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Abstract

In the first part of this work, we extend the results by Artemiou and Li (2009)

and Ni (2010) in several interesting ways. First we extend them in the case of non

random covariance matrix and in case there is a multivariate response in the linear

regression setting. Second we try to explore if there is predictive potential of linear

principal components in the case of non linear regression functions and especially

in the context of sufficient dimension reduction. Third we propose an information

criterion that in very limited number of cases can be used to check the predictive

potential of linear principal components. Lastly, we explore the predictive potential

of kernel principal component in the completely nonparametric regression function

Y = f(X) + ε where f is an arbitrary function. The most general form of our

result, shows that the phenomenon goes far beyond the context of linear regres-

sion and classical principal components where it was originally noticed: if nature

selects an arbitrary distribution for the predictor X and an arbitrary conditional

distribution of the response Y given X, then Y tends to have stronger correlation

with higher-ranking kernel principal components than with lower-ranking kernel

principal components. These two questions need the arbitrariness of function f

and the arbitrariness of matrix Σ which are achieved by unitary invariance. A

small data analysis, shows that this tendency holds in three different databases.

In the second part, SVMIR, a new method for sufficient dimension reduction using

inverse regression and support vector machine algorithms is proposed. This method

is known to have several advantages, in comparison, to previous inverse regression

methods like SIR, SAVE and DR. First, since machine learning methods instead of

sample moments are applied in estimating the directions in the Central Dimension

Reduction Subspace this method is shown to be robust in the presence of outliers.
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Second, through a modification of the objective function that we need to minimize,

we can show that dimension reduction without matrix inversion can be achieved.

Third, through simulations our method is shown to be robust in departures from

ellipticity as well as in the presence of categorical predictors among our predictors.

Finally, this method gives us a way of estimating nonlinear directions in the Central

Dimension Reduction Subspace, and direction in the feature space using kernel

functions. The above are shown in theory, through simulations and by application

on real data examples; one to build a regression model for the relative performance

of computer CPUs, the second for the classification of E.coli proteins on cellular

localization sites.

Key Words and Phrases Kernel principal components; Regression; Unitary

invariance; Sufficient Dimension Reduction; Support Vector Machines.
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PART I

ON THE PREDICTIVE POTENTIAL OF LINEAR AND KERNEL
PRINCIPAL COMPONENTS



Chapter 1

Introduction

1.1 History of Principal Components

The main idea of principal component analysis is to reduce the dimension of data

sets that consist of many correlated variables. Usually, if we have n variables in

the original data set, our objective is to find a set of d(¿ n) new variables that

are independent and at the same time describe as much as possible the variation in

the original data set. These d new variables are linear combinations of the original

variables and are called the principal components (PC). The procedure to find

them is called principal component analysis (PCA).

Most statisticians agree that the earliest descriptions of PCA were given by

Pearson (1901) and later by Hotelling (1933). Cook (2007) notes that there is an

indication of principal components in the work by Adcock (1878) who wrote about

the “principal axis” as the “most probable position of the straight line determined

by the measured coordinates, ..., of n points”. But Joliffe (2002) states, that “...
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Preisendorfer and Mobley (1988) go even earlier and say that Beltrami (1873)

and Jordan (1874) derived the singular value decomposition in a way that implies

PCA.” So, one can say that PCA was something people had been using, well before

it was mathematically justified.

The absence of computing power set aside the development and further use of

PCA for almost 30 years after Hotelling’s work. Indeed, as Pearson (1901) noted,

computation becomes difficult when the original data set consists of more than four

variables. Scientists became interested in PCA again around mid 1960’s when the

obstacles of computation were overcome. Some works, such as Rao (1964), made

important improvements in the PCA methods and motivated more researchers to

study PCA, its theory and applications.

In recent years, researchers try to expand Principal Components beyond the

well known applications that we have been using them since they were first in-

troduced. For example, Jong and Kotz (1999) illustrate the relationship between

the extra sum of squares in regression and the eigenvalues that are related with

principal components. Tipping and Bishop (1999), present an EM algorithm that

helps them find the principal axis. Their study can be considered an extension

of the works by Lawley (1953) and Anderson and Rubin (1956) where principal

component analysis is viewed as a maximum likelihood procedure on a probability

density of the observed data.

Finally, there is also an extensive work on the idea of several nonlinear princi-

pal components methods, like kernel principal components which were introduced

by Schölkopf, B., Smola, A., Müller (1997, 1998) and it is one of the most widely

used method for nonlinear unsupervised dimension reduction. The idea is to map

the observed predictor vectors into a higher dimensional space and then perform
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linear principal component analysis in the higher dimensional space. Kernel prin-

cipal components and their predictive potential is explored in Chapter 5. Also,

other approaches to nonlinear feature extraction based on the principal compo-

nent methodology, that are not explored further in this work, are principal curves

(Hastie and Stuetzle, (1989)) and functional principal component analysis (Rice

and Silverman, (1991) and Silverman, (1996)).

1.2 How Principal Component Analysis works

Principal Component Analysis is simple and easy to understand. Let X be a p-

dimensional vector which denotes the original variables in a data set. Let also Σ

to denote the covariance matrix of X, that is Σ = cov(X).

To find the principal components of X one first finds the eigenvalues of Σ.

Denote those eigenvalues as λi, i = 1, ..., p and for simplicity (and without loss of

generality) assume λ1 ≥ λ2 ≥ ... ≥ λp. Then using the equation (Σ− λiI) v = 0 for

each eigenvalue λi, i = 1, ..., p separately, we can find the corresponding eigenvector

vi, i = 1, ..., p.

The ith principal component can be found by multiplying the eigenvector cor-

responding to λi (the ith largest eigenvalue) with the variable vector X. That

is, the first principal component is vT
1 X, the second principal component is vT

2 X

and so on. Since the eigenvalue λi is proportional to the length of the ith longest

axis of the p-dimensional ellipsoid represented by Σ, the first principal component

explains most of the variation in the data, and so on.

The first principal component is sometimes called “the principal compo-

nent”.
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As mentioned earlier, the main use of principal components is to reduce the

dimension of X. This can be done by selecting the first d ¿ p of the principal

components. There are many ways to determine d. Usually, one can choose to

keep only the principal components that account for a certain percentage (usually

80% to 90%) of the total variation, or to keep only the principal components that

corresponds to the eigenvalues that are larger than a certain cutoff point (usually

1). There are many other subjective and inferential methods to determine d. The

reader is referred to Joliffe (2002) Chapter 6 for details. Whatever way the principal

components are selected, if d is not small enough, the reduction that is achieved

may not be very useful.

1.3 Principal Components in Regression

Regression is the procedure we use in Statistics to find the relationship between

a set of variables, called the predictors, and a variable, called response. Although

there can be a multivariate response, in this introduction, the focus of the analysis

is on univariate responses.

The use of principal components in regression is popular when we have a large

number of predictors that make the regression analysis and statistical inference

on the original predictors difficult. Moreover, if there is multicollinearity between

the original predictors, we prefer to use the principal components, since they are

uncorrelated, and we can avoid multicollinearity. (This causes other problems

such as biased estimators for the coefficients of the regression, but this is minimal

compared with the advantage we gain by avoiding multicollinearity).

Although not introducing his principal axis in terms of regression, Pearson

5



(1901) can be considered the first one who thought about principal components in

a regression context. In his work he mentioned the following property

“The best-fitting straight line to a system of points coincides in direction

with the maximum axis of the correlation ellipsoid...”

Later, researchers discovered more properties of the principal components. The

principal components as we are using them today were introduced by Hotelling

(1933). In that work, he was interested in finding vectors a1, ...,ap so that, aT
i X

has maximum variance subject to the condition that cov
(
aT

i X, aT
j X

)
= 0, j =

1, ...i−1. Also, Kendall (1957), explained why doing regression using the principal

components instead of the original predictors helps us for a better and easier in-

terpretation of the effect of each principal component on the response, since they

are mutually independent. It is clear that adding more principal components to

our regression model the effect of each of the previous principal component will

stay unaffected, while in the original predictors the effect can vary dramatically by

adding a new variable, especially when there is multicollinearity among the predic-

tors. On the other hand, one can argue that in case the principal components have

no clear meaning the interpretation of the regression model can become difficult.

The fact that the interpretation doesn’t change by adding principal components

is very important, since in case of multicollinearities in the original predictor, by

deleting the principal components that explain a small amount of the variance can

give us better and more stable estimation for the coefficients. We can keep in our

model only those predictors that have variance larger than a cutoff point. Another

more sophisticated idea of doing this is by using variance inflation factors (VIF’s)

for the p predictor variables. If VIF’s are close to 1 that means we have a good

model, if VIF’s are much larger than 1 then we delete the variables that have large

6



VIF. We subtract all those predictors that have VIF larger than a cutoff point.

1.4 Historic Debate

For the reader to completely understand the problem being attacked on this work,

a presentation the debate that is actually still going on, between some scientists,

is given. This debate was presented in Cook (2007) in greater details.

The debate seems to begin from the practice of regressing Y on the first few

principal components of X, as suggested and advocated in Kendall (1957). This

idea is also supported by Mosteller and Tukey (1977) who while they identify the

flaw of the procedure they believe that

“A malicious person who knew our x’s and the plan for them could

always invent a y to make our choices look horrible. But we do not

believe nature works that way...”

That is, they say that although there might be a problem on the way a malicious

person can choose the response variable, nature is not a malicious person and it is

more than fair in choosing the correct response for the predictors. Therefore, they

believe that most of the cases, regressing on the principal components extracted

from the principal components analysis will work fine. These ideas seems to be

shared by others as well, like Hocking (1976) and Scott (1992).

On the other hand, there is Cox (1968) who clearly states that

“A difficulty seems to be that there is no logical reason why the depen-

dent variable should not be closely tied to the least important principal
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component.”

That is, he does not see why one can trust principal component analysis, if there is

nothing to ensure that it will give us the best linear combination of the predictors

in the end. The idea is shared by other scientists such as Hotelling (1957) and

Hawkins and Fatti (1984). Moreover, Joliffe (1982) and Hadi and Ling (1998),

showed by examples that deciding on the number of principal components solely

based on the variance they explain, can actually be flawed. That is, sometimes

the components with smaller variances can be the ones that are highly correlated

with the response Y . In such case, dropping the principal components that have

small variances will result in dropping a predictor that is highly correlated with

the response. Although this has caused a growing debate over the years on the

appropriateness of the method and there were plenty of discussions on what might

be the phenomenon causing this to happen, it seems that there is not a satisfactory

answer on how to solve this problem. Principal component analysis, though, is still

being used as a dimension reduction technique in regression. It is really interesting

that there is very little work done in identifying how often we get the wrong answer.

The reason this happens is clear to all scientists. The problem starts from the

way principal components are calculated. Principal components are calculated, as

explained earlier, using the covariance matrix of the predictors X. We first order

the eigenvalues and for each eigenvalue we calculate the respective eigenvector.

Finally, multiplying the ordered eigenvectors (which are ordered beginning from the

one corresponding to the largest eigenvalue) by the predictor vector X we get the

principal components. As one can easily recognize, the predictor Y has nothing to

do in any direct or indirect way in the calculation of principal components. That’s

why, as Cox (1968) said it, there is no logical reason why the first few principal

8



components should be highly correlated with the response variable and the least

principal components should be less correlated with the predictor.

This question has received renewed interest recently due to the need for han-

dling regression problems with very high dimensional predictors but relatively few

observation units, as one encounters when analyzing microarray data, so that the

sample covariance matrix of X is singular and the usual regression techniques can-

not be directly applied. Under these circumstances regressing Y on the first few

principal components is a practical solution and often gives reasonable results. For

example, Chiaromonte and Martinelli (2002), are presenting a dimension reduction

algorithm, which uses principal component analysis, to analyze gene expression

and Bura and Pfeiffer (2003) are using another algorithm for class prediction of

tumor status. Both works are dealing with microarray data and the algorithms

find linear combinations of genes, in order to minimize the dimension and achieve

the desired outcome.

In a comment of the paper by Cook (2007), Li (2007) gave a conjecture about

the correlation between principal components and regression. This conjecture is

presented in the next section.

1.5 Conjecture

Li (2007), in his comment on Cook (2007) made a conjecture in an attempt to

explain probabilistically why the response should be related to the leading principal

components of the predictors. It was stated roughly as follows:

If nature arbitrarily selects a covariance matrix Σ for X and coefficients

β for the regression of Y on X, then the principal components of X of
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higher ranks tend to have stronger correlations with Y than do those

of lower ranks.

Intuitively, Li (2007) argued that if X is concentrated on a single direction,

then the only way for Y to be correlated with X at all is to be correlated with

its first principal component. Likewise if X has an elongated distribution the X

components in the longer axes should on average bear stronger correlations with Y .

Now if Σ is selected arbitrarily then X would have a large probability of having an

elongated distribution, and would therefore affect the similar probabilistic ordering

of correlations, even if the relation between Y and X is independent of the shape

of the distribution of X. He demonstrated this conjecture by several simulation

studies, which invariably supported it.

1.6 Formulation of the conjecture

In this section we present the main results as they appeared by Artemiou and Li

(2009). More results can be found in Artemiou (2008). For completeness we also

give the definitions that were presented in the aforementioned works. Those results

formulate the conjecture of the previous section into a theorem as the last result

in this section shows, that is Theorem 1.6.1.

Definition 1.6.1 Let v1, . . . ,vp, be p random elements. We say that they are

exchangeable if, for any permutation (i1, . . . , ip) of (1, . . . , p), we have

(vi1 , . . . ,vip)
D= (v1, . . . ,vp).

Definition 1.6.2 We say that a p × p positive definite random matrix Σ has an
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orientationally uniform distribution if

Σ = σ2
1v1v

T
1 + · · ·+ σ2

pvpv
T
p ,

where each (σ2
i ,vi) is a pair of random elements in which σ2

i is a positive random

variable and vi is a p-dimensional random vector, such that

1. (σ2
1, . . . , σ

2
p) are exchangeable, and its distribution is dominated by the Lebesgue

measure,

2. (v1, . . . , vp) are exchangeable, and {v1, . . . ,vp} is an orthonormal set,

3. (σ2
1, . . . , σ

2
p) and (v1, . . . , vp) are independent.

Lemma 1.6.1 Suppose β and v1,v2 are p-dimensional random vectors such that

1. β (v1, v2);

2. P (β ∈ G) > 0 for any nonempty open set G.

3. v1 and v2 are linearly independent and exchangeable.

Then (βT v2)2/(βT v1)2 has a unique median, which equals 1.

Theorem 1.6.1 Suppose

1. Σ is a p× p orientationally uniform random matrix,

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ,
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3. Y = βT X + δ, where β is a p-dimensional random vector and δ is a random

variable such that β (X,Σ), δ (X,β,Σ), E(δ) = 0 and var(δ) < ∞.

4. P (β ∈ G) > 0 for any nonempty open set G ∈ Rp.

Let w1, . . . , wp be the 1st, . . . , pth principal components of X, and let ρi = ρi(β,Σ) =

corr2(Y, wi|β,Σ). Then, whenever i < j, P (ρi ≥ ρj) > 1/2.

1.7 Discussion of previous results

This theorem shows that Principal Component Analysis can be used to reduce the

number of predictors of the regression model. Although, it doesn’t prove that PCA

is always effective on finding the most correlated principal components with the

response, it proves that the probability that a principal component corresponding to

a largest eigenvalue to be more correlated with the response variable, is greater than

the probability of a principal component that corresponds to a smaller eigenvalue.

As Artemiou (2008) mentioned, the theorem is a very useful tool, that provides

at least enough evidence why the principal components that can be found by prin-

cipal component analysis are probabilistically more correlated with the response.

But since this, is only based on probability it gives an answer, as to why (quoted

by Mosteller and Tukey (1977))

“A malicious person who knew our x’s and our plan for them could

always invent a y to make our choices look horrible”

and why Jolliffe (1982) and Hadi and Ling (1998) were able to find examples where

the last few principal components are more correlated with the response. On the
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other hand, the chances are still in favor of the fact that the nature is fair. So

although risky, it has been proved that one can confidently use principal compo-

nent analysis to find the principal components and being confident the principal

components mostly correlated with the response will be given the first few ones

(that is, the ones corresponding to the largest eigenvalues).

Since this is a procedure that people have been using for a long time, although

this problem was well known and the reasons behind it were well understood, this

is not something that will change how people think towards principal component

analysis and its use in regression. The proof is probabilistic, so it doesn’t say

anything about the behavior of a single datasets. It just shows what’s going to

happen if you have a collection of dataset. For a single dataset it is obvious that

you can still get a lower order principal component who is more correlated with

the response than the higher order ones. People that were critical against the use

of principal component analysis, will probably continue to be thinking critically

against it as there is an unmeasurable risk it will not give you the correct results.

On the other hand, those that are in favor of using principal component analysis

in regression, they now have a rigorous proof that the probability they will get the

desired results is higher than the probability to get the wrong result.

1.8 Extensions to the previous results

An unpublished manuscript, Ni (2010), extends the results presented above, in

Artemiou (2008) and in Artemiou and Li (2009).

First of all, the author proved the following theorem:

Theorem 1.8.1 Suppose
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1. Σ is a p× p orientationally uniform random matrix,

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ,

3. Y = βT X + δ, where β is a p-dimensional random vector and δ is a random

variable such that β (X,Σ), δ (X,β,Σ), E(δ) = 0 and var(δ) < ∞.

4. P (β ∈ G) > 0 for any nonempty open set G ∈ Rp.

Let λ1, . . . , λp to be the ordered eigenvalues of the covariance matrix Σ and w1, . . . , wp

be the 1st, . . . , pth principal components of X, and let ρi = ρi(β,Σ) = corr2(Y, wi|β,Σ).

Then, whenever i < j,

P (ρi ≥ ρj) =
2
π

E
(
arctan

[
(λi/λj)

1
2

])
(1.1)

Mainly he showed that the left hand side of the inequality in Theorem 1.6.1

(Artemiou and Li (2009)) it is not just bounded to a number but there is an

expression that it is exactly equal to; and this expression it is the right hand side

of (1.1)in Theorem 1.8.1.

Ni (2010) showed also that the above result is true if we remove one level

of randomness, that is, we do not need both, the covariance matrix Σ and the

regression coefficients β to be random. The author showed that the result is true

if the covariance matrix Σ is orientationally uniform and the regression coefficients

are constant. The author, also proved that the result holds when the covariance

matrix is constant and the regression coefficients β are spherically distributed. In

the latter case the expectation on the right hand side of (1.1 is redundant as the

quantity inside the expectation is constant.

In Chapter 2, we show the results for fixed covariance matrix and multivariate
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response. In Chapter 3, we show two extensions of this result in the nonlinear

case, for both the univariate and multivariate case. In Chapter 4, we talk about an

information criterion that interestingly in a very special case match the results of

Artemiou and Li (2009) and Ni (2010). The results of Chapters 3 and 4 describe

the way we tried to attack the extension to the nonlinear case using linear principal

components. The most general results and the most interesting ones are presented

in Chapter 5. In Chapter 5, we use a completely different approach to extend

the result by Artemiou and Li (2009) and Ni (2010) in the sufficient dimension

reduction concept using linear principal components, and we use kernel principal

components to extend the results in two other ways, the more general one doesn’t

assume any specific regression function for Y |X. The only assumption that we

have is that we randomly choose a conditional distribution for Y |X that makes Y

to be dependent on X by excluding measures that imply Y and X are independent.

In Chapter 6, there is a discussion of the results and possible future extensions.
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Chapter 2

Extensions for fixed covariance

matrix and multivariate

response

In this Chapter we present how the results in Artemiou and Li (2009) can extend

for fixed covariance matrix and for multivariate response.

The results for fixed covariance matrix were developed at the same time by

Ni(2010) where he showed that his result holds for a fixed covariance matrix if the

regression coefficients are spherically distributed. We show how we developed our

Thorem, which results in the same condition; that is, the regression coefficients β

need to be spherically distributed for the same result to hold. We first prove Lemma

2.1.1 about the exchangeability of two random variables (which is not shown in

Ni (2010)) under the assumption of spherically distributed regression coefficients

and then we show Lemma 2.1.2 that proves the median of a ratio of two specific
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variables (which we need in the main result) is unique and equal to 1. A similar

result as Lemma 2.1.2 was shown in Artemiou and Li (2010) when the covariance

matrix has an orientationally uniform distribution. The result for multivariate

response variable Y , is interesting but more investigation on the conditions for the

uniqueness of median is needed.

2.1 Fixed covariance matrix

Lemma 2.1.1 Let β be a p-dimensional random vector, with spherical distri-

bution. Also let a, b be p-dimensional fixed vectors with equal length, that is

‖a‖ = ‖b‖ = k. Then the random variables βT a and βT b are exchangeable.

Proof. By definition, if βT a and βT b are exchangeable, it means




βT a

βT b


 D=




βT b

βT a




Let C be a p× p matrix such that

1. CT = C−1 and

2. C (b, a) = (a, b).

We then have β
D= Cβ, since β is spherically distributed. Then




βT a

βT b


 D= βT (a, b) D= βTCT (a, b) D= βT (b, a) D=




βT b

βT a



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2

The above lemma, will help us prove the following lemma, which ensures

uniqueness of the median for βT b/βT a. This result is important in proving the

main result of this section, Theorem 2.1.1, that follows the following Lemma. The

proof of the following Lemma is similar to the one for Lemma 1.6.1 as it appeared

in Aremiou and Li (2009). The only difference is that we are using Lemma 2.1.1

to show exchangeability which in Lemma 1.6.1 was implied by the properties of

orientationally uniform matrix.

Lemma 2.1.2 Let β be a p-dimensional spherically distributed random vector, and

let u,v be p-dimensional fixed vectors. Suppose

1. P (β ∈ G) > 0 for any nonempty open set G.

2. u,v linearly independent with equal length

Then the random variable
(
βTu

)2
/

(
βTv

)2
has a unique median equal to 1.

Proof. First we need to show that 1 is a median, that is 1 satisfies the following

equation

P
((

βTu
)2

/
(
βTv

)2
< 1

)
≤ 1/2 ≤ P

((
βTu

)2
/

(
βTv

)2 ≤ 1
)

. (2.1)

Because of assumption 1 and Lemma 2.1.1 we have
(
βTu

)2
and

(
βTv

)2
to be
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exchangeable. That means

P
((

βTu
)2

/
(
βTv

)2 ≤ 1
)

=P
((

βTv
)2

/
(
βTu

)2 ≤ 1
)

=1− P
((

βTu
)2

/
(
βTv

)2
< 1

)

Hence

P
((

βTu
)2

/
(
βTv

)2
< 1

)
≤ 1− P

((
βTu

)2
/

(
βTv

)2
< 1

)
,

P
((

βTu
)2

/
(
βTv

)2 ≤ 1
)
≥ 1− P

((
βTu

)2
/

(
βTv

)2 ≤ 1
)

,

which imply (2.1).

Now we need to show that 1 is the only number that satisfies (2.1). In other

words, for any 0 < c1 < 1 and c2 > 1 we have

P ((βTu)2/(βTv)2 ≤ c1) < 1/2 and P ((βTu)2/(βTv)2 < c2) > 1/2.

We will show only the first one. Similarly we can prove the second one. Let

c3 ∈ (c1, 1). Since (u,v) has full column rank, the following system of equations





βTu =
√

c3

βTv = 1

has a solution, say β0. Note that (βT
0 u)2/(βT

0 v)2 = c3 ∈ (c1, 1). Because β 7→
(βTu)2/(βTv)2 is continuous there is a neighborhood of β0, say G, such that

β ∈ G ⇒ (βTu)2/(βTv)2 ∈ (c1, 1).
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By assumption 2, P (β ∈ G) > 0. Therefore

P ((βTu)2/(βTv)2 ∈ (c1, 1)) > 0,

implies (2.1). 2

Now that we have shown the previous two helpful results, we are ready to

show the extension of our main theorem for fixed covariance matrix. The proof of

Theorem 2.1.1 is similar to the proof of Theorem 1.6.1 as it appears in Artemiou

and Li (2009). The only difference is that there is no conditioning on the covariance

matrix Σ as it is considered non random and not random as Artemiou and Li (2009)

had it.

Theorem 2.1.1 Suppose

1. a non random covariance matrix Σ

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ,

3. Y = βT X + δ, where β is a p-dimensional spherically distributed random

vector and δ is a random variable such that β (X), δ (X, β), E(δ) = 0

and var(δ) < ∞.

4. P (β ∈ G) > 0 for any nonempty open set G ∈ Rp.

Let w1, . . . , wp be the 1st, . . . , pth principal components of X, and let ρi = ρi(β) =

corr2(Y, wi|β). Then, whenever i < j,

P (ρi ≥ ρj) > 1/2.
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Proof. Let τ2 denote var(δ). Let (σ2
(1),v(1)), . . . , (σ2

(p), v(p)) be the ordered

(σ2
1, v1), . . . , (σ2

p, vp) such that σ2
(1) ≥ · · · ≥ σ2

(p). First, we derive an explicit ex-

pression for ρi. Note that

cov(Y, vT
(i)X|β) =cov(βT X + δ,vT

(i)X|β)

=βTΣv(i) + cov(δ, vT
(i)X|β). (2.2)

Because δ (X,β), we have δ (vT
(i)X, β). This implies δ vT

(i)X|β, and hence

that the second term in (2.2) is zero. Because (σ2
(i), v(i)) is an eigen pair of Σ, we

have Σv(i) = σ2
(i)v(i). Hence

cov2(Y,vT
(i)X|β) = σ4

(i)(β
T v(i))

2. (2.3)

In the meantime

var(Y |β) = var(βT X|β) + 2cov(βT X, δ|β) + var(δ|β).

Because δ β, the last term on the right is simply τ2. Because δ (β,X), we

have δ βT X|β. So the second term on the right is 0. Hence

var(Y |β) = βTΣβ + τ2. (2.4)

Moreover, using the facts Σv(i) = σ2
(i)v(i) and vT

(i)v(i) = 1

var(vT
(i)X|β) = vT

(i)Σv(i) = σ2
(i). (2.5)
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Now combine (2.3), (2.4), and (2.5) to obtain

ρi = corr2(Y, vT
(i)X) =

σ2
(i)(β

T v(i))2

βTΣβ + τ2
. (2.6)

Let i < j. Then, using (2.6) we deduce

P (ρi ≥ ρj) = P

(
σ2

(i)(β
T v(i))2

βTΣβ + τ2
≥

σ2
(j)(β

T v(j))2

βTΣβ + τ2

)
= P

(
(βT v(i))2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

)
.

To prove the theorem we need to show that

P

(
(βT v(i))2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

)
>

1
2

(2.7)

Then by Lemma 2.1.2 inequality (2.7) above holds. 2

The following proposition shows that if the above inequality is true for non-

random covariance matrix, then it is also true if we have a random covariance

matrix.

Proposition 2.1.1 Let assume that Σ a p × p matrix and X is a p-dimensional

random vector with E(X) = 0 and var(X) = Σ. Let also w1, . . . , wp be the 1st,

. . . , pth principal components of Σ, and let ρi = ρi(β) = corr2(Y,wi|β). Then,

whenever i < j, if P (ρi ≥ ρj |Σ) > 1/2 holds for every Σ it is implied that P (ρi ≥
ρj) > 1/2 holds.

Proof. Since P (ρi ≥ ρj |Σ) > 1/2 holds for every Σ then

P (ρi ≥ ρj |Σ) = E (P (ρi ≥ ρj |Σ)) > 1/2 ⇒ P (ρi ≥ ρj) > 1/2
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2

2.2 Multivariate response

Since we have a multivariate response in this section the correlation formula that

we used in the previous section will not work. So we use the squared multiple

correlation coefficient, which is defined below. For more details the interested

reader is referred to Hall and Mathiason (1990).

Definition 2.2.1 The square multiple correlation between U , a p-dimensional ran-

dom vector, and V , a q-dimensional random vector, is defined as follows

mcor2 (U, V ) = tr
(

Σ
− 1

2
U ΣUV Σ−1

V ΣV UΣ
− 1

2
U

)

where ΣU , ΣV are the covariance matrices or U and V respectively, and ΣUV , is

the covariance matrix between U and V .

Since Proposition 2.1.1 does not depend on the dimension of the response vari-

able, it is still true for the multivariate response variable as the following corollary

shows.

Corollary 2.2.1 Let assume that Σ a p × p matrix and X is a p-dimensional

random vector with E(X) = 0 and var(X) = Σ. Let also w1, . . . , wp be the 1st,

. . . , pth principal components of Σ, and let ρi = ρi(β) = mcor2(Y , wi|β). Then,

whenever i < j, if P (ρi ≥ ρj |Σ) > 1/2 holds for every Σ it is implied that P (ρi ≥
ρj) > 1/2 holds.
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Using this fact, for the majority of this work (Chapters 3 and 4) we prove

the results for the case with fixed covariance matrix and the results for random

covariance matrix are therefore implied and presented as corollaries without proofs.

Theorem 2.2.1 Suppose

1. Σ fixed p× p and Γ fixed q × q matrices,

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ,

3. β is a p× q spherically distributed random matrix independent of X,

4. ε is a q dimensional random vector independent of (X, β), with E(ε) =

0, var(ε) = Γ,

5. Y = βT X + ε,

6.
vT

(i)AAT v(i)

vT
(j)AAT v(j)

has unique variance equal to 1, for A = β
(
βTΣβ + Γ

) 1
2 and

v(i), i = 1, . . . , p is the ith ordered eigenvector of matrix Σ in the sense that

it corresponds to the ith largest eigenvalue

Let w1, . . . , wp be the 1st, . . . , pth ordered principal components of Σ, and let ρi =

ρi(β) = mcor2(Y, wi|β).Then, whenever i < j,

P (ρi ≥ ρj) > 1/2.

Proof. By Definition 2.2.1,

ρi = ΣwiY Σ−1
Y ΣY wiσ

−2
wi

(2.8)
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Now

ΣwiY = cov (wi, Y |β) = cov
(

vT
(i)X,βT X + ε

∣∣∣β
)

where v(i) is the ith ordered eigenvector of Σ, in the sense that it corresponds to

the ith largest eigenvalue, and
(
σ2

(i), v(i)

)
, i = 1, . . . , p are ordered eigen pairs of

Σ, in the sense that σ2
(1) ≥ . . . ≥ σ2

(p).

The above is equal to

ΣwiY = vT
(i)Σβ + cov

(
vT

(i)X, ε
∣∣∣β

)
= vT

(i)Σβ (2.9)

because ε (X,β). Also,

ΣY = var
(
βT X + ε

∣∣β
)

= βTΣβ + Γ (2.10)

Finally,

σ2
wi

= var
(

vT
(i)X

∣∣∣β
)

= σ2
(i) (2.11)

By combining (2.8), (2.9), (2.10), (2.11),

ρi = vT
(i)Σβ

(
βTΣβ + Γ

)−1
βTΣv(i)σ

−2
(i)
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The objective is to prove that for i < j, P (ρi ≥ ρj) > 1/2. This is equivalent

to

P
(
vT

(i)Σβ
(
βTΣβ + Γ

)−1
βTΣv(i)σ

−2
(i) ≥ vT

(j)Σβ
(
βTΣβ + Γ

)−1
βTΣv(j)σ

−2
(j)

)
> 1/2.

