust

estimation procedures have been developed for nonparametric regression models

and partially linear models in the literature. See, for example, Koenker, Ng, and

Portnoy (1994), Fan, Hu, and Truong (1994), He and Shi (1996), Yu and Jones

(1998), He, Zhu, and Fung (2002), Lee (2003), among others. It is desirable to

develop new robust statistical inference procedures for model (4.1). In this chap-

ter, we propose a quantile regression procedure, a composite quantile regression

procedure and a variable selection procedure for model (4.1).

In many situations, quantiles may reveal a more comprehensive view of a

distribution than the mean. Quantile regression has appeared as an alternative to

least squares in the recent literature. For a complete review, see Koenker (2005)

and references therein. Quantile regression has been studied with various non-

parametric methods to overcome the limitations of a linear model. Lee (2003)
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proposed a
√

n-consistent average quantile regression estimator (AQR) for par-

tially linear regression models. However, the AQR estimator may not be good

when outliers exist because the sample mean is not robust. And the ideas of the

profile method proposed by Fan and Huang (2005) may not be easily applied here

because quantile regression yields non-linear estimates. We propose a new quantile

regression procedure for model (4.1). We investigate the sampling properties of

the proposed quantile regression estimator and show that the estimators for both

the parametric and nonparametric parts achieve the best convergence rate. We

also show the asymptotic normality for both estimators. The proposed estimators

are less sensitive to data outliers and the choice of bandwidth. The idea of the

proposed methodology is quite general and it is easy to implement with efficient

computation.

As a special case of quantile regression, least absolute deviation regression

provides an estimate of the regression function when the distribution of ε is sym-

metric. Least absolute deviation regression is robust in the presence of outliers, but

its estimation efficiency can be dramatically improved by considering other robust

loss functions. With the tools of quantile regression in hand, we further propose

composite quantile regression for estimation of α
0
(·),α(·) and β, the unknown

parameters in the regression function of model (4.1).

Composite quantile regression was first proposed for classical linear regres-

sion models by Zou and Yuan (2008). They show that the composite quantile re-

gression estimator for the regression coefficients in classical linear regression models

could be much more efficient and sometimes arbitrarily more efficient than the least

squares estimator. Furthermore, the asymptotic relative efficiency of the compos-

ite quantile regression estimator compared to the least squares estimator is greater

than 70% regardless the error distribution. In chapter 3, we propose the local

polynomial CQR estimator for estimating the nonparametric regression function

and its derivative. We establish the asymptotic theory of the local CQR estimator
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and show that, compared with the classical local least squares estimator, the new

method can significantly improve the estimation efficiency of the local least squares

estimator for commonly used non-normal error distributions. At the same time,

the loss in efficiency is at most 8.01% in the worst case scenario. By using the

same idea of the methodology for quantile regression, we propose the semi-CQR

estimators for estimation of means of both the nonparametric and parametric parts

in the semiparametric varying-coefficient partially linear model. We show that our

estimators achieve the best convergence rates. We also prove the asymptotic nor-

mality of the new CQR estimators. The new estimators can dramatically improve

the efficiency when errors depart from normal and they only lose a little efficiency

for normal errors. The new estimators also work well when the variance of the

errors is infinite.

In practice, there are many covariates available in the initial stage of model-

ing. To reduce model approximation error, it is typical to include many variables in

the models. On the other hand, it is always desirable to have a parsimonious model

to enhance model predictability and model interpretation by excluding insignificant

covariates. Variable selection for model (4.1) is challenging because it involves both

nonparametric and parametric parts. Traditional variable selection methods, such

as stepwise regression or best subset variable selection, may not work effectively

for the semiparametric model because they need to choose smoothing parameters

for each sub-model. One aim of this chapter is to develop an effective variable

selection procedure to select significant z-variables in model (4.1). We propose a

class of variable selection procedures for model (4.1), and demonstrate that the

proposed procedures possess the oracle property in the terminology of Fan and Li

(2001). Compared to the variable selection procedure based on least squares, our

new proposed method is much more robust and consistent for selecting the correct

variables. Finite sample simulation studies confirm our findings.
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This chapter is organized as follows. In Section 2, we propose a quantile

regression procedure for model (4.1), and study the asymptotic properties of the

proposed estimator. In Section 3, we propose a composite quantile regression esti-

mation for the unknown coefficient functions and parameters to improve the least

absolute deviation regression, and study the asymptotic efficiency of the proposed

procedures. In Section 4, we propose a class of variable selection procedures for

model (4.1) under both the quantile loss and the composite quantile loss. Simula-

tion studies are presented in Section 5. Regularity conditions and technical proofs

are given in Section 6.

4.2 Quantile regression

Define ρ
τ
(r) = τr − rI(r < 0) to be the check loss function at τ ∈ (0, 1).

Quantile regression was first introduced by Koenker and Bassett (1978) to estimate

the conditional quantile functions of Y , which are defined to be

Q
τ
(u,x, z) = argmin

a
E

[
ρ

τ
(Y − a)|(U,X,Z) = (u,x, z)

]
,

and the semiparametric varying-coefficient partially linear model assumes that

Q
τ
(u,x, z) = α

0,τ
(u) + x

T
α

τ
(u) + z

T
β

τ
.

Define

ε
τ

= Y −Q
τ
(u,x, z) = Y − α

0,τ
(U)−X

T
α

τ
(U)− Z

T
β

τ
.

Then ε
τ

is random error with conditional τ
th

quantile zero.

Suppose that {U
i
,X

i
,Z

i
, Y

i
}, i = 1, · · · , n is an independent and identically

distributed sample from the model

Y = α
0,τ

(U) + X
T
α

τ
(U) + Z

T
β

τ
+ ε

τ
, (4.2)
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Quantile regression estimates α
0,τ

(·), α
τ
(·) and β

τ
by minimizing the quantile loss

function
n∑

i=1

ρ
τ

{
Y

i
− α

0
(U

i
)−X

T

i
α(U

i
)− Z

T

i
β

}
. (4.3)

Because (4.3) involves nonparametric functions, we employ local linear regression

techniques to estimate α
0,τ

(·) and α
τ
(·). That is, for U in the neighborhood of u,

we locally approximate

α
j
(U) ≈ α

j
(u) + α

′
j
(u)(U − u) , a

j
+ b

j
(U − u)

for j = 0, · · · , d
1
. Let {ã

0,τ
, b̃

0,τ
, ã

τ
, b̃

τ
, β̃

τ
} be the minimizer of the local weighted

quantile loss function

n∑
i=1

ρ
τ

{
Y

i
− a

0
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}− Z
T

i
β

}
K

h
(U

i
− u),

where a = (a
1
, · · · , a

d1
)
T
, b = (b

1
, · · · , b

d1
)
T
, K(·) is a given kernel function, and

K
h
(·) = K(·/h)/h is the rescaling function of K with bandwidth h. Then

α̃
0,τ

(u) = ã
0,τ

, α̃
τ
(u) = ã

τ
.

Let F
τ
(·|u,x, z) and f

τ
(·|u,x, z) be the density function and cumulative

distribution function of the error conditional on (U,X,Z) = (u,x, z), respectively.

Denote by f
U
(·) the marginal density function of the covariate U . The kernel K(·)

is chosen as a symmetric density function and let

µ
j
=

∫
u

j
K(u)du and ν

j
=

∫
u

j
K

2
(u)du, j = 0, 1, 2, . . .

We then have the following result.
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Theorem 4.1. Under the regularity conditions (A1) – (A6) given in the Appendix,

if h → 0 and nh →∞ as n →∞, then

√
nh







α̃
0,τ

(u)− α
0,τ

(u)

α̃
τ
(u)−α

τ
(u)

β̃
τ
− β

τ


− µ

2
h

2

2




α
′′
0,τ

(u)

α
′′
τ
(u)

0







L−→ N

(
0,

ν
0
τ(1− τ)

f
U
(u)

A
−1

1
(u)B

1
(u)A

−1

1
(u)

)
(4.4)

where A
1
(u) = E

[
f

τ
(0|U,X,Z)(1,X

T
,Z

T
)
T
(1,X

T
,Z

T
)|U = u

]
and B

1
(u) =

E
[
(1,X

T
,Z

T
)
T
(1,X

T
,Z

T
)|U = u

]
.

Theorem 4.1 implies β̃
τ

are
√

nh-consistent estimators. This is because

we use data only in a local neighborhood of u to estimate β
τ
. Note that

√
nh

is a nonparametric convergent rate. To improve β̃
τ
, we propose the following

estimation procedure for β
τ
. Define

Y
∗
i,τ

= Y
i
− α̃

0,τ
(U

i
)−X

T

i
α̃

τ
(U

i
).

A
√

n-consistent quantile regression estimate β̂
τ

for β
τ

can be obtained by con-

ducting quantile regression Y
∗
i,τ

over Z
i
. That is,

β̂
τ

= argmin
β

n∑
i=1

ρ
τ
(Y

∗
i,τ
− Z

T

i
β). (4.5)

We now study the asymptotic properties of β̂
τ
. Denote

ξ
τ
(u,x, z) = E

[
f

τ
(0|U,X,Z)Z(1,X

T
,0)|U = u

]
A
−1

1
(u)(1,x

T
, z

T
)
T
.

Theorem 4.2. Under the regularity conditions (A1) – (A6) given in the Appendix,

if nh
4 → 0 and nh

2
/ log(1/h) → ∞ as n → ∞, then the asymptotic distribution
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of β̂
τ

is given by
√

n
(
β̂

τ
− β

τ

) L−→ N
(
0,S

−1

τ
Ξ

τ
S
−1

τ

)
, (4.6)

where S
τ

= E
[
f

τ
(0|U,X,Z)ZZ

T ]
and Ξ

τ
= τ(1 − τ)E

[{Z − ξ
τ
(U,X,Z)}{Z −

ξ
τ
(U,X,Z)}T ]

.

Theorem 4.1 suggests the optimal bandwidth h ∼ n
−1/5

. It is easy to

check that the optimal bandwidth does not satisfy the condition in Theorem 4.2.

Hence, in order to obtain the root-n consistency and asymptotic normality for β̂
τ
,

undersmoothing for α̃
0,τ

(u) and α̃
τ
(u) is necessary. This is a common requirement

in semiparametric models, see Carroll et al. (1997) for a detailed discussion.

Both α̃
0,τ

(u) and α̃
τ
(u) are

√
nh-consistent estimators, but their efficiencies

can be further improved. To this end, let {â
0,τ

, b̂
0,τ

, â
τ
, b̂

τ
} be the minimizer of

n∑
i=1

ρ
τ

{
Y

i
− Z

T

i
β̂

τ
− a

0
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}}
K

h
(U

i
− u). (4.7)

Thus, we have

α̂
0,τ

(u) = â
0,τ

, α̂
τ
(u) = â

τ
. (4.8)

The theorem below provides the result of asymptotic normality of the refined

estimators α̂
0,τ

(u) and α̂
τ
(u).

Theorem 4.3. Under the regularity conditions (A1) – (A6) given in the Appendix,

if h → 0 and nh →∞ as n →∞, then

√
nh





α̂

0,τ
(u)− α

0,τ
(u)

α̂
τ
(u)−α

τ
(u)


− µ

2
h

2

2


α

′′
0,τ

(u)

α
′′
τ
(u)







L−→ N

(
0,

ν
0
τ(1− τ)

f
U
(u)

A
−1

2
(u)B

2
(u)A

−1

2
(u)

)
, (4.9)

where A
2
(u) = E

[
f

τ
(0|U,X,Z)(1,X

T
)
T
(1,X

T
)|U = u

]
and B

2
(u) =

E
[
(1,X

T
)
T
(1,X

T
)|U = u

]
.
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Theorem 4.3 shows that α̂
0,τ

(u) and α̂
τ
(u) have the same conditional asymp-

totic biases as α̃
0,τ

(u) and α̃
τ
(u), while they have smaller conditional asymptotic

variances than α̃
0,τ

(u) and α̃
τ
(u), respectively. Hence, they are asymptotically

more efficient than α̃
0,τ

(u) and α̃
τ
(u).

Note that although one can continue as in traditional backfitting algorithms

until convergence, it is generally not necessary. Compared with fully iterated

backfitting algorithms, the proposed one-step backfitting method is much more

computationally efficient and easily implemented.

It is of interest to study the situations in which the random error ε is

independent of (U,X,Z). Let us assume that

Y = α
0
(U) + X

T
α(U) + Z

T
β + ε, (4.10)

where ε follows a distribution F with mean 0. In such situations,

Q
τ
(u,x, z) = α

0
(u) + c

τ
+ x

T
α(u) + z

T
β,

where c
τ

= F
−1

(τ). Thus, it follows from Theorem 4.3 that

√
nh





α̂

0,τ
(u)− α

0
(u)− c

τ

α̂
τ
(u)−α(u)


− µ

2
h

2

2


α

′′
0
(u)

α
′′
(u)





 L−→ N

(
0,

ν
0
τ(1− τ)

f
U
(u)f 2(c

τ
)
B
−1

2
(u)

)
.

(4.11)

And from Theorem 4.2, we have

√
n

(
β̂

τ
− β

) L−→ N

(
0,

τ(1− τ)

f 2(c
τ
)

S
−1

Ξ∗S
−1

)
, (4.12)

where S = E(ZZ
T
), Ξ∗ = E

[
(Z− ξ∗(U,X,Z))(Z− ξ∗(U,X,Z))

T ]
and

ξ∗(u,x) = E
[
Z(1,X

T
)|U = u

]
B
−1

2
(u)(1,x

T
)
T
.
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Notice that B
−1

2
(u)B

2
(u) = I

d1+1
. It can be easily shown that E

[
ξ∗(U,X,Z)Z

T ]
=

0. Denote X
∗

= (1,X
T
)
T
. Then, it can be shown that

Ξ∗ = E[E(ZZ
T |U){E(ZZ

T |U)−E(ZX
∗T |U)E(X

∗
X
∗T |U)

−1
E(X

∗
Z

T |U)}−1
E(ZZ

T |U)]

For the partially linear model, X
∗

= 1. Thus,

Ξ∗ = E[E(ZZ
T |U){cov(Z|U)}−1

E(ZZ
T |U)].

From the above analysis, when the random error is independent of covariates, then

α̂
τ
(u) and β̂

τ
are consistent estimates for α(u) and β, respectively, for different τs.

This motivates us to improve the efficiency of α̂(·) and β̂ by using the composite

quantile regression method.

4.3 Composite quantile regression

Median regression, as a special case of the quantile regression with τ = 1/2,

provides us an estimate for the mean function when the error distribution is sym-

metric about the origin. When the regression function is our primary interest, the

median regression may be significantly improved. Zou and Yuan (2008) proposed

composite quantile regression (CQR) to simultaneously improve the robustness of

the least squares estimate and estimation efficiency of median regression for the

regression coefficients in the linear regression models. Both theoretic and empirical

results in Zou and Yuan (2008) encourage us to consider CQR estimator for model

(4.1).

Suppose {U
i
,X

i
,Z

i
, Y

i
}, i = 1, · · · , n is an independent and identically

distributed sample from model

Y = α
0
(U) + X

T
α(U) + Z

T
β + ε, (4.13)
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where ε is the random error with mean zero. For a given q, let τ
k

= k/(q + 1) for

k = 1, 2, . . . , q. The CQR procedure estimates α
0
(·), α(·) and β

0
via minimizing

the CQR loss function:

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− α

0k
(U

i
)− x

T

i
α(U

i
)− z

T

i
β

}
, (4.14)

The estimation procedures proposed in the last section can be adapted for (4.14).

Let {ã
0
, b̃

0
, ã, b̃, β̃} be the minimizer of the following local CQR loss function

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− a

0k
− b

0
(U

i
− u)−X

T

i

[
a + b(U

i
− u)

]− Z
T

i
β

}
K

h
(U

i
− u),

(4.15)

where a
0

= (a
01

, · · · , a
0q

)
T
, a = (a

1
, · · · , a

d1
)
T
, b = (b

1
, · · · , b

d1
)
T
. Then initial

estimates of α
0
(u) and α(u) are given by

α̃
0
(u) =

1

q

q∑

k=1

ã
0k

, α̃(u) = ã.

To establish asymptotic behaviors of α̃
0
(u), α̃(u) and β̃, let us begin with

some new notations. Denote by F (·) and f(·) the density function and cumulative

distribution function of the error, respectively. Let c
k

= F
−1

(τ
k
), C be a q × q

diagonal matrix with the j-th diagonal element f(c
j
), c = C1 and c = 1

T
C1. We

write

D
1
(u) = E







C cX
T

cZ
T

Xc
T

cXX
T

cXZ
T

Zc
T

cZX
T

cZZ
T




∣∣∣∣∣∣∣∣∣
U = u


 .
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Let τ
kk′ = τ

k
∧ τ

k′ − τ
k
τ
k′ , and T be a q × q matrix with (k, k

′
)-element being τ

kk′ .

t = T1 and t = 1
T
T1.

Σ
1
(u) = E







T tX
T

tZ
T

Xt
T

tXX
T

tXZ
T

Zt
T

tZX
T

tZZ
T




∣∣∣∣∣∣∣∣∣
U = u


 .

The following theorem presents the sampling distribution of {ã
0
, b̃

0
, ã, b̃, β̃}.

Theorem 4.4. Under the regularity conditions (B1) – (B6) given in the Appendix,

if h → 0 and nh →∞ as n →∞, then

√
nh







ã
0
−α

0
(u)

ã−α(u)

β̃ − β
0


− µ

2
h

2

2




α
′′
0
(u)

α
′′
(u)

0







L−→ N

(
0,

ν
0

f
U
(u)

D
−1

1
(u)Σ

1
(u)D

−1

1
(u)

)
,

(4.16)

where α
0
(u) =

(
α

0
(u) + c

1
, · · · , α

0
(u) + c

q

)T
and β

0
is the true value of β.

As β was estimated locally in (4.15), the resulting estimate β̃ does not have
√

n-consistent rate. Thus, β̃ can be estimated at
√

n-consistent rate by using all

data. To this end, define

β̂ = argmin
β

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− ã

0k
(U

i
)−X

T

i
ã(U

i
)− Z

T

i
β

}
, (4.17)

which is called the semi-CQR estimator for β. We now study the asymptotic

properties of β̂. Let

δ(u,x, z) = E
[
Z(c

T
, cX

T
,0)|U = u

]
D
−1

1
(u)(I

q
,1

T
x,1

T
z)

T
,

which is a d
2
× q matrix.
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Theorem 4.5. Under the regularity conditions (B1) – (B6) given in the Appendix,

if nh
4 → 0 and nh

2
/ log(1/h) → ∞ as n → ∞, then the asymptotic distribution

of β̂ is given by
√

n
(
β̂ − β

0

) L−→ N

(
0,

1

c2S
−1

ΞS
−1

)
, (4.18)

where S = E(ZZ
T
) and ∆ =

∑q

k=1

∑q

k′=1
τ
kk′E

[{Z−δ
k
(U,X,Z)}{Z−δ

k′(U,X,Z)}T ]
,

and δ
k
(U,X,Z) stands for the k-th column of the matrix δ(U,X,Z).

We can further refine the estimates for the nonparametric part. For α
0
(u)

and α(u), let {â
0
, b̂

0
, â, b̂} be the minimizer of

q∑

k=1

n∑
i=1

ρ
τk

[
Y

i
− Z

T

i
β̂ − a

0k
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}]
K

h
(U

i
− u),

where a
0

= (a
01

, · · · , a
0q

)
T
. As a result,

α̂
0
(u) =

1

q

q∑

k=1

â
0k

, α̂(u) = â. (4.19)

We now study the asymptotic properties of α̂
0
(u) and α̂(u).

Theorem 4.6. Under the regularity conditions (B1) – (B6) given in the Appendix,

if h → 0 and nh →∞ as n →∞, the asymptotic distributions of α̂
0
(u) and α̂(u)

are given by

√
nh

(
α̂

0
(u)− α

0
(u)− 1

q

q∑

k=1

c
k
− µ

2
h

2

2
α
′′
0
(u)

)

L−→ N

(
0,

ν
0

f
U
(u)

1

q21
T [

D
−1

2
(u)Σ

2
(u)D

−1

2
(u)

]
11
1

)

(4.20)



103

and

√
nh

(
α̂(u)−α(u)− µ

2
h

2

2
α
′′
(u)

)
L−→ N

(
0,

ν
0

f
U
(u)

[
D
−1

2
(u)Σ

2
(u)D

−1

2
(u)

]
22

)
,

(4.21)

where [·]
11

denotes the top-left q × q submatrix and [·]
22

denotes the bottom-right

d
1
× d

1
submatrix.

Again, the fully iterated backfitting algorithm is not necessary in terms of

computationally efficiency. Different from local median regression, the newly pro-

posed estimator has competitive efficiency with respect to traditional least squares

estimators. And it is also much more stable and robust than least squares es-

timators because it utilizes all the information shared across multiple quantile

regression.

Remark. The baseline function estimator α̂
0
(u) converges to α

0
(u) plus the average

of uniform quantiles of error. It is consistent for α
0
(u) when the error distribution

is symmetric, just like the local median estimator.

Note that for model (4.13),

E(Y |U) = α
0
(U) + E(X|U)

T
α(U) + E(Z|U)

T
β.

Then it follows that

Y = E(Y |U) + {X− E(X|U)}T
α(U) + {Z− E(Z|U)}T

β + ε.

To get insights into the performance of the CQR method, let us consider the

situation in which E(X|U) = 0 and E(Z|U) = 0. Then, all D
1
(u),D

2
(u),Σ

1
(u)
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and Σ
2
(u) become block diagonal matrices. Thus, from Theorem 4.6, we have

√
nh

(
α̂

0
(u)− α

0
(u)− 1

q

q∑

k=1

c
k
− µ

2
h

2

2
α
′′
0
(u)

)
L−→ N

(
0,

ν
0

f
U
(u)

1

q21
T
C
−1

TC
−1

1

)

(4.22)

and

√
nh

(
α̂(u)−α(u)− µ

2
h

2

2
α
′′
(u)

)
L−→ N

(
0,

t

c2

ν
0

f
U
(u)

{
E(XX

T |U = u)
}−1

)
.

(4.23)

Note that

δ(u,x, z) = E(ZX
T |U = u)

{
E(XX

T |U = u)
}−1

(1
T
XZ)

T

Thus, all columns of δ(u,x, z) are the same. Therefore ∆ = tE
[{Z−δ(U,X,Z)}{Z−

δ(U,X,Z)}T ]
, where t =

∑q

k=1

∑q

k′=1
τ
kk′ . Note that E(δ(U,X,Z)Z

T
) = 0, so we

have

∆ = tE
[
E(ZZ

T |U){E(ZZ
T |U)−E(ZX

T |U)E(XX
T |U)

−1
E(XZ

T |U)}−1
E(ZZ

T |U)
]
.

Denote ∆
0

= ∆/t. Then

√
n

(
β̂ − β

0

) L−→ N

(
0,

t

c2S
−1

Ξ
0
S
−1

)
. (4.24)

Define

R
1
(q) =

1

q21
T
C
−1

TC
−1

1 =
1

q2

q∑

k=1

q∑

k′=1

τ
kk′

f(c
k
)f(c

k′)

and

R
2
(q) =

t

c2 =

∑q

k=1

∑q

k′=1
τ
kk′{∑

q

k=1
f(c

k
)
}

2 ,

which corresponds to R
1
(q) and R

2
(q) in Kai, Li, and Zou (2009a), respectively.
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4.4 Variable selection

In practice, many variables may be available to include in the full model

at the initial stage of modeling. To obtain an interpretable model and to enhance

model predictability, it is desirable to exclude useless variables from the full model.

Variable selection is an active research area in the recent statistical literature. In

this section, we propose variable selection procedures for quantile regression and

composite quantile regression using a unified framework.

For quantile regression, we consider the penalized check loss

n∑
i=1

ρ
τ

{
Y

i
− α̂

0,τ
(U

i
)−X

T

i
α̂

τ
(U

i
)− Z

T

i
β

}
+ n

d2∑
j=1

p
λn

(|β
j
|), (4.25)

and for composite quantile regression, we consider the penalized CQR loss

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− α̂

0k
(U

i
)−X

T

i
α̂(U

i
)− Z

T

i
β

}
+ n

d2∑
j=1

p
λn

(|β
j
|), (4.26)

where p
λn

(·) is a pre-specified penalty function with regularization parameter λ
n
.

By minimizing the above two objective functions with a proper penalty, we can

get a sparse estimator of β and achieve the goal of variable selection.

Fan and Li (2001) suggested using a nonconcave penalty. However, optimiz-

ing (4.25) or (4.26) is a challenging problem for general types of penalty functions,

because the objective function may be non-differentiable and non-concave. Vari-

ous numerical algorithms have been proposed to address this problem. Fan and

Li (2001) suggest using local quadratic approximation (LQA) to substitute for the

penalty function and then optimize using Newton-Raphson algorithm. Hunter and

Li (2005) further propose a perturbed version of LQA to alleviate one drawback of

LQA. Recently, Zou and Li (2008) propose a new unified algorithm by using the
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local linear approximation (LLA). They suggest using the one-step LLA estima-

tor, because the one-step LLA automatically adopts a sparse representation and

is as efficient as the fully iterative method with a good initial estimator. Thus,

it can dramatically reduce the computational cost in minimizing the non-concave

penalized form.

Let us use the variable selection procedure for CQR to demonstrate the gen-

eral idea. We propose to select significant variables in the parametric component

by using the CQR loss via the one-step sparse estimate by minimizing

G
n
(β) =

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− α̂

0k
(U

i
)−X

T

i
α̂(U

i
)− Z

T

i
β

}
+ n

d2∑
j=1

p
′
λn

(|β(0)

j
|)|β

j
|,

(4.27)

where the initial estimate β
(0)

is chosen as the un-penalized semi-CQR estimate β̂

obtained in the previous section. We denote by β̂
OSE

= argmin
β

G
n
(β) and call

it the one-step sparse semi-CQR estimator.

In this section, we show that the one-step semi-CQR estimator β̂
OSE

pro-

posed in the previous section enjoys the oracle property. Let β
0

= (β
T

10
,β

T

20
)
T

denote the true value of β, where β
10

is a s-vector. Without loss of generality, we

assume β
20

= 0 and β
10

contains all nonzero components of β
0
. Furthermore, let

Z
1

be the first s elements of Z and define

λ(u,x, z) = E
[
Z

1
(c

T
, cX

T
,0)|U = u

]
D
−1

2
(u)(I

q
,1

T
x,1

T
z)

T

Theorem 4.7 (Oracle Property). Let p
λ
(·) be the SCAD penalty. Assume that

the regularity conditions (B1) — (B6) given in the Appendix hold. If
√

nλ
n
→∞,

λ
n
→ 0 and nh

4 → 0, nh
2
/ log(1/h) →∞ as n →∞, then the one-step semi-CQR

estimator β̂
OSE

must satisfy:

(a) Sparsity: β̂
OSE

2
= 0, with probability tending to one;
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(b) Asymptotic normality:

√
n

(
β̂

OSE

1
− β

10

) L−→ N

(
0,

1

c2S
−1

1
ΛS

−1

1

)
,

where S
1

= E(Z
1
Z

T

1
) and Λ =

∑q

k=1

∑q

k′=1
τ
kk′E

[{Z
1
− λ

k
(U,X,Z

1
)}{Z

1
−

λ
k′(U,X,Z

1
)}T ]

.

The choice of the regularization parameter always plays an important role

in penalized variable selection. Various techniques have been proposed in previous

studies, such as the generalized cross-validation selector (Fan and Li 2001), BIC

selector (Wang et al. 2007), etc. We also propose a similar one here for the CQR

loss, which is

BIC(λ) = log

(
q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− â

0k
(U

i
)−X

T

i
â(U

i
)− Z

T

i
β̂

OSE
(λ)

}
)

+
log(n)

n
df

λ
,

where df
λ

is the number of non-zero coefficients in the parametric part of the fitted

model. The selected regularization parameter λ̂
BIC

= argmin BIC(λ), which can

be found by a grid search. The performance of λ̂
BIC

will be examined in our

simulation studies.

A variable selection procedure for quantile regression can be performed by

minimizing the penalized quantile regression loss

G
n,τ

(β) =
n∑

i=1

ρ
τ

{
Y

i
− α̂

τ0
(U

i
)−X

T

i
α̂(U

i
)− Z

T

i
β

}
+ n

d2∑
j=1

p
λj

(|β
j
|).

The procedure is quite similar to the one for CQR. We omit the details here to

save space.

Another advantage of using one-step LLA is that (4.27) can be adapted

to be solved efficiently by the LARS algorithm (Efron et al. 2004). Define Y
∗
i,k

=

Y
i
−â

0k
(U

i
)−X

T

i
â(U

i
) and r

i,k
= Y

∗
i,k
−Z

T

i
β

(0)
. Note that ρ

τ
(x) = |x|/2+(τ−1/2)x.
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Thus, if ignoring constant terms,

G(β) =

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− α̂

0k
(U

i
)−X

T

i
α̂(U

i
)− Z

T

i
β

}
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

=

q∑

k=1

n∑
i=1

{∣∣Y ∗
i,k
− Z

T

i
β

∣∣/2 + (τ
k
− 1/2)(Y

∗
i,k
− Z

T

i
β)

}
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

≈
q∑

k=1

n∑
i=1

{(
Y
∗
i,k
− Z

T

i
β

)2
/2r

i,k
+ (τ

k
− 1/2)(Y

∗
i,k
− Z

T

i
β)

}
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

=

q∑

k=1

n∑
i=1

(
Y
∗
i,k

+ r
i,k

(τ
k
− 1/2)− Z

T

i
β

)2
/2r

i,k
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

,
q∑

k=1

n∑
i=1

(
Y
∗∗
i,k
− Z

T

i
β

)2
/2r

i,k
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

Therefore, we can follow the procedures in section 4 of Zou and Li (2008) to apply

the LARS algorithm to solve for β̂
OSE

.

4.5 Numerical studies

In this section, we conduct simulation studies to assess the finite sample

performance of the proposed procedures. In Example 1, we study the proposed

estimation procedures for both β and α. In Example 2, we examine the finite

sample performance of the proposed variable selection procedures. Throughout

this section we use the Epanechnikov kernel, i.e., K(u) = 3
4
(1− u

2
)
+
.

Example 4.5.1. In this example, we generate 400 random samples, each consisting

of n = 100 observations, from following varying coefficient partially linear model

Y = α
1
(U)X

1
+ α

2
(U)X

2
+ β

1
Z

1
+ β

2
Z

2
+ β

3
Z

3
+ ε, (4.28)

where α
1
(U) = sin(6πU), α

2
(U) = sin(2πU), β

1
= β

2
= 1, β

3
= 0.5. The covari-

ate U is from the uniform distribution on [0, 1]. The covariates X
1
, X

2
, Z

1
, Z

2
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are jointly normally distributed with mean 0, variance 1 and correlation 2/3,

The covariate Z
3

is binary with probability 0.4 to be 1. Furthermore U and

(X
1
, X

2
, Z

1
, Z

2
, Z

3
) are independent. This simulation setting has been used in

Fan and Huang (2005). In our simulation, we consider the following error distribu-

tions: N(0, 1), Laplace, standard Cauchy, t-distribution with 3 degrees of freedom,

mixture of normals 0.9N(0, 1)+0.1N(0, 10
2
), and lognormal distribution. Because

the error is independent of the covariates, the least squares, quantile regression

and CQR procedures provide estimates for the same quantity.

Performance of β̂
τ

and β̂.

We first investigate the effect of bandwidth choice. To demonstrate this, we

adopt the three bandwidths h
0

= 0.166, 0.25, 0.375 used in Fan and Huang (2005).

Note that the profile estimates use optimal bandwidths of order n
−1/5

. This does

not satisfy the condition in our theorems because undersmoothing is necessary.

Thus, we generate the bandwidths for our methodology based on least squares loss

by ĥ
opt

LS
= h

0
× n

−1/10
= O(n

−3/10
). For quantile and CQR estimates, we adjust

the bandwidth for different error distributions by using the following formula:

ĥ
opt

CQR
= ĥ

opt

LS
·R

2
(q)

1/5
,

ĥ
opt

QR,τ
= ĥ

opt

LS
·
{

τ(1− τ)/f
[
F
−1

(τ)
]}1/5

.

In the first study, we only consider normal errors. The mean and standard devia-

tion based on 400 simulations are reported in Table 4.1. We can clearly see that

our proposed estimators are not sensitive to the choice of bandwidth. Therefore,

in the following studies, we fix h
0

= 0.25.

In the second study, we compare the efficiency of β of the proposed estima-

tion procedure to the one based on least squares. We report in Table 4.2 the ratio

of the MSE (RMSE) of the quantile regression and CQR estimators to the least

squares estimator for different error distributions. Table 4.2 shows clearly that the
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semi-CQR estimator has many large gains and only small loss relative to the least

squares method. When the error follows the normal distribution, the RMSE’s of

the semi-CQR estimator are slightly less than 1. For all other non-normal distri-

butions in the table, the RMSE’s of the semi-CQR estimators can be much greater

than one, indicating the gain in efficiency. For quantile regression estimators, the

performance varies and depends heavily on the error distribution.

Performance of α̂
τ

and α̂.

Now we compare the performance of α̂. We compare the performance of

the proposed QR and CQR estimates with the least squares estimate using the

ratio of average squared errors (RASE). We first let

ASE =





1

ngrid

d1∑
m=1

ngrid∑

k=1

{â
m

(u
k
)− a

m
(u

k
)}2



 ,

where {u
k

: k = 1, · · · , ngrid} is a set of grid points uniformly placed on [0, 1] with

ngrid = 200. Then RASE is defined to be

RASE(ĝ) =
ASE(ĝLS)

ASE(ĝ)
(4.29)

for an estimator ĝ, where ĝLS is the local polynomial regression estimator under

the least squares loss.

The sample mean and the sample standard deviation of the RASEs over 400

simulations are presented in Table 4.3, in which the values in the parentheses are

the standard deviations. Table 4.3 clearly demonstrates that the CQR estimator

performs almost as well as the least squares estimator when the random error

is normally distributed; and the RASE’s are much larger than 1 for other error

distributions. The efficiency gain can be substantial. Note that for Cauchy random

error, the least squares method fails but the CQR estimator still work very well.
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Thus, we can conclude that for estimating α, our proposed estimator can serve as

a nice alternative to least squares estimator.

Table 4.1. Summary of the mean and standard deviation over 400 simulations.

Mean(SD
m

)

h
0

Method β̂
1

β̂
2

β̂
3

0.166

LSE 0.006(0.187) −0.008(0.195) −0.011(0.276)
CQR

9
0.013(0.185) −0.008(0.196) −0.016(0.256)

QR
0.25

0.019(0.256) −0.005(0.269) −0.257(0.344)
QR

0.50
0.011(0.231) −0.007(0.240) −0.021(0.327)

QR
0.75

0.015(0.252) −0.026(0.262) 0.250(0.352)

0.250

LSE 0.009(0.175) −0.012(0.188) −0.015(0.260)
CQR

9
0.011(0.184) −0.008(0.193) −0.014(0.257)

QR
0.25

0.012(0.248) −0.006(0.259) −0.160(0.341)
QR

0.50
0.017(0.222) −0.017(0.229) −0.009(0.306)

QR
0.75

0.010(0.247) −0.012(0.257) 0.130(0.340)

0.375

LSE 0.008(0.184) −0.012(0.194) −0.018(0.272)
CQR

9
0.012(0.188) −0.011(0.208) −0.010(0.274)

QR
0.25

0.016(0.253) −0.017(0.257) −0.108(0.335)
QR

0.50
0.019(0.227) −0.015(0.239) −0.007(0.319)

QR
0.75

0.007(0.255) −0.016(0.261) 0.082(0.354)

Example 4.5.2. The goal of this example is to compare the performance of the

proposed variable selection procedures. In this example, 400 random samples, each

consisting of n = 100 observations, were generated from the varying coefficient

partially linear model

Y = α
1
(U)X

1
+ α

2
(U)X

2
+ β

T
Z + ε, (4.30)

where β = [3, 1.5, 0, 0, 2, 0, 0, 0]
T
, and the covariates X

1
, X

2
,Z are treated as a

single random vector W and are jointly normally distributed with mean 0, variance
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Table 4.2. Summary of the ratio of MSE over 400 simulations.

RMSE

Method β̂
1

β̂
2

β̂
3

Standard Normal
CQR

9
0.908 0.946 1.023

QR
0.25

0.500 0.525 0.479
QR

0.50
0.621 0.669 0.725

QR
0.75

0.505 0.536 0.512

Laplace
CQR

9
1.244 1.219 1.270

QR
0.25

0.695 0.616 0.524
QR

0.50
0.884 0.886 0.923

QR
0.75

0.683 0.685 0.528

Standard Cauchy
CQR

9
9199 16643 31602

QR
0.25

3949 8610 10596
QR

0.50
10398 17108 32048

QR
0.75

5193 8077 10415

RMSE

Method β̂
1

β̂
2

β̂
3

t-distribution with df = 3
CQR

9
1.321 1.387 1.324

QR
0.25

0.710 0.856 0.688
QR

0.50
1.043 1.022 1.091

QR
0.75

0.842 0.897 0.690

0.9N(0, 1) + 0.1N(0, 10
2
)

CQR
9

4.372 3.953 4.649
QR

0.25
2.057 2.090 1.198

QR
0.50

3.902 3.611 3.288
QR

0.75
2.116 1.944 1.291

Log-Normal
CQR

9
2.560 2.565 3.243

QR
0.25

2.538 2.542 1.383
QR

0.50
2.020 1.946 2.326

QR
0.75

0.667 0.671 0.674

Table 4.3. Summary of the RASE over 400 simulations.

Normal Laplace Cauchy

CQR
9

0.918(0.114) 1.157(0.206) 14501(199154)
QR

0.25
0.604(0.150) 0.701(0.202) 7556(105663)

QR
0.50

0.695(0.158) 1.057(0.274) 14248(193966)
QR

0.75
0.616(0.164) 0.697(0.191) 6241(95515)

t
3

Mixture Log-Normal
CQR

9
1.380(1.169) 3.281(1.308) 2.513(1.740)

QR
0.25

0.870(0.632) 1.870(0.843) 3.223(2.759)
QR

0.50
1.158(0.998) 2.803(1.093) 1.923(1.393)

QR
0.75

0.818(0.304) 1.814(0.764) 0.741(0.602)
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1 and correlation 0.5
|i−j|

(i, j = 1, · · · , 10). Others are exactly the same as those in

Example 4.5.1.

Simulation results are summarized in Table 4.4, in which MRME stands for

median of ratios of ME of a selected model to that of the ordinary least squares

estimate under the full model. Both the columns ‘C’ and ‘IC’ are measures of

model complexity. Column ‘C’ shows the average number of nonzero coefficients

correctly estimated to be nonzero, and column ‘IC’ presents the average number

of zero coefficients incorrectly estimated to be nonzero. In the column labeled

‘U-fit’, we present the proportion of trials excluding any nonzero coefficients in

400 replications. Likewise, we report the probability of trials selecting the exact

subset model and the probability of trials including all three significant variables

and some noise variables in the columns ‘C-fit’ and ‘O-fit’, respectively. As can be

seen from Table 4.4, both variable selection procedures dramatically reduce model

error. However, the CQR One-step SCAD has much better performance compared

to the LS One-step SCAD, in terms of all the measurements: MRME, No. of

Zeros, and Proportion of fit, and for all the error distributions in Table 4.4. It

reflects the advantage of the combination of robustness and efficiency of the new

proposed procedure.