(2.12)

Since
(
σ2

(i), v(i)

)
is an eigen pair we have that vT

(i)Σ = vT
(i)σ

2
(i), so that the above

is equivalent to:

P
(
σ2

(i)v
T
(i)β

(
βTΣβ + Γ

)−1
βT v(i) ≥ σ2

(j)v
T
(j)β

(
βTΣβ + Γ

)−1
βT v(j)

)
> 1/2.

(2.13)

Let A = β
(
βTΣβ + Γ

)− 1
2 . Then the above is equivalent to

P
(
σ2

(i)v
T
(i)AAT v(i) ≥ σ2

(j)v
T
(j)AAT v(j)

)
> 1/2 ⇒

P

(
vT

(i)AAT v(i)

vT
(j)AAT v(j)

≥
σ2

(j)

σ2
(i)

)
> 1/2 (2.14)

Inequality (2.14) holds true from the fact that σ2
(j) < σ2

(i) by assumption 6 for

unique median. 2

Using Proposition 2.2.1 we can show that the above result is true in the case

of random covariance matrix as the following corollary states.

Corollary 2.2.2 Suppose

1. Σ is a p× p orientationally unifromly distributed random matrix and Γ is a

fixed q × q matrix,
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2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ

3. β is a p× q spherically distributed random matrix independent of (X,Σ)

4. ε is a q dimensional random vector independent of (X,β,Σ), with E(ε) =

0, var(ε) = Γ

5. Y = βT X + ε,

6.
vT

(i)AAT v(i)

vT
(j)AAT v(j)

has unique median equal to 1, for A = β
(
βTΣβ + Γ

) 1
2 and

v(i), i = 1, . . . , p is the ith ordered eigenvector of matrix Σ in the sense that

it corresponds to the ith largest eigenvalue.

Let w1, . . . , wp be the 1st, . . . , pth ordered principal components of Σ, and let ρi =

ρi(β,Σ) = mcor2(Y,wi|β,Σ).Then, whenever i < j,

P (ρi ≥ ρj) > 1/2.

As in the univariate case in the multivariate case the spherically distributed

assumption for the regression coefficients can be removed. This result needs further

improvement by exploring the conditions under which Assumption 6 is valid. This

is something we leave for future work. Also there is an open question whether an

equivalent result as the one by Ni (2010) holds in this case.

In the univariate case the assumption of spherically distributed regression coef-

ficient was necessary to achieve exchangeability of the ratio of two random variables

in the case of non random covariance matrix. In the multivariate case, this assump-

tion is similarly needed to achieve exchangeability of a ratio of two different random

variables in the case of fixed covariance matrix. For the case of random covariance
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matrix this assumption can be dropped. This is because in the case of fixed covari-

ance matrix the spherical distribution is needed to show exchangeability which is

needed to show that the median of the ratio of the two random variables is equal

to 1. In the random covariance matrix, exchangeability is shown without the need

of spherically distributed regression coefficients. We acknowledge the need of fur-

ther research and development in this case to identify the conditions needed for

Assumption 6 in Theorem 2.2.1 and Corollary 2.2.2 to be true and especially the

conditions under which the median is unique.

Finally, it is interesting for one to investigate if an equivalent result as the one

in Ni (2010) is true for the multivariate response case. This is left for future work

as well.
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Chapter 3

Beyond the linear regression

model

In this chapter we extend the results in Artemiou and Li (2009) and Ni (2010)

under different model assumption, that is, we remove the assumption of a linear

model. We show first the results in the univariate case, for both fixed and random

covariance matrices and then we show that one can extend them in the multivariate

case. As in the previous Chapter (see Corollary 2.2.2 and the discussion that follows

it) for the multivariate response case one needs to explore the conditions so that

specific ratios have unique median equal to 1. Also, the conditions under which

the results in Ni (2010) can be extended to the multivariate response case need to

be investigated further, which we leave for future work.

For the univariate cases we will give only the main results, as the supporting

lemmas were proved in the previous Chapter. Those are Lemmas 2.1.1 and 2.1.2,

for the exchangeability of two random variables and the uniqueness of median which
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is equal to 1 for the ratio of those two random variables, respectively.

3.1 Conditional independence model

3.1.1 Univariate response

Theorem 3.1.1 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β X;

4. E(X|βTX, β) is linear in βTX.

If Y X|(βTX, β), then, for any square-integrable function f(Y ) such that E[Xf(Y )|β] 6=
0, var[f(Y )|β] > 0 and i < j we have

P
(
corr2(f(Y ), vT

i X|β) > corr2(f(Y ), vT
jX|β)

)
> 1/2.

Proof. We denote with w1, . . . ,wp the ordered principal components of the

predictor vector X. Let i < j. Since β X, we have E(X|β) = E(X) = 0. Hence

cov(f(Y ),wi|β) =E[f(Y )vT
i X|β] = E[f(Y )vT

i E(X|Y, β)|β]. (3.1)
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The inner conditional expectation on the right hand side can be rewritten as

E(X|Y, β) = E[E(X|βTX, Y, β)|Y, β] = E[E(X|βTX, β)|Y,β], (3.2)

where the second equality follows from the conditional independence Y X|(βTX, β).

Now let us compute E(X|βTX,β) in (3.2). Because, by assumption 3, E(X|βTX, β)

is linear in βTX, we have

E(X|βTX, β) = P T

β(Σ)X = Σβ(βTΣβ)−1βTX.

Substitute this into the right hand side of (3.2) to obtain

E(X|Y,β) =E[E(X|βTX,β)|Y, β] = Σβ(βTΣβ)−1E(βTX|Y,β).

Hence, by (3.1),

cov(f(Y ),vT
i X|β) =vT

i Σβ(βTΣβ)−1]E[f(Y )E(βTX|Y, β)|β]

=vT
i Σβ(βTΣβ)−1βTE(Xf(Y )|β).

In the meantime we note that vT
i Σ = vT

i σ
2
i and

var(viX|β) = var(viX) = σ2
i .

Using these and the assumption that var(f(Y )|β) > 0 we obtain

corr2(f(Y ), vT
i X|β) =

σ4
i (v

T
i β)2(βTΣβ)−2[βTE(Xf(Y )|β)]2

var(f(Y )|β)σ2
i
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Using the assumption that E(Xf(Y )) 6= 0, we obtain

corr2(f(Y ),vT
i X|β)

corr2(f(Y ),vT
jX|β)

=
σ2

i (v
T
i β)2

σ2
j (v

T
jβ)2

Hence

P
(
corr2(f(Y ), viX|β) > corr2(f(Y ), vjX|β)

)
= P ((vT

i β)2/(vT
jβ)2 > σ2

j /σ2
i ) > 1/2,

where the last inequality follows from σ2
j /σ2

i < 1 and Lemma 2.1.2. 2

This result is pretty straightforward to extend it to a similar one as the one in

Ni (2010). For this we have the following corollary.

Corollary 3.1.1 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β X;

4. E(X|βTX, β) is linear in βTX.

If Y X|(βTX, β), then, for any square-integrable function f(Y ) such that E[Xf(Y )|β] 6=
0, var[f(Y )|β] > 0 and i < j we have

P
(
corr2(f(Y ),vT

i X|β) > corr2(f(Y ), vT
jX|β)

)
=

2
π

arctan
[
(λi/λj)

1
2

]
.

32



Using Proposition 2.1.1 one can show that the above results are also true when

we have random covariance matrix Σ, as the following corollaries state.

Corollary 3.1.2 Suppose

1. Σ is a p×p matrix from an orientationally uniform distribution and v1, . . . , vp

are the eigenvectors of Σ in the sense that v1 corresponds to the largest

eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β = (β1, . . . , βp)T is a random vector and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX.

If Y X|(βTX,β,Σ), then, for any square-integrable function f(Y ) such that

E[Xf(Y )|β,Σ] 6= 0, var[f(Y )|β,Σ] > 0 and i < j we have

P
(
corr2(f(Y ), vT

i X|β,Σ) > corr2(f(Y ), vT
jX|β,Σ)

)
> 1/2.

Corollary 3.1.3 Suppose

1. Σ is a p×p matrix from an orientationally uniform distribution and v1, . . . , vp

are the eigenvectors of Σ in the sense that v1 corresponds to the largest

eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX.
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If Y X|(βTX,β,Σ), then, for any square-integrable function f(Y ) such that

E[Xf(Y )|β,Σ] 6= 0, var[f(Y )|β,Σ] > 0 and i < j we have

P
(
corr2(f(Y ),vT

i X|β,Σ) > corr2(f(Y ), vT
jX|β,Σ)

) 2
π

E
(
arctan

[
(λi/λj)

1
2

])
.

3.1.2 Multivariate response

Theorem 3.1.2 Suppose

1. Σ is a p×p fixed matrix and v1, . . . , vp are the eigenvectors of Σ in the sense

that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to λ2 and so

on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β is a p× q spherically distributed random matrix and β X;

4. vT
i AATvi/vT

jAATvj having unique median equal to 1; where

A = β(βTΣβ)−1βTE(f(Y )X|β) (var(f(Y )|β))−1/2 .

5. E(X|βTX, β) is linear in βTX.

If Y X|(βTX, β), then, for any square-integrable function f(Y ) such that

E[Xf(Y )|β] 6= 0, var[f(Y )|β] positive definite matrix and i < j we have

P (ρi > ρj) > 1/2, (3.3)

where ρi = mcor2(f(Y ), vT
i X|β).
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Proof. By Definition 2.2.1,

ρi = Σwif(Y )Σ
−1
f(Y )Σf(Y )wi

σ−2
wi

(3.4)

where wi = vT
i X the ith principal component.

We have that

σ2
wi

= σ2
i , (3.5)

Σf(Y ) = var(f(Y )|β) (3.6)

and

Σwif(Y ) = cov (wi, f(Y )|β) = cov
(

vT

(i)X, f(Y )
∣∣∣β

)
= E

(
vT

(i)X(f(Y ))T

∣∣∣β
)

(3.7)

where the last equality holds since E (X|β) = E(X) = 0 since X β. Now:

E
(

vT

(i)X(f(Y ))T

∣∣∣β
)

= E
(

vT

(i)E(X|Y , β)f(Y )T

∣∣∣β
)

(3.8)

where

E(X|Y , β) = E[E(X|βTX, Y , β)|Y , β] = E[E(X|βTX, β)|Y , β] (3.9)

where the second equality follows from the conditional independence Y X|(βTX, β).
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Now, since E(X|βTX, β) is linear in βTX, we have

E(X|βTX,β) = P T
β (Σ)X = Σβ(βTΣβ)−1βTX.

By equation (3.9) we have

E(X|Y ,β) = Σβ(βTΣβ)−1E(βTX|Y , β)

Combining with equation (3.8) we have

E
(

vT

(i)X(f(Y ))T

∣∣∣β
)

=E
(

vT

(i)Σβ(βTΣβ)−1E(βTX|Y ,β)(f(Y ))T

∣∣∣β
)

=vT

(i)Σβ(βTΣβ)−1βTE(X(f(Y ))T|β).

Since vT
i Σ = vT

i σ
2
i the above becomes

E (vT
i X(f(Y ))T|β) = σ2

i v
T
i β(βTΣβ)−1βTE(X(f(Y ))T|β).

which by equation (3.18) means

Σwif(Y ) = σ2
i v

T
i β(βTΣβ)−1βTE(f(Y )X|β) (3.10)

Now using (3.25), (3.26), (3.27) and (3.10) we have

ρi = σ2
i v

T
i AATvi (3.11)

where A = β(βTΣβ)−1βTE(X(f(Y ))T|β) (var(f(Y )|β))−1/2.
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From this we have that (3.3) becomes

P (σ2
i v

T
i AATvi > σ2

j v
T
jAATvj) = P

(
vT

i AATvi

vT
jAATvj

>
σ2

j

σ2
i

)
>

1
2

from the assumption that the median is unique and equal to 1. 2

Using Proposition 2.2.1 the above result can be extended for random covariance

matrix as the following corollary shows.

Corollary 3.1.4 Suppose

1. Σ is a p×p random matrix from an orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β is a p× q random matrix and β (X,Σ);

4. vT
i AATvi/vT

jAATvj having unique median equal to 1; where

A = β(βTΣβ)−1βTE(f(Y )X|β,Σ) (var(f(Y )|β,Σ))−1/2 .

5. E(X|βTX, β,Σ) is linear in βTX.

If Y X|(βTX,β,Σ), then, for any square-integrable function f(Y ) such that

E[Xf(Y )|β,Σ] 6= 0, var[f(Y )|β,Σ] positive definite matrix and i < j we have

P (ρi > ρj) > 1/2, (3.12)
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where ρi = mcor2(f(Y ), vT
i X|β,Σ).

3.2 Assuming a model where E(Y |X, β) = E(Y |βTX, β)

3.2.1 Univariate response

Theorem 3.2.1 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β X;

4. E(X|βTX, β) is linear in βTX.

5. Y is a random variable such that E(Y |β) = 0, P (var(Y |β) < ∞) = 1, and

P (cov(Y,vT
i X|β) 6= 0) = 1.

If E(Y |X, β) = E(Y |βT X, β), then for i < j,

P
(
corr2(Y,vT

i X|β) > corr2(Y, vT
jX|β)

)
> 1/2.

Proof. We denote with w1, . . . ,wp the ordered principal components of the
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predictor vector X. Let i < j. Since β X, we have E(X|β) = E(X) = 0. Hence

cov(Y,wi|β) =cov(Y,vT
i X|β)

=E[E(Y |X,β)vT
i X|β]

=E[E(Y |βTX,β)vT
i X|β]

=E[Y vT
i E(X|βTX, β)|β]. (3.13)

Now let us compute E(X|βTX, β) in (3.13). Because, by assumption 3, E(X|βTX, β)

is linear in βTX, we have

E(X|βTX, β) = P T

β(Σ)X = Σβ(βTΣβ)−1βTX.

Substitute this into the right hand side of (3.13) to obtain

cov(Y,vT
i X|β) = E[Y vT

i E(X|βTX, β)|β] = vT
i Σβ(βTΣβ)−1βTE(Y X|β).

In the meantime we note that vT
i Σ = vT

i σ
2
i and

var(viX|β) = var(viX) = σ2
i .

Combining the above we have that:

corr2(Y,vT
i X|β) =

σ4
i (v

T
i β)2(βTΣβ)−2[βTE(Y X|β)]2

var(Y |β)σ2
i

Using these and the assumptions that var(Y |β) > 0 and P (cov(Y, vT
i X|β) 6= 0) = 1

we obtain

corr2(Y, vT
i X|β)

corr2(Y, vT
jX|β)

=
σ2

i (v
T
i β)2

σ2
j (v

T
jβ)2
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Hence

P
(
corr2(Y, vT

i X|β) > corr2(Y,vT
jX|β)

)
= P ((vT

i β)2/(vT
jβ)2 > σ2

j /σ2
i ) > 1/2,

where the last inequality follows from σ2
j /σ2

i < 1 and from Lemma 2.1.2. 2

The following corollary extends the above result to the equality as the one

showed by Ni (2010).

Corollary 3.2.1 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β X;

4. E(X|βTX, β) is linear in βTX.

5. Y is a random variable such that E(Y |β) = 0, P (var(Y |β) < ∞) = 1, and

P (cov(Y,vT
i X|β) 6= 0) = 1.

If E(Y |X, β) = E(Y |βT X, β), then for i < j,

P
(
corr2(Y,vT

i X|β) > corr2(Y, vT
jX|β)

)
=

2
π

arctan
[
(λi/λj)

1
2

]
.
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Using Proposition 2.2.1, the above two results, Theorem 3.2.1 and Corollary

3.2.1, extend to the case of random covariance matrices as the following two corol-

laries show.

Corollary 3.2.2 Suppose

1. Σ is a p×p random matrix from an orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX.

5. Y is a random variable such that E(Y |β,Σ) = 0, P (var(Y |β,Σ) < ∞) = 1,

and

P (cov(Y,vT
i X|β,Σ) 6= 0) = 1.

If E(Y |X, β,Σ) = E(Y |βT X,β,Σ), then for i < j,

P
(
corr2(Y, vT

i X|β,Σ) > corr2(Y, vT
jX|β,Σ)

)
> 1/2.

Corollary 3.2.3 Suppose

1. Σ is a p×p random matrix from an orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;
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2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β = (β1, . . . , βp)T is a spherically distributed random vector and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX.

5. Y is a random variable such that E(Y |β,Σ) = 0, P (var(Y |β,Σ) < ∞) = 1,

and

P (cov(Y,vT
i X|β,Σ) 6= 0) = 1.

If E(Y |X, β,Σ) = E(Y |βT X,β,Σ), then for i < j,

P
(
corr2(Y,vT

i X|β,Σ) > corr2(Y,vT
jX|β,Σ)

)
=

2
π

E
(
arctan

[
(λi/λj)

1
2

])
.

3.2.2 Multivariate response

Theorem 3.2.2 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β is a p× q is a spherically distributed random matrix and β X;

4. E(X|βTX, β) is linear in βTX.

5. Y is a random vector such that E(Y |β) = 0, var(Y |β) positive definite

matrix.
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6. vT
i AATvi/vT

jAATvj has unique median equal to 1, where

A = β(βTΣβ)−1βTE(XY T|β) (var(Y |β))−1/2

If E(Y |X, β) = E(Y |βT X, β), then for i < j,

P (ρi > ρj) > 1/2, (3.14)

where ρi = mcor2(Y , vT
i X|β).

Proof. By Definition 2.2.1,

ρi = ΣwiY Σ−1
Y ΣY wiσ

−2
wi

(3.15)

where wi = vT
i X the ith principal component.

We have that

σ2
wi

= σ2
i , (3.16)

ΣY = var(Y |β) (3.17)

and

ΣwiY = cov (wi, Y |β) = cov
(

vT

(i)X, Y
∣∣∣β

)
= E

(
vT

(i)XY T

∣∣∣β
)

(3.18)

where the last equality holds since E (X|β) = E(X) = 0 since X β. Now we
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get that:

ΣwiY = E
(

vT

(i)XY T

∣∣∣β
)

=E[vT
i X(E(Y |X, β))T|β]

=E[vT
i X(E(Y |βTX, β))T|β]

=E[vT
i E(X|βTX, β)Y T|β]. (3.19)

Now let us compute E(X|βTX, β) in (3.19). Because, by assumption 3, E(X|βTX, β)

is linear in βTX, we have

E(X|βTX, β) = P T

β(Σ)X = Σβ(βTΣβ)−1βTX.

Substitute this into the right hand side of (3.19) to obtain

ΣwiY = E[vT
i E(X|βTX,β)Y T|β] = vT

i Σβ(βTΣβ)−1βTE(XY T|β).

In the meantime we note that vT
i Σ = vT

i σ
2
i and so

ρi = σ2
i v

T
i AATvi (3.20)

where A = β(βTΣβ)−1βTE(XY T|β) (var(Y |β))−1/2. From this we have that

(3.14) becomes

P (σ2
i v

T
i AATvi > σ2

j v
T
jAATvj) = P

(
vT

i AATvi

vT
jAATvj

>
σ2

j

σ2
i

)
>

1
2

from the assumption for unique median. 2

As before, this result can be extended to the case that we have a random

covariance matrix.
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Corollary 3.2.4 Suppose

1. Σ is a p×p random matrix from an orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β is a p× q is a random matrix and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX.

5. Y is a random vector such that E(Y |β,Σ) = 0, var(Y |β,Σ) positive definite

matrix.

6. vT
i AATvi/vT

jAATvj has unique median equal to 1, where

A = β(βTΣβ)−1βTE(XY T|β,Σ) (var(Y |β,Σ))−1/2

If E(Y |X, β,Σ) = E(Y |βT X, β,Σ), then for i < j,

P (ρi > ρj) > 1/2, (3.21)

where ρi = mcor2(Y , vT
i X|β,Σ).

3.3 More results under the assumption E(Y |X, β) =

E(Y |βTX, β)

In this section we present an effort to generalize previous results to any type of

nonlinear model. One of the extensions we tried was to check if the relationship
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between principal components and the response variable in a regression model

holds also for any polynomial function of principal components. In this section

we present the result for the correlation of the squared principal component with

the response. We didn’t develop this results to their full potential to achieve our

objectives, the reason being that the more general the polynomial is, the messier

the calculations gets, and we were also able to develop results in a much clearer

and better way. Those results are presented in a later Chapter, and they are much

more general, than the results we present here.

3.3.1 Univariate model

Theorem 3.3.1 Suppose

1. Σ is a p× p non random covariance matrix and v1, . . . ,vp are the eigenvec-

tors of Σ in the sense that v1 corresponds to the largest eigenvalue λ1, v2

corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp.

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β = (β1, . . . , βp)T is a a spherically distributed random vector and β X;

4. E(X|βTX, β) is linear in βTX; var(X|βTX) is nonrandom.

If E(Y |X, β) = E(Y |βTX, β) and i < j then

P
(
corr2(Y, (vT

i X)2|β) > corr2(Y, (vT
jX)2|β)

)
> 1/2.
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Proof. We note that

cov(Y, (vT
i X)2|β) = E(Y (vT

i X)2|β)−E(Y )E((vT
i X)2|β). (3.22)

First let us compute E((vT
i X)2|βTX, β):

E((vT
i X)2|βTX, β) = var(vT

i X|βTX, β) + E2(vT
i X|βTX, β).

By assumption 3,

E(vT
i X|βTX, β) =vT

i Σβ(βTΣβ)−1βTX,

var(vT
i X|βTX, β) =vT

i

(
Σ−Σβ(βTΣβ)−1βTΣβ(βTΣβ)−1βTΣ

)
vi

=vT
i

(
Σ−Σβ(βTΣβ)−1βTΣ

)
vi

So from the above and using the fact that Σvi = σ2
i vi we have that:

E((vT
i X)2|βTX, β) = σ4

i (v
T
i β)2(βTΣβ)−2(βTX)2 + σ2

i v
T
i vi − σ4

i v
T
i β(βTΣβ)−1βTvi

(3.23)

The first term on the right-hand side in (3.22) is rewritten as:

E(Y (vT
i X)2|β) =E(E(Y (vT

i X)2|X, β)|β)

=E(E(Y |X, β)(vT
i X)2|β)

=E(E(Y |βTX, β)(vT
i X)2|β)

=E(Y E((vT
i X)2|βTX, β)|β)
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Substitute (3.23) into the above to obtain:

E(Y (vT
i X)2|β) =

(
σ2

i v
T
i vi − σ4

i v
T
i β(βTΣβ)−1βTvi

)
E(Y |β) + σ4

i (v
T
i β)2(βTΣβ)−2E

(
Y (βTX)2|β)

So substituting the above into (3.22) and simplifying we get that

cov(Y, (vT
i X)2|β) =− σ4

i v
T
i β(βTΣβ)−1βTviE(Y |β) + σ4

i (v
T
i β)2(βTΣβ)−2E

(
Y (βTX)2|β)

=σ4
i (v

T
i β)2c

where c = c(β) does not depend on i. Similarly

cov(Y, (vT
jX)2|β) = σ4

j (v
T
jβ)2c

Now, we have that:

var
(
(vT

i X)2|β)
= E

(
(vT

i X)4|β)− (
E

(
(vT

i X)2|β))2 = dσ4
1 (vT

i vi)
2 = dσ4

1

because vT
i vi = 1 since vi, i = 1, . . . , p form an orthonormal basis. Hence:

corr2(Y,vT
i X|β) =

σ8
i (v

T
i β)4c2

var(Y |β)dσ4
1

=
σ4

i (v
T
i β)4c2

var(Y |β)d

Thus,

P
(
corr2(Y, (vT

i X)2|β) > corr2(Y, (vT
jX)2|β)

)
=P

(
σ4

i (v
T
i β)4c2

var(Y |β)d
>

σ4
j (v

T
jβ)4c2

var(Y |β)d

)

=P

(
(vT

i β)4

(vT
jβ)4

>
σ4

j

σ4
i

)
> 1/2.

where the last inequality is derived from Lemma 2.1.2. 2
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The above result can be extended as before in the case of a random covariance

matrix as the following corollary shows.

Corollary 3.3.1 Suppose

1. Σ is a p × p random matrix from an orientationally uniform matrix and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β = (β1, . . . , βp)T is a random vector and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX; var(X|βTX) is nonrandom.

If E(Y |X, β,Σ) = E(Y |βTX, β,Σ) and i < j then

P
(
corr2(Y, (vT

i X)2|β,Σ) > corr2(Y, (vT
jX)2|β,Σ)

)
> 1/2.

Extensions to a similar one as the one in Ni (2010) needs further development

and is not as straightforward as before. Further investigation is needed in this case

to see exactly the type of equality that will holds.

3.3.2 Multivariate response

Theorem 3.3.2 Suppose

1. Σ is a p× p non random covariance matrix and v1, . . . ,vp are the eigenvec-

tors of Σ in the sense that v1 corresponds to the largest eigenvalue λ1, v2
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corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X) = 0 and var(X) = Σ;

3. β is a p× q is a spherically distributed random matrix and β X;

4. E(X|βTX, β) is linear in βTX and var(X|βTX) is nonrandom.

5. Y is a random vector such that E(Y |β) = 0, var(Y |β) positive definite

matrix.

6. (vT
i CCTvik + AiAT

i ) /
(
vT

jCCTvjk + AjAT
j

)
has unique median equal to 1,

where

k =(E(Y |β))T(var(Y |β))−1E(Y |β)

C =β(βTΣβ)−1/2

Ai =(E((vT
i CCTX)2Y |β))T(var(Y |β))−1/2

If E(Y |X, β) = E(Y |βT X, β), then for i < j,

P (ρi > ρj) > 1/2, (3.24)

where ρi = mcor2(Y , (vT
i X)2 |β).

Proof. By Definition 2.2.1,

ρi = Σw2
i Y |βΣ−1

Y |βΣY w2
i |βσ−2

w2
i |β

(3.25)

where wi = vT
i X the ith principal component.
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We have that

σ2
w2

i |β
= var

(
(vT

i X)2 |β
)

= E
(
(vT

i X)4|β)− (
E

(
(vT

i X)2|β))2 = dσ4
1 (vT

i vi)
2 = dσ4

1,

(3.26)

because vT
i vi = 1 since vi, i = 1, . . . , p form an orthonormal basis. Also:

ΣY |β = var(Y |β) (3.27)

and

Σw2
i Y |β =cov

(
w2

i , Y
∣∣β

)
= cov

(
(vT

i X)2,Y
∣∣β

)

=E
(
(vT

i X)2Y T
∣∣β

)− E(Y |β)E((vT
i X)2|β)

which is similar to equation (3.22) in the proof of Theorem 3.3.1. So following a

similar derivation (the only difference is that now β is a matrix and Y is a vector)

we get that:

cov(Y , (vT
i X)2|β) =− σ4

i v
T
i β(βTΣβ)−1βTviE(Y |β) + σ4

i E
(
(vT

i β(βTΣβ)−1βTX)2Y |β)

=σ4
i

(
vT

i CCTviE(Y |β) + E((vT
i CCTX)2Y |β)

)

where C = β(βTΣβ)−1/2. Combining everything we get that:

ρi =d−2σ4
i

(
vT

i CCTviE(Y |β) + E((vT
i CCTX)2Y |β)

)T (var(Y |β))−1

(
vT

i CCTviE(Y |β) + E((vT
i CCTX)2Y |β)

)

=d−2σ4
i (vT

i CCTvik + AiAT
i )
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where k = (E(Y |β))T(var(Y |β))−1E(Y |β) and

Ai = (E((vT
i CCTX)2Y |β))T(var(Y |β))−1/2

The above means that what we are trying to prove is:

P (ρi > ρj) > 1/2 ⇒

P


 (vT

i CCTvik + AiAT
i )(

vT
jCCTvjk + AjAT

j

) >
σ4

j

σ4
i


 > 1/2

2

The following corollary shows the extension when the covariance matrix is

randomly distributed from an orientationally uniform distribution.

Corollary 3.3.2 Suppose

1. Σ is a p×p random matrix from an orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp;

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β is a p× q is a random matrix and β (X,Σ);

4. E(X|βTX, β,Σ) is linear in βTX and var(X|βTX) is nonrandom.

5. Y is a random vector such that E(Y |β,Σ) = 0, var(Y |β,Σ) positive definite

matrix.
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6. (vT
i CCTvik + AiAT

i ) /
(
vT

jCCTvjk + AjAT
j

)
has unique median equal to 1,

where

k =(E(Y |β,Σ))T(var(Y |β,Σ))−1E(Y |β,Σ)

C =β(βTΣβ)−1/2

Ai =(E((vT
i CCTX)2Y |β,Σ))T(var(Y |β,Σ))−1/2.

If E(Y |X, β,Σ) = E(Y |βT X,β,Σ), then for i < j,

P (ρi > ρj) > 1/2, (3.28)

where ρi = mcor2(Y , (vT
i X)2 |β,Σ).

3.4 Discussion

The results in this Chapter, is the first effort we made to extend the results by

Artemiou and Li (2009) and Ni (2010) in a more general framework than the linear

model. What we did was to extend the results under two different assumptions,

the one is the conditional independence model and the other is the equality of two

conditional expectations, E(Y |X, β) = E(Y |βTX, β). Those extensions, study the

relationship of the linear principal components with the response.

There is ground for several other developments to be made and more impor-

tantly to improve the developments presented here especially in the following 3

areas:

1. The investigation of the conditions that for the multivariate response cases,
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the desired ratios of variables will have unique median equal to 1.

2. The investigation of an exact equality as the one in Ni (2010) in the multi-

variate cases.

3. The investigation of an exact equality as the one in Ni (2010) for the univari-

ate case in the last section of the three, which deals with the relationship of

the squared principal components with the response.

Some of the results presented are special cases of the more general results

developed in the next Chapters, but they are presented for completeness of the

work developed, and for smoother presentation of the material.
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Chapter 4

Information Criterion

As in the previous Chapter, the objective in this one is to extend the results of

Artemiou and Li (2009) and Ni (2010) in a more general framework than the

linear regression model. In this Chapter, we propose an information criterion

which we believe can be used as a measure of relation between linear principal

components and the response variable. Correlation is a measure associated with

the linear relationship between variables. This criterion can be used in a more

general framework than the linear regression model and can serve as a measure of

general association (and not just linear association) between variables. This might

be helpful in extending the previous results in a more general framework than the

ones presented in the previous Chapters.

The results presented in this Chapter are very limited. We were not able to

extend it beyond the linear case and beyond the normality assumption for the

predictors. Basically this is because of the fact that we found the results in the

next Chapter more interesting so that we found it more worthy to develop those

results as best as we could.
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Definition 4.0.1 We define the information criterion between two random vari-

ables X and Y conditional on random variable W to be:

I(X,Y |W ) = E

(
log

(
f(X,Y |W )

f(Y |W )f(X|W )

)
|W

)
.

In the following sections we will first give the proof in the simple 2 dimensional

predictor case and then we will prove the more general results. The simple case is

presented for completeness and for the smoother introduction of the reader in the

more general result.

4.1 Simple case - 2 dimensional predictor

First, we prove a helpful lemma about the normal distribution and then we prove

the main theorem for the inequality (as the one in Artemiou (2008)) which is a

special case of the more general inequality.

Lemma 4.1.1 Suppose Z ∼ Nr(0, Λ). Then:

E(log f(Z)) = −r

2
log(2π)− 1

2
log det(Λ)− r

2
.

Proof. From the distribution function of multivariate normal we have that:

log f(z) = −r

2
log(2π)− 1

2
log det(Λ)− 1

2
(zTΛ−1z).
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So:

E(log f(z)) =E
(
−r

2
log(2π)− 1

2
log det(Λ)− 1

2
(zTΛ−1z)

)

=− r

2
log(2π)− 1

2
log det(Λ)− 1

2
E

(
(zTΛ−1z)

)

=− r

2
log(2π)− 1

2
log det(Λ)− r

2
.

2

Theorem 4.1.1 Let

Σ0 =




σ2
1 0

0 σ2
2


 ,

where σ2
1 and σ2

2 are iid G. Let θ ∼ U(0, π). Let Γ be the random matrix

Γ =




cos θ − sin θ

sin θ cos θ




Let Σ = ΓΣ0ΓT . Suppose

1. X is a 2-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ,

2. Y = βT X + δ, where β is a p-dimensional random vector and δ is a random

variable such that β (X,Σ), δ (X,β,Σ), E(δ) = 0 and var(δ) < ∞.

3. P (β ∈ G) > 0 for any nonempty open set G ∈ R2.

Let λ1, λ2 to be the ordered eigenvalues of the covariance matrix Σ and w1, w2 be the

1st and 2nd principal components of X, and let ρi = ρi(β,Σ) = corr2(Y,wi|β,Σ), i =
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1, 2. Then,

P (ρ1 ≥ ρ2) >
1
2
. (4.1)

Proof. We have, for i = 1, 2,

I(Y,Xi|β) = E[log p(Y, Xi|β)|β]−E[log p(Y |β)|β]− E[log p(Xi|β)|β]

= E[log p(Y, Xi|β)|β]−E[log p(Y |β)|β]− E[log p(Xi)],

where the second equality follows from β X. So I(Y, X1|β) > I(Y,X2|β) is

equivalent to

E[log p(Y,X1|β)|β]−E[log p(X1)] > E[log p(Y,X2|β)|β]− E[log p(X2)]

This is equivalent to

E[log p(Y,X1|β)|β]−E[log p(Y,X2|β)|β] > E[log p(X1)]− E[log p(X2)]

Let us see what will happen when X is normal and Y is linear as described in the

above. We have

log p(x1) = −(1/2) log(2π)− log(σ1)− (1/2)(x2
1/σ2

1)

So

E log p(X1) = −(1/2) log(2π)− log(σ1)− (1/2)
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So

E log(X1)−E log(X2) = − log(σ1) + log(σ2) = log(σ2/σ1).

Now from Lemma 4.1.1 for r = 2 we have that

var(Y ) = βT Σβ + τ2, var(X1) = σ2
1, cov(Y, X1) = β1σ

2
1

So

detΛ1 = det var[(Y, X1)T] = σ2
1(β

T Σβ + τ2)− β2
1σ4

1.

So

E[log p(Y, X1|β)|β]− E[log p(Y, X2|β)|β]

= (−1/2) log[σ2
1(β

T Σβ + τ2)− β2
1σ4

1] + (1/2) log[σ2
2(β

T Σβ + τ2)− β2
2σ4

2]

In the above

σ2
1(β

2
1σ2

1 + β2
2σ2

2 + τ2)− β2
1σ4

1 = σ2
1(β

2
2σ2

2 + τ2)

σ2
2(β

2
1σ2

1 + β2
2σ2

2 + τ2)− β2
2σ4

2 = σ2
2(β

2
1σ2

1 + τ2)

So

E[log p(Y,X1|β)|β]−E[log p(Y,X2|β)|β]

= (−1/2) log[σ2
1(β

2
2σ2

2 + τ2)] + (1/2) log[σ2
2(β

2
1σ2

1 + τ2)]
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So we want

(−1/2) log[σ2
1(β

2
2σ2

2 + τ2)] + (1/2) log[σ2
2(β

2
1σ2

1 + τ2)] > (1/2) log σ2
2 − (1/2) log σ2

1.

This is equivalent to

log[σ2
2(β

2
1σ2

1 + τ2)]− log[σ2
1(β

2
2σ2

2 + τ2)] > log σ2
2 − log σ2

1

⇔ log[(β2
1σ2

1 + τ2)]− log[(β2
2σ2

2 + τ2)] > 0

⇔β2
1σ2

1 + τ2 > β2
2σ2

2 + τ2

⇔β2
1σ2

1 > β2
2σ2

2

This is the same inequality that Artemiou (2008) shows for the 2-dimensional case

which is a special case for the more general result which is presented in Artemiou

and Li (2009)

4.2 General case - p dimensional predictor

In this section we extend the main result of the previous section for a p-dimensional

predictor vector X.

Theorem 4.2.1 Suppose

1. Σ is a p× p non random matrix and v1, . . . , vp are the eigenvectors of Σ in

the sense that v1 corresponds to the largest eigenvalue λ1, v2 corresponds to

λ2 and so on, were λ1 ≥ . . . ≥ λp are the eigenvalues of Σ;

2. X is a p-dimensional random vector such that X ∼ N(0,Σ);
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3. β is a p-dimensional spherically distributed random vector, β X and P (β ∈
G) > 0 for any nonempty open set G;

4. ε is a random variable with E(ε) = 0, var(ε) = τ2, ε X.

5. Y = βTX + ε

Then, for i < j,

P (I(Y,vT
i X|β) > I(Y,vT

jX|β)) > 1/2. (4.2)

Proof. First, we use the definition of information, Definition 4.0.1, to expand

the two information involved on the left hand side of inequality(4.6).

I(Y,vT
i X|β) =E

(
log

(
f(Y,vT

i X|β)
f(Y |β)f(vT

i X|β)

)
|β

)

=E(log f(Y,vT
i X|β))− E(log(f(Y |β)))−E(log(f(vT

i X|β))) (4.3)

Now we know that vT
i X ∼ N(0, vT

i Σvi) then from Lemma 4.1.1 we have that:

E(log(f(vT
i X))) = −1

2
log 2π − 1

2
log vT

i Σvi − 1
2

(4.4)

Now we have that the joint distribution of Y and vT
i X is the following:




Y

vT
i X


 ∼ N







0

0


 ,




var(Y ) cov(Y,vT
i X)

cov(Y,vT
i X) var(vT

i X)


 =




βTΣβ + τ2 σ2
i v

T
i β

σ2
i v

T
i β σ2

i





 .
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Using Lemma 4.1.1 and the fact that det var(Y, vT
i X) = σ2

i (β
TΣβ+τ2)−σ4

i (v
T
i β)2

we get the following result:

E(log(f(vT
i X))) = −1

2
log 2π − 1

2
log(σ2

i (β
TΣβ + τ2)− σ4

i (v
T
i β)2)− 2

2
(4.5)

Combining equations (4.3), (4.4) and (4.5) we have the following equation

I(Y,vT
i X|β) =− 1

2
log 2π − 1

2
log(σ2

i (β
TΣβ + τ2)− σ4

i (v
T
i β)2)− 2

2

− E(log(f(Y |β))) +
1
2

log 2π +
1
2

log vT
i Σvi +

1
2

Similarly,

I(Y,vT
jX|β) =− 1

2
log 2π − 1

2
log(σ2

j (β
TΣβ + τ2)− σ4

j (v
T
jβ)2)− 2

2

− E(log(f(Y |β))) +
1
2

log 2π +
1
2

log vT
jΣvj +

1
2

So using the facts that vT
i Σ = σ2

i v
T
i , vT

i vi = 1 and by canceling similar terms,

the left hand side of inequality (4.6) reduces to:

P (I(Y, vT
i X|β) > I(Y, vT

jX|β))

=P (− log(σ2
i (β

TΣβ + τ2)− σ4
i (v

T
i β)2) + log σ2

i > − log(σ2
j (β

TΣβ + τ2)− σ4
j (v

T
jβ)2) + log σ2

j )

=P (− log(βTΣβ + τ2 − σ2
i (v

T
i β)2) > − log(βTΣβ + τ2 − σ2

j (v
T
jβ)2))

=P (log(βTΣβ + τ2 − σ2
j (v

T
jβ)2) > log(βTΣβ + τ2 − σ2

i (v
T
i β)2))

=P (βTΣβ + τ2 − σ2
j (v

T
jβ)2 > βTΣβ + τ2 − σ2

i (v
T
i β)2)

=P (−σ2
j (v

T
jβ)2 > −σ2

i (v
T
i β)2)

=P (σ2
i (v

T
i β)2 > σ2

j (v
T
jβ)2)
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which is simplified to:

P

(
(vT

i β)2

(vT
jβ)2

>
σ2

j

σ2
i

)

which is greater than 1/2 because of Lemma 2.1.2 and the fact that σ2
j /σ2

i < 1. 2

The following corollary shows that we can extend the result for random covari-

ance matrix using Proposition 2.2.1.

Corollary 4.2.1 Suppose

1. Σ is a p× p random matrix from a orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp

are the eigenvalues of Σ;

2. X is a p-dimensional random vector such that X|Σ ∼ N(0,Σ);

3. β is a p-dimensional random vector, β (X,Σ) and P (β ∈ G) > 0 for any

nonempty open set G;

4. ε is a random variable with E(ε) = 0, var(ε) = τ2, ε X.

5. Y = βTX + ε

Then, for i < j,

P (I(Y, vT
i X|β,Σ) > I(Y,vT

jX|β,Σ)) > 1/2. (4.6)
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The following two corollaries show that the results above can be extended to

the result that was proved by Ni (2010).

Corollary 4.2.2 Suppose

1. Σ is a p× p non random matrix from a orientationally uniform distribution

and v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to

the largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp

are the eigenvalues of Σ;

2. X is a p-dimensional random vector such that X ∼ N(0,Σ);

3. β is a p-dimensional spherically distributed random vector, β X and P (β ∈
G) > 0 for any nonempty open set G;

4. ε is a random variable with E(ε) = 0, var(ε) = τ2, ε X.

5. Y = βTX + ε

Then, for i < j,

P (I(Y, vT
i X|β) > I(Y, vT

jX|β)) =
2
π

arctan
[
(λi/λj)

1
2

]
(4.7)

Corollary 4.2.3 Suppose

1. Σ is a p× p random matrix from a orientationally uniform distribution and

v1, . . . ,vp are the eigenvectors of Σ in the sense that v1 corresponds to the

largest eigenvalue λ1, v2 corresponds to λ2 and so on, were λ1 ≥ . . . ≥ λp

are the eigenvalues of Σ;

2. X is a p-dimensional random vector such that X|Σ ∼ N(0,Σ);
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3. β is a p-dimensional random vector, β (X,Σ) and P (β ∈ G) > 0 for any

nonempty open set G;

4. ε is a random variable with E(ε) = 0, var(ε) = τ2, ε X.

5. Y = βTX + ε

Then, for i < j,

P (I(Y, vT
i X|β,Σ) > I(Y,vT

jX|β,Σ)) =
2
π

E
(
arctan

[
(λi/λj)

1
2

])
. (4.8)

The proof is straightforward as Ni (2010) showed that the last probability

statement of the proof for Theorem 4.2.1 and Corollary 4.2.1 is equal to the right

hand side of equation(4.7) and equation (4.8) respectively.

As we said at the beginning of this Chapter, this is an interesting result which

has potential but is not yet developed as completely as it should be. It is limited in

a very special case and is obviously not serving the purpose to extend the results

in the non linear regression model. Further development of this result is left for

future work.
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Chapter 5

Generalizations using Kernel

Principal Components

In this Chapter we will present the most important results for the first part of

this work. We will extend the results by Artemiou and Li (2009) and Ni (2010)

to the nonlinear regression setting, by assuming first an arbitrary nonparametric

regression setting, then an arbitrary relation between X and Y and finally we will

connect those results to the sufficient dimension reduction setting.

The extension to a more general setting than the linear regression setting, has

been the objective in the two previous Chapters as well. The main difference in

this Chapter, that enables us to generalize this result even in the cases that it

essentially has no restrictive assumptions on the relationship between X and Y , is

the use of kernel principal components instead of the linear principal components

we previously used. A short review on kernel principal components followed by

some motivating examples, are given in the next few sections before we present our
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results.

5.1 Introducing Kernel Principal Components

Kernel principal component analysis was introduced by Schölkopf, B., Smola, A.,

Müller (1997, 1998) and it is one of the most widely used method for nonlinear

unsupervised dimension reduction. The idea is described as follows; one can map

the observed vectors into a higher dimensional space, called the feature space, using

a kernel function φ(·) and then try to perform linear principal component analysis in

the feature space. When the linear functions in the feature space are mapped back

into the original input space where the observed vectors lie, they are considered

nonlinear functions of the predictors. Thus, the first kernel principal component

will be the direction that captures the most variation among all possible functions

(linear and nonlinear) in the input space. This, expands the idea of linear principal

components that we were using in previous Chapters, to extract nonlinear features

and thus to achieve nonlinear dimension reduction. In the literature there are

other approaches to nonlinear feature extraction based on the principal component

methodology, like principal curves (Hastie and Stuetzle, (1989)) and functional

principal component analysis (Rice and Silverman, (1991) and Silverman, (1996)).

In the linear principal component analysis, if we assume that x1, . . . ,xn ∈ Rp

are the observed vectors one performs an eigenvalue decomposition of the sample

covariance matrix, which assuming the observed vectors are centered at 0, is equal

to

Σ =
1
n

n∑

i=1

xixT
i
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For the kernel principal component, we have the mapped observed vectors into

the feature space φ(x1), . . . , φ(xn) and our objective is to perform an eigenvalue

decomposition of the sample covariance matrix of those mappings, which assuming

they are centered at 0 it is equal to

Σ∗ =
1
n

n∑

i=1

φ(xi)φ(xi)T

where

φ : Rp → F

and F is our arbitrary feature space which might be infinite dimensional. Schölkopf,

B., Smola, A., Müller (1997) showed that for certain choices of φ, it is easy to

perform linear PCA using kernel functions as they were presented in the support

vector machine literature (Boser, B. E., Guyon, I. M. and Vapnik V. (1992) and

Cortes, C. and Vapnik, V. (1995)). This is known in the literature as the “kernel

trick”; that is, if an operation depends only on inner products one can extract lower

dimensional projections without dealing with the projection coefficients (in our case

φ(xi), i = 1, . . . , n) which reside in the higher dimensional space (feature space).

This idea is widely used in the machine learning literature (Vapnik V. (1998)) and

recently in the sufficient (or supervised) dimension reduction literature (Fukumizu,

Bach, and Jordan (2004, 2009), Yeh, Huang, and Lee (2009), Hsing and Ren (2009),

Shi, Belkin, and Yu (2009)).
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5.2 Kernel PCA and its predictive potential

A small clarification for the notation that is being used is that the notation D=

stands for “equal in distribution”. Thus U
D= V means that U and V have the

same distribution, and U |W D= V |W means that the conditional distribution of U

given W is the same as that of V given W .

Suppose that X and Y are defined on a probability space (Ω, F, P ), and let

ΩX = {X(ω) : ω ∈ Ω} denote the range of X. Let H be a separable Hilbert space

whose members are real-valued functions defined on ΩX . Let 〈·, ·〉H denote the

inner product in H, and ‖ · ‖H denote the induced norm. We assume throughout

this Chapter that H is relative to the scalar field of real numbers R.

At the population level, kernel principal component analysis (Schölkopf, Smola,

and Müller, 1997), or kernel PCA, can be described as follows. The first kernel

principal component is the function u1 in H that maximizes

var[f(X)] (5.1)

among all f ∈ H satisfying ‖f‖H = 1. For k = 2, 3, . . ., the kth kernel principal is

the member of uk of H that maximizes (5.1) subject to the constraints

cov[uk(X), ui(X)] = 0, i = 1, . . . , k − 1, ‖uk‖H = 1.

This is much more general than the classical (linear) PCA because the maximiza-

tion is carried out among all functions in H — not just linear functions of the

form aTX. The term “kernel” comes from the fact that H may be taken to be

a reproducing kernel Hilbert space derived from a positive definite mapping, or
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kernel function, K : ΩX ×ΩX → R. In this context, H is the closed linear span of

functions of the form

a1K(·, x1) + · · ·+ amK(·, xm), x1, . . . , xm ∈ ΩX , a1, . . . , am ∈ R, (5.2)

and the inner product 〈·, ·〉H is specified by 〈K(·, x1),K(·, x2)〉H = K(x1, x2). The

reader is referred to Aronszajn (1950) for more details on reproducing kernel Hilbert

spaces. However, it is important to note that this particular form of H although

very useful in several kernel methods in the kernel literature has no bearing on our

problem, and in the rest of the paper we only assume H to be a separable Hilbert

space.

Similar to the classical PCA, the kernel PCA can be represented as an eigen-

decomposition problem of a covariance matrix; in this context a covariance oper-

ator. To define a covariance matrix in this context one needs to first consider the

bilinear form b : H×H → R defined by

b(f, g) = cov[f(X), g(X)].

Suppose that b is bounded. Then there is a bounded and self-adjoint linear operator

Σ : H → H such that

b(f, g) = 〈f,Σg〉H = 〈Σf, g〉H.

See, for example, Conway (1990, page 31). This operator Σ is called the covariance

operator of X (Baker, 1973; Fukumizu, Bach, and Jordan, 2004, 2009). Under the
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assumption that Σ is a compact operator, it has a discrete spectral decomposition

∞∑

i=1

λiPi,

where λ1 > λ2 > · · · are real numbers, and Pi is the projection on to the linear

subspace

ker(Σ− λi) = {f ∈ H : Σf = λif}.

These projections are orthogonal to each other; that is, PiPj = 0 whenever i 6= j. It

can be shown that any function in ker(Σ−λi) is the ith kernel principal component

defined in the last paragraph.

The central question pursued in this Chapter can be formulated at three dif-

ferent levels. The first level is the fully nonparametric mean regression model

Y = f(X) + ε, (5.3)

where f : Rp → R is arbitrary and ε X. Given a randomly selected regression

function f and a randomly selected covariance operator Σ for X, would the kernel

PCA enjoy the similar predictive tendency as possessed by the classical PCA in

the context of linear regression?

The second level is the most general. Suppose Y and X are dependent but the

dependence is not restricted by any model, parametric or nonparametric. Then,

given a randomly selected conditional distribution of Y |X, and a randomly se-

lected covariance operator Σ for X, would the kernel PCA possess the similar

predictive power? This question, imposes virtually no assumptions on the form of

the relationship between the response variable Y and the predictors X
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The third level is an extension of Artemiou and Li (2009) and Ni (2009) into

sufficient dimension reduction context. Suppose that Y and X are conditionally

independent given βTX; that is,

Y X|βTX.

Then, given randomly selected β and Σ, would the linear PCA possess the similar

predictive power?

Although the conclusion at the second level is the most general, the results at

the other two levels are not technically the special cases of those at the second

level. This is because each of the three questions expressed above require its own

conditions and assumptions which are different in each case. the non-parametric

case is the one that requires the most of the techniques that we need to develop all

the results so we solve it first and then we solve the rest of the problems.

The predictive potential of the conventional PCA in the context of linear re-

gression (Artemiou and Li, 2009) and the results by Ni (2010) needs the eigenvalues

and eigenvectors of the covariance matrix Σ to be exchangeable and independent

and for the eigenvectors to be also orthogonal. Similar developments are needed

in this case as well and they are described in the sections following the next one,

where motivation examples are presented.

5.3 Motivating examples

Before introducing the population version of kernel principal component and ex-

plaining exactly what we are trying to show in more theoretical detail we present

some real example analysis that show that there is some predictive potential in the
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first few kernel principal components, which tend to be more correlated with the

response than the last few kernel principal components tend to.

Remember, that what we try to do is a probabilistic phenomenon, that exists

in nature in collections of datasets and is not necessarily true for each individual

dataset separately. That is, in a single dataset this phenomenon might not be

true, but if there is a collection of datasets, then there is a tendency that he first

few kernel principal components are more correlated with the response. Based on

this, we have three databases of datasets where we explore if this phenomenon

tends to be true. From each database, we select data sets according to three pre-

specified criteria which are the same as the ones used in Artemiou and Li (2009);

(i) They have univariate responses; when a data set has multivariate responses we

randomly select one of them. (ii) They have no categorical predictors. (iii) They

are not artificially constructed. The first database is that provided in the Arc

software (http://www.stat.umn.edu/arc/software.html), from which we select 33

data sets according to the above criteria. This database is also used in Artemiou

and Li (2009), but here kernel principal component analysis rather than linear

principal component analysis is applied. The second database consists of data

sets from a multivariate analysis textbook by Johnson and Wichern, (2007), from

which we select 53 data sets. The third database is the CMU StatLib database

(http://lib.stat.cmu.edu/index.php), from which we select 54 data sets.

For each data set in a database, we compute the first 5 kernel principal com-

ponents and their sample correlations with the response. To compute the kernel

principal components, we use the centered Gram matrix described in Fukumizu,

Bach, and Jordan (2009) with the Gaussian, the exponential, the laplacian, the sig-

moid and the second degree polynomial kernel. The parameter σ for the Gaussian,

the exponential, the laplacian kernel is determined adaptively for each data set, as
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Figure 5.1: Boxplots for the absolute correlations between the response and the first
5 kernel principal components of the predictors in three databases using Gaussian
kernel. Upper panel: 33 data sets from the Arc database. Lower-left panel: 53
data sets from Johnson and Wichern (2007). Lower-right panel: 54 data sets from
CMU StatLib database.
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Figure 5.2: Boxplots for the absolute correlations between the response and the first
5 kernel principal components of the predictors in three databases using exponential
kernel. Upper panel: 33 data sets from the Arc database. Lower-left panel: 53 data
sets from Johnson and Wichern (2007). Lower-right panel: 54 data sets from CMU
StatLib database.
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Figure 5.3: Boxplots for the absolute correlations between the response and the
first 5 kernel principal components of the predictors in three databases using laplace
kernel. Upper panel: 33 data sets from the Arc database. Lower-left panel: 53 data
sets from Johnson and Wichern (2007). Lower-right panel: 54 data sets from CMU
StatLib database.
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Figure 5.4: Boxplots for the absolute correlations between the response and the first
5 kernel principal components of the predictors in three databases using sigmoid
kernel. Upper panel: 33 data sets from the Arc database. Lower-left panel: 53
data sets from Johnson and Wichern (2007). Lower-right panel: 54 data sets from
CMU StatLib database.
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Figure 5.5: Boxplots for the absolute correlations between the response and the
first 5 kernel principal components of the predictors in three databases using second
order polynomial kernel with offset equal to 1. Upper panel: 33 data sets from the
Arc database. Lower-left panel: 53 data sets from Johnson and Wichern (2007).
Lower-right panel: 54 data sets from CMU StatLib database.
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follows. Let X1, . . . , Xn represent the observed predictors of a data set. We use the

average of the Euclidean distances of {‖Xi−Xj‖ : i, j = 1, . . . , n, i < j} as the value

of σ. For the second degree polynomial kernel the offset parameter is is set equal to

1 and the scale parameter for the sigmoid and polynomial kernel is (‖Xi‖‖Xj‖)−1.

The absolute values of the sample correlation between each kernel principal com-

ponent and the response is then calculated. Thus, for example, the Arc database

yields 5 groups of correlations each having 33 correlations corresponding to a kernel

principal component. The boxplots for the absolute correlations corresponding to

the first 5 kernel principal components in the 3 databases are presented in Figure

5.1 for the Gaussian kernel, in Figure 5.2 for the exponential kernel, in Figure 5.3

for the Laplace kernel, in Figure 5.4 for the Sigmoid kernel and in Figure 5.5 for

the Polynomial kernel .

It is evident from the boxplots in Figures 5.1 through 5.5 that higher-ranking

kernel principal components tend to have stronger correlations with the response.

In particular, in all three bases and with any type of kernel the first kernel principal

components have considerably stronger correlations with the response than the

other kernel principal components. Another point to note is the probabilistic nature

of the tendency. For example, in each panel in all Figures 5.1 through 5.5 , there is

a fair percentage of small correlations even for the first kernel principal component.

5.4 Unitarily invariant functions and operators

As in Artemiou and Li (2009) the covariance matrix Σ was defined to be orienta-

tionally uniform, a definition that describes the arbitrary orientation of the cloud

of the points nd was used in earlier Chapters of this work. Similarly, in this Chap-

ter we need to define the concept of an arbitrary covariance operator on a Hilbert
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space, that is, Σ : H → H. Also, Artemiou and Li (2009) assumed random re-

gression coefficients, that defined an arbitrary linear relationship. Since we will

be talking about the general nonparametric model Y = f(X) + ε, we need to de-

fine what an arbitrary function f ∈ H is. Both definitions will be based on the

definition of unitary invariance.

5.4.1 Arbitrary function in a Hilbert space

For simplicity, we assume that, like X and Y , all the other random elements are

defined on the probability space (Ω, F, P ). Let G be the σ-field of Borel sets in H.

An H-valued random element is a mapping f : Ω → H that is measurable F/G. A

unitary operator U : H → H is an invertible linear operator such that U−1 = U∗,

where U∗ : H → H is the adjoint operator of U . This means that for a unitary

operator the following reltionship s true,

〈g, U(h)〉 = 〈U−1(g), h〉 = 〈U∗(g), h〉

where g and h functions in H. Since H is separable it has a countable orthonormal

basis, say {ui : i ∈ N}. The sequence of Fourier coefficients, or Fourier sequence,

of an element f ∈ H with respect to an orthonormal basis {ui : i ∈ N} of H is the

sequence {〈f, ui〉H : i ∈ N}. For simplicity we will abbreviate sequences such as

{ai : i ∈ N} by {ai}.

Any f ∈ H can be expressed as
∑

i∈N aiui, where
∑

i∈N a2
i < ∞. Intuitively, an

arbitrary function in H should have equal probability of assigning any coefficient

sequence {ai} to the basis {ui}, as long as
∑

i∈N a2
i < ∞. Furthermore, since we

will be concerned with quantities such as corr(Y, u(X)|f), and not f itself, the
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magnitude of f is irrelevant; what matters is the relative weights that f gives to

each ui. Finally, we want a definition of a random function f to be independent

of any basis of the Hilbert space, although we have considered arbitrariness of f in

term of a basis.

Definition 5.4.1 An H-valued random element f is said to be unitarily invariant

if, for any unitary operator U : H → H we have f
D= U(f).

An example of a unitarily invariant random function inH, consider the standard

Gaussian random function f ∈ H, defined by the characteristic function

∫
ei〈g,f〉Hν(df) = e−

1
2
〈g,g〉H ,

where i =
√−1 and ν = P ◦f−1 is the probability measure on H induced by f (Kan-

nan and Bharucha-Reid (1970)). For any unitary operator U , the characteristic

function of Uf is

∫
ei〈g,Uf〉Hν(df) =

∫
ei〈U−1g,f〉Hν(df) = e−

1
2
〈U−1g,U−1g〉H = e−

1
2
〈g,g〉H .

Hence f is unitarily invariant. In fact, one can show that any random element whose

characteristic function depends on g ∈ H only through ‖g‖H is unitarily invariant.

In this sense, a unitarily invariant random function in H is a generalization of

spherically distributed random vector.

To understand why a unitarily invariant function can be regarded as “arbi-

trary”, let `∞ be the Hilbert space of the sequences {ci} satisfying
∑

i∈N c2
i < ∞,

with respect to the inner product 〈{ci}, {di}〉`∞ =
∑

i∈N cidi. Then, for any member

h of H, its Fourier sequence {〈h, ui〉H} belongs to `∞; conversely, for any member
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{ci} of `∞, the function
∑

i∈N ciui belongs H.

Proposition 5.4.1 If f is a unitarily invariant random function in H, then its

Fourier sequence with respect to any orthonormal basis {ui} is a unitarily invariant

random element in `∞.

Proof. Let T : `∞ → `∞ be a unitary operator, and let h be a member of H.

Then h =
∑

i∈N ciui for some {ci} ∈ `∞. Let Tj({ci}) denote the jth entry of the

sequence T ({ci}). Let U : H → H be defined as

U(h) =
∑

j∈N
Tj({〈h, ui〉H})uj .

It is easy to see that U is invertible and

U−1(h) =
∑

j∈N
T−1

j ({〈h, ui〉H})uj .

For any g ∈ H,

〈g, U(h)〉H =
∑

j∈N
Tj({〈h, ui〉H})〈g, uj〉H

=〈T ({〈h, ui〉H}), {〈g, ui〉H}〉`∞

=〈({〈h, ui〉H}), T−1{〈g, ui〉H}〉`∞

=
∑

j∈N
{〈h, uj〉H}T−1

j (〈g, ui〉H) = 〈U−1(g), h〉H.

Thus U : H → H is unitary. Since f is unitarily invariant, we have f
D= U(f).
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Hence, for any i ∈ N,

〈f, ui〉H D= 〈U(f), ui〉H =
∑

j∈N
Tj({〈f, uk〉H})〈uj , ui〉H =

∑

j∈N
Tj({〈f, uk〉H})δij

=Ti({〈f, uk〉H}),

where (i, j) 7→ δij is the Kronecker δ function. The above equality implies that the

random sequence {〈f, ui〉H} is a unitarily invariant element in `∞. 2

This proposition tells us that a unitarily invariant random function f has equal

probability to assign any weights {ci} to {ui}, so long as ‖{ci}‖`∞ remains constant.

Thus, taking into consideration what we said earlier that the norm of f is irrelevant

for our discussion, a unitarily invariant random element is fully arbitrary. It is

important to note that f is defined without reference to any basis of H.

5.4.2 Arbitrary covariance operator Σ

Now, we define an arbitrary covariance operator Σ : H → H. As mentioned

earlier, the Σ in Artemiou and Li (2009) is defined as a random matrix which

has orientationally uniform distribution (see Definition 1.6.2). Here, we give a

technically different definition of an arbitrary operator Σ. The advantage of this

modification is that it is more compact and intuitively appealing, and it is easier

to work with in an infinite dimensional setting.

Let R be the σ-field of Borel sets in R and L(H) be the space of linear operators

on H. A random linear operator A is a mapping from Ω to L(H) such that, for any

f1, f2 ∈ H, the function ω 7→ 〈A(ω)f1, f2〉H is measurable with respect to F/R. For

more on random linear operators the reader is referred to Skorohod (1976, 1984).
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We define a random covariance operator Σ : H → H as a bounded and self-adjoint

random linear operator such that, for any f1, f2 ∈ H, 〈Σ(ω)f1, f2〉H ≥ 0 almost

surely P .

Definition 5.4.2 A random covariance operator Σ : H → H is said to be unitarily

invariant if, for any unitary operator U : H → H, we have Σ D= UΣU−1.