4.6 Regularity conditions and proofs

Lemma 4.8 below, which is a direct result of Mack and Silverman (1982)

will be repeatedly used in our proofs. Throughout the proofs, terms of the form

G(u) = O
p
(a

n
) always stand for sup

u∈Ω
|G(u)| = O

p
(a

n
).

Lemma 4.8. Let (X
1
, Y

1
), · · · , (X

n
, Y

n
) be i.i.d. random vectors, where the Y

i
’s are

scalar random variables. Assume further that E|Y |r < ∞ and that sup
x

∫ |y|rf(x, y)dy

< ∞, where f denotes the joint density of (X, Y ). Let K be a bounded positive
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Table 4.4. Varialbe selection for semiparametric models with one-step LLA

No. of Zeros Proportion of

Method MRME C IC U-fit C-fit O-fit

Standard Normal
LS One-step SCAD 0.471 4.463 0.005 0.005 0.675 0.320
CQR One-step SCAD 0.407 4.815 0.000 0.000 0.840 0.160
LS Oracle 0.329 5.000 0.000 0.000 1.000 0.000

Laplace
LS One-step SCAD 0.471 4.425 0.018 0.010 0.685 0.305
CQR One-step SCAD 0.348 4.770 0.007 0.003 0.820 0.177
LS Oracle 0.336 5.000 0.000 0.000 1.000 0.000

Standard Cauchy
LS One-step SCAD 0.866 2.930 0.870 0.635 0.070 0.295
CQR One-step SCAD 0.055 4.880 0.115 0.105 0.782 0.113
LS Oracle 0.327 5.000 0.000 0.000 1.000 0.000

t-distribution with df = 3
LS One-step SCAD 0.451 4.433 0.000 0.000 0.677 0.323
CQR One-step SCAD 0.316 4.780 0.000 0.000 0.815 0.185
LS Oracle 0.321 5.000 0.000 0.000 1.000 0.000

0.9N(0, 1) + 0.1N(0, 10
2
)

LS One-step SCAD 0.477 4.395 0.033 0.015 0.672 0.313
CQR One-step SCAD 0.148 4.702 0.015 0.005 0.752 0.242
LS Oracle 0.334 5.000 0.000 0.000 1.000 0.000

Log-Normal
LS One-step SCAD 0.472 4.433 0.005 0.005 0.652 0.343
CQR One-step SCAD 0.202 4.765 0.000 0.000 0.805 0.195
LS Oracle 0.332 5.000 0.000 0.000 1.000 0.000
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function with bounded support, satisfying a Lipschitz condition. Then

sup
x∈D

∣∣∣∣∣n
−1

n∑
i=1

{
K

h
(X

i
− x)Y

i
− E[K

h
(X

i
− x)Y

i
]
}∣∣∣∣∣ = O

p

(
log

1/2
(1/h)√
nh

)
,

provided that n
2ε−1

h →∞ for some ε < 1− r
−1

.

4.6.1 Conditions and proofs for quantile regression

To establish the asymptotic properties of the local quantile regression esti-

mators, the following conditions are imposed.

(A1) The random variable U has a bounded support Ω and its density function

f
U
(·) is positive and has a continuous second derivative.

(A2) The varying coefficients α
0
(·) and α(·) have continuous second derivatives

in u ∈ Ω.

(A3) K(·) is a symmetric density function and the support is bounded.

(A4) The random vector Z has bounded support.

(A5) F
τ
(0|u,x, z) = τ for all (u,x, z). And f

τ
(·|u,x, z) is bounded away from

zero and continuously differentiable in a neighborhood of 0 for all (u,x, z).

(A6) A
1
(u) and A

2
(u) are non-singular for all u ∈ Ω.

Let η
i,τ

= I(ε
i,τ
≤ 0)−τ and η

∗
i,τ

(u) = I
{
ε
i,τ
≤ −r

i,τ
(u)

}−τ , where r
i,τ

(u) =

α
0,τ

(U
i
)−α

0,τ
(u)−α

′
0,τ

(u)(U
i
−u)+X

T

i
{α

τ
(U

i
)−α

τ
(u)−α

′
τ
(u)(U

i
−u)}. Define

θ̃
∗
τ
(u) =

√
nh

(
ã

0,τ
− α

0,τ
(u), (ã

τ
− α

τ
(u))

T
, (β̃

τ
− β

τ
)
T
, h(b̃

0,τ
− α

′
0,τ

(u)), h(b̃
τ
−

α
′
τ
(u))

T )T
and X

∗
i
(u) = (1,X

T

i
,Z

T

i
, (U

i
− u)/h,X

T

i
(U

i
− u)/h)

T
. The following

theorem presents the asymptotic representation of {ã
0,τ

, ã
τ
, β̃

τ
, b̃

0,τ
, b̃

τ
}.
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Lemma 4.9. Under the regularity conditions given above, if h → 0 and nh →∞
as n →∞, then

θ̃
∗
τ
(u) = −f

−1

U
(u)

{
S
∗
τ
(u)

}−1
W

∗
n,τ

(u) + O
p
(h

2
+ log

1/2
(1/h)/

√
nh) (4.31)

holds uniformly for u ∈ Ω, where

S
∗
τ
(u) = diag

{
A

1
(u), µ

2
A

2
(u)

}

and

W
∗
n,τ

(u) =
1√
nh

n∑
i=1

K{(U
i
− u)/h}η∗

i,τ
(u)X

∗
i
(u).

Proof. Recall that {ã
0,τ

, ã
τ
, β̃

τ
, b̃

0,τ
, b̃

τ
} minimizes

n∑
i=1

ρ
τ

[
Y

i
− a

0
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}− Z
T

i
β

]
K

h
(U

i
− u).

Let θ
∗
τ
(u) =

√
nh

(
a

0,τ
−α

0,τ
(u), (a

τ
−α

τ
(u))

T
, (β

τ
−β

τ
)
T
, h(b

0,τ
−α

′
0,τ

(u)), h(b
τ
−

α
′
τ
(u))

T )T
. We write

Y
i
− a

0
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}− Z
T

i
β

= α
0,τ

(U
i
) + X

T

i
α

τ
(U

i
) + Z

T

i
β

τ
+ ε

i,τ
− a

0
− b

0
(U

i
− u)

−X
T

i

{
a + b(U

i
− u)

}− Z
T

i
β

= ε
i,τ

+ r
i,τ

(u)−∆
i,τ

,

where ∆
i,τ

=
{
X
∗
i
(u)

}T
θ
∗
τ
/
√

nh. Then, θ̃
∗
τ
(u) minimizes the function

L
∗
n,τ

(θ
∗
τ
) =

n∑
i=1

K
i
(u)

[
ρ

τ

{
ε
i,τ

+ r
i,τ

(u)−∆
i,τ

}− ρ
τ

{
ε
i,τ

+ r
i,τ

(u)
}]

,
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where K
i
(u) = K{(U

i
− u)/h}. By applying the identity (Knight 1998)

ρ
τ
(x− y)− ρ

τ
(x) = y

{
I(x ≤ 0)− τ

}
+

∫
y

0

{
I(x ≤ z)− I(x ≤ 0)

}
dz, (4.32)

we can write L
∗
n,τ

(θ
∗
τ
) as follows:

L
∗
n,τ

(θ
∗
τ
) =

n∑
i=1

K
i
(u)

{
∆

i,τ

[
I
{
ε
i,τ
≤ −r

i,τ
(u)

}− τ
]

+

∫
∆i,τ

0

[
I
{
ε
i,τ
≤ −r

i,τ
(u) + z

}− I
{
ε
i,τ
≤ −r

i,τ
(u)

}]
dz

}

=

(
1√
nh

n∑
i=1

K
i
(u)η

∗
i,τ

(u)X
∗
i
(u)

)
T

θ
∗
τ

+ B
∗
n,τ

(θ
∗
τ
)

=
{
W

∗
n,τ

(u)
}T

θ
∗
τ

+ B
∗
n,τ

(θ
∗
τ
),

where

B
∗
n,τ

(θ
∗
τ
) =

n∑
i=1

K
i
(u)

∫
∆i,τ

0

[
I
{
ε
i,τ
≤ −r

i,τ
(u) + z

}− I
{
ε
i,τ
≤ −r

i,τ
(u)

}]
dz.

Since B
∗
n,τ

(θ
∗
τ
) is a summation of i.i.d. random variables of the kernel form, by

Lemma 4.8 we have

B
∗
n,τ

(θ
∗
τ
) = E

[
B
∗
n,τ

(θ
∗
τ
)
]
+ O

p
(log

1/2
(1/h)/

√
nh).
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The conditional expectation of B
∗
n,τ

(θ
∗
τ
) can be calculated as follows

E
[
B
∗
n,τ

(θ
∗
τ
)|U,X,Z

]

=
n∑

i=1

K
i
(u)

∫
∆i,τ

0

[
F

τ
(−r

i,τ
(u) + z|U

i
,X

i
,Z

i
)− F

τ
(−r

i,τ
(u)|U

i
,X

i
,Z

i
)
]
dz

=
n∑

i=1

K
i
(u)

∫
∆i,τ

0

[
zf

τ
(−r

i,τ
(u)|U

i
,X

i
,Z

i
) + O(z

2
)
]
dz

=
n∑

i=1

K
i
(u)

[
∆

2

i,τ
f

τ
(−r

i,τ
(u)|U

i
,X

i
,Z

i
)/2 + O(∆

3

i,τ
)
]
.

Note that ∆
3

i,τ
is of the order 1/(

√
nh)

3
, so by using Lemma 4.8, we have

E
[
B
∗
n,τ

(θ
∗
τ
)|U,X,Z

]

=
1

2
(θ
∗
τ
)
T

(
1

nh

n∑
i=1

K
i
(u)f

τ
(−r

i,τ
(u)|U

i
,X

i
,Z

i
)
{
X
∗
i
(u)

}{
X
∗
i
(u)

}T

)
θ
∗
τ

+O
p
(1/
√

nh)

, 1

2
(θ
∗
τ
)
T
S
∗
n,τ

(u)θ
∗
τ

+ O
p
(1/
√

nh).

Then,

L
∗
n,τ

(θ
∗
τ
) =

{
W

∗
n,τ

(u)
}T

θ
∗
τ

+ E
[
B
∗
n,τ

(θ
∗
τ
)
]
+ O

p
(log

1/2
(1/h)/

√
nh)

=
{
W

∗
n,τ

(u)
}T

θ
∗
τ

+ E
{
E

[
B
∗
n,τ

(θ
∗
τ
)|U,X,Z

]}
+ O

p
(log

1/2
(1/h)/

√
nh)

=
{
W

∗
n,τ

(u)
}T

θ
∗
τ

+
1

2
(θ
∗
τ
)
T
ES

∗
n,τ

(u)θ
∗
τ

+ O
p
(log

1/2
(1/h)/

√
nh).

It is easy to check that ES
∗
n,τ

(u) = f
U
(u)S

∗
τ
(u) + O

p
(h

2
). Therefore, L

∗
n,τ

(θ
∗
τ
) can

be written as

L
∗
n,τ

(θ
∗
τ
) =

{
W

∗
n,τ

(u)
}T

θ
∗
τ

+
f

U
(u)

2
(θ
∗
τ
)
T
S
∗
τ
(u)θ

∗
τ

+ O
p
(h

2
+ log

1/2
(1/h)/

√
nh).

(4.33)
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By applying the convexity lemma (Pollard 1991) and the quadratic approximation

lemma (Fan and Gijbels 1996), the minimizer of L
∗
n,τ

(θ
∗
τ
) can be expressed as

θ̃
∗
τ
(u) = −f

−1

U
(u)

{
S
∗
τ
(u)

}−1
W

∗
n,τ

(u) + O
p
(h

2
+ log

1/2
(1/h)/

√
nh),

which holds uniformly for u ∈ Ω. This completes the proof.

Proof of Theorem 4.1. Following the proof of Lemma 4.9, we can obtain that

θ̃
∗
τ
(u) = −f

−1

U
(u)

{
S
∗
τ
(u)

}−1
W

∗
n,τ

(u) + o
p
(1) (4.34)

for any point u ∈ Ω.

Because W
∗
n,τ

(u) is a sum of independent and identically distributed random

vectors, the asymptotic normality of W
∗
n,τ

(u) can be established by the central

limit theorem and the Slutsky’s theorem. And the asymptotic normality of θ̃
∗
τ
(u)

follows by (4.34). Denote W
∗
n,1,τ

(u) = 1√
nh

∑n

i=1
K

i
(u)η

∗
i,τ

(u)(1,X
T

i
,Z

T

i
)
T

We now

calculate the conditional mean and variance of W
∗
n,1,τ

(u).

1√
nh

E(W
∗
n,1,τ

(u)|U,X,Z)

=
1

nh

n∑
i=1

K
i
(u){F

τ
(−r

i,τ
(u)|U

i
,X

i
,Z

i
)− F

τ
(0|U

i
,X

i
,Z

i
)}(1,XT

i
,Z

T

i
)
T

= − 1

nh

n∑
i=1

K
i
(u)r

i,τ
(u)f

τ
(0|U

i
,X

i
,Z

i
){1 + o(1)}(1,XT

i
,Z

T

i
)
T

= −µ
2
h

2

2
A

1
(u)

{
α
′′
0,τ

(u),α
′′
τ
(u)

T
,0

}T
+ o

p
(h

2
),

V ar(W
∗
n,1,τ

(u)|U,X,Z) =
1

nh

n∑
i=1

K
2

i
(u)V ar(η

∗
i,τ

(u)|U,X,Z)(1,X
T

i
,Z

T

i
)(1,X

T

i
,Z

T

i
)
T

= ν
0
τ(1− τ)f

U
(u)B

1
(u) + o

p
(1).
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Note that S
∗
τ

= diag{A
1
(u), µ

2
A

2
(u)} is a block diagonal matrix. The asymptotic

normality representation of {α̃
0,τ

(u), α̃
τ
(u), β̃

τ
} follows immediately.

Proof of Theorem 4.2. Let θ
τ

=
√

n(β − β
τ
). Rewrite

Y
∗
i,τ
− Z

T

i
β = ε

i,τ
− {

α̃
0,τ

(U
i
)− α

0,τ
(U

i
)
}−X

T

i

{
α̃

τ
(U

i
)−α

τ
(U

i
)
}− Z

T

i
(β − β

τ
)

= ε
i,τ
− r̃

i,τ
− Z

T

i
θ

τ
/
√

n,

where r̃
i,τ

=
{
α̃

0,τ
(U

i
)− α

0,τ
(U

i
)
}

+ X
T

i

{
α̃

τ
(U

i
)−α

τ
(U

i
)
}
. Then θ̂

τ
, which mini-

mizes
∑n

i=1
ρ

τ
(Y

∗
i,τ
− Z

T

i
β), is also the minimizer of

L
n,τ

(θ
τ
) =

n∑
i=1

{
ρ

τ
(ε

i,τ
− r̃

i,τ
− Z

T

i
θ

τ
/
√

n)− ρ
τ
(ε

i,τ
− r̃

i,τ
)
}

.

By applying the identity (4.32), we can rewrite L
n,τ

(θ
τ
) as follows:

L
n,τ

(θ
τ
) =

n∑
i=1

{Z
T

i
θ

τ√
n

[
I(ε

i,τ
≤ 0)− τ

]
+

∫
r̃i,τ+Z

T

i
θτ /

√
n

r̃i,τ

[
I(ε

i,τ
≤ z)− I(ε

i,τ
≤ 0)

]
dz

}

=

(
1√
n

n∑
i=1

η
i,τ

Z
i

)
T

θ
τ

+ B
n,τ

(θ
τ
),

where B
n,τ

(θ
τ
) =

n∑
i=1

∫
r̃i,τ+Z

T

i
θτ /

√
n

r̃i,τ

[
I(ε

i,τ
≤ z)− I(ε

i,τ
≤ 0)

]
dz.
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Simple calculation yields

E
[
B

n,τ
(θ

τ
)|U,X,Z

]

=
n∑

i=1

∫
r̃i,τ+Z

T

i
θτ /

√
n

r̃i,τ

[
F

τ
(z|U

i
,X

i
,Z

i
)− F

τ
(0|U

i
,X

i
,Z

i
)
]
dz

=
n∑

i=1

∫
r̃i,τ+Z

T

i
θτ /

√
n

r̃i,τ

[
zf

τ
(0|U

i
,X

i
,Z

i
)
{
1 + o(1)

}]
dz

=
1

2
θ

T

τ

(
1

n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)Z

i
Z

T

i

)
θ

τ
+

(
1√
n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)r̃

i,τ
Z

i

)
T

θ
τ

+ o
p
(1).

Define R
n,τ

(θ
τ
) = B

n,τ
(θ

τ
)−E

[
B

n,τ
(θ

τ
)|U,X,Z

]
. By showing V ar

[
B

n,τ
(θ

τ
)|U,X,Z

]
=

o
p
(1), it is easy to check that R

n,τ
(θ

τ
) = o

p
(1). Hence,

L
n,τ

(θ
τ
) =

(
1√
n

n∑
i=1

η
i,τ

Z
i

)
T

θ
τ

+ E
[
B

n,τ
(θ

τ
)|U,X,Z

]
+ R

n,τ
(θ

τ
)

=
1

2
θ

T

τ

(
1

n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)Z

i
Z

T

i

)
θ

τ
+

(
1√
n

n∑
i=1

η
i,τ

Z
i

)
T

θ
τ

+

(
1√
n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)r̃

i,τ
Z

i

)
T

θ
τ

+ o
p
(1).

By Lemma 4.9, the quantity in the third term of the foregoing expression can be

expressed as

1√
n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)r̃

i,τ
Z

i

= − 1√
n

n∑
i=1

Z
i

f
τ
(0|U

i
,X

i
,Z

i
)

f
U
(U

i
)

(1,X
T

i
,0)A

−1

1
(U

i
)

(
1

nh

n∑
j=1

η
∗
j,τ

(U
i
)(1,X

T

j
,Z

T

j
)
T
K

j
(U

i
)

)

+O
p
(h

3/2
+ log

1/2
(1/h)/

√
nh2)

=
1√
n

n∑
j=1

η
j,τ

{
1

n

n∑
i=1

Z
i
(1,X

T

i
,0)

f
τ
(0|U

i
,X

i
,Z

i
)

f
U
(U

i
)

K
h
(U

i
− U

j
)

}
A
−1

1
(U

j
)(1,X

T

j
,Z

T

j
)
T

+O
p
(n

1/2
h

2
+ log

1/2
(1/h)/

√
nh2).
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Using Lemma 4.8 again

1√
n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)r̃

i,τ
Z

i

= − 1√
n

n∑
j=1

η
j,τ

ξ
j,τ

(U
j
,X

j
,Z

j
) + O

p
(n

1/2
h

2
+ log

1/2
(1/h)/

√
nh2)

= − 1√
n

n∑
i=1

η
i,τ

ξ
i,τ

(U
i
,X

i
,Z

i
) + o

p
(1),

where ξ
i,τ

(U
i
,X

i
,Z

i
) = E

[
f

τ
(0|U,X,Z)Z(1,X

T
,0)|U = U

i

]
A
−1

1
(U

i
)(1,X

T

i
,Z

T

i
)
T
.