Intuitively, this definition means that the operator Σ, observed from any or-

thonormal system in H, is the same random object. A consequence is that the

ith kernel principal component of the operator Σ is equally likely to be any func-

tion in H of unit length. This is a fitting description that the distribution of X

is chosen without regard to any response variable Y . This assumption is neither

stronger nor weaker than the orientationally uniform assumption in Artemiou and

Li (2009): notice that we do not require that the eigenvalues and eigenfunctions

of Σ to be independent. In a finite dimensional setting, the above definition im-

plies that Σ D= UΣU−1 for any orthogonal matrix U . Deift (1999, page 21) gave a

more detailed description of this type of random matrices in the context of unitary

ensembles.

Besides unitary invariance, we impose two additional technical assumption on

Σ when it is treated as a unitarily invariant operator. The first one is that Σ is

compact with probability 1 which ensures that is has a countable spectral decom-

position. The second is that with probability 1, each nonzero eigenvalue of Σ has

multiplicity 1 which ensures that nonzero eigenvalues and the corresponding eigen-

vectors are uniquely determined by Σ. This is assumed for simplicity although we

believe it can be avoided by a more elaborate analysis that will not be presented

in this work.
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Now that we have defined all the necessary tools to ensure randomness in a

Hilbert space of the covariance operator Σ and a random function f we will try

to answer in the next three sections the three problems we stated earlier. First we

will see if similar results in a nonparametric setting where Y = f(X)+ ε. Then we

will see what happens if we select just a random measure for the relationship of Y

on X. At last we will develop the results in the supervised dimension reduction

setting.

5.5 Predictive potential of Kernel PCA in nonpara-

metric regression

In this section we tackle the first problem stated in Section 5.2. We first derive the

distribution of the ratio of two Fourier coefficients of a unitarily invariant random

function. A special case of this result in the finite-dimensional setting is given in

Ni (2010). Lemma 5.5.1, basically, replaces the uniqueness of median lemma that

was shown in Artemiou and Li (2009) and the results that were presented in earlier

Chapters here. The Lemma in Artemiou and Li (2009) gave exactly the necessary

conditions to satisfy a certain inequality. Lemma 5.5.1 along with the Lemma in Ni

(2010) gives us the standard Cauchy distribution which is necessary in order to find

an exact equality of the probability that a higher ranked principal component will

have stronger correlation with the response than a lower order principal component

would.

Lemma 5.5.1 If f is a unitarily invariant random function in H, then the ratio

between two Fourier coefficients of f has a standard Cauchy distribution.
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Proof. Let {ui} be any orthonormal basis of H and let A be a 2× 2 orthogonal

matrix. Let k < ` be two integers in N. We will show that 〈f, uk〉H/〈f, u`〉H has a

standard Cauchy distribution. Define T : `∞ → `∞ as the operator that maps {ci}
to {di}, where di = ci if i /∈ {k, `} and (dk, d`)T = A(ck, c`)T. Then it is easy to

verify that T is unitary.

From the proof of Proposition 5.4.1, T induces a unitary operator U on H:

U(f) =
∑

i∈N Ti({〈f, um〉H})ui. Since f is unitarily invariant, we have U(f) D= f .

That is,

∑

i∈N
Ti({〈f, um〉H})ui

D=
∑

i∈N
〈f, ui〉Hui.

Hence

(Tk({〈f, um〉H}), T`({〈f, um〉H}))T D= (〈f, uk〉H, 〈f, u`〉H)T,

which is equivalent to A(〈f, uk〉H, 〈f, u`〉H)T D= (〈f, uk〉H, 〈f, u`〉H)T. In other words,

(〈f, uk〉H, 〈f, u`〉H)T has a spherically contoured distribution. The desired result

follows now from Theorem 1 of Arnold and Brockett (1992). 2

The next theorem assumes f to be a unitarily invariant random function and

the covariance operator Σ to be fixed.

Theorem 5.5.1 Suppose that Σ is a compact operator. Let λ1 > λ2 > · · · be the

distinct eigenvalues of Σ. For each i, let ui be any member of the linear subspace
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ker(Σ− λi). Suppose the nonparametric regression model

Y = f(X) + ε, (5.4)

holds, where f is a unitarily invariant random element in H and f X. Moreover,

suppose ε (X, f), E(ε) = 0, var(ε) = τ2 < ∞. Then, whenever i < j and λj > 0,

we have

P
{
corr2[Y, ui(X)|f ] ≥ corr2[Y, uj(X)|f ]

}
= (2/π) arctan[(λi/λj)

1
2 ].

Proof. Because ε (X, f),

cov[Y, ui(X)|f ] = cov[f(X), ui(X)|f ].

Moreover, because f X, for any fixed f0 ∈ H we have

cov[f(X), ui(X)|f = f0] = cov[f0(X), ui(X)] = 〈f0,Σui〉H = λi〈f0, ui〉H. (5.5)

That (5.5) holds for any fixed f0 ∈ H implies

cov[f(X), ui(X)|f ] = λi〈f, ui〉H. (5.6)

In the meantime, by f X again,

var[ui(X)|f ] = var[ui(X)] = 〈ui,Σui〉H = λi. (5.7)
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From (5.6) and (5.7) we see that

corr2[Y, ui(X)|f ] = λi〈f, ui〉2H/var(Y |f),

which implies

corr2[Y, ui(X)|f ]
corr2[Y, uj(X)|f ]

=
λi

λj

〈f, ui〉2H
〈f, uj〉2H

. (5.8)

Hence

P
{
corr2[Y, ui(X)|f ] > corr2[Y, uj(X)|f ]

}

= P

{ 〈f, ui〉2H
〈f, uj〉2H

>
λj

λi

}
= P

{
−(λi/λj)

1
2 <

〈f, uj〉H
〈f, ui〉H < (λi/λj)

1
2

}
. (5.9)

Since, by Lemma 5.5.1, the ratio 〈f, uj〉H/〈f, ui〉H has a standard Cauchy distribu-

tion, the right hand side of (5.9) is (2/π) arctan[(λi/λj)
1
2 ]. 2

The interpretation of this theorem is that if nature chooses an arbitrary func-

tion f for the nonparametric regression model (5.4), then the correlation be-

tween Y and ui tends to be larger than the correlation between Y and uj in

(2/π) arctan[(λi/λj)
1
2 ]× 100 percent times. We now extend this result to the situ-

ation where Σ is also random.

Corollary 5.5.1 Suppose that model (5.4) holds, where X is a random vector

whose covariance operator is Σ, and Σ is a random covariance operator satisfying

Assumption ??. Suppose f is a random element in H, and ε X|(f,Σ), (f,Σ) ε,
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f (X,Σ). Moreover, assume that E(ε) = 0 and var(ε) = τ2 < ∞. Then

P
{
corr2[Y, ui(X)|f,Σ] ≥ corr2[Y, uj(X)|f,Σ]

}
= (2/π)E{arctan[(λi/λj)

1
2 ]}.

Proof. We have

E(Y |f,Σ) = E[f(X)|f,Σ] + E(ε|f,Σ).

Since ε (f,Σ), the second term on the right hand side is 0. Moreover, f (X,Σ)

implies that f X|Σ. Hence, for any f0 ∈ H, E[f(X)|f = f0,Σ] = E[f0(X)|Σ].

It follows that

cov[Y, ui(X)|Σ, f = f0] =cov[E(Y |Σ, f = f0), ui(X)|Σ, f = f0]

=cov{E[f0(X)|Σ], ui(X)|Σ} = 〈f0,Σui〉H = λi〈f0, ui〉H.

In other words,

cov[Y, ui(X)|Σ, f ] = λi〈f, ui〉H.

Similarly, since f (X,Σ),

var[ui(X)|f,Σ] = var[ui(X)|Σ] = λi.

Thus the situation is identical to Theorem 5.5.1 except now we have conditioned,

everywhere, on Σ. Apply Theorem 5.5.1 to the conditional probability P (·|Σ) to

obtain

P
{
corr2[Y, ui(X)|f,Σ] ≥ corr2[Y, uj(X)|f,Σ]|Σ}

= (2/π) arctan[(λi/λj)
1
2 ].
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Now take expectation on both sides the equality to complete the proof. 2

5.6 Predictive potential of Kernel PCA in arbitrary

X − Y relation

In this section we will explore the general situation where X and Y are dependent

but the dependence is not restricted to a certain model, parametric or nonpara-

metric. This requires a different set of conditions from those assumed in Theorem

5.5.1. Instead of assuming f is unitarily invariant, as we did in Section 5.5, we

assume Σ to be a unitarily invariant random operator. This set of conditions is

similar to the conditions assumed in Artemiou and Li (2009) in the linear regres-

sion setting. It is important to note that although the result in this section is more

general result than Theorem 5.5.1 we need to make clear that Theorem 5.5.1 is not

a special case of the theorems we will prove in this section, as the assumption are

different.

Although we assume no model for the relation between X and Y , we do need

the following conditional independence

Y Σ|X.

That is, Y depends on X only through the value of X itself, and not its covariance

operator. This is a very mild assumption. As an example, consider the following

scenario:

Y = g(X, ε),
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where g is an unknown function and ε X. In this case, conditioning on X, the

distribution of Y depends only on the distribution of ε and the value of X; the

operator Σ does not appear in the conditional distribution of Y |X except through

X. The nonparametric mean regression model (5.4) clearly satisfies this condition.

Another example is

Y = µ(X) + σ(X)ε, ε X,

where µ(·) and σ(·) are unknown functions.

As in the previous section we will prove a lemma that proves that a ratio of

inner products between a fixed and a random function in the Hilbert space follows

a standard Cauchy distribution. Although, it looks like the one in Section 5.5, one

needs to be careful as the vector (〈f, u1〉H, 〈f, u2〉H)T is not spherically contoured

distributed in general and so we cannot use the result by Arnold and Brocket

(1992) directly. The idea of the proof is to introduce an artificial random function

f̃ , and then condition on u1, u2, so that we “transfer” randomness from (u1, u2) to

f̃ . Then one can follow the same method as in Lemma 5.5.1 to prove the theorem.

Lemma 5.6.1 Suppose that u1, u2 are random functions in H such that

• 〈u1, u2〉H = 0, and

• for any unitary operator U in H, (u1, u2)
D= (U(u1), U(u2)).

Then, for any (nonrandom) function f ∈ H, f 6= 0, the ratio 〈f, u1〉H/〈f, u2〉H has

a standard Cauchy distribution.

Proof. Since U−1 is also a unitary operator we have (u1, u2)
D= (U−1(u1), U−1(u2)).
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Consequently,

(〈f, u1〉H, 〈f, u2〉H) D=(〈f, U−1(u1)〉H, 〈f, U−1(u2)〉H)

= (〈U(f), u1〉H, 〈U(f), u2〉H) .

Thus the distribution of (〈f, u1〉H, 〈f, u2〉H) depends on f only through ‖f‖H ≡ a >

0. Let f̃ be a random element in H that is independent of (u1, u2) and uniformly

distributed on the sphere S(a) = {g ∈ H : ‖g‖H = a}. Then, for any Borel subset

A of R, and any nonrandom function f0 ∈ S(a),

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|f̃ = f0) = P (〈f0, u1〉H/〈f0, u2〉H ∈ A). (5.10)

This implies

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|f̃) = P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A). (5.11)

The right hand side can be rewritten as

E[P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|u1, u2)].

Because f̃ (u1, u2), f̃ is unitarily invariant conditioning on (u1, u2). More-

over, 〈u1, u2〉H = 0. Then, by Lemma 5.5.1, conditioning on (u1, u2), the ratio

〈f̃ , u1〉H/〈f̃ , u2〉H has a standard Cauchy distribution, regardless of the value of

(u1, u2). But this means that the ratio 〈f̃ , u1〉H/〈f̃ , u2〉H is independent of (u1, u2),

and therefore has a standard Cauchy distribution unconditionally. Hence

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A) = PC(A),
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where PC(A) is the probability of A under the standard Cauchy distribution. How-

ever, by equality (5.10) and (5.11) and the discussion preceding them, we have

P (〈f, u1〉H/〈f, u2〉H ∈ A) =P (〈f0, u1〉H/〈f0, u2〉H ∈ A)

=P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A) = PC(A).

That is, 〈f, u1〉H/〈f, u2〉H has a standard Cauchy distribution. 2

We now establish the main result of this section.

Theorem 5.6.1 Suppose that Σ is a unitarily invariant variance operator that is

compact with probability one and each nonzero eigenvalue has multiplicity 1 with

probability 1. Suppose Y Σ|X. Let g(Y ) be any measurable function of Y such

that the function x 7→ E[g(Y )|X = x] belongs to H. Then, for any two eigen-pairs

(λi, ui) and (λj , uj) of Σ satisfying i < j and

cov[g(Y ), ui(X)|Σ] 6= 0, cov[g(Y ), uj(X)|Σ] 6= 0, (5.12)

with probability 1, we have

P
{
corr2[g(Y ), ui(X)|Σ] ≥ corr2[g(Y ), uj(X)|Σ]

}
= E

{
(2/π) arctan[(λi/λj)

1
2 ]

}
.

Proof. First we note that

cov[g(Y ), ui(X)|Σ] = cov{E[g(Y )|X,Σ], ui(X)|Σ} = cov{E[g(Y )|X], ui(X)|Σ},

where the second equality follows from the conditional independence Y Σ|X.
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Let f(x) = E[g(Y )|X = x]. Note that condition (5.12) implies, with probability 1,

λi > 0, λj > 0, 〈f, ui〉H 6= 0, 〈f, uj〉H 6= 0.

Then, by the similar calculation to that which leads to (5.8) in the proof of Theorem

5.5.1, we have

P
{
corr2[f(X), ui(X)|Σ] > corr2[f(X), uj(X)|Σ]

}
= P

(〈f, uj〉2H
〈f, ui〉2H

<
λi

λj

)
.

(5.13)

By the assumption that nonzero eigenvalues have multiplicity 1 with prob-

ability 1, and ignoring a probability null set, (λi, λj , ui, uj) is uniquely deter-

mined by Σ. That is, (λi, λj , ui, uj) is a function of Σ. Write this function as

(λi(Σ), λj(Σ), ui(Σ), uj(Σ)). By the unitary invariance of Σ, we have UΣU−1 D= Σ.

Therefore,

(λi(UΣU−1), λj(UΣU−1), ui(UΣU−1), uj(UΣU−1))

D= (λi(Σ), λj(Σ), ui(Σ), uj(Σ)).
(5.14)

Because

λi(UΣU−1) = λi(Σ), λj(UΣU−1) = λj(Σ),

ui(UΣU−1) = U(ui(Σ)), uj(UΣU−1) = U(uj(Σ)).

equality (5.14) reduces to

{λi(Σ), λj(Σ), U(ui(Σ)), U(uj(Σ))} D= {λi(Σ), λj(Σ), ui(Σ), uj(Σ)}.

Now that the argument for all random elements is Σ, we drop it and rewrite the
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above as {λi, λj , U(ui), U(uj)} D= (λi, λj , ui, uj). This implies

(ui, uj)|(λi, λj)
D= [U(ui), U(uj)]|(λi, λj).

By Lemma 5.6.1, as applied to the conditional probability given (λi, λj), the con-

ditional distribution of ratio 〈f, uj〉H/〈f, ui〉H|(λi, λj) has a standard Cauchy dis-

tribution. Hence

P

( 〈f, uj〉2H
〈f, ui〉2H

<
λi

λj

∣∣∣∣λi, λj

)
= (2/π) arctan[(λi/λj)

1
2 ]. (5.15)

Now take the unconditional expectation on both sides to complete the proof. 2

Thus, if nature selects an arbitrary covariance operator for X, then, regardless

of the form of dependence between X and Y , any measurable function g(Y ) tends

to have a larger correlation (in absolute value) with ui than with uj . The relative

frequency of this tendency is (2/π)E{arctan[(λi/λj)
1
2 ]} × 100 percent.

Next, we consider the situation that nature also chooses a relation between X

and Y , in addition to choosing a covariance operator Σ for X. Because no specific

model is given to the X-Y relation, the randomness has to be imposed directly on

the conditional distribution of Y |X itself, rather than on some aspect of it, such

as the regression function f in model (5.4). For this reason we need to introduce

the notion of a random conditional distribution of Y given X.

Recall that a conditional distribution of Y |X is a mapping

κ : R× ΩX → [0, 1]
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such that (i) for each ω ∈ Ω, the function A 7→ κ(A,X(ω)), R → [0, 1] is a

probability measure on R; (ii) for each A ∈ R, the function ω 7→ κ(A, X(ω)),

Ω → [0, 1] is a version of the conditional probability P (Y ∈ A|X). Let K be the

collection of all such mappings κ. For simplicity, assume that H is rich enough

to contain all bounded measurable functions of X, so that, for each κ ∈ K, and

each A ∈ R, κ(A, ·) ∈ H. Let Rp denote the σ-field of Borel sets in Rp. We

define a random element in K, or a random conditional distribution of Y |X, to be

a mapping

ν : Ω → K, ω 7→ νω(·, ·),

such that, for each A ∈ R, the function Ω → H , ω 7→ νω(A, ·) is measurable

Rp/G. Note that, if H is a set of numbers rather than a set of functions, then our

definition reduces to the classical definition of a random probability measure. See,

for example, Kingman (1967). We use the notation Y |(X, ν) ∼ ν to indicate that

a ν is chosen from K to be the conditional distribution of Y |X.

If, for each A ∈ R, κ(A, X) is almost surely constant, then κ represents the

conditional distribution under which X and Y are independent. Let K0 be the

collection of all such κ. Since the tendency described in this paper occurs only when

X and Y are related in a way, we obviously would like to exclude independence

from consideration. In the present context this is formulated as P (ν ∈ K0) = 0.

This assumption is reasonable. For example, consider the simple case where X and

Y are standard normal variables. Then the dependence of X and Y is completely

determined by their correlation ρ. If we assume ρ to have a continuous distribution,

then the probability for Y and X to be independent is 0.

Corollary 5.6.1 Suppose that covariance operator Σ of X is unitarily invariant,
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compact with probability 1 and each nonzero eigenvalue has multiplicity 1 with

probability 1. Suppose that ν is a random element of K such that P (ν ∈ K0) = 0

and

Y |(X, ν) ∼ ν, ν (X,Σ), Y Σ|(X, ν). (5.16)

Let g be any measurable function of Y such that the random function mν(·) =
∫

g ν(dω, ·) belongs to H almost surely and, with probability 1,

cov[g(Y ), ui(X)|ν,Σ] 6= 0, cov[g(Y ), uj(X)|ν,Σ] 6= 0.

Then, for any i < j we have

P{corr2[g(Y ), ui(X)|ν,Σ] ≥ corr2[g(Y ), uj(X)|ν,Σ]}

= (2/π)E{arctan[(λi/λj)
1
2 ]}.

The independence and conditional independence in (5.16) have the similar in-

terpretation as those in Corollary 5.5.1: Y Σ|(X, ν) means that the distribution

of Y |(X, ν) does not depend on Σ; ν (X,Σ) means that the relation between X

and Y does not depend on X or its covariance operator Σ.

Proof of Corollary 5.6.1. Note that

cov[g(Y ), ui(X)|ν,Σ] = cov{E[g(Y )|ν,Σ, X], ui(X)|ν,Σ}

Since Y Σ|(X, ν), we have

E[g(Y )|ν,Σ,X] = E[g(Y )|ν, X] = mν(X).
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Since ν (X,Σ) we have mν (X,Σ). Hence, for any κ ∈ K, we have

cov[mν(X), ui(X)|ν = κ,Σ] = cov[mκ(X), ui(X)|Σ] = 〈mκ,Σui〉H = λi〈mκ, ui〉H.

This implies

cov[mν(X), ui(X)|ν,Σ] = λi〈mν , ui〉H.

Similarly, by ν (X,Σ) we have

var[ui(X)|ν,Σ] = var[ui(X)|Σ] = λi.

It follows that

corr2[g(Y ), ui(X)|ν,Σ]
corr2[g(Y ), uj(X)|ν,Σ]

=
λi〈mν , ui〉H
λj〈mν , ui〉H .

Since mν (ui, uj , λi, λj), we have mν (ui, uj)|(λi, λj). Hence, for any κ ∈ K,

P

( 〈mν , uj〉2H
〈mν , ui〉2H

<
λi

λj

∣∣∣∣ ν = κ, λi, λj

)
= P

( 〈mκ, uj〉2H
〈mκ, ui〉2H

<
λi

λj

∣∣∣∣λi, λj

)
.

By (5.15) the right hand side is (2/π) arctan[(λi/λj)
1
2 ]. Thus we have proved

P

( 〈mν , uj〉2H
〈mν , ui〉2H

<
λi

λj

∣∣∣∣ ν, λi, λj

)
= (2/π) arctan[(λi/λj)

1
2 ].

Now take the conditional expectation on both sides of the above equality to com-

plete the proof. 2
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5.6.1 Data analysis

To test how our theory holds up in real data sets we now compare the estimated

values of

Πij = (2/π)E{arctan[(λi/λj)
1
2 ]}, Pij = P{corr2(Y, ui|ν, Σ) ≥ corr2(Y, uj |ν, Σ)}

for each of the three databases described in Section 5.3. According to Corollary

5.6.1 these two values should be the same. The Πij and Pij are estimated as follows.

Let D1, . . . , Dm represent the data sets in each database. Thus m = 33, 53, 54 for

the three databases, respectively. For each Dk, we compute the ith eigenvalues

of the centered Gram matrix from derived from the Gaussian kernel, Exponential

kernel, Laplace kernel, Sigmoid kernel and second order polynomial kernel with

offset equal to 1 (see description in Section ??). Denote these eigenvalues as λ̂ik.

The value Πij is then estimated by

Π̂ij =
2

πm

m∑

k=1

arctan[(λ̂ik/λ̂jk)
1
2 ].

The probability Pij is estimated similarly. For each data set Dk, we compute the

sample correlation between the ith kernel principal component and the response.

Denote this correlation by ρ̂ik. Then Pij is estimated by

P̂ij =
1
m

m∑

k=1

I(ρ̂2
ik ≥ ρ̂2

jk).

The results are presented in Table 5.1 for the Gaussian kernel, Table 5.2 for the

Exponential kernel, Table 5.3 for the Laplace kernel, Table 5.4 for the Sigmoid

kernel and Table 5.5 for the second degree polynomial kernel.
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Table 5.1: Comparison of Π̂ij and P̂ij for three databases using Gaussian kernel.
Arc J & W (2007) CMU StatLib

(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij

1 vs 2 0.643 0.818 0.619 0.755 0.644 0.815
2 vs 3 0.678 0.303 0.640 0.547 0.657 0.426
3 vs 4 0.648 0.727 0.614 0.434 0.623 0.537
4 vs 5 0.644 0.485 0.606 0.642 0.614 0.630

Table 5.2: Comparison of Π̂ij and P̂ij for three databases using Exponential kernel.
Arc J & W (2007) CMU StatLib

(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij

1 vs 2 0.669 0.818 0.645 0.735 0.793 0.796
2 vs 3 0.606 0.394 0.591 0.528 0.688 0.537
3 vs 4 0.589 0.545 0.570 0.547 0.641 0.500
4 vs 5 0.566 0.545 0.555 0.585 0.610 0.574

Table 5.3: Comparison of Π̂ij and P̂ij for three databases using Laplace kernel.
Arc J & W (2007) CMU StatLib

(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij

1 vs 2 0.606 0.848 0.588 0.773 0.692 0.796
2 vs 3 0.592 0.364 0.581 0.509 0.669 0.444
3 vs 4 0.566 0.727 0.557 0.566 0.612 0.556
4 vs 5 0.562 0.364 0.541 0.566 0.593 0.685

Table 5.4: Comparison of Π̂ij and P̂ij for three databases using the Sigmoid kernel.
Arc J & W (2007) CMU StatLib

(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij

1 vs 2 0.863 0.758 0.791 0.642 0.824 0.611
2 vs 3 0.785 0.606 0.821 0.585 0.817 0.481
3 vs 4 0.764 0.697 0.749 0.623 0.846 0.574
4 vs 5 0.747 0.485 0.668 0.528 0.751 0.667
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Table 5.5: Comparison of Π̂ij and P̂ij for three databases using second degree
polynomial kernel with offset equal to 1.

Arc J & W (2007) CMU StatLib
(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij

1 vs 2 0.825 0.758 0.771 0.660 0.644 0.815
2 vs 3 0.847 0.545 0.795 0.660 0.657 0.426
3 vs 4 0.752 0.667 0.795 0.528 0.623 0.537
4 vs 5 0.781 0.424 0.753 0.453 0.614 0.630

Tables 5.1 through 5.5 show reasonable agreements between Π̂ij and P̂ij , at

least in overall trends. It is interesting to see that P̂ij seems to fluctuate more

than Π̂ij does, which is perhaps to be expected because, intuitively, Πij acts as

a theoretical expectation of the relative predictive potentials of ui and uj based

purely on the properties of the predictors themselves. It should also be noted that

equality Pij = Πij is marginal in nature. That is, a pair of eigenfunctions ui, uj

are considered without reference to the other eigenfunctions. Perhaps this explains

why, in Tables 5.1 through 5.5 , a relatively good agreement is sometimes followed

by a relatively poor agreement, and nonadjacent pairs seem to agree better. Within

our current theoretical framework, we believe it is possible to compute probabilities

such as

P{corr2(Y, ui|ν, Σ) ≥ corr2(Y, uj |ν,Σ) ≥ corr2(Y, uk|ν, Σ)}

for i < j < k, and such joint probabilities might improve the agreement.

5.7 Linear PCA and sufficient dimension reduction

In this section, we try to connect linear principal component analysis with sufficient

dimension reduction. In sufficient dimension reduction (see Li (1991, 1992), Cook
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and Weisberg (1991), Cook (1994, 1998), and Li, Zha, and Chiaromonte (2005))

the X-Y relation is specified by the conditional independence

Y X|βTX, (5.17)

where β is a matrix in Rp×d, d ≤ p. Also in the second part of this work we propose

a new method to estimate β based on support vector machine algorithms. In this

part of this work we only consider the special case of d = 1. For d > 1 similar

issues as the ones we had before for multivariate response variables appear. Let Σ

denote the covariance matrix of X. Although relation (5.17) is a special case of

the X-Y relation in Section 5.6, which postulates no model at all, the conditions

used in this section are different from the previous sections. Here, we assume β or

Σ, or both, to be randomly selected by nature.

Recall that a p-dimensional random vector has a spherical distribution if, for

any p× p orthogonal matrix A, AV
D= V . As a special case of Definition 5.4.2, we

say that p × p random covariance matrix Σ is unitarily invariant if AΣA−1 D= Σ.

The next lemma summarizes the special cases of Lemmas 5.5.1 and 5.6.1 in a

finite-dimensional setting.

Lemma 5.7.1 Suppose that v1, v2 are nonrandom vectors in Rp and u1, u2 are

random vectors in Rp, that vT
1v2 = 0 and uT

1u2 = 0, and that, for any orthogonal

matrix A, A(u1, u2)
D= (u1, u2). Then the ratios

vT
1u1/vT

2u1, vT
1u1/vT

1u2

each follows a standard Cauchy distributions.
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Let (λ1, v1), . . . , (λp, vp) be the eigen-pairs of Σ, so ordered that λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0. Let U1, . . . , Up be the 1st, . . . , p th principal components of X.

That is, Ui = vT
i X. Let A be a p-row matrix. In the following PA(Σ) denotes the

projection on to span(A) with respect to the Σ-inner product. That is, PA(Σ) =

A(ATΣA)−1ATΣ. Let QA(Σ) = Ip − PA(Σ) be the projection onto the orthogonal

complement of span(A). In the next lemma, β and Σ are assumed nonrandom.

In the following lemma we will need the assumption E(X|βTX) is linear in

βTX. This is commonly used in the sufficient dimension reduction literature. See,

for example, Li (1991) and Cook (1998). It implies that

E(X|βTX) = P
βT(Σ)X + Q

βT(Σ)E(X). (5.18)

Lemma 5.7.2 Suppose that the conditional independence (5.17) holds for some

β ∈ Rp, and E(X|βTX) is a linear function of βTX, then for any i 6= j, and any

measurable function g(Y ) with finite variance and cov[g(Y ), X] 6= 0, we have

corr2[g(Y ), Ui]
corr2[g(Y ), Uj ]

=
λi(vT

i β)2

λj(vT
j β)2

. (5.19)

Proof. Note that

cov[g(Y ), Ui] = cov{E[g(Y )|X], Ui} = cov{E[g(Y )|βTX], Ui}.

Since conditional expectation is a self-adjoint operator, we also have

cov{E[g(Y )|βTX], Ui} = cov[g(Y ), E(Ui|βTX)]. (5.20)
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By (5.18),

E(Ui|βTX) = vT
i E(X|βTX) = vT

i P
βT(Σ)X + vT

i Q
βT(Σ)E(X).

Substitute this into the right hand side of (5.20) to obtain

cov[g(Y ), Ui] = vT
i P

βT(Σ)cov[g(Y ), X] = λiv
T
i β(βTΣβ)−1βTcov[g(Y ), X].

In the meantime we note that var(Ui) = λi. Hence

corr2(Y, Ui) = λi{vT
i β(βTΣβ)−1βTcov[g(Y ), X]}2/var(Y ).

Now take the ratio of corr2(Y, Ui) and corr2(Y,Uj), which implicitly evokes the

assumption that cov[g(Y ), X] 6= 0, to complete the proof. 2

The key point of this lemma is that g(Y ) disappears from the ratio on the left

hand side of (5.19), so that the ratio is completely determined by the eigenvalues

and eigenvectors of Σ. This is what gives linear PCA its predictive potential.

Theorem 5.7.1 Suppose Σ is a random matrix in Rp×p and β is a random vector

in Rp such that Y Σ|(X, β), β (X,Σ). Suppose, furthermore,

Y X|(βTX, β,Σ) (5.21)

and E(X|βTX, β,Σ) is linear in βTX. Suppose g(Y ) is any measurable function

such that

P{E[g2(Y )|β,Σ] < ∞} = 1, P{cov[g(Y ), X|β,Σ] 6= 0} = 1. (5.22)
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If either of the following conditions holds:

1. Σ is a unitarily invariant operator with each of its eigenvalues having multi-

plicity 1 almost surely,

2. β spherically distributed,

then, for any i < j,

P
{
corr2[g(Y ), Ui|β,Σ] ≥ corr2[g(Y ), Uj |β,Σ]

}
= (2/π)E{arctan[(λi/λj)

1
2 ]}.

Condition (5.21) is the same in spirit as the dimension reduction relation (5.17),

except that we have taken into account the randomness of β and Σ. Condition

(5.22) ensures that cov[g(Y ), X|β,Σ] exists and is nonzero almost surely.

Proof of Theorem 5.7.1. Conditioning on β and Σ, the situation is identical

to Lemma 5.7.2. Hence

corr2[g(Y ), Ui|β,Σ]
corr2[g(Y ), Uj |β,Σ]

=
λi(vT

i β)2

λj(vT
j β)2

.

If assumption 1 is satisfied, then we first condition on Σ to compute

P

(
(vT

j β)2

(vT
i β)2

<
λi

λj

∣∣∣∣∣Σ
)

.

Since β is independent of Σ, it has a spherical distribution conditioning on Σ.

Hence, by Lemma 5.7.1 (the result for the first ratio), this conditional probability

is (2/π) arctan[(λi/λj)
1
2 ]. Now take unconditional expectation to prove the desired

equality under scenario 1.
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If assumption 2 is satisfied, then we first condition on (β, λi, λj) to compute

P

(
(vT

j β)2

(vT
i β)2

<
λi

λj

∣∣∣∣∣ β, λi, λj

)
. (5.23)

By the similar argument to that used in proving Theorem 5.6.1 we can show that,

for any orthogonal matrix A, A(vi, vj)|(λi, λj)
D= (vi, vj)|(λi, λj). Since β Σ, this

implies

A(vi, vj)|(β, λi, λj)
D= (vi, vj)|(β, λi, λj)

Applying Lemma 5.7.1 (the result for the second ratio) to the conditional probabil-

ity P (·|β, λi, λj), we see that conditional probability (5.23) is (2/π) arctan[(λi/λj)
1
2 ].

Now take the unconditional expectation to complete the proof. 2

5.7.1 Central mean subspace for sufficient dimension reduction

Cook and Li (2002, 2004) introduced the notion of the central mean subspace

for sufficient dimension reduction to deal with the situation where the conditional

mean E(Y |X), rather than the full conditional distribution of Y |X, is of primary

interest. See also Yin and Cook (2002). Suppose

E(Y |X) = E(Y |βTX), (5.24)

for some matrix β ∈ Rp×d, d ≤ p. Then the subspace of Rp spanned by the columns

of β is a mean dimension reduction subspace. The intersection of all such subspaces

is called the central mean subspace. A related concept is the single index model:

Y = f(βTX) + ε, where ε X and β is a vector in Rp (Ichimura (1993)). It is
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easy to see that if β satisfies this relation then the linear subspace spanned by β

is a 1-dimensional central mean subspace.

Theorem 5.7.1 can be modified in an obvious way to cover this case. Assuming

again d = 1, if we replace g(Y ) by Y , and replace condition (5.21) by

E(Y |X, β,Σ) = E(Y |βTX, β,Σ),

then the conclusion of Theorem 5.7.1 still holds.
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Chapter 6

Discussion

In this first part of this work we study a phenomenon that in the context of linear

regression and classical principal component analysis, this phenomenon has long

been noticed, and was a focal point of a historical debate. This problem is even

more important today because, in its most general form, it lies at the intersection of

supervised, unsupervised, and semi-supervised dimension reductions, three rapidly

advancing areas in statistics and machine learning.

This wok is a continuation of Li (2007), Artemiou and Li (2009) and Ni (2010).

In the first Chapter we presented this past work and a small piece of the historical

debate on the issue. In Chapter 2, we present how one can extend the results

presented in Artemiou and Li (2009) for fixed covariance matrix (a similar result

was simultaneously developed by Ni (2010)) and in the case of multivariate response

variable Y . In Chapter 3 we show our first attempt to go beyond the linear model.

So under certain conditions we expand the result of Artemiou and Li (2009) and

Ni (2010) in two important directions. The results are presented for both fixed

and random covariance matrices as well as for univariate and multivariate response
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variables. Those results show that linear PCA hold some predictive power even if

the underline model is not linear. In Chapter 4 we present an effort to go around

the correlation in finding the predictive power of linear PCA, by introducing an

information criterion, and showing a result for normally distributed predictors in

the linear model. We believe that there is some potential to that result that we

need to explore in the future. In Chapter 5, the more interesting and convincing

results are presented. The predictive power of linear PCA is shown in connection

with sufficient dimension reduction under the assumption that E(X|βTX) is linear

in βTX. A similar result was shown in Chapter 3 under different assumptions.

Also we investigate the predictive power of kernel PCA in infinite dimensional

Hilbert spaces. We show that under the assumption of Σ being a unitarily invariant

covariance operator (Section 5.6) and for a general arbitrary relationship for Y on

X, the higher ranked kernel principal components tend to have more correlation

with the response than the lower ranked one. This is also shown in the case of the

nonparametric setting where Y = f(X) + ε in section 5.5 under the assumption of

a unitarily invariant random function f .

We must emphasize that the tendency studied here is probabilistic. If we have

only one dataset we do not expect it to be true. In the case that we have a collection

of datasets we expect that this tendency will be clearer, as in the case with the three

datasets presented in Figures 5.1 through 5.5. Those boxplots show the tendency

that higher ranked kernel principal components tend to be more correlated with

the response than lower ranked ones do, a tendency that can be quantified using

Cauchy distribution as we have shown in the proofs of our theoretical results.

Given the fact that this tendency is probabilistic, the results presented in this part

of this work, does not prove that linear principal components or kernel principal

components gives you always the correct results or that it is always good to use
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them. They just show a tendency but there exists an unmeasurable risk that this

relationship will not hold true for some datasets. So, these results present the

need of other methods to be developed, that incorporate the information of Y

when extracting directions for dimension reduction in regression as the extensive

literature in sufficient dimension reduction suggests. The reader is referred to Li

(1991), Li (1992), Cook (1994), (1996), (1998a), (1998b), Li, Zha and Chiaromonte

(2005), Li and Wang (2007), as well as the next part of this work which deals with

the proposal of another method to perform sufficient dimension reduction using

machine learning algorithms.

6.1 Future work

The results developed in this work are somewhat incomplete, in the sense that

there are many interesting results not developed to the full potential.

One possible extension that we are interesting to investigate more is the case

where we have multivariate response Y . As we saw in the results presented in

Chapters 2 and 3, there is a need to find the exact assumptions under which

certain ratios between random variables have unique median that is equal to 1.

Those cases where assumed to be true, but there is no indication if there are real

life reasonable examples where those assumptions are true. Further investigation

is needed towards that direction.

A second possible extension is the information criterion presented in Chapter

4. The information criterion, was an idea that we were trying to use to see if linear

PCA have predictive power beyond the linear regression setting. Unfortunately,

the result we were able to develop and show in the course of this work was very
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limited, as it is just for the case where we have a linear regression model with

normal predictors, which of course is very restrictive. Much more work is needed

towards this direction and we will try to develop something in the future.

Moreover, in the linear regression model (and even the nonparametric case

presented in Section 5.5) one might think to relax the assumption of independence

between the regression coefficients and the predictors (or in the case of the nonpara-

metric case the independence between f and the predictors). This might result in

different (and maybe better) lower bound in the inequality presented by Artemiou

and Li (2009) or even another equality at the one presented in Ni (2010).

Furthermore, the last result that relates sufficient dimension reduction with

linear principal component analysis, was proved only for d = 1. It will be interesting

to extend it for cases where d > 1 as this is the case often in real datasets.

Finally it is very interesting to see, how strong is the assumption of unitary

invariance. There is an indication that this might be very strong in the infinite

dimensional Hilbert spaces, in which case our proof is only true for the finite

dimensional Hilbert spaces, but further work is needed towards this direction.
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PART II

SUFFICIENT DIMENSION REDUCTION USING

SUPPORT VECTOR MACHINES



Chapter 7

Introduction on sufficient

dimension reduction

Sufficient Dimension Reduction is a field developed mainly in the last two decades

and especially after a breakthrough work of Li K. C. (1991). The main idea of

Sufficient Dimension Reduction and the fact that makes it different and more ef-

fective procedure than PCA, is the involvement of the response variable Y in the

information used to calculate the axis which Y has the most variation, and hence

the axis that will show the most information for the regression of Y on X.

7.1 General On Sufficient Dimension Reduction

In this section we give the main definitions that will be used in the description

of the different Sufficient Dimension Reduction methods that were proposed over

the years. For more details on the subject the reader is referred to Cook (1998a),
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where we borrow most of the notation.

It is important to clearly state that in all those methods we assume that

Y X|βT X. (7.1)

That means that the response variable Y depends on the predictor matrix X

only through βT X. This implies that there will be no loss of information in the

regression if X is replaced by βT X. In this case, S(β) is considered the dimension

reduction subspace (DRS) for the regression of Y on X, where with S(β) we define

the subspace that is spanned by the column vectors of matrix β.

One can define the minimum DRS to be the dimension reduction subspace S of

the regression of Y on X, if the dim(S) ≤ dim(SDRS) for all possible DRSs, which

are denoted with SDRS . With “dim” the dimension of a subspace is denoted. The

minimum DRS of a regression may not be unique, but all the minimum DRS by

definition should have the same dimension.

Furthermore, one can define the central dimension reduction subspace (CDRS)

to be the subspace SY |X such that S ⊂ SDRS for all possible DRSs, which are

denoted with SDRS . A CDRS exists only if the ∩SDRS is itself a DRS and SY |X =

∩SDRS .

The relationship between minimum DRS and CDRS in a regression problem is

given in the following proposition(Cook (1998a)):

Proposition 7.1.1 If SY |X is the CDRS for the regression of y on x then SY |X is

the unique minimum DRS.
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7.2 Sufficient Dimension Reduction Methods

In this section an overview of the main methods of Sufficient Dimension Reduction

that have been presented over the years is given. The main idea behind every

method is given and the advantages and their limitations are explained. The reader

is referred to the referenced works for further reading.

7.2.1 Ordinary Least Squares (OLS)

Ordinary Least Squares (OLS) was the first method for reducing the dimension and

it was proposed by Li K. C. and Duan (1989). The method is based on minimizing

the loss function

L(α, β) = E(Y − α− βT X)2. (7.2)

The major assumption of this work, which is also an assumption on most of

the following methods is the assumption of linear conditional mean (LCM), that

is:

Assumption 7.2.1 For any β ∈ Rp, the conditional expectation

E (βX|β1X, . . . , βKX) (7.3)

is linear in β1X, . . . , βKX; that is, for constants c0, . . . , cK ,

E (βX|β1X, . . . , βKX) = c0 + c1β1X + . . . + cKβKX (7.4)
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It was shown by Eaton (1986) that Assumption 7.2.1 is satisfied if and only if the

distribution of the predictor vector X is elliptically symmetric.

Denoting with Z the standardized version of the predictors X it is easy to

show that the solution of the loss function

L(α, β) = E(Y − α− βT Z)2. (7.5)

is E(ZY ).

Under Assumption 7.2.1 it can be shown that E(ZY ) ∈ SY |Z .

7.2.2 Sliced Inverse Regression (SIR)

The main problem with OLS was that it can detect only one direction. If there

are two or more directions that are needed it will not detect those. To avoid this

Li K. C.(1991) introduced the Sliced Inverse Regression (SIR) algorithm.

The author doesn’t assume any parametric or nonparametric model fitting

process. The dimension reduction is defined under the following regression model:

Y = f (β1X, . . . , βKX, ε) (7.6)

which is more restrictive than the model in (7.1). The goal is to find as small K as

possible. They define effective dimension reduction (EDR) space to be the linear

space generated by the EDR directions where EDR directions are the estimated

directions where X has the greatest variability. The EDR directions are denoted

in the above model by βi, i = 1, ..., K and K is the dimension of the EDR space.

To estimate the EDR directions the author is using the inverse regression, that
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is regressing X against Y instead of Y on X. Using inverse regression, one can

regress each predictor in X on Y , thus reducing the problem into multiple one

dimensional problems.

The main theorems that set the theoretical formulation of the above are the

following:

Theorem 7.2.1 Under Assumption 7.2.1 and model (7.6) the centered inverse

regression curve E(X|Y ) − E(X) is contained in the linear subspace spanned by

βiΣ where i = 1, . . . , K and Σ = cov(X) a p× p matrix.

The above theorem, of course is true when we standardize X to Z. That is:

Corollary 7.2.1 Under Assumption 7.2.1 and model (7.6) the standardized regres-

sion curve E(Z|Y ) is contained in the linear space generated by the standardized

EDR directions η1, . . . , ηK . Consequently, the column space of cov(E(Z|Y )) is a

subspace of the EDR subspace.

One important step in SIR is the slicing of the domain of response variable Y

into H slices. That means, that in fact when we perform SIR we are using the

discretized version od the above theorems.

Another issue of the SIR algorithm is finding the number of directions that are

necessary to completely describe the relationship between Y and X. For X having

a multivariate normal distribution, the solution is in the following theorem,

Theorem 7.2.2 If X is normally distributed, let λ1 ≥ . . . ≥ λp denote the eigen-

values of the matrix Σ = cov(X) and λ̂1 ≥ . . . ≥ λ̂p their estimators . Under

the hypothesis H0 : λp−K+1 = . . . = λp = 0 the test statistic
p∑

i=p−K+1

λ̂i follows
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asymptotically χ2 distribution with (p−K)(H −K − 1) degrees of freedom, where

H is the number of slices we use in the SIR algorithm.

Using the above theorem one can perform a sequential test to for K = 1, . . . , p− 1

and the number of of EDR directions that are needed is the smallest K for which

the hypothesis in Theorem 7.2.2 is rejected.

The problem with the above work is that the ideas of EDR space and EDR

directions were proposed without addressing existence or uniqueness issues and as

Cook (1998a) say, “they can be elusive”.

After the appearance of the theoretical background on Dimension Reduction

Subspace (DRS) and the Central Dimension Reduction Subspace (CDRS), by Cook

(1994a), Cook (1994b), Cook (1996) the ideas were proven to work in that frame-

work that was presented in section 7.1. The theorems in this section can be restated

to fit that framework as follows:

Theorem 7.2.3 Under Assumption 7.2.1 and model (7.1) the centered inverse

regression curve E(X|Y )−E(X) ∈ SY |X

The above theorem, of course is true when we standardize X to Z. That is:

Corollary 7.2.2 Under Assumption 7.2.1 and model (7.1) the standardized re-

gression curve E(Z|Y ) ∈ SY |Z . Consequently, the column space of cov(E(Z|Y )) ∈
SY |Z .

118



7.2.3 Sliced Average Variance Estimates (SAVE)

This method was presented by Cook and Weisberg (1991) in the discussion of the

paper by Li K. C. (1991) presenting the SIR. The authors note that SIR can fail

to estimate efficiently the CDRS directions in case E(Z|Y = y) = 0 ∀y. So, by

observing that sometimes the dependence can be through higher moments they

proposed the Sliced Average Variance Estimates (SAVE) algorithm that instead

of calculating E(Z|Y ) in each slice they are calculating the var(Z|Y ). The direc-

tions needed to estimate the CDRS is the eigenvectors corresponding to the largest

eigenvalues of the matrix
H∑

h=1

(I − var(Z|y ∈ Lh))2 where H denotes the number of

slices of the domain of Y and Lh denotes the hth slice.

There is an extra assumption associated with the use of SAVE algorithm, which

is known as the Constant Conditional Variance Assumption.

Assumption 7.2.2 The conditional variance of var(X|βT X) is a non-ranom ma-

trix.

The theorem associated with the SAVE algorithm is again the discretized ver-

sion of:

Theorem 7.2.4 Suppose Assumptions 7.2.1 and 7.2.2 hold and Z the standardized

version of the predictors X. Then the column space of the matrix I − var(Z|Y ) is

a subset of SY |Z , the central space. Consequently the column space of the matrix

E (I − var(Z|Y ))2 is a subspace of SY |Z .

Originally the work was presented in the context of EDR space, but since it has

been shown that can be extended into the more general case of CDRS, which was

presented in section 7.1, only the more general case is shown.
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7.2.4 Principal Hessian Directions (pHds)

The idea of finding the Principal Hessian Directions (pHds) to achieve dimension

reduction was first proposed by Li K. C. (1992) and was further extended, gener-

alized and refined by Cook (1998b). When Li K. C. (1992) first presented it, was

under the EDR directions and EDR space formulation but here only the results

that are using the more general concept of DRS and CDRS will be presented, since

they are more general. Also the results are shown under the standardized version

Z of the predictors X, since they apply without loss of generality.

In mathematics the Hessian matrix H is the square matrix of second-order

partial derivatives of a function. In the presented work the function is E(Y |Z).

We have that:

H(Z) =
∂2E(Y |Z)
∂Z∂ZT

=
∂2E(Y |βT Z)

∂Z∂ZT
= β

∂2E(Y |βT Z)
∂(βT Z)∂(ZT β)

βT (7.7)

where β is the basis of the CDRS SY |Z . The motivation for this work for Li K. C.

(1992) was the fact that the Hessian matrix is degenerate along the directions that

are orthogonal to the EDR space (and later it was shown that is also orthogonal

to CDRS SY |Z). Also, Li K.C. (1992) uses Stein’s Lemma to effectively estimate

the average Hessian matrix, HZ = E(H(Z)), and the pHds.

Before giving more results, it is important to note that HY = E
(
Y ZZT

)

is called the Y -based Hessian matrix and He = E
(
eZZT

)
is called the e-based

Hessian matrix, where e is the residual of the simple linear regression e = Y −wT Z.

Also the eigenvectors of the Hessian matrix are called pHds.

The following theorems are very important because they show that if one can

estimate the average Hessian matrix well, then the associated pHds with significant
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nonzero eigenvalues can be used to find the basis for the CDRS SY |Z .

Theorem 7.2.5 Suppose Assumptions 7.2.1 and 7.2.2 holds. Then the column

space of HY is a subspace of SY |Z .

Theorem 7.2.6 Suppose Assumptions 7.2.1 and 7.2.2 holds. Then the column

space of He is a subspace of SY |Z .

Let λ1 ≥ . . . ≥ λp the eigenvalues of HeH
T
e and λ̂1 ≥ . . . ≥ λ̂p their sample

estimates. In order to determine the number of directions K that we need to

estimate we need to perform the sequence of tests

H0 : λj+1 = . . . = λp = 0j = 0, 1, . . . , p− 1 (7.8)

The rank K of He which also denotes the direction needed is the smallest j for

which the above hypothesis holds. The test statistic is the following:

p∑

i=j+1

λ̂i

2var(e)
(7.9)

The following theorem is true for the hypothesis test procedure that is performed

in order to find the number of directions K. (A series of results that prove this

theorem can be found in Li B. (2003)).

Theorem 7.2.7 Suppose that:

1. The column space of He exhausts the CDRS: that is, span(He) = SY |Z

2. The predictor vector Z has a p-dimensional standard multivariate distribu-

tion.
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Then under the hypothesis (7.8) the test statistic (7.9) converges to a χ2 distribution

with j(j + 1)/2 degrees of freedom.

The results on this issue can be achieved with the use of matrix HY but as Li K. C.

(1992) argues the results with He are more powerful since usually var(Y ) ≥ var(e).

While the idea of pHd algorithm is very attractive it was shown that it can fail

to detect linear trends.

7.2.5 Central Mean Subspace and Iterative Hessian Transforma-

tions (IHTs)

Iterative Hessian Transformation algorithm was proposed by Cook and Li (2002).

In this work, the authors introduced the concept of Central Mean Subspace (CMS)

which is a natural inferential object for dimension reduction when the mean func-

tion E(Y |X) is of interest.

Development of Central Mean Subspace

The basic definitions and theorems that were used to develop the ideas of CMS are

presented in this subsection.

Definition 7.2.1 If

Y E(Y |X)|βT X (7.10)

then S(β) is a mean dimension reduction subspace for the regression of Y on X.
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Since model 7.1 implies model 7.10 it means that a dimension reduction subspace

is also a mean dimension reduction subspace.

Parallel with the definition of Central Dimension Reduction Subspace given

in section 7.1 one can define SE(Y |X) = ∩S where S is used to denote all mean

dimension reduction subspaces. If SE(Y |X) exists then it is called the Central Mean

Subspace (CMS). CMS does not always exist, but the existence and uniqueness of

it can be guaranteed under similar conditions as the CDRS in section 7.1. Also,

SE(Y |X) ⊆ SY |X . For location regressions where Y X|E(Y |X) we have that

SE(Y |X) = SY |X .

Directions in the Central Mean Subspace

First of all, the authors revisit all the methods that have been presented (OLS,

SIR, SAVE, pHd) to see under which conditions the estimated directions that were

shown to be in SY |X using those methods, are also in SE(Y |X). For easiness, the

results involving the standardized predictors Z are shown.

For the OLS, it is noted that if one restricts the attention to objective functions

based on the natural exponential family

L
(
a + bT Z, Y

)
= −Y

(
a + bT Z

)
+ φ

(
a + bT Z

)
(7.11)

for some strictly convex function φ, then the directions β are always in SE(Y |Z),

where β the population minimizers of

(α, β) = arg min
a,b

R (a, b) (7.12)
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For SIR and SAVE, it is noted that both can find vectors in SY |Z\SE(Y |Z).

That is, in general E(Z|Y ) is in SY |Z but not in SE(Y |Z).

For pHd, it was shown that using HY for the estimation of the directions then

the algorithm is actually estimating the directions in CMS.

Theorem 7.2.8 Let γ be the basis for SE(Y |Z). If Assumption 7.2.1 holds and if

var(Z|γT Z) is uncorrelated with Y , then S(βyz,HY ) ⊆ SE(Y |Z) where βyz is the

OLS coefficient vector E(Y Z)

Instead of using the HY one can use He as was suggested by the derivation of pHd

in Li K.C. (1992) and Cook (1998). So:

Proposition 7.2.1 Assume that Assumption 7.2.1 holds. Then:

SE(Y |Z) = SE(e|Z) + S(βyz) (7.13)

where the summation of the two subspaces means the collection of vectors of the

form β + β′ with β ∈ SE(r|Z) and β′ ∈ S(βyz)

Finally the authors, show that under the assumptions

1. E(Z|βT
yzZ) is linear

2. var(Z|βT
yzZ) is constant

the following equation holds

S(βyz, He) = S(βyz,HY ) (7.14)
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Iterative Hessian Transformation

The results of the previous section for the already presented methods, can be

summarized as follows:

1. SIR requires Assumption 7.2.1 and find vectors in CDRS

2. SAVE requires Assumptions 7.2.1 and 7.2.2 and find vectors in CDRS

3. pHd requires Assumptions 7.2.1 and 7.2.2 and finds vectors in CMS

4. OLS requires Assumption 7.2.1 and finds vectors in CMS

The problem is that while SIR, SAVE and pHd can find multiple directions in

the space they are effective into finding directions (CDRS or CMS), OLS can find

only one direction. Cook and Li (2002) propose a method which will require only

Assumption 7.2.1 and will be able to find multiple directions in CMS.

First the following theorem is proven.

Theorem 7.2.9 Under Assumption 7.2.1 the central mean space is an invariant

subspace of the linear transformation v 7→ Hv where H can be replaced with any

of HY or He. That means:

HY SE(Y |Z) ⊂ SE(Y |Z),HeSE(Y |Z) ⊂ SE(Y |Z) (7.15)

This theorem basically says that one can find one vector in SE(Y |Z) and all the

rest will be produced by multiplying with the Hessian matrices HY or He. Since

the vectors βyz as was defined in the OLS procedure is in SE(Y |Z) that brings the

following result.
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Corollary 7.2.3 Under Assumption 7.2.1

1. span{Hj
Y βyz : j = 0, 1, ...} ⊆ SE(Y |Z)

2. span{Hj
eβyz : j = 0, 1, ...} ⊆ SE(Y |Z)

This iteration process is exactly what gave the name to this procedure as the

Iterative Hessian Transformations (IHT).

This procedure cannot be done infinitely many times but since the CMS space

we are estimating has finite dimension there is a need for a rule that will define a

stopping rule, that is a way to ensure exhaustiveness of the CMS that is estimated

has already been achieved. This rule is given by the following Proposition.

Proposition 7.2.2 Let A be a p×p matrix and β a p-dimensional vector. If Ajβ

belongs in the subspace spanned by β, . . . ,Aj−1β then so does Asβ for s > j.

7.2.6 Consistency and exhaustiveness of OLS, SIR, SAVE, pHd,

IHT

The five methods that have been discussed until now, they have the following two

properties:

1. The estimated directions are
√

n consistent of the population parameters

2. The estimated directions do not exhaust the CDRS or the CMS.
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7.2.7 Structure Adaptive Estimation

This approach was presented by Hristache et al (2001) and it is based on iterative

improvement of the family of average derivatives. If we denote with F (Xi) =

∇f(Xi) of the regression function f at every point Xi, then F (Xi) belongs to the

index space I. Then one can perform Principal Component Analysis (PCA) to

estimate the space I, by computing the matrix M = 1
n

n∑

i=1

F (Xi)F T (Xi).

This approach was developed for the model 7.6. The problem with this method

is the fact that when the effective dimension of the index space is greater than 3,

it doesn’t achieve
√

n consistency.

7.2.8 Minimum Average Variance Estimation (MAVE)

Minimum Average Variance Estimation (MAVE) was presented by Xia et al (2002).

It was proposed under model 7.6 and it is another method that doesn’t achieve
√

n

consistency of the estimators.

The idea here, is that by removing Assumption 7.2.1 one can accommodate

applications in data sets like time series data sets where the assumption is violated.

So they try to estimate the EDR directions by minimizing E(V ar(Y |γT X)) over

all γ ∈ Rp×q. To minimize this expectation they employ multivariate kernels which

can be very complicated.

7.2.9 Contour Regression

In search of a method that will ensure exhaustiveness of the CDRS and at the same

time
√

n consistency of the estimates Li, Zha and Chiaromonte (2005) proposed
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two different methods Simple Contour Regression (SCR) and General Contour

Regression (GCR). The two methods target the contour directions of the response

surface. Contour directions are those along which the response has small variance,

that is they span the complement of the CDRS. The two methods are based on two

different measures of the variation of the response. Again, the results are presented

considering Z, the standardized version of the predictors X. The results on the

non-standardized predictors X follows similarly.

Simple Contour Regression

Simple Contour Regression (SCR) needs an additional assumption to be estab-

lished.

Assumption 7.2.3 For any choice of vectors v ∈ SY |Z and ω ∈ (
SY |Z

)⊥ such

that ‖v‖ = ‖ω‖ = 1, and any sufficiently small c > 0, we have

var
(

ωT
(
Z̃ −Z

)∣∣∣
∣∣∣Ỹ − Y

∣∣∣ ≤ c
)

> var
(

vT
(
Z̃ −Z

)∣∣∣
∣∣∣Ỹ − Y

∣∣∣ ≤ c
)

(7.16)

where
(
Z̃, Ỹ

)
is an independent copy of the random pair (Z, Y ).

In order to establish the main theory, the matrix

K(c) = E

((
Z̃ −Z

)(
Z̃ −Z

)T
∣∣∣∣
∣∣∣Ỹ − Y

∣∣∣ ≤ c

)
(7.17)

is being consider and it is shown that the eigenvectors of K(c) corresponding to

the smallest q eigenvalues span the CDRS as the following theorem states.

Theorem 7.2.10 If Assumption 7.2.3 holds, then the eigenvectors of K(c) corre-

sponding to the smallest q eigenvalues span the central subspace SY |Z
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It has been also shown that the estimation procedure is
√

n consistent. Proving

exhaustiveness and creating test procedures require Assumption 7.2.2 to hold.

General Contour Regression

The problem with SCR is the fact that using the inequality
∣∣∣Ỹ − Y

∣∣∣ ≤ c to pick up

the contour directions creates problems when the function is not monotone. In this

case, it can pick more directions that will affect the results of the estimation. In

order to overcome this problem, the use of the following matrix (instead of K(c))

is proposed

G(c) = E

((
Z − Z̃

) (
Z − Z̃

)T
∣∣∣∣V

(
Z, Z̃

)
≤ c

)
(7.18)

where

V
(
Z, Z̃

)
= var

(
Y |Z = l

(
t;Z, Z̃

)
t ∈ R

)
(7.19)

and l
(
t; Z, Z̃

)
= (1− t) Z + tZ̃, t ∈ R

In order to establish the theory we need an assumption similar to the one for

the SCR, that is

Assumption 7.2.4 For any choice of vectors v ∈ SY |Z and ω ∈ (
SY |Z

)⊥ such

that ‖v‖ = ‖ω‖ = 1, and any sufficiently small c > 0, we have

var
(

ωT
(
Z̃ −Z

)∣∣∣ V
(
Z, Z̃

)
≤ c

)
> var

(
vT

(
Z̃ −Z

)∣∣∣V
(
Z, Z̃

)
≤ c

)
(7.20)

where
(
Z̃, Ỹ

)
is an independent copy of the random pair (Z, Y ).
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Using this assumption the following theorem can be established

Theorem 7.2.11 If Assumption 7.2.4 holds, then the eigenvectors of G(c) corre-

sponding to the smallest q eigenvalues span the central subspace SY |Z .

Finally it can be shown that the estimators are
√

n consistent and that we can

exhaustively estimate the CDRS. Also, it can be shown that GCR is robust against

non-ellipticity of the predictors.

7.2.10 Directional Regression (DR)

All the methods, that were presented, and especially, SIR, SAVE and pHds are

considered classical dimension reduction methods. Each one of them have its own

advantages and disadvantages. That’s the reason several authors like Gannoun and

Saracco (2003) and Ye and Weis (2003) have proposed several combinations of the

different methods to achieve better results.

Li and Wang (2006) proposed Directional Regression (DR) that synthesizes

the dimension reduction methods based on the first two conditional moments. DR

needs substantially less computation and achieve higher accuracy of the direction

estimates. The method is based on the empirical directions Xi −Xj : 1 ≤ i < j ≤ n,

that were introduced for Contour Regression and were the base of estimation in

SCR and GCR.

The whole idea of DR is on the following theorem.

Theorem 7.2.12 Suppose Assumptions 7.2.1 and 7.2.2 holds. Then 2Ip−A
(
Y, Ỹ

)
=

130



P
(
2Ip −A

(
Y, Ỹ

))
where

A
(
Y, Ỹ

)
= E

((
Z − Z̃

)(
Z − Z̃

)T
∣∣∣∣Y, Ỹ

)
(7.21)

and P the projection onto SY |Z .

In other words this theorem tells us that the column space of 2Ip − A
(
Y, Ỹ

)
is

contained in SY |Z .

It is also proved that DR achieves exhaustiveness of the CDRS and
√

n consis-

tency of the estimates. Moreover, is proved that if the moments involved in SAVE

and in DR are finite then the subspace estimated by the two methods are the same.

Finally, it is important to note that since DR is a second-moment based method,

it will not perform as well as GCR in situations where the regression surfaces have

higly fluctuating shapes like high frequency trigonometric functions.

7.2.11 Kernel Dimension Reduction

Fukumizu, Bach and Jordan (2009) proposed a sufficient dimension reduction

method called the Kernel Dimension Reduction (KDR) method which involves

the use of conditional covariance operators on reproducing kernel Hilbert spaces.

The authors, basically, identify that since the “kernel trick” can be applied on re-

producing kernel Hilbert spaces it makes them computationally and at the same

time they can be used to capture nonparametric phenomena of interest, that makes

them really attractive to be used to achieve sufficient dimension reduction. Basi-

cally, they show that the conditional covariance operators can be estimated using

Gram matrices, and then those Gram matrices can be used to get estimates for the

central dimension reduction subspace. That is, those covariance operators can be
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used to measure departures of conditional independence.

The authors first explain that a reproducing kernel Hilbert space H is charac-

teristic if and only if
∫

fdP =
∫

fdQ for all f ∈ H means P = Q. Then they state

the basic theorem which states the following:

Theorem 7.2.13 Let

• X be a closed ball Dm(r) = {x ∈ Rm|‖x‖ ≤ r} or an entire Euclidean space

Rm

• HX is the Reproducing kernel space of functions on X.