Therefore,

L
n,τ

(θ
τ
) =

1

2
θ

T

τ

(
1

n

n∑
i=1

f
τ
(0|U

i
,X

i
,Z

i
)Z

i
Z

T

i

)
θ

τ

+

(
1√
n

n∑
i=1

η
i,τ

{
Z

i
− ξ

i,τ
(U

i
,X

i
,Z

i
)
}
)

T

θ + o
p
(1)

, 1

2
θ

T

τ
S

n,τ
θ

τ
+ W

T

n,τ
θ

τ
+ o

p
(1).

It is easy to see that S
n,τ

= E(S
n,τ

) + o
p
(1), where

E(S
n,τ

) = E
[
f

τ
(0|U,X,Z)ZZ

T ]
= S

τ
.

Hence,

L
n,τ

(θ
τ
) =

1

2
θ

T

τ
S

τ
θ

τ
+ W

T

n,τ
θ

τ
+ o

p
(1)

Since the convex function L
n,τ

(θ
τ
)−W

T

n,τ
θ

τ
converges in probability to the convex

function
1

2
θ

T

τ
S

τ
θ

τ
, it follows from the convexity lemma (Pollard 1991) that the

quadratic approximation to L
n,τ

(θ
τ
) holds uniformly for θ

τ
in any compact set Θ,

which leads to

θ̂
τ

= −S
−1

τ
W

n,τ
+ o

p
(1). (4.35)
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By the Cramér-Wald theorem, the Central Limit Theorem for W
n,τ

holds and

V ar(W
n,τ

)
P−→ Ξ

τ
= τ(1−τ)E

[{Z−ξ
τ
(U,X,Z)}{Z−ξ

τ
(U,X,Z)}T ]

. Therefore,

the asymptotic normality of β̂
τ

follows

√
n

(
β̂

τ
− β

τ

) L−→ N
(
0,S

−1

τ
Ξ

τ
S
−1

τ

)
. (4.36)

This completes the proof.

Proof of Theorem 4.3. The proof is quite similar to the proof of Theorem 4.1. We

omit it here.

4.6.2 Conditions and proofs for composite quantile regression

Let us continue to the proofs for local CQR estimators. To establish the

asymptotic properties of the local CQR estimators, we need the following regularity

conditions:

(B1) The random variable U has a bounded support Ω and its density function

f
U
(·) is positive and has a continuous second derivative.

(B2) The varying coefficients α
0
(·) and α(·) have continuous second derivatives

in u ∈ Ω.

(B3) K(·) is a symmetric density function and the support is bounded.

(B4) The random vector Z has bounded support.

(B5) f(·) is bounded away from zero and has a continuous and uniformly bounded

derivative.

(B6) D
1
(u) and D

2
(u) are non-singular for all u ∈ Ω.
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Let η
i,k

= I(ε
i
≤ c

k
)−τ

k
and η

∗
i,k

(u) = I{ε
i
≤ c

k
−r

i
(u)}−τ

k
, where r

i
(u) =

α
0
(U

i
)−α

0
(u)−α

′
0
(u)(U

i
−u)+X

T

i
{α(U

i
)−α(u)−α

′
(u)(U

i
−u)}. Furthermore, let

θ̃
∗
(u) =

√
nh

{
ã

01
−α

0
(u)−c

1
, · · · , ã

0q
−α

0
(u)−c

q
, {ã−α(u)}T

, {β̃−β
0
}T

, h{b̃
0
−

α
′
0
(u)}, h{b̃−α

′
(u)}T }T

and X
∗
i,k

(u) =
{
e

T

k
,X

T

i
,Z

T

i
, (U

i
− u)/h,X

T

i
(U

i
− u)/h

}T
,

where e
k

is a q-vector with 1 on the k
th

position and 0 elsewhere.

In the proof of Theorem 4.4, we will first show the following asymptotic

representation of {ã
0
, b̃

0
, ã, b̃, β̃}.

θ̃
∗
(u) = −f

−1

U
(u){S∗(u)}−1

W
∗
n
(u) + o

p
(1), (4.37)

where S
∗
(u) = diag{D

1
(u), cµ

2
B

2
(u)} and W

∗
n

= 1√
nh

∑q

k=1

∑n

i=1
K

i
(u)η

∗
i,k

(u)X
∗
i,k

(u).

Proof of Theorem 4.4. Recall that {ã
0
, ã, β̃, b̃

0
, b̃} minimizes

q∑

k=1

n∑
i=1

ρ
τk

[
Y

i
− a

0k
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}− Z
T

i
β

]
K

h
(U

i
− u).

Rewrite

Y
i
− a

0k
− b

0
(U

i
− u)−X

T

i

{
a + b(U

i
− u)

}− Z
T

i
β

= α
0
(U

i
) + X

T

i
α(U

i
) + Z

T

i
β

0
+ ε

i
− a

0k
− b

0
(U

i
− u)

−X
T

i

{
a + b(U

i
− u)

}− Z
T

i
β

= (ε
i
− c

k
) + r

i
−∆

i,k
,

where ∆
i,k

= {X∗
i,k

(u)}T
θ
∗
(u)/

√
nh. Then, θ̃

∗
is also the minimizer of

L
∗
n
(θ
∗
) =

q∑

k=1

n∑
i=1

K
i
(u)

[
ρ

τk

{
(ε

i
− c

k
) + r

i
(u)−∆

i,k

}− ρ
τk

{
(ε

i
− c

k
) + r

i
(u)

}]
.
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By applying the identity (4.32), we can rewrite L
∗
n
(θ
∗
) as follows:

L
∗
n
(θ
∗
) =

q∑

k=1

n∑
i=1

K
i
(u)

{
∆

i,k

[
I
{
ε
i
≤ c

k
− r

i
(u)

}− τ
k

]

+

∫
∆i,k

0

[
I
{
ε
i
≤ c

k
− r

i
(u) + z

}− I
{
ε
i
≤ c

k
− r

i
(u)

}]
dz

}

=

(
1√
nh

q∑

k=1

n∑
i=1

K
i
(u)η

∗
i,k

(u)X
∗
i,k

(u)

)
T

θ
∗
+

q∑

k=1

B
∗
n,k

(θ
∗
)

= {W∗
n
(u)}T

θ
∗
(u) +

q∑

k=1

B
∗
n,k

(θ
∗
),

where

B
∗
n,k

(θ
∗
) =

n∑
i=1

K
i
(u)

∫
∆i,k

0

[
I
{
ε
i
≤ c

k
− r

i
(u) + z

}− I
{
ε
i
≤ c

k
− r

i
(u)

}]
dz.

Since B
∗
n,k

(θ
∗
) is a summation of i.i.d. random variables of the kernel form, by

Lemma 4.8 we have

B
∗
n,k

(θ
∗
) = E[B

∗
n,k

(θ
∗
)] + O

p
(log

1/2
(1/h)/

√
nh).

The conditional expectation of
∑q

k=1
B
∗
n,k

(θ
∗
) can be calculated as

q∑

k=1

E[B
∗
n,k

(θ
∗
)|U,X,Z]

=

q∑

k=1

n∑
i=1

K
i
(u)

∫
∆i,k

0

[
F

(
c
k
− r

i
(u) + z

)− F
(
c
k
− r

i
(u)

)]
dz

=

q∑

k=1

n∑
i=1

K
i
(u)

∫
∆i,k

0

[
zf

(
c
k
− r

i
(u)

)
+ O(z

2
)
]
dz

=

q∑

k=1

n∑
i=1

K
i
(u)

[
∆

2

i,k
f
(
c
k
− r

i
(u)

)
/2 + O(∆

3

i,k
)
]
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=
1

2
(θ
∗
)
T

(
1

nh

q∑

k=1

n∑
i=1

K
i
(u)f

(
c
k
− r

i
(u)

){X∗
i,k

(u)}{X∗
i,k

(u)}T

)
θ
∗

+O
p
(log

1/2
(1/h)/

√
nh)

, 1

2
(θ
∗
)
T
S
∗
n
(u)θ

∗
+ O

p
(log

1/2
(1/h)/

√
nh).

Then,

L
∗
n
(θ
∗
) = {W∗

n
(u)}T

θ
∗
+

q∑

k=1

E[B
∗
n,k

(θ
∗
)] + O

p
(log

1/2
(1/h)/

√
nh)

= {W∗
n
(u)}T

θ
∗
+

q∑

k=1

E
{
E[B

∗
n,k

(θ
∗
)|U,X,Z]

}
+ O

p
(log

1/2
(1/h)/

√
nh)

= {W∗
n
(u)}T

θ
∗
+

1

2
(θ
∗
)
T
ES

∗
n
(u)θ

∗
+ O

p
(log

1/2
(1/h)/

√
nh).

It is easy to check that ES
∗
n
(u) = f

U
(u)S

∗
(u) + O(h

2
). Therefore, we can write

L
n
(θ
∗
) as

L
∗
n
(θ
∗
) = {W∗

n
(u)}T

θ
∗
+

f
U
(u)

2
(θ
∗
)
T
S
∗
(u)θ

∗
+O

p
(h

2
+log

1/2
(1/h)/

√
nh). (4.38)

By applying the convexity lemma (Pollard 1991) and the quadratic approximation

lemma (Fan and Gijbels 1996), the minimizer of L
∗
n
(θ
∗
) can be expressed as

θ̃
∗

= −f
−1

U
(u){S∗(u)}−1

W
∗
n
(u) + O

p
(h

2
+ log

1/2
(1/h)/

√
nh), (4.39)

which holds uniformly for u ∈ Ω. Meanwhile, for any point u ∈ Ω, we have

θ̃
∗

= −f
−1

U
(u){S∗(u)}−1

W
∗
n
(u) + o

p
(1). (4.40)
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Note that S
∗

= diag{D
1
(u), cµ

2
B

2
(u)} is a quasi-diagonal matrix. So

√
nh




ã
0
−α

0
(u)

ã−α(u)

β̃ − β
0


 = −f

−1

U
(u)D

−1

1
(u)W

∗
n,1

(u) + o
p
(1), (4.41)

where W
∗
n,1

(u) = 1√
nh

∑q

k=1

∑n

i=1
K

i
(u)η

∗
i,k

(u)(e
T

k
,X

T

i
,Z

T

i
)
T
. Let

W
#

n,1
(u) =

1√
nh

q∑

k=1

n∑
i=1

K
i
(u)η

i,k
(e

T

k
,X

T

i
,Z

T

i
)
T
.

Note that

Cov(η
i,k

, η
i,k′) = τ

kk′ , Cov(η
i,k

, η
j,k′) = 0, if i 6= j.

It is easy to calculate that E[W
#

n,1
(u)] = 0 and V ar[W

#

n,1
(u)] → f

U
(u)ν

0
Σ

1
(u).

By the Cramér-Wald theorem, it is easy to see that the CLT for W
n,1

(u) holds.

Therefore

W
#

n,1
(u)

L−→ N(0, f
U
(u)ν

0
Σ

1
(u)).

Moreover, we have V ar
(
W

∗
n,1

(u)−W
#

n,1
(u)|U,X,Z

) ≤ q
2

nh

∑n

i=1
K

2

i
(u)(e

T

k
,X

T

i
,Z

T

i
)
T

(e
T

k
,X

T

i
,Z

T

i
) max

k
{F (c

k
+ |r

i
|)− F (c

k
)} = o

p
(1), thus

V ar
(
W

∗
n,1

(u)−W
#

n,1
(u)

)
= o(1).

So by Slutsky’s theorem, conditioning on {U,X,Z}, we have

W
∗
n,1

(u)− E[W
∗
n,1

(u)]
L−→ N(0, f

U
(u)ν

0
Σ

1
(u)). (4.42)
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We now calculate the conditional mean of W
∗
n,1

(u).

1√
nh

E[W
∗
n,1

(u)|U,X,Z] =
1

nh

q∑

k=1

n∑
i=1

K
i
(u)

{
F

(
c
k
− r

i
(u)

)− F (c
k
)
}
(e

t

k
,X

T

i
,Z

T

i
)
T

= − 1

nh

q∑

k=1

n∑
i=1

K
i
(u)r

i
(u)f(c

k
){1 + o(1)}(et

k
,X

T

i
,Z

T

i
)
T

= −µ
2
h

2

2
f

U
(u)D

1
(u)




α
′′
0
(u)

α
′′
(u)

0


 + o

p
(h

2
). (4.43)

The proof is completed by combining (4.41), (4.42) and (4.43).

Proof of Theorem 4.5. Let θ =
√

n(β − β
0
). Rewrite

Y
i
− ã

0k
(U

i
)−X

T

i
ã(U

i
)− Z

T

i
β

= α
0
(U

i
) + X

T

i
α(U

i
) + Z

T

i
β

0
+ ε

i
−m

k
− ã

0
(U

i
)−X

T

i
ã(U

i
)− Z

T

i
β

= ε
i
− c

k
− {ã

0k
(U

i
)− α

0
(U

i
)− c

k
} −X

T

i
{ã(U

i
)−α(U

i
)} − Z

T

i
(β − β

0
)

= ε
i
− c

k
− r̃

i,k
− Z

T

i
θ/
√

n,

where r̃
i,k

= {ã
0k

(U
i
)−α

0
(U

i
)−c

k
}+X

T

i
{ã(U

i
)−α(U

i
)}. Then θ̂ = argmin

∑q

k=1

∑n

i=1

ρ
τk

(Y
i
− ã

0k
(U

i
)−X

T

i
ã(U

i
)− Z

T

i
β) is also the minimizer of

L
n
(θ) =

q∑

k=1

n∑
i=1

{
ρ

τk
(ε

i
− c

k
− r̃

i,k
− Z

T

i
θ/
√

n)− ρ
τk

(ε
i
− c

k
− r̃

i,k
)
}

.
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By applying the identity (4.32), we can rewrite L
n
(θ) as follows:

L
n
(θ) =

q∑

k=1

n∑
i=1

{Z
T

i
θ

√
n

[
I(ε

i
≤ c

k
)− τ

k

]
+

∫
r̃i,k+Z

T

i
θ/
√

n

r̃i,k

[
I(ε

i
≤ c

k
+ z)− I(ε

i
≤ c

k
)
]
dz

}

=

(
1√
n

q∑

k=1

n∑
i=1

η
i,k

Z
i

)
T

θ + B
n
(θ),

where B
n
(θ) =

q∑

k=1

n∑
i=1

∫
r̃i,k+Z

T

i
θ/
√

n

r̃i,k

[
I(ε

i
≤ c

k
+z)−I(ε

i
≤ c

k
)
]
dz. Let us calculate

the conditional expectation of B
n
(θ).

E[B
n
(θ)|U,X,Z]

=

q∑

k=1

n∑
i=1

∫
r̃i,k+Z

T

i
θ/
√

n

r̃i,k

[
F (c

k
+ z)− F (c

k
)
]
dz

=

q∑

k=1

n∑
i=1

∫
r̃i,k+Z

T

i
θ/
√

n

r̃i,k

[
zf(c

k
){1 + o(1)}]dz

=
1

2
θ

T

(
1

n

q∑

k=1

n∑
i=1

f(c
k
)Z

i
Z

T

i

)
θ −

(
1√
n

q∑

k=1

n∑
i=1

f(c
k
)r̃

i,k
Z

i

)
T

θ + o
p
(1).

Define R
n
(θ) = B

n
(θ) − E

[
B

n
(θ)|U,X,Z

]
. It can be shown that R

n
(θ) = o

p
(1).

Hence,

L
n
(θ) =

(
1√
n

q∑

k=1

n∑
i=1

η
i,k

Z
i

)
T

θ + E
[
B

n
(θ)|U,X,Z

]
+ R

n
(θ)

=
1

2
θ

T
S

n
θ +

(
1√
n

q∑

k=1

n∑
i=1

η
i,k

Z
i

)
T

θ −
(

1√
n

q∑

k=1

n∑
i=1

f(c
k
)r̃

i,k
Z

i

)
T

θ + o
p
(1),

where S
n

= 1
n

∑q

k=1

∑n

i=1
f(c

k
)Z

i
Z

T

i
. By (4.39), the third term in the foregoing

expression can be expressed as

1√
n

q∑

k=1

n∑
i=1

f(c
k
)r̃

i,k
Z

i
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=
1√
n

q∑

k=1

n∑
i=1

f(c
k
)

f
U
(U

i
)
Z

i
(e

T

k
,X

T

i
,0)D

−1

1
(U

i
)

(
1

nh

q∑

k′=1

n∑

i′=1

η
∗
i′,k′

(U
i
)(e

T

k′
,X

T

i′
,Z

T

i′
)
T
K

i′(Ui
)

)

+O
p
(h

3/2
+ log

1/2
(1/h)/

√
nh2)

=
1√
n

q∑

k′=1

n∑

i′=1

η
i′,k′ξk′(Ui′ ,Xi′ ,Zi′) + O

p
(n

1/2
h

2
+ log

1/2
(1/h)/

√
nh2)

=
1√
n

q∑

k=1

n∑
i=1

η
i,k

ξ
k
(U

i
,X

i
,Z

i
) + o

p
(1),

where

ξ(U
i
,X

i
,Z

i
) = E

[
Z(c

T
, cX

T
,0)|U = U

i

]
D
−1

1
(U

i
)(I

q
,1

T
X

i
,1

T
Z

i
)
T
.

Therefore,

L
n
(θ) =

1

2
θ

T
S

n
θ +

(
1√
n

q∑

k=1

n∑
i=1

η
i,k

{
Z

i
− ξ

k
(U

i
,X

i
,Z

i
)
}
)

T

θ + o
p
(1)

, 1

2
θ

T
S

n
θ + W

T

n
θ + o

p
(1).

It is easy to see that S
n

= E(S
n
) + o

p
(1) = cS + o

p
(1). Hence,

L
n
(θ) =

c

2
θ

T
Sθ + W

T

n
θ + o

p
(1)

Since the convex function L
n
(θ) − W

T

n
θ converges in probability to the convex

function
c

2
θ

T
Sθ, it follows from the convexity lemma (Pollard 1991) that the

quadratic approximation to L
n
(θ) holds uniformly for θ in any compact set Θ,

which leads to

θ̂ = −1

c
S
−1

W
n

+ o
p
(1). (4.44)
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By the Cramér-Wald theorem, the Central Limit Theorem for W
n

holds and

V ar(W
n
) → Ξ =

∑q

k=1

∑q

k′=1
τ
kk′E

{
Z−ξ

k
(U,X,Z)

}{
Z−ξ

k′(U,X,Z)
}T

. There-

fore, the asymptotic normality of β̂ is followed by

√
n

(
β̂ − β

0

) L−→ N

(
0,

1

c2S
−1

ΞS
−1

)
.

Proof of Theorem 4.6. The asymptotic normality of α̂
0
(u) and α̂(u) can be ob-

tained by following the ideas in the proof of Theorem 4.4.

Proof of Theorem 4.7. Use the same notation in the proof of Theorem 4.6. Mini-

mizing

q∑

k=1

n∑
i=1

ρ
τk

{
Y

i
− â

0k
(U

i
)−X

T

i
â(U

i
)− Z

T

i
β

}
+ n

d∑
j=1

p
′
λj

(|β(0)

j
|)|β

j
|

is equivalent to minimizing

G
n
(θ) =

q∑

k=1

n∑
i=1

{
ρ

τk
(ε

i
− c

k
− r̂

i,k
− Z

T

i
θ/
√

n)− ρ
τk

(ε
i
− c

k
− r̂

i,k
)
}

+
d∑

j=1

p
′
λj

(|β(0)

j
|)(|β

j
| − |β

0j
|)

=
c

2
θ

T
Sθ + W

T

n
θ +

d∑
j=1

p
′
λj

(|β(0)

j
|)(|β

j
| − |β

0j
|) + o

p
(1),

where θ =
√

n(β − β
0
) and r̂

i,k
= {â

0k
(U

i
) − α

0
(U

i
) − c

k
} + X

T

i
{â(U

i
) − α(U

i
)}.