• Sm
d (R) is the set of all d orthonormal vectors in Rm

• HB
X be the reproducing kernel Hilbert space associated with the positive definite

kernel kXB (x, (̃x)) = kd

(
BTx, BT(̃x)

)
where d is the minimum dimension of

the sufficient dimension reduction subspace and B ∈ Sm
d (R).

Suppose the closure of HB
X in L2(PX) is included in the closure of HX in L2(PX)

for any B ∈ Sm
d (R). If for (HX, PX) HX +R is dense in L2(PX) and for (HB

X , PB)

HB
X +R is dense in L2(PX) for all B ∈ Sm

d (R) (where “+” denotes the direct sum

between two reproducing kernel Hilbert spaces) and also HY is characteristic then:

ΣY Y |X = ΣB
Y Y |X ⇔ Y X|BTX

where ΣY Y |X is the conditional covariance operator.

Two of the most important features of KDR is first, the fact that it does not

impose any strong assumptions on the distribution of the predictors X and second,
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that it can find directions even when the central dimension reduction subspace does

not exist. As long as d is chosen to be large enough such that sufficient dimension

subspaces with that dimension exist, then the algorithm will converge to those

subspaces.

7.2.12 Sufficient Dimension Reduction without matrix inversion

All the methods that have been mentioned for inference about SY |Z require the

inversion of the sample version Σ̂ of the p×p predictor covariance matrix Σ. That

means, they also require that n > p. If n < p then the inversion will be impossible

since the rank of Σ̂ is min(n, p) .

Cook, Li and Chiaromonte (2007) propose a general approach that allows many

methods to be adapted in regressions where n < p. The approach, is similar to

IHT and requires computation of powers of Σ̂ instead of Σ̂
−1

.

Let ν be any matrix such that span(ν) ⊆ ΣSY |X . Such a matrix is called a

seed matrix. The idea is that if we have a matrix R which columns form a basis

for M, where M is a subspace of Rp that contains SY |Z , then

Σ−1ν = R
(
RTΣR

)−1
RT ν (7.22)

and consequently Σ−1 is not required.

By defining MY |Z to be the intersection of all subspaces M that contain SY |Z

then, MY |Z is the smallest subspace that contains SY |Z and conforms the eigen-

structure of Σ. That means MY |Z can be constructed without inverting Σ.

Let the matrices Ru ≡ (
ν,Σν, . . . ,Σu−1ν

)
for u = 1, 2, .... The following
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theorem explains how one using matrices Ru can find the space MY |Z .

Theorem 7.2.14 Suppose Σ is positive definite with q the distinct nonzero eigen-

values, k of which correspond to eigenspaces not orthogonal to SY |Z . Then there

exists an integer 1 ≤ ũ ≤ k such that span(Ru) is strictly increasing until u = ũ,

and settles upon MY |Z thereafter:

span(R1) ⊂ . . . ⊂ span(Rũ) = MY |Z = span(Rũ+1) = . . . (7.23)

Further results to ensure the capture of SY |Z , the choice of d the dimension of SY |Z

and the choice of ũ are given by Cook, Li, Chiaromonte (2007).

The importance of this work is that it transforms the already known algorithms

to accommodate regressions where n < p, as long as n > d, by removing the

requirement of matrix inversion.

7.3 Sufficient Dimension Reduction for non-linear fea-

ture extraction by applying existing methods in the

feature space

Wang (2008) observed that model 7.1 is not suitable for dimension reduction in

case we have interaction terms in our regression function. One can still apply the

methods that were presented in section 7.1 but will lose power since to capture

the interactions there is a need to find too many linear combinations. In this

philosophy Wang (2008) proposed three different methods of using the feature space

of support vector machines (SVM) (to be introduced later) to achieve Sufficient
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Dimension Reduction. Those methods are based on the assumption of φ(X) and

Y , or consequently X and Y , are independent given αT φ(X), that is

Y φ(X)|αT φ(X) or Y X|αT φ(X) (7.24)

where, for a degree 2 polynomial,

φ(X)T =
(
X1, . . . ,Xp, X

2
1, . . . ,X

2
p, X1X2, . . . ,X1Xp, X2X3, . . . ,Xp−1Xp

)

(7.25)

One can modify the definition accordingly for higher order polynomials.

7.3.1 General Estimation method for Dimension Reduction on the

Feature space

The goal in the setting of model 7.24 is to estimate matrix α. There is a big issue

associated with it though. It is not possible for the predictor space to have the

elliptically contoured predictor distribution required by most dimension reduction

methods.

To overcome this issue, Wang (2008) extends a result by Diaconis and Freedman

(1984), to show that for degree two random polynomial feature vectors generated

from multivariate normal distributions, the low dimensional projections of the fea-

ture vectors have an asymptotic multivariate normal distribution. Using this result,

one can apply existing dimension reduction methods on the feature space directly.

This method is called Global Estimation method (GE).
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7.3.2 Local Estimation method for Dimension Reduction on the

Feature space

The results of GE although can get results that other methods of Sufficient Di-

mension Reduction were not able to give, they are limited to the extend to which

αT φ(X) is elliptical. In order to maximize performance one can refer to methods

such as SAE and MAVE, that can be used without using Assumption 7.2.1.

In this case, one can use an Invariant Aggregation (IA) method proposed by

Tang (2007) which requires weaker assumption on the distribution of X. IA re-

quires the joint distribution of (X, Y ) to be symmetric about the central space

and the dimension reduction vectors estimators to satisfy an equivariant assump-

tion that is proposed by Theorem 5.5.2 in Tang (2007). Wang (2008) combine the

SIR and IA methods to implement a new algorithm of Dimension Reduction on

the feature space which performs better than the GE estimator, creating sharper

images of the data, but the improvement is not very significant.

Another approach proposed by Wang (2008) is the Nonlinear Aggregation

(NA). This method is based on the fact that

φ(x) ≈ φ(b)− φ(b)b + φ(b)x (7.26)

for any b ∈ ΩX , the domain of X. Then for model 7.24 we have approximately in

a neighborhood of b

Y X|αT φ(b)X (7.27)

That means, that one can first establish a dimension reduction method at local

regions of the original predictor X to get an estimator for M0(b; ρ) (this matrix
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definition depends on the dimension reduction method that will be used). This

matrix help estimate the matrix

M(b; ρ) = φ(b)
(
φ(b)T φ(b)

)−1
M0(b; ρ)

(
φ(b)T φ(b)

)−1
φT (b) (7.28)

whose columns span SY |φ(b)X(b;ρ) where X(b; ρ) = XI(‖X − b‖ ≤ ρ). By taking

the E (M(b; ρ)), that is, aggregating the local information, one can obtain SY |φ(X).

The estimation results are a little bit better compared to the IA method and a lot

better compared to the GE method.

7.3.3 Kernel Slice Inverse Regression

More recently Wu (2008) and Yeh, Huang, and Lee (2009) used the “kernel trick”

to extend the SIR to the nonlinear setting. They proposed the Kernel Slice Inverse

Regression algorithm, in a reproducing kernel Hilbert space. First, they define

the space spanned by the column vectors α in (7.24) as the effective dimension

reduction subspace and then they extend the linear conditional mean assumption to

the feature space which is a reproducing kernel Hilbert space. So using a finite basis

in the feature space, denoted with K (,̇A) one can express the following theorem

Theorem 7.3.1 If the existence of a feature space can be assumedH = span{K(x, A)α1, . . . ,K(x, A)αd}
and that the linear conditional mean assumption holds in the feature space, that is:

E (αTK(x, A)|αT
1K(x, A), . . . , αT

dK(x, A)) = c0 + c1α
T
1K(x, A) + . . . , +cdα

T
dK(x, A)

for every α = (α1, . . . , αn) ∈ Rn. Then:

E(K(x, A)|Y )−E(K(x, A)) ∈ span{ΣKα1, . . . ,ΣKαd}
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where ΣK = cov (E(K(x, A))).

The authors also proposed several algorithmic revisions that reduced the com-

plexity of the implementation of the algorithm and cut down the computational

load. The main problem is that since they needed matrix inversion, singularity

issues led to reduced performance and also numerical instability.

In this Chapter we have given an overview of the most important methods

developed for Sufficient Dimension Reduction and some recent works towards non-

linear dimension reduction. This is just an overview, and it does not exhaust the

current literature. There is an abundance of methods not discussed here for several

reasons, the most important one, is that it is quite impossible for an introduction

into sufficient dimension reduction to cover all of them. Also, some methods that

were developed for other type of data, for example, functional data (Amato, Anto-

niadis and De Feis (2006)) or survival data (Li, Wang and Chen (1999)), does not

fit the context of this work. In the next Chapter 8 we will describe support vector

machines and how we intend to use them to achieve sufficient dimension reduction.

In Chapter 9 we give the asymptotic results for SVM, we describe the estimation

procedure and we describe how one can achieve dimension reduction. In Chapter

10 we present a simulation analysis to compare the performance of our method to

other methods and the performance of our method when we change some of the

parameters. Finally, in Chapter 11 we show the effectiveness of our method in two

real datasets and in Chapter 12 we discuss our work and implications for future

work.
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Chapter 8

Support Vector Machines for

dimension reduction

In this Chapter we first introduce the idea of a separating hyperplane and the ex-

tension to support vector machines, for separable and non-separable data. Then

we discuss how Support Vector Machines can be used for sufficient dimension re-

duction, and we present some modifications on the objective function that can lead

to dimension reduction without matrix inversion.

8.1 Early Machine Learning Algorithms

Since the use of computer was widely used in the 1950’s, the construction of ma-

chines that were capable of learning from experience has received a lot of attention

by researchers in both aspects; philosophically and technically. The first algo-

rithms that was developed, was the Rosenblatt’s Perceptron algorithm which was

139



proposed by Rosenblatt (1962) and it’s generalization, radial basis functions (or

potential functions) that were proposed by Aizerman, Braverman and Rozonoer

(1964a) and (1964b) and neural networks that were proposed by Rumelhart, Hin-

ton and Williams (1986) and LeCun (1986). The reader is referred to Vapnik (1998)

Chapter 9 for a complete introduction on these methods and for a presentation of

more theoretical results.

While the learning machine algorithms were becoming more widely used, since

the computer power increased significantly in the early 1990s the need for more

accurate algorithms forced researches to explore more ideas. Support Vector Ma-

chines (SVMs) were introduced by Cortes and Vapnik (1995) and since then became

one of the most widely used learning method for classification and regression.

8.2 The optimal hyperplane

In a typical two category classification problem in Rp each point is viewed as

a p-dimensional vector. The objective of a classification algorithm is to find a

(p − 1)-dimensional hyperplane that divides the data in the two category clouds.

This hyperplane is called the linear classifier, as data on one side of the hyperplane

belong to one category and data on the other side of the hyperplane belong to the

other category. The hyperplane is called the optimal hyperplane if it maximizes

the margin between the two data clouds. The notation and formulation that are

used in this subsection and next subsection follow closely the one by Vapnik (1998).

Let assume that we have a finite set of vectors x that form the training set

(y1, x1) , . . . , (yn, xn) where x ∈ Rp and y ∈ {−1, 1}. As one can see y is the

indicator variable on which category each x vector belongs. Let x ∈ I if y = 1 and
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Figure 8.1: An example of two samples (black circles and red crosses) with possible
separating hyperplanes. The blue dot-dash line is not a separating hyperplane. The
green dot dash line is a separating hyperplane. The black solid line is the optimal
hyperplane, as it achieves separation with maximum distance from the points. The
points that fall on the two black dash lines are the support vectors.
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x ∈ II if y = −1. There exists a hyperplane

(x ∗ φ) = c (8.1)

if there exists a unit vector φ and a constant c such that the following inequalities

hold:

(xi ∗ φ) > c, if xi ∈ I

(xi ∗ φ) < c, if xi ∈ II (8.2)

For any unit vectors φ one can define the following:

c1(φ) = min
xi∈I

(xi ∗ φ),

c2(φ) = max
xi∈II

(xi ∗ φ),

Then by taking the unit vector φ0 that maximizes the function

ρ(φ) =
c1(φ)− c2(φ)

2
, |φ| = 1 (8.3)

and the constant

c0 =
c1(φ0) + c2(φ0)

2
(8.4)

one can determine the optimal hyperplane that divides the data in the two pre-

defined categories. The optimal hyperplane is also called the “maximal margin

hyperplane”, since equation (8.3) is called the margin of the separating hyper-

plane. Conceptually, margin is the distance of the hyperplane from the closest

point, in each side of the hyperplane. It has been proved that this hyperplane is
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unique.

Figure 8.1 shows a case where we try to find the optimal hyperplane. Our two

populations are the black circles and the red crosses. The optimal hyperplane is

shown with a black solid line, while the blue dot dash lines is not a separating

hyperplane and the green dot dash line is a separating hyperplane which is not

optimal, as the distance from the points is not as big as the distance the black

solid line has.

A formal definition of the optimal hyperplane (Vapnik (1998)) that achieves a

margin ∆ is as follows:

Definition 8.2.1 We call a hyperplane

〈ψ∗, x〉 − b = 0, |ψ∗| = 1

the ∆-separating hyperplane if it classifies vectors x as:

y =





1 if〈ψ∗, x〉 − b ≥ ∆

−1 if〈ψ∗, x〉 − b ≤ −∆

There is a very attractive feature on the calculation of the hyperplane. It

was shown that the equation of the vector ψ∗ that is associated with the optimal

hyperplane is only associated with the points in the dataset that are closer to the

hyperplane. On Figure 8.1 those are the points that are on the black dash lines.

Those points are called the support vectors of the hyperplane.
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Figure 8.2: An example of two samples (black circles and red crosses) that are not
linearly separable. We can see that one black circle and a red cross are incorrectly
classified by this optimal hyperplane.
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8.3 Duality of the problem

As we have said before the objective of the SVM algorithms is to maximize the

margin ∆ for all unit vectors that separate our dataset (see Definition 8.2.1). That

is our objective is maximize the margin ∆ among all |ψ| = 1 under constraints:

yi (ψTxi − β) ≥ ∆

In the literature the dual problem is presented more often, due to the easier way

of dealing with the calculations. The dual problem instead of trying to maximize

the margin for all unit vectors, we minimize the length of the vector associated

with the hyperplane, for a fixed unit margin. That is one can minimize |ψ|2 = ψTψ

so that the margin ∆ = 1 under constraints

yi (ψTxi − b) ≥ 1

As we will see in the future developments, this expression of the problem, will

make it easier for us to extend the problem in the nonseparable case as well as the

population version of the problem.

This idea is easy to understand and implement if the data is separable, but that

is not the case in the majority of real life problems (see Figure 8.2). In the following

sections we describe how one can attack the nonseparable cases, using the optimal

hyperplane idea, to find the optimal linear hyperplane (by minimizing the cost of

misclassification) and how one can use the support vector machine algorithm to

attack it and find a nonlinear separation of the dataset.
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8.4 Nonseparable case

Figure 8.2 shows a non linearly separable case. The way to attack this problem

is to introduce some variables, ξi, i = 1, . . . , n which denote the misclassification

distance for each of the points. If the ith point is correctly classified then ξi = 0,

and if it is incorrectly classified then ξi > 0. In this case the problem of finding the

optimal hyperplane is transformed into the one that tries to minimize:

ψTψ + c
n∑

i=1

ξi (8.5)

under the modified constraints that ξi ≥ 0 and:

yi (ψTxi − b) ≥ 1− ξi (8.6)

8.5 Support Vector Machines (SVMs)

Support Vector Machine maps the input vectors x into a high-dimensional space,

which is called “the feature space”, using a non-linear mapping which is chosen a

priori. In the feature space the optimal hyperplane can be constructed.

If for example, someone needs to find a hyperplane that is a polynomial of

second degree then the feature space is a p(p + 3)/2 dimensional space, where p is

the dimension of vector x. These dimensions break as follows:

1. p coordinates for each of the elements of vector x,

2. p coordinates for the square of each of the elements of vector x,

3. p(p− 1)/2 for the all the interactions of between the elements of vector x
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From the above example, one can easily see that the dimension of the feature space,

increase dramatically, as the dimension of vector x increases and as the degree of

the polynomial that constructs the hyperplane increases.

To reduce the computation, it was shown that one can use only the support

vectors of a data set in order to find the optimal hyperplane using the SVM al-

gorithm. Support vectors are the vectors in the data set that their distance from

the hyperplane is exactly equal to the margin of the hyperplane. In Figure 8.1 the

support vectors are the points lying on the black dash lines.

A strong feature of Support Vector Machines is the fact that you can use

functions to map the nonseparable data into higher (possible infinite) dimensional

spaces called Reproducing Kernel Hilbert spaces. The functions that derive those

spaces are called kernels (see relationship (5.2) and the discussion that precedes

it, for a definition of Reproducing kernel Hilbert spaces). The advantage of kernel

functions is that one can use the “kernel trick”; that is if a computation depends

only on inner products, one can extract the lower dimensional projections without

calculating the projection coefficients, which reside in the feature space, which is a

higher (sometimes infinite) dimensional space.

After their appearance in Cortes and Vapnik (1995), SVMs were expanded in

very different directions, such as the estimation of real valued functions, pattern

recognition and regression estimation. The interested reader is referred in Vapnik

(1998) and Hastie, T., Tibishrani, R. and Friedman, J. (2009) for further reading.
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8.6 Using Support Vector Machines for Dimension Re-

duction

In this section we describe how SVM works in the dimension reduction framework.

This is basically a description of the theoretical results that follow in the next

Chapter.

First, we revisit the SIR algorithm that was presented in section 7.2.2. As it

is shown in Figure 8.3 SIR slices the response surfaces into a number of slices. In

each slice we find the average of the all the xi’s that belong in the slice. Figure 8.3

shows that in the population level this average will be in the middle of the slice.

Connecting E(X|Y ) with the point of origin will give you a direction (denoted as

β on the figure) in the Central Dimension Reduction Subspace (CDRS) denoted as

SY |X . SIR as well as other inverse regression methods like SAVE and DR depend on

the sample moments, which is well known that they are not robust in the presence

of outliers.

With support vector machines the procedure will be similar. We will divide

the response surface into slices. But we will project only the response surface on

the predictor space. The slice divisor will not be projected on the predictor space,

so in a sense it will be unknown. Assuming that we have only two slices, on the

predictor space we will have the points that belong in slice 1 and the points that

belong in slice 2. Our objective will be to estimate the slice divisor as the optimal

hyperplane dividing the points in the two slices using a SVM algorithm. The vector

that is vertical to the optimal hyperplane is in the CDRS SY |X .

This procedure will be helpful in three ways. First, as we have seen earlier, in

Sections 8.2 and 8.5, the equation of the optimal hyperplane depends only on the

148



Figure 8.3: An example with two-dimensional predictor. A response surface is
shown and one slice divisor is marked on the response surface. The response surface
and the slice divisor is projected on the predictor surface. The population mean of
the predictors in the slice is the point in the middle of the slice denoted as E(X|Y )
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support vectors, those points which are closer to the separating hyperplane. Thus,

if there are outliers in our samples, which are far away from the rest of the points in

the two slices, there will not be much effect on the final equation of the hyperplane.

This gives us a robust way to estimate the directions in the CDRS, something

previous dimension reduction methods that depend on inverse sample moments

did not address. Second, a slight modification in the objective function that we

minimize when estimating the optimal hyperplane, enables dimension reduction

without matrix inversion. Third, we can use any kernel to move into a higher

dimensional feature space, something that allow us to extract nonlinear features in

the CDRS. The first two objectives are explored in the next two Chapters in theory

first and then through some simulations. The third one is addressed only at the

end of the next Chapter by showing a brief theoretical extension. More theoretical

work and simulations are left for the future.

8.7 Population level SVM

One of the most important features of the SVM is the fact that the development

presented until now in this work, as well as the definition of the optimal hyperplane

in Definition 8.2.1, is based on the sample level. To be able to derive asymptotic

properties of our estimators, we need to extend the development to the population

level.

Since the problems we deal with have nonseparable datasets we revisit the

problem of finding the optimal hyperplane as it was presented in section 8.4. The

way it was presented there is not helpful for our future developments and so we

will present it a little bit differently. The first step will be to fix the hyperplane

parameters ψ and β and try to find the equation of the ξi’s that minimizes the
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objective function (8.5). Using the constraints (8.6) one can see that the minimum

of 8.5 is achieved when

ξ∗i = [1− yi(xT
i ψ − b)]+

Substituting this into the objective function (8.5) we get that our objective is to

minimize:

ψTψ + C

n∑

i=1

[1− yi(xT
i ψ − b)]+. (8.7)

This version of the minimization problem can be expressed as an expectation

in the population level. Let’s assume that we have {X1, . . . ,Xn} be a sample of

points in Rp and {Y1, . . . , Yn} be a sample of labels in {−1, 1}. Then the above

objective function can be re-expressed in the population level as follows:

ψTψ + CE[1− Y (XTψ − b)]+. (8.8)

The optimal hyperplane (ψ, b) that minimizes this objective function, is the optimal

hyperplane that separates the conditional distributions of X|Y = 1 and X|Y = −1.

8.8 Achieving Dimension Reduction without matrix in-

version

Finally, there is a way to address dimension reduction without the need of matrix

inversion. This is very important as it enables us to attack dimension reduction in

large p small n problems, that frequently appear in the literature.
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The idea is that the minimizer of the objective function 8.8 is the same as the

minimizer of the following objective function:

ψTΣψ + CE[1− Y (XTψ − b)]+. (8.9)

where Σ = cov(X). This small modification that adds the covariance matrix in the

first term enables us to perform dimension reduction without the need of inverting

the matrix, that is without the need of standardizing the predictors.

It is important to note that the objective function (8.9) is different form the

standard objective function (8.8), we can nevertheless use the standard SVM al-

gorithm to solve our problem by first applying a linear transformation of X. Note

that

ψTΣψ = 〈ψ,Σψ〉 = 〈Σ 1
2 ψ,Σ

1
2 ψ〉, XTψ = 〈X, ψ〉 = 〈Σ− 1

2 X,Σ
1
2 ψ〉.

Thus, if we let

Z = Σ− 1
2 X, φ = Σ

1
2 ψ,

then the objective function can be re-written as

φTφ + CE [1− Y (ZTφ− b)]+ .

This is the standard objective function. Thus we can apply the standard SVM to

this problem to estimate φ∗, and then compute ψ∗ using the relation ψ∗ = Σ− 1
2 φ∗.
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Chapter 9

Estimation procedure and

asymptotic results

In this Chapter we will discuss some theoretical results. Mainly we will show that

there is a unique minimizer of the objective function 8.9.

First we refine more the objective function to fit the idea of slicing the range

of values of Y . Let Ω1 and Ω2 be a partition of Ω. Let Ỹ be the discrete random

variable defined by

Ỹ =





−1 Y ∈ Ω1

1 Y ∈ Ω2

(9.1)

We modify the objective function (8.9) as follows

ψTΣψ + CE[1− Ỹ (XTψ − b)]+. (9.2)
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Now it is clear the objective function depends on ψ, b and the joint distribution of

(X, Ỹ ). We denote it with L(ψ, b,PX, Ỹ ), that is:

L(ψ, b,PX, Ỹ ) = ψTΣψ + CE[1− Ỹ (XTψ − b)]+. (9.3)

The following result shows that the value of the objective function stays the

same, whether we multiply the predictors or the minimizer, with a matrix from the

left.

Theorem 9.0.1 Let A be a p× p matrix. Then

L(ψ, b, PAX, Ỹ ) = L(ATψ, b, PX, Ỹ ).

Proof. It is easy to see that both the right- and the left-hand sides are

ψTAΣATψ + CE[1− Ỹ (XTATψ − b)]+,

as desired. 2

9.1 Unbiasedness of the normal vector of optimal hy-

perplane

In this section we show that, if (ψ∗, b∗) is the minimizer of L(ψ, b, PX, Ỹ ) in (9.3)

and if X has an elliptically-contoured distribution, then, under some additional

mild conditions, ψ∗ belongs to the central subspace SY |X . The proof relies on
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a symmetric property of the joint distribution of (X, Y ), which is derived from

the elliptical distribution assumption on X. This idea was first used in Li, Zha,

and Chiaromonte (2005) to prove the unbiasedness of contour regression. It is

developed more fully in Tang (2007), in the context of invariant aggregation of

dimension reduction estimators.

Recall that a random vector Z has a spherical distribution if Z
D= AZ for any

orthogonal matrix A. If X = ΣZ for some positive definite matrix Σ, then X is

said to have an elliptical distribution with shape matrix Σ. If the components of X

have finite variances, then the shape matrix is proportional to the covariance matrix

of X. Since we always assume E(XXT) to have finite components, henceforth we

take the shape matrix Σ to be the covariance of X without loss of generality.

Consider the Hilbert space {Rp, 〈·, ·〉Σ}, where the inner product is defined by

〈a,b〉Σ = aTΣb.

The adjoint matrix of U with respect to the inner product 〈·, ·〉Σ is the matrix

U∗ such that

〈a,Ub〉Σ = 〈U∗a,b〉Σ

for all a,b ∈ Rp. It is easy to see that U∗ satisfies the above relation if and only

if U∗ = Σ−1UTΣ. We will say that U is a Σ-orthogonal matrix if U∗ = U−1.

Lemma 9.1.1 The following statements are equivalent:

1. X has an elliptical distribution with shape matrix Σ;

2. for any Σ-orthogonal matrix U, X
D= (U∗)TX;

3. for any Σ-orthogonal matrix U, X
D= UTX.
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4. for any Σ-orthogonal matrix U, X
D= U∗X;

5. for any Σ-orthogonal matrix U, X
D= UX.

Proof. 1⇒ 2. Let U be a Σ-orthogonal matrix. Then Σ 1
2UΣ− 1

2 is an orthogonal

matrix. Since X has an elliptical distribution with shape matrix Σ, Σ− 1
2 X has a

spherical distribution. Hence

Σ− 1
2 X

D= Σ
1
2 UΣ−1X ⇒ X

D= (U∗)TX.

2 ⇒ 3. Multiply both sides of the second equality above by UT from the left.

3 ⇒ 1. From 3 we deduce that Σ− 1
2 X

D= Σ− 1
2 UTΣ

1
2 Σ− 1

2 X, where Σ− 1
2 UTΣ

1
2 is

an orthogonal matrix. Hence Σ− 1
2 X has a spherical distribution.

2 ⇔ 4. (U∗)T is Σ-orthogonal if and only if U∗ is Σ-orthogonal.

3 ⇔ 5. UT is Σ-orthogonal if and only if U is Σ-orthogonal.

4 ⇒ 5. Multiply both sides of the equality in 4 from the left by U to complete the

proof. 2

Let β be a basis matrix of SY |X , and let Pβ(Σ) be the projection onto span(β)

with respect to the inner product 〈·, ·〉Σ; that is,

Pβ(Σ) = β(βTΣβ)−1βTΣ.

Let Qβ(Σ) = Ip −Pβ(Σ).

The next theorem we will try to prove requires the assumption that U is a
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Σ-orthogonal matrix that satisfies equation (9.5). To better understand this as-

sumption note that every vector a ∈ Rp can be written as Pβ(Σ)a + Qβ(Σ)a.

The Σ-orthogonal matrix U only rotates the component Qβ(Σ)a, while leaving

the component Pβ(Σ)a intact. In other words, the central subspace SY |X acts as

an “axis” around which U rotates. Thus, this next theorem basically shows that

if X has an elliptical distribution with shape matrix Σ, then the joint distribution

of (Σ−1X, Y ) is unaffected by any rotation of Σ−1X around the central subspace.

Here, we should emphasize that the rotation is relative to the inner product 〈·, ·〉Σ.

Also note that, by multiplying both sides of (9.5) by U∗ from the right we have

Pβ(Σ) = Pβ(Σ)U∗. Since the projection Pβ(Σ) is self-adjoint, this is equivalent

to

UPβ(Σ) = Pβ(Σ). (9.4)

Theorem 9.1.1 Suppose that X has an elliptical distribution with shape matrix

Σ. Let U be a Σ-orthogonal matrix that satisfies

Pβ(Σ)U = Pβ(Σ). (9.5)

Then

(X, Y ) D= (UTX, Y ), (Σ−1X, Y ) D= (UΣ−1X, Y ). (9.6)

Proof. Let φX, Y (t, τ) and φUTX, Y (t, τ) be the characteristic functions for (X, Y )

and (UTX, Y ). That is,

φX, Y (t, τ) = E
(
ei(tTX+τY )

)
, φUTX, Y (t, τ) = E

(
ei(tTUTX+τY )

)
.
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We will show that φX, Y (t, τ) = φUTX, Y (t, τ) for all t ∈ Rp and τ ∈ R.

We first note that, if Y,T1,T2 are random elements such that Y T1|T2 and

T2 is measurable with respect to the σ-field generated by T1, then

E
(
eitTT1+iτY

)
=E

[
eitTT1E

(
eiτY |T1

)]

=E
[
eitTT1E

(
eiτY |T2

)]
= E

[
E

(
eitTT1 |T2

)
eiτY

]
. (9.7)

Take T1 = UTX and T2 = βTX. Then

φUTX, Y (t, τ) = E
[
E

(
eitTUTX |βTX

)
eiτY

]
. (9.8)

By assumption (9.5) and its consequence (9.4), the matrix U can be rewritten as

U = [Pβ(Σ) + Qβ(Σ)]U[Pβ(Σ) + Qβ(Σ)] = Pβ(Σ) + Qβ(Σ)UQβ(Σ). (9.9)

Substitute this into (9.8) and use the fact that PT

β(Σ)X is a measurable function

of βTX to obtain

φUTX, Y (t, τ) = E

[
e
itTPT

β
(Σ)X

E

(
e
itTQT

β
(Σ)UTQT

β
(Σ)X

|βTX

)
eiτY

]
. (9.10)

Because X has an elliptical distribution with shape matrix Σ, and U is a Σ-

orthogonal matrix, we have X
D= UTX, and consequently,

[PT

β(Σ)X,QT

β(Σ)X] D= [PT

β(Σ)UTX,QT

β(Σ)UTX]

= [PT

β(Σ)X,QT

β(Σ)UTQT

β(Σ)X],
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where the second equality follows from (9.9). This implies

E

(
e
itTQT

β
(Σ)UTQT

β
(Σ)X

|βTX

)
= E

(
e
itTQT

β
(Σ)X

|βTX

)
.

Substitute this relation into the right hand side of (9.10) to obtain

φUTX, Y (t, τ) =E

[
e
itTPT

β
(Σ)X

E

(
e
itTQT

β
(Σ)X

|βTX

)
eiτY

]

=E
[
E

(
eitTX |βTX

)
eiτY

]
= E

(
eitTX+iτY

)
= φX, Y (t, τ),

where, to obtain the third equality we have again evoked (9.7), taking T1 and T2

therein as X and βTX. This proves the first equality in (9.6).

Multiply both sides of the first equality in (9.6) by (U∗)T from the left to obtain

X
D= (U∗)TX. This is equivalent to the second equality in (9.6). 2

The next lemma gives a sufficient condition under which the objective function

L(ψ, b, PX, Ỹ ) has a unique minimizer. A proof can be found in Jiang, Zhang, and

Cai (2008).

Lemma 9.1.2 Suppose that for any (ψ1, b1) and (ψ2, b2) in Rp × R we have

P{[1− Ỹ (ψT
1X − b1)][1− Ỹ (ψT

2X − b2)] < 0} > 0. (9.11)

Then L(ψ, b, PX, Ỹ ) has a unique minimizer in Rp × R.

Assumption (9.11) is quite mild in the context of sufficient dimension reduction.

The following lemma provides some intuition about this condition in nonparametric

regression.

159



Lemma 9.1.3 Suppose that

Y = f(X) + σ(X)ε,

where f : ΩX → R, σ : ΩX → R+ are measurable functions, σ is bounded away

from 0, ε X. Suppose, furthermore, that for any nonempty open sets G1 ∈ Rp

and G2 ∈ R, we have P (X ∈ G1) > 0 and P (ε ∈ G2) > 0. Let c ∈ R and Ỹ be as

defined in (9.1) with Ω1 = (−∞, c). Then condition (9.11) is satisfied.

Proof. Let G be a bounded, nonempty open set in Rp, and σ(x) > σ0 > 0 for

all x ∈ ΩX . Consider the case ỹ = −1. We have

P (X ∈ G, Ỹ = −1) ≤P ({X ∈ G} ∩ {f(X) + σ0ε < c})

=
∫

R
P ({X ∈ G} ∩ {f(X) + σ0ε < c}|ε)φ(ε)dε,

where φ is the density of ε. Since ε X, the above can be rewritten as

∫

R
P ({X ∈ G} ∩ {f(X) + σ0ε < c})φ(ε)dε

≥
∫

ε<−K
P ({X ∈ G} ∩ {f(X) + σ0ε < c})φ(ε)dε,

where K is any positive constant. Since any bounded open set is contained in

{x : f(x) < c + σ0K} for sufficiently large K, the right hand side above is no

smaller than P (X ∈ G)P (ε < −K), which by assumption is greater than 0.

Now

P{[1− Ỹ (ψT
1X− b1)][1− Ỹ (ψT

2X − b2)] < 0}

≥ P{[1 + (ψT
1X−1)][1 + (ψT

2X − b2)] < 0, Ỹ = −1}.
(9.12)
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Obviously {x : [1 + (ψT
1x− b1)][1 + (ψT

2x− b2)] < 0} contains a nonempty open set.

Hence the probability on the right hand side of (9.12) is positive. 2

We now establish the unbiasedness of normal vector in support vector machine

as an estimator of the central subspace.

Theorem 9.1.2 Suppose that X has an elliptical distribution with shape matrix Σ,

and that the uniqueness condition (9.11) is satisfied. Let (ψ∗, b∗) be the minimizer

of L(ψ, b, PX, Ỹ ) over Rp × R. Then ψ∗ ∈ SY |X .

Proof. Let U be a Σ-orthogonal matrix that satisfies condition (9.5). Then, by

Theorem 9.1.1, PX, Ỹ = PUTX, Ỹ . Hence

L(ψ, b, PX, Ỹ ) = L(ψ, b, PUTX, Ỹ ).

By Theorem 9.0.1, the right hand side is the same as L(Uψ, b, PX, Ỹ ). Hence

L(ψ, b, PX, Ỹ ) = L(Uψ, b, PX, Ỹ ).

Let (ψ∗, b∗) be the minimizer of L(ψ, b, PX, Ỹ ). Since, by Lemma 9.1.2, the mini-

mizer is unique, we have

ψ∗ = Uψ∗.

Take U = Pβ(Σ) −Qβ(Σ). It is easy to check that this U is Σ-orthogonal and

satisfies condition (9.5). Then,

ψ∗ = [Pβ(Σ)−Qβ(Σ)]ψ∗.
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This implies Qβ(Σ)ψ∗ = −Qβ(Σ)ψ∗. Hence Qβ(Σ)ψ∗ = 0, and consequently

Pβ(Σ)ψ∗ = ψ∗.

This equality means that ψ∗ belongs to the range of the projection Pβ(Σ), which

is SY |X . 2

9.2 Estimation procedure

Theorem 9.1.2 in the last section tells us that, if X has an elliptical distribution,

then the normal vector of the optimal hyperplane that separates any pair of condi-

tional distributions PX|Y ∈Ω1
and PX|Y ∈Ω2

lies in the central subspace SY |X . This

motivates us to divide the support of Y into two slices, and apply support vector

machine to sets of X corresponding to the two slices of Y . We repeat this process

for several pairs of slices, and combines the optimal normal vectors by principal

components to recover the central subspace.

We propose two ways to generate the set of pairs. One, which we call “left

versus right” (LVR), divides the observed predictors into two parts according to

whether their responses are fall above or below a set of numbers. The other,

which we call “one versus another” (OVA), pairs up every possible pair slices in a

partition of ΩX determined by the values of Y . The particulars are summarized in

the following procedure.
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1. Center X1, . . . ,Xn to

X̃i = Xi − X̄, where X̄ = n−1
n∑

i=1

Xi.

Compute the shape matrix Σ̂ = n−1
∑n

i=1(Xi − X̄)(Xi − X̄)T.

2. (LVR) Let qr, r = 1, . . . , h be h dividing points. For example, qr can be the

(100/r)th sample quartile of {Y1, . . . , Yn}. For each r, apply support vector

machine to the two collection of X’s

{Xi : Yi ≤ qr}, {Xi : Yi > qr}. (9.13)

This process gives h normal vectors ψ̂1, . . . , ψ̂h.

2′. (OVA) Alternatively, we can apply support vector machine to the following

pairs of slices

{Xi : qr−1 < Yi ≤ qr}, {Xi : qs−1 < Yi ≤ qs}, 2 ≤ r < s ≤ h.

This process gives
(
h
2

)
normal vectors ψ̂rs, 2 ≤ r < s ≤ h.

3. Let v̂1, . . . , v̂d be the eigenvectors of one of the matrices corresponding to

LVR or OVA:

h∑

r=1

ψ̂rψ̂
T
r or

h∑

r=2

h∑

s=r+1

ψ̂rsψ̂
T
rs

corresponding to its d largest eigenvalues. We use subspace spanned by v̂ =

(v̂1, . . . , v̂d) to estimate the central subspace SY |X .

Based on our experiences, LVR works best when the response is a continuous
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variable, where Y being larger or small has a concrete physical meaning; whereas

OVA works the best when the response is categorical, where the values of Y are

simply labels of different classes subjects, such as different types of proteins in our

example in Chapter 11. The implementation of our method requires an algorithm

for support vector machine. Two packages are widely available: e1071 (Demetri-

adou et al., 2010) and kernlab (Karatzoglou et al., 2009). The results shown in this

work are based on the e1071 package but more on this will be discusses in Chapter

10.

9.3 Asymptotic analysis

In this section we derive the asymptotic distribution of v̂, defined in the last section.

This is divided into two steps. First, we derive the influence function of the normal

vector ψ̂ of the support vector machine estimate based on two slices (9.13) for a

generic dividing point q. This step is largely similar to the development of Jiang,

Zhang, and Cai (2008), except for some differences in details. In the second step

we develop the asymptotic distribution of the eigenvectors of v̂ from the influence

function of ψ̂. In this step we use a recent work of Bura and Pfeiffer (2008), which

studies the asymptotic distribution of left singular vectors in a general setting.

9.3.1 Gradient of support vector machines

The asymptotic results Jiang, Zhang, and Cai (2008) are largely applicable to the

current setting except for three places. First, our support vector machine involves

the covariance matrix Σ; Second, our C is fixed but the Cn in their paper depends

on n; Third, they did not provide the explicit form of the Hessian matrix (and

164



hence neither the asymptotic variance) but we are interested in the asymptotic

variance. Among these, the first two points are minor but the third point needs

nontrivial additional work.

Let θ = (ψT, b)T , Z = (XT, Y )T, X∗ = (XT,−1)T, and Σ∗ = diag(Σ, 0). Let

m(θ,Z) = ψTΣψ + C[1− Y (XTψ − b)]+ = θTΣ∗θ − C(1− θTX∗Ỹ )+. (9.14)

We need a coherent notation system for differentiation. Let h : ΩZ × Θ → Rr be

a function of (θ, Z). We use Dθ to denote a (p + 1)-dimensional column vector of

differential operators (∂/∂θ1, . . . , ∂/∂θp+1)T. Thus, DT

θh(θ,Z) denote the r×(p+1)

matrix whose (i, j) entry is ∂hi(θ,Z)/∂θj . We use D2
θ to denote the DθDT

θ. Thus

D2
θm(θ, z) is the (p + 1)× (p + 1) matrix whose (i, j)th entry is ∂2m(θ, z)/∂θi∂θj .

For each θ ∈ Θ, let Nθ(m) be the set of z for which a function m(z, ·) is not

differentiable at θ. That is,

Nθ(m) = {z : m(·, z) is not differentiable at θ}.

Lemma 9.3.1 Suppose that m : ΩZ ×Θ → R satisfying the following conditions

1. (almost surely differentiable) for each θ ∈ Θ, P [Z ∈ Nθ(m)] = 0.

2. (Lipschitz condition) there is an integrable function c(z), independent of θ,

such that for any θ1, θ2 ∈ Θ,

|m(θ2, z)−m(θ1, z)| ≤ c(z)‖θ2 − θ1‖.
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Then Dθm(Z,θ) is integrable, Es(θ, Z) is differentiable, and

DθE[m(θ, Z)] = E[Dθm(θ,Z)]. (9.15)

This result is rather standard and its proof is omitted. Roughly, Assump-

tion 1 guarantees that E[Dθm(θ, Z)] is defined; Assumption 2 allows us to apply

the Dominated Convergence Theorem to bring a limit inside an integral. The

next theorem gives the gradient of the support vector machine objective function

E[m(θ, Z)].

Theorem 9.3.1 Suppose

1. for each y ∈ {−1, 1}, the distribution of X|Y = y is dominated by the

Lebesgue measure,

2. E(‖X‖2) < ∞.

Then

DθE[m(θ, Z)] = (2ψT, 0)T − CE[X∗Y I(1− θTX∗Y > 0)]. (9.16)

Proof. We first verify the two assumptions in Lemma 9.3.1. In our case,

P [(X, Y ) ∈ Nθ(m)] =
∑

y∈{−1,1}
P (Y = y)P [X ∈ H(ψ, b + y)|Y = y].

Since the Lebesgue measure of H(ψ, b + y) is 0 for y ∈ {−1, 1}, by assumption 1

the above probability is 0. Thus condition 1 of Lemma 9.3.1 is satisfied.

Let m1(θ, z) = ψTψ and m2(θ, z) = [1− Y (ψTX − b)]+. Then m(θ, z) can be
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written as m1(θ, z) + Cm2(θ, z). By the triangular inequality, it suffices to show

that each mi, i = 1, 2, is Lipschitz. The function m1 is evidently Lipschitz. To

verify that m2 is Lipschitz, let (ψ1, b1), (ψ2, b2) ∈ Rp+1. Then

m2(θ2,x, y)−m2(θ1,x, y) = [1− y(ψT
2x− b2)]+ − [1− y(ψT

1x− b1)]+.

Note that, for any two real numbers a1 and a2, |a+
2 − a+

1 | ≤ |a2 − a1|. Hence

|m2(θ2,x, y)−m2(θ1,x, y)| ≤|ψT
1x− ψT

2x + b2 − tb1|

≤(1 + ‖x‖2)
1
2 ‖θ2 − θ1‖.

Since E(‖X‖2) < ∞,

E(1 + ‖X‖2)
1
2 ≤ [1 + E(‖X‖2)]

1
2 < ∞. (9.17)

This verifies condition 1 of Lemma 9.3.1.

Finally, by direct calculation, we find that, for z /∈ Nθ(m),

Dψ[m(θ, z)] =2ψ − CxyI[1− Y (ψTx− b) > 0],

Db[m(θ, z)] =CyI[1− y(ψTx− b) > 0].

Hence

Dθ[m(θ, z)] = (2ψT, 0)T − Cx∗yI(1− θTx∗y > 0). (9.18)

The corollary follows now from an application of Lemma 9.3.1. 2
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9.3.2 Hessian matrix for support vector machine

The next two Lemmas provide means of computing the derivative of an expectation

of a non-Lipschitz function. Let Dε=0 denote the operation of first taking derivative

with respect to ε and then evaluate the derivative at ε = 0.

Lemma 9.3.2 Suppose that U and V are random variables and h(u, v) is a mea-

surable Rk-valued function. Suppose, moreover,

1. the joint distribution of (U, V ) is dominated by the Lebesgue measure;

2. for each v, the function u 7→ h(u, v)fU|V (u|v) is continuous;

3. for each component, say hi(u, v), of h(u, v), and any constant η, there is a

function ci(v) ≥ 0 such that

|(η − v)hi(u, v)|fU|V (u|v) ≤ ci(v), E[ci(V )] < ∞. (9.19)

Then, for any constant a, the function ε 7→ E[h(U, V )I(U + εV < a + εη)] is

differentiable at ε = 0 with derivative

Dε=0E[h(U, V )I(U + εV < a + εη)] = fU(a)E[(η − V )h(U, V )|U = a]. (9.20)

Proof. We need to show that, for each i = 1, . . . , k, the limit

lim
ε→0

∫ [
ε−1

∫ a+ε(η−v)

a
h(u, v)fU|V (u|v)du

]
fV (v)dv (9.21)
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exists and is equal to fU(a)E[(η − V )hi(a, V )|U = a]. By the mean value theorem

and assumptions 2, 3, there is a ξ ∈ (0, ε) such that

∣∣∣∣ε−1

∫ a−εv

a
hi(u, v)fU|V (u|v)du

∣∣∣∣ = |hi(a + ξ(η − v), v)fU|V (a + ξ(η − v)|v)| ≤ c(v).

Hence, by the Dominated Convergence Theorem, we can bring the limit in (9.21)

to obtain

∫
lim
ε→0

[
ε−1

∫ a+ε(η−v)

a
hi(u, v)fU|V (u|v)du

]
fV (v)dv

= (η − v)
∫

hi(a, v)fU|V (a|v)dufV (v)dv

= fU(a)
∫

(η − v)hi(a, v)fV |U(v|a)dv = fU(a)E[(η − V )hi(a, V )|U = a],

as desired. 2

We also need to deal with the case where U and V are linearly independent. In

this case fU|V is degenerate and the assumptions in Lemma 9.3.2 are not satisfied.

Nevertheless, the formula (9.20) still holds, as shown in the next lemma.

Lemma 9.3.3 Suppose that U and V are linearly dependent random variables and

h(u) is a measurable Rk-valued function.

1. the joint distribution of (U, V ) is dominated by the Lebesgue measure;

2. h(u)fU(u) is continuous.

Then, for any constant a, the function ε 7→ E[h(U)I(U + εV < a + εη)] is differ-

entiable at ε = 0 with derivative given by (9.20).
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Proof. Suppose, without loss of generality, V = κU for some κ > 0. We have

E[hi(U)I(U + εV < a + εη)] =
∫ (a+εη)/(1+εκ)

−∞
E[hi(U)|U = u]fU(u)du.

Hence

Dε=0E[hi(U)I(U + εV < a + εη)] = (η − κa)E[hi(U)|U = a]fU(a).

Under the condition that U = a and V = κU , the right hand becomes (9.20). 2

Theorem 9.3.2 Suppose that X has a convex and open support and the distribu-

tions of X|Y = y for y = −1, 1 are dominated by the Lebesgue measure. Suppose,

moreover:

1. for any linearly independent ψ, δ ∈ Rp, y ∈ {−1, 1}, and v ∈ R, the function

u 7→ E(X∗|ψTX = u, δTX = v, Y = y)fψTX|δTX, Y (u|v, y)

is continuous.

2. For any i = 1, . . . , p, and y = −1, 1, there is a nonnegative function ci(v, y)

with E[ci(V, Y )|Y = y] < ∞ such that

vE(Xi|ψTX = u, δTX = v, Y = y)fψTX|δTX, Y (u|v, y) ≤ ci(v, y).

3. For any y = −1, 1 there is a nonnegative function c0(v, y) with E[c0(V, Y )|Y =
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y] < ∞ such that

fψTX|δTX, Y (u|v, y) ≤ c0(v, y) and E[c(V, Y )|Y = y] ≤ ∞.

Then the function θ 7→ DθE[m(θ, Z)] is Gateaux differentiable with Gateaux

derivative

2diag(Σ, 0) + C
∑

y=−1,1

P (Y = y)fψTX|Y (b + y|y)E(X∗X∗T|ψTX = b + y). (9.22)

Furthermore, if the function (ψ, b) 7→ fψTX|Y (b + y|y)E(X∗X∗T|ψTX = b + y) is

continuous, then Dθ[m(θ, Z)] is differentiable with derivative matrix (9.22).

Proof. We need to show that the function (9.16) is differentiable with respect to

(ψ, b). The first term is obviously differentiable with derivative 2diag(Σ, 0). Thus

only need to consider the differentiability of E[X∗Y I(1− θTX∗Y > 0)], which is

∑

y=−1,1

P (Y = y)E[X∗yI(1− θTX∗Y > 0)|Y = y].

First, consider the case y = 1 and verify Gateaux differentiability of the function

(ψ, b) 7→ E[X∗I(ψTX < b + 1)|Y = 1].

Let ψ and δ be linearly independent vectors in Rp. Let η be a number. Thus

(δT, η)T is an arbitrary vector in Rp+1. The directional derivative along (δT, η)T is

the derivative of the following function with respect to ε at ε = 0:

E[X∗I(ψTX + εδTX < b + 1 + ε η)|Y = 1]

= E[E(X∗|ψTX, δTX, Y = 1)I(ψTX + εδTX < b + 1 + ε η)|Y = 1].

171



Let U = ψTX, V = δTX, h(U, V ) = E(X∗|U, V ), a = b + 1. Then, by Lemma

9.3.2, as applied to the probability measure P ( · |Y = 1), the above derivative is

fψTX|Y (b + 1|1)E[(η − V )E(X∗|U, V )|U = b + 1]

= fψTX|Y (b + 1|1)E[(η − V )X∗|U = b + 1].

Since this holds for all (δT, η)T, the function (ψ, b) 7→ E[X∗I(ψTX < b + 1)|Y = 1]

is Gateaux differentiable with Gateaux derivative

−fψTX|Y (b + 1|1)E(X∗X∗T|ψTX = b + 1, Y = 1) (9.23)

If δ and ψ are linearly dependent, then ψTX and ψTX are linearly independent. We

apply Lemma 9.3.3 in the similar fashion to arrive at the same Gateaux derivative

(9.23).

The case for y = −1 can be proved similarly. Hence the Gateaux derivative

of EθE[m(θ, Z)] is given by (9.22). If fψTX|Y (b + y|y)E(X∗X∗T|ψTX = b + y) is

continuous then the Gateaux derivative is continuous, and hence DθE[m(θ,Z)] is

differentiable (see, for example, Bickel, Klaassen, Ritov, and Wellner, 1993, page

453). 2

9.3.3 Influence function for support vector machine

Theorem 9.3.3 If the conditions in Theorems 9.3.1 and 9.3.2 are satisfied, then

θ̂ = θ0 −H−1{(2ψT
0Σ, 0)T − CEn[X∗Y I(1− Y θT

0X
∗ > 0)]}+ oP (n−

1
2 ),
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where H is given by (9.22).

The proof is similar to that of Jiang, Zhang, and Cai (2008) and is therefore

omitted. Alternatively, one can apply Theorem 5.23 of van der Vaart (1998), which

provides three sufficient conditions for asymptotic normality of an M -estimates

with non-differentiable objective function: (i) P ((X, Y ) ∈ Nθ(m)) = 0; (ii) a Lips-

chitz condition, and (iii) the population-level objective function has a second-order

Taylor approximation. The first condition in Theorem 9.3.1 guarantees condition

(i); the second condition in Theorem 9.3.1 guarantees condition (ii), and the con-

clusions of Theorems 9.3.1 and 9.3.2 guarantee condition (iii).

9.4 Nonlinear dimension reduction

In this section we outline an extension of the SVMIR to the sufficient nonlinear di-

mension reduction. Here, we are interested in estimating functions φ1(X), . . . , φd(X)

such the following one that appeared in Cook (2007)

Y X|φ1(X), . . . , φd(X). (9.24)

We assume that φ1, . . . , φd belong to a finite- or infinite-dimensional Hilbert

space H. Let {ui : i = 1, 2, . . .} be a basis of H, and let β`i be sequences such that

φ` =
∑∞

i=1 β`iui. Then problem (9.24) becomes estimating {β`i : i = 1, 2, . . . , ` =

1, . . . , d} in the relation

Y X|
∞∑

i=1

β1i ui(X), . . . ,
∞∑

i=1

βdi ui(X).

One can see that this is a generalization of problem (7.1), with X replaced by the
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sequence of feature functions {ui(X) : i = 1, 2, . . .}, and the matrix β replaced by

the finite or infinite dimensional array {β`i}.

The SVMIR can be naturally extended to this setting using the kernel SVM,

which, at the population level can be described as follows. Let K : ΩX ×ΩX → R

be a positive definite bivariate function. We assume that H to be the reproducing

kernel Hilbert space generated by K. That is, H is the closed linear span of

functions of the form

c1K(·,x1) + · · ·+ cmK(·,xm), c1, . . . , cm ∈ R, x1, . . . ,xm ∈ ΩX

equipped with the inner product determined by 〈K(·,x1), K(·,x2)〉 = K(x1,x2),

x1,x2 ∈ ΩX . Consider the following bilinear form from H×H to R:

(f1, f2) 7→ cov[f1(X), f2(X)].

This induces a positive semi-definite and self adjoint operator Σ : H → H such

that

〈f1,Σf2〉H = 〈Σf1, f2〉H = cov[f1(X), f2(X)].

We replace the vector ψ in (9.3) by a member ψ ofH, and the random vector X

by the random function x 7→ K(X,x)−E[K(X,x)] so that the objective function

(9.3) gets generalized in the infinite dimensional setting. Thus the inner product

〈ψ, X〉 in (9.3) is replaced by

〈K(X, ·)− EK(X, ·),ψ〉H = ψ(X)− Eψ(X),
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where ψ is a member of H, and K(X, ·) denotes the mapping x 7→ E[K(X,x)],

and ψTΣψ = var(ψTX) in (9.3) is replaced by

var(ψ, 〈K(X, ·)− EK(X, ·)〉H) = var[ψ(X)] = 〈ψ,Σψ〉H.

The objective function (9.3) then becomes

〈ψ,Σψ〉H + CE[1− Y (ψ(X)−Eψ(X)− b)]+. (9.25)

At the sample level, the covariance operator is defined by the bilinear form

(f1, f2) = covn[f1(X), f2(X)];

That is, 〈f1,Σnf2〉H = 〈Σnf1, f2〉H = covn[f1(X), f2(X)]. The function ψ is an

arbitrary linear combination
∑n

µ=1 cµ{K(·, Xµ)−En[K(·, X)]}, where c1, . . . , cn ∈
R. If we let κn(·) denote the vector-valued function

x 7→ [K(x, X1)− EnK(x,X), . . . , K(x, Xn)−EnK(x, X)],

then ψ can be written as cTκn. It is easy to see that

〈ψ,Σnψ〉H = varn[cTκn(X)] = cTGnc,

where c = (c1, . . . , cn)T and Gn is the p× p Gram matrix whose (i, j)th entry is

K(Xi, Xj)−En[K(Xi, X)]− En[K(Xj , X)] + En[K(X,X ′)],

where quantities such as En[K(Xi, X)] and En[K(X, X ′)] denotes the sample
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means n−1
∑n

µ=1 K(Xj , Xµ) and n−2
∑n

µ=1

∑n
ν=1 K(Xµ,Xν). Thus the sample-

level counterpart of objective function (9.25) is

cTGnc + CEn[1− Y (cTκn(X)− b)]+. (9.26)

The construction of the objective function (9.26) determines that it is invariant

under translation; that is, if 1n is the n-dimensional vector (1, . . . , 1)T, then the

above function is unchanged if we replace c by c + τ1n for any constant τ . This

is reflected in the fact that 1T
nGn1n = 0 and κT

n1n = 0. We minimize (9.26) over

R̃n×R, where R̃n is the orthogonal complement of the vector 1n. Let ξ1, . . . , ξn−1

be the eigenvectors of In − 1n1T
n/n corresponding to its nonzero eigenvalues, and

let Ξn be the n× (n−1) matrix (ξ1, . . . , ξn−1). The vector c can be parameterized

as c = ΞT
nd, where d ∈ Rn−1 is a free parameter. In this parametrization objective

function (9.26) reduces to

dTG̃nd + CEn[1− Y (dTκ̃n(X)− b)]+,

where G̃n = ΞT
nGnΞn and κ̃n = ΞT

nκn.

For the LVR scheme, we minimize the objective function (9.26) for h pairs of

slices to obtain d̂1, . . . d̂h. Let v̂1, . . . , v̂d be the first d eigenvectors of the matrix
∑h

i=1 d̂`d̂T
` . We use

v̂T
1κ̃n(·), . . . , v̂T

dκ̃n(·)

as the estimate of sufficient predictors φ1, . . . , φd in (9.24). For the OVA scheme, we

obtain
(
h
2

)
vectors d̂rs : 1 ≤ r ≤ s ≤ p. The vectors v̂1, . . . , v̂d are the eigenvectors

of
∑

1≤r≤s≤p d̂rsd̂T
rs.
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Chapter 10

Simulation Results

In this Chapter we run some simulation analysis to compare our method with other

methods surrounding the idea of inverse regression, such as SIR, SAVE and DR.

We label our method as SVMIR to indicate the combination of the support vector

machine and the idea of inverse regression.

10.1 Description

To evaluate the performance of each method we use the Frobenius norm (Golub

and van Loan, 1996; page 55) of the difference between the projections on to

the estimated and the true central subspaces. Specifically, let S1 and S2 be two

subspaces of Rp. Then

dist(S1,S2) = ‖PS1 − PS2‖, (10.1)
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where PS1 and PS2 are the orthogonal projections on to S1 and S2. This distance

was used in Li, Zha, and Chiaromonte (2005).

We present the results for the following 5 models. The first three are taken

from (Li, 1991), and the other two from the Li, Zha, and Chiaromonte (2005):

Model 1: Y = X1 + X2 + X3 + X4 + σε,

Model 2: Y = X1/[0.5 + (X2 + 1)2] + σε,

Model 3: Y = X1(X1 + X2 + 1) + σε,

Model 4: Y = (3/2) sin(X1 + X2 + X3) + (3/4) sin(X1 + X5 + 3X6) + σε,

Model 5: Y = sin2(πX2 + 1) + σε.

In the above models, X ∼ N(0, Ip), where p = 10, and ε ∼ N(0, 1). The sample

sizes n for all 5 models are taken to be 200. We use h = 4 dividing points, located

at the 20th, 40th, 60th, 80th sample percentiles of Y1, . . . , Yn. The misclassification

penalty constant C is taken to be 1. The results for σ = 0.2, 0.5, 1 are presented

in Table 10.1. The entries are of the form a ± b where a is the mean and b is the

standard deviation of the distance criterion (10.1) calculated from 500 simulated

samples.

10.2 Compare performance

We can see from Table 10.1 that in most models and for all the values of parameter

σ the SVMIR compares at least as good as the best of the the other methods.

Model 4 seems to that SAVE and DR perform slightly better than our method.

The reason for this is due to the fact that the periodicity of the sin function favors
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Table 10.1: Comparison of different methods in five models

Models σ SVMIR SIR SAVE DR
0.2 0.09±0.021 0.11±0.030 0.13±0.035 0.11±0.029

1 0.5 0.12±0.028 0.13±0.031 0.16±0.052 0.14±0.035
1 0.20±0.050 0.19±0.050 0.34±0.173 0.21±0.052

0.2 0.50±0.118 0.55±0.127 1.41±0.143 0.68±0.167
2 0.5 0.83±0.193 0.90±0.202 1.70±0.164 1.09±0.243

1 1.33±0.189 1.30±0.197 1.72±0.156 1.44±0.219
0.2 0.77±0.223 0.92±0.218 1.35±0.151 0.82±0.244

3 0.5 0.97±0.238 1.07±0.233 1.34±0.166 1.01±0.261
1 1.18±0.218 1.29±0.218 1.36±0.163 1.21±0.227

0.2 1.29±0.148 1.32±0.124 1.06±0.252 1.06±0.249
4 0.5 1.31±0.130 1.33±0.128 1.08±0.274 1.09±0.269

1 1.32±0.129 1.33±0.111 1.17±0.234 1.17±0.230
0.2 1.34±0.101 1.33±0.104 1.34±0.103 1.34±0.104

5 0.5 1.33±0.123 1.34±0.087 1.33±0.099 1.33±0.103
1 1.33±0.100 1.33±0.111 1.33±0.112 1.33±0.113

the fact that SAVE and DR use second moments to find the directions that span

the central dimension reduction subspace.

10.3 Robustness

10.3.1 Outliers with difference covariance matrix

One of the most important features of SVMIR is its robustness against outliers in

the predictor. In the separable case, the optimal separating hyperplane is com-

pletely determined by a few support vectors, and is not affected by the rest of the

predictor. This is also true, though to a lesser degree, for the non-separable case.

The robustness property can also be seen from the influence function of SVMIR,

as appear in Theorem 9.3.3 in section 9.3.3, which resembles the influence func-

tions of quantiles or the median. To demonstrate the robustness of SVMIR we also
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Table 10.2: Comparison of different methods for five models when predictors con-
tain outliers with different covariance matrix

Models σ SVMIR SIR SAVE DR
0.2 0.14±0.035 0.70±0.152 1.39±0.040 1.07±0.276

1 0.5 0.15±0.042 0.70±0.150 1.39±0.036 1.15±0.253
1 0.21±0.054 0.69±0.168 1.39±0.032 1.18±0.227

0.2 0.97±0.260 1.26±0.200 1.80±0.125 1.71±0.151
2 0.5 1.26±0.228 1.39±0.188 1.80±0.119 1.76±0.134

1 1.48±0.155 1.55±0.163 1.79±0.126 1.77±0.130
0.2 1.34±0.238 1.52±0.203 1.57±0.184 1.53±0.174

3 0.5 1.40±0.233 1.58±0.191 1.58±0.173 1.53±0.148
1 1.52±0.218 1.63±0.181 1.58±0.182 1.55±0.165

0.2 1.42±0.109 1.58±0.119 1.75±0.131 1.72±0.142
4 0.5 1.43±0.113 1.58±0.122 1.74±0.134 1.73±0.138

1 1.43±0.118 1.57±0.124 1.75±0.140 1.74±0.145
0.2 1.34±0.099 1.34±0.090 1.33±0.105 1.33±0.100

5 0.5 1.34±0.095 1.34±0.099 1.33±0.102 1.33±0.099
1 1.33±0.105 1.34±0.102 1.33±0.100 1.33±0.105

introduce a small contamination to the predictor X in the above models. That is,

X ∼ (1− ε)N(0, Ip) + εN(0, 100Ip),

where ε = 0.05. The results are presented in Table 10.2 where its obvious that in

the presence of outliers SVMIR performs better than previously proposed methods.