Similar to the derivation in the proof of Theorem 5 in Zou and Li (2008), the third
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term above can be expressed as

d∑
j=1

p
′
λj

(|β(0)

j
|)(|β

j
| − |β

0j
|) P−→





0, if β
2

= β
20

,

∞, otherwise.
(4.45)

Therefore, by the epi-convergence results (Geyer 1994; Knight and Fu 2000), we

have β̂
OSE

2

P−→ 0 and the asymptotic results for β̂
OSE

1
holds.

To prove sparsity, we only need to show that β̂
OSE

2
= 0 with probability

tending to one. It suffices to prove that if β
0j

= 0, P (β̂
OSE

j
6= 0) → 0. By

using the fact |ρτ (t1)−ρτ (t2)

t1−t2
| ≤ max(τ, 1 − τ) < 1, if β̂

OSE

j
6= 0, then we must have

√
np

′
λj

(|β(0)

j
|) < 1

n

∑n

i=1
|Z

ij
|. Thus we have P (β̂

OSE

j
6= 0) ≤ P (

√
np

′
λj

(|β(0)

j
|) <

1
n

∑n

i=1
|Z

ij
|). But under the assumptions, we have

√
np

′
λj

(|β(0)

j
|) →∞, Therefore

P (β̂
OSE

j
6= 0) → 0. This completes the proof.



Chapter 5

Local Rank Inference for Varying Coefficient Models

5.1 Introduction

As introduced in Cleveland, Grosse, and Shyu (1992) and Hastie and Tibshi-

rani (1993), the varying coefficient model provides a natural and useful extension

of the classical linear regression model by allowing the regression coefficients to

depend on certain covariates. Due to its flexibility to explore the dynamic features

which may exist in the data and its easy interpretation, the varying coefficient

model has been widely applied in many scientific areas. It has also experienced

rapid developments in both theory and methodology; see Fan and Zhang (2008)

for a comprehensive survey. Fan and Zhang (1999) proposed a two-step estima-

tion procedure for the varying coefficient model when the coefficient functions have

possibly different degrees of smoothness. Kauermann and Tutz (1999) investigated

the use of varying coefficient models for diagnosing the lack-of-fit of regression, re-

garding the varying coefficient model as an alternative to a parametric null model.

Cai et al. (2000) developed a more efficient estimation procedure for varying coef-

ficient models in the framework of generalized linear models. As special cases of

varying coefficient models, time-varying coefficient models are particularly appeal-

ing in longitudinal studies, survival analysis and time series data since they allow

one to explore the time-varying effect of covariates over the response. Pioneering

works on novel applications of time-varying coefficient models to longitudinal data

include Brumback and Rice (1998), Hoover et al. (1998), Wu et al. (1998) and Fan

and Zhang (2000), among others. For more details, readers are referred to Fan

and Li (2006a) and the references therein. Time-varying coefficient models are
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also popular in modeling and predicting nonlinear time series data and survival

data; see Fan and Zhang (2008) for related literature.

Estimation procedures in the aforementioned papers are built on either of

the local least squares type or the local likelihood type method. Although these

estimators remain asymptotically normal for a large class of random error distribu-

tions, their efficiency can deteriorate dramatically when the true error distribution

deviates from normality. Furthermore, these estimators are very sensitive to out-

liers. Even a few outlying data points may introduce undesirable artificial features

in the estimated functions. These considerations motivate us to develop a novel lo-

cal rank estimation procedure that is highly efficient, robust and computationally

simple. In particular, the proposed local rank regression estimator may achieve the

nonparametric convergence rate even when the local linear least squares method

fails to consistently estimate the regression coefficient functions due to infinite ran-

dom error variance, which occurs for instance when the random error has a Cauchy

distribution.

The new approach can substantially improve upon the commonly used lo-

cal linear least squares procedure for a wide class of error distributions. Theoret-

ical analysis reveals that the asymptotic relative efficiency (ARE), measured by

the asymptotic mean squared error (or the asymptotic mean integrated squared

error), of the local rank regression estimator in comparison with the local lin-

ear least squares estimator has an expression that is closely related to that of

the Wilcoxon-Mann-Whitney rank test in comparison with the two-sample t-test.

However, different from the two-sample test scenario, where the efficiency is com-

pletely determined by the asymptotic variance, in the current setting of estimat-

ing an infinite-dimensional parameter, both bias and variance contribute to the

asymptotic efficiency. The value of ARE is often significantly greater than one.

For example, the ARE is 167% for estimating the regression coefficient functions
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when the random error has a t
3

distribution, is 240% for an exponential random

error distribution, and is 493% for a lognormal random error distribution.

A striking feature of the local rank procedure is that its pronounced effi-

ciency gain comes with only a little loss when the random error actually has a

normal distribution, for which the ARE of the local rank regression estimator rela-

tive to the local linear least squares estimator is above 96% for estimating both the

coefficient functions and their derivatives. For estimating the regression coefficient

functions, the ARE has a sharp lower bound of 88.96%, which implies that the

efficiency loss is at most 11.04% in the worst case scenario. For estimating the first

derivative of the regression coefficient functions, the ARE possesses a lower bound

of 89.91%. Kim (2007) developed a quantile regression procedure for varying co-

efficient models when the random errors are assumed to have a certain quantile

equal to zero. She used the regression splines method and derived the convergence

rate, but the lack of an asymptotic normality result does not allow the comparison

of the relative efficiency. On the other hand, one may extend the local quantile

regression approach (Yu and Jones 1998) to the varying coefficient models. How-

ever, this is expected to yield an estimator which still suffers from loss of efficiency

and may have near zero ARE relative to the local linear least squares estimator in

the worst case scenario.

The new estimator proposed in this chapter minimizes a convex objective

function based on local ranks. The implementation of the minimization can be con-

veniently carried out using existing functions in the R statistical software package

via a simple algorithm (§4.1). The objective function has the form of a generalized

U -statistic whose kernel varies with the sample size. Under some mild conditions,

we establish the asymptotic representation of the proposed estimator and further

prove its asymptotic normality. We derive the formula of the asymptotic relative

efficiency of the local rank estimator relative to the local linear least squares es-

timator, which confirms the efficiency advantage of the local rank approach. We
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also extend a resampling approach, which perturbs the objective function repeat-

edly, to the generalized U-statistics setting; and demonstrate that it can accurately

estimate the asymptotic covariance matrix.

This chapter is organized as follows. Section 2 presents the local rank pro-

cedure for estimating the varying coefficient models. Section 3 discusses its large

sample properties and proposes a resampling method for estimating the asymptotic

covariance matrix. In Section 4, we address issues related to practical implemen-

tation and present Monte Carlo simulation results. We further illustrate the pro-

posed procedure via analyzing an environmental data set. Regularity conditions

and technical proofs are presented in Section 5.

5.2 Local rank estimation procedure

Let Y be a response variable, and U and X be the covariates. The varying

coefficient model is defined by

Y = a
0
(U) + X

T
a(U) + ε, (5.1)

where a
0
(·) and a(·) are both unknown smooth functions. In this chapter, it

is assumed that U is a scalar and X is a p-dimensional vector. The proposed

procedures can be extended to the case of multivariate U with more complicated

notations by following the same idea in this chapter.

Suppose that {U
i
,X

i
, Y

i
}, i = 1, . . . , n, is a random sample from model

(5.1). Write X
i
= (X

i1
, . . . , X

ip
)
T

and a(·) = (a
1
(·), . . . , a

p
(·))T

. For u in a neigh-

borhood of any given u
0
, we locally approximate the coefficient function by a Taylor

expansion

a
m

(u) ≈ a
m

(u
0
) + a

′
m

(u
0
)(u− u

0
), m = 0, 1, . . . , p. (5.2)
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Denote α
1

= a
0
(u

0
), α

2
= a

′
0
(u

0
), β

m
= a

m
(u

0
) and β

p+m
= a

′
m

(u
0
), for m =

1, . . . , p. Based on the above approximation, we obtain the residual for estimating

Y
i
at U

i
= u

0

e
i
= Y

i
− α

1
− α

2
(U

i
− u

0
)−

p∑
m=1

[
β

m
+ β

p+m
(U

i
− u

0
)
]
X

im
. (5.3)

We define the local rank objective function to be

Q
n
(β, α

2
) =

1

n(n− 1)

∑
1≤i,j≤n

|e
i
− e

j
|K

h
(U

i
− u

0
)K

h
(U

j
− u

0
), (5.4)

where β = (β
1
, . . . , β

p
, β

p+1
, . . . , β

2p
)
T
, and for a given kernel function K(·) and a

bandwidth h, K
h
(t) = h

−1
K(t/h). Note that Q

n
(β, α

2
) does not depend on α

1

because α
1

is canceled out in e
i
− e

j
. The objective function Q

n
(β, α

2
) is a local

version of Gini’s mean difference, which is a classical measure of concentration or

dispersion (David 1998). Without the kernel functions, [n(n− 1)]
−1 ∑

1≤i,j≤n
|e

j
−

e
j
| is the global rank objective function that leads to the classical rank estimator

in linear models based on Wilcoxon scores. Rank-based statistical procedures have

played a fundamental role in nonparametric analysis of linear models due to their

high efficiency and robustness. We refer to the review paper of McKean (2004) for

many useful references.

For any given u
0
, minimizing Q

n
(β, α

2
) yields the local Wilcoxon rank esti-

mator for (β
T

0
, α

2
)
T
, where β

0
= β(u

0
) = (a

1
(u

0
), . . . , a

p
(u

0
), a

′
1
(u

0
), . . . , a

′
p
(u

0
))

T
.

Denote the minimizer of Q
n
(β, α

2
) by (β̂

T
, α̂

2
)
T
. Then for m = 1, · · · , p,

â
m

(u
0
) = β̂

m
, â

′
m

(u
0
) = β̂

p+m
and â

′
0
(u

0
) = α̂

2
,

In the sequel, we also use the vector notation â(u
0
) = (â

1
(u

0
), · · · , â

p
(u

0
))

T
and

â
′
(u

0
) = (â

′
1
(u

0
), · · · , â

′
p
(u

0
))

T
.
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The location parameter a
0
(u

0
) needs to be estimated separately. This is

analogous to the scenario of global rank estimation of the intercept in a linear

regression model. In order to make the intercept identifiable, it is essential to have

additional location constraints on the random errors. We adopt the commonly

used constraint that ε
i
has median zero. Given (β̂

T
, α̂

2
)
T
, we estimate a

0
(u

0
) by

α̂
1
, the value of α

1
that minimizes

n
−1

n∑
i=1

∣∣∣Yi
− α

1
− α̂

2
(U

i
− u

0
)−

p∑
i=1

[
β̂

m
+ β̂

p+m
(U

i
− u

0
)
]
X

im

∣∣∣Kh
(U

i
− u

0
), (5.5)

which is a local version of a weighted L
1
-norm objective function.

5.3 Theoretical properties

5.3.1 Large sample distributions

In this subsection, we investigate the asymptotic properties of β̂ and α̂
2
.

The main challenge comes from the non-smoothness of the objective function

Q
n
(β, α

2
). To overcome this difficulty, we first derive an asymptotic representation

of β̂ and α̂
2

via a quadratic approximation of Q
n
(β, α

2
), which holds uniformly

in a local neighborhood of the true parameter values. Aided by this asymptotic

representation, we further establish the asymptotic normality of the local rank

estimator.

Let us begin with some new notation. Let γ
n

= (nh)
−1/2

, and define

β
∗

= γ
−1

n

(
β

1
− a

1
(u

0
), . . . , β

p
− a

p
(u

0
), h(β

p+1
− a

′
1
(u

0
)), . . . , h(β

2p
− a

′
p
(u

0
))

)T
,

α
∗

=
(
α
∗
1
, α

∗
2

)T
= γ

−1

n
(α

1
− a

0
(u

0
), h(α

2
− a

′
0
(u

0
)))

T
,

∆
i
(u

0
) =

p∑
m=1

[
a

m
(U

i
)− a

m
(u

0
)− a

′
m

(u
0
)(U

i
− u

0
)
]
X

im

+
[
a

0
(U

i
)− a

0
(u

0
)− a

′
0
(u

0
)(U

i
− u

0
)
]
.
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Let (β̂
∗T
n

, α̂
∗
2n

)
T

be the value of (β
∗T

, α
∗
2
)
T

that minimizes the following

reparametrized objective function

Q
∗
n
(β

∗
, α

∗
2
) =

1

n(n− 1)

∑
1≤i,j≤n

∣∣∣
(
ε
i
− γ

n
α
∗
2
(U

i
− u

0
)/h− γ

n
β
∗T

Z
i
+ ∆

i
(u

0
)
)

(5.6)

−(
ε
j
− γ

n
α
∗
2
(U

j
− u

0
)/h− γ

n
β
∗T

Z
j
+ ∆

j
(u

0
)
)∣∣∣Kh

(U
i
− u

0
)K

h
(U

j
− u

0
),

where Z
i
=

(
X

T

i
, ((U

i
− u

0
)/h)X

T

i

)T
. Let H = diag(1, h) ⊗ I

p
, where ⊗ denotes

the operation of Kronecker product and I
p

denotes a p× p identity matrix. Then

it can be easily seen that

β̂
∗
n

=
√

nhH(β̂ − β
0
) and α̂

∗
2n

=
√

nh3
[
α̂

2
− a

′
0
(u

0
)
]
.

We next show that the non-smooth function Q
∗
n
(β

∗
, α

∗
2
) can be locally ap-

proximated by a quadratic function of (β
∗T

, α
∗
2
)
T
. Let µ

i
=

∫
t
i
K(t)dt, i = 1, 2,

and ν
i

=
∫

t
i
K

2
(t)dt, i = 0, 1, 2. In this chapter we assume that the kernel

function K(·) is symmetric. This is not restrictive considering that most of the

commonly used kernel functions, such as the Epanechnikov kernel K(t) = 0.75(1−
t
2
)I(|t| < 1), are symmetric. We use S

n
(β

∗
, α

∗
2
) =

(
S

T

n1
(β

∗
, α

∗
2
), S

n2
(β

∗
, α

∗
2
)
)T

to

denote the gradient function of Q
∗
n
(β

∗
, α

∗
2
), i.e., S

n1
(β

∗
, α

∗
2
) = ∇β∗Q

∗
n
(β

∗
, α

∗
2
) and

S
n2

(β
∗
, α

∗
2
) = ∇

α∗
2

Q
∗
n
(β

∗
, α

∗
2
). More specifically,

S
n1

(β
∗
, α

∗
2
) = 2γ

n
[n(n− 1)]

−1
∑

i6=j

[
I
(
ε
i
− γ

n
α
∗
2
(U

i
− u

0
)/h− γ

n
β
∗T

Z
i
+ ∆

i
(u

0
) ≤ ε

j

−γ
n
α
∗
2
(U

j
− u

0
)/h− γ

n
β
∗T

Z
j
+ ∆

j
(u

0
)
)− 1/2

]
(Z

i
− Z

j
)K

h
(U

i
− u

0
)K

h
(U

j
− u

0
)

and

S
n2

(β
∗
, α

∗
2
) = 2γ

n
[n(n− 1)]

−1
∑

i6=j

[
I
(
ε
i
− γ

n
α
∗
2
(U

i
− u

0
)/h− γ

n
β
∗T

Z
i
+ ∆

i
(u

0
) ≤ ε

j

−γ
n
α
∗
2
(U

j
− u

0
)/h− γ

n
β
∗T

Z
j
+ ∆

j
(u

0
)
)− 1/2

]
((U

i
− U

j
)/h)K

h
(U

i
− u

0
)K

h
(U

j
− u

0
).
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Furthermore, we consider the following quadratic function of (β
∗T

, α
∗
2
)
T
:

B
n
(β

∗
, α

∗
2
) = γ

−1

n
(β

∗T
, α

∗
2
)


 S

n1
(0, 0)

S
n2

(0, 0)


 +

1

2
γ

n
(β

∗T
, α

∗
2
)A


 β

∗

α
∗
2




+γ
−1

n
Q
∗
n
(0, 0), (5.7)

where

A = 4τf
2
(u

0
)




Σ(u
0
) 0 0

0 µ
2
Σ(u

0
) 0

0 0 µ
2


 , (5.8)

Σ(u
0
) = E[X

i
X

T

i
|U

i
= u

0
], 0 denotes a matrix (or vector) of zeroes whose dimen-

sion is determined by the context, τ =
∫

g
2
(t)dt is the Wilcoxon constant, and g(·)

is the density function of the random error ε.

Lemma 5.1. Suppose that Conditions (C1)—(C4) in the Appendix hold. Then

∀ ε > 0, ∀ c > 0,

P


 sup
‖(β∗T

,α∗
2
)‖≤c

∣∣∣γ−1

n
Q
∗
n
(β

∗
, α

∗
2
)−B

n
(β

∗
, α

∗
2
)
∣∣∣ ≥ ε


 → 0,

where || · || denotes the Euclidean norm.

Lemma 5.1 implies that the non-smooth objective function Q
∗
n
(β

∗
, α

∗
2
) can

be uniformly approximated by a quadratic function B
n
(β

∗
, α

∗
2
) in a neighborhood

around 0. In the appendix, it is also shown that the minimizer of B
n
(β

∗
, α

∗
2
) is

asymptotically within a o(1) neighborhood of (β̂
∗T
n

, α̂
∗
n2

)
T
. This further allows us

to derive the asymptotic distribution.

The local linear Wilcoxon estimator of a(u
0
) =

(
a

1
(u

0
), . . . , a

p
(u

0
)
)T

is

â(u
0
). The theorem below provides an asymptotic representation of â(u

0
) and the
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asymptotic normal distribution. Let S
n1

(0, 0) = (S
T

n11
(0, 0), S

T

n12
(0, 0))

T
, where

S
n11

(0, 0) and S
n12

(0, 0) are both p× 1 vectors.

Theorem 5.2. Suppose that Conditions (C1)—(C4) in the Appendix hold. Then

we have the asymptotic representation

√
nh

[
â(u

0
)− a(u

0
)
]

= −γ
−2

n
[4τf

2
(u

0
)Σ(u

0
)]
−1

S
n11

(0, 0) + o
P
(1), (5.9)

where f(u) is the density function of U . Furthermore,

√
nh

[
â(u

0
)− a(u

0
)− µ

2

2
a
′′
(u

0
)h

2
+ o(h

2
)
]
→ N

(
0,

ν
0

12τ 2f(u
0
)
Σ
−1

(u
0
)

)
(5.10)

in distribution, where a
′′
(u

0
) = (a

′′
1
(u

0
), . . . , a

′′
p
(u

0
))

T
.

Remark. For the estimators of the derivatives of the coefficient functions,

we have the following asymptotic representations:

√
nh3

[
α̂

2
− a

′
0
(u

0
)
]

= −γ
−2

n
[4τf

2
(u

0
)µ

2
]
−1

S
n2

(0, 0) + o
P
(1), (5.11)

√
nh3

[
â
′
(u

0
)− a

′
(u

0
)
]

= −γ
−2

n
[4τf

2
(u

0
)µ

2
Σ(u

0
)]
−1

S
n12

(0, 0) + o
P
(1). (5.12)

Following a similar proof to that for Theorem 5.2 in the appendix, it can be shown

that
√

nh3
[
α̂

n2
− a

′
0
(u

0
)
]

and
√

nh3
[
â
′
(u

0
)− a

′
(u

0
)
]

are both asymptotically nor-

mal. The proof of the asymptotic normality of α̂
2

and â
′
(u

0
) is given in Appendix

B.