In Table 10.3 we present the results of the simulation we run to see if the value

of the variance of the outliers has an effect on the performance of our algorithm. It

seems that there is a small effect when we increase the variance from 5 to 50, but

there is not much effect beyond value 50 (or at least the effect is very small). Of

course, variance equal to 5 might as well not give you many outliers, that’s why in

future runs when we want to put outliers with different variance we choose a value

of 100.
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Table 10.3: Comparison of the effect different values of the variance for the outliers,
have on the performance of all methods for all five models when predictors contain
outliers with different covariance matrix

Models var SVMIR SIR SAVE DR
5 0.19±0.045 0.21±0.053 0.98±0.406 0.23±0.060

1 50 0.19±0.051 0.55±0.146 1.39±0.032 1.04±0.280
100 0.21±0.054 0.69±0.168 1.39±0.032 1.18±0.227
200 0.24±0.063 0.81±0.163 1.38±0.042 1.27±0.179

5 1.31±0.206 1.30±0.205 1.76±0.142 1.57±0.194
2 50 1.42±0.192 1.48±0.180 1.79±0.125 1.76±0.132

100 1.48±0.155 1.55±0.163 1.79±0.126 1.77±0.130
200 1.53±0.186 1.61±0.165 1.79±0.120 1.78±0.125

5 1.18±0.207 1.32±0.219 1.40±0.169 1.28±0.201
3 50 1.41±0.213 1.56±0.194 1.57±0.169 1.52±0.155

100 1.52±0.218 1.63±0.181 1.58±0.182 1.55±0.165
100 1.57±0.215 1.68±0.176 1.61±0.168 1.58±0.165

5 1.32±0.128 1.35±0.121 1.38±0.211 1.28±0.190
4 50 1.41±0.106 1.51±0.120 1.76±0.132 1.70±0.149

100 1.43±0.118 1.57±0.124 1.75±0.140 1.74±0.145
200 1.48±0.121 1.63±0.126 1.75±0.140 1.74±0.142

5 1.33±0.103 1.34±0.094 1.34±0.101 1.34±0.099
5 50 1.34±0.098 1.34±0.091 1.33±0.103 1.33±0.106

100 1.33±0.105 1.34±0.102 1.33±0.100 1.33±0.105
200 1.34±0.097 1.34±0.103 1.33±0.101 1.33±0.101

10.3.2 Outliers with different mean

In this section we show that SVMIR is still robust in the case that the outliers have

different mean instead of different variance So we introduce a small contamination

to the predictor X as follows

X ∼ (1− ε)N(0, Ip) + εN(10× 1p, Ip),

where ε = 0.05 and 1p is a p-dimensional vector with all its entries equal to 1. The

results are presented on Table 10.1 which show that SVMIR is robust to this type
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Table 10.4: Comparison of different methods for five models when predictors con-
tain outliers with different mean

Models σ SVMIR SIR SAVE DR
0.2 0.39±0.050 0.82±0.019 1.35±0.026 0.40±0.082

1 0.5 0.41±0.051 0.82±0.021 1.35±0.027 0.47±0.086
1 0.43±0.067 0.82±0.024 1.36±0.027 0.65±0.096

0.2 0.66±0.120 0.80±0.092 1.61±0.159 1.13±0.246
2 0.5 1.02±0.198 1.08±0.174 1.73±0.148 1.34±0.203

1 1.41±0.179 1.39±0.171 1.73±0.147 1.56±0.182
0.2 0.85±0.220 0.97±0.187 1.48±0.111 1.40±0.050

3 0.5 1.04±0.225 1.10±0.216 1.49±0.111 1.42±0.038
1 1.22±0.197 1.29±0.205 1.53±0.122 1.43±0.045

0.2 1.48±0.097 1.60±0.106 1.60±0.144 1.49±0.148
4 0.5 1.49±0.097 1.61±0.103 1.59±0.163 1.48±0.158

1 1.51±0.097 1.61±0.095 1.66±0.165 1.52±0.138
0.2 1.34±0.106 1.33±0.111 1.34±0.105 1.34±0.098

5 0.5 1.33±0.096 1.34±0.095 1.33±0.097 1.33±0.101
1 1.34±0.092 1.34±0.097 1.34±0.103 1.34±0.101

of outliers. Actually for models 2 and 3 we can see that it is more robust to outliers

in mean than outliers in variance. For models 1 and 4 it is not as robust in outliers

in mean as it is in outliers for variance.

Another advantage that this results show is the fact the if there is a small

divergence from the elliptical distribution for the predictors, SVMIR is robust to

this divergence. In order to explore further the effect of the mean, we run the

analysis for different values of the mean. We use, mean, 2, 10, 20, 50, and we can

see from the resutls in Table 10.5 that as long as we increase the distance between

the outliers mean and the true mean of the dataset, there is a decrease in the

performance as expected. Interestingly in some cases, SAVE performs better as we

increase the mean. This is probably due to the fact that SAVE uses only second

moments and actually the more different the variances are from slice to slice the

easiest will be to capture the direction, which is the case, if we have outliers much
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Table 10.5: Comparison of how different outlier mean values affect the performance
of all methods

Models mean SVMIR SIR SAVE DR
2 0.20±0.048 0.33±0.057 1.21±0.145 0.42±0.091

1 10 0.43±0.067 0.82±0.024 1.36±0.027 0.65±0.096
20 0.71±0.047 0.88±0.022 1.23±0.035 0.61±0.129

100 0.93±0.022 0.93±0.020 1.05±0.040 0.68±0.212
2 1.34±0.193 1.22±0.191 1.74±0.140 1.51±0.198

2 10 1.41±0.179 1.39±0.171 1.73±0.147 1.56±0.182
20 1.42±0.164 1.38±0.170 1.72±0.152 1.56±0.183

100 1.43±0.175 1.39±0.172 1.74±0.141 1.57±0.168
2 1.15±0.214 1.23±0.227 1.51±0.127 1.41±0.085

3 10 1.22±0.197 1.29±0.205 1.53±0.122 1.43±0.045
20 1.23±0.188 1.30±0.206 1.50±0.135 1.44±0.042

100 1.29±0.180 1.34±0.183 1.46±0.130 1.47±0.060
2 1.37±0.094 1.42±0.121 1.38±0.215 1.32±0.186

4 10 1.51±0.097 1.61±0.095 1.66±0.165 1.52±0.138
20 1.64±0.096 1.63±0.101 1.59±0.177 1.59±0.119

100 1.64±0.097 1.64±0.099 1.64±0.156 1.64±0.108
2 1.34±0.098 1.34±0.097 1.34±0.090 1.34±0.089

5 10 1.34±0.092 1.34±0.097 1.34±0.103 1.34±0.101
20 1.34±0.095 1.34±0.092 1.33±0.102 1.33±0.104

100 1.34±0.093 1.35±0.088 1.33±0.103 1.34±0.103

further away from the mean.

10.4 Robust covariance matrix

There is a technical detail that we incorporate in our algorithm. In all the algo-

rithms we need to estimate the covariance matrix of our predictor cov(X) = Σ.

Since the classical estimator for Σ is not robust to outliers, it is shown in our results

that the SVMIR method doesn’t perform as well as we expected it to work when

we used this estimator in the presence of outliers. In order to improve performance

in the presence of outliers we also used the idea of using a robust estimator for
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Table 10.6: Comparison of different methods in five models using the robust co-
variance estimator

Models σ SVMIR SIR SAVE DR
0.2 0.09±0.021 0.17±0.051 0.17±0.171 0.38±0.151

1 0.5 0.12±0.028 0.19±0.055 0.22±0.209 0.42±0.160
1 0.20±0.09 0.23±0.067 0.48±0.361 0.55±0.225

0.2 0.50±0.118 0.58±0.131 1.43±0.161 1.23±0.246
2 0.5 0.83±0.194 0.92±0.203 1.72±0.165 1.54±0.184

1 1.33±0.189 1.30±0.195 1.73±0.150 1.69±0.164
0.2 0.77±0.222 0.93±0.218 1.38±0.144 1.34±0.197

3 0.5 0.97±0.237 1.08±0.229 1.38±0.147 1.40±0.166
1 1.17±0.218 1.30±0.216 1.40±0.153 1.45±0.147

0.2 1.29±0.147 1.32±0.123 1.16±0.233 1.32±0.150
4 0.5 1.31±0.131 1.33±0.132 1.16±0.244 1.31±0.160

1 1.32±0.126 1.33±0.112 1.23±0.210 1.34±0.138
0.2 1.34±0.106 1.34±0.102 1.34±0.091 1.34±0.085

5 0.5 1.33±0.112 1.34±0.089 1.34±0.100 1.34±0.103
1 1.33±0.103 1.33±0.109 1.33±0.110 1.33±0.105

Σ. We choose the estimator proposed by Rousseeuw (1985). In our results we

show all four methods MLIR, SIR, SAVE, DR using the robust estimator for the

covariance. One can see that all the methods perform similarly as the case when

we had the classical estimator for the covariance matrix, in the case that there

are no outliers in the sample. Those results are presented in Table 10.6. When

there are outliers in the sample, we can see in Table 10.7 that the results for the

SVMIR there is an increase in the performance for model 1, while for the rest of

the models, the performance is similar as with the classical estimators. For the

other methods, SIR, SAVE, DR, there is a decrease in performance when we use

the robust covariance matric operator. For the robust estimation of the covariance

matrix, there is a tuning parameter that we said equal to 0.75 and it represents

the percentage of points we use in finding the covariance estimator in each step of

the algorithm
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Table 10.7: Comparison of different methods for five models when predictors con-
tain outliers and we are using the robust covariance estimator

Models σ SVMIR SIR SAVE DR
0.2 0.10±0.022 0.99±0.077 1.14±0.069 1.11±0.71

1 0.5 0.13±0.031 0.99±0.079 1.14±0.067 1.11±0.070
1 0.20±0.049 1.00±0.075 1.14±0.067 1.11±0.069

0.2 0.61±0.138 1.20±0.93 1.77±0.110 1.62±0.152
2 0.5 1.00±0.207 1.32±0.123 1.75±0.110 1.71±0.203

1 1.41±0.179 1.48±0.121 1.76±0.115 1.75±0.117
0.2 0.81±0.233 1.36±0.099 1.49±0.108 1.40±0.076

3 0.5 1.01±0.240 1.45±0.133 1.51±0.113 1.45±0.038
1 1.21±0.206 1.56±0.144 1.55±0.133 1.48±0.101

0.2 1.44±0.087 1.42±0.059 1.57±0.133 1.52±0.113
4 0.5 1.45±0.093 1.42±0.067 1.57±0.135 1.53±0.114

1 1.47±0.097 1.42±0.063 1.59±0.132 1.54±0.117
0.2 1.34±0.102 1.34±0.052 1.34±0.036 1.34±0.036

5 0.5 1.34±0.096 1.34±0.049 1.34±0.035 1.34±0.035
1 1.33±0.096 1.34±0.048 1.34±0.037 1.34±0.037

10.5 Dimension of predictors

In this section we are investigating how the dimension of the predictor might affect

the performance of SVMIR. We run the same analysis as before with σ = 1 and we

increased the dimension of the predictor to p = 50 and p = 100. For comparison

purposes we report together with them the results for p = 10. The results are

reported in Table 10.8 for the data without outliers and in Table 10.9 for the

case when outliers are included. As we can see from those results, increasing the

dimension of the predictors doesn’t affect the performance of SVMIR, as in most

of the cases is either the best method or at least comparable to the best of the

other 3 methods.
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Table 10.8: Comparison for all methods for all models with different dimension of
predictors without outliers

Models p SVMIR SIR SAVE DR
10 0.20±0.050 0.19±0.050 0.34±0.173 0.21±0.052

1 50 0.54±0.057 0.49±0.054 1.41±0.007 0.57±0.066
100 0.87±0.074 0.76±0.075 1.41±0.006 0.84±0.071
10 1.33±0.189 1.30±0.197 1.72±0.156 1.44±0.219

2 50 1.77±0.071 1.78±0.072 1.96±0.029 1.90±0.065
100 1.91±0.034 1.90±0.041 1.98±0.013 1.93±0.037
10 1.18±0.218 1.29±0.218 1.36±0.163 1.21±0.227

3 50 1.74±0.095 1.78±0.092 1.88±0.091 1.69±0.077
100 1.93±0.032 1.91±0.049 1.97±0.026 1.89±0.051
10 1.32±0.129 1.33±0.111 1.17±0.234 1.17±0.230

4 50 1.47±0.029 1.46±0.028 1.97±0.027 1.48±0.038
100 1.60±0.037 1.56±0.030 1.98±0.012 1.66±0.040
10 1.33±0.100 1.33±0.111 1.33±0.112 1.33±0.113

5 50 1.40±0.018 1.40±0.020 1.40±0.020 1.40±0.017
100 1.41±0.010 1.41±0.009 1.41±0.011 1.41±0.009

10.6 Misclassification Penalty

In this section we check what happens if we change the value of the misclassification

penalty C in our function. We run our SVMIR algorithm in case there are no

outliers, outliers to the mean and outliers in variance. As we can see in Table

10.10 there are not many differences although it seems that especially when there

are outliers, there is a slight increase in the performance on some models as we

increase the value of C. This increase though is very small. The only one that

seems to have a significant increase in performance as we increase the value of C is

the first model. This might be due to the fact that model 1 it’s the simplest and

has only one direction in the Central Dimension Reduction Subspace.
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Table 10.9: Comparison for all methods for all models with different dimension of
predictors with outliers

Models p SVMIR SIR SAVE DR
10 0.43±0.067 0.82±0.024 1.36±0.027 0.65±0.096

1 50 0.68±0.054 0.65±0.051 1.11±0.060 0.61±0.069
100 0.95±0.069 0.86±0.065 1.29±0.048 0.92±0.071
10 1.41±0.179 1.39±0.171 1.73±0.147 1.56±0.182

2 50 1.78±0.070 1.79±0.073 1.96±0.029 1.91±0.061
100 1.92±0.033 1.91±0.040 1.98±0.013 1.93±0.036
10 1.22±0.197 1.29±0.205 1.53±0.122 1.43±0.045

3 50 1.75±0.095 1.77±0.089 1.76±0.062 1.77±0.080
100 1.93±0.032 1.90±0.052 1.91±0.045 1.90±0.050
10 1.51±0.097 1.61±0.095 1.66±0.165 1.52±0.138

4 50 1.56±0.034 1.54±0.029 1.96±0.032 1.57±0.038
100 1.67±0.042 1.63±0.034 1.98±0.012 1.66±0.041
10 1.34±0.092 1.34±0.097 1.34±0.103 1.34±0.101

5 50 1.40±0.018 1.40±0.019 1.40±0.022 1.40±0.022
100 1.41±0.011 1.41±0.009 1.41±0.010 1.41±0.010

10.7 Number of slices

We are also interested in learning how the number of slices will affect the perfor-

mance of SVMIR. We do a simulation analysis, where we run the same 5 models,

with the same parameters as they were described in section 10.1. Our results are

shown in Table 10.11 where if we exclude models 4 and 5 there is an increase in

performance of our algorithm as we increase the number of slices. Most of the

increase comes up to number of slices around 10 for most models and then the

increase is really small and insignificant.
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Table 10.10: Performance of SVMIR for different values of misclassification penalty
C with and without outliers. “with (v)” means there are outliers with different
variance and “with (m)” means there are outliers with difference mean
Models outliers C = 0.1 C = 0.5 C = 1 C = 2 C = 10

without 0.19±0.045 0.19±0.045 0.20±0.050 0.20±0.050 0.19±0.050
1 with (v) 0.39±0.109 0.24±0.063 0.21±0.054 0.19±0.049 0.19±0.050

with (m) 0.80±0.032 0.57±0.061 0.43±0.067 0.33±0.068 0.22±0.056
without 1.32±0.196 1.33±0.189 1.33±0.189 1.33±0.197 1.29±0.205

2 with (v) 1.49±0.171 1.49±0.163 1.48±0.155 1.48±0.169 1.47±0.178
with (m) 1.42±0.159 1.42±0.164 1.41±0.179 1.42±0.161 1.40±0.185
without 1.17±0.216 1.17±0.209 1.18±0.218 1.16±0.204 1.17±0.216

3 with (v) 1.52±0.210 1.50±0.217 1.52±0.218 1.50±0.208 1.48±0.203
with (m) 1.20±0.199 1.20±0.204 1.22±0.197 1.18±0.205 1.19±0.216
without 1.33±0.122 1.32±0.125 1.32±0.129 1.31±0.138 1.32±0.124

4 with (v) 1.46±0.121 1.44±0.114 1.43±0.118 1.43±0.116 1.43±0.116
with (m) 1.59±0.099 1.53±0.103 1.51±0.097 1.49±0.107 1.46±0.095
without 1.34±0.101 1.35±0.091 1.33±0.100 1.34±0.094 1.34±0.092

5 with (v) 1.33±0.103 1.34±0.096 1.33±0.105 1.34±0.105 1.34±0.097
with (m) 1.34±0.102 1.34±0.102 1.34±0.092 1.35±0.085 1.34±0.102

Table 10.11: Performance of SVMIR for different values of misclassification penalty
C with and without outliers. “with (v)” means there are outliers with different
variance and “with (m)” means there are outliers with difference mean
Models outliers 2 5 10 25 50

without 0.31±0.073 0.20±0.050 0.17±0.041 0.16±0.040 0.16±0.039
1 with (v) 0.31±0.078 0.21±0.054 0.19±0.051 0.19±0.050 0.18±0.045

with (m) 0.49±0.082 0.43±0.067 0.43±0.062 0.43±0.062 0.43±0.061
without 1.42±0.178 1.33±0.189 1.25±0.216 1.17±0.237 1.13±0.228

2 with (v) 1.52±0.160 1.48±0.155 1.47±0.183 1.43±0.192 1.43±0.198
with (m) 1.49±0.155 1.41±0.179 1.38±0.198 1.30±0.210 1.27±0.203
without 1.42±0.178 1.18±0.218 1.15±0.212 1.09±0.231 1.07±0.243

3 with (v) 1.57±0.179 1.52±0.218 1.51±0.201 1.52±0.192 1.52±0.204
with (m) 1.45±0.153 1.22±0.197 1.20±0.210 1.17±0.224 1.14±0.226
without 1.20±0.234 1.32±0.129 1.32±0.119 1.33±0.119 1.33±0.112

4 with (v) 1.37±0.192 1.43±0.118 1.42±0.125 1.42±0.116 1.42±0.119
with (m) 1.51±0.170 1.51±0.097 1.34±0.089 1.48±0.090 1.48±0.085
without 1.33±0.099 1.33±0.100 1.34±0.093 1.34±0.097 1.34±0.090

5 with (v) 1.34±0.104 1.34±0.105 1.34±0.100 1.34±0.087 1.34±0.092
with (m) 1.34±0.090 1.34±0.092 1.34±0.089 1.33±0.103 1.34±0.097
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Chapter 11

Data Analysis

In this Chapter we perform the analysis of two datasets found in the UC Irvine

depository (see Asuncion and Newman (2007)). The first dataset builds a regression

model for the performance of computer hardware and the second is a classification

problem of E.coli genes. We run the analysis for, SIR, SAVE, DR, SVMIR.

11.1 Computer Hardware

This dataset was first presented in Ein-Dor and Feldmesser (1987) and the objective

of the authors is to create a regression model that estimates relative performance of

the Central Processing Unit (CPU) of a computer using some of its characteristics,

including cache memory size, cycle time, minimum and maximum input/output

channels and minimum and maximum main memory. Relative performance was

calculated using observations from users of different machines in the market. For

machines not in the market the relative performance was not able to be calculated.

The authors recognized that, collected a data of 209 models in the market in 1987
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Figure 11.1: First direction for SIR and SAVE in the upper panel, DR and SVMIR
in the lower panel.
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Figure 11.2: First direction for SIR and SAVE in the upper panel, DR and SVMIR
in the lower panel.
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and build a regression model for those machines.

Figure 11.1 shows the first direction for all the methods. It is clear that SAVE

is the only method that fail to capture anything, while all other methods capture

a nonlinear trend of the points. This nonlinear trend agrees with the comments

of Ein-Dor and Feldmesser (1987) who proposed a linear model with response the

square root of the relative performance. This is because interactions among the

size of the main memory, the size of cache memory, the machine cycle time and

the number of input/output channels affect the performance of the CPU. There

are configurations that make communications among the components of the CPU

faster, while other configurations are not as effective.

In Figure 11.2 one can see the the 3d plots with the second direction as well. We

can see than SIR and SVMIR they have the nonlinear trend in the first direction

and in the second direction there is a division among the points that have smaller

relative frequency. We can see that this is not viewable using the DR plot and of

course not in SAVE.

In this example since we have a continuous response, we used the LVR method

for comparison between slices. OVA performs very similar.

11.2 E.coli Protein Dataset

11.2.1 Full dataset - all categories

This dataset was constructed and presented first in Horton and Nakai (1996).

There are 336 proteins and are classified in 8 categories, based on the 7 predictors,

as follows:
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Table 11.1: Categories, number of data and color used in graphs for the E.coli
dataset

Class Number of points Color in graphs
cytoplasm 143 black

inner membrane without signal sequence 77 red
perisplasm 52 light blue

inner membrane, uncleavable signal sequence 35 yellow
outer membrane 20 purple

outer membrane lipoprotein 5 grey
inner membrane lipoprotein 2 blue

inner membrane, cleavable signal sequence 2 green

• McGeoch’s method for signal sequence recognition.

• von Heijne’s method for signal sequence recognition.

• von Heijne’s Signal Peptidase II consensus sequence score. Binary attribute.

• Presence of charge on N-terminus of predicted lipoproteins. Binary attribute.

• score of discriminant analysis of the amino acid content of outer membrane

and periplasmic proteins.

• score of the ALOM membrane spanning region prediction program.

• score of ALOM program after excluding putative cleavable signal regions from

the sequence.

The 8 categories with the number of datapoints in each categories as well as the

colors in the plots are shown in Table 11.1.

Since the response has no real ordering we found it useful to run the OVA

method of comparing slices for SVMIR, in addition to LVR.

The dataset has two variables (the two binary attributes) that 326 out of the

336 points have the same values (“von Heijne’s Signal Peptidase II consensus se-
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Figure 11.3: The first two directions for all the methods in the full E.coli dataset
analysis. Upper panel is SIR and SAVE, middle panel is DR and in the lower panel
is SVMIR using both LVR and OVA method of estimating the directions.
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Figure 11.4: The first three directions for all the methods in the full E.coli dataset
analysis. Upper panel is SIR and SAVE, middle panel is DR and in the lower panel
is SVMIR using both LVR and OVA method of estimating the directions.
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quence score”=0.48 and “Presence of charge on N-terminus of predicted lipopro-

teins=0.5”). There are nine points that gets values (1.00, 0.50) and one point with

values (1.00, 1.00). It is clear from Figure 11.3 that the first two directions in

SIR, SAVE and DR is highly driven by those two variables. SIR achieves some

separation in the rest of the points, where in one cluster are the cytoplasm cells

(black), the second cluster has “the inner membrane without signal sequence cells”

(red) and the “inner membrane, uncleavable signal sequence cells” (yellow) and fi-

nally the third cluster has the “outer membrane cells” (purple) and the “periplasm

cells” (light blue). This separation makes sense because cytoplasm is inside the

membrane, then we have in one group two different cells in the inner membrane

(red and yellow points) and then there is another group with the outer membrane

cells and the periplasm cells (periplasm is the area between the inner membrane

and the outer membrane).

SVMIR with LVR and OVA comparisons achieve the same type of separation

as SIR without being driven from those ten points that have different values in the

two binary attributes. The five “outer membrane lipoprotein cells” (grey) are in the

same cluster with the other outer membrane cells and periplasm cells (purple and

light blue, respectively) and the two “inner membrane lipoprotein” cells (blue) and

the two “inner membrane, cleavable signal sequence” cells (green) are grouped with

the other inner membrane cells. The separation is slightly better with the LVR

comparison, but with OVA we are able to capture 4 clusters because the outer

”membrane cells” (purple) and the ”periplasm cells” (light blue) are more clearly

divided with this method. Also with the OVA method, in the third direction we

get a clearer separation of the cluster that has the inner membrane cells, since “the

inner membrane without signal sequence cells” (red) have mostly negative values

in the third direction and the “inner membrane, uncleavable signal sequence cells”
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(yellow) have mostly positive cluster in the third direction (see Figure 11.4).

11.2.2 E.coli without the binary variables

When we remove the binary attributes, SIR and DR perform similar to SVMIR,

although they seem to slightly underperform the SVMIR-OVA method. See Figures

11.5 and 11.6

11.2.3 Removing 3 small categories

Here we remove blue, green and grey points. If we remove this 9 points, one of the

binary attributes (“Presence of charge on N-terminus of predicted lipoproteins”)

have the same value for the rest of the points, so we remove that attribute as well as

well. So now we have 327 points, with 6 predictors, in 5 categories for the response.

There are 3 points now that have different value in the binary attribute. In

Figures 11.7 and 11.8 we can see that SAVE’s first direction is greatly influenced

by those 3 points, Also DR’s third direction is influenced by those three points.

SVMIR we showed before is robust, in the presence of binary variables. On the

other hand, SIR now that we have only one binary variable, seems to perform

pretty good.

11.2.4 E.coli, no small categories, not binary attributes

In the last section here, we remove the last binary attribute. So now we have

the 327 points with 5 categories in the response, with 5 predictors (excluding the

binary attributes).
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Figure 11.5: The first two directions for all the methods in the E.coli dataset
analysis without binary predictors. Upper panel is SIR and SAVE, middle panel
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Figure 11.6: The first three directions for all the methods in the full E.coli dataset
analysis. Upper panel is SIR and SAVE, middle panel is DR and in the lower panel
is SVMIR using both LVR and OVA method of estimating the directions.
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Figure 11.8: The first three directions for all the methods in the E.coli dataset
analysis using only the 5 largest clusters of cells. Upper panel is SIR and SAVE,
middle panel is DR and in the lower panel is SVMIR using both LVR and OVA
method of estimating the directions. 201
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Figure 11.9: The first two directions for all the methods in the E.coli dataset
analysis without binary predictors using only the 5 largest clusters of cells. Upper
panel is SIR and SAVE, middle panel is DR and in the lower panel is SVMIR using
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Figure 11.10: The first three directions for all the methods in the E.coli dataset
analysis without binary predictors using only the 5 largest clusters of cells. Upper
panel is SIR and SAVE, middle panel is DR and in the lower panel is SVMIR using
both LVR and OVA method of estimating the directions
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Figures 11.9 and 11.10 show that all methods perform similarly, except SAVE.

DR regression seems to reverse the first and second direction compared to SIR and

SVMIR methods. As we can see that SIR and DR were able to capture a picture

when the binary predictors and the small categories are removed, while SVMIR was

able to capture the same exact picture, before doing any kind of “manipulation”

on the dataset.

Out of the analysis of the E.coli dataset, the most important observation is

the fact that SVMIR, is not affected by the presence of binary/categorical predic-

tors, while SIR, SAVE and DR are being affected. Also, the presence of smaller

categories, seems to do not affect the dimension reduction process at all, for any

of the methods we used. Finally, it is important to note that the two methods for

SVMIR slice comparison LVR and OVA don’t seem to affect the results a lot, but

LVR performs slightly better when the response is continues and OVA performs

slightly better when the response variable is categorical and there is no meaning

in the ordering of the slices.
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Chapter 12

Discussion

In this part of this work we proposed an inverse regression algorithm SVMIR for

sufficient dimension reduction that has several advantages over previously proposed

inverse regression algorithms. The advantages are listed as follows:

• It is robust against outliers

• It can perform dimension reduction without matrix inversion

• It is robust in violations of ellipticity of the predictors

• It is robust in the presence of binary/categorical variables in the predictors

• Using kernel functions we can extract nonlinear features, so we are able to

perform nonlinear dimension reduction

The reason this method is robust to outliers is the fact that instead of depending

on inverse moments to estimate the directions that span the Central Dimension

Reduction Subspace for the regression of Y on X, SY |X , it depends on the optimal
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separating hyperplane that is estimated, as a separator of the points in two slices.

The vector that is orthogonal to the separating hyperplane, denoted as ψ is in

the dimension reduction subspace. The equation of ψ, depends only on support

vectors, the points that are closer to the optimal hyperplane. This, implies that if

there are outliers in our samples, the estimation of SY |X will not be affected using

SVMIR. This is proved in the derivation of asymptotic theory and the influence

function in Chapter 9. It is also shown in Chapter 10 where simulations of several

models show that indeed in the presence of outliers SVMIR performs better than

other existing methods that uses inverse regression, like SIR, SAVE and DR.

Through a small modification in our objective function that we are minimizing

in order to estimate the hyperplane, one can achieve dimension reduction without

matrix inversion. Nowadays, many problems, especially in Biology and Genetics,

where thousands or even hundreds of thousands of predictors are present and only

a handful of observations are available (usually in the order of hundredths), there is

a greater need of methods that address the large p small n issue. The fact that ex-

isting methods need matrix inversion, makes them unappealing to those problems.

This method is the first method proposed to achieve dimension reduction, other

than the work by Cook, Li and Chiaromonte (2007) where they propose rather a

theoretical framework where any of the previous methods can be transformed to

accommodate problems where n < p. The method proposed in this work is the

first method that achieves that without the need of the trick proposed by Cook, Li

and Chiaromonte (2007)

Through the simulations in Chapter 10 and the data analysis of the E.coli

dataset in Chapter 11 we showed that our method is also robust in departures of

ellipticity, and in the presence of categorical predictors. Since in real datasets the

assumption of ellipticity is rarely true, having a method that is robust to deviations
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of ellipticity, helps in finding better estimators of SY |X .

Finally, it can be shown that using kernel functions, instead of the classic lin-

ear operator, one can extract nonlinear features in the central dimension reduction

subspace SY |φ(X) using the “kernel trick”. The theory was developed in section

9.4 and it shows, how kernel functions can be used to extract directions in the

feature space of the kernel function. This method provides the first successful way

of achieving nonlinear dimension reduction in the sufficient dimension reduction

concept. The effort by Wang (2008) uses the idea of the feature space of a poly-

nomial kernel, but she is not incorporating any support vector machine algorithms

ideas and thus her results are not as good as one should expect and as the proposed

method has.

12.1 Future work

This work opens the ground for better and more detailed work in dimension reduc-

tion. There are pieces that are missing though.

In the future we are interested in developing

• the structural dimension d for the number of significant directions

• the asymptotic distribution of v̂1, . . . , v̂d the first d eigenvectors of the ma-

trices developed for LVR and OVA in section 9.2

h∑

r=1

ψ̂rψ̂
T
r or

h∑

r=2

h∑

s=r+1

ψ̂rsψ̂
T
rs.

Also, since the influence function of the optimal hyperplane seems to match
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that of the median or quartiles, it should be interesting for someone to explore if

this method can be applied to quantile regression, to achieve sufficient dimension

reduction in that context. As far as we are concerned there is no literature on the

sufficient dimension reduction for quantile regression.

Finally, further theoretical extension for nonlinear feature extraction as well

as simulation results need to be developed, as we believe that our method will be

very effective in extracting nonlinear features for sufficient dimension reduction.

This will give maybe a very powerful method for nonlinear sufficient dimension

reduction as the example with the vowel data showed
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