5.3.2 Asymptotic relative efficiency

We now compare the estimation efficiency of the local rank estimator (de-

noted by â
R
(u

0
)) with that of the local linear least squares estimator (denoted

by â
LS

(u
0
)) for estimating a(u

0
) in the varying coefficient model. To measure ef-

ficiency, we consider both the asymptotic mean squared error (MSE) at a given
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u
0

and the asymptotic mean integrated squared error (MISE) to assess the global

performance. When evaluating both criteria, we plug in the theoretical optimal

bandwidth.

Zhang and Lee (2000) gives the asymptotic MSE of â
LS

(u
0
) for estimating

a(u
0
):

MSE
LS

(h; u
0
) = E‖â

LS
(u

0
)− a(u

0
)‖2

=
µ

2

2
‖a′′(u

0
)‖2

4
h

4
+

ν
0
σ

2

f(u
0
)
tr{Σ−1

(u
0
)} 1

nh
,

where σ
2

= var(ε) is assumed to be finite and positive. Thus, the theoretical

optimal bandwidth, which minimizes the asymptotic MSE of â
LS

(u
0
), is

h
opt

LS
(u

0
) =

[
ν

0
σ

2
tr{Σ−1

(u
0
)}

µ2

2
‖a′′(u

0
)‖2f(u

0
)

]
1/5

n
−1/5

. (5.13)

From (5.10), the asymptotic MSE of the local rank estimator â
R
(u

0
) is

MSE
R
(h; u

0
) = E‖â

R
(u

0
)− a(u

0
)‖2

=
µ

2

2
‖a′′(u

0
)‖2

4
h

4
+

ν
0

12τ 2f(u
0
)
tr{Σ−1

(u
0
)} 1

nh
.

The theoretical optimal bandwidth for the local rank estimator thus is

h
opt

R
(u

0
) =

[
ν

0
tr{Σ−1

(u
0
)}

12τ 2µ2

2
‖a′′(u

0
)‖2f(u

0
)

]
1/5

n
−1/5

. (5.14)

This allows us to calculate the local asymptotic relative efficiency.

Theorem 5.3. The asymptotic relative efficiency of the local rank estimator to

the local linear least squares estimator for a(u
0
) is

ARE(u
0
) =

MSE
LS
{hopt

LS
(u

0
), u

0
}

MSE
R
{hopt

R
(u

0
), u

0
} = (12σ

2
τ

2
)
4/5

.
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This asymptotic relative efficiency has a lower bound of 0.8896, which is attained

at the random error density f(t) = 3
20
√

5
(5− x

2
)I(|x| ≤ 5).

Remark. Alternatively, we may consider relative efficiency obtained by com-

paring the MISE, which is defined as MISE(h) =
∫

E‖â(u)− a(u)‖2
w(u) du with

a weight function w(·). This provides a global measurement. Interestingly, it leads

to the same relative efficiency. This can be easily seen by noting that the theoret-

ical optimal global bandwidths for the local linear least squares estimator and the

local rank estimator are

h
opt

LS
=

[
ν

0
σ

2 ∫
w(u)tr{Σ−1

(u)}/f(u) du

µ2

2

∫ ‖a′′(u)‖2w(u) du

]
1/5

n
−1/5

(5.15)

and

h
opt

R
=

[
ν

0

∫
w(u)tr{Σ−1

(u)}/f(u) du

12τ 2µ2

2

∫ ‖a′′(u)‖2w(u) du

]
1/5

n
−1/5

, (5.16)

respectively. Thus, with the theoretical optimal bandwidths,

ARE =
MISE

LS
(h

opt

LS
)

MISE
R
(hopt

R
)

= (12σ
2
τ

2
)
4/5

.

Define φ = (12σ
2
τ

2
)
4/5

. Then ARE(u
0
) = ARE = φ.

Note that the above ARE is closely related to the relative efficiency of

the Wilcoxon-Mann-Whitney rank test in comparison with the two-sample t-test.

Table 5.1 depicts the value of φ for some commonly used error distributions. It can

be seen that the desirable high efficiency of traditional rank methods for estimating

a finite-dimensional parameter completely carries over to the local rank method

for estimating an infinite dimensional parameter.

By a similar calculation, we can show that the asymptotic relative efficien-

cies of the local rank estimator to the local linear estimator for a
′
(u

0
) and a

′
(·)
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Table 5.1. Asymptotic relative efficiency

Error Normal Laplace t
3

Exponential Log N Cauchy

φ 0.9638 1.3832 1.6711 2.4082 4.9321 ∞
ψ 0.9671 1.3430 1.5949 2.2233 4.2661 ∞

both equal ψ = (12σ
2
τ

2
)
8/11

, which has a lower bound of 0.8991. This value is also

reported in Table 1 for some common error distributions.

5.3.3 Asymptotic normality of α̂
1

Following (5.5), α̂
∗
1

=
√

nh{α̂
1
− a

0
(u

0
)} is the value of α

∗
1

that minimizes

Q
∗
n0

(α
∗
1
, α̂

2
, β̂) = n

−1
n∑

i=1

∣∣∣εi
− γ

n
α
∗
1
− (α̂

2
− a

′
0
(u

0
))(U

i
− u

0
)

−
p∑

m=1

[
(β̂

m
− a

m
(u

0
)) + (β̂

p+m
− a

′
m

(u
0
))(U

i
− u

0
)
]
X

im
+ ∆

i
(u

0
)
∣∣∣Kh

(U
i
− u

0
).

Similarly to Lemma 5.1, we can show that the following local quadratic

approximation holds uniformly in a neighborhood around 0:

γ
−1

n
Q
∗
n0

(α
∗
1
, α̂

2
, β̂) = γ

−1

n
α
∗
1
S

n0
+ γ

n
g(0)f(u

0
)α

∗2
1

+ γ
−1

n
Q
∗
n0

(0, a
′
0
(u

0
),β

0
) + o

p
(1),

where

S
n0

= 2γ
n
n
−1

n∑
i=1

[I(ε
i
≤ −∆

i
(u

0
))− 1/2]K

h
(U

i
− u

0
). (5.17)

This allows us to further establish an asymptotic representation of α̂
1
:

√
nh(α̂

1
− a

0
(u

0
)) = −γ

−2

n
[2g(0)f(u

0
)]
−1

S
n0

+ o
p
(1). (5.18)
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The theorem below gives the asymptotic distribution of α̂
1
.

Theorem 5.4. Under the conditions of Theorem 5.2, we have

√
nh

[
α̂

1
− a

0
(u

0
)−

µ
2
a
′′
0
(u

0
)

2
h

2
+ o(h

2
)

]
→ N

(
0,

[
12g

2
(0)f(u

0
)
]−1

ν
0

)
.

5.3.4 Estimation of the standard errors

To make a statistical inference based on the local rank methodology, one

needs to estimate the standard error of the resulting estimator. As indicated

by Theorem 5.2, the asymptotic covariance matrix of the local rank estimator

is rather complex and involves unknown functions. Here we propose a standard

error estimator using a simple resampling method proposed by Jin, Ying, and Wei

(2001).

Let V
1
, . . . , V

n
be independent and identically distributed nonnegative ran-

dom variables with mean 1/2 and variance 1. We consider a stochastic perturbation

of (5.4):

Q
n
(β, α

2
) =

1

n(n− 1)

∑
1≤i,j≤n

(V
i
+ V

j
)|e

i
− e

j
|K

h
(U

i
− u

0
)K

h
(U

j
− u

0
), (5.19)

where e
i

is defined in (5.3). Note that in Q
n
(β, α

2
) the data {Y

i
, U

i
,X

i
} are

considered to be fixed, and the randomness comes from the V
i
’s. Let (β

T
, α

2
)
T

be

the value of (β
T
, α

2
)
T

that minimizes Q
n
(β, α

2
). It is easy to obtain (β

T
, α

2
)
T

by

applying a simple algorithm described in Section 3.1.

Jin, Ying, and Wei (2001) established the validity of the resampling method

when the objective function has a U -statistic structure. Although their theory

covers many important applications, they require that the U -statistic has a fixed

kernel. We extend their result to our setting, where the U -statistic involves a

variable kernel due to nonparametric smoothing. Let a(u
0
) be the local rank

estimator of a(u
0
) based on the perturbed objective function (5.19), i.e., it is the
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subvector that consists of the first p components of β. Its asymptotic normality is

given in the theorem below.

Theorem 5.5. Under the conditions of Lemma 5.1, conditional on almost surely

every sequence of data {Y
i
, U

i
,X

i
} ,

√
nh

[
a(u

0
)− â(u

0
)
] → N

(
0,

ν
0

12τ 2f(u
0
)
Σ
−1

(u
0
)

)

in distribution.

This theorem suggests that to estimate the asymptotic covariance matrix

of â(u
0
), one can repeatedly perturb (5.4) by generating a large number of in-

dependent random samples {V
i
}n

i=1
. For each perturbed objective function, one

solves for a(u
0
). The sample covariance matrix of a(u

0
) based on a large number

of independent perturbations provides a good approximation. The accuracy of the

resulting standard error estimate will be tested in the next section.

The perturbed estimator has conditional bias equal to zero. It has been

found that a standard bootstrap method, which resamples from the empirical

distribution of the data, also estimates the bias as zero when estimating nonpara-

metric curves (Hall and Kang 2001). It is possible to use a more delicate bootstrap

technique to estimate the bias of a nonparametric curve estimator. Although some

of the ideas may be adapted to the method of perturbing the objective function,

this is beyond the scope of our research and is not pursued further here.

5.4 Numerical studies

5.4.1 A pseudo-observation algorithm

The local rank estimator can be obtained by applying an efficient and reli-

able algorithm. Note that the local rank estimator of (β
T

0
, a
′
0
(u

0
))

T
can be found

by fitting a weighted L
1

regression on n(n−1)
2

pseudo observations (x
∗
i
−x

∗
j
, Y

i
−Y

j
)



147

with weights w
ij

= K
(
(U

i
−u

0
)/h

)
K

(
(U

j
−u

0
)/h

)
, where x

∗
i

= (U
i
−u

0
, X

T

i
, (U

i
−

u
0
)X

T

i
)
T
, 1 ≤ i < j ≤ n. Given (β̂

T
, α̂

2
)
T
, the estimator of a

0
(u

0
) can be obtained

by another weighted L
1

regression on (1, Y
i
− α̂

2
(U

i
−u

0
)−∑p

m=1

[
β̂

m
+ β̂

p+m
(U

i
−

u
0
)
]
X

im
) with weights w

i
= K

(
(U

i
− u

0
)/h

)
, 1 ≤ i ≤ n. Many statistical software

packages can implement weighted L
1

regression. In our numerical studies, we use

the function “rq” in the R package quantreg.

5.4.2 Bandwidth selection

Bandwidth selection is an important issue for all statistical models that in-

volve nonparametric smoothing. Although we have derived the theoretical optimal

bandwidth for the local rank estimator in (5.14) and (5.16), it is difficult to use

the “plug-in” method to estimate it due to many unknown quantities.

We propose below an alternative bandwidth selection method that is prac-

tically feasible. This approach is based on the relationship between h
opt

R
and h

opt

LS
.

From Section 2.3, we see that

h
opt

R
(u

0
) =

(
1

12τ 2σ2

)
1/5

h
opt

LS
(u

0
) and h

opt

R
=

(
1

12τ 2σ2

)
1/5

h
opt

LS
. (5.20)

Thus, we can first use existing bandwidth selectors (e.g. Zhang and Lee 2000) to

estimate h
opt

LS
(u

0
) or h

opt

LS
, and then use the residuals from local least squares fitting

to estimate σ
2

and τ . See Hettmansperger and McKean (1998, p.181) for more

details on how to estimate τ , which can be obtained by the function “wilcoxontau”

in the R software developed by Terpstra and McKean (2005). In the end, we

plug these estimators into (5.20) to get the selected bandwidth for the local rank

estimator.
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5.4.3 Examples

We conduct Monte Carlo simulations to access the finite sample performance

of the proposed procedures and illustrate the proposed methodology by an analysis

of a real environmental data set. In the analysis, the Epanechnikov kernel K(u) =

.75(1− u
2
)I(|u| < 1) is used.

Example 5.4.1. We generate random data from

Y = a
0
(U) + a

1
(U)X

1
+ a

2
(U)X

2
+ ε,

where a
0
(U) = exp(2U −1), a

1
(U) = 8U(1−U) and a

2
(U) = 2 sin

2
(2πU). The co-

variate U follows a uniform distribution on [0, 1], and is independent from (X
1
, X

2
),

where the covariates X
1

and X
2

are standard normal random variables with cor-

relation coefficient 2
−1/2

. The coefficient functions and the mechanism to generate

U and (X
1
, X

2
) were used in Cai, Fan, and Li (2000). In this example, we consider

six error distributions: N(0, 1), Laplace, standard Cauchy, t-distribution with 3

degrees of freedom, mixture of normals 0.9N(0, 1) + 0.1N(0, 10
2
), and lognormal

distribution. Except for the Cauchy error, all other error distributions are stan-

dardized to have median 0 and variance 1. To make a fair comparison with the

local least squares method, we set the bandwidth to be the theoretical optimal

value h
opt

for both the local rank estimator and the local least squares estimator.

Optimal bandwidths are calculated using (5.15) and (5.16). To demonstrate that

the proposed methodology performs well with a wide range of bandwidths, we also

consider the undersmoothing case by setting the bandwidth to be 0.5h
opt

and the

oversmoothing scenario by taking the bandwidth to be 2h
opt

. In our simulation,

we consider the sample sizes n =400 and 800, and we conduct 400 simulations for

each case.

We compare the performance of the proposed local rank estimate with the

local least squares estimate using the square root of average squared errors (RASE),
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defined by

RASE =





1

ngrid

p∑
m=1

ngrid∑

k=1

{â
m

(u
k
)− a

m
(u

k
)}2





1/2

,

where {u
k

: k = 1, · · · , ngrid} is a set of grid points uniformly placed on [0, 1] with

ngrid = 200.

Table 5.2. Summary of the RASE over 400 simulations. LS denotes the local
least squares estimator and R denotes the local rank estimator.

h Normal Laplace Cauchy t
3

Mixture Log-Normal

n = 400

.5h
opt

LS .431(.079) .423(.085) 32.4(173) .419(.136) .423(.121) .425(.215)
R .450(.088) .420(.094) .968(.549) .382(.098) .343(.333) .405(.342)

h
opt

LS .311(.066) .307(.068) 21.7(109) .304(.108) .305(.087) .296(.117)
R .321(.069) .280(.064) .564(.169) .249(.053) .161(.060) .191(.101)

2h
opt

LS .404(.052) .400(.052) 14.6(58.0) .400(.068) .399(.057) .398(.071)
R .402(.053) .344(.048) .597(.103) .313(.043) .194(.026) .205(.037)

n = 800

.5h
opt

LS .295(.045) .298(.051) 19.1(5.59) .288(.083) .296(.059) .289(.072)
R .303(.046) .277(.045) .548(.126) .243(.038) .164(.054) .187(.035)

h
opt

LS .225(.044) .223(.043) 13.8(38.3) .217(.063) .224(.047) .222(.058)
R .230(.045) .199(.040) .386(.091) .176(.033) .106(.020) .119(.023)

2h
opt

LS .313(.036) .312(.036) 1.57(31.1) .310(.041) .313(.036) .313(.040)
R .312(.037) .267(.035) .470(.063) .242(.028) .147(.017) .152(.019)

The sample mean and the sample standard deviation of the RASEs over 400

simulations are presented in Table 5.2, in which the value in the parenthesis is the

standard deviation. Table 5.2 clearly demonstrates that the local rank estimator

performs almost as well as the local least squares estimator when the random

error is normally distributed; and has smaller RASE than the local least squares

estimator for other error distributions. The efficiency gain can be substantial. For
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example, for the mixture error distribution, the observed relative efficiency of the

local rank estimator to the local least squares estimator is (0.305/0.161)
2

= 3.5888

for n = 400, and is (0.224/0.106)
2

= 4.4656 for n = 800. Note that for the Cauchy

random error, the local least squares method yields an inconsistent estimator,

however the local rank estimator still results in a
√

n-consistent estimator. This

explains why the RASE of the local least squares estimator is very large.
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Fig. 5.1. Plots of estimated coefficient functions for a typical data set

Figure 5.1 depicts the estimated coefficient functions for the normal random

error and the mixture random error for a typical sample, which is selected in such

a way that its RASE value is the median of the 400 RASE values. From Figure 5.1

(a) and (c), it can be seen that the resulting local least squares estimator and the

local rank estimator are almost identical when the random error is normal. From
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Figure 5.1 (b) and (d), we observe that the bias of the local rank estimator is

smaller than that of the local least squares estimator. Furthermore, the local rank

estimator can improve over the local least squares estimator in terms of variance,

as shown in Figure 5.2, which plots the estimated coefficient functions for all 400

simulations when the random error has a mixture of normals distribution.
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Fig. 5.2. (a) and (c) are plots of 400 local least squares estimators of a
1
(·) and

a
2
(·) over 400 simulations, respectively. (b) and (d) are plots of 400 local rank

estimators of a
1
(·) and a

2
(·), respectively.

We now test the accuracy of the standard error estimator proposed in Sec-

tion 2.5. We randomly perturb the objective function 1000 times; each time the

random variables V
i
in (5.19) are generated from the Gamma(0.25, 2) distribution.

Table 5.3 summarizes the simulation results at three points, u
0

= 0.25, 0.50 and

0.75. In the table, ‘SD’ denotes the standard deviation of 400 estimated â
m

(u
0
)

and can be regarded as the true standard error; ‘SE(std(SE))’ denotes the mean
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Table 5.3. Standard deviations of the local rank estimators with n = 400

â
1
(u) â

2
(u)

Error u
0

SD SE(Std(SE)) SD SE(Std(SE))

Normal 0.25 0.189 0.159(0.032) 0.197 0.160(0.032)
0.5 0.183 0.159(0.030) 0.180 0.162(0.031)
0.75 0.191 0.162(0.033) 0.195 0.163(0.032)

Laplace 0.25 0.175 0.151(0.037) 0.174 0.151(0.037)
0.5 0.168 0.153(0.039) 0.173 0.154(0.039)
0.75 0.168 0.150(0.037) 0.177 0.150(0.037)

Mixture 0.25 0.095 0.107(0.051) 0.092 0.107(0.049)
0.5 0.095 0.109(0.057) 0.091 0.109(0.055)
0.75 0.095 0.108(0.061) 0.093 0.109(0.055)

t
3

0.25 0.144 0.137(0.039) 0.145 0.138(0.036)
0.5 0.148 0.133(0.035) 0.152 0.136(0.037)
0.75 0.158 0.137(0.039) 0.155 0.139(0.042)

Log N 0.25 0.111 0.112(0.047) 0.112 0.114(0.049)
0.5 0.106 0.114(0.047) 0.107 0.119(0.050)
0.75 0.118 0.117(0.058) 0.118 0.120(0.060)
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(standard deviation) of 400 estimated standard errors from the resampling method.

Bandwidths are set to be the optimal ones. Table 5.3 indicates that the proposed

resampling method estimates the standard error very well. The true standard de-

viations all fall within one standard deviation away from the estimated standard

errors.

Example 5.4.2. As an illustration, we apply our proposed procedure to the envi-

ronmental data set analyzed in Fan and Zhang (1999). This data set was collected

in Hong Kong from January 1, 1994 to December 31, 1995. An objective of the

study is to understand the association between levels of pollutants and the number

of total hospital admissions for circulatory and respiratory problems. The covari-

ates considered here are the level of sulfur dioxide (X
1
), the level of nitrogen dioxide

(X
2
) and the level of dust (X

3
), and the response is taken to be the logarithm of

the number of total hospital admissions. A scatter plot of the response variable

over time is shown in Figure 5.3(a). Here we analyze this data set with a varying

coefficient model

Y = a
0
(u) + a

1
(u)X

1
+ a

2
(u)X

2
+ a

3
(u)X

3
+ ε,

where u denotes time and is scaled to the interval [0,1].

We select the bandwidth via the relation (5.20). More specifically, we first

use leave-one-out cross validation to select a bandwidth h
LS

for the local least

squares estimator. We then use the kernel density estimate to infer the error density

f(·) based on the residuals from the local least squares estimator and estimate

(12σ
2
τ

2
)
−1

. This leads to the selected bandwidth for the local rank estimator:

h
R

= 0.06.

The estimated coefficient functions are depicted in Figures 5.3(b), (c) and

(d), where the two dashed curves around the solid line are the estimated function

plus/minus twice the standard errors estimated by the resampling method. These
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(c) â2(u) with pointwise CI

0 0.5 1
−0.01

−0.005

0

0.005

0.01

Time

C
o
effi

ci
en

t
F
u
n
ct

io
n
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Fig. 5.3. (a) Scatterplot of the log of number of total hospital admissions over time,
and the solid curve is an estimator of the expected number of hospital admissions
over time at the average pollutant levels, i.e., â

0
(u)+ â

1
(u)X̄

1
+ â

2
(u)X̄

2
+ â

3
(u)X̄

3
.

(b), (c) and (d) are the estimated coefficient functions via the local rank estimator
for a

k
(·), k = 1, 2, and 3, respectively.
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two dashed lines can be regarded as a pointwise confidence interval with bias

ignored. Figure 5.3(a) indicates a clearly increasing trend with some seasonal

pattern in the number of hospital admissions.

5.5 Proofs

5.5.1 Proofs of the main theorems

We first impose some regularity conditions. These conditions are used to

facilitate the proofs, but may not be the weakest ones.

Regularity conditions:

(C1). Assume that {U
i
,X

i
, Y

i
} are independent and identically distributed from

model (5.1). Furthermore, the random error ε and covariate {U,X} are

independent. Assume that ε has probability density function g(·) which has

finite Fisher information, i.e.,
∫ {g(x)}−1

g
′
(x)

2
dx < ∞; and U has probability

density function f(·).

(C2). The function a
m

(·), m = 0, 1, . . . , p, has continuous second-order derivative

in a neighborhood of u
0

.

(C3). Assume that E(X
i
|U

i
= u

0
) = 0 and that Σ(u) = E(X

i
X

T

i
|U

i
= u) is

continuous at u = u
0
. The matrix Σ(u

0
) is positive definite.

(C4). The kernel function K(·) is symmetric about the origin and has a bounded

support. Assume that h → 0 and nh
2 →∞, as n →∞.

In our proofs, we will use some results on generalized U -statistics, where

the kernel function in the U -statistic is allowed to depend on the sample size n.

The generalized U -statistic has the form U
n

= [n(n − 1)]
−1 ∑∑

i 6=j
H

n
(D

i
, D

j
),

where {D
i
}n

i=1
is a random sample and H

n
is symmetric in its arguments, i.e.,

H
n
(D

i
, D

j
) = H

n
(D

j
, D

i
). In this chapter, D

i
= (X

T

i
, U

i
, ε

i
)
T
. Define r

n
(D

i
) =
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E[H
n
(D

i
, D

j
)|D

i
], r

n
= E[r

n
(D

i
)] and Û

n
= r

n
+ 2n

−1 ∑n

i=1
[r

n
(D

i
)− r

n
]. We will

repeatedly use the following lemma taken from Powell, Stock, and Stoker (1989).

Lemma 5.6. If E[||H
n
(D

i
, D

j
)||2] = o(n), then

√
n(U

n
− Û

n
) = o

p
(1) and U

n
=

r
n

+ o
p
(1).

We need the following two lemmas to prove Lemma 5.1. Denote

A
n11

= 2h
−2

E

{
(Z

i
− Z

j
)(Z

i
− Z

j
)
T
K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}
,

A
n12

= 2h
−2

E

{
(Z

i
− Z

j
)[(U

i
− U

j
)/h]K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}
,

A
n21

= A
T

n12
,

A
n22

= 2h
−2

E

{
[(U

i
− U

j
)
2
/h

2
]K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}
,

and define

A
n

= τ


 A

n11
A

n12

A
n21

A
n22


 .

Lemma 5.7. Suppose that Conditions (C1)—(C4) hold. Then A
n
→ A, where A

is defined in (5.8).

Proof. We can write A
n11

=


 A

1

n11
A

2

n11

A
3

n11
A

4

n11


. Let

A
1

n11
= 2h

−2
E

[
(X

i
−X

j
)(X

i
−X

j
)
T
K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)]
.

Calculating the expectation by conditional on U
i
and U

j
first, A

n11
becomes

2h
−2

∫
E

[
(X

i
−X

j
)(X

i
−X

j
)
T |U

i
= u, U

j
= v

]
K

(
u− u

0

h

)
K

(
v − u

0

h

)
f(u)f(v) du dv.
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Using Condition (C3), straightforward calculation gives A
1

n11
→ 4f

2
(u

0
)Σ(u

0
). Let

A
2

n11
= 2h

−2
E

{
(X

i
−X

j
)
[
X

i
(U

i
− u

0
)/h−X

j
(U

j
− u

0
)/h

]T
K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}
.

Using Condition (C3) and noticing that K(·) is symmetric, it can be shown that

A
2

n11
→ 0. By symmetry, A

3

n11
→ 0. Similarly, we have

A
4

n11
= 2h

−2
E

{
[
X

i
(U

i
− u

0
)/h−X

j
(U

j
− u

0
)/h

][
X

i
(U

i
− u

0
)/h−X

j
(U

j
− u

0
)/h

]T

K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}

→ 4f
2
(u

0
)Σ(u

0
)µ

2
.

Thus A
n11

→ 4f
2
(u

0
)Σ(u

0
)


 I

p
0

0 µ
2
I
p


. Similarly, we can show that A

n12
=

A
T

n21
→ 0, and

A
n22

= 2

∫
(t

1
− t

2
)
2
K(t

1
)K(t

2
)f(u

0
+ t

1
h)f(u

0
+ t

2
h)dt

1
dt

2
→ 4f

2
(u

0
)µ

2
. ¤

Lemma 5.8. Under Conditions (C1)—(C4), we have

γ
−1

n
[S

n
(β

∗
, α

∗
2
)− S

n
(0, 0)] = γ

n
A


 β

∗

α
∗
2


 + o

p
(1).

Proof. Let U
n

= γ
−1

n
[S

n
(β

∗
, α

∗
2
)−S

n
(0, 0)]. Write U

n
= [n(n−1)]

−1 ∑∑
i6=j

W
n
(D

i
, D

j
),

where

W
n
(D

i
, D

j
) = 2

[
I

(
ε
i
− γ

n
α
∗
2
(U

i
− u

0
)/h− γ

n
β
∗T

Z
i
+ ∆

i
(u

0
) ≤ ε

j
− γ

n
α
∗
2
(U

j
− u

0
)/h

−γ
n
β
∗T

Z
j
+ ∆

j
(u

0
)
)
− 1/2

]

 Z

i
− Z

j

(U
i
− U

j
)/h


 K

h
(U

i
− u

0
)K

h
(U

j
− u

0
).
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Let H
n
(D

i
, D

j
) = [W

n
(D

i
, D

j
)+W

n
(D

j
, D

i
)]/2, then U

n
= [n(n−1)]

−1 ∑∑
i 6=j

H
n
(D

i
, D

j
)

has the form of a generalized U -statistic. We next check the condition of Lemma 5.6.

Note that

E[||H
n
(D

i
, D

j
)||2] ≤ 1

2
E[||W

n
(D

i
, D

j
)||2]+1

2
E[||W

n
(D

i
, D

j
)||2] = E[||W

n
(D

i
, D

j
)||2].

Furthermore,

E[||W
n
(D

i
, D

j
)||2]

≤ 4h
−4

E
{[

(Z
i
− Z

j
)
T
(Z

i
− Z

j
) + [(U

i
− U

j
)/h]

2
]
K

2
(

U
i
− u

0

h

)
K

2
(

U
j
− u

0

h

)}

= O(h
−2

) = o(n)

as nh
2 → ∞ by assumption. Thus, by Lemma 5.6, U

n
= E[H

n
(D

i
, D

j
)] + o

p
(1).

Note that E[H
n
(D

i
, D

j
)] = E[W

n
(D

i
, D

j
)]. Thus,

E[H
n
(D

i
, D

j
)]

= 2h
−2

E

{∫ [
G

(
ε + ∆

j
(u

0
)−∆

i
(u

0
)− γ

n
α
∗
2
(U

j
− U

i
)/h− γ

n
β
∗T

(Z
j
− Z

i
)
)
−G(ε)

]

g(ε)dε


 Z

i
− Z

j

(U
i
− U

j
)/h


 K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}

= 2h
−2

γ
n
E

{∫
g

[
ε + ∆

j
(u

0
)−∆

i
(u

0
)
]
g(ε)dε


 Z

i
− Z

j

(U
i
− U

j
)/h




(
Z

T

i
− Z

T

j
, (U

i
− U

j
)/h

)
K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)} 
 β

∗

α
∗
2


 (1 + o(1))

= γ
n
A

n


 β

∗

α
∗
2


 {1 + o(1)}.

The proof is completed by using Lemma 5.7. ¤
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Proof of Lemma 5.1. In view of Lemma 5.8, it follows that

5
[
γ
−1

n
Q
∗
n
(β

∗
, α

∗
2
)−B

n
(β

∗
, α

∗
2
)
]

= γ
−1

n
[S

n
(β

∗
, α

∗
2
)−S

n
(0, 0)]−γ

n
A


 β

∗

α
∗
2


 = o

p
(1).

The proof follows along the same lines as the proof of Theorem A.3.7. of Hettmansperger

and McKean (1998), which uses a “diagonal subsequencing” argument and prop-

erties of convex functions. ¤
Proof of Theorem 5.2. By Lemma 5.1, γ

−1

n
Q
∗
n
(s

1
, s

2
) = B

n
(s

1
, s

2
) + r

n
(s

1
, s

2
),

where r
n
(s

1
, s

2
)

p→ 0 uniformly over any bounded set. Note that γ
−1

n
Q
∗
n
(s

1
, s

2
) is

minimized by
(
β̂
∗T
n

, α̂
∗
2n

)T
, and B

n
(s

1
, s

2
) is minimized by

(
β̃
∗T
n

, α̃
∗
2n

)T
=

−γ
−2

n
A
−1

(S
T

n1
(0, 0), S

n2
(0, 0))

T
. We first establish the asymptotic representation

by following a similar argument to Hjort and Pollard (1993). For any constant

c > 0, define

T
n

= inf
||(sT

1
,s2)−(β̃

∗T

n
,α̃∗

2n
)||=c

B
n
(s

1
, s

2
)−B

n
(β̃

∗
n
, α̃

∗
2n

)

R
n

= sup

||(sT

1
,s2)−(β̃

∗T

n
,α̃∗

2n
)||≤c

|γ−1

n
Q
∗
n
(s

1
, s

2
)−B

n
(s

1
, s

2
)|,

then R
n

p→ 0 as n → ∞. Let (s
T

1
, s

2
)
T

be an arbitrary point outside the ball
{
(s

T

1
, s

2
)
T

: ||(sT

1
, s

2
)−(β̃

∗T
n

, α̃
∗
2n

)|| ≤ c
}
, then we can write (s

T

1
, s

2
)
T

= (β̃
∗T
n

, α̃
∗
2n

)
T
+

l1
2p+1

, where l > c is a positive constant and 1
d

denotes a unit vector of length d.

Write

c

l

[
γ
−1

n
Q
∗
n
(s

1
, s

2
)− γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

)
]

=
c

l
γ
−1

n
Q
∗
n
(s

1
, s

2
) +

(
1− c

l

)
γ
−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

)− γ
−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

). (5.21)
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By the convexity of γ
−1

n
Q
∗
n
(s

1
, s

2
), we have

c

l

[
γ
−1

n
Q
∗
n
(s

1
, s

2
)− γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

)
]

≥ γ
−1

n
Q
∗
n

(
c

l
(s

1
, s

2
) +

(
1− c

l

)
(β̃

∗
n
, α̃

∗
2n

)

)
− γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

). (5.22)

Thus,

c

l

[
γ
−1

n
Q
∗
n
(s

1
, s

2
)− γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

)
] ≥ γ

−1

n
Q
∗
n

(
β̃
∗
n

+ c1
2p

, α̃
∗
2n

+ c
)− γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

)

= B
n
(β̃

∗
n

+ c1
2p

, α̃
∗
2n

+ c) + r
n
(β̃

∗
n

+ c1
2p

, α̃
∗
2n

+ c)−B
n
(β̃

∗
n
, α̃

∗
2n

)− r
n
(β̃

∗
n
, α̃

∗
2n

)

≥ T
n
− 2R

n
.

If R
n
≤ 1

2
T

n
, then γ

−1

n
Q
∗
n
(s

1
, s

2
) > γ

−1

n
Q
∗
n
(β̃

∗
n
, α̃

∗
2n

) for all (s
T

1
, s

2
)
T

outside the

ball. This implies the if R
n
≤ 1

2
T

n
, then the minimizer of γ

−1

n
Q
∗
n

must be inside

the ball. Thus,

P

(
‖(β̃∗T

n
, α̃

∗
2n

)T − (
β̂
∗T
n

, α̂
∗
2n

)T‖ ≥ c

)
≤ P

(
R

n
≥ 1

2
T

n

)
= P

(
R

n
≥ 1

2
λc

2
)
→ 0,

where λ is the smallest eigenvalue of A. Therefore, (β̂
∗T
n

, α̂
∗
2n

)
T

= (β̃
∗T
n

, α̃
∗
2n

)
T

+

o
p
(1). This in particular implies the asymptotic representations (5.9), (5.11) and

(5.12).

We next show the asymptotic normality of â(u
0
). From (5.9), we have

√
nh

(
â(u

0
)− a(u

0
)
)

= −γ
−2

n

(
4τf

2
(u

0
)Σ(µ

0
)
)−1

S
n11

(0, 0) + o
p
(1), (5.23)

where

S
n11

(0, 0) = 2γ
n
[n(n− 1)]

−1
∑

i 6=j

[
I

(
ε
i
+ ∆

i
(u

0
) ≤ ε

j
+ ∆

j
(u

0
)
)
− 1/2

]
(X

i
−X

j
)

K
h
(U

i
− u

0
)K

h
(U

j
− u

0
). (5.24)
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By (5.24), let us rewrite −γ
2

n
S

n11
(0, 0) = S

na1
(0, 0) + S

na2
(0, 0), where

S
na

(0, 0) = 2γ
−1

n
[n(n− 1)]

−1
∑

i6=j

[
I

(
ε
i
≤ ε

j

)
− 1/2

]
(X

j
−X

i
)K

h
(U

i
− u

0
)K

h
(U

j
− u

0
),

S
nb

(0, 0) = 2γ
−1

n
[n(n− 1)]

−1
∑

i6=j

[
I
(
ε
i
+ ∆

i
(u

0
) ≤ ε

j
+ ∆

j
(u

0
)
)− I

(
ε
i
≤ ε

j

)]
(X

j
−X

i
)

K
h
(U

i
− u

0
)K

h
(U

j
− u

0
).

We next prove that

S
na

(0, 0) → N

(
0,

4

3
f

3
(u

0
)ν

0
Σ(u

0
)

)
in distribution. (5.25)

Note that we can write S
na

(0, 0) =
√

n[n(n−1)]
−1 ∑

i6=j
H

n
(D

i
, D

j
), where H

n
(D

i
, D

j
) =

W
n
(D

i
, D

j
) + W

n
(D

j
, D

i
) with

W
n
(D

i
, D

j
) = h

−3/2
[
I

(
ε
i
≤ ε

j

)
− 1/2

]
(X

j
−X

i
)K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)
.

Similarly to the arguments in the proof of Lemma 5.8, it can be shown that

E[||H
n
(D

i
, D

j
)||2] = o(n). By Lemma 5.6, this implies that S

na
(0, 0) = 2n

−1 ∑n

i=1
r
n
(D

i
)+

o
p
(1) since it is easy to check that r

n
= 0. We have

r
n
(D

i
) = E[H

n
(D

i
, D

j
)|D

i
]

= 2h
−3/2[

G(ε
i
)− 1/2

]
K

(
U

i
− u

0

h

)
E

{
(X

i
−X

j
)K

(
U

j
− u

0

h

) ∣∣∣Xi
, U

i
, ε

i

}

= 2h
−1/2

[G(ε
i
)− 1/2]K

(
U

i
− u

0

h

) [(∫
K(t)f(u

0
+ th)dt

)
X

i

−
∫

E(X
j
|U

j
= u

0
+ th)K(t)f(u

0
+ th)dt

]
.
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Furthermore,

E
[
r
n
(D

i
)r

n
(D

i
)
T
]

=
1

3
h
−1

E

{
K

2
(

U
i
− u

0

h

) [ (∫
K(t)f(u

0
+ th)dt

)
X

i

−
∫

E(X
j
|U

j
= u

0
+ th)K(t)f(u

0
+ th)dt

]

[(∫
K(t)f(u

0
+ th)dt

)
X

T

i
−

∫
E(X

T

j
|U

j
= u

0
+ th)K(t)f(u

0
+ th)dt

]}

→ 1

3
f

3
(u

0
)ν

0
Σ(u

0
).

To prove the asymptotic normality of S
na

(0, 0), it is sufficient to check the Lindeberg-

Feller condition: ∀ ε > 0, n
−1 ∑n

i=1
E

{
r
n
(D

i
)r

n
(D

i
)
T
I(||r

n
(D

i
)|| > ε

√
n)

} → 0.

This can be easily verified by applying the dominated convergence theorem.

Next we show that

S
nb

(0, 0) =
2h

2

γ
n

[
τf

2
(u

0
)µ

2
Σ(u

0
)a
′′
(u

0
) + o(1)

]
+ o

p
(1). (5.26)

We may write S
nb

(0, 0) = [n(n − 1)]
−1 ∑

i6=j
H
∗
n
(D

i
, D

j
), where H

∗
n
(D

i
, D

j
) =

W
∗
n
(D

i
, D

j
) + W

∗
n
(D

j
, D

i
) with

W
∗
n
(D

i
, D

j
) = nh

−1
γ

n

[
I

(
ε
i
+ ∆

i
(u

0
) ≤ ε

j
+ ∆

j
(u

0
)
)
− I

(
ε
i
≤ ε

j

)]
(X

j
−X

i
)

K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)
.

Note that

∆
j
(u

0
)−∆

i
(u

0
)

=
1

2

[
(U

j
− u

0
)
2
X

T

j
− (U

i
− u

0
)
2
X

T

i

]
a
′′
(u

0
) +

1

2

[
(U

j
− u

0
)
2 − (U

i
− u

0
)
2
]
a
′′
0
(u

0
)

+o((U
i
− u

0
)
2
) + o((U

j
− u

0
)
2
).
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By applying Lemma 5.6, it can be shown that S
nb

(0, 0) = E[H
∗
n
(D

i
, D

j
)] + o

p
(1).

It follows by using the same arguments as those in the proof of Lemma 5.7 that

E
[
H
∗
n
(D

i
, D

j
)
]

= 2nh
−1

γ
n
E

{∫ [
G(ε + ∆

j
(u

0
)−∆

i
(u

0
))−G(ε)

]
g(ε)dε

(X
j
−X

i
)K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)}

= 2nh
−1

γ
n
[τ + O(h)]E

[(
∆

j
(u

0
)−∆

i
(u

0
)
)
(X

j
−X

i
)K

(
U

i
− u

0

h

)
K

(
U

j
− u

0

h

)]

(1 + o(1))

=
2h

2

γ
n

[
τf

2
(u

0
)µ

2
Σ(u

0
)a
′′
(u

0
) + o(1)

]
.

This proves (5.26). By combining (5.25) and (5.26) and using the approximation

given in (5.23), we obtain (5.10). ¤

Proof of Theorem 5.3. A result of Hodges and Lehmann (1956) indicates that

the ARE has a lower bound 0.864
4/5

= 0.8896, with this lower bound being attained

at the density f(t) = 3
20
√

5
(5− x

2
)I(|x| ≤ 5). ¤

Proof of Theorem 5.4. Let

V
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)

= (nh)
−1

n∑
i=1

∣∣∣εi
− γ

n
α
∗
1
− ξ

1
(U

i
− u

0
)− ξ

T

2
X

i
− ξ

T

3
(U

i
− u

0
)X

i
+ ∆

i
(u

0
)
∣∣∣

K

(
U

i
− u

0

h

)
,
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where α
∗
1

= γ
−1

n

(
α

1
− a

0
(u

0
)
)
, ξ

1
∈ R, ξ

2
∈ Rp

and ξ
3
∈ Rp

. The subgradient of

V
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
) with respect to α

∗
1

is

S
∗
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)

=
2γ

n

nh

n∑
i=1

[
I
(
ε
i
≤ γ

n
α
∗
1
+ ξ

1
(U

i
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0
) + ξ

T

2
X

i
+ ξ

T

3
(U

i
− u

0
)X

i
−∆

i
(u

0
)
)− 1/2

]

K

(
U

i
− u

0

h

)
.

We have S
∗
n
(0, 0,0,0) = 2γ

n
(nh)

−1 ∑n

i=1
[I(ε

i
≤ ∆

i
(u

0
))− 1/2]K

(
Ui−u0

h

)
, which is

the same as the S
n0

defined in (5.17). Let U
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
) = γ

−1

n
[S
∗
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)−

S
∗
n
(0, 0,0,0)], then

U
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)

= 2(nh)
−1

n∑
i=1

[
I
(
ε
i
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n
α
∗
1
+ ξ

1
(U

i
− u

0
) + ξ

T

2
X

i
+ ξ

T

3
(U

i
− u

0
)X

i
−∆

i
(u

0
)
)

−I
(
ε
i
≤ ∆

i
(u

0
)
)]

K

(
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i
− u

0

h

)
.

For any positive constants c
i
, i = 1, 2, 3 and ∀ ξ

1
, ξ

2
, ξ

3
such that ξ

1
≤ c

1
h
−1

γ
n
,

||ξ
2
|| ≤ c

2
γ

n
and ||ξ

3
|| ≤ c

3
h
−1

γ
n
, we have

U
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
) = 2γ

n
g(0)f(u

0
)α

∗
1
+ o

p
(1). (5.27)
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This can be proved by directly checking the mean and variance. More specifically,

E
[
U

n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)
]

= 2h
−1

E
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G

(
γ

n
α
∗
1
+ ξ

1
(U

i
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0
) + ξ

T

2
X

i
+ ξ

T

3
(U

i
− u

0
)X

i
−∆

i
(u

0
)
)

−G
(−∆

i
(u

0
)
)]

K

(
U

i
− u

0

h

)}

= 2h
−1

g(0)E
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γ

n
α
∗
1
+ ξ

1
(U

i
− u

0
) + ξ

T

2
X

i
+ ξ

T

3
(U

i
− u

0
)X

i

]
K

(
U

i
− u

0

h

)}

(1 + O(h))

= 2γ
n
g(0)f(u

0
)α

∗
1

(
1 + O(h)

)
.

And

V ar
[
U

n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)
]

≤ 4n
−1

h
−2

E

{[
I
(
ε
i
≤ γ

n
α
∗
1
+ ξ

1
(U

i
− u

0
) + ξ

T

2
X

i
+ ξ

T

3
(U

i
− u

0
)X

i
−∆

i
(u

0
)
)

−I
(
ε
i
≤ ∆

i
(u

0
)
)]2

K
2
(

U
i
− u

0

h

)}

≤ 4n
−1

h
−2

E

{
K

2
(

U
i
− u

0

h

)}
= O(n

−1
h
−1

) = o(1).

By (5.27) and similar proof as that for Lemma 5.1, we have

γ
−1

n
V

n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
) = V

∗
n
(α

∗
1
) + o

p
(1), (5.28)

where V
∗
n
(α

∗
1
) = γ

−1

n
S
∗
n
(0, 0,0,0)α

∗
1
+ γ

n
g(0)f(u

0
)α

∗2
1

+ γ
−1

n
V

n
(0, 0,0,0). Because

the function V
n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
) is convex in its arguments, (5.28) can be strengthened

to uniform convergence (convexity lemma, see Pollard 1991) , i.e.,

sup
α
∗
1
∈C, ||ξ1||≤c1h

−1
γn

||ξ
2
||≤c2γn, ||ξ

3
||≤c3h

−1
γn

|γ−1

n
V

n
(α

∗
1
, ξ

1
, ξ

2
, ξ

3
)− V

∗
n
(α

∗
1
)| = o

p
(1),
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where C is a compact set in R. By Theorem 5.2, α̂
2
− a

′
0
(u

0
) = O

p
(h
−1

γ
n
),

â(u
0
)− a(u

0
) = O

p
(γ

n
) and â

′
(u

0
)− a

′
(u

0
) = O

p
(h
−1

γ
n
), we thus have

sup
α∗

1
∈C

∣∣∣γ−1

n
V

n

(
α
∗
1
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2
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′
0
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0
), â(u

0
)− a(u

0
), â

′
(u

0
)− a

′
(u

0
)
)− V

∗
n
(α

∗
1
)
∣∣∣ = o

p
(1).

Note that V
n
(α

∗
1
, α̂

2
− a

′
0
(u

0
), â(u

0
) − a(u

0
), â

′
(u

0
) − a

′
(u

0
)) = Q

∗
n0

(α
∗
1
, α̂

2
, β̂),

S
∗
n
(0, 0,0,0) = S

n0
, where Q

∗
n0

and S
n0

are defined in Section 2.4. The quadratic

function V
∗
n
(α

∗
1
) is minimized by α̃

∗
1n

= 1
2
γ
−2

n
[g(0)f(u

0
)]
−1

S
n0

. As similar argument

to that for Theorem 5.2 shows that α̂
∗
1n

= α̃
∗
1n

+ o
p
(1). Thus we have (5.18). We

can write γ
−2

n
S

n0
= T

1n
+ T

2n
, where

T
1n

=
2γ

−1

n

nh

n∑
i=1

[
I(ε

i
≤ 0)− 1/2

]
K

(
U

i
− u

0

h

)
,

T
2n

=
2γ

−1

n

nh

n∑
i=1

[
I(ε

i
≤ −∆

i
(u

0
))− I(ε

i
≤ 0)

]
K

(
U

i
− u

0

h

)
.

By the Lindeberg-Feller central limit theorem, T
1n
→ N(0, f(u

0
)ν

0
/3) in distribu-

tion. By checking mean and variance, we have

T
2n

= −h
2

γ
n

g(0)f(u
0
)a
′′
0
(u

0
)µ

2
(1 + o(1)) + o

p
(1).

Combining the above results and using (5.18), the proof is completed. ¤

To prove Theorem 5.5, we first extend Lemma 5.6 to almost sure conver-

gence.

Lemma 5.9. If E[||H
n
(D

i
, D

j
)||2] = O(h

−2
), then U

n
− Û

n
= o(1) almost surely

and U
n

= r
n

+ o(1) a.s.

Proof. The proof of Powell, Stock, and Stoker (1989) for Lemma 5.6 suggests that

E[||U
n
− Û

n
||2] = O(n

−2
h
−2

). By Theorem 1.3.5 of Serfling (1980),
∑n

i=1
E[||U

n
−

Û
n
||2] = O(n

−1
h
−2

) < ∞. This implies that U
n
− Û

n
= o(1) almost surely. The
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second result follows by an application of the strong law of large numbers to Û
n
.

¤
Proof of Theorem 5.5. Let β

∗
and α

∗
2

be defined the same as before. We

introduce the reparametrized objective function Q
∗
n
(β

∗
, α

∗
2
). Let S

n
(β

∗
, α

∗
2
) =

(
S

T

n1
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∗
, α

∗
2
), S

n2
(β

∗
, α

∗
2
)
)T

denote the gradient function of Q
∗
n
(β

∗
, α

∗
2
), which is

defined similarly as in Section 2.2. We first show that S
n
(β

∗
, α

∗
2
) has a similar

local linear approximation to the one stated in Lemma 5.8. To make the proof

concise, we prove this for S
n1

(β
∗
, α

∗
2
), where

S
n1

(β
∗
, α

∗
2
)

= 2γ
n
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∑
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Let U
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∗
2
)−S
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Note that U
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= 2n
−1 ∑n

i=1
V

i

[
(n− 1)

−1 ∑n

j=1,j 6=i
M

n
(D

i
, D

j
,β

∗
, α

∗
2
)
]
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on {D
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i
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.
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By Lemma 5.9, it can be shown that [n(n − 1)]
−1 ∑

i6=j
M

n
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i
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j
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∗
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∗
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A
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∗
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2
I
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i
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n
= γ
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A
∗
β
∗
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p
(1), where

o
p
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. The proofs of Lemma 5.1

and the asymptotic representation in Theorem 5.2 can be similarly carried out to
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,

√
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where o
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(1) is in the probability space generated by {V
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The approximation (5.23) can be strengthened to almost sure convergence, i.e.,
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Combining (5.17) and (5.29), we have that for almost surely every sequence {D
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Note that
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Lemma 5.9 can be used to show that W
1

= o(1) almost surely; and a minor

extension of Lemma 5.9 to a third-order U-statistic can be used to show that W
2

=

4
3
f

3
(u
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)ν

0
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0
)+o(1) almost surely. The asymptotic normality of γ
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)

in distribution. This completes the proof. ¤

5.5.2 Asymptotic normality of α̂
2

and â
′

Asymptotic normality of α̂
2
.

From (5.11), we have
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By (5.31), let us rewrite −γ
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Similar to the proof of Theorem 3.2, we can show that C
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in distribution. Next, note that we can write C
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Thus, we have
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where the definition of E
i
, i = 1, . . . , 4, should be clear from the context. Below,

we use m(u) to denote E(X
i
|U

i
= u). Note that m(u

0
) = 0. Assume that m(u) is
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continuously differentiable around u = u
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. Then
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Also,
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This leads to
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As before, we can show that C
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As before, let m(u) = E(X
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Chapter 6

Future Research

In this dissertation, we develop highly efficient, robust and computationally

simple statistical methodology and inference procedures for pure nonparametric

models, semiparametric partially linear models and varying coefficient models.

These new procedures have competitive performance to least squares based meth-

ods when the errors come from Normal distribution. And when the errors depart

from normality or there are outliers in the data, the new procedures may have

much higher efficiencies than least squares based methods. Now we discuss some

possible directions for future work.

Hypothesis testing for nonparametric components

After obtaining nonparametric estimates of α
0
(·) and α(·) in the model

Y = α
0
(U) + X

T
α(U) + Z

T
β + ε, (6.1)

it is natural to ask whether the coefficient functions are actually varying, or whether

any covariate is significant, or whether the coefficient functions possess certain

parametric forms. So it is of interest to develop hypothesis testing procedures on

α. In general, the hypothesis for a specific coefficient function α
m

(·) can be written

in the form

H
0

: α
m

(u) ≡ α
m

(u; θ) vs. H
1

: α
m

(u) 6= α
m

(u; θ),
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where α
m

(u; θ) is a parametric function of u and θ is a parameter vector. If one

would like to know whether the coefficient function is actually varying, we can test

the hypothesis

H
0

: α
m

(u) ≡ a
m

vs. H
1

: α
m

(u) 6= a
m

,

where a
m

is a constant. Furthermore, if we want to know if the corresponding

covariate is significant of not, we can test

H
0

: α
m

(u) ≡ 0 vs. H
1

: α
m

(u) 6= 0.

Because we have developed robust estimators, we are also interested in

developing robust test statistics. A complete review of robust hypothesis testing

can be found in He (2002). The conventional maximum likelihood ratio test can

not be applied in model 6.1, because the nonparametric MLE does not exist for the

coefficient functions α(·). We may consider constructing the generalized likelihood

ratio test statistic

T
β̂

= `
n
(H

1
)− `

n
(H

0
).

For tests of β, we may also consider the Wald-type statistic

W
β̂

= (β̂ − β
0
)
T
Σ̂
−1

(β̂ − β
0
),

where Σ̂ is an estimate of the asymptotic covariance matrix of β̂.

Boundary effects for local rank regression

The design density always has a bounded support in applications. It is well

known that the performance of regression smoothers at boundary points usually

differs from the performance at interior points. For example, the Watson-Nadaraya
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and Gasser-Muller estimators have boundary effects-bias of order O(h) instead of

O(h
2
) and require boundary modifications (Müller 1988). In Chapter 3, we show

that the local CQR estimator does not suffer from the boundary effects and does

not require such a modification. In Chapter 5, we present the asymptotic results

for local rank estimator at any interior points u
0
. The results are very encouraging.

So it is worthwhile to investigate the boundary behavior of the local rank estimator

as a topic for future research.

Robust semiparametric models for longitudinal data

All the robust models we have built so far are based on the independent error

condition. Dependent data, such as longitudinal data or more general functional

data, are widely collected in all kinds of scientific studies. Because of the complex

covariance structure and the unbalanced nature of longitudinal data, the extensions

are challenging and need to be seriously considered.

Longitudinal data emerge dramatically in applications of biology, economics,

epidemiology, clinical trials and many other fields. The advantage of a longitudi-

nal study over a cross-sectional study is that the longitudinal study can separate

the cohort (subject) and age (time) effects. Longitudinal data are collected from

experiments with m subjects and n
i
observations in subject i over time. The full

data set has the structure

{(x
ij
, y

ij
, t

ij
), i = 1, . . . ,m, j = 1, . . . n

i
},

where t
ij

denotes the j
th

observation time point for the i
th

subject. When each

subject is scheduled to be measured at the same set of times, then resulting data

is referred to as a balanced data set. When subjects are each observed at different

sets of times or there are skipped observation times, then resulting data is referred
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to as an unbalanced data set. Longitudinal data may be highly unbalanced because

the data may be collected at irregular and subject-specific time points.

Because the observations from the same subject are correlated with each

other, the analysis of longitudinal data should take into account the within sub-

ject correlation. Repeated measures analysis of variance can be used to analyze

longitudinal or repeated measures data for balanced study design. However, when

the data are unbalanced, it is different to apply traditional multivariate regression

techniques and some alternative techniques should be used to handle unbalanced

data.

Parametric regression models for analyzing longitudinal data have been de-

veloped by Laird and Ware (1982) and Liang and Zeger (1986) among others.

Diggle et al. (2002) gave a thorough summary of these methods. Although para-

metric models are very useful, they are used at the risk of introducing modeling

bias because they require parametric specification for the baseline mean function

of the response variable over time. To free the linear restriction between the out-

come variable and the covariates, nonparametric and varying coefficient models

were considered by Wild and Yee (1996), Hoover et al. (1998), Lin and Carroll

(2000), Fan and Zhang (2000) and Huang et al. (2002) among others. Lin and

Carroll (2000) showed that when the standard kernel methods are used, the GEE

estimators are typically the most efficient estimator of the nonparametric function

even if completely ignoring the within-subject correlation.

In many instances, semiparametric models are more desirable than modeling

all the covariates nonparametrically. A semiparametric model for longitudinal data

has the form

y(t) = x
T
(t)β + η(t) + ε(t), (6.2)

where y(t) is the response variable and x(t) is the d× 1 covariate vector at time t,

β are unknown parameters, η(·) is an unknown smooth baseline function and ε(t)
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is a mean 0 stochastic process. This model is especially useful when the effects of

treatment x are of our major interest and the effect of t is a nuisance.

The model (6.2) has been considered by several authors. Zeger and Diggle

(1994) proposed an iterative algorithm to estimate η(·) and β by the backfitting

method. They estimated η(·) using a kernel method by ignoring the within-subject

correlation and estimated β using weighted least squares by accounting for the

within-subject correlation. Zhang et al. (1998) extended Zeger and Diggle (1994)’s

model to a more general class of models termed semiparametric stochastic mixed

models. A marginal approach was given by Lin and Ying (2001) in which they

estimated β under the formation of point processes. Fan and Li (2004) further

proposed two new approaches, the difference-based method and the profile least

squares method, for estimating the regression coefficients.

Generalized partially linear models (GPLM) for longitudinal data can be

formulated as

g(µ(t)) = x
T
(t)β + η(t), (6.3)

where g(·) is known as a link function and µ(t) = E[y(t)|x(t)] is the mean of the

response variable.

For model (6.3), Severini and Staniswalis (1994) suggest estimating the

nonparametric part η(·) for fixed β using a certain nonparametric method, such

as kernel regression with standard bandwidth, and then estimating β using the

profile method. Lin and Carroll (2001a) generalized the profile-kernel method of

Severini and Staniswalis (1994) and proposed a local linear version of the pro-

file generalized estimating equation method for clustered data with a cluster-level

nonparametric covariate. Lin and Carroll (2001b) claim that the conventional

profile-kernel method fails to yield a
√

n-consistent estimator of β if the nonpara-

metric covariate is in observation-level, unless working independence is assumed

or η(t) is artificially undersmoothed. This result was unexpected.
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It is well known that statistical estimation and inference based on least

squares are highly sensitive to outliers in the data. Various robust procedures are

proposed to make up this deficiency. Welsh and Richardson (1997) reviewed a

number of alternatives to robust estimation of mixed models. Richardson (1997)

gave some further studies. He et al. (2002) applied M-estimators in semiparametric

models to longitudinal data. The authors used regression spline to approximate

the nonparametric part and showed that any M-estimation algorithm for the usual

linear model can get consistent estimators without specification of the error distri-

bution and covariance structure. In generalized models, Preisser and Qaqish (1999)

generalized the GEE procedure to yield parameter estimates and fitted values that

are resistant to outliers, introducing the so-called resistant generalized estimat-

ing equations (REGEE). The authors used the Mallows type weight or Schweppe

type weight in the estimating equations to downweight influential observations or

clusters. He et al. (2005) proposed another robust GEE method for GPLM, in

which they approximated the nonparametric function by a regression spline and

used bounded scores and leverage-based weights in the estimating equations to

achieve robustness against outliers. They showed that the regression spline ap-

proach avoids the difficulties associated with the profile-kernel method and results

in the optimal rate of convergence for estimating both β and η(·).
All aforementioned works mainly focus on estimation of the baseline func-

tion and the regression coefficients. Only a few of them discussed the issues related

to model selection. Fan and Li (2004) extended the nonconcave penalized likelihood

approaches into semiparametric models for longitudinal data analysis by introduc-

ing a new quadratic loss between the observed data and the theoretical model that

involves only the unknown parameter β. The simultaneous selecting variables and

estimating coefficients make it feasible to construct confidence intervals for the

estimators. Li and Liang (2008) proposed a class of procedures for variable selec-

tion in semiparametric models that involve both model selection for nonparametric
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components and selection of significant variables for the parametric portion. The

authors proposed to select significant variables for the parametric portion using

nonconcave penalized quasi-likelihood and established the rate of convergence of

the resulting estimate. To select significant variables in the nonparametric com-

ponent, a semiparametric generalized likelihood ratio test was proposed.

In varying coefficient semiparametric models for longitudinal data

y(t) = α
0
(t) + x

T
(t)α(t) + z

T
(t)β + ε(t), (6.4)

we are interested in exploring new robust estimates for β and α(t) using local

smoothing techniques, and conducting variable selection for β and also model

selection for α(t). Furthermore, we also would like to consider how to make proper

statistical inference for α
j
(t).
